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CHAPTER I 

INTRODUCTION 

The motivation of this dissertation is to evaluate the spatial correspondence between 

functional magnetic resonance imaging (fMRI) signals and their underlying neural activity in both 

stimulation and resting state conditions, and to investigate the dynamics of brain functional 

connectivity in both fMRI and electrophysiological signals.  

FMRI is well established as a neuroimaging technique for detecting and delineating regions 

in the brain that change their levels of activity in response to specific experimental conditions. In 

addition, the identification of patterns of highly correlated low frequency fMRI signals in resting 

states potentially provides a powerful approach to assess neural circuits and brain functional 

organization, in which distributed brain regions work together to achieve different functions. 

However, fMRI studies rely on detecting hemodynamic changes as revealed by blood oxygenation 

level-dependent (BOLD) signals to infer underlying local neuronal activity, and these are indirect 

indicators of neuronal activity. Precise interpretations of fMRI studies require a better 

understanding of the quantitative relationships between BOLD signal changes and their 

corresponding electrophysiological signatures. Local field potentials (LFPs) are 

electrophysiological signals generated by the summed electric currents flowing from a population 

of nearby neurons within a small volume of the brain around a recording electrode tip. Several 

previous studies have confirmed that fMRI signals are temporally reliable indicators of associated 

LFPs. However, no previous study has directly compared the spatial distributions of BOLD and 

LFP signals in both information processing and their correlation profiles in a resting state. 

Moreover, LFPs themselves are complex in nature and have specific spectral properties of 

functional significance. Therefore, this thesis compares the extents and locations of activations 

and the local correlation profiles between frequency-specific LFPs and submillimeter resolution 

BOLD at 9.4T within primary somatosensory (S1) cortex in individual monkeys.  

Variations over time in resting state correlations in BOLD signals from different cortical 

areas may indicate changes in brain functional connectivity. Recently, there has been an increasing 

interest in the detection and characterization of possible dynamic changes in fMRI functional 

connectivity. However, apparent variations over time may also arise from stationary signals when 

the sample duration is finite. To identify possible temporal dynamic changes in functional 
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connectivity, in this thesis, a filtered stationary model and a nonstationary dynamic model were 

developed to simulate real fMRI functional correlations, and simulated results were compared with 

the behavior of S1 networks in anesthetized squirrel monkeys at high field (9.4 T), using a sliding 

window correlation analysis.  

Finally, broad band electrophysiological signals most likely reflect contributions of several 

different neural processing pathways, and are traditionally decomposed and interpreted in the 

frequency domain. To evaluate the differences in dynamic patterns between fMRI and frequency-

specific LFP (delta, theta, alpha, beta, gamma low, gamma high and gamma very high bands) 

functional connectivity, the time-varying probability distributions between both modalities were 

quantitatively compared, using a sliding window correlation technique and a Markov chain model-

based approach.  
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Basic Principles of Magnetic Resonance Imaging 

Magnetic resonance imaging utilizes the phenomenon of nuclear magnetic resonance 

(NMR) which was first detected in liquids by Felix Bloch and Edward Purcell [Purcell et al., 1945; 

Bloch and Hansen, 1946]. In 1973, Lauterbur produced the first MR images of small test tube 

samples of water by using magnetic field gradients to link spatial position to the NMR frequency 

[Lauterbur, 1973]. This led to the rapid development of larger imaging systems capable of imaging 

human subjects. Today, MRI is the main noninvasive imaging method used for studying the human 

brain. 

MRI detects the NMR signals from hydrogen nuclei (protons) mainly contained in water 

molecules in tissues. Each proton has a small magnetic moment and in the presence of an applied 

magnetic field they tend to align with the field, which produces a net macroscopic magnetization 

in the body. MRI maps this net magnetization within a section of the sample.  

 

Nuclear magnetization 

Biological tissues are approximately 70 - 80% water [Altman and Dittner, 1964] so they 

contain a large number of hydrogen protons (pure water is ≈ 110 Molar in H nuclei). In the 

absence of a magnetic field, the magnetic moments of the protons are randomly oriented, so there 

is no net magnetization. 

As many have described [Suetens et al., 2009; Huettel et al., 2004; Brown and Semelka, 

2003; McRobbie et al., 2008; NessAiver, 1996; Bushberg and Boone, 2011], hydrogen protons are 

nuclei with angular momentum or spin = ½, and quantum rules determine that there are only 2 

energy levels allowed in the presence of an applied magnetic field, corresponding to spin UP 

(aligned) and DOWN. The spin UP level is the lowest energy state, so the majority of protons 

occupy this level which produces a net magnetization along the external magnetic field direction. 

The direction of the net magnetization in equilibrium is usually termed the z-component or 

longitudinal component. In a voxel, the net magnetization M0 is proportional to the number of spins 

in that voxel. In order to measure the magnetization, a radiofrequency (RF) field at a precise 

frequency is used to tip the vector to produce a transverse component. The RF frequency is 

calculated using the Larmor equation (Eq. (1)) 
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                                                             wRF = gB0                                                                                   Eq. (1) 

 

where wRF is the resonance frequency, and B0 is the external magnetic field. The RF pulse is 

applied to excite the nuclei to a higher energy level. The transverse component is the net sum of 

nuclei which have angular momentum and so their net magnetization rotates about the main field 

direction. When the RF pulse is removed, the nuclei go back to their original states and the system 

returns to equilibrium. The transverse component of magnetization decays to zero, and the 

longitudinal component returns towards the original state before the application of the RF pulse, 

M0. This process of the system returning to equilibrium is called relaxation.  

 

Return to dynamic equilibrium: relaxation 

 
Figure 1 Schematic overview of an MRI relaxation with a 90o RF pulse. The RF pulse generates the 

transverse component of the net magnetization due to energy absorption. After removing the RF pulse, 

relaxation of T1 in the longitudinal direction and T2 in transverse plane returns the system to equilibrium. 

Figure adapted from Suetens, 2009. 
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The drop in the transverse component of the net magnetization vector is caused by the spin-

spin relaxation phenomenon as presented in Figure 1. In practice, the spins rotate in phase at the 

end of the application of the RF pulse, but then gradually, each may experience a slightly different 

magnetic field and therefore rotate at different angular frequencies. This causes a decrease of the 

net transverse component magnetization Mxy (t) with time constant T2 

 

                                                      Mxy (t) = M0 𝑒"#/%&                                              Eq. (2) 

 

As many have described, T2 is the transverse relaxation time required for the transverse 

component of Mxy to decay to 37% of its initial value, and M0 represents the equilibrium net 

magnetization immediately before the RF pulse [Brown and Semelka, 2003; Huettel et al., 2004; 

Suetens, 2009]. The T2 value depends on the molecular interactions of water in the sample and is 

highly variable between different tissue types and for different external magnetic field strengths 

[Wansapura et al., 1999; Barth and Moser, 1997; Meyer et al., 1995; van Zijl et al., 1998; Ogawa 

et al., 1993a; Yacoub et al., 2001; Lee et al., 1999]. In practice, the main magnetic field that is 

applied to the tissue sample is inhomogeneous, therefore the transverse component of the net 

magnetization is dependent on both the T2 relaxation and the field inhomogeneity. As mentioned 

in Haacke et al. [1989] and Chavhan et al. [2009], T2
* is shorter than T2, and can be defined using 

Eq. (3): 

                                                       '
(&∗

= 	 '
(&
	+	 '

(&-
	                                                   Eq. (3) 

 

where 1/T2’ = g∆Bi represents the relaxation rate contribution attributable to field inhomogeneities 

across an imaging voxel. As will be discussed later, functional brain imaging relies on detecting 

changes in the decay constant T2
* caused by neural activity.  

The rate of recovery of the longitudinal component is slower and occurs with a time 

constant T1. The behavior of the magnetization after an RF pulse is described by a set of equations 

first proposed by Bloch [Bloch and Hansen, 1946] and these can be solved to produce expressions 

for the magnetization as a function of time. T1 is also a property that varies considerably depending 

on tissue composition and the external magnetic field strength. 
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MRI signal detection  

As described by Huettel et al. [2004] and Suetens et al., [2009], as the magnetization rotates, 

currents are induced in conductors near the sample and can be digitized for detection as signals. 

Specifically, RF coils around a sample can detect the signals sx (t) and sy (t) that are produced by 

the rotating transverse component of the net magnetization following a 90o RF pulse: 

 

      sx (t) = M0 𝑒"#/%& cos(w0t)                                                Eq. (4) 

      sy (t) = M0 𝑒"#/%& sin(w0t)                                                 Eq. (5) 

 

If the RF pulse is repeated after a repetition time, TR, the longitudinal component of the 

net magnetization vector would have already been recovered to a value as described in Eq. (6): 

 

       Mz(TR) = M0 (1- 𝑒"%0/%')                                               Eq. (6) 

 

If the RF pulse is repeated after a repetition time, TR, the longitudinal component of the 

net magnetization vector may not be fully recovered so the starting magnetization is reduced. The 

Bloch equations then predict that the detected signal becomes 

 

                                              s(t) = M0 (1- 𝑒"%0/%') 𝑒"#/%&                                        Eq. (7) 

 

[Bloch and Hansen, 1946]. This signal depends on the spin density and relaxation times but 

provides no information on spatial locations. Imaging requires the use of magnetic field gradients 

as originally proposed by Lauterbur [Lauterbur, 1973]. 
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Spatial information in MRI 

In MRI, a strong and static magnetic field B0 is used to align the nuclei, and gradient 

magnetic fields are applied to spatially map their locations. This includes selecting a slice and 

encoding the nuclei locations within the selected slice. To select a slice of interest that is 

perpendicular to the z-axis, a gradient magnetic field, Gz, that varies with z in a linear fashion is 

superimposed onto the main magnetic field, B0. For small flip angles, the slice profile of 

magnetization is approximately determined by the Fourier Transform of the RF pulse envelope 

[Haacke et al., 1999; Berstein et al., 2004]. In order to obtain a rectangular slice profile, the RF 

pulse must therefore be a sinc function. However, in practice, this is impossible due to the infinite 

extent of a true sinc function. For this reason, the sinc function is truncated and is thus not perfect. 

Note that if the center frequency of the RF pulse is changed, then a slice at a different spatial 

location would be selected.  

After exciting the nuclei in a slice, additional gradients Gx(t) and Gy(t) are applied for short 

times to map the signal locations within the plane. These additional gradients affect the signal and 

can therefore be used to encode x and y location information. Each gradient affects the signal 

frequency and phase at each location. The total signal, S(t), acquired from a selected slice after 

removing the RF pulse is then given by equation 8 [Huettel et al., 2004]:  

 

S(t) = 𝑀 𝑥, 𝑦 𝑒"67 89 : 9;8< : < =:>
? 𝑑𝑥𝑑𝑦	<9                            Eq. (8) 

 

The signal depends on the gradient amplitudes and their duration. Eq. (8) may be rewritten 

in a different notation scheme named k-space [Ljunggren, 1983; Twieg, 1983] as described with 

Eq. (9) and Eq. (10) [Huettel et al., 2004]: 

 

                                                    kx (t) =  7
&A

𝐺#C x 𝜏 𝑑𝜏                                           Eq. (9) 

                                                    ky (t) =  7
&A

𝐺#C y 𝜏 𝑑𝜏                                           Eq. (10) 

                                  S(t) = 𝑀 𝑥, 𝑦 𝑒"6&AE9 # 9𝑒"6&AE< # <𝑑𝑥𝑑𝑦<9                 Eq. (11) 
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Eq. (11) indicates that the MRI signals are detected in k-space as a function of the gradient 

amplitudes and durations, and k space and MR image space are 2D Fourier transforms of each 

other. MR images may be reconstructed by inverse Fourier Transform of the measured k-space 

data acquired for different gradient waveforms [Twieg, 1983].  

As described by Brown and Semelka [2003], in a practical study, a gradient magnetic field 

running along one of the two in-plane dimensions of the slice (e.g. x) is perpendicularly applied to 

the slice direction during the acquisitions of the signal in order to encode the spin location at that 

direction via the magnitude of the readout signals and their specific frequencies. The third 

dimension of the image is encoded by applying another gradient magnetic field that is 

perpendicular to both the slice selection gradient and the readout gradient. This is known as the 

phase encoding gradient magnetic field and is applied before signal sampling in the presence of 

the frequency encoding gradient. In a 2D imaging sequence, the phase encoding gradient is the 

only gradient that changes magnetic field strength during the data acquisition loop, where the MR 

images are acquired through continual excitation and signal detection at multiple time points with 

their own phase encoding gradient amplitude. These signals are each spatially encoded based on 

their distance from the iso-center of the scanner. The closer the signal is to iso-center, the smaller 

the incremental phase change will be when comparing signals acquired in each of the phase 

encoding gradient magnetic fields. Conversely, the further the signal is to iso-center, the absolute 

magnitude change in the applied gradient magnetic field will be greater. 

 

Pulse sequences 

MRI provides images based on the contrast between tissues. These contrast differences are 

highly dependent on the applied pulse sequences. For example, in the commonly used spin echo 

(SE) pulse sequence, an 180o refocusing pulse is applied symmetrically in between an excitation 

RF pulse and signal acquisition (Figure 2). The effect of the 180o pulse is to partially reverse some 

of the dephasing caused by field inhomogeneities and to produce a spin echo [Haacke et al., 1999; 

Brown and Semelka, 2003]. 
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Figure 2 Spin echo sequence timing diagram in a single echo. The RF pulses consist of an excitation pulse 

and a 180o refocusing pulse. The sequence also contains a regular slice selection gradient field, phase 

encoding and frequency encoding gradient magnetic fields. The 180o refocusing pulse is applied halfway 

in between an excitation RF pulse and the echo formation. Figure adapted from Brown and Semelka, 2003. 

 

Another widely used sequence is a gradient echo sequence (Figure 3). A frequency 

encoding gradient is applied for a short time to cause the transverse magnetization to decay as 

nuclei dephase, but this dephasing can be reversed by applying the same gradient in the opposite 

sense to rephase the signal [Elster, 1993; Haacke et al., 1999; Brown and Semelka, 2003]. Each 

acquisition sequence can be rapidly repeated if the flip angles produced by the excitation RF pulses 

are much less than 90o [Winker et al., 1988]. 

In a gradient echo sequence, the time to acquire the image after the RF pulse, TE, is 

determined by when the gradient pulses have equal area which determines the amount of T2
* 

weighting. The amount of T1 weighting depends on both the flip angle caused by the excitation 

RF pulse and the TR [Haacke et al., 1999; Brown and Semelka, 2003]. 
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Figure 3 Gradient-echo sequence timing diagram. In the absence of a 180o RF pulse, the orientation of the 

initial application of the readout dephasing gradient pulse (a) is to the opposite polarity to the readout 

gradient rephasing pulse applied during signal sampling. Gradient spoiling is demonstrated at the end of 

the excitation cycle. Figure adapted from Brown and Semelka, 2003.  

 

Another type of commonly used pulse sequence that is also especially relevant for 

functional MRI is echo planer imaging (EPI). As developed by Sir Peter Mansfield and his 

colleagues in 1991 [Stehling et al., 1991], EPI creates a set of echo signals caused by the oscillating 

direction of the readout gradients.  Each echo has a different degree of phase encoding so the set 

of echoes contain a complete range of k-space data. In a single-shot EPI sequence, a whole image 

is acquired from a single signal sampling in one TR. In multi-shot EPI, all the k-space data are 

measured with several “shots” in a zig-zag fashion.  
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Figure 4 Timing diagrams for a set of echo planar imaging sequences where the continual phase encoding 

gradient is active during the complete readout period. Each echo’s data point has a unique quantity of GPE 

influence. Figure adapted from Brown and Semelka, 2003. 

 

The development of EPI sequence allows a whole image to be acquired quickly following 

a single excitation RF pulse and enables the studies of functional MRI (fMRI). 
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Basic Principles of Blood Oxygenation Level-Dependent fMRI 

Functional MRI is well established as a neuroimaging technique for detecting and 

delineating regions in the brain that change their levels of activity in response to specific 

experimental conditions [Shi et al., 2017]. The Blood Oxygenation Level-Dependent (BOLD) 

contrast is the main phenomena measured in fMRI and allows for the imaging of blood flow and 

oxygenation changes related to the activation of neurons within regions of the brain [Ogawa et al., 

1990a; Kwong et al., 1992; Bandettini et al., 1992; Logothetis et al., 2002; Buxton, 2013]. 

 

The discovery of BOLD contrast  

As reviewed by literature [Logothetis, 2003; Gore, 2003; Faro and Mohamed, 2010; 

Buxton, 2013], in 1936, the chemist, Linus Pauling, and his student Charles Coryell pursued an 

in-depth study of the molecular structure of hemoglobin. During their work, they discovered that 

the magnetic property of the hemoglobin molecule can be changed due to the bound to oxygen. In 

particular, oxygenated hemoglobin (Hb) has a diamagnetic property while deoxygenated 

hemoglobin (dHb) has a paramagnetic property [Pauling and Coryell, 1936]. In 1982, Thulborn et 

al. reported that the T2 relaxation time of blood is closely related to the amount of bounded oxygen. 

This laid the physiological foundation for future of fMRI studies [Thulborn et al., 1982]. In 1990, 

Seiji Ogawa and his colleagues applied a gradient refocused echo (GRE) sequence and observed 

a decreased signal near the location of apparent blood vessels in the neocortex of rat brain using 

surface coils at high magnetic fields (7T and 8.4T) with ultra-high spatial resolution (65 × 65 × 

700 µm3) [Ogawa et al., 1990a]. They further studied the mechanism behind the phenomena and 

first described BOLD contrast that can reveal blood oxygenation levels because of its sensitivity 

to the susceptibility effects of deoxygenated blood when measured using a GRE pulse sequence 

[Ogawa et al., 1990a, b]. This work confirmed that oxygenated hemoglobin carries diamagnetic 

properties while deoxygenated hemoglobin has paramagnetic properties that distorts the 

surrounding magnetic field. This magnetic distortion can cause the nuclei to lose magnetization 

faster during T2
* decay than would be predicted by molecular mechanisms alone. Therefore, MR 

pulse sequences that are sensitive to T2
* decay show more MR signals in oxygen-rich blood and 

less in oxygen-poor blood and can be used to map active brain regions based on local oxygenated 

blood flow distribution.  
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It was from this that Ogawa et al. was able to realize that the blood oxygenation mechanism 

could be combined with conventional MRI to develop a powerful tool to non-invasively examine 

brain activity. Subsequent BOLD fMRI studies have also been applied in various types of animals, 

including rodents, rabbits, cats and monkeys [Turner et al., 1991; Ogawa et al., 1993a; Prielmeier 

et al., 1993; Logothetis, et al., 1999]. 

Naturally, researchers have attempted to translate Ogawa’s BOLD fMRI work from 

laboratory animal research to applications in human studies. Unlike early studies which utilized a 

combination of an echo planar imaging pulse sequence and exogenous paramagnetic contrast 

agents (e.g., gadolinium) to acquire CBV functional MR images, BOLD imaging is advantageous 

in that it only relies on intrinsic contrast. Scientists have attempted to take the method a step further, 

and in 1992, three research groups were able to simultaneously and independently acquire human 

BOLD fMRI images with no exogenous contrast agent injection [Bandettini et al., 1992; Kwong 

et al., 1992; Blamire et al., 1992]. As many realized [Logothetis, 2003; Buxton, 2013], this 

breakthrough technique excited the interest of fMRI applications in humans and laid the foundation 

of fMRI based clinical applications.  

 

Contributions to T2
* relaxation 

As mentioned earlier in Eq. (3), in any real MRI experiment, the transverse magnetization 

decays faster than would be predicted by molecular mechanisms alone. The observed rate is R2
* = 

1/T2
*. T2

* and results primarily from inhomogeneities in the main magnetic field. In addition, there 

are two effects of intrinsic susceptibility variations within tissues that can reduce T2
* values. These 

are called the static dephasing and diffusion effects.  

 

Static dephasing regime 

In practice, nuclei in different positions experience their local frequencies in a slightly 

different magnetic environment, which is the main cause of the static dephasing effect. In addition, 

these different local frequencies in an inhomogeneous magnetic environment can further cause the 

spins to move out of phase during the periods before and during data acquisition. These 

accumulated differences result in reversible spin dephasing and the signal that is digitized from 

the induced currents of the coil would decrease as well. In Eq. (3), R2’ = 1/ T2’, T2’ represents the 
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relaxation rate contribution attributable to field inhomogeneities across a voxel. Here, R2’ ≈ (𝛾∆𝐵), 

where 𝛾 is the gyromagnetic ratio and ∆𝐵 represents the field change across the voxel of interest. 

Static effects may arise from presence of large-scale field inhomogeneities such as large veins.  

