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Chapter 1

Introduction

Consider a finite collection of classical point charges constrained on the surface of a

conductor and interacting through a Coulomb potential. In the absence of other forces,

physics tells us these charges will arrange themselves in an optimal configuration so that

the total potential energy attains its minimum. In this case the loss of potential energy is

dissipated as heat. For a sphere conductor determining the stable configuration and the

minimum potential energy is called the Thomson Problem.

This phenomenon leads us to the study of discrete minimum energy problems and we

shall formulate this investigation in a more general setting, namely, we will study this

question in various dimensions and the pairwise interaction will be from a larger class of

potentials such as Riesz potentials. Specifically, we are interested in the positions of these

charges and their minimal potential energy.

For a given potential f : [0,∞) → R ∪ {+∞} and any N-point configuration ωN =

(x1, . . . ,xN) ∈ (Rd)N we consider the f -energy of ωN

E f (ωN) := ∑
j 6=k

f (|x j− xk|2), (1.1)

and for a subset Ω⊂ Rd , we consider the N-point minimal f -energy on Ω

E f (Ω,N) := inf
ωN∈ΩN

E f (ωN). (1.2)

A configuration that attains this infimum is called an N-point optimal configuration on Ω.

If we further assume that f is lower-semicontinuous and Ω is compact then it is elementary

to show an N-point optimal configuration on Ω always exists.

In this dissertation we are mostly concerned with the Riesz s-potentials fs(x) = |x|−
s
2
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for s > 0 and the logarithmic potential flog(x) = 1
2 log 1

|x| . It is easy to verify that Riesz

potentials and logarithmic potential are indeed lower-semicontinuous. For simplicity, we

shall write Es, Elog, Es, Elog for E fs , E flog , E fs , E flog , respectively. However, it is worth con-

sidering a larger class of potential functions. A C∞ function f : I→R∪{+∞} is completely

monotonic if (−1)k f (k)(x)≥ 0 for all x ∈ I and all k≥ 0 and strictly completely monotonic

if strict inequality always holds in the interior of I. An N-point configuration is universally

optimal if it is optimal for each completely monotonic potential function. By Bernstein’s

theorem (cf. [1, Theorem 12b, page161]) a function is completely monotonic on (0,∞) if

and only if there exists a non-decreasing function α(t) such that

f (x) =
∫

∞

0
e−xtdα(t). (1.3)

It is elementary to verify that all Riesz s-potentials are completely monotonic on (0,∞).

We recall the Gamma function

Γ(s) =
∫

∞

0
xs−1e−xdx.

It is then straightforward to show that any Riesz s-potential can be written as

1
(|x|2) s

2
=

1
|x|s

=
∫

∞

0
e−|x|

2t t
s
2−1

Γ( s
2)

dt. (1.4)

Comparing (1.3) and (1.4) it again shows Riesz s-potentials are in the class of completely

monotonic functions.

It turns out that many optimal configurations are also the most important configurations

in geometry. For example, the vertices of a regular tetrahedron and the vertices of a regular

icosahedron are universally optimal configurations on S2. Many special configurations

were studied and proved to be optimal in the past but it was not until 2007 that Cohn and

Kumar([2]) proved that any sharp configuration is universally optimal on the unit sphere
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Sd−1. Here a finite subset of Sd−1 is a sharp configuration if there are m inner products

between distinct points in it and it is a spherical (2m−1)-design. Recall that a finite subset

ωN of N points on Sd−1 is a spherical M-design if every polynomial of degree up to M has

the same average over the subset as over Sd−1;

∫
Sd−1

p(x)dσ(x) =
1
M ∑

x∈ωN

p(x),

where σ denotes normalized surface area measure on Sd−1. Sharp configurations have been

well-studied in coding theory (cf. [3]) and Cohn and Kumar’s result shows that a large class

of important configurations are universally optimal on Sd−1.

What if these points are not confined in a compact set but in Rd? If the interaction

potential is strictly decreasing to 0, then all the points will simply go to infinity and the

potential energy is 0. To make sense of this problem we need to add some constraints

about the density of the points. They are required to be distributed in a uniform way. In

nature there is a structure called the crystal structure. One can think of it as an array of

boxes infinitely repeating in all directions, and the structure of the box is repeated as well.

Therefore a crystal structure is determined by the shape of the box and the structure inside

the box. In mathematics such a configuration is called a periodic configuration. For a d×d

nonsingular matrix A, let Λ := AZd denote the lattice generated by A. The parallelotope

ΩΛ := A[0,1)d is a fundamental domain for Rd/Λ. The volume of ΩΛ equals |detA| and

is called the co-volume of Λ. Let ωN = {x j}N
j=1 be an N-point configuration in Rd such

that x j− xk /∈ Λ for any j 6= k. Then ωN +Λ is called an N-point Λ-periodic configuration

generated by ωN .

For a periodic configuration ωN +Λ and a potential function f , we consider the f -

energy of ωN +Λ

Ecp
f ,Λ(ωN) = ∑

j 6=k
∑
v∈Λ

f (|x j− xk + v|2), (1.5)
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and the N-point minimal energy

E cp
f ,Λ(N) = inf

ωN∈(Rd)N
Ecp

f ,Λ(ωN).

For a Riesz s-potential where s > d, (1.5) can be written as

Ecp
s,Λ(ωN) = ∑

j 6=k
ζΛ(s;x j− xk),

where

ζΛ(s;x) := ∑
v∈Λ

1
|x+ v|s

, s > d,x ∈ Rd.

ζΛ(s;x) is called the Epstein Hurwitz zeta function for the lattice Λ and can be analytically

continued to C\d. Notice that ζΛ(s;x) is Λ-periodic, that is, ζΛ(s;x+ v) = ζΛ(s;x) for all

v ∈ Λ. More generally, for a Λ-periodic potential F : Rd → R∪{+∞}, we consider the

F-energy of an N-tuple ωN = (x1, . . . ,xN) ∈ (Rd)N

EF(ωN) := ∑
j 6=k

F(x j− xk), (1.6)

and the N-point minimal F-energy

EF(N) := inf
ωN∈(Rd)N

EF(ωN). (1.7)

Unlike the sphere case, not much is known about optimal configurations in Rd . In 1986,

Montgomery proved (cf. [4]) that the hexagonal lattice A2 is universally optimal among all

lattice configurations; i.e.,

ζA2(s)< ζΛ(s),

for each s > 0 and each lattice Λ ⊂ R2 of co-volume 1 not equal to A2. In 2007, Cohn
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and Kumar studied the one dimensional case of this problem and proved that any equally

spaced configuration is universally optimal among periodic configurations in R1(cf. [2]).

They also conjectured that the A2 hexagonal lattice in R2, the E8 root lattice in R8, and the

Leech lattice in R24 are universally optimal. Coulangeon and Schurmann then proved (cf.

[5]) that A2, D4, E8 and the Leech lattice are locally universally optimal among periodic

configurations. In chapter 4 we provide a new proof for the 1-dimensional case where we

derive some nice properties about the classical theta function. We also study the cases

for N = 2,3 where the associated lattice Λ is the hexagonal lattice and prove the desired

configurations are universally optimal. Specifically, we will prove the following theorem

Theorem 4.2.2. Let the potential function f : [0,∞)→ R∪{∞} be completely monotonic

on (0,∞) with f (0) = lim
x→0+

f (x) and satisfies f (x) =O(|x|− 1
2−ε) for some ε > 0 as |x|→∞.

Let u1 = [1,0]T , u2 = [1
2 ,
√

3
2 ]T , and P = 1

3(u1 +u2) = [1
2 ,
√

3
6 ]T , Q = 2

3(u1 +u2) = [1,
√

3
3 ]T .

Consider the f-energy of ωN associated to the lattice Ã2 := [u1,u2]Z2 = (
√

3
2 )

1
2 A2.

(1) For N = 2, let ω∗2 = {0,P} or {0,Q} up to translations. Then for any 2-point config-

uration ω2 ∈ (R2)2,

Ecp
f ,Ã2

(ω2)≥ Ecp
f ,Ã2

(ω∗2 ).

(2) For N = 3, let ω∗3 = {0,P,Q} up to translations. Then for any 3-point configuration

ω3 ∈ (R2)3,

Ecp
f ,Ã2

(ω3)≥ Ecp
f ,Ã2

(ω∗3 ).

Another open problem concerns the asymptotic behaviour of minimal energy for Riesz

s-potentials and logarithmic potential in Rd . We would like to obtain a series expansion

of minimal energy in terms of N as N approaches infinity. For the compact case, where

we have N points confined in some nice d-Hausdorff dimensional compact space Ω, it is
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known that the minimal energy Es(Ω,N) has the following asymptotic expansion:

Es(Ω,N) =
Cs,d

Hd(Ω)
s
d
·N1+ s

d +o
(

N1+ s
d

)
, s > d,

Es(Ω,N) =Ws(Ω)N2 +o
(
N2) , 0 < s < d or s = log .

where Ws(Ω) is the Wiener constant of Ω with respect to the Riesz s-potential and the loga-

rithmic potential. We know that Ws(Ω) is determined by any weak* limit of the normalized

counting measure generated by the optimal N-point configurations as N→∞. And it seems

that it is the next order term in the asymptotic expansion that really reflects the local struc-

ture of the N-point optimal configurations as N→ ∞. In the paper [6] the next order term

for the d-dimensional sphere case was surveyed and was conjectured to be of order N1+ s
d

for s < d.

We would like to investigate this problem for any periodic configuration in Rd with

s < d or s = log. Notice that the sum in (1.5) does not converge in this case. It is suggested

that (cf. [7]) the new periodic potential Fs,Λ(x) and Flog,Λ(x) should be considered where

Fs,Λ(x) := ∑
v∈Λ

∫
∞

1
e−|x+v|2t t

s
2−1

Γ( s
2)

dt +
1
|Λ| ∑

w∈Λ∗\{0}
e2πiw·x

∫ 1

0

π
d
2

t
d
2

e−
π2|w|2

t
t

s
2−1

Γ( s
2)

dt, s > 0,

and

Flog,Λ(x) := ∑
v∈Λ

∫
∞

1
e−|x+v|2t dt

t
+

1
|Λ| ∑

w∈Λ∗\{0}
e2πiw·x

∫ 1

0

π
d
2

t
d
2

e−
π2|w|2

t
dt
t
.

As discussed in Section 2.1, it turns out that Fs,Λ(x) is an entire function of s satisfying

Fs,Λ(x) = ζΛ(s;x)+
2π

d
2 |Λ|−1

Γ( s
2)(d− s)

,

for s > d and, hence, provides an analytic continuation of ζΛ(s;x) for s ∈ C\{d}. Denote

the respective periodic energy of ωN and the minimal N-point periodic energy by Es,Λ(ωN),

Elog,Λ(ωN), Es,Λ(N) and Elog,Λ(N). Our main result is that

6



Theorem 2.2.1. Let Λ be a lattice in Rd with co-volume |Λ|> 0. Then, as N→ ∞,

Es,Λ(N) =
2π

d
2 |Λ|−1

Γ( s
2)(d− s)

N2 +Cs,d|Λ|−s/dN1+ s
d +o(N1+ s

d ), 0 < s < d, (2.20)

Elog,Λ(N) =
2π

d
2 |Λ|−1

d
N(N−1)− 2

d
N logN +

(
Clog,d−2ζ

′
Λ(0)

)
N +o(N). (2.21)

where Clog,d and Cs,d are constants independent of Λ.

The second topic of this thesis focuses on the maximal polarization problem. Given a

compact set Ω and a potential function f , any n-point configuration ωN will generate some

f -potential at each point x in Ω.

U f (ωN ;x) :=
N

∑
k=1

f (|x− xk|2). (1.8)

The minimal potential in Ω

M f (ωN ;Ω) := min
x∈Ω

U f (ωN ;x), (1.9)

is called the f -polarization of ωN . The maximal polarization problem requires maximizing

this quantity among all N-point configurations in Ω. An N-point configuration is called

optimal for the N-point maximal polarization problem if it attains this maximum. The

reason this problem is important is that it is considered to be a generalization of the minimal

covering problem, that is, minimizing the radius of N balls centered in Ω that cover the set

Ω.

Not much is known about optimal configurations for the maximal polarization prob-

lem. For example, finding a (d+1)-point optimal configuration in Sd−1 for the polarization

problem remains open for d ≥ 4. The case when Ω = S1 is investigated in [8] and as a par-

ticular consequence any equally spaced configuration on S1 is optimal for Riesz potentials.

In this dissertation we are concerned with the case where Ω = S2 and n = 4 and we will

7



prove

Theorem 3.2.1. Let f : [0,4]→ [0,∞] be non-increasing and strictly convex with f (0) =

lim
x→0+

f (x). Then ω4 is optimal for the 4-point maximal polarization problem on S2, i.e.,

M f (ω4;S2) = M f
4 (S

2), if and only if ω4 = ωT up to rotations, where ωT is a configuration

that consists of vertices of a regular tetrahedron.

We also conjecture that the vertices of any regular d-simplex is optimal for the maximal

polarization problem on Sd−1 for a large class of potentials.

8



Chapter 2

Second order asymptotics for long-range Riesz potentials on flat tori

2.1 Preliminaries

Let A= [v1, . . . ,vd] be a d×d nonsingular matrix with j-th column v j and let Λ=ΛA :=

AZd denote the lattice generated by A. The set

Ω = ΩΛ :=

{
w : w =

d

∑
j=1

α jv j, α j ∈ [0,1), j = 1,2, . . . ,d

}
.

is a fundamental domain of the quotient space Rd/Λ; i.e., the collection of sets {Ω+v : v∈

Λ} tiles Rd . The volume of ΩΛ, denoted by |Λ|, equals |detA| and is called the co-volume

of Λ (in fact, any measurable fundamental domain of Λ has the same volume). We will let

Λ∗ denote the the dual lattice of Λ which is the lattice generated by (AT )−1.

For an interaction potential F : Rd → R∪{+∞}, we consider the F-energy of an N-

tuple ωN = (x1, . . . ,xN) ∈ (Rd)N

EF(ωN) :=
N

∑
k=1

N

∑
j=1
j 6=k

F(xk− x j), (2.1)

and for a subset A⊂ Rd , we consider the N-point minimal F-energy

EF(A,N) := inf
ωN∈AN

EF(ωN). (2.2)

In this chapter we are mostly concerned with Λ-periodic potentials F , that is, F(x+v)=

F(x) for all v ∈ Λ. For such an F , the energy EF(ωN) = EF(x1, . . . ,xN) is Λ-periodic in

each component xk and so, without loss of generality, we may assume that ωN ∈ (ΩΛ)
N ;

i.e., EF(Rd,N) = EF(ΩΛ,N). Specifically, we consider periodized Riesz potentials and

9



periodized logarithmic potentials and A=Rd (or, equivalently A=ΩΛ) as we next describe.

For s > d, we consider the periodic potential generated by the Riesz s-potential as

follows

ζΛ(s;x) := ∑
v∈Λ

1
|x+ v|s

, s > d,x ∈ Rd \Λ, (2.3)

which, as shown in Lemma 2.1.1, is finite for x 6∈ Λ and equals +∞ when x ∈ Λ, see

Section 2.3 for further properties of ζΛ(s;x). Then ζΛ(s;x− y) can be considered to be the

energy required to place a unit charge at location x ∈ Rd in the presence of unit charges

placed at y+Λ = {y+ v : v ∈ Λ} with charges interacting through the Riesz s-potential.

For s ≤ d, the sum on the right side of (2.3) is infinite for all x ∈ Rd . In [7], Λ-periodic

energy problems for a class of long range potentials are considered and it is shown that for

the case of the Riesz potential with s≤ d, the appropriate energy problem can be obtained

through analytic continuation. Specifically, we define

Fs,Λ(x) := ∑
v∈Λ

∫
∞

1
e−|x+v|2t t

s
2−1

Γ( s
2)

dt +
1
|Λ| ∑

w∈Λ∗\{0}
e2πiw·x

∫ 1

0

π
d
2

t
d
2

e−
π2|w|2

t
t

s
2−1

Γ( s
2)

dt, (2.4)

and, in the following lemma, verify basic analytic properties of Fs,Λ.

Lemma 2.1.1. Fs,Λ(x) is finite for x ∈ Rd \Λ. Furthermore, for fixed x ∈ Rd \Λ, Fs,Λ(x) is

an entire function of s satisfying

Fs,Λ(x) = ζΛ(s;x)+
2π

d
2 |Λ|−1

Γ( s
2)(d− s)

. s > d, (2.5)

Proof. Let x ∈ Rd \Λ and choose δ such that 0 < δ < |x+ v|2 for all v ∈ Λ. Consider the

integrand

∫
∞

1
∑
v∈Λ

e−|x+v|2t t
s
2−1

Γ( s
2)

dt =
∫

∞

1
∑
v∈Λ

e−(|x+v|2−δ )t e−δ tt
s
2−1

Γ( s
2)

dt.

The sum ∑v∈Λ e−(|x+v|2−δ )t is bounded on [1,∞) since it is finite at t = 1 and decreasing

10



on [1,∞). Therefore the above integrand is finite and it follows from Tonelli’s theorem that

the first sum in (2.4) is finite. For the second sum in (2.4) let w0 be an element in Λ∗ \{0}

with minimal length. Consider the integrand

∫ 1

0
∑

w∈Λ∗\{0}
e−

π2|w|2
t

t
s−d

2 −1

Γ( s
2)

dt =
∫ 1

0
∑

w∈Λ∗\{0}
e−

π2(|w|2−|w0|
2)

t
e−

π2|w0|
2

t t
s−d

2 −1

Γ( s
2)

dt.

