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CHAPTER I 

 

INTRODUCTION 

 

Helicobacter pylori 

 

Helicobacter pylori is a Gram-negative bacterial pathogen that selectively colonizes the 

human stomach.  This organism is a urease-, catalase- and oxidase-positive curved 

bacillus that possesses 4-5 polar flagella used for motility, and the majority of H. pylori 

strains express additional virulence factors that have evolved to affect host cell signaling 

pathways (Figure 1).  Approximately half of the world’s population is infected with H. 

pylori and virtually all infected individuals develop coexisting chronic inflammation that 

persists for the lifetime of the host [221].   Of infected individuals, 10% develop peptic 

ulcer disease, 1% develop gastric adenocarcinoma, and less than 0.1% develop mucosa 

associated lymphoid tissue (MALT) lymphoma.  Though H. pylori infection can be found 

in all regions of the world, rates of colonization are higher in developing countries than 

those in developed areas, with most infections being acquired at a young age [86, 87].  

These observations are consistent with epidemiological studies suggesting inadequate 

sanitation practices, low social class and high-density living situations are among the 

greatest risk factors for H. pylori infection [87, 307]. 
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Figure 1: Helicobacter pylori. Electron micrograph of the Gram-negative pathogen, 
Helicobacter pylori, demonstrating polar flagella used for motility in the mucous gel-
layer of the stomach.  Micrograph provided by and reprinted with the permission of Aime 
T. Franco, PhD (Memorial Sloan-Kettering Cancer Center). 
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Identification of Helicobacter pylori 

 

As early as 1875, there were reports of helical bacteria colonizing the human stomach, 

however, a pure culture of the organism was never obtained [34].  Results from these and 

similar studies in the early 1900’s were forgotten until interest in a stomach-colonizing 

bacterium was revived with work performed by Robin Warren and Barry Marshall in the 

1980’s [82, 103].  The pathologist and physician pair successfully visualized bacteria 

cultured from stomach tissue and argued that most cases of gastritis and ulceration could 

be attributed to Helicobacter pylori (initially named Campylobacter pyloridis) infection 

[176].  Earlier studies by Palmer had demonstrated that in 1,140 gastric biopsies, no 

spiral bacteria were found, which contributed to the medical community disregarding the 

initial observations of Warren and Marshall [215].  However, the staining technique used 

by Palmer was not effective for visualizing H. pylori, and Marshall pursued a definitive 

experiment testing the ability of H. pylori to fulfill Koch’s postulates by drinking a broth 

culture of H. pylori, documenting the resulting gastritis by serial endoscopies, and finally 

eradicating the infection with antibiotic treatment [174].  Follow-up studies by Warren 

and Marshall, as well as Rauws and Tytgat, demonstrated that antibiotic treatment could 

indeed clear infection, leading to duodenal ulcer healing [175, 238].  Robin Warren and 

Barry Marshall were eventually awarded the Nobel Prize in Medicine in 2005 for their 

breakthrough findings on the role of H. pylori in gastric disease.  
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Helicobacter pylori and chronic inflammation 

 

Only a fraction of individuals colonized with H. pylori ever develop serious sequelae of 

infection, yet virtually all patients develop gastritis.  Two signature features of H. pylori 

infection are its capacity to persist for decades and the inability of the host to eliminate 

the organism.  Chronic gastritis induced by H. pylori is characterized by lymphocyte, 

plasma cell and macrophage infiltration of the gastric mucosa.  Chronic active gastritis 

may also occur when polymorphonulcear neutrophils are present in the inflammatory 

infiltrate [117, 176].  Antral-predominant inflammation is typified by hyperchlorhydria 

and predisposition for duodenal ulceration and conversely, corpus-predominant gastritis 

is associated with hypochlorhydria, which may lead to gastric ulceration and 

adenocarcinoma [16].  Duodenal ulceration and gastric adenocarcinoma are two mutually 

exclusive disease outcomes, thought to be regulated by the degree of inflammation within 

the gastric mucosa (Figure 2) [251].  

 

The adaptive immune response elicited by H. pylori is polarized towards the Th-1 

cytokine response, which results from recognition of the bacterium by monocytes and 

macrophages [144, 171, 284].  Specifically, Toll-like receptor 9 (TLR9), an immune 

pattern recognition receptor of the innate immune system, has been demonstrated to be a 

key molecule in induction of the Th-1 inflammatory response in H. pylori-infected mice 

by recognizing hypomethylated CpG dinucleotides in H. pylori DNA [13].     
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Figure 2. Mutually exclusive disease outcomes associated with H. pylori infection.  
Infection of the gastric mucosa by H. pylori results in gastritis in one of two distinct 
locations, leading to duodenal ulceration or gastric cancer. 
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H. pylori can also directly stimulate the host immune response via bacterial constituents 

that are required for its survival in gastric mucosa.  The neutrophil activating protein, 

NapA, is required for H. pylori  iron-acquisition; however, release of NapA can recruit 

neutrophils, monocytes and mast cells to sites of infection [193, 350].  Another H. pylori 

virulence factor, Urease, is required for H. pylori survival in the acidic gastric 

environment by converting urea into ammonia and CO2 [331].  The by-products of 

Urease are immunogenic, and may also contribute to the immune response against H. 

pylori [116]. 

 

Though H. pylori elicits a host immune response, this pathogen has developed numerous 

strategies to aid in its persistence in the gastric mucosa, including evading and limiting 

the host inflammatory response.  Macrophages that encounter H. pylori produce nitric 

oxide (NO), a damaging agent to H. pylori, via utilization of a precursor molecule, L-

arginine (L-Arg) [106, 115, 336].  However, H. pylori produces arginase, encoded by 

rocF, which converts L-Arg to L-ornithine and urea, thereby limiting the amount of L-

Arg available to macrophages for production of NO [41, 106, 116, 180, 341].  In 

addition, H. pylori flagella components do not activate TLR-5 and lipopolysaccharide 

(LPS) of the H. pylori membrane is 1000-fold less immunogenic in TLR-4 activation 

than Escherichia coli LPS [111, 194].  Together, these mechanisms contribute to the 

ability of H. pylori to persist in the gastric niche although several of its own constituents 

can elicit an inflammatory response. 
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Many tumors arise in the setting of chronic inflammation and the inflammatory response 

to H. pylori may promote carcinogenesis [63].  Hyperproliferation induced by 

inflammation may lead to an increased risk of mutagenesis, and the production of NO in 

response to H. pylori can also damage host DNA [25, 91, 207, 300].  In addition, there 

are several microorganisms, such as the Human Papilloma virus, Hepatitis B and C 

viruses and Epstein-Bar virus that persistently infect humans and induce an inflammatory 

response, leading to an increased cancer risk [126, 195].  Taken together, these studies 

have led to the examination of the role of chronic inflammation induced by H. pylori in 

the development of gastric cancer.   

 
 

The role of Helicobacter pylori colonization in the genesis of gastric adenocarcinoma 

 

Gastric adenocarcinoma is the second leading cause of cancer-related deaths worldwide 

[221]. Because gastric cancer typically invades the muscularis propria prior to diagnosis, 

mutations frequently occur in metastasis-associated genes (E-cadherin, CD44), and 

surgery and chemotherapy have minor effects on prognosis, the 5-year survival rate in the 

United States is less than 15% [59, 285].  Two histologically distinct variants of gastric 

adenocarcinoma have been described: diffuse-type gastric cancer, which consists of 

individually infiltrating neoplastic cells that do not form glandular structures, and 

intestinal-type adenocarcinoma, which progresses through a series of well-defined 

histological steps defined by Dr. Pelayo Correa in 1975.  Intestinal-type adenocarcinoma 

is initiated by the transition from normal mucosa to chronic superficial gastritis; this is 

followed by atrophic gastritis and intestinal metaplasia, finally leading to dysplasia and 
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adenocarcinoma (Figure 3) [58, 283].  This form of gastric cancer commonly affects men 

more than women (male: female 2.1:1) and occurs most predominantly in older patients 

(50.4 years for men and 47.7 years for women) [60, 124]. 

 

One biological consequence of long-term colonization by this pathogen is an increased 

risk of developing peptic ulcer disease, atrophic gastritis, intestinal metaplasia and gastric 

adenocarcinoma [28, 58, 93, 122, 132, 143, 148, 154, 186, 203, 219, 231, 279, 282, 315, 

330].  Based upon these data, the World Health Organization has classified H pylori as a 

class I carcinogen for gastric cancer and approximately 1% of infected individuals will 

develop this disease.  Eradication of H. pylori significantly decreases the risk of gastric 

cancer in infected individuals without pre-malignant lesions and a randomized 

prospective study demonstrated eradication significantly reduces the presence of pre-

malignant lesions, providing additional evidence that this organism has an effect on early 

stages of gastric carcinogenesis [181, 337].  Furthermore, our lab and others have shown 

that eradication of H. pylori in experimental Mongolian gerbil infection models results in 

significant reduction in gastric cancer development [205, 256].  Taken together, these 

studies further support a role for H. pylori in the development of gastric cancer and 

indicate that anti-Helicobacter therapy may be an effective means of gastric cancer 

prevention. 



 9 

 

Figure 3. Progression of gastric cancer.   The presence of H. pylori virulence factors 
and host genetics influence disease progression. Gastritis occurs within weeks of 
infection while pre-malignant lesions arise after many years.  Adapted from Peek & 
Blaser  and Fox & Wang [95, 221]. 
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Like organs, tumors contain multiple cell types at various stages of differentiation, with 

their own capacity to propagate.  Because of this, it has been hypothesized that tumors 

possess a stem cell population from which all tumor cells arise-termed the “cancer stem 

cell” [242, 271].  Prospective cancer stem cells have been identified from tumors of 

different organs, all having characteristics of peripheral stem cells [6, 57, 90, 134, 261, 

280, 281, 325]. Peripheral stem cells have the ability to proliferate under a broad range of 

conditions and bypass apoptotic stimuli, which may lead to the accumulation of 

mutations and a predisposition for transformation.  The gastric stem cell niche remains 

elusive and is only implied as the area of highest density containing BrdU-positive cells.  

It is thought that chronic inflammation induced by carcinogens (such as H. pylori) in the 

stomach and other organs leads to atrophy and specialized cell loss in this niche [235].  

The removal of prospective endogenous stem cells has led to speculation another cell 

type may serve as the cancer stem cell, specifically, a bone-marrow derived cell 

(BMDC).   

 

Inflammation, chronic injury and atrophy are common characteristics for tissues with 

increased cancer risk and with this, BMDCs are increasingly found in the peripheral stem 

cell niche.  Persistent tissue injury and exposure to high levels of environmental damage, 

likely drives transformation of BMDCs.  Houghton et al. demonstrated that in mice 

transplanted with genetically- or fluorescently-labeled bone marrow and infected with 

Helicobacter felis, BMDCs repopulated the gastric mucosa and developed into cancer 

over time [131].  These and similar experiments have helped shape a mechanistic model 

for the development of gastric cancer in which, chronic inflammation leads to injury and 
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over time, depletes endogenous gastric stem cell populations (Figure 3).  These events in 

turn lead to the recruitment and engraftment of BMDCs, which functionally replace 

gastric stem cells.  As inflammation and injury persist, such as with Helicobacter 

infection for the lifetime of the host, BMDCs are exposed to DNA-damaging free radicals 

and other mutagens that cause failure to regulate proper growth programs, thus promoting 

the progression of metaplasia and dysplasia [95].  However, the role of BMDCs in human 

gastric cancer remains to be elucidated. 

 

Though virtually all individuals infected by H. pylori develop chronic inflammation, only 

a small percentage of colonized individuals ever develop neoplasia, suggesting that 

enhanced cancer risk involves strain-specific bacterial factors and/or inflammatory 

responses governed by host genetic diversity, which ultimately determine the interactions 

between pathogen and host [85, 168].  Several reports also indicate that H. pylori 

infection is inversely related to the prevalence of Barrett’s esophagus, esophageal 

adenocarcinoma, and other diseases such as hay fever, asthma and eczema [37, 48, 49, 

51, 75, 166, 316, 321].  These observations underscore the importance of delineation of 

mechanisms related to microbial-host interactions that will help improve our 

understanding of H. pylori-induced carcinogenesis.  Such results would permit physicians 

to more accurately diagnose and utilize eradication strategies targeted at patients with 

high-risk for neoplastic transformation.  
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The Helicobacter pylori cag pathogenicity island 

 

H. pylori strains from different individuals are exceedingly genetically diverse due to 

genomic rearrangements, point mutations, gene insertions and/or deletions [9, 114, 260, 

309].  Genetically unique variants of a single strain are present simultaneously within an 

individual human host, and the genetic composition of these populations can change over 

time [138].  The identification of bacterial factors associated with disease outcomes has 

been hindered because of this level of genetic diversity; however, loci have been 

identified that augment the risk for the development of gastric cancer.  These H. pylori 

constituents have the capacity to interact with host molecules and induce epithelial 

responses with carcinogenic potential. 

 

The cag pathogenicity island (cag PAI), a 40kB locus, is a well-characterized H. pylori 

virulence determinant that is present in approximately 60% of Western strains [3, 9, 44, 

309].  Although all H. pylori strains induce gastritis, strains that harbor the cag PAI 

(cag+) augment the risk for severe gastritis, atrophic gastritis, and distal gastric cancer 

compared to strains that lack the cag island (cag-) [35, 65, 67, 68, 157, 218, 224, 225, 

237, 257, 275, 310, 322].  Studies have shown that H. pylori cag- strains are found 

predominately in the mucus gel layer while cag+ strains are found adjacent to and 

adherent to gastric epithelial cells, demonstrating that the cag genotype influences the 

topography of colonization in the stomach [42].  Several cag genes encode components 

of a bacterial type IV secretion apparatus that acts as an injection apparatus to export 

bacterial proteins into host cells.  One of these proteins, CagE, is required for the 
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formation of the functional type four secretion system and inactivation of this gene 

product abrogates delivery of proteins into host cells (Figure 4).  Another component of 

the secretion system CagL, functions as a specialized bacterial adhesin that binds to and 

activates integrin α5β1 receptors, triggering the delivery of bacterial molecules into the 

cytoplasm of host cells [161]. 

 

CagA 

 

The terminal gene product of the cag island, CagA, is translocated into host cells after 

bacterial attachment.  CagA is a 120-140kDa protein that contains tyrosine 

phosphorylation motifs (glutamate-proline-isoleucine-tyrosine-alanine, EPIYA) within 

the carboxy-terminal variable region of the protein [291].   There are at least four 

different motif regions within CagA, which are termed EPIYA-A, -B, -C, or –D and are 

distinguished by the amino acid sequence surrounding the EPIYA motif [124].  Most 

variants of CagA contain Western-type EPIYA-A, –B and –C motifs, which are 

phosphorylated to a lesser extent than East-Asian –D phosphorylation sites [124].  Thus, 

the majority of cag+ Western strains are CagA A-B-C and East-Asian strains are A-B-D, 

though the number of EPIYA-C regions may vary between 1-3 repeated copies among 

different strains [124]. 

Following its injection into epithelial cells, CagA undergoes tyrosine phosphorylation by 

members of the Src family of kinases [15, 22, 208, 267, 269, 292].  Phosphorylated-CagA 

in turn activates a eukaryotic phosphatase (SHP-2) and extracellular signal-regulated 

kinase 1 and 2 (ERK1/2), leading to cell scattering, robust actin reorganization known as 
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the “Hummingbird” phenotype, and other morphologic changes that are reminiscent of 

unrestrained stimulation by growth factors (Figure 4) [15, 22, 127, 128, 208, 267, 269, 

291, 292, 312].  Phosphorylated CagA interacts with C-terminal Src kinase (Csk), which 

acts in a negative feedback loop, to downregulate Src signaling.  Non-phosphorylated 

CagA also exerts effects within the cell that contribute to pathogenesis.  Translocation, 

but not phosphorylation, of CagA leads to aberrant activation of β-catenin, disruption of 

apical-junctional complexes, and a loss of cellular polarity, alterations that play a role in 

carcinogenesis [10, 23, 99, 197, 258, 298] 
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Figure 4. Molecular signaling alterations induced by intracellular delivery of CagA.  
Translocation of CagA by the secretion system of H. pylori leads to activation of host 
signaling pathways that promote epithelial responses with carcinogenic potential. 
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Helicobacter pylori peptidoglycan 

 

In addition to CagA, the cag secretion system delivers components of H. pylori 

peptidoglycan into host cells where they are recognized by nucleotide-binding 

oligomerization domain containing 1 (Nod1), an intracytoplasmic pattern-recognition 

molecule (Figure 5) [319]. Nod1 sensing of H. pylori peptidoglycan activates NF-κB and 

regulates expression of the cytokine MIP-2 and β-defensin [39, 319].  The soluble lytic 

transglycosylase (Slt) enzyme encoded by the H. pylori gene hp0645 functions in 

anhydromuropeptide turnover and regulates release from peptidoglycan.  Mutation of H. 

pylori slt results in an accumulation of G-M-tripeptide in the bacterial peptidoglycan 

layer (Figure 5) [64, 66, 232, 265, 304] and an approximately 40% reduction in the 

amount of disaccharide tripeptide liberated by the bacteria compared to wild type H. 

pylori [319].  Thus, inactivation of slt reduces the amount of peptidoglycan available for 

translocation by the cag secretion system and accordingly co-culture of an isogenic H. 

pylori slt- mutant with cells expressing exogenous Nod1 attenuates NF-κB activity and 

IL-8 synthesis when compared to co-culture with wild type H. pylori [319].   

Another CagA-independent consequence of cag island-mediated H. pylori-epithelial cell 

contact is activation of mitogen-activated protein kinase (MAPK) [145, 183, 202].  

MAPKs are signal transduction networks that target transcription factors and participate 

in many cellular functions, including cytokine expression, proliferation, and apoptosis 

[107, 136, 264].  In mammalian systems, at least five MAPK cascades have been 

identified including ERK 1/2, p38, and c-Jun N-terminal kinase (JNK).  Our laboratory 

and others have demonstrated that H. pylori cag+
 strains selectively activate p38, ERK 



 17 

1/2, and JNK in gastric epithelial cells in vitro [40, 61].  H. pylori cag+ strains also 

transactivate the epidermal growth factor receptor (EGFR) via activation of heparin 

binding-epidermal growth factor (HB-EGF) [146, 323].  Thus, cag+ strains augment the 

risk for serious sequelae of H. pylori infection and contact between cag+ strains and 

epithelial cells activates signaling pathways that may regulate cellular responses with 

carcinogenic potential.    

