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CHAPTER I 

 

INTRODUCTION 

 

We have an innate, basic ability to discriminate quantity (Dehaene, 1997), as well 

as an intuitive understanding of ratio (Sophian, 2000). Even with these advantages, 

representing quantity and relationships symbolically is a difficult task and undoubtedly 

contributes to mathematical understanding. As the National Council of Teachers of 

Mathematics (1989) pointed out, mathematical symbols must have meanings attached to 

them for mathematics to be meaningful to children. Attending to the language we use to 

describe mathematical symbols may be one way to change how meaningful or 

meaningless they are. In the current study, we examined the role of formal labels on 

children’s understanding of mathematical symbols used to represent fractional quantities.	

The Power of Providing Labels 

 Previous research suggests language may play a critical role in learning and 

understanding across a variety of domains (Chesney et al., 2012; Fuson & Kwon, 1991; 

Fyfe, McNeil, & Rittle-Johnson, 2015; Miura, Okamoto, Vlahovic-Stetic, Kim, & Han, 

1999; Paik & Mix, 2003). Labels in particular have been shown to act as a powerful 

cognitive tool, recruiting processes that support categorization and relational thinking. 

For example, providing shared labels encourages children to treat objects similarly and 

categorize (e.g., Gelman & Markman, 1986; Graham, Kilbreath, & Welder, 2004). 

Further, children attribute characteristics of ambiguous objects based on their categorical 

label, rather than relying on perceptual features of the objects (Gelman & Markman, 
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1986). In addition to supporting categorization, providing shared labels that have a 

relational meaning enables children to map related sets of objects (Waxman & Gelman, 

1986). Four-year-olds typically fail difficult match to sample tasks that vary across 

multiple dimensions (e.g., matching light-dark-light squares with little-big-little circles). 

However, children who learned to use the symmetric relational label “even” were able to 

solve the task correctly by generalizing an abstract rule inferred from the meaning of the 

label.   

While the use of shared labels has been shown to elicit cognitive processes that 

support categorization and relational thinking, little is known about their role in making 

inferences about the structure of mathematics problems. Looking for and making use of 

structure is one of eight mathematical practice standards outlined by the Common Core 

State Mathematics Standards (National Governors Association Center for Best Practices, 

Council of Chief State School Officers, 2010). For example, mathematically proficient 

students are able to recognize the relationship between place value location and the value 

of a digit (e.g., for multidigit numbers such as 248, the leftmost digit matters most).  

Several indirect pieces of evidence suggest that labels may play a role in 

children’s mathematics understanding. First, findings from a recent study provide some 

evidence for the role of shared labels in revealing the mathematical structure of repeating 

patterns (Fyfe et al., 2015). Four- to five-year-olds solved repeating pattern problems and 

were exposed to either formal, abstract shared labels (e.g., A-B-B-A-B-B) or informal, 

concrete labels (e.g., blue-red-red-blue-red-red). Children in the formal labels condition 

solved more pattern problems correctly compared to children in the informal labels 

condition. The abstract pattern problems required children to make the same kind of 
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pattern as a model pattern by recreating the part that repeats using new materials. Formal 

labels provided language that was shared across both patterns and may have helped 

reveal the relation or structure across patterns. Indeed, children who correctly adopted the 

formal labels language while describing their own patterns solved more problems 

correctly.  

Second, some researchers argue that language supports fraction magnitude 

understanding (Miura, Okamoto, Vlahovic-Stetic, Kim, & Han, 1999; Paik & Mix, 2003) 

and whole number place value (Fuson & Kwon, 1991). English fraction labels lack 

information related to the relational magnitudes they represent. In comparison, East 

Asian languages use verbal names for fractions that explicitly represent part-whole 

relations, which may contribute to conceptual understanding of fraction magnitudes. 

Cross-cultural research compared how Korean, Croatian, and U. S. children performed on 

a fraction-identification task prior to receiving formal instruction on fractions (Miura et 

al., 1999). Korean children significantly outperformed Croatian and U.S. children, 

suggesting differences in fraction labels impacted performance. Additionally, when 

English-speaking children were provided with fraction names that revealed part-whole 

relations in a similar way as Korean fraction labels, they outperformed Korean children 

on a similar fraction-identification task (Paik & Mix, 2003). Evidence also exists for the 

role of language in understanding fractions written in decimal notation (Mazzocco & 

Devlin, 2008). Children’s failure to correctly name decimals using place value labels 

(e.g., naming 0.5 as five tenths) was an indicator of math learning disability. However, 

correctly naming decimals did not guarantee accurate conceptual knowledge of fractions 

represented in multiple ways (fractions, visual proportions, and decimals). 
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Cross-cultural comparisons have also been made between the labels Eastern 

versus Western languages use for whole numbers. Whole number labels in Korean and 

other Asian languages are based on a system that explicitly reflects base-10 structure 

(e.g., 326 is read as “three hundred two ten six (one)”). In contrast, English whole 

number labels are irregular and lack information about base-10 structure (e.g., 12 is read 

as “twelve”). Korean and American kindergartners and first graders were asked to show 

multidigit numbers between 11 and 42 using base ten blocks (tens blocks were ten unit 

blocks long and marked to show ones units; Miura, Kim, & Okamoto, 1988). Korean 

children showed multidigit numbers using tens and ones blocks, whereas American 

children rarely used tens blocks and instead counted out single ones blocks. The authors 

interpreted their findings as evidence for the influence of number labels on children’s 

cognitive representations of numbers. Other evidence comes from comparing Korean and 

American elementary school children’s understanding of multidigit addition and 

subtraction. Fuson & Kwon (1991; 1992) have shown that Korean elementary school 

children experience little difficulty solving multidigit addition and subtraction problems 

that require borrowing or carrying. They argued that the base-10 structure of Korean 

number labels make recomposition strategies easier and potentially more available (e.g., 

7 + 6 is recomposed as 7 + (3 + 3) = (7 + 3) + 3 = 10 + 3 = 13). American elementary 

children, however, experience substantial difficulties with these types of problems (see 

Fuson, 1990 for a review).  

Thus, providing children with language that carries meaningful information and 

can be shared across multiple instances may be one way to support thinking that reveals 

the mathematical structure of problems. However, there is no direct, experimental 
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evidence on the impact of labels on mathematics learning during problem solving. The 

current study tested the impact of labeling decimals on revealing place value structure.  