The sum ∑w∈Λ∗\{0} e−
π2(|w|2−|w0|

2)
t is bounded on (0,1] since it is finite at t = 1 and increasing

on (0,1]. Therefore the above integrand is finite and it follows from Tonelli’s theorem that

the second sum in (2.4) converges absolutely. Notice that 1
Γ( s

2 )
is an entire function and

thus each term in both sums in (2.4) is an entire function of s. The uniform convergence of

the sums for s in any compact subset of C then implies that Fs,Λ(x) is an entire function of

s. For s > d, using (1.4) and the Poisson summation formula (see appendix B) we get

ζΛ(s;x) = ∑
v∈Λ

∫
∞

0
e−|x+v|2t t

s
2−1

Γ( s
2)

dt = ∑
v∈Λ

∫
∞

1
e−|x+v|2t t

s
2−1

Γ( s
2)

dt + ∑
v∈Λ

∫ 1

0
e−|x+v|2t t

s
2−1

Γ( s
2)

dt

= ∑
v∈Λ

∫
∞

1
e−|x+v|2t t

s
2−1

Γ( s
2)

dt +
1
|Λ| ∑

w∈Λ∗
e2πiw·x

∫ 1

0

π
d
2

t
d
2

e−
π2|w|2

t
t

s
2−1

Γ( s
2)

dt

= ∑
v∈Λ

∫
∞

1
e−|x+v|2t t

s
2−1

Γ( s
2)

dt +
1
|Λ| ∑

w∈Λ∗\{0}
e2πiw·x

∫ 1

0

π
d
2

t
d
2

e−
π2|w|2

t
t

s
2−1

Γ( s
2)

dt

+
1
|Λ|

∫ 1

0

π
d
2 t

s−d
2 −1

Γ( s
2)

dt

= Fs,Λ(x)−
2π

d
2 |Λ|−1

Γ( s
2)(d− s)

Lemma 2.1.1 shows that (2.4) provides an analytic continuation of ζΛ(·;x) to C \ {d}

(note that ζΛ(s;x) has a simple pole at s = d for x 6∈ Λ). We refer to (the analytically

extended) ζΛ(s;x) as the Epstein Hurwitz zeta function for the lattice Λ. We shall also need
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the Epstein zeta function defined for s > d by

ζΛ(s) := ∑
v∈Λ\{0}

1
|v|s

. (2.6)

Using a similar argument and calculation as in the proof of Lemma 2.1.1, we can prove the

following lemma:

Lemma 2.1.2 (cf. [9]). The Epstein zeta function ζΛ(s) can be analytically continued to

C\{d} through the following formula :

ζΛ(s) =
2

Γ( s
2)

(
2π

d
2 |Λ|−1

s−d
− 1

s

)
+ ∑

v∈Λ\{0}

∫
∞

1
e−|v|

2t t
s
2−1

Γ( s
2)

dt

+
1
|Λ| ∑

w∈Λ∗\{0}

∫ 1

0

π
d
2

t
d
2

e−
π2|w|2

t
t

s
2−1

Γ( s
2)

dt.

Remark 2.1.3. From lim
s→0+

Γ( s
2) = ∞ and lim

s→0+
s
2Γ( s

2) = lim
s→0+

Γ( s
2 +1) = Γ(1) = 1, it fol-

lows that ζΛ(0) =−1 and ζΛ(0;x)≡ 0 for any lattice Λ.

In [7], analytic continuation and periodized Riesz potentials are connected through the

use of convergence factors; i.e., a parametrized family of functions ga : Rd → [0,∞) such

that

(a) for a > 0, fs(x)ga(x) decays sufficiently rapidly as |x| → ∞ so that

Fs,a,Λ(x) := ∑
v∈Λ

fs(x+ v)ga(x+ v)

converges to a finite value for all x 6∈ Λ, and

(b) lima→0+ ga(x) = 1 for all x ∈ Rd \{0}.

For example, the family of Gaussians ga(x) = e−a|x|2 is a convergence factor for Riesz

potentials. In [7], it is shown that for a large class of convergence factors {ga}a>0 (including
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the Gaussian convergence family) one may choose Ca (depending on the convergence factor

{ga}a>0) such that

Fs,Λ(x) = lim
a→0+

(
Fs,a,Λ(x)−Ca

)
. (2.7)

Then, for a> 0, Fs,a,Λ(x−y) represents the energy required to place a unit charge at location

x in the presence of unit charges placed at y+Λ = {y+ v : v ∈ Λ} with charges interacting

through the potential fs(x)ga(x). This leads us to consider, for s > 0, the periodic Riesz

s-energy of ωN associated with the lattice Λ defined by

Es,Λ(ωN) := ∑
1≤k, j≤N

k 6= j

Fs,Λ(xk− x j), (2.8)

as well as the minimal N-point periodic Riesz s-energy

Es,Λ(N) := EFs,Λ(R
d;N) = inf

ωN∈(Rd)N
Es,Λ(ωN). (2.9)

We shall also consider the periodic logarithmic potential associated with Λ generat-

ed from the logarithmic potential using convergence factors as above and resulting in the

definition

Flog,Λ(x) := ∑
v∈Λ

∫
∞

1
e−|x+v|2t dt

t
+

1
|Λ| ∑

w∈Λ∗\{0}
e2πiw·x

∫ 1

0

π
d
2

t
d
2

e−
π2|w|2

t
dt
t
. (2.10)

Comparing (2.10) and (2.4), it is not difficult to obtain (cf. [7]) the relations

Flog,Λ(x) = lim
s→0

Γ

( s
2

)
Fs,Λ(x) = 2

(
d
ds

Fs,Λ(x)
)∣∣∣∣

s=0
= 2ζ

′
Λ(0;x)+

2πd/2|Λ|−1

d
, (2.11)

where the prime denotes differentiation with respect to the variable s. We then define the

13



periodic logarithmic energy of ωN = (x1, . . . ,xN),

Elog,Λ(ωN) := ∑
1≤k, j≤N

k 6= j

Flog,Λ(x j− xk), (2.12)

and also the N-point minimal periodic logarithmic energy for Λ,

Elog,Λ(N) := inf
ωN∈(Rd)N

Elog,Λ(ωN). (2.13)

For 0 < s < d, the kernel Ks,Λ(x,y) := Fs,Λ(x− y) is positive definite and integrable on

ΩΛ×ΩΛ and so there is a unique probability measure µs (called the Riesz s-equilibrium

measure) that minimizes the continuous Riesz s-energy

Is,Λ(µ) :=
∫∫

ΩΛ×ΩΛ

Ks,Λ(x,y)dµ(x)dµ(y)

over all Borel probability measures µ on ΩΛ. From the periodicity of Fs,Λ and the u-

niqueness of the equilibrium measure, it follows that µs = λd where λd denotes Lebesgue

measure restricted to ΩΛ and normalized so that λd(ΩΛ) = 1; i.e., λd is the normalized

Haar measure for ΩΛ =Rd/Λ. The periodic logarithmic kernel Klog,Λ(x,y) := Flog,Λ(x−y)

is conditionally positive definite and integrable and it similarly follows that λd is the unique

equilibrium measure minimizing the periodic logarithmic energy

Ilog,Λ(µ) :=
∫∫

ΩΛ×ΩΛ

Klog,Λ(x,y)dµ(x)dµ(y)

over all Borel probability measures µ on ΩΛ.

lt is not difficult to verify (cf. [7]) that

∫
ΩΛ

ζΛ(s;x) dλd(x) = 0, 0 < s < d, (2.14)
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and ∫
ΩΛ

ζ
′
Λ(0;x) dλd(x) = 0, (2.15)

from which we obtain

Is,Λ(λd) =
2π

d
2 |Λ|−1

Γ( s
2)(d− s)

, 0 < s < d, (2.16)

and

Ilog,Λ(λd) =
2πd/2|Λ|−1

d
. (2.17)

It then follows (cf. [10]) that

lim
N→∞

Es,Λ(N)

N2 =
2π

d
2 |Λ|−1

Γ( s
2)(d− s)

, 0 < s < d, (2.18)

and

lim
N→∞

Elog,Λ(N)

N2 =
2πd/2|Λ|−1

d
. (2.19)

2.2 Main Results

Our main result is the following asymptotic expansion of the periodic Riesz and loga-

rithmic minimal energy as N→ ∞.

Theorem 2.2.1. Let Λ be a lattice in Rd with co-volume |Λ|> 0. Then, as N→ ∞,

Es,Λ(N) =
2π

d
2 |Λ|−1

Γ( s
2)(d− s)

N2 +Cs,d|Λ|−s/dN1+ s
d +o(N1+ s

d ), 0 < s < d, (2.20)

Elog,Λ(N) =
2π

d
2 |Λ|−1

d
N(N−1)− 2

d
N logN +

(
Clog,d−2ζ

′
Λ(0)

)
N +o(N). (2.21)

where Clog,d and Cs,d are constants independent of Λ.

Petrache and Serfaty establish in [11] a result closely related to (2.20) for point config-

urations interacting through a Riesz s potential and confined by an external field for values
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of the Riesz parameter d−2≤ s≤ d and Sandier and Serfaty prove in [12] a result closely

related to (2.21) for the case that s = log and d = 2.

For comparison, when s ≥ d it is known that the leading order term of Es,Λ(N) is the

same as that of Es(ΩΛ,N) := E fs(ΩΛ,N).

Theorem 2.2.2 ([13], [7]). Let Λ be a lattice in Rd with co-volume |Λ| > 0. For s > d,

there is a positive and finite constant Cs,d such that

lim
N→∞

Es,Λ(N)

N1+s/d
= lim

N→∞

Es(ΩΛ;N)

N1+s/d
=Cs,d|Λ|−s/d, s > d, (2.22)

lim
N→∞

Ed,Λ(N)

N2 logN
= lim

N→∞

Ed(ΩΛ,N)

N2 logN
=

2πd/2

dΓ(d
2 )|Λ|

, . (2.23)

By considering scaled lattice configurations (see Lemma 2.3.2) of the form ωΛ

md :=

(1/m)Λ∩ΩΛ for a lattice Λ of co-volume 1, we obtain the following upper bound for Cs,d

that holds both for 0 < s < d and s = log where Cs,d is as in Theorem 2.2.1 as well as for

s > d where Cs,d is as in Theorem 2.2.1.

Corollary 2.2.3. Let Λ be a d-dimensional lattice with co-volume 1. Then,

Cs,d ≤


ζΛ(s), s > 0,s 6= d,

2ζ ′
Λ
(0), s = log .

(2.24)

The constant Cs,d for s > d appearing in (2.22) is known only in the case d = 1 where

Cs,1 = ζZ(s) = 2ζ (s) and ζ (s) denotes the classical Riemann zeta function. For dimensions

d = 2,4,8, and 24, it has been conjectured (cf. [2, 6] and references therein) that Cs,d

for s > d is also given by an Epstein zeta function, specifically, that Cs,d = ζΛd(s) for

Λd denoting the equilateral triangular (or hexagonal) lattice, the D4 lattice, the E8 lattice,

and the Leech lattice (all scaled to have co-volume 1) in the dimensions d = 2,4,8, and

24, respectively. In [5], it is shown that periodized lattice configurations for these special

lattices are local minima of the energy for a large class of energy potentials that includes
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periodic Riesz s-energy potentials for s > d.

2.3 The Epstein Hurwitz Zeta Function

In this section, we will review some relevant terminology and notation involving some

special functions that will be crucial for our analysis in Section 2.4. We begin with the

following observation.

Lemma 2.3.1. Let Λ be a sublattice of Λ′. Then for any s ∈ C\{d}, it holds that

∑
x∈Λ′∩ΩΛ\{0}

ζΛ(s;x) = ζΛ(s)−ζΛ′(s). (2.25)

Proof. It is sufficient to prove that (2.25) holds for s > d, since the general result follows

from the fact that both sides of this relation are analytic on C\{d}. For s > d, we have by

definition

ζΛ′(s) = ∑
x∈Λ′\{0}

1
|x|s

= ∑
x∈Λ′∩ΩΛ\{0}

∑
v∈Λ

1
|x+ v|s

+ ∑
v∈Λ\{0}

1
|v|s

= ∑
x∈Λ′∩ΩΛ\{0}

ζΛ(s;x)+ζΛ(s),

thus proving the lemma.

Using the above lemma and scaling properties of Epstein zeta functions we obtain the

following:

Lemma 2.3.2. For every m ∈ N and s ∈ C\{d}, it holds that

∑
x∈ 1

m Λ∩ΩΛ\{0}
ζΛ(s;x) = (ms−1)ζΛ(s). (2.26)
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Therefore,

∑
x,y∈ 1

m Λ∩ΩΛ

x 6=y

ζΛ(s;x− y) = md(ms−1)ζΛ(s). (2.27)

Proof. As in the proof of Lemma 2.3.2, we will prove the desired identities when s > d and

then rely on the uniqueness of the analytic continuation to obtain the desired conclusion for

all s 6= d. The first equality of the lemma is an immediate consequence of the infinite series

definition of ζΛ(s;q). To prove the second equality, notice that every v∈Λ can be expressed

uniquely as r− t + u for some t ∈ Λ∩ΩΛ′ and u ∈ Λ′. The desired equality now follows

from the infinite sum (2.3) when s > d.

We will also require the following lemmas, which establish continuity properties of the

Epstein Hurwitz Zeta function with respect to the lattice.

Lemma 2.3.3. Let {Pm}m∈N be a sequence of d× d matrices such that Pm → P in norm

as m→ ∞. Fix any distinct x and y in ΩΛ and suppose {xm}m∈N and {ym}m∈N are se-

quences in ΩΛ converging to x and y, respectively. Then for any compact set K ⊂ C\{d},

ζPmΛ(s;Pm(xm− ym)) converges to ζPΛ(s;P(x− y)) uniformly for s in K as m→ ∞.

Proof. Let R = sups∈K Re(s) and r = infs∈K Re(s). Notice that sups∈K |1/Γ( s
2)| is finite
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since 1/Γ( s
2) is entire. Let m be large enough so that xm− ym 6∈ Λ. Using (2.4), we have

|ζPmΛ(s;Pm(xm− ym))−ζPΛ(s;P(x− y))|

= |Fs,PmΛ(Pmxm−Pmym)−Fs,PΛ(Px−Py)|

≤
∫

∞

1
∑
v∈Λ

∣∣∣e−|Pm(xm−ym+v)|2t− e−|P(x−y+v)|2t
∣∣∣ |t s

2−1|
|Γ( s

2)|
dt

+
∫ 1

0
∑

w∈Λ∗\{0}

∣∣∣∣e2πiw·(xm−ym)e−
π2|(P−1

m )T w|2
t − e2πiw·(x−y)e−

π2|(P−1)T w|2
t

∣∣∣∣ π
d
2 |t s−d

2 −1|
|Γ( s

2)|
dt

≤
∫

∞

1
∑
v∈Λ

∣∣∣e−|Pm(xm−ym+v)|2t− e−|P(x−y+v)|2t
∣∣∣ t

R
2−1

infs∈K |Γ( s
2)|

dt

+
∫ 1

0
∑

w∈Λ∗\{0}

∣∣∣∣e2πiw·(xm−ym)e−
π2|(P−1

m )T w|2
t − e2πiw·(x−y)e−

π2|(P−1)T w|2
t

∣∣∣∣ π
d
2 t

r−d
2 −1

infs∈K |Γ( s
2)|

dt.

(2.28)

As in [7], it is elementary to establish that integrals of the form

∫
∞

1
∑
v∈Λ

e−|P(x−y+v)|2tt
R
2−1dt and

∫ 1

0
∑

w∈Λ∗\{0}
e−

π2|(P−1)T w|2
t π

d
2 t

r−d
2 −1dt

are finite and thus, by dominated convergence, it follows that the expressions in (2.28) tend

to zero as m→ ∞.

We remark that the proof of Lemma 2.3.3 shows that Fs,PmΛ(Pmxm−Pmym) converges

to Fs,PΛ(Px−Py) as m→ ∞ uniformly for s in any compact set of C.

Corollary 2.3.4. Let {Pm}m∈N be a sequence of d×d matrices such that Pm→ P in norm

as m→ ∞ and suppose s > 0. Then, for all N ≥ 2, we have Es,PmΛ(N)→ Es,PΛ(N) as

m→ ∞.

Proof. Let ω∗N ⊂ΩΛ be such that Pω∗N is an Es,PΛ optimal N-point configuration. Then,

limsup
m→∞

Es,PmΛ(N)≤ limsup
m→∞

Es,PmΛ(Pmω
∗
N) = Es,PΛ(Pω

∗
N) = Es,PΛ(N),
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where the next to last equality follows from Lemma 2.3.3.

Next let ωm
N = {xm

1 , . . . ,x
m
N} ⊂ ΩΛ be such that Pmωm

N is an optimal N-point configura-

tion for Fs,PmΛ. Let {ωmk
N }k∈N be a subsequence such that

lim
k→∞

Es,Pmk Λ(Pmkω
mk
N ) = liminf

m→∞
Es,PmΛ(N).

