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CHAPTER I

INTRODUCTION

1.1 Motivation

Cyber-Physical Systems (CPS) are defined as co-engineered interacting networks of

physical and computational components. These classes of systems consist of computers

running sensing and actuation control software to interact closely with a physical system

in a physical environment. In these systems, the computer controls one or multiple aspects

of the physical system; this control aspect tightly couples the software with the computer’s

physical environment. Because of this tightly coupled nature, the software not only af-

fects the computer and its surrounding environment, but also is affected by the surrounding

environment. Many different types of systems fit this CPS description: e.g. autonomous ve-

hicles including Unmanned Aerial Vehicles, Unmanned Underwater Vehicles, autonomous

cars, satellites, extra-terrestrial rovers, and embedded or wireless sensors/actuators.

Consider a quad-copter and its flight control software. The flight control software must

monitor the orientation and positioning sensors of the quadcopter, estimate the state based

on the sensor data, and then calculate control outputs to drive the system to a goal state.

Such a system deals with many constraints, ranging from weight, power, and size con-

straints, to processor speed, memory capacity, and wireless operational range constraints.

Despite these constraints, the flight control software must complete the sense-estimate-

calculate-actuate loop within enough time to ensure that the quadcopter’s state does not

transition into an unstable state. Such an unstable state might be the quadcopter flipping

over or crashing into an obstacle. The dynamics of the control system, i.e. the physics

of the quadcopter’s motion and its control input response, define the bounds on the time

the flight control software can spend in each iteration of the control loop. If the sensing,

or state estimation tasks of the control loop take too long to complete, the state estimated
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may no longer be accurate and thus the control outputs may send the quadcopter into an

unstable state or the quadcopter may have transitioned into an unstable state.

As these types of CPS are being scaled-up, they are becoming more distributed in na-

ture. The systems mentioned above could scale up to unmanned swarms of search and

rescue drones, for instance, or large sensor/actuator networks for power distribution and

control. Because each subsystem can directly and indirectly affect the others, all subsys-

tems must communicate their states to each other, closing the control loop through the

network.

An example of such scaling up is the recent research into developing fractionated

spacecraft[40]. A fractionated spacecraft is a cluster of satellites cooperating, commu-

nicating and running distributed applications in service of the mission goals. Such a cluster

design replaces the traditional monolithic satellites which are more expensive to develop,

deploy, repair, and are more difficult to upgrade with new functionality. Because of this

trend towards cooperating distribution of system resources, the network facilitating the co-

operation and communications becomes a critical resource to the system. Whereas the

CPS’ internal communications bus (direct physical connection system which allows sens-

ing and actuation controlled by the computer) was ignored in the previous example, the

wireless communications network enabling the satellite cluster cannot be ignored when

analyzing the properties of the system. Because the satellites are expensive to deploy, im-

possible to repair, and must last for a long time to satisfy both budgetary constraints and

mission goals, the application developers and system integrators for the cluster must en-

sure that the software on the cluster does not compromise the system’s ability to meet the

mission goals. For instance, cluster orbit maintenance necessitates the use of the cluster’s

network. For a satellite to activate its thruster to maintain or modify its orbit, it must first

ensure that such an action will not cause a collision with another of the satellites in the

cluster. Therefore, every satellite must know the state of every satellite in the system, and
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any thruster activation must be a coordinated action to ensure the safety and continued op-

eration of the cluster. All of this state distribution and coordination occurs over the wireless

network between the satellites, which (1) has limited resources, (2) is shared between all

applications on all the satellites, and (3) varies as a function of time throughout the orbits

of the satellites according to the orbital mechanics defining the system. The equations of

motion for the satellites define the orbital paths taken by the satellites[2]. These paths are,

for our purposes, circular or elliptical orbits, where each satellite in the cluster has the same

orbital period and speed. Since these orbits have the same period, the distances between the

satellites will vary periodically as a function of time. Because the satellites use a wireless

network where the latency and bandwidth are directly proportional to distance, the wire-

less network capacity of the satellites will vary proportionally with respect to time. This

final point about the equations of motion and their effect on network capacity is especially

important, since it highlights how the physics of the system directly and drastically affects

system resources and performance. Again, we must ensure the timing requirements of the

control loops are met, except now those timing properties are directly related to the network

resources, e.g. the end-to-end latency of traffic on the network links, the bandwidth of the

links, and the buffer space available to the applications on each satellite.

The system provides network resources to applications and users of the system as a

service. The quality of this service as seen by the users of the system is defined as the

Quality of Service (QoS) of the network and is the overall performance of the network

as seen by its users. The specific aspects of QoS which we focus on are the network

bandwidth, end-to-end network latency, and availability of the network resources. For

critical systems such as those described above which may be quite difficult to repair or

replace, such requirements must be analyzed at design-time and verified to ensure that they

are met. In any distributed CPS, the network performance of the system is affected by the

physical environment of the system as it affects the network.
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For systems using wired networks, the delay caused by the networks can affect the per-

formance of the control systems. Further, during periods of high network load, the network

performance as seen by the application traffic will degrade, which can increase the latency

and buffer space required by the applications. Therefore, even in wired networks, analyz-

ing the affect of applications’ network traffic on each other is important for understanding

the quality of the network service as seen by the applications. For systems whose physical

network layer is made up of wireless connections, the physical environment has an even

larger effect on the network resources and availability. Environmental interference or ob-

struction leading to multi-path self-interference or signal degradation can combine with the

distance-based signal-to-noise ratio loss due to the nature of wireless media. Such effects

can induce hysteresis or instability in control systems through loss of data on the network,

or increased variability in the response-time of the control loops. Because the network per-

formance of such a system is so tightly coupled with the physics governing the system, the

physical dynamics must be taken into account when predicting the run-time characteristics

of the network. Additionally, such resource constrained systems which are expensive to de-

velop and deploy must maximize their return on investment through the hosting of payload

applications (e.g. for scientific research), while ensuring that the resource requirements are

not exceeded. This design-time analysis of time-varying resources and their constraints is

paramount to ensuring a stable system, where we define stability here as 1) all applications

have finite bounded network resource requirements, 2) All application’s network resource

requirements can be satisfied by the system. Such stability means that applications’ data

will be serviced by the system without loss and within the time required by the application.

For networked distributed control systems, this definition of stability with respect to the

network is required for meeting stability requirements of the control system itself.

Incorporating the physical dynamics into the model of the system network resources

addresses only half of the problem, however. To facilitate accurate, meaningful resource
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constraint analysis, the application developers are expected to model and describe the re-

source and timing constraints of their applications. As stated above, many of these systems

have long-term missions, for which simple, static minimum/maximum resource and timing

requirements lead to inefficient, underutilized, over-specified systems. To increase the fi-

delity of the application resource utilization model with respect to the actual application’s

resource usage, the time-varying nature of the application’s network utilization should be

modeled. In this way, tighter bounds on performance characteristics and resource utiliza-

tion can be achieved. Tighter bounds on application performance and resource utilization

allow system integrators to increase overall system resource utilization to maximize the

mission-specific or scientific return of the system while still ensuring all applications re-

ceive their required services.

In addition to the design-time modeling and analysis which facilitates the calculation

of performance guarantees about such critical CPS, the run-time systems require moni-

toring and management of resources and their utilization to prevent faulty or malicious

applications from causing resource over-utilization and possibly making the system unsta-

ble or completely bringing the system down. Often this resource management is simply

enforcing a static cap on resource utilization for each application. For such trivial resource

management, often the operating system or other platform infrastructure is used to enforce

these bounds on the applications’ resources, e.g. open file descriptor limits or maximum

buffer size limits being enforced in the operating system kernel. However, higher fidelity

design-time models which more precisely capture the behavior and resource requirements

of the applications can allow more sophisticated, time-varying resource monitoring and

management.

Another type of adaptive resource management falls under the class of self-adaptive

systems, which are capable of self-management at run-time. Using recent developments

in autonomic computing, systems can use the sensors at their disposal to monitor their

available resources as well as their environment, estimate the current state of the system,
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and use the available system actions to transition into a new state[29]. A relevant example

for such an adaptive system would be to eschew the design-time network modeling and

analysis of what at run-time would be a relatively static system in favor of an adaptive

network which manages the network resources for the applications based on the available

resources the system has. Such a design has the benefits of possibly better utilization of

system resources and better resilience to unplanned or unforeseen system events or states,

but has the drawback of difficult design-time analysis. Currently, analyzing these adaptive

systems at design time to derive guarantees about system behavior, resource availability, or

performance is quite difficult and in many cases infeasible.

1.2 Challenges

The systems described above face many challenges for network performance predic-

tion, as might be required by mission- or safety-critical application developers. Further-

more, an application which consumes more resources than specified at design-time, either

through malicious or faulty code, can send these CPS into an unstable state by starving

critical control processes of resources. Control systems can be forced into unstable sys-

tem states, for example by high network latency exceeding the timing requirements of the

control loops. Many systems may have a looser definition of stability, i.e. defined by the

application with respect to that application, but we will consider loss of data or exceed-

ing the latency requirements to be unstable behavior. In this section we outline the main

challenges facing application developers and system integrators pertaining to network per-

formance prediction and management; we separate these two classes of challenges into

Design-Time Analysis challenges and Run-Time Management challenges.

1.2.1 Design-Time Network Performance Analysis of Distributed CPS Applications

A principal challenge of system design is the performance analysis of a system, its

resources, and its applications at design-time. Such analysis and prediction is critical for
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remotely managed systems and allows system integrators to provide guarantees to appli-

cation developers about the services provided by the system. However, for complex dis-

tributed cyber-physical systems such design-time analysis is challenging. Such analysis

may require capturing the behavior of the system and its applications in models that can

then be composed and analyzed. Ensuring that the models properly capture the relevant

characteristics of the run-time system is a challenge by itself, and is compounded by the

challenge of composing the models for analysis. Such challenges for design-time network

performance analysis are

• Modeling the interaction of the system with the physical world is difficult, esp. with

respect to how the interaction directly or indirectly affects system resources and per-

formance.

• Models of application network utilization can be imprecise and difficult to derive

without a running system

• Application models may not represent actual application traffic on the network due

to implementation details such as transport protocol selection (e.g. UDP vs TCP),

which may alter the required bandwidth or buffering latency.

• Developing distributed applications for such systems is difficult, and should be done

in a way that is amenable to modeling, analysis, and verification.

• Infrastructural code which handles low level system functions or network communi-

cations may obscure the application’s network behavior from the application devel-

oper, making modeling of the application’s network requirements difficult

• Network resources are becoming more critical to distributed CPS, but existing tools

and techniques for design-time analysis of network resource utilization and perfor-

mance do not support robust, precise analysis of such time-varying constraints
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• For resource constrained systems, no processor or memory resources should be wasted,

but without accurate and precise design-time analysis, systems must conservatively

over-approximate network resource requirements.

• For application/system data flows in the network which require tight and/or real-time

guarantees on temporal properties, design-time analysis is critical.

• Most systems route network traffic for nodes which cannot directly communicate.

These routes may be defined at design-time and remain constant for the duration of

the system, or may be unknown at design-time, changing dynamically during the run-

time of the system. Dynamic routing is difficult to analyze for precise performance

prediction because the routes used by traffic may be unknown at design-time.

1.2.2 Run-Time Network Resource Monitoring and Management

Given specifications for system network resources and application network resource

requirements, the system must ensure that no application either purposefully or inadver-

tently exceeds its allowed resource limits and starves other applications or critical system

processes of those precious resources. Such resource management is crucial for ensuring

system stability and proper service quality to applications and end-users. For systems with

highly time-varying application load, system resource availability, or both, static limits

under-utilize the system’s resources. For such systems, higher fidelity resource manage-

ment is needed to maximize the utilization of the system’s resources. Further, these higher

fidelity system and application network resource models pave the way for more accurate

and robust failure or network attack (e.g. Denial of Service) detection which in turn can

provide higher system stability. Challenges towards the development of such run-time net-

work resource management are

• Available network resources at run-time should not be wasted if applications can use
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them, but allowing run-time management is difficult because the behavior is difficult

to analyze at design-time for performance analysis and prediction.

• Anomalies caused by applications attempting (due to either faults or attacks) to use

more network resources than they originally specified should be detected and miti-

gated; the detection of coordinated attacks, e.g. distributed denial of service (DDoS),

requires more sophisticated detection and mitigation techniques

• Systems are becoming more adaptive in nature and reacting to events at run-time

(essentially data-dependent traffic); this adaptability is hard to provide performance

metrics or guarantees for

1.3 Organization

The rest of this thesis is organized as follows

• Chapter II describes the related work in network analysis and management of dis-

tributed applications

• Chapter III describes design-time network performance analysis and prediction for

CPS applications

• Chapter IV describes run-time network performance monitoring and management for

CPS applications

• Chapter V concludes the thesis and describes possible extensions to the work in the

future

• Appendix A lists the publications so far

• Appendix B describes in detail the configuration of traffic control.
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CHAPTER II

RELATED WORK

2.1 Part 1: Design-Time Network Analysis and Performance Prediction

Networking systems have been developed for over half a century and the analysis of

processing networks and communications networks began even earlier. As computing

power has increased, the field of network performance analysis at design-time has evolved

into two main paradigms: (1) network performance testing of the applications and system

to be deployed to determine performance and pitfalls, and (2) analytical models and tech-

niques to provide application network performance guarantees based on those models. The

first paradigm generally involves either arbitrarily precise network simulation, or network

emulation, or sub-scale experiments on the actual system. The second paradigm focuses

on formal models and methods for composing and analyzing those models to derive per-

formance predictions.