Labels and Decimal Knowledge 

How would you say the decimal 0.25? Most adults would name this decimal using 

informal “point” language (i.e., point two five or oh point two five). In contrast, when 

children learn to name decimals they are taught to use formal place value labels (i.e., 

twenty five hundredths). Teachers might also use decomposed place value labels by 

naming each place value separately (i.e., two tenths and five hundredths). The way we 

describe or label decimals may impact how children make sense of these numbers. The 

fractional amounts decimals represent are non-intuitive, and as a result, these symbols are 

often meaningless. In an effort to understand, children often treat decimals like numbers 

they have lots of experience with – whole numbers. Common, systematic errors reflect 

these misunderstandings (e.g., Stafylidou & Vosniadou, 2004). For example, when 

children are asked to compare decimal magnitudes they often think 0.25 is greater than 

0.9 because 25 is greater than 9 (Resnick et al.,1998).  

Labeling decimals using formal, decomposed place value labels might help 

children understand decimal magnitudes for at least three reasons. First, these labels 

could help reveal place value structure, which is one critical concept for making sense of 

decimal magnitudes. For numbers greater than 1, the value of the place increases by 

multiples of 10. The inverse of this relationship is true for numbers less than 1 (as you 

move to the right, the value of the place is divided by 10). Thus, the tenths place 

represents 1 divided by 10, and the hundredths place represents 1 divided by 100. 

Decomposed place value labels assign each digit with an associated value or magnitude, 
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which may be especially helpful in the context of comparing decimal magnitudes. These 

labels provide a shared place value label, which may encourage children to compare 

digits that correspond to the place value that impacts a decimal’s magnitude the most. For 

example, labeling 0.25 as two tenths and five hundredths and 0.5 as five tenths may 

encourage comparison of the shared tenths place value digits. Providing shared labels 

invites comparisons that can help children notice similarities that reflect more rule-based 

regularities as opposed to shallow, concrete similarities (Gentner & Medina, 1998). 

Further, providing shared labels promotes relational thinking potentially by revealing the 

mathematical structure of problems (Fyfe et al., 2015).  

Second, decomposed place value labels may help children distinguish decimals 

from whole numbers. Given children’s tendency to commit whole number errors while 

comparing decimal magnitudes, distinct place value labels may prevent children from 

treating decimals as a unified whole number. For example, when comparing 0.25 and 0.5 

distinct place value labels may encourage children to compare place value digits instead 

of comparing 25 and 5.  

Third, place value labels match the rule for naming unit fractions greater than 

three (i.e., adding “th” or “ths” after the name of the number; fourths, fifths, sixths, etc.). 

Thus, the use of place value labels may help children understand one tenth is 1/10 and 

one hundredth is 1/100. Despite these benefits, subtle differences in place value labels 

may limit their utility. Tenths and hundredths are highly similar to the familiar, well-

practiced place value labels tens and hundreds. This similarity may make it difficult for 

children to distinguish between these place value labels, influencing children to think 

hundredths are bigger than tenths because hundreds are bigger than tens. Further, if 
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children don’t have a strong understanding of how much tenths and hundredths are worth 

based on previous instruction or experience, these place value labels may not be 

meaningful.   

There are also several compelling reasons to predict that informal point labels will 

aid or harm thinking. In comparison to formal place value labels, informal “point” labels 

that reflect familiar language adults use may be less confusing and activate partial 

understanding of decimal magnitudes children acquire during everyday experiences. 

Children are exposed to these labels for decimals in everyday environments in which we 

often label decimal amounts, such as announcing running event times at sporting events, 

advertisements about radio stations, reading thermometers, and discussing weight. 

Children may acquire a partial understanding of decimal magnitudes by being exposed to 

adults’ use of these labels. Mix et al. (2014) found that children as young as 3 years 

showed surprising understandings of multidigit place values on simple tasks focusing on 

mappings between spoken number names to written numerals, dots, or block 

representations. The authors argued that these partial understandings of the place value 

system were likely acquired through statistical learning processes that occur in everyday 

environments rich with multidigit numerals and verbal number names. If children 

develop these partial understandings in a similar way with decimal magnitudes, labeling 

decimals using informal, familiar labels should activate this knowledge and provide an 

entryway into building understanding.  

However, using informal labels may harm thinking by activating whole number 

misconceptions. Labeling digits using only their number names may encourage children 

to treat decimals like whole numbers. Activating misconceptions has been shown to 
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hinder problem-solving performance (McNeil & Alibali, 2005), in part because children 

perseverate on using incorrect strategies (Fyfe, Rittle-Johnson & DeCaro, 2012). Thus, 

informal labels may encourage children to commit whole number errors and interfere 

with children’s ability to accurately compare decimal magnitudes.  

Current Study 

In the current study, children solved decimal fraction magnitude problems in the 

context of a decimal card game (i.e., which decimal is greater?) and number line 

estimation task. We focused on decimal fraction magnitude because of the important role 

fraction magnitude knowledge plays in mathematics education (NMAP, 2008) and the 

serious learning challenges they pose (Siegler, Fazio, Bailey, & Zhou, 2013). Fraction 

magnitudes can be presented in common form (e.g., 1/2; fractions) or using decimal 

notation (e.g., 0.5; decimal fractions). In both the United States and United Kingdom fifth 

graders’ fraction competence predicted their later algebra success and overall 

mathematics achievement in high school (Siegler et al., 2012). Furthermore, sixth 

graders’ fraction knowledge predicted gains in mathematical achievement from sixth 

grade to seventh grade (Bailey, Hoard, Nugent, & Geary, 2012). However, many students 

struggle to understand fraction magnitudes despite receiving significant amounts of 

instruction starting in Grades 3 or 4. Results from the 2008 National Assessment of 

Educational Progress found that only 50% of eighth graders correctly ordered the 

magnitudes of three fractions (Martin, Strutchens, & Elliott, 2007). Even adults show 

limited fraction knowledge. U.S. community college students correctly answered only 

70% of fraction magnitude comparison problems, where chance was 50% correct 

(Schneider & Siegler, 2010). Difficulties understanding fractions also exist for decimal 
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fractions. Over half of fifth graders consistently chose 0.274 as being larger than 0.83 

(Rittle-Johnson, Siegler, & Alibali, 2001), and less than 30% of eleventh graders were 

able to express the magnitude of 0.029 as a fraction (Kloosterman, 2010).  