 

Independent cancer-associated loci within the Helicobacter pylori genome 

 

An independent H. pylori locus linked with gastric cancer is vacA, which encodes the 

secreted bacterial toxin VacA [64, 66, 232, 265, 304].  In vitro, VacA induces the 

formation of intracellular vacuoles and it has been shown to actively suppress T cell 

activation, which may contribute to the longevity of H. pylori colonization [38, 108, 162, 

295].  vacA is present in virtually all H. pylori strains examined; however, the cytotoxin 

activity varies between strains due to variations in vacA gene structure [66, 317].  H. 

pylori strains that possess a type s1/m1 vacA allele are associated with an increased risk 

of gastric cancer compared to those strains that possess s2/m2 alleles [83, 167, 188, 286].  

Additionally, vacA possesses the i1 or i2 intermediate region allele and Rhead et al. 

demonstrated that among 42 Western strains studied, s1/m1 vacA contained the i1 allele 

and showed high levels of vacuolating activity, while s2/m2 vacA alleles were i2 type 

that were non-vacuolating.  This study also demonstrated that the vacA i1 allele was a 

significant marker of gastric cancer-associated strains [248].  
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Figure 5.  H. pylori peptidoglycan stimulates NF-κB.  Upper panel: H. pylori slt 
encodes an enzyme that regulates release of GM tri-peptides during peptidoglycan 
turnover.  Adapted from Chaput et al. [47].  Lower panel: Translocation of H. pylori 
peptidoglycan results in the induction of pro-inflammatory cytokines. 
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Sequence analysis of the genomes of three H. pylori strains, 26695, J99 and AG1, has 

revealed a large proportion of identified open reading frames that are predicted to encode 

outer membrane proteins (OMPs) [9, 309].  BabA is an OMP encoded by the strain-

specific gene babA2, which binds the Lewisb histo-blood-group antigen on gastric 

epithelial cells; babA2+ H. pylori strains are associated with increased risk for gastric 

cancer [110, 135]. The H. pylori adhesion SabA binds the sialyl-Lewisx antigen, which is 

an established tumor antigen and marker of gastric dysplasia that is up-regulated by 

chronic gastric inflammation [170].   

 

Rodent models of infection 

 

Several rodent models have provided valuable insights into the host, bacterial, and 

environmental factors involved in gastric carcinogenesis [253, 287].  Long-term (>1 year) 

H. pylori infection of Mongolian gerbils can lead to inflammation-induced gastric 

adenocarcinoma, without the co-administration of known carcinogens and gastric cancer 

development in this model occurs in the distal stomach, as in humans [130, 211, 329, 

352].  Prior to 2005, the development of gastric cancer in gerbils had not been 

demonstrated outside of Japan or China [130, 211, 329, 352].  Our group has now 

demonstrated that the gerbil-adapted strain 7.13 can induce adenocarcinoma in 17% of 

challenged gerbils by 4 weeks and 59% of gerbils by 8 and 16 weeks [99, 100].  

Mongolian gerbils however, are outbred with undefined genetic backgrounds, which tend 

to increase the variability of responses to any stimulus.  Moreover, compared with mice, 
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gerbils are relatively poorly characterized and few gerbil-specific reagents are available 

for detailed investigation. 

The ability to utilize inbred mice with defined genotypes allows for more detailed 

analysis of host susceptibility to H. pylori virulence determinants and pathological 

consequences.  One host determinant that may influence the development of gastric 

cancer is gastrin.  Gastrin stimulates gastric epithelial cell proliferation in vitro and 

transgenic mice that over-express gastrin (INS-GAS) develop gastric cancer 

spontaneously, but this requires the lifetime of the animal (2 years) [139, 326].  Infection 

of INS-GAS mice with Helicobacter pylori or with the related Helicobacter species, H. 

felis, accelerates the time to progression to cancer, suggesting that persistently elevated 

gastrin levels synergize with Helicobacter to augment cancer development [326].   

 

H. pylori-infected gerbils and humans with hypergastrinemia and corpus-predominant 

gastritis develop parietal cell loss similar to infected INS-GAS mice [158]; however, 

most adenocarcinomas in gerbil or human tissue occur in the antrum, whereas cancer in 

INS-GAS mice develops most frequently in the corpus [94, 96, 130, 326, 329].  Thus, 

human gastric carcinogenesis is associated with features present in both H. pylori-

infected gerbils and mice, which supports the utility of examing H. pylori-induced 

sequelae in multiple model systems. 
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Activation of PI3K-AKT in carcinogenesis 

 

The phosphatidylinositol 3- kinase (PI3K) pathway is conserved from yeast to mammals 

and regulates multiple cellular processes including metabolism, survival, proliferation, 

apoptosis, and cell migration.  Members of the PI3K family are lipid kinases that 

phosphorylate the 3’ –hydroxyl group of phosphatidylinositols and both structure and 

substrate specificity dictate classification of PI3Ks into one of three groups.  Class I 

PI3Ks phosphorylate phosphatidylinositol- 4,5-bisphosphate (PIP2) to generate 

phosphatidylinositol -3,4,5-trisphosphate (PIP3) lipid second messenger (Figure 6), 

whereas Class II and III use phosphatidylinositol as a substrate.  The phosphatase and 

tensin homolog deleted on chromosome 10 (PTEN) lipid phosphatase directly opposes 

the activity of PI3K by dephosphorylating PIP3 to generate PIP2.    A link between the 

PI3K pathway and cancer was first established when its lipid kinase activity was 

associated with two viral oncoproteins- the src protein of Rous sarcoma virus and the 

middle-T protein of polyoma virus.  Somatic mutations in human cancer target the 

catalytic subunit of PI3K, p110α (PIK3CA), and PTEN at a high frequency, resulting in 

increased activity of PI3K.  Overexpression of PIK3CA most often occurs in prostate, 

breast, endometrial, and colon cancers, but induced PI3K-AKT signaling is also increased 

in gastric cancer specimens and phosphorylation levels of the primary PI3K target, AKT, 

correlate with advanced stages of disease [14, 153].   Class IA PI3Ks transduce signals 

downstream of oncogenic receptor tyrosine kinases (RTK) and PIK3CA is the only PI3K 

gene identified with common mutations in human cancer.   
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PI3K becomes activated upon binding of a ligand to its cognate receptor tyrosine kinase, 

such as epidermal growth factor binding to epidermal growth factor receptor.  Src 

kinases, acting both downstream and upstream of EGFR, can also activate the PI3K 

signaling cascade.  Activation of PI3K and the subsequent generation of lipid second 

messengers recruits its downstream effector, AKT (also known as PKB) to the cell 

membrane where it is fully activated by phosphatidylinositol-dependent kinase 1 (PDK 1) 

phosphorylation at threonine 308 and at serine 473 by the rapamycin-insensitive mTOR 

complex (mTORC2) (Figure 6) [45].  Studies now indicate that ubiquitination of AKT 

by TRAF6 promotes AKT translocation to the plasma membrane and subsequent 

activation [344].   

 

AKT mediates the downstream effects of PI3K by phosphorylating multiple targets that 

regulate diverse cellular functions including growth, proliferation and survival (Figure 

6).  AKT-mediated phosphorylation of the transcription factor FOXO can increase 

proliferation by preventing FOXO from transcriptional activation of cell-cycle regulatory 

genes p27Kip1 and pro-apoptotic genes FasL and Bim.  In addition, AKT-mediated 

phosphorylation inhibits the pro-apoptotic activity of the protein BAD, and glycogen 

synthase kinase- 3β (GSK-3β), which modulates glucose metabolism, cell-cycle 

regulatory proteins, and β-catenin.  MDM2 promotes degradation of the tumor-

suppressor p53 and phosphorylation of MDM2 by AKT promotes this function. In 

addition, AKT-dependent phosphorylation of NFκB enhances activity, thereby promoting 

the anti-apoptotic properties of NFκB.  In the absence of survival stimuli, Bcl-2 

homology domain 3 (BH3)-only proteins interact with and inhibit pro-survival factors at 
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the mitochondrial membrane, resulting in release of cytochrome c and subsequent death 

protease activation; however, AKT-dependent phosphorylation of BH3-only proteins 

disrupts their binding to the pro-survival proteins, thus inhibiting BH3-only-dependent 

cell death  [72, 77].  Additionally, inhibitory phosphorylation of pro-caspase 9, a critical 

inititator/effector of apoptosis [43], reduces rates of apoptosis, thereby promoting cell 

survival and enhancing susceptibility of cells to malignant degeneration.  Similarly, H. 

pylori infection increases cell proliferation and attenuates apoptosis in humans and rodent 

models of infection but the mechanisms underlying these findings are not clearly defined 

[160, 169, 226, 277].  Recently, one study determined that MEK/ERK activation in 

response to H. pylori results in increased Mcl-1 levels (a BH3-only protein), leading to 

epithelial cell resistance to H. pylori-induced apoptosis [190]. 

 

In addition to cancer-related processes such as cell-cycle progression and survival that are 

regulated by AKT activation downstream of PI3K, the lipid second messengers generated 

by PI3K can regulate cell motility and invasion through Rac and Cdc42 [45]. Cellular 

migration plays an important role in invasion and metastatic growth of cancers.  Although 

H. pylori can increase gastric epithelial cell migration, the mechanisms required for this 

response are not clearly defined [5, 192, 294].  Recently, it was reported that EGFR 

transactivation increases intestinal epithelial cell motility in a PI3K- and Src-dependent 

manner through Rac1 activation [80], so it is possible gastric cell migration in response to 

H. pylori occurs in a similar fashion.   
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PI3K signaling plays a crucial role in normal developmental and metabolic processes; 

and, due to its position in these signaling pathways, PI3K is poised to regulate responses 

that may predispose to malignancies if over-activation or mutation in signaling 

components arises.  Compounds to selectively inhibit components of the PI3K pathway 

are under development as a cancer therapeutic avenue.  For example, a dual inhibitor of 

p110α and mTOR blocks proliferation of glioma and other tumor cells in vitro and in 

xenograft models in vivo [88, 239].  Development of multiple inhibitors for the signaling 

constituents in the PI3K cascade that are deregulated in cancer and an understanding of 

how H. pylori alters these components is critical for designing customized cancer 

therapies.   
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Figure 6. PI3K regulates signaling cascades that participate in carcinogenesis.   
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Activation of β-catenin and gastric cancer 

 

One specific molecule that may influence H. pylori-induced epithelial responses with 

carcinogenic potential is β-catenin.  Membrane-bound β-catenin is a component of 

adherens junctions that link cadherin receptors to the actin cytoskeleton, and in non-

transformed epithelial cells, β-catenin is primarily localized to E-cadherin complexes 

[308].  Cytoplasmic β-catenin is a downstream component of the Wnt signal transduction 

pathway.  In the absence of Wnt ligands, β-catenin is bound in the cytosol by a multi-

protein inhibitory complex, which includes GSK-3β, the adenomatous polyposis coli 

(APC) tumor suppressor protein, and axin [308].  GSK-3β constitutively phosphorylates 

β-catenin, targeting it for ubiquitination by E3-SCFβTrCP and subsequent degradation by 

the proteosomal complex [308].  Binding of Wnt ligand to it’s receptor Frizzled, activates 

Dishevelled (Dsh) and Wnt co-receptors LRP-5 and LRP-6, which interact with members 

of the inhibitory complex, leading to inhibition of axin and the kinase activity of GSK-3β 

(Figure 7) [308].  AKT-dependent phosphorylation of GSK-3β at Serine 9 also inhibits 

its kinase activity [164].  Together these events block β-catenin degradation, leading to its 

nuclear accumulation, the formation of heterodimers with LEF/TCF transcription 

complex, and transcriptional activation of genes that regulate normal cellular processes as 

well as influence carcinogenesis.  

 

Numerous studies have implicated aberrant β-catenin signaling in carcinogenesis.  In 

colorectal carcinoma specimens, inactivating mutations of APC or axin are present in 70-

75% of cases [150].  Increased β-catenin expression, as well as mutations within APC, 
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are also present in gastric adenocarcinoma specimens compared to non-transformed 

gastric mucosa [311].  Nuclear accumulation of β-catenin is increased within gastric 

adenomas and foci of dysplasia, suggesting aberrant activation of β-catenin precedes the 

development of gastric adenocarcinoma [50, 56, 84, 149].  H. pylori increases the 

expression of β-catenin target genes that influence proliferation, apoptosis, and 

carcinogenesis, such as c-myc, cyclin D, mmp-7, cox-2, and gastrin within colonized 

mucosa and during co-culture with gastric epithelial cells in vitro [17, 29-31, 69, 74, 106, 

129, 179, 187, 201, 255, 263, 273, 303, 339, 345].   

 

Within the context of H. pylori infection, translocated CagA has been demonstrated to 

physically interact with E-cadherin leading to destabilization of the E-cadherin/β-catenin 

complex and release of β-catenin to the cytoplasm and nucleus (Figure 7) [159].  In 

addition, recent reports now demonstrate that H. pylori can also activate β-catenin via 

mechanisms that involve PI3K-dependent inactivation of GSK-3β, though the specific 

bacterial factors required for these events remain unclear (Figure 7) [200, 297].  Since β-

catenin is aberrantly activated by H. pylori contact with gastric epithelial cells, is over-

expressed within H. pylori-associated pre-malignant and malignant lesions, and regulates 

the transcription of genes that have been implicated in tumor initiation and promotion, it 

is likely that activation of β-catenin signaling is a central component in regulation of 

epithelial responses to H. pylori that may lower the threshold for carcinogenesis. 
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Figure 7.  Hypothetical model of β-catenin signaling in unstimulated, WNT-
activated, (Panel A) or H. pylori-infected (Panel B) gastric epithelial cells. 

, peptidoglycan   
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p120 and carcinogenesis 

 

p120 is a member of the catenin family, which modulates the function of cadherins [243, 

244, 246, 247, 274, 290].  E-cadherin acts as a cell-cell adhesion molecule in epithelial 

tissues and its turnover is regulated by binding of p120 to the cadherin juxtamembrane 

domain (Figure 8) [11, 12, 73, 137, 244, 246, 247, 274, 290, 305].  p120 is 

phosphorylated at multiple sites by Src, receptor tyrosine kinases, and ligand-receptor 

pathways, which include protein kinase C (PKC)- and EGFR-dependent pathways, both 

of which are activated by H. pylori [146, 173, 206, 342]. 

 

Reduced membrane expression or aberrant localization of p120 to the cytosol or nucleus 

has been observed in several epithelial malignancies, including gastric cancer [140, 142, 

178, 306].  Loss of E-cadherin or overexpression of p120 in vitro results in 

mislocalization of p120 to the cytoplasm where it can promote motility and metastasis via 

interactions between p120 and Rho GTPases [11, 118, 204]. 

 

p120 is normally present at low levels in the nuclei of non-transformed cells, but is 

increased within the nuclei of tumor cells [178, 262, 334].  Recently, H. pylori infection 

has been associated with mislocalization of p120 to the nucleus in human gastric 

epithelium and in infected human primary gastric epithelial cells [156].  Nuclear p120 

relieves transcriptional repression exerted by Kaiso, a member of the broad complex, 

tramtrak, bric a brac/pox virus and zinc finger (BTB/POZ) family [70].  Kaiso acts as a 

dual specificity repressor that recognizes both sequence-specific consensus sites 
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(CTGCNA) and methylated CpG nucleotides [71, 217, 236].  The Kaiso/p120 complex 

coordinately regulates expression of several genes implicated in carcinogenesis such as c-

myc, cyclin D1, and mmp-7 (Figure 8)  [217, 289], all of which are up-regulated by H. 

pylori in vitro and in vivo [17, 31, 69, 74, 129, 187, 201, 272, 339, 345].  p120 and Kaiso 

also mediate expression of additional β-catenin target genes including peroxisome 

proliferator-activated receptor δ (PPARδ) [217].  

 

Peroxisome proliferator-activated receptor δ (PPARδ) 

 

Peroxisome proliferator-activated receptor δ (PPARδ) and the related isoforms PPARα 

and PPARγ, constitute a family of ligand-activated transcription factors that are members 

of the nuclear hormone receptor superfamily [324].  These nuclear receptors are activated 

by natural ligands, including fatty acids and cholesterol metabolites.  PPARs form 

functional heterodimers with the retinoid X receptor (RXR) and regulate the transcription 

of target genes that mediate fatty acid oxidation and glucose utilization (Figure 9) [32].  

PPARδ is expressed in a wide range of tissues, including the gastrointestinal tract, and 

mouse models have demonstrated a critical role for PPARδ in embryonic development.  

PPARδ null mice show a high degree of embryonic death, partially due to defects in the 

placenta and wound healing processes [27, 185, 198, 230].  Indeed, PPARδ has also been 

demonstrated to be critical for the survival of keratinocytes by upregulating PI3K-AKT 

signaling [78].  In addition to its roles in normal developmental processes, recent 

evidence suggests that cross regulation between Wnt/β-catenin/TCF signaling and 

PPARδ modulates both normal and pathological processes in humans [196].   
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Figure 8. p120 stabilization of adherens junctions.  Nuclear accumulation of p120 in 
response to H. pylori infection relieves Kaiso-mediated transcriptional repression of β-
catenin target genes. 
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Genetic and pharmacological studies have revealed important roles for PPARδ in 

regulating lipid metabolism and energy homeostasis.  Overexpression of PPARδ in 

mouse adipose tissue inhibits hyperlipidemia, steatosis, and obesity that is either 

genetically-induced or induced by high-fat diet [328].  Additionally, PPARδ null mice 

exhibit an obese phenotype [328].  A number of high affinity synthetic ligands for 

PPARδ are currently available and pharmacologic studies have demonstrated that the 

PPARδ selective agonist GW501516 increases HDL-cholesterol while lowering 

triglyceride levels and insulin in obese rhesus monkeys [212].  GW501516 is now being 

used in Phase III clinical trials to evaluate its efficacy for treatment of patients with 

hyperlipidemias and obesity.  However, recent studies in animal models have 

demonstrated that PPARδ agonists may promote carcinogenesis [230, 240]. 

 

Levels of PPARδ are elevated in most human colorectal cancers as well as carcinomas 

that develop in murine models of colon cancer including ApcMin/+ mice and azoxymethane 

(AOM)-treated mice, and the PPARδ agonist GW501516 has been shown to be 

proneoplastic in mice [120].  However, two studies reported that disruption of PPARδ 

increased polyp formation in ApcMin/+ mice in the absence of exogenous PPARδ 

stimulation, which has necessitated more in-depth studies [123, 240].  Conversely, it has 

recently been demonstrated that deletion of PPARδ decreases intestinal adenoma growth 

in ApcMin/+ mice and inhibits the tumor promoting effects of GW501516 [324]. In another 

study using a xenograft model, disruption of both PPARδ alleles in human HCT-116 

colon carcinoma cells decreased tumorigenicity, indicating that activation of PPARδ 

promotes tumor growth [216].  The PPARδ agonist GW501516 has been shown to 
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stimulate proliferation of human breast, prostate, and hepatocellular carcinoma cells [112, 

293] and in a murine mammary tumor model, treatment with GW501516 accelerated 

tumor formation [349]. These results are concordant with recent observations that a target 

gene which is transcriptionally activated by PPARδ, cyclin E1, is a cell cycle regulatory 

protein that, in association with Cdk2, drives cells from G1 into S phase via 

hyperphosphorylation of the retinoblastoma protein Rb [351].   