Using the compactness of ΩΛ in the ‘flat torus’ topology, we may assume without loss of

generality that {ωmk
N }k∈N converges to some N-point configuration ω̃N = {x̃1, . . . , x̃N}; i.e.,

xmk
j → x̃ j as k→ ∞ for each j = 1, . . . ,N. Then we have

liminf
m→∞

Es,PmΛ(N) = lim
k→∞

Es,Pmk Λ(Pmkω
mk
N ) = Es,PΛ(Pω̃N)≥ Es,PΛ(N),

where the next to last equality follows from Lemma 2.3.3.

Finally, the following result expresses continuity properties of the Epstein zeta function

with respect to the lattice similar to the results in Lemma 2.3.3 for the Epstein Hurwitz zeta

function.

Lemma 2.3.5. Let {Pm}m∈N be a sequence of d×d matrices such that Pm→ P in norm as

m→ ∞. Then for any compact set K ⊂ C\{d}, ζPmΛ(s) converges to ζPΛ(s) uniformly in

K and hence ζ ′PmΛ
(s)→ ζ ′PΛ

(s) for all s ∈ C\{d} as m→ ∞.

Proof. Using Lemma 2.1.2, a similar argument as in the proof of Lemma 2.3.3 implies that

ζPmΛ(s) converges uniformly to ζPΛ(s) on compact sets K ⊂ C\{d}. The convergence of

the derivatives then follows from Cauchy’s integral formula for derivatives.

2.4 Proof of Theorem 2.2.1

Throughout this section and the next we shall assume that Λ = AZd denotes a d-

dimensional lattice in Rd with fundamental domain Ω = ΩΛ, co-volume 1, and gener-

ating matrix A. Then Theorem 2.2.1 follows from a simple rescaling. We shall find it
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convenient to use what we call the classical periodic Riesz s-potential Fcp
s,Λ(x) := ζΛ(s;x)

which, for s 6= d, differs from Fs,Λ only by the constant 2π
d
2

Γ( s
2 )(d−s) . Similarly, we call

Fcp
log,Λ(x) := 2ζ ′

Λ
(0;x) the classical periodic logarithmic potential. The energies associated

with these potentials are given by

Ecp
s,Λ(ωN) := ∑

j 6=k
ζΛ(s;x j− xk), (s > 0), (2.29)

and, similarly,

Ecp
log,Λ(ωN) := 2 ∑

j 6=k
ζ
′
Λ(0;x j− xk), (2.30)

and we denote the respective minimal N-point energies by E cp
s,Λ(N) and E cp

log,Λ(N).

From (2.5), we obtain

Es,Λ(N) = E cp
s,Λ(N)+

2π
d
2

Γ( s
2)(d− s)

N(N−1), (2.31)

and

Elog,Λ(N) = E cp
log,Λ(N)+

2π
d
2

d
N(N−1), (2.32)

Define

gs,d(Λ) := liminf
N→∞

E cp
s,Λ(N)

N1+s/d
,

gs,d(Λ) := limsup
N→∞

E cp
s,Λ(N)

N1+s/d
,

glog,d(Λ) := liminf
N→∞

E cp
log,Λ(N)+ 2

d N logN

N
,

glog,d(Λ) := limsup
N→∞

E cp
log,Λ(N)+ 2

d N logN

N
.

Our use of these quantities is motivated by the proof of the main results in [13], and indeed

the general strategy of our proofs is similar to that of [13]. More precisely, we shall prove

gs,d(Λ) = gs,d(Λ) and glog,d(Λ) = glog,d(Λ) and that these limits are finite. We first need
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estimates on quantities appearing in (2.4) and (2.10).

Lemma 2.4.1. Let s > 0 and Λ be a d-dimensional lattice with co-volume 1 and l0 :=

min
06=v∈Λ

{|v|}. The following relations hold.

∑
w∈Λ∗

e−
π2|w|2

t t−
d
2 = π

− d
2 +O(e−l2

0t), as t→ ∞, (2.33)

∑
w∈Λ∗

∫ 1
δ

1
e−

π2|w|2
t t

s−d
2 −1dt =

2π−
d
2

s
δ
− s

2 +O(1), as δ → 0+, (2.34)

∑
w∈Λ∗

∫ 1
δ

1
e−

π2|w|2
t t−

d
2−1dt = π

− d
2 logδ

−1 +O(1), as δ → 0+ (2.35)

Proof. Applying Poisson Summation, we obtain

∑
w∈Λ∗

e−
π2|w|2

t t−
d
2 = π

−d/2
∑
v∈Λ

e−|v|
2t = π

−d/2 +π
−d/2e−l2

0t
∑

v∈Λ\{0}
e−(|v|

2−l2
0)t

= π
−d/2 +O(e−l2

0t),

proving (2.33). Hence, there exists a constant C1 such that

∣∣∣∣∣ ∑
w∈Λ∗

e−
π2|w|2

t t−
d
2 −π

− d
2

∣∣∣∣∣≤C1e−l2
0t ,

and so, multiplying both sides of the above by t
s
2−1, we have

∣∣∣∣∣ ∑
w∈Λ∗

e−
π2|w|2

t t
s−d

2 −1−π
− d

2 t
s
2−1

∣∣∣∣∣≤C1t
s
2−1e−l2

0t

and so ∣∣∣∣∣
∫ 1

δ

1

(
∑

w∈Λ∗
e−

π2|w|2
t t

s−d
2 −1−π

− d
2 t

s
2−1

)
dt

∣∣∣∣∣≤
∫ 1

δ

1
C1t

s
2−1e−l2

0tdt

≤
∫

∞

1
C1t

s
2−1e−l2

0tdt =: C2(s).

(2.36)
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Therefore,

∣∣∣∣∣ ∑
w∈Λ∗

∫ 1
δ

1
e−

π2|w|2
t t

s−d
2 −1dt− 2π−

d
2

s
(δ−

s
2 −1)

∣∣∣∣∣≤C2(s), s > 0

proving (2.34), while substituting s = 0 into (2.36) yields

∣∣∣∣∣ ∑
w∈Λ∗

∫ 1
δ

1
e−

π2|w|2
t t−

d
2−1dt−π

− d
2 logδ

−1

∣∣∣∣∣≤C2(0), s = 0.

proving (2.35).

The following lemma is the key calculation that allows us to apply the method of [13].

Once we have established this lemma, the only remaining technical difficulty will be to

establish the fact that the constants Cs,d and Clog,d are independent of the lattice Λ.

Lemma 2.4.2. With Λ as in Lemma 2.4.1 and s > 0, the following inequalities hold:

−∞ < gs,d(Λ)≤ gs,d(Λ)≤ ζΛ(s)< ∞,

−∞ < glog,d(Λ)≤ glog,d(Λ)≤ 0.

Proof. Let us first consider the case s > 0. For any configuration ωN = (x j)
N
j=1 in ΩΛ and

any δ ∈ (0,1],

Es,Λ(ωN) = ∑
j 6=k

Ks,Λ(x j,xk) =: I1 + I2.

where

I1 = ∑
j 6=k

∑
v∈Λ

∫
∞

1
e−|x j−xk+v|2t t

s
2−1

Γ( s
2)

dt,

I2 = ∑
j 6=k

∑
w∈Λ∗\{0}

e2πiw·(x j−xk)
∫ 1

0

π
d
2

t
d
2

e−
π2|w|2

t
t

s
2−1

Γ( s
2)

dt.
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Let

hδ (x) :=
∫ 1

δ

1
e−|x|

2t t
s
2−1

Γ( s
2)

dt.

then

ĥδ (ξ ) =
∫ 1

δ

1

(
π

t

) d
2

e−
π2|ξ |2

t
t

s
2−1

Γ( s
2)

dt ≥ 0, ĥδ (0) =
2π

d
2

Γ( s
2)(d− s)

(
1−δ

d−s
2

)
.

Notice that since the upper limit of the integral defining hδ is finite, it is easy to verify

that hδ satisfies the hypotheses of Poisson Summation. Applying it gives us the following

inequalities:

I1 ≥ ∑
j 6=k

∑
v∈Λ

hδ (x j− xk + v)

= ∑
j 6=k

∑
w∈Λ∗

ĥδ (w)e
2πiw·(x j−xk)

= ∑
w∈Λ∗

ĥδ (w)

(
∑
j,k

e2πiw·(x j−xk)−N

)

= ∑
w∈Λ∗

ĥδ (w)

∣∣∣∣∣∑j
e2πiw·x j

∣∣∣∣∣
2

−N


≥ N2ĥδ (0)−N ∑

w∈Λ∗
ĥδ (w)

= N2 2π
d
2

Γ( s
2)(d− s)

(
1−δ

d−s
2

)
−N

π
d
2

Γ( s
2)

∑
w∈Λ∗

∫ 1
δ

1
e−

π2|w|2
t t

s−d
2 −1dt.

(2.37)

By Lemma 2.4.1, we conclude

I1 ≥ N2 2π
d
2

Γ( s
2)(d− s)

(
1−δ

d−s
2

)
−N

2π
d
2

sΓ( s
2)

(
π
− d

2 δ
− s

2 +O(1)
)

=
2π

d
2

Γ( s
2)(d− s)

N2− 2π
d
2

Γ( s
2)(d− s)

N2
δ

d−s
2 − 2

sΓ( s
2)

Nδ
− s

2 −O(N),

(2.38)
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To obtain lower bounds on I2, we calculate

I2 = ∑
w∈Λ∗\{0}

(
∑
j,k

e2πiw·(x j−xk)−N

)∫ 1

0

π
d
2

t
d
2

e−
π2|w|2

t
t

s
2−1

Γ( s
2)

dt

= ∑
w∈Λ∗\{0}

∣∣∣∣∣∑j
e2πiw·x j

∣∣∣∣∣
2

−N

∫ 1

0

π
d
2

t
d
2

e−
π2|w|2

t
t

s
2−1

Γ( s
2)

dt

≥−N · π
d
2

Γ( s
2)

∑
w∈Λ∗\{0}

∫ 1

0
e−

π2|w|2
t t

s−d
2 −1dt

= O(N).

(2.39)

Therefore

Es,Λ(ωN) = I1 + I2 ≥
2π

d
2

Γ( s
2)(d− s)

N2− 2π
d
2

Γ( s
2)(d− s)

N2
δ

d−s
2 − 2

sΓ( s
2)

Nδ
− s

2 −O(N).

If we let δ = π−1N−
2
d , then this lower bound becomes

Es,Λ(ωN)≥
2π

d
2

Γ( s
2)(d− s)

N2 +C∗N1+ s
d +O(N). (2.40)

where

C∗ =− 2π
s
2 d

Γ( s
2)s(d− s)

.

The right hand side of (2.40) is independent of ωN and thus

Es,Λ(N)≥ 2π
d
2

Γ( s
2)(d− s)

N2 +C∗N1+ s
d +O(N),

E cp
s,Λ(N)≥C∗N1+ s

d +O(N).

We conclude that gs,d(Λ)≥C∗.

To establish the finiteness of gs,d , we will use the same method as was used in [13]. For
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any natural number N, let m = mN be a positive integer such that (m−1)d < N ≤ md . Let

ωm = 1
mΛ∩ΩΛ. Then

E cp
s,Λ(m

d)≤ Ecp
s,Λ(ω

m) = ∑
x j,xk∈ 1

m Λ∩ΩΛ

x j 6=xk

ζΛ(s;x j− xk) = md(ms−1)ζΛ(s), (2.41)

where we used Lemma 2.3.2

As
{

E cp
s,Λ(N)

N(N−1)

}∞

N=2
is an increasing sequence (see, e.g., [10, Chapter II §3.12, page 160])

we arrive at the following:

gs,d(Λ) = limsup
N→∞

E cp
s,Λ(N)

N1+s/d
= limsup

N→∞

E cp
s,Λ(N)

N(N−1)
· N−1

N
s
d

≤ limsup
N→∞

E cp
s,Λ(ΩΛ,md)

md(md−1)
· N−1

N
s
d

≤ limsup
N→∞

md(ms−1)ζΛ(s)
md(md−1)

· N−1
N

s
d

= ζΛ(s)< ∞.

Now we turn our attention to the classical periodic logarithmic energy. Using (2.11),

(2.38), and (2.39), we obtain

Elog,Λ(ωN) = lim
s→0+

Γ

( s
2

)
Es,Λ(ωN) = lim

s→0+
Γ

( s
2

)
(I1 + I2)

≥ N2 2π
d
2

d

(
1−δ

d
2

)
−Nπ

d
2 ∑

w∈Λ∗

∫ 1
δ

1
e−

π2|w|2
t t−

d
2−1dt +O(N)

= N2 2π
d
2

d

(
1−δ

d
2

)
−Nπ

d
2

(
π
− d

2 logδ
−1 +O(1)

)
+O(N)

=
2π

d
2

d
N2− 2π

d
2

d
N2

δ
d
2 −N logδ

−1 +O(N).

If we let δ = N−
2
d , then we get

Elog,Λ(ωN) =
2π

d
2

d
N2− 2

d
N logN +O(N).

26



Thus

Elog,Λ(N)≥ 2π
d
2

d
N2− 2

d
N logN +O(N),

E cp
log,Λ(N)+

2
d

N logN ≥ O(N),

and we conclude that glog,d(Λ)>−∞.

To establish the finiteness of gs,d , let m = mN be a positive integer such that (m−1)d <

N ≤ md . Let ωm = 1
mΛ∩ΩΛ. Then by (2.41)

Ecp
s,Λ(ω

m) = md(ms−1)ζΛ(s).

By definition,

E cp
log,Λ(m

d)≤ Ecp
log,Λ(ω

m) = 2
d
ds

Ecp
s,Λ(ωN)

∣∣∣∣
s=0

= 2 md (ms logm ·ζΛ(s)+(ms−1)ζ ′(s)
)∣∣∣

s=0

= 2md logm ·ζΛ(0) =−2md logm =−2
d

md logmd

Here we use the fact that ζΛ(0) = −1 for every lattice Λ (cf. [9, Theorem 1, Section 1.4,

page 59]). We conclude that

E cp
s,Λ(N)

N
=

E cp
s,Λ(N)

N(N−1)
· (N−1)≤

E cp
s,Λ(m

d)

md(md−1)
· (N−1)≤−2

d
logmd · N−1

md−1

This implies

E cp
s,Λ(N)+ 2

d N logN

N
≤−2

d
logmd · N−1

md−1
+

2
d

logN,

which tends to 0 as N→ ∞, and hence glog,d(Λ)≤ 0.

The following lemma establishes scaling properties of the classical periodic energy and
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will be helpful in establishing independence of the constants Cs,d and Clog,d of the lattice

Λ.

Lemma 2.4.3. Let Λ be a lattice and Λ′ = BΛ be a sublattice of Λ (i.e. B∈GL(d,Z)), then

for any N > 0,

E cp
s,Λ′(N|detB|)≤ |detB|E cp

s,Λ(N)+N|detB|(ζΛ(s)−ζΛ′(s)),

E cp
log,Λ′(N|detB|)≤ |detB|E cp

log,Λ(N)+2N|detB|(ζ ′Λ(0)−ζ
′
Λ′(0)).

Proof. For any ωN = (x j)
N
j=1 ∈ (ΩΛ)

N , let S(ωN) = (ωN +Λ)∩ΩΛ′ . Then S(ωN) is a

(N|detB|)-point configuration in ΩΛ′ and

Ecp
s,Λ′(S(ωN)) = ∑

x,y∈S(ωN)
x 6=y

ζΛ′(s,x− y) = ∑
j,k

∑
r∈Λ,x j+r∈Ω

Λ′
t∈Λ,xk+t∈Ω

Λ′
x j+r 6=xk+t

ζΛ′(s;x j + r− xk− t)

= ∑
j 6=k

∑
r∈Λ∩Ω

Λ′
t∈Λ∩Ω

Λ′

ζΛ′(s;x j− xk + r− t)+
N

∑
j=1

∑
r∈Λ∩Ω

Λ′
t∈Λ∩Ω

Λ′
r 6=t

ζΛ′(s;r− t)

= ∑
j 6=k

∑
r∈Λ∩Ω

Λ′

ζΛ(s;x j− xk)+N ∑
r∈Λ∩Ω

Λ′

(ζΛ(s)−ζΛ′(s))

= |detB| ·Ecp
s,Λ(ωN)+N|detB|(ζΛ(s)−ζΛ′(s)), (2.42)

where we used Lemma 2.3.1. Taking the infimum over all configurations (x j)
N
j=1 ∈ (ΩΛ)

N ,

we conclude that

E cp
s,Λ′(N|detB|)≤ inf

ωN∈(ΩΛ)N
Ecp

s,Λ′(S(ωN)) = |detB| ·E cp
s,Λ(N)+N|detB|(ζΛ(s)−ζΛ′(s)).

The logarithmic case follows from this by differentiating (2.42) and evaluating at s= 0.
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Corollary 2.4.4. For any positive integers m and N, we have

E cp
s,Λ(m

dN)

(mdN)1+ s
d
≤

E cp
s,Λ(N)

N1+ s
d

+
(1−m−s)ζΛ(s)

N
s
d

,

E cp
log,Λ(m

dN)+ 2
d mdN log(mdN)

mdN
≤

E cp
log,Λ(N)+ 2

d N logN

N
.