2.1.1 Performance Analysis Through Network Simulation/Emulation

Since computing networks are so prevalent, many tools exist to analyze system net-

work behavior, either through simulation or mathematical analysis, which both attempt to

determine one or more system properties based on one or more models of the system. One

method of system simulation is discrete event simulation[48], in which all relevant events

in the system are captured in the model and stepped through sequentially with the state of

the model changing only at the simulated time steps. The resources of the system (e.g.

buffer space) are simulated together with the entities in the system (e.g. the bits of the net-

work traffic) through operations on the entities as they traverse the model and its resources.

OMNET++[52] is a discrete event network simulator which simulates the network traffic

as it passes through the network layers. The INETMANET[51] framework, built on top
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of OMNET++, supports the simulation of network traffic over dynamic wireless links for

gathering performance data about applications on the network.

NS-2[39] is a widely-used single-threaded discrete event simulator which allows both

the simulation and emulation of both wired and wireless networks. Because of perfor-

mance and scalability issues, however, the simulator is not well suited to scaling to large

network simulation/emulation. Additionally, because of its design as a single-threaded dis-

crete event simulator, it cannot fully simulate highly parallel distributed systems accurately.

Furthermore, NS-2 has simulation accuracy issues (e.g. altering event ordering or timing)

which plague any simulator used for emulation (i.e. connecting a simulator to a system to

emulate the subsystem it is simulating). [21] gives a good study of the accuracy of NS-2

simulation with a testbed and finds that for constant bit-rate (CBR) traffic the simulation

is accurate with respect to the behavior of the real system testbed, but for other types of

traffic (e.g. FTP traffic), the simulation did not accurately model the dynamic behavior of

FTP traffic.

NS-3[45] is a more recent rewrite of the NS-2 simulator designed to increase the realism

of the network simulation by adding the ability to directly incorporate the actual code

which implements the network protocols in the network software stack. Additionally, NS-3

has been extended to support distributed simulation of networks among multiple simulator

machines. However, despite NS-3 performing better, it still produces the same results as

NS-2[3] for certain protocols which may be inaccurate or unrealistic. Additionally, NS-

3 modeling and simulation of the physical layer in networking systems has been shown

to be incomplete or non-existent[44] which prevents the analysis of frame construction or

reception effects on higher layers. [44] points out that without modeling such physical

layer mechanisms, other aspects of the simulation model, such as the signal to interference

noise ratios, are not valid because they are based on unrealistic assumptions which can only

be removed by incorporating lower layer effects.

Despite the wide-spread use of these simulation toolsuites, it is clear that they are not
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a viable candidate for providing both accurate and precise design-time guarantees about

network performance and resource utilization.

Instead of simulating the network software stack and the physical network, another

option is to directly emulate the network by shaping the traffic between the actual nodes

of the system to directly apply the appropriate delay and enforce the proper bandwidth

on each link of the network. Often this is done through the use of flow control tools ei-

ther on routing node(s) or on capable network infrastructure devices, e.g. a smart switch.

Dummynet[46][7] is a tool for network emulation when used on routing nodes in a sys-

tem, utilizing the underlying network traffic shaping and policing tools available in Linux.

Dummynet allows the configuration of routing tables, packet drop rates, link bandwidths,

and link delays to conform the traffic passing through it to the supplied network configura-

tion. Another similar tool for controlling routing, shaping, and policing of network traffic

is the Traffic Control (TC)[33] tool in the IPRoute2[25] suite of tools. These tools allow

for link emulation in the operating system kernel for instance to make a computer’s wired

Ethernet connection appear to be a lossy wireless connection. Such network emulation

capabilities are useful when testing networking applications in a controlled environment,

before actually deploying them on the real system in the real environment. OpenFlow[9]

is an alternative for network emulation which instead uses compatible hardware such as a

smart network switch to shape the network traffic and enforce the proper network topology

and characteristics for all traffic in the network at a lower network layer without requiring

the use of a separate traffic shaping node or specific operating system kernels.

For the types of systems we have described in Chapter I, typically these types of simula-

tion and testbed emulation are used to analyze the performance of the applications and the

system. Unfortunately simulation and emulation based performance analysis techniques

are unable to provide the guarantees required by application developers and system inte-

grators.
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2.1.2 Analytical Approaches to Network Analysis

2.1.2.1 Queuing Theory

Queuing Theory[28][20] is a probabilistic approach to the analysis of processing or

communications networks, and has been applied to many types of systems including telecom-

munications, processing, and distribution systems. A queuing system can be described

using notation of the form A/B/S/∆/E, introduced by [28], with the semantics:

• A: Type of arrival process, e.g. M for Poisson Arrival Process

• B: Request service time statistics, e.g. D for Deterministic service time

• S: Number of servers

• ∆: Queue length

• E: Number of producers

Queuing Theory allows the analysis of the mean number of requests (N) in the queue

and the mean buffering delay (T ) experienced by objects traversing the queue. Little’s

Theorem provides the relation between the two: N = λT [36], where λ is the mean arrival

rate into the queue. However, this theorem assumes (1) that the service policy is indepen-

dent of service time and (2) the service policy is work conserving. Assumption (1) may

be violated for policy-based routing and servicing which tries to provide guaranteed QoS

to applications, and assumption (2) is violated by wireless networks, in which nodes with

very limited connectivity or dropouts in connectivity are not able to service the data in

the buffers despite the existence of the data in the buffers and applications continuing to

produce data.

For the types of systems we have described in Chapter I, probabilistic analysis tech-

niques like Queuing Theory make providing the requisite performance and resource guar-

antees difficult or impossible because of the stochastic nature of the models of network
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traffic[11]. Because of the need for these strict guarantees, other deterministic formal mod-

els for the analysis of communications and processing systems have been developed.

2.1.2.2 Network Calculus and Min-Plus Calculus

Network Calculus[11][10][34] is a theory for deterministic queuing systems which pro-

vides the ability to determine worst-case buffer requirements and application buffering de-

lay at design-time by applying the techniques of (min,+) calculus to queuing theory. We

will describe the foundation of (min,+) calculus before covering the techniques of Network

Calculus. [34], Chapter 3, gives an excellent overview of both min-plus and max-plus cal-

culus, on which Network Calculus is based. An abbreviated explanation of the concepts of

these two related dioids (additive inverses need not exist) follows.

Min-plus calculus, (R∪{+∞},∧,+), deals with wide-sense increasing functions :

F = { f : R+→ R+,∀s≤ t : f (s)≤ f (t), f (0) = 0} (1)

which represent functions whose slopes are always ≥ 0. Intuitively this makes sense for

modeling network traffic, as data can only ever by sent or not sent by the network, therefore

the cumulative amount of data sent by the network as a function of time can only ever

increase or stagnate. A wide-sense increasing function can further be classified as a sub-

additive function if

∀s, t : f (s+ t)≤ f (s)+ f (t) (2)

Note that if a function is concave with f (0) = 0, it is sub-additive, e.g. y =
√

x. Sub-

additivity of functions is required to be able to define meaningful constraints for network

calculus, though realistically modeled systems (in Network Calculus) will always have

sub-additive functions to describe their network characteristics (e.g. data serviced or data

produced). This sub-additivity comes from the semantics of the modeling; since the mod-

els describe maximum data production or minimum service as functions of time-windows,
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maximum data production over a longer time window must inherently encompass the max-

imum data production of shorter time-windows. Some examples of wide-sense increasing

functions which are of use in Network Calculus are shown in Figure 1.

Figure 1: Example wide sense increasing functions, reprinted from [34].

The main operations of min-plus calculus are the convolution and deconvolution oper-

ations, which act on sub-additive functions. Convolution is a function of the form:

( f ⊗g)(t)≡ in f{0≤s≤t}{ f (t− s)+g(s)} (3)

Note that if the functions f ,g are concave, this convolution simplifies into the compu-

tation of the minimum:

( f ⊗g)(t) = min( f ,g) (4)

Convolution in min-plus calculus has the properties of

1. Closure: ( f ⊗g)(t) ∈ F ,

2. Associativity: ∀ f ,g,h ∈ F ,( f ⊗g)⊗h = f ⊗ (g⊗h),

3. Commutativity: ∀ f ,g ∈ F , f ⊗g = g⊗ f , and
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4. Distributivity w.r.t. ∧: ∀ f ,g,h ∈ F , f ⊗ (g∧h) = ( f ⊗g)∧ ( f ⊗h)

Similarly, deconvolution is a function of the form:

( f �g)(t)≡ sup{0≤u}{ f (t +u)−g(u)} (5)

Note that � is not closed in F because ( f �g)(t) is not necessarily 0 for t ≤ 0.

Network Calculus focuses on abstracting the network traffic and the computing nodes

as arrival curves and traffic shaping service curves. The arrival curves and service curves

model the amount of data generated or serviced as functions of time window size and

are bounded by maximum and minimum arrival and service curves. By abstracting the

network flows and traffic shapers as arrival curves and service curves, respectively, (min,+)

calculus can be used to compose models of system behavior and calculate performance

characteristics of the integration of the application and the network.

Given an arrival function R(t) for the data flow describing the number of bits seen on

the flow during the time interval [0, t), the arrival curve α constrains the flow if and only if

∀s≤ t : R(t)−R(s)≤ α(t− s) (6)

This relation is shown in Figure 2. Intuitively the arrival curve representation transforms

the data production from a function of time, described by R(t), into a function of time-

interval, described by α(t), for which R≤ R⊗α .

Similarly, service curves transform the output data flow R∗(t) into a minimum service

curve β according to the relation:

R∗(t)−R∗(t0)≥ β (t− t0),∀t ≥ 0 ∃ t0 ≥ 0, t0 ≤ t (7)

or more compactly R∗ ≥ R⊗β . This relation is shown in Figure 3.
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Figure 2: Illustrative example representing maximum arrival curves (α(t)) for data
flows (R(t)), reprinted from [34].

Figure 3: Illustrative example representing minimum service curves (β (t)) for out-
put data flows (R∗(t)), reprinted from [34].

From the input arrival curve α into a node providing service curve β , we can use Net-

work Calculus to compute the output flow from the node and a few performance bounds

governing the buffering delay and buffer requirements for the node. The output flow from

the node is constrained by the arrival curve α∗= α�β . Given the arrival curve and service

curve for a node or system, we can compute the backlog and delay bounds, see Figure 4;
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the backlog bound is given by:

R(t)−R∗(t)≤ sup{s≥0}{α(s)−β (s)} (8)

and the delay bound is given by:

h(α,β ) = sup{s≥0}[in f{T : T ≥ 0 and α(s)≤ β (s+T )}] (9)

Figure 4: Illustrative example representing the backlog and delay bounds calcu-
lated from input arrival curves and node service curves, reprinted from [34].

These bounds provide the requisite information needed to make design-time guarantees

about worst-case application performance on the network, given that both the application

traffic profile and the system’s network performance are deterministic.

To enable compositional system analysis, Network Calculus allows for the concatena-

tion of nodes, Figure 5, such that a flow traversing nodes N1 and N2 in sequence, where

each node provides FIFO service curve βi=1,2, the concatenation of the two nodes offers

a service curve β1⊗ β2 to the flow. A major advantage of this approach is the ability to

"Pay Bursts Only Once" (PBOO), which is the property that the delay and buffer bounds

are tighter when derived from the concatenation of the system than they would have been
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if they were calculated iteratively. Again, note that this advantage is not applicable to

non-FIFO systems[34].

Figure 5: Illustrative example representing the concatenation of two nodes provid-
ing separate services into a single node providing an aggregate service, reprinted
from [34]

However, the performance bounds calculated by Network Calculus are still worst-case

performance based. For instance, there is a temporal disconnect between the arrival/ser-

vice curves and the actual performance of the application or the system. This disconnect

leads to analysis results that may still over-approximate the required buffer size or appli-

cation delay on the network. The cause of this over-approximation comes from the use

of time windows. Because Network Calculus is focused on maximum data produced and

minimum data serviced as functions of time window size, the time-varying nature of the

data production or service is lost. Despite an application producing a Bulk Data Transfer

(BDT) during a period of high network resource availability, Network Calculus compares

that BDT to all windows of time throughout the service time of the system. As such, an ex-

pected drop in service during a different period of time will inadvertently negatively affect

the application’s predicted performance as analyzed by Network Calculus.
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2.1.2.3 Real-Time Calculus

Real-Time Calculus[50] builds from Network Calculus, Max-Plus Linear System The-

ory, and real-time scheduling to analyze systems which provide computational or commu-

nications services. Unlike Network Calculus, Real-Time Calculus (RTC) is designed to

analyze the impact of real-time scheduling and priority assignment in task service systems.

The use of (max,+)-calculus in RTC allows specification and analysis not of only the arrival

and service curves described above for Network Calculus, but of upper and lower arrival

curves (αu(∆) and α l(∆)) and upper and lower service curves (β u(∆) and β l(∆)). These

curves represent the minimum and maximum computation requested and computation ser-

viced, respectively. An overview of RTC is given in Figure 6.

Figure 6: Overview of Real-Time Calculus’ request, computation, and capacity mod-
els. R(t) is the request function that represents the amount of computation that has
been requested up to time t, with associated minimum request curve, α . R′(t) is
the total amount of computation delivered up to time t, with associated delivered
computation bound Rb(t). C and C′ are the capacity function and remaining capac-
ity functions which describe the total processing capacity under full load and the
remaining processing capacity, respectively. C and C′ are bounded by the delivery
curve β and the remaining delivery curve β ′, reprinted from [50].

