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CHAPTER I 
 
 
 

INTRODUCTION 
 
 
 

Nanotechnology and Medicine 

 Nanotechnology is an area of science devoted to the manipulation of atoms and 

molecules leading to the assembly of structures in the nanometer (1 to 1000 nm) scale 

size range.  Research in the “nanorealm” began in physics and chemistry in the early 

1970’s but soon spread into medicine and biology.  Specifically, a wide array of 

nanotechnologies is beginning to change the foundations of disease diagnosis, treatment, 

and prevention.  These advanced innovations, referred to as nanomedicine by the 

National Institutes of Health1, have the potential for widespread patient benefits.  Because 

molecules and structures inside cells operate at the nano- and micro-scale, the evolution 

of nanomedicine as an offshoot of nanotechnology has become a key component for the 

future of research in medical intervention.  A few of the current nanomedical approaches 

include carbon nanotubes that act as biological mimetics2, polymeric nanoconstructs for 

tissue engineering3,4, and nanoscale microfabrication-based devices5.  Furthermore, the 

use of nanoparticulate technologies as targeted forms of diagnostics, drug, and gene 

delivery is at the forefront of nanomedicine, and it has led to collaborative efforts 

between disciplines that were typically segregated: engineering and molecular biology, 

chemistry and virology, physics and surgery. 
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Drug Development and Limitations in Protein and Peptide Trafficking 

In recent years, biotechnology derived drugs including peptides, proteins, and 

monoclonal antibodies/fragments have become a central focus of pharmaceutical research 

and developmental efforts6.  The fate of these drugs after administration in vivo are 

determined by a combination of several processes:  distribution, metabolism, and 

elimination when given intravenously (systemically) while an local (topical), 

extravascular dose, is controlled by absorption, distribution, metabolism, and 

elimination7. 

Bioavailability, the ratio of drug accumulation at its site of action to the amount 

delivered to the body, is a significant limitation in the use of protein or peptide biologics.  

Typically, these molecules have a short half-life in blood plasma or other biological 

fluids, 1.5 min to 150 min for some peptides.  Drug distribution among various tissues is 

equally important.  Thus, the use of naked proteins/peptides in vivo has limited utility, 

necessitating advanced delivery systems which can act locally.  The carrier platform 

should be non-toxic, compatible with the drug applied, preserve its activity, and deliver 

the payload with reproducible pharmacodynamics.  This criteria is especially critical for 

substances that are labile and sensitive to components in biological fluids8. Drug 

incorporation into delivery systems offers many advantages, particularly the enhancement 

of the therapeutic potential of many drugs, alteration of pharmacokinetics and 

biodistribution, and sustained release reservoirs.   
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  Other benefits include:  

• in vivo predictability of release rate for optimization of plasma levels and   

reduction of adverse reactions 

• decreased dosing frequency and improved patient compliance 

• reduction of systemic drug toxicity9 

• drug stabilization10 

• effective accumulation in a target tissue11 

The development of formulations that can combine these benefits with a low cost, simple 

design is critical for highly efficient delivery systems.  

 

 Nanoplatforms for Targeted Drug Delivery 

Nanoparticles (NPs), first observed around 1970, are defined as solid colloidal 

particles less than 1 µm in size consisting of macromolecular compounds.  They were 

initially devised as carriers for vaccines and anticancer drugs. NPs can be fabricated from 

a multitude of materials, including synthetic polymers and biopolymers (proteins and 

polysaccharides).  Drug integration of peptide segments, proteins, and/or small molecules 

with both targeting and therapeutic abilities into delivery systems in the form of 

nanoparticulate polymer matrices offers many benefits.  These benefits include controlled 

drug release and protection, prolonged blood circulation times, and countless other 

adjustable characteristics12,13. 

There are numerous engineered constructs, assemblies, architectures, and 

particulate systems being studied as drug delivery platforms.  These include polymeric 

micelles, dendrimers, virus-derived capsid nanoparticles, polyplexes, and liposomes14-18.  
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Incorporation of therapeutic and diagnostic agents can be achieved by encapsulation, 

covalent attachment, or surface adsorption.  Many carriers can be engineered for 

activation by pH, chemical stimuli, radiation, magnetic fields, or heat.  Many systems are 

being designed for multifuctionality that combine targeted tissue delivery, organelle 

trafficking, and imaging19,20.  These nanovehicles do not behave similarly; their behavior 

within the biological microenvironment, stability, extracellular and cellular distribution 

varies with their chemical makeup, morphology and size.   

The advantages of using nanoparticles for drug delivery result from their two 

basic properties.  First, NPs, due to their small size, penetrate within even small 

capillaries and are taken up within cells, which allows for efficient drug accumulation at 

the target sites in the body21,22.  Second, the use of biodegradable materials for NP 

preparation allow for the sustained drug release within the target site over a period of 

days or even weeks after injection23, establishing many of the concepts described above.  

Table 1-1 introduces some nanovehicular drug delivery approaches. 

 

Table 1-1.  Current drug delivery platforms 

 

NP Platform Size(nm) Therapeutic Application 

Polymeric  10-1000 Brain tumors24-26, bone healing27, vaccine adjuvant28, 
restenosis29, 30, diabetes31 

Ceramic <100 Photodynamic32, insulin delivery33 
Metallic <50 Cancer34, 35, imaging36 

Polymer Micelle <100 Solid tumors37-39, anti-fungal40 
Liposome 50-100 HIV41, tumors42, 43, vaccine delivery44 
Dendrimer <10 Bacterial infections45, cancer46, 47, HIV treatment48 
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Polymer-based Nanoparticles and Polyelectrolyte Complex Dispersions 

Most NP systems, particularly polymer-based, can be formed from a variety of 

preparation techniques, many of which are derived from potentially toxic components 

and harmful solvents.  The most common methods involve polymerization reactions, 

such as emulsion, dispersion, and inverse microemulsion polymerization using both 

biodegradable and non-biodegradable polymers49.  Some of these polymerization 

techniques use mineral oils and strong organic solvents, which may remain in the 

formulation along with other unreacted monomers, initiators, and surfactants, and  these 

present safety issues in the final product. In particular, a widely used polymer for NP 

systems, polylactide-glycolide co-polymer (PLGA), uses a toxic organic solvent 

(methylene chloride), which adds regulatory approval problems.  Alkylcyanoacrylate 

(ACA) nanotechnology suffers from toxic breakdown products50.   

One strategy to circumvent these processing limitations has involved the use of 

water-soluble, biodegradable, polymeric, polyelectrolyte NPs.  This technology is a type 

of NP that has evolved because of the limitations of the currently available systems.  

Biodegradable polymeric polyelectrolytes degrade at a very slow rate and do not alter 

normal cell function51,52.  The polyelectrolytes permit the environmentally attractive use 

of water as a solvent, a major advantage for products that may be used as drug delivery 

systems in humans.  These nanoparticulate architectures, termed polyelectrolyte complex 

dispersions (PECs), result from strong electrostatic interactions between charged 

microdomains of at least two oppositely charged polyelectrolytes53.  The mixing of 

solutions of polyanions and polycations leads to the spontaneous formation of insoluble 

PECs under certain conditions.  The formation of PECs are governed by the strength and 
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location of ionic sites, polymer chain rigidity, precursor chemistries, pH, temperature, 

ionic strength, mixing intensity, and other controllable factors which will affect the PEC 

product.  Classically, PECs have been applied in gene delivery54-56 and 

microencapuslation of various cell and tissue types57,58.  

The most predominant molecular forces for PEC assembly are the strong 

electrostatic interactions.  However, hydrogen bonding, hydrophobic interactions and van 

der Waals forces complement PEC formation, and they are related to the physical 

characteristics listed previously59.   Two major steps dictate PEC complexation:  (1) the 

kinetic diffusion process of mutual entanglement between polymers, occurring at 

relatively short times, depending on molar size differences, and (2) thermodynamic 

rearrangement of the already formed simplex aggregate due to conformational changes 

and disentanglement.  The latter process occurs at rather long times leading to a source of 

instability in the PEC, and it is a consequence of phase separation in aqueous medium.  

Stop flow measurements showed that the PEC formation takes place in less than 5 ms, 

nearly corresponding to the diffusion-controlled collision of polyion coils60. 

Three different types of PECs have been prepared in water61:  

• soluble PEC, i.e. macroscopically homogeneous systems containing small 

PEC aggregates 

• turbid colloidal, PEC systems in the transition range to phase separation 

exhibiting an observable light scattering or Tyndall effect 

• two-phase systems of supernatant liquid and precipitated PEC, which are 

readily separated as a solid after washing and drying (not desirable). 
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As borderline cases for the resulting structures of PECs, two models are discussed in 

literature, dictated by the characteristics of the polyion groups, stoichiometry, and 

molecular weights:  (1) the ladder-like structure, where complex formation takes place on 

a molecular level via conformational adaptation, and (2) the scrambled-egg model, where 

a high number of chains are incorporated into particle architecture60.  The ladder-like 

structure consists of hydrophilic single-stranded and hydrophobic double-stranded 

segments.  These phenomena result from the mixing of polyelectrolytes having weak 

ionic groups and large differences in molecular dimensions and can lead to populations of 

water-soluble and insoluble PECs, an unwanted consequence.  The oppositely charged 

ions complex according to a "zip" mechanism where there is often insufficient ion 

pairing.  In some cases, a high molecular weight polyion with a weak charge density is 

titrated into a shorter, smaller molecular weight counterion (oligomer) 

nonstoichiometrically to form initially soluble PECs.  Through continued addition of the 

high molecular weight polyion, insoluble PECs can form62.    The scrambled-egg model 

refers to complexes that are the product of the combination of polyions with strong ionic 

groups and comparable molar masses yielding insoluble and highly aggregated 

complexes under a strict 1:1 stoichiometry.   Figure 1-1 shows, schematically, these 

representations.  

 

 

 

 

 



 8 

              (A) (B) 

+ + 
+ + + 

+ 

+ + 
+ 

+ 
+ 

+ 

- - 
- - 

- - - - 
- 

+ 

- 
- 

- 

- 

- 

- 
- 

+ + 

+ + 
+ + 

+ 

+ 
+ 

 

 

Figure 1-1.  Schematic representation of ladder and scrambled egg structures.    Black 
represents the large polyion (negative) while gray represents a polyion of opposite charge 
(positive).  (A) shows the ladder representation where insufficient ion pairing occurs 
under certain stoichiometric conditions leading to macromolecular aggregates, insoluble, 
and soluble PECs.  (B) shows the scrambled egg model where polymers of comparable 
size complex yielding insoluble PECs under certain conditions.     

 

 

As the stoichiometry is adjusted under dilute conditions (10-4 g/ml), colloidal, 

Tyndall effect PECs consisting of a neutral and stoichiometric core surrounded by excess 

binding polyelectrolytes are stabilized against aggregation, and they provide a practical 

nano-and micro-scale product53.  The excess polyelectrolyte provides stability in different 

medium conditions63, i.e. surplus cation bound to a neutralized anionic core leads to 

stability at low pH.  Both the routes ladder and scrambled egg assemblies share the same 

steps of polyelectrolyte interaction, but they only result in the desired structures 

(insoluble stoichiometric complexes) under certain conditions.  An important stride 
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towards functional and practical use of PEC complexes for drug delivery would be 

assemblies that form under easily understood and controllable conditions such as simple 

stream mixing in a continuous or batch design. 

 

Nanoparticle/PEC Size and Zeta Potential Drive Cellular Interactions 

The size of nanoparticulate or PEC species is critical for cell binding and 

internalization64-66.  Due to their sub-cellular and sub-micron size, NPs introduced 

intravascularly can penetrate deep into tissues through fine capillaries. They are generally 

taken up by cells and have a higher intracellular uptake compared to microparticles30.  

For example, 100 nm size NPs showed 2.5 fold greater uptake compared to 1 µm 

particles and they had 6 fold higher uptake compared to 10 µm particles in Caco-2 

(human colon) cells67.  This type of behavior, increased intracellular uptake, has been 

observed not only in Hepa 1-6, Hep G2, and KLN 205 cell lines, but also in perfused rat 

tissues68.   

Intracellular uptake studies have mostly focused on liposome69-71 and polymer 

delivery systems27,72,73, process that are driven by endocytosis: a means of cellular 

ingestion by which the plasma membrane folds inward to bring substances inside cells.  

The process of endocytosis begins with diffusion of particles to the cell surface and 

binding either to receptors or via electrostatic interactions between the anionic cell 

surface and cationic charge domains.  Subsequent to the binding, NPs can remain bound 

to the surface, dissociate, or accumulate in coated or non-coated invaginations.  

Following this size-dependent event, NPs may be delivered to lysosomes where their 

contents may be degraded by lysosomal peptidases and hydrolases.  Another possible fate 
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may be nanovehicle fusion with the endosomal membrane and pH-dependent 

release/degradation of the NP30,74.  Endocytosis has been shown to be concentration, 

energy, time, and size dependent, but saturable.  Specific mechanisms may include 

phagocytosis, fluid phase pinocytosis, or receptor-mediated uptake74 and may be probed 

by applying various inhibitor strategies75.   Figure 1-2 schematizes the NP internalization 

process. 

 

  

 
  

 

    

 

 

 

 

 

 

Figure 1-2. Potential fates of PECs.  (1)  PECs diffuse and (2) attach to the cell surface 
via receptors or ionic interactions .  Upon binding to the membrane, PECs can remain 
bound at the cell surface, dissociate, or (3) accumulate in coated or non-coated 
invaginations.  Following (4) size-dependent endocytosis, PECs can be delivered to (b) 
lysosomes, after endosomal acidification, where their contents may be degraded by 
lysosomal peptidases and hydrolases.  Another possibility, following acidification of the 
endosomal lumen, PECs are designed to either (d) fuse with the endosomal membrane, 
(e) releasing their contents or escaping directly into the cytoplasm, or become 
destabilized and subsequently destabilize the endosomal membrane (c) resulting in 
leakage of the endosomal contents into the cytosol.  Receptors may be recycled back to 
the cell surface (a) or targeted for degradation in the lysosome (b). 
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Zeta potential, or mean surface charge, is a surrogate marker for the colloidal 

stability of PECs/NPs76,77.  The charge develops as a function of the excess polymer and 

is controlled by an ordered PEC assembly process.  Zeta potential is rarely addressed 

mechanistically in the literature, since it is easily altered by modification of 

environmental conditions, but it has important connotations for surface modification, size 

retention/aggregation, and targeting.  The classical colloidal theory has long held that one 

of the major interactive forces that controls particle stability in aqueous liquid suspension 

is electrostatic forces at the particle surface represented by zeta potential76-78.  Simply put, 

the presence of significantly positive or negative surface charge causes charge repulsion 

and prevents further aggregation by virtue of fewer collisions and ionic attraction.  This 

range of stable zeta potential in aqueous suspension has been empirically defined as 

greater than |±30| mV78.  Therefore, it is of great interest for biological systems to have a 

sufficient zeta potential for preservation of colloidal stability and nano-scale size for drug 

delivery.   

Variation of the surface charge could potentially control binding and direct NPs to 

cellular compartments both in vivo and in vitro.  Cellular surfaces are dominated by 

negatively charged sulfated proteoglycans, molecules that play pivotal roles in cellular 

proliferation, migration, and motility79.  Proteoglycans consist of a core protein anchored 

to the membrane and linked to one or more glycosaminoglycans side chains (heparan, 

dermatan, and chondroitin sulfates) to produce a structure that extends away from the cell 

surface. Glycosaminoglycans are highly anionic, and the interactions between 

proteoglycans and NP shells, if positively charged, tend to be largely ionic80.  Once inside 
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the cell, degradation of polymers may occur, but targeting specific intracellular 

organelles is possible depending on the surface charge and attached ligands30.   

 

Specific Modes of Endocytosis 

 Small molecules, such as amino acids, sugars, and ions, can traverse the plasma 

membrane through the action of membrane protein pumps or channels.  Larger 

macromolecular species must be carried into the cell in membrane-bound vesicles 

derived by the invagination and pinching-off of pieces of the plasma membrane.  

Virtually all cells use endocytosis to take up nutrients from the external environment and 

modulate the expression of cell surface molecules.  Endocytosis occurs through two 

broad mechanisms which are delineated by the size of the payload:  phagocytosis (cell 

eating) for large particles and pinocytosis (cell drinking) for uptake of fluid and solutes.  

The specific endocytic modes are phagocytosis, macropinocytosis, clathrin-mediated, 

caveolin-mediated, and clathrin/caveolin-independent endocytosis81. 

 Phagocytosis is conducted primarily by specialized cells, including macrophages, 

monocytes, and neutrophils, which function to clear pathogens such as bacteria, yeast and 

large debris usually larger than 1 µm.  It is an active and highly regulated process that 

involves cell-surface receptors and intracellular signaling cascades, followed by actin-

controlled engulfment of the particle to be internalized82.  There are multiple modes of 

phagocytosis that are determined by the particle to be ingested and the receptor 

recognition mechanism. 
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Similar to phagocytosis, macropinocytosis is an actin-driven process that 

accompanies growth factor and signaling cascades.  Membrane protrusions and ruffling 

result in the formation of macropinosomes.  Macropinosomes (~250 nm in diameter) 

form at the site of ruffling and fuse with the plasma membrane resulting in non-selective 

endocytosis of solute macromolecules83. 

 Caveolae, ~70 nm in diameter, are flask-shaped invaginations of the plasma 

membrane and are theorized to mediate the transcellular shuttling of serum proteins from 

or extracellular environment.  They are dynamic elements, largely postulated to be 

regulated by the molecule dynamin, and will fuse with macromolecules after initial 

binding resulting in a vesicular structure84.  The size and shape of caveolae are 

determined by caveolin, a dimeric protein that binds cholesterol, and self-associates to 

form a striated caveolin coat on the surface of membrane invaginations81.  Caveolae are 

activated by tyrosine phosphorylation and slowly internalized. 

 Clathrin-mediated endocytosis, also dynamin-directed, occurs constitutively in all 

mammalian cells and carries out the continuous uptake of essential nutrients, such as low 

density lipoprotein and transferrin; its size limit has been observed to be as high as 120 

nm.  The process is controlled by high affinity transmembrane receptors and their bound 

ligands into ‘coated pits’ on the plasma membrane that are formed by the accumulation of 

cytosolic coat proteins, the main unit being clathrin.  Clathrin monomers assemble into a 

lattice structure which helps to deform the plasma membrane into a coated pit.  The 

extracellular cargo fuses with the coated pit, an invagination, followed a ‘pinching off’ of 

the endocytic vesicle.  The process and its components can be recycled by an uncoating 

reaction after internalization of the payload85. 
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 The mechanisms that govern caveolae- and clathrin-independent endocytosis 

remain poorly understood.  It is likely that these pathways fulfill unique functions in the 

cell and varies mechanistically not only in how the vesicles are formed, but in terms of 

which cargo molecules they transport, to what intracellular destination their cargo is 

delivered, and how their entry is regulated.  These processes are possibly controlled by 

the formation of lipid rafts, 40-50 nm in diameter, that diffuse freely on the cell surface 

and can be presumably captured by, and internalized within any endocytic vesicle86. 

  

Current Polymeric Targeting Strategies and Approach For PECs 

  Great progress has been made in targeted drug delivery.  It is now possible to 

deliver agents (peptides, nucleotides, hydrophobic drugs) to selected extracellular and 

intracellular targets87.  The blood circulatory system is the container and distributor of 

oxygen and nutrients throughout the body, and thus the normal function of each cell 

vitally depends on the mechanisms that operate at the level of blood vessels.  All blood 

vessels are lined with endothelial cells, making them accessible to circulatory 

macromolecules88.  Strategies have included coupling of surface ligands to liposomal 

systems43,89,90 (active targeting) and the enhanced permeability and retention effect 

(EPR)91,92 (passive targeting), a unique pathophysiology of the tumor vasculature.  Some 

example systems include dendrimer47,93, polymeric94,95, and liposomal90 nanoparticles 

conjugated with folate for specificity to cancer cells that overexpress its receptor.  Other 

polymeric nanostructures96,97, PECs98, and liposomes43 target cellular adhesion 

molecules, integrins, expressed on vascular endothelial cells in solid tumors.  
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Liposomes22, PECs55, and polymer conjugates97 have utilized vascular endothelial growth 

factor  (VEGF) for targeting the VEGF receptor on the  vasculature. 

 The process of new and remodeled blood vessels, defined as angiogenesis, is a 

promising targeting strategy due the presence of unique, tissue-specific markers 

accessible to circulation.  These vascular networks are lined with endothelial cells (ECs), 

critical players in a number of pathological processes: cancer (dysregulated 

angiogenesis), wound healing, inflammation, oxidative stress, and thrombosis43,99.  For 

instance, angiogenesis is critical for tumor metastasis (cancer) to distant tissues and for 

expansion of small clusters of malignant cells into a clinically relevant tumor.  Cancer 

cells can co-opt host vessels and sprout new vessels from existing ones and recruit EC 

from bone marrow (vasculogenesis).  The resultant vasculature is structurally and 

functionally abnormal and the endothelial lining has an aberrant morphology.  Structural 

irregularities contribute to temporal and spatial heterogeneity in tumor blood flow.  The 

result is an abnormal tumor microenvironment with endothelial cells unique to the 

disease state100.  During angiogenesis, endothelial cells show increased expression of cell 

surface molecules that potentiate cell invasion and proliferation that can be used as 

targets for soluble and particulate ligands101.  Furthermore, the accessibility of these 

endothelial cells from the blood stream is an important advantage over other target 

candidates such as tumor cells.  

 Several extracellular molecules have moieties that interact with the vascular 

endothelium and have been exploited as an anti-angiogenic strategy.  One of these 

molecules, thrombospondin-1 (TSP-1), is a large, multimeric molecule that associates 

with cells and the extracellular matrix through multiple interactions that are revealed in 
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specific domains of the macromolecule102,103.  Intact TSP-1 suppresses angiogenesis by 

interaction with the CD36 receptor, leading to apoptosis of endothelial cells, and the 

collapse of the tumor vasculature104.  Although, the 450 kDa TSP-1 macromolecule can 

diminish tumor growth by affecting the vasculature, its use clinical use is limited due to 

its size, complications in large-scale preparations, and concerns about side effects.  Small, 

TSP-1 derived peptide mimetics that can be targeted to a specific receptor offer an 

attractive alternative.  TSP521, a peptide derived from the type 1 repeat of TSP-1, binds 

cell surface heparan sulfate proteoglycans (HSPG), which are overexpressed on tumor 

endothelial cells105,106.  In addition to HSPG affinity, TSP521 can act as an angiostatic 

agent by interfering with growth factor binding, translocation and, therefore, cell 

proliferation.  Additionally, TSP521 has shown selective accumulation in the vasculature 

in experimental brain tumor models107, leading to its application as a ligand for a PEC 

targeting strategy.  The incorporation of TSP521 into NPs/PECs can be performed by two 

methods: 

• passive entrapment after addition of polyethylene glycol (PEG) to achieve 

both a geometric and flexible presentation87, decreased susceptibility to 

circulatory proteolytic enzymes, improved phamacokinetic properties108 

• direct coupling by 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide 

(EDAC)/N-hydroxysuccinimide (NHS) two-step, zero-length cross-

linking109 of the aspartic acid carboxylic acid to surface PEC amines. 

Both approaches may allow for heparin binding site of TSP521 to interact efficiently with 

ubiquitous HSPGs present in vascular endothelial models.  Figure 1-3 is a representation 

of the strategy. 
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Figure 1-3.  Targeted PEC conceptualization.   PECs can be directed to overexpressed 
HSPG groups omnipresent on the tumor endothelium by functionalization of the complex 
with TSP521.  Ideally, targeted PECs are administered intravenously and home to the 
tumor vasculature.  PECs, due to their nanoscale architecture, are internalized and the 
payload (DNA, drug, peptide, protein) delivered. 
 

 

Binding Theory 

 The interactions of biological macromolecules, in terms of ligands with cell 

surface receptors, can often be described by a model of reversible binding and 

characterized by an equilibrium constant.  At equilibrium, the chemical reaction between 

free receptor (equation 1-1), where [Rfree], [Lfree] are the free receptor and ligand, 

respectively, and [R:L] is the bound, [Bound], receptor:ligand complex:  

  

 

 

 

[RFree] + [LFree]                                    [R:L]                            
 

(1-1) 

Endothelial  LiningEndothelial  Lining  
Nanoparticle(PEC)Nanoparticle(PEC)   

      
Tumor ParenchymaTumor Parenchyma  

Blood FlowBlood Flow  

      

ReceptorReceptor   

LiLi gandgand   



 18 

At equilibrium, the mass action expression becomes equation 1-2, where Kd is the 

equilibrium dissociation constant (binding constant): 

 

 

Equation 1-2 can be rewritten, after substitution of [RFree], as equation 1-3, where Rtotal 

represents the sum of [RFree] and [Bound]: 

 

 

Rearrangement yields a Michaelian expression as shown in equation 1-4, where the 

brackets are dropped only for convenience: 

 

 

Equation 1-4 is the equation for a rectangular hyperbola with a horizontal asymptote 

corresponding to 100% saturation of Rtotal, such that [Bound]=[Rtotal].  Experimentally, 

the relevant parameters are collected with concentration-dependent, saturation binding 

experiments.  The quantitation of physical constants defining classical ligand-receptor 

interactions must follow assumptions from the law of mass action (Clark’s Theory)110:  

(1) the interaction of ligand and receptor is reversible, association is bimolecular while 

the dissociation is unimolecular; (2) all receptor molecules homogeneous and 

independent; (3) the biological response is proportional to the number of occupied 

receptor sites; (4) interaction and response are measured after the reaction has reached 

equilibrium; and (5) the ligand only exists as free, unbound, or attached to the receptor 

and it does not undergo degradation or participate in other reactions. 
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 Saturation data that follow these assumptions and equation 1-4 is classically 

linearized by Scatchard’s plots111.  Scatchard representations plot the ratio bound to free 

ligand on x-axis versus bound ligand on the abscissa.  Linearity of this transformation 

yields a slope of -1/Kd and y-intercept of Rtotal/Kd.  This allows graphical assessment of 

the parameters in equation 1-4 and relative ligand affinities.  Countless studies have 

applied this analysis for summarizing receptor-ligand interactions, the prominent work 

being for epidermal growth factor112,113.  Currently, there are no Scatchard analyses of 

nanoparticulate drug delivery vehicles, with or without active targeting moieties. 

 

Overview of Dissertation 

 The work contained herein is focused on the development of nanoparticulate 

polyelectrolyte complex formulations for targeted delivery to endothelial cells. Recent 

research to avoid use of harmful materials has involved application of water-soluble, 

biodegradable, polymeric, polyelectrolyte nanoparticles and the results appear to be 

promising due to the biocompatibility and complete degradability of polymers114,115.  

