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CHAPTER I 

 

INTRODUCTION 

 

In comparison to the traditional open approach, laparoscopic liver resections are 

associated with significant patient benefits such as reduced blood loss, shorter duration of 

hospital stay, and fewer postoperative complications with no detriment to overall mortality or 

oncological adequacy.1,2 However, the learning curve for laparoscopic liver resection is 

considerable and it is estimated that 10% of all major laparoscopic liver resections require 

intraoperative conversion to open approach.3 Uncontrollable bleeding and unintentional damage 

to surrounding structures are the causes of conversion in 38% of all converted cases; an 

additional 5% of converted cases are attributed to concern over oncological margins.4 Liver 

resection requires determination of which vessels to spare or interrupt in the context of patient-

specific vasculature and tumor positions.5,6 However, the ability to localize subsurface vessels 

and tumors using traditional palpation techniques is impaired during laparoscopy and these errors 

may be an important factor contributing to the high rate of laparoscopic-to-open conversion. 

Currently, the laparoscopic approach for hepatic resection critically depends on the skill and 

experience of the surgeon due to the high complexity and steep learning curve of the procedure. 

Recent consensus recommendations have suggested that intraoperative guidance using 

preoperative images could be a useful tool for visualizing subsurface anatomy, determining the 

resection plane, and navigating laparoscopic resection.7 With its potential to assist with these 

challenging tasks, image guidance could facilitate more complex laparoscopic procedures, 

reduce risk of complications, and potentially extend patient candidacy for laparoscopic resection. 
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I.1.  Sources of Laparoscopic Deformation 

To date, conventional image-guided approaches have been limited for laparoscopic liver 

surgery. Approaches that have been investigated typically utilize rigid registrations, which 

cannot account for intraoperative soft tissue deformation.8–13 One major source of deformation in 

laparoscopic procedures is the process of insufflation where the abdominal cavity is pressurized 

with carbon dioxide. Insufflation has been shown to cause distension and displacement of the 

ventral wall and diaphragm,14,15 to which the liver is attached by the falciform ligament and the 

left and right triangular ligaments, respectively (Figure 1a). During insufflation, these ligaments 

are pulled into tension as the abdominal cavity expands. Intraoperative deformation is further 

complicated by the choice of dissecting any number of these ligaments depending on the degree 

of organ mobilization required. While deformations exceeding 11 mm have been observed in 

porcine livers in response to insufflation,16,17 no clinical analysis of liver deformation during 

laparoscopy has been performed. The first aim of this work is to quantify the amount of 

deformation attributed to the laparoscopic approach from a series of 25 clinical laparoscopic-to-

open conversions. 

 

I.2.  State of the Art: Deformation Correction Strategies 

Several approaches for correcting deformation have been developed for image-to-

physical registration using partial liver surfaces. Masutani et al. proposed an early method that 

used free-form deformation modes to match the preoperative shape of the liver to a patch of 

intraoperative surface data.18 Cash et al. developed a linear elastic biomechanical model 

constrained by closest point boundary conditions to register the preoperative liver to 

intraoperative surface data.19 Dumpuri et al. improved this method by applying a surface 
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Laplacian equation to extrapolate closest point distances from sparse intraoperative data onto the 

model.20 In recent years, nonrigid registration methods have been developed for the laparoscopic 

environment. Allan et al. developed a nonrigid registration method to stereo-reconstructed 

laparoscopic surfaces using coherent point drift.21,22 Suwelack et al. employed a model that 

mixed elastic mechanical response with electrostatic attractive forces to match the shapes of 

preoperative and intraoperative models of the liver.23 A more recent publication by Plantefève et 

al. established a laparoscopic nonrigid registration pipeline that produced a dynamic elastic 

registration from tracked texture landmarks.24 Another variant reported by Reichard et al. 

projected spring force boundary conditions from a stereo reconstructed depth map onto a 

biomechanical model.25 However, these approaches either fail to use mechanics-based 

models18,21,22 or treat deformation correction through direct application of digitized intraoperative 

surfaces as boundary conditions.19,20,23,24,25 While the former methods do not accurately model 

deformation beyond the immediate neighborhood of intraoperative data, the latter methods may 

not adequately align regions with poor data localization and can have unfavorable responses to 

untreated clinical sources of intraoperative surface noise. Additionally, stereo vision surface 

reconstructions and feature tracking can become unpredictable in the presence of specular 

highlights and laparoscope illumination, blood covering intraoperative surfaces, occlusion by 

laparoscopic tools, and surgical smoke from electrocautery.26 A more robust approach is to 

reconstruct a solution from a constrained set of possible deformations that are expected to occur 

on the basis of anatomical support of the organ, as opposed to using surface data to directly apply 

boundary conditions to the model. Rucker et al. addressed this by proposing an inverse method 

that optimized an initially unknown polynomial family of displacement boundary conditions 

applied to an anatomical support surface that serves as the mechanical foundation for 
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intraoperative liver deformation.27 This method has been shown to be effective at correcting 

intraoperative deformation in open clinical practice.28 

In this work, we adopt the anatomically constrained comprehensive surface 

reconstruction strategy explored by Rucker et al. but report a new realization of biomechanical 

boundary conditions for the purpose of laparoscopic nonrigid registration, with two key 

contributions. First, as opposed to open surgery where only one support surface exists, the 

laparoscopic configuration of the liver is mechanically supported by four distinct regions: the 

falciform and left and right triangular ligament attachments, as well as the organ posterior where 

the liver makes contact with the bowel. We reformulate boundary conditions using a control 

point strategy that allows any number of independent support surfaces to be considered. Our 

correction method is based on establishing a set of deformations that are expected to result from 

intraoperative loads applied to the laparoscopic support surfaces where forces are conducted to 

the organ. Second, our reformulation makes no underlying assumption about the functional form 

of displacement boundary conditions and consequently the resulting displacement solution over 

the support surfaces. This reconceptualization of support surface interactions is intended to 

improve the fidelity of the model-reconstructed deformation. The second aim of this work is to 

evaluate our proposed correction framework in a series of phantom and clinical experiments. 
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CHAPTER II 