RTC allows for the analysis of task scheduling systems by computing the request curve

for a task model which is represented as a directed acyclic graph (DAG), the task graph

G(T ). An example task graph is shown in Figure 7. The graph’s vertices represent subtasks

and each have their own associated required computation time e(u), and relative deadline

d(u) specifying that the task must be completed d(u) units of time after its triggering.

Two vertices in G(T ) may be connected by a directed edge (u,v) which has an associated
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Figure 7: An example task graph for Real-Time Calculus, with conditional branches;
reprinted from [50]

parameter p(u,v) which specifies the minimum time that must elapse after the triggering

of u before v can be triggered. RTC develops from this specification the minimum com-

putation request curve αr and the maximum computation demand curve αd . Finally, the

schedulability of a task Ti is determined by the relation:

β
′(∆)≥ α

i
d(∆) ∀∆ (10)

which, if satisfied, guarantees that task Ti will meet all of its deadlines for a static priority

scheduler where tasks are ordered with decreasing priority. Note that the remaining delivery

curve β ′(∆) is the capacity offered to task Ti after all tasks T1≤ j<i have been processed.

Similarly to Network Calculus, RTC provides analytical techniques for the computation of

performance metrics such as computation backlog bounds:

backlog≤ sup{t≥0}{αu(t)−β
l(t)} (11)

which is equivalent to the network backlog bound derived in Network Calculus.

[19] compares different analytical methods for network performance analysis, namely

Real-Time Calculus (RTC), probabilistic queuing models, parallel computation models,

and protocol offload models. The authors explain the current state of system evaluation,

which is based predominantly on quantitative evaluation through simulation, but make the

point that such simulation techniques should be used sparingly since only a finite state of
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initial states, environment behaviors, and execution traces can be considered by system

simulators. The system which the authors model for their comparison is the case of Net-

work Interface Cards (NICs) connected to a Local Area Network (LAN), for which they

derive analytical bounds on the buffer requirements as they are affected by the input/out-

put (I/O) subsystems, the network traffic, the NIC itself, and the memory controllers. They

point out that most researchers are still using Queuing Theory, in stochastic scenarios where

the network traffic is modeled as random distributions of data. Because RTC allows more

precise descriptions of application traffic, it can be more beneficial for providing analy-

sis of buffer requirements and delay experienced in the system. RTC’s ability to allow

such specifications comes from its roots in Network Calculus and Max-Plus Linear System

theory.

2.1.2.4 Stochastic Network Calculus

These deterministic constraints can be relaxed so that the deterministic arrival and ser-

vice curves are instead replaced by stochastic processes, causing the bounds on the perfor-

mance to be probabilistic as well[6]. As described previously, these probabilistic perfor-

mance bounds may not be precise enough to provide the types of guarantees required by

certain classes of mission- or safety-critical systems.

[53] provides a good description, system model, and analysis for stochastic Network

Calculus applied to wireless networks. In their work, they show the ability of network

calculus to remove the need to make as many assumptions about the arrival or service pro-

cesses (e.g. exponential service distribution) to allow general arrival and service processes.

They apply stochastic network calculus to analyze backlog and delay bounds in 802.11

based multi-access systems. They formally derive bounds for the backlog and delay in the

network and then compare these analytical results to bounds generated from network sim-

ulation using ns-2. From this comparison, they conclude that the derived bounds are too

loose and in fact get looser the closer the system gets to saturation. They further conclude
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that this looseness is a direct result of stochastic network calculus itself, and claim that it

requires further improvements. It is important to remember what was stated previously by

[21]: the simulation does not accurately model the dynamic behavior of real traffic, so the

results from [53] may too be inaccurate.

Because Network Calculus deals with either deterministic worst-case application per-

formance on a static network or stochastic application performance on a dynamic network,

system designers and application designers under-utilize the network resources of systems

which require strict design-time guarantees about application performance.

2.1.2.5 Extensions to Network Calculus

When analyzing any complex system, the fidelity of the analysis results with respect

to the actual system relies heavily on the level of detail of the models of the system’s

components and subsystems. [23] covered the effects that different levels of detail have on

analysis complexity and accuracy. Importantly, they point out the requirement to not only

be correct, but also be applicable, i.e. analysis results should be both accurate with respect

to the system being modeled, but should also be relevant for the analysis and development

of real systems. Additionally, they point out that not all systems require highly detailed

modeling for the analysis results to be correct, since some systems and applications are

insensitive to lower level details.

There are many efforts to make analytical techniques more representative of actual sys-

tems in order to increase the fidelity of the analysis results with respect to the run-time

system. The researchers in [35] recognize the need to analyze not only the overall through-

put of a network, but also the end-to-end delay experienced by information flows in the

network. Furthermore, they derive an analytical model of Wireless Network Coding[27],

a technique for combining packets together for improving network throughput in wireless

networks using broadcast techniques. They show that by developing a model of the way

the MAC layer works in the network and how the information flows are combined and
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disseminated, they can get tighter performance bounds and even derive methods for in-

creasing performance in the network by altering the scheduling parameters of the packet

flows. Analyzing multiple performance parameters, in this case the network throughput and

end-to-end delay, is a key element for analyzing and providing quality of service (QoS) to

applications.

The authors in [4] also incorporate more precise models of the network to derive tighter

performance bounds using Network Calculus. They show that by modeling the packeti-

zation that occurs in the network using a packet operator to transform arrival flows into

packet flows, they can analytically derive tighter service curves than would be found from

traditional Network Calculus. Clearly, there exists a desire from application developers and

system integrators to derive both accurate and precise design-time performance parameters

for the system and its applications.

Similarly, in [16], the authors describe how to accurately model the SpaceWire network

standard which has been developed for satellites in the European Space Agency (ESA).

Their network must be shared by both real-time (critical) and non real-time (non-critical)

traffic, but the system developers require design-time guarantees about the temporal charac-

teristics of all critical/real-time messages on the network. Their work focuses on accurately

representing the SpaceWire network, its (static) routing protocol, and the service profiles

of its routers including the aspects of their flow control algorithms. Building on previ-

ous work, they explain the need, for resource-constrained real-time systems, to accurately

model the network traffic in order to derive a model of the network which is not too pes-

simistic. They derive accurate Network Calculus/Real-Time Calculus (RTC) based models

of the wormhole switches present in the network and show the fidelity of their analytical

tools compared with the industrial simulation tools developed for SpaceWire networks. Us-

ing a Network Calculus-based model, they are able to achieve analytical results that are the

same order of magnitude as the simulation results for the critical traffic delay characteris-

tics, but are less precise for the non-critical traffic in the network. One important point they
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make that extends to all types of systems when comparing analysis and simulation tech-

niques is this: worst-case delays can be extremely rare events which are hard to observe or

recreate in simulations, but can be derived from analytical results.[16]

Another approach to increasing the fidelity of the analysis is to model the Time Division

Multiple Access (TDMA) medium channel access protocol using Network Calculus to de-

rive performance metrics[47]. TDMA service curves are modeled such that the medium’s

transmit capacity is available to the node only during the node’s designated slot. During

all other slots of the TDMA period, the medium’s capacity is unavailable to the node and

therefore the transmit capability of the node is zero. As such, simple TDMA service curves

can be described using simply a slot length, a slot bandwidth, and a TDMA period.

[30] analyzes the performance of TDMA with respect to the queue size for different

probabilistic traffic models, and shows how the G/D/1 model with application-based prob-

ability distributions can be used to generate closed-form solutions for analyzing arbitrary

traffic on a TDMA network.

Another aspect of system design which has been gaining momentum is the develop-

ment of self-adaptive systems which provide "self-*" properties such as self-management.

These types of systems are typically not used in CPS control applications or other systems

which require real-time guarantees about timing or resource properties of the system. The

main reason for their absence from these types of systems and applications is the lack of

available, accurate modeling and analysis techniques which properly capture the behavior

of the applications in a way that allows the derivation of performance guarantees. The au-

thors in [13] describe both the need for this type of analysis for these systems and describe

the overview of how the analysis would work, based on concepts from Network Calculus.

Their main point is that currently such types of analysis tools do not exist for these systems,

which makes developing the systems difficult with respect to these types of design parame-

ters. They propose developing a formalized standardization for the self-adaptive behavior,
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which they present as a state-space with available control actions based on the sensor data

in the system.

2.2 Part 2: Run-Time Network Monitoring and Management

In addition to design-time modeling and analysis, CPS system designers and integra-

tors must ensure system stability during run-time by enforcing resource limitations on the

applications to ensure no faulty or malicious code starves the system or other applications

of network resources. Such enforcement is the management of the network resource for

the system. Many different approaches exist to handle this type of management, gener-

ally falling into one of two categories: (1) static management or (2) dynamic management.

Static management of system resources is based around enforcement of fixed resource al-

locations which were decided at design-time or deployment time. Such management gen-

erally is associated with high-criticality systems which must be guaranteed. Dynamic man-

agement of resources entails updating the resource allotments of each application based on

currently available system resources and application load, and generally is in the class of

adaptive management or adaptive systems (also called autonomic systems). In this work,

we will address only static management of resources.

Static management of network resources generally, but not necessarily, means appli-

cations are given a fixed quantity of resources for the lifetime of the system. The part of

the system which enforces these resource allotments however, may vary depending on the

design of the system. The enforcement may happen in the network layer, in the operating

system kernel, or in some cases in the middleware facilitating the network communications

for the applications. We deem any enforcement happening in the kernel or in a lower layer

to be infrastructural management (since all applications on the system must use this infras-

tructure and are therefore managed by it). We deem any resource management happening
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between the kernel and the application as middleware management, since different appli-

cations deployed on the system may use different middleware stacks and therefore may be

managed differently.

2.2.1 Infrastructural Approaches for Network Management

Two of the main infrastructural methods for managing system network service are

DiffServ[41][20] and Intserv[5]. DiffServ, for Differentiated Services, is designed for the

provisioning of network resources to provide Quality of Service (QoS) to applications on

the network but is unable to provide strict real-time guarantees about packet loss, delay,

and bandwidth availability. Instead, DiffServ was designed to scale well for large sys-

tems while still providing probabilistic guarantees. IntServ, for Integrated Services, was

designed to provide strict real-time guarantees about the QoS experienced by a flow on the

network. Unlike DiffServ, which does not maintain any state information in the routers

along network flow paths, IntServ uses a resource reservation protocol (RSVP)[1] with ex-

plicit setup of flows for deterministically allocating bandwidth and buffer space for a flow

in each router along the flow’s path. While such an explicit out-of-band QoS reservation

protocol enables similarly explicit resource availability and performance guarantees, the

trade-off comes in the ability of the system to scale to many nodes and many flows. Diff-

Serv’s scalability comes from both the lack of explicitly maintaining per-flow state in the

routers, by assigning traffic to a set of predefined classes, as well as using QoS assignment

mechanisms which are built into the flow’s messages, e.g. the DiffServ Code Point (DSCP)

built into the Type of Service (ToS) byte in IPv4 headers and the Traffic Class byte of IPv6

headers.

Both IntServ and DiffServ were originally designed for wired networks, but [38] has

worked on the required modifications to make them suitable for wireless networks, which

have network connectivity and link characteristics which have more variance as a func-

tion of time. The combination of low bandwidth, high loss, and node mobility require
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extensions to the QoS parameters and control options available to the application provided

by the QoS infrastructures. One such proposed extension is the concept of loss profiles,

which govern whether an application prefers dropping data in a bursty manner (as might

be preferred by audio applications) versus a distributed manner (as might be preferred by

video applications). Similarly, since link bandwidth is typically much lower than in wired

networks, IntServ/RSVP’s refresh messages (used to determine network changes) should

be sent with a lower frequency to provide as much network bandwidth as possible to ap-

plication traffic. In the same way, DiffServ requires modifications to support signaling

information about link state and node location to overcome DiffServ’s static provisioning

scheme in the adaptation from wired to wireless networks.

A system’s network infrastructure may provide multiple different QoS provisioning im-

plementations, such as both DiffServ and IntServ. In this case, the applications can select

which QoS provisioning to use. Similarly, large networks may be grouped into subnets

which each internally use different QoS provisioning schemes. The boundaries between

these subnets requires QoS mapping for flows which cross these boundaries. Such map-

ping between QoS implementations and configurations is complex and makes providing

guarantees about QoS for large complex networks challenging.

Because both IntServ and DiffServ were designed for providing QoS to generic traf-

fic for large networks including the internet, they were not designed to be able to provide

performance guarantees to application developers. As such, their design and implementa-

tion function more coherently in a system which has unknown applications and application

load. However, the classes of systems we focus on require more precise guarantees about

performance and have the benefit of more precise design-time knowledge of applications

and application load on the system.

Flexible QoS Model for Mobile Ad-hoc Networks (MANETs), FQMM[54], attempts to

address the issue of run-time QoS management and adaptation to changing environmental
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conditions affecting the network. Recognizing that both environmental and application be-

havior need to be taken into account for QoS management, they argue that two methods for

providing QoS in the internet, IntServ and DiffServ, are not sufficient for dynamic mobile

networks. While IntServ’s scalability problem will not affect dynamic mobile networks

in the near future, they argue that the connection maintenance required by the Resource

ReSerVation Protocol (RSVP) renders IntServ impractical. DiffServ, on the other hand,

might be able to provide long-term QoS to applications under the varying network condi-

tions, but is not feasibly able to provide the kind of short-term QoS required by real-time ap-

plications. Furthermore, DiffServ does not handle node mobility and external disturbances

from the environment well as it was originally designed for relatively fixed (topologically)

networks.