Rationalizing the assembly mechanisms and tailoring the size, charge, and loading 

capability to desirable levels are essential to advance biodegradable, polymeric, 

polyelectrolyte nanoparticles as efficient drug delivery vehicles. The current technology 

applied in this study has utilized a water-based approach for producing the PECs under 

the prevailing assembly and complexation theory.  Typically, one interacting pair of 

oppositely charged polymers does not result in a thermodynamically stable system.  

Therefore, the PECs are produced using a multipolymeric mixture with a minimum of 

two pairs.  This inherently increases the number of possible reacting pairs.  The 
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electrostatic interaction of the polymer pairs also allows controlled incorporation of 

molecules such as proteins or targeting peptides.  Also, the multipolymeric nature allows 

more rational selection of polymers to meet specific criteria essential for creating a 

uniform process for preparing biodegradable, water-based PECs for targeted delivery.  

 According to the literature, there are several PEC characteristics favorable for 

cellular uptake and colloidal stability, including hydrodynamic diameter less than or 

equal to 200 nm30,54, surface charge of greater than 30 mV or less than –30 mV, spherical 

morphology, and a low polydispersity index indicative of a homogeneous size 

distribution76,78,116.  The PEC properties of size, charge, polydispersity index (PDI), and 

morphology, are highly dependent on environmental complexation properties and 

molecular parameters of the polyions used.  In particular, the complexation process 

between polyelectrolytes having significantly different molecular weights leads to the 

formation of water-insoluble aggregates117-119.  This effect is undesirable because 

structures with diameter greater than 1000 nm can cause blockage of blood capillaries 

and inflammatory tissue responses30,120,121.   
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Based on these considerations, the following foci have been investigated and will 

be addressed in subsequent chapters: 

1. Determine the PEC system (similar or dissimilar molecular weights) that 

will provide the most suitable and controllable product for further in vitro 

testing. Systems will be examined based on the following qualifications:  

spherical morphology via TEM, decreased hydrodynamic radius with a 

goal of 200 nm (good for cellular uptake), low PDI of approximately 

0.200, and zeta potential greater than +30 mV or less than -30 mV, the 

benchmark for colloidal stability. 

2. Establish PEC stability as a function of pH for dissimilar and similar 

molecular weight chemistry by measuring the size and zeta potential 

during and after processing/centrifugation steps.  Systems must be stable 

at physiological pH (pH=7.4). 

3. Evaluate PEC binding and uptake mechanisms for naked and targeted 

particles using fluorescent labeling in vitro, human microvascular 

endothelial cells (HMVEC-1) while separately measuring protein release 

from the polyelectrolyte complex.  Compare two methods of TSP521 

incorporation:  (1) passive PEG-conjugated TSP521 and (2) direct 

conjugation of TSP521 by EDAC/NHS isopeptide linkage to coronal PEC 

amines.  Demonstrate protein loading and measure release kinetics for 

proteins carrying acidic and basic isoelectric points.  Investigate the 

biocompatibility in vitro and in vivo.  Systems must meet the engineering 

criteria defined in aim 1 and be stable at biological pH. 
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4. Assess the scale up ability by applying Kenics static mixer technology 

under simple two-stream mixing at laminar flow conditions. 
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CHAPTER II 

 

EXPERIMENTAL PROCEDURES AND CHARACTERIZATION METHODS 

  

PEC Chemistries 

Anionic solutions contain 0.5 mg/ml low molecular weight (LMW) or high 

molecular weight (HMW) polyions that were dissolved in type I distilled water.  The 

components and their respective molecular weights are listed in Table 2-1.  The HMW 

anionic solution contained HMW sodium alginate, Mr=540 kDa, (Kelco, San Diego, CA) 

and cellulose sulfate, Mr=1200 kDa, (Janssen Chimica, Geel, Belgium).  For LMW 

formulations, LMW alginate, Mr=12 kDa (FMC Biopolymer, Drammen, Norway) and 

chondroitin sulfate, Mr=15 kDa, (Sigma Chemical Co., St. Louis, MO) were applied.  

The cationic solution contained 0.5 mg/ml spermine tetrahydrochloride, Mr=0.348 kDa, 

(Sigma Chemical Co., St. Louis, MO), poly (methylene-co-guanidine) hydrochloride 

(PMCG), Mr=5 kDa (Scientific Polymer Producs, Ontario, NY), calcium chloride (Sigma 

Chemical Co., St. Louis, MO), and 1% m/v Pluronic F-68 (Sigma Chemical Co., St. 

Louis, MO).  All solutions were filtered through 0.22 µm nylon filters (Nalgene, 

Rochester, NY).  With the exception of PMCG and Pluronic F-68, components all were 

derived from biological systems.  PMCG is a synthetic oligomer composed of arginine 

side chains (guanidinium moieties).  Table 2-2 describes the polymeric sources and 

current applications. 
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Table 2-1.   Components of similar (LMW) and dissimilar (HMW) molecular weight 
PEC chemistries.   PECs are prepared with and without the use of frequency dispergation 
to determine the effect of polyion molecular weight on efficiency of complexation 
determined by physicochemical observations.  The cationic baths for both LMW and 
HMW PEC formulations contained 1% m/v Pluronic F-68. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2-2.  Polyion sources and common uses.      
 
 

Polymer Source Current Application 
Sodium Alginate Algal cell walls Controlled release and 

bioadhesive systems1 
Cellulose Sulfate Plant-derived  anti-HIV clinical trials2 

Chondroitin Sulfate Animal cartilage, ligaments, 
tendons 

Osteoarthritis 
management3 

Spermine 
Tetrahydrochloride 

Mammalian sperm Cancer diagnosis and 
treatment4 

Calcium Chloride Ubiquitous salt in all organisms Cell and tissue 
polyelectrolyte 
maintenance5 

PMCG Synthetic Microencapsulation6-8 
 
 
 

Anion 

LMW 

HMW 

LMW Sodium Alginate 

   Chondroitin Sulfate 

HMW, HV Sodium Alginate 

Cellulose Sulfate 

Cation 

Spermine Tetrahydrochloride 

Poly-[Methylene co-Guanidine] (PMCG)  

Calcium Chloride 

Precursor Component MW (Da) 

12000 

15000 

540000 

1200000 

348 

111 

5000 

Pluronic F-68 8400 
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PEC Fabrication 

A batchwise, nonstoichiometric process was used to create the PECs. The solution 

of two anionic polyions (2 ml) was titrated into a cationic bath (20 ml), containing 

Pluronic F-68, with or without 20 kHz (maximum) frequency dispergation under 

conditions of mild mechanical stirring, as described in Figure 2-1, defined as “one batch”.  

The system consisted of a needle (#26 gauge) connected to a 5 ml syringe, which was 

inserted into an ultrasonic, hollow, titanium probe with a 1.85 mm ID conical tip.  The 

probe was connected to a transducer and power generator (Misonix, Farmingdale, NY).  

Anionic solution was slowly extruded via controlled air pressure (3 psig) at 1 ml/min.  

The complexes formed instantaneously9-11. 

 

 

 

 

 

 

 

 

 

Figure 2-1.  PEC fabrication. PECs can be formed instantaneously by extruding 2 ml 
anionic solution into the 20 ml cationic bath under mild stirring, defined as one batch.  
An ultrasonic dispergator converts anionic droplets into a fine mist via frequency input 
(0-20 kHz) where 0 kHz describes a dropwise titration under mechanical stirring. 

 

 

Air Flow 
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Colloidal Stability 

In preparation for biological study, stability of PEC systems was evaluated by 

suspending centrifuged preparations into various pH media and measuring their 

physicochemical response.  After preparation of LMW and HMW PECs with and without 

frequency dispergation, the 22 ml reaction suspension was transferred to 50 ml 

polypropylene ultracentrifuge tubes (Nalgene, Rochester, NY), the pH was measured 

(Fisher Accumet, Fairlawn, NJ), and the colloidal suspension was pelleted 3 times at 

35000xg at 4°C for 10 min (Beckman, Model L5-50, Rotor Type 60 Ti). Subsequent to 

the first two centrifugations, the pellet was resuspended in 1 mM sodium acetate buffer, 

pH 4.2. The final centrifugation was followed by dispersion in 10 ml of 1 mM buffer:  pH 

4.2 and 5.2 (sodium acetate/acetic acid), pH 6.2 (sodium citrate/citric acid), pH 7.2 and 

8.2 (Trizma/HCl), or pH 9.2 (carbonate-bicarbonate).  Each buffer was prepared in type I 

distilled water and filtered with a nylon 0.22 µm filter.  Subsequent to washings and final 

preparations, PECs were sonicated using a 1.045 liters (L) water bath in a sonication 

cylinder (Laboratory Supplies, Model #G1128P1G, Hicksville, NY) for 30 s in 10 s 

intervals. 

 

Transmission Electron Microscopy (TEM)  

Reaction mixture preparations were analyzed for morphology and ZetaSizer 

validation by pipetting a 20 µl sample volume onto a dry, Formvar coated, 400 mesh 

copper grid (Electron Microscopy Sciences, Hatfield, PA).  The volume was allowed to 

adsorb onto the grid surface for 30 s, after which the excess liquid was blotted carefully 

with filter paper.  The specimen was then viewed with a Philips CM-12, 120 keV electron 



 38 

microscope equipped with a CCD camera.  PEC diameter was evaluated by using point-

to-point pixel based measurements for a minimum of 280 individual observations using 

software complementary to the TEM CCD camera (Advanced Microscopy Techniques, 

Danver, MA). 

 

PEC Size and Zeta Potential 

Following colloidal preparations, washing and dispersion at varying pH, a 1 ml 

sample was removed for size and zeta potential measurement with the Malvern ZetaSizer 

Nano ZS (Malvern Instruments, Worcestershire, UK).  Each measurement was performed 

in triplicate within 24 h of preparation. A 750 µl aliquot was added by micropipettor to a 

Malvern disposable polystyrene cell (Malvern Instruments, DTS0012, Worcestershire, 

UK).  The cell is inserted into the Malvern ZetaSizer Nano ZS located in the Vanderbilt 

Institute for Nanoscale Science and Engineering (VINSE).  A standard operating 

procedure (SOP) was set up on the instrument to measure size and charge consecutively 

in triplicate after a one-minute temperature equilibration time.  

The particle-sizing device uses non-invasive back scattering  (NIBS) with photon 

correlation spectroscopy (PCS), which has a particle sensitivity in the range of 0.6 nm to 

10 µm.  The instrument applies the concept of Brownian motion, the random movement 

of particles due to the bombardment of surrounding solvent molecules.  The Brownian 

motion of particles inside the measurement cell, based on its size, is directly related to the 

intensity of light scattered in the area in which the NIBS is applied.  The intensity of 

light, measured by a digital auto correlator, is reflected back and fluctuates over time 

based on the size of particles.  Large particles will have a smaller change in intensity, 
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while small structures will induce large oscillations.  The changes in these oscillations are 

related to the diameter by a correlation function and the Stokes-Einstein equation (2-1) 

where k is Boltzmann’s constant, D is the diffusion coefficient, T temperature, µ 

viscosity, and dH the hydrodynamic radius of the particle. 

                                    D

kT
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Size-related measurements are reported as z-average mean, hydrodynamic 

diameter, and polydispersity index (PDI).  The z-average mean is classically the 

parameter most comparable to diameters measured by transmission electron 

microscopy12.  PDI is a dimensionless number that describes the heterogeneity of the 

sample, and it is scaled such that values less than 0.05 are rarely seen.  The maximum 

value is 1.000.  Values greater than 0.700 indicate a very broad size distribution and a 

lack of sample homogeneity.  

Zeta potential measurements involve laser doppler velocimetry (LDV) and fast 

field reversing (FFR) to reverse the electrical field, which induces an effective particle 

electroosmotic flow inside the cell.  Eventually the particle will migrate back to its 

original position and the effective mobility between these two locations is used to 

calculate the electrophoretic mobility.  The electrophoretic mobility is then used to 

directly calculate the zeta potential of the particles by a proprietary means. 

  

Protein Iodination 

 Drug loading and release was simulated by radioactively labeling ‘dummy’ 

proteins of different charges, adding them to the anionic stream for passive incorporation, 

and monitoring the release of the protein in biological media. The prototype proteins used 

(2-1) 
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were β-lactoglobulin (BLG), soybean trypsin inhibitor (STI), and cytochrome c (Cyt C).  

BLG,  (Sigma Chemical Co. St. Louis, MO) are proteins with well-established primary, 

tertiary, and quaternary structures with no biological activity13-16.  Table 2-3 displays the 

proteins and their respective molecular weights and isoeletric points.  All protocols 

involving radioactive materials were carried out in Medical Center North (MCN).     

 

 Table 2-3.  Properties of prototype proteins used for entrapment and release studies. 

 

Protein Molecular Weight (Da) Isoelectric Point (pI) 

β-lactoglobulin 18362 5.35 

soybean trypsin inhibitor 12000 10.8 

cytochrome c 21345 4.50 

 

 Proteins were labeled with I-125 through the use of IODO-BEADS® iodination 

reagent/kit (Pierce Biotechnology, Rockford. IL) and gel permeation chromatography.  

The IODO-BEADS® are N-chloro-benzenesulfonamide (sodium salt) immobilized on 

nonporous, polystyrene beads.  Two beads were washed twice with 100 mM phosphate 

buffered saline (Invitrogen/Gibco, Carlsbad, CA), pH=7.2 twice.  The beads were then 

transferred to a 1.5 ml microcentrifuge tube (Fisher, Fairlawn, NJ) and 150 µl fresh 

phosphate buffered saline (PBS) added. To the 10 µl carrier-free isotope solution (1 mCi, 

Amersham Biosciences, Pittsburgh, PA), 150 µl of PBS was added and the 160 µl 

pipetted to the separate IODO-BEADS/PBS mixture.  The solution, IODO-BEADS and 

I-125, was incubated 5 min at room temperature.  500 µg of protein was subsequently 
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mixed and the reaction was allowed to proceed for 15 min.  The reaction was stopped by 

removal of the solution from the microcentrifuge tube.  The resultant volume was then 

eluted with distilled water through a Sephadex G-50 GPC column over 18-20 0.500 ml 

fractions (Millipore, 2.6 cm ID x 40 cm, Billerica, MA).  After the column 

chromatography, the radioactivity each fraction (2 µl aliquot) was measured using a 

multi-purpose scintillation/gamma counter (Beckman Coulter LS 6500, Beckman 

Coulter).  Fractions with protein, labeled and unlabeled, appeared after the void volume 

followed by a peak corresponding to unreacted I-125 (Figure 2-2).  The peak containing 

protein was pooled and assayed for total protein content by the Micro BCA protein assay 

kit (Pierce Chemical Co., Rockford, IL).   

 
 
Figure 2-2.  Chromatogram for the preparation of iodinated cytochrome c.  Ordinate axis 
represents the radioactivity in terms of counts per minute (CPM). 
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PEC Protein Loading and Release Monitoring 

Protein release and entrapment was monitored by incorporating radioactive, 

iodinated STI, BLG, or Cyt C into PECs.  The PEC system was defined by initial 

physicochemistry and response to pH.  Therefore, the complexes used for these 

experiments were only formulation(s) that fit specific engineering criteria. 

PECs are prepared as described above in PEC Fabrication with 15 µg I-125 

protein mixed into the standard anionic solution.  The radioactivity of each sample 

accumulated during the course of an experiment was measured by multi-purpose 

scintillation/gamma counter with an output in terms of counts per minute (CPM).    The 

PECs were isolated by centrifugation three times as outlined in Colloidal Stability.  

Subsequent to each centrifugation, 1 ml of the supernatant was sampled.  Following the 

final centrifugation, supernatant decantment and sampling, the pellet is suspended in 1 ml 

of 100% fetal calf serum (Invitrogen/Gibco, Carlsbad, CA) to simulate mammalian blood 

plasma.  The suspension was removed, transferred to sterile 1.5 ml microcentrifuge tubes 

(Fisher, Fairlawn, NJ), added to a rotisserie spinner (Labquake Rotisserie Shaker, 

Dubuque, IA) and incubated at 37°C, 5% CO2, and 95% relative humidity.  Prior to 

incubation, a 10 µl volume was removed to calculate the protein incorporation efficiency.  

The entrapment efficiency (%EE) was calculated by equation 2-2.  PEC size of this 

volume was also measured as outlined in PEC Size and Zeta Potential after dilution with 

750 µl fetal calf serum (FCS). 
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Release was assessed every 24 h for seven days by centrifugation at 15000xg, 4°C 

under vacuum and supernatant sampling (1 ml). The PEC pellet is then resuspended in 1 

ml fresh fetal calf serum and re-incubated until experiment termination.  At the outset of 

the experiment, 1 ml of FCS was added to the final pellet and the percent retained (%R) 

was analyzed by equation 2-3. 
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The supernatants collected over the seven days can be used to calculate the percent 

released daily (%REL). 
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The cumulative protein released (%CUM) was represented by equation 2-5.    

                                               

! 

%CUM = %RELsup er
n=1

7

"                                                    (2-5) 

Additionally, the radioactivity was proportionally converted to represent protein by mass 

with equation (2-6).  Therefore, the quantities described by equations 2-2, 2-3, 2-4, and  

2-5 were plotted against mass vertical axes. 
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Polymer Labeling 

 Two different fluorescent molecules, conjugated to the terminal amine of PMCG, 

were applied for tracking PEC behavior in vitro and in vivo.  Fluorescent conjugates 

allowed the creation of colored particles and rapid, simple way to quantify cell-associated 

nanoparticles17.  Fluorescein isothiocyanate (FITC, Sigma Chemical Co., St. Lous, MO) 

while AlexaFluor 750 (AF750, Molecular Probes/Invitrogen, Eugene, OR) was utilized 

for longitudinal, in vivo imaging.  In both cases, fluorescent fractions were pooled for 

preparation of fluorescent PECs. 

 First, the amount of PMCG, adjusted to pH=9.0 with 100 mM NaOH, for a 15:1 

FITC/polymer molar ratio was dissolved in the reaction buffer, 10 mM carbonate-

bicarbonate, pH=9.0.  The FITC powder was then added to a foil-wrapped beaker and 

allowed to react under stirring for 2 h.  After 30 min of mixing, the solution was 

centrifuged at 15000xg for 30 min. The supernatant was removed and separated from 

unreacted FITC in a Sephadex G-50 GPC column (Millipore, 2.6 cm ID x 40 cm, 

Billerica, MA) using distilled water as elution solvent.  Eighty 0.450 ml fractions are 

collected in 12x25 borosilicate glass tubes (VWR, Westchester, PA).  The FITC labeled 

polymer is evaluated by measuring the fluorescence intensity of the fractions in a 96-well 

plate (Nunc, Rochester, NY) at λex 485 nm, λem 530 nm (FL600 Bio-Tek Instruments, 

Winooski, VT).  Again, the first peak that emerged after the void volume corresponded to 

the fractions of labeled constituent (Figure 2-3). 
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Figure 2-3.  Separation of FITC-PMCG from unreacted FITC. 

 

AF750 was conjugated to PMCG in 10 mM carbonate-bicarbonate buffer, pH=9.  

AF750 was suspended, first, in 100 µl 99% dimethyl sulfoxide (DMSO, Sigma Chemical 

Co., St. Louis, MO), then added to PMCG in a 200:1 PMCG/AF750 mass ratio with 

carbonate-bicarbonate buffer in a foil-wrapped beaker, total volume 2 ml.  The reaction 

proceeded, under stirring, for 24 h at room temperature.  The mixture is then spun down 

at 15000xg, 30 min. The supernatant was removed and separated from unreacted AF750 

in a Sephadex G-50 GPC column (Millipore, 2.6 cm ID x 40 cm, Billerica, MA) using 

distilled water as elution solvent.  Eighty 0.450 ml fractions are collected in 12x25 

borosilicate glass tubes (VWR, Westchester, PA).  Conjugated and free AF750 peaks 

were visualized by pipetting a small volume of each fraction to a 96-well plate.  The 

fluorescence was measured with the iodocyanine green (ICG) filter (λex 710-760 nm, λem 

810-875 nm) on the Xenogen IVIS 200 Imaging System.  

 



 46 

Fluorescent PEC Preparation  

Fluorescent PECs were prepared by first adding 250 µl of pooled FITC or AF750 

PMCG to the standard cationic solution, outlined in PEC Chemistries, under stirring for 

30 min, followed by filtration through a nylon 0.22 µm filter.  PECs are created as 

described by PEC Fabrication.  The complexes were isolated by centrifugation three 

times as outlined in Colloidal Stability.  After the final centrifugation and supernatant 

removal, the pellet was suspended in varied solutions depending on the application.  The 

stability and effect of exchange reactions was evaluated by suspension of fluorescent 

PECs in physiological solutions (cell growth media and 10 mM HEPES buffer, pH=7.4) 

and tracking the release in a similar experimental and analytical manner described in 

PEC Protein Release Monitoring.  The release of FITC in each buffer was less than 10% 

over 24 h. 

 

Incorporation of TSP521:  Direct Surface Coupling and Passive Entrapment 

PEG-conjugated TSP521 (MW~20000 Da), was supplied by the Davidson Lab 

(VUMC Department of Pathology).  TSP521 (Bio-Synthesis, Inc, Lewisville, TX) was 

synthetically prepared with one terminal cysteine. Upon PEGylation as described by 

Carlesso18, TSP521 was dissolved in distilled water and treated with a fresh water 

solution of 50 mM Tris(2-carboxyethyl)-Phosphine HCl (TCEP, Sigma Chemical Co., St. 

Louis, MO) for 30 minutes at room temperature, in order to convert the peptide disulfide 

dimer to reactive monomer.  After 30 min, the pH was adjusted to 6.5 and freshly water 

dissolved PEG-maleimide (provided by Dr. Yasuhiko Iwasaki of the Tokyo Medical & 

Dental University, Japan) was added in an equimolar ratio.  The reaction was allowed to 
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proceed for 4 h at room temperature. The resulting PEGylated peptides were dialyzed 

using a Slidealizer Cassette (Pierce Chemical Co., Rockford, IL) with 5 kDa cutoff 

against four changes of 10 mM Tris-HCl, pH 7.3 at 4°C to remove free peptide.  

PEGylated TSP521 was incorporated into the PEC by addition of 0.750 mg PEGylated 

TSP521 to the anionic solution.  PECs, fluorescent or standard, were prepared as 

described in PEC Fabrication. The complexes were isolated by centrifugation three times 

as outlined in Colloidal Stability.  After the final centrifugation and supernatant removal, 

the pellet was suspended in varied solutions depending on the application.  Additionally 

the incorporation of PEGylated TSP521 was evaluated by using FITC-labeled TSP521 

(Bio-Synthesis, Inc, Lewisville, TX) followed by PEG conjugation.  The incorporation 

efficiency of conjugate was calculated by equation 2-7, where F0,TSP521 is the fluorescence 

of the anionic or cationic stock and Ffinal,TSP521  is the fluorescence of the final suspension. 

The fluorescence intensity of the preparation was measured in a 96-well plate (Nunc, 

Rochester, NY) at λex 485 nm, λem 530 nm (FL600 Bio-Tek Instruments, Winooski, VT).   
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•100                            (2-7) 

 TSP521 was coupled directly to the PEC surface using 1-ethyl-3-(3-dimethyl-

aminopropyl) carbodiimide (EDAC)/N-hydroxysuccinimide (NHS) two-step, zero-length 

cross-linking.  TSP521 only contains one amino acid with a reactive carboxylic acid, 

aspartate, which allowed for its direct conjugation.  One PEC batch, fluorescent or 

standard, was coupled to 0.100 mg TSP521 by a procedure described by Grabarek and 

Gergely19.  The third centrifugation was followed by PEC suspension in 500 µl 100 mM 
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2-[N-morpholino]-ethane sulfonic acid (MES, Sigma Chemical Co. St. Louis, MO), pH 

6.0.   

Separately, 100 µg 1 mg/ml TSP521 (Biosynthesis Inc., Lewisville, TX), 100 µl 4 

mg/ml 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDAC, Sigma 

Chemical Co., St. Louis, MO), and 60 µl 4 mg/ml N-hydroxysuccinimide (NHS, Sigma 

Chemical Co., St. Louis, MO were mixed in a total volume of 500 µl MES buffer, 

pH=6.0.  This step, activation of TSP521, was allowed to react for 30 min at room 

temperature on a rotisserie spinner (Labquake Rotisserie Shaker, Dubuque, IA).  The 

reaction was terminated by addition of 3 µl 99% β-mercaptoethanol.  

TSP521/EDAC/NHS was then added to the 500 µl PEC suspension, followed by 

incubation at room temperature for 2 h.  The 1 ml suspension was transferred to 50 ml 

polypropylene ultracentrifuge tubes (Nalgene, Rochester, NY) and centrifuged once at 

35000xg at 4°C for 10 min.  The supernatant was discarded and pellet suspended in 

various buffers or biological media.   Analogous to the determination of incorporation 

efficiency of PEGylated TSP521, the effectiveness of direct conjugation was calculated 

by an identical expression.   

 

Cell Line and Maintenance 

The cell line used for these studies is a human microvascular endothelial cell line 

(HMVEC-1) generously provided by R. Swerlick of Emory University.  The cells are 

maintained in MCDB 131 medium supplemented with 5% FCS (Invitrogen/Gibco, 

Carlsbad, CA), 20 mM L-Glutamine, 100 U/ml penicillin, 100 µg/ml streptomycin, 500 

µg/ml hydrocortisone, 0.001 µg/ml epidermal growth factor (maintenance medium).  
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During maintenance, the cells are cultured in T-flasks (Corning, Corning, NY) at 33°C, 

5% CO2, and 95% relative humidity.  After 3-4 days, cells are detached using 0.25% 

trypsin/0.1% EDTA, counted by hemacytometer, and resuspended in fresh growth 

medium.   

 

Confocal Microscopy 

FITC-labeled PECs were prepared as described in Fluorescent PECs.  The PECs 

were suspended in 20 ml MCDB 131 complete media in preparation for microscopic 

studies.  One day prior to PEC fabrication, confluent cells at approximately day 4 of 

culture, viability of 90% or greater by trypan blue exclusion, are detached from one T-75 

cm2 parent flask, diluted, and seeded to 8-well microscope slides (Lab-TekTM II Chamber 

Slide System, Electron Microscopy Sciences, Hatfield, PA) at 5000 cell/well.  Cells are 

allowed to attach overnight at 37°C, 5% CO2, and 95% relative humidity in regular 

maintenance medium.  After the 24 h incubation, FITC-PMCG complexes (400 

µl/chamber) were added.  Cells were allowed to interact with PECs for up to 24 h, 

followed by aspiration and three washing steps with 4°C PBS.  The cultures were then 

fixed with cold methanol (200 µl) at -20°C for 30 min.  The nuclei were stained with 

TOPRO-3 (Molecular Probes/Invitrogen, Eugene, OR), 150 µl 200 ng/ml, for 10 min.  