Proof. Both of the inequalities follow from Lemma 2.4.3

E cp
s,mΛ

(mdN)≤ md ·E cp
s,Λ(N)+mdN (ζΛ(s)−ζmΛ(s)) ,

E cp
log,mΛ

(mdN)≤ md ·E cp
log,Λ(N)+2mdN

(
ζ
′
Λ(0)−ζ

′
mΛ(0)

)
and the facts that

E cp
s,mΛ

(mdN) = m−sE cp
s,Λ(m

dN), ζmΛ(s) = m−s
ζΛ(s), (2.43)

E cp
log,mΛ

(mdN) = E cp
log,Λ(m

dN), ζ
′
mΛ(0) = logm+ζ

′
Λ(0). (2.44)

Note that the first identity in (2.44) is obtained from the first identity in (2.43) using (2.11)

while the second identity in (2.44) follows by differentiating the second identity in (2.43)

and evaluating at s = 0.

We are now ready to prove our main result.

Proof of Theorem 2.2.1. By (2.31) and (2.32) it suffices to show

gs,d(Λ) = gs,d(Λ) =Cs,d,

glog,d(Λ) = glog,d(Λ) =Clog,d−2ζ
′
Λ(0).

Fix some positive integer N0. For any N > N0 there exists m ∈ N such that (m− 1)dN0 ≤

N < mdN0, using Corollary 2.4.4 and the fact that {
E cp

s,Λ(N)

N(N−1)}
∞
N=2 is an increasing sequence
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we obtain

E cp
s,Λ(N)

N1+ s
d

=
E cp

s,Λ(N)

N(N−1)
· N−1

N
s
d
≤

E cp
s,Λ(m

dN0)

mdN0(mdN0−1)
· N−1

N
s
d

=
E cp

s,Λ(m
dN0)

(mdN0)
1+ s

d
· (mdN0)

s
d

(mdN0−1)
· N−1

N
s
d

≤

(
E cp

s,Λ(N0)

N
1+ s

d
0

+
(1−m−s)ζΛ(s)

N
s
d
0

)
· (m

dN0)
s
d

N
s
d
· N−1
(mdN0−1)

.

Similarly

E cp
log,Λ(N)+ 2

d N logN

N

=
E cp

log,Λ(N)

N(N−1)
· (N−1)+

2
d

logN

≤
E cp

log,Λ(m
dN0)

mdN0(mdN0−1)
· (N−1)+

2
d

log(mdN0)

=

(
E cp

log,Λ(m
dN0)+

2
d mdN0 log(mdN0)

mdN0
− 2

d
log(mdN0)

)
· N−1

mdN0−1
+

2
d

log(mdN0)

≤

(
E cp

log,Λ(N0)+
2
d N0 logN0

N0
− 2

d
log(mdN0)

)
· N−1

mdN0−1
+

2
d

log(mdN0).

Letting N→ ∞ yields

gs,d(Λ) = limsup
N→∞

E cp
s,Λ(N)

N1+s/d
≤

(
E cp

s,Λ(N0)

N
1+ s

d
0

+
ζΛ(s)

N
s
d
0

)
,

glog,d(Λ) = limsup
N→∞

E cp
log,Λ(N)+ 2

d N logN

N
≤

E cp
log,Λ(N0)+

2
d N0 logN0

N0
.

Letting N0→ ∞ through an appropriate subsequence yields

gs,d(Λ)≤ liminf
N0→∞

E cp
s,Λ(N0)

N
1+ s

d
0

= gs,d(Λ),

glog,d(Λ)≤ liminf
N0→∞

E cp
log,Λ(N0)+

2
d N0 logN0

N0
= glog,d(Λ).
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Therefore gs,d(Λ) = gs,d(Λ) =: Cs,d(Λ) and glog,d(Λ) = glog,d(Λ) =: Clog,d(Λ).

To show Cs,d(Λ) is independent of Λ, let Λ1 = A1Zd and Λ2 = A2Zd be any two lattices

with co-volume 1. Then Λ2 = QΛ1 where Q = A2A−1
1 . We can use rational matrices to

approximate Q, namely, there exists a sequence Qm ∈ 1
mGL(d;Z) such that Qm→ Q.

For any lattice Λ, mQmΛ = (mQm)Λ is a sublattice of Λ since mQm ∈ GL(d;Z). Ap-

plying Lemma 2.4.3 to mQmΛ and Λ we get

E cp
s,mQmΛ

(Nmd|detQm|)≤ md|detQm|E cp
s,Λ(N)+Nmd|detQm|(ζΛ(s)−ζmQmΛ(s)) .

Now if we let Λ = Q−1
m Λ2 we get

E cp
s,mΛ2

(Nmd|detQm|)≤ md|detQm|E cp
s,Q−1

m Λ2
(N)+Nmd|detQm|

(
ζQ−1

m Λ2
(s)−ζmΛ2(s)

)
.

Using relation (2.43) again implies

m−sE cp
s,Λ2

(Nmd|detQm|)

≤ md|detQm|E cp
s,Q−1

m Λ2
(N)+Nmd|detQm|

(
ζQ−1

m Λ2
(s)−m−s

ζΛ2(s)
)
,

which can be rewritten as

E cp
s,Λ2

(Nmd|detQm|)
(Nmd|detQm|)1+ s

d
≤

E cp
s,Q−1

m Λ2
(N)

N1+ s
d |detQm|

s
d
+

ζQ−1
m Λ2

(s)−m−sζΛ2(s)

N
s
d |detQm|

s
d

.

Lettin m→ ∞ and using Corollary 2.3.4 and Lemma 2.3.5, we obtain

Cs,d(Λ2)≤
E cp

s,Q−1Λ2
(N)

N1+ s
d

+
ζQ−1Λ2

(s)

N
s
d

=
E cp

s,Λ1
(N)

N1+ s
d

+
ζΛ1(s)

N
s
d

.

Taking N→ ∞ implies

Cs,d(Λ2)≤Cs,d(Λ1).
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By the arbitrariness of Λ1 and Λ2 we must have Cs,d(Λ)≡Cs,d which is independent of Λ.

For the logarithmic case, we apply Lemma 2.4.3 to mQmΛ and Λ to deduce

E cp
log,mQmΛ

(Nmd|detQm|)≤ md|detQm|E cp
log,Λ(N)+2Nmd|detQm|

(
ζ
′
Λ(0)−ζ

′
mQmΛ(0)

)
.

Now if we let Λ = Q−1
m Λ2 we have

E cp
log,mΛ2

(Nmd|detQm|)

≤ md|detQm|E cp
log,Q−1

m Λ2
(N)+2Nmd|detQm|

(
ζ
′
Q−1

m Λ2
(0)−ζ

′
mΛ2

(0)
)
.

Using relation (2.43) again implies

E cp
log,Λ2

(Nmd|detQm|)

≤ md|detQm|E cp
log,Q−1

m Λ2
(N)+2Nmd|detQm|

(
ζ
′
Q−1

m Λ2
(0)− logm−ζ

′
Λ2
(0)
)
,

which can be rewritten as

E cp
log,Λ2

(Nmd|detQm|)
Nmd|detQm|

≤
E cp

log,Q−1
m Λ2

(N)

N
+2
(

ζ
′
Q−1

m Λ2
(0)− logm−ζ

′
Λ2
(0)
)
.

Therefore,

E cp
log,Λ2

(Nmd|detQm|)+ 2
d Nmd|detQm| log(Nmd|detQm|)

Nmd|detQm|

≤
E cp

log,Q−1
m Λ2

(N)+ 2
d N logN

N
+2
(

ζ
′
Q−1

m Λ2
(0)−ζ

′
Λ2
(0)
)
+

2
d

log |detQm|.

Now let m→∞ and recall that Lemma 2.3.5 implies that ζ ′
Q−1

m Λ2
(0)→ ζ ′Q−1Λ2

(0) as m→∞

to conclude

Clog,d(Λ2)≤
E cp

log,Q−1Λ2
(N)+ 2

d N logN

N
+2
(

ζ
′
Q−1Λ2

(0)−ζ
′
Λ2
(0)
)
.
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Taking N→ ∞ implies

Clog,d(Λ2)≤Clog,d(Λ1)+2
(
ζ
′
Λ1
(0)−ζ

′
Λ2
(0)
)
.

By symmetry

Clog,d(Λ1)≤Clog,d(Λ2)+2
(
ζ
′
Λ2
(0)−ζ

′
Λ1
(0)
)
.

It follows that

Clog,d(Λ1)+2ζ
′
Λ1
(0) =Clog,d(Λ2)+2ζ

′
Λ2
(0).

Hence, if we define Clog,d := Clog,d(Λ) + 2ζ ′
Λ
(0) for any lattice Λ of co-volume 1, then

this quantity is in fact independent of the choice of lattice Λ, which is what we wanted to

show.

33



Chapter 3

4-point maximal polarization problem on S2

3.1 Introduction

Let Ω be a set in Rd . For any nonnegative function f and any N-point configuration

ωN = (A1, . . . ,AN) ∈ΩN and A ∈Ω we recall the f -potential of ωN at A defined in (1.8)

U f (ωN ;A) :=
N

∑
k=1

f (|A−Ak|2),

and the f -polarization of ωN defined in (1.9)

M f (ωN ;Ω) := inf
A∈Ω

U f (ωN ;A). (3.1)

The maximal f -polarization problem on Ω requires finding ωN that maximizes M f (ωN ;Ω)

and we shall call

M f
n (Ω) := sup

ωN∈ΩN
M f (ωN ;Ω) = sup

ωN∈ΩN
inf

A∈Ω
U f (ωN ;A). (3.2)

the maximal n-point f -polarization of Ω. In the case of a Riesz-s potential we shall use the

superscript s instead of f .

If we further assume that Ω is compact and f is lower semi-continuous then the infi-

mum in (3.1) and the supremum in (3.2) are always attained. One reason we are interested

in the maximal polarization problem is that, just as the minimal energy problem is a gener-

alization of the best packing problem, the maximal polarization problem is a generalization

of the minimal covering problem.

Let Ω be a set in Rd . The covering radius of a n-point configuration ωN = (A1, . . . ,AN)
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in Ω is defined as

η(ωN ;Ω) := sup
A∈Ω

min
1≤k≤N

|A−Ak|.

And the minimal n-point covering radius of Ω is defined as

ηN(Ω) := inf
ωN

η(ωN ;Ω).

This quantity is the minimal radius of n balls centered in Ω that cover the set Ω. The fol-

lowing proposition establishes the connection between the maximal polarization problem

and the minimal covering problem:

Proposition 3.1.1. [14, Theorem III.2.1] Let Ω be a compact set in Rd . Then for any N > 0

and s > 0,

lim
s→∞

(Ms
N(Ω))

1
s =

1
ηN(Ω)

.

Proof. For any N-point configuration ωN = (A1, . . . ,AN) ∈ΩN we have

1
min

1≤i≤N
|A−Ai|

≤

(
N

∑
k=1

1
|A−Ak|s

) 1
s

≤ N
1
s

min
1≤i≤N

|A−Ai|
. (3.3)

It then follows

1
inf

ωN∈ΩN
sup
A∈Ω

min
1≤i≤N

|A−Ai|
≤ sup

ωN∈ΩN
inf

A∈Ω

(
N

∑
k=1

1
|A−Ak|s

) 1
s

≤ N
1
s

inf
ωN∈ΩN

sup
A∈Ω

min
1≤i≤N

|A−Ai|
,

i.e.,

1
ηN(Ω)

≤ (Ms
N(Ω))

1
s ≤ N

1
s

ηN(Ω)
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Thus

lim
s→∞

(Ms
N(Ω))

1
s =

1
ηN(Ω)

.

It is also helpful to have the following beautiful result about minimal covering problem

in mind:

Theorem 3.1.2. [15, Theorem 6.5.1] A (d+1)-point configuration is optimal for the mini-

mal covering problem on Sd−1 if and only if it consists of the vertices of a regular d-simplex.

To prove this theorem we need the following lemma

Lemma 3.1.3. Spherical caps of angular radius ϕ < π

2 cover Sd−1 if and only if the convex

hull of their centers in Rd contains the ball B(O; cosϕ) that is centered at the origin and is

of radius cosϕ .

Proof. First we assume that some spherical caps of angular radius ϕ < π

2 cover Sd−1 and

denote the convex hull of their centers by P. Since ϕ < π

2 the dimension of P is d. For

any facet F of P, the (d− 1)-dimensional affine space that contains F cuts Sd−1 into two

spherical caps. Let S(y,ψ) be the one that does not contain any interior point of P where

y is the center and ψ is the angular radius of the spherical cap. Since y is covered by

some spherical caps centered at a vertex of P of radius ϕ it follows that ψ ≤ ϕ . Hence the

Euclidean distance from O to F is at least cosϕ . In other words, P contains B(O; cosϕ).

Assume now there are some spherical caps of angular radius ϕ < π

2 and the convex hull

of their centers P contains B(O; cosϕ). We are going to show these spherical caps cover

Sd−1. For any y ∈ Sd−1, the distance from O to the convex hull of the spherical cap S(y,ϕ)

is cosϕ . Therefore the intersection of P and the convex hull of S(y,ϕ) is nonempty and

must contain a vertex v of P. The spherical cap S(z,ϕ) then covers y.
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Let H be a hyperplane in Rd and let refH : Rd → Rd denote the reflection about H. For

any set X in Rd , recall the Steiner symmetrization of X with respect to H is defined as

X ′ :=
⋃

l∈A

⋃
x,y∈X∩l

1
2
(x+ refHy),

where A is the set of lines in Rd that are perpendicular to H. For any point x ∈Rd , denote

its projection onto H by projHx.

Lemma 3.1.4. Let ∆ be a d-simplex in Rd with vertices v1,v2, . . . ,vd+1 and let H be a

hyperplane in Rd that is perpendicular to v1v2, i.e., projHv1 = projHv2. Then ∆′, the

Steiner symmetrization of ∆, is a d-simplex with vertices v′1 := projHv1 +
1
2(v1− v2), v′2 :=

projHv1− 1
2(v1− v2), v′3 := projHv3, . . .v′d+1 := projHvd+1.

Proof. Denote the simplex generated from v′1,v
′
2, . . . ,v

′
d+1 by ∆′′. We will show ∆′ = ∆′′.

First of all ∆′′ is a d-simplex. Since v2−v1, . . . ,vd+1−v1 are linearly independent it follows

that the projection of v3− v1, . . . ,vd+1− v1 onto the orthogonal complement of v2− v1 is

still linearly independent. It then implies projHv1,v′3 . . .v
′
d+1 forms a (d−1)-simplex in H

and hence ∆′′ is a d-simplex.

Secondly, it holds that ∆′ ⊂ ∆′′. For each l ∈ A and any x,y ∈ ∆∩ l, there exist real

{αi}d+1
i=1 and β such that

x =
d+1

∑
i=1

αivi,
d+1

∑
i=1

αi = 1, αi ≥ 0,

and

y = x+β (v1− v2).

It follows that

y =
d+1

∑
i=1

αivi +β (v1− v2) = (α1 +β )v1 +(α2−β )v2 +
d+1

∑
i=3

αivi.
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Since y ∈ ∆ it then implies

α1 +β ≥ 0, α2−β ≥ 0.

Then

1
2
(x+ refHy) =

1
2
(x+ refHx−β (v1− v2)) =

d+2

∑
i=1

αiprojHvi−
1
2

β (v1− v2)

=
d+2

∑
i=3

αiprojHvi +(α1 +α2)projHv1−
1
2

β (v1− v2)

=
d+2

∑
i=3

αiv′i +
1
2
(α1 +α2)(v′1 + v′2)−

1
2

β (v′1− v′2)

=
d+2

∑
i=3

αiv′i +
1
2
(α1 +α2−β )v′1 +

1
2
(α1 +α2 +β )v′2.

Since both α1 +α2−β and α1 +α2 +β are positive we conclude that 1
2(x+ refHy) ∈ ∆′′.

Clearly, v′i ∈ ∆′ for each 1≤ i≤ d +1. It remains to show ∆′ is a convex set and hence

∆′ = ∆′′. Let 1
2(x1 + refHy1), 1

2(x2 + refHy2) be two points in ∆′ where x1,y1 ∈ ∆∩ l1,

x1,y1 ∈ ∆∩ l1 and l1, l2 ∈A . Then for any λ ∈ [0,1],

λ · 1
2
(x1 + refHy1)+(1−λ ) · 1

2
∗ x2 + refHy2)

=
1
2
((λx1 +(1−λ )x2)+ refH(λy1 +(1−λ )y2))

lies in ∆′ since λx1 + (1− λ )x2, λy1 + (1− λ )y2 ∈ ∆∩ l where l = λ l1 + (1− λ )l2 is

a straight line perpendicular to H. Therefore ∆′ is convex completing the proof of our

lemma.