 

METHODS 

 

Our dual aims of measuring and correcting laparoscopic deformation consist of four 

parts: (1) characterization of the intraoperative liver surface during clinical cases of laparoscopic-

to-open conversion, (2) reproduction of realistic laparoscopic deformations in a controllable 

phantom, (3) evaluation of intraoperative deformation in clinical and phantom data, and (4) 

deformation correction using intraoperative sparse surface data in retrospective clinical and 

phantom datasets. 

 

II.1.  Clinical Data Collection 

The clinical data used throughout this work originates from a previous study by Kingham 

et al.9 A total of 32 patients were enrolled in a protocol approved by the institutional review 

board at Memorial Sloan-Kettering Cancer Center wherein a laparoscopic staging procedure was 

performed prior to an open resection under image guidance. From segmented preoperative CT or 

MRI images, 3D model surfaces of the liver were generated using surgical planning software 

(ScoutTM Liver, Analogic Corporation, Peabody, MA). Tetrahedral meshes were created from 

these liver surfaces using customized software for mesh generation.29 With the intention of 

eventual conversion to open laparotomy, intraoperative laparoscopic exploration was performed 

to gauge the severity and resectability of disease. During this exploratory step, the falciform 

ligament was dissected to expose the anterior surface of the liver. Sparse representations of the 

anterior surface and anatomical features of the liver were then collected with an optically tracked 
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laparoscopic stylus through a minimally invasive surgical guidance system (ExplorerTM MIL, 

Analogic Corporation, Peabody, MA).10 Liver surface and feature data were collected at a 

standard insufflation pressure of 14 mmHg then at a reduced insufflation pressure of 7 mmHg. 

Following conversion to open, these digitizations were repeated. All collections were performed 

during apneic phases induced at end-expiration to minimize the impact of respiratory motion.30 

These digitizations provide an anatomically labeled sparse 3D point cloud of the shape of the 

intraoperative organ surface. Whereas the study by Kingham et al. aimed to directly compare the 

accuracy of image-to-physical rigid registrations between laparoscopic and open surgical 

approaches, in this work the laparoscopic and open surface collections are used to quantify the 

magnitudes of liver deformation among preoperative, laparoscopic, and open organ 

configurations (Section II.3) as well as to demonstrate clinical feasibility of our correction 

approach (Section III.2). To enable paired statistical comparisons across intraoperative 

conditions, this study uses 25 of the previously reported 32 patients that possessed intraoperative 

data under all three intraoperative scenarios of both laparoscopic insufflation pressures and open 

approach. 

 

II.2.  Phantom Data Collection 

Intraoperative surgical constraints make obtaining a sufficient amount of clinical data for 

subsurface validation of registration algorithms particularly challenging. Therefore, a tissue 

mimicking phantom and abdominal frame were created to reproduce laparoscopic 

deformations.31 In brief, a mock abdomen was constructed at insufflated dimensions and nine 

laparoscopic access ports were placed in clinically relevant positions. Mock detachable falciform 

and triangular ligaments were used to suspend a liver phantom inside the abdomen, with partial 
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support provided by a simulated bowel structure on the organ posterior. Figure 1a and Figure 1b 

depict the anatomical attachments to the liver and the deformation experienced by the phantom 

in the laparoscopic simulator. Through suspending the phantom in the enlarged abdominal cavity 

and removing ligament attachments, intraoperative deformations associated with a fixed 

insufflation level and adjustable organ mobilization can be reproduced. With the phantom, three 

states of intraoperative deformation were considered: no mobilization, left mobilization and right 

mobilization. The falciform and the left or right triangular ligaments were removed for left or 

right mobilization, respectively. No ligament attachments were removed for the no mobilization 

condition. 

The phantom was constructed from 50% Ecoflex® 00-10 platinum-cure silicone mixed 

with 30% Silicone Thinner® and 20% Slacker® Tactile Mutator (Smooth-On Inc., PA). A total 

of 147 radiopaque target beads were placed throughout the volume by carefully pouring the 

silicone around a network of threads to which the beads were weakly adhered by a thin layer of 

petroleum jelly. The threads were withdrawn from the cured silicone, leaving the target beads 

distributed as shown in Figure 1c. The segmented positions of these beads in pre-deformation 

and post-deformation CT images enable validation of target error after registration. The phantom 

was molded after a physical liver 3D printed from a preoperative patient CT. A pre-deformation, 

preoperative image of the phantom was taken before demolding. In the same manner as the 

clinical cases, the pre-deformation CT was segmented and a preoperative organ model was 

generated. Intraoperative deformation was applied by suspending the phantom from its ligament 

attachments in the abdominal frame. Left and right mobilizations were performed as previously 

described to produce three configurations of intraoperative deformation in total. A post-

deformation CT image was acquired for each scenario and sparse digitizations of the anterior 
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surface and salient features were collected through the nine access ports in the abdominal 

enclosure using a tracked laparoscopic stylus and tracked conoscope (ConoPoint-10, Optimet 

Inc., Jerusalem, Israel).32,33 Segmented pre- and post-deformation CT liver phantom volumes are 

shown in Figure 1d. 