The stain was then removed along with the chambers and mounted with a glass coverslip.  

Images were then visualized and collected with a 3-track confocal microscope (Zeiss 

LSM-510, Thornwood, NY) using the appropriate fluorescence filters:  λem=488 nm 

(FITC), λem=543 nm (Rhodamine), λem=633 nm (AlexaFluor 647, Cy-5).  A technique 

called z-sectioning, was applied to determine if PECs localized in the same optical plane 
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as cells. By varying the distance between the objective pinhole and the specimen over 

fixed increments, a ‘z-series’ was generated that dissects and collects images through the 

specimen. 

 
 

Flow Cytometric (FACS) Detection of PEC/Cell Interactions 

Flow cytometry measures and then analyzes multiple physical characteristics of 

single particles, usually cells, as they flow in a fluid stream through a beam of light.  The 

properties measured include a particle’s relative size, relative granularity or internal 

complexity, and relative fluorescence intensity.  These characteristics are determined 

using an optical-to-electronic coupling system that records how the cell or particle 

scatters incident laser light and emits fluorescence.   

A typical flow cytometer is made up of 3 systems:  fluidics, optics, and 

electronics.  In a flow cytometer, particles or cells are carried to the laser intercept in a 

fluid stream.  Any suspended material from ~0.200 µm to 150 µm in size is suitable for 

analysis.  When particles pass through the laser intercept, they scatter laser light.  Any 

fluorescent molecules present on the particle fluoresce.   The scattered and fluorescent 

light is collected by appropriately positioned lenses.  A combination of beam splitters and 

filters steers the scattered and fluorescent light to the appropriate detectors.  The detectors 

produce electronic signals proportional to the optical signals striking them.  Two types of 

scattered light, in addition to the fluorescence, are analyzed and displayed in Figure 2-4: 

• Forward-scattered light (FSC):  proportional to cell surface area or size 

• Side-scattered light (SSC):  proportional to cell granularity or internal 

complexity.   
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Figure 2-4.  Light-scattering properties of a cell.  Correlated measurements of FSC and 
SSC can allow for differentiation of different cell types. 
 

 Flow cytometric evalution of cellular interactions with PECs were performed by 

first, seeding cells to 48-well plates (Nunc, Rochester, NY) 24 h previous to the 

experiment.  Confluent cells at approximately day 4 of culture are detached and counted 

by hemacytometer from 2 T-75 cm2 parent flasks.  The volumes were combined and 

volumes equivalent to 50000 cell/well are added to each well.  HMVECs were permitted 

to attach overnight at 37°C, 5% CO2, and 95% relative humidity in complete MCDB131.  

Following the ~24 h incubation, experiments were performed by exposing HMVECs to 

PECs under various concentration and inhibitor schemes (detailed later).  At the outset of 

an experiment, the test media containing PECs was removed and the cultures washed 

thrice with 4°C PBS.  Cells are then detached with 200 µl 0.25% trypsin/0.1% EDTA (2 

min) or 5 min exposure to 5 mM EDTA in 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES, Sigma Chemical Co., St. Louis MO), depending 

on the experiment.  The majority of experiments were detached with EDTA as discussed 

in later chapters.  Detachment was terminated by the addition of FACS buffer (3% FCS 

Light source 

SSC detector 

FSC detector 
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in PBS).  The detachment was followed by cell suspension transfer to 4 ml FACS tubes 

(BD Falcon, San Jose, CA) and centrifugation at 200xg for 10 min.  The supernatant was 

removed and cells suspended in 200 µl FACS buffer.  The tubes were kept on ice until 

arrival at the FACS instrumentation.  Excitation of samples was performed with a 15 mW 

488 nm (λex 485 nm ) argon ion laser and detected with either λem =515-545 nm (FITC) 

or λem =564-606 nm filters. 

 A standard experiment included acquisition of HMVECs in the absence of PECs 

to establish a background.  The samples exposed to PECs were then acquired.  SSC, FSC, 

and FITC outputs were collected in list mode form and analyzed with FloJo  (Treestar, 

Inc., Ashland, OR).  The first round of acquisition yielded the total amount of cell-

associated fluorescence (MFtotal), due to FITC PECs.  MF also represents the median 

fluorescent index (MFI).  The internalized fluorescence was determined by adding 120 µl 

0.4 mg/ml trypan blue (TB, Mediatech, Herndon, VA) and re-acquiring the sample to 

give MFinside.  TB quenches extracellular FITC20-22, giving the opportunity to evaluate the 

cellular compartmentalization of PECs (equation 2-8): 

                                               

! 

MFtotal = MFsurface + MFinside                                              (2-8) 

 

Saturation PEC-Cell Association Kinetics 

 Fluorescent PECs were prepared as described above and suspended in 20 ml 

complete MCDB 131.  Cell exposure, in 48-well plates, to 400 µl PECs was monitored 

for t=0, 5, 10, 15, 20, 30, 60, and 120 min.  The 2 h incubation was followed by 

aspiration, washing, detachment, centrifugation, and addition of FACS buffer.  Flow 
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cytometric measurements, minimally 10000 events, with and without TB were performed 

within 30 minutes using a 4-color FACSCalibur (BD Biosciences, Mountain View, CA)  

 

PEC Acute Toxicity by Propidium Iodide (PI) 

 Acute toxicity of fluorescent PECs was detected by propidium iodide (PI, 

Molecular Probes/Invitrogen, Eugene, OR) as described by Rasola, and Geuna23.  Cells 

were exposed to PECs as described in Saturation PEC Cell Association Kinetics, 

detached after 2 h PEC exposure using 0.25% trypsin/0.1% EDTA, centrifuged and 

resuspended in 200 µl FACS buffer.  PI, 40 µl 0.01 mg/ml, was added to each sample 1 

min prior to FACS acquisition.  The cytometer applied was the 4-color FACSCalibur 

(BD Biosciences, Mountain View, CA) cytometer.  For each sample, 10000 events were 

collected.  The PI fluorescence was collected through a λem =564-606 nm filter after 

excitation of the fluorochrome at 488 nm (λem).  The toxicity was represented as percent 

control, control being cultures without PECs. 

   

Treatment of Cells with Various Inhibitors   

HMVEC-1 cells were prepared as described above. At the end of the exposure, 

cells were washed, detached and analyzed by flow cytometry (see above).  Inhibition 

strategies include extracellular heparin, reduced temperature (thermodynamics), 2-

deoxyglucose/azide (metabolism), cytochalasin D (actin filaments), HSPG biosynthetic 

effects (4-nitrophenyl xylopyranoside), and surface receptor proteolysis (trypsin).  

Fluorescent PEC concentrations were one batch suspended in 20 ml MCDB 131 complete 

media.  Wells received 400 µl PECs in media or media alone.  In each case, at least one 
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well was maintained at normal cell culture conditions.  Inhibitors were applied for 30 

minutes at standard incubatory conditions (37°C, 5% CO2, and 95% relative humidity), 

unless otherwise indicated previous to detachment by 5 mM EDTA. Flow cytometric 

measurements with and without TB were performed within 30 minutes using a 4-color 

FACSCalibur (BD Biosciences, Mountain View, CA) cytometer.  For each sample, 

10000 events were collected.  Inhibitors did not elicit any cellular toxicity as defined by 

PI measurements. 

  To evaluate the effect of free glycosaminoglycans24,25 on PEC association, two 

hours previous to PEC exposure, cultures were pre-incubated with 200 U/ml USP grade 

heparin (Celsus Laboratories, Cincinnati, OH) followed by a PBS wash, and a cocktail of 

200 U/ml heparin, particle concentration indicated above, and growth media. 

Energy dependence was assessed by 2-deoxyglucose/sodium azide26 and reduced 

temperature (4°C)27.  For temperature effects, HMVECs were pre-incubated in a 

refrigerator at 4°C for 1 h in complete MCDB 131.  The media was then removed and 

PECs added followed by refrigeration.  50 mM 2-deoxyglucose (2-DOG, Sigma 

Chemical Co., St. Louis, MO) and 0.05% v/v sodium azide (Sigma Chemical Co., St. 

Louis, MO) was prepared in complete media and added to HMVEC-1 cultures 1 h 

previous to PEC exposure.  PECs and 2-DOG/azide were then pipetted to the plate after 

aspiration of pre-incubatory media. 

The effect of actin on PEC association was evaluated by exposure to 10 µM 

cytochalasin D28,29 (Sigma Chemical Co., St. Louis, MO).  Cell pre-incubation prior to 

PEC/cytochalasin D treatment elapsed 2 h.  Cells were then treated with PECs for the 

time period indicated above. 
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24 hours after HMVEC-1 seeding to 48 well plates, cells are washed and exposed 

to 500 µM 4-nitrophenyl-α-xylopyranoside (α-xyl) or 4-nitrophenyl-β-xylopyranoside 

(β-xyl) overnight to elucidate the role of HSPG in PEC association.  β-xyl at µM-mM 

concentrations has been found to suppress proteoglycan biosynthesis while α-xyl does 

not30,31.  The overnight exposure to α-xyl or β-xyl was followed by exposure to PEC.  

Comparison of these two xylopyranoside isomers provided the appropriate controls. 

 Tryptic cleavage of PEC association was measured by detaching cells with 0.25% 

trypsin/0.1% EDTA and comparison to 5 mmol/l EDTA monolayer removal.  PECs were 

added to culture for the time period indicated above.  Subsequent to the washings, 

HMVECs are removed with either trypsin or EDTA. 

 

Particle Counting 

  Particle concentration, in terms of PEC/ml, was determined by flow cytometry 

(FACS Aria, BD Biosciences).  The FACSAria was fitted with SSC, FITC, and FSC 

detection lasers.  In particular, the FSC laser was adapted with a photomultiplier tube to 

magnify the signal generated from PEC size.  Firefli 200 nm fluorescent green (ex 

468/em 530 nm) polystyrene microspheres (Duke Scientific Corporation, Palo Alto, CA) 

of known concentration were processed and detected using forward and side scatter 

lasers.  The number of events recorded over fixed period of time (60s) was used to 

develop a standard calibration curve.  This calibration curve was then used to evaluate 

PEC recorded events and thus concentration over four logs of arbitrary dilution for one 

batch of fluorescent PECs.  The populations of PECs were analyzed for fluorescence by 

FACSDiva software (BD Biosciences, Mountain View, CA) to normalize fluorescence 
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units in terms of PEC/ml.  Free and bound particle concentrations are defined based on 

ordinary linear interpretation and proportionality.  Resultant PEC concentrations for 

direct association and inhibitor experiments were determined to be 1.54x109 PEC/ml.  In 

each case, media and cell fluorescent backgrounds were established. 

 

PEC Effects on HMVEC-1 Proliferation 

 One day before PEC exposure, cells are plated to 48 well plates at a density of 

25000 cell/well, successive to detachment of 2 T-75 cm2 flasks at day 4 culture.  After an 

~20 h attachment and acclamation period, cells were exposed to serial dilutions of non-

targeted and targeted PECs (PEGylated and EDAC/NHS coupled TSP521) for 72 h 

without media change.  Subsequent to the 72 h exposure, media for all wells were 

removed and HMVEC-1 cell growth was measured using the Titer 96® Aqueous One 

Solution Cell Proliferation Assay (Promega, Madison, WI, USA).  Each well then 

received 300 µl fresh MCDB 131, followed by 20 µl of dye solution, 3-(4,5-

Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT).  Incubation for 40 min at 

37°C, 5% CO2, 95% relative humidity ensued.  Absorbance at 490 nm was determined by 

microplate reader (µQuant, Bio-Tek Instruments, Winooski, VT).  All results were 

normalized to the control (no PECs). 

 

Scatchard Plots 

Scatchard titrations were prepared by exposing HMVEC-1 cells to serial dilutions 

of targeted, PEGylated and EDAC/NHS ligated TSP521, and non-targeted PEC for 3 

hours at normal incubatory conditions.  One day previous, 50000 cells/well were seeded 
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and incubated at 37°C, 5% CO2, 95% relative humidity after detachment of 2 T-75 cm2 

flasks at approximately day 4 of culture.  Separate plates were incubated at 4°C to shut 

down the endocytosis of PECs32.  The exposure was followed by detachment and 

acquisition of MFI by FACSAria (BD Biosciences, Mountain View, CA). For each 

sample, 10000 events were collected by list-mode data that consisted of side scatter, 

forward scatter, and fluorescence emission centered at 530 nm (FITC).  Bound median 

fluorescence indices (MFI) were determined using FACSDiva software.  Free, unbound 

median fluorescence indices were evaluated by mass balance.  These values were then 

converted to PEC concentration.  Scatchard plots were prepared by plotting bound 

PEC/free PEC versus bound PEC as described classically33. 

 

In Vivo Imaging 

 Non-invasive, longitudinal, whole animal imaging of mice was performed with 

AF750-PMCG fluorescent PECs.  Animals procedures, performed in VUMC, followed 

the Vanderbilt University Institutional Care and Use Committee.  Male BALBc, 

approximately 4-6 weeks of age, were obtained from Charles River Laboratories 

(Cambridge, MA).  Prior to injection, animals were shaved and anaesthetized.  Retro-

orbital injections were then administered:  100 µl AF750-PMCG PECs suspended in 1 ml 

5 mM HEPES, pH=7.6 (one batch).  Animals were imaged immediately after injections, 

3 h, 6 h, 24 h, and 48 h with the IVIS 200 small animal imaging system fitted with an 

ICG filter (λex 710-760 nm, λem 810-875 nm).  Each time point was followed by animal 

sacrifice by cervical dislocation and organ extraction.  Individual organs (bladder, 

kidneys, heart, lungs, liver, spleen) were transferred to 6 well plates (Nunc, Rochester, 
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NY) and imaged.  The fluorescence of each well was extracted using the Living Image 

software package integrated with IgorPro 5  (Wavemetrics, Lake Oswego, OR) in terms 

of pixel flux. 

 

Histology 

Following animal euthanasia, sections of animal organs were prepared for 

delivery to the VUMC Immunohistochemistry Core (IHC).  All organs were fixed 

overnight on 10% buffered neutral formalin. Tissue paraffin blocks were made by 

embedding the tissue in melted paraffin.  Paraffin-tissue section were cut and mounted 

onto the glass slides. Sections were deparaffinized and stained with hematoxylin and 

eosine for staining nuclei and cytoplasmic components, respectively. Slides were then 

examined using an upright light microscope (Olympus BX50, Olympus, Center Valley, 

PA) and documented using QCapture Software (QImaging, Barnaby, BC, Canada). 

 

Process Scale Up with Kenics Static Mixer 

To evaluate the scale up ability of the PEC production process, Kenics static 

mixer technology was applied because it has the potential to yield large product titers as 

opposed to small batch volumes.  The particles are created by simple stream mixing over 

alternating right and left hand elements.  Static mixers are tubular reactors and are 

advantageous because they can offer high residence times, liquid phase plug flow at low 

Reynolds Numbers, and are adaptable to aseptic processing.  These types of mixer arrays 

have been suggested as an alternative to traditional stirred tank reactors and preliminary 

evidence has been found that the static mixer can hold promise for the synthesis of 
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pharmaceuticals34.  The Kenics mixer applied herein was 6.35 mm I.D., 21 cm in length, 

and made of stainless steel (Chemineer, North Andover, MA).  Polyionic solutions were 

prepared as described in PEC Chemistries and complexed using the same stoichiometry.  

Solutions were pumped from reservoirs through 16 gauge polypropylene tubing (Cole 

Parmer, Vernon Hill, IL) using a peristaltic pump (Cole Parmer, Vernon Hills, IL).  The 

flow rate ratios (ml/min), cation to anion, included 200:20, 160:16, 120:12, and 90:9.  

Aqueous particle suspensions were allowed to accumulate for 30 s in a 250 ml glass 

beaker (Kimble, Vineland, NJ) under moderate stirring.  The process was repeated for 

each ratio of flows and at the outset of 30 s, a 1 ml sample is removed for size and zeta 

potential measurement with the Malvern ZetaSizer Nano ZS and physciochemical 

properties as described in PEC Size and Zeta Potential. 

 

Qualitative Assessment of Static Mixer Efficiency 

The mixing efficiency of the Kenics static mixer was evalulated by a parallel 

competing reaction scheme at various Reynolds numbers representative cation to anion 

stoichiometries encountered during continuous LMW and HMW PEC production.  The 

two competing reactions, established by Fournier35 and further applied by Fang and 

Lee36, are borate neutralization and the Dushman reaction, both of which compete for 

hydrogen ions.  Equations 2-9, 2-10, and 2-11 describe the system: 

H2BO3
- + H+                   H3BO3   

 

                                    5I- + IO3
- + 6H+            3I2 + 3H2O  

 

                            I- + I2                I3     

 

(2-9) 

(2-10) 

(2-11) 
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The amount of iodine produced depends on the efficiency of the mixer when acid is the 

limiting reagent.  If the mixing efficiency is high, then the H+ ions would be dissipated 

through 2-9, a quasi-instantaneous reaction, and no iodine would form.  On the other 

hand, if the mixing efficiency is low, most of the injected protons would be consumed by 

reactions 2-10 and 2-11, orders of magnitude slower reactions than 2-9.  The iodine, upon 

formation, goes to tri-iodide, which can be detected spectrophotometrically. The bulk 

solution, a mixture of H2BO3/IO3
-/I-, will mimic the cation while the anion will be H+ in 

the form of low concentration sulfuric acid.  These conditions will simulate the 

limiting/excess reactant conditions applied in the PEC production process.   

The H2BO3/IO3
-/I solution was prepared by dissolution of 0.75 g H3BO3 in 700 ml 

water using a 1 L beaker.  The pH was then adjusted to 9.14 with NaOH.  This ensured 

equimolar concentrations of H2BO3
- and H3BO3.  In a separate beaker, 0.500 g KIO3 and 

1.93 g KI were freshly dissolved in 100 ml water.  The two solutions were then combined 

and final volume diluted to 1 L with approximately 200 ml water.  0.005 M H2SO4 was 

used as the acid source.  All chemicals were purchased from Sigma Chemical Co. 

 Solutions were pumped from reservoirs through 16 gauge polypropylene tubing 

using a peristaltic pump.  The flow rate ratios (ml/min), H2BO3/IO3
-/I to H2SO4 included 

200:20, 160:16, 120:12, and 90:9.  Reynolds numbers were calculated by equation 2-12:   

                                                           

! 

Re =
"VD

µ
                                                        (2-13) 

where v was velocity of fluids through the mixer (m/s) and D the diameter (m).  ρ (g/m3) 

and µ (g m-1s-1) were the density and viscosity of water at room temperature.  
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Aqueous particle suspensions were allowed to accumulate for 20 s in a 250 ml glass 

beaker (Kimble Vineland, NJ) under moderate stirring.  A 200 µl volume of effluent was 

removed and the absorbance measured at 353 nm using a microplate reader (µQuant, 

Bio-Tek Instruments, Winooski, VT).  The concentration of tri-iodide ion was calculated 

by equation 2-12 (Beer’s Law): 

                                                

! 

[I
3
] =

A
353

"a
                                                        (2-13) 

with an ε equal to 26.06 L mmol-1cm-1 and a, the path length, of 0.646 cm as defined by 

Guichardon and Falk37.



 62 

References 

1. Johnson, F. A.; Craig, D. Q. M.; Mercer, A. D. "Characterization of the block 
structure and molecular weight of sodium alginates" Journal of Pharmacy and 
Pharmacology 1997, 49, 639-643. 

2. Neurath, A. R.; Strick, N.; Li, Y. Y. "Anti-HIV-1 activity of anionic polymers: a 
comparative study of candidate microbicides" Bmc Infectious Diseases 2002, 2, 
27-37. 

3. Echard, B. W.; Talpur, N. A.; Funk, K. A.; Bagchi, D.; Preuss, H. G. "Effects of 
oral glucosamine and chondroitin sulfate alone and in combination on the 
metabolism of SHR and SD rats" Molecular and Cellular Biochemistry 2001, 
225, 85-91. 

4. Bachrach, U. "Polyamines and cancer: Minireview article" Amino Acids 2004, 26, 
307-309. 

5. Loret, B.; Simoes, F. M. F. "Mechanical effects of ionic replacements in articular 
cartilage. Part I: The constitutive model" Biomechanics And Modeling In 
Mechanobiology 2005, 4, 63-80. 

6. Muller, M.; Brissova, M.; Rieser, T.; Powers, A. C.; Lunkwitz, K. "Deposition 
and properties of polyelectrolyte multilayers studied by ATR-FTIR spectroscopy" 
Materials Science & Engineering C-Biomimetic And Supramolecular Systems 
1999, 8-9, 163-169. 

7. Lacik, I.; Brissova, M.; Anilkumar, A. V.; Powers, A. C.; Wang, T. "New capsule 
with tailored properties for the encapsulation of living cells" Journal Of 
Biomedical Materials Research 1998, 39, 52-60. 

8. Wang, T.; Lacik, I.; Brissova, M.; Anilkumar, A. V.; Prokop, A.; Hunkeler, D.; 
Green, R.; Shahrokhi, K.; Powers, A. C. "An encapsulation system for the 
immunoisolation of pancreatic islets" Nature Biotechnology 1997, 15, 358-362. 

9. Carlesso, G.; Kozlov, E.; Prokop, A.; Unutmaz, D.; Davidson, J. M. 
"Nanoparticulate system for efficient gene transfer into refractory cell targets" 
Biomacromolecules 2005, 6, 1185-1192. 

10. Prokop, A.; Holland, C. A.; Kozlov, E.; Moore, B.; Tanner, R. D. "Water-based 
nanoparticulate polymeric system for protein delivery" Biotechnology and 
Bioengineering 2001, 75, 228-232. 

11. Prokop, A.; Kozlov, E.; Carlesso, G.; Davidson, J. M. "Hydrogel-based colloidal 
polymeric system for protein and drug delivery: Physical and chemical 
characterization, permeability control and applications" Advances in Polymer 
Science 2002, 160, 119-173. 



 63 

12. Ito, T.; Sun, L.; Bevan, M. A.; Crooks, R. M. "Comparison of nanoparticle size 
and electrophoretic mobility measurements using a carbon-nanotube-based 
coulter counter, dynamic light scattering, transmission electron microscopy, and 
phase analysis light scattering" Langmuir 2004, 20, 6940-6945. 

13. Bacchin, P. "A possible link between critical and limiting flux for colloidal 
systems: consideration of critical deposit formation along a membrane" Journal of 
Membrane Science 2004, 228, 237-241. 

14. Burova, T. V.; Grinberg, N. V.; Visschers, R. W.; Grinberg, V. Y.; de Kruif, C. G. 
"Thermodynamic stability of porcine beta-lactoglobulin - A structural relevance" 
European Journal of Biochemistry 2002, 269, 3958-3968. 

15. Croguennec, T.; Molle, D.; Mehra, R.; Bouhallab, S. "Spectroscopic 
characterization of heat-induced nonnative beta-lactoglobulin monomers" Protein 
Science 2004, 13, 1340-1346. 

16. Patrickios, C. S.; Yamasaki, E. N. "Polypeptide amino-acid-composition and 
isoelectric point.2. comparison between experiment and theory" Analytical 
Biochemistry 1995, 231, 82-91. 

17. Huang, M.; Ma, Z. S.; Khor, E.; Lim, L. Y. "Uptake of FITC-chitosan 
nanoparticles by a549 cells" Pharmaceutical Research 2002, 19, 1488-1494. 

18. Carlesso, G.; Hartig, S. M.; Higginbotham, J. N.; Kozlov, E. A.; Roberts, D. D.; 
Prokop, A.; Davidson, J. M. "Enhancement of binding and gene delivery to 
endothelial cells by targeted nanoparticulate polyelectrolyte complexes" 2006, In 
Preparation. 

19. Grabarek, Z.; Gergely, J. "Zero-Length Crosslinking Procedure With The Use Of 
Active Esters" Analytical Biochemistry 1990, 185, 131-135. 

20. Nuutila, J.; Lilius, E. M. "Flow cytometric quantitative determination of ingestion 
by phagocytes needs the distinguishing of overlapping populations of binding and 
ingesting cells" Cytometry Part A 2005, 65A, 93-102. 

21. Rejman, J.; Oberle, V.; Zuhorn, I. S.; Hoekstra, D. "Size-dependent 
internalization of particles via the pathways of clathrin-and caveolae-mediated 
endocytosis" Biochemical Journal 2004, 377, 159-169. 

22. Vanamersfoort, E. S.; Vanstrijp, J. A. G. "Evaluation of a flow cytometric 
fluorescence quenching assay of phagocytosis of sensitized sheep erythrocytes by 
polymorphonuclear leukocytes" Cytometry 1994, 17, 294-301. 

23. Rasola, A.; Geuna, M. "A flow cytometry assay simultaneously detects 
independent apoptotic parameters" Cytometry 2001, 45, 151-157. 



 64 

24. Mislick, K. A.; Baldeschwieler, J. D. "Evidence for the role of proteoglycans in 
cation-mediated gene transfer" Proceedings Of The National Academy Of 
Sciences Of The United States Of America 1996, 93, 12349-12354. 

25. Wiethoff, C. M.; Smith, J. G.; Koe, G. S.; Middaugh, C. R. "The potential role of 
proteoglycans in cationic lipid-mediated gene delivery - studies of the interaction 
of cationic lipid-DNA complexes with model glycosaminoglycans" Journal Of 
Biological Chemistry 2001, 276, 32806-32813. 

26. Panyam, J.; Labhasetwar, V. "Dynamics of endocytosis and exocytosis of 
poly(D,L-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells" 
Pharmaceutical Research 2003, 20, 212-220. 

27. Huth, U. S.; Schubert, R.; Peschka-Suss, R. "Investigating the uptake and 
intracellular fate of pH-sensitive liposomes by flow cytometry and spectral bio-
imaging" Journal Of Controlled Release 2006, 110, 490-504. 

28. Nakase, I.; Niwa, M.; Takeuchi, T.; Sonomura, K.; Kawabata, N.; Koike, Y.; 
Takehashi, M.; Tanaka, S.; Ueda, K.; Simpson, J. C.; Jones, A. T.; Sugiura, Y.; 
Futaki, S. "Cellular uptake of arginine-rich peptides: roles for macropinocytosis 
and actin rearrangement" Molecular Therapy 2004, 10, 1011-1022. 

29. Suzuki, T.; Futaki, S.; Niwa, M.; Tanaka, S.; Ueda, K.; Sugiura, Y. "Possible 
existence of common internalization mechanisms among arginine-rich peptides" 
Journal Of Biological Chemistry 2002, 277, 2437-2443. 

30. Belting, M. "Heparan sulfate proteoglycan as a plasma membrane carrier" Trends 
In Biochemical Sciences 2003, 28, 145-151. 

31. Belting, M.; Persson, S.; Fransson, L. A. "Proteoglycan involvement in polyamine 
uptake" Biochemical Journal 1999, 338, 317-323. 