 

Water diffusion effects on BOLD contrast 

During fMRI experiments, water molecules can diffuse with a diffusion coefficient, D, 

within the intercellular spaces between the paramagnetic deoxygenated red blood cells, plasma, 

and extravascular space. For these, Kennan et al. pointed out that it is necessary to consider both 

the static field effects and the diffusion of water molecules when investigating the contributions to 

transverse decay in BOLD contrast imaging as predicted by the Anderson-Weiss mean field theory 

[Anderson and Weiss, 1953; Kennan et al., 1994]. Specifically, as described in literature, when 

diffusion is fast, the rate of transverse decay quadratically varies with the magnetic field and the 

susceptibility. However, when diffusion is slow, the rate of transverse decay increases 

quadratically with the magnetic field and linearly with diffusion [Majumdar and Gore, 1987; 

Kennan et al., 1994].   

When the diffusion is relatively slow (e.g., around large vessels) differences in SE and GE 

can become apparent. The relaxation of a GE sequence is faster than that of a corresponding SE 

sequence since the SE effectively refocuses the reversible spin dephasing caused by the magnetic 

inhomogeneity in the transverse plane. Therefore, GE is more sensitive to large vessels while SE 

is more sensitive to small vessels (capillaries). Further Monte Carlo simulations from Ogawa’s 

group have suggested that the effects from water diffusion is strong for capillaries, but is not 

important for the determination of deoxyhemoglobin-induced signal dephasing within larger 

venous blood vessels [Ogawa et al., 1993b]. 

 

Extravascular and intravascular BOLD effects  

Based on the BOLD contrast model, both extra- and intravascular effects contribute to 

BOLD signals [Zhong et al., 1998; Ugurbil et al., 2000].  

T2
* relaxation rates in the extravascular space can change around blood vessels. In 

Ugurbil’s paper [Ugurbil et al., 2000], it was described that the extravascular effect around large 

vessels is linearly dependent on the field strengths while the involvement from smaller vessels 
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quadratically increases with field strength. Their results suggest that the relative contributions from 

microvascular BOLD signals increases at high magnetic fields [Ugurbil et al., 2000]. It is known 

that most underlying neuronal activities occur closer to the capillary sites than large vessels [Lai 

et al., 1993; Menon et al., 1993]. Therefore in this thesis, a 9.4 T high field strength MRI scanner 

was used to closely monitor actual neural activity. This was then compared with “gold standard” 

electrophysiological signals in order to demonstrate the intrinsic limit of BOLD fMRI.  

The transverse relaxation rate of blood is dependent on intravascular water diffusion and 

magnetic field strengths while blood effects are dependent on the T2 of blood and tissues. 

 

 
Figure 5 T2 values of arterial, venous blood and gray matter of the brain in different magnetic field 

strengths. Data adapted from [Barth and Moser, 1997; Meyer et al., 1995; van Zijl et al., 1998; Ogawa et 

al., 1993a; Yacoub et al., 2001; Lee et al., 1999].  

 

At a high magnetic field strength, the relative contribution from intravascular effects is 

substantially diminished due to the very fast T2 relaxation of venous blood (Figure 5). In particular, 
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at the 9.4 T magnetic field that is used predominantly in this thesis, the T2 of venous blood is less 

than 10 msec. The contribution from the intravascular effects of very high resolution gradient echo 

images can be suppressed by selecting relatively long TE (e.g., 16 msec). 

In summary, neuronal activities are always closely tied to microvascular effects than to 

larger vessel effects [Kim et al., 1994; Duong et al., 2000]. Therefore, accurate acquisitions of 

functional maps require diminished contributions of both intravascular signals and the effects of 

larger vessel dephasing to the overall fMRI signal changes. The key to acquiring BOLD fMRI 

signals that closely reflect the underlying neuronal activity is to utilize high-resolution studies at 

high fields with minimized contributions from both intravascular and extravascular effects. At high 

fields, the relative contributions of both intravascular signals and the effects of larger vessels 

dephasing to the overall fMRI signal changes are substantially diminished.  

 

Submillimeter resolution fMRI studies at high magnetic fields 

BOLD fMRI signals are dependent on the hemoglobin oxygen levels and are caused by 

changes in the magnetic field that surround red blood cells and vasculature. As mentioned earlier, 

BOLD contrast is intrinsic as the T2 and T2
* relaxation times of the intra- and extra vascular blood 

are modulated by local gradients which cause intravoxel dephasing. Acquisitions using GE pulse 

sequences can be used to detect BOLD signals as a GE MRI pulse sequence is sensitive to both T2 

and T2
* relaxation. At lower magnetic fields commonly used for human applications, such as 1.5 

T and 3 T, the T2
* contrast from venules may be predominant. At higher magnetic fields, such as 

7 T and 9.4 T, diffusion dephasing contributes more to the BOLD signal. Through the use of spin 

echo MRI pulse sequences, BOLD signals can provide higher spatial specificity that is sensitive 

enough to detect capillaries. However, at lower magnetic fields (e.g., 1.5 T), the BOLD activations 

in SE sequences are still more dependent upon the signal contribution from large vessels than 

microvasculature.  

BOLD fMRI has been widely used to map large scale networks in human studies. This is 

not only because most researchers have been interested in clinical applications to understand 

neurological diseases, but also because the inadequate spatial specificity and low SNR of BOLD 

have limited the functional mapping of localized brain architecture within small neuronal circuits. 

In most BOLD fMRI studies, researchers typically use a spatial resolution of 3 × 3 × 3 mm3 to map 

the activations of specific tasks. This is inadequate to explore brain functional organization on the 
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millimeter and submillimeter spatial scale. In addition, the spatial correspondence between the 

fMRI signal and the actual neuronal activity is built upon the theory that neuronal activity and 

hemodynamic and metabolic responses are tightly coupled with each other. In order to validate the 

reproducibility of functional mapping and bolster the confidence in applying functional imaging 

techniques, many studies have compared functional mapping using different imaging modalities 

including BOLD fMRI, PET, CBF, CBV, and perfusion MRI, and have reported that the cortical 

activation locations from different imaging techniques were fairly consistent [van Zijl et al., 1998; 

Zhu et al., 1998; Kinahan and Noll, 1999].     

A number of researchers have used fMRI with higher magnetic fields to improve the spatial 

specificity and SNR of images. Theoretically, at high fields, the relative contributions of both the 

intravascular signals and the effects of larger vessels on extravascular dephasing to the overall 

fMRI signal changes are substantially diminished. Recent studies have successfully implemented 

fMRI in animal and human laboratory research at very high magnetic fields (e.g. 7 T and 9.4 T) 

and found that the signal contribution from microvascular effects at high magnetic fields can be 

detected much more robustly than at low field strengths. Moreover, fMRI at very high fields can 

achieve higher SNR, which consequently reduces partial volume effects and provides higher 

spatial specificity. High magnetic field fMRI is promising for mapping brain activation at finer 

submillimeter scales such as the columnar level. It can be used to potentially detect and investigate 

the brain functional architecture from large scale networks to small neuronal circuits that are the 

basic units of information processing. So far, it is one of the most reliable and commonly used 

neuroimaging approaches to map brain large-scale cognitive systems (several centimeters or even 

the entire brain) and finer cortical columns (hundreds of micrometers). Submillimeter resolution 

BOLD at very high magnetic fields also makes it possible to reduce partial volume effects and 

more closely approach the intrinsic limits of BOLD.  

 

High resolution fMRI studies in nonhuman primates 

Rodents are the most commonly used animals in laboratory research as they are affordable 

and not difficult to handle. However, unlike rodents and other animals, the functional organization 

of the non-human primate brain shares much greater homology with humans. As electrophysiology 

is an invasive method that records signals directly from neurons and is considered a more direct 

indicator of the underlying neuronal activity than BOLD, studies conducted upon monkeys (e.g., 
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macaque, squirrel monkeys) using electrophysiology can be used to conveniently bridge the gap 

between animal research and human fMRI studies. In laboratory animal studies, functional 

activation maps at a columnar level can be acquired through spiking activity or extracellularly 

recorded LFP. This is important as cortical columns are believed to be the fundamental building 

blocks of cerebral cortex functions. FMRI is usually used to investigate the characteristics of the 

net activity of a large population of neurons at relatively low spatial resolution, based on the blood 

oxygenation mechanism, which is a secondary response to metabolism driven by the underlying 

neuronal activity. However, this limitation can potentially be resolved using submillimeter 

resolution at high magnetic fields to identify individual columns of small neural circuits and 

achieve the same mapping resolution as electrophysiology. A large amount of work will be 

required if one wants to translate such studies in human subjects.  

After the identification of various large scale networks (e.g., the visual cortex, the motor 

cortex, the language system, the default mode network, etc.) in the human brain, nearly all previous 

submillimeter fMRI studies (both human and animal research) have investigated the visual system 

at both large and finer millimeter scales [Yacoub et al., 2001; Shmuel and Leopold, 2008; 

Friedman et al., 2011; Wang and Roe, 2012; Chen et al., 2013]. Several studies from different 

research groups independently have reported the spatial specificity of the BOLD response at 

different spatial resolution at different magnetic fields in human visual cortex, and their results 

were reasonably consistent with each other [Engel et al., 1997; Parkes et al., 2005; Yacoub et al., 

2001]. However, it is unclear to what degree these findings of the visual cortex can be generalized 

to other brain networks.  

In this thesis, we studied the single digit representation regions in subregions 3b and 1 of 

S1 cortex of squirrel monkeys at 9.4 T. This alternative and well-organized experimental model 

allows for the quantitative studies of brain activation and correlation at a columnar level with 

several advantages. First, single digit representation is an example of classical modular functional 

structures, which are the basic information processing units of neocortex. A quantitative 

characterization of the spatial relationships between BOLD and LFP signals at this mesoscopic 

spatial scale provides insight at a basic information processing level. Secondly, the orderly 

topographic map of S1 cortex serves as an anchor for our understanding of cortical organization. 

This orderly map is especially reflected in the hand region which is characterized by a lateral to 

medial representation of individual digits in three subregions: 3a, 3b and 1. Each area has distinct 
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stimulus preferences, suggesting their different roles in specific somatosensory functions. This has 

been well established by studies of neuronal receptive field properties and of the effects of 

preferred stimuli and histological characterizations [Chen et al., 2011; Wang et al., 2013; Zhang 

et al., 2007; Shi et al., 2016]. In addition, unlike the visual cortex, stimulus evoked activations in 

the single digit hand region can reliably be detected and quantified in “single condition” maps. 

This type of quantification eliminates unnecessary ambiguities in designing orthogonal stimuli that 

are commonly used to reveal modular structures in the visual system. Thirdly, Wang et al. have 

previously mapped the functional organization of this region at sub-millimeter scale for touch 

processing and have demonstrated that single digit fMRI activations can be reliably mapped, that 

their responses scale with the magnitude of the vibrotactile stimuli, and that digit activations are 

organized in a somatotopic manner. Finally, the subregions (3a, 3b, and 1) of S1 cortex have been 

intensively mapped with electrophysiological and histological methods in this species. 

 

Brief summary on the limitations of BOLD fMRI 

With the development and improvement of fMRI techniques in the last two decades, fMRI 

has been widely used to noninvasively study human and nonhuman primate brain functional 

architecture. BOLD contrast is a complex neurovascular response modulated by several variables 

and conditions, which not only depends on blood oxygenation but also on cerebral blood flow and 

volume. Researchers have devoted years to investigating the relationship between hemodynamic 

changes and their underlying neuronal activity and to quantitatively understanding the different 

aspects of what BOLD signals truly measure. Unfortunately, the spatial and temporal resolutions 

of fMRI signals are currently not equivalent to “gold standard” electrophysiology methods. All 

fMRI studies, especially those with spatial in-plane resolution over a millimeter, suffer from partial 

volume effects. The BOLD fMRI signal measures at a given voxel reflects the sum of its entire 

volume, which includes multiple types of cells and tissues each contributing to the total signal. 

Additionally, the noninvasive advantage of fMRI technique also inevitably limits its precision due 

to the fact that fMRI measures a surrogate signal considered to be an indirect indicator of actual 

neuronal activity.  

Therefore, in this thesis, we aimed to demonstrate the spatial correspondence between high 

resolution BOLD fMRI signals at high magnetic field and underlying neural activity in both 
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stimulation and resting state conditions (including their activation locations and spatial extents) in 

S1 cortex of nonhuman primate. 
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Resting State Functional Connectivity 

Brain connectivity 

Brain connectivity includes anatomical connectivity, functional connectivity, and effective 

connectivity between distinct brain regions. Anatomical connectivity is structurally based, while 

functional connectivity (also known as functional correlations) is the temporal relationship 

between brain networks and can be quantified in terms of Pearson’s correlation coefficients. Other 

measurements include cross-correlations and coherence. Finally, the effective connectivity (also 

known as causal interactions) refers to the casual relationships of information flow. It is very 

important to evaluate the brain connectivity as it reveals how populations of neurons process 

information to achieve various functions.  

Neuroscientists have been studying brain connectivity patterns since 1909 [Cajal, 1909; 

Brodmann, 1909]. In this thesis, the functional connectivity within S1 cortex at the mesoscale 

provides insight into the connections within and between neuronal columns. We quantitatively 

compared brain functional connectivity at a columnar level using high resolution BOLD fMRI at 

high field and electrophysiology signals. This study focuses on a basic information processing 

level and explores the intrinsic spatial limits of BOLD fMRI.    

 

Resting state BOLD functional connectivity 

Low frequency fluctuations in BOLD fMRI signals may occur spontaneously in areas of 

the cortex in the absence of any specific task [Biswal et al., 1995; Shi et al., 2016]. Functional 

connectivity is derived from correlations between signal changes from brain regions that share 

functional properties. Resting state fMRI (rsfMRI) is an extension of functional brain imaging that 

evaluates regional interactions using spontaneous fluctuations when a subject is not performing a 

task [Biswal et al., 1995; Cordes et al., 2000]. The resting state approach is an effective method 

for investigating intrinsic brain circuits and to examine whether or not brain functional 

connectivity would be altered by psychiatric diseases. A great advantage of resting state studies 

over stimulus-evoked studies is that it does not require subjects to perform any task, as it is often 

difficult for patients to follow specific task instructions. For this reason, there has been an 

increasing interest in studying resting state in recent years. Resting state research has excited a 

great number of publications and has been investigated with multi-modalities, such as, perfusion 
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imaging, PET [Raichle et al., 2001], magnetoencephalography (MEG), electroencephalography 

(EEG), and local field potential (LFP), however, the most common approach is fMRI as it is 

noninvasive and does not require the use of contrast agents [Lowe et al., 1998; Cordes et al., 2000]. 

Figure 6 shows the number of publications per 5-year period related to a PubMed search of “resting 

state brain connectivity”. 

 

 
Figure 6 The increase in the number of publications per 5-year period related to a PubMed search of 

“resting state connectivity”.  

 

Resting state fMRI has received much attention since 1995. Biswal et al. first reported the 

fMRI functional correlations between the left and right motor cortices when the brain was in a 

resting state [Biswal et al., 1995; Shi et al., 2016]. They applied a seed-based analysis to investigate 

resting state functional connectivity, and as described in their paper, specific region of interest 

(ROI) seeds were selected in the left somatosensory cortex according to block design stimulus-

evoked fMRI in a separate scanning run during which the same subjects were instructed to perform 

bilateral finger tapping. They computed the Pearson’s correlation coefficients between the BOLD 

time series of the identified ROI seed and those of the other voxels in the brain and found high 

correlations between the left somatosensory cortex and homologous areas in the right 
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somatosensory cortex. This high correlation showed the existence of synchronized spontaneous 

signal fluctuations in the contralateral hemisphere, and opened the door for exploring intrinsic 

functional organization of the brain. Subsequent studies have identified several consistent resting-

state networks, including motor, auditory, visual, attention, and default mode [Lowe et al., 1998; 

Beckmann et al., 2005; Damoiseaux et al., 2006; Yeo et al., 2011; Shi et al., 2016].  

 

The bandwidths of resting state fMRI signals 

Fluctuations in resting state BOLD fMRI signals have been found to be correlated across 

distributed brain regions, predominantly in the low-frequency range between 0.01 and 0.1 Hz 

[Biswal et al., 1995; Lowe et al., 2000; Cordes et al., 2001]. In general, it is widely accepted that 

in human studies, resting state BOLD fMRI fluctuations are filtered in this specific low frequency 

range from 0.01 to 0.1Hz partly to avoid the noise caused by normal physiological functions 

present in BOLD fMRI signals [Murphy et al., 2013]. These include, for example, the respiration 

signal between 0.2 and 0.3 Hz and the cardiac signals around or beyond 1 Hz [Brooks et al., 2013]. 

Despite that the heart rate of animals (< 300 beats per minute) is always much higher than humans, 

a similar low frequency band is also applied to animal fMRI research [Kannurpatti et al., 2008; 

Hutchison et al., 2010; Gohel et al., 2015]. In addition, numerous studies in the past have reported 

that in resting state BOLD signals, functional connectivity between brain regions that are less than 

0.1 Hz contributed significantly more than those between 0.1 and 1 Hz. This supports the rational 

for applying the lowpass filter in the BOLD preprocessing steps [Cordes et al., 2001; Gohel et al., 

2015].   

It is essential to remove artifacts in resting state fMRI preprocessing procedures [Jo et al., 

2013; Power et al., 2014; Griffanti et al., 2015]. Common steps include temporal bandpass filtering 

of the resting state BOLD fMRI signals between 0.01 and 0.1 Hz as described above. In addition, 

RETROICOR has been widely used to remove the physiological noises [Glover et al., 2000] and 

is also used as a preprocessing step in this thesis. In this method, low order Fourier series whose 

frequencies and phases are derived from measurements made in explicitly recorded cardiac and 

respiratory signals are retrospectively corrected in resting state BOLD images [Birn et al., 2006; 

Murphy et al., 2013]. However, despite how effective this approach is to eliminate the effects of 

physiological noises, it can be inconvenient in certain studies as it requires the simultaneous 

recording of cardiac respiratory signals [Glover et al., 2000; Yan et al., 2009]. 
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The dynamics of functional connectivity 

Most fMRI studies in the past have assumed that the correlations between brain regions in 

resting-state experiments are constant throughout the time series of the entire scan [Greicius et al., 

2003; Fox et al., 2005; Fransson, 2005; Power et al., 2011]. This assumption simplifies not only 

the analysis methods but also the interpretation of connectivity results. However, it is natural to 

speculate that the brain functional organization is dynamic since different networks work together 

in a non-linear and non-stationary manner to achieve all sorts of functions [Hansen et al., 2015]. 

As the statistical approaches and computational modeling become more accurate and creative, 

analysis methods built upon the dynamic feature of functional connectivity have excited more 

researchers’ interest and produced literature expanding our view and knowledge of dynamic 

connectivity.  

More recently, there has been an increasing interest in the detection and characterization 

of possible dynamic changes in functional connectivity [Chang and Glover, 2010; Allen et al., 

2014; Hutchison et al., 2013a, b; Shi et al., 2016]. Apparent temporal dynamic changes in 

functional connectivity may provide better insight and understanding of the fundamental features 

of brain systems [Chang et al., 2013; Hutchison et al., 2013]. However, there is hardly any 

straightforward explanation and interpretation for the dynamics of functional connectivity [Bastos 

et al., 2016]. Variations in the degree of coupling between different networks would seem to be a 

plausible feature of neural systems, and the nature of temporal changes in such couplings could be 

an important aspect of brain function. However, the unambiguous detection and quantification of 

dynamic changes in correlations are not trivial and are similar to the well-known difficulties in 

classifying data as statistically stationary or non-stationary. It is critical to know whether or not 

the observed dynamic changes in correlations between distinct brain regions over time show 

significantly greater variability than would be expected if the underlying correlation coefficient 

between the two signals were stationary [Shi et al., 2016]. 

 

Current techniques for assessing functional connectivity network 

In addition to the seed based approach described above, a variety of analytical methods 

have been used to derive functional connectivity to reveal functionally related brain regions 

[Beckmann et al., 2005; Yeo et al., 2011]. Even though dynamic functional connectivity is 
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currently widely accepted, stationary techniques for assessing resting state functional connectivity 

network are still of great value. For example, seed-based ROI analysis, in which the time course 

of a seed ROI is used as a regressor to identify regions of similar temporal behavior elsewhere in 

the brain, can be used to quantify the relationship between two ROIs as a single correlation 

coefficient calculated from the entire scan duration.  However, this single value approach cannot 

detect possible temporal variations over time [Shi et al., 2016]. 

 

Independent component analysis  

Several data-driven methods have been developed to quantify functional connectivity. 

These include independent component analysis (ICA) and principle components analysis (PCA) 

[Li et al., 2009; Hawellek et al., 2011]. ICA is a model-free mathematical technique that optimizes 

the statistical independence between its components [Herault and Jutten, 1986; McKeown et al., 

1998]. This method decomposes the fMRI time courses into a prescribed number of components 

with maximal spatial independence [Calhoun et al., 2009]. While this strategy avoids the 

inconvenience and possible inaccuracy from selecting specific seed regions, it does not account 

for the possible changes in inter-regional interactions over time. In addition, the interpretation of 

different components, especially the selection of component criterion in such analyses, is often 

difficult. Moreover, there is hardly any straightforward criterion to separate higher order 

components from non-neuronal physiological noise. However, even though the computational 

processes of the seed-based analysis and ICA are different, several research groups showed that 

there is no significant difference in the results that are analyzed from both methods [Joel et al., 

2011].  