 

 

Figure 1: Overview of liver phantom simulation. (a) Anatomy of the liver, adapted from 
Kingham et al. The falciform and left and right triangular ligament attachments shown in red are 
put in tension during insufflation due to expansion of the abdominal cavity. Two salient 
anatomical features of the liver are shown in blue. (b) The liver phantom is suspended in an 
insufflated mock abdomen without mobilization from its ligaments. (c) Positions of the 147 
subsurface targets distributed throughout the volume of the phantom. (d) Segmented preoperative 
and intraoperative phantom volumes are shown in blue and red, respectively. The difference 
between surfaces demonstrates the deformation reproduced in the laparoscopic phantom 
simulator. 
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II.3.  Assessment of Intraoperative Deformation 

Our clinical intraoperative data for each patient at three phases of laparoscopic-to-open 

conversion enables tracking of organ surface deformation for each individual liver throughout 

the operation. The sparse surface data collected during the laparoscopic and open approaches are 

representative of organ shape at each of the three intraoperative conditions: laparoscopic high 

insufflation pressure (Lap14mmHg), laparoscopic low insufflation pressure (Lap7mmHg), and 

open approach (Open). Our objective is to quantify the magnitude of deformation existing among 

pairs of organ conformations, done by co-registering and reconstructing full surfaces from sparse 

data as summarized in Figure 2. 

 

 

Figure 2: Overview of intraoperative organ shape comparison. Sparse point clouds of the 
intraoperative organ shape under two distinct operative conditions are coregistered to the 
preoperative liver surface and resampled into full reconstructed surfaces. Distance measures of 
shape dissimilarity are computed for only the resampled points that are enclosed by the extents 
of both data sources (purple region). 
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II.3.a. Rigid Registration 

To compare the deformation between two sparse surfaces, registration to a common 

reference frame is needed. For each patient, all intraoperative point clouds were rigidly 

registered to the surface of the preoperative liver using a salient feature weighted iterative closest 

point algorithm.34 This registration method takes advantage of preoperatively and 

intraoperatively designated anatomical labels to bias closest point correspondence such that 

salient anatomical features preferentially align. This registration method is preferred since it 

produces consistent co-registrations even in the presence of significant deformation. The salient 

features used in this study include the falciform ligament and the left and right inferior ridges. 

The algorithm produces a rigid transformation that minimizes the feature-weighted distance 

between the preoperative surface and the intraoperative data points. We should also note that 

following rigid registration to the preoperative liver, we employ a spatial resampling strategy to 

reconstruct more complete surfaces of the deformed intraoperative organ shapes from sparse sets 

of points. This approach was reported in previous work with a detailed analysis of how it 

improves fidelity of both rigid and nonrigid registration.35 

 

II.3.b.  Modified Hausdorff Distance Shape Comparison Metric 

The modified Hausdorff distance (MHD) metric36 is chosen to characterize the difference 

between organ surfaces as a quantification of surface deformation. MHD is an appropriate metric 

for its ability to measure average shape distortion. Briefly reviewed here, for two sets of points X 

and Y, MHD is defined as the maximum of the average closest point distance from every point in 

X to any point in Y and the dual average closest point distance from Y to X: 
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!!" !,! = 1
! min

!∈!
! − !

!∈!
 (1) 

MHD = max !!" !,! ,!!" !,!  (2) 

While the MHD metric can underpredict in situations with large discrepancies between surface 

curvatures,37 these circumstances would require either misregistration or unrealistic deformation 

and are not expected to occur. 

 

II.4.  Deformation Correction Strategy 

The overarching strategy to correct for soft tissue deformations is depicted in Figure 3 

with the goal of producing an accurate volumetric alignment between the preoperative organ data 

and the intraoperative organ presentation. Anatomical support surfaces that bear intraoperative 

load are identified on the preoperative image-derived biomechanical model and control point 

selections are designated on these surfaces. A set of predicted deformations are precomputed 

from displacement perturbations of each control point, creating an effective Jacobian that 

measures the change in deformation across the mesh with respect to control point motion. 

Intraoperatively, the shape of the preoperative liver is fit to sparse intraoperative surface data by 

iteratively solving for a linear combination of model-predicted deformations using the 

Levenberg-Marquardt nonlinear optimization method. Finally, a model relaxation is performed 

to locally improve the registration near the support surfaces. These steps are described in more 

detail in the following sections. 

 



12 

 

Figure 3: Overview of deformation correction algorithm. (a) Model solutions are computed for 
perturbations of a choice of control points. (b) Nonrigid correction is performed by iteratively 
updating a set of parameters that are used to reconstruct the intraoperative organ shape from 
precomputed modes of expected deformation. 
 

II.4.a.  Finite Element Model 

A finite element model was employed to simulate deformation on a preoperatively 

constructed tetrahedral mesh. The model is governed by the standard Navier-Cauchy constitutive 

equations for linear elasticity in three dimensions: 

!
2 1+ ! 1− 2! ∇ ∇ ∙ ! + !