32. Wiley, H. S.; Cunningham, D. D. "A steady-state model for analyzing the 
cellular-binding, internalization and degradation of polypeptide ligands" Cell 
1981, 25, 433-440. 

33. Scatchard, G. "The attractions of proteins for small molecules and ions" Annals of 
the New York Academy of Sciences 1949, 51, 660-672. 

34. Brechtelsbauer, C.; Ricard, F. "Reaction engineering evaluation and utilization of 
static mixer technology for the synthesis of pharmaceuticals" Organic Process 
Research & Development 2001, 5, 646-651. 

35. Fournier, M. C.; Falk, L.; Villermaux, J. "A new parallel competing reaction 
system for assessing micromixing efficiency - determination of micromixing time 
by a simple mixing model" Chemical Engineering Science 1996, 51, 5187-5192. 



 65 

36. Fang, J. Z.; Lee, D. J. "Micromixing efficiency in static mixer" Chemical 
Engineering Science 2001, 56, 3797-3802. 

37. Guichardon, P.; Falk, L. "Characterisation of micromixing efficiency by the 
iodide-iodate reaction system. Part I: experimental procedure" Chemical 
Engineering Science 2000, 55, 4233-4243. 

 
 



 66 

CHAPTER III 

 

DEVELOPMENT OF IMPROVED NANOPARTICULATE POLYELECTROLYTE 
COMPLEX PHYSICOCHEMISTRY BY NON-STOICHIOMETRIC MIXING OF 

POLYIONS WITH SIMILAR MOLECULAR WEIGHTS 
 
 
 

Introduction  

Efficient nano- and micro-scale therapeutic vehicles are ideally, nontoxic, 

nonimmunogenic, and made from versatile building blocks that allow optimal delivery to 

specific cells and tissues. The potential of polymer nanostructures as targeted drug 

delivery vehicles has led to the creation of multitudes of colloidal formulations.  This 

technology results from a collaboration of medicine and engineering for the delivery of 

macromolecular drugs that cannot be efficiently administered systemically1.  Integration 

of pharmacological agents, vectors including peptide segments, proteins, and DNA 

vectors, into nanoparticulate polymer matrices, together, with both targeting and 

therapeutic abilities offers many benefits, including controlled drug release and 

protection, prolonged blood circulation times, and other tunable characteristics2,3.  

 Many current research strategies in polymer drug delivery involve the use of 

solvent emulsion as a reaction environment leading to potential problems in final product 

formulations4. Water-soluble, biodegradable, polymeric, polyelectrolyte complex 

dispersions (PECs) have evolved because of the limitations of the currently available 

systems.  The nanoparticulate architecture of PECs permits the environmentally attractive 

use of water as a solvent, a major advantage for products that may be used as drug 

delivery systems in humans.  PECs result from strong electrostatic interactions between 
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charged microdomains of at least two oppositely charged polyelectrolytes5.  The most 

predominant forces for PEC assembly are strong electrostatic interactions, but hydrogen 

bonding, hydrophobic interactions, and van der Waals forces complement PEC 

formation, and they are related to physical considerations presented previously6.  

Reaction phase environmental parameters dictate PEC physicochemical 

properties, and, specifically, complexation between polyelectrolytes having significantly 

different molecular weights leads to formation of water-insoluble aggregates7-9. The 

creation of large water-insoluble aggregates is undesirable because particles greater than 

1000 nm can lead to circulatory limitations and tissue inflammation10-12.  Conversely, 

particles which are too small quickly leave systemic circulation, cleared by the 

reticuloendthelial system (RES), without reaching target tissues13.   

Using these facts as a starting point, this study compares PEC systems with 

similar (LMW) and dissimilar (HMW) molecular weights to identify a suitable and 

controllable product for biological use.  Several PEC characteristics are favorable for 

colloidal stability and provide the benchmarks for definition of an advantageous PEC 

system, including hydrodynamic diameter less than 200 nm12,14, empirical surface charge 

of greater than 30 mV or less than -30 mV, spherical morphology, and a low 

polydispersity index indicative of a homogeneous distribution15-17.  Maintenance of these 

properties, particularly size and shape, is critical for cellular uptake18,19.  The current 

technology applied herein has utilized a water-based approach for producing PECs under 

the prevailing assembly and complexation theory.  These biocompatible, non-toxic PECs 

are produced using a multipolymeric mixture with a minimum of two polyion pairs for 
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enhancement of thermodynamic stability and controlled incorporation of molecules such 

as proteins or targeting peptides. 

 

Experimental Procedures 

 PECs were prepared per Chapter II, PEC Fabrication, using the LMW and HMW 

formulations.  PECs were made with (20 kHz) and without frequency dispergation for 

both HMW and LMW systems followed by the evaluation of integrity as a function of pH 

as described in Chapter II, Colloidal Stability.  Hydrodynamic diameter, zeta potential, 

PDI (PEC Size and Zeta Potential), and morphology by TEM provided the 

physicochemical markers. 

 

Statistical Analysis 

All statistical analyses were performed using JMP-IN 5.1 (SAS, Cary, NC).  

Reaction mixture formulations with and without dispergation were compared by two-

sample t-test to evaluate the differences between sizes, zeta potentials, and polydispersity 

indices (PDI) within and between PEC systems.  Hydrodynamic diameter and surface 

charge was tested for significant differences from 200 nm and +30 mV by a one-tailed t-

test.  TEM size distributions were tested using the Kolmolgorov-Smirnov two-sample test 

to determine whether the PEC populations were distributed identically as a function of 

frequency dispergation.  Kurtosis and skewness for the TEM distributions were evaluated 

by one-tail t-test to evaluate deviations from normality.  Colloidal stability for 

hydrodynamic diameter was first tested by one-way ANOVA to determine variations in 

the means as a function of pH.  The one-way ANOVA was followed by Dunnet’s Test, 
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which compared each mean to the reaction mixture.  A one-tailed t-test was applied to 

determine at which pH instabilities in preparations, as measured by zeta potential, 

deviated from the empirical standard for stability ±30 mV17.  Each analysis was evaluated 

at the 95% confidence level.  

 

Results and Discussion  

 

PEC Physicochemical Aspects 

The components of the anionic solution were altered to determine the effect of 

low molecular weight polymers on the hydrodynamic diameter, surface charge, and PDI 

of polyelectrolyte complexes.  Polyelectrolyte concentrations for non-stoichiometric 

addition of HMW anions into cations were established previously1,14.  Increased polymer 

concentration and further anion titration lead to PEC size increase, aggregation, and 

precipitation as the overall complex charge nears neutrality.  Lower polymer 

concentrations lead to significantly lower PEC yields.  Thus, the chosen concentrations 

represent a practical compromise1,20.   In both LMW and HMW formulations, the molar 

anion/cation charge ratio, 0.168, was constant, as calculated from the structures and 

molecular weights provided by the manufacturers.  The criteria for acceptance of PEC 

systems for biological testing were:  hydrodynamic diameter statistically less than or 

equal to 200 nm12,14, surface charge >|±30 mV|15-17, and a low PDI, indicative of a narrow 

size distribution.  The physicochemical characteristics of both LMW and HMW PECs 

were studied by titrating, non-stoichiometrically, anions into a cationic bath without or 

with (20 kHz) frequency dispergation.  The spontaneous complexation resulted in 
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cationic particles, regardless of PEC formulation, that exhibited a colloidal, Tyndall 

effect.  PECs, as prepared in their native state, had a measured pH of 4.2 due to excess 

cations present in the reaction mixture.  The complexation led to a core-shell 

morphology, with the excess cation dominating the corona surface and a neutralized inner 

phase of oppositely charged polyions. 

The z-average size, PDI, and zeta potential for PEC preparations with LMW and 

HMW polyions are shown in Figure 3-1(A-C), respectively.  LMW formulations 

provided PECs with superior characteristics independent of frequency dispergation, an 

outcome related to polymer molecular weight.  Statistical differences in PDI, zeta 

potential, and hydrodynamic diameter of PECs were observed among the two titration 

conditions and chemistries.  Both LMW titration conditions provided PECs with 

hydrodynamic diameters averaging statistically less than 200 nm, while the dispergated 

HMW formulation was the only dissimilar molecular weight chemistry with appropriate 

physicochemical properties.  Frequency dispergation reduced HMW and LMW PEC 

hydrodynamic diameter by 25% and 12%, respectively.  When comparing titration 

frequencies between systems, LMW PECs resulted in a 33% and 21% decrease in size for 

formulations without and with frequency dispergation, respectively.  The PDIs measured 

for HMW PECs, 0.410 and 0.378, indicated very heterogeneous populations of particles 

within the desired size range, as well as aggregate structures with much greater diameter, 

while the reduced PDI for LMW PECs, 0.142 and 0.145, indicated more homogeneous 

preparations.  For reference, a monodisperse distribution of standard latex beads yields a 

PDI of 0.0521.  This reduction in polydispersity helps to minimize the possibility of in 

vivo circulatory limitations.  Zeta potential was reduced for LMW PECs, but the systems 
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were stable.  In fact, a decreased positive surface charge has shown reduced toxicity at 

cellular and systemic levels22. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-1.  Size and zeta potential measurements for similar (LMW) and dissimilar 
(HMW) weight components.  (A) and (B) correspond to measurements of z-average 
diameter and polydispersity index for PECs obtained with (+) and without (-) ultrasonic 
dispergation for similar and dissimilar molecular weight components.  (C) describes the 
zeta potential for dissimilar (HMW) and similar (LMW) molecular weight components.  
Asterisks indicate pairs of means that differ statistically by two-sample t-test at the 95% 
confidence level for 10 replicates. 
 

The improved physicochemical properties observed with and without frequency 

dispergation may be due to the difference in sequential addition of anion to cation.  

Frequency dispergation provides the anionic solution as an aerosol, upon yielding a 

smaller core template for subsequent cationic interactions and nucleation of the 

complexes.  However, LMW PECs, suitable biological preparations were formed 

(A) (B) 

(C) 
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independent of frequency dispergation.  Therefore, LMW anions needed no modified 

titration to provide polyions in the appropriate conformation for efficient PEC creation. 

 

 PEC Morphology by TEM 

TEM micrographs presented in Figure 3-2 provided verification of LMW and 

HMW PEC size with and without frequency dispergation.  Unstained TEM specimens 

were used, since the PECs had enough contrast and superstructure for visualization.  

Observations of PEC morphology were followed by point-to-point, pixel based diameter 

evaluation to develop a size distribution to compare with PCS measurements.  Similar 

structures and size for PEC structures have been reported in the literature2,23 

Figure 3-2A(i)-(iv) showed the heterogeneity of populations created under both 

dispergation conditions for the HMW preparations.  These images provided a physical 

illustration of classic PEC models dictated by the characteristics of the polyion groups, 

stoichiometry and molecular weights:  (1) the ladder-like structure, where complex 

formation takes place on a molecular level via conformational adaptation, and (2) the 

scrambled-egg model where, a high number of chains are incorporated into the particle 

architecture24.  Figure 3-2A(ii) showed the ladder-like structures formed as a result of 

mixing polyelectrolytes having large differences in molecular dimensions, polymer 

shielding, and zipperlike assembly due to adjacent polyions24,25.  HMW PECs prepared 

with frequency dispergation, Figure 3-2A(iii)-(iv) showed compact, scrambled-egg 

architectures, which appeared to be highly aggregated. This morphology is typical for 

PECs formed between polyelectrolytes having different molecular weights9.  Figure 3-

2B(i-iv), for complexes formed with low molecular weight constituents, describes more 
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homogeneous populations of condensed, compact structures, which only displayed 

scrambled-egg behavior. The more uniform morphology was consistent with their 

lowered PDI. Again, this was likely due to more efficient interactions between polyions.  

The particles exhibited a condensed, opaque core, surrounded by a thick, fluffy coat.  

This opacity may be due to the presence of divalent cations in the formulations.  Similar 

behavior has been previously observed for chitosan/PEO-PPO nanoparticles26. 

Instrumentation that is complementary to the TEM CCD camera was used to 

measure manually and estimate the diameter of the PECs for validation of the z-average 

mean diameter.  Only spherical structures were sized, since the aggregate/filament 

structures provide no discernible points of reference for accurate diameter evaluation.  

Figure 3-3 displays the histograms for LMW and HMW PECs created with and without 

frequency dispergation. Number average sizes were 152.4 nm and 141.5 nm for LMW 

PECs without and with frequency dispergation, respectively, while HMW PECs had 

mean diameters of 201.5 (without) and 177.5 (with).  The results correlated to 

measurements performed using PCS insofar as the effect of both precursor chemistry and 

dispergation according to two-sample Student’s t-tests at the 95% confidence level. None 

of the distributions were normally distributed as determined by statistically testing the 

skewness and kurtosis of each distribution. The PDI measured by the ZetaSizer was 

qualitatively verified by coefficient of variance, an indication of the variabilities of the 

populations. Calculations performed on the distributions ranged from 34.9% (LMW 

without) to 49.0% (HMW with).  Conversely, Kolmogorov-Smirnov tests showed that 

HMW and LMW size distributions were significantly different for the two frequency 

dispergation conditions.  This result detected differences between formulations, with and 
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without dispergation, while this difference could not be detected by two-sample t-tests 

using PCS data.  Although, the two statistical tests yielded different interpretations, the 

algorithms for evaluation of PEC diameter are quite different.  PCS uses a combination of 

light scattering as a function of Brownian motion to derive diffusion coefficients, which 

can then be used to calculate hydrodynamic diameter from the Stokes-Einstein equation.  

The measurement of diameter via TEM was a more direct method for evaluating diameter 

not convoluted by the aqueous parameters that affect PCS measurements, as discussed 

below. 



 75 

A)                             (i)                                           (ii)                                                                 
 
                                         
 
 
 
 
 
 
                         
                                 (iii)                                         (iv) 
   
 
 
 
 
                                                                                                              
 
 
 
 
B)                             (i)                                           (ii) 
 
 
 
 
 
 
 
 
 
                                 (iii)                                         (iv) 
 
 
 
 
 
 
 
 
 
Figure 3-2.  TEM micrographs for PECs prepared with and without frequency 
dispergation for HMW (A) and LMW (B) precursors.  Images assigned (i) and (ii) are 
PECs created without dispergation.   (iii) and (iv) represent PECs fabricated with 
dispergation. 
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Figure 3-3. TEM PEC diameter evaluation.  PEC diameter measured using TEM CCD 
camera software for suspensions prepared from HMW (A) and LMW (B) precursors.  For 
HMW, 784 and 284 events were tabulated with and without dispergation settings, 
respectively.  1486 and 1860 observations were recorded for LMW PECs created with 
and without, respectively.  Distribution shifts were statistically evaluated by the 
Kolmogorov-Smirnov test.  
 

Figure 3-4 shows the agreement between PCS measurements and TEM diameter 

evaluation.  TEM estimates were consistently 71%-85% lower than PCS measurements.  

The ZetaSizer algorithms assume that the particle population only contains spherical 

structures; therefore microfilaments are assumed to be large, round objects.  Besides the 

assumption of uniform morphology, the ZetaSizer values include surface structure and 

electrical double layers surrounding the particle, which contributed to the increased 

diameter measured by PCS.  Previous studies on polymeric nanoparticles show similar 

TEM/PCS ratios2,27,28.  In conclusion, TEM was suitable for discerning PEC morphology 

(B) 

(A) 
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and quantitative diameters, but the ZetaSizer provides a higher throughput, unbiased 

method.  Both types of analysis need to be considered when characterizing these types of 

physicochemical phenomena. 

                                       (A)                                                              (B) 
                                                                                                                             
 
         
                                                                                                                                                      
  
 
 
 
 
 
 
 
 
Figure 3-4.  Comparison of PEC diameter measured by Malvern ZetaSizer Nano ZS and 
TEM for HMW (A) and LMW (B) polymer PECs.  The above figure details percent 
agreement between the two techniques along with a side-by-side graphical comparison.  
Asterisks indicate pairs of means which differed according to a two-sample t-test at the 
95% confidence interval, but not at 90% indicating an equivalence amongst means for the 
two physicochemical characterization methods. 
 

 

Colloidal Stabilty as a Function of pH. 

The addition of electrolytes or the change in the pH affects the colloidal stability 

of colloidal dispersions. These modifications are significant considerations for further use 

of any nanoparticulate system in biological media29.  The alteration of surface groups in 

electrostatic complexes between anions and cations can lead to a large size change, 

dependent upon the extent of ionization30.  Any ionizable groups in the charged domains 

presented at the nanovehicle periphery can act as electrostatic stabilizer, which is 

mediated by repulsive Coulombic interactions between particle surface charges31,32.  As 

  * 

dispergation TEM Malvern %

(nm) (nm) TEM/Malvern

- 201.5 282.1 71.4

+ 177.5 211.3 84.0

dispergation TEM Malvern %

(nm) (nm) TEM/Malvern

- 152.5 188.2 81.0

+ 141.5 165.8 85.4
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shown in Figure 3-1, reaction mixture PECs yielded stable, positively charged structures 

with zeta potentials greater than +30 mV.  However, this condition occurred at low pH 

(~4.2) and may not be a suitable suspension for in vivo or in vitro use.  The cationic 

charge of the PECs indicated that the surface-exposed polymeric groups were in a highly 

protonated state, causing repulsive forces to propagate and prevent particle coalescence in 

solution.  In addition, the delicate balance between electrostatic double layers and Van 

der Waals forces likely contributed to the maintenance of colloidal stability, signified by 

zeta potential33.   

 The stability of the four PEC systems was evaluated by PEC collection and 

resuspension at various pH, low salt and ionic strength media.  Salts can cause secondary 

aggregation and flocculation, as well as a disintegration of the complexes34.  Therefore, if 

the salt concentration is low, the effect of pH on PEC physicochemistry is isolated.   

Because of the presence of positively charged, pH ionizable, primary amino groups that 

were present as a result of excess PMCG and spermine of the cationic shell, a pH 

variation should modify the electrical state and thus the stability of the complexes.  

Hydrodynamic diameter (z-average size) and zeta potential were used as stability indices.  

Figures 3-5 and 3-6 show the variation of PEC diameter and zeta potential, 

respectively, as a function of pH.  The two properties were directly related and 

consecutively measured by the ZetaSizer immediately after colloidal resuspension and 

pH measurement.  Surface charge stabilities were empirically defined as values greater 

than±30 mV.  For z-average, statistical stability was defined by one-way ANOVA and 

then by comparison of means to the reaction mixture by Dunnet’s test.  Figure 3-5 shows 

a progressive reduction in statistical stabilities moving from HMW without dispergation 
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to HMW with dispergation, LMW without dispergation, and LMW with dispergation.  

Figure 3-6 shows a similar trend, but LMW systems provided greater colloidal stability as 

a function of pH.  In general, the behavior for Figures 3-5(A-C) and 3-6(A-C), showed a 

clear tendency towards aggregation as pH approached neutrality, corresponding to 

changes in surface charge.  Therefore, the maintenance of ideal dimensions was governed 

by electrostatic contributions.  For these particular systems, PECs coalesced, rather than 

swell, and the effect was irreversible.  If particles aggregate, then they have reached an 

endpoint state.   The increase in pH from 4 to 7 brought about a rapid decrease in zeta 

potential and colloidal stability, as shown by fusion of PECs as the repulsive surface 

charges were reduced.  As the resuspension pH was increased beyond a transition point, 

(~7.8), the suspension appeared to become more stable as shown by preservation of the 

Tyndall effect and negative zeta potential less than -30 mV.  This type of behavior, with 

zeta potential shoulders on either side of neutrality, indicated the possibility that these 

PECs exhibit zwitterionic behavior.  Therefore, PECs upon assembly contain both 

positive and negative ionizable groups and behave as acidic or basic groups of monoacids 

or monobases.  At low pH, pendant amino and carboxyl groups remain in a protonated 

state, leading to a predominance of positive charges.  Following resuspension at 

increasing pH, the protons from the charged groups dissociate.  The decreasing total 

surface charge depletes the PECs’ ability to repel each other and they effectively 

coalesce.  However, adequate negative charge appeared to be generated at basic 

conditions when sufficient protrusion and ionization of the carboxyl groups from anion 

may occur35.  Figure 3-7(A-C) schematizes this phenomenon.   In all cases, an 

experimental PEC isoelectric point (pI), the pH where dispersions carry no net charge and 
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is in its least stable state, was determined by fitting a line through the most linear portion 

of the zeta potential versus pH curve (Figure 3-6).  The calculated x-intercept was 

designated as the experimental pI.  pIs for the systems ranged from 5.76 (LMW without 

dispergation) to 5.90 (LMW with dispergation) and 5.79 (HMW without dispergation) to 

5.89 (HMW with dispergation) .  The variability in pIs between systems and/or titration 

conditions, including possibly two regions of instability exhibited in Figure 3-6(A,C), 

may be directly due to the assembly mechanisms and presentation of charged groups for 

complexation. 

                          - Dispergation                                     +Dispergation 

                                                                                                                  
Figure 3-5.  Response of PEC diameter in varied pH, low salt environments.  (A) and (B) 
show the effect of pH on HMW PECs prepared without and with frequency dispergation, 
respectively, while (C) and (D) display the response of LMW PECs.  Raw data are 
represented by squares, while the average of at least 3 replicates by circles and error bars 
corresponding to standard error.  The asterisks indicate means which differ from the 
reaction mixture at the 95% confidence interval using Dunnet’s Test. 
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                          - Dispergation                                     +Dispergation 

                                                                                                                 
Figure 3-6.  Response of PEC zeta potential in varied pH, low salt environments.  (A) 
and (B) show the effect of pH on HMW PECs prepared at without and with frequency 
dispergation, respectively, while (C) and (D) display the response of LMW PECs.  Raw 
data is represented by squares, while the average of at least 3 replicates by circles and 
error bars corresponding to standard error.  Asterisks denote zeta potentials that deviate, 
statistically, from the empirical stability criterion of |30 mV|, defined by dashed lines, 
according to a one-tail t-test at the 95% confidence interval.  Arrows indicate 
experimental pIs. 
 

The most interesting results were obtained for LMW PECs prepared with 

dispergation, as shown in Figures 3-5D and 3-6D.  Even though the zeta potential-pH 

curve exhibited a typical behavior, there appeared to be some intra-particle forces, which 

allowed the complexes to retain their dimensions even when the zeta potential neared 

neutrality.  The maintenance of hydrodynamic diameter may also be related to the 

presence and incorporation of Pluronic F-68, assumed to be a steric stabilizer with no net 

charge36. The long chains of flexible tri-block copolymer polyethylene 

oxide/polypropylene oxide (PEO/PPO), when adsorbed to the surface, could create an 

osmotic and entropic barrier to particle-particle interactions induced by pH alterations37.  
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Pluronic F-68 may discourage surface adhesion and conceivably inter-particle 

interactions.  Intimate blending of PEO/PPO polymers into core-shell nanomatrices has 

been shown to attenuate hydrodynamic diameter and enhance structural integrity38,39.  

The electrically neutral copolymer, composed of hydrophilic and bydrophobic segments, 

is mechanically entrapped when present in cationic bath.  The incorporation of PEO/PPO 

was possibly facilitated by the intermolecular bonding between electropositive amino 

hydrogens of the constitutive cationic polymers and the electronegative oxygens of 

PEO/PPO40.  The interaction between the oxygen atom of PEO/PPO and the amino 

groups of the corona solution is weak, but could still have an effect on PEC stability and 

formation.  The retention of ideal dimensions denotes the LMW dispergated formulation 

for biological application.  Preliminary in vitro testing has shown PEC stability in 

endothelial cell growth media (MCDB131, pH=7.4) supplemented with 10% fetal calf 

serum, supporting their use for specific cell binding and internalization applications.  The 

hydrodynamic diameter for this LMW nanoparticulate system was 235.9±30.5 nm 

(mean±standard error).  Although the size falls outside of the benchmark of less than 200 

nm, it is still expected to efficiently interact with biological systems.  In fact, it was 

statistically equivalent to the diameter at pH=7.4 (432.6±84.1 nm), as measured in Figure 

3-5(D), for a low salt buffer dispersion.  This increase in size is most likely due 

interactions with media components41.   
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Figure 3-7.  Schematic representation of PEC charge modification.  The left figures are 
the PEC suspensions immediately after preparation.  The native state has a surface 
dominated by excess cationic charge as shown by the significantly positive zeta potential.  
The presence of sufficient acid maintains a stable protonation state as shown in (A). As 
pH changes and nears the pI and neutrality, the ionizable states of the complexes are 
modified.  The decreasing total surface charge depletes the complexes’ ability to repel 
each other and they effectively coalesce, displayed by (B).  But, if adequate base is 
present, the carboxyl groups become ionized and the colloid remains stable as denoted in 
(C). 
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Conclusions 

This work, through the use of TEM and PCS technology, shows the effect of 

polyanion size reduction on PEC physicochemical properties that are essential for 

developing a biocompatible system for targeted drug delivery.  As shown, the titration of 

nonstoichiometric amounts of HMW anions, compared to LMW anions for equivalent 

total molar charges, into cations formed larger complexes with marked size 

heterogeneity.  In addition, HMW formulations resulted in decreased physicochemical 

stability. A system has been further optimized for size and charge properties that are pH 

insensitive, making it a useful system for optimal delivery to a range of tissues.  The 

surface density of PEO/PPO may ensure sufficient steric stabilization, phagocytic 

resistance and prolonged systemic circulation38,39,42,43.   This new formulation is an 

improvement over a previous non-toxic system44-46 which has been shown to effectively 

deliver genes to cells of hematopoietic origin14. 

 The pH and serum insensitivity, self-assembly, modular nature, and unique 

polymeric architecture of dispergated LMW PECs allows for surface groups to be 

independently modified to impart desired characteristics without substantial alteration of 

existing properties.  The polycationic nature of the PEC periphery, predominantly 

polyamine and guanidinium moieties, may also facilitate their cellular uptake and 

transport via cell surface heparan sulfate proteoglycans or polyamine-based transport47-49. 

Taken together, the favorable characteristics of this system suggest that these PECs may 

be utilized as safe and highly efficient bioactive drug delivery systems.  This system was 

further applied in the following chapters to evaluate biological and protein 

release/incorporation properties.  
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CHAPTER IV 
 
 
 

ENTRAPMENT AND RELEASE PROPERTIES FOR LOW MOLECULAR WEIGHT 
NANOPARTICULATE POLYELECTROLYTE COMPLEXES 

 
 
 

Introduction 

 Proteins are often marginally stable and consequently easily damaged during their 

formulation as drugs. Nanoparticle and polymer delivery systems, first introduced by 

Langer and Folkman1 in 1976, have been developed which have the potential to improve 

protein stability, increase the duration of the therapeutic effect, and permit administration 

through non-parenteral, possibly oral, routes2.  Encapsulation of proteins within 

biodegradable polymers has been shown to enhance the half-life in vitro3,4 and in vivo4-6.  