 

Prostaglandin PGI2, a metabolite of cyclooxygenase-2, is one endogenous PPARδ ligand 

[92, 151].  Cyclooxygenase (COX) enzymes are encoded by two distinct genes that 

catalyze key steps in the formation of prostaglandins.  COX-1 is constitutively expressed 

in the gastrointestinal tract, while COX-2 can be induced by a variety of stimuli including 

H. pylori [335].  Levels of COX-2 are increased within gastric mucosa of H. pylori-

infected individuals, suggesting that prostaglandins that activate PPARδ may be 

oncogenic [106, 179, 250, 263, 296, 303, 314].  Since our previous data have 

demonstrated that H. pylori can activate host effectors (β-catenin, p120/Kaiso) that also 

regulate expression of PPARδ, we hypothesized that up-regulation of PPARδ mediates 

pathogenic outcomes that develop in response to H. pylori.   
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Figure 9. PPARδ (Upper panel) in conjunction with RXR (Lower panel) regulates 
transcription of genes that influence cell responses in carcinogenesis.  AGGTCA N 
AGGTCA, the PPARδ response element in the promoter of target genes. 
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Summary and dissertation goals 

 

Gastric adenocarcinoma is strongly associated with the presence of H. pylori.  Microbial 

factors of H. pylori and host responses induced by the interactions of H. pylori with 

gastric epithelial cells play important roles in the development of disease.  PI3K/AKT 

and β-catenin/p120 are multifunctional host proteins that coordinate carcinogenic 

epithelial responses when aberrantly activated, such as in malignant gastric lesions.  In 

Chapter II, we demonstrate that H. pylori infection results in upregulation of PI3K-AKT 

signaling, through stimulation of EGFR.  Activation of this pathway reduces rates of 

epithelial cell death induced by H. pylori and promotes resistance to apoptosis.  In 

Chapter III, we demonstrate that H. pylori infection induces additional host signaling 

pathways to potentiate a proliferative response in gastric epithelial cells.  Specifically, 

PPARδ, a target of β-catenin transcriptional activation, contributes to increased rates of 

gastric epithelial cell proliferation in response to H. pylori infection.  Based on these 

findings we hypothesize that an anti-apoptotic response in the presence of increased 

proliferation increases the risk of retaining mutagenized gastric epithelial cells in the 

presence of H. pylori induced gastritis.  Taken together, these studies have identified 

effectors that directly mediate host responses related to carcinogenesis.  Molecular 

delineation of such pathways activated by host-microbial interactions will improve our 

understanding of H. pylori-induced carcinogenesis, allowing for targeted therapies to 

high-risk individuals, as well as provide insight into other malignancies that arise within 

the context of pathogen-induced inflammation.      
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CHAPTER II 

 

ACTIVATION OF PI3K BY HELICOBACTER PYLORI PROMOTES 

RESISTANCE TO APOPTOSIS 

 

Summary 

 

Helicobacter pylori is the strongest identified risk factor for gastric adenocarcinoma.  

One H. pylori virulence constituent that augments cancer risk is the cag secretion system, 

which translocates CagA and peptidoglycan into host cells, eventuating in activation of 

signal transduction pathways.  AKT is a target of phosphatidylinositol 3-phosphate kinase 

(PI3K) and is activated in gastric cancer, but the relationship between PI3K-AKT and H. 

pylori-induced cellular responses with carcinogenic potential remains unclear.  We 

defined the molecular pathways mediating H. pylori-stimulated AKT activation and the 

biological consequences of these events in gastric epithelial cells.  H. pylori enhanced 

PI3K-AKT signaling in a Src and EGFR-dependent manner, which was also mediated by 

a functional cag secretion system, and peptidoglycan. PI3K activation attenuated 

apoptosis in response to H. pylori infection.  These results indicate that PI3K-AKT 

signaling regulates pathophysiologic responses to H. pylori that may lower the threshold 

for carcinogenesis. 
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Introduction 

 

Chronic gastritis induced by Helicobacter pylori persists for decades and increases the 

risk of gastric adenocarcinoma [21, 209].  Although H. pylori-induced gastritis is the 

strongest known risk factor for gastric cancer, only a fraction of colonized individuals 

ever develop neoplasia, and enhanced cancer risk is mediated by strain-specific bacterial 

factors and/or inflammatory responses governed by host genetic diversity.  The cag 

pathogenicity island (cag PAI) is a virulence locus present in approximately 60% of U.S. 

H. pylori strains [128, 268], and strains that harbor the cag PAI (cag+) significantly 

augment the risk for distal gastric cancer compared to strains that lack the cag island 

(cag-) [10, 97]. 

 

Several cag genes, such as cagE, encode components of a type IV secretion system that 

exports bacterial proteins into host cells.  The terminal product of the cag island, CagA, is 

translocated into gastric epithelial cells following bacterial attachment [320].  CagA  

subsequently undergoes tyrosine phosphorylation by Src and Abl kinases, and phospho-

CagA alters gastric cell morphology and aberrantly activates signaling molecules such as 

SHP-2 [252].  Unphosphorylated CagA can also exert effects within host cells such as 

alteration of cell polarity and activation of β-catenin, responses that have been implicated 

in carcinogenesis [213].  In addition to CagA, components of peptidoglycan can be 

translocated into host cells by the cag secretion system where they are sensed by the 

intracellular pattern recognition receptor Nod1, which activates NF-κB and induces 

production of pro-inflammatory cytokines such as IL-8 [101].   
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Signal transduction pathways activated in response to bacterial contact play an important 

role in H. pylori pathogenesis. Phosphatidylinositol 3-kinase (PI3K) is an integral 

component of a signal transduction pathway that regulates host cellular responses altered 

in tumorigenesis.  PI3K signaling can be activated by ligand-dependent activation of 

receptor tyrosine kinases such as EGFR [153].  Src kinases, acting both downstream and 

upstream of EGFR, can also activate PI3K signaling [177].  PI3K activation results in 

stimulation of phosphatidylinositol-dependent kinase 1 (PDK1), a kinase that 

phosphorylates and activates AKT [72].  AKT mediates the downstream effects of PI3K 

by phosphorylating multiple targets that regulate diverse cellular functions including 

proliferation and survival.  PI3K-AKT signaling is increased in gastric cancer specimens 

and enhanced levels of AKT phosphorylation correlate with advanced stages of disease 

[43].  Thus, PI3K is well positioned to regulate epithelial responses that may predispose 

to malignancies.  

 

Cell survival is one host response that is regulated by PI3K and AKT activation [169, 

228].  AKT-dependent phosphorylation of pro-apoptotic Bcl-2 homology domain 3 

(BH3)-only proteins (Bad, Bik, Bid, Bim, Noxa) inhibits their activity [222], while AKT-

dependent phosphorylation of BCL-2 proteins activates their pro-surivial signals [172]. 

Pro-caspase 9 can undergo inhibitory phosphorylation by AKT [189], which attenuates 

apoptosis, thereby promoting cell survival and enhancing the susceptibility of cells to 

mutagenesis.  Since H. pylori increases cell proliferation and attenuates apoptosis in 

humans and in rodent models of infection [147, 213, 252, 291], we determined the ability 

of H. pylori to activate PI3K-AKT signaling in gastric epithelial cells and investigated the 
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molecular pathways mediating these events to define potential tumor-promoting 

responses toward this pathogen.   
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Experimental Procedures 

 

Cell Culture and Reagents.   

AGS or MKN28 human gastric epithelial cells were grown in RPMI medium 1640 

(GIBCO/BRL) with 10% FBS (Sigma) and 20 µg/ml gentamicin (GIBCO/BRL) under 

5% CO2 air at 37°C.  Pharmacological inhibitors LY294002 (Cell Signaling Technology), 

AG1478 (Calbiochem), PP2 (Calbiochem), SU6656 (Calbiochem), AG1295 

(Calbiochem), and STI-571 (LC Laboratories) were used at concentrations of 50 µM, 600 

nM, 10 µM, 2µM, 50µM and 10µM, respectively.  For Western immunoblot and flow 

cytometry analysis, AGS cells were plated at 5 x 105 cells/well in 6-well plates in 2 mL 

culture medium.   

 

H. pylori strains.   

The H. pylori cag+ rodent-adapted strain 7.13, the cag+ clinical strain J166, or the cag- 

clinical isolate J68, were grown in Brucella broth with 5% FBS for 18 hours, harvested 

by centrifugation, and were added to gastric cells at a bacteria-to-cell ratio of 100:1.  

Isogenic cagA-, cagE-, and slt- null mutants were constructed within strain 7.13 by 

insertional mutagenesis using aphA and were selected with kanamycin (25 µg/ml) as 

described previously [184].  H. pylori were heat-killed by boiling at 100°C for 10 

minutes, while H. pylori filtrates were prepared by passing broth supernatants through a 

0.2 µM pore-size filter (Corning). 
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Western Blot Analysis. 

Gastric cell lysates were harvested in lysis buffer (50 mM Tris pH 7.2, 150 mM NaCl, 

1% Triton X-100, 0.1% SDS) including protease and phosphatase inhibitors (Sigma).  

Proteins (30 µg) were separated by 10% SDS-PAGE and transferred to poly-vinylidene 

difluoride membranes (Pall).  Membranes were blocked in 5% nonfat dry milk in Tris-

buffered saline with 0.05% Tween 20 (TBST), incubated for 24 hours with a purified 

rabbit polyclonal anti-phospho-AKT (Ser473) antibody (1:1000 dilution; Cell Signaling), 

a rabbit polyclonal anti-total AKT antibody (1:1000 dilution; Cell Signaling), a 

monoclonal mouse anti-GAPDH antibody (1:2000 dilution; Santa Cruz Biotech), a 

mouse monoclonal anti-phospho-tyrosine-99 antibody (1:300 dilution; Santa Cruz 

Biotech), a rabbit polyclonal anti-CagA antibody (1:5000 dilution; Austral Biologicals), a 

rabbit polyclonal anti-phospho-Src family antibody (1:1000 dilution; Cell Signaling), a 

rabbit polyclonal anti-Src antibody (1:1000 dilution; Cell Signaling), a mouse 

monoclonal anti-phospho-EGFR (Tyr1068) antibody (1:1000; Millipore), a rabbit 

polyclonal anti-EGFR antibody (1:3000; Millipore), a rabbit polyclonal anti-phospho-

Gab1 antibody (1:1000; Cell Signaling), or a rabbit polyclonal anti-Gab1 antibody 

(1:1000 dilution; Cell Signaling).  Goat anti-rabbit (1:5000 dilution; Santa Cruz Biotech) 

or goat anti-mouse (1:5000 dilution; Santa Cruz Biotech) horseradish peroxidase-

conjugated secondary antibodies were used followed by enhanced chemiluminescence 

detection following the manufacturer’s instructions (Perkin Elmer).  Immunoblots were 

quantified with the GeneTools Software (Syngene). 
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Flow Cytometry Analysis. 

AGS cells co-cultured with H. pylori were washed with PBS and harvested using 0.25% 

Trypsin/EDTA (GIBCO/BRL).  Cells were collected by centrifugation and resuspended 

in binding buffer (10x: 0.1 M HEPES pH 7.4, 1.4 M NaCl, 25 mM CaCl2) at a 

concentration of 5 x 105 cells/mL.  Cells were stained with Annexin V-APC (BD 

Bioscience) and Propidium iodide/RNAse (BD Bioscience) and were analyzed by 

quantitative flow cytometry. 

 

Apoptotic Resistance Assays. 

AGS cells were infected with H. pylori for 3 hours followed by incubation with 50 µM 

LY294002 for 1 hour.  After a four hour exposure to 1 µM Staurosporine (Sigma-

Aldrich), cells were harvested for Annexin V-flow cytometry analysis as described [147].  

 

Transient transfection of siRNA.   

AGS cells (2.5 x 105) in 6-well plates were transiently transfected using Lipofectamine 

2000 transfection reagent (Invitrogen) according to the manufacturer’s instructions.  

Briefly, transfection reagent (5.0 µl/well) was mixed with siRNA oligos (10 µl of 10 µM 

solution/well) in 500 µl Opti-MEM (Life Technologies).  Cells were incubated with the 

transfection mixture for 24 hours, fresh medium was added, and bacterial co-cultures 

were performed 24 hours later. 
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Statistical Analysis.   

All experiments were performed on at least three independent occasions.  Statistical 

analysis was performed by Student’s t test and ANOVA using Prism Graph Pad.  A P-

value < 0.05 was defined as statistically significant. 
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Results 

 

H. pylori activates PI3K-AKT signaling in gastric epithelial cells. 

We used a cag+ H. pylori strain, 7.13, that reproducibly causes gastric cancer in rodent 

models, to determine whether H. pylori alters AKT activity.  AGS cells were infected 

with strain 7.13 at a multiplicity of infection (MOI) of 100 or were exposed to medium 

alone.  H. pylori strain 7.13 increased AKT phosphorylation at serine 473 compared to 

uninfected controls at each time point (Figure 10).  Similar patterns of AKT activation 

were observed following infection of AGS cells with the cag+ human clinical isolate J166 

or infection of MKN28 human gastric epithelial cells with strains 7.13 or J166 (data not 

shown).  

 

Inactivation of cagE abolishes AKT activation by H. pylori. 

We next investigated the role of bacterial factors in PI3K-AKT signaling events.  Neither 

heat-killed bacteria nor soluble factors contained in H. pylori filtrates stimulated 

phosphorylation of AKT, indicating that viable H. pylori are required for AKT activation 

(Figure 11A, 11B).  The cag secretion system encodes several proteins that affect 

cellular signaling after live H. pylori have bound host cells.  To define the role of cag 

components in AKT activation, AGS cells were incubated with the H. pylori cag+ strain 

7.13 or its isogenic cagA- or cagE- null mutant derivatives.  AKT activation was 

significantly decreased in cells incubated with the 7.13 cagE-, but not the cagA-, mutant 

versus the wild-type strain (Figure 11C, 11D).  Similarly, the cag- clinical isolate J68 
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Figure 10.  H. pylori induces AKT activation in vitro in a time-dependent manner. 
(A) AGS cells were co-cultured with the H. pylori cag+ strain 7.13 at a bacteria/cell ratio 
of 100:1.  One through twenty-four hours after incubation, whole cell lysates were 
harvested and subjected to Western blot analysis using an anti-phospho-AKT (Ser473) 
antibody.  (-), cells incubated with medium alone.  A representative blot is shown. 
Western blots for total AKT served as normalization controls for AGS cell viability under 
different experimental conditions and Western blots for GAPDH served as loading 
controls.  (B) Densitometric analysis of multiple Western blot repetitions performed on at 
least 3 occasions.  Levels of phospho-AKT were normalized to total AKT and levels 
were expressed as fold-induction of infected cells compared with uninfected cells at each 
time point.  Error bars = SEM. *P < 0.01 vs. uninfected control. 
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failed to induce AKT phosphorylation (data not shown).  These findings indicate that a 

functional cag secretion system, but not cagA, is required for induction of PI3K-AKT 

signaling. 

 

Peptidoglycan is required for activation of AKT by H. pylori.  

In addition to CagA, peptidoglycan can be translocated by the cag secretion system, and 

can alter host signaling.  Therefore, we examined the role of peptidoglycan in AKT 

activation using a 7.13 isogenic slt mutant.  The slt mutant lacks the soluble lytic 

transglycosylase (slt) required for peptidoglycan turnover and release.  We first 

established that inactivation of slt in strain 7.13 does not alter CagA translocation into 

host cells (Figure 12A).  We then co-cultured AGS cells with wild-type strain 7.13 or the 

isogenic slt- mutant.  Cells co-cultured with the slt- mutant contained significantly lower 

levels of phospho-AKT compared to cells infected by wild-type 7.13 (Figure 12B, 12C).  

These results indicate that peptidoglycan, in conjunction with a functional cag secretion 

system, is required for maximal AKT stimulation by H. pylori. 
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Figure 11. AKT phosphorylation by H. pylori is dependent on specific genes within 
the cag pathogenicity island. (A) AGS cells were incubated in the absence or presence 
of live H. pylori strain 7.13 at a bacteria/cell ratio of 100:1, heat-killed H. pylori, or H. 
pylori 7.13 filtrate for two hours.  Whole cell lysates were subjected to Western blot 
analysis using an anti-phospho AKT (Ser473) antibody. Anti-total AKT blots served as 
normalization controls for AGS cell viability under different experimental conditions and 
anti-GAPDH blots served as loading controls.  (B) Densitometric analysis of Western 
blots performed on 3 occasions.  Error bars = SEM. *P <0.04 vs. AGS cells alone.  (C) 
AGS cells were cultured in the absence or presence of the H. pylori cag+ strain 7.13 or its 
isogenic cagA- or cagE- null mutant derivatives at bacteria/cell ratios of 100:1.  Two 
hours post infection, whole cell lysates were subjected to Western blot analysis using an 
anti-phospho-AKT (Ser473) antibody.  A representative blot is shown.  Western blots for 
total AKT served as normalization controls and Western blots for GAPDH served as 
loading controls.  (D) Densitometric analysis of multiple Western blot repetitions 
performed on at least 5 occasions.  Error bars = SEM. *P < 0.002 vs. AGS cells alone. 
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Figure 12.  AKT phosphorylation by H. pylori is mediated by peptidoglycan. (A) 
AGS cells were cultured in the absence or presence of wild-type H. pylori strain 7.13 or 
its isogenic cagA- or slt- null mutant at a bacteria/cell ratio of 100:1.  Two hours post 
infection, whole-cell lysates were subjected to Western blot analysis using an anti-
phospho-tyrosine 99 antibody or an anti-CagA antibody.  A representative blot is shown.  
Western blots for GAPDH served as loading controls.  (B) H. pylori strain 7.13 or its 
isogenic slt null mutant derivative, were added to AGS cells at a bacteria/cell ratio of 
100:1.  Two hours after incubation, whole-cell lysates were subjected to Western blot 
analysis using an anti-phospho-AKT (Ser473) antibody.  A representative blot is shown.  
Western blots for total AKT served as normalization controls for AGS cell viability under 
different experimental conditions and Western blots for GAPDH served as loading 
controls.  (C) Densitometric analysis of multiple Western blot repetitions performed on at 
least 3 occasions.  Error bars = SEM.  *P < 0.04 vs AGS cells alone; **P < 0.009 vs 
AGS cells incubated with wild-type H. pylori. 
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H. pylori-induced AKT activation is dependent on activation of PI3K, Src, and EGFR. 