We examined the influence of naming decimals using formal, decomposed place 

value labels compared to informal, everyday decimal labels or no labels on children’s 

problem-solving performance. We hypothesized that formal labels would facilitate 

problem-solving performance by revealing place value structure and reducing whole 

number errors. Additionally, we predicted that the advantages of informal labels would 

be counteracted by the activation of whole number misconceptions that interfere with 

problem solving. Therefore, we predicted children in the informal labels condition would 

perform similarly to the no labels condition.  
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CHAPTER II 

 

EXPERIMENT 

 

Method 

 

Participants 

Consent was obtained from 122 third- and fourth-grade students from three 

suburban parochial schools and one public school aftercare program. A pretest was given 

to identify children who did not already demonstrate a high level of decimal magnitude 

knowledge so that differences between conditions could be detected. Children scoring 

below 75% on this pretest were selected for the study and randomly assigned to 

experimental condition. Thirteen children did not meet the pretest-in criteria. Data from 

four children were excluded because they had diagnosed learning disabilities and one 

child who was a pilot participant. The final sample (N = 104; 56% female) consisted of 

63 third-graders and 41 fourth-graders. The average age was 9.6 years (range 7.2-11.2). 

Approximately 26% of participants were ethnic minorities (13% African-American, 7% 

Asian, 6% Hispanic). These demographic characteristics did not differ significantly by 

condition. There were grade differences for time spent covering content on decimals and 

in exposure to formal place value labels. Fourth-grade teachers reported spending more 

time an average covering decimal content in class than third-grade teachers (a few weeks 

vs. zero to a few days). Fourth-grade teachers also reported that more of their students on 
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average were familiar with naming decimals using place value labels compared to third-

grade teachers (most students vs. less than a few students).  

 

Design 

Children completed a brief pretest and participated in a single individual session.  

Children were randomly assigned to one of three conditions: formal labels (n = 35; n = 21 

third-graders, n = 14 fourth-graders), informal labels (n = 34; n = 21 third-graders, n = 13 

fourth-graders), or control (n = 35; n = 21 third-graders, n = 14 fourth-graders). The only 

difference between conditions was the labels the experimenter and children used to name 

decimals during the decimal game and number line task.  

 

Materials 

Pretest  

An abbreviated version of a validated assessment measured children’s correct 

decimal magnitude knowledge as well as common misconceptions (Durkin & Rittle-

Johnson, 2015). The assessment included items from four subscales: magnitude 

comparisons (n = 7), role of zero (n = 2), density (n = 3), and number line items (n = 3).  

Two measures of decimal misconceptions were also included. The first measured the 

proportion of responses that corresponded to either whole number, role of zero, or 

fraction misconceptions. The second measured how students generally thought of 

decimal magnitude problems using two versions of a “hidden decimal task” (Resnick et 

al., 1989). The original version of the item asked students to identify whether 0.X or 

0.XXXX was greater (the Xs represent numbers covered by pieces of paper) or if it was 
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impossible to know. A new version of the item was developed that provided the value of 

the tenths place (0.8 or 0.2XX) to reveal how competing strategies (length of digits 

versus comparing tenths) influence responses. 

Decimal comparison game 

The decimal labels manipulation occurred while children played a decimal 

magnitude comparison game (e.g., which decimal is greater?). The game had the same 

rules as the familiar card game War. Children played the game with the experimenter 

using a deck of decimal cards, and the player with the greater decimal won each round. 

During game play, children compared the magnitudes of 40 pairs of decimals. Numbers 

in each pair ranged from 0 to 1 and had either one or two digits. Pairs were designed to 

reveal different levels of understanding based on previous research that has identified 

common errors children make when comparing decimal magnitudes (Desmet, Grégoire, 

& Mussolin, 2010; Durkin & Rittle-Johnson, 2015; Resnick et al., 1998). Comparisons 

fell into three different categories and focused on errors that arise from treating decimals 

like whole numbers (see Table 2 for examples of each comparison type).  

Congruent and incongruent comparisons  

The first category included 17 pairs that required children to make either 

congruent or incongruent comparisons. Congruent comparisons can be solved correctly 

by comparing decimals as whole numbers (e.g., 0.68 and 0.2; n = 7), whereas incongruent 

comparisons cannot be solved correctly using whole number rules (e.g., 0.51 and 0.8; n = 

10).  
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Role of zero comparisons  

The second category included 18 pairs with one decimal that had a zero in either 

the tenths or hundredths place. Common errors related to whole number errors involve 

misunderstanding the role of zero. For example, children often ignore a leading zero (e.g., 

0.04 is the same amount as 0.4) and think a trailing zero changes a decimal’s magnitude 

(e.g., 0.40 is greater than 0.4). Eleven of these pairs had identical non-zero digits (e.g., 

0.40 and 0.4 or 0.09 and 0.9). The remaining 7 pairs had different non-zero digits and a 

zero in the tenths place only (e.g., 0.07 and 0.1 or 0.8 and 0.02), so competing strategies 

of either comparing the digit values or comparing the length of the decimals could be 

used.  

Benchmark comparisons  

The third category included 5 pairs in which children compared a decimal to a 

familiar 0 or 1 benchmark. Pairs were administered in a random order, and all children 

compared the pairs in the same order. Proportion correct across all comparison problems 

and by comparison type was calculated for each child.  

Children read aloud the decimal labels printed on the cards before choosing the 

greater decimal (see Figure 1 for example materials for each condition). The printed 

labels were removed halfway through game play to give children an opportunity to 

practice generating the decimal labels on their own with feedback from the experimenter. 

Children received a score for the proportion of target labels they correctly generated on 

their first try. 

 

 



 14 

 

Formal labels condition 
 

Informal labels condition 
 

Control condition  
 

 
Figure 1: Sample Decimal Cards from the Decimal Comparison Game by Condition 

 

Decimal number line estimation  

To measure magnitude knowledge, a 0-1 decimal number line task was created 

(18 trials). Children were instructed to name each decimal according to their assigned 

label condition before placing the decimal on the number line. The decimals were taken 

from previous work that used pencil-and-paper number line tasks and included decimals 

with one or two digits (Rittle-Johnson, Siegler, & Alibali, 2001). The decimals used were 
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0.2, 0.09, 0.40, 0.87, 0.07, 0.9, 0.10, 0.63, 0.16, 0.6, 0.02, 0.5, 0.80, 0.14, 0.08, 0.3, 0.46, 

and 0.70.  