To combat the issues in both IntServ and DiffServ, FQMM is designed to handle QoS

for MANETs. FQMM focuses on allowing for fine-grained provisioning of node resources

and allowing node mobility through dynamically reassigning the roles of each of the nodes

in the network. The provisioning of the resources for flows in the network borrows ideas

from both IntServ and DiffServ by combining the per-flow granularity of IntServ for high-

priority flows while lower-priority flows are provisioned on a class basis as in DiffServ.

This differentiation between traffic classes and priority flows better utilizes the system

resources to achieve the necessary performance for high priority flows which may need

real-time performance. To provide traffic shaping they constrain the bandwidth of flows to

traffic profiles, which govern the latency and bandwidth available to the flow. To combat the

time-varying nature of the network, they instead define these traffic profiles as percentages

of the available network bandwidth. This type of percentage-based flow constraint limits

the adaptability of the network traffic however, as certain higher-priority real-time flows

may have a minimum amount of bandwidth required that cannot be met with a percentile

constraint on effective link bandwidth. FQMM also addresses routing control to provide

better run-time QoS to applications on the system.
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2.2.2 Middleware Based Approaches for Network Management

For system and application level adaptation to changing system resources, two main

approaches, namely fixed reservation of flows and run-time adaptation, provide benefits for

performance or resilience. These two approaches cannot be used alone however, as fixed

reservation of flows based on design-time network analysis causes low resource utilization

and run-time adaptation is generally not prepared for excessive congestion or other distur-

bances. GARA [17] combines these two paradigms to provide more graceful degradation

and higher resource utilization at the system and application level. GARA uses priority

based flow reservation which can be altered at run-time by both the application and by

third parties on behalf of the application. This type of reservation scheme allows applica-

tions to monitor and react to changes in network capacity, while still attempting to ensure

that high-priority flows can traverse the network. Furthermore, this type of reservation

scheme is more amenable to dynamic flows which may only be active during a portion of

time that the system is active. Statically defined slots reserved at design-time cause wasted

resources by these applications whose flow is reserved but not used the entire time.

Finally, there do exist different protocols and communications paradigms which support

run-time control of application network traffic, such as the Quality of Service (QoS) control

mechanisms present in many implementations of OMG’s Data Distribution Service (DDS)

standard[43][42]. However, often the mechanisms available for controlling the QoS param-

eters of a given data stream are complex, interacting mechanisms which may be difficult

for the application developer to understand and therefore are also not amenable to mod-

eling and analysis at design time[24]. Furthermore, the developers may not be provided

with or have control over lower level implementation details such as the selected transport

layer protocol, which may affect the available QoS or may not be fully supported by the

infrastructure. Additionally, many of the available interaction paradigms either do not sup-

port design time QoS analysis with run-time monitoring and control or the supported QoS

analysis and control interfaces are only informally specified.
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CHAPTER III

DESIGN-TIME NETWORK PERFORMANCE ANALYSIS OF DISTRIBUTED
CPS APPLICATIONS

In this chapter, we describe research results related to the challenge of accurately pre-

dicting network QoS for systems which may require strict guarantees about performance

and resource utilization.

Analyzing application and system network Quality of Service (QoS) requires either

design-time models and analysis techniques or experimental measurements from an appli-

cation and system testbed. For high- or mixed-criticality software and systems, typically

experimental measurements are used but often these can be incomplete or quite costly to

generate. Instead, a design-time modeling paradigm for networked applications and sys-

tems can provide developers and system integrators the information to accurately predict

the system and application network QoS.

Some wireless mobile CPS networks, such as the network between a cluster of satellites

orbiting Earth, vary periodically with respect to time, e.g. according to the cluster’s orbital

period. An example of such periodic variation in satellite network capacity is shown in

Figure 8. For such networks, the physical dynamics of the nodes in the cluster are well un-

derstood and predictable, therefore the network dynamics can be fairly predictable as well.

For such predictable or periodic dynamic networks, the use of worst-case network per-

formance for analysis and constraint verification wastes the network resources over much

of the life-cycle of the system. Integrating the physical dynamics of the network into the

modeling and analysis tools improves the performance of the systems without degrading

its reliability.

31



Figure 8: Distance as a function of time (pairwise) between satellites in a clus-
ter orbiting Earth. The network capacity varies for each network link between two
satellites inversely proportional to the distance between them. Reprinted from [49].

3.1 Precise Modeling of Application Network Traffic and System Network

Resources for Performance Prediction

To precisely predict network performance for applications distributed in a mobile CPS,

we need precise models of both the application network resource requirements and the

system’s network resource capacity. These predictions, if precise and reliable enough, can

serve as guarantees for application developers and system integrators about the network

QoS that the system will provide and the network resources the application will receive.

3.1.1 Problem

Current design tools do not incorporate the physical dynamics of the network for anal-

ysis of network constraints on the applications. For systems with known models of system
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dynamics, the system’s dynamics should be incorporated into the modeling tool and should

integrate with the other models of the system, e.g. the system’s network models. Because

of the diversity of CPS, IoT systems, and other networked embedded systems in general,

modeling and analysis tools targeted towards these systems must support a wide range of

configurations, architectures, standards, and interfaces. The same compatibility is required

in network modeling and analysis frameworks. Because many of these systems may sup-

port different types of network communications hardware, often using multiple types of

network interface hardware within the same system, the models of the network must be

able to express network resources in a way that can capture these differences. Because

of this diversity and the modeling semantics of the commonly used paradigms (e.g. Real-

Time Calculus), developing very precise predictions is difficult, since the models are not

very precise with respect to the actual behavior of the applications on the system.

3.1.2 Mathematical Formalism

To model the network capability of the system and the application traffic patterns, we

have developed a network modeling paradigm similar to Network Calculus’ traffic ar-

rival curves and traffic shaper service curves. This paradigm is called Precise Network

Performance Prediction (PNP2).

Similarly to Network Calculus’ arrival curves and service curves, our network profiles

model how the system’s network performance or application traffic generation changes

with respect to time. Whereas Network Calculus’ modeling transforms application data

profiles and network service profiles into max/min curves for data received/serviced vs.

length of time-window, our models take a simpler approach which models exactly the data

generated by the application and the data which could be sent through the network, allowing

our performance metrics to be more precise. Specifically, the bandwidth that the network

provides on a given communication link is specified as a periodic time series of scalar

bandwidth values. Here, bandwidth is defined as data rate, i.e. bits per second, over some
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averaging interval. This bandwidth profile can then be time-integrated to determine the

maximum amount of data throughput the network link could provide over a given time. The

bandwidth profile for the application traffic similarly can be time-integrated to determine

the amount of data that the application attempts to send on the network link as a function

of time.

Having time-integrated the bandwidth profiles to obtain data vs. time profiles that the

application requires and that the system provides, we can use a special type of convolu-

tion (⊗), (min,+)-calculus convolution, on these two profiles to obtain the transmitted link

data profile as a function of discrete time. The convolution we define on these profiles

borrows concepts from the min-plus calculus used in Network Calculus, but does not use

a sliding-window and instead takes the transformed minimum of the profiles. For a given

application data generation profile, r[t], and a given system link capacity profile p[t], where

t ∈ N, the link transmitted data profile l[t] is given by the convolution Equation 12. The

difference (p[t − 1]− l[t − 1]) represents the difference between the amount of data that

has been transmitted on the link (l[t−1]) and the data that the link could have transmitted

at full utilization (p[t− 1]). As demonstrated by the convolution equation, ∀t : l[t] ≤ r[t],

which is the relation that, without lower-layer reliable transport, the link cannot transmit

more application data for the application than the application requests. Note that there will

be packetization and communication header overhead which will be transmitted with appli-

cation data. The overhead can be determined at design time and can therefore be accounted

for in the application profile.

y = l[t] = (r⊗ p)[t]

= min(r[t], p[t]− (p[t−1]− l[t−1]))
(12)

34



buffer = sup{r[t]− l[t] : t ∈ N} (13)

delay = sup{l−1[y]− r−1[y] : y ∈ N} (14)

Figure 9: Representative example demonstrating convolution of the data vs. time
profiles that the application requires and that the system provides. The resultant
data vs. time profile describes the data that the system actually output onto the
link.

Equation 13 and Equation 14 calculate, using l[t], r[t], and the inverse function l−1[y],

the minimum buffer size required for the application and the maximum buffering delay

experienced by application data, respectively. Figure 9 depicts the convolution operation

and shows a schematic representation of the maximum buffer delay and the minimum buffer

size. As can be seen in the figure, the maximum horizontal distance between the required

profile and the link profile is equal to the maximum buffer delay, while the maximum

vertical distance is equal to the minimum buffer size required for loss-less transmission of

data on the link.

We developed the PNP2 paradigm to precisely model system network resources as they
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vary with respect to time. Similarly, the application network resource requirements can

be modeled very precisely as functions of time. These models can be more precise than

the models developed for Network Calculus since they are explicitly functions of time,

instead of functions of time-windows. Taking the example from earlier, a bulk data trans-

fer (BDT) initiated from the satellite cluster to a ground station is scheduled for when the

satellite cluster is within range of the ground station and therefore has a good downlink

to the ground. With our paradigm, this coupling between the network traffic flow and the

network resource availability can be captured explicitly in the model. Under the Network

Calculus modeling semantics however, such a BDT would negatively affect the predicted

required network buffer size and network buffering latency since that BDT data transmis-

sion window (i.e. the window of time it sends the data on the link) would be compared

against the minimum service provided by the network to the ground station (which would

be zero during the parts of the orbit when the ground stations are not within range of the

cluster). Such a comparison drastically increases the predicted buffer space required and

predicted buffering latency incurred by the BDT data.

This network modeling and analysis technique we developed has been reported in [15],

which describes the network resource models, their composition, and the calculation of

performance metrics such as buffer requirements and buffering delay.

3.1.3 Accuracy and Precision

When developing a new analysis technique to predict application network performance,

verification that the results of the analysis are accurate is paramount. Experimental results

are required not only to judge whether or not the theory is sound, but also to allow appli-

cation developers and system integrators to judge the applicability of the analysis to their

systems and applications. If the error in the predicted performance metrics is too high, the

analysis results will cease to be useful.
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Figure 10: Diagram of the testbed network and setup. The CPS nodes are connected
to each other, but their network communication is routed through the traffic shaping
and delay node.

To verify the validity of these operations and metrics, we developed network measure-

ment code which produced data for the network according to the supplied profile. This

code executed on a private network testbed of nodes connected to each other through a

gigabit Ethernet switch. We implemented the network link profile using a traffic shaping

node through which all network traffic flowed. On this node we ran dummynet[8], which

can be configured to control bandwidth, latency, and packet loss on a per-link basis. For

these experiments, we configured the traffic shaping node to control the data rate of the

application data on the network interface according to the system provided network profile.

This testbed setup is shown in Figure 10.

On this testbed we ran application network traffic producer code which produces net-

work traffic according to the supplied application profile. The profiles for the application
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and system are shown in Figure 11. This traffic producer code measured the delay, through-

put, and buffer requirements of the traffic that was produced. By collecting these measure-

ments over the course of multiple tests, we measured the differences between the predicted

and measured buffer size and delay. The accuracy of our prediction was reported in [15]

and is shown in Table 2.

Table 1: Network utilization calculations and measured results using UDP over IPv6.

Predicted Measured (µ,σ )
Buffer Delay (s) 0.0625 (0.06003 , 0.00029)

Time of Delay (s) 3.0 (2.90547 , 0.00025)
Buffer Size (bytes) 8000 (7722.59 , 36.94)

As can be seen in the table, the predictions made by our analysis techniques are tight,

conservative bounds on the actual performance of the application in the experimental sys-

tem. Both the predicted delay and the predicted buffer size required for the application

were less than 10 percent different from the actual system’s required buffer size and delay.

3.1.4 Assumptions Involved

As with any type of system modeling and analysis paradigm, it is important to remain

aware of the types of systems the modeling/analysis is applicable to, the requirements im-

posed on the system by the model, and any edge cases or scenarios where the analysis or

modeling paradigm breaks down.

The major assumption that we make with this type of system modeling and analysis is

that we can know at design time what the system network capacity and the application data

production will be as a (possibly periodic) function of time. Of course, this assumption

is unrealistic for heavily data-dependent systems, but by performing some code analysis

and/or doing some controlled experiments, models of the applications’ behavior can be

developed that can be analyzed.
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(a) System Data Rate vs. Time

(b) System Data Analyzed with PNP2

Figure 11: System and application profiles used for experimental validation of
PNP2. The analysis using PNP2 is shown on the right.
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Another key assumption and thus requirement of our modeling and analysis framework

is a system-wide synchronized clock which all nodes use. By this we mean that if two nodes

produce data for a third node at time t = 3 seconds, they will produce their data onto their

respective network links at exactly the same time. This is required for the composition

of profiles as they traverse the network and are routed through nodes. This assumption

restricts the types of systems for which our analysis can be most useful, but is not a critical

hindrance, as many such critical systems, e.g. satellite constellations or UAVs have GPS

synchronized clocks, which provide such a foundation.

Another restriction with our modeling paradigm is that data-dependent flows cannot

be accurately represented, since we have no way of modeling data-dependence. A related

assumption is processing power and the ability of the software to adhere to the profiles: we

assume the applications are able to accurately and precisely follow their data production

profiles, regardless of the number of other components on their hardware node. Similarly,

we assume that under all circumstances, the service profile of a hardware node will be

adhered to.