AKT activation is regulated by many of the same constituents that are activated by H. 

pylori (e.g., EGFR, Src) [33].  As a prelude to defining the molecular pathways mediating 

H. pylori-induced AKT activation, we first confirmed that our prototype strain could 

activate EGFR and Src, and also established the efficacy of PI3K, EGFR and Src 

inhibitors.  H. pylori strain 7.13 induced phosphorylation of Src and EGFR in AGS cells 

(Figure 13A). AGS cell lysates were then assessed for phospho-AKT after stimulation 

with EGF, a potent inducer of AKT activation.  Each inhibitor was sufficient to attenuate 

EGF-stimulated AKT activation (Figure 13B).  AGS cells were then co-cultured with 

strain 7.13 in the absence or presence of the PI3K inhibitor LY294002 or the Src inhibitor 

PP2.  H. pylori alone activated AKT by two hours (Figure 13C, 13D).  As predicted, 

AKT activation in response to H. pylori was completely abolished by PI3K inhibition 

(Figure 13C, 13D).  PI3K-dependent AKT activation was further confirmed using an 

independent PI3K inhibitor, Wortmannin (200nM) (data not shown).   

 

H. pylori-induced activation of AKT was also dependent on Src, as treatment with the Src 

inhibitor PP2 blocked AKT activation (Figure 13C, 13D). The inhibitor PP2, however, 

can also exert activity against platelet-derived growth factor receptor (PDGFR) signaling 

as well as signaling initiated by c-Abl and c-kit [189].  Therefore, we repeated co-culture 

experiments in the presence or absence of specific inhibitors of these pathways. H. 

pylori-induced AKT activation was unchanged in the presence of PDGFR or c-Abl/c-kit 

inhibitors (Figure 13E, 13F), indicating that Src plays a role in microbial-induced 

activation of AKT.  
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EGFR transactivation can mediate PI3K and Src activation and this receptor can be 

transactivated by H. pylori (Figure 13A) [163]; therefore we next determined the role of 

EGFR in H. pylori-induced AKT activation.  Co-culture of AGS cells with H. pylori in 

the presence of the EGFR kinase inhibitor AG1478 significantly reduced AKT 

phosphorylation to levels seen in uninfected controls (Figure 13C, 13D). However, the 

EGFR inhibitor AG1478 also inhibits FAK, a component of another PI3K-dependent 

pathway. Therefore, to rule out involvement of FAK, we determined whether H. pylori 

infection could stimulate Gab1 phosphorylation, an event dependent on EGFR 

transactivation. As shown in Figure 13G, co-culture with wild-type strain 7.13 induced 

Gab1 phosphorylation. The pattern of Gab1 phosphorylation mirrored AKT activation as 

H. pylori mutant strains that lacked cagE or slt failed to induce phosphorylation of Gab1 

(Figure 13G). Finally, to more firmly implicate EGFR and Src signaling in these events, 

we co-cultured H. pylori strain 7.13 with AGS cells in the presence or absence of a Src 

family kinase inhibitor that does not activate PDGFR (SU6656) [133].  As demonstrated 

in Figures 13E and 13F, pre-incubation with SU6656 attenuated the ability of H. pylori 

to activate AKT. Collectively, these results indicate that transactivation of EGFR and Src 

activation are likely required for H. pylori-induced AKT activation.    
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Figure 13. H. pylori-induced AKT phosphorylation in AGS cells is dependent on 
activation of PI3K, EGFR, and Src. (A) H. pylori strain 7.13 was added to AGS cells at 
a bacteria/cell concentration of 100:1. Two hours post-infection, whole cell lysates were 
subjected to Western blot analysis using an anti-phospho-Src or an anti-phospho-EGFR 
antibody.  (-), cells incubated with medium alone.  A representative blot is shown.  
Western blots for total Src or EGFR served as normalization controls for AGS cell 
viability under different experimental conditions. (B) AGS cells were incubated with the 
PI3K inhibitor LY294002 (50 µmol/L), EGFR kinase inhibitor AG1478 (600 nmol/L), or 
Src inhibitor PP2 (10 µmol/L) for one hour prior to EGF exposure for 15 minutes.  Levels 
of phospho- (Ser473) and total AKT were determined by Western blot analysis of whole 
cell lysates.  (C) H. pylori strain 7.13 was added to AGS cells at a bacteria/cell 
concentration of 100:1 in the absence or presence of vehicle alone (DMSO), or 50 
µmol/L LY294002, 600 nmol/L AG1478, or 10 µmol/L PP2. Two hours post-infection, 
whole cell lysates were subjected to Western blot analysis using an anti-phospho-AKT 
antibody.  (-), cells incubated with medium alone.  A representative blot is shown.  
Western blots for total AKT served as normalization controls for AGS cell viability under 
different experimental conditions and Western blots for GAPDH served as loading 
controls. (D) Densitometric analysis of multiple Western blot repetitions performed on at 
least 3 occasions.  Error bars = SEM. *P < 0.0001 vs. AGS cells alone. (E) H. pylori 
strain 7.13 was added to AGS cells at a bacteria/cell concentration of 100:1 in the 
absence or presence of vehicle alone (DMSO), or 2 µmol/L SU6656, 50 µmol/L 
AG1295, or 10 µmol/L STI-571. Two hours post-infection, whole cell lysates were 
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subjected to Western blot analysis using an anti-phospho-AKT (Ser473) antibody.  (-), 
cells incubated with medium alone.  A representative blot is shown.  Western blots for 
total AKT served as normalization controls for AGS cell viability under different 
experimental conditions and Western blots for GAPDH served as loading controls. (F) 
Densitometric analysis of multiple Western blot repetitions performed on at least 3 
occasions.  Error bars = SEM. *P < 0.04 vs. AGS cells alone. (G) AGS cells were 
cultured in the absence or presence of the H. pylori cag+ strain 7.13 or its isogenic cagA-, 
cagE-, or slt- null mutant derivatives at bacteria/cell ratios of 100:1.  Two hours post 
infection, whole cell lysates were subjected to Western blot analysis using an anti-
phospho-Gab1 antibody.  EGF was used as a positive control for Gab1 phosphorylation 
and was added for 15 minutes. A representative blot is shown.  Western blots for total 
Gab1 served as normalization controls and Western blots for GAPDH served as loading 
controls. Densitometric analysis of multiple Western blot repetitions performed on at 
least 3 occasions is shown below representative Western blot.  Error bars = SEM. *P < 
0.02 vs. AGS cells alone. 
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Activation of AKT by H. pylori attenuates apoptosis and promotes cell survival. 

Because AKT activation by PI3K attenuates apoptosis, we next determined the 

contribution of PI3K signaling to H. pylori-mediated apoptosis.  AGS cells co-cultured 

with strain 7.13 in the absence or presence of the PI3K inhibitor LY294002 or vehicle 

control were stained with Annexin V and Propidium iodide for analysis of apoptosis 

using flow cytometry.  As expected, treatment with the PI3K inhibitor alone induced a 

small population of uninfected cells into early apoptosis.  Co-culture of AGS cells with 

H. pylori increased apoptosis, but this phenotype was significantly enhanced in the 

presence of the PI3K inhibitor (Figure 14A, 14B).   

 

To more robustly demonstrate that PI3K-AKT signaling regulates H. pylori-induced cell 

survival, we transiently transfected AGS cells with scrambled or AKT-specific siRNA. 

Western blot analysis indicated that AKT expression was significantly reduced using 

AKT-specific, but not scrambled, siRNA (Figure 14C).  H. pylori strain 7.13 was then 

co-cultured with AKT-deficient or wild-type control AGS cells and apoptosis was 

assessed using flow cytometry. Similar to results obtained using a chemical inhibitor of 

PI3K, inhibition of AKT significantly augmented the ability of H. pylori to induce 

apoptosis (Figures 14D, 14E). These data indicate that activation of PI3K-AKT 

promotes gastric cell survival in the presence of H. pylori. 

 

A recent study demonstrated that H. pylori can not only induce apoptosis, but can also 

promote resistance to this phenotype in response to a known apoptosis-inducing agent, 

Staurosporine (Stsp) [320].  To extend our data implicating PI3K-AKT in cell survival, 
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we evaluated the ability of PI3K to promote apoptotic resistance in H. pylori-infected 

AGS cells.  Cells were infected with H. pylori strain 7.13 and then treated with Stsp to 

induce apoptosis.  Inhibition of PI3K did not significantly alter apoptosis in uninfected 

cells exposed to Stsp (Figure 14F). AGS cells infected with H. pylori were more resistant 

to Stsp-induced apoptosis than cells pre-treated with medium alone (Figure 14F).  

However, inhibition of PI3K attenuated the anti-apoptotic activity of H. pylori, further 

supporting a role for H. pylori-induced PI3K signaling in promoting cell survival. 
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Figure 14. Activation of AKT by H. pylori promotes cell survival. (A) AGS cells were 
co-cultured with H. pylori strain 7.13 at a bacteria/cell concentration of 100:1, in the 
absence or presence of the PI3K inhibitor LY294002 (50 µM) or vehicle alone (DMSO) 
for 24 hours.  Live cells were stained with Annexin V-APC and PI, and apoptosis was 
quantified by flow cytometry.  The upper right quadrant represents late apoptosis, and the 
lower right quadrant represents early apoptosis.  (B) Combined percentage of early and 
late apoptotic cells for experiments performed on at least 5 occasions.  (-), cells incubated 
without H. pylori. Error bars = SEM. * P < 0.005 vs AGS cells infected with H. pylori 
strain 7.13 at MOI of 100:1 in the presence of vehicle alone. (C) AGS cells were 
transiently transfected with scrambled or AKT-specific siRNA, total protein was 
extracted and subjected to Western blot analysis using an anti-AKT antibody. (D) AGS 
cells transiently transfected with control or AKT-specific siRNA were co-cultured with 
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H. pylori strain 7.13 at a bacteria/cell concentration of 100:1 for 24 hours.  Live cells 
were stained with Annexin V-APC and PI, and apoptosis was quantified by flow 
cytometry.  The upper right quadrant represents late apoptosis, and the lower right 
quadrant represents early apoptosis.  (E) Combined percentage of early and late apoptotic 
cells for experiments performed on at least 3 occasions.  (-), cells incubated without H. 
pylori. Error bars = SEM. * P < 0.05 vs AKT siRNA-treated AGS cells infected with H. 
pylori strain 7.13. (F) AGS cells were co-cultured with or without H. pylori strain 7.13 at 
a bacterial/cell concentration of 100:1, treated with LY294002 (50µM) or medium alone, 
and then exposed to Staurosporine (Stsp).  Cells were then stained with Annexin V-APC 
and PI, and subjected to flow cytometry.  (-), cells incubated without H. pylori.  ** P< 
0.05 vs AGS cells infected with H. pylori strain 7.13 in the presence of Stsp alone. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 57 

Discussion 

 

PI3K is a host signaling molecule related to carcinogenesis.  Our current experiments 

have shown that activation of PI3K-AKT can regulate microbially-induced carcinogenic 

responses by 1) demonstrating that H. pylori can induce phosphorylation and activate 

AKT in gastric epithelial cells in vitro, 2) capitalizing on an H. pylori isogenic mutant 

system to demonstrate a requirement for peptidoglycan translocation in AKT activation, 

3) defining upstream signaling mediators of H. pylori-induced AKT activation and 4) 

combining transient inhibitor and gene silencing techniques with studies of epithelial 

responses that have carcinogenic potential (e.g. cell survival).  Collectively, these studies 

indicate that H. pylori co-opts the PI3K-AKT signaling cascade, which, over prolonged 

periods of time, may lower the threshold for carcinogenesis.  

 

In contrast to extensive literature invoking PI3K and AKT as tumorigenic molecules, few 

reports have examined the effects of bacterial pathogens on this signaling cascade.  

Haemophilus influenzae activates PI3K-AKT in epithelial cells, which then leads to a 

down-regulation of p38-MAPK activation [338].  Salmonella exploits PI3K in intestinal 

epithelial cells as an anti-inflammatory signal to reduce IL-8 production, which may 

contribute to the establishment of colonization in the intestine [102].  Our results suggest 

that induction of PI3K-AKT signaling by H. pylori requires a functional cag secretion 

apparatus and peptidoglycan, revealing a previously unrecognized effect of this cag 

island substrate, since the only defined role to date of cag-mediated peptidoglycan 

delivery is NOD1-dependent induction of IL-8 secretion [169, 228].  In other cell 
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systems, such as eosinophils, peptidoglycan has been shown to activate PI3K signaling 

and to regulate IL-8 production through Toll-like receptor (TLR) 2 [189].  However, 

further experiments are required to determine the precise mechanism through which PI3K 

is activated in H. pylori-infected gastric epithelial cells. 

 

Hyperproliferation has been reproducibly demonstrated in H. pylori-infected tissue [5, 

192] and this is accompanied by decreased levels of apoptosis in colonized human and 

rodent gastric epithelium [104].  Several reports have demonstrated that one role of AKT 

is to inhibit the function of caspases, which induce apoptosis and cell-cycle arrest.  In 

addition to PI3K activation, however, H. pylori activates other pathways that influence 

cell survival.  For example, MEK/ERK activation in response to H. pylori has been 

shown to increase Mcl-1 levels, leading to apoptosis resistance [81].  The collective result 

of activation of these pathways is inhibition of apoptosis and increased cell proliferation, 

events that favor tumorigenesis. 

 

In summary, H. pylori induces PI3K-AKT signaling in gastric epithelial cells, which 

requires the cag secretion system and peptidoglycan as well as EGFR transactivation and 

Src activation in host cells.  H. pylori-induced PI3K activation mediates protection from 

apoptosis, a phenotype related to carcinogenesis.  Taken together, these data present 

insights into the pathogenic mechanisms underlying H. pylori infection. 
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CHAPTER III 

 

CELL PROLIFERATION IN RESPONSE TO HELICOBACTER PYLORI IS 

STIMULATED BY PPARδ 

 

Summary 

 

Helicobacter pylori infects approximately half of the world’s population and is the 

strongest known risk factor for the development of gastric cancer.  One H. pylori 

virulence constituent that augments the risk for gastric injury is the cag secretion system, 

which translocates the bacterial effectors CagA and peptidoglycan (PGN) into host cells.  

Peroxisome proliferator-activated receptor δ (PPARδ) is a ligand-activated transcription 

factor and PPARδ signaling promotes tumor growth in models of gastrointestinal 

carcinogenesis.  We defined the role of H. pylori virulence factors and activation of 

PPARδ in regulation of cell proliferation, a host response that contributes to 

carcinogenesis.  Our experiments demonstrate that a carcinogenic H. pylori strain, 7.13, 

induces expression and activation of PPARδ.  PPARδ activation by strain 7.13 stimulated 

epithelial cell proliferation, which may be mediated by the PPARδ target cyclin E1.   

These events are dependent upon structural components of the cag secretion system, and 

the cag substrates CagA and peptidoglycan.  Because PPARδ regulates a multitude of 

host responses, activation of this molecule by H. pylori may contribute to varying levels 

of cellular turnover as well as the diverse pathologic outcomes associated with chronic H. 

pylori colonization. 
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Introduction 
 
 

 
Helicobacter pylori-induced chronic gastritis significantly increases the risk for gastric 

adenocarcinoma, yet only a fraction of colonized persons ever develop neoplasia [221].  

H. pylori strains isolated from different individuals are genetically diverse, and several 

microbial constituents have been identified that augment cancer risk [138]. The cag 

pathogenicity island is a strain-specific locus that encodes a type IV bacterial secretion 

system, and the product of the terminal gene in the island (CagA) is translocated into host 

epithelial cells and undergoes tyrosine phosphorylation at specific motifs by Src and Abl 

kinases [22, 128, 208, 269]. Phospho-CagA subsequently activates a eukaryotic 

phosphatase (SHP-2), leading to morphological changes that are reminiscent of 

unrestrained stimulation by growth factors [128]. Non-phosphorylated CagA also exerts 

effects within host cells that contribute to pathogenesis. We and others have 

demonstrated that translocation, but not phosphorylation, of CagA leads to aberrant 

activation of β-catenin, disruption of apical-junctional complexes, and a loss of cellular 

polarity, alterations that play a role in carcinogenesis [10, 99, 340].  In addition to CagA, 

the cag secretion system also delivers components of H. pylori peptidoglycan into host 

cells where they are recognized by Nod1, an intracytoplasmic pattern-recognition 

molecule [319]. Nod1 sensing of H. pylori peptidoglycan activates NF-κB, as well as the 

phosphatidylinositol 3-phosphate kinase (PI3K) signaling cascade, leading to pro-

inflammatory cytokine release and β-catenin activation [199, 200, 297, 319].  
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Host molecules that may influence gastric carcinogenesis in conjunction with H. pylori 

include β-catenin and p120-catenin (p120).  β-catenin is normally bound to E-cadherin at 

the cell membrane or sequestered in the cytosol within a multi-protein inhibitory complex 

that contains APC, GSK-3β and axin [308].  When Wnt signaling is inactive, β-catenin is 

constitutively phosphorylated by GSK-3β and targeted for proteosomal degradation 

[308].  Binding of Wnt to its receptor inhibits β-catenin degradation, leading to its nuclear 

accumulation and the formation of heterodimers with LEF/TCF transcription factors and 

targeted up-regulation of genes that influence carcinogenesis [308].  Within the context 

of H. pylori infection, CagA has been demonstrated to physically interact with E-cadherin 

leading to release of β-catenin into the cytoplasm and nucleus [159].  However, recent 

reports have demonstrated that H. pylori can activate β-catenin via PI3K-dependent 

inactivation of GSK-3β, although the specific bacterial factors required for these events 

remain unclear [200, 297].   

 

p120 is a multifunctional host protein that localizes to the cell membrane to mediate cell-

cell adhesion [244, 245]. p120 can also aberrantly localize to the nucleus where it binds 

Kaiso, a transcriptional repressor of β-catenin target genes [246, 290].  H. pylori induces 

nuclear translocation of p120 in gastric epithelial cells in a cag-dependent manner, which 

increases mmp7 expression via relief of Kaiso-mediated transcriptional repression [210].  

In addition to mmp-7, p120 and Kaiso also mediate expression of additional β-catenin 

target genes, including peroxisome proliferator-activated receptor δ (pparδ) [217].   