 

Graph theory 

Another common approach for analyzing the functional connectivity is a graph theory 

method, which was recently proposed and can serve as an alternative to a seed-based analysis and 

ICA approach [Bullmore and Sporns, 2009; Wang et al., 2010]. In this method, resting state 

networks are treated as a group of nodes that are connected by edges [Hagmann et al., 2008]. ROIs 

are considered as nodes and correlations between different ROIs serve as edges. Here, the 

researchers are interested in computing the average path length and a quantitative measure of how 
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well different ROIs are connected to each other [Lang et al., 2012]. The latter is quantified by the 

average length of the shortest pathway between all pairs of nodes. The clustering coefficient is 

another important quantification in this method [van den Heuvel et al., 2008; Fallani et al., 2014]. 

Similar to the average path length, the clustering coefficient is a quantitative measure of how well 

a ROI is connected with its neighboring nodes, which can then be used to generate several smaller 

subgraphs. Literature suggests that the brain might potentially present a small world topology 

when analyzed using the graph theory as described above [Sporns et al., 2007]. Small world 

subgraphs with high clustering coefficients usually indicate tighter relationships within local 

connections [Leskovec et al., 2008]. In general, these short average path lengths also imply a short 

distance between any two nodes [Fronczak et al., 2004].  

 

Clustering 

Another popular method for analyzing rsfMRI data is clustering, which categorizes 

different ROIs into groups. One commonly used algorithm is hierarchical clustering, which seeks 

to build a hierarchy of all members using variables such as distance, Pearson correlation 

coefficients, and etc [Cordes, et al., 2002]. Another clustering method is based on the k-means 

clustering algorithms [Golland et al., 2008] in which all voxels are characterized to one of many 

clusters according to their measured distances from the cluster centers. This algorithm can 

iteratively update itself and will present a final set of clusters when convergence is reached. Self-

organized mapping is another variation of clustering techniques in which anatomical maps and 

correlation values in functional connectivity can be used as clustering criterion [Mishra et al., 

2014]. However in this approach, a pre-defined number of clusters is needed and can lead to biased 

results. 
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Electrophysiology 

Local field potentials 

Electrophysiology is an invasive (and sometimes noninvasive as in the case of EEG) 

technology for the purpose of directly studying the electrical properties of cells and tissues. 

Electrophysiological studies date back to 1875, when Caton first reported electrical signals from 

the brain surfaces of living rabbits [Caton, 1875]. Electrophysiology typically measures electrical 

voltage changes or electrical current flows from single ion (e.g., sodium, potassium, etc.) channel 

proteins on the membrane to whole tissues (e.g., heart, brain, etc.). Electrophysiology recordings 

include intracellular and extracellular recordings. Intracellular recording usually refers to the 

electrical voltage and current signals when the cell is under non-equilibrium conditions and current 

is flowing through the cell (Figure 7). On the other hand, the extracellular field is comprised of 

excitable membrane and transmembrane currents and thus represents a cumulative superposition 

of the total ionic potentials at that particular brain location [Buzsaki et al., 2012]. Extracellular 

recordings can be acquired with amplification using an electrode that is inserted into a brain region 

of a living animal. The tip of an electrode can detect the electrical voltage generated by the neurons 

in a small area close to the tip (the diameter of a few hundred micrometers). 

 

 
Figure 7 A schematic diagram showing a field potential recording from monkey somatosensory cortex, 

including presynaptic terminal and postsynaptic neuron. An intracellular electrode is inserted inside the cell 

body, to record the voltage and current changes across the membrane of the cell, an extracellular electrode 

was placed outside the cell body, to record local field potential signals.  
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Local field potentials are electrophysiological voltages generated by the summed electric 

currents flowing from populations of neurons within small volumes of nervous tissue around the 

recording electrode tips [Legatt et al, 1980]. These voltages generated by the action potentials 

across the cell membrane can be recorded by an inserted microelectrode and often consists of a 

population of neurons within a radius of a few hundred micrometers of the microelectrode tip 

[Linden et al., 2011]. Because neurons form interdependencies with one another through chemical 

and electrical synapses (Figure 7), LFPs are also a measurement of the low frequency activity (< 

300 Hz) across the neuron population, including a combination of pre- and post-synaptic activities. 

The LFP signals are thought to represent the synchronized input of neuronal signals to a particular 

brain region [Buzsaki et al., 2012]. During signal pre-processing for LFP signal analysis, a band 

pass filter is used to pass only low-frequency fluctuations below 300 Hz related to peri-synaptic 

activity. Anything higher than 300 Hz is not relevant as these fluctuations in the LFP differences 

are mostly the result of current spikes within action potentials [Berens et al., 2010]. In general, 

LFPs represent the slow neuronal fluctuation waveforms and reflect the input of neuronal signals 

into a particular cerebral cortical region [Buzsaki et al., 2012; Herreras et al., 2016]. 

 

Mechanism of neural oscillations 

Neuroscientists have always been very interested in subdivided neuronal signal bands, as 

the characteristics of the electrophysiological signal waveform are dependent on the involvement 

of many sources and properties of the brain. Broad band electrophysiological signals most likely 

reflect contributions of several different neural processing pathways and are typically decomposed 

and analyzed in the frequency domain [Magri et al., 2012; Einevoll et al., 2013].  

Historically, the neuronal fluctuations are classified within a set of specific frequency 

ranges first introduced in the electroencephalography (EEG) literature [Bullock et al., 1997; 

Volgushev et al., 2006; Harmony, 2013]. Previous studies have acquired EEG signals when the 

subject is in different brain states and have subdivided rhythmic EEG into seven frequency bands: 

delta (1-4 Hz), theta (5-8 Hz), alpha (9-14 Hz), beta (15-30 Hz), gamma low (31-50 Hz), gamma 

high (51-100 Hz), and gamma very high (101-150 Hz) [Leopold et al., 2003; Tort et al., 2010; Ray 

and Maunsell, 2011; Belluscio et al., 2012; Wilson et al., 2016]. Delta waves are always detected 

during unconsciousness and dreamless deep sleep [Sanders et al., 2012]. Theta waves usually 
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appear in a dream sleep “rapid eye movement sleep” condition or meditation. Alpha waves can be 

observed when an experimental subject is daydreaming or in an eyes-closed relaxed state, and beta 

waves are indicators of analytical thinking and often appears when a subject eyes are open 

[Bazanova, 2012]. In summary, the oscillatory activities in these subdivided electrophysiological 

bands are associated with a balance of thalamo-cortical and cortico-cortical loops [Buzsaki et al., 

2012].  

 

Delta oscillations 

Studies on a range of LFP frequency bands can be dated back to 1937 when Berger first 

discovered delta waves in rat brains [Berger, 1937]. Since then, LFP delta oscillations have been 

studied extensively and are believed to be related the unconscious brain state such as during deep 

sleep or deep sedation [Krishnan et al., 2016]. It is widely accepted that delta oscillations mostly 

originate from thalamocortical cells due to the spherical symmetry of the neurons [Lorente de No, 

1947; Timofeev et al., 2012; Neske et al., 2016]. From a cellular point of view, the firing of cortical 

and thalamic cells is usually associated with slow neuronal oscillations. Steriade et al. first reported 

this finding when subjects under anesthesia were observed to drift into a natural sleep brain state 

[Steriade et al., 1993]. However, some recent studies suggested that delta waves may also occur 

during decision making, and most likely reflect the relationship between parietal and frontal neural 

circuits [Nacher et al., 2013].  

 

Theta oscillations 

Theta-band oscillations have been observed in the prefrontal cortex and are believed to be 

contributors to the information selection process [Sirota et al., 2008]. Most studies have reported 

that theta oscillations are closely associated with active behaviors, for example, researchers 

reported that theta waves are present during working memory studies in monkeys and humans 

[Chapman and Lacaille, 1999; Preston and Eichenbaum, 2013; Jutras et al., 2013].  

 

Alpha and beta oscillations 

In human electrophysiology, researches have noticed that the shapes of alpha and beta 

waves can be well approximated as non-sinusoidal patterns in the brain cortical motor region 
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[Kuhlman, 1978; Salmelin and Hari, 1994; Cole and Voytek, 2017]. Because of the arch-like 

waveforms that often fluctuate around 10 Hz, these waves were also named after the Greek 

character,	𝜇 [Kuhlman, 1978]. Neuroscientists have observed the arch-like alpha waves in monkey 

and rodent somatosensory cortex and have proposed similarities to the alpha oscillations in human 

EEG studies. Separately, beta rhythms have also recorded from the cerebral motor cortex and 

exhibit some non-sinusoidal features similar to alpha oscillations [Sherman et al., 2016]. As 

different neuronal oscillations are always associated with distinct brain states, alpha rhythms have 

often been acquired in perception and behavior while beta rhythms most likely dominate the 

waking consciousness state [Buzsaki and Draguhn, 2004]. 

 

Gamma oscillations 

Gamma rhythms are one of the most widely measured waves in distributed brain regions 

during both awake and sleep conditions and have been comprehensively studied using various 

techniques [Bragin et al., 1995; Sirota et al., 2008; Ray and Maunsell, 2012].  

Gamma waves commonly emerge within a fine neural circuit and there is little evidence 

showing that gamma oscillations interact in distant brain regions [Buzsaki and Wang, 2012]. 

However, many studies have applied the cross-frequency phase-phase coupling (CFPP) technique 

and reported that gamma oscillations usually interact with other lower bands within or across 

structures [Buzsaki et al., 1983; Lakatos et al., 2005; Colgin et al., 2009; Palva et al., 2005; Wang 

et al., 2012]. Cross-frequency coupling analysis has revealed subdivided gamma bands [Tort et al., 

2008; Canolty et al., 2010]. In the hippocampal region, wavelet analysis has been applied to 

distinguish three gamma sub-bands including gamma low (30-50 Hz), gamma high (50-100 Hz), 

and gamma very high (100-150 Hz) [Tort et al., 2010; Belluscio et al., 2012]. The origins of these 

three sub-bands are well supported by the distinct spatial spreads in various depths of the 

hippocampal pyramidal layer [Belluscio et al., 2012].     

To date, there have been consistent reports of close temporal relationships between BOLD 

signals and electrophysiological activity in gamma oscillations during stimulation in distributed 

brain regions [Logothetis et al., 2002; Nir et al., 2007]. However, there is no consensus about what 

LFP frequencies correspond to resting state fMRI signals. While some studies have reported that 

lower frequency fluctuations in LFP signals may correspond most to variations in resting state 

BOLD signals [Lu et al., 2007; Wang et al., 2012; Wilson et al., 2016], others have suggested that 
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the slow oscillations in the LFP gamma band power may contribute most to the resting state BOLD 

signal variations [Leopold et al., 2003; Nir et al., 2008]. Moreover, dynamic changes of fMRI 

functional connectivity may represent different levels of neural modulation [Magri et al., 2012], 

but few studies have directly compared the temporal variations of functional connectivity observed 

in spontaneous fMRI with corresponding LFP signals [Pan et al, 2011; Thompson et al., 2015]. 

Therefore in this thesis, we investigate the spatial and temporal relationships between resting state 

BOLD fMRI signals and spontaneous frequency-specific LFPs within primary somatosensory 

areas 3b and 1, and from there, evaluate the frequency ranges of LFP coherences that most parallel 

the dynamic features of resting state BOLD functional connectivity at a submillimeter cortical 

meso-scale.  
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Goal 

The overall goal of this dissertation is to evaluate whether inter-regional correlations in 

resting state fluctuations of functional magnetic resonance imaging (fMRI) signals from the brain 

reliably measure functional connectivity between regions, and to investigate the dynamic nature 

of functional connectivity in both fMRI and frequency-specific electrophysiological signals.  

First, to demonstrate the spatial distributions of BOLD and LFP signals in both information 

processing and their correlation profiles in a resting state, this thesis directly compares the spatial 

extents and locations of activations and the local correlation profiles between LFPs and 

submillimeter resolution BOLD at 9.4T within S1 cortex in individual monkeys.  

Second, to identify possible temporal dynamic changes in functional connectivity, a filtered 

stationary model that generates statistically stationary time series from random data with a single 

prescribed correlation coefficient, is developed to simulate real fMRI functional correlations. In 

addition, a dynamic model is developed, which is better able to replicate changes in real fMRI 

connectivity estimated from monkey brain studies than the stationary model.  

Finally, to evaluate the differences in dynamic patterns between fMRI and frequency-

specific LFP functional connectivity, the time-varying probability distributions between both 

modalities were quantitatively compared, using a sliding window correlation technique and a 

Markov chain model-based approach.  
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Specific Aims 

Specific aim 1: Demonstrate the spatial correspondence between BOLD fMRI and 

underlying neural activity in stimulations. Stimulus-evoked BOLD fMRI data at 9.4T using 

vibrotactile stimuli to identify areas 3b and 1 in SI cortex of nonhuman primate brains, will be 

compared to invasive electrophysiological measurements in the same animals. From there, the 

degree of spatial overlap between electrophysiologically defined neuronal response maps and 

stimulus-evoked BOLD response maps may be determined by directly comparing the activation 

foci and their corresponding spatial profiles. 

 

Specific aim 2: Spatially investigate the measurements of functional connectivity from 

resting state BOLD fMRI signals by direct comparisons with quantitative electrophysiology. 

Using the same monkey SI cortex model in aim 1, resting state BOLD fMRI data and 

electrophysiological signals will be acquired from the same animals separately. These may be used 

to (a) measure the local intrinsic point spread functions of resting-state BOLD correlations; (b) 

determine the degree of correspondence between electrophysiological inter-electrode connectivity 

maps and resting state BOLD inter-voxel correlation maps; (c) directly compare the spatial extents 

of stimulated activations and the local profiles of intervoxel resting-state correlations for both 

BOLD and electrophysiological signals.  
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Specific aim 3: Investigate the variations of functional connectivity from resting state BOLD 

fMRI and frequency-specific electrophysiological signals using stationary, nonstationary 

models and Markov model-based approach. Correlations in fMRI data will be shown to be non-

stationary, and differences in the resting-state connectivity from fMRI and frequency-specific 

electrophysiological signals will be quantified. We then will (a) simulate the behavior of the 

temporal correlations between different SI subregions using stationary and non-stationary models; 

(b) quantitatively compare simulated results to the behaviors of real functional connectivity in 

monkey brains using a sliding window technique and a variant of the Kolmogorov-Smirnov (K-S) 

statistic; (c) using a Markov model-based approach, determine which frequency range of 

spontaneous electrical recordings from identified regions show dynamic patterns of correlation 

similar to resting state BOLD fMRI.  
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CHAPTER II 

HIGH SPATIAL CORRESPONDENCE BETWEEN BOLD AND LFP IN 

STIMULATION 

Abstract 

Functional MRI studies rely on detecting hemodynamic changes as revealed by BOLD 

signals to infer underlying changes in local neuronal activity. The local spatial specificity and 

resolution are dependent on limitations introduced by non-neuronal factors. LFPs are 

electrophysiological signals generated by the summed electric currents flowing from populations 

of neurons within small volumes of nervous tissue around the recording electrode tips, and are 

considered more direct indicators of neuronal activity. Understanding how BOLD signals are 

related to electrical activity of neuron populations is essential for the quantitative interpretation of 

fMRI data. Here, we evaluated the spatial extents of LFPs in functionally distinct areas 3b and 1 

of S1 cortex in new world monkeys, using two 49-channel multi-electrode arrays, and in separate 

experiments we performed fMRI at very high field strength (9.4T) to obtain very high resolution 

spatial extents of stimulated activations. Images of both modalities were co-registered within 0.10 

mm accuracy. We are thereby able to relate fMRI data directly to a ‘gold standard’ 

electrophysiological measurements LFPs with good sensitivity and spatial resolution. The spatial 

extents of BOLD and LFP responses of S1 cortex were fitted with Gaussian point spread functions 

(PSFs). We found that the mean full-width at half maximum (FWHM) of the fitted PSFs in both 

LFP and very high resolution BOLD fMRI responses at stimulus condition were around 1 mm, in 

which stimulus responses in area 3b were stronger and more mediolateral focal than those in area 

1. In addition, our results showed that the PSFs of the BOLD response in very high resolution 

(0.274 × 0.274 mm2) were significantly narrower than those in relatively lower resolution imaging 

(0.547 × 0.547 mm2), due to partial volume effects, indicating that data acquisition methods for 

higher resolution functional images increase the spatial specificity of BOLD fMRI. Finally, 

Wilcoxon signed-rank test showed that there was no significant difference on PSFs between LFP 

and very high resolution BOLD fMRI at 9.4 T in the stimulus condition, and the reproducibility 

and stability of stimulus-evoked activation locations within and across both modalities were 

robust.  
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Introduction 

FMRI is well established as a neuroimaging technique for the detection and delineation of 

regions in the brain that change their level of activation in response to specific experimental 

conditions [Ogawa et al., 1990; Bandettini et al., 1992; Kwong et al., 1992]. The dominant form 

of fMRI uses the BOLD contrast, which detects functional hemodynamic changes in the brain 

based on the differences in magnetic properties between oxygen-rich and oxygen-poor blood, and 

is considered an indirect indicator of changes in neuronal activity. Specifically, BOLD 

measurements are driven by blood flow, blood volume and oxygenation changes that are secondary 

to metabolic changes and energy use caused by neural activity [Buxton, 2013]. Stimulus-evoked 

fMRI responses usually rely on detecting BOLD signal changes, which reflect hemodynamic 

processes, and thus are indirect indicators of neuronal activity. The measured extents of BOLD 

activations depend on the integrated contributions from the intrinsic spatial distributions of the 

neural activity involved, the effects of converting neural electrical activity to spatial distributions 

of metabolic and hemodynamic changes that then affect MRI signals, and the effects of image 

acquisitions and reconstruction with limited resolution, but the relative contributions of these to 

detected signals remain obscure. Precise interpretations of fMRI studies require a better 

understanding of the quantitative relationships between BOLD signal changes and their 

corresponding electrophysiological signatures [Shi et al., 2017]. On the other hand, local field 

potentials are electrophysiological signals generated by the summed electric currents flowing from 

populations of neurons within small volumes of nervous tissue around the recording electrode tips 

[Legatt et al, 1980].  

Although the exact relationship between the measured fMRI signals and the underlying 

neuronal activity remains elusive at multiple levels, there is consensus that local field potential 

activity contributes the most to the fMRI signal [Logothetis et al., 2001; Logothetis et al., 2003; 

Nir et al., 2007]. The most effective way to investigate such relationship is to simultaneously 

acquire fMRI signals and electrophysiological recordings. Most research in the past has studied 

the temporal relationships among BOLD fMRI signals, LFPs and spike activity, using single or 

multiple electrodes [Leopold and Maier, 2012; Scholvinck et al., 2013; Shmuel and Leopold, 2008; 

Magri et al., 2012]. More recently, there has been an increasing interest in conducting multi-

channel electrode array experiments to reveal the local functional architecture of the brain and 

further investigate the spatial relationships between fMRI and electrophysiological signals 
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[Chernov et al., 2016]. Extending electrode recording technique using multi-channel electrode 

array recording for quantitative comparisons of spatial extents between LFP and BOLD fMRI 

responses has the potential to better understand how BOLD signals are related to electrical activity 

of neuron populations, and to quantitatively interpret fMRI data.  