Our current modeling and analysis techniques have not incorporated the concepts of

packet loss, transmission errors, and other integrity loss for data transmitted on the network.

Such concepts are especially important with respect to how they influence the behavior of

the network software stack, including user-space applications.

Finally, we have currently not incorporated the ways different reactive protocols would

affect system network analysis. A common example of such a reactive protocol is TCP

and its congestion avoidance algorithm. Because such algorithms rely on return-path infor-

mation through the use of handshaking/acknowledgments they provide greater difficulty in

modeling and analysis. As such, we have focused primarily on one-way transmission and

reception style interactions for our modeling and analysis. Such types of interactions are

found for instance in UDP transmissions.
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3.1.5 Factors Impacting Analysis

It is important when developing modeling and analysis techniques to analyze how the

analysis time and results are affected by changes in the model. This is especially true when

trying to determine how applicable new techniques are to large scale systems. Models

are provided by the application and system developers and are described in the form of

bandwidth (bps) vs time that the application requires or the system provides. These profiles

are a time series that maps a given time to a given bandwidth. Between two successive

intervals, the bandwidth is held constant. Clearly, to represent changing bandwidth over

time, the developer must use sufficiently short enough time intervals to allow step-wise

approximation of the curve. However, as with any system, there is a trade-off between

precision of the model and the analysis time and results.

Because the fundamental mathematics are linear for our convolution, our convolution

scales with O(n), where n is the total number of intervals in all of the profiles analyzed. It is

worth noting that this complexity is not the same as the O(n2) or O(n∗ log(n)) complexity

that traditional convolution has. This decrease in complexity is due to our convolution only

requiring a single operation (comparison operation for the minimum) for each value of t.

As such, each element in both of the profiles being convolved only needs to be operated on

once.

Clearly, the overall system analysis complexity depends on the complexity of the sys-

tem, so as the system scales and increases routing complexity, so too will the analysis

complexity. However, for all systems there is an asymptotically increasing precision for a

given increase in model precision and analysis time.

41



3.2 Analysis of Periodic Systems

One subset of systems which we would like to analyze are periodic systems, since many

systems in the real world exhibit some form of periodicity, e.g. satellites in orbit, traffic

congestion patterns, power draw patterns. We define systems to be periodic if the data

production rate (or consumption rate) of the system is a periodic function of time. The

time-integral of these periodic data consumption/production rates is the cumulative data

production/consumption of the system. These cumulative functions are called repeating.

Given that the required data profile and system data service profile are repeating, we

must determine the periodicity of the output profile. If we can show that the output profile

similarly repeats, then we can show that the system has no unbounded buffer growth. First,

let us look at the profile behavior over the course of its first two periods of activity.

We will examine two systems, system (1) and system (2). Firstly, examine (1), shown in

Figure 12, and Figure 13. These figures show (1) analyzed over one period and two periods

of activity, respectively.

We notice that for this example system, the second period output profile is not an exact

copy of the first (most easily seen by examining the bandwidth plots), and yet the required

buffer size is still the same as it was when analyzing the system over one period. Further-

more, by running the analysis over even larger number of periods, we can determine (not

plotted here for space and readability), that the predicted buffer size does not change no

matter how many periods we analyze for this system.

Let us look at a system where this is not the case before we begin the analysis of such

system characteristics, shown in Figure 14 and Figure 15.

Notice in system (2), the first period analysis predicted the same buffer size and delay as

system (1), but when analyzing two periods the predicted buffer size changed. Clearly the

behavior of the system is changing between these two periods. If we continue to analyze

more periods of system (2), as we did with system (1), we’ll find the unfortunate conclusion

that the predicted buffer size increases with every period we add to the analysis.
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(a) System (1) Data Rate for 1 Period

(b) System (1) Data for 1 Period

Figure 12: System (1) Analyzed over 1 Period
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(a) System (1) Data Rate for 2 Periods

(b) System (1) Data for 2 Periods

Figure 13: System (1) Analyzed over 2 Periods
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(a) System (2) Data Rate for 1 Period

(b) System (2) Data for 1 Period

Figure 14: System (2) Analyzed over 1 Period
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(a) System (2) Data Rate for 2 Periods

(b) System (2) Data for 2 Periods

Figure 15: System (2) Analyzed over 2 Periods
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We have discovered a system level property that can be calculated from these profiles,

but we must determine what it means and how it can be used. First, we see that in system

(1), the predicted required buffer size does not change regardless of the number of periods

over which we analyze the system. Second, we see that for system (2), the predicted

required buffer size changes depending on how many periods of activity we choose for our

analysis window. Third, we see that the second period of system (2) contains the larger of

the two predicted buffer sizes. These observations (with our understanding of deterministic

periodic systems) lead us to the conclusion: system (2) can no longer be classified as

periodic, since its behavior is not consistent between its periods. Furthermore, because the

required buffer size predicted for system (2) continually increases, we can determine that

the system is in fact unstable due to unbounded buffer growth.

3.2.1 Proving the Minimum Analysis for System Stability

Let us now formally prove the assertion about system periodicity and stability which

has been stated above. We will show that our analysis results provide quantitative measures

about the behavior of the system and we will determine for how long we must analyze a

system to glean such behaviors.

Typically, periodicity is defined for functions as the equality:

x(t) = x(t + k ∗T ),∀k ∈ N> 0 (15)

but for our type of system analysis this cannot hold since we deal with cumulative functions

(of data vs. time). Instead we must define these functions to be repeating, where a function

is repeating iff :

x(0) = 0 and

x(t + k ∗T ) = x(t)+ k ∗ x(T ),∀k ∈ N> 0
(16)

47



Clearly, a repeating function x is periodic iff x(T ) = 0. Note that repeating functions

like the cumulative data vs. time profiles we deal with, are the result of integrating periodic

functions, like the periodic bandwidth vs. time profiles we use to describe application net-

work traffic and system network capacity. All periodic functions, when integrated, produce

repeating functions and similarly, all repeating functions, when differentiated, produce pe-

riodic functions.

Now we will consider a deterministic, repeating queuing system providing a data ser-

vice function S to input data function I to produce output data function O, where these

functions are cumulative data versus time. At any time t, the amount of data in the sys-

tem’s buffer is given by Bt . After servicing the input, the system has a remaining capacity

function R.

• S[t] : the service function of the system, cumulative data service capacity versus time

• I[t] : the input data to the system, cumulative data versus time

• O[t] : the output data from the system, cumulative data versus time

• B[t] : the amount of data in the system’s buffer at time t, i.e. I[t]−O[t]

• R[t] : the remaining service capacity of the system after servicing I, i.e. S[t]−O[t]

Because S and I are deterministic and repeating, they increase deterministically from

period to period, i.e. given the period TI of I,

∀t,∀n ∈ N> 0 : I[t +n∗TI] = I[t]+n∗ I[TI] (17)

Similarly, given the period TS of S,

∀t,∀n ∈ N> 0 : S[t +n∗TS] = S[t]+n∗S[TS] (18)
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We can determine the hyperperiod of the system as the lcm of input function period and

the service function period, Tp = lcm(TS,TI).

At the start of the system, t = 0, the system’s buffer is empty, i.e. B[0] = 0. Therefore,

the amount of data in the buffer at the end of the first period, t = Tp, is the amount of

data that entered the system on input function I but was not able to be serviced by S.

At the start of the next period, this data will exist in the buffer. Data in the buffer at

the start of the period can be compared to the system’s remaining capacity R, since the

remaining capacity of the system indicates how much extra data it can transmit in that

period. Consider the scenario that the system’s remaining capacity R is less than the size of

the buffer, i.e. R[Tp]< B[Tp]. In this scenario, B[2∗Tp]> B[Tp], i.e. there will be more data

in the buffer at the end of the second period than there was at the end of the first period.

Since the system is deterministic, for any two successive periods, n ∗Tp and (n+ 1) ∗Tp,

B[n∗Tp]< B[(n+1)∗Tp], which extends to:

B[m∗Tp]> B[n∗Tp],∀m > n > 0 (19)

implying that:

B[t]< B[t + k ∗Tp],∀k ∈ N> 0 (20)

meaning that the amount of data in the buffer versus time is not periodic, therefore the

amount of data in the system’s buffer increases every period, i.e. the system has unbounded

buffer growth.

If however, there is enough remaining capacity in the system to service the data in the

buffer, i.e. R[Tp]>= B[Tp], then B[2∗Tp] = B[Tp]. This relation means that if the remaining

capacity of the system that exists after all the period’s required traffic has been serviced is

equal to or larger than the size of the buffer at the end of the period, then in the next

period the system will be able to service fully both the data in the buffer and the period’s

required traffic. Since both the period’s traffic and the buffer’s data will have been serviced
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in that period, the amount of data in the buffer at the end of the period will be the same

as the amount of data that was in the buffer at the start of the period. Similarly to above,

since the system is deterministic, for any two successive periods, n ∗Tp and (n+ 1) ∗Tp,

B[(n+1)∗Tp] = B[n∗Tp]. This extends to:

B[m∗Tp] = B[n∗Tp],∀m,n > 0 (21)

which implies that:

B[t] = B[t + k ∗Tp],∀k ∈ N> 0 (22)

meaning that the amount of data in the buffer versus time is a periodic function, therefore

the maximum buffer size does not grow between periods, and the system has a finite buffer.

If we are only concerned with buffer growth, we do not need to calculate R, and can

instead infer buffer growth by comparing the values of the buffer at any two period-offset

times during the steady-state operation of the system (t >= Tp). This means that the system

buffer growth check can resolve to B[2 ∗ Tp] == B[Tp]. This comparison abides by the

conditions above, with m = 2 and n = 1.

50



3.3 Comparison of PNP2 with Network Calculus

When developing a new analysis technique to predict application network performance,

alternative techniques must be evaluated to determine the utility of the new techniques.

Application developers and system integrators can then use these comparisons as metrics

for choosing between the available analysis tools. For the tools and techniques to affect a

meaningful change in system and application development, they must be shown to be more

effective by some metric for at least certain classes of systems or applications.

To show how our analysis techniques compare to other available methods, we devel-

oped our tools to allow us to analyze the input system using Network Calculus/Real-Time

Calculus techniques as well as our own. Using these capabilities, we can directly compare

the analysis results to each other, and then finally compare both results to the measurements

from an actual system.

3.3.1 Results

Figure 16 shows the data rate versus time profile describing the example system, side-

by-side with the time-integrated and analyzed data versus time profile. Figure 17 shows a

zoomed in portion of the second plot, focusing on the area with the maximum delay and

buffer as analyzed by PNP2. Figure 18 shows the same system analyzed using Network

Calculus.

The major drawback for Network Calculus that our work aims to solve is the disconnect

from the real system that stems from using an approach based on time-window analysis.

Such an approach leads to dramatically under-approximating the capacity of the network

while simultaneously over-approximating the utilization of the network, since a known

drop in network performance which is expected and handled by the application cannot be

accurately modeled. In our case, the system is using a system profile which can service

data during the period from 0≤ t ≤ 7 seconds with a period of 10 seconds. The application

is designed around this constraint and only produces data during that interval. Because our
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(a) System Data Rate vs. Time

(b) System Data Analyzed with PNP2

Figure 16: System profile used for comparison of PNP2 with Network Calculus. The
analysis using PNP2 is shown on the right.
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Figure 17: Zoomed-in version of Figure III.16(b), focusing on the predicted buffer
and delay.

technique directly compares when the application produces data to when the system can

service the data, we are able to derive more precise performance prediction metrics than

Network Calculus, which compares the 3 seconds of system downtime to the 3 seconds of

maximum application data production.

Using the same testbed, traffic production software, and traffic measurement software

described in Section 3.1.3, we were able to measure the transmitted traffic profile, the

received traffic profile, the latency experienced by the data, and the transmitter’s buffer

requirements. The results are displayed in Table 2 (from the same experimental data as in

Section 3.1.3):

Taking the results from our published work, where our methods predicted a buffer size

of 64000 bits, we show that Network Calculus predicts a required buffer size of 3155000

bits. This drastic difference comes from the mis-match between down-time and max data

production mentioned above. Note also that Network Calculus does not provide a way
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Figure 18: Network-Calculus based analysis of the same system.

Table 2: Experimental system measurements

Network Calculus PNP2 Measured (µ,σ )
Buffer Delay (s) 3.0 0.0625 (0.06003 , 0.00029)

Time of Delay (s) N/A 3.0 (2.90547 , 0.00025)
Buffer Size (bits) 3155000 64000 (61780.72 , 295.52)

to predict when (during the run-time of the applications) the maximum delay will occur.

Network Calculus lacks this capability because it defines its models as functions of time-

window size instead of as direct functions of time.

54



3.4 Analysis of TDMA Scheduling

Medium channel access protocols are used in networking systems to govern the com-

munication between computing nodes which share a network communications medium.

They are designed to allow reliable communication between the nodes, while maintaining

certain goals, such as minimizing network collisions, maximizing bandwidth, or maximiz-

ing the number of nodes the network can handle. Such protocols include Time Division

Multiple Access (TDMA), which tries to minimize the number of packet collisions; Fre-

quency Division Multiple Access (FDMA), which tries to maximize the bandwidth avail-

able to each transmitter; and Code Division Multiple Access (CDMA) which tries to max-

imize the number of nodes that the network can handle[26]. We will not discuss CDMA in

the scope of this work.