Proof of Theorem 3.1.2. For any d-simplex ∆ in B(O;1) that contains O, let r(∆) be the

maximum radius of balls that are centered at O and are contained in ∆. If ∆ is inscribed

in Sd−1 then Lemma 3.1.3 implies that the minimal angular radius of spherical caps cen-

tered at vertices of ∆ that cover Sd−1 is arccosr(∆). Therefore, it is sufficient to show that
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the maximum of r(∆) among all d-simplices in B(O;1) is attained if and only if ∆ is a

regular d-simplex. Note that if ∆ is not inscribed in Sd−1 we can always perturb the ver-

tices of ∆ and strictly increase r(∆). Hence we may assume ∆ maximizes r(∆) and ∆ is

inscribed in Sd−1. Assume to the contrary that ∆ is not regular, then there exist vertices

u, v, w of ∆ such that |u− v| 6= |u−w|. Let H be the hyperplane that bisects the edge vw

perpendicularly and let refH : Rd→Rd denote the reflection about H. For any set X in Rd ,

denote its Steiner symmetrization by X ′. Since B(O;r(∆)) ⊂ ∆ ⊂ B(O;1) it follows that

B(O;r(∆)) = B′(O;r(∆)) ⊂ ∆′ ⊂ B′(O;1) = B(O;1). Therefore r(∆′) equals r(∆) and ∆′

is also an optimal simplex. By Lemma 3.1.4 projHu is a vertex of ∆′. It contradicts the

maximality of r(∆) since projHu lies in the interior of B(O;1).

3.2 Main results

In this chapter we are concerned with the case when Ω = S2 and n = 4 and we shall

prove the following theorem which is our main result.

Theorem 3.2.1. Let f : [0,4]→ [0,∞] be non-increasing and strictly convex with f (0) =

lim
x→0+

f (x). Then ω4 is optimal for the 4-point maximal polarization problem on S2, i.e.,

M f (ω4;S2) = M f
4 (S

2), if and only if ω4 = ωT up to rotations, where ωT is a configuration

that consists of vertices of a regular tetrahedron.

We remark that the convexity of f and left continuity of f at 0 implies f is a continuous

extended real-valued function on [0,4]. According to [16] M f (ωT ;S2) is attained by the

antipodes of the vertices of ωT , i.e., M f (ωT ;S2) = U f (ωT ;S(ωT )) where S(ωT ) is any

antipode of vertices of ωT .

We also conjecture that

Conjecture 3.2.2. Let f : [0,4]→ [0,∞] be non-increasing and strictly convex. Then ωd+1

is optimal for the (d + 1)-point maximal polarization problem on Sd−1 if and only if it

consists of vertices of a regular d-simplex.
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Lemma 3.2.3. Let f : [0,4]→ [0,∞] be non-increasing and strictly convex with f (0) =

limx→0+ f (x). Then for any ω4 ∈ (S2)4, there exists a point A(ω4) ∈ S2 such that

U f (ω4,A(ω4))≤U f (ωT ,S(ωT )). (3.4)

Equality holds if and only if ω4 = ωT up to rotations.

The proof of Theorem 3.2.1 is straightforward once Lemma 3.2.3 is established.

Proof of Theorem 3.2.1. For any ω4 ∈ (S2)4, by Lemma 3.2.3,

min
A∈S2

U f (ω4;A)≤U f (ω4;A(ω4))≤U f (ωT ;S(ωT )).

Therefore

max
ω4∈(S2)4

min
A∈S2

U f (ω4;A)≤U f (ωT ;S(ωT )).

Equality holds if and only if ω4 = ωT up to rotations.

Before proving Lemma 3.2.3 we will first introduce some notations and establish some

lemmas we are going to use.

Let ω4 = (A1,A2,A3,A4) ∈ (S2)4. If all 4 points are on a hemisphere, say the one that

is given by {(x,y,z)|x2 + y2 + z2 = 1,z ≤ 0}, then, as shown below (see proof of Lemma

3.2.3), inequality (3.4) holds with A(ω4) simply chosen to be the pole (0,0,1). Thus we

may assume A1, A2, A3, A4 are all different (otherwise there would be four points on a

hemisphere). For any three different points Ai, A j, Ak in ω4, let d(O,AiA jAk) be the dis-

tance from the origin O to the plane AiA jAk. Without loss of generality we may assume

d(O,A1A2A3) is the smallest, i.e. A1, A2, A3 form the largest spherical cap. Here the spher-

ical cap determined by Ai, A j, Ak is chosen to be the one whose boundary contains Ai, A j,

Ak and the cap does not contain the fourth point. Let (xi,yi,zi) be the Cartesian coordinates
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of Ai. As the potential energy of ω4 is invariant under rotations we may further assume that

A1, A2, A3 are arranged horizontally so that z1 = z2 = z3 < z4. As we said it is sufficient to

consider the case when none of these 4 points are on the same hemisphere. Thus for each

θ ∈
[
0, π

2

)
, we consider

Ω(θ) := {(A1,A2,A3,A4) ∈ (S2)4|4A1A2A3is an acute triangle, d(O,A1A2A3)

= min
1≤i< j<k≤4

d(O,AiAiAk),z1 = z2 = z3 =−cosθ ≤ 0,z4 >−cosθ}.

Here θ is the angular radius of the spherical cap determined by A1, A2, A3, see Figure 3.1.

Lemma 3.2.4. Ω(θ) is nonempty if and only if θ ∈ [arccos 1
3 ,

π

2 ). Furthermore,

Ω

(
arccos

1
3

)
= {ρωT |ρ is any rotation about the z-axis} .

Proof. Let θ ∈ [arccos 1
3 ,

π

2 ) and let A1A2A3 be an equilateral triangle with z-coordinate

equal to −cosθ and A4 be the north pole. Then the spherical cap A1A2A3 is the largest

spherical cap determined by AiA jAk and it follows that ω4 = {A1,A2,A3,A4} ∈ Ω(θ). If

θ < arccos 1
3 , assume to the contrary that there exists ω4 ∈Ω(θ). Then the covering radius

of ω4 is determined by the largest spherical cap A1A2A3 which is less than that of ωT . This

contradicts the fact that ωT is the unique configuration that has the minimal covering radius

among all 4-point configurations up to rotations (cf. [15, theorem 6.5.1]).

Let A1, A2, A3 be points on S2 with z1 = z2 = z3 = −cosθ and such that 4A1A2A3 is

acute. If θ < π

2 then d(O,A1A2A3) > 0. Let Πi j(i, j ∈ {1,2,3}, i 6= j) be the reflection of

plane A1A2A3 about plane OAiA j, i.e., Πi j satisfies

d(O,Πi j) = d(O,A1A2A3)≤ d(O,AiA jA4).
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A1

A2
A3

O

A4
Π23

θ

O′

Figure 3.1: Π23 satisfies
d(O,Π23) = d(O,A1A2A3) ≤
d(O,A1A2A4)

A1

A2
A3

O

P2

P3
P1

Figure 3.2: 4̃P1P2P3 is the domain
of A4. It is a spherical triangle if
nonempty.

Π12, Π23, Π31 determine a region on S2 (See Figure 3.2):

⋂
i 6= j,i, j∈{1,2,3}

{A4 ∈ S2|d(O,A1A2A3)≤ d(O,AiA jA4),z4 >−cosθ}

= {A4 ∈ S2|(A1,A2,A3,A4) ∈Ω(θ)}.

If this set is nonempty it is in fact a spherical triangle 4̃P1P2P3 where P1 is the intersection

of Π12 and Π13 on the unit sphere, and so on for P2 and P3. It is easy to see that 4̃P1P2P3 is

either a spherical triangle or degenerates to a single point if nonempty. Namely, 4̃P1P2P3

is the set of A4 such that A1, A2, A3 form the largest spherical cap. Ω(θ) can be rewritten

as

Ω(θ) =
{
(A1,A2,A3,A4) ∈ (S2)4|4A1A2A3is an acute triangle,

z1 = z2 = z3 =−cosθ ,A4 ∈ 4̃P1P2P3

}
.

The following calculation is crucial for our analysis.

Lemma 3.2.5. Let A1, A2, A3 be different points on the sphere with z-coordinate equal

−cosθ(0 < θ < π

2 ). Denote by O′ the projection of O to the plane A1A2A3 (i.e., O′ =
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(0,0,−cosθ)), and let φ1, φ2, φ3 denote the angles ∠A2O′A3, ∠A3O′A1, ∠A1O′A2, respec-

tively. Then the z-coordinate of P3 is given by

zP3
= cosθ

−1+
4tan2 θ

sec2 θ − tan φ1
2 tan φ2

2 +
(tan φ1

2 +tan φ2
2 )2

sec2 θ−tan φ1
2 tan φ2

2

 . (3.5)

Proof. See section 3.3.

Corollary 3.2.6. Let (A1,A2,A3,A4) ∈ Ω(θ) and φ1, φ2, φ2 be as described in Lemma

3.2.5, then for any 1≤ i < j ≤ 3 it holds

sec2
θ > tan

φi

2
tan

φ j

2
. (3.6)

In addition, there exist C1(θ),C2(θ) ∈
(
0, π

2

)
such that for any i ∈ {1,2,3} it holds that

C1(θ)<
φi

2
<C2(θ),

where C1(θ),C2(θ) only depend on θ .

Proof. The existence of (A1,A2,A3,A4) suggests 4̃P1P2P3 is well-defined and nonempty.

Since P3 ∈ 4̃P1P2P3, the definition of 4̃P1P2P3 implies zP3
> −cosθ . The first desired

inequality then follows immediately from identity (3.5).

To prove the second inequality, without loss of generality we may assume i = 3. Using

trigonometric identities we have

tan
φ3

2
= tan

(
π− φ1

2
− φ2

2

)
=− tan

(
φ1

2
+

φ2

2

)
=

tan φ1
2 + tan φ2

2

tan φ1
2 tan φ2

2 −1

≥
2
√

tan φ1
2 tan φ2

2

tan φ1
2 tan φ2

2 −1
=

2√
tan φ1

2 tan φ2
2 −

1√
tan φ1

2 tan φ2
2

>
2

secθ − 1
secθ

.
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Using inequality (3.6) and the above inequality for φ1 we get

tan
φ3

2
<

sec2 θ

tan φ1
2

< sec2
θ

(
secθ − 1

secθ

2

)
=

sec3 θ − secθ

2
.

Therefore C1(θ) := arctan
(

2
secθ− 1

secθ

)
and C2(θ) := arctan

(
sec3 θ−secθ

2

)
satisfy the de-

sired inequalities.

Lemma 3.2.7. Ω(θ) is closed for each θ ∈ [arccos 1
3 ,

π

2 ).

Proof. Let
(

A(n)
1 ,A(n)

2 ,A(n)
3 ,A(n)

4

)
be a sequence in Ω(θ) such that

(
A(n)

1 ,A(n)
2 ,A(n)

3 ,A(n)
4

)
→

(A1,A2,A3,A4). It follows immediately from Corollary 3.2.6 that 4A1A2A3 is still an a-

cute triangle. Using the definition of Ω(θ) and limit properties we get d(O,A1A2A3) =

min
1≤i≤ j≤k

d(O,AiAiAk) and z4 = lim
n→∞

z(n)4 ≥ −cosθ . It remains to show z4 > −cosθ . As-

sume to the contrary that z4 = −cosθ . Then A1,A2,A3,A4 are on the plane {(x,y,z) ∈

S2|z = −cosθ}. Since A1,A2,A3 are distinct points without loss of generality we may

assume A4 is on the arc A1A2 and A4 6= A1. Therefore A(n)
1 ,A(n)

3 ,A(n)
4 will still be distinc-

t when n is sufficiently large. Notice that z(n)4 > −cosθ and lim
n→∞

z(n)4 = −cosθ < 0 it

follows that d
(

O,A(n)
1 A(n)

3 A(n)
4

)
increases to but does not equal d(O,A1A3A4) = cosθ =

d
(

O,A(n)
1 A(n)

2 A(n)
3

)
as n→ ∞, which contradicts the fact that

d
(

O,A(n)
1 A(n)

2 A(n)
3

)
= min

1≤i< j<k≤4
d
(

O,A(n)
i A(n)

j A(n)
k

)
.

Lemma 3.2.8. For θ ∈ [arccos 1
3 ,

π

2 ), min
Ω(θ)

z4 is attained by some (A1,A2,A3,A4) ∈ Ω(θ)

only if the spherical triangle 4̃P1P2P3 determined by A1,A2,A3 degenerates to a single

point.

The idea of this proof is that if 4̃P1P2P3 is not a single point we can always perturb A1,

A2, A3 so that 4̃P1P2P3 is still nonempty and z4 decreases.
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Proof. Ω(θ) is closed and nonempty by Lemma 3.2.7 and Lemma 3.2.4. Thus min
Ω(θ)

z4

exists. Assume by contradiction that min
Ω(θ)

z4 is attained by A1,A2,A3 but 4̃P1P2P3 is not a

single point. In other words, P1, P2, P3 are distinct. It is clear that minz4 is either zP1
, zP2

or

zP3
. By (3.5) we can consider zP3

as a function of x = tan φ1
2 and y = tan φ2

2 :

zP3
(x,y) = cosθ

−1+
4tan2 θ

sec2 θ − xy+ (x+y)2

sec2 θ−xy

 . (3.7)

Without loss of generality we may assume

min
Ω(θ)

z4 = min
z1=z2=z3=−cosθ

A4∈4̃P1P2P3

z4 = min
x=tan φ1

2

y=tan φ2
2

4̃P1P2P3 6= /0

min
i

zPi
(x,y) = zP3

(x0,y0).

We claim that

∂ zP3

∂x

∣∣∣∣∣
(x0,y0)

=
∂ zP3

∂y

∣∣∣∣∣
(x0,y0)

= 0. (3.8)

Otherwise we can perturb φ1 and φ2 so that: (1) zP3
strictly decreases since the derivative

is nonzero; (2) 4̃P1P2P3 is still nonempty since P1, P2, P3 is continuous with respect to φ1

and φ2. This contradicts to the minimality of zP3
(x0,y0).

Let A = secθ , then A > 3 (if A = 3, then by Lemma 3.2.4 ωT is the only configuration

in Ω(θ) and hence P1, P2, P3 coincide). It follows from (3.7) and (3.8) that

(x+ y)(2A2− xy+ y2) = y(A2− xy)2, (3.9)

(x+ y)(2A2− xy+ x2) = x(A2− xy)2. (3.10)
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Subtracting these two equations we get

(x+ y)2(y− x) = (A2− xy)2(y− x).

Notice that it follows from Corollary 3.2.6 that A2− xy > 0, and so we conclude

y = x, or x+ y = A2− xy.

If x+ y = A2− xy then (3.9) yields

2A2− xy+ y2 = y(x+ y).

Thus A2 = xy which contradicts Corollary 3.2.6.

If x = y then (3.9) yields

2x ·2A2 = x(A2− x2)2

=⇒x2 = y2 = A2−2A > 32−2 ·3 = 3

=⇒ tan
φ1

2
= tan

φ2

2
>
√

3 =⇒ φ1 = φ2 >
2π

3
> φ3 = 2π−φ1−φ2.

We will show zP1
= zP2

< zP3
and hence it contradicts our assumption. In fact,

tan
φ3

2
= tan

(
π− φ1

2
− φ2

2

)
=− tan

(
φ1

2
+

φ2

2

)
=

tan φ1
2 + tan φ2

2

tan φ1
2 tan φ2

2 −1
=

2x
x2−1

.
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Thus

(
A2− tan

φ2

2
tan

φ3

2
+

(tan φ2
2 + tan φ3

2 )
2

A2− tan φ2
2 tan φ3

2

)
−(

A2− tan
φ2

2
tan

φ1

2
+

(tan φ2
2 + tan φ1

2 )
2

A2− tan φ2
2 tan φ1

2

)

=

(
A2− x · 2x

x2−1
+

(x+ 2x
x2−1)

2

A2− x · 2x
x2−1

)
−
(

A2− x2 +
4x2

A2− x2

)
=

x2(x2−3)(A2−1)[(A2−1)x2−A2− x4]

(x2−1)(A2− x2)[(A2−2)x2−A2]

=
x2(x2−3)(A2−1)2A(A−1)(A−2))

(x2−1)(A2− x2)A[A(A+1)(A−3)+4]
> 0. (substitute x2 = A2−2A.)

By (3.5) we have zP1
< zP3

, a contradiction to the minimality of zP3
.

The above argument shows that our assumption at the beginning of the proof is false.

Therefore min
Ω(θ)

z4 is attained by A1,A2,A3 only if 4̃P1P2P3 is a single point.

Lemma 3.2.9. The following are equivalent

(a) 4̃P1P2P3 is a single point.

(b) The incenter and the circumcenter of A1A2A3A4 coincide.

(c) A1A2A3A4 is equiareal, i.e., all its facets have the same area.

Proof. (a)⇔ (b) is trivial. For a proof of the equivalence of (b) and (c), see [17] for

example.

Remark 3.2.10. It is known that (cf. [17]) for any d-simplex ∆, the circumcenter and the

incenter of ∆ coincide if and only if ∆ is equiradial, i.e., all the facets of ∆ have the same

circumradius. The incenter and the centroid of ∆ coincide if and only if ∆ is equiareal. It is

also known that a tetrahedron is equiradial if and only if it is equiareal. It then follows that

the circumcenter and the incenter of a tetrahedron coincide if and only if it is isosceles.

But for d ≥ 4, there are equiradial d-simplices which are not equiareal. And this is one

obstacle we come across when we try to extend our proof to higher dimensions.
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Corollary 3.2.11. For θ ∈ [arccos 1
3 ,

π

2 ], min
Ω(θ)

z4 = 3cosθ .