Percent absolute errors (PAE) were calculated for number line estimations 

according to the formula: (|Child’s Answer – Correct Answer|)/Numerical Range (Siegler 

& Thompson, 2014). For example, if a child was locating 0.6 on a 0-1 number line and 

marked the location corresponding to 0.67, PAE would be 7%, as calculated by (|0.67 – 

0.60|)/1. More accurate estimates reflect lower PAEs. Each child received an average 

PAE score across all 18 trials. Pilot work suggested that some children solve this task by 

treating the 0 to 1 number line as a 0 to 100 number line and placing decimals 

accordingly. This is a useful strategy for locating hundredths but leads to inaccurate 

estimations for tenths. Therefore, we calculated an average PAE score for each child 

separately for hundredths trials (e.g., 0.46; n = 5) and for tenths trials (e.g., 0.2; n = 5). 

An average PAE score was also calculated for the remaining 8 trials that included 

decimals with a zero in the tenths or hundredths place (e.g., 0.40 and 0.09) because 

children often experience confusion about the role of zero. 

Decimal labels screening and manipulation check  

At the beginning and end of each session, children were asked to name decimals 

with tenths and/or hundredths place values (i.e., 0.6, 0.07, and 0.53). The screening 

measure was used to identify individual differences in children’s prior knowledge of 

decimal labels, as well as to provide a manipulation check that children were able to 

generate decimal labels learned during the labels manipulation after a brief delay.  
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Decimal comparison transfer 

Decimal comparison transfer items included decimal comparison problems that 

children were not exposed to during the decimal labels manipulation. Items were adapted 

from previous work measuring children’s decimal magnitude knowledge (Durkin & 

Rittle-Johnson, 2015; Rittle-Johnson, Siegler, & Alibali, 2001). Children completed 10 

decimal magnitude comparison problems with decimals that included digits in either the 

thousandths or ones places. For these comparison problems children chose the decimal 

that was greater or decided if they were the same amount. Half of the problems were role 

of zero comparisons in which one of the decimals in a pair had a zero in the tenths, 

hundredths, or thousandths place (e.g., 0.9 and 0.901, 1.09 and 1.9, or 3.3 and 3.300).  

Place value identification  

Two items assessed children’s place value knowledge as used in Rittle-Johnson, 

Siegler, & Alibali (2001). These items were administered towards the end of the 

experimental session after the labels manipulation had occurred to determine if using 

formal decomposed place value labels helped children understand place value concepts. 

One item presented the number 413.728 and asked how much the 2 was worth from a list 

of 5 choices: 0.2, 2 tenths, 2 hundredths, 2 tens, or 2 hundreds. The second item asked 

how many tenths were in 30 hundredths.  

Additional measures given, but not used 

Several additional items were included for exploratory purposes. All items were 

administered after the labels manipulation had occurred. Due to poor performance and 

difficulty in interpreting students’ responses and few condition differences, results are not 

reported for these measures.  
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Transfer number line  

Transfer number line items included 3 multiple-choice problems. For these 

problems, one decimal was marked on a 0-10 number line and children identified the 

location of an unmarked decimal from a list of 4 choices. Overall, children answered 

approximately 1 of the 3 items correctly (M = 31% correct, SD = 24%).  

Misconceptions  

The two versions of a “hidden decimal task” (Resnick et al., 1989) from the 

pretest were used to measure misconceptions about how children generally think about 

decimal magnitude comparison problems. Only 13% of children correctly answered the 

version of the task with all digits hidden, with no differences between conditions. Instead, 

67% of children chose the decimal with more digits as being larger. Performance was 

better on the other item with the tenths digit shown but is difficult to interpret (Loehr & 

Rittle-Johnson, 2015). More children in the formal labels condition solved this item 

correctly (43%) compared to children in the informal labels condition (29%) and no 

labels condition (14%), χ2 (2, N = 104) = 6.97, p = .03. 

Density 

The concept of decimal density was also measured to determine if providing 

labels influenced children to treat decimals discretely as opposed to understanding the 

continuous nature of their magnitudes. For these problems, children were asked to say a 

number that comes between two decimals (e.g., 0.4 and 0.5; n = 4; Durkin & Rittle-

Johnson, 2015). Performance was low on these items (M = 33%, SD = 30%).  
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Encoding 

Four items assessed children’s encoding of problem structures by asking children 

to reproduce decimal comparison problems from memory (e.g., 0.08 ⬜ 0.62 or 0.56 ⬜ 

240.0). Children received 1 point for correctly reproducing each problem without any 

errors. Children correctly reproduced about half of the problems (M = 56%, SD = 27%).  

 

Procedure 

Children completed the written pretest in their classrooms in one 15-minute 

session. The one-on-one experimental session occurred at least one day after the pretest 

and lasted approximately 40 minutes. All experimental tasks were presented on a laptop 

computer with the exception of the decimal game. All children completed the tasks in the 

same, fixed order. Table 1 presents tasks in the order of presentation and identifies the 

tasks during which the labels manipulation occurred. The individual sessions were video 

and audio taped. 

 

Table 1: Task Order Administration and Condition Manipulation Information 
  

Order Task	 Labels Manipulation	
1 Decimal labels screening No 
2 Comparison game Yes 
3 Number line estimation Yes 
4 Density No 
5 Place Value No 
6 Memory No 
7 Comparison transfer No 
8 Number line transfer No 
9 Hidden decimal No 
10 Decimal labels manipulation check No 

 



 19 

Data Analysis 

 To examine children’s performance on the primary outcome measures 

(performance on decimal comparison game, decimal number line estimation accuracy, 

and decimal comparison transfer), a series of ANCOVAs with condition as a between-

subject variable were performed. Specifically, condition was dummy coded with formal 

labels and informal labels entered into the models, and no labels as the reference group. 

In all models, children’s age, grade, and their score on the pretest were included as 

covariates. Preliminary analyses revealed no interactions with age, grade, or pretest 

scores so these interaction terms were not retained in the final models. 

 

Results 

 

Pretest 

At pretest, children who were included in the study answered a minority of 

problems correctly (M = 32% correct, SD = 14%). In addition, fourth-graders exhibited 

greater decimal magnitude knowledge than third-graders, F(1, 102) = 31.9, p < .01, ηp2 = 

.24), answering about two  more items correctly on average (M = 41% correct, SD = 16% 

vs. M = 26% correct, SD = 10%). As expected, there were no differences in knowledge 

by condition at pretest, F < 1, ns.  