The purpose of this study was to evaluate the spatial extents of BOLD fMRI with very high 

resolution at very high field strength (9.4T) in the stimulated condition, in the primary 

somatosensory cortex of non-human primate, and to compare with those of local field potentials 

to the same conditions and the same brain region. To this end, we utilized two 7×7 multi-channel 

electrode arrays to map signal fluctuations in LFPs in response to 8 Hz vibrotactile stimulation of 

single digits in functionally distinct areas 3b and 1 of S1 cortex in anesthetized squirrel monkeys, 

and evaluated the spatial extents of single digit LFP response fields by quantifying their power 

spectrum. In separate experiments, we performed BOLD fMRI at 9.4 T to obtain very high 

resolution spatial extents of BOLD signals at stimulus-evoked condition. We estimated that the 

mean FWHM of the fitted PSFs of BOLD and LFP responses in S1 cortex of new world monkey 

at stimulus-evoked condition were around 1 mm, in which stimulus responses in area 3b were 

stronger and more mediolaterally focal than those in area 1. In addition, we found that the PSFs of 

the BOLD response in very high resolution (in plane resolution of 0.274 × 0.274 mm2) were 

significantly narrower than those in relatively lower resolution images (in plane resolution of 0.547 

× 0.547 mm2) due to partial volume effects. Our results showed no difference on PSFs between 

LFP and BOLD fMRI with very high resolution at 9.4 T at both stimulus and resting-state 

conditions. Activation maps of both modalities were co-registered within 0.10 mm accuracy. The 

mean distance of activation centers between BOLD and LFP was around 0.35 mm. The high spatial 

correspondence between BOLD and LFP are consistent with findings regarding the great 

contribution of LFP activity to the fMRI signal [Logothetis et al., 2001; Logothetis et al., 2003; 

Nir et al., 2007; Shmuel and Leopold, 2008; Magri et al., 2012], suggesting that BOLD fMRI with 

very high resolution at very high field spatially directly reflects the neuronal activity.  
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Methods 

Animal Preparation 

Six squirrel monkeys (Saimiri bolivians) were included in this study and all underwent 

functional MR imaging scans. Four of the six monkeys underwent microelectrode 

electrophysiological mapping and 98-channel microelectrode array recording sessions. Animals 

were pre-anesthetized with ketamine hydrochloride (10 mg/kg)/atropine (0.05 mg/kg) and then 

anesthetized with 0.5-1.2% of isoflurane to maintain a stable physiological condition for both MRI 

scans and electrophysiological experiments. Although the actual level may vary across 

experiments, we typically maintained light anesthesia around 0.7-0.8% during our functional MRI 

and electrophysiology data acquisitions. The anesthetized animals were intubated and artificially 

ventilated. After intubation, each animal was placed in a custom-designed MR cradle with its head 

secured using ear bars and an eye bar. Lactated Ringer’s solution was infused intravenously (2-3 

ml/h/kg) to prevent dehydration during the course of the study. Arterial blood oxygen saturation 

and heart rate (Nonin, Plymouth, MN), electrocardiogram, end-tidal CO2 (ET-CO2; 22–26 mmHg; 

Surgivet, Waukesha, WI), and respiration (SA Instruments, Stony Brook, NY) were externally 

monitored and maintained. Body temperature was monitored (SA Instruments) and maintained 

between 37.5 and 38.5°C via a circulating water blanket (Gaymar Industries, Orchard Park, NY). 

Real-time monitoring was maintained from the time of induction of anesthesia until full recovery. 

Detailed procedures have been described in previous publications [Shi et al., 2016]. All 

experimental procedures were in compliance with and approved by the Institutional Animal Care 

and Use Committee of Vanderbilt University, and followed the guidelines of the National Institutes 

of Health Guide for the care and use of laboratory animals.  

 

Stimulus Presentation Protocol 

Each animals’ fingers were secured by gluing small pegs to the fingernails and fixing these 

pegs firmly in plasticine, leaving the glabrous surfaces available for vibrotactile stimulation by a 

rounded plastic probe (2 mm diameter) connected to a piezoelectric device (Noliac, Kvistgaard, 

Denmark), which was driven by a Grass S48 square wave stimulator (Grass-Telefactor, West 

Warwick, RI). For fMRI data acquisitions, vertical indentations (0.34 mm displacement) of a probe 

at 8 Hz rate (with 20 ms pulse duration) were presented as blocks of 30 sec on and then 30 sec off. 
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Seven blocks were typically presented within one imaging run. The timing of the presentation of 

stimuli was externally controlled by the MR scanner and was synchronized to image acquisition. 

The same stimulus presentation paradigm was applied during later electrophysiological 

recordings. Each stimulation trial consisted of 20 repeats of 30 sec on/off blocks. Typically, 10 

trials were collected for each digit.  
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Figure 8 Experimental set up for mapping areas 3b and 1 of S1 cortex with sub-millimeter 

resolution fMRI and 98 channel Utah array. (A) Major landmarks used to identify digit regions in 

areas 3b and 1 of S1 are visible on the postmortem squirrel monkey brain. The red box indicates 

the imaging field of view. (B) In an oblique coronal image acquired with T2
* weighting, sulci and 

surface and trans-cortical vessels appear as dark lines and dots. (C) Blood vessel map shows the 

two 7×7 multi-channel electrode arrays were inserted in the digit regions of areas 3b and 1 under 

surgical microscope in one representative monkey. (D) Corresponding BOLD fMRI activation 

map to vibrotactile stimulation of the D3 distal finger pad in areas 3b and 1 of S1 cortex. 

Normalized % signal change maps were thresholded at 0.7. Dotted black line indicates the 

approximate border between areas 3b and 1. Blue boxes show the selected seed voxels used in 

resting state functional connectivity analysis. Scale bar, 1 mm; a, anterior; m, medial. 
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FMRI Data Acquisition and analysis 

MR imaging was performed with a 9.4 T 21 cm bore Varian Inova magnet (Varian Medical 

Systems, Palo Alto, CA), using a 3-cm surface transmit–receive coil secured over the 

somatosensory cortex. Scout images obtained using a fast gradient-echo sequence were used to 

define a volume covering the primary somatosensory cortex in which static magnetic field 

homogeneity was optimized, and to plan oblique slices for structural and functional EPI imaging 

(Figure 8A-B). T2
*-weighted gradient-echo structural images [repetition time (TR) = 200 ms, echo 

time (TE) = 16 ms, four slices, FOV = 35 × 35 mm2, 512 × 512 matrix, spatial resolution = 0.068 

× 0.068 × 2 mm3, number of excitations = 6] were acquired to identify venous structures on the 

cortical surface to help locate S1 cortex, and as structural features for co-registration of fMRI 

images. Within each imaging session, multiple runs (up to 6) of stimulus evoked fMRI data were 

acquired with identical image acquisition sequences (gradient echo-planar image, GE-EPI), 

parameters (TR =750 ms, TE =16 ms) and slice placement. All images were obtained at two 

different imaging resolutions: 0.547 × 0.547 × 2 mm3 (low resolution, number of excitations = 2) 

and 0.274 × 0.274 × 2 mm3 (high resolution, number of excitations = 4). Each low resolution 

stimulation run contains 300 continuous image volumes, while each high resolution run contains 

150 continuous volumes (Figure 9A). MR Images were reconstructed on the MR console (Varian 

VnmrJ) and exported to Matlab (Mathworks, Natick, MA) for analysis.  
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Figure 9 Representative BOLD and local field potential signal changes to vibrotactile stimuli. (A) 

Time series of BOLD signal changes to 8 Hz vibrotactile stimuli of single digit extracted from area 

3b voxel. (B) Recordings of raw broadband local field potential in response to the identical tactile 

stimulation as applied in BOLD mapping experiment shown in A. Blue box shows the sampling 

window. 
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Standard preprocessing steps were applied to the raw fMRI signals. Slice timing correction 

was performed following slice-by-slice motion correction. Six translation and rotation parameters 

were used to regress out temporal variations caused by motion. Time courses were drift corrected 

using a linear model fitted to each time course. The RETROICOR method [Glover et al., 2000] 

was used to correct for physiological noise using the respiration pattern recorded during the scan. 

No spatial smoothing was applied.  

For stimulation runs, we computed activation maps based on the percentage of BOLD 

signal change between pre-stimuli periods (seven out of ten imaging volumes prior to stimulus 

onset) and stimuli presentation periods (10 image volumes). The activation response map was then 

up-sampled to the anatomic MRI image (0.068 × 0.068 mm2) for further sub-voxel processing and 

display. Within each fMRI stimulation run, the percentage of BOLD signal change in each of the 

cortical areas (areas 3b and 1) was normalized to its own maximum value. Normalized percentage 

BOLD signal changes were then used in the group analyses.  

 

Electrophysiological mapping and recording  

Under anesthesia, a craniotomy was performed over the imaged region to expose the cortex 

for microelectrode mapping and recordings. During the initial electrophysiological mapping 

session, a series of single electrode penetrations were placed around the cortex surrounding the 

central sulcus for characterizing the neural preferred stimulus (e.g., light touch or stroke), response 

(e.g. short or long lasting), and their receptive fields properties (e.g., digit 1-5 or face). In each 

animal, areas 3b and 1 were systematically mapped. Single epoxylite-coated tungsten 

microelectrodes (FHC Inst, Bowdoinham, ME) with exposed standard sharp tip (< 3 µm) of ~1 M

Ω impedance penetrated ~800 µm deep into the cortex of areas 3b and 1. Receptive fields of 

neurons were identified by palpating skin areas on the contralateral hand to the recording side 

while listening to the audio amplifier for spike activity and viewing traces of action potentials on 

a display. After completing the mapping, we were able to identify areas 3b and 1 and areal borders 

based on the characteristics of receptive field properties and somatotopic organization of the digits 

[Kaas et al., 1984; Friedman et al., 2008]. These initial qualitative mapping results then guided the 

placements of two 7×7 channel Utah micro-electrode arrays in each animal (Figure 8C). 
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We determined the array placement targets in areas 3b and 1 by co-registering high-

resolution optical blood vessel images with the MRI anatomic images using anatomical land-marks 

and surface blood vessel pattern. Guided by MRI maps and blood vasculature pattern, two 7×7 

multi-channel Utah electrode arrays (98 channels in total, spacing between each electrode = 400 

µm) were carefully inserted into areas 3b and 1 cortex. Once the arrays were inserted, we allowed 

the cortex to recover from insult for at least two hours before our recording session started. Broad 

band electrical signals were recorded using a Multi-channel Cerebus Neural Signal Processor 

system (Black Rock, Millard county, Utah) in which signals were passed through a unit-gain head-

stage and a preamplifier through which each input channel was separated into two output channels 

that underwent different analog filtering, with one channel recording the higher frequencies of 

neuronal spikes and the other channel recording the lower frequencies of LFPs. In all cases, 

voltages were measured against a local reference inside the chamber. For single digit LFP stimulus 

recordings, a total of 6-8 trials were recorded for each subject. Within each trial, 10 stimuli (each 

30 sec duration) were presented. 

 

Local Field Potentials Analysis 

Local field potential signals were sampled at 500 Hz, and then band-pass filtered between 

1 Hz (two pole Butterworth filter) and 150 Hz (four pole Butterworth filter) for quantification. 

Figure 9B shows an example of LFP broadband (1-150 Hz) raw data, including 30 sec of pre-

stimulus (rest) period and 30 sec of stimulus presentation. A time-frequency analysis was 

conducted to illustrate the temporal structure of the LFP signals and their stimulus response 

preferences. A Fourier transform was performed on single trials and the resulting single-trial 

spectrograms were averaged. Computed spectrograms of stimulus-evoked LFPs under stimulus 

conditions were transformed into a dB scale (10 × log10) and used for further analysis. To estimate 

more accurately the mean power of the steady-state LFP responses, we excluded the data from the 

first 10 sec after the stimulus onset in our calculation, according to previous observations [Snyder, 

1992].  
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Measurements of the Point spread Function of BOLD fMRI signals in stimulation  

The PSFs of the single digit tactile stimulation evoked BOLD fMRI activation maps were 

measured in both areas 3b and 1. We first identified activation foci in areas 3b and 1, whose shapes 

could be well approximated as elliptical. In each animal, activation maps of three different digit 

tips were typically obtained. A threshold of 0.7 was used to identify the center of mass in each 

ROI. The axis along the individual digit activation centers was then determined as the lateral to 

medial axis within each area (3b and 1). The perpendicular anterior-posterior direction of this axis 

was then determined along the digit bottom to tip representation. From the fitting, the center of 

mass, coordinates and the major (in the lateral to medial direction) and minor (in the anterior to 

posterior direction) axes of the ellipse were determined, and all values above 0.2 along the major 

and minor axes within the subregion were used in the subsequent Gaussian fitting. The voxel-to-

voxel spatial distributions of percentage of BOLD signal changes along the major and minor axes 

were fit with Gaussian functions. The full-width of half maximum (FWHM) of each fitted 

Gaussian point-spread function was then computed.  

 

Quantification of the Point spread Function of Local Field Potentials in Stimulation  

The same spatial ellipsoid fitting method was used to quantify the PSFs of LFP signals. To 

estimate the spatial extents of LFP responses in the stimulus condition, we began by examining 

the mean LFP power spectral density from all 98 channels together for the three brain states (pre-

stimulus, stimulus presentation and resting-state). Multi-channel electrode array response maps 

were computed based on the percentages of signal power changes between 20 sec of stimuli 

presentations and 20 sec of the pre-stimuli periods for single digit stimulations. Activation maps 

were then resampled at higher resolution (0.10 × 0.10 mm2) for further sub-voxel processing. 

Within each LFP stimulus run, the percentages of signal power changes of cortical activation areas 

were normalized to their maximum values during each run. A similar approach as described above 

was used to compute the point-spread functions of stimulus local field potential responses of areas 

3b and 1 in S1 cortex. 
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Comparison of locations of BOLD versus LFP activations  

To examine how reproducible the activation centers (of area 3b and area 1) were across 

BOLD and LFP acquisitions under stimulus conditions, we used a group analysis based on the 

mean and standard deviation of the center distances across all subjects and study sessions. 

Coregistrations of fMRI activation maps with LFP activation maps were accomplished using 

anatomical land-marks, surface blood vessel patterns, and a point-based co-registration algorithm. 

Forty to 80 pairs of reference points were used as landmarks in the 2D geometric nonlinear 

transformation. Apparent black dots on the T2
* MR structural images were caused by transcortical 

vessels. Their corresponding landmarks were visible on the LFP blood vessel maps as well. After 

coregistration, the point-to-point spatial offsets (square distances) of the predefined 40-80 

reference pairs were computed as coregistration accuracy. For both BOLD and LFP foci, the 

stabilities of the activation centers were quantified by the spatial shifts (distance) between the 

centers from all stimulus runs within each session. One x-y coordinate was computed for each 

experimental session (day) by averaging coordinates of centers across all stimulus runs within that 

day. We then quantitatively compared the mean activation center coordinates between BOLD and 

LFP.  
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Results 

Comparable Spatial Profiles of BOLD and LFP Responses to Stimulation in Areas 3b and 1  

To compare spatial response profiles to external stimuli between fMRI and LFPs, we 

estimated the FWHMs along the major and minor axes and the area and ratio of axes for each 

BOLD activation and the corresponding LFP responses. Figure 10A-D shows examples of fMRI 

and LFP activation maps to D3 tactile stimulation in both areas 3b and 1 of the same subject. 

Figure 10C and D shows 3D plots of the overall activation patterns in areas 3b and 1 and their 

local spatial profiles. By comparing measurements across all studies, we found no significant 

differences between BOLD and LFP estimates of the FWHMs along major and minor axes (Figure 

10E and G), areas (Figure 10F), or major/minor axis ratio (Figure 10H, comparing blue and green 

columns in Figure 10E-H) in both area 3b and area 1. For both BOLD and LFP responses, 

activation foci in area 3b have an elongated oval shape, with the major axis orientated in a lateral 

to medial direction that is along the line of digit tip-to-tip representations. In contrast, activation 

foci in area 1 are aligned in an anterior to posterior direction, along the line distinguishing digit 

bottom from top and orthogonal to the inter-areal border.  
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Figure 10 Spatial extents of tactile stimulus evoked BOLD activation in areas 3b and 1. One case is shown 

in A-D; entire population data are given in E-H. (A) BOLD activations in response to vibrotactile 

stimulation of digit 3 distal fingertip in areas 3b and 1. Activation map is thresholded at 0.7 of normalized % 

signal changes, with a peak value of 1. Dotted line represents estimated inter-areal border between areas 3b 

and 1. (B) Corresponding LFP activation map in response to identical stimulation used in fMRI experiment 

shown in A. (C) 3D illustration of the BOLD activation map shown in A. The x and y axes represent the 

location of the voxel in mm whereas the z axis represents the normalized percentage of signal change 

between the pre-stimulus and stimulus periods. (D) 3D illustration of the LFP activation map shown in C. 

(E) FWHM of area 3b, significance at * p<0.001 (Wilcoxon signed-rank test). (F) The area values of 3b 

and 1. (G) FWHM of area 1. (H) The ratio of major and minor axis of 3b and 1. A total of 30 runs from 6 

monkeys were acquired for BOLD measurements, and 30 runs from 4 monkeys were acquired for LFP 

measurements. 

 

For BOLD responses (n = 6 subjects), the FWHM of the major axis (1.08 ± 0.13 mm) of 

single-digit activation in area 3b was statistically significantly (P < 0.001, Wilcoxon signed-rank 

test) larger than that of the minor axis (0.71 ± 0.21 mm), whereas the FWHM of the major axis 

(0.95 ± 0.21 mm) in area 1 was not significantly different (P > 0.05) from that of the minor axis 

(0.81 ± 0.09 mm). For stimulus-evoked LFP responses (n = 4 subjects), the FWHM of the major 

axis (1.07 ± 0.16 mm) was statistically significantly (P < 0.001) larger than that of the minor axis 

(0.78 ± 0.20 mm) in area 3b; again, in area 1, the FWHM of the major axis (0.96 ± 0.12 mm) was 

not significantly different (P > 0.05) from that of the minor axis (0.84 ± 0.16 mm). Activation areas 

of area 3b (BOLD: 0.61 ± 0.23 mm2; LFP: 0.69 ± 0.15 mm2) and area 1 (BOLD: 0.61 ± 0.18 mm2; 

LFP: 0.68 ± 0.23 mm2) did not differ (P > 0.05). For both BOLD and LFP signals, Table 1 

summarizes these results.  

 

Table 1 FWHM from all subjects for stimulated BOLD and LFP 

Modality area 3b (mm) area 1 (mm) 

 Major axis** Minor axis** Major axis Minor axis 

BOLD 1.08±0.13 0.71±0.21 0.95±0.21 0.81±0.09 

LFP 1.07±0.16 0.78±0.20 0.96±0.12 0.84±0.16 

** indicates significance (p<0.001) between major and minor axes of area 3b of both modalities in 

stimulations. 
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Reproducibility and Spatial Agreement Between Activation Locations Measured by BOLD and 
LFP  

 

We then examined the reproducibility of the activation centers of area 3b and area 1 of 

stimulus-evoked BOLD and LFP across runs and the spatial relationships between BOLD and LFP 

activation maps in each individual animal. Within each fMRI session, we determined the center of 

mass of each activation focus and then calculated the means and SDs of distances between 

corresponding centers on separate stimulus runs for all runs within each session and looked at the 

variation across study sessions and subjects (n = 6 animals, 30 runs). The inter-center distance 

variation for BOLD was 0.23 ± 0.05 mm for area 3b, and 0.24 ± 0.05 mm for area 1. The spatial 

variation of activation centers was thus close to the size of one voxel (in-plane resolution of 0.274 

× 0.274 mm2). For stimulus-evoked LFP activation maps (n = 4 animals, 30 runs), the inter-center 

distance was 0.10 ± 0.03 mm for area 3b and 0.12 ± 0.04 mm for area 1, respectively. The inter-

center distance was smaller than the spatial spacing (0.4 mm) between two adjacent electrodes. 