Proof. If θ = π

2 this is trivial. Assume that θ < π

2 . Suppose min
Ω(θ)

z4 is attained by some con-

figuration (A1,A2,A3,A4). By Lemma 3.2.8 and Lemma 3.2.9 the tetrahedron A1A2A3A4 is

equiareal and hence all its four faces have the same area. Let S0 be this face area. On the

one hand the volume of A1A2A3A4 equals

VA1A2A3A4 =
1
3

S0 · (z4− (−cosθ)).

On the other hand, the center O of A1A2A3A4 divides the whole tetrahedron into four small

tetrahedron OAiA jAk. Thus

VA1A2A3A4 = 4VOA1A2A3 = 4 · 1
3

S0 · cosθ .

Therefore,

z4 + cosθ = 4cosθ =⇒ z4 = 3cosθ .

Lemma 3.2.12. Let f : [0,4]→ [0,∞] be non-increasing and strictly convex and let g(t) :=

3 f (2−2t)+ f (2+6t), t ∈ [0, 1
3 ]. Then g(t) is a strictly decreasing function.

Proof. For any 0≤ t1 < t2 ≤ 1
3 , it follows that 2−2t2 ≤ 2−2t1 ≤ 2+6t1 ≤ 2+6t2. Using

properties of strictly convex functions we obtain

f (2−2t1)− f (2−2t2)
(2−2t1)− (2−2t2)

<
f (2+6t2)− f (2+6t1)
(2+6t2)− (2+6t1)

.

Therefore,

g(t1)≤ g(t2)
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Proof of Lemma 3.2.3. It is elementary to compute that

U f (ωT ,S(ωT )) = 3 f (4/3)+ f (4) = g(1/3).

Let ω4 = (A1,A2,A3,A4) be in (S2)4. If they are on a hemisphere, without loss of generality

we may assume z1,z2,z3,z3 ≤ 0. Let A(ω4) = (0,0,1). Using Lemma 3.2.12 we get

U f (ω4,A(ω4)) =
4

∑
j=1

f (|A(ω4)Ai|2) =
4

∑
j=1

f (2(1− zi))

≤
4

∑
j=1

f (2) = g(0)< g(1/3) =U f (ωT ,S(ωT )).

Therefore we may assume A1, A2, A3, A4 are not on any hemisphere. In particular, A1,

A2, A3, A4 are distinct. Without loss of generality we may assume A1A2A3 is the largest

spherical cap and z1 = z2 = z3 =−cosθ < z4,θ ∈
[
0, π

2

)
.

If 4A1A2A3 is not acute assume that φ1
2 ≥

π

2 . The plane Π23 cuts B(0;1) into two

sets, the one that contains O and the one that doesn’t. 4A1A2A3 being not acute implies

that A1,A2,A3,A4 are in the set that does not contain O. Therefore A1,A2,A3,A4 are on a

hemisphere and hence (A1,A2,A3,A4) is not optimal. It remains to consider the case when

4A1A2A3 is acute. In other words, ω4 ∈Ω(θ). By Lemma 3.2.4 we have θ ∈ [arccos 1
3 ,

π

2 ].

Let A(ω4) = S = (0,0,−1). Using Corollary 3.2.11

U f (ω4,S) =
4

∑
j=1

f (|SAi|2) =
4

∑
j=1

f (2(1+ zi))

≤ 3 f (2(1− cosθ))+ f (2(1+min
Ω(θ)

z4))

= 3 f (2(1− cosθ))+ f (2(1+3cosθ)) = g(cosθ).
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Therefore for any θ ∈
[
arccos 1

3 ,
π

2

)
,

U f (ω4,S) = g(cosθ)≤ g(1/3) =U f (ωT ,S(ωT )).

Equality holds if and only if θ = arccos 1
3 , i.e., ω4 equal ωT up to rotations.

3.3 Proof of Lemma 3.2.5

Assume that (see figure 3.1)

A1 = (sinθ cosφ2,−sinθ sinφ2,−cosθ),

A2 = (sinθ cosφ1,sinθ sinφ1,−cosθ),

A3 = (sinθ ,0,−cosθ),

P3 = (x0,y0,z0).

We will solve (x0,y0,z0) from the equations


d(O,P3A1A3) = d(O,P3A2A3) = d(O,A1A2A3) = cosθ

x2
0 + y2

0 + z2
0 = 1

. (3.11)

Clearly,

−−→
A2A3 = (sinθ(1− cosφ1),−sinθ sinφ1,0),

−−→
A3P3 = (x0− sinθ ,y0,z0 + cosθ),
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We then obtain a normal vector of the plane P3A2A3

~n =

∣∣∣∣∣∣∣∣∣∣
~i ~j ~k

x0− sinθ y0 z0 + cosθ

sinθ(1− cosφ1) −sinθ sinφ1 0

∣∣∣∣∣∣∣∣∣∣
= ((z0 + cosθ)sinθ sinφ1,(z0 + cosθ)sinθ(1− cosφ1),

− (x0− sinθ)sinθ sinφ1− y0 sinθ(1− cosφ1)

=: (a1,b1,c1).

Thus the equation of the plane P3A2A3 has the form

a1(x− sinθ)+b1y+ c1(z+ cosθ) = d1

and

d(O,P3A2A3) =
|a1 sinθ − c1 cosθ |√

a2
1 +b2

1 + c2
1

.

Similarly if we let (replacing φ1 by −φ2)

(a2,b2,c2) := (−(z0 + cosθ)sinθ sinφ2,(z0 + cosθ)sinθ(1− cosφ2),

(x0− sinθ)sinθ sinφ2− y0 sinθ(1− cosφ2))

then

d(O,P3A1A3) =
|a2 sinθ − c2 cosθ |√

a2
2 +b2

2 + c2
2

.
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Thus

(3.11)⇐⇒


|a1 sinθ − c1 cosθ |√

a2
1 +b2

1 + c2
1

=
|a2 sinθ − c2 cosθ |√

a2
2 +b2

2 + c2
2

= cosθ

x2
0 + y2

0 + z2
0 = 1

. (3.12)

|a1 sinθ − c1 cosθ |√
a2

1 +b2
1 + c2

1

= cosθ

⇐⇒(a1 sinθ − c1 cosθ)2 = (a2
1 +b2

1 + c2
1)cos2(θ)

⇐⇒a2
1(tan2

θ −1) = 2a1c1 tanθ +b2
1

⇐⇒(z0 + cosθ)sin2(φ1)(tan2
θ −1) = 2sinφ1 tanθ ·

[−(x0− sinθ)sinφ1− y0(1− cosφ1]+ (z0 + cosθ)(1− cosφ1)
2

⇐⇒(z0 + cosθ)

(
tan2

θ − tan2 φ1

2
−1
)
= 2tanθ

[
−(x0− sinθ)− y0 tan

φ1

2

]
. (3.13)

Similarly we have

(z0 + cosθ)

(
tan2

θ − tan2 φ2

2
−1
)
= 2tanθ

[
−(x0− sinθ)+ y0 tan

φ2

2

]
. (3.14)

Now we can solve for z0:

(3.13)− (3.14) =⇒y0 =
(z0 + cosθ)(tan φ2

2 − tan φ1
2 )

2tanθ

(3.13) =⇒x0 = sinθ +
(z0 + cosθ)(tan φ1

2 tan φ2
2 +2− sec2 θ)

2tanθ
.

x2
0 + y2

0 + z2
0 = 1 =⇒(x0− sinθ)2 +2(x0− sinθ)sinθ + y2

0 +(z0− cosθ)(z0 + cosθ) = 0
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Therefore,

z0 + cosθ

4tan2 θ

[
(z0 + cosθ)

(
tan

φ1

2
tan

φ2

2
+2− sec2

θ

)2

+

4cosθ tan2
θ

(
tan

φ1

2
tan

φ2

2
+2− sec2

θ

)
+

(z0 + cosθ)

(
tan

φ2

2
− tan

φ1

2

)2

+4tan2
θ(z0 + cosθ)−8cosθ tan2

θ

]
= 0

=⇒z0 =−cosθ or

z0 = cosθ

[
−1+

4tan2 θ(sec2 θ − tan φ1
2 tan φ2

2 )

(sec2 θ − tan φ1
2 tan φ2

2 )
2 +(tan φ1

2 + tan φ2
2 )

2

]
.
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Chapter 4

Universally Optimal Periodic Configurations in Rd

4.1 The 1 dimensional case

Recall that a spherical (2m−1)-design of Sd−1 is sharp if there are at most m different

inner products between distinct points in the design. In [2] Cohn and Kumar show that any

sharp design is universally optimal among configurations with the same number of points

in Sd−1. This result can be applied to a large class of configurations in Sd−1. In particular

when d = 2 we have the following:

Theorem 4.1.1. Let the potential function f : [0,4]→R∪{∞} be strictly completely mono-

tonic on (0,4] with f (0) = lim
x→0+

f (x). Then an N-point configuration ωN on S1 minimizes

E f (ωN) if and only if ωN consists of N equally spaced points on S1.

Proof. See Theorem 1.2 in [2].

We remark that there is a classical result for the case where f (x2) = g(x) for some

function g that is convex and decreasing.

Theorem 4.1.2. [18] Let g : [0,2]→ R∪ {∞} be convex and decreasing on (0,2] with

g(0) = lim
x→0+

g(x). Let f : [0,4]→ R∪{∞} be the function that satisfies f (x2) = g(x) for

any x ∈ [0,2]. Then any configuration of equally spaced points on S1 minimizes the energy

E f (ωN).

Proof. For any configuration ωN = (x1, . . . ,xN) on S1, without loss of generality we may

assume x j = eiθ j where 0 ≤ θ1 ≤ θ2 · · · ≤ θN ≤ 2π . Let xN+ j := x j and θN+ j := θ j, j =
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1, . . . ,N−1. Using the convexity of g we obtain

E f (ωN) = ∑
j 6=k

f (|x j− xk|2) = ∑
j 6=k

g(|x j− xk|) =
N−1

∑
k=1

N

∑
j=1

g(|x j+k− x j|)

≥
N−1

∑
k=1

g

(
1
N

N

∑
j=1
|x j+k− x j|

)
≥

N−1

∑
k=1

g

(
1
N

N

∑
j=1

2sin
|θ j−θ j+k|

2

)
.

Since sin t is concave on [0,π] and g is decreasing it then follows

E f (ωN)≥
N−1

∑
k=1

g

(
2sin

1
N

N

∑
j=1

|θ j−θ j+k|
2

)
=

N−1

∑
k=1

g
(

2sin
kπ

N

)
.

where the last quantity is the f -energy of any N equally points on S1.

Remark 4.1.3. The above two theorems hold for Riesz s-potentials with s > 0. In addition,

Theorem 4.1.1 holds for all Gaussian potentials f (x) = e−ax with a > 0.

Let ωN +Λ be an N-point Λ-periodic configuration. We shall call N/|Λ| the density of

ωN +Λ. In the last chapter of [2] they study the Euclidean case and prove the following

1-dimensional case.

Theorem 4.1.4. Let f : [0,∞)→ R∪{∞} be completely monotonic on (0,∞) with f (0) =

lim
x→0+

f (x) and satisfies f (x) = O(|x|− 1
2−ε) for some ε > 0 as |x| → ∞. Then any equally s-

paced space configuration has the minimal f-potential energy of any periodic configuration

in R with its density.

In this section we will establish a connection between these two theorems and provide

a simple proof for Theorem 4.1.4.

We start with some notations. For any c > 0 and x ∈ R, the classical one dimensional

theta function θ(c;x) is defined by

θ(c;x) =
∞

∑
k=−∞

e−πk2cei2πkx

= c−
1
2

∞

∑
n=−∞

e−
π(n+x)2

c ,

(4.1)
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where the second equality follows from the Poisson summation formula (See section B).

Notice that θ(c; ·) is Z-periodic. We shall find it useful to also consider

θ̃(c; t) := θ

(
c;

arccos t
2π

)
, t ∈ [−1,1].

In other words for any x ∈ R it holds that

θ̃(c; cos2πx) = θ(c;x).

A C∞ function f : I→R∪{+∞} is absolutely monotonic if f (k)(x)≥ 0 for all x ∈ I and all

k ≥ 0 and strictly absolutely monotonic if strict inequality always holds in the interior of I.

We shall need the Jacobi triple product formula.

Lemma 4.1.5 (Jacobi triple product formula). For any complex q and z with |q| < 1 and

z 6= 0 we have

∞

∏
r=1

(
1−q2r)(1+q2r−1z2)(1+q2r−1z−2)= ∞

∑
k=−∞

qk2
z2k.

Proof. See Section C.

Lemma 4.1.6. For any c > 0, θ̃(c; ·) : [−1,1]−→ (0,∞) is a strictly absolutely monotonic

function.

Proof. Apply Lemma 4.1.5 for q = e−πc and z = eiπx it follows

θ(c;x) =
∞

∑
k=−∞

e−πk2cei2πkx

=
∞

∏
r=1

(
1− e−2πrc)(1+ e−(2r−1)πcei2πx

)(
1+ e−(2r−1)πce−i2πx

)
=

∞

∏
r=1

(
1− e−2πrc)(1+2e−(2r−1)πc cos2πx+ e−2(2r−1)πc

)
.
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Thus

θ̃(c; t) =
∞

∏
r=1

(1− e−2πrc)
(

1+2e−(2r−1)πct + e−2(2r−1)πc
)
. (4.2)

It is elementary to show that

∞

∑
r=1

∣∣∣1− (1− e−2πrc)(1+2e−(2r−1)πct + e−2(2r−1)πc)
∣∣∣

converges uniformly on compact subsets of C. It then follows from a theorem in complex

analysis (cf. [19, Theorem 15.6]) that θ̃(c; t) converges uniformly on compact subsets of

C and hence θ̃(c; ·) is holomorphic. In particular, θ̃(c; t) is smooth as a real function.

Differentiating (4.2) yields for any n≥ 0, c > 0, t ∈ [−1,1]

∂ nθ̃

∂ tn (c; t)> 0.

Proof of Theorem 4.1.4. By Bernstein’s theorem(cf. [1, Theorem 12b, page161]) there ex-

ists a non-decreasing function α : [0,∞)→ R such that for all x > 0,

f (x) =
∫

∞

0
e−cxdα(c).

There is no contribution from c = 0 since f approaches to 0 as x→ ∞. Therefore it is

sufficient to prove the optimality of equally spaced configurations for f (x) = e−cx for some

c > 0.

Let Z+ωN be an N-point Z-periodic configuration in R generated by ωN = {x j}N
j=1.
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Then

Ecp
f ,Z(ωN) = ∑

j 6=k
∑
n∈Z

e−c(x j−xk+n)2

=
(

π

c

) 1
2
∑
j 6=k

θ

(
π

c
;x j− xk

)
=
(

π

c

) 1
2
∑
j 6=k

θ̃

(
π

c
; cos(2π(x j− xk))

)
.

For any t ∈ [−1,1], let g(2−2t) = θ̃(π

c ; t). By Lemma 4.1.6, θ̃
(

π

c ; ·
)

is strictly absolutely

monotonic on [-1,1] and so it follows that g : [0,4]−→ (0,∞) is strictly completely mono-

tonic on [0,4].

Consider the map ϕ : R −→ S1, ϕ(x) = e2πix. Notice that |ϕ(x j)−ϕ(xk)|2 = |e2πix j −

e2πixk |2 = 2−2cos(2π(x j− xk)). It then follows

Ecp
f ,Z(ωN) =

(
π

c

) 1
2
∑
j 6=k

g
(
2−2cos(2π(x j− xk))

)
=
(

π

c

) 1
2
∑
j 6=k

g(|ϕ(x j)−ϕ(xk)|2)

=
(

π

c

) 1
2

Eg(ϕ(ωN)).

By Lemma 4.1.1, the energy Eg(ϕ(ωN)) attains its minimum at any N-point equally spaced

configuration on S1. Therefore Ecp
f ,Z(ωN) attains its minimum at any N-point equally spaced

configuration in R.

4.2 The case for n = 2,3 and Λ is a Hexagonal lattice

Although we are not able to verify the universal optimality of hexagonal lattice A2, we

will investigate some simple cases in this section. Namely, we only consider A2-periodic

configurations with N = 2,3.

Conjecture 4.2.1. Let the potential function f : [0,∞)→R∪{∞} be completely monotonic
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on (0,∞) with f (0) = lim
x→0+

f (x) and satisfies f (x) = O(|x|−1−ε) for some ε > 0 as |x| →∞.

If there exists a constant λ ∈ (0,1) and an orthogonal 2×2 matrix such that λQA2 is a finer

lattice of A2 and |(λQA2)∩ΩA2|=N, then λQA2 is optimal among all N-point A2-periodic

configurations.

This is a less general conjecture than Cohn and Kumar’s [2]. First of all we only consid-

er A2-periodic configurations rather than all Λ-periodic configurations where Λ is any lat-

tice with co-volume 1. Secondly this conjecture only makes sense when N is some special

integer. In fact, it is not difficult to show that such N must have the form N = m2+mn+n2

where m and n are both integers. As we mentioned before it is known that for any nice

d-dimensional space Ω⊂ Rd with Lebesgue measure 1, it holds that

lim
N→∞

Es(Ω;N)

N1+ s
d

=Cs,d, s > d

In particular, for the fundamental domain of A2 (assuming |detA2| = 1), if the above con-

jecture is true, then by Theorem 2.2.2, we will obtain the constant

Cs,2 = lim
N→∞

Es(ΩA2;N)

N1+ s
2

= lim
N→∞

Es,A2(N)

N1+ s
2

= lim
m→∞

Es,A2(m
2)

(m2)1+ s
2

= lim
m→∞

Es,A2(
1
mA2∩ΩA2)

m2+s (conjecture 4.2.1)

= lim
m→∞

m2 ·msζA2(s)
m2+s = ζA2(s).