 

Decimal Labels Screening and Manipulation Check 

None of the children generated formal, decomposed place value labels prior to the 

naming manipulation. As expected, the majority of children (77%) provided informal 
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labels on at least one of the three decimals they were asked to name. At the end of the 

session, all children in both label conditions provided the respective labels they were 

exposed to during the labels manipulation. 

 

Decimal Comparison Game Performance 

 There were no significant effects between any of the label type conditions for 

children’s overall performance on decimal magnitude comparison problems (see Table 

2), F’s < 2.5. Children in all three conditions performed significantly above chance 

(33%), t(103) = 7.05, p < .001, but condition differences were not reliable. Comparison 

types were designed with common errors in mind, and some comparisons could be solved 

correctly using whole number strategies. Thus, we compared performance on the three 

comparison types. Table 2 presents means and standard deviations by condition for each 

comparison type.  
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Table 2: Summary of Performance on Main Measures by Condition 
 
  Formal 

Labels 
 Informal 

Labels 
 No Labels 

Task Examples M SD  M SD  M SD 
Proportion of correct responses  
Comparison game  .53 (.25)  .44 (.18)  .47 (.20) 

Benchmark (n = 5) 0 vs. 0.1 
1 vs. 0.45 .74 (.28)  .71 (.27)  .71 (.28) 

Congruent (n = 7) 0.68 vs. 0.2 .91 (.26)  .96 (.18)  .94 (.21) 
Incongruent (n = 10) 0.51 vs. 0.8 .31 (.43)  .14 (.31)  .16 (.35) 

Role of zero same digits  
(n = 11) 

0.09 vs. 0.9 
0.40 vs. 0.4 .43 (.38)  .20 (.34)  .24 (.39) 

Role of zero different 
digits (n = 7) 

0.07 vs. 0.1 
0.03 vs. 0.4 .45 (.38)  .53 (.28)  .62 (.21) 

RZ congruent (n=4) 0.03 vs. 0.4 .55 (.42)  .79 (.37)  .91 (.38) 
RZ incongruent (n=3) 0.07 vs. 0.1 .31 (.41)  .18 (.34)  .24 (.38) 

Percent absolute errora	
Number line estimation  .20 (.12)  .18 (.06)  .16 (.04) 

Tenths 0.6 .30 (.16)  .36 (.13)  .35 (.13) 
Hundredths 0.46 .13 (.10)  .10 (.08)  .09 (.05) 
Role of zero 0.40, 0.09 .18 (.17)  .11 (.11)  .08 (.05) 

Proportion of correct responses 
Comparison transfer  .48 (.16)  .39 (.13)  .43 (.12) 

Congruent and 
incongruent 

0.453 vs. 
0.21 

0.86 vs. 
0.827 

.42 (.19)  .39 (.13)  .38 (.12) 

Role of zero 
0.9 vs. 0.901 

0.37 vs. 
0.072 

.54 (.18)  .39 (.18)  .47 (.21) 

aLower percent absolute errors reflect more accurate estimates 
 

 Benchmark comparisons 

 Children’s percent correct on benchmark comparisons was similar in the formal 

labels condition (M = 74%, SD = 28%), informal labels condition (M = 71%, SD = 27%), 

and no labels condition, (M = 71%, SD = 28%). There were no significant condition 
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effects, F’s < 1. Across conditions children were more successful at comparing a decimal 

to a 0 benchmark (n = 2) than to a benchmark of 1 (n = 3; M = 98%, SD = 13% vs. M = 

55%, SD = 46%, respectively).  

 Congruent and incongruent comparisons 

 As expected, children across all three conditions were successful on congruent 

comparison problems that could be solved correctly using a whole number strategy (M = 

94% correct, SD = 22%). There were no significant effects of label type, F’s < 1. 

However, for incongruent comparisons in which a whole number strategy produced an 

incorrect answer (e.g., 0.51 and 0.8), children’s percent correct with formal labels was 

highest (M = 31% correct, SD = 43%), lower with no labels (M = 16% correct, SD = 

35%), and lowest with informal labels (M = 14% correct, SD = 31%). There was a 

marginal effect of formal labels relative to no labels, F(1, 98) = 2.89, p = .09, ηp2 = .03. 

There was no significant effect of informal labels relative to no labels, p = .91. A follow-

up analysis revealed a marginal effect of formal labels relative to informal labels, F(1, 

98) = 3.24, p = .08, ηp2 = .03. Children in the formal labels condition performed at chance 

(33%), t(34) = -.26, p = .80, but children in the informal labels and no labels conditions 

performed significantly below chance, t(33) = -3.56, p = .001 and t(34) = -2.91, p = .006, 

respectively. These results suggest children in the informal and no labels conditions were 

more likely to choose the decimal with greater digit values using whole number rules.   

 Role of zero comparisons 

 Children’s percent correct on role of zero comparisons with identical non-zero 

digit values (e.g., 0.40 and 0.4 or 0.09 and 0.9) was highest with formal labels (M = 43%, 

SD = 38%), lower with no labels (M = 24%, SD = 39%), and lowest with informal labels 
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(M = 20%, SD = 34%). There was a significant effect of formal labels relative to no 

labels, F(1, 98) = 4.94, p = .03, ηp2 = .05. There was no significant effect of informal 

labels relative to no labels, p = .72. A follow-up analysis revealed a significant effect of 

formal labels relative to informal labels, F(1, 98) = 6.55, p = .01, ηp2 = .06. 

 Children’s correct percent on role of zero comparisons with different non-zero 

digits (e.g., 0.07 and 0.1) was highest with no labels (M = 62%, SD = 21%), lower with 

informal labels (M =53%, SD = 28%), and lowest with formal labels (M = 45%, SD = 

38%). There was a significant, negative effect of formal labels relative to no labels, F(1, 

98) = 7.50, p = .01, ηp2 = .07. There was no significant effect of informal labels relative 

to no labels, p = .21. A follow-up analysis revealed no significant effect between the two 

label types, p = .15. To understand the negative effect of formal labels relative to no 

labels, we examined performance on problems where the correct answer can be achieved 

using whole number rules. On 4 of these 7 problems, ignoring a zero and choosing the 

decimal with the greater digit will result in the correct answer. There was a significant, 

negative effect of formal labels relative to no labels, F(1, 98) = 17.64, p < .01, ηp2 = .15. 