PPARδ is a member of the nuclear hormone receptor superfamily, [324] and through 

heterodimer formation with the retinoid X receptor (RXR), PPARδ regulates transcription 
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of target genes that mediate fatty acid oxidation and glucose utilization [324].  Recent 

evidence, however, suggests that cross regulation between β-catenin signaling and 

PPARδ influences oncogenesis at other sites within the gastrointestinal tract [196]. 

 

Levels of PPARδ are elevated in most human colorectal cancers as well as carcinomas 

that develop in murine models of colon cancer and the PPARδ agonist GW501516 has 

been shown to be proneoplastic in mice [119, 120, 125].  Similarly, deletion of PPARδ 

decreases intestinal adenoma growth in ApcMin/+ mice and inhibits the tumor promoting 

effects of GW501516 [324].  However, two studies reported that disruption of PPARδ 

increased polyp formation in ApcMin/+ mice in the absence of exogenous PPARδ 

stimulation, which has necessitated in-depth studies [123, 240].  An independent study 

using a xenograft model revealed that disruption of both PPARδ alleles in human HCT-

116 colon carcinoma cells decreased tumorigenicity, supporting the concept that 

activation of PPARδ promotes tumor growth [216]. Further, the PPARδ agonist 

GW501516 stimulates proliferation in human breast, prostate, and hepatocellular 

carcinoma cells, and, in a murine mammary tumor model, treatment with GW501516 

accelerated tumor formation [349]. Consistent with these findings are recent observations 

that cyclin E1, a cell cycle regulatory protein that drives cells from G1 into S phase via 

hyperphosphorylation of the retinoblastoma protein Rb is a PPARδ target [351].  Since H. 

pylori can activate host effectors that regulate expression of PPARδ, the goal of this study 

was to define whether up-regulation of PPARδ mediates gastric epithelial responses with 

carcinogenic potential in vitro and in vivo. 
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Experimental Procedures 

 

H. pylori strains   

The H. pylori cag+ rodent-adapted strain 7.13 was grown in Brucella broth with 5% FBS 

for 18 hours, harvested by centrifugation, and was added to gastric cells at a bacteria-to-

cell ratio of 100:1.  Isogenic cagA-, cagE-, and slt- null mutants were constructed within 

strain 7.13 by insertional mutagenesis using aphA and were selected with kanamycin (25 

µg/ml) as described previously [223].  The cagA-/slt- double mutant was constructed 

within strain 7.13 by insertional mutagenesis using aphA and the chloramphenicol (cat) 

resistance cassette from pBSC103, respectively, and was selected with kanamycin and 

chloramphenicol (10 µg/ml). 

 

Cell Culture, Plasmids and Reagents   

MKN28 human gastric epithelial cells were grown in RPMI medium 1640 

(GIBCO/BRL) with 10% FBS (Sigma) and 20 µg/ml gentamicin (GIBCO/BRL) under 

5% CO2 at 37°C.  The PI3K pharmacological inhibitor LY294002 (Cell Signaling 

Technology) was used at a concentration of 12.5 µM.  The PPRE3-tk-luciferase reporter 

plasmid and dominant-negative PPARδ construct were kind gifts from D. Wang 

(Vanderbilt University).  Topflash and Fopflash reporter plasmids were kind gifts from 

K. Kinzler and B. Vogelstein (Johns Hopkins University).   The PPARδ-specific ligand, 

GW501516 (Cayman Chemical Co., Ann Arbor, MI) was used at a final concentration of 

10 nM. 
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Viral production and retroviral transduction 

Phoenix 293 packaging cell lines at 50% confluence were transfected using 

Lipofectamine 2000 (Invitrogen) according to the manufacturer's instructions. Fresh 

medium was added 24 h after transfection, and tissue culture medium was collected and 

filtered through a 0.45-µm filter 72 h after transfection. For retroviral transduction, 

MKN28 cells at 50% confluence were incubated overnight with freshly harvested virus 

containing 4 µg/ml Polybrene (American Bioanalytical). To generate stable cell lines, 

cells transduced with the pSUPER.retro.puro virus were selected with 1.5 µg/ml 

puromycin for 48 h. Clonal populations were selected using cloning rings and limiting 

dilution techniques. 

 

Transient transfection of siRNA.   

MKN28 cells (4 x 105) in 12-well plates were transiently transfected using Lipofectamine 

2000 transfection reagent (Invitrogen) according to the manufacturer’s instructions.  

Briefly, transfection reagent (2.0 µl/well) was mixed with siRNA oligos (5 µl of 20 µM 

solution/well) in 200 µl Opti-MEM (Life Technologies).  Cells were incubated with the 

transfection mixture for 24 hours, fresh medium was added, and bacterial co-cultures 

were performed 24 hours later. 

 

Western blot analysis 

Cells were lysed in RIPA buffer (50 mM Tris, pH 7.2, 150 mM NaCl, 1% Triton X-100, 

and 0.1% SDS) containing protease inhibitor cocktail, and protein concentrations were 

quantified by the Bradford assay. Proteins (30 µg) were separated by SDS-
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polyacrylamide gel electrophoresis (PAGE) and transferred to polyvinylidene difluoride 

membranes (PVDF, Pall, Ann Arbor, MI). Protein levels were assessed by Western 

blotting by using anti-PPARδ antibody (1:500, Santa Cruz Biotechnology), anti-β-catenin 

antibody (1:1000, Sigma Aldrich), anti-p120 antibody (1:1000, Abcam), or anti-

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) antibody (1:2000; Millipore 

Bioscience Research Reagents). Primary antibodies were detected using goat anti-mouse, 

goat anti-rabbit, or donkey anti-goat (1:5000; Santa Cruz Biotechnology) horseradish 

peroxidase-conjugated secondary antibodies and visualized by Western Lightning 

Chemiluminescence Reagent Plus (PerkinElmer Life and Analytical Sciences) according 

to the manufacturer's instructions on a Chemigenius system (Syngene).  For cellular 

fractionation, cytoplasmic and nuclear fractions were obtained using the Q-Proteome Cell 

Compartment Kit (Qiagen). 

 

Primary Gastric Cell Extraction and Culture 

All animal studies were approved by the Vanderbilt Institutional Animal Care and Usage 

Committee.  Stomachs were removed from 8-wk-old male wild-type C57Bl/6 and 

PPARδ-/- C57Bl/6 mice (provided by D. Wang, Vanderbilt University), ligated at the 

pylorus and esophagus, inverted, and injected with 1 ml of 0.5 mg/ml collagenase A as 

described previously [339].  Stomachs were then washed in Hanks’ balanced salt solution 

(HBSS) three times at 37°C. Tissue was incubated in 10 ml of 1 mM dithiothreitol for 15 

minutes at 37°C with shaking, washed in HBSS three times at 37°C, and incubated in 

0.37 mg/ml collagenase for 30 minutes at 37°C. After the first collagenase digestion, 

samples were washed again in HBSS (3 times at 37°C) and incubated for a further 30 
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minutes in collagenase (0.37 mg/ml; 37°C). Tissue was triturated using a wide-mouthed 

pipette, and larger fragments of tissue were allowed to settle under gravity for 45 

seconds. The supernatant containing isolated gastric cell colonies was removed and 

transferred to a clean 50-ml conical tube, shaken vigorously to release additional 

colonies, and left on ice to sediment for 30 minutes. The supernatant was then carefully 

removed and discarded, and isolated cell colonies were plated on chamber slides. 

Colonies of gastric epithelial cells were cultured in DMEM NUT Mix F-12 (Ham’s) 

supplemented with 10% FBS and 1% antibiotic-antimycotic solution. Colonies were then 

incubated in a humidified incubator at 37°C under an atmosphere of 5% CO2.  

 

Real-Time Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) 
 
MKN28 cells were grown to confluence and then co-cultured with H. pylori or medium 

alone for 6, 12, 24 and 48 hours. RNA was prepared from co-culture lysates using 

RNAeasy kit (Qiagen) following the manufacturer’s instructions. Reverse transcriptase-

PCR was performed using High Capacity cDNA Reverse Transcription kit (Applied 

Biosystems, Foster City, CA), which was followed by real-time quantitative PCR using 

SYBR green (Applied Biosystems, Foster City, CA) and the 7300 real-time PCR system 

(Applied Biosystems, Foster City, CA).  The relative differences between treatment 

groups were calculated based on values for the gene of interest normalized to values of 

the hypoxanthine phosphoribosyltransferase 1 gene (hprt1).  The primers used were:   

pparδ, forward 5’ GAGGAAGTGGCCACGGGTGAC 3’ and  

reverse 5’ CCACCTGAGGCCCCATCACAG 3’;  

cyclin E1, forward 5’ TCATTTACAGCCTTGGGACAA 3’ and  
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reverse 5’ AGCGAACAGGAAGACTCAAGC 3’;  

hprt, forward 5’ TTGGAAAGGGTGTTTATTCCTCA 3’ and  

reverse 5’ TCCAGCAGGTCAGCAAAGAA 3’. 

 

PPARδ and β-catenin transcriptional assays 

MKN28 cells (2 x 105) plated in 12-well plates were transiently transfected with 4 µl 

Lipofectamine 2000 (Invitrogen), 0.3 µg PPRE-tk-luciferase/ 5 ng of pRL-SV40, and 0.4 

µg empty vector or dominant-negative PPARδ for 5 hours.  Twenty-four hours post-

transfection, cells were co-cultured with H. pylori and then harvested in 1x Passive Lysis 

Buffer (Promega).  For β-catenin studies, MKN28 cells (2 x 105) were transfected with 4 

µl Lipofectamine 2000, 1 µg/ml Topflash or 1 µg/ml Fopflash, and 5 ng pRL-SV40 in 

Opti-MEM (Life Technologies) for 5 hours.  Transfection mixtures were then replaced 

with complete medium containing H. pylori or medium alone.  After 24 hours, cells were 

harvested in 1x Passive Lysis Buffer (Promega).  Luciferase activity was determined 

using a luminometer and normalized to Renilla luciferase using the Dual-Luciferase 

assay kit (Promega). 

 

Three-dimensional Matrigel proliferation assay 

Forty-eight-well tissue culture plates were coated with 100 µl of thawed BD MatrigelTM 

Basement Membrane Matrix and were placed at 37°C for 30 minutes for Matrigel 

solidification.  MKN28 cells (2 x 104) transfected with empty vector or dominant-

negative PPARδ were overlayed on MatrigelTM and, after 24 hours, cells were infected 

with H. pylori, medium alone and/or GW501516.  Cells were removed every 24 hours 
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from MatrigelTM using BD Cell Recovery Solution according to the manufacturer’s 

protocol and enumerated using Trypan Blue or BrdU incorporation (Roche). 

 

Immunofluorescence  

Primary gastric colonies were cultured in glass chamber slides and were co-cultured with 

H. pylori or medium alone for 48 hours.  Cells were then washed twice with Dulbecco’s 

phosphate-buffered saline (DPBS) and fixed with 4% paraformaldehyde in DPBS for 10 

minutes.  Cells were rinsed with DPBS and subsequently permeabilized for 30 minutes 

with DPBS containing 0.1% Triton X-100, followed by incubation in 3% BSA for 1 hour 

at room temperature.  Slides were immunostained with goat monoclonal anti-PPARδ 

antibody (Santa Cruz), rabbit polyclonal anti-Cyclin E antibody (Santa Cruz) or rabbit 

anti-H. pylori antibody (Dako) at a concentration of 1:100, overnight at 4°C.  Washed 

slides were incubated with goat anti-rabbit AlexaFluor 488-conjugated antibody 

(Invitrogen) respectively, at a concentration of 1:100 for 1 hour at room temperature.  

Slides were washed and incubated with TO-PRO dimeric cyanine nucleic acid dye at a 

concentration of 1:100 for 20 minutes at room temperature (Invitrogen).  Slides were then 

mounted using ProLong Gold antifade reagent (Invitrogen).  Imaging was performed on 

an LSM 510 confocal microscope (Carl Zeiss, Thornwood, NY) by using 40x /1.30 Plan-

NeoFluar oil objective at room temperature, and acquisition was performed using the 

manufacturer’s proprietary software. 
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Statistical Analysis.   

All in vitro experiments were performed on at least three independent occasions.  

Statistical analysis was performed by Student’s t test and ANOVA using Prism Graph 

Pad.  A P-value < 0.05 was defined as statistically significant. 
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Results 

 

PPARδ is expressed and is functionally active in gastric epithelial cells. 

To determine whether H. pylori induces PPARδ expression, MKN28 gastric epithelial 

cells were co-cultured with the wild-type cag+ strain 7.13 and real time reverse 

transcription-PCR was performed.  PPARδ mRNA expression was significantly increased 

in cells infected with H. pylori, beginning at 24 hours post-infection (Figure 15A), and 

this was accompanied by increased protein levels of PPARδ in both the cytosol and 

nucleus by 48 hours post-infection (Figure 15B). 

 

To determine whether endogenous PPARδ was functionally responsive to H. pylori, 

MKN28 cells were transfected with a reporter vector (PPRE3-tk-luc) containing three 

tandem repeats of the PPAR response element (PPRE) from the acyl-CoA oxidase gene 

upstream of a firefly luciferase cDNA.  As expected, treatment of transfected cells with 

the PPARδ selective agonist GW501516 increased luciferase activity (Figure 15C).  To 

determine the effect of H. pylori on PPARδ activation, PPRE-transfected cells were 

infected with strain 7.13.  Luciferase activity was significantly increased in infected 

compared to uninfected cells (Figure 15C).  

 

To confirm the specificity of this response, MKN28 cells were co-transfected with PPRE 

and dominant-negative PPARδ (dnPPARδ).  The dnPPARδ construct contains an 

inactivating mutation within the AF-2 domain, and retains its DNA-binding domain but 

lacks the ability to recruit transcriptional co-activators, thereby antagonizing PPARδ 
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signaling.  PPARδ activity in response to H. pylori was abolished in cells transfected with 

dnPPARδ, indicating that activation of PPARδ by H. pylori is specific (Figure 15C).  

Thus, PPARδ is induced and functionally active in gastric epithelial cells infected with H. 

pylori.  

 

p120 is required for H. pylori-mediated up-regulation of PPARδ expression. 

PPARδ is a transcriptional target of β-catenin signaling, and Kaiso and p120 regulate 

expression of β-catenin target genes.  Therefore, we investigated the relationship between 

β-catenin and PPARδ by examining levels of PPARδ in H. pylori-infected MKN28 cells 

treated with β-catenin-specific siRNA.  Densitometric analysis of Western blots revealed 

an approximate 70% reduction in β-catenin protein levels with siRNA treatment (Figure 

16A).  PPARδ mRNA (data not shown) and protein expression in response to H. pylori 

was significantly decreased in cells with attenuated β-catenin compared to infected 

control cells (Figure 16B).  

 

Since p120 can regulate expression of β-catenin target genes, we next determined if 

PPARδ is regulated by p120.  MKN28 cells stably transduced with control or p120-

specific siRNA (Figure 16C) were co-cultured with H. pylori strain 7.13 or medium 

alone.  As expected, H. pylori significantly increased levels of pparδ mRNA by 24 hours 

in control MKN28 cells. However, the observed increase in pparδ expression was 

attenuated in H. pylori-infected p120 deficient cells when compared to infected controls, 

indicating that p120 is also required for H. pylori-mediated transcriptional up-regulation 

of PPARδ (Figure 16D). 
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Figure 15. Helicobacter pylori induces expression and functional activation of 
PPARδ in gastric epithelial cells.  (A)  MKN28 cells were co-cultured with the H. pylori 
cag+ strain 7.13 (MOI = 100) or medium alone.  At defined time points, RNA was 
extracted, subjected to reverse transcription, and analyzed in duplicate by real-time PCR.  
Data represent –fold induction of pparδ mRNA in cells co-cultured with H. pylori versus 
medium alone from experiments performed on at least three occasions.  Error bars, SEM. 
*p < 0.05 versus medium alone.  (B)  MKN28 cells were co-cultured with H. pylori strain 
7.13 (MOI = 100).  Forty-eight hours post-infection, total protein was extracted, 
subjected to subcellular fractionation, and analyzed by Western blot using an anti-PPARδ 
antibody.  Representative blots are shown.  Anti-Histone H1, and anti-GAPDH antibodies 
served as normalization controls for purification of nuclear and cytosolic subcellular 
fractionations, respectively.  Densitometric analysis of multiple Western blots performed 
on at least three occasions.  Graph represents fold PPARδ expression in infected versus 
uninfected cells.  Error bars, SEM. *p < 0.05. (C)  MKN28 cells were co-transfected with 
PPRE3-tk-luciferase and pRL-SV40 with empty vector or dominant-negative PPARδ 
plasmids followed by treatment with H. pylori strain 7.13 or the PPARδ agonist 
GW501516.  Dual luciferase assays were performed as described in Experimental 
Procedures.  Error bars, SEM. *p < 0.0004. 
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Figure 16. PPARδ expression is induced by H. pylori and requires β-catenin and 
p120 signaling.  (A) MKN28 cells were transiently transfected with scrambled or β-
catenin-specific siRNA; total protein was extracted and subjected to Western blot 
analysis using an anti-β-catenin antibody. (B) MKN28 cells transiently transfected with 
control or β-catenin- specific siRNA were co-cultured with H. pylori strain 7.13 (MOI = 
100) for 24 hours. Total protein was extracted and analyzed by Western blot using an 
anti-PPARδ antibody.  Representative blots are shown.  Anti-GAPDH antibody served as 
normalization control.  Bar graph represents densitometric analysis of multiple 
experiments.  Data are represented as fold induction of PPARδ expression in infected 
versus uninfected. Error bars, SEM.  *p < 0.05 versus medium alone.  #p < 0.05 versus 
7.13.   (C)  MKN28 cells were retrovirally transduced with either scrambled or human 
p120-specific siRNA (p120i), and clonal populations were selected. Total protein was 
extracted from control or p120i cells and analyzed by Western blot using a monoclonal 
anti-p120 antibody. GAPDH Western blots served as normalization controls.  (D)  
Scramble control or p120i cells were co-cultured with H. pylori strain 7.13 (MOI = 100) 
or medium alone. At defined time points, total RNA was extracted, subjected to reverse 
transcription, and analyzed in duplicate by real-time PCR. Data are represented as fold 
induction of pparδ expression in infected versus uninfected cells for experiments 
performed on at least three occasions. Error bars, SEM. *p < 0.05 versus medium alone.  
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cag island effectors are required for PPARδ activation. 

The H. pylori cag pathogenicity island induces epithelial responses that may lower the 

threshold for gastric cancer; therefore, we next directly examined the effects of cagA, 

cagE, and the cag island substrate peptidoglycan on PPARδ activation. To examine the 

role of peptidoglycan, we generated an isogenic H. pylori mutant lacking a critical 

enzyme required for peptidoglycan synthesis, soluble lytic transglycosylase (slt).  