2 1+ ! ∇!! + ! = 0 (3) 

where ! is the displacement for each node in the mesh, ! is the applied force distribution, ! is 

Young’s modulus, and ! is Poisson’s ratio. This system of partial differential equations is solved 

via the Galerkin weighted residual method using linear Lagrange basis functions and the 

assumption of isotropic material properties consistent with Rucker et al. This approach enables 

the model displacements to be solved from the linear system of equations 

!" = ! (4) 
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where ! is the global stiffness matrix. However, in a major departure from the approach used by 

Rucker et al., where a family of a priori polynomial displacement solutions were prescribed to a 

single support surface, in our proposed approach we instead apply independent control point 

perturbations as displacement boundary conditions on four separate anatomical support surfaces. 

 

II.4.b.  Control Point Selection 

The falciform ligament, the left and right triangular ligaments, and the posterior surface 

are modeled as support surfaces where intraoperative forces influence the liver. Boundary faces 

associated with these four supports are designated on the mesh of the preoperative liver. Control 

points are chosen on the support surfaces by parameterizing a curve ! !  to each ligament 

support and a surface ! !, !  to the posterior support such that: 

! ! =

! ! = !!!!
!

!!!

! ! = !!!!
!

!!!

! ! = !!!!
!

!!!

 (5) 

! !, ! =

! !, ! = !!"!!!!!!
!

!!!

!

!!!

! !, ! = !!"!!!!!!
!

!!!

!

!!!

! !, ! = !!"!!!!!!
!

!!!

!

!!!

 (6) 
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where ! = 5 is the order of fit and ! ∈ !! , ! ∈ !! , and ! ∈ !!  are linear weights for the 

polynomial subspace of each support surface parameterization. For each point !! in the support 

surface !! , the parameter !!  is determined by normalizing the distance from !!  to the point 

!∗ ∈ !! that is most distant from the centroid of the support: 

!! =
!! − !∗

max !! − !∗
 (7) 

The parameter !!  is established by normalizing the distance from !!  to ! !!  by a curve 

parameterized to either the upper boundary nodes of the support surface !! ! , or the lower 

boundary nodes !! ! , depending on the position of !! relative to !(!) such that !! ∈ −1, 1 . 

!! =
!! − !(!!)

!±(!!)− !(!!)
 (8) 

The vectors of weights !!, !!, and !! are solved using ordinary least squares such that the 

support surface parameterizations best fit the positions of the !! vertices on the mesh that belong 

to each support surface: 

! ! =
1 !! !!! ⋯ !!!
1 !! !!! ⋯ !!!
⋮ ⋮ ⋮ ⋱ ⋮
1 !!! !!!! ⋯ !!!!

 (9) 

! !, ! =
1 !! !! ⋯ !!!!!!! !!!
1 !! !! ⋯ !!!!!!! !!!
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1 !!! !!! ⋯ !!!!!!!!! !!!!

 (10) 

!! !! !! = !!! !!!!!! (11) 

An ! number of control points are evenly spaced across each dimension of the parameterized 

supports by finding the closest vertices on the mesh to ! !  or ! !, !  at interior grid points 

created by dividing ! and ! into ! + 1 intervals. A parameter sweep across the placement of 1–5 
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control points on each ligament attachment site and 3–48 control points on the posterior support 

surface showed that no significant difference existed over target registration error in the phantom 

among these choices of control points (p  > 0.9, one-way ANOVA; maximum change of 0.5 

mm). A choice of ! = 3 control points on the laparoscopic support surfaces of the liver, as 

shown in Figure 3a, was selected. 

 

II.4.c.  Generation of Deformation Modes from Displacement Boundary Conditions 

Forward model solutions to 1 mm displacement perturbations in the x, y, or z directions 

of each control point are simulated keeping all other control points stationary and all other nodes 

stress free. These solutions produce a set of intraoperative deformation modes that estimate 

linear gradients to point load perturbations of the support surface. The resulting displacement, 

stress, and strain solutions establish the rows of the 3! × ! Jacobian matrix !! and the 6! × ! 

Jacobian matrices !! and !!, respectively, where ! is the number of nodes in the mesh and ! is 

triple the number of control points, equal to the total number of perturbations made. These 

Jacobian matrices can be precomputed and used to quickly estimate intraoperative deformations. 

A parameter vector ! of length ! is determined such that a linear combination of the deformation 

modes estimates the intraoperative node displacements, stresses, and strains: 

! = !!! (12) 

! = !!! (13) 

! = !!! (14) 

The average strain energy density ! associated with a particular deformation configuration is 

calculated as: 
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! = 1
2! ∙ ! =

1
2!

! !! !!! ! (15) 

This approach can be employed because the use of a linear model gives rise to the 

principle of superposition. Namely, because the model is a linear system, the response to any 

possible change over the anatomical support surfaces is identical to the sum of responses to less 

complex inputs that span the total change. While we recognize that our point load perturbations 

do not span all possible distributed loads that may be applied to the support surfaces in truth, this 

assumption is needed to reduce the complexity of the inverse problem so as to make optimization 

of ! tractable under intraoperative time constraints. Furthermore, our approximation of the 

intraoperative distributed load as a statically equivalent combination of point loads is justified by 

Saint-Venant’s principle, which states that the difference between the responses to two statically 

equivalent loads vanishes exponentially with distance from the load.38 Hence, the model 

reconstruction is accurate in the far field, although may experience local artifacts in the near field 

on the support surfaces. A treatment to resolve this situation is described in Section II.4.e. 