In FDMA, each node of the network is assigned a different transmission frequency

from a prescribed frequency band allocated for system communications. Since each node

transmits on its own frequency, collisions between nodes transmitting simultaneously are

reduced. Communications paradigms of this type, i.e. shared medium with collision-free

simultaneous transmission between nodes, can be modeled easily by our PNP2 modeling

paradigm described above, since the network resource model for each node can be devel-

oped without taking into account the transmissions of other nodes.

In TDMA, each node on the network is assigned one or more time-slots per communi-

cations period in which only that node is allowed to transmit. By governing these timeslots

and having each node agree upon the slot allocation and communications period, the proto-

col ensures that at a given time, only a single node will be transmitting data, minimizing the

number of collisions due to multiple simultaneous transmitters. In such a medium access

protocol, transmissions of each node affect other nodes’ transmission capability. Because

these transmissions are scheduled by TDMA, they can be explicitly integrated into the sys-

tem network resource model.
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3.4.1 Problem

TDMA transmission scheduling has an impact on the timing characteristics of the ap-

plications’ network communications. Because applications’ network data production is de-

coupled from their node’s TDMA transmission time slot, buffering may be required when

an application on one node tries to send data on the network during the transmission slot

of a different node. In this case, the data would need to be buffered on the application’s

node and would therefore incur additional buffering delay. If this TDMA schedule is not

integrated into the analysis of the network resources, the additional buffer space required

may exceed the buffer space allocation given to the application or the buffering delay may

exceed the application’s acceptable latency.

3.4.2 Results

So far, the description of the system provided network service profile (p[t] = y), has

been abstracted as simply the available bandwidth as a function of time integrated to pro-

duce the amount of data serviced as a function of time. We show how to model and analyze

the network’s lower-level TDMA MAC protocol using our network modeling semantics.

We then derive general formulas for determining the affect TDMA has on buffer size and

delay predictions.

As an example TDMA system which benefits from our analysis techniques, consider

an application platform provided by a fractionated satellite cluster. For this system, the

network between these satellites is a precious resource shared between each of the appli-

cations’ components in the cluster. To ensure the stability of the network resources, each

satellite has a direct connection to every other satellite and is assigned a slot in the TDMA

schedule during which the satellite may transmit. Each TDMA slot has a sinusoidally

time-varying bandwidth profile which may differ from the other TDMA slot bandwidth

profiles. The time-varying profile of the slot bandwidth comes from the coupling between
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the radios’ inverse-squared bandwidth-as-a-function-of-distance and the satellites’ sinu-

soidal distance-as-a-function-of-orbital-position, as described at the beginning of Chap-

ter III. The requirement for accurate performance prediction necessitates the incorporation

of the TDMA schedule into the network modeling and analysis.

TDMA schedules can be described by their period, their number of slots, and the band-

width available to each slot as a function of time. For simplicity of explanation, we assume

that each node only gets a single slot in the TDMA period and all slots have the same

length, but the results are valid for all static TDMA schedules. Note that each slot still

has a bandwidth profile which varies as a function of time and that each slots may have a

different bandwidth profile.

In a given TDMA period T , a node n can transmit a certain number of bits governed

by its slot length tn and the slot’s available bandwidth bwn. During the rest of the TDMA

period, the node’s available bandwidth is 0. This scheduling has the effect of amortizing the

node’s slot bandwidth into an effective bandwidth of bwe f f ective. The addition of the TDMA

scheduling can affect the buffer and delay calculations, based on the slot’s bandwidth, the

number of slots, and the slot length. The maximum additional delay is ∆delay, and the

maximum additional buffer space is ∆bu f f er. These deviations are shown graphically by

Figure 19 and calculated by

bwe f f ective = bwn ∗
tn
T

∆delay = T − tn

∆bu f f er = ∆delay ∗bwe f f ective

(23)

Where:

• T is the period of the TDMA schedule

• tn is the length of node n’s TDMA slot

• bwn is the bandwidth available to node n during its slot
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• bwe f f ective is the perceived bandwidth available to the node during the TDMA period

• ∆delay is the change in the predicted delay experienced by application traffic on the

network

• ∆bu f f er is the change in the predicted buffer space required for lossless transmission

of application traffic

Clearly, ∆delay is bounded by T and ∆bu f f er is governed by tn. Therefore, because tn is

dependent on T , minimizing T minimizes both the maximum extra delay and maximum

extra buffer space.

Following from this analysis, we see that if: (1) the TDMA effective bandwidth profile

is provided as the abstract system network service profile, and (2) the TDMA period is

much smaller than the duration of the shortest profile interval; then the system with explicit

modeling of the TDMA schedule has similar predicted application network characteristics

as the abstract system. Additionally, the maximum deviation formulas derived above pro-

vide a means for application developers to analyze the their application on a TDMA system

without explicitly integrating the TDMA model into the system profile model.

Through the analysis of TDMA scheduling’s effect on application level performance

prediction, we derived analytical formulas for the maximum deviation between the abstract

system model and the model with explicitly encoded TDMA scheduling. The use of these

formulas frees developers and system integrators from having to explicitly incorporate the

TDMA schedule in their application and system models. This TDMA modeling and anal-

ysis was published in [14].
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(a) In-Phase TDMA Profile vs Abstract

(b) Out-of-Phase TDMA Profile vs Abstract

Figure 19: Effects of TDMA scheduling in the MAC layer on system network perfor-
mance.
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3.5 Compositional Analysis

Now that we have precise network performance analysis for aggregate profiles or sin-

gular profiles on individual nodes of the network, we must determine how best to compose

these profiles and nodes together to analyze the overall system. The aim of this work is to

allow the profiles from each application to be analyzed separately from the other profiles in

the network, so that application developers and system integrators can derive meaningful

performance predictions for specific applications. For this goal, let us define:

Compositionality [22] A system is compositional if its properties can be derived from the

properties of its components and how they are interconnected.

Composability [22] A component is composable if its properties do not change when the

component is composed with other components.

For our analysis techniques to be compositional, an application’s required profile must

be analyzable individually without requiring aggregation with the rest of the required pro-

files in the system. This means that the system’s performance, i.e. the performance of all

the applications on the system, can be determined by analyzing the performance of each

application individually.

To achieve compositionality, we must not only define mathematical operations which

allow us to aggregate and separate profiles with/from each other, but also the semantics

of how these profiles are composed with one another. This semantics govern the relation

between required profiles, specifically governing the distribution of their shared node’s

provided profile between each other. For our compositional analysis, we defined that each

required profile in the system be given a unique priority, U , with the relation that a profile

P1 has a higher priority than profile P2 iff UP1 < UP2 . Using this priority relation, we can

define that a profile Pi does not receive any capacity from its node at time t until all other

profiles with priority <UPi have received their requested capacity from the node at t. If the

node does not have enough capacity at t to service Pi, then the data Pi attempted to send at
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t will be placed into its buffer, to be sent at a time when the node has available bandwidth

for Pi.

This priority relation for compositional analysis is similar to the task priority used for

schedulability analysis in Real-Time Calculus, mentioned in Section 2.1.2.3. Similarly to

RTC, this priority relation and compositionality allow us to capture the effects independent

profiles have on each other when they share the same network resources. Just as RTC based

its priority relation and computation scheduling on a fixed-priority scheduler, our priority

relation and resource allotment is based on the network Quality-of-Service (QoS) manage-

ment provided by different types of networking infrastructure. One such mechanism for

implementing this type of priority-based network resource allocation is through the use of

the DiffServ Code Point (DSCP)[41]. The DSCP is a bit-field in all packets which have

an Internet Protocol (IP) header which allows the packet to be assigned a specific class for

per-hop routing behavior. Routers and forwarders in the network group packets according

to their DSCP class and provide different service capacities to each class. For example,

the Expedited Forwarding [12] class receives strict priority queuing above all other traffic,

which makes it a suitable implementation of this type of resource allocation. Similarly, the

Linux Traffic Control[33] utility provides many mechanisms for shaping, policing, rout-

ing, and classifying traffic. Its class-based queuing disciplines and filtering mechanisms

provide the capability for such strict priority-based network resource allocation.

Mathematically, compositionality requires that we be able to add and subtract profiles

from each other, for instance to determine the remaining service capacity of a node avail-

able for a profile Pi after it serves all profiles with a higher priority. Queuing of the lower

priority profiles is taken into account when the lower priority profile is convolved with the

remaining capacity the node has available to service it. The calculation of the remaining

capacity, P′P, of the node after it services Pi is given as:

P′P = PP− (Pi⊗PP) (24)
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Where

• PP is the capacity available to profile Pi

Mathematically, addition and subtraction of two profiles f [t],g[t] are given by:

s[t] = f [t]+g[t] (25)

and

s[t] = f [t]−g[t] (26)

Experimental validation of these compositional techniques, specifically with respect to

priority relation, adding, and subtracting of profiles is presented in the end of Section 3.7.
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3.6 Delay Analysis

When dealing with queuing systems (esp. networks) where precise design-time guar-

antees are required, the delay in the links of the network must be taken into account.

The delay is modeled as a continuous function of latency (seconds) versus time. In

the profiles, the latency is specified discretely as (time, latency) pairs, and is interpolated

linearly between successive pairs. Specifically, time is a time point at which the latency on

the link is given by latency.

Using this latency semantics, the delay convolution of a profile becomes

r[t +δ [t]] = l[t] (27)

Where

• l[t] is the link profile describing the data as a function of time as it enters the link

• δ [t] is the delay profile describing the latency as a function of time on the link

• r[t] is the received profile describing the data as a function of time as it is received at

the end of the link

When analyzing delay in a periodic system, it is important to determine the effects

of delay on the system’s periodicity. We know that the period of the periodic profiles is

defined by the time difference between the start of the profile and the end of the profile.

Therefore, we can show that if the time difference between the start time of the received

profile and the end time of the received profile is the same as the period of the link profile,

the periodicity of the profile is unchanged.

• Tp is the period of the link profile

• r[t +δ [t]] is the beginning of the received profile

• r[(t +Tp)+δ [(t +Tp)]] is the end of the received profile
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We determine the condition for which (tend)− (tstart) = Tp:

(Tp + t +δ [Tp + t])− (t +δ [t]) = Tp

Tp +δ [Tp + t]−δ [t] = Tp

δ [Tp + t]−δ [t] = 0

δ [Tp + t] = δ [t]

(28)

Which is just confirms that the periodicity of the delayed profile is unchanged iff the

latency profile is periodic, i.e.

δ [t] = δ [t + k ∗Tp],∀k ∈ N> 0 (29)

Experimental validation of this delay analysis is presented in the end of Section 3.7.
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3.7 Analysis of Statically Routed Networks

3.7.1 Problem

As CPS become more distributed in nature and begin to act as infrastructure for dis-

tributed applications towards IoT systems, they will necessarily need to handle more net-

work resource management and network connection routing within their network as well as

between their own network and any external networks to which they are connected. Such

networks generally rely on routing to allow more flexibility in the system with respect

to node placement and connectivity. Adding routing to the network also has the effect of

increasing the complexity of the network performance analysis and can cause drastic differ-

ences in application network performance when compared with networks without routing.

Therefore the design-time analysis tools which help predict application network perfor-

mance must take this routing into account. It should be noted that this is a special case of

routing in ad-hoc networks, where one or more nodes can route messages for other nodes.

3.7.2 Results

Having discussed profile composition and the affects of delaying a profile, we can ad-

dress one more aspect of system analysis: routing. For this analysis we will specifically

focus on statically routed networks.

Firstly, we must define the assumptions we make about the router nodes with respect

to how they forward the network traffic. In our modeling and analysis, because we have

not considered transmission error/corruption, we are most closely modeling cut-through

routing / wormhole switching in which the routing and forwarding nodes in the system

forward all packets without checking them for corruption or integrity. This forwarding

mechanism differs from store and forward routing in which each packet is checked for

errors in its entirety before sending it to the next node on its route. In the case of store

and forward, when a corrupt packet is received by a routing node, it will not forward that

packet along its path, and may optionally request re-transmission of the packet from the
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previous node. Under the assumption of no transmission errors, we can incorporate the

added latency incurred by store and forward into the latency profile of the router node.

In this way, these two forwarding techniques can be modeled in a simple way using our

semantics (where they both simply affect the latency of the node).

Given these assumptions about the forwarding techniques of the routing nodes, we

can describe system-level analysis. By incorporating both the latency analysis with the

compositional operations we developed, we can perform system-level analysis of profiles

which are routed by nodes of the system. In this paradigm, nodes can transmit/receive their

own data, i.e. they can host applications which act as data sources or sinks, as well as

act as routers for profiles from and to other nodes. To make such a system amenable to

analysis we must ensure that we know the routes the profiles will take at design time, i.e.

the routes in the network are static and known or calculable. Furthermore, we must, for the

sake of profile composition as described above, ensure that each profile has a priority that

is unique within the network which governs how the transmitting and routing nodes handle

the profile’s data.

Let us define the system configuration C as:

C = {{PS},{N},{R}} (30)

Where

• {PS} is the set of all sender profiles in the system configuration

• {N} is the set of all nodes in the system configuration, and

• {R} is the set of all routes in the system configuration

We define a profile P as:

P = {NI,K,T,F,U,{(t,RD,D,L)}} (31)
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Where

• NI is the Node ID to which the profile applies

• K is the kind of the profile, where K ∈ {provided,required,receiver}

• T is the period of the profile

• F is the flow ID of the profile, where two profiles, P1,P2 belong to the same flow iff

FP1 == FP2

• U is the priority of the profile, where profile P1 has a higher priority than profile P2

iff UP1 <UP2 , and

• {(t,RD,D,L)} is a set of (time,data rate,data, latency) tuples describing how each

of {data rate,data, latency} vary with respect to time. Semantically, the data rate

is constant between any two successive values of t, while the data and latency are

linearly interpolated during the same interval. The initial profile specification does

not have the data field; data is calculated based on data rate.