 

MKN28 cells transfected with the PPARδ responsive reporter were infected with wild-

type strain 7.13 or its isogenic cagA-, cagE-, or slt- null mutant derivatives as well as a 

cagA-/slt- double mutant strain. Loss of cagA or slt alone led to partial attenuation of 

PPARδ activation compared to levels induced by the wild-type strain (Figure 17A).  

However, inactivation of the cag secretion system structural component cagE, or cagA 

and slt in combination further attenuated the ability of strain 7.13 to activate PPARδ.  

 

These results suggested that PPARδ activation in response to H. pylori may require two 

independent pathways: one that is regulated by translocation of CagA and the other 

which regulates induction of PI3K by peptidoglycan.  To examine this more definitively, 

we measured PPARδ activity in response to H. pylori strain 7.13 in the presence or 

absence of the PI3K inhibitor LY294002, in order to substitute for loss of peptidoglycan.  

Compared to levels induced by wild-type H. pylori, PPARδ activation was significantly 

reduced in the presence of PI3K inhibition, similar to levels induced by infection with the 

slt null mutant (Figure 17B).  To inactivate CagA- and peptidoglycan-dependent 

pathways in tandem, cells were pretreated with the PI3K inhibitor and then infected with 
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the 7.13 isogenic cagA- mutant.  In cells dual-treated, luciferase activity was reduced to 

levels observed in uninfected control cells and was significantly decreased when 

compared to cells infected with wild-type 7.13 in the presence of PI3K inhibition alone 

(Figure 17B).  These results indicate that induction of PPARδ requires both translocation 

of CagA and activation of PI3K signaling by H. pylori peptidoglycan. 

 

Activation of β-catenin requires CagA and peptidoglycan. 

β-catenin regulates the expression of PPARδ in intestinal epithelial cells; therefore we 

next determined if the microbial constituents required for H. pylori-induced PPARδ 

activation also mediated β-catenin activation in gastric epithelial cells.  As expected, 

infection of MKN28 cells with strain 7.13 induced translocation of β-catenin into the 

nucleus (Figure 17C).   

 

We next examined the role of translocated cag effector molecules on β-catenin activation 

in this system.  MKN28 cells were transfected with a reporter construct containing 3 

tandem LEF/TCF binding motifs upstream of the luciferase gene (Topflash) or a control 

construct containing mutated LEF/TCF sites (Fopflash), and then infected with H. pylori 

wild-type strain 7.13 or its isogenic mutants. Luciferase activity did not differ in cells 

transfected with the control construct with or without H. pylori (data not shown); 

however, activity was significantly higher in H. pylori-infected versus uninfected cells 

harboring the β-catenin responsive LEF/TCF construct, indicating that β-catenin is 

functionally responsive to H. pylori strain 7.13 in MKN28 gastric epithelial cells (Figure 

17D).  Inactivation of cagE significantly reduced the ability of strain 7.13 to activate β-
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catenin to levels observed in uninfected control cells (Figure 17D). Inactivation of cagA 

or slt alone partially attenuated the increase in β-catenin activation induced by the wild-

type 7.13 strain, but not to levels observed in control cells. To determine if these two cag 

island substrates exerted synergistic effects on β-catenin activation similar to results 

observed for PPARδ activation (Figure 17A), cells were infected with the 7.13 cagA-/slt- 

double mutant.  Loss of both CagA and Slt completely abolished β-catenin activation as 

compared to reductions induced by loss of either constituent alone (Figure 17D). These 

findings indicate the multiple H. pylori constituents can mediate β-catenin and are 

concordant with our results focused on H. pylori-induced PPARδ activation (Figure 

17A).  

 

Activation of PPARδ by H. pylori promotes cell proliferation. 

H. pylori is associated with increased gastric epithelial cell proliferation in colonized 

human and rodent gastric mucosa, and PPARδ stimulates proliferation of human 

carcinoma cells; therefore, we next examined the role of PPARδ in H. pylori-induced 

cellular proliferation.   Proliferation was measured using a three-dimensional model 

system, which more accurately reflects the in vivo tissue microenvironment by providing 

interactions between cells, growth factors, and an extracellular matrix (Figure 18A).  As 

expected, cells treated with GW501516 proliferated at a significantly higher rate than 

untreated cells (data not shown).    
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Figure 17.  H. pylori-induced PPARδ requires CagA and peptidoglycan.  (A)  
MKN28 cells were transiently transfected with PPRE3-tk-luciferase and pRL-SV40 
followed by infection with H. pylori strain 7.13 (MOI = 100), or the cagA-, cagE-, slt- or 
cagA-/slt- isogenic mutants.  Dual luciferase assays were performed as described in 
Experimental Procedures.  Error bars, SEM. *p < 0.05 versus Control. **p < 0.05 versus 
7.13.  (B)  MKN28 cells were transiently transfected with PPRE3-tk-luciferase and pRL-
SV40, pre-treated with the PI3K inhibitor LY294002 (PI3Ki) for one hour, and infected 
with H. pylori strain 7.13 (MOI = 100), or its cagA- isogenic mutant.  Dual luciferase 
assays were performed as described in Experimental Procedures.  Error bars, SEM. *p < 
0.05 versus Control. **p < 0.001 versus 7.13. #p < 0.01 versus PI3K; 7.13.  (C)  MKN28 
cells were co-cultured with H. pylori strain 7.13 (MOI=100) or medium alone for 24 
hours.  Cells were stained with anti-β-catenin and AlexaFluor -488 antibodies and nuclear 
dye and analyzed by immunofluorescent microscopy.  (400X).  (D) MKN28 cells were 
transiently transfected with reporter constructs containing LEF-TCF binding motifs in the 
absence or presence of wild-type strain 7.13 or mutants lacking cagA, cagE, slt and/or 
cagA/slt.  Luciferase activity was determined 24 h after infection.  Error bars = SEM for 
experiments performed on at least 3 occasions.  *p < 0.05 versus control.  
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After 72 hours of co-culture, treatment with H. pylori strain 7.13 significantly increased 

cell number compared to uninfected cells (Figure 18B). In contrast, cell number in H. 

pylori-infected cells expressing dnPPARδ was no different than uninfected controls. 

 

These results were confirmed using an independent proliferation assay that measures 

incorporation of Bromodeoxyuridine (BrdU) during DNA synthesis.  MKN28 cells were 

treated with scrambled or PPARδ-specific siRNA (Figure 18C) and were then seeded 

into Matrigel.  After 96 hours of co-culture with H. pylori, cells were incubated with 

BrdU and quantified by ELISA.  Absorbance values for H. pylori-infected control cells 

were significantly higher than uninfected cells or H. pylori-infected cells treated with 

PPARδ siRNA (Figure 18D), confirming that activation of PPARδ by H. pylori strain 

7.13 promotes cellular proliferation in a model that incorporates important elements 

present within gastric mucosa.   

 

H. pylori-induced expression of the cell-cycle regulator Cyclin E1 is PPARδ-dependent 
 
The PPARδ target cyclin E1 promotes cellular proliferation in a variety of model systems.  

Having demonstrated that PPARδ regulates H. pylori-induced proliferation, we next 

determined if H. pylori could induce expression of cyclin E1 in a PPARδ-dependent 

manner. 
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Figure 18. H. pylori infection stimulates proliferation of MKN28 cells in a PPARδ-
dependent manner.  (A)  MKN28 cells were transfected with control vector or 
dominant-negative PPARδ constructs, were then seeded in a three-dimensional culture 
system and infected with strain 7.13 or medium alone.  Representative images are shown. 
(B) Following infection with wild-type H. pylori strain 7.13, cells were removed from 
Matrigel at 24 hour intervals and enumerated using Trypan blue staining.   Error bars = 
SEM for experiments performed on at least 3 occasions.  *p < 0.05 versus control.  (C) 
MKN28 cells transfected with scrambled or PPARδ-specific siRNA were co-cultured 
with H. pylori strain 7.13 for 24 hours. Total protein was extracted and analyzed by 
Western blot using an anti-PPARδ antibody.  Representative blots are shown.  Anti-
GAPDH antibody served as normalization control. (D)  MKN28 cells transfected with 
scrambled or PPARδ-specific siRNA were seeded in Matrigel and infected with H. pylori 
strain 7.13 for 96 hours.  BrdU was added to culture medium and ELISA for BrdU 
incorporation was performed.  Error bars = SEM for experiments performed on at least 3 
occasions.  *p < 0.05 versus control.  **p < 0.05 vs 7.13-infected scrambled control. 
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MKN28 cells were transfected with scrambled or PPARδ-specific siRNA and then co-

cultured with H. pylori or medium alone for 24 hours; siRNA reduced PPARδ levels by 

approximately 50% (Figure 18C).  Reduction of PPARδ levels significantly decreased 

expression levels of cyclin E1 in H. pylori-infected control cells (Figure 19), 

commensurate with the level of PPARδ knockdown, indicating that hyperproliferation 

that develops in response to H. pylori infection may be mediated by the PPARδ target 

cyclin E1. 

 

H. pylori induces aberrant localization of PPARδ to the nucleus in ex vivo gastric cell 
colonies 
 
Our current data demonstrate that H. pylori induces increased expression and activation 

of PPARδ in isolated human gastric epithelial cells.  To extend these results, we 

capitalized upon a model of H. pylori infection that closely recapitulates cellular 

organization in the stomach.  Gastric cell colonies were isolated from 8-week-old male 

C57Bl/6 mice, co-cultured with H. pylori strain 7.13 or medium alone for 48 hours, and 

PPARδ localization was assessed by laser scanning immunofluorescent microscopy.  

Consistent with our in vitro results, cytoplasmic accumulation and nuclear translocation 

of PPARδ was observed in cells co-cultured with H. pylori, but not in cells incubated 

with medium alone (Figure 20A).   
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Figure 19.  cyclin E1 upregulation by H. pylori requires PPARδ.  MKN28 cells 
transiently transfected with scrambled or PPARδ-specific siRNA were cocultured with H. 
pylori strain 7.13 (MOI = 100) or medium alone for 24 hours.  RNA was extracted, 
subjected to reverse transcription, and analyzed in duplicate by real-time PCR.  Data 
represented as % of control where uninfected, scrambled siRNA-transfected is 100%.  
Error bars, SEM.  *p < 0.05 versus medium alone.  #p < 0.05 versus 7.13.   
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To determine the relationship between PPARδ and Cyclin E1 in a genetic model of 

PPARδ deficiency, we also examined Cyclin E1 staining in glands obtained from wild-

type or PPARδ-/- C57Bl/6 mice.  H. pylori infection resulted in increased Cyclin E1 levels 

in wild-type gland colonies but not glands isolated from PPARδ-/- mice which remained 

similar to uninfected control cells (Figure 20B).  These results indicate that, similar to 

cultured gastric epithelial cells, H. pylori can induce PPARδ and Cyclin E1 in a unique 

model system that mirrors events within colonized gastric mucosa. 
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Figure 20. H. pylori induces aberrant localization of PPARδ to the nucleus in ex vivo 
gastric colonies. (A)  Primary murine gastric epithelial cell colonies were co-cultured 
with H. pylori strain 7.13 or medium alone for 24 hours.  Cells were fixed and incubated 
with an anti-PPARδ antibody, followed by incubation with an anti-goat AlexaFluor-488 
antibody and TO-PRO nucleic acid dye.  Cells were visualized by laser scanning 
immunofluorescent microscopy.  PPARδ, green; nuclei, red. 400x magnification.  (B)  
Primary murine gastric epithelial cell colonies from wild-type C57Bl/6 or PPARδ-/- 
C57Bl/6 mice were co-cultured with H. pylori strain 7.13 or medium alone for 24 hours.  
Cells were fixed and incubated with an anti-cyclin E antibody, followed by incubation 
with an anti-goat AlexaFluor-488 antibody and TO-PRO nucleic acid dye.  Cells were 
visualized by laser scanning immunofluorescent microscopy.  Cyclin E, green; nuclei, 
red. 400x magnification. 
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Discussion 

 

Our current experiments have identified PPARδ as a regulator of H. pylori-induced 

responses with carcinogenic potential by 1) demonstrating that H. pylori infection 

increases the expression and activation of PPARδ, 2) using a gastric cell model to 

demonstrate the requirement of p120 in transcriptional upregulation of PPARδ, 3) 

capitalizing on a three-dimensional culture system to show H. pylori stimulates epithelial 

cell proliferation, which may be mediated by  the PPARδ target, cyclin E1, and 4) 

demonstrating H. pylori can alter the topography of PPARδ localization within a 

physiologically relevant ex vivo primary gland culture system.  Collectively, these studies 

indicate that H. pylori activates PPARδ to regulate cell proliferation, a phenotype related 

to carcinogenesis. 

 

Nuclear p120 relieves transcriptional repression exerted by Kaiso on β-catenin target 

genes that possess oncogenic properties [71, 217, 236].  Using stable knockdown of p120 

in MKN28 gastric epithelial cells, we have now identified pparδ as a specific target of 

p120 signaling that may influence carcinogenesis within the context of H. pylori 

infection.  The role of PPARs in fatty acid utilization and oxidation has been well 

established, but their functions in tumorigenesis have not been as clearly defined.  In 

particular, PPARδ is the least characterized isoform of the PPAR family, although it 

presumably performs critical functions in embryonic development, fatty acid metabolism, 

wound healing and control of inflammation [27, 165, 185, 230, 302, 327].  Additional 

evidence now suggests PPARδ can influence colorectal cancer development as PPARδ  
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expression is elevated in most colorectal cancers and PPARδ-/- cells exhibit a decreased 

ability to form tumors in a xenograft model [119, 240]. We have now extended these 

observations into the gastric niche by demonstrating that a carcinogenic H. pylori strain 

induces PPARδ expression in vitro and ex vivo, which may contribute to H. pylori-

mediated carcinogenesis.   

 

Using a three-dimensional culture system that more closely reflects the in vivo 

microenvironment, we have shown that H. pylori promotes epithelial cell proliferation in 

a PPARδ-dependent manner.  These findings are consistent with previous reports 

demonstrating the ability of PPARδ to stimulate proliferation in mouse adipocytes, 

breast, prostate and colon carcinoma cells [55, 121, 141, 229, 324, 343].  In vitro studies 

examining cell turnover in response to H. pylori has provided variable results, 

demonstrating both increased and decreased cell proliferation in response to infection 

[46, 89, 152, 214, 249, 278].  These discrepancies may be attributed to differences in 

bacterial strains, gastric cell lines and/or methods used to determine effects of H. pylori 

on proliferation.  In vivo, however, chronic H. pylori infection induces epithelial 

hyperproliferation that is not balanced by increased levels of apoptosis [227].  

Maintenance of tissue integrity requires that enhanced cell production be accompanied by 

increased rates of cell loss.   Thus, hyperproliferation that is not balanced by a concordant 

increase in apoptosis, over long periods of infection, may heighten the risk for gastric 

cancer associated with H. pylori cag+ strains.  In this study we demonstrated that PPARδ 

activation by H. pylori requires a functional cag secretion system and the cag effectors 
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CagA and peptidoglycan, consistent with findings indicating that cag+ strains more 

robustly alter rates of epithelial cell turnover.   

 

We have also demonstrated that H. pylori induces cyclin E1 expression in a PPARδ-

dependent manner.  Cyclin E1 regulates the rate limiting step in the transition from G1 to 

S phase of the cell cycle by hyperphosphorylation of the Rb protein, which is essential for 

DNA synthesis [109].  Cyclin E1 deregulation is a common event in oncogenesis [266], 

and the majority of gastric tumors have increased Cyclin E1 expression, with higher 

expression correlating with tumor invasion, lymph node metastasis and poor prognosis 

[2, 26, 347, 348].  Studies examining levels of Cyclin E1 in response to H. pylori 

infection have provided variable results, showing both upregulation,  as well as inhibition 

of Cyclin E1 through increased expression of its inhibitor, p27KIP1 [79, 288, 346].  

Similar to studies revealing discrepancies in rates of cell turnover in response to H. 

pylori, expression of certain host cell proteins is likely to be variably affected by strain-

specific and cell-specific factors.  Ultimately, expression of Cyclin E1 in systems that 

closely reflect H. pylori infection in vivo will allow delineation of the importance of 

Cyclin E1 expression in gastric carcinogenesis.  In this study, we demonstrated that 

Cyclin E1 is expressed in response to H. pylori infection of primary gastric glands that 

not only contain epithelial cells but also stromal and lamina propria cells.  Consistent 

with our ex vivo studies, Yao et al. report overexpression of Cyclin E1 in Mongolian 

gerbils infected with H. pylori, although more detailed studies to confirm these findings 

are required. 
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In conclusion, we have demonstrated that H. pylori induces the expression and activation 

of PPARδ in a signaling axis that is dependent on p120 and β-catenin.  These events 

require the cag secretion system effectors, CagA and peptidoglycan, which act through 

two independent pathways.  PPARδ activation promotes cell proliferation in response to 

H. pylori infection of gastric epithelial cells in a three-dimensional matrix system, which 

may be mediated by the expression of Cyclin E1.  Since PPARδ regulates a multitude of 

host responses such as cell turnover and inflammation, activation of this receptor may not 

only contribute to varying levels of cellular turnover within gastric tissue, but also to the 

diverse pathologic outcomes associated with H. pylori infection.   
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CHAPTER IV 

 

HOST SIGNALING PATHWAYS THAT MEDIATE CELL MIGRATION IN 

RESPONSE TO HELICOBACTER PYLORI 

 

Summary 

 

Gastric adenocarcinoma is the second leading cause of cancer-related death worldwide, 

and chronic gastritis induced by Helicobacter pylori is the strongest known risk factor for 

this malignancy.  One H. pylori virulence constituent that augments cancer risk is the cag 

secretion system, which functions to translocate bacterial effectors, such as CagA and 

peptidoglycan, into host cells.  The interaction of these bacterial effectors with host cell 

proteins eventuates in activation of signal transduction pathways.  PI3K signaling is 

activated in gastric cancer and by H. pylori, but the relationship between this cascade and 

H. pylori-induced cellular responses with carcinogenic potential remains unclear. We 

defined the molecular pathways mediating H. pylori-stimulated cell motility, a phenotype 

acquired by cells in epithelial to mesynchemal transition.  H. pylori enhanced migration 

of gastric epithelial cells in a PI3K- dependent manner.  These events were dependent 

upon structural components of the H. pylori cag secretion system, and peptidoglycan 

translocation. These results indicate that PI3K- signaling regulates pathophysiologic 

responses to H. pylori infection that may lower the threshold for gastric carcinogenesis.   
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Introduction 

 

Helicobacter pylori is a Gram-negative bacterial pathogen that selectively colonizes the 

gastric epithelium of approximately half of the world’s population.  Chronic gastritis 

induced by this pathogen persists for decades and a biological consequence of long-term 

inflammation is an increased risk of developing gastric adenocarcinoma [219, 221].  