There was no significant effect of informal labels relative to no labels, p = .20. A follow-

up analysis revealed a significant, negative effect of formal labels relative to informal 

labels, F(1, 98) = 8.25, p = .01, ηp2 = .08. Thus, children in the informal- and no-labels 

conditions seemed to be utilizing this strategy, whereas children in the formal labels 

condition did not ignore zeroes but seemed to be experiencing confusion about the values 

of the tenths and hundredths places.  
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 Decimal comparison game performance summary 

Children in all three conditions were successful at benchmark and congruent 

comparisons. Performance on more difficult incongruent and role of zero comparisons 

revealed some positive but mixed effects of providing formal labels. Performance on 

incongruent comparison problems suggested that formal labels facilitated performance 

somewhat, in part by discouraging children from systematically using a whole number 

strategy. Formal labels also led to higher performance on role of zero comparisons, but 

only when there was no competing digit value information (i.e., only for problems that 

had identical non-zero digits). For role of zero comparisons that had different non-zero 

digits, formal labels harmed performance by discouraging children from using whole 

number strategies that led to the correct answer. 

 

Number Line Estimation 

 For children’s overall average PAE there was an unexpected significant, negative 

effect of formal labels relative to no labels, F(1, 98) = 5.22, p = .03, ηp2 = .05. There was 

no significant effect of informal labels relative to no labels, p = .31, and no significant 

effect between the two label types, p = .21. Because we suspected children were likely to 

use a 0-100 number line strategy (i.e., treating the 0-1 number line as a 0-100 number line 

and locating decimals accordingly), we examined performance on trials in which this 

strategy would lead to accurate vs. inaccurate estimations. Table 2 presents children’s 

average PAE across trials and for each trial type by condition. 

  

 



 25 

 Tenths trials  

 There were no significant effects between any of the three label type conditions 

for children’s average PAE on the most difficult tenths trials, p’s > .10.  

 Hundredths trials 

 There was a marginal, negative effect of formal labels relative to no labels for 

hundredths trials, F(1, 98) = 3.45, p = .07, ηp2 = .03. There was no significant effect of 

informal labels relative to no labels, p = .77, and no significant effect between the two 

label types, p = .13.  

 Role of zero trials 

 For role of zero trials there was a significant, negative effect of formal labels 

relative to no labels, F(1, 98) = 12.56, p < .01, ηp2 = .11. There was no significant effect 

of informal labels relative to no labels, p = .22. A follow-up analysis revealed a 

significant, negative effect of formal labels relative to informal labels, F(1, 98) = 5.16, p 

= .03, ηp2 = .05.  

 Number line estimation summary 

 In general, formal labels impeded children’s ability to accurately estimate the 

location of decimals on a 0-1 number line. This negative effect of formal labels was 

strongest for role of zero trials and was not present for the most difficult tenths trials. 

 

Transfer 

 Children in all three conditions performed significantly above chance on transfer 

magnitude comparison problems (33%), t(103) = 7.43, p < .001 (see Table 2). There was 

no significant effect of either label type relative to no labels, p’s > .14. A follow-up 
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analysis revealed a significant effect of formal labels relative to informal labels, F(1, 98) 

= 5.16, p = .03, ηp2 = .05.  

 We also examined performance on congruent and incongruent comparison 

problems and role of zero comparison problems. For congruent and incongruent 

comparisons, there were no effects between any conditions, p’s < .31. For role of zero 

comparisons, there was no significant effect of formal labels relative to no labels, p = .23. 

There was a marginal, negative effect of informal labels relative to no labels, F(1, 98) = 

3.62, p = .06, ηp2 = .04. A follow-up analysis revealed a significant effect of formal labels 

relative to informal labels, F(1, 98) = 9.60, p < .01, ηp2 = .09.  

 

Place Value 

We used two items to assess children’s place value knowledge to determine if 

using formal decomposed place value labels helped children understand place value 

concepts. The first item presented the number 413.728 and asked how much the 2 was 

worth from a list of 5 choices: 0.2, 2 tenths, 2 hundredths, 2 tens, or 2 hundreds. The 

second item asked how many tenths were in 30 hundredths.  

 Despite exposure to formal place value labels, only a quarter of the children in the 

formal labels condition were able to use the learned labels to correctly identify the 

hundredths place value (26%). A similar percentage of children in the informal labels 

condition (18%) and the no labels condition (6%) were successful on this item, χ2 (2, N = 

104) = 5.18, p = .08. A distractor analysis showed that children applied place value rules 

for whole numbers to place values less than one. Using this strategy would lead to 

identifying the tenths place as ones and the hundredths place as tens (or tenths). Indeed, 
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57% of children incorrectly chose tenths and 24% of children chose tens as the correct 

answer. More children in the informal labels condition (12 of 34 [35%]) and no labels 

conditions (10 of 35 [29%]) incorrectly chose tens compared to 3 of 35 children (1%) in 

the formal labels condition, χ2 (2, N = 104) = 7.34, p = .03. Importantly, children in the 

formal labels condition were able to differentiate tens from tenths. We also included 

hundreds as a distractor to determine if children would distinguish hundredths from 

hundreds, but only 1 child in each condition chose this option.  

 Children were much more successful at determining how many tenths were in 30 

hundredths. More children in the formal labels condition answered this item correctly 

(69%) compared to children in the informal labels condition (38%) and no labels 

condition (43%), χ2 (2, N = 104) = 7.43, p = .02. Thus, while formal labels seemed to 

reveal place value structure, as evidenced by understanding the relationship between 

tenths and hundredths, children still struggled to understand place values less than one.  
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CHAPTER III 

 

DISCUSSION 

 

The language we use can act as a powerful cognitive tool. For example, providing 

shared labels encourages children to categorize (e.g., Gelman & Markman, 1986; Graham 

et al., 2004), as well as match sets of objects based on their relations instead of perceptual 

features (Waxman & Gelman, 1986). While shared labels have been shown to support 

categorization and relational thinking, less is known about their role in making inferences 

about the structure of mathematics problems. Several indirect pieces of evidence suggest 

that labels play a role in mathematics understanding (Cheseney et al., 2012; Fuson & 

Kwon, 1991, 1992; Fyfe et al, 2015) and fraction understanding in particular (Miura et 

al., 1999; Paik & Mix, 2003). The current study is the first to provide experimental 

evidence for the effect of providing formal versus informal or no labels for understanding 

decimal fractions.  