 

II.4.d.  Reconstruction of Intraoperative Deformation 

Our nonrigid registration is performed through an intraoperative optimization to find the 

set of model perturbations that best fit the resampled surface data. An alignment of the 

preoperative model to sparse intraoperative data is initialized with a salient feature weighted 

rigid registration method as described in Section II.3.a. After rigid registration, the salient feature 

and anterior surface digitizations are resampled using the surface reconstruction method 

described by Collins et al.35 This resampling method standardizes the density and topology of the 
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surface digitization to diminish the influences of trajectory, dwell, and surface noise from 

intraoperative data collection. An augmented vector of model parameters !! is considered, where 

!! = !! , !! , !! , !! ,!! ,!! ,!!
!
 (16) 

includes the rigid body translation and rotation parameters !!, !!, !!, !!, !!, !! in addition to the 

vector of linear coefficients ! that apply to the preoperatively determined responses to control 

point deformations. The corrected node positions !! are taken to be: 

!! = ! !! + !!!  (17) 

where !!  are the node positions of the original preoperative mesh and ! is the rigid body 

transformation defined by the optimized translation and rotation parameters. 

 In a similar manner to the approach proposed by Rucker et al., we employ an 

implementation of the Levenberg-Marquardt method39 to find an !! that minimizes a nonlinear 

objective function Ω based on model-data surface error regularized by strain energy: 

Ω = 1
! !! !!,! − !!,!

!
!

!!!
+ !!! (18) 

where ! is the number of resampled data points, !! is an additional weighting factor for salient 

feature points, !!,! is an indexed point in the resampled intraoperative surface data, and !!,! is the 

closest point on the model surface to !!,! rapidly queried using a k-d tree. We use a strain energy 

regularization constant of ! = 10!! in agreement with the characterization done by Rucker et al. 

The Levenberg-Marquardt update step to the parameter vector is performed iteratively, where: 

!′!!! = !′! + !!! + ! !"#$ !!! !!!!! (19) 

until an absolute tolerance of Ω!!! − Ω! < 10!!" is reached. The vector of residuals for our 

objective function is: 
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! =  !!/! !!,! − !!,! , … , !!/! !!,! − !!,! , !! !
 (20) 

The augmented Jacobian of residuals J = ∂!/ ∂α! is computed using a forward finite 

difference approximation and the damping parameter ! > 0 is updated using a trust region 

prediction ratio framework. We should note that Eq. (16) represents a simultaneous iterative 

optimization of both rigid and nonrigid components of the registration. With this approach, some 

effects associated with rigid body rotation that can compromise linear models are diminished. 

Conventionally, these effects are usually compensated with a co-rotational finite element 

formulation,40 which accounts for local rotational effects at the element level. In the algorithm 

above, instead the bulk rotation is determined per iteration. The advantage to this approach is 

that precomputation of a set of model solutions is still enabled.  

 

II.4.e. Model relaxation 

As previously discussed, due to the use of control point perturbations, model-

reconstructed deformations may encounter local inaccuracies around the immediate vicinities of 

the applied perturbations. These artifacts may appear within the support surface regions that are 

represented by the control points in place of more complete distributed loads, although their 

influence rapidly vanishes with distance. To diminish their effect in the near field, we have 

developed a model relaxation step that consists of a forward model solution to Eq. (4) with 

boundary conditions consisting of a partial solution to the optimized model correction computed 

in Section II.4.d. The solved displacements at surface nodes that do not belong to a support 

surface are applied directly as Dirichlet boundary conditions while the remaining surface nodes 

near the control points are left unconstrained. This step serves to relax the solutions over the 

support surfaces to the most stable model-predicted distributed loads that produce the far-field 
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response best matching the intraoperative data. As a result, the displacement solutions over the 

support surfaces are not required to be of any specific functional form such as the truncated 

bivariate polynomial used by Rucker et al. 
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CHAPTER III 

 

RESULTS 

III.1.  Evaluation of Intraoperative Deformation 

For each patient, MHD was computed between pairs of organ surface data taken from 

presentations at 14 mmHg insufflation (Lap14mmHg), 7mmHg insufflation (Lap7mmHg), and 

open (Open) surgical configurations and the rigidly registered anterior liver surface as segmented 

from the preoperative CT scan (Preop). Table 1 shows the organ surface MHD between 

preoperative, laparoscopic, and open surgical phases. A series of one-sample t-tests determined 

that all distributions of MHD were found to significantly differ from zero (all p < 10-5; 

Bonferroni’s multiple comparison α = 0.008), indicating that substantial shape change occurred 

between each pair of interrogated operative surfaces. This shows that significant deformation 

occurs between (a) preoperative and intraoperative phases, (b) laparoscopic and open surgical 

approaches, and (c) standard and reduced levels of insufflation pressure. This last statement is 

especially important because it strongly suggests that insufflation has a significant impact on 

laparoscopic deformation of the liver. 

 

Table 1. Modified Hausdorff distance (mean ± std) in mm between preoperative, laparoscopic 
and open operative conditions. The shape changes associated with each sequential step in the 
laparoscopic-to-open conversion appear along the first diagonal. The cumulative shape change 
relative to the preoperative organ is shown in the top row. 