Although H. pylori-induced gastritis is the strongest known risk factor for gastric cancer, 

only a fraction of colonized individuals ever develop neoplasia, and enhanced cancer risk 

is mediated by strain-specific bacterial factors and/or inflammatory responses governed 

by host genetic diversity.  The cag pathogenicity island (cag PAI) is a well-characterized 

virulence locus that is present in approximately 60% of U.S. H. pylori strains [44].  

Although all H. pylori strains induce gastritis, strains that harbor the cag PAI (cag+) 

significantly augment the risk for severe gastritis, atrophic gastritis, and distal gastric 

cancer compared to those strains that lack the cag island (cag-) [221]. 

 

Several cag genes, such as cagE, encode components of a type IV secretion system that 

exports bacterial proteins into host cells.  The terminal product of the cag island, CagA, is 

translocated into gastric epithelial cells following bacterial attachment [20, 208, 292].  

CagA  subsequently undergoes tyrosine phosphorylation by Src and Abl kinases, and 

phospho-CagA alters gastric cell morphology and aberrantly activates signaling 

molecules such as SHP-2 [128, 270].  Unphosphorylated CagA can also exert effects 

within host cells such as altering cell polarity and activating β-catenin, responses that 

have been implicated in carcinogenesis [10, 24, 98]. 
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Signal transduction pathways activated in response to bacterial contact play an important 

role in H. pylori pathogenesis. Phosphatidylinositol 3-kinase (PI3K) is an integral 

component of a signal transduction pathway that regulates host cellular responses altered 

in tumorigenesis.  In addition to AKT, the primary target of PI3K, Rho-GTPases Rac1 

and Cdc42 are influenced by PI3K signaling.  These Rho family GTPases are critical 

mediators of cytoskeletal dynamics and cell-cell adhesion.  Activation of Rac1 and 

Cdc42 results in actin polymerization and formation of lamellipodia and filopodia at the 

leading edge of the cell, events that are required for the migratory phenotype of cells.  Of 

note, EGFR transactivation increases intestinal epithelial cell motility in a PI3K- and Src-

dependent manner [105].   

   

Cellular migration plays an important role in the invasive potential and metastatic growth 

of cancers.  Although H. pylori can increase gastric epithelial cell migration, the 

mechanisms required for this response are not clearly defined [5, 192, 294].  Specifically, 

injection of CagA is required for the development of an elongated cell morphology 

known as the “Hummingbird” phenotype; however, cell migration requires a functional 

type four secretion system, but not CagA [4, 191, 332].  These observations suggest 

another translocated bacterial factor may stimulate specific signal transduction pathways 

leading to cell migration in response to H. pylori.  Indeed, in addition to CagA, 

components of peptidoglycan are translocated into host cells by the cag secretion system 

where they are sensed by the intracellular pattern recognition receptor Nod1, which 

activates NF-κB and induces the production of pro-inflammatory cytokines such as IL-8.  

In chapter II, we have demonostrated H. pylori peptidoglycan is required for induction of 
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PI3K.  Therefore, we investigated the role of PI3K signaling in cell migration in response 

to H. pylori and the bacterial factors required for these events.  We demonstrate that H. 

pylori induces the PI3K axis, which promotes gastric cell migration.  These processes 

were found to be dependent on the cag secretion system and peptidoglycan translocation.  
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Experimental procedures 

 

Cell Culture and Reagents.   

AGS human gastric epithelial cells were grown in RPMI medium 1640 (GIBCO/BRL) 

with 10% FBS (Sigma) and 20 µg/ml gentamicin (GIBCO/BRL) under 5% CO2 air at 

37°C.  Pharmacological inhibitors LY294002 (Cell Signaling Technology), AG1478 

(Calbiochem), PP2 (Calbiochem), AG1295 (Calbiochem), and STI-571 (LC 

Laboratories) were used at concentrations of 50 µM, 600 nM, 10 µM, 50µM and 10µM, 

respectively.  For Western immunoblot analysis, AGS cells were plated at 5 x 106 

cells/well in 10cm2 plates in 10 mL culture medium.  For cell migration assays, 5 x 105 

cells were plated in 35 mm culture dishes in 2 mL medium. 

 

H. pylori strains.   

The H. pylori cag+ rodent-adapted strain 7.13 was grown in Brucella broth with 5% FBS 

for 18 hours, harvested by centrifugation, and were added to gastric cells at a bacteria-to-

cell ratio of 100:1.  Isogenic cagA-, cagE-, and slt- null mutants were constructed within 

strain 7.13 by insertional mutagenesis using aphA and were selected with kanamycin (25 

µg/ml) as described previously [222].   

 

Western Blot Analysis. 

Gastric cell lysates were harvested and fractionated using Qproteome Cell Compartment 

Kit (Qiagen).  Proteins (30 µg) were separated by 10% SDS-PAGE and transferred to 

poly-vinylidene difluoride membranes (Pall).  Membranes were blocked in 5% nonfat dry 
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milk in Tris-buffered saline with 0.05% Tween 20 (TBST), incubated for 24 hours with a 

purified rabbit polyclonal anti-Rac1 antibody (1:1000 dilution; Santa Cruz Biotech) and a 

monoclonal mouse anti-GAPDH antibody (1:2000 dilution; Santa Cruz Biotech).  Goat 

anti-rabbit (1:5000 dilution; Santa Cruz Biotech) or goat anti-mouse (1:5000 dilution; 

Santa Cruz Biotech) horseradish peroxidase-conjugated secondary antibodies were used 

followed by enhanced chemiluminescence detection following the manufacturer’s 

instructions (Perkin Elmer).  Immunoblots were quantified with the GeneTools Software 

(Syngene). 

 

Cell Migration Analysis. 

Confluent AGS cell monolayers in plates coated with 2.5 µg human fibronectin (BD 

Bioscience) were pre-incubated with pharmacological inhibitors for one hour.  Eight 

circular wounds were generated in each plate using a rotating silicon tip [62].  H. pylori 

was then added to the cells and wound images were taken at zero, six and sixteen hours 

post infection using Q-Capture Imaging Software.  Areas were measured using Image J 

software (NIH). 

 

Immunofluorescence  

Gastric epithelial cells were cultured on glass cover slides, and cells treated with or 

without H. pylori in conjunction with the PI3K inhibitor were washed twice with PBS, 

permeabilized, and fixed with ice-cold methanol at –20 °C as described previously.  

Slides were incubated in 3% BSA (Sigma) for 10 min and then incubated with rabbit anti-
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β-catenin antibody (1:100; Sigma) overnight at 4 °C. Washed slides were then incubated 

with goat anti-rabbit AlexaFluor 488 (1:200; Invitrogen) at room temperature for 30 min.  

 

Statistical Analysis.   

All experiments were performed on at least three independent occasions.  Statistical 

analysis was performed by Student’s t test and ANOVA using Prism Graph Pad.  A P-

value < 0.05 was defined as statistically significant. 
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Results 

 

PI3K signaling is required for cell migration in response to H. pylori. 

Colonic epithelial migration is dependent on PI3K and Src activation [81].  We have 

recently demonstrated that the carcinogenic H. pylori strain 7.13 induces PI3K activation 

in gastric epithelial cells (Figure 10).   To determine if H. pylori promotes cell migration 

in a PI3K-dependent manner, AGS cells were treated with the PI3K inhibitor LY294002 

and infected with H. pylori.  Wounds were then induced and measured over time using 

time-lapse microscopy. Inhibition of PI3K did not significantly alter cell motility in 

uninfected cells (Figure 21A, 21B). H. pylori significantly increased wound healing 

compared to uninfected cells, but this was abolished by inhibition of PI3K (Figure 21A, 

21B).  Treatment of cells with EGFR (AG1478) and Src (PP2) inhibitors also blocked 

migration in response to H. pylori (Figure 21C), which mirrored results investigating the 

effects of H. pylori on PI3K-AKT activation (Figure 13). Since PP2 can also inhibit 

PDGFR signaling, we repeated migration assays in the presence or absence of the 

specific PDGFR inhibitor AG1295. H. pylori-induced cell migration was unchanged in 

the presence of the PDGFR inhibitor (Figure 21C), indicating that Src likely plays a role 

in cell motility that is induced by H. pylori.  

 
Cell migration in response to H. pylori also requires Rac1. 
 
H. pylori and PI3K can also activate the small GTPase Rac [54, 234], an important 

regulator of the migratory phenotype of cancer cells.  Therefore, we next investigated 

whether Rac activation influenced H. pylori-induced wound closure by repeating wound-

healing assays in the presence of a specific Rac1 inhibitor (NSC23766).  
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Figure 21. Activation of PI3K-AKT and Rac mediates H. pylori-induced cell 
migration. (A) AGS cells were grown to confluency and incubated with the PI3K 
inhibitor LY294002 (50 µM) or vehicle alone (DMSO) for one hour.  A wound was then 
introduced into the cell monolayer and medium or H. pylori strain 7.13 was added.  
Wound areas were measured at zero, six and sixteen hours post-infection. (B) 
Quantification of wound closure for each treatment group in experiments performed on at 
least 5 independent occasions.  (-), cells incubated without H. pylori.  Error bars = SEM.  
* P < 0.04 vs AGS cells infected with H. pylori strain 7.13 in the presence of the PI3K 
inhibitor LY294002 at both six and 16 hours. (C) AGS cells were grown to confluency 
and incubated with 600 nmol/L AG1478, 10 µmol/L PP2, or 50 µmol/L AG1295, or 
vehicle alone (DMSO) for one hour.  A wound was then introduced into the cell 
monolayer and medium or H. pylori strain 7.13 was added.  Wound areas were measured 
at zero and six hours post-infection. Quantification of wound closure for each treatment 
group in experiments performed on at least 3 independent occasions is shown.  (-), cells 
incubated without H. pylori.  Error bars = SEM.  * P < 0.005 vs uninfected AGS cells 
alone or in the presence of AG1295.  (D) AGS cells were grown to confluency and 
incubated with the Rac1 inhibitor NSC23766 (50 µM) or vehicle alone (water) for one 
hour.  A wound was then introduced into the cell monolayer and medium or H. pylori 
strain 7.13 was added.  Wound areas were measured at zero, six and sixteen hours post-
infection. (E) Quantification of wound closure for each treatment group in experiments 
performed on at least 5 independent occasions.  (-), cells incubated without H. pylori.  
Error bars = SEM.  ** P < 0.01 vs AGS cells infected with H. pylori strain 7.13 in the 
presence of the Rac inhibitor NSC23766 at both six and 16 hours. 



 98 

Inhibition of Rac did not significantly alter cell motility in uninfected cells (Figure 21D, 

21E). Similar to results seen with PI3K inhibition, H. pylori-induced cell migration was 

completely abolished in the presence of Rac inhibition (Figure 21D, 21E).  These results 

indicate that H. pylori promotes gastric epithelial cell migration via a PI3K, Src and Rac-

dependent pathway, likely transduced by upstream signaling from EGFR transactivation.   

 

Rac membrane localization is reduced by PI3K inhibition. 
 
Localization of Rac to the cell membrane is indicative of GTP-loaded, active Rac.  To 

more firmly implicate the requirement of PI3K in Rac activation, we performed cell 

fractionation of AGS gastric epithelial cells co-cultured with wild-type H. pylori strain 

7.13 in the absence or presence of PI3K inhibition.  Western blot analysis revealed an 

increase in Rac membrane localization in response to infection, but this was abolished in 

the presence of PI3K inhibition (Figure 22).  Similar results were seen with 

immunofluorescence of Rac1 in H. pylori-infected cells (data not shown).  These results 

support the hypothesis that H. pylori-induced PI3K leads to Rac activation and the 

subsequent motogenic response. 

 

H. pylori-induced cell migration is dependent on cagE and peptidoglycan. 

Having demonstrated in Chapter II that cagE and peptidoglycan are required for H. 

pylori-induced PI3K-AKT activation (Figure 11), we next determined the role of these 

bacterial factors in cell migration.  Similar to the patterns observed for AKT activation 

(Figure 11), cell migration was significantly decreased following infection with the 

cagE- or slt- mutants compared to wild-type 7.13 (Figure 23).     
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Figure 22. H. pylori alters subcellular localization of Rac via PI3K.   AGS cells were 
cocultured with H. pylori strain 7.13 (MOI = 100) or medium alone for 16 hours.  Total 
protein was extracted and subjected to subcellular fractionation, and analyzed by Western 
blot using an anti-Rac antibody.  Representative blots are shown.  Anti-GAPDH 
antibodies served as normalization controls for purification of cytosolic and membrane 
fractions.  Densitometric analysis of multiple Western blot repetitions; graph represents 
fold Rac1 expression in infected versus uninfected cells.  Error bars, SEM.  *p < 0.05.   
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These results indicate that PI3K signaling and cag-mediated peptidoglycan translocation 

mediate H. pylori-induced cell migration. 
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Figure 23. H. pylori-induced cell migration is dependent on the cag pathogenicity 
island and peptidoglycan.  AGS cells were grown to confluency and a wound was 
introduced into the monolayer.  Medium, H. pylori strain 7.13, or isogenic cagA-, cagE-, 
or slt- null mutant derivatives were then added at bacteria/cell ratios of 100:1.  Wound 
areas were measured at time zero and six hours post-infection. Quantification of wound 
closure is shown for each treatment group in experiments performed on at least 3 
occasions.  Error bars = SEM.  * P < 0.007 vs uninfected control; ** P < 0.007 vs AGS 
cells infected with H. pylori strain 7.13. 
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Discussion 

 

Investigations into mechanisms through which H. pylori promotes gastric cancer have 

demonstrated that disease risk involves specific interactions between pathogen and host, 

which are dependent on strain-specific bacterial constituents and induced host effectors.  

H. pylori cag+ strains are isolated significantly more frequently from persons with 

atrophic gastritis and distal gastric cancer than from subjects with gastritis alone [36, 68, 

157] and genes within the cag island are necessary for induction of epithelial cell 

responses related to pathogenesis [145, 182, 202, 313]. 

 

Increased migration is a trait acquired by cells in the transition to a metastatic phenotype.  

For metastasis to occur, malignant cells must detach from neighboring cells and migrate 

into adjacent tissue, a process similar to epithelial-mesenchymal transition (EMT), which 

allows stationary epithelial cells to become motile.  Disruption of intercellular junctions 

(e.g. adherens junctions) is required for EMT to occur and H. pylori can disrupt 

junctional complexes.  Ectopic expression of CagA in epithelial cells results in a loss of 

polarity and cell-cell adhesion, as well as extension of migratory pseudopodia and 

acquisition of an invasive phenotype [24].  However, CagA-independent disruption of the 

adherens junction protein E-cadherin has also been reported [333].  PI3K may play a role 

in this process as this molecule has been implicated in the migratory and metastatic 

phenotype of carcinoma cells.  PI3K can interact with and be activated by E-cadherin 

[220], and PI3K activation up-regulates Snail, a transcriptional repressor of E-cadherin, 

through phosphorylation of GSK3β [18].   PI3K can also activate the small GTPase Rac 
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[155, 233] and integrin-linked kinase [76], molecules which are important regulators of 

the migratory and invasive phenotype of cancer cells.  Integrin signaling can induce EMT 

via activation of Focal Adhesion Kinase (FAK), which occurs through a PI3K-Rac 

signaling cascade [276].  Recently, FAK activation by H. pylori has been shown to result 

in the production of stress fibers; however, in this system, inhibition of PI3K had no 

effect on these changes in cell phenotype [299]. 

 

In macrophages, H. pylori cag+ strains activate PI3K, leading to actin polymerization and 

delayed phagocytosis [8].  Our current studies, which focused on epithelial cells, 

demonstrate a dramatic reduction in H. pylori-induced cell migration in the presence of 

PI3K inhibitors, suggesting that PI3K may also mediate actin dynamics in gastric 

epithelial cells, likely through Rac1 activation.  We determined that cell migration was 

not affected by loss of CagA, but did require a functional type IV cag secretion system 

and peptidoglycan translocation.  Our results are concordant with other studies 

demonstrating that certain signal transduction pathways, such as those leading to NF-κB, 

JNK, and activator protein-1 (AP-1) activation, are cag secretion system-dependent, but 

CagA-independent [53, 113, 202].  Our results differ from studies demonstrating that 

CagA is required for a full motogenic response to H. pylori through its interactions with 

the c-Met receptor and subsequent MEK/ERK signaling [52].  We speculate that these 

differences may be due in part to the use of different strains as well as different 

techniques to assess cell migration  However, Al-Ghoul et al. have shown that H. pylori 

mutants that do not translocate CagA can still stimulate cell motility, suggesting that 

additional factors translocated by the type IV secretion system affect H. pylori-dependent 
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motility [5].  Consistent with these findings, our results indicate that the peptidoglycan 

translocation is required to promote cell migration. 

 

In summary, H. pylori-induced PI3K activation mediates cell migration of gastric 

epithelial cells, a phenotype related to carcinogenesis.  These events require the cag 

secretion system and peptidoglycan as well as EGFR transactivation and Src activation in 

host cells.  Taken together, these data present insights into the carcinogenic mechanisms 

underlying H. pylori infection. 
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CHAPTER V 

 

CONCLUSIONS AND FINAL REMARKS 

 

Summary 

 

The discovery of H. pylori and the ultimate acceptance of work performed by Warren and 

Marshall in the 1980’s have led to robust scientific pursuit in the fields of microbiology 

and cancer biology.  Examination of mechanisms by which H. pylori interacts with 

gastric epithelium has provided a deeper understanding of ulcer disease and gastric 

adenocarcinoma, which remains the second leading cause of cancer- related deaths 

worldwide.  New lines of H. pylori treatment have been developed because of these 

studies and eradication efforts have already begun to reduce rates of gastric cancer in 

developing countries.   

 

Disease outcomes associated with H. pylori result from chronic inflammation induced by 

infection.  Thus, the study of H. pylori has also provided a model for other organisms and 

diseases associated with chronic inflammation.  Bacterial factors, survival mechanisms, 

and immune evasion make H. pylori uniquely adapted for life in the gastric niche.  

Reactive oxygen species produced during the host response to H. pylori, in conjunction 

with deregulated signaling pathways within epithelial cells, may lead to the degeneration 

of normal cell function and initiation/promotion of gastric carcinogenesis.  Though 

inflammation is induced by all H. pylori infections, the vast majority do not result in 



 106 

cancer, underscoring the importance of defining the strain-specific and host factors that 

result in tumorigenesis. 