Direct comparisons between BOLD and LFP maps revealed that the inter- center distance variation 

between modalities was 0.32 ± 0.06 mm for area 3b and 0.35 ± 0.09 mm for area 1. The spatial 

agreement was close to the range of a single BOLD (0.274 × 0.274 mm2) and LFP (0.40 × 0.40 

mm2) mapping voxel. Anatomic images of both modalities were coregistered within 0.10 mm 

accuracy.  
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Discussion 

This study aimed to determine to what extent the local spatial profile of BOLD fMRI 

signals corresponds to underlying neuronal activity at a submillimeter, cortical modular scale. We 

compared the spatial extents (FWHMs of major and minor axes, area, and major/minor axis ratio) 

and activation center locations of BOLD signal changes with those of ‘gold standard’ electro- 

physiological LFP measurements during tactile stimulation, in the primary somatosensory cortex 

of new world monkeys. Using 0.274 × 0.274 mm2 in-plane resolution BOLD fMRI at 9.4 T and 

LFP recordings with 98-channel (two 7 × 7) microelectrode arrays (0.40 × 0.40 mm2 in spacing), 

we compared BOLD and LFP measures in two cases: stimulus-evoked BOLD versus LFP 

responses, and areas 3b versus 1. We found that the FWHM of PSFs of BOLD and LFP responses 

to tactile stimuli were comparable and around 1 mm, which is the size of one single digit 

representation. Both modalities captured elongated stimulus responses in the lateral to medial 

direction in area 3b, a feature that was absent in area 1. Moreover, variation in activation centers 

for repeated measurements by BOLD was less than 0.25 mm and was smaller for LFPs, whereas 

the separation of activation centers between modalities was very similar, indicating the stability 

and reproducibility of stimulus activation locations within and across two modalities. Extending 

previous observations of the closely correlated signal increases of LFP and BOLD signals to 

stimuli [Logothetis et al., 2001], here we provide further evidence of a close and strong spatial 

correspondence between BOLD and LFP signals in response to stimulation. The strong agreement 

between BOLD and LFP in stimulation indicates that local extents of activation are constrained by 

neuronal properties, and not other factors. BOLD fMRI at high field and at submillimeter 

resolution directly and faithfully reflects the spatial distribution of underlying neural activity. 
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Implications for High-Resolution BOLD fMRI at High Field  

The PSF of BOLD mapping signals sets the theoretical limits of spatial specificity and 

resolution of functional imaging. The width of the measured BOLD PSF is a convolution of the 

contributions from the intrinsic spatial distribution of the neural activity involved, the effects of 

converting neural electrical activity to a spatial distribution of metabolic and hemodynamic 

changes that affect MRI signals, and the effects of image acquisition and reconstruction with finite 

resolution. The PSF that we report in S1 cortex is narrower than those reported previously (3.5 

mm at 1.5 T [Engel et al., 1997], 3.9 mm at 3 T [Parkes et al., 2005], and 2 mm at 7 T [Shmuel et 

al., 2007]). We attribute this difference to the effects of magnetic field on the functional mapping 

signals used and to our use of relatively high-resolution acquisitions. The BOLD response at lower 

magnetic fields (e.g., 1.5 T) may be dominated by signals from larger draining veins with little 

contribution from microvasculature. At high fields, the relative contributions of both intravascular 

signals and the effects of larger vessels on extravascular dephasing to the overall fMRI signal 

changes are substantially diminished [Yacoub et al., 2001; Ugurbil et al., 2003]. The increase in 

the intrinsic width of the PSF of BOLD signals at 1.5 T and 3 T may be attributed to the presence 

of greater large vessel contributions to signal dephasing of the extravascular water at those lower 

fields [Kennan et al., 1994; Duong et al., 2003]. Moreover, it is likely that measurements acquired 

at lower field and resolution also reflected the intrinsic resolution limitations of the image 

acquisitions. The higher resolution that we used made it possible to reduce partial volume effects 

and more closely approach the intrinsic limits of BOLD. Functional images acquired with an in-

plane resolution of 0.547 × 0.547 mm2 yielded PSFs significantly wider than those obtained from 

higher-resolution functional images with an in-plane resolution of 0.274 × 0.274 mm2, indicating 

that partial volume averaging may broaden regions of activation even at this scale, and confirming 

that higher-resolution functional images increase the spatial specificity of BOLD fMRI so that the 

intrinsic BOLD PSF need not be a limiting feature in practice. This suggests that the spatial 

specificity of submillimeter resolution BOLD fMRI at high magnetic field provides a reliable tool 

for the investigation of cortical micro-organization.  
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Spatial Extents of Stimulus-Evoked BOLD and LFP Signals in S1 Cortex 

In this study, we pushed the fMRI spatial resolution to submillimeter (0.274 × 0.274 mm2) 

and compared it directly with LFP recordings from the same region with a resolution of 0.40 × 

0.40 mm2. We found that the FWHMs of BOLD activations at 9.4 T were around 1 mm, which is 

four times the acquired voxel size. We found excellent spatial agreement between stimulus-evoked 

BOLD and LFP responses in both area 3b and area 1. The close coupling between columnar 

structures and local microvasculature likely contributed to the high spatial agreement between two 

modalities [Sheth et al., 2004]. The tactile stimulus we used is subtle and activates only a small 

(∼1 mm) piece of cortex compared with much broader activation previously reported in the visual 

cortex [Kim et al., 2004]. It is very likely the 8-Hz digit stimuli activate only a fraction of each 

digit column, as this stimulus drives predominantly slow-adapting neurons [Powell and 

Mountcastle, 1959; Burton and Sinclair, 1996].  
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CHAPTER III 

SPATIAL EXTENTS OF BOLD AND LFP IN RESTING STATES 

Abstract 

Although BOLD fMRI has been widely used to delineate functional circuits at rest, the 

extent to which BOLD signals correlate spatially with underlying neuronal activity, the spatial 

relationships between local correlations of BOLD signals in a resting state, and whether these 

spatial relationships vary across functionally distinct cortical areas are not known. To address these 

critical questions, we directly compared the spatial extents of the local profiles of intervoxel resting 

state correlations for both high-resolution BOLD at 9.4 T and LFPs, using 98-channel 

microelectrode arrays, in functionally distinct primary somatosensory areas 3b and 1 in nonhuman 

primates. Anatomic images of LFP and BOLD were coregistered within 0.10 mm accuracy. We 

found that the PSFs of spontaneous BOLD and LFP fluctuations were comparable in resting states, 

and both estimates of activations were slightly more spatially constrained than local correlations 

at rest. Importantly, the spread of BOLD correlations at high field are no greater than the extent of 

LFP signals. These results demonstrate that high-field fMRI has the ability to delineate brain 

functional organizations at the columnar level, and the intrinsic resolution of BOLD is not a 

limiting feature in practice and approaches the intrinsic precision achievable by multielectrode 

electrophysiology.  
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Introduction 

The discovery and analysis of synchronized fluctuations of low-frequency MRI signals 

between different brain regions at rest have provided a powerful approach to probe functional 

connectivity between regions and to delineate functional circuits [Biswal et al., 1995; Lowe et al., 

1998; Greicius et al., 2003]. Several previous studies have focused on understanding what types 

of electrophysiological signals [e.g., spike vs. LFP] drive (or correlate) with fMRI signals and have 

confirmed that fMRI signals are reliable indicators of associated neuronal activity [Logothetis et 

al., 2001]. Few studies, however, have examined the relationships between fluctuations of fMRI 

signals and spontaneous electrophysiological signal variations at rest [Scholvinck et al., 2010; 

Magri et al., 2012]. No study, to our knowledge, has directly compared the spatial distributions of 

BOLD and LFP signals in their correlation profiles in a resting state. The ultimate spatial resolution 

and functional specificity of connectivity metrics depend on the local spread of BOLD signals 

beyond those of underlying neural activity, especially at the mesoscopic level of functional 

specialization. Here we report the use of high-resolution fMRI at high field strength (9.4 T) to 

measure the spatial profiles of single-voxel local correlations in a resting state, in the primary 

somatosensory cortex of nonhuman primates. We then compare these with the LFP inter-electrode 

correlations, in the same conditions and the same brain region. Our results shed light on the 

intrinsic limits of BOLD fMRI at high field and the relationship of BOLD signal changes to 

underlying electrophysiological activity.  

In the experiments described, we directly compared the resting state correlation profiles 

for high-resolution BOLD at 9.4 T and LFPs, using two 7 × 7 multichannel microelectrode arrays 

include the digit representation regions of two functionally distinct somatosensory subregions 3b 

and 1 in individual monkeys. We found that the intervoxel correlation profiles of resting state 

BOLD and spontaneous LFP signals for individual voxels or electrodes were slightly wider than 

those produced by stimulation (~ 1 mm). In addition, we found no differences in the widths of the 

PSFs between LFP and BOLD fMRI at a high resolution at 9.4 T in a resting state condition. 

BOLD fMRI signals obtained at submillimeter resolution at high field are thus reliable and 

accurate indicators of underlying neural activity in resting states.  
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Methods 

FMRI Data Acquisition and analysis 

MR imaging was performed with a 9.4 T 21 cm bore Varian Inova magnet (Varian Medical 

Systems, Palo Alto, CA), using a 3-cm surface transmit-receive coil secured over the 

somatosensory cortex. Scout images obtained using a fast gradient-echo sequence were used to 

define a volume covering the primary somatosensory cortex in which static magnetic field 

homogeneity was optimized, and to plan oblique slices for structural and functional EPI imaging. 

T2
*-weighted gradient-echo structural images [repetition time (TR) = 200 ms, echo time (TE) = 16 

ms, four slices, FOV = 35 × 35 mm2, 512 × 512 matrix, spatial resolution = 0.068 × 0.068 × 2 

mm3, number of excitations = 6] were acquired to identify venous structures on the cortical surface 

to help locate S1 cortex, and as structural features for co-registration of fMRI images. Within each 

imaging session, multiple runs (up to 4) of resting state fMRI data were acquired with identical 

image acquisition sequences (gradient echo-planar image, GE-EPI), parameters (TR = 750 ms, TE 

= 16 ms) and slice placement. All images were obtained at two different imaging resolutions: 0.547 

× 0.547 × 2 mm3 (low resolution, number of excitations = 2) and 0.274 × 0.274 × 2 mm3 (high 

resolution, number of excitations = 4). For resting-state fMRI runs, 300 continuous image volumes 

were acquired for both resolutions. MR Images were reconstructed on the MR console (Varian 

VnmrJ) and exported to Matlab (Mathworks, Natick, MA) for analysis.  

Standard preprocessing steps were applied to the raw fMRI signals. Slice timing correction 

was performed following slice-by-slice motion correction. Six translation and rotation parameters 

were used to regress out temporal variations caused by motion. Time courses were drift corrected 

using a linear model fitted to each time course. The RETROICOR method was used to correct for 

physiological noise using the respiration pattern recorded during the scan. No spatial smoothing 

was applied. Resting state BOLD signal time series were further filtered with a lowpass filter (0.01-

0.1 Hz). The top image slice where areas 3b and 1 reside, was analyzed. 
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Local field potentials recording and analysis 

Guided by MRI maps and blood vasculature patterns, two 7 × 7 multichannel Utah 

electrode arrays (98 channels in total, spacing between each electrode, 400 µm) were carefully 

inserted into area 3b and area 1 cortex. LFP signals were sampled at 500 Hz and then band-pass 

filtered between 1 and 150 Hz for quantification. For LFP resting state coherence analysis, 

magnitude squared coherence was calculated between each selected seed electrode and the other 

electrodes [Leopold et al., 2003]. 

 

Measurements of the Point spread Function of BOLD fMRI signals in resting states 

For resting state fMRI runs, ROI seeds were identified based on the vibrotactile stimulus-

evoked activation maps. The voxels with the highest % BOLD signal change were chosen as the 

seeds for each digit in either areas 3b or 1. Resting state BOLD signal time courses were extracted 

from the seed voxels and then used as the reference models in subsequent voxel-wise correlation 

analyses. Correlation coefficients (indicators of resting-state fMRI functional connectivity) were 

computed for each voxel surrounding the seed, and then local functional connectivity maps were 

generated for each seed.  Identical spatial fitting procedures were applied to derive the FWHM, 

area and major/minor axis ratio of Gaussian point-spread functions of fitted local correlation 

profiles [Shi et al., 2017].  

 

Quantification of the Point spread Function of Local Field Potentials in Resting States 

For resting-state local field potentials, ROI seeds were identified based on the multi-

electrode array stimulus response maps. Electrodes with the largest percentage of signal power 

change between 20 sec stimuli presentations and 20 sec pre-stimuli periods for single digit 

stimulations were selected as seeds, from which resting-state LFP electrode-wise functional 

connectivities were computed for each seed. To evaluate the spatial profiles of resting-state LFP 

correlations, we first placed one ROI seed (either area 3b or area 1) and computed its functional 

connectivity map based on functional coherence between this seed and the rest of the electrodes. 

We then used the same approach as described above to compute the point-spread functions of 

resting-state LFP correlations of this area within S1 cortex.  
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Results 

Comparable local voxel-voxel correlation profiles of resting state BOLD and LFP signals 

We measured the FWHM, area and major/minor axis ratio of intervoxel correlation profiles 

of resting state BOLD signals for foci of stimulus-evoked activations, and compared these with 

corresponding resting state LFP signals. We selected single voxels that showed the strongest 

responses to tactile stimuli as seeds in areas 3b and 1 (Figure 11). Within a single digit 

representation in areas 3b and 1, the local intrinsic functional connectivity profiles of resting state 

BOLD and LFP signals are very similar. FWHMs of the major and minor axes of the resting-state 

intervoxel BOLD correlation profiles were respectively 1.16±0.15 mm and 0.83±0.14 mm in 

area 3b and 1.07±0.17 mm and 0.90±0.08 mm in area 1. For resting state LFP signals, FWHMs 

of the major and minor axes of the resting-state intervoxel LFP correlation profiles were 1.19±

0.16 mm and 0.84±0.12 mm in area 3b and 1.12±0.12 mm and 0.98±0.13 mm in area 1. These 

LFP measures were not significantly different from resting state BOLD estimates.  

 

  



 74 

 

 
 

Figure 11 Spatial extent of resting-state fMRI connectivity within areas 3b and 1. One case is shown in A-

H, and the entire population data are given in I-L. (A) BOLD correlation map in the resting-state condition. 

Seed voxel was placed in the digit region in area 3b for voxel-wise correlation analysis. Correlation map 

was thresholded at r>0.5, with a peak of 1. Dotted line represents estimated inter-areal border between areas 

3b and 1. (B) Corresponding LFP correlation map of seed area 3b in the resting-state condition. (C) BOLD 

correlation map of seed area 1. (D) Corresponding LFP correlation map of seed area 1. (E-H) 3D plots of 

correlation spatial profiles of BOLD and LFP in areas 3b and 1 with x and y axes representing the location 

of the voxel (mm) and z axis representing the correlation values. (I) FWHM of area 3b in the resting state 

condition, significance at * p<0.001. (J) FWHM of area 1. (K) The area values of 3b and 1 in the resting-

state condition. (L) The major and minor axis ratio of 3b and 1 at rest. A total of 18 runs from 6 animals 

were acquired for BOLD measurements, and 22 runs from 4 monkeys were acquired for LFP measurements. 
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Figure 12 Comparison of point-spread functions of BOLD and LFP signals in areas 3b and 1, between 

resting-state and stimulation. (A) FWHM of major axis for areas 3b and 1. (B) FWHM of minor axis for 

both areas. (C) The area values of 3b and 1 in both resting and stimulus conditions. (D) The major and 

minor axis ratio of 3b and 1 in both conditions. 
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Local spatial extents of resting state functional connectivity are wider than those of cortical 
responses to stimuli for BOLD and LFP signals  

 

Direct comparisons of the FWHM measures between stimulation and resting states 

revealed that the PSF of resting state voxel-voxel correlations is significantly wider than that of 

stimulation responses (p <0.05, Figure 12), regardless of specific area examined (area 3b or area 

1). For example, in both areas 3b and 1, the FWHM of the major axis (1.16±0.15 mm and 1.07±

0.17 mm) and that of the minor axis (0.83±0.14 mm and 0.90±0.08 mm) of the resting-state 

BOLD correlations were larger than both the major axis (1.08±0.13 mm and 0.95±0.21 mm) and 

minor (0.71±0.21 mm and 0.81±0.09 mm) axes in the stimulated BOLD activation maps. 

Moreover, in both areas 3b and 1, the FWHM of the major axis (1.19±0.16 mm and 1.12±0.12 

mm) and that of the minor axis (0.84±0.12 mm and 0.98±0.13 mm) of the resting-state LFP 

electrode-electrode coherence were larger than both the major axis (1.09±0.14 mm and 1.01±

0.23 mm) and minor (0.65±0.14 mm and 0.83±0.20 mm) axes in the stimulated LFP activation 

maps. For both BOLD and LFP signals, Table 2 summarizes these results.  

 

Table 2 FWHM from all subjects for stimulated and resting-state BOLD and LFP 
Modality Stimulated * Resting-state * 

area 3b (mm) area 1 (mm) area 3b (mm) area 1 (mm) 

Major axis Minor axis Major axis Minor axis Major axis Minor axis Major axis Minor axis 

BOLD 1.08±0.13 0.71±0.21 0.95±0.21 0.81±0.09 1.16±0.15 0.83±0.14 1.07±0.17 0.90±0.08 

LFP 1.07±0.16 0.78±0.20 0.96±0.12 0.84±0.16 1.14±0.20 0.89±0.17 1.11±0.19 0.97±0.16 

* indicates significance (p<0.05) between resting-state and stimulated conditions 
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Discussion 

This study aimed to determine to what extent the local correlation profile of BOLD fMRI 

signals corresponds with underlying neuronal activity in resting states. Using 0.274 × 0.274 mm2 

in-plane resolution BOLD fMRI at 9.4 T and LFP recordings with 98-channel (two 7 × 7) 

microelectrode arrays (0.40 × 0.40 mm2 in spacing), we compared BOLD and LFP measures in 

three cases: (1) resting state BOLD versus spontaneous LFP signal changes; (2) stimulus-evoked 

versus resting-state maps in each modality; and (3) areas 3b versus 1. We found that resting state 

BOLD fMRI and LFP signals exhibited very similar intervoxel spatial correlation profiles within 

single-digit representation columns in the primary somatosensory cortices of areas 3b and 1. In 

addition, the PSFs of intervoxel local correlation profiles of both resting state BOLD and LFP 

signals were slightly, but significantly wider (p <0.05), than those of stimulus activations. The 

elongated spatial profiles of digit representations in area 3b were present in resting state 

correlations. BOLD fMRI at high field and at submillimeter resolution directly and faithfully 

reflects the spatial distribution of underlying neural activity.  

 

Spatial Extents of BOLD and LFP Signals in S1 Cortex in resting states 

Despite their widespread adoption as measures of functional connectivity, little is known 

as to how the low-frequency temporal fluctuations of resting state BOLD signals vary locally, and 

whether correlated fluctuations actually reflect synchronized spontaneous LFP signal variations at 

rest. Our previous studies in monkeys demonstrated that the strength of resting state BOLD signal 

correlations between brain regions was related closely to the strength of anatomic connections and 

whether those areas coactivated to the same stimuli [Wang et al., 2003; Reed et al., 2008]. These 

observations suggest that neurons that share similar functions and anatomically dense connections 

exhibit highly synchronized signal fluctuations at rest. A residual question is whether the extent of 

the activity of functionally homogeneous neurons is accurately reflected by resting state fMRI 

correlations. In this study, we assessed the spatial relationship between resting state BOLD and 

LFP measurements and between stimulus response and local correlation profiles in a well-

described cortical modular structure, the single-digit representations in areas 3b and 1 in mon- 

keys. Our data demonstrate that the spatial extents of high correlations of both BOLD and LFP 

signals are constrained tightly to the anatomic boundaries of neurons receiving inputs from the 
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same digit region-tips in a similar manner. The different PSF shapes identified in area 3b versus 

area 1 (elongated vs. round) further support the correspondence between neural electrical signals 

and BOLD signal fluctuation at rest at the submillimeter to millimeter scale. The high degree of 

agreement between PSFs of BOLD and LFP signals in resting states supports the notion that 

synchrony within a functionally homogeneous population of neurons determines the strength of 

local resting state correlation measures in either modality.  

If the spontaneous fluctuations in the resting state are driven by common inputs (e.g., from 

thalamus or cortical-cortical connections [Reed et al., 2008]), then the wider FWHMs for 

correlation profiles could reflect that more neurons were engaged by these common inputs. What 

these inputs are and to what extent the differences in common input are reflected in the resting 

state functional connectivity signals are of great interest for further investigation. Together with 

our recent findings of the close relationship between interregional BOLD and LFP correlations, 

the tight local spatial relationship between BOLD and LFP signals shows that resting state BOLD 

signals are reflective of underlying neuronal electrical activity, and therefore, can be used to probe 

functional connectivity.  
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CHAPTER IV 

DYNAMIC CHANGES IN RESTING STATE FUNCTIONAL CONNECTIVITY 

Abstract 

Variations over time in resting-state correlations in blood oxygenation level-dependent 

(BOLD) signals from different cortical areas may indicate changes in brain functional connectivity. 

However, apparent variations over time may also arise from stationary signals when the sample 

duration is finite. Recently, a vector autoregressive (VAR) null model has been proposed to 

simulate real functional magnetic resonance imaging (fMRI) data, which provides a robust 

stationary model for identifying possible temporal dynamic changes in functional connectivity. In 

this work, we propose a simpler model that uses a filtered stationary dataset. The filtered stationary 

model generates statistically stationary time series from random data with a single prescribed 

correlation coefficient that is calculated as the average over the entire time series. In addition, we 

propose a dynamic model, which is better able to replicate real fMRI connectivity, estimated from 

monkey brain studies, than the two stationary models. We compare simulated results using these 

three models with the behavior of primary somatosensory cortex (S1) networks in anesthetized 

squirrel monkeys at high field (9.4 T), using a sliding window correlation analysis. We found that 

at short window sizes, both stationary models reproduced the distribution of correlations of real 

signals well, but at longer window sizes, a dynamic model reproduced the distribution of 

correlations of real signals better than the stationary models. While stationary models replicate 

several features of real data, a close representation of the behavior of resting-state data acquired 

from somatosensory cortex of non-human primates is obtained only when a dynamic correlation 

is introduced, suggesting dynamic variations in connectivity are real.  
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Introduction 

Low frequency fluctuations in blood oxygenation level-dependent (BOLD) functional 

magnetic resonance imaging (fMRI) signals may occur spontaneously in functionally related areas 

of the cortex in the absence of any specific task. Biswal et al. [1995] first reported the correlation 

in fMRI signal fluctuations between the left and right motor cortices when the brain was in a resting 

state. Functionally related brain regions can be identified using their synchronous slow fluctuations 

in signal intensity [Cordes et al., 2000]. Subsequent studies have identified several consistent 

resting-state networks, including motor, auditory, visual, attention, and default mode [Damoiseaux 

et al., 2006].  