It is critical to control the liberation of drugs entrapped in polymeric supports under 

defined pharmacological and physicological conditions.  Payloads can be delivered 

intracellularly in two ways:  internalization of the PEC followed by release inside or 

particle docking at the cell surface and liberation through a bystander effect7.  The release 

should when and where the drug is required and in the appropriate concentration for the 

desired therapeutic effect8. 

 Previous studies have investigated the drug releasing response from polymeric 

matrices as a function of pH9, electric field10, temperature11, ultrasound12, or light13.  

Several PEC systems8,14-18 have incorporated proteins and analyzed the release kinetics 

and entrapment.  PECs allow the loading of proteins by polyion coacervation between 

charged groups.  The purpose of the current study was to explore the protein loading and 

release for multi-component LMW PECs.  PECs were prepared with 3 different iodinated 
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proteins to trace their fate and address the effect of protein charge on entrapment and 

discharge in a simulated physiological environment under external sink release 

conditions:  100% fetal calf serum (FCS) was added after replacement of fluid at each 

time point.  Soybean trypsin inhibitor (STI), β-lactoglobulin (BLG), and cytochrome C 

(Cyt C) were selected because they have high water solubilities and a fairly wide range of 

isoelectric points (pI).  Radioactivity (I125) was chosen because isotopes do not quench 

which is a common problem for fluorescent tracers in combination with microplate 

readers.  The radioisotope also allowed for mass balance closure. 

 

Experimental Procedures 

 The protocols applied from Chapter II were as follows:  PEC Fabrication with 

LMW polyions at 20 kHz frequency dispergation, PEC Size and Zeta Potential, Protein 

Iodination, and PEC Protein Loading and Release Monitoring.  Equations 2-2, 2-3, 2-4, 

2-5, and 2-6 were used to analyze the release and loading measurements.  Additionally, 

the rate of release, RateREL, (µg/day) was calculated by Equation 4-1: 

    

  

 

where Masst=n, and Masst=n-1 were the mass of protein released over the specified time 

interval. 

 

! 

Rate
REL

=
Mass

t=n " Masst=n"1

t
n
" t

n"1

(4-1) 
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Statistical Analysis 

Statistical analysis was carried out with JMP-IN 5.1 (SAS, Cary, NC). Reaction 

mixture formulations and final preparations in FCS were compared by two-sample t-tests 

to evaluate the differences between sizes, zeta potentials, polydispersity indices (PDI), 

loading efficiencies, and 7 d retainment percentages.  All statistical tests were performed 

at p<0.05 (95% confidence level).  Results are displayed as average ± standard error. 

 

Results and Discussion 

 

 Measurement of Size, Zeta Potential, and Polydispersity Index 

 Sizes, polydispersity indices (PDI), and zeta potentials (ZP) of PECs with Cyt C 

(pI=10.8), STI (pI=4.5), and BLG (pI=5.1) loaded into the anion core were shown in 

Figure 4-1 for reaction (Rxn) mixtures and final formulations in FCS.  Isolation and 

resuspension in FCS led to an increase in hydrodynamic diameter and PDI, but a decrease 

in ZP.  Incorporation of protein and dissolution in FCS, in all cases, resulted in statistical 

changes for each physicochemical property.  Hydrodynamic diameter increased in FCS 

with sizes ranging from 252.4 nm (STI) to approximately 330 nm for Cyt C and BLG.  

The zeta potentials for PECs in FCS were similar in absolute magnitude, but the sign was 

reversed.  There was no visible aggregation in FCS, but these properties were likely 

influenced and altered due to the presence of heterogeneous serum particulates. 
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Figure 4-1. Physicochemical properties of the reaction (Rxn) mixture and final 
preparations, in 100% FCS, for multi-component PECs prepared with various proteins 
loaded into the anionic solution.  (A), (B), and (C) correspond to hydrodynamic diameter, 
zeta potential, and polydispersity index, respectively, measured by PCS. The double 
asterisks indicate means (Rxn Mixture versus Final) that differ statistically by two-
sample t-test at the 95% confidence interval (n=3). 
 

 

 Encapsulation Efficiency of STI, BLG, and Cyt C 

 The effect of proteins with different pIs on PEC loading is shown in Figure 4-2.  

The pH of the anionic solution before PEC fabrication was 6.85 meaning that STI and 

BLG were negatively charged, while Cyt C was net positive.  Assembly of PECs resulted 

in a pH of 4.2 due to excess cations, which reverses the charged state of STI and BLG. 

The encapsulation efficiency of 15 µg I125-labeled STI, BLG, and Cyt C was not 

dependent on the nature of the protein; all loading efficiencies were statistically 

(A) (B) 

(C) 
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heterogeneous and ranged from 6.0% (STI) to 7.4% for Cyt C and BLG.  The loading of 

proteins has been found to be largely dependent on several molecular and environmental 

parameters:  amount, molecular volume, polarity, charge, and degree of ionization19.  In 

this case, only the charge and degree of ionization was studied; none of which affected 

the incorporation.  

 

 
Figure 4-2.  Effect of protein on the protein entrapment efficiency (EE%) for PECs.  
Radioactive (I125) protein associated with PECs was measured after particle preparation, 
isolation by centrifugation and resuspension in 100% FCS, for n=3.  No statististical 
difference was indicated at p<0.05. 
 

 

 In Vitro Release Kinetics and Protein Retainment 

 The ability of PECs to release the protein over a sustained period of time is 

critical20.  Hence, a comparison of STI, BLG, and Cyt C loaded PEC release was carried 

out over the course of 1 week at room temperature (20°C), followed by the determination 

of the amount retained.  External sink conditions were applied which involved the 

replacement of the solvent gradient at every day. 
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 Figure 4-3(A,B) shows the percent cumulative release and release rate, 

respectively.  Figure 4-3(A) indicated a ‘burst’ release over the first 24 h and then a 

plateau leading to an irreversibly bound phase.  BLG-containing PECs exhibited a 43% 

loss of protein after 1 day, while STI and Cyt C showed 34% and 21% released over the 

same period.  These types of initial ‘bursts’ have been seen widely and, again, largely 

controlled by environmental (temperature, pH) and molecular variables (polymer 

molecular weight, internal cross-linking)20.  Protein release rates, Figure 4-3(B), showed 

that STI, BLG, and Cyt C demonstrated first-order release kinetics as a function of time 

and approached zero-order relationships at longer times (t=4d-7d).  BLG displayed the 

largest initial rate (0.42 µg/day) and Cyt C (0.24 µg/day), the lowest, which could be a 

consequence of more intimate charged interactions maintained over the first 24 h. 

 

 

Figure 4-3.  (A) In vitro, iodinated protein release from PECs and (B) rate of release, 
both measured over the course of 7 d (n=3). 

(A) (B) 
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 The protein discharge was modeled with an one-dimensional, empirical equation 

developed by Ritger and Peppas21 for Fickian and non-Fickian diffusional release 

(Equation 4-2), where Mt and Minf represented the masses of total protein released at time 

(t) and total amount of incorporated drug, respectively.  k was the correlation constant 

incorporating characteristics of the macromolecular network and n the diffusional 

constant which defined non-Fickian and Fickian activity regimes. Equation 4-2 is an 

expression derived from a heuristic solution of Fick’s second law.   Fickian diffusion 

would describe the change in concentration over time is equal in terms of changes in 

local diffusion flux22.  The diffusing species flux will follow a square root trend until an 

equilibrium is reached at long times (n=0.5).  Case II transport follows a zero-order 

kinetics where the release is independent of time and a nominal n equal to 1.  Anomalous 

transport processes do not fit either Fickian or Case II transport, but include sigmoidal, 

two-stage, and pseudo-Fickian  (n≠1, n≠0.5) mass transfer23 .     

 

 

 

The constants were determined experimentally by preparing a log-log plot which yielded 

a linear correlation with a slope of n and y-intercept of log k.  Table 4-1 shows the 

calculated n and k values for each protein, while Figure 4-4 the experimental and 

modeled data.  The units of k were day-n.  

! 

M
t

M
inf

= kt
n (4-2) 
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Table 4-1.  Tabulated power law constants (average ±s.e., n=3) for STI, BLG, and Cyt C 
loaded PECs. 
 
 

Protein n k 
STI   0.33±0.01 0.25±0.04 
BLG 0.33±0.04 0.42±0.08 
Cyt C 0.20±0.03 0.32±0.03 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 4-4.  Empirical modeling of release data based on Equation 4-2.  Points 
represented experimental data while solid lines were calculated based on the power law 
model. 
 
  

 The data modeled in Figure 4-4 confirmed that the release of protein was not 

controlled by strict Fickian diffusion as each n was less than 0.5 (Table 4-1).  Therefore, 

it can be concluded that I125-labeled protein does not follow a pattern which will 

eventually reach equilibrium.  The anomalous diffusion in this system may be 

confounded by polyelectrolyte exchange reactions between serum macromolecules and 

the loaded proteins or PEC degradation.  Regardless, the model appears to fit the data 

appropriately. 
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Further evidence that the amount of protein released does not reach Minf was seen 

in Figure 4-5.  Figure 4-5 displayed the amount of bound protein after 7 d.  Because the 

rates of release reached 0.02 µg/day, 0.01 µg/day, 0.02 µg/day for STI, BLG, and Cyt C, 

respectively, the formulations became a more controlled release depot, following the 

burst regime.  After 7 d, a significant amount of protein persisted:  54.77% (Cyt C), 

28.59% (BLG), and 44.33% (STI). 

 

 
 
  
Figure 4-5.  Percent protein remaining after 7 d release experiments.  No statistical 
difference was detected (p<0.05, n=3). 
 

 

Conclusions  

 Depending on their design, in vitro entrapment and release studies may be used to 

simulate the mechanistic release behavior and carrier-drug physicochemical relationship 

in vivo24.  The PECs in this study (LMW 20 kHz) showed interesting features as protein 

delivery systems.  PECs maintained appropriate physicochemical parameters for 

biological applications in physiological media (100% FCS), although charge reversal and 

some increase in hydrodynamic diameter were observed.  The complexes incorporate the 
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proteins, independent of their nature, under mild conditions in a water-soluble 

preparation.  The networks formed by PECs could entrap the proteins through 

intermolecular interactions and electrostatic forces between the proteins and the polyions.  

Unfortunately, the incorporation was relatively low due to the weak amphipathic nature 

of the proteins.  STI, BLG, and Cyt C cannot compete with stronger electotrolytes 

(PMCG, chondroitin sulfate, alginate, spermine) for sites in the complex, leading to 

eventual washout upon centrifugation.  According to the literature, alginate and 

chondroitin sulfate, constituents of the PEC core, are highly hydrophilic, owing to the 

presence of –OH, –COOH, and SO4 groups on the polysaccharide chains8, while 

spermine and PMCG comprise a hydrophilic outer shell.  Therefore, the entrapped 

proteins became sequestered outside of the inner core, but inside of the corona.  The 

incorporations were consistent with chitosan/PPO PECs developed by Calvo, et. al.14.  

The application of a more highly charged drug or protein would likely lead to higher 

entrapment levels19.  

 It was shown, through a simple power law model, that the release of STI, BLG, 

and Cyt C into 100% FCS exhibited anomalous, non-Fickian diffusion behavior.  This 

was not surprising since the PECs are multi-phase structures, whereby there could be 

release followed by re-adsorption to the surface or liberation into the external sink.  

Recently, Kamiya and Klibanov15, made an argument for PEC size and extent of release:  

larger complex diameter led to slower release.  PECs did not appear to adhere to that 

finding as the release profiles were independent of the hydrodynamic diameter.  

Additionally, because the PECs exhibited a burst release profile, they do not provide a 

good delivery system upon intravenous administration.  Further PEC processing, before 
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or after complexation, would have to be performed to further retain the protein to prevent 

the loss of the cargo.     In spite of the low entrapment efficiency and burst release, PECs 

are a still a promising candidate for drug delivery via a local application where the 

vehicles would be taken up by cells.  The drug could then be released by changes in the 

intracellular concentration gradients or through intrinsic enzymatic degradation of the 

PEC. 
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CHAPTER V 

 

FLOW CYTOMETRIC DETERMINATION OF NANOPARTICULATE 
POLYELECTROLYTE COMPLEX NON-SPECIFIC INTERACTIONS WITH 

ENDOTHELIAL CELLS 
 
 
 

Introduction 

Detailed mechanistic studies on binding and internalization of PECs, and 

nanoparticles for that manner, by cells have not been well characterized.  Multi-

component PECs, combined with Pluronic F-68 as a steric stabilizer, have been 

fabricated as a generic scaffold for incorporation of drugs and targeting moieties. We 

have developed a fluorescent approach, by application of a visible fluorophore, to 

describe the non-specific adsorptive mechanisms of nanoparticulate polyelectrolyte 

complex association in an endothelial cell (EC) model. 

EC were chosen as the model because of their importance in disease and 

pathlogical significance1.  EC line vascular systems:  capillary, vein, and artery networks 

through which the blood carries nutrients.  They are critical players in a number of 

pathological processes, many of which carry unique markers for targeted delivery:  

cancer (dysregulated angiogenesis), inflammation, oxidative stress, and thrombosis2,3.  

Moreover, and specifically related to cancer, solid tumors require access to blood vessels 

for growth and metastasis4. 

The use of fluorescently or radioactively labeled NP is the most common 

experimental approach found in the literature5-7.    Fluorescent labeling and fluorescence 

activated cell sorting (FACS) was chosen for the recent study to avoid radioactivity; 
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radioactive PEC components in this study were not currently available or the 

incorporation of an isotope was too cumbersome.  The limited toxicity and mechanisms 

of association are shown in the form of inhibitor studies.  A novel, flow cytometric 

Scatchard analysis was used to define the yield of the PEC production, nature of the 

binding and internalization, components ignored in all studies to date.  LMW PECs 

prepared with dispergation were applied because they met the engineering criteria 

defined in Chapter III. 

 

Experimental Procedures 

Various protocols were applied as defined in Chapter II.  LMW PECs were 

fabricated as described in PEC Fabrication, with 20 kHz frequency dispergation.  FITC 

was incorporated for fluorescence studies as per Polymer Labeling and Fluorescent PEC 

Preparation.  Physicochemical characteristics were characterized by TEM and PEC Size 

and Zeta Potential.  HMVECs were cultured as defined in Cell Line and Maintenance.  

Cytotoxicity was evaluated by PEC Effects on HMVEC-1 Proliferation.  Subsequent to 

fluorescent PEC preparation, various methodologies were applied:  Confocal Microscopy, 

Flow Cytometric (FACS) Detection of PEC/Cell Interactions, Saturation PEC-Cell 

Association Kinetics, PEC Acute Toxicity by Propidium Iodide (PI), Treatment of Cells 

with Various Inhibitors, Particle Counting, and Scatchard Plots. 
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Statistical Analysis 

Statistical analysis was performed using JMP-IN 5.1 (SAS, Cary, NC). Reaction 

mixture formulations and final preparations in cell growth media were compared by two-

sample t-test to evaluate the differences between sizes, zeta potentials, and polydispersity 

indices (PDI).  One-way ANOVA was used to compare cell proliferation data with 

controls (PEC-free exposures) while one-tail t-tests were applied to analyze statistical 

deviations of inhibitor responses from controls.  All statistical tests were performed at 

p<0.05 (95% confidence level).  Results are displayed as average ± standard error. 

 

Results and Discussion 

 

PEC Physicochemistry  

The non-stoichiometric titration, under 20 kHz frequency dispergation, of the 

anions chondroitin sulfate and sodium alginate into a multi-component cation bath, 

containing Pluronic F-68, led to the spontaneous assembly of cationic nanoparticulate 

complexes. Physicochemical attributes, hydrodynamic diameter and zeta potential, were 

assessed by photon correlation spectroscopy (PCS), while morpohological properties by 

TEM.  As shown in Figure 5-1(A-C), particles in their native reaction (Rxn) mixture had 

a mean diameter, of 164.6 nm, a polydispersity index of 0.199, and were positively 

charged (34.7 mV).  The significant zeta potential was indicative of a stable colloidal 

suspension as has been pragmatically defined8-10.  TEM images, represented in Figure 5-

1(D), showed that the complexes were spherical in nature and had a mean diameter of 

141.5 nm, averaged over several separate micrographs and observations (n=1484), 
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resulting in an 86% agreement (TEM/Malvern).  This finding was consistent with results 

from Chapter III. 

  

 

Figure 5-1.  Physicochemical properties of the reaction (Rxn) mixture and final 
preparations, in EC media, for multi-component PECs.  (A), (B), and (C) correspond to 
hydrodynamic diameter, zeta potential, and polydispersity index, respectively, measured 
by PCS.  (D) is a representative TEM image.  Asterisks indicate means that differ 
statistically by two-sample t-test at the 95% confidence interval. 
 

PEC isolation and resuspension in endothelial cell growth media (MCDB 131), 

before HMVEC-1 exposure, led to an increase in size and PDI, and a decrease in zeta 

potential as shown in Figure 5-1(A-C).  Two-sample t-tests did not indicate a statistical 

difference in size, but did for surface charge and PDI (p<0.05).  In addition, a one-way t-

test did not show any significant difference between the measured hydrodynamic 

(A) (B) 

(C) 

(D) 
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diameter and 200 nm, the empirical benchmark for efficient cellular uptake11-13.  The 

change in PDI was likely due to the presence of serum particles and proteins, which have 

intrinsic light scattering properties detected by PCS.  Alterations in PEC surface charge 

were attributed to changes in the extent of ionization of surface groups14 and the 

protrusion of ionized, core hydroxyl groups15.  Contributions to electrophoretic mobility 

were also due to the presence of serum particulates. The preservation of hydrodynamic 

diameter may be related to the presence and passive entrapment of Pluronic F-68, added 

to provide steric stabilization16, but has also been found to improve PEC-mediated gene 

transfer.  When adsorbed to surface the polymer could create osmotic and entropic 

barriers to particle-particle interactions and discourage adhesion of electronegatively 

charged serum molecules resulting in maintenance of structural integrity17,18. 

 

Determination of PEC Number by Flow Cytometry 

 Flow cytometry was used to evaluate the concentration of PECs.  This method 

was used for Scatchard analysis and for toxicity titration by MTT reduction.  Such a 

method would be less intensive and more accurate than an electron microscope-based 

technique where extrapolations based on Poisson distributions are necessary.  Therefore, 

serial dilutions of NIST traceable fluorescent nanospheres (stock=2.3x1012 beads/ml, 200 

nm nominal diameter) were prepared, diluted and processed using a FACSAria 

cytometer. This was important so that free PECs could be delineated from cell bound.  As 

beads moved at a constant flow rate through the detector (SSC and FSC PMT), events 

were counted and recorded until 60 s passed.  Dot plots of FSC versus SSC showed very 

little overlapping populations between 200 nm beads, FITC-labeled PECs, and HMVECs 
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as exhibited by Figure 5-2(A-C).    The number of events was then divided by the time 

elapsed comprising the ordinate of the calibration.  The quantity, threshold events per 

second, was then plotted against bead concentration, as in Figure 5-2(D).  In an 

analogous approach, one batch of FITC-PECs was prepared and suspended in 1 ml of 

standard MCDB 131.  This suspension was then diluted, arbitrarily, over 4 logs of 

concentration and the number of PECs was collected for 60 s.  This allowed a linear 

range from concentrations 1.54x109 to 9.80x106 PEC/ml, corresponding to a 1:20 and 

1:10000 dilutions, respectively, as shown in Figure 5-2(E,F).  Suspensions at lower 

dilutions (1:10, 1:5) resulted in concentrations, which were less than 1.54x109 PEC/ml 

related to saturation of the detector or aggregation due to a decrease in particle interstitial 

space.  Similar behavior was observed for the bead standards after an upper level of 

2.30x109 bead/ml was reached.  
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Figure 5-2.  Evaluation of PEC concentrations by flow cytometry.  FACS anlysis of (A) 
NIST traceable fluorescent green beads and (B) multi-component PECs suspended in 
HMVEC growth media; (C) gating of HMVECs showed little or no overlap between 
cellular and PEC gates, while PECs and 200 nm bead share similar FSC and SSC 
scattering.  (D) was the calibration (detected events v. bead concentration) generated for 
various dilutions of NIST beads.  (E) measured detected events versus arbitrary PEC 
dilutions per batch, while (F) calculated the concentration of PECs based on the bead 
standardization.  Error bars are the standard error for n=3. 
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Cytotoxicity 

 Multi-component PEC system biocompatibility was tested by MTT reduction and 

propidium iodide (PI) internalization.  Confluent HMVECs were seeded to 48 well plates 

(25000 cell/well) 24 h previous to PEC exposure.  Responses to PEC doses were 

compared to cells cultured in the absence of particles (untreated control=100%).  As 

shown in Figure 5-3(A), concentrations ranging from 400 to 60000 PEC/cell did not 

cause any statistical changes in MTT reduction as verified by one-way ANOVA and 

Dunnet’s Test.  For PI staining, Figure 5-3(B), HMVECs were exposed to 1.54x109 

PEC/ml, detached, and, over two hours, no change in viability was detected. The wide 

span of limited cytotoxicity validated this PEC system as a candidate for drug delivery to 

endothelial cells. 

 

Figure 5-3.  Relative toxicity profiles, chronic and acute, for multi-component PECs by 
(A) MTT reduction after 72 h incubation over various serial dilutions and (B) PI staining 
at a fixed concentration of particles (1.54x109 PEC/ml).  Statistical testing by one-way 
ANOVA showed no difference amongst samples, while Dunnet’s test showed that each 
mean was statistically the same as the control (no PECs), p<0.05.  Data are means of at 
least 3 experiments (mean±s.e.)  
 

 

 

(A) (B) 
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Suppression of Extracellular Fluorescence by Trypan Blue 

 The ability of trypan blue to abolish free FITC was evaluated by addition to a 

suspension of FITC-PMCG PECs.  This was critical to define intracellular fluorescence 

by FACS and has been previously applied19-23, as trypan blue is excluded from viable 

cells.  Figure 5-4(A) displayed the decrease in FITC distribution and complete shift from 

before (blue) and after (red) addition of trypan blue to a 200 µl suspension of 1.54x109 

PEC/ml in a 1:1 volumetric ratio.  Figure 5-4(B) represented the mean of three separate 

FITC PECs before and after trypan blue.  The mixing of trypan blue with the suspension 

of FITC PECs resulted in a 98% suppression in median fluorescence.  In terms of 

fluorescence, the medians dropped from 6142 a.u. (TB+) to 130 a.u. (TB-).  These 

experiments validated the use of trypan blue to characterize compartmentalization 

(surface versus inside) of multi-component PECs. 

 

 
Figure 5-4.  Suppression of free FITC via addition of trypan blue.  (A) and (B) establish 
the concept of using trypan blue to quench extracellular fluorescence.  Addition of 0.4 
mg/ml trypan blue completely abolished the fluorescence (A) of free PECs in suspension 
in the absence of cells where blue and red were the distributions of fluorescent events 
before and after exposure to trypan blue, respectively.  Histograms (B) and distribution 
(A), are the means ±standard error for three independent experiments and PEC 
preparations. 
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Kinetics of PEC Binding and Uptake:  Tryptic Degradation of Interactions 

 FACS tracked the binding and uptake of FITC-containing PECs in HMVECs, 

cultured in serum-containing media, at various intervals up to 2 h.  Exposure was 

followed by detachment by EDTA and the signals were expressed as median fluorescence 

in Figure 5-5(A,B) for both compartments (surface and internal).  The surface bound 

phase was calculated by, first, measuring the total fluorescence bound, followed by 

subtraction of the trypan blue quenched signal.  Figure 5-5(A) and 5-5(B) both indicated 

that particle binding and uptake was rapid and increased with the incubation time, despite 

the negative measured zeta potential in MCDB 131; shifts in fluorescence were seen as 

early as addition of PECs and immediate removal and washing (t=0).  However, both 

curves showed a plateau effect, due, possibly, to limited saturation24,25.  PEC association 

was also observed in mouse fibroblast (CRL-10225 and NIH3T3), CHO, CT26 colon 

carcinoma, primary human endothelial, macrophage, and hepatocyte cells. 

 Because the attachment and internalization appeared to reach saturation, the 

process was speculated to be receptor-mediated to some extent26,27.  The particles are not 

likely to be phagocytosed due to the hydrodynamic diameter28.  Even though the bulk 

surface charge was negative, microdomains of positive charge largely contribute to the 

attachment of PECs. PECs, in the absence of any targeting ligand, likely interacted with 

HMVEC through electrostatic interactions, particularly through PMCG.  PMCG, 

guandinium rich, induced PEC electrostatic adsorption via cell surface bidentate 

hydrogen bonding to distal polyanionic residues29,30.  Visual evidence of PEC/cell 

interactions, FITC-PECs were incubated with HMVECs for 2 h and observed by confocal 

laser scanning microscopy (CLSM).  Figure 5-5(D,E) showed evidence of perinuclear 
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accumulation of PECs (green), while CLSM z-sectioning indicated that PECs were in the 

same plane as cells. 

 Figure 5-5(C) indicated the tryptic degradation of PEC association, necessitating 

the use of EDTA as the cell monolayer removal method.  This type of study is commonly 

ignored in the literature that considers nanovehicle interactions with cells5,21,31-35. The 

tryptic proteolysis of the PEC association was analyzed by exposing HMVEC to FITC-

labeled complexes for 30 min followed by either detachment by 0.25% trypsin/0.1% 

EDTA or 5 mM EDTA in HBSS, pH=7.6. Trypsin decreased the total amount of surface 

bound and internalized PECs, compared to cells detached by EDTA.  PECs showed a 

60% reduction in surface attachment and a 40% decrease in internalization, both 

statistically significant (p<0.05) to cells removed by EDTA.  The result suggested that 

cellular surface proteins were involved in binding and uptake.  This treatment, which 

strips HSPG36, showed evidence that PEC associative properties may depend partially on 

HSPG, but does not address the dependence on calcium. 
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Figure 5-5.  Overall PEC association kinetics and trypsin sensitivity for HMVECs.  
Kinetics of rapid binding (A) and internalization (B) for 2 h PEC exposure measured by 
FACS showed a phenomena which appeared to be saturable (n=3).  The 30 min binding 
and uptake (C) were also sensitive to tryptic detachment (p<0.05, n=3) necessitating the 
use of EDTA in all in vitro experiments.  A one-sample t-test was applied to compare 
trypsinized samples to EDTA treated (control).  Confocal laser scanning microscopy 
imaging of PECs (green) incubated with HMVEC-1 for 2 h. (D) and (E) represented two 
separate fields of view. Complexes were incubated with HMVECs for 2 h and a 
perinuclear accumulation was observed qualitatively verifying FACS experiments.  
Nuclei were stained with TOPRO-3 (violet).   
 