Recall our main result is that

Theorem 4.2.2. Let the potential function f : [0,∞)→ R∪{∞} be completely monotonic

on (0,∞) with f (0) = lim
x→0+

f (x) and satisfies f (x) =O(|x|− 1
2−ε) for some ε > 0 as |x|→∞.

Let u1 = [1,0]T , u2 = [1
2 ,
√

3
2 ]T , and P = 1

3(u1 +u2) = [1
2 ,
√

3
6 ]T , Q = 2

3(u1 +u2) = [1,
√

3
3 ]T .

Consider the f-energy of ωN associated to the lattice Ã2 := [u1,u2]Z2 = (
√

3
2 )

1
2 A2.
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P

Figure 4.1: A universally optimal
configuration for N = 2, Λ = Ã2. It
is not a lattice but a ”honeycomb”
configuration.

P
Q

Figure 4.2: The universally optimal
configuration for N = 3. Λ = Ã2 is a
finer lattice of Ã2.

(1) For N = 2, let ω∗2 = {0,P} or {0,Q} up to translations. Then for any 2-point config-

uration ω2 ∈ (R2)2,

Ecp
f ,Ã2

(ω2)≥ Ecp
f ,Ã2

(ω∗2 ).

(2) For N = 3, let ω∗3 = {0,P,Q} up to translations. Then for any 3-point configuration

ω3 ∈ (R2)3,

Ecp
f ,Ã2

(ω3)≥ Ecp
f ,Ã2

(ω∗3 ).

By Bernstein’s theorem we may assume f (x) = e−ax for some a > 0. Consider the

Ã2-periodic function

F(x,y) : = ∑
v∈Ã2

e−a|[x,y]T+v|2 .

Then for any ωN =
(
(x j,y j)

)N
j=1 ∈ (R2)N ,

Ecp
f ,Ã2

(ωN) = ∑
j 6=k

F(x j− xk,y j− yk). (4.3)

Lemma 4.2.3. F is uniquely determined by its values on the region Ω0 := {(x,y)|0≤ x ≤
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1
2 ,0≤ y≤

√
3

6 ,y≤
√

3
3 x}. Furthermore,

∇F |P = ∇F |Q =
−→
0 .

Proof. Let G be the group of affine transformations that fix Ã2 and preserve distance in R2.

Then for any g ∈ G,

F(gx,gy) = ∑
v∈Ã2

e−a|g[x,y]T+v|2

= ∑
v∈Ã2

e−a|g([x,y]T+g−1v)|2

= ∑
v∈Ã2

e−a|[x,y]T+g−1v|2 = F(x,y).

It is not difficult to verify that GΩ0 is the whole plane. Thus F is determined by its values

on Ω0.

To prove ∇F |P = 0, consider the transformation g that rotates points about P by 2π

3 ,

namely, for any [x,y]T ∈ R2,

g
(
[x,y]T

)
= ρ

(
[x,y]T −P

)
+P,

where ρ is the rotation of vectors by 2π

3 . Then g ∈ G and hence

F(x,y) = F(g(x,y)).

Taking the gradient on both sides yields

∇F(x,y) = ρ∇F(g(x,y)).
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Evaluating the above identity at P implies

∇F |P = ρ∇F |gP = ρ∇F |P.

Therefore

∇F |P = 0.

The same argument shows that ∇F |Q = 0 as well.

Lemma 4.2.4. For any [x,y]T ∈ R2,

F(x,y) =
π√
3a

[
θ

(
π

3a
;

y√
3

)
θ

(
π

a
;x
)
+θ

(
π

3a
;

y√
3
+

1
2

)
θ

(
π

a
;x+

1
2

)]
.

Proof.

F(x,y) = ∑
v∈[u1,u2]Z2

e−a|[x,y]T+v|2

= ∑
m,n∈Z

e−a|[x,y]T+(mu1+nu2)|2

= ∑
m,n∈Z

e
−a
[
(x+m+ n

2)
2
+
(

y+
√

3
2 n
)2
]

= ∑
n∈Z

e−a
(

y+
√

3
2 n
)2

∑
m∈Z

e−a(x+m+ n
2)

2

= ∑
2|n

e−a
(

y+
√

3
2 n
)2√

π

a
θ

(
π

a
;x
)
+∑

2-n
e−a

(
y+
√

3
2 n
)2√

π

a
θ

(
π

a
;x+

1
2

)

= ∑
n∈Z

e−a(y+
√

3n)2
√

π

a
θ

(
π

a
;x
)
+ ∑

n∈Z
e−a

[
y+
√

3
2 (2n+1)2

]√
π

a
θ

(
π

a
;x+

1
2

)
=

√
π

3a
θ

(
π

3a
;

y√
3

)√
π

a
θ

(
π

a
;x
)
+

√
π

3a
θ

(
π

3a
;

y√
3
+

1
2

)√
π

a
θ

(
π

a
;x+

1
2

)
=

π√
3a

[
θ

(
π

3a
;

y√
3

)
θ

(
π

a
;x
)
+θ

(
π

3a
;

y√
3
+

1
2

)
θ

(
π

a
;x+

1
2

)]
.
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Let

F̃(t1, t2) : = F

(
arccos t1

2π
,

√
3arccos t2

2π

)
(4.4)

=
π√
3a

[
θ̃

(
π

3a
; t2
)

θ̃

(
π

a
; t1
)
+ θ̃

(
π

3a
;−t2

)
θ̃

(
π

a
;−t1

)]
. (4.5)

In this section we always assume the relations

t1 = cos(2πx), t1 = cos(2πy/
√

3).

Lemma 4.2.5. For any integers l1 and l2 satisfying 2|l1 + l2,

∂ l1+l2F̃

∂ t l1
1 ∂ t l2

2

(t1, t2)> 0, ∀t1, t2 ∈ [−1,1].

In particular,

∂ 2F̃
∂ t2

1
(t1, t2)> 0,

∂ 2F̃
∂ t2

2
(t1, t2)> 0,

∂ 2F̃
∂ t1∂ t2

(t1, t2) =
∂ 2F̃

∂ t2∂ t1
(t1, t2)> 0, ∀t1, t2 ∈ [−1,1].

Proof. This follows immediately from (4.5) and Lemma 4.1.6.

Lemma 4.2.6.

∂ F̃
∂ t2

(t1, t2)≥ 0, ∀t1 ∈ [−1,1], ∀t2 ∈
[

1
2
,1
]
.

∂F
∂y

(x,y)≤ 0, ∀x ∈ R,∀y ∈

[
0,

√
3

6

]
.

The first “=” holds if and only if (t1, t2) =
(
−1, 1

2

)
. The second “=” holds if and only if

y = 0 or (x,y) =
(

1
2 ,
√

3
6

)
= P.
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Proof. By Lemma 4.2.5 and Lemma 4.2.3,

∂ F̃
∂ t2

(t1, t2)≥
∂ F̃
∂ t2

(
−1,

1
2

)

=
∂F
∂y

(
arccos t1

2π
,

√
3arccos t2

2π

)
·
√

3
2π
·

− 1√
1− t2

2

∣∣∣∣∣∣
t1=−1,t2= 1

2

=
∂F
∂y

∣∣∣∣
P
·

−√3
2π
· 1√

1− t2
2

∣∣∣∣∣∣
t1=−1,t2= 1

2

= 0.

Thus for any x ∈ R and y ∈ [0,
√

3
6 ],

∂F
∂y

(x,y) =
∂ F̃
∂ t2

(cos(2πx),cos(2πy/
√

3)) ·
(
− 2π√

3
sin(2πy/

√
3)
)
≤ 0.

Lemma 4.2.7.

∂ F̃
∂ t1

(t1, t2)> 0, ∀t1 ∈ [−1,1], ∀t2 ∈
[

1
2
,1
]
. (4.6)

∂F
∂x

(x,y)≤ 0, ∀x ∈
[

0,
1
2

]
, ∀y ∈

[
0,

√
3

6

]
. (4.7)

“=” holds if and only if x = 0 or x = 1
2 .

Proof. (4.7) follows immediately from (4.6) since

∂F
∂x

(x,y) =
∂ F̃
∂ t1

(cos(2πx),cos(2πy/
√

3)) · (−2π sin(2πx)).

By Lemma 4.2.5 and (4.5) it suffices to show

∂ F̃
∂ t1

(
−1,

1
2

)
=

π√
3a

[
θ̃

(
π

3a
;
1
2

)
∂ θ̃

∂ t

(
π

a
;−1

)
− θ̃

(
π

3a
;−1

2

)
∂ θ̃

∂ t

(
π

a
;1
)]

> 0.
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(1) If a≤ π2

3ln
√

5+1
2

, then e−
π2
3a ≤

√
5−1
2 . Applying formula (4.2), we get

∂ F̃
∂ t1

(
−1,

1
2

)
=

π√
3a

[
θ̃

(
π

3a
;
1
2

)
∂ θ̃

∂ t

(
π

a
;−1

)
− θ̃

(
π

3a
;−1

2

)
∂ θ̃

∂ t

(
π

a
;1
)]

=
π√
3a

[
∞

∏
r=1

(
1− e−2r π2

3a

)(
1+ e−(2r−1) π2

3a + e−2(2r−1) π2
3a

)
·

∞

∑
j=1

(
1− e−2 j π2

a

)
2e−(2 j−1) π2

a ∏
r 6= j

(
1− e−2r π2

a

)(
1−2e−(2r−1) π2

a + e−2(2r−1) π2
a

)
−

∞

∏
r=1

(
1− e−2r π2

3a

)(
1− e−(2r−1) π2

3a + e−2(2r−1) π2
3a

)
·

∞

∑
j=1

(
1− e−2 j π2

a

)
2e−(2r−1) π2

a ∏
r 6= j

(
1− e−2r π2

a

)(
1+2e−(2r−1) π2

a + e−2(2r−1) π2
a

)]

=
π√
3a

∞

∏
r=1

(
1−q2r) ∞

∑
j=1

2q−3(2 j−1)
(
(1−q6 j

)[(
(1+q−(2 j−1)+q−2(2 j−1)

)
·

∏
r 6= j

(
1+q−(2r−1)+q−2(2r−1)

)(
1−2q−3(2r−1)+q−6(2r−1)

)
−
(

1−q−(2 j−1)+q−2(2 j−1)
)

∏
r 6= j

(
1−q−(2r−1)+q−2(2r−1)

)
·

(
1+2q−3(2r−1)+q−6(2r−1)

)]
,

where q = e−
π2
3a ≤

√
5−1
2 . Therefore to prove ∂ F̃

∂ t1
(t1, t2)> 0 it suffices to show for any r≥ 1,

(
1+q−(2r−1)+q−2(2r−1)

)(
1−2q−3(2r−1)+q−6(2r−1)

)
≥
(

1−q−(2r−1)+q−2(2r−1)
)(

1+2q−3(2r−1)+q−6(2r−1)
)

⇐⇒2q−(2r−1)
(

q−2(2r−1)+1
)(

q−2(2r−1)− 3+
√

5
2

)(
q−2(2r−1)− 3−

√
5

2

)
≥ 0.
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The above inequality holds since

q−2(2r−1) ≥ q−2 ≥

(√
5−1
2

)−2

=
3+
√

5
2

, ∀r ≥ 1.

(2) If a > π2

3ln
√

5+1
2

> 4, for any t ′ ∈ [−1,1] let

x′ =
arccos t ′

2π
.

Then

∂ θ̃

∂ t

(
π

a
; t ′
)
=

∂θ

∂x

(
π

a
;x′
)

∂x
∂ t

(t ′)

=−
∂θ

∂x

(
π

a ;x′
)

2π sin(2πx′)
.

Using L’hospital’s rule we get

∂ θ̃

∂ t

(
π

a
;−1

)
= −

∂ 2θ

∂x2

(
π

a ;x′
)

4π2 cos(2πx′)

∣∣∣∣∣
x′= 1

2

=
∂ 2θ

∂x2

(
π

a ; 1
2

)
4π2

=
1

2π

(
π

a

)− 3
2

∞

∑
n=−∞

[
2a(n− 1

2
)2−1

]
e−a(n− 1

2 )
2

>
1

2π

(
π

a

)− 3
2

∞

∑
n=−∞

(a
2
−1
)

e−a(n− 1
2 )

2

>
1

2π

(
π

a

)− 3
2

∞

∑
n=−∞

e−a(n− 1
2)

2

,
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and

∂ θ̃

∂ t

(
π

a
;1
)
= −

∂ 2θ

∂x2

(
π

a ;x′
)

4π2 cos(2πx′)

∣∣∣∣∣
x′=0

=
∂ 2θ

∂x2

(
π

a ;0
)

4π2

=
1

2π

(
π

a

)− 3
2

∞

∑
n=−∞

(
1−2an2)e−an2

<
1

2π

(
π

a

)− 3
2
.

Thus

∂ F̃
∂ t1

(
−1,

1
2

)
=

π√
3a

[
θ̃

(
π

3a
;
1
2

)
∂ θ̃

∂ t

(
π

a
;−1

)
− θ̃

(
π

3a
;−1

2

)
∂ θ̃

∂ t

(
π

a
;1
)]

=
π√
3a

[
θ

(
π

3a
;
1
6

)
∂ θ̃

∂ t

(
π

a
;−1

)
−θ

(
π

3a
;−1

3

)
∂ θ̃

∂ t

(
π

a
;1
)]

>
a

2
√

3π2

[
e−3a·( 1

6 )
2

∞

∑
n=−∞

e−a(n− 1
2)

2

−
∞

∑
n=−∞

e−3a(n− 1
3)

2

·1

]

=
a

2
√

3π2

[
∞

∑
n=−∞

e−a(n2−n+ 1
3)−

∞

∑
n=−∞

e−a(3n2−2n+ 1
3)

]

=
a

2
√

3π2

∞

∑
n=−∞

e−a(3n2−2n+ 1
3)
(

ean(2n−1)−1
)
> 0.

Corollary 4.2.8. For any x,y ∈ΩÃ2
,

F(x,y)≥ F

(
1
2
,

√
3

6

)
= F |P = F |Q.

”=” holds if and only if (x,y) = P or Q.

Proof. For any x and y, by Lemma 4.2.3 there exists some affine transformation g such that

(gx,gy) ∈Ω0 and F(x,y) = F(gx,gy). Thus by Lemma 4.2.6 and Lemma 4.2.7

F(x,y) = F(gx,gy)≥ F

(
gx,

√
3

6

)
≥ F

(
1
2
,

√
3

6

)
.
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Proof of Theorem 4.2.2. For any ω2 ∈ (R2)2, using the minimality of F |P and (4.3) we

obtain

Ecp
f ,Ã2

(ω2)≥ 2F |P = Ecp
f ,Ã2

(ω∗2 ).

Similarly, for any ω3 ∈ (R2)3,

Ecp
f ,Ã2

(ω3)≥ 6F |P = Ecp
f ,Ã2

(ω∗3 ).

Note that ”=” holds in the above relation if and only if ω2 = {0,P} or {0,Q} and ω3 =

{0,P,Q} up to translations respectively.

We will end this section with a discussion of the polarization problem for N-point peri-

odic configurations in Rd . Recall in Chapter 3 we have discussed the polarization problem

for N-point configurations in a compact set. For any nonnegative function f and any N-

point Λ-periodic configuration ωN +Λ in Rd and any x ∈ Rd , we define the f -polarization

of ωN +Λ at x

U f (Λ+ωN ;x) :=
N

∑
k=1

∑
v∈Λ

f (|x− xk + v|2),

and the f -polarization of ωN

M f (Λ+ωN) = inf
x∈Rd

U f (Λ+ωN ;x).

Our main result shows that if Λ is a hexagonal lattice and f satisfies the conditions in

Theorem 4.2.2, then the f -polarization of Λ is attained at P and Q, and the f -polarization

of Λ+{0,P} is attained at Q.
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Corollary 4.2.9. Suppose f , Ã2, and P are as in Theorem 4.2.2. Then

M f (Ã2) =U f (Ã2,P) and M f (Ã2 +{0,P}) =U f (Ã2 +{0,P},Q) = 2U f (Ã2,P).

In the case f = fs is a Riesz potential, we have

U s(Ã2,P) = ζÃ2
(s;P) =

(
3

s
2 −1
2

)
ζÃ2

(s).

Proof. It suffices to prove the last identity. Notice that Λ1 := Ã2+{0,P,Q} is also a hexag-

onal lattice. Using the same techniques as in the proof of Lemma 2.3.2 we obtain

∑
x∈Λ1∩ΩÃ2

\{0}
ζÃ2

(s;x) = ((
√

3)s−1)ζÃ2
(s).

Since

∑
x∈Λ1∩ΩÃ2

\{0}
ζÃ2

(s;x) = ζÃ2
(s;P)+ζÃ2

(s;Q) = 2ζÃ2
(s;P).

The desired identity then follows immediately.
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Appendix A

Bernstein’s Theorem on completely monotonic functions

In this section we will present the proof of Bernstein’s Theorem which characterizes

the class of completely monotonic functions on the nonnegative real axis.