Then we define a node N as:

N = {I,PP,{PR}} (32)

Where

• I is the ID of the node

• PP is the provided profile of the node, and

• {PR} is the set of all receiver profiles on the node

And finally, we define a route R as:

R = {NI1,NI2, ...,NIN} (33)
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Where

∀NX ,NY ⊂ N,∃!RX ,Y = {NIX , ...,NIY } (34)

We can then run Algorithm 1 to iteratively analyze the system. In this algorithm, the

remaining capacity of the node is provided to each profile with a lower priority iteratively.

Because of this iterative recalculation of node provided profiles based on routed profiles,

we directly take into account the effect of multiple independent profiles traversing the same

router; the highest priority profile receives as much bandwidth as the router can give it, the

next highest priority profile receives the remaining bandwidth, and so on.

We take care of matching all senders to their respective receivers, and ensure that if the

system supports multicast, a no re-transmissions occur; only nodes which must route the

profile to a new part of the network re-transmit the data. However, if the system does not

support multicast, then the sender must issue a separate transmission, further consuming

network resources. In this way, lower-level transport capabilities can be at least partially

accounted for by our analysis.

We have implemented these functions for statically routed network analysis into our

tool, which automatically parses the profiles, the network configuration and uses the al-

gorithm and the implemented mathematics to iteratively analyze the network. Analytical

results for example systems will be provided when the experimental results can be used as

a comparison.

To determine the validity of our routing, composition, and delay analysis, we developed

a sample system and application deployment consisting of two flows generated by two

profiles, one a high priority flow and one a low priority flow. Each flow originates on

a separate computing node, with different destinations. Both flows are routed through

the same routing node that enforces priority-based routing for the two flows. Figure 20

shows the configuration of the system and application for the experimental validation of

the routing, composition, and delay analysis techniques.
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analyze( sender_profiles )
{

sender_profiles = sorted(sender_profiles, priority)
for required_profile in sender_profiles
{

transmitted_nodes = list.empty()
for receiver_profile in

required_profile.receiver_profiles()
{
route =
getRoute(required_profile, receiver_profile)

for node in route
{
if node in transmitted_nodes

and multicast == true
{
continue

}
provided_profile = node.provided_profile

output_profile =
convolve(required_profile, provided_profile)

remaining_profile =
provided_profile - output_profile

received_profile =
delay(output_profile, provided_profile)

node.provided_profile = remaining_profile
required_profile = received_profile
transmitted_nodes.append(node)

}
receiver_received_profile =
convolve(required_profile, receiver_profile)

}
}

}

Listing 1: Algorithm for iteratively analyzing profiles in a distributed system with
static routing and profile priorities.

For this experimental setup, we configured the Linux kernel using TC[33] which pro-

vides mechanisms for implementing traffic prioritization, shaping, and delay, among other
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Figure 20: Experimental setup to validate routing, delay, and compositional analysis
of network profiles.

features. All application traffic on each node passed through shaping and delay queues,

which shaped the application traffic according to the properties of its system profile. Addi-

tionally, for the router node we configured priority queuing which filtered the application

traffic into a high priority queue and a low priority queue. These queues are dequeued in

the kernel according to priority FIFO, which means that data will not be dequeued from

lower priority queues unless all high priority queues are empty. These priority queues feed

into traffic shaper and delay queues, to enforce the system profile on the traffic. This con-

figuration is shown schematically in Figure 21. A more detailed description of the specific

configuration and operation of TC is given in Appendix B.

This experimental setup allows us to examine the validity of our analysis techniques in

the following ways:
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Figure 21: Diagram illustrating the flow of network traffic through the priority
queues and traffic shaping in the kernel. The priority handler ensures that traf-
fic in a lower priority queue is not serviced unless there is no traffic waiting in any
higher priority queue.

• Because the system implements the strict priority queuing of flows, especially inde-

pendent interacting flows, we can compare the delay and buffering measurements to

the same delay and buffer predictions from the model.

• Router buffer space requirements can be measured and compared with their predicted

requirements to validate routed network analysis.

• Link delay composition can be validated by examining the receiver buffer require-

ments compared with the predicted receiver buffer sizes.

The results of our experiments using this application and system configuration are

shown in Table 3. Similarly to our earlier experimental results, the predictions of the

overall delay for both the high and low priority routed flows are conservative, but tight

bounds on the actual delay experienced by the flows in the routed network with delays.
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The delay measurements represent the time difference from when the sender application

sends the message into the kernel for transmission, to when the receiver has received the

message from its kernel. In between these two events, the message will have been queued

and delayed by the sender’s kernel, and transmitted to the router node. On the router node

the message will have been queued and delayed (according to its priority) before being

transmitted to the receiver node. On the receiver node the message will have been queued

until the receiver is able to service the message according to its service profile.

Table 3: Delay Results: Prediction versus Experiment for Routing Analysis.

Predicted Measured (µ,σ )
High Priority Flow Delay (s) 8.96 (4.1436 , 0.00929)
Low Priority Flow Delay (s) 15.7775 (13.0460 , 0.01344)

As can be seen in the table, the results for the delay analysis are conservative but not as

tight as our previous results. These bounds are not as tight because TC does not perfectly

constrain the flows to their allotted bandwidths, instead allowing bursts through when the

link has capacity and data enters the shaper. These bursts have the effect of passing traffic

through the network faster than the traffic should have gone through the network and in turn

decreasing the latency of the traffic overall. Whereas our previous results used dummynet

for traffic shaping on a single traffic shaping node, we needed to use a TC based approach to

allow for the priority queuing of traffic and to better implement shaping of routed network

traffic. Despite these difference, the results still validate the compositional system analysis,

the delay convolution, and the iterative analysis of routed networks.
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CHAPTER IV

RUN-TIME NETWORK PERFORMANCE MONITORING AND MANAGEMENT
FOR DISTRIBUTED CPS APPLICATIONS

4.1 Middleware-Integrated Measurement, Detection, and Enforcement

4.1.1 Problem

Many networking solutions, especially for large-scale systems, utilize a communica-

tions middleware of some sort, which allows the lower layer networking implementations

to be abstracted into a uniform application programming interface. Furthermore, these

middleware often support higher-level communications, resource management, and relia-

bility configurations than the lower layers they are built on. However, these middlewares

do not support the kind of time-varying resource constraints and provisioning which we

have modeled and analyzed. Similarly, the lower layer resource allocation supports only

static resource allocations, such as static bandwidth allocation for different flows traversing

a network link.

As an example of such static resource allocation, consider two flows produced on the

same node for the same network interface. These flows produce data with a rate that varies

with respect to time, and both flows are high-priority flows. Since both flows are high-

priority, they should be guaranteed the data rate they need for the link they share, but the

link cannot support the combination of the flows’ maximum data rates, even though their

maximum data rates do not happen simultaneously.

With such resource allocation, it is difficult to guarantee these flows the capacities they

require while ensuring that excessive data produced by one of the flows does not negatively

impact the other flow.
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4.1.2 Results

To address this static resource allocation problem, we have integrated our modeling se-

mantics into middlewares to provide time-varying network resource allocation and capacity

sharing.

Our run-time research and development of measurement, detection, and enforcement

code for networked applications is built on the foundation of component-based software

engineering (CBSE). The goal of CBSE is to provide a reusable framework for the devel-

opment of application building-blocks, called components so that developers can develop

and analyze applications in a more robust and scalable manner. In CBSE, a component,

shown schematically in Figure 22, is the smallest deployable part of an application and is

defined as a collection of timers, ports, and an executor thread:

C = {{T},{P},H} (35)

Where

• {T} is the set of all timers within the component. A timer provides a periodic event

trigger to the component which triggers the callback associated with T , where a

callback is a function defined and implemented by the developer.

• {P} is the set of all input/output ports within the component. An i/o port provides

a mechanism for message passing and event triggering between components, and

may take the form of asynchronous publish/subscribe or synchronous client/server

interaction patterns. Similarly to timers, each incoming event triggers the callback

associated with P.

• H is the single thread which executes all event events for the component, in FIFO

order, without preemption.
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Figure 22: Schematic representation of a software component.

From this component definition, we can define an application as a grouping of compo-

nents and a mapping between the ports of components:

A = {{C},{M}} (36)

Where

• {C} is the set of components in the application

• {M} is the set of mappings between ports of the components in {C}, for instance

connecting a subscriber of Cx to a publisher of Cy, Mx,y : Cx{PS} 7→Cy{PP}.

And finally, an application’s components are grouped into processes and distributed

onto the nodes of a system through a deployment defined as a collection of nodes, pro-

cesses, and a mapping from the nodes to the processes:

D = {{N},{U},{M}} (37)
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Where

• {N} is the set of hardware nodes in the system

• {U} is the set of processes defining the deployment, where a process is a collection

of components U = {C} ⊆ A{{C}}.

• {M} is the set of mappings between processes and nodes in the system, e.g. MU1,N1 :

U1 7→ N1.

Note here that though the components are single threaded internally, the application

containing these components may run them in parallel, e.g. by grouping them into a process

or distributing them among the hardware nodes of the system. An example application and

deployment onto a system of nodes is shown in Figure 23. Note that multiple applications

(shades of blue in this figure) may be deployed simultaneously onto the same system and

may even interact with each other. By using this component modeling framework and

the associated code generation tools we have developed, the application developer needs

only to provide the business-logic code for the application; the rest of the middleware and

component configuration code is automatically provided by our library.

To facilitate experimentation and testing of our analysis techniques, we have developed

network traffic production and consumption code which produces or consumes traffic on a

communications link according to either a sender profile or receiver profile. These profiles

are the same profiles used in the design-time analysis. We integrated this producer/con-

sumer code into our component code-generators, which generate component skeleton code

and communications middleware glue code based on our component model. Both sender

and receiver automatically measure and record the network traffic for offline analysis.

Since the sender middleware code is automatically measuring and recording the output

traffic from the application, we implemented additional code which can optionally push-

back to the application by throwing an exception when the application is producing more

data than specified in its profile. This push-back helps prevent a single application from
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Figure 23: Two example distributed CBSE applications deployed on a system with
4 nodes.

producing more data than the system was designed for and flooding the network. In the

case that such a push-back occurs, the application is notified and the data is not transmitted

onto the network. Using this mechanism, a malicious or faulty application can be prevented

from flooding the network and degrading the service of the network to other applications.

Similarly, since the receiver middleware code is automatically measuring and recording

the input traffic from each of its senders, we implemented an additional communications

channel which is used by the sender and receiver middleware and allows out-of-band com-

munication which is invisible to the application. This out-of-band channel allows the sender

to detect anomalies and inform the sender-side middleware of such anomalies. Further de-

tails about this capability and uses are explained in Section 4.2.

The development of this producer/consumer/measurement code not only helps with

running experiments and data collection but also helps to ensure model to system consis-

tency.
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Figure 24: The structure of component-based applications and how their network
traffic traverses the middleware and the OS stack.

We have implemented profile-based traffic production/consumption and traffic mea-

surement into our code generators that we use with our model-driven design software. We

developed this toolsuite to create distributed component-based software which uses the

Robot Operating System (ROS)[18] as the communications middleware. ROS provides

the capability for managing message passing, event triggering, and timer triggering that

we need for our software components. For publish/subscribe interactions between com-

ponents, into the publisher’s generated code we add generic traffic producer code which

publishes traffic according to the sender profile. Additionally, these publish operations are

configured to use a small wrapper function which can measure the publish rate and can

decide to throw a profile exceeded exception if the application attempts to send too much

data or if the receiver has pushed back to the sender informing it to stop. The sender-side

middleware layer is shown in Figure 24.
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This push back from the receiver occurs through the use of an out-of-band (OOB) chan-

nel using UDP multicast, which receivers use to inform specific senders that they are send-

ing too much data to the receivers (and possibly overflowing the receiver buffers). This

OOB channel provides a mechanism by which the secure middleware layer can protect the

system from malicious or faulty applications.

Into the receiver code (for subscribers) we additionally generate a receive buffer and

receiver thread which pulls data from the buffer according to the receiver profile. In this

scenario, the receiver has a capacity with which it can handle incoming data, and it has a

finite buffer so it must use the OOB channel and measurements on the incoming data stream

to determine which senders to shut down to ensure its buffer does not overflow. When the

buffer has had some time empty (so that it’s not in danger of running out of buffer space),

the receiver can use the OOB channel to inform the halted senders that it is alright to send

again. The complete description of the OOB channel, and the way the receiver limits the

senders can be found in Section 4.2. An example of our traffic producer’s accuracy is

shown in Figure 25. For the data in this figure, each message was recorded as a tuple of

timestamp,messagesize, where the timestamp is the time at which the message was either

sent by the application.
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Figure 25: Demonstration of the accuracy with which our traffic producers follow
the specified profile.