(A) (B) 

(C) 

(E) (D) 
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PEC Association and Energy Requirement 

 The involvement of energy, both thermodynamic and metabolic, was probed by 

incubation at reduced temperature (4°C) and media addition of 0.05% sodium azide/50 

mM 2-deoxyglucose, respectively.  Prior to addition of PECs, cultures were pre-

incubated at 4°C for 1 h.  PECs were then dispensed and further incubation at 4°C 

proceeded for 30 min.  Exposure to 0.05% sodium azide/50 mM 2-deoxyglucose in 

MCDB 131 also elapsed 1 h previous to PEC exposure, followed by addition of particles 

in the presence of inhibitor for 30 min.  In both cases, cells were detached following the 

30 min exposure level by EDTA and analyzed by FACS; controls were HMVECs with 

PECs at normal incubatory conditions.  Incubation with these two inhibitors resulted in 

the largest decreases in uptake signifying energy’s important role in PEC intracellular 

transport. 

 Incubation of PECs at 4°C, (Figure 5-6, black) showed significant, statistical 

reduction in both binding and internalization after 30 min, compared to the control.  

Reduced temperature is a classical endocytosis and active transport inhibitor, where only 

passive PEC membrane fusion occurs.  Therefore, the results indicated the dependence of 

thermodynamic energy for dynamic PEC uptake6.  Additionally, decreased temperature 

reduces the motility of surface protein groups and the diffusion of PECs to the cell 

boundary.  There was not a complete shutdown in the endocytosis; internalization 

decreased 80%.  This was due to the presence of the basic surface molecule PMCG; 

integration of PECs into the plasma membrane and the cytosol was different than the 

process that occurs at 37°C, consistent with data on the internalization of arginine-rich 

peptides37. 
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 Further evidence of an energy-dependent adsorptive process was shown by 

incubation of cells with sodium azide/2-deoxyglucose, an inhibitor of glycolysis, (Figure 

5-6, gray) both before and during PEC exposure.  The decrease in bound (-55%) and 

internalized (-70%) PECs was statistically significant (p<0.05) through a mechanism 

mediated by depletion of ATP and membrane potential27,30.  This response provided 

further proof that PEC attachment and endocytosis was a dynamic process that begins 

with adsorptive fusion with the cell membrane38. 

 

Figure 5-6.  Energy mediated PEC internalization and binding.  The dependence on 
metabolic and thermodynamic conditions was evaluated by incubation with 2-
deoxyglucose (gray) and reduced temperature (black), respectively.  Statistically 
significant differences were seen at the 95% confidence interval for surface attachment 
and uptake (n=3).     
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Actin Disruption 

 The role of filament networks in binding and endocytosis was studied by addition 

of 10 µM cytochalasin D, found to sufficiently inhibit actin polymerization, thus blocking 

phagocytosis and pinocytosis37.  Cells were pre-treated with cytochalasin D for 2 h, at 

standard incubatory conditions, followed by PEC exposure for 30 min.  Figure 5-7 

showed statistical effects for (-58%, p<0.05) only the internalization of PECs.  This result 

would indicate the role of the actin cytoskeleton during endocytosis and was consistent 

with other studies5,23,37. 

 

Figure 5-7.  Actin facilitates the internalization of PECs.  Preincubation of HMVEC with 
10 µM cytochlasin D for 2 h statistically inhibited particle uptake, but not binding (one-
sample t-test p<0.05).  Data are the average of 3 replicates with error bars corresponding 
to standard error.    
 

 

Heparin and Heparan Sulfate Proteoglycans (HSPG) Affect PEC Transport   

The function of HSPG in PEC transport was characterized by two methods.  The 

first approach was competitive inhibition of PEC binding by adding the exogenous, 

anionic glycosaminoglycan heparin to the media before (2 h) and during (30 min) PEC 

exposure.  Biosynthesis of HSPG was perturbed by the 24 h incubation with 500 µM 4-
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nitrophenyl-α-xylopyranoside (α-xyl) or 4-nitrophenyl-β-xylopyranoside (β-xyl) 

overnight, where β-xyl disrupts HSPG elongation39,40.  The overnight treatment was 

followed by PEC introduction for 30 min. 

Addition of heparin, 200 U/ml, to the media containing PECs almost completely 

abolished cellular interactions, Figure 5-8(A), consistent with previous data using lipo- 

and polyplexes41.  Surface binding was reduced (93%), while internalization diminished 

by 58%.  Both effects were statistically significant.   Heparin, because of its highly 

anionic nature and as a HSPG mimetic, non-specifically adhered to the complexes, 

causing the neutralization of positively charged groups on the PEC corona; prospective 

cell binding sites were masked.  The neutralization was possibly followed by 

destabilization of complexes in solution preventing cell binding and entry42.  The 

destabilization simultaneously could have caused an increase in size, another obstacle for 

efficient PEC delivery43. 

Incubation with a HSPG biosynthesis inhibitor, β-xyl, supported the hypothesis 

that membrane-associated HSPG partly mediated the attachment and internalization of 

PECs, as shown in Figure 5-8(B).  HMVECs were incubated with either 500 µM β-xyl or 

α-xyl 24 h previous to PEC exposure.  After which, the cells are washed and PECs were 

added for 30 min. The two xylosides have the same molecular weight, but only the beta 

isomer competes with the proteoglycan core protein xylosyl residues for the 

galactosyltransferase I, inhibiting the construction of glycosaminoglycans.  The depleted 

HSPG by, addition of β-xyl, led to a 47% reduction in surface PEC binding compared to 

the control.  Exposure to the α-xyl isoform led to no statistical deviation in binding and 

uptake compared to the control, as expected.  Internalization was not statistically affected 
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for either xylopyranoside, although β-xyl did show an obvious decrease and possible 

HSPG role in endocytosis. The remaining portion of binding may be non-specific and 

electrostatic, but also due to sufficient amount of HSPG that persisted.  This result was in 

agreement with results published for cationic polyamines40 and DNA-loaded liposomes44. 

 

Figure 5-8.  HSPG dependence on cell binding.  (A) shows the competitive inhibition of 
attachment and binding by incubation of cells with PECs and 200 U/ml heparin.  (B) 
displays the role of HSPG in PEC binding.  HMVEC were 24 h pre-incubated with either 
4-nitrophenyl-α-xylopyranoside (α-xyl, black) or 4-nitrophenyl-β-xylopyranoside (β-xyl, 
gray), where the α-isomer does not inhibit HSPG biosynthesis.  Only the surface binding 
differed statististically from the control (p<0.05, n=3). 
 

 

Non-Specific Binding Verified by Scatchard Plots 

Using FITC-labeled PECs, a FACS-based Scatchard equilibrium experiment for 

the detection and characterization of non-specific binding was developed for titrations 

performed at 37°C and 4°C.   The conventional binding curves are shown in Figure 5-

9(A,B).  Scatchard titrations were prepared by exposing HMVEC-1 cells to serial PEC 

dilutions over 3 orders of magnitude, over the concentration range tested for toxicity by 

MTT, for 3 hours at 37°C and 4°C.  Efforts were made to cover as wide a range of PEC 

concentrations as possible and to carry the measurements to the highest allowable 

(A) (B) 



 121 

concentrations by solubility and practical circumstances, i.e. PEC aggregation.  The ratio 

of PECs added to initial cell density ranged from 32000:1 down to 200:1; proportion of 

PEC bound to initial cell density varied from 30000:1 to 5:1, both of which were 

calculated experimentally.  The time was defined by the kinetic experiments, Figure 5-

5(A,B), and the FACS acquisition performed on a FACSAria system fitted with a 

photomultiplier tube on the forward scattering laser for more sensitive detection of cell 

bound PECs. The exposure was followed by detachment, acquisition of MFI, and 

conversion of bound (total associated fluorescence) indices to particle concentrations.  

This was possible after calibration of our ~200 nm PECs with known concentrations of 

NIST-traceable beads.  The approach allowed the Scatchard transformation (bound/free 

versus bound) and also provided a verification of non-specific, adsorptive binding seen in 

kinetic experiments shown in Figures 5-9(C,D) for incubations at 37°C and 4°C, 

respectively. Also it was the first such FACS based Scatchard representation of non-

specific interactions of a polymeric drug delivery system.    

In both cases, the binding isotherms, Figure 5-9(A,B) form the lower half of the 

standard S-curve saturation seen in steady-state experiments; there was no apparent 

saturation of cell surface receptors interacting with PECs.  However, the curves never 

approach saturation. The data transformations for Figure 5-9(C,D) showed an inverse 

relationship for the apparent binding constant due to extensive cooperativity, an atypical 

response in Scatchard plots. In many documented in vitro binding experiments, the initial 

positive slope goes to a maxima followed by a monotonic decrease in slope as the total 

ligand increases in concentration45-48.  Similar behavior to Figure 5-9(A,B) has been 
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observed in human serum albumin binding49,50, but no inflection point was observed in 

this study.  

 

 

Figure 5-9.  PECs exhibit non-saturable binding and positive cooperativity for 3 h at 
37°C and 4°C.  Incubations for (A) and (C) were performed at 37°C, while (B) and (D) at 
4°C.   (A) and (B) are dose-dependent binding curves. (C) and (D) represented Scatchard 
plot analysis.  Curves were determined by flow cytometry (n=3).  The ratios of bound and 
free PECs for each concentration were determined based on the MFI of each dose in the 
absence of cells, followed by correlation to calibration curves determined as in Figure 5-
2.   Y-error bars represent the average ± s.e. in calculated bound PECs, while X-error bars 
are the free PEC concentration ± s.e.  by difference between initial dose and bound.  
 

 

 

 

 

(A) (C) 
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Conclusions 

 This study provides a comprehensive study of naked PEC interactions with 

endothelial cells in vitro through the use of applications ideally suited for nanoscale 

system:  PCS and FACS.  Effective delivery of PECs is of paramount significance for the 

development of systems that target the vascular endothelium, the nutrient supply line for 

tumor environments2.  While many of the current PEC delivery systems have focused and 

reported on gene delivery51-54, there has been little focus on the process of PEC 

interactions that occur before the expression of DNA.  Therefore, in order to improve 

polyelectrolyte drug delivery systems, it is critical to understand the mechanisms and 

barriers for successful interactions with target cells. 

 The architectures described herein provide a media-stable, core-shell 

nanoparticulate structure with physicochemical properties ideal for use in vitro.  PCS 

measurements provided proof that instantaneous complexation of oppositely charged 

polyelectrolytes led to nanoparticle structures with ~200 nm hydrodynamic diameter and 

robust serum stability, verified by no statistical change in size after isolation and 

resuspension, appropriate for systemic delivery.  Moreover, the presentation of outer shell 

amine groups may allow the presentation of ligands for targeted accumulation in disease 

sites.  A lack of long term cytoxicity was first demonstrated by MTT, while short term 

effects diagnosed by no intercalation of PI with DNA for concentrations of PECs that 

were orders of magnitude larger than the cell population.    

 The incorporation of a fluorescently-labeled polymer constituent allowed the use 

of flow cytometry to evaluate cellular interactions.  Through the use of trypan blue, flow 

cytometry can distinguish between surface associated and internalized PECs.  This 
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facilitated the understanding cellular compartmentalization of PECs without cell lysis, a 

method commonly used in other studies25,38,55,56.  Initial binding and internalization 

studies showed that the associative phenomena were saturable and sensitive to proteolytic 

enzymes.   

The mechanisms of PEC attachment and entry were further probed through the 

use of various inhibitors at concentrations and levels prescribed in the literature:  

cytochalasin D37,57, azide/2-deoxyglucose27, reduced temperature5, exogenous 

heparin42,43, and two xylopyranoside enantiomers39.  No data exists to date on the specific 

mechanisms of PEC uptake, although liposomes have been found to be endocytosed5,58,59.   

The use of reduced temperature and depletion of cellular ATP by azide/2-

deoxyglucose slowed uptake and binding.  This would indicate that both active processes 

are energy-dependent.  However, some residual attachment and internalization persisted 

in an energy-independent manner, indicative of a process other than endocytosis.  

Transduction, or direct PEC entry, may contribute to this portion of the internalization 

after diffusion of complexes to the cell surface60.  PMCG, a polymer with repeating 

guandinium residues and structural similarity to arginine resides likely facilitated 

penetration across the plasma membrane61,62. This result was consistent with a previous 

finding for DNA complexed with a sequence of the HIV-Tat protein63. 

The inhibition of uptake by cytochalasin D identified the role of macropinocytosis 

and non-clathrin, non-caveolae dependent endocytosis in the trafficking of PECs to the 

cell interior.  Macropinocytosis is lipid raft-mediated with macropinosomes often larger 

than 1 µm and dependent on cytoskeletal rearrangements64.  Clathrin and caveolae 

dependent endocytosis rely on clathrin coated pits (~120 nm) or caveolae invaginations 
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(~60 nm), respectively65.  The PEC system applied in this study had hydrodynamic 

diameters consistently around 200 nm making them too large for the latter processes. 

There is increasing evidence that HSPGs play a role as cellular entry gateways for 

positively charged molecules and synthetic delivery vehicles.  It has already been 

reported that HSPG facilitate the entry of polyamines and cationic liposomes7,42. HSPG 

biosynthetic inhibition of cell-associative properties by 4-nitrophenyl-β-xylopyranoside 

further verified the role of macropinocytosis66.  Interactions between HSPG and PECs 

carrying very cationic chemical groups are inevitable because the anionic cell surface 

proteoglycans encompass the entire cell surface67.  The remaining amount of PECs bound 

suggests that, apart from HSPG, there are other cell surface receptors, possibly sialylated 

glycoproteins or glycolipids, that may account for PEC attachment.  

Because HSPGs, in the form of syndecans and glypicans, are involved in 

adhesion, migration, and cytoskeletal organization, it was no surprise that the inhibition 

of HSPG binding coordinated with actin microfilament affected uptake.  Cytoplasmic 

tails and actin filaments are connected inside the cell through linker proteins.  Therefore, 

binding to adhesion receptors provides the initial step for particle engulfment mediated 

by membrane rufflings caused by networks of cortical actin fibers29. 

The evaluation of nanoparticle concentrations, in terms of PEC/ml, allowed the 

determination of binding isotherms and Scatchard transformations for multi-component 

PECs.  Scatchard plots are largely ignored for polymeric drug delivery systems, but 

characterizations of the type of binding occurring in biological systems is critical for the 

development of target-specific nanovehicles.  Non-specific PEC binding was further 

verified by the shape of the Scatchard plots.  Independent of temperature, the curves have 
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positive slopes, where PECs bind to a heterogeneous group of receptors with 

cooperativity. Because PECs are not hard objects, their amorphous nature leads to 

conformational flexibility and adaptability, further facilitating the cell association.  The 

positive slopes have been interpreted to indicate possible cooperativity and interaction 

with multiple binding sites and do not lend themselves to the analyses generally 

performed with typical Scatchard curves in terms of calculation of binding parameters68.  

The positive cooperativity would suggest that the binding of one PEC to any receptor on 

the cell surface created an energetically favorable site for another PEC. 

Mathematically, the total concentration of bound PEC, [Bound], to a single class 

of receptors can be defined by the Michaelis-Menten equation below: 

 

where [LFree], [Rtotal], and Kd the concentration of free PEC (ligand), total receptor 

concentration (constant), and equilibrium binding constant, respectively.  In the case of 

the naked PECs, the free ligand was at concentrations much lower than the Kd, leading to 

a linear relationship between bound and free PECs with a slope of Rtotal/Kd.  Breakdown 

in mass action laws may also be a contributing factor to PEC binding:  receptor 

heterogeneity, cooperativity, and irreversible binding.  PECs bind promiscuously to any 

receptor on the cell surface, as shown by PECs in the presence of depleted HSPG.     

 Brodersen and coworkers49 argue that if the interactions were saturable, the 

binding isotherm should have an inflexion point indicating the existence of such a limit.  

PECs appeared to bind cells without the possibility of displaceability, likely until 

effective charge neutralization between the anionic cell surface (functioning only as a 
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charged entity) and cationic microdomains of the PEC, but saturation does not appear to 

be possible. 

In conclusion, when considering the binding and internalization mechanisms of 

PECs, the particular types of interactions must be considered for developing effective 

targeting approaches. Additionally, systems must be non-toxic both in cell culture and 

upon systemic administration and have physicochemical characteristics to facilitate 

cellular uptake.  For multi-component PECs, HMVECs showed no appreciable toxicity 

and are internalized through non-specific macropinocytosis.  The binding and association 

was deemed totally non-specific by a combinatorial FACS and Scatchard design.  The 

system presented in this study further provided a platform which can be subsequently 

modified for a targeted delivery approach due to its favorable physical attributes and 

rapid intra- and extracellular accumulation.  Classical methods, like the Scatchard plots, 

combined with more current technologies, FACS, are critical for the further design and 

application of nanoscale delivery architectures.  Meeting requirements such as low 

cytoxicity and significant uptake into a target cell line, this system provides a promising 

candidate for further development and study.  Moreover, the chemical nature and 

presence of common functional groups (carboxyls and amines) allows for simple 

incorporation of small drugs or non-viral payloads and targeting vectors.    
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CHAPTER VI 
 
 
 

ENHANCED BINDING TO ENDOTHELIAL CELLS BY TARGETED 
NANOPARTICULATE POLYELECTROLYTE COMPLEXES 

 
 
 

Introduction 

 The site-specific delivery to cells or organs is a potentially attractive mode of 

treatment for increasing the therapeutic efficiency of drugs and reducing their toxicity1.  

Several strategies have been developed to employ specific ligands that interact with the 

endothelial cell (EC) surface to mediate delivery of drugs selectively to the tumor 

microenvironment without affecting normal tissue2-4.  Tumor vasculature targeting is a 

promising strategy, as both primary tumor maturation and metastasis depend on the 

survival and growth of new blood vessels, termed angiogenesis.  Additionally, intimate 

contact with the blood makes the tumor endothelial cell a uniquely accessible target 

within the tumor5.  Extensive research has led to the identification and isolation of several 

regulators of angiogenesis, some of which represent therapeutic targets6,7. 

 EC in the angiogenic vessels are known to overexpress several markers, which are 

either barely detectable or entirely absent in normal blood vessels8-11.  A number of 

extracellular matrix molecules possess sites that interact with the tumor endothelium and 

play key roles in the regulation of angiogenesis12.  Anti-angiogenic strategies have 

evolved that utilize this strategy, but the affinity and specificity of this interaction can be 

used as part of a targeting approach13,14.  One such molecule, thrombospondin-1 (TSP-1) 

is a large glycoprotein composed of three identical subunits, which are covalently linked 

by interchain disulfide bonds and has intrinsic antiangiogenic activity15. 
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TSP-1 has been proposed to play a role in numerous biological processes 

including embryonic development, angiogenesis, and hemostasis16,17.  The ability of TSP-

1 to regulate these processes has been attributed to its capacity to bind to matrix proteins, 

proteinases, growth factors, and cell surface receptors through specific domains.  The 

receptor-mediated binding and endocytosis of TSP-1 is controlled by heparan sulfate 

proteoglycans (HSPGs)18, cell surface receptors which are recognized by metastatic 

tumor cells upon their binding19, and overexpressed in tumor milieu20-23.  Further clinical 

use of TSP-1 is inhibited by the inability to synthesize large quantities of pharmaceutical 

grade protein and potentially off target side effects12.  However, peptide sequences 

derived from certain TSP-1 domains show antiangiogenic activity and mimic the function 

of the intact macromolecule with high affinity binding.  One such peptide (TSP521) 

specifically binds HSPGs and has been shown to target the vasculature of an 

experimental glioma model24.   It also has been shown to impede the translocation of 

fibroblast growth factor-2 (FGF-2) to its tyrosine kinase receptor, resulting in inhibition 

of cell proliferation25.  These properties led to the selection of TSP521 as a potential 

neovascular targeting platform. 

 Significant effort has been devoted to develop novel, nanoparticulate polymeric 

carriers for targeted drug delivery to specific cells and especially the tumor vasculature26, 

many of which were listed in Chapter I.  The development of pH and serum stable LMW 

PECs, prepared with frequency dispergation, in Chapter III, followed by their biological 

characterization and rapid cellular uptake (Chapter V), lend themselves as candidates for 

incorporation of TSP521.  Two methods of incorporation of TSP521 were applied 
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followed by fluorescence techniques to evaluate peptide loading and study the cellular 

interactions with human microvascular endothelial cells (HMVECs):   

•  passive entrapment after TSP521 conjugation to polyethylene glycol 

(PEG) to achieve both a geometric and flexible presentation27, decreased 

susceptibility to circulatory proteolytic enzymes, and improved 

phamacokinetic properties28 

• direct, covalent coupling by 1-ethyl-3-(3-dimethyl-aminopropyl) 

carbodiimide (EDAC)/N-hydroxysuccinimide (NHS) two-step, zero-

length cross-linking29 of the aspartic acid carboxylic acid to surface PEC 

amines. 
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Experimental Procedures 

Many procedures were applied as defined in Chapter II.  LMW PECs were 

fabricated as described in PEC Fabrication, with 20 kHz frequency dispergation.  FITC 

was incorporated for fluorescence studies as per Polymer Labeling and Fluorescent PEC 

Preparation.  Physicochemical characteristics were characterized by PEC Size and Zeta 

Potential.  HMVECs were cultured as defined in Cell Line and Maintenance.  

Cytotoxicity was evaluated by PEC Effects on HMVEC-1 Proliferation.  Subsequent to 

fluorescent PEC preparation and Incorporation of TSP521:  Direct Surface Coupling and 

Passive Entrapment, various methodologies were applied:  Flow Cytometric (FACS) 

Detection of PEC/Cell Interactions, Saturation PEC-Cell Association Kinetics, Treatment 

of Cells with Various Inhibitors, and Scatchard Plots.  Compartmentalization (surface 

bound versus internalized) was analyzed by extracellular FITC quenching with trypan 

blue. 

 

Statistical Analysis 

Statistical analysis was performed using JMP-IN 5.1 (SAS, Cary, NC).  Final 

preparations, with and without TSP521, in cell growth media were compared by two-

sample t-test to evaluate the differences between sizes, zeta potentials, and polydispersity 

indices (PDI).  One-way ANOVA was used to compare cell proliferation data with 

controls (PEC-free exposures) while one-tail t-tests were applied to analyze statistical 

deviations of inhibitor responses from controls.  All statistical tests were performed at 

p<0.05 (95% confidence level).  Results are displayed as average ± standard error. 
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Results and Discussion 

 

 Synthesis and Characterization of TSP521-Loaded PECs 

 PEC self-assembly led to the spontaneous incorporation of PEGylated TSP521 

(PEGp521), which was loaded (750 µg) into the anionic solution pre-fabrication.  The 

other strategy involved TSP521 (100 µg), without PEG, linkage to the PEC corona post-

production and isolation by centrifugation.  The loading efficiency for PEGylated peptide 

entrapment was 2% (15 µg), verified isotopically and with fluorescence, whereas surface 

engineering by EDAC/NHS led to 10% immobilization (10 µg).  Suspension of the two 

strategies in MCDB 131 (EC growth media) led to stable suspensions and showed no 

statistical difference (p<0.05) in size and zeta potential compared to non-targeted PECs 

(Table 6.1).  The improved properties, reduced PDI, exhibited by PECs containing 

PEGylated TSP521 was due to the presence of PEG which increases the resistance to salt 

induced aggregation and provided a steric stabilization30.  The residual increase in size 

shown by EDAC/NHS treated PECs was due to a small amount of cross-linking between 

PECs that may have occurred between protruding anionic carboxyl groups and amines. 

 
Table 6-1.  Targeted and non-Targeted PEC physicochemistry in EC growth media. 
 

Platform Size (nm) PDI Zeta Potential (mV) 
non-Targeted 192.3±16.6 0.393±0.186 -18.4±4.3 

Targeted PEGp521 194.2±23.6 0.167±0.024 -25.2±5.6 
Targeted EDAC/NHS 240.0±17.1 0.287±0.033 -27.4±1.6 
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 Cytotoxicity of Targeted and non-Targeted PECs 

 Cytoxicity of targeted and non-targeted PECs was investigated using the MTT 

assay on HMVECs over the same conditions applied in Chapter V. Experimental 

observations, PEC doses, were compared to cells without PEC.  One-way ANOVA was 

first applied to determine the heterogeneity in means while Dunnet’s test evaluated the 

statistical response of each observation in comparison to the control.  As shown in Figure 

6-1, no statistical effect (p<0.05) on 72 h HMVEC cell viability was detected for serial 

PEC concentrations over three orders of magnitude.  Additionally, the PEC to initial cell 

density ratio ranged from approximately 60000:1 down to 400:1. The wide span of 

limited cytotoxicity validated this PEC system as a candidate for targeted delivery to 

endothelial cells. 

 

 
 
Figure 6-1.   Relative viability of HMVEC-1 cells incubated 72 h with various 
concentrations of non-targeted (nT, gray), Targeted, PEGylated TSP521-containing (T 
PEGp521, black), and TSP521 coupled by EDAC/NHS PECs (T EDAC/NHS, white).  
Control cells are untreated.  All results are given as the average ± standard error (n=3).  
No statistical differences in MTT reduction (p>0.05) were seen by one-way ANOVA 
(deviations amongst experimental means) and Dunnet’s Test (experimental reductions 
compared to control). 
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 Tryptic Effects on Targeted and non-Targeted PEC Interactions 

 Analogous to Chapter V, tryptic effects on PEC association was analyzed by 

exposing HMVEC to FITC-labeled complexes followed by either detachment by 0.25% 

trypsin/0.1% EDTA or 5 mM EDTA in HBSS, pH=7.6.  Trypsin decreased the total 

amount of surface bound and internalized PECs, compared to cells detached by EDTA 

(Figure 6-2).  Coincidentally, for non-targeted and targeted PECs (EDAC/NHS and 

PEGp521), an approximately 75% reduction in surface attached PECs and a 50% 

decrease in internalization, both statistically significant (p<0.05) to cells removed by 

EDTA, were effects independent of the targeting strategy.  The result suggested that 

extracellular matrix proteins were involved in PEC binding and internalization.  Trypsin, 

which strips HSPG31, showed evidence that PEC associative properties may depend 

partially on surface proteoglycans, but, again, does not address the dependence on 

calcium. 