 

Insight into signaling cascades that are deregulated within gastric epithelial cells by H. 

pylori is critical to understanding the pathogenesis of this organism.  Translocation of 

CagA by the cag secretion system induces activation of c-Met, ERK1/2 and β-catenin 

[10, 19, 99].  H. pylori peptidoglycan activates NOD1-dependent NF-κB and unpublished 

data suggest p38 activation also requires peptidoglycan components [319].  Alteration of 

these signaling constituents in response to H. pylori may facilitate oncogenic changes.  

For instance, activation of survival pathways by H. pylori may result in self-sufficiency 

in growth signals and insensitivity to anti-growth signals.  In concordance, H. pylori cag+ 

strains selectively enhance proliferation and attenuate apoptosis in human mucosa and 

rodent models of infection [226, 254].  The goal of this dissertation was to investigate 

new mechanisms of pathogenesis and signaling pathways regulated by H. pylori that 

mediate its carcinogenic effects.  Specifically, how does H. pylori alter signal cascades 

that contribute to increasing cell survival and decreasing rates of apoptosis?  These two 

events favor tumorigenesis and are important in lowering the threshold for 

carcinogenesis. 

 

In Chapter II, activation of the PI3K signaling cascade was identified to be a critical 

regulator of resistance to apoptosis in H. pylori-infected gastric epithelial cells.  At the 

time this project was initiated, there was only one report describing activation of PI3K in 

H. pylori-infected macrophages [7].  We first demonstrated that carcinogenic strains of 
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H. pylori activate the PI3K-AKT signaling axis in gastric epithelial cells (Figure 10), and 

requires upstream signaling from EGFR and Src kinase (Figure 13), two signaling 

components known to be activated by H. pylori [146, 291].  Furthermore, our in vitro 

results indicated that induction of PI3K-AKT signaling by H. pylori requires 

translocation of peptidoglycan via the cag secretion apparatus (Figure 12).  These results 

reveal a previously unrecognized consequence of translocation of this cag island 

substrate, as the only defined role to date of cag-mediated peptidoglycan delivery is 

NOD1-dependent induction of IL-8 secretion by gastric epithelial cells [319].  When we 

examined regulation of apoptosis by H. pylori, we found that activation of PI3K and 

downstream AKT results in reduced rates of apoptosis and apoptotic resistance of gastric 

cells (Figure 14).  Therefore, activation of the PI3K-AKT signaling axis may contribute 

to cell changes that provide insensitivity to anti-growth signals and allow progression to a 

cancerous state. 

 

When performing Propidium iodide staining and flow cytometric analysis of the cell 

cycle in gastric cells co-cultured with H. pylori, we also found that infection induced two 

distinct cell populations (data not shown).  H. pylori did induce an appreciable amount of 

cell death; however, there was also an increase in the number of cells in the S phase of 

the cell cycle, indicative of replicating cells.  We hypothesized that the anti-apoptotic 

response mediated by H. pylori-induced PI3K activation may allow for a subset of gastric 

cells to survive and proliferate.  Therefore, in Chapter III, we elucidated additional 

signaling pathways that are activated in response to H. pylori infection that mediate cell 

proliferation, a phenotype acquired by cancerous cells to propagate.  We investigated the 
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role of PPARδ, a ligand activated transcription factor that affects a multitude of normal 

cell functions.  Work in colorectal cancer has highlighted the ability of PPARδ to 

promote carcinogenesis when aberrantly activated [120, 324], though it is clear that more 

studies are needed to delineate the specific mechanisms underpinning these observations.   

 

We first demonstrated that H. pylori induces the expression and functional activation of 

PPARδ in gastric epithelial cells (Figure 15).  Previously, our lab had shown that the 

adherens junction component p120, is required for relief of transcriptional repression of 

the β-catenin target gene, mmp7, which is known to play a critical role in tumorigenesis 

[210].  We have now identified PPARδ as another specific target of the p120/ β-catenin 

pathway (Figure 16). Furthermore, we demonstrated that loss of both CagA and Slt 

completely abolishes β-catenin and subsequent PPARδ activation (Figure 17).  Previous 

reports have shown CagA to be solely responsible for β-catenin activation; however, 

these studies used AGS gastric epithelial cells that contain constitutively activated β-

catenin and lack E-cadherin expression [99, 297], or cells inducibly expressing CagA 

[197].  These artificial systems may not account for additional factors that are present 

only in live bacterial infection.    Our current findings using live infection of MKN28 

cells that express β-catenin at the cell membrane and form functional adherens junctions, 

indicate that multiple H. pylori constituents can mediate β-catenin activation (Figure 17).  

We next investigated whether PPARδ mediates a proliferative response in host cells 

using dominant negative and RNA silencing techniques.  With this, we found that H. 

pylori promotes epithelial cell hyperproliferation in a PPARδ-dependent manner (Figure 

18).  Importantly, these results mimic the proliferative response to H. pylori seen in vivo 
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[226, 254].  We also found that H. pylori induces the expression of a critical cell cycle 

mediator, cyclin E, in a PPARδ-dependent manner and these in vitro findings occur in an 

ex vivo culture system that recapitulates the cellular organization of the stomach (Figures 

19 and 20).  Increased proliferation without a concordant increase in apoptosis may 

therefore contribute to the heightened retention of mutagenized cells, which over decades 

may increase the risk for gastric cancer. 

 

Though cellular migration is continuously occurring in normal tissues during 

development, the process is highly controlled.  Cancerous cells require the ability to be 

motile for migration and invasion to distant sites, similar to epithelial-mesenchymal 

transition (EMT), which allows stationary epithelial cells to become motile [1].  In 

Chapter IV, we report that H. pylori induces epithelial cell migration that is dependent on 

Rac activation downstream of PI3K (Figures 21 and 22).  Similar to patterns observed in 

PI3K-AKT activation in response to isogenic mutants of H. pylori (Figures 11 and 12), 

we found that cell migration requires peptidoglycan translocation via the cag secretion 

system (Figure 23).  It is possible the subset of cells that evade apoptosis and proliferate 

in response to H. pylori undergo a motile response.  This, in conjunction with breakdown 

of cell-cell contacts, may lead to the release of nutrients from paracellular spaces to 

enhance survival of H. pylori, and maintenance of an invasive host cell phenotype, which 

over time may result in metastatic gastric carcinoma cells.  

 

Taken together, the studies in this dissertation provide a mechanism through which H. 

pylori alters rates of epithelial turnover in the gastric niche through activation of 
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signaling pathways within host cells that potentially drive tumorigenesis (Figure 24).  An 

anti-apoptotic response mediated by PI3K activation, in the presence of increased 

proliferation mediated by PPARδ, increases the risk of retaining mutagenized gastric 

epithelial cells in the presence of H. pylori induced gastritis.  These studies have therefore 

defined effectors that directly mediate host responses related to carcinogenesis, providing 

a foundation for future work of understanding the full circuitry of these pathways and the 

biological consequences of perturbing them.   
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Figure 24.  Model of dysregulated cellular turnover in response to H. pylori.  
Translocation of H. pylori peptidoglycan mediates PI3K activation, which is required for 
decreasing rates of apoptosis and promoting cell migration.  Translocation of CagA and 
peptidoglycan promote β-catenin accumulation in the cytosol and nucleus, which acts to 
drive PPARδ upregulation in a p120-dependent manner.  PPARδ activation results in 
enhanced cell proliferation, which in the presence of decreased apoptosis, promotes 
accumulation of gastric cells damaged by H. pylori-induced gastritis. 
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Preliminary Data and Future Directions 

 

Activation of PI3K-AKT occurs in biopsies obtained from H. pylori-infected individuals. 
 
Our in vitro data demonstrate that activation of the PI3K-AKT signaling pathway within 

H. pylori-infected gastric epithelial cells is important in regulation of cell survival and 

apoptosis.  It will be important to take these studies into in vivo models of infection.  We 

have now performed immunohistochemistry for Stathmin, a marker of activated PI3K 

signaling [259], on biopsies from H. pylori-infected humans.  Our preliminary data 

suggest there is an increase in the number of Stathmin-positive cells in humans infected 

with H. pylori (Figure 25), reflecting PI3K activation, which likely contributes to the 

pathogenesis of H. pylori in vivo.  Recent published reports now support these findings 

by demonstrating increased AKT phosphorylation, indicative of PI3K activation, in H. 

pylori-infected human biopsies [301].  It will be important to test the hypothesis that 

PI3K-AKT contributes directly to H. pylori pathogenesis in vivo using AKT deficient 

mice.  These mice are difficult to breed in order to obtain adequate numbers for statistical 

power due to high rates of embryonic death and poor survival post-birth [241].  In 

addition, there are three isoforms of AKT and it is currently not known which of these H. 

pylori activates specifically.  It will therefore be necessary to further delineate the exact 

isoforms of AKT that are activated by H. pylori and choose the corresponding knockout 

mice for infection.  We hypothesize that AKT knockout mice will develop significantly 

less serious sequelae of H. pylori infection compared to wild-type mice.  Because it may 

not be feasible to breed adequate numbers of mice for infection, an alternative strategy is  
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Figure 25.  PI3K activation is increased in H. pylori-positive biopsies.  (A)  
Representative staining for Stathmin is shown for uninfected and H. pylori-infected 
persons.  (B)  Gastric epithelial cells with Stathmin staining as assessed by 
immunohistochemistry were quantified by an observer unaware of H. pylori status.  
Results are expressed as the percentage of cells per sample (10 high-powered 
fields/sample examined) with detectable Stathmin staining. 
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to obtain primary gastric glands to examine carcinogenic cell responses to H. pylori in an 

ex vivo system.  These experiments would require long-term efforts, but would be useful 

to further support the role of PI3K, and specifically downstream AKT activation, in H. 

pylori-mediated carcinogenesis. 

 

Determine expression of PPARδ in H. pylori-infected humans and gerbils. 

Our in vitro and ex vivo studies described in Chapter III indicate that H. pylori activates 

PPARδ.  Because there are no studies to date examining PPARδ expression in H. pylori-

infected humans or rodents, it will be necessary to next determine if our findings are 

relevant in a rodent model of gastric cancer.  We have began to perform these 

experiments by quantifying levels of PPARδ expression in Mongolian gerbils infected 

with wild-type H. pylori strain 7.13 or the isogenic cagA-, cagE-, slt-, or cagA-/slt- 

mutants.  We have now obtained inflammation and injury scores from gerbils infected for 

6 and 12 weeks.  As previously demonstrated [100], all gerbils infected with H. pylori 

strain 7.13 developed significantly higher inflammatory scores compared with uninfected 

controls (Figure 26).  This response was significantly attenuated in gerbils infected with 

cagA-, cagE-, slt-, or cagA-/slt- isogenic mutants compared with those infected with 

parental wild-type 7.13.  Additionally, gastric adenocarcinoma was present only in 7.13-

infected gerbils by 6 weeks post-infection. We will next perform immunohistochemistry 

on paraffin-embedded sections to detect and quantify levels of PPARδ and Cyclin E1.  

Though IHC has not been optimized to date, we expect to see increased levels of PPARδ 

and Cyclin E1 in gerbils infected with wild-type H. pylori strain 7.13 and lower levels in 

gerbils infected with mutant strains.  Additionally, we will examine levels of PPARδ in 
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H. pylori-positive and negative human biopsies.  These data will be necessary to support 

our in vitro findings. 

 

Since the PPARδ agonist GW501516 has previously been shown to promote 

carcinogenesis in a mouse model of colon cancer [120], it will also be interesting to 

determine if administration of this agonist can accelerate H. pylori-initiated gastric 

cancer.  Gerbils can be infected with H. pylori and co-administered 0.5% 

carboxymethylcellulose containing either GW501516 or vehicle by gavage feeding.  A 

potential result is that GW501516 will accelerate injury and proliferation in gerbils as we 

have demonstrated in vitro. These findings would be exciting as they would support our 

hypothesis that PPARδ activation mediates H. pylori-induced carcinogenesis.  
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Figure 26.  Severity of inflammation and injury within the gastric mucosa of 
Mongolian gerbils inoculated with H. pylori is dependent on the cag island effector 
molecules.  Combined antral and corpus inflammation in gerbils infected with broth 
alone or with H. pylori strains 7.13, 7.13 cagA-, 7.13 cagE-, 7.13 slt-, or 7.13 cagA-/slt-  
for 6 or 12 weeks.  Inflammation was determined by histologic examination, and data are 
presented as scatter plots with mean values.  *p < 0.05 versus gerbils inoculated with 
broth alone.  
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PPARδ likely contributes to pathogenesis of H. pylori in vivo 
 
In Chapter III, we demonstrated H. pylori induces PPARδ activation in vitro and ex vivo, 

requiring p120 in host cells and the bacterial effectors, CagA and peptidoglycan.  PPARδ 

activation led to increased cell proliferation in response to infection, which may 

contribute to altering rates of epithelial turnover.  In the future it will be necessary to 

move these studies into tractable in vivo systems of infection using PPARδ knockout 

mice.  We propose to infect PPARδ-/- and wild-type C57Bl/6 mice with strain 7.13 and 

examine acute (6, 12, 24 hour) and chronic (1, 6, 12, 24 week) time points post challenge 

based on data indicating that 1) H. pylori alters epithelial signaling pathways acutely and 

2) development of cellular responses with carcinogenic potential likely occurs over 

longer periods of infection.  Because PPARδ regulates a multitude of host responses and 

carcinogenesis in some systems, it will be necessary to obtain inflammation and injury 

scores as well as rates of apoptosis (using cleaved- caspase 3) and proliferation (using 

Ki67).  A potential result is that H. pylori infection of wild-type mice will initiate p120 

mislocalization, and increased production of PPARδ and Cyclin E1, as we have seen in 

cell culture, which would support our hypothesis that PPARδ contributes to H. pylori 

pathogenesis. We anticipate that PPARδ-/- mice will exhibit decreased proliferation with 

acute and chronic H. pylori infection.  We have performed a pilot experiment infecting 

wild-type and PPARδ-/- mice.  The initial results indicate a trend towards less 

inflammation in infected PPARδ-/- mice compared with wild-type mice (Figure 27); 

however, a full study as proposed above is needed to determine the exact role of PPARδ 

in vivo.   
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Since levels of gastric damage differ among genetically distinct strains of mice infected 

with H. pylori [318], indices of H. pylori-induced, PPARδ-regulated gastric injury, may 

vary depending on the particular strain of mice examined.  Though H. pylori-infected 

mice on a C57Bl/6 background are extremely useful for examining inflammatory 

responses, they rarely develop gastric cancer prior to 15 months post-challenge [253].  

However, infection of hypergastrinemic INS-GAS mice with strain 7.13 eventuates in 

premalignant lesions and gastric cancer by 24 weeks post-infection [94].  Thus it will be 

important to generate PPARδ-/- mice on an INS-GAS background to define the role of 

PPARδ on the development of cancer.  Infection of these mice will allow for the 

examination of inflammation, apoptosis and proliferation, and gastric carcinogenesis in 

response to H. pylori infection over a shorter time period.  Taken together, these 

proposed experiments are essential to confirm that interactions between specific H. pylori 

constituents and PPARδ play an important role in host injury responses within the gastric 

niche. 
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Figure 27.  Infection of PPARδ-/- mice attenuates H. pylori-induced inflammation.  
Comparison of combined gastric antral and corpus inflammation in wild-type and 
PPARδ-/- mice infected with broth alone or H. pylori strain 7.13 for 8 weeks.  H. pylori-
induced inflammation appears to be attenuated in PPARδ-/- mice.  Inflammation was 
determined by histological examination. 

 

 

 

 

 

 

 

 

 

 

 

 



 120 

Final Remarks 

 

The discovery of H. pylori and its role in gastric disease has resulted in exceptional 

advances in the fields of gastroenterology, microbiology, and cancer biology.  The 

dynamic interactions that occur in H. pylori-induced carcinogenesis allow for the 

delineation of both microbial constituents and host factors that influence disease outcome 

and provide insight into how other chronic infections can lead to carcinogenesis.   

 

The work presented in this dissertation adds to the understanding of these unique 

microbe-host interactions.  In Chapter II, we describe the ability of H. pylori to activate 

PI3K-AKT signaling, which leads to apoptotic resistance of gastric epithelial cells.  In 

Chapter III, we demonstrate that PPARδ, a downstream target of β-catenin and p120, is 

induced in response to H. pylori infection and plays a role in promoting cell proliferation.  

Collectively, activation of these host signaling components alters rates of cellular 

turnover.  Decreased apoptosis in the presence of increased cell proliferation may allow 

for accumulation of mutations and enhanced cancer risk in the presence of H. pylori-

induced gastritis.  Additionally, we show in Chapter IV that activation of PI3K in 

response to infection results in enhanced cell migration, which may play a role in later 

stages of gastric cancer induced by H. pylori, such as in the metastatic spread of tumor 

cells.  The host signaling components described are known to be oncogenic in other 

cancers, and we have now shown the potential role of PI3K and PPARδ in gastric cancer 

related to H. pylori. 
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Throughout the literature, it is clear that strain-specific virulence determinants play a 

major role in the pathogenic outcomes of H. pylori.  The cag secretion system delivers 

CagA and peptidoglycan into host cells.  CagA affects many signaling pathways and 

alters cell-cell contacts [10, 22].  Peptidoglycan translocation by the cag secretion system 

leads to NOD1-dependent proinflammatory responses in gastric epithelial cells [319].  In 

our current studies we have defined additional roles for the cag secretion substrates 

peptidoglycan and CagA, adding PI3K and PPARδ to the list of host signaling pathways 

selectively altered by cag+ strains of H. pylori to induce epithelial responses that play a 

role in cancer promotion.  

 

Activation of PI3K and PPARδ contributes to survival, motility and proliferation, which 

are all essential aspects of tumorigenesis.  Induction of these signaling constituents by H. 

pylori may act as a promoting agent, stimulating precancerous-cell survival and 

proliferation.  As infection persists for decades, reactive oxygen species and other DNA-

damaging agents produced in the chronic inflammatory response to H. pylori may 

subsequently lead to genetic mutations and instabilities as precancerous cells divide.  

Prolonged stimulation of these signaling pathways may allow gastric cells to become 

capable of autonomous cell growth, and progress to gastric adenocarcinoma.  Additional 

experiments are required to fully understand how H. pylori alters the gastric epithelium to 

promote carcinogenesis; however, by defining signaling components that are altered in 

cells infected with H. pylori, we may be able to define therapeutic targets for gastric 

cancer, and examination of bacterial factors that enhance pathogenicity may allow 

physicians to more accurately target infected individuals with enhanced cancer risk.  Due 

to the extensive morbidity and mortality related to H. pylori, there have been 
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considerable efforts focused on defining mechanisms by which this pathogen induces 

disease and the work presented in this dissertation provides insight into the dynamic 

interplay between H. pylori and host, which may lead to meaningful clinical applications 

in the future.   
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