Theorem A.0.10. A function f : [0,∞)→ R is completely monotonic on [0,∞) if and only

if

f (x) =
∫

∞

0
e−xtdα(t),

where α(t) is bounded and non-decreasing and the integral converges for 0≤ x < ∞.

A weaker version of this theorem states that

Theorem A.0.11. A function f : (0,∞)→ R is completely monotonic on [0,∞) if and only

if

f (x) =
∫

∞

0
e−xtdα(t),

where α(t) is bounded and non-decreasing and the integral converges for 0 < x < ∞.

Before proving the above theorems we will first introduce some lemmas and Hausdorff

Theorem which we are going to use. Given a sequence {µn}∞
n=0, let

∆µn := µn+1−µn, ∆
k
µn := ∆(∆k−1

µn).

It is not difficult to prove by induction that

∆
k
µn =

k

∑
m=0

(−1)m−k

 k

m

µn+m. (A.1)
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A sequence {µn}∞
n=0 is called completely monotonic if (−1)k∆kµn ≥ 0 for any n,k ≥ 0.

Lemma A.0.12. If f is completely monotonic on [a,∞), then for any h > 0, the sequence

{ f (a+nh)}∞
n=0 is completely monotonic.

Proof. For each k ≥ 0 and n ≥ 0, let P(t) be the Lagrange interpolation polynomial of

f at points a + nh, . . . ,a + (n + k)h. Since f (t)− p(t) vanishes at k + 1 distinct points

it follows from the Rolle’s theorem that there exists ξ ∈ (a+ nh,a+(n+ k)h) such that

f (k)(ξ )= p(k)(ξ )= k!bk where bk is the leading coefficient of p(t). Therefore (−1)kbk≥ 0.

It is well-known that

p(t) =
k

∑
m=0

f (a+(n+m)h)
k

∏
i=0
i6=m

t−a(n+ i)h
(m− i)h

.

Thus,

bk =
k

∑
m=0

f (a+(n+m)h)
k

∏
i=0
i6=m

1
(m− i)h

=
k

∑
m=0

(−1)m−k f (a+(n+m)h)
m!(k−m)!hk

=
1

k!hk

k

∑
m=0

(−1)m−k

 k

m

 f (a+(n+m)h) =
1

k!hk ∆
k f (a+nh),

where we use (A.1) in the last equality. Therefore (−1)k∆k f (a+nh)≥ 0.

Theorem A.0.13 (Hausdorff Theorem). A sequence {µn}∞
n=0 is completely monotonic if

and only if

µn =
∫ 1

0
tndα(t), n = 0,1,2, . . . (A.2)

where α(t) is bounded and non-decreasing on [0,1].
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Proof. Assuming (A.2), then for each k ≥ 0 we have

(−1)k
∆

k
µn =

∫ 1

0
(−1)k

∆
ktndα(t) =

∫ 1

0
(−1)k

k

∑
m=0

(−1)m−k

 k

m

 tn+mdα(t)

=
∫ 1

0
(−1)ktn(t−1)kdα(t) =

∫ 1

0
tn(1− t)kdα(t)≥ 0.

Suppose now {µn}∞
n=0 is completely monotonic. For each k ≥ 0 and m≤ k consider

λk,m :=

 k

m

(−1)k−m
∆

k−m
µm ≥ 0.

Let αk(t) be the normalized step function that has jumps λk,m at points k
m . Then

k

∑
m=0

λk,m =
k

∑
m=0

 k

m

(−1)k−m
∆

k−m
µm

=
k

∑
m=0

 k

m

(−1)k−m
k−m

∑
i=0

(−1)i−(k−m)

 k−m

i

µm+i

=
k

∑
m=0

k−m

∑
i=0

(−1)i

 k

m


 k−m

i

µm+i

=
k

∑
m=0

k

∑
j=m

(−1) j−m

 k

m


 k−m

j−m

µ j

=
k

∑
j=0

j

∑
m=0

(−1) j−m

 k

m


 k−m

j−m

µ j

=
k

∑
j=0

 k

j

µ j

j

∑
m=0

(−1) j−m

 j

m

=
k

∑
j=0

 k

j

µ j(1−1) j = µ0.
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Therefore αk(t) are bounded and non-decreasing. We claim that

µn = lim
k→∞

∫ 1

0
tndαk(t).

Let gn(t) =
n−1
∏
i=0

kt−i
k−i for n≥ 1 and g0(x) = 1. Then

k

∑
m=n

gk

(m
k

)
λk,m

=
k

∑
m=n

m!(k−n)!
(m−n)!k!

 k

m

(−1)k−m
∆

k−m
µm

=
k

∑
m=n

m!(k−n)!
(m−n)!k!

 k

m

(−1)k−m
k−m

∑
i=0

(−1)i−(k−m)

 k−m

i

µm+i

=
k

∑
m=n

k−m

∑
i=0

(−1)i

 k−n

m+ in


 m+ i−n

i

µm+i

=
k

∑
m=n

k

∑
j=m

(−1) j−m

 k−n

j−n


 j−n

j−m

µ j

=
k

∑
j=n

 k−n

j−n

µ j

j

∑
m=0

(−1) j−m

 j−n

j−m

=
k

∑
j=n

 k−n

j−n

µ j(1−1) j−n = µn.

(A.3)

Since each factor in g(t) converges uniformly to t in [0,1] as k→ ∞, it is clear that

lim
k→∞

n−1

∏
i=0

kt− i
k− i

= tn

uniformly for 0≤ t ≤ 1. Therefore for any ε > 0, there exists a positive integer k0 such that
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for any k ≥ k0 it holds that

|gk(t)− tn|< ε, t ∈ [0,1],

and

(n
k

)n
< ε.

Using (A.3) we get

∣∣∣∣µn−
∫ 1

0
tndαk(t)

∣∣∣∣=
∣∣∣∣∣ k

∑
m=n

gk

(m
k

)
λk,m−

k

∑
m=0

(m
k

)n
λk,m

∣∣∣∣∣
≤

k

∑
m=n

∣∣∣gk

(m
k

)
−
(m

k

)n∣∣∣λk,m +
n−1

∑
m=0

(m
k

)n
λk,m

≤
k

∑
m=n

∣∣∣gk

(m
k

)
−
(m

k

)n∣∣∣λk,m +
n−1

∑
m=0

(n
k

)n
λk,m

≤
k

∑
m=n

ελk,m +
n−1

∑
m=0

ελk,m = ε

k

∑
m=0

λk,m = εµ0.

Therefore,

µn = lim
k→∞

∫ 1

0
tndαk(t).

By Helly’s selectoin theorem there exists a subsequence of {αk(t)} that approaches a limit

α(t) with bounded variation. The function α(t) is then non-decreasing and satisfies

µn =
∫ 1

0
tndα(t).

We are now ready to prove Theorem A.0.10
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Proof of Theorem A.0.10. Suppose that

f (x) =
∫

∞

0
e−xtdα(t).

Then f is clearly completely monotonic by successive differentiation. Now assume that f is

completely monotonic on [0,∞). By Lemma 2.1.1 for any positive integer m, the sequence

{ f
( n

m

)
}∞

n=0 is completely monotonic. By Hasdorff Theorem there exists a non-decreasing

bounded function βm(t) such that

f
( n

m

)
=
∫ 1

0
tndβm(t), n = 0,1,2, . . . (A.4)

Then

f (n) =
∫ 1

0
tmndβm(t) =

∫ 1

0
tndβm

(
t

1
m

)
.

On the other hand,

f (n) =
∫ 1

0
tndβ1(t).

Therefore,

∫ 1

0
tndβm

(
t

1
m

)
=
∫ 1

0
tndβ1(t), n = 0,1,2 . . .

Using Weierstrass approximation theorem on [0,1] we conclude that

∫ 1

0
t

n
m dβm

(
t

1
m

)
=
∫ 1

0
t

n
m dβ1(t), n = 0,1,2 . . .
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Thus after changing of variable (A.4) becomes

f
( n

m

)
=
∫ 1

0
tndβm(t) =

∫ 1

0
t

n
m dβm(t

1
m ) =

∫ 1

0
t

n
m dβ1(t)

=
∫ 1

0+
t

n
m dβ1(t) =

∫
∞

0
e−nt/mdα(t), n = 0,1,2 . . .

where α(t) = −β1(e−t). Since both f (x) and
∫

∞

0 e−txdα(t) are continuous on [0,∞) it

follows that

f (x) =
∫

∞

0
e−xtdα(t)

for any x in [0,∞).

Proof of Theorem A.0.11. Suppose that

f (x) =
∫

∞

0
e−xtdα(t).

Then f is clearly completely monotonic by successive differentiation. Now assume that f

is completely monotonic on (0,∞). For any 0 < δ < 1, the function f (x+δ ) is completely

monotonic on [0,∞) as a function of x. Therefore the proof of Theorem A.0.10 shows that

there exists a non-decreasing bounded function βδ (t) such that

f (x+δ ) =
∫ 1

0
txdβδ (t).

Then for any x > δ ,

f (x) =
∫ 1

0
tx−δ dβδ (t) =

∫ 1

0
txt−δ dβδ (t).

In particular, for any n≥ 1,

f (n) =
∫ 1

0
tnt−δ dβδ (t).

76



In other words, the integral
∫ 1

0 txt−δ dβδ (t) is independent of δ . Using Weierstrass Theorem

on [0,1] we conclude that for any continuous function h(x) on [0,1) with h(0) = 0, the

integral
∫ 1

0 h(t)t−δ dβδ (t) is independent of δ . In particular the integral, for any fixed x > 0,

the integral

f (x) =
∫ 1

0
txt−δ dβδ (t)

is independent of δ . Therefore if we choose a δ0 ∈ (0,1), then for any x > 0 it holds that

f (x) =
∫ 1

0
txt−δ dβδ0(t) =−

∫
∞

0
e−txetδ dβδ0(e

−t) =
∫

∞

0
e−txdα(t)

where α(t) := −
∫ u

0 euδ dβδ0(e
−t) so that dα(t) = −e−tδ dβδ0(e

−t) and α(t) is the desired

funcion.
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Appendix B

Poisson summation formula

For any complex function f ∈ L1(Rd), its Fourier Transform is defined by

f̂ (ξ ) =
∫
Rd

f (x)e−2πiξ ·xdx.

Theorem B.0.14. Suppose f satisfies | f (x)| ≤C(1+ |x|)−d−ε and | f̂ (ξ )| ≤C(1+ |ξ |)−d−ε

for some C > 0 and ε > 0. Then

∑
n∈Zd

f (x+n) = ∑
k∈Zd

f̂ (k)e2πik·x.

In particular, taking x = 0 we have

∑
n∈Zd

f (n) = ∑
k∈Zd

f̂ (k).

Proof. Let

F(x) = ∑
n∈Zd

f (x+n).

Clearly F is Zd-periodic. Since ∑n∈Zd(1+ |n|)−d−ε < ∞ it follows that the series

∑
n∈Zd

f (x+n)

and

∑
k∈Zd

f̂ (k)e2πik·x

converge uniformly and absolutely in Rd. Therefore F(x) is continuous and can be consid-

ered as a function in L2([0,1]d). Let {Fk;k ∈Z} be its Fourier coefficients in the orthogonal
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basis {e2πik·x;k ∈ Z}. Then

Fk =
∫
[0,1]d

F(x)e−2πik·xdx =
∫
[0,1]d

∑
n∈Zd

f (x+n)e−2πik·xdx

=
∫
[0,1]d

∑
n∈Zd

f (x+n)e−2πik·(x+n)dx = f̂ (k).

Therefore ∑k∈Zd f̂ (k)e2πik·x is the Fourier series of F(x) and converge to F in L2([0,1]d).

Since the convergence is uniform it follows that ∑k∈Zd f̂ (k)e2πik·x = F(x) pointwise.

Corollary B.0.15. Let Λ be a lattice and c > 0. Then for any x ∈ Rd ,

∑
v∈Λ

e−c|x+v|2 =
π

d
2

c
d
2 |Λ|

∑
ω∈Λ∗

e2πiω·xe−
π2|ω|2

c

Proof. Assume that Λ = AZd for some d×d nonsingular matrix. Let f (x) = e−c|Ax|2 , then

its Fourier transform is

f̂ (ξ ) =
∫
Rd

e−c|Ax|2e−2πiξ ·xdx =
1

detA

∫
Rd

e−c|Ax|2e−2πi(A−T ξ )·Axd(Ax) (B.1)

=
1

detA

∫
Rd

e−c|y|2e−2πi(A−T ξ )·ydy =
π

d
2

c
d
2 |Λ|

e−
π2|A−T ξ |2

c . (B.2)

Then by Poisson summation formula

∑
v∈Λ

e−c|x+v|2 = ∑
n∈Zd

e−c|A(A−1x+n)|2 = ∑
n∈Zd

f (A−1x+n) = ∑
k∈Zd

f̂ (k)e2πik·(A−1x)

= ∑
k∈Zd

π
d
2

c
d
2 |Λ|

e−
π2|A−T k|2

c e2πi(A−T k)·x =
π

d
2

c
d
2 |Λ|

∑
ω∈Λ∗

e−
π2|ω|2

c e2πiω·x.
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Appendix C

Jacobi triple product formula

Lemma C.0.16 (Jacobi triple product formula). For any complex q and z with |q|< 1 and

z 6= 0 we have

∞

∏
r=1

(
1−q2r)(1+q2r−1z2)(1+q2r−1z−2)= ∞

∑
k=−∞

qk2
z2k. (C.1)

Proof. It is elementary to verify that for any q and z with |q| < 1 and z 6= 0 the infinite

products
∞

∏
r=1

(
1−q2r) , ∞

∏
r=1

(
1+q2r−1z2) , ∞

∏
r=1

(
1+q2r−1z−2)

converge. For fixed q with |q|< 1 and any z 6= 0, let

Fq(z) =
∞

∏
r=1

(
1+q2r−1z2)(1+q2r−1z−2) .

Then

qz2Fq(qz) = qz2
∞

∏
r=1

(
1+q2r+1z2)(1+q2r−3z−2)

= qz2
∞

∏
r=2

(
1+q2r−1z2) ∞

∏
r=0

(
1+q2r−1z−2)

= qz2 (1+q−1z−2) ∞

∏
r=2

(
1+q2r−1z2) ∞

∏
r=1

(
1+q2r−1z−2)

=
(
1+qz2) ∞

∏
r=2

(
1+q2r−1z2) ∞

∏
r=1

(
1+q2r−1z−2)

=
∞

∏
r=1

(
1+q2r−1z2) ∞

∏
r=1

(
1+q2r−1z−2) .
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Therefore, Fq(z) satisfies the functional equation

qz2Fq(qz) = Fq(z). (C.2)

Let Gq(z) be the left hand side of (C.1), then

Gq(z) = Fq(z)
∞

∏
r=1

(
1−q2r) (C.3)

It follows from (C.2) that Gq(z) also satisfies

qz2Gq(qz) = Gq(z). (C.4)

For fixed q with |q|< 1 the infinite product in (C.1) converges uniformly on compact sub-

sets of {z∈C;z 6= 0}. Thus G(z) is analytic for z 6= 0. Notice that Gq(z) is an even function,

its Laurent expansion can be written as

Gq(z) =
∞

∑
k=−∞

akz2k. (C.5)

Equation (C.4) then implies

∞

∑
k=−∞

akz2k = qz2
∞

∑
k=−∞

akq2kz2k =
∞

∑
k=−∞

akq2k+1z2k+2 =
∞

∑
k=−∞

ak−1q2k−1z2k.

Thus we obtain the recursion formula

ak = ak−1q2k−1.

and hence for any k ∈ Z,

ak = a0qk2
.
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Now we have

G(z) = a0(q)
∞

∑
k=−∞

qk2
z2k. (C.6)

To show a0(q)≡ 1, we shall prove

Gq

(
e

πi
4

)
= Gq4(i). (C.7)

In fact,

Gq

(
e

πi
4

)
=

∞

∏
r=1

(
1−q2r)(1+q2r−1i

)(
1−q2r−1i

)
=

∞

∏
r=1

(
1−q2r)(1+q4r−2)

=
∞

∏
r=1

(
1−q4r)(1−q4r−2)(1+q4r−2)= ∞

∏
r=1

(
1−q4r)(1−q8r−4)

=
∞

∏
r=1

(
1−q8r)(1−q8r−4)(1−q8r−4)= Gq4(i).

Using (C.6) and (C.7) we obtain

a0(q) = a0(q4).

Note that for fixed z 6= 0, the left hand side of (C.1) converges uniformly in {q ∈ C,q≤ r}

for each r < 1 and hence is analytic as a function of q. In particular, a0(q) is analytic.

Therefore, for any q with |q|< 1,

a0(q) = lim
k→∞

a0

(
q4k
)
= a0(0) = 1.
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[15] Károly Böröczky. Finite packing and covering. Number 154. Cambridge University

Press, 2004.

[16] Nikolai Nikolov and Rafael Rafailov. On extremums of sums of powered distances to

a finite set of points. Geometriae Dedicata, 167(1):69–89, 2013.

[17] Allan L Edmonds, Mowaffaq Hajja, and Horst Martini. Coincidences of simplex cen-

ters and related facial structures. Contributions to Algebra and Geometry, 46(2):491–

512, 2005.
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