 

 
Figure 6-2.  PEC binding and internalization sensitivity to trypsin exposure.  The percent 
inhibition was defined as the ratio of MFItrypsin/MFIEDTA.  Error bars represent the 
standard error for n=3.  Asterisks indicate statistical effects at p<0.05 on both PEC 
internalization and surface binding. 
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 Binding and Internalization Kinetics 

Flow cytometry provided evidence of upregulated HMVEC binding and 

internalization for PECs with TSP521 loaded by both strategies (Figure 6-3).   PECs 

(1.54x109 PEC/ml) were incubated with cells for up to 2 h.  At the outset of the exposure, 

cells were detached using EDTA and analyzed by FACS for binding and internalization 

by trypan blue32,33.  The level of binding for non-targeted PECs was relatively low while 

targeted PECs showed a 10 and 40 fold increase for EDAC/NHS and PEGp521 

approaches, respectively.  Uptake exhibited a 5 fold upregulation for both targeting 

platforms compared to non-targeted complexes.  The enhanced binding and 

internalization kinetics of PEGylated and EDAC/NHS TSP521 PECs may be due to 

specific interactions with HSPG robustly expressed on endothelial cells20-23, consistent 

with the activity of the free peptide34.  Both PEC-containing compartments, surface and 

internal, appeared to reach saturation for platforms with and without targeting after an 

initial 20 min linear increase in the two compartments.  This phenomenon indicated that 

both uptake mechanisms, non-targeted and targeted, were receptor-mediated35,36.  Non-

targeted PECs likely interacted with HMVEC through electrostatic interactions, 

particularly through PMCG37, as described in Chapter V.  
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Figure 6-3.  TSP521 incorporation enhances PEC association with endothelial cells.  
Kinetics of A) surface binding and B) internalization for PECs with and without the two 
TSP521 incorporation strategies were obtained by incubating HMVEC-1 cells with 
1.54x109 PEC/ml for up to two hours, detachment, and acquisition by FACS.  All median 
fluorescent indices are the average ± standard error (n=3).  
 

 

Exogenous Heparin Abolishes PEC Interactions 

Recent studies have shown that extracellular glycosaminoglycans (heparin, 

chondroitin sulfate, dermatan sulfate) are a barrier to successful gene delivery via 

polymeric, cationic carrier vehicles38-40.  The effects of extracellular glycosaminoglycans, 

200 U/ml heparin, on binding and uptake on targeted and non-targeted PECs were clear 

and independent of TSP521 loading as shown in Figure 6-4(A,B), where Figure 6-4(B)  

displays the data with an expanded abscissa.  Heparin blocked the interactions of PECs 

with HMVECs. Surface binding was reduced for non-targeted (97%), targeted PEGp521 

PECs (95%), and targeted EDAC/NHS (88%) while internalization diminished by 69%, 

86%, and 85%, respectively.  No statistical effect was observed for comparisons between 

naked and TSP521-containing PECs.  As detailed in Chapter V, heparin non-specifically 

adhered to the PECs causing the saturation and neutralization of positively charged 

A) B) 
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groups on the PEC corona and complex destabilization40.  The presence of TSP521 also 

contributed to this effect as TSP-1 and the peptide have an affinity for heparin19,41.  

 
 

 
 
 
Figure 6-4.  Exogenous heparin eliminated PEC/cell interactions.  Incubation of PECs in 
the presence of 200 U/ml heparin completely inhibited surface binding and 
internalization of PECs (average±standard error, p<0.05). 
 

 

 Perturbation of HSPG Biosynthesis 

 Incubation with a HSPG biosynthesis inhibitor, 4-nitrophenyl-β-D-

xylopyranoside (β-xyl), supported the hypothesis that membrane-associated HSPG partly 

mediated the attachment of PECs, as shown in Figure 6-5(B).  β-xyl  competes with 

xylose-substituted core proteins as a substrate for galactosyltransferases leading to 

inhibition of HSPG elongation whereas the α isomer has no inhibitory activity42,43.  

Figure 6(A) showed no statistical changes in PEC binding or internalization for HMVECs 

pre-incubated with 4-nitrophenyl-α-D-xylopyranoside (α-xyl). The inhibition of HSPG 

biosynthesis caused a 54%, 69%, and 42% decrease in surface PEC binding compared to 

the control for non-targeted, targeted PEGp521, and targeted EDAC/NHS PECs, 

A) B) 
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respectively.  The 15% difference in surface binding between non-targeted and targeted 

PEGp521, although not statistically different, does show a higher dependence on the 

HSPG cell surface presentation.  Internalization was not statistically affected for any 

system, although decreased in all cases, indicating that uptake of PECs may share a 

common endocytic pattern (macropinocytosis), a surprising finding since the 

internalization of TSP-1 has been found to be inhibited by overnight β-xyl treatment18.  

The remaining portion of binding may be non-specific and electrostatic, but also due to a 

sufficient amount of HSPG that persisted. 

 

 
Figure 6-5.  HSPG partly mediated PEC association.  24 h pre-incubation with A) 
inactive and B) active xylopyranoside isomers followed by 2 h PEC exposure led to 
inhibition of surface binding for n=3 (average ± standard error, p<0.05) 
 

 

Detection of Targeting by FACS-based Scatchard Plots 

 The FACS-based Scatchard equilibrium experiment developed in Chapter V was 

applied to detect receptor-mediated binding for ligand-functionalized PECs. Scatchard 

titrations were prepared by exposing HMVEC-1 cells to serial PEC dilutions, over the 

concentration range tested for toxicity by MTT, for 3 hours at 37°C and 4°C.  The 

A) B) 
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exposure was followed by detachment, acquisition of MFI, and conversion of bound 

indices to particle concentrations.  This was, again, possible after calibration of our ~200 

nm PECs with known concentrations of NIST-traceable beads. The approach also 

provided a verification of upregulated binding seen in kinetic experiments (Figure 6-3) 

and the first such FACS based Scatchard representation.  Figure 6-6(A,B) represented the 

binding isotherms at 37°C and 4°C, while (C) and (D) Scatchard transformations at the 

same temperatures, respectively.  Experiments at 4°C were performed to look at only 

binding, as discussed in Chapter V.  These particular figures did not represent any 

saturable binding or receptor-mediated activity correlating to data represented in Figure 

5-9.   
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Figure 6-6.  Targeted EDAC/NHS(△), Targeted PEGp521(◇), and non-targeted 
PECs(□) exhibit non-saturable binding and positive cooperativity for 3 h at 37°C and 
4°C when displayed over all concentrations tested.  Incubations for (A) and (C) were 
performed at 37°C, while (B) and (D) at 4°C.   (A) and (B) are dose-dependent binding 
curves. (C) and (D) represented Scatchard plot analysis.  Curves were determined by flow 
cytometry (n=3).  The ratios of bound and free PECs for each concentration were 
determined based on the MFI of each dose in the absence of cells, followed by correlation 
to calibration curves determined as in Figure 5-2.   Y-error bars represent the average ± 
s.e. in calculated bound PECs. 
 

(A) (C) 

(B) (D) 
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Further analysis of Figure 6-6 by isolation of the low concentration data, showed 

receptor mediated activity at 37°C and 4°C, upon Scatchard transformation as displayed 

in Figure 6-7(A,B).  Through this limited concentration range, targeted PEGp521 PECs 

follow the laws of mass action.  Algebraic rearrangement of equation 5-1 leads to 

equation 6-1:   

 

 

 

 

The single monotonic transformation observed at both temperatures indicated a single 

class of binding sites44, correlating to the weak affinity HSPG receptor for fibroblast 

growth factor-2 (FGF-2) binding45.  This transformation allowed the calculation of an 

equilibrium dissociation binding constant, in terms of PEC/ml for 37°C (1.00x108 

PEC/ml) and 4°C (2.00x108 PEC/ml).  This verified the enhanced binding activity of 

targeted PEGp521 PECs seen in Figure 6-3(A,B) and limited saturation binding inside of 

this region shown in Figure 6-7(C,D).  Further titration of the PEGylated TSP521 PECs 

showed positive cooperativity and no receptor-mediated binding, identical to the non-

targeted system and targeted EDAC/NHS complexes. This indicated that as PECs were 

titrated to a ‘breakthrough’ concentration, the electrostatic nature of the PEC dominated 

the binding and effectively reduced the ability of TSP521 to interact specifically with 

HSPG.  A breakdown in the mass action assumptions resulted, further verifying the 

electrostatic interaction between the anionic cell surface and PECs in the absence of a 
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ligand. Interestingly, direct zero-length ligation of TSP521 to amines on the PEC corona 

showed Scatchard plots with a positive slope, similar to the non-targeted system.  This 

would imply, over the concentration range for Figure 6-7(A,B), that the presentation of 

PEGylated TSP521 was important, that possibly the peptide was sufficiently arranged on 

the surface to minimize electrostatic interactions.  The behavior of non-targeted (all 

concentrations), targeted EDAC/NHS (all concentrations) and PEGp521 PECs (after 

[Bound]=2x106 PEC/ml at 37°C and [Bound]=7x105 PEC/ml at 4°C) denoted that 

concentrations never approached the equilibrium binding constant for a second regime of 

binding.  Figure 6-7(C,D) showed that there was a limited range   The limitation of that 

consequence was high concentrations resulted in PEC aggregation, and therefore, 

deviation from a nanoscale delivery system.      
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Figure 6-7.  Scatchard representations for low concentration binding at A) 37°C and B) 
4°C.  Linear regressions were fitted to validate receptor-mediated activity for n=3.  
Targeted and non-targeted PECs were incubated with HMVECs for 3 h at 37°C, 5% CO2, 
and 95% relative humidity.  After washing steps, cell-bound PECs were analyzed by 
FACS.  The ratios of bound and free PECs for each concentration was based on the MFI 
PECs in the absence of cells.  C) and D) indicated a limited region where saturation 
binding occurred for targeted PEGp521 PECs at 37°C and 4°C, respectively. 
 
 

(A) (C) 

(B) (D) 
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Conclusions 

 TSP521, a HSPG binding peptide derived from TSP-1, was associated with the 

PEC by two different loading methods.  It was found that these PECs had binding and 

internalization mechanisms that can be abolished by extracellular heparin that and were 

affected by trypsin exposure.  Surface attachment was found to be controlled partially by 

HSPGs.   

This study was undertaken primarily to confirm the theoretical expectation that 

Scatchard analysis could be performed satisfactorily with fluorescent PECs after 

incorporation of two targeting approaches.  This was the first study that not only applied 

Scatchard transformations in PEC binding, but also the first to detect receptor-mediated 

activity of a surface engineered system.  It was critical to derive the linear parameters 

after expansion of low concentrations of TSP521-containing PECs.  The demonstration 

by FACS that binding was enhanced was not enough to establish a true single receptor 

interaction as the coupling of TSP521 by EDAC/NHS direct ligation did not demonstrate 

a classical Scatchard transformation; equation 6-1 could not be used to calculate a Kd or 

[Rtotal]. 

The need for spacing that presents a molecule’s active binding region away from 

a nanoparticle surface has been shown to effectively target liposomes with folic acid46,47.  

PEGylation of polypeptides and proteins is a widely used method of prolonging their 

biological half-life28; however, in this application conjugation was designed to modulate 

the presentation of the peptide by increasing its molecular mass and flexibility.    The 

results showed that a key biochemical property of the peptide, HSPG affinity, was fully 

retained by PEGylated TSP521 conjugate.  This may be a steric effect mediated by 
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anchoring the peptide chain to the PEG polymer.   This would indicate that the peptide or 

targeting moiety must be at a length that can allow the molecule to interact specifically 

with its constitutive receptor and minimize the ubiquitous surface PEC electrostatic 

contributions.  This conclusion evolved due to the fact that, by mass, the loading of 

TSP521 was similar:  10 µg (EDAC/NHS) and 15 µg (PEGp521), therefore the cell was 

able to interface properly with the active region of the peptide through elongation with 

PEG.   The passive loading of TSP521, subsequent to its elongation with 4000 PEG 

molecules, permitted the docking of PECs through an assumed HSPG interface.  This 

type of finding should lead to the development of better PEC targeting strategies that 

would display higher affinity binding activities.   
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CHAPTER VII 
 
 
 

IN VIVO IMAGING AND BIOCOMPATIBILITY OF MULTICOMPONENT 
POLYELECTROLYTE COMPLEXES  

 

 

Introduction 

 The ability to localize PECs in vivo and monitor tissue distribution is critical to 

understanding their biocompatibility and behavior1.  Common techniques have involved 

radionuclide or magnetic resonance imaging (MRI).  These methods have several 

advantages including high sensitivity, capability of quantitation, and clinical translation.  

Unfortunately, they suffer from relatively low spatial resolution and high cost.  For 

radionuclide administration, positron emission tomography (PET), an on-site cyclotron 

and radiochemistry laboratory to produce short half-life tracers and radiolabeled agents 

are a prerequisite.  Therefore, optical imaging (bioluminescence and fluorescence 

imaging) has emerged as an attractive alternative approach to study biological and 

molecular events in both cell culture and small animals.   

Optical imaging modalities do not require ionizing radiation and are inexpensive2.  

Additionally, bioluminescence and fluorescence approaches are highly sensitive and 

allow for high throughput screening because the acquisition for obtaining an image can 

be as short as seconds3.  Because of the strong tissue penetration ability of light in the 

near-infrared region (NIR), near-infrared fluorescence (NIRF) imaging has emerged as a 

powerful tool for small animal imaging.  These fluorescence tracers emit or absorb light 

in the 650 nm-900 nm wavelengths.  NIRF imaging has a great potential for clinical use 
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in providing both real-time surgical, functional, and molecular information on disease 

states. Water and biological tissues have minimal absorbance and autofluorescence in the 

NIR window, thus allowing efficient photon penetration into, and out of tissue with low 

intra-tissue scattering.  NIRF probes are therefore under active investigation and has been 

demonstrated as a viable method to noninvasively monitor disease states at the molecular 

level, localize cancer, and even assess the antitumor efficacy of new therapeutics4-6. 

The extension of PECs as a drug delivery system must be proven in animal 

models where very few studies actually exist.  It is necessary to assess the 

biocompatibility to validate PEC suitability for systemic administration. Standard 

histological sections can be examined to verify the presence or absence of inflammation 

in tissues.  If PECs induce an inflammatory response, cells such as neutrophils, 

lymphocytes, and macrophages would be recruited and indicated by nuclei staining 

around the site.  The NIRF probes have reactive groups for functionalization of amines, 

aldehydes, and other active chemical moieties on polymers and proteins.  Therefore, 

AlexaFluor 750 (AF750), an NIRF probe carrying an N-hydroxysuccimidyl ester groups 

for linkage to amines, was incorporated into LMW PECs created with dispergation for 

further examination of biodistribution by state-of-the art imaging technology.  The 

imaging further established the feasibility of LMW PECs as a template for nanoparticle-

mediated targeted drug delivery. 
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Experimental Procedures 

 Chapter II defines all protocols applied in this section.  Incorporation of AF750 

PMCG was performed using Polymer Labeling, followed by PEC Fabrication of 

fluorescent PECs (Fluorescent PEC Preparation).  One batch was made, isolated by 

centrifugation, suspended in 1 ml of isotonic buffer.  100 µl was then injected retro-

orbitally into male BALBc mice (n=3 per time point) and biodistribution tracked before 

and after sacrifice as described in In Vivo Imaging.  Tissue inflammation was investigated 

by examination of histological slides (Histology) for liver, spleen, kidney, lungs, and 

heart.  Additionally intramuscular and subcutaneous injections were performed followed 

by histological sectioning. 

 

Statistical Analysis  

 Excised organs were used to measure the biodistribution of the fluorescent PECs.  

All data are given as the mean ± standard error (n=3 mice per time point for PBS and 

AF750 PECs).  Statistical significance was determined by a two-sample t-test (PECs 

versus PBS per organ) where a critical t was calculated to determine when the 

fluorescence signal diminished enough to agree with the null hypothesis.  For 

determining organ PEC distribution, fluorescence intensities (pixel/s), fluxes of light 

collected by the imaging instrument after excitation and emission, were calculated by the 

region of interest (ROI) function of the Living Image software integrated with Igor Pro 

(Wavemetrics, Lake Oswego, OR).  ROIs were drawn for each organ and a section of the 

image (for background subtraction) outside of the 6-well plate; the same size ROIs were 
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copied and applied in each animal at every time point. All statistical analyses were 

performed using JMP-IN 5.1 (SAS, Cary, NC). 

 

Results and Discussion 

 

 PEC Fluorescent and Physical Properties.   

After incorporation of AF750 PMCG and fabrication of fluorescent PECs, 

physicochemical properties were assessed by PCS.  Size, zeta potential, and PDI (average 

± s.e., n=3) were 185.78 nm ± 63.34 nm, -30.9±1.00, and 0.247 ± 0.081, respectively.  

These results were statistically consistent with previous findings.  One batch was 

concentrated to 1 ml of isotonic buffer for injection into animals.  Figure 7-1 showed 

verification of fluorescent signal for AF750, indicating that AF750 PMCG was 

successfully incorporated into PECs. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-1.  Detection of NIR fluorescence in PECs containing AF750 PMCG. PECs are 
imaged using the ICG filter (λex 710-760 nm, λem 810-875 nm) on the Xenogen IVIS 200 
Imaging System.   Fluorescent and photographic images are overlapped after a 1 s 
exposure. 
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 Whole Animal Optical Imaging 

 The ability to detect AF750 PMCG-containing PECs was accomplished by retro-

orbital injection of 100 µl of the above suspension (~3x109 PECs) and imaging at various 

time points up to 48 h in mice.  The mice were first shaved to prevent signal dampening. 

There was no acute reaction after intravenous administration, indicating bulk PEC 

biocompatibility.  Intrajugular, tail vein, intraperitoneal, and direct heart injections were 

tested with no ill effects.  Figure 7-2 (A-D) shows the PECs in circulation, but rapidly 

cleared to the bladder, as shown in the strongest signal.  No fluorescence was detected in 

animals injected with PBS.   Images for Figure 7-2(A-B) showed that this process 

happened between the time of injection and imaging (~10 min).  Significant bladder 

fluorescence persisted at 3 h, but some signal was localized to the upper chest cavities 

(liver, lungs, spleen, kidneys).  The signal completely disappeared at 24 h.  This was 

indicative of a partial destabilization of PECs by polyelectrolyte exchange reactions 

leading to fast clearance of PMCG and AF750 PMCG from the bloodstream.  The low 

molecular weight of PMCG (5000 Da) is well below the kidney clearance limits7, but the 

fluorescent signal also could be indicative of the clearance of other PEC components.  

Following intravenous administration, naked PECs are exposed to a variety of factors that 

may have compromised their integrity and caused partial decomplexation, including 

interactions with proteoglycan-containing extracellular matrices and high concentrations 

of very anionic serum proteins or other molecules present in blood plasma 

(opsonization)8,9.  Suspensions of AF750 PECs in 100% fetal calf serum verified these 

results as 40% of the fluorophore conjugated PMCG was released in the first 30 min. 
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                AF750 PEC                                 PBS                                                      Time (h) 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-2.  In vivo fluorescence imaging of retro-orbitally injected AF750 PECs (A-D) 
or PBS (E-H) immediately after injection and 3 h later in male BALBc mice.  Dorsal 
imaging was performed in (A), (C), (E), (G) while ventral in (B), (D), (F), (H).  The 
intensity of the signals, light flux, is denoted by the respective color bars in terms of 
pixels/second.  10 s exposures were applied followed by the overlay of photographic and 
fluorescence images. 
 
 

(A) 

(B) 

(C) 

(D) 

(G) 

(H) 

(F) 

(E) 

0 

3 

0 

3 



 163 

 Biocompatibility Assessed by Tissue Histology 

 PEC biocompatibility was assessed by several types of administration, after which 

animals were sacrificed and histological slides prepared.  Animals were either injected 

intramuscularly (directly into muscle) or subcutaneously (under the skin) with AF750 

PMCG PECs or PBS (50 µl, 1.5x109 PECs).  Three days later, the animals were 

sacrificed and muscle and skin extracted.  The histological slides comprise Figure 7-3.  

The hematoxylin and eosine staining of nuclei and cytoplasmic components, respectively, 

showed no distinguishable differences. 

AF750 PEC                               PBS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-3.  Histological examination of intramuscularly (A,C) and subcutaneously 
(B,D) injected AF750 PECs and PBS 3 d after administration. 
 

Further biocompatibility was characterized by sectioning of organs for mice kept 

5 days post-injection.  Liver, kidney, spleen, lungs, and heart stained with hematoxylin 

and eosine showed no morphological differences between PBS and AF750 PMCG PECs 

(Figure 7-4).  These two studies showed no inflammatory reactions, due to a lack of 

punctate blue staining, following PEC administration, and preparation of histologies. 

(A) 

(B) (D) 

(C) 
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AF750 PEC                               PBS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-4.  Histological sectioning of AF750 PEC and PBS injected BALBc mice 5 
days post administration for liver (A,F), kidney (B,G), spleen (C,H), lungs (D,I), and 
heart (E,J). 
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Organ Biodistribution 

The remaining intact complexes became rapidly sequestered into highly perfused 

and vascularized organs:  liver, lungs, and spleen.   This localization was followed by 

degradation of signals over a 48 h period as shown in Figure 7-5.  PBS treated animals 

provided the fluorescence background.  Each time interval involved the euthanasia of 3 

AF750 PEC and PBS animals and organ extraction.  The fluorescence of each organ was 

immediately imaged and the fluorescence extracted.   

It was not surprising that the fluorescence was contained in the liver, lungs, and 

spleen, after initial time points showed bladder localization.  The liver, lungs, and spleen 

contain highly vascularized networks composed of highly anionic endothelial cells 

facilitating PEC sequestration in these organs.  Specifically, the liver has open 

fenestrations that control the transfer of molecules from blood vessels to tissue, which are 

on the order of 150 nm.  These openings may also contribute to the extensive endothelial 

filtration of PECs in the liver.  Intravenous injection of colloidal carriers, such as 

liposomes and polymeric nanospheres, are recognized by the reticuloendothelial system 

(RES) as they circulate in the blood and bind opsoninizing macromolecules10. The RES, a 

component of the immune system, consists of phagocytic (greek for cell eating) cells, 

primarily monocytes and macrophages i.e. Kupffer cells.  These cells accumulate and line 

the spleen, liver, and lungs and capture foreign substances and eventually clear them 

from the bloodstream, as is displayed in Figure 7-5(A-D).  
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                 AF750 PEC                                         PBS                                         Time (h) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-5.  Representative ex vivo images of organs extracted from male BALBc mice 
at the indicated time points after retro-orbital injection.  Either AF750 PECs (A-D) or 
PBS (E-H) was injected. 10 s exposures were applied followed by the overlay of 
photographic and fluorescence images.  Three animals were used in each time group. 
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Furthermore, the NIR fluorescence, up to 48 h, was quantified by measurement of 

the light flux induced after excitation of the fluorochrome for both PBS and AF750 PECs 

treated mice, as shown in Figure 7-6(A,B).  The figure shows a rapid clearance of PECs 

from organs, eventually washing them out after 48 h.  The short circulation time verified 

the RES response discussed previously.  To provide added evidence of the clearance of 

PECs, statistical tests between treatments were performed for every organ compared at 

each time point.  In Figure 7-6(C), the calculated test statistic (ttest) was plotted as a 

function of time.  The test statistic was calculated by equation 7-1: 

! 

t
test

=
µ
AF 750PEC

"µ
PBS

s
1

2 + s
2

2

n

 

where µAF750 PEC and µPBS were the mean fluxes, s1
2 and s2

2 the standard deviations, 

respectively, and n the sample size (3 mice).  The critical t for 4 degrees of freedom was 

2.776.  Any calculated test statistic less than 2.776 met the null hypothesis, µAF750 

PEC=µPBS; the PEC signal does not differ statistically from PBS and defined by the dashed 

line in Figure 7-6C.  Therefore, Figure 7-6C shows a steady, monotonic decrease in ttest 

for all organs.  AF750 PECs showed statistically significant signals for liver, lungs, 

kidney and spleen at t=3, but after 24 h, only lungs and liver show statistically unique 

fluxes.  As time further elapsed, only the liver had a ttest, which resulted in rejection of the 

null hypothesis.   

 

 

 

 

(7-1) 
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Figure 7-6.  Quantification of ex vivo organ distribution for (A) AF750 PECs and (B) 
PBS injected animals.  The fluorescence was recorded as photons/second after creation of 
a region of interest for each organ.  The background was subtracted by creating a region 
of interest away from the organ signals.  The statistical significance of each fluorescence 
measurement (n=3) was tested against its PBS counterpart.  The test statistic for each 
two-way comparison was plotted (C) as a function of time (n=3, p<0.05). 
 

 

Conclusions 

 A NIR probe was successfully incorporated into the PEC matrix and 

biodistribution followed by non-invasive longitudinal imaging.  Additionally, the 

biocompatibility was verified when indistinguishable tissue histologies were observed.  

Unfortunately, LMW PECs were rapidly cleared from circulation as seen by whole 

(B) (A) 

(C) 
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animal imaging, excised organ fluorescence, and statistical analysis of the measured light 

fluxes. 

 Studies have shown that the association of plasma proteins and opsonins, such as 

immunoglobulin G, fibrinogen, and fibronectin, with liposomes and other colloidal 

carriers contributed to circulatory clearance or non-specific accumulation in pulmonary 

capillary beds and the liver8,9,11.  Moreover, the extent of binding increases the likelihood 

of recognition by the RES12.   After intravenous injection of AF750 PECs, the cationic 

groups can react with plasma proteins, resulting in modified coronal chemistry and 

decreased adherence to anionic cell surfaces.  Opsonins may come into contact typically 

by Brownian motion, but when sufficiently close, van der Wals, ionic, 

hydrophilic/hydrophobic and other attractive forces dominate the interactions.  After 

opsonization has occurred the complex may destabilize through exchange reactions or 

phagocytic cells will recognize and bind this ternary PEC/opsonin structure.  In the 

absence of opsonins, phagocytes will not bind polymeric carriers.  Phagocytes will then 

ingest PECs and inherent secretory enzymes and oxidative-reductive agents leading to 

degradation of individual components and ejection7.   

 There are many approaches to stabilize AF750 PECs against opsonization.  One 

strategy would be to enshroud the PECs within a protective layer of hydrophilic 

polymers, such as polyethylene glycol (PEG)13, in addition to the Pluronic F-68 already 

present.  The surface modifications can be accomplished by activated linkages to 

sufficiently ‘coat’ the PECs, avoid phagocyte-mediated clearance, increase the 

circulatory time, and enhance complex stability.  
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CHAPTER VIII 
 
 
 

ASSESSMENT OF NANOPARTICULATE POLYELECTROLYTE COMPLEX 
PRODUCTION BY KENICS STATIC MIXER 

 
 
 

Introduction 

 The pharmaceuticals and fine chemical industry have shown an increasing interest 

in alternatives to batch and stirred tank reactor designs and reliable scale-up strategies.  

Although continuous processing technologies such as static and in-line mixers have been 

successfully applied in the petroleum industry, literature focusing on their application to 

the manufacture of excipients, active pharmaceutical ingredients, and nano- and 

microscale drug delivery systems is limited1. 