We found that naming decimals using formal, decomposed place value labels had 

mixed effects on decimal magnitude problem solving performance. Children who learned 

to name decimals using formal labels (e.g., “two tenths and five hundredths”) compared 

to informal labels (e.g., “point two five”) or no labels were better able to solve decimal 

magnitude problems that required understanding the role of zero and pace value structure. 

In particular, they solved slightly more incongruent magnitude comparison problems 

correctly (e.g., Which decimal is greater, 0.51 or 0.8?), solved more role of zero 

magnitude comparison problems correctly with decimals that had identical non-zero 
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digits (e.g., Which decimal is greater, 0.4 or 0.40? 0.09 or 0.9?), and were better able to 

determine the relationship between tenths and hundredths. In part, they were less 

influenced by whole number strategies compared to children in the informal and no labels 

conditions.  

However, there were unexpected negative effects of formal labels compared to 

informal and no labels. Their performance was lower on role of zero magnitude 

comparison problems and number line estimation problems that required explicit 

understanding of tenths and hundredths place values. This decrement in performance may 

reflect a shift away from an incorrect strategy that sometimes yields the correct answer to 

more varied strategies that yield more random performance. These problems included 

decimals with a non-zero digit in either the tenths or hundredths place, which isolated 

each place value. Children in the informal labels and no labels conditions seemed to rely 

on whole number strategies that sometimes led to correct solutions, whereas children in 

the formal labels condition may have been attempting a variety of correct and incorrect 

strategies that led to more random performance. One possibility is that children in the 

formal labels condition were attending to place value but did not have a reliable 

understanding of these place value magnitudes and alternated between using correct and 

incorrect strategies.  

Overall, findings from the current study suggest formal place value labels helped 

children understand limited aspects of decimal magnitudes, but did not result in 

successful problem solving in several contexts. These findings align with research 

showing that children who provided correct labels for decimals did not always 

demonstrate accurate understanding of decimal magnitudes (Mazzocco & Devlin, 2008). 
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Middle-school students with a wide range of math ability were asked to name decimals 

and complete a ranking proportions test (i.e., rank order proportions presented as 

decimals, common fractions, and pictures from smallest to biggest and identify 

equivalent ratios). Most children in Grade 6 provided correct formal place value labels 

for decimals, and in Grade 8, most children who passed the ranking proportions test 

passed the naming test in Grade 6. However, many students who failed the ranking 

proportion test in Grade 8, passed the naming test in Grade 6. Thus, some students who 

passed the naming test failed to accurately rank order proportions.  

Although formal labels did not always lead to accurate decimal magnitude 

knowledge, formal labels seemed to impact performance by revealing place value 

structure. We hypothesized that shared place value labels might highlight place value 

structure by assigning each fractional digit a distinct label with an associated value or 

magnitude. The negative effects found for formal place value labels suggested children 

understood that each place value had an associated magnitude but were confused about 

magnitudes of each place value. Distinct place value labels also seemed to help children 

distinguish decimals from whole numbers. Indeed, children in the formal labels condition 

were less likely to rely on whole numbers strategies for incongruent comparison 

problems. These findings align with past work showing that shared labels may help 

reveal the mathematical structure of problems (Fyfe et al., 2015).  

 Some features of formal place value labels may raise concern about their utility, 

especially for younger children. Informal review of an evidence-based mathematics 

curriculum found that third-grade teachers were discouraged from introducing decimals 

using unfamiliar tenths and hundredths place value names. The argument was that 



 31 

students should wait to learn the place value labels in Grade 4. However, young children 

learn whole number labels long before attaching a magnitude meaning to the number 

words or numerals (Wynn, 1997). Additionally, children as young as 3 years showed 

some competence in understanding multidigit number names long before receiving any 

kind of formal place value instruction (Mix et al., 2014). Indeed, children in the current 

study experienced little difficulty learning to name decimals using unfamiliar formal 

place value labels. All children in the formal labels condition generated a correct 

decomposed place value label at the end of the experimental session. However, children 

demonstrated little knowledge of place value concepts for place values less than one. 

Children in the formal labels condition were only slightly more likely to correctly 

identify the hundredths place compared to children in the informal and no labels 

conditions. Instead, children in all conditions inappropriately applied whole number place 

value rules to fractional place values.  

It is also possible that children experienced confusion between these less familiar 

place value labels and highly similar, well-practiced place value labels for tens and 

hundreds. Results from the place value identification item demonstrated that only 

children in the formal labels condition differentiated place value labels to the left of the 

decimal point from place value labels to the right of the decimal point. Another 

possibility is that children were influenced by the magnitude relationship between highly 

similar sounding place value labels tens and hundreds. Because hundreds are bigger than 

tens, children may have been influenced to think hundredths are being bigger than tenths. 

However, performance on magnitude comparison problems did not suggest they were 

systematically using this incorrect strategy.     
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 Instead of using formal place value labels, most adults label decimals such as 0.25 

by saying, “point two five.” Using labels that reflect this common, everyday language 

may activate contextual knowledge children acquire through everyday experiences with 

decimal amounts. Previous research has shown that children may develop partial 

understandings of multidigit numbers in this way (Mix et al., 2014). In that study, 

children completed simple tasks that focused on mappings between spoken number 

names to written numerals, dots, or block representations. In contrast, the tasks used in 

the current study may not have been suitable for revealing the kinds of knowledge 

children may have about everyday decimal amounts associated with informal labels.  

However, using informal labels could activate whole number misconceptions. 

Activating misconceptions hinders problem-solving performance (McNeil & Alibali, 

2005), in part because children perseverate on using incorrect strategies (Fyfe, Rittle-

Johnson & DeCaro, 2012). For example, children often have misconceptions about the 

meaning of the equal sign that result in common, systematic errors while solving 

equations with operations on both sides of the equal sign (e.g., 3 + 7 = 4 +__). Instead of 

understanding the equal sign as meaning “the same as,” children often interpret the 

symbol as meaning “get the answer” or “the total.” These misunderstandings are thought 

to arise based on previous exposure to arithmetic problems with an “operations = answer” 

format (e.g., 3 + 7 = 10). McNeil & Alibali (2005) conducted an experiment with 

undergraduates in which two groups of students solved equations with operations on both 

sides of the equal sign. One group completed several tasks designed to activate an 

operational meaning of the equal sign (reflecting the common misconception children 

experience). A control group completed filler tasks that did not focus on the equal sign. 
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Findings suggested activation of an operational meaning of the equal sign interfered with 

students’ performance while solving equations with operations on both sides of the equal 

sign. There is limited evidence in the current study that whole number misconceptions 

were activated by informal labels. Children in the informal labels condition performed 

somewhat worse than children in the no labels condition on transfer role of zero 

magnitude comparisons. However, in general informal language did not seem to activate 

misconceptions more so than no labels.  

In conclusion, findings from the current study provide some evidence for how the 

language teachers and students use impacts problem-solving success. A subtle change in 

how teachers label decimals during classroom instruction could enhance classroom 

discussions about place value structure that may help children learn about decimal 

magnitudes. We have shown that labeling decimals using decomposed place value labels 

helps reveal place value structure by highlighting the role of zeroes as placeholders. 

These results extend previous research on the role of language in mathematics learning, 

and more specifically the use of labels to reveal the mathematical structure of problems 

(Fyfe et al., 2015; Miura et al., 1999; Paik & Mix, 2003). Identifying mathematically 

meaningful labels may be a powerful first step in the process of impacting students’ 

problem-solving behavior and understanding. 
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APPENDIX 

 

Measures 

 

Pretest 

For each pair, circle the decimal that is greater: 
 
1) 0.24  0.049 
2) 0.3  0.92 
3) 0.561  0.17 
4) 0.87  0.835 
5)  0.429  0.7 
 
Write a number that comes between: 

6) 0.3 and 1.0  ______ 

7) 0.5 and 0.52   ______ 

8) 0.5 and 0.6   ______ 

 
9)   Circle all the numbers that are worth the same amount as 0.04 
 

a) 0.4 
b) 0.40 
c) 0.004 
d) 4 
e) none of the above 

  
10)  Circle the number that is greater than 0.36 
 

a) 0.4 
b) 0.360 
c) 0.2 
d) 0.279 

 
11) Circle the number that is less than 0.52 
 

a) 0.6 
b) 0.5 
c) 0.567 
d) 1.4 
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12)   0.26 is ______________ 0.260 
 

a) greater than 
b) less than 
c) the same as 

 
 
What number tells about where the slash is on the number line? Circle the answer. 
 
13)       a) 0.76 

b) 0.3 
c) 0.08 
d) 0.401 

 
 
 
 
 
 
 
 
 
 
 
14)      a) 0.534 

b) 0.5 
c) 0.032 
d) 0.80 

 
 
 
 
 

 
 
 
 
 
 
15)      a) 0.189 

b) 0.4 
c) 0.05 
d) 0.87 

 
 
 
 

0 1 

0 1 

0 1 
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16)  Which of these numbers is greater?  
 

a)  0.   b)  0.   c)  Can’t tell 
 

 
 
 
 
17)  Which of these numbers is greater? 
 

a)  0.8     b)  0.2  c)  Can’t tell 
 
 
 
 

Please wait for directions before answering 
these questions. 
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Decimal Comparison Game 

1) 0.68  0.2 
2) 0.40  0.4 
3) 0  0.02 
4) 0.04  0.5 
5)  0.07  0.1 
6) 0.80  0.8 
7) 0.51  0.8 
8) 0.9  0.72 
9) 0.2  0.20 
10)  0.35  0.6 
11) 0.5  0.94 
12) 0.6  0.60 
13) 0.29  0.4 
14) 0.7  0.03 
15) 0.3  0.05 
16) 0.86  1 
17) 0.7  0.87 
18) 0  0.1 
19) 0.09  0.9 
20) 0.3  0.13 
21) 0.8  0.98 
22) 0.10  0.1 
23) 0.06  0.6 
24) 0.03  0.4 
25) 0.2  0.08 
26) 0.61  0.6 
27) 0.7  0.54 
28) 0.45  1 
29) 0.36  0.4 
30) 0.50  0.5 
31) 0.82  0.9 
32) 0.90  0.9 
33) 0.5  0.25 
34) 0.8  0.02 
35) 0.7  0.70 
36) 0.79  0.2 
37) 1  0.01 
38) 0.3  0.22 
39) 0.1  0.14 
40) 0.3  0.30 
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Decimal Number Line Estimation 
 
1) 0.2 
2) 0.09 
3) 0.40 
4) 0.87 
5) 0.07 
6) 0.9 
7) 0.10 
8) 0.63 
9) 0.16 
10) 0.6 
11) 0.02 
12) 0.5 
13) 0.80 
14) 0.14 
15) 0.08 
16) 0.3 
17) 0.46 
18) 0.70 
 
 
 
Density 
 
Write a number that comes between: 
 
1)     0.3 and 1.0 ______ 
 
2)  0.4 and 0.42  ______ 
 
3)  0.4 and 0.5  ______ 
 
4)  0.82 and 0.83 ______ 
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Place Value 
 
1) How much is the 2 worth in 413.728?  

a. .2  
b. 2 tenths  
c. 2 hundredths  
d. 2 tens  
e. 2 hundreds 
 

2) How many tenths are in 30 hundredths?          

 
 
 
Memory 
 
Practice: 70   ___   0.45 
 
1) 0.30   ___   0.030 
 
2) 55.5   ___   0.550 
 
3)  0.08   ___   0.62 
 
4)  0.56   ___   240.0 
 
 
 
 
Decimal Comparison Transfer 
 
1) 0.37 0.072            
2) 0.98 1.25 
3) 0.453 0.21 
4) 0.86 0.827 
5) 2.2 0.22 
6) 0.820 0.82 
7) 1.09 1.9 
8) 0.7 0.429 
9) 3.3 3.300 
10) 0.9 0.901 
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Decimal Number Line Transfer 
 
This number line goes from 0 to 10 
One number is already marked on the number line. Circle the number that tells about 
where the dashed slash is on the number line. 
 
 
1)        a) 6.173 

b) 6.8 
c) 6.05 
d) 0.45 

 
 
 
 
 
 
 
 
 
2)      a) 2.814 

b) 0.2 
c) 2.9 
d) 2.09 

 
 
 
 
 
 
 
 
 
3)      a) 8.147 

b) 8.6 
c) 0.8 
d) 8.510 

 
 
 
 
 

0 10 6.20 

0 10 2.743 

0 10 8.51 
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Misconceptions 
 
Which of these numbers is greater?  
 

a)  0.    b) 0.    c)  Can’t tell 
 

 
 
 
 
 
 
Which of these numbers is greater? 
 

b)  0.2      b)  0.8  c)  Can’t tell 
 

 
 

 