4.2 Distributed Denial of Service (DDoS) Detection

4.2.1 Problem

For distributed systems which must ensure resource availability and system stability, a

key aspect of the infrastructure is detection and mitigation of faults or anomalies. With re-

spect to network resources, an example is checking source and destination for communica-

tions to enforce only authorized communication flows are present in the system. However,

software glitches or compromised applications can exceed system resources that they have

been allocated. As described in the previous section, higher-fidelity resource modeling and

monitoring is required to prevent such faults or compromises from propagating throughout

the system. However, mitigating the propagation only solves part of the problem; ideally

the system should classify the type of fault or anomaly and begin diagnostics to trace the

fault/anomaly back to its origin. In this thesis we will address only the problem of detecting

and mitigating Distributed Denial of Service attacks.
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Denial-of-Service (DoS)[37] and Distributed DoS (DDoS) attacks can take many forms,

but are generally classified as excessive traffic from a large amount of (possibly heteroge-

neous) sources targeted towards a single point or a single group. Such attacks are common

to machines on the internet, but can also become a hazard for machines on private networks

which become infected or inadvertently expose an input path for external malicious data.

These private or semi-private systems must have mechanisms for detecting and mitigat-

ing such attacks, and the combination of our design-time analysis and run-time measure-

ment, detection, and mitigation tools provides a form for such capability. The goal of this

work is for a receiver, which is being targeted for attack by a set of senders, to determine

which of the senders are behaving anomalously and prevent them from sending any more

data. In this way, a group of senders performing a DDoS attack can be mitigated by the

targeted receiver. Towards this goal we make the following changes outlined below to our

modeling/analysis framework and implementation.

4.2.2 Results

Because these types of attacks come from systems for which the application profiles

may not be completely or fully known, we must alter our modeling semantics such that we

can model these types of applications and the uncertainty surrounding their data rates.

If we relax the constraint on the modeling semantics that all sender profiles are absolute

and the system behavior is completely known at design-time, then we not only expand the

scope of applications that can be supported but also enable meaningful anomaly detection.

Whereas previously, profiles modeled the exact data rate as a function of time that the

application produced, we now alter the definition to capture two parameters: mean data rate

(µ) and max data rate (MDR), which again are both functions of time. Just as before,

these functions are constant-valued between successive values of t and are time-integrated

to produce the mean data and max data cumulative profiles as functions of time. With this

specification, we no longer know exactly how much data an application will produce at a
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given point in time, but instead are provided two values by the developer: the mean and

max.

Now that we have these two profiles for the application, we could simply analyze the

max data profile to determine buffer and latency requirements, but this would end up wast-

ing resources by allocating memory and network resources of the system to the application

even if is not producing data at its max rate. Instead, we analyze the system according to

the mean data profile to determine buffer requirements and latency for the application in the

system. In doing so, two buffer overflow risks are possible: 1) Sender-side buffer overflow,

and 2) Receiver-side buffer overflow.

We make the assumption that the application meters its sending to prevent the first

scenario, so that its data is not lost before making it onto the network. In this case, the

sender can still send data at a rate greater than the mean, but that rate is partially governed

by the capacity given to it by the node’s network.

For the second case, we must ensure that there is no buffer overflow on the receiver-side.

To enable this functionality, we must provide a mechanism for the receiver to communicate

with the sender. This push-back communication should travel through a channel outside the

communications channel that the application has access to, so that the application, either

maliciously or inadvertently, cannot disrupt this push-back and in turn cause the receiver’s

buffer to overflow. For this reason, we add into the sender and receiver middleware an

out-of-band (OOB) channel that provides a communications layer between all senders and

receivers that is invisible to the application. For our component model and communications

middleware, we have implemented this OOB channel as a UDP multicast group.

Because the goal of this work is to meter only the senders which are producing too much

data, we must define what too much data is. Because we have developed these application

profiles for analysis, and these profiles describe the mean data rate, µ , and the max data rate,

MDR, of the senders, they will be used to determine when a sender is sending too much

data. In this paradigm, sender Si is determined as behaving anomalously (i.e. sending
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too much data) if it is sending data at a rate DRi > µi. The assumption implicit in this

comparison is that the receiver, to be able to make this comparison, has full knowledge

of µi, since DRi is calculable on the receiver side. If the receiver’s buffer is filling up, it

looks through the measured DRi (within a certain window of time) for each of the senders

it has been receiving data from, and compares it against the sender’s µi. If the comparison

is true, it uses the OOB channel to push back to that specific sender, informing the sender-

side middleware to stop transmitting data until the receiver has re-enabled that sender’s

transmission. When the receiver has emptied it’s buffer enough it can then use the OOB

channel to re-enable any disabled senders. The algorithm used by the receiver to determine

which senders to limit is shown in Listing 2, and has been integrated into our middleware.

receiver::limit_ddos( t_start, t_end )
{

for sender in senders
{

d_start = sender.received_data(t_start)
d_end = sender.received_data(t_end)
profile_d_start =
sender.profile(t_start)

profile_d_end =
sender.profile(t_end)

allowed_data = profile_d_end - profile_d_start
actual_data = d_end - d_start
if actual_data > allowed_data
{
sender.disable()

}
}

}

Listing 2: Algorithm used by receivers to determine which senders to limit. The
receiver only looks at the behavior of senders within the time window between tstart
and tend , which is configurable.
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Figure 26: Nodes in an example network and how they communicate (using pub-
/sub). The application communications are shown by the solid black arrows, and
the out-of-band communications are shown by the red dotted arrows.

We have shown experimentally (for the system in Figure 26) that this measurement, de-

tection, and mitigation strategy can protect non-malicious clients from being denied service

to a server by malicious or faulty clients. In this example, the client’s data might be lost

if the server’s buffer overflows. Using the algorithm and implementation described above,

we show that the server is able to keep its buffer from overflowing despite two of the three

publishers producing too much data. In this scenario, the attackers would cause dropped

packets by producing data at a rate just less than their MDR, which would require a server

side buffer of 459424 bits. However, the server detects that its buffer might overflow and

that the two malicious clients are producing too much data and it signals for their middle-

ware to prevent them from sending data. In this way, it maintains available buffer space

(maximum buffer of 393792 bits) to handle the good client’s data and the good client is not

denied service.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

We have described in this thesis the aspects of Cyber-Physical Systems(CPS) analysis,

design, development, and integration we are addressing. We have provided descriptions

of the relevant related work in this area, covering both the design-time modeling, analysis,

and performance prediction for networked, distributed, CPS applications and the run-time

monitoring and management of application and CPS network resources.

Subsequently, the completed research towards precise network performance prediction,

PNP2, was presented.

First, the formalization for the modeling and analysis semantics and techniques were

defined, building off of the (∧,+)− calculus used by Network Calculus. Models of sys-

tems and applications were presented and convolution (⊗) of application profiles with sys-

tem profiles was defined. Using (∧,+)− calculus, the computation of delay and backlog

bounds were defined.

Given the definition of the fundamental operations of PNP2, analysis of periodic sys-

tems was presented. We described how periodic data rate profiles can be time-integrated to

produce repeating data profiles as functions of time. We proved that the minimum amount

of time for which the system and its applications must be analyzed to determine if there is

unbounded buffer growth is two hyperperiods.

Using experimental system data, we determined the benefit of PNP2 versus similar

techniques such as Network Calculus. We showed how our techniques provide more accu-

rate predictions with respect to the actual system but are still conservative predictions.

We then showed how a model of MAC protocols, such as TDMA, could be incorpo-

rated into the system and application models. Using these models, we analytically derived

equations for the effects of such protocols on the predicted delay and backlog bounds.
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The mathematical operations of PNP2 were extended to support compositional system

analysis by defining the concepts of profile addition and subtraction. For this compositional

analysis, the concept of profile priority was introduced to determine service precedence by

the transmitting node between two profiles.

Since latency is such a critical aspect of networking systems, we introduced semantics

for modeling the delay of network links as a linear, continuous function of time. Con-

volution of a profile with a delay profile was introduced and its effects on the profile’s

periodicity were analyzed.

To support more complex systems which include nodes that can act as routers and for-

warders for traffic from other nodes, we presented an algorithm that uses the concepts we

developed for delay analysis and compositional analysis to iteratively analyze a system

which contains statically routed traffic. Experimental validation of this integrated, system-

level analysis was provided to demonstrate the accuracy and precision of the analysis tech-

niques.

To support experimental validation and run-time testing, we developed code generators

that generate traffic producer/consumer and measurement code into the component mod-

els we defined. Using these producers and consumers, which operate based on the same

profiles used for design-time analysis, we ran experiments which corroborated our analysis

results.

Finally, we extended our traffic producer/consumer code to enable management of the

network traffic by the communications middleware. Detection code was developed for the

receivers to detect when and which senders were overflowing the receiver’s buffer and use

an out-of-band communications channel to inform the sender’s middleware to limit the

sender’s data production.
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5.1 Future Work

In this work we have described the beginning of precise, comprehensive network system

performance analysis and prediction. However, we could not possibly cover the modeling

and analysis of all possible system configurations, communication protocols, or interaction

paradigms. Furthermore, we have examined the affect certain system configuration param-

eters or modeling choices have on our analysis techniques and results, but such examination

is not exhaustive.

Extending this work would focus on these areas in the following ways:

• Modeling and analysis support for more (commonly used) transmission protocols,

such as TCP or SCTP.

• Developing models of other MAC protocols such as CSMA

• Deriving models of packet loss or transmission error and analyzing their effects on

the prediction results

• Analyzing the effects of uncertainty in the modeling of applications and systems

• Research into methods for including models of data-dependent network traffic and

analyzing such applications

• Analyzing the affects of timing and time synchronization inaccuracies on the predic-

tion results

• Investigating run-time implementation alternatives and data analysis techniques

To support modeling and analysis of protocols such as TCP, which are reactive to

return-path information, return-path modeling semantics and analysis techniques would be

needed. Return-path modeling can be challenging because in the non-trivial case, return-

path information is used to make the application or system protocol reactive to the current
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state of the system. This is the case for instance in TCP where the timing of the return pack-

ets or the lack or return packets alters the outgoing data flow. Similarly, lower-level protocol

implementation details like connection management and handshaking can be affected by

variable network capacity, therefore they can indirectly affect application performance.

This type of return-path modeling and feedback system needed for modeling such pro-

tocols would also benefit the analysis of data-dependent application profiles, since they

similarly are dependent on some external input which at least partially governs the charac-

teristics of the traffic they produce.

Similarly, forwarding protocols in the lower layers, such as the store and forward mech-

anisms used by certain routers, are also reactive to data driven events, such as packet loss

or packet corruption. The modeling and analysis extensions described above would pave

the way for the analysis of the effects on application performance caused by these lower

level protocol mechanisms.

As an extension to the application and system level models, which currently are pre-

cisely defined and assumed to be exactly known, research into uncertainty analysis of these

profiles would allow performance prediction for systems that do not meet these assump-

tions about full knowledge. If instead of exact knowledge about the system and application

profiles, the application developers and system integrators have uncertainties associated

with their models, then analysis of the uncertainty and its effect on the predictions would

expand the scope of systems to which the techniques could be applied.

In a similar way to the modeling uncertainty analysis, timing uncertainty analysis could

be performed to determine the affects of incomplete time synchronization between the

nodes of the system. Such analysis would allow for the relaxation of the system-wide time-

synchronization constraint. If that constraint is relaxed such that the nodes are known be

re-synchronized periodically with some predictable drift, then such behavior can be directly

analyzed similarly to the TDMA analysis. From this information, maximum deviations on
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the required buffer and delay can be calculated, similarly to the deviations calculated for

TDMA systems.

Finally, the analysis of application traffic profiles provides a possible avenue for pre-

cise categorization of application behavior. Given an application which is supposed to

produce traffic with a certain profile, middleware-based measurements of the actual traffic

profile produced by the application can allow the middleware or other management entity

to classify the behavior of the application. Analyzing this behavior and comparing it with

the behavior of other applications in the system would allow for better detection of faults,

malicious behavior, or other anomalies.
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APPENDIX B

CONFIGURATION OF LINUX TC

This chapter covers the specifics of how the routing, queuing, and shaping of network

traffic is configured and how this traffic passes through the queues and shapers in the Linux

Kernel before being transmitted through the network interface.

We configure the system’s static routes using the Linux’s built-in IPRoute[25] tool,

which allows for the configuration of the kernel’s routing tables, network address transla-

tion (NAT), and characteristics of the network interface such as the maximum transmit unit

(MTU). For each node, a route is added to the routing table specifying the next hop address

as its gateway for each other node to which it is not directly connected. In this way, the

packets in the network will be routed using loose source-based routing where the sender

node does not know the full route that the packet will take, but just forwards it to the next

known location.

The system’s priority-based network traffic queuing, network delay, and network band-

width capacity was configured using Linux’s built-in Traffic Control (TC)[33] tool (which

is part of IPRoute), that allows for the configuration of hierarchical class-based traffic

scheduling, and traffic shaping. We configured the output interfaces on each node as a

combination of two queuing disciplines (qdiscs): 1) a network emulator (netem) which en-

forces the link delay, and 2) a token-bucket filter (TBF) which enforces the rate control to

enforce the link’s bandwidth profile. On the routing node, we added an additional priority

qdisc (prio), with multiple priority queues. We configured TC to filter packets into these

queues by matching packet source IP address and destination IP address. This filtering

ensured that the high priority flow’s packets would be filtered into the high-priority queue

of the prio qdisc, while the lower priority flow’s packets would be filtered into the lower

priority queue of the prio qdisc. All traffic out of the priority qdisc was fed into the TBF
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to ensure that all traffic, regardless of priority, shared and was shaped by the node’s link

capacity profile. The configuration and function of TC is shown in Figure 27.

Figure 27: Diagram illustrating the TC configuration used to implement priority
flows, traffic shaping, and delay.
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