 Preop Lap14mmHg Lap7mmHg Open 
Preop 0 10.1 ± 5.9 9.0 ± 7.0 7.4 ± 4.6 
Lap14mmHg  0 6.4 ± 2.6 6.6 ± 3.3 
Lap7mmHg   0 6.3 ± 2.5 
Open    0 
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In examining the relative magnitudes of deformation between each operative transition 

using paired t-tests, we find that the MHD in the initial transition from the preoperative to 

laparoscopic organ configuration is significantly larger than subsequent intraoperative changes 

where insufflation pressure is lowered (p = 0.0012) or where the surgical approach is converted 

to open (p = 0.0011). Meanwhile, the differences in MHD associated with lowering insufflation 

pressure and converting to open are similar (p = 0.76). This suggests that the largest proportion 

of intraoperative deformation is associated with the initial preoperative-to-intraoperative 

transition, coinciding with the timing of when preoperative surgical plans would be needed to 

determine resection planes. 

We also find that in comparison to the preoperative liver shape, the magnitude of 

laparoscopic deformation significantly exceeds the magnitude of open deformation (p = 0.0019). 

This finding suggests that laparoscopic deformations have the potential of compromising 

surgical guidance to a potentially greater degree than the deformations associated with open 

surgery. Figure 4 shows three representative distributions of closest point distance error between 

preoperative, laparoscopic, and open organ shapes. Compared to the preoperative organ, 

laparoscopic deformation tends to produce more flattening of the right lobe than does open. 
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Figure 4: Reconstructed closest point distance error from three representative clinical cases 
among the n=25 between (a) preoperative and laparoscopic surfaces, (b) preoperative and open 
surfaces, and (c) laparoscopic and open surfaces. 

 
 

Our efforts to use the laparoscopic phantom setup described in Section II.2 for validation 

are contingent on accurately replicating intraoperative deformation of the liver. Laparoscopic-to-

open conversion was also simulated in the phantom for comparison of our applied deformation to 

clinically observed 95% confidence intervals. Open phantom deformation was imposed by 

removing all supporting ligaments and packing material beneath the left and right lobes to 

simulate typical intraoperative placement of laparotomy pads. We note that the confidence 

intervals of laparoscopic deformation are comparable to the porcine insufflation landmark error 

ranging between 5.8–11.5 mm reported by Johnsen et al.17 and the open surgery surface error 

ranging between 5–20 mm reported by Clements et al.41 As shown in Table 2, our phantom 

performs similarly to clinical behavior as demonstrated by magnitudes of laparoscopic and open 
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deformation within the clinical confidence intervals. Our mock abdomen setup is designed to 

emulate a constant insufflation pressure that causes distension of the abdominal cavity and 

subsequent tension on the ligament attachments. Therefore it is reasonable that the laparoscopic 

magnitude of deformation in our phantom is more consistent with 7 mmHg than 14 mmHg 

insufflation pressure. We do recognize that additional effects such as the presence of ambient 

insufflation pressure on the organ may contribute additional deformation beyond the capabilities 

of our phantom setup. However, this is expected to be of secondary importance because the total 

force applied to the exposed surface area of the liver is much smaller than the total force applied 

to the entire abdominal cavity, subsequently transmitted to the liver via ligament attachments. 

 

Table 2: Confidence intervals [LB, UB] in mm for preoperative-to-intraoperative MHD shape 
changes from the clinical series of laparoscopic-to-open conversion. MHD for respective 
changes in our phantom validation setup is also presented to provide a sense for the fidelity with 
which intraoperative deformation is reproduced. 

 Clinical Confidence Interval Phantom 
Lap14mmHg [7.7, 12.6] 6.9 Lap7mmHg [6.2, 11.9] 
Open [5.5, 9.3] 8.6 

 

III.2.  Evaluation of Deformation Correction 

We evaluate our nonrigid registration algorithm in a series of experiments that use the 

phantom and clinical data acquired in Section II.1 and Section II.2.  These experiments include: 

(1) phantom comparison of the proposed nonrigid registration method to the method reported by 

Rucker et al., (2) comparison of local surface correction in clinical and phantom datasets, and (3) 

the effect of surface data extent on subsurface registration accuracy. 
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III.2.a.  Comparison of Registration Methods 

The three mobilization scenarios of the phantom were registered using intraoperative 

surface data collected through a port at the umbilicus by three methods: (a) the salient feature-

weighted rigid registration by Clements et al.,34 which is used to initialize both (b) the nonrigid 

registration method by Rucker et al.,27 and (c) our proposed nonrigid control point registration 

for laparoscopic deformation of the liver. Average target registration error (TRE) over these 

cases was used to assess overall registration performance for the three methods. Since TRE 

samples from a spatially varying distribution of the underlying error, the proximity of targets to 

known data and the uniformity of their density can affect the observed TRE. Furthermore, TRE 

may also depend on the amount of applied deformation. We attempt to minimize target selection 

bias by considering a large number of target positions dispersed evenly throughout the volume of 

the phantom (Figure 1c) and provide a reference for our reported TRE by characterizing the 

amount of deformation experienced by the phantom (Table 2). 