Various techniques have been used to derive functional connectivity to reveal functionally 

related brain regions. For example, seed-based region-of-interest (ROI) analyses [Biswal et al., 

1995], spatial independent component analysis [McKeown et al., 1998], clustering [Mezer et al., 

2009], phase relationships [Sun et al., 2005], and graph theory [Achard et al., 2006; Dosenbach et 

al., 2007]. Most fMRI studies in the past have assumed that the correlations between brain regions 

are constant throughout the time series of the entire scan in resting-state experiments [Fransson, 

2005]. More recently, there has been an increasing interest in the detection and characterization of 

possible dynamic changes in functional connectivity [Allen et al., 2014; Chang and Glover, 2010; 

Hutchison et al., 2013]. Variations in the degree of coupling between different networks would 

seem to be a plausible feature of neural systems, and the nature of temporal changes in such 

couplings could be an important aspect of brain function. However, whether observed dynamic 

changes in correlations between distinct brain regions over time show significantly greater 

variability than would be expected if the underlying correlation coefficient between the two signals 

were stationary (time-invariant) is a crucial issue. Currently, there is no consensus on which 

analysis technique is the most effective at characterizing such temporal variations in resting-state 

fMRI signals. The most commonly used strategy for analyzing dynamic changes in resting-state 

functional connectivity has been a sliding window correlation approach [Handwerker et al., 2012; 

Jones et al., 2012], which is intended to identify pairwise variations in inter-regional time courses. 

The limitations of this approach are clear and further discussed below. Other methods, for example, 

the PsychoPhysiological Interactions [PPI; Friston et al., 1997] method studies the dynamical 

feature of functional connectivity under the assumption that the timing of the various contexts or 

state changes is known. However, it is often difficult to identify or specify the timing and duration 
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of the psychological processes being studied a priori. Cribben et al. introduced a Dynamic 

Connectivity Regression technique, which is a data-driven method for detecting functional 

connectivity change points between brain regions where the number of change points and their 

locations are unknown in advance [Cribben et al., 2012]. While this strategy avoids the assumption 

of knowing state changes in advance, it does not estimate details of the dynamic correlation 

between the brain regions. Various efforts have also been made to replicate real resting-state fMRI 

data using simulated time series, most notably the vector autoregressive (VAR) null model [Chang 

and Glover, 2010; Cribben et al., 2013; Shah et al., 2012; Zalesky et al., 2014] which avoids 

possible confounds from physiological noise or other sources of artifact.  

The purpose of this study was to evaluate whether correlations in real fMRI data are 

stationary, and to investigate the existence of dynamic correlations. Our motivation was to simulate 

the behavior of the temporal correlations between different sub-regions in S1 cortex of monkey 

brain over an 18-min resting-state scanning session. We first used a VAR null model and then 

developed a simpler model that uses a filtered stationary simulation dataset, whose behavior could 

then be compared to real resting- state fMRI data. The filtered stationary model generates 

statistically stationary time series from random data with a single prescribed correlation coefficient 

that is calculated as the average over the entire time series. We then further modified the model to 

account for the dynamic features in connectivity, and used a variant of the Kolmogorov-Smirnov 

(K-S) statistic to quantitatively compare all simulated results to the behavior of real networks. We 

used a very well characterized network for dynamic functional connectivity studies. Our 

experimental data were obtained from small regions in the somatosensory (S1) networks in 

anesthetized squirrel monkeys at high field strength (9.4 T). The hand-face region within the S1 

cortex of the squirrel monkey has been previously well mapped with functional imaging, 

electrophysiological and anatomical methods, and the orderly topographic map of the hand region 

is characterized by a lateral to medial representation of individual digits in three sub-regions of 

areas 3a, 3b, and 1.   
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Methods 

Animal Preparation  

Three squirrel monkeys (three sessions each) were pre-anesthetized with ketamine 

hydrochloride (10 mg/kg)/ atropine (0.05 mg/kg) and then anesthetized with 0.5-1.5% of isoflurane 

to maintain a stable physiological condition for MRI scans. Although the actual level may vary 

across animals, we typically maintained anesthesia under a light stable level around 0.7-0.8% 

during our functional data acquisition. The anesthetized animals were intubated and artificially 

ventilated. After intubation, each animal was placed in a custom-designed MR cradle with its head 

secured using ear bars and an eye bar. Lactated Ringer’s solution was infused intravenously (2–3 

mL/h/kg) to pre- vent dehydration during the course of the study. Arterial blood oxygen saturation 

and heart rate (Nonin, Plymouth, MN), electrocardiogram, end-tidal CO2 (ET-CO2; 22–26 mm 

Hg; Surgivet, Waukesha, WI), and respiration (SA Instruments, Stony Brook, NY) were externally 

monitored and maintained. Temperature (37.5–38.5oC) was monitored (SA Instruments) and 

maintained via a circulating water blanket (Gaymar Industries, Orchard Park, NY). Real-time 

monitoring was maintained from the time of induction of anesthesia until full recovery. Detailed 

procedures have been described in a previous publication [Chen et al., 2007]. All procedures were 

in compliance with and approved by the Institutional Animal Care and Use Committee of 

Vanderbilt University.  

 

FMRI Data Acquisition and Preprocessing  

MRI imaging was performed on a 9.4 T 21 cm bore Varian Inova magnet (Varian Medical 

Systems, Palo Alto, CA), using a 3-cm surface transmit–receive coil secured over the sensory 

cortex. Scout images obtained using a fast gradient-echo sequence were used to define a volume 

covering primary somatosensory cortex in which static magnetic field homogeneity was optimized, 

and to plan four oblique slices for structural and functional imaging (Figure 13, only the top slice 

shown). T2
*-weighted gradient-echo structural images [repetition time (TR), 200 ms; echo time 

(TE) = 16 ms, four slices, 512 × 512 matrix; 68 × 68 × 2000 mm3 resolution; number of excitations 

= 6] were acquired to identify venous structures on the cortical surface used to help locate S1, and 

as structural features for coregistration of fMRI images. fMRI data were acquired from the same 

slice. For each monkey, three runs of 720 continuous functional gradient echo-planar image (EPI) 
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functional volumes (TE =16 ms; 64 × 64 matrix; 547 × 547 × 2000 mm3 resolution) were acquired. 

Acquisition time of each run was 18 min, and the TR was 1.5 s. Images were reconstructed on the 

MR console (Varian VnmrJ) and imported into Matlab (Mathworks, Natick, MA) for analysis. The 

raw echo-planar images were spatially smoothed with a 3 × 3-voxel Gaussian window with a 

standard deviation of 312 mm, and then interpolated to a 256 × 256 matrix for overlay on 

anatomical images. Time courses were drift corrected using a linear model fitted to each time 

course and temporally smoothed with a low-pass filter.  

 

 
Figure 13 Anatomic images for studying S1. a, Major landmarks (such as central and lateral sulci) used to 

identify S1 are visible on squirrel monkey brain. The red box indicates the location of ROIs. b, A high-

resolution coronal image is collected to locate somatosensory cortices and to guide placement of an oblique 

slice parallel to the S1 (locations indicated by rectangles, overlaid or coronal scout image). This oblique 

orientation was used for both high-resolution anatomical and functional imaging. c, In an image acquired 

with T2
* weighting, sulci and vascular structures appear dark. Both central and lateral sulci are readily 

identified in the most superficial slice. c, caudal; m, medial; r, rostra. 
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Identification of ROI Seeds  

Specific ROI seeds were identified 

according to the vibrotactile stimulus evoked 

activation maps, which were obtained by 

separate fMRI runs within the same imaging 

session. A stimulus-evoked fMRI activation 

map was used to locate the finger pad regions in 

areas 3a, 3b, and 1 (see Figure 14). The fingers 

were secured by gluing small pegs to the 

fingernails and fixing these pegs firmly in 

plasticine, leaving the glabrous surfaces 

available for vibrotactile stimulation by a 

rounded plastic probe (2 mm diameter) 

connected to a piezoelectric device (Noliac, 

Kvistgaard, Denmark). Piezos were driven by 

Grass S48 square wave stimulators (Grass-

Telefactor, West Warwick, RI) at a rate of 8 Hz 

with 30 ms pulse duration. Stimulation was 

applied in blocks of 30 s on and then 30 s off. 

The timing of the presentation of stimuli was externally controlled by the MR scanner. The 

correlation of each functional EPI time course to a reference waveform was calculated and 

activation maps were generated by identifying voxels whose correlation with the reference 

waveform was significant at least at p < 10-4 (uncorrected for multiple comparisons). Voxels with 

the highest p values were chosen as seeds (small blue boxes in Figure 14), from which filtered 

resting-state fMRI time courses were extracted for the dynamic functional connectivity analysis.  

 

  

Figure 14 Localization of digit regions with fMRI 

mapping in the S1 cortex of squirrel monkeys. One 

case is shown in here. BOLD activation in response 

to vibrotactile stimulation of the D2 tip. Activated 

voxels are observed in areas 3a, 3b and 1. 

Correlation maps were thresholded at r > 0.7, with 

a peak correlation value of 0.9. Dotted black line 

indicates approximate inter-area borders. Blue 

boxes show the seed voxels. Scale bar, 1mm. c, 

caudal; m, medial. 
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Vector Autoregressive Null Model  

The VAR model used to capture linear interdependencies among multiple time series 

[Hacker and Hatemi, 2008] is described in the following text [Chang and Glover, 2010]:  

Let x and y represent the BOLD signal time series from two different ROIs in S1 cortex. 

We first fit a (stationary) VAR model to x and y:  

 

𝑥 𝑡 = 	 𝑎69		𝑥 𝑡 − 𝑖 + 𝑏69		𝑦 𝑡 − 𝑖 + 𝜀9(𝑡)
P

6Q'

P

6Q'

𝑦 𝑡 = 	 𝑎6
<		𝑥 𝑡 − 𝑖 + 𝑏6

<		𝑦 𝑡 − 𝑖 + 𝜀<(𝑡)
P

6Q'

P

6Q'

		,																																				(13) 

 

where the optimal model order p (p = 9) is chosen according to the Bayesian information 

criterion (BIC) score, and t is a time index. Coefficients of the VAR model are estimated using 

least squares. Next, we generate 1,000 boot-strap time series pairs having the same VAR 

coefficients (i.e., same stationary relationship) as Eq. (13).  

 

Filtered Stationary (FTS) Null Model  

Let xc represent the common signal in the BOLD signal time series x1 and x2 from two 

different ROIs in S1 cortex. xc, w1, and w2 are stationary Gaussian zero-mean signals, low-pass 

filtered to contain frequencies only in the BOLD range 0.01-0.1 Hz. Each time course is 

independent, and contains 720 time points with an effective TR = 1.5 s.  

 

𝑥' 𝑡 = 	𝑥T 𝑡 + 𝑏 ∗ 𝑤' 𝑡
𝑥& 𝑡 = 	𝑥T 𝑡 + 𝑏 ∗ 𝑤& 𝑡

𝑐𝑜𝑟𝑟 𝑥' 𝑡 , 𝑥& 𝑡 = 𝑟	(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)
𝑏& = 	 '

|\|
− 1

 ,                      (14) 
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where the coefficient b is determined by the correlation coefficient between the BOLD 

signal time series from two different ROIs. Then we generate 1,000 trials based on Eq. (14).  

 

Sliding Window Correlation Analysis  

A sliding window correlation analysis is a method for capturing variations in inter-regional 

synchrony [Hutchison et al., 2013], and is commonly used to investigate dynamic changes in 

correlations between fMRI time series. In this approach, a time window of fixed length is selected, 

and data points within that window are used to calculate correlation coefficients between two time 

series (x and y), which are defined as r(t) = corr (xt+s-1, yt+s-1), where s is the window size, xt+s-1 and 

yt+s-1 represent the parts of the time series from time t to t+s-1, and corr () denotes computation of 

the Pearson’s correlation coefficient. The window is then shifted in time by a fixed number of data 

points (ranging from a single data point to the length of a window) that defines the amount of 

overlap between successive windows. The correlations between the time series derived from sub-

regions 3a, 3b, and 1 of S1 cortex in monkeys were calculated for window sizes of 30s (20 

volumes), 45s (30 volumes), 90s (60 volumes), 135s (90 volumes), 180s (120 volumes), 225s (150 

volumes), and 270s (180 volumes). The window was then shifted in time by 1.5s (1 volume) along 

the entire time series and the correlation coefficient was recalculated. Figure 15 shows an example 

of the sliding window correlation analysis comparing real fMRI data and two stationary (the VAR 

and the filtered stationary) null model simulations, with a window size of 60s. This procedure was 

repeated for all possible window positions within the 720 images of a run. The pairwise sliding 

window correlations between each of the three sub- regions were calculated for all animals and all 

scans.  
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Figure 15 Example of the sliding window correlation analysis comparing real fMRI data and two stationary 

(the VAR and the filtered stationary) null models, in a window size of 60s (40 TRs). 

 

Underlying Dynamic Null Model  

To obtain better approximations than stationary null models of the potential dynamic 

behavior of real data, we first computed correlation coefficients between two ROIs in monkey 

brain using a sliding window technique with a window size of 135 sec, and performed a median 

filtering of the time course of the correlation coefficient. Each time point then contained the median 

value in the neighborhood of 20 values around the corresponding pixel in the input image. We then 

fit the smoothed underlying correlations with a sum of 4 sine functions (an example is illustrated 

in Figure 16). We define this function as an underlying non-stationary correlation function r(t) 

between these two ROIs. Next, we generated 1,000 trials based on Eq. (15). This dynamic 

simulation can then be compared to the real data.  
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𝑥' 𝑡 = 	𝑥T 𝑡 + 𝑏 ∗ 𝑤' 𝑡
𝑥& 𝑡 = 	𝑥T 𝑡 + 𝑏 ∗ 𝑤& 𝑡

𝑐𝑜𝑟𝑟 𝑥' 𝑡 , 𝑥& 𝑡 = 𝑟(𝑡)	(𝑛𝑜𝑛 − 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦)
𝑏(𝑡)& = 	 '

|\(#)|
− 1

 ,                      (15) 

 

 
Figure 16 (a) Example of correlations between sub-regions area 3a and 1 in one monkey using sliding 

window technique in the window size of 135 s, along with a median filtering smoothing. (b) Example of 

fitted underlying correlation function: a sum of sine, the number of terms is 4. 

 

A Two-Sample Kolmogorov–Smirnov Statistic  

Above, we have described the methods to compute the VAR, filtered stationary, and 

underlying dynamic null model of a given pair of time series. In this section, we quantify the 

resemblance of the temporal variations in the correlations between the real and simulated data. We 

perform a sliding window analysis at one window size and construct the empirical cumulative 

distribution function (ECDF) for each pair of time series. A two-sample Kolmogorov-Smirnov (K-

S) statistic [Chakravart, 1967] may be used to evaluate whether two samples come from the same 

population with a specific distribution, based on measurements of the distance between two 

ECDFs. It is sensitive to differences in both the location and shape of the ECDFs of the two 

samples [Marsaglia et al., 2003; Stephens, 1974]. Therefore, lower K-S values between real and 

simulated data suggest increased accuracy of the model in representing the nature of the real data.  
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Centering z-Scores  

As the sampling distribution of Pearson’s r is not normally distributed, correlation values 

were converted to z-scores using Fisher’s z transform. The K-S results are affected by two main 

factors, one is the location, and the other is the shape of distribution. To compare distribution 

shapes, z-scores were centered by subtracting their mean values (Figure 17).  

 

 

Illustrative Example of Stationary Models  

All sub-region ROI pairs from nine sessions in three monkeys were quantified. Figure 15 

and Figure 17 illustrate examples of the results of the sliding window correlation analysis and 

correlation distributions of actual data and simulated time series, respectively. The correlation 

coefficient between sub-regions 3b and 1 in S1 cortex of one randomly selected squirrel monkey 

calculated from the time series of the entire 20-min scan is 0.8144. To simulate fMRI data using 

the filtered stationary null model, only this correlation coefficient is required. We thus generated 

two time-series of random signals with correlation coefficient of 0.8144, and used a low-pass filter 

in the same frequency range as used for BOLD preprocessing (0.01-0.1 Hz). To simulate real data 

using the VAR null model, we first fit a (stationary) VAR model to the BOLD signal time series 

from sub-regions 3b and 1 of the same monkey. Then we generated simulated signals using those 

derived coefficients and performed a sliding window correlation analysis over a range of window 

sizes (30 s, 45 s, 90 s, 135 s, 180 s, 225 s, 270 s) to both sets of simulated data. The dynamic 

Figure 17 Example of the probability density function of the z-score between sub-regions pair 3a-3b of 

S1 in two different monkeys before and after centering the z-score.   
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behavior of resting-state functional connectivity between sub-regions 3b and 1 of S1 cortex in the 

monkey was estimated using the same sliding window technique as for the simulated data. Figure 

18 shows that the correlation ECDF between sub-regions 3b and 1 in a monkey dataset is similar 

to the correlation ECDF derived from the filtered stationary null model.  

 

 
Figure 18 Example of the ECDF of the cross-correlations between two sub-regions of S1 in one monkey, 

along with the ECDF of the filtered stationary model simulation, KS value = 0.1280. 

 

The Behavior of Connectivity in Different Monkeys  

To test whether different monkeys have similar correlation trends in the same ROI pairs, 

VAR, filtered stationary, and underlying dynamic simulations were conducted on a single random 

monkey dataset. We then applied a sliding window analysis to both simulated data and the 

monkeys’ real fMRI data over a range of window sizes, and compared the distributions of their z-

scores using the two-sample K-S statistic.  
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Results 

Stationary Model Simulations  

Pre-processing of resting-state BOLD-fMRI time series usually includes low-pass filtering 

to remove artifacts and to emphasize frequencies of interest. Such filtering, however, affects the 

data by introducing autocorrelations in the BOLD time series themselves [Hindriks et al., 2016]. 

To match the relative strength of this low-pass filtering effect, the filtered stationary null model 

simulates the low-pass filter performed on the monkey data by matching the BOLD frequency 

range from 0.01 to 0.1 Hz. We have found this step to be one of the most important for replicating 

monkey fMRI connectivity in the filtered stationary model (Supporting Information Appendix).  

As expected, simulations of stationary random signals show that the variance of correlation 

coefficients decreases as window size increases [Hutchison et al., 2013]. In addition, the variance 

decreases for stronger correlation coefficients. The behavior of the correlation coefficients 

between stationary signals was similar to in vivo monkey data when using smaller window sizes, 

such as 45 sec. As shown in Figure 19, correlations between functionally related sub-region pairs 

(e.g., area 3a and area 1 in the same monkey brain) of the monkey data are distributed similarly to 

the correlations derived from simulated stationary data for short window sizes, but depart 

substantially for larger window sizes such as 180s (smaller K-S value indicates less difference).  

Figure 20 shows the K-S statistic for group of cross-correlations between two functionally 

related sub-regions of S1 cortex and their corresponding models, and the K-S statistic for cross-

correlation between functionally unrelated subregions and the filtered stationary model at the 

window sizes of 60 s and 180 s. The correlations between functionally related subregion pairs in 

the monkey data are distributed similarly to the correlations derived from VAR and filtered 

stationary models at the window size of 60s, but depart substantially at the window size of 180s. 

However, the correlations between functionally unrelated subregions (two sub-regions from two 

different monkeys, for example, area 3a from monkey A, and area 3b from monkey B) in the 

monkey data are distributed similarly to the correlations derived from the filtered stationary model 

at both window sizes of 60s and 180s.  

 



 93 

 

 
Figure 19 Example of the two-sample K-S statistic on correlations of monkey data and the filtered 

stationary null model simulation over a range of window sizes. 

 

Additional window sizes can be seen in Figure 21. Figure 21a illustrates the K-S statistic 

for group of cross-correlations between two functionally related sub-regions area 3a–3b and its 

corresponding stationary models. The correlations between sub-region pair 3a–3b in the monkey 

data are distributed more similarly to the correlations derived from the filtered stationary null 

model than those derived from the VAR model. Specifically, K-S values of correlation coefficients 

between area 3a-3b of the monkey data and the filtered stationary null model (blue line) are always 

smaller than those between the same monkey data and the VAR null model (black line). Moreover, 

these K-S values increase as window sizes increase, which indicates that neither of these two 

stationary models matches real fMRI data very well at large window sizes. However, the 
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correlations between functionally unrelated sub-regions are distributed similarly to the stationary 

data from the filtered stationary null model simulation at all window sizes. Specifically, the red 

line, which represents K-S values between unrelated sub-regions of monkey data and the filtered 

stationary null model is always flat over a range of different window sizes.  