 Static mixers consist of a series of flow reorientation devices inserted along the 

axis of a pipe.  Pressure, as opposed to mechanical agitation, drives fluids through the 

device, providing the energy needed to accomplish mixing2.  They are simply cylindrical 

pipes with mixing elements fixed inside.  The mixing elements are formed by helically 

twisted rigid plates (usually of the same pitch) each dividing the pipe into two twisted 

semicircular ducts.  The inserts are placed tightly one after another so that the leading 

edge of the next insert is perpendicular to the trailing edge of the previous one; the length 

of the elements is one and a half tube diameters3, as displayed in Figure 8-1.  Solutions 

are radially mixed by rotational circulation around the hydraulic center of each semi-

circular channel.  Solutions are subsequently forced from the diameter to the outer wall of 

the element.  At the same time, the flow reverses its rotation at each element junction due 

to the alternate right- and left-hand alignment of the elements.  The overall effect is to 
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cause the stream to be continually inverted radially so that solutions entering at the center 

of the stream are forced to the outer wall and back again on a continuous basis.  Static 

mixers have achieved throughputs from 10000 m3/h to approximately 1 m3/h, offer the 

potential for achieving liquid-phase plug flow, and pseudo-turbulent conditions at 

relatively low Reynolds numbers (N Re), laminar flow conditions, and high residence 

times, without an increase in reactor volume or stream velocity1,4. 

 

 

 

 
Figure 8-1.  Schematic of Kenics mixer geometry. 
 

 Here, a new technology is introduced to prepare PECs by means of a Kenics static 

micromixer.  The Kenics static mixer has a bench-top setup, lacks moving parts, can be 

run continuously for fabrication of large volumes of PECs, and can be sterilized for 

asceptic processing5.  LMW and HMW PECs were made at increasing N Re and the 

physicochemical properties were compared with the goal of a monomodal distribution, 

decreased sizes, PDIs, and stable ZPs.  Furthermore, the mixing efficiency of the device 

was evaluated by a competitive reaction scheme.   
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Experimental Procedures 

 LMW and HMW PECs were fabricated and the mixing properties established, as 

described in Chapter II, Process Scale Up with Kenics Static Mixer and Qualitative 

Assessment of Static Mixer Efficiency, respectively.  Figure 8-2 depicts the device, inlets, 

and outlets.  Reynolds numbers were calculated assuming an empty pipe approximation. 

The Kenics mixer used was 6.35 mm I.D., 21 cm in length, and made of stainless steel. 

 

 

 

 
 
 
 
 
 
 
 

 
 
 

Figure 8-2.  Kenics static mixer showing inlets and outlets for PEC production and 
evaluation of mixing efficiency. 
 
 

Statistical Analysis 

 Several statistical methods were applied for evaluation of PEC physicochemistry 

and the mixing efficiency with JMP-IN 5.1 (SAS, Cary, NC).  Subsequent to the 

fabrication of LMW and HMW PECs, size, polydispersity index (PDI), and zeta potential 

(ZP) were assessed by ANOVA to statistically determine the heterogeneity of both 

populations as a function of increasing flow rate.  Additionally, the Tukey-Kramer 
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Honestly Significant Difference (HSD) was used to compare mean properties at each N 

Re.  The same method was performed for tri-iodide production as a function of N Re.  

LMW and HMW systems were also evaluated by two-sample t-tests for every N Re to 

compare the polyelectrolyte platforms.  Linear regressions were calculated for 

physicochemical properties and tri-iodide concentrations as a function of N Re.  Each 

slope was statistically tested to see if it differed from zero or whether the data trends.  

Also, ANOVA was used to understand whether or not the metrics followed an upward or 

downward trend.  All analysis was assessed at the 95% confidence interval (p<0.05).  

 

Results and Discussion 

 

 Mixer Characterization by Competitive Reactions 

 The mixing efficiency of the Kenics static mixer used for continuous production 

of LMW and HMW PECs at stoichiometric ratios of 10:1 was evaluated by an ultrafast 

competitive acid-base reaction scheme originally designed for batch setups6 but modified 

for continuous designs7,8.  The anionic and cationic streams from the PEC process were 

mimicked by the sulfuric acid and borate/iodide/iodate solutions, respectively, as 

described in Chapter II, Qualitative Assessment of Static Mixer Efficiency.  The two 

solutions, H2SO4 and H2BO3/IO3
-/I-, from the test reaction represented limiting and 

excess reactants in the same ratios as the PEC reaction.  The mixing efficiency was 

quantified by the equilibrium production of iodine (I3
-) and measurement via 

spectrophotometer at 353 nm.  The first process, Equation 2-9, is a neutralization that is 

ultra fast and will always mask the slower second reaction (Equation 2-10), namely the 
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iodine formation as long as no local excess of the strong acid remained; the higher the 

absorption due to tri-iodide formation, the poorer the quality of mixing in the unit9. 

 A linear profile was observed as a function of Reynolds number in the laminar 

flow regime (Figure 8-3).  The slope of this line is statistically different from zero and the 

physical system exhibits a negative relationship between iodine concentration and 

Reynolds number as tested by ANOVA. One-Way ANOVA tests were also used to test 

the homogeneity of means as N Re increased. The analysis showed a 2% probability that 

all means are equal, therefore at least one mean is statistically significant.  This led to the 

use of the Tukey-Kramer HSD test to define pairs of means that are statistically different.  

Table 8-1 displays the results.  According to this test, Reynolds number does not induce a 

statistical effect on mixing until N Re reached 730.25. 

 

 
 
 
Figure 8-3.  Tri-iodide production as a function of Reynolds number for flow rates 
applied in PEC production.  Tri-iodide production with the Kenics static mixer is 
displayed as the mean±s.e. for 4 independent measurements.  Slope and y-intercept are 
displayed from linear regression analysis.  
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Table 8-1.  Comparison of tri-iodide concentrations using Tukey-Kramer HSD test.  
Designation of “yes” signifies a concentration in the column heading that is statistically 
different from the rate for its counterpart in the row heading.  “no” means two 
concentrations are means which are statistically the same.   

   
 

N Re 328.61 438.15 584.20 730.25 
328.61 -- no no yes 
438.15 no -- no no 
584.20 no no -- no 
730.25 yes no no -- 

 

  

 Properties of PECs Fabricated by Kenics Static Mixer 

 PECs were constructed by simple two stream contacting with the Kenics static 

mixer at laminar flow conditions.  The particles exhibited the Tyndall effect, consistent 

with observations in Chapter III for batchwise preparations.  After a 30 s accumulation 

time, under stirring, the product is sampled for analysis by the Malvern ZetaSizer Nano 

ZS.  Figure 8-4 was separated into two representations.  The first (left panels) displays 

the data as histograms to demonstrate the statistical differences between the LMW and 

HMW formulations.  HMW PEC particle diameter, Figure 8-4A, (250 nm-303 nm) was 

greater at each N Re in comparison to LMW suspensions (221 nm-250 nm), but none 

exhibited statistical significance. However, HMW PECs demonstrated greater variability 

in size as indicated by the standard error.  The standard error ranged from 26% (N 

Re=328.61) to 33% (N Re=584.20) which was indicative of a less reproducible result in 

comparison to LMW counterparts (standard error 2-4% of average).   For zeta potential, 

only Re=438.15 showed a statistically higher surface charge for HMW (41 mV-42 mV) 

compared to LMW (32 mV-36 mV), although each HMW ZP was higher as designated in 

Figure 8-4C.  LMW PECs provided statistical decreases for all conditions (Figure 8-4B), 
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excluding N Re=328.61.  The reduction in polydispersity was a sign that the population 

of LMW PECs became more homogeneous in contrast to the HMW products.  Similar 

results have been seen for other static mixer configurations10-12. 

 The second half of Figure 8-4 plots the physicochemical responses as a function 

of increasing N Re for detection of linearity between size, PDI, ZP, and the flow pattern.  

A plot of hydrodynamic diameter versus N Re (Figure 8-4D) for HMW PECs showed no 

statistically unique upward or downward trend while LMW showed a significant 

decreasing pattern.  In fact, this was the case for each characteristic.  This would indicate 

that HMW PECs had a random response to increasing N Re, whereas LMW complexes 

showed real effects to changes in the flow pattern.  Tests on the slopes derived from 

linear regressions showed that they were statistically different than zero, although 

ANOVA indicated that only LMW measurements showed a downward trend.   
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                           Histogram                                           Scatter Plot 

 

Figure 8-4.  Physicochemical properties of LMW and HMW PECs created using the 
static mixers at increasing Reynolds numbers.  Left panels represent histograms while 
right is the scatter data on a linear scale.  Size (A,D), PDI (B,E), and ZP (C,F) are the 
mean and standard error for at least 3 measurements.  Asterisks indicate pairs of means 
which differ at the 95% confidence level by two-sample t-test. 
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Conclusions 

 The results showed that only LMW PECs are affected by preparation by static 

mixer technology.  Also, a parallel competing reaction scheme provided proof that 

mixing efficiency was enhanced as N Re increased and that further increases in flow rate 

could result in better mixing. Regardless, the static mixer offered the potential for further 

improvements.  The current configuration of the system does not allow a further buildup 

of pressure.  Better pumps and more robust tubing would have to be used.  Additionally, 

the mixing could be improved by changing inlets to further segregate the streams until 

they reach the same element.   

 The more intense the mixing, the better physicochemical results were observed.  

Large volumes of particles of both systems were produced, ~100-200 ml/min, as opposed 

to the 22 ml yield for batchwise preparation.  This left that the possibility that static 

mixers could provide a reasonable scale up strategy.  Interestingly, only the LMW 

formulation was sensitive to the rotational mixing inside of the static mixer.  This may  

have implications for the mechanism and ordered assembly of HMW and LMW PECs.  A 

more intense mixing system might be needed to improve the properties of HMW 

complexes produced by continuous stream contact.    Neither static mixer dispersion had 

more favorable qualities than corresponding complexations by batchwise titration with 

and without frequency dispergation.  Freitas and coworkers5 argued that re-engineering 

the outlet section to avoid turbulent flow should reduce the PDI and particle diameter.  

Other possible improvements might involve reduction of the outlet slit9 or adding more 

mixing elements in series.  These types of alterations may lead to smaller particle size 

and reduced polydispersity.     
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CHAPTER IX 
 
 
 

CONCLUSIONS AND FUTURE WORK 
 
 
 

Conclusions 

 The overall work presented herein demonstrates the development and biological 

properties of a nanoparticulate platform based on the interactions of polyelectrolytes with 

similar molecular weights that can be prepared through an ultrasonic titration (LMW 

PECs).  The preparation avoids the use of harmful reaction environments, bulk phases 

such as methylene chloride and chloroform or mineral oils, through the use of water as a 

solvent, an obvious advantage over many polymeric nanoparticle systems being studied.  

Common nanotechnological techniques, such as TEM and PCS, can easily provide 

information on PEC physical properties. PECs have favorable and attractive 

physicochemical characteristics that are maintained at physiological pH and low 

concentration, serum-containing media: uniform, attractive size distributions, mean 

diameters statistically less than or equivalent to 200 nm, and surface charges indicative of 

stable colloidal suspensions.  LMW PECs also assemble into desirable structures without 

dispergation, a valuable finding for future, viable production and scale-up through simple 

two-stream, continuous mixing.  Such high throughput processing may allow further 

improvement in downstream manipulation, perhaps through removal of centrifugation as 

a product isolation method.  The system provides an improvement over a system shown 

to deliver genes to cells of a hematopoietic origin.  Additionally, these nanoparticulate 

architectures can entrap, release, and retain proteins, mimicking therapeutics, over the 
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course of several days, leading to the possibility of a drug depot for intravenous or 

systemic administration.   

 PECs exhibit little or no toxicity in a biological environment.  Because of the PEC 

modular and chemical nature, surface amines and inner core hydroxyl groups permit the 

efficient incorporation of targeting moieties, chemical linkage of classically insoluble 

drugs (doxorubicin).  The fluorophore incorporation strategy drives both visible and near-

infrared fluorescence characterization of PEC fates in cell culture and small animals. 

Flow cytometry can be utilized to extensively characterize and define the underlying 

mechanisms of PEC binding and uptake, in common disease state models (endothelial 

cells), through macropinocytosis.  Compartmentalization, uptake and surface binding can 

be delineated through extracellular FITC quenching; another advantage of flow 

cytometry.  Also, through flow cytometry, cationic PECs bind cells through strictly 

electrostatic interactions where cells provide an anionic sink to mediate the attachment.  

Also, a novel, flow cytometric, Scatchard analysis protocol, where the extent of receptor-

controlled interactions are dictated by adherence to underlying assumptions of mass 

action and equilibrium binding.  This is the first such flow cytometric Scatchard plot 

strategy for characterization for nanoparticulate architectures to define true targeting and 

receptor-ligand interactions; a critical feature due to misleading information from direct 

kinetic studies. The Scatchard plots can screen targeted delivery systems, in vitro, before 

expensive animal models are used.  This approach is ideal when radioactive nanoparticle 

components are not currently available or the incorporation of an isotope too 

cumbersome.  LMW PECs hold promise for medical uses and could be utilized as a 
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targeted drug delivery formulation and also as a non-invasive, real-time imaging 

construct in humans. 

 

Future Work 

 It is difficult to produce PECs that possess all ideal in vivo and in vitro 

performance related properties.  The PEC as a whole should exhibit physicochemical 

properties in biological environments defined pragmatically in the literature: including 

hydrodynamic diameter less than or equal to 200 nm1,2, surface charge of greater than 

±30 mV3-5, spherical morphology, and a low polydispersity index indicative of a 

homogeneous size distribution.  In this study, LMW PECs were shown to interact in a 

completely unspecific manner, unless the peptide strategy provided an appropriate 

geometric and flexible presentation.  Another complication was that TSP521 was a weak 

affinity ligand.  An alternative ligand may involve the use of addressins that bind to 

activated receptors via light, heat, or radiation.  Because direct, covalent linkage by 

EDAC/NHS of TSP521 did not exhibit receptor-mediated behavior, it can be concluded 

that the peptide was not extended sufficiently from the PEC corona to mitigate charged 

interactions with the cell surface.  This prevented TSP521 from interacting specifically 

with HSPGs.   Additionally, PECs need to be sufficiently modified to avoid uptake by the 

reticuloendothelial system (RES) to permit accumulation in target tissues. 

  Proper ligand presentation and a corona adaptation can be improved through the 

use of polyethylene glycol (PEG).  PEG not only provides a coating to prevent 

opsonization and subsequent recognition by macrophages of the RES, but can link a 

targeting moiety in a distal conformation to facilitate the appropriate receptor activation.  
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First introduced by Gref6, PEG introduction into poly(lactic-co-glycolic acid) 

nanospheres resulted in dramatic increases in blood circulation times and reduced liver 

accumulation in mice.  Since that discovery in 1994, PEG incorporation into nano- and 

microparticulate biomaterials has been used extensively in countless studies to improve 

polymer stability and prevent protein fouling. 

 Several theories have been proposed to explain the apparent protein resistance and 

stealth characteristics imparted to materials by grafting of PEG.  When opsonins and 

other plasma proteins are attracted to the surface of the particle, by van der Waals or 

electrostatic forces, they encounter the PEG chains and begin to compress them.  This 

compression then forces the PEG chains into a more condensed higher energy 

conformation creating a repulsion and steric hindrance of opsonin or protein adherence7.  

Most research indicates that PEG chains of 2000 molecular weight or greater is required 

to achieve increased RES avoidance characteristics6,8,9. 

 With this in mind, a bifunctional PEG linkage can be used for ligand presentation 

and introduction of ‘stealth’ properties.  PEG constructs with different activated linkages 

are available; a chain consisting of an N-hydoxysuccinimide on one end and a maleimide 

on the other, with at least a 2000 PEG molecular weight polymer in the middle, would be 

sufficient to link the PEC surface amines to cysteines on a ligand.  Previous and similar 

strategies have been used to link folate, for targeting  overexpressed folate receptors on 

cancer cells, to liposomes10,11.   Figure 9-1 represents a schematic of this design.  The 

hope is that this PEC chemistry would result in efficient targeting both in vivo and in 

vitro. 
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Figure 9-1.  Representative peptide modifications of PECs for A) naked, B) direct 
linkage by EDAC/NHS, and C) extension of peptide away from the surface with PEG.  
The flexible PEG chains provide a geometric presentation of the ligand and protection 
from destabilizing opsonins and proteins. 
 

 

 

(A) 

(B) 
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APPENDIX 
 
 
 

FITC PMCG Release and Spermine Incorporation 
 
 

 
 
Figure A1.  FITC PMCG release depends on serum content.  FITC PMCG release was 
monitored in a similar manner as described in PEC Protein Release and Monitoring. For 
LMW PECs created with dispergation.  The release and, therefore, stability of PECs was 
directly dependent on serum concentration.  Cumulative release, after 6 h, in HMVEC 
media (5% serum) and FCS (100% serum) was 4.62% and 58.42%, respectively (n=1). 
 

 
 
Figure A2.  C14 spermine incorporation into LMW PECs with dispergation.  C14 
spermine (7 µg) was added to the cationic solutions.  PECs were fabricated as described 
in PEC Fabrication, centrifuged, and suspended in HMVEC growth media.  0.004% of 
the labeled material was present in the final suspension. 
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Early Observations of PEC Association in Mouse Fibroblasts 
 
 
 
 Brightfield                  Fluorescence (FITC) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A3.  FITC PMCG PECs associate with mouse fibroblasts.  FITC PMCG PECs, 
after suspension in growth media at [PEC]=1.54x109 PEC/ml, were incubated with 
mouse fibroblasts (CRL-10225) for 2 h. Growth media was Dulbecco’s Minimum 
Essential Media (DMEM) supplemented with 10% FCS, 4 mM L-glutamine, 0.05 mg/ml 
gentamicin, and 1 mM sodium pyruvate.  PEC incubations were performed as described 
in Confocal Microscopy.  Specimens were viewed with an Olympus BX60 fluorescence 
microscope.  Both brightfield (A,C) and FITC (B,D) filters were applied following a 2 h 
incubation.  Magnification was 400X.    
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(C) (D) 
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Detection of PEC Association in Mouse Fibroblasts by FACS 
 
 
 
 

 
 

 
 
Figure A4.  Initial observations of PEC/cell interactions by FACS for mouse fibroblasts 
(CRL-10225).  A 48-well plate containing 50000 cells/well were exposed to 1.54x109 
PEC/ml for 6 h in standard CHO growth media (C,D). Growth media was Ham’s F12 
supplemented with 10% FCS, 4 mM L-glutamine, 0.05 mg/ml gentamicin, and 1 mM 
sodium pyruvate.  Subsequent to the exposure period, cells were detached by 0.25% 
trypsin/0.1% EDTA, and analyzed by FACS.  Controls (A,B) were cells in the absence of 
PECs. 
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Detection of PEC Association in CHO Cells by FACS 
 
 
 
 

 
 

 
 
Figure A5.  Initial observations of PEC/cell interactions by FACS for Chinese Hamster 
Ovary cells  (CHO).  A 48-well plate containing 50000 cells/well were exposed to 
1.54x109 PEC/ml for 6 h in standard CHO growth media as described in Figure A3 
(C,D).  Growth media was Ham’s F12 supplemented with 10% FCS, 4 mM L-glutamine, 
and 0.1 mg/ml geneticin.  Subsequent to the exposure period, cells were detached by 
0.25% trypsin/0.1% EDTA, and analyzed by FACS.  Controls (A,B) were cells in the 
absence of PECs. 
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Suppression of Surface FITC PMCG with Trypan Blue 
 
 
 

 
 
 
Figure A6.  Quenching of a secondary FITC peak with TB.  The acquisition of the total 
MFI (A) was followed by addition of 140 µl of 4 mg/ml TB (B).  The result was a 
disappearance of the peak present in the upper panel.      
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Two Color FACS Revealed Linkage of TSP521 to PECs 
 
 
 
(A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(B) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A7.  Direct linkage of TSP521 by EDAC/NHS verified by two-color FACS.  
Using the FACSAria system, PECs with (B) and without (A) tetramethylrhodamine 
(TMRA) TSP521 were analyzed with both TMRA and FITC filters.  TSP521 was 
ligated as elaborated in Incorporation of TSP521:  Direct Surface Coupling and 
Passive Entrapment.  After preparing dot plots of FITC (vertical) versus TMRA 
(horizontal), the change in TMRA MFI was calculated with the P1 gate, where P1 
described fluorescent indices greater than 103 a.u. 
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Detection of Apoptosis 
 During the earlier stages of apoptosis, the membrane phospholipid 

phosphatidylserine (PS) is translocated from the inner to the outer leaflet of the 

plasma membrane, thereby exposing PS to the external cellular environment.  

Annexin V is a 36 kDa Ca2+ dependent phospholipid-binding protein that has a high 

affinity for PS, and binds to cells with exposed PS1.  When conjugated to 

allophycocyanin (APC), Annexin V binding to PS can be observed by FACS. 

 The effect of common toxins on HMVEC apoptosis was tested by incubation of 

epoxomicin (epox), pyrrolidine dithiocarbamate (PDTC), and human tumor necrosis 

factor alpha (hTNF) for 24 h at varying concentrations (Figure A8).  Both PDTC and 

epox induce apoptosis through inhibition of proteasome activity and NF-κB 

activation2, 3.  hTNF turns on apoptotic caspases4. This experiment was performed to 

establish a baseline for the presence or absence of apoptosis through PEC exposure. 

HMVECs, 5000 cell/well, were seeded to 12-well plates 24 h prior to the addition of 

Epox, PDTC, and hTNF.  After exposure, cells were then detached by 0.25% 

trypsin/0.1% EDTA and analyzed for Annexin V-APC (BD Pharmingen, San Jose, 

CA) expression.  After monolayer removal, low speed centrifugation, cells were 

resuspended in 200 µl binding buffer, pH 7.4, consisting of 0.01 M HEPES, 0.14 M 

NaCl, and 2.5 mM CaCl2. 5 µl of Annexin V-APC was then added and cells stained 

for 15 min at room temperature in the dark.  Cells in the absence of PDTC, epox, and 

TNF were used as backgrounds and indicated in Figure 8A.  Clear shifts were 

observed as concentrations increased. 
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PECs, non-targeted (nT PEC) and targeted EDAC/NHS (T PEC) were also 

tested for their ability to induce apoptosis by incubation at varying, increasing, high 

concentrations for either 6 h or 24 h (Figure A9).  The concentrations evaluated were 

1.60x109 PEC/ml, 1.54x109 PEC/ml, 1.01x109, and 6.32x108 PEC/ml.  Identical 

conditions were applied as described for PDTC, epox, and TNF exposures.  As shown 

in Figure 9A, no shift was detected as compared to cells without PECs.  The assay 

does not distinguish between cells that have already undergone an apoptotic cell death 

and those that have died as a result of necrosis.  
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Figure A8.  Apoptosis induction by epoxomicin (Epox), pyrrolidine dithiocarbamate 
(PDTC), and human tumor necrosis factor alpha (hTNF). 
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Figure A9.  Annexin V-APC expression of HMVECs in the presence or absence of 
nT or T EDAC/NHS PECs.   
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Confocal Imaging 
 

 

 

Figure A10. FITC PMCG PECs accumulate inside HMVECs after 24 h.  FITC 
PMCG PECs, after suspension in growth media at [PEC]=1.54x109 PEC/ml, were 
incubated with HMVECs overnight.  PEC incubations were performed as described in 
Confocal Microscopy.  Filters were (A) concanavalin A-AF647, (B) TMRA, (C) 
FITC, and (D) merged.  Concanavalin A was applied as a lectin stain to visualize the 
cell membrane  Additionally, 100 µg of TMRA TSP521 was coupled to PECs as 
outlined in Incorporation of TSP521:  Direct Surface Coupling and Passive 
Entrapment. 
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Figure A11. Targeted EDAC/NHS and FITC PMCG PEC confocal imaging.  After 
suspension in growth media at [PEC]=1.54x109 PEC/ml, were incubated with 
HMVECs for 2 h.  PEC incubations were performed as described in Confocal 
Microscopy. 100 µg of TMRA TSP521 was coupled to PECs as outlined in 
Incorporation of TSP521:  Direct Surface Coupling and Passive Entrapment. Filters 
were (A) and (E) concanavalin A-AF647, (B) and (F) TMRA, (C) and (G) FITC, and 
(D) and (H) merged.  Concanavalin A was applied as a lectin stain to visualize the 
cell membrane. 
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Figure A12. Non-targeted FITC PMCG PEC four-track confocal imaging.  After 
suspension in growth media at [PEC]=1.54x109 PEC/ml, were incubated with 
HMVECs for 2 h.  PEC incubations were performed as described in Confocal 
Microscopy.  Filters were (A) TOPRO-3, (B) TMRA, (C) FITC, (D) differential 
interference constrast and (E) merged.  TOPRO-3 was applied as a nuclear stain to 
visualize PEC intracellular localization.  
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Figure A13. Non-targeted FITC PMCG PEC three-track confocal imaging.  After 
suspension in growth media at [PEC]=1.54x109 PEC/ml, were incubated with 
HMVECs for 2 h.  PEC incubations were performed as described in Confocal 
Microscopy.  Filters were (A) and (E) TOPRO-3, (B) and (F) TMRA, (C) and (G) 
FITC, and (D) and (H) merged.  TOPRO-3 was applied as a nuclear stain to visualize 
PEC intracellular localization. 
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Figure A14. Targeted EDAC/NHS PEC three-track confocal imaging.  After 
suspension in growth media at [PEC]=1.54x109 PEC/ml, were incubated with 
HMVECs for 2 h.  PEC incubations were performed as described in Confocal 
Microscopy. 100 µg of TMRA TSP521 was coupled to PECs as outlined in 
Incorporation of TSP521:  Direct Surface Coupling and Passive Entrapment. Filters 
were (A) and (E) TOPRO-3, (B) and (F) TMRA, (C) and (G) FITC, and (D) and (H) 
merged.  TOPRO-3 was applied as a nuclear stain to visualize PEC intracellular 
localization. 
 

(A) 

(B) 

(C) 

(D) 

(E) 

(F) 

(G) 

(H) 



 203 

References 

1. Vermes, I.; Haanen, C.; Reutelingsperger, C. "Flow cytometry of apoptotic cell 
death" Journal Of Immunological Methods 2000, 243, 167-190. 

2. Erl, W.; Weber, C.; Hansson, G. K. "Pyrrolidine dithiocarbamate-induced 
apoptosis depends on cell type, density, and the presence of Cu2+ and Zn2+" 
American Journal Of Physiology-Cell Physiology 2000, 278, C1116-C1125. 

3. Meng, L. H.; Mohan, R.; Kwok, B. H. B.; Elofsson, M.; Sin, N.; Crews, C. M. 
"Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo 
antiinflammatory activity" Proceedings Of The National Academy Of Sciences Of 
The United States Of America 1999, 96, 10403-10408. 

4. Vandenabeele, P.; Declercq, W.; Vanhaesebroeck, B.; Grooten, J.; Fiers, W. 
"Both TNF Receptors Are Required For Tnf-Mediated Induction Of Apoptosis In 
PC60 Cells" Journal Of Immunology 1995, 154, 2904-2913. 

 
 
 