TRE for the rigid and nonrigid registration methods is shown in Table 3 and qualitative 

registration results are shown in Figure 5. Across the three mobilizations of the phantom, rigid 

registration on average produced TRE of 14.7±1.2 mm. The nonrigid correction method by 

Rucker et al. reduced average TRE to 7.9±0.6 mm, representing a 46.3% improvement. On the 

other hand, the laparoscopic nonrigid registration method proposed in this work reduced TRE to 

6.4±0.5 mm, representing a 56.5% correction over rigid registration. Our proposed correction 

method performed 19.4% better on average (p = 0.044, two-sample t-test) than the method by 

Rucker et al. for deformations produced in the laparoscopic phantom setup. This improvement 

speaks towards the contributions of modeling intraoperative load applied to ligaments, which are 

not accounted by Rucker et al., and reformulating the application of boundary conditions so as to 
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make no incorrigible assumptions about the spatial profile of displacement on the support 

surfaces. 

 

Table 3: Comparison of target registration error (mean ± SD) in mm for simulated mobilization 
conditions of the phantom after rigid and nonrigid registration. 

Phantom 
Deformation 

Rigid Registration: 
Clements et al. 

Nonrigid Registration: 
Rucker et al. 

Nonrigid Registration: 
Control Point Supports 

Left Mobilization 13.2 ± 2.6 7.1 ± 3.5 5.9 ± 4.3 
Right Mobilization 16.2 ± 6.7 8.0 ± 5.5 7.0 ± 4.6 
No Mobilization 14.7 ± 6.5 8.5 ± 3.9 6.2 ± 4.1 

 

 

 

Figure 5: Comparison of three registration methods in phantom cases. Registered preoperative 
liver (blue) in comparison to the ground truth intraoperative organ shape (red) for each organ 
deformation and registration technique. The sparse intraoperative data used to perform the 
registrations are overlaid in black. Attaining perfect alignment is challenging due to incomplete 
coverage of the intraoperative surface data. 
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III.2.b.  Surface Correction 

We explore clinical feasibility of our deformation correction approach through evaluation 

and comparison of surface error in the phantom and in a retrospective analysis of the 

laparoscopic-to-open conversion series. Although surface error is a lacking metric due to 

uncertainty in surface correspondence and insensitivity to subsurface registration accuracy, 

appropriately measuring target error in clinical data is burdensome due to intraoperative imaging 

requirements. To reduce the impact of surface digitization noise and irregular spatial weighting 

of points, we use a reconstructed intraoperative surface from sparse data to ensure that the 

surface correction measure evenly weights error across the entire area of surface coverage. 

Figure 6 shows the surface registration error for rigid registration in comparison to our 

laparoscopic deformation correction method. We consistently obtain low surface errors below 2 

mm in all intraoperative organ configurations. Compared to rigid, the nonrigid correction 

algorithm reduced surface error from 9.3±5.4 mm to 1.4±0.6 mm for standard insufflation 

pressure (Lap14mmHg), from 7.0±4.6 mm to 1.4±0.5 mm for reduced insufflation pressure 

(Lap7mmHg), and from 5.2±2.0 mm to 1.1±0.4 mm for open registration. Surface error for 

laparoscopic registrations of the phantom decreased from 5.5±2.2 mm to 0.8±0.4 mm after 

nonrigid correction. While future subsurface validation work using intraoperative imaging is 

needed, these results show promise of our algorithm towards laparoscopic deformation 

correction in prospective clinical use. 
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Figure 6: Surface correction for clinical and phantom registrations. Quartiles are shown for rigid 
and nonrigid registrations to each series of laparoscopic and open organ configurations. The gray 
panel displays the distribution of surface correction among all intraoperative phantom 
mobilizations and surface data extents. 

 

III.2.c.  Impact of Surface Data Extent 

As seen in Figure 7a, the amount of organ surface coverage from intraoperative sparse 

digitizations can be highly variable. For each intraoperative surface collection, we quantify the 

extent of organ surface coverage as the percentage of boundary nodes on the liver model 

contained within an alpha shape constructed around the sparse data. To identify potential sources 

of variable surface extent, we collected intraoperative surface data through the nine laparoscopic 

ports placed in the mock abdomen and computed their extents on the phantom as presented in 

Figure 7b. These results indicate that certain ports, especially those placed in the medial right 

upper quadrant, can produce better extent than more lateral or inferior ports. Across standard and 
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lowered insufflation pressures, the average surface extent from clinical data was 21.96±8.25% 

(N=50). In the phantom, two separate digitization strategies and three different organ 

mobilizations across nine ports produced an average extent of 20.65±8.78% (N=54). Registration 

accuracy in the phantom as a function of extent is shown in Figure 8. We observe that as surface 

extent increases, the capability of our proposed deformation correction algorithm improves. At 

extents greater than 22%, the overall average TRE across all cases was 6.7±1.3 mm and all 

individual nonrigid registrations produced average TRE under 10 mm. Plantefève et al. have also 

observed similar behavior where nonrigid registration accuracy is superior at extents greater than 