 

 
Figure 20 Group analysis on K-S statistic between functionally related monkey data and the VAR, filtered 

stationary, underlying dynamic models, along with K-S statistic between functionally unrelated monkey 

data and the filtered stationary model at window sizes 60s and 180s. Sliding window correlations in real 

data differed from stationary simulations only at the longer window size, as shown by the high K-S statistic 

(blue, black). Introducing a dynamic component to the simulation eliminated the difference (green), 

meaning that correlation distributions derived from dynamic simulations matched the real data. Sliding 

window correlations between two different monkeys’ time series (uncorrelated by construction) were 

reproduced well by the stationary simulations and served as the negative control (red). Error bars indicate 

standard deviations. 
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Underlying Dynamic Model Simulation  

In the dynamic correlation study, we generated an underlying dynamic null model and 

applied the same sliding window technique, the Fisher’s z-transform and the two-sample K-S 

statistic. Figure 21b illustrates that correlations between functionally related sub-regions in the 

monkey data are distributed similarly to the correlations derived from the underlying dynamic null 

model at all window sizes. Specifically, the green line, which represents K-S values between 

functionally related ROIs in the monkey data and the underlying dynamic null model is flat over 

all different window sizes.  

 
Figure 21 Group analysis on K-S statistic between functionally related monkey sub-region pair area 3a-3b 

and the stationary and dynamic models, along with K-S statistic between functionally unrelated monkey 

data and the filtered stationary null model over a range of window sizes. (a) Correlation distributions are 

indistinguishable from stationary simulations at the shortest window (45 sec) but begin to differ at longer 

windows (90 sec and up; blue and black). (b) Dynamic simulations reproduce the correlation distributions 

of real data at all window sizes (green). Error bars indicate standard deviations. 
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The Behavior of Connectivity in Different Monkeys  

Figure 22a, b shows a group analysis of the K-S statistic between sub-region pair area 3a-

3b within different monkeys and the stationary and dynamic models before centering the z-score. 

Figure 22c, d shows a K-S statistic between the same subregion pair in different monkeys and 

three models after centering the z-score. From Figure 22a-d, it can be seen that the K-S values 

decreased dramatically after z-score centering. This is because the average correlation coefficients 

of the nine datasets are different from each other, while their correlation distributions shapes are 

similar. From Figure 22c, d, it can be seen that the K-S values over different window sizes are as 

follows: the VAR model (black line) has the largest values, followed by the filtered stationary 

model (blue line), followed by the dynamic model (green line), and followed by the functionally 

unrelated monkey data simulation (red line). The two stationary models do not capture the similar 

correlation features across monkeys as closely as the dynamic model. However, the underlying 

dynamic model is good at simulating the trend of correlation functions across all three monkeys 

(9 sessions).  
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Figure 22 Group analysis on K-S statistic between sub-region pair area 3a-3b within different monkeys 

and the stationary and dynamic models before (a, b) and after (c, d) centering the z-score. Error bars indicate 

standard deviations.  

 

To verify whether dynamic correlation similarities existed within identical subregion pairs 

of monkey data, we plotted the four major frequency components derived from the underlying 

dynamic model. These components were chosen based on the underlying correlations, which were 

fit using a sum of four sine functions. From Figure 23, it can be seen that different monkey datasets 

have similar dynamic correlation frequency components within identical subregion pairs. For these 

three subregion pairs, it was observed that variation frequency components between 0 and 0.003 

Hz had significant contributions to the correlation coefficients.  

 

a b 

c d 
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Figure 23 Spectral decomposition of the correlation coefficients for sub-region pairs of area 3a-3b, 3a-1, 

3b-1. 
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Discussion 

The aim of this study was to investigate the existence of dynamic correlations in real fMRI 

data acquired from somatosensory cortex of new world monkeys. It is widely accepted that 

apparent variations over time may arise from stationary signals when the sample duration is finite 

[Kiyani and Chapman, 2009; Nason, 2006]. Considering this factor, sliding window correlation 

analysis should be simulated with appropriate models and statistical tests. Based on our filtered 

stationary null model and the commonly used VAR model simulations for sliding window 

technique, we found that both stationary models reproduced the distribution of correlations of real 

fMRI signals well at short window sizes, but diverted at longer window sizes. This suggests that 

short window sizes are less reliable than long window sizes for detecting dynamic changes in 

functional correlations. In addition, a close representation of the behavior of resting-state data is 

obtained only when a dynamic correlation is introduced, suggesting that dynamic variations in 

connectivity are real.  

 

Implication for the K-S Statistic on Correlations Between fMRI Data and the Null Models 

As shown in Figure 19 and Figure 20, correlations between functionally related sub-regions 

in the monkey data are distributed similarly to the correlations derived from simulated stationary 

data at short window sizes, but depart substantially at larger window sizes. One possible 

explanation is that because we generated the filtered stationary null samples with only one 

prescribed single correlation coefficient that was calculated from the time series of the entire scan, 

the probability of realizing that prescribed correlation coefficient goes up as window size increases. 

The variance of the correlation coefficients decreases with larger window sizes, so the shape of 

the probability density function of correlations in the filtered stationary null model becomes 

narrower and taller. However, the probability density function of correlations in real fMRI data 

does not change as much with different window sizes, possibly because there are real dynamic 

changes within correlations between functionally related sub-regions. There clearly are some 

characteristics of correlations between functionally related sub-regions in the monkey data that the 

stationary null model cannot replicate. Given that the filtered stationary data are statistically 

stationary, these apparent dynamic changes at small window sizes arise from sampling variations 
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and more rigorous analysis is required to establish the existence of dynamic changes in 

connectivity.  

 

The Underlying Dynamic Null Model in Time-Varying Correlations  

As discussed above, correlations between functionally related sub-regions in monkeys are 

distributed similarly to the correlations derived from both stationary null models at short window 

sizes, but depart substantially at larger window sizes. Simultaneously, correlations between 

functionally unrelated pairs in the monkey data are distributed similarly to the stationary data from 

the filtered stationary null model simulation at all window sizes. One explanation for this 

phenomenon is that correlations between functionally related sub-regions are dynamically 

changing, while both stationary null models generate a static correlation through the entire series. 

However, for functionally unrelated sub-region pairs, it is clear that no correlation or dynamic 

changes exist within the data, so our filtered stationary null model can replicate it very well over 

a range of window sizes. To validate this hypothesis, we generated a dynamic null model using 

the underlying correlation function of the monkey data, applied the same sliding window technique, 

z transform and the two-sample K-S statistic as done to other two stationary null models. Figure 

21b shows that correlations between functionally related sub-regions in the monkey data are 

distributed similarly to the correlations derived from the underlying dynamic null model regardless 

of window sizes, which indicates the underlying dynamic null model can replicate correlations 

between different functionally related subregions in the monkey data well. The underlying 

dynamic model is straightforwardly obtained by modifying the filtered stationary null model. 

Figure 22 indicates that the two stationary models do not simulate the trend of dynamic correlations 

within the monkey data. A closer representation of the behavior of monkey resting-state data is 

obtained only when a dynamic correlation is introduced. Whether there are additional features 

within the real monkey fMRI data that are not present in the underlying dynamic model simulated 

data remains unclear, but exploration of additional statistical metrics is underway.  
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Potential Limitations concerning Sliding Window Correlation Analysis  

A sliding window correlation analysis is intended to identify pairwise variations in inter-

regional time courses, but several potential limitations must be considered in applying this method 

and interpreting results. One limitation is that white noise can exhibit fluctuations in common 

functional connectivity metrics that are as large as those observed in real fMRI data. Before 

interpreting results about whether or not functional connectivity varies over a scan, one might need 

to consider whether the range of sliding window variability between ROIs is significantly different 

between two control populations (null model). Another limitation is the arbitrary manner in which 

window sizes are chosen. While many researchers tend to gravitate toward a short window size to 

better detect transient changes in connectivity, a large window is often necessary to allow for 

robust estimation of the correlation coefficient [Sakoglu et al., 2010]. As shown in the results of 

this article, a decrease in window size can lead to an overall increase in the variability of the 

functional connectivity since there are fewer time points available for computing correlation 

coefficients. Thus it will be difficult to distinguish between real phenomena related to brain signals 

and physiological noise. In our article, we developed a method for testing appropriate window 

sizes using a filtered stationary null model and K-S statistic.  

 

Implications of Resting-State Functional Connectivity in Primary Somatosensory Cortex  

The spectral decomposition analysis for the functional connectivity of three sub-region 

pairs (area 3a and 3b, area 3a and 1, area 3b and 1) has shown that the frequencies that dominated 

the cross-correlation coefficients for the functionally related sub-regions were below 0.003 Hz, 

which is reproducible across sub-region pairs and subjects. This may indicate that fluctuations in 

resting-state functional connectivity in primary somatosensory cortex are very slow.  
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Appendix 

The correlation coefficient is one of several measures used to explore the idea of functional 

connectivity in the brain, particularly in the dynamic case. The correlation coefficient between two 

zero-mean signals is essentially a normalized version of the cross-correlation evaluated at the zero 

lag. Theoretically, the cross-correlation is evaluated using the ensemble average, i.e., via the 

expectation operator. In practice this is often impossible or at the very least impractical, and it is 

estimated by assuming stationarity and ergodicity and computing time averages. Even under these 

assumptions, the equivalence of the time average and the ensemble average is only guaranteed as 

the number of points, N, in the time average goes to infinity. The practical question becomes, how 

big does N need to be before we have a useful approximation to the theoretical ensemble average? 

Generally, this question does not have any simple answer, thus we attempt to analyze this particular 

cross-correlation problem.  

We start by considering the case of computing the correlation of two stationary, partially 

correlated zero-mean random processes. 

 

𝜑'& 𝑚 =
1
𝑁 (𝑦' 𝑚 ∗ 𝑦& −𝑚 ) 

 

where the * denotes convolution and  

 

𝑦' 𝑛 = 𝑥' 𝑛 + 𝑥& 𝑛  

𝑦& 𝑛 = 𝑥' 𝑛 + 𝑥` 𝑛  

 

and the 𝑥6 𝑛  signals are formed by filtering white noise through a bandpass filter with 

impulse response given by ℎ 𝑛 .  The 𝑤6 𝑛  signals are each zero-mean Gaussian white noise 

processes with variance 𝜎c& . 

 

𝑥' 𝑛 = 𝑤' 𝑛 ∗ ℎ 𝑛  

𝑥& 𝑛 = 𝑤& 𝑛 ∗ ℎ 𝑛  

𝑥` 𝑛 = 𝑤` 𝑛 ∗ ℎ 𝑛  
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Thus we have the following expressions. 

 

𝑦' 𝑛 = (𝑤' 𝑛 + 𝑤& 𝑛 ) ∗ ℎ[𝑛] 

𝑦& 𝑛 = (𝑤' 𝑛 + 𝑤` 𝑛 ) ∗ ℎ[𝑛] 

 

We can define 𝑔 𝑛 ≜ ℎ 𝑛 ∗ ℎ[−𝑛] to obtain		𝜑'& 𝑚  

= '
h
𝑔 𝑚 ∗ 𝑤' 𝑚 ∗ 𝑤' −𝑚 + (𝑤& 𝑚 ∗ 𝑤' −𝑚 ) + (𝑤' 𝑚 ∗ 𝑤` −𝑚 ) +

(𝑤& 𝑚 ∗ 𝑤` −𝑚 )   

 

Now define 𝛾6i 𝑚 ≜ 𝑤6 𝑚 ∗ 𝑤i −𝑚  resulting in 

 

𝜑'& 𝑚 = 	
1
𝑁 𝑔 𝑚 ∗ 𝛾'' 𝑚 + 𝛾&' 𝑚 + 𝛾'` 𝑚 + 𝛾&` 𝑚

= 	
1
𝑁 𝑔 𝑚 ∗ 𝛾'' 𝑚 +	

1
𝑁 𝑔 𝑚 ∗ 𝛾&' 𝑚 …

…+
1
𝑁𝑔 𝑚 ∗ 𝛾'` 𝑚 +

1
𝑁𝑔 𝑚 ∗ 𝛾&` 𝑚

 

 

The individual 𝛾6i 𝑚  terms simplify to the following. 

 

𝛾6i 𝑚 =

𝑤6 𝑘 + 𝑚 𝑤i 𝑘
h"'"l

mQC

, 𝑚 ≥ 0

𝑤6 𝑘 + 𝑚 𝑤i 𝑘
h"'

mQ"l

, 𝑚 < 0

 

 

For 𝑖 ≠ 𝑗 each term in the sum is the product of two zero-mean independent Gaussians 

(each with variance 𝜎c& ), resulting in a product normal distributed random variable with zero-mean 

and variance of 𝜎cs . Each term is uncorrelated with the others.  For m=0, 𝛾6i 𝑚  is the sum of N 

of these random variables.  For 𝑚 = ±1 it is a sum of N-1 random variables, for 𝑚 = ±2 it is a 

sum of N-2 random variables, and so on.  For each value of m the sum is approximated by a zero-

mean Gaussian random variable with a variance of (𝑁 −𝑚)𝜎cs . 
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The same analysis holds for 𝑖 = 𝑗 = 1 and 𝑚 ≠ 0.  For 𝑚 = 0 we have 𝛾'' 0 , the sum of 

the squares of N independent zero-mean Gaussian random variables each with a variance of 𝜎c& . 

The resulting sum is distributed according to a generalized Chi-square distribution with a mean of 

𝑁𝜎c&  and a variance of 2𝑁𝜎cs . The unnormalized cross-correlation that we actually want is 𝜑'& 𝑚  

evaluated at m=0.  Combining all the above observations we find that 𝜑'& 0  can be modelled as 

a Gaussian random variable. 

𝜑'& 0 ~𝑁(𝜇, 𝜎&) 

 

The expressions for the mean and variance are  

 

𝜇 = 𝑔[0]𝜎c&  

𝜎& =
2𝑔& 0
𝑁 𝜎cs + 𝜎cs

2
𝑁 𝑔 𝑘

&

𝑁 − 𝑘
h"'

mQ'

+3𝜎cs
1
𝑁 𝑔 𝑘

&

𝑁 − 𝑘
h"'

mQ" h"'

 

 

The behavior is most notably affected by the number of points N and the bandwidth of the 

low-pass filter.  

In order to study the effect of the bandwidth of the filter on the variance of the correlation 

coefficient estimate, we should point out that is it well known that as the correlation approaches 1 

or -1 the variance in the estimate decreases.  This is due to fact that the estimate cannot exceed 

these limits, i.e., it’s magnitude cannot exceed one.  In order to minimize these endpoint effects 

and focus on the bandwidth effect we perform a simplified analysis with an underlying correlation 

of 0.  This means that in the approach above, 𝑥' 𝑛  and 𝑤' 𝑛  are both zero. As a result we 

get	𝜑'& 𝑚 = '
h
𝑔 𝑚 ∗ 𝛾&` 𝑚 . This estimator of the covariance term (i.e., at m=0) can be shown 

to have a mean of zero and a variance of  

 

𝜎& =
𝑔&[0]
𝑁 𝜎cs + 𝜎cs

2
𝑁 𝑔 𝑘 & 𝑁 − 𝑘

𝑁

h"'

mQ'
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The correlation coefficient estimator is computed by dividing the covariance estimate by 

the square root of the products of the variances of 𝑦' 𝑛  and 𝑦& 𝑛 , 𝜑'' 0  and 𝜑&& 0 . It is 

straightforward to show that each of these variance estimators has a mean 

𝜇' = 𝜇& = 𝑔[0]𝜎c&  

and a variance of  

𝜎'& = 𝜎&& =
𝑔&[0]
𝑁 𝜎cs + 𝜎cs

2
𝑁 𝑔 𝑘 & 𝑁 − 𝑘

𝑁

h"'

mQ'

 

 

which is the same variance as for the covariance estimate. 

Now we note that the mean of the variance estimates is nonzero and variances decrease 

with increasing N.  For large N these variances can be made small relative to the mean value, so 

as a simplification we assume large N and replace the variance estimates with the means. In this 

case the estimator of the correlation coefficient becomes 

 

𝜌 =
𝜑'& 0
𝜇'𝜇&

 

 

Treating the denominator as a constant it is straightforward to show that the variance of the 

correlation coefficient estimator is given by 

 

𝑉𝑎𝑟 𝜌 =
1
𝑁 +

2
𝑁

𝑔 𝑘
𝑔 0

& 𝑁 − 𝑘
𝑁

h"'

mQ'

 

 

The 𝑔 𝑘 /𝑔 0  term can be viewed as a normalized function that has a value of 1 at k=0.  

This function will be broader and flatter as the bandwidth of the filter decreases, thus 𝑉𝑎𝑟 𝜌  will 

increase with decreasing bandwidth. 
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CHAPTER V 

MARKOV MODEL-BASED ANALYSIS OF FUNCTIONAL CONNECTIVITY 

Abstract 

Functional MRI relies on detecting hemodynamic changes in neural tissues as revealed by 

BOLD signals to infer underlying local neuronal activity, while correlations between fluctuations 

in BOLD signals in a resting state are interpreted as measures of functional connectivity. To 

establish the relationships between BOLD signal fluctuations and underlying neural activity in a 

resting state, we compared spatial functional connectivity profiles between the coherence of 

different frequency bands of LFP signals from multielectrode array recordings and high resolution 

BOLD data at 9.4T within primary somatosensory (S1) cortex in monkeys. To characterize 

dynamic changes in functional connectivity, we measured the temporal variations of connectivity 

in both modalities and compared their probability distributions and changes using a modified 

Markov chain model-based approach. We found that within S1 cortex, low frequency LFP signal 

fluctuations dominated resting state LFP coherence, while evoked responses to stimuli were 

dominated by high frequency LFP responses. In addition, the coherences of low frequency LFPs 

varied significantly more frequently over time than those of high frequency LFPs. The dynamic 

changes of BOLD functional connectivity behaved more similarly to the LFP low frequency signal 

coherence than the LFP high frequency coherence. These results suggest that resting state BOLD 

connectivity measures are driven more by low frequency LFP signals and dynamic changes in their 

coherence.   
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Introduction 

The identification of patterns of correlated, low frequency fluctuations in BOLD signals in 

a resting state has provided a remarkable tool to assess functional connectivity between regions in 

the brain, providing insights into how distributed cortical areas work together to achieve specific 

functions. However, BOLD signals are produced by hemodynamic effects that are only indirect 

indicators of underlying neural activity. Previous studies of the relationships between 

simultaneously recorded electrophysiological activity and hemodynamic changes in sensory 

systems have suggested that BOLD signals temporally correlate most strongly with local field 

potentials [Heeger et al., 2000; Mukamel et al., 2005]. Furthermore, our recent studies have 

indicated that at a columnar level, BOLD signals recorded at high magnetic field faithfully reflect 

underlying neuronal activity during stimulation, and the spatial profiles of local correlations in 

BOLD signals match those of LFP signals from the same region [Shi et al., 2017].  

Although resting state correlations are already widely used to assess the functional 

architecture of the brain, the interpretation and application of fMRI-based functional connectivity 

studies rely on our understanding of the precise relationships between changes in neural activity 

and changes in cerebral hemodynamics. However, it remains unclear to what degree resting state 

fMRI connectivity reflects underlying neural couplings, and what features of electrical activity 

best align with BOLD metrics. In non-human primates, prominent LFP oscillations span a broad 

range of frequencies that are separable into delta (1-4 Hz), theta (5-8 Hz), alpha (9-14 Hz), beta 

(15-30 Hz), gamma low (31-50 Hz), gamma high (50-100 Hz), and gamma very high (100-150 

Hz) bands. To date, there have been consistent reports of close relationships between BOLD 

signals and electrophysiological activity in gamma oscillations during stimulation, but there is no 

consensus yet about what LFP frequencies correspond to resting state signals. Specifically, in 

stimulation or task conditions, several fMRI studies have demonstrated strong temporal 

correlations between BOLD responses and power in the gamma band (30-150 Hz) of LFP signals 

[e.g. Shmuel et al., 2006]. However, in a resting state, while some studies suggest that lower 

frequency band fluctuations (< 20 Hz) may predominantly correspond to changes in BOLD signals 

[Lu et al., 2007; Wang et al., 2012; Wilson et al., 2016], other evidence suggests that slow changes 

in the gamma band of LFP signals contribute most to the spontaneous fluctuations in BOLD signals 

[Nir et al., 2008]. Moreover, resting state correlations of BOLD signals between regions appear to 

vary over time, and these apparent dynamic changes of fMRI connectivity may represent another 
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level of neural modulation, but few studies have directly compared the dynamic variations of 

connectivity seen in fMRI with corresponding LFPs, nor have they established which frequency 

bands are most relevant to these changes [Pan et al, 2011; Thompson et al., 2015]. No study, to 

our knowledge, has examined both the spatial relationships and the dynamic features of functional 

connectivity between BOLD signals and LFPs in different frequency bands within a well-defined, 

mesoscale functional network in a resting state.  

The purpose of this study was to evaluate what frequency ranges of LFP coherences most 

parallel the dynamic features of BOLD functional connectivity in a resting state. We acquired high 

resolution (sub-millimeter) BOLD images at high field (9.4T) and multi-channel electrode array 

LFP recordings from primary somatosensory cortex (S1) in non-human primates. We first 

measured the spatial extents of BOLD activations in response to tactile stimuli as well as the spatial 

profiles of single-voxel local correlations in a resting state. We then quantitatively compared these 

with the spatial extents of LFPs in each of seven frequency bands, and their inter-electrode 

coherences, in the same conditions and brain regions. In order to compare dynamic features of 

resting state connectivity, we devised a modified Markov chain model-based approach combined 

with a sliding window correlation analysis. We aimed to quantitatively compare the time-varying 

patterns of functional correlations between BOLD and frequency-specific LFPs in individual 

monkeys, and to determine what frequency ranges of the LFP coherence dominate changes in 

dynamic BOLD functional correlations in S1 cortex. 
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Methods 

Local field potentials recording and analysis 

Guided by MRI maps and blood vasculature 

patterns, two 7 × 7 multichannel Utah electrode arrays 

(Figure 24, 98 channels in total, spacing between each 

electrode, 400 µm) were carefully inserted into area 

3b and area 1 cortex [Shi et al., 2017]. LFP signals 

were sampled at 500 Hz and then band-pass filtered 

into eight frequency ranges using a second order, 

zero-phase Chebyshev type-1 filter. The frequency 

ranges were the following: delta (1-4 Hz), theta (5-8 

Hz), alpha (9-14 Hz), beta (15-30 Hz), gamma low 

(30-50 Hz), gamma high (50-100 Hz), gamma very 

high (100-150 Hz) and broad band (1-150 Hz). For the 

stimulation condition, a time-frequency analysis was 

conducted to evaluate the temporal structure of the LFP signals and their stimulus response 

preferences. A Fourier transform was performed on each single trial and the resulting spectrograms 

were averaged. Computed spectrograms of stimulus-evoked LFPs were transformed into a dB 

scale (10 × log10) and used for further analysis. To estimate more accurately the mean power of 

the steady-state LFP responses, we excluded the data from the first 10 sec after the stimulus onset 

in our calculation, according to previous observations. For LFP resting state coherence analysis in 

all frequency bands, magnitude squared coherence was calculated between each selected seed 

electrode and the other electrodes. 

 

  

Figure 24 Blood vessel map shows the two 7 

x 7 multi-channel electrode arrays were 

inserted in the digit regions of areas 3b and 1 

under surgical microscope guidance in one 

representative monkey. 
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FMRI data acquisition  

MR imaging was performed with a 9.4 T 21 cm bore magnet and Varian/Agilent Inova 

spectrometer (Varian Inc., Palo Alto, CA), using a 3-cm surface transmit-receive coil secured over 

the sensory cortex. Scout images obtained using a fast gradient-echo sequence were used to define 

a volume covering the primary somatosensory cortex in which static magnetic field homogeneity 

was optimized, and to plan four oblique slices for structural and functional imaging. T2
*-weighted 

gradient-echo structural images [repetition time (TR) = 200 ms; echo time (TE) = 16 ms; four 

slices, FOV = 35 × 35 mm2, 512 × 512 matrix; spatial resolution = 0.068 × 0.068 × 2 mm3; number 

of excitations = 6] were acquired to identify venous structures on the cortical surface to help locate 

S1 cortex and as structural features for co-registration of fMRI images. Within each imaging 

session, multiple runs (up to 6) of stimulus-evoked and resting state fMRI data were acquired with 

identical image acquisition sequences (gradient echo-planar sequence; TR = 750 ms; TE = 16 ms, 

number of excitations = 4), and slice placement. Functional images were obtained at imaging 

resolutions of 0.274 × 0.274 × 2 mm3. Each high resolution stimulation run contained 150 

continuous volumes. For resting state fMRI runs, 300 continuous image volumes were acquired. 

MR images were reconstructed on the MR console (Varian VnmrJ) and exported to Matlab 

(Mathworks) for analysis. 

 

Markov Chain  

Previous studies have shown that correlations 

between regions vary over time, so that resting state 

connectivity changes dynamically. We consider the 

instantaneous degree of correlation between regions to 

represent a brain state, so that changes in connectivity 

correspond to transitions between brain states. The number 

of such states is unknown but we assume they may span the 

range between perfectly correlated and perfectly anti-

correlated, and this range can then be divided into a finite 

number of discrete intervals. Measurements of the 

variations over time in correlation values allow the 

Figure 25 Example of a probability 

transition diagram for 3-state Markov 

chain. 
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construction of a probability distribution of the states, along with probabilities for transitions from 

any one state to another. A discrete-time Markov chain model is a tool for representing probability 

distributions over a sequence of states in which the probability of moving to the next state depends 

only on the present state [Markov, 1913]. Markov chains are often illustrated by a sequence of 

directed graphs (see Figure 25) representing the probabilities of going from one state at time t to 

any other states at time t+1. 

 

Markov model-based approach combined with a sliding window technique  

A sliding window correlation analysis technique is a method for capturing variations in 

inter-regional synchrony, and is commonly used to investigate dynamic changes in correlations 

between time courses in various modalities. Resting state correlations between the BOLD time 

series derived from areas 3b and 1 within S1 cortex were calculated using a sliding window 

technique with a window size of 60 sec. The window was shifted in time in 3 sec increments (equal 

to time between image volumes) along the entire time series and the correlation coefficient was 

recalculated. As the sampling distribution of Pearson’s r is not normally distributed, correlation 

coefficients were converted to z-scores using Fisher’s z transform. The z-scores from -1 to 1 were 

binned into 50 equal steps, which represent 50 possible brain states characterized by their differing 

degree of correlations between areas 3b and 1. A similar sliding window technique was used to 

classify the LFP signals. In this analysis, however, the magnitude squared coherence values for 

each frequency band were computed from the raw LFPs instead of Pearson’s correlation 

coefficients. We then quantified the resemblance of the temporal variations in the correlations 

between BOLD and frequency-specific LFP signals by constructing the empirical cumulative 

distribution functions (ECDFs) for jumps between states, which represent the probability functions 

for transitions between different degrees of connectivity. A two-sample Kolmogorov-Smirnov (K-

S) statistic was used to evaluate whether the BOLD and LFP ECDFs were derived from the same 

population with a specific distribution, based on measurements of the distance between two 

ECDFs. This test is sensitive to differences in both the location and shape of the ECDFs of the two 

samples. Lower K-S values between BOLD and LFP in a certain frequency band suggest increased 

similarity in the nature of the dynamic changes in functional connectivity.  
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Measurements of the PSFs of BOLD and LFP Signals in Stimulation and Resting States  

We identified activation foci in areas 3b and 1, whose shapes could be well approximated 

as elliptical. In each animal, activation maps of three different digit tips (digits 2, 3, 4) were 

typically obtained. A threshold of 0.7 was used to identify the center of mass in each ROI. The 

axis along the individual digit activation centers was then determined as the lateral to medial axis 

within each area (3b and 1). The perpendicular anterior-posterior direction of this axis was then 

determined along the digit bottom to tip representation. From the fitting, the major (in the lateral 

to medial direction) and minor (in the anterior to posterior direction) axes of the ellipse were 

determined, and all values above 0.2 along the major and minor axes within the sub-region were 

used in the subsequent Gaussian fitting. The point spread functions (PSFs) of the single digit tactile 

stimulation evoked BOLD fMRI activation maps were measured in both areas 3b and 1. The 

coordinates of the center of mass, and the major and minor axes of the ellipse were determined by 

fitting. The spatial distributions of percentage of BOLD signal changes along the major and minor 

axes were then fit with Gaussian functions. The full-width of half maximum (FWHM) of each 

fitted Gaussian was then computed. For resting state fMRI runs, ROI seeds were identified based 

on the vibrotactile stimulus-evoked activation maps. The voxels with the highest % BOLD signal 

change were chosen as the seeds for each digit in either areas 3b or 1. Resting state BOLD signal 

time courses were extracted from the seed voxels and then used as the reference models in 

subsequent voxel-wise correlation analyses. Correlation coefficients were computed for each voxel 

surrounding the seed, and then local functional connectivity maps were generated for each seed. 

Identical spatial fitting procedures were applied to derive the FWHM and area of Gaussian PSFs 

of fitted local correlation profiles.  

The same spatial ellipsoid fitting method was used to quantify the PSFs of LFP signals in 

each of the eight frequency bands. Multi-channel electrode array response maps were computed 

based on the percentages of signal power changes between 20 sec of stimuli presentations and 20 

sec of the pre-stimuli periods for single digit stimulations. Activation maps were then resampled 

at higher resolution (0.10 × 0.10 mm2) for further sub-voxel processing. Within each LFP stimulus 

run, the percentages of signal power changes of cortical activation areas were normalized to their 

maximum values during each run. A similar approach as described above was used to compute the 

point-spread functions of stimulus local field potential responses of areas 3b and 1 in S1 cortex. 

For resting-state local field potentials, ROI seeds were identified based on the array stimulus 
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response maps. Electrodes with the largest percentage of signal power change for single digit 

stimulations were selected as seeds. To evaluate the spatial profiles of resting-state LFP 

correlations, we first placed one ROI seed (either area 3b or area 1) and computed its functional 

connectivity map based on functional coherence between this seed and the rest of the electrodes. 

We then used the same approach as described above to compute the PSFs of resting-state LFP 

correlations of this area. 
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Results 

The spatial extents of frequency-specific LFPs in stimulation and resting states 

 
Figure 26 Comparison of spatial extents of LFP signals in eight frequency bands in areas 3b and 1, between 

resting state and stimulation. (A-B) The area values of areas 3b and 1, respectively, in both resting (black 

boxes) and stimulus (red boxes) conditions, significance at p<0.05 (Figure 26A: Wilcoxon signed-rank test, 

as shown in the grey and pink background). A total of 9 runs from three monkeys were analyzed for LFP 

measurements.  

 

Figure 26 reports the spatial changes in power and coherence characteristics of the LFP 

signals in different frequency bands during stimulation and resting states. Wilcoxon signed-rank 

test showed that in a resting state (black boxes), in area 3b, the local correlation profiles of LFP 

signals in the frequency ranges between 5 and 30 Hz were significantly broader in extent than 

those in the frequency ranges between 50 and 150 Hz. In addition, the local correlation profiles of 

the broadband (1-150 Hz) LFPs had no significant differences from those of low frequency (1-15 

Hz) and gamma low (30-50 Hz) LFPs. Direct comparisons of the area values between stimulation 

and resting states showed that, in area 3b, the spatial extents of resting state electrode-electrode 

coherence in the frequency ranges between 5 to 30 Hz and the broad band were significantly wider 

than those of stimulation responses (Wilcoxon signed-rank test: p < 0.05; Figure 26A, the grey 

background), while the spatial extents of resting state coherence in the frequency ranges between 

50 and 150 Hz are significantly narrower than those of stimulation responses (p < 0.05; Figure 

26A, the pink background), a feature that was not statistically significant in area 1 (Figure 26B). 
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These comparisons revealed that the local correlation profiles of broadband resting state LFPs 

were closer to those of low frequency LFPs than high frequency LFPs. In addition, low frequency 

LFP signal fluctuations spatially dominated resting state LFP coherence, while stimulus responses 

were dominated by high frequency LFP responses.  

 

The behavior of LFP coherence in different frequency ranges  

 

Figure 27 Examples of a sliding window coherence analysis between areas 3b and 1, comparing delta 

band LFPs (black line: 1-4 Hz) and gamma high band LFPs (red line: 50-100 Hz), with a window size of 

30 sec and 60 sec, respectively.  
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We next investigated the dynamic changes in frequency-specific LFP coherences using a 

sliding window technique. The selection of window size was based on our previous studies [Shi et 

al., 2016], but we also qualitatively evaluated whether smaller window sizes would reveal 

additional apparent changes in resting state connectivity than large window sizes. Figure 27 shows 

an example of a sliding window coherence analysis between areas 3b and 1, comparing delta band 

LFPs (low frequency: 1-4 Hz) and gamma high band LFPs (high frequency: 50-100 Hz), with a 

window size of 30 sec and 60 sec, respectively. Here, there are no significant differences in the 

dynamic patterns of functional correlations. The low frequency LFP coherence changes faster over 

time than high frequency LFP coherence. We quantified this difference by analyzing the spectral 

composition of the coherence between areas 3b and 1 in resting state BOLD signals and frequency-

specific LFPs. We quantitatively compared the cumulative percentage of frequency components 

derived from the resting state BOLD correlations and frequency-specific LFP coherence. Figure 

28 shows a group analysis of the spectral decomposition of the coherence between areas 3b and 1 

in resting state BOLD signals and LFPs in seven frequency bands. From Figure 28B, a Wilcoxon 

signed-rank test showed that variations in frequency components >0.02 Hz contributed 

significantly more to the resting state BOLD correlations and low frequency LFP coherence (1-15 

Hz), than high frequency LFP coherence (15-150 Hz). From Figure 28F, it was observed that 

variation frequency components between 0 and 0.0025 Hz had significant more contributions to 

the resting state high frequency LFP coherence, than low frequency LFP coherence and BOLD 

correlations. Results of LFP coherence in seven frequency bands showed that coherence of low 

frequency (1-15 Hz) LFP signals contained significantly more <50 sec cycles than that of high 

frequency (15-150 Hz) LFP signals, while coherence of high frequency LFPs contained 

significantly more >400 sec cycles than that of low frequency LFPs. 
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Figure 28 Group analysis on the spectral decomposition of the coherence between areas 3b and 1 in resting 

state BOLD signals and LFPs in seven frequency bands. (A) Normalized percentage of spectral analysis of 

sliding window coherence, comparing LFP delta (black) and gamma high (red) bands. (B-F) Cumulative 

percentage of variation frequency components in correlations at different frequency bands; (B) over 0.02 

Hz; (C) between 0.01 and 0.02 Hz; (D) between 0.005 and 0.01 Hz; (E) between 0.0025 and 0.005 Hz; (F) 

less than 0.0025 Hz. Wilcoxon signed-rank test at p<0.05. A total of 9 runs from three monkeys were 

analyzed for BOLD and LFP measurements, respectively. 

 

Comparisons of dynamic connectivity between BOLD and frequency-specific LFPs 

We finally investigated the dynamic changes of functional connectivity in BOLD and 

frequency-specific LFPs using a Markov chain model-based approach combined with a two 

sample K-S statistic. We quantitatively compared the time-varying patterns of correlations 

between areas 3b and 1, between BOLD and LFP signals in eight frequency bands. Figure 29 

showed the K-S statistic for group differences of fMRI correlations and their corresponding 

monkey’s LFP coherence between areas 3b and 1, in eight frequency bands. The correlations 

derived from resting state BOLD signals were distributed more similarly to the LFP coherence in 

broad band (1-150 Hz) and low frequency bands (1-15 Hz, black boxes), than to the LFP coherence 

in high frequency bands (30-150 Hz, red boxes), with substantial differences appearing between 
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50 and 150 Hz. Specifically, K-S values of correlation coefficient distributions between areas 3b 

and 1 of the BOLD signals and LFPs in broad band and low frequency bands were significantly 

smaller than those of the same BOLD signals and LFPs in high frequency bands. These results 

indicated that the dynamic changes of BOLD functional correlations behaved more closely to those 

of low frequency than high frequency LFP coherence. 

 

 
Figure 29 Group analysis on Kolmogorov-Smirnov statistic between BOLD fMRI correlations and their 

corresponding monkey’s LFP coherence in eight frequency bands, between areas 3b and 1. Dynamic 

changes in sliding window correlations in BOLD data were distributed more closely to low frequency LFPs 

(black, 1-15 Hz) and broad band LFPs (black boxes, 1-150 Hz) coherence, while differed from LFP 

coherence at high frequency bands (red boxes, 15-150 Hz). 
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Discussion 

The aim of this study was to investigate in what frequency ranges LFP coherence shared 

the strongest characteristics with BOLD functional connectivity in a resting state, both spatially 

and temporally, at a columnar level meso-scale in the primary somatosensory cortex of nonhuman 

primates. Currently, there is no consensus as to whether low or high frequency LFP signals 

contribute most to the spontaneous fluctuations in fMRI signals [Lu et al., 2007; Nir et al., 2008; 

Thompson et al., 2015]. We spatially compared the local correlation profiles of resting state BOLD 

signals with those of ‘gold standard’ electrophysiological LFP measurements, and investigated the 

temporal dynamic changes in functional connectivity of both modalities. We found that within S1 

cortex, low frequency LFP signal fluctuations spatially dominated resting state broadband LFP 

coherence. In addition, our Markov model-based approach combined with a sliding window 

technique showed that coherences of low frequency LFPs changed significantly faster over time 

than those of high frequency LFPs. Finally, our results suggested that the dynamic changes of 

BOLD functional connectivity behaved more closely to those of LFP low frequency coherence 

than those of high frequency coherence. These indicate that resting state BOLD dynamic 

connectivity are reflective more of low frequency LFP coherence than high frequency LFP 

coherence.   

 
Low frequency LFP signal fluctuations spatially dominate resting state LFP coherence  

The local correlation profile of LFP signals within S1 cortex in a resting state directly 

measures the contributions from the intrinsic spatial distribution of the neural activity involved, 

and can potentially reflect how neurons spatially work together at a columnar level. No previous 

study, to our knowledge, has reported the spatial relationships of LFP signals in different frequency 

ranges during stimulation or in a resting state. We found that in a resting state, the local correlation 

profiles of LFP signals from the frequency ranges between 50 and 150 Hz were significantly 

smaller than those of the frequency ranges between 5 and 30 Hz. This may suggest that in a resting 

state, neurons generating high frequency LFP signals (50-150 Hz) may intrinsically communicate 

more focally within a finer-scale cortical microcircuit [Borgers et al., 2005; Fries et al., 2007; 

Fries, 2009], than those generating low frequency LFP signals (1-15 Hz). In addition, evidence has 

shown that the neural oscillations of frequency-specific LFP signals may be generated by various 

types of neurons in different neuronal process pathways [Buzsaki and Draguhn, 2004; Logothetis 
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et al., 2007; Berens et al., 2008]. The primary somatosensory cortex is a cortical region receiving 

a convergence of anatomical connections from structures in the cortico-thalamic and cortico-

cortical loops [Lin et al., 1979; Iwamura, 1998; Reed et al., 2008]. Low frequency oscillations can 

occur in a cortico-thalamic feedback loop. These slow oscillations are described to be modulated 

by global neuronal inputs [Steriade et al., 1993; Steriade, 2006; Berens et al., 2008]. However, 

high frequency LFPs, such as gamma-waves, most likely arise locally within cortical microcircuits 

that include pyramidal cells and interneurons [Mann et al., 2005; Berens et al., 2008; Cardin et al., 

2009; Sohal et al., 2009], and therefore, present a constrained local spatial correlation profile. Our 

results also showed that in a resting state, the local correlation profiles of broadband LFPs had no 

significant difference from those of low frequency LFPs (1-15 Hz) and gamma low band (30-50 

Hz). Furthermore, we directly compared the spatial profiles between stimulation and resting state 

conditions in both areas 3b and 1, respectively. We found that in area 3b, the spatial extents of 

resting state electrode-electrode coherence in the broad band (1-150 Hz) and the frequency ranges 

between 5 and 30 Hz were significantly larger than those of stimulation responses. However, in 

the frequency ranges between 50 and 150 Hz, the spatial extents of resting state coherence were 

significantly smaller than those of stimulation responses, a feature that was not statistically 

significant in area 1. These comparisons revealed that low frequency LFP signal fluctuations 

spatially dominated resting state LFP coherence, while stimulus responses were dominated by high 

frequency LFP responses. This resting state phenomenon could be insignificant (e.g., area 1), or 

potentially vary in different brain regions. For example, in the hippocampus, strong theta 

oscillations (5-8 Hz) are the most prominent feature in LFP signals and are believed to be critical 

for hippocampal-cortical interactions [Siapas et al., 2005; Sirota et al., 2008], while in visual 

cortex, fast oscillations in the gamma band between 30 and 90 Hz are dominant during resting 

states [Niessing et al., 2005; Berens et al., 2008]. 

 

BOLD resting state dynamic connectivity behaves more closely to low frequency than high 
frequency LFP coherence 

 

Our previous studies found that the inter-center distance variation between BOLD and LFP 

modalities was less than 0.35 mm in S1 cortex of nonhuman primate brain [Shi et al., 2017]. 

Despite the high spatial correspondence between high-resolution fMRI and LFP, separate 

identifications of the ROI seeds for BOLD and LFP experiments can potentially increase the 
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accuracy of comparisons between both modalities, especially in a resting state seed-based analysis. 

Therefore, we identified the ROI seeds in BOLD fMRI and LFP separately, according to their 

activation maps, and used the seeds for resting state analysis in each individual monkey. In Figure 

27 and Figure 28, the resting state sliding window LFP coherence analysis between areas 3b and 

1 in seven frequency bands shows that coherences of low frequency (1-15 Hz) LFP signals change 

significantly faster over time than those of high frequency (15-150 Hz) LFP signals. As shown in 

Figure 29, the correlations derived from resting state BOLD signals between areas 3b and 1 were 

distributed more similarly to the LFP coherence in broad band (1-150 Hz) and low frequency bands 

(1-15 Hz), than