20% of the total liver surface.24 We further show that the extents of typical clinical data 

acquisitions tend to lie on the cusp of this threshold. It is possible that more deliberate choices in 

port positioning for data collection may offer straightforward improvements to laparoscopic 

nonrigid registrations. 
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Figure 7: (a) Variation in available surface data extents from clinical data: 31% (top), 20% 
(center), and 11% (bottom). (b) Average surface data extents through each of the nine ports of 
the phantom, standard deviation in parentheses. Lateral ports colored in red provide average 
extents of less than 15% of the organ surface. Periumbilical ports in yellow offer moderate 
extents between 20-25%, and ports placed in the medial right upper quadrant yield the best 
available surface extents, exceeding 25% on average. 
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Figure 8: Distributions of target registration error (top) and target correction (bottom) with 
respect to the extent of intraoperative surface data. The box and whiskers represent the median, 
upper and lower quartiles, maximum, and minimum of TRE. Our nonrigid correction contributes 
little improvement over rigid registration at extents smaller than 10%. However, at extents 
greater than 22%, the nonrigid correction algorithm offers a substantial improvement in TRE. 
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CHAPTER IV 

 

DISCUSSION 

 

Our registration method is distinct from other mechanics-based correction algorithms that 

apply boundary conditions derived directly from the positions of intraoperative surface points. 

Instead, the proposed approach leverages anatomical constraints in such a way that permits only 

deformations that can be produced by realistic intraoperative changes to the organ. This process 

is done by (1) identifying support surface regions associated with intraoperative changes to 

mechanical load, (2) constructing a set of model perturbations based on point load displacements 

on the support surfaces, (3) registering and reconstructing a configuration of point load 

displacements from the observed intraoperative surface, and (4) relaxing the model solution. 

Beyond the current application to laparoscopic liver deformation, this algorithm is generalizable 

to other deformable soft tissues. A key advantage to the approach is that steps (1) and (2) can be 

completed preoperatively. Therefore, the intraoperative computational burden only consists of 

determining an initial rigid registration between the model and intraoperative data, optimizing 

the control point perturbations, and performing the relaxation step. Without extensive code 

optimization, the entire intraoperative registration can be performed within 140–320 seconds on 

a single thread using a 4.0 GHz Intel Core i7 CPU for a liver model of 30,000 nodes and 

approximately 3,000 intraoperative data points. However, significant acceleration of the 

optimization can be expected from parallelizing the closest point correspondence in the objective 

function or from reducing the tolerance. 
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In our experience, the choice of a linear model is not a principal source of error for 

deformation correction in the liver due to the existence of other practical limitations. Noise in 

data collection, irregular point density, and variable patterns of intraoperative surface 

digitizations introduce inconsistencies that affect registration outcomes. Scarcity of definitive 

hepatic features that could offer correspondence between intraoperative digitizations and the 

model surface is an additional barrier to achieving accurate registration. Furthermore, incomplete 

surface data extents that leave regions of the model unconstrained also limit overall registration 

accuracy. While we attempt to alleviate some of these challenges in this work through employing 

data resampling and salient feature weighting in the objective function of Eq. (18), these 

solutions do not fully resolve these issues and generally leave the problem ill-posed. However, 

the use of a linear model is unlikely to be ideal, and efficient nonlinear treatments40,42 could be 

explored in future work to further improve registration accuracy. Another important aspect 

would be the incorporation of heterogeneities such as the major vascular branches within the 

liver. It is likely that vessel-to-tissue interaction would alter the volumetric behavior of our 

model. 

In our registrations, we find that the distance between an individual target and the closest 

surface data point used to perform the registration is moderately correlated with the individual 

TRE (Pearson’s r = 0.58; 99% CI: 0.56–0.60). We expect that regions more distant from 

intraoperative surface data are prone to less accurate registration due to lack of model specificity. 

Ideally, errors of less than 5 mm across the volume of the liver would be desirable for guidance 

of hepatic resections. While surface error can be corrected past this threshold, comprehensive 

analysis of TRE across the full volume of the liver indicates that targets farther from anterior 

surface data tend to perform more poorly. With the magnitude of laparoscopic deformations 
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exceeding those of open, it is likely more challenging to achieve TRE below 5 mm across the 

volume of the liver under laparoscopic operative conditions. Presently, clinical data extent is 

sufficient to achieve corrections with less than 10 mm of error, which may be considered 

adequate though not ideal. It is reasonable to expect that increasing surface extent or 

incorporating subsurface data into the registration workflow could improve registration by 

increasing the reach of intraoperative data constraints. Future work will involve the development 

of methods to expand intraoperative data extent through improvements to non-contact methods 

of laparoscopic surface acquisition and the integration of tracked intraoperative ultrasound for 

the purpose of validating registration error in vivo and as a potential source of subsurface 

constraints for further improving laparoscopic deformation correction methods. 
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CHAPTER V 

 

CONCLUSIONS 

 

In this paper we present an analysis of the extent of liver deformation among 

preoperative, laparoscopic, and open presentations as well as a new technique for correcting 

deformation during image-guided laparoscopic liver surgery. Our analysis of deformation 

revealed that the most severe shape differences exist between preoperative and intraoperative 

presentations under routine insufflation conditions, which may compromise the planning stages 

of laparoscopic surgery. To compensate for this soft tissue deformation, we propose a new 

correction algorithm that leverages anatomically load-bearing support surfaces of the liver to 

enforce model constraints and demonstrates superior deformation correction than previous 

realizations. Lastly, we perform extensive studies to understand the influence of data coverage 

extent in both the phantom and clinical setting. We propose that image-guided laparoscopic liver 

surgery is achievable in practice with current techniques and careful consideration of the 

particular challenges introduced by the laparoscopic approach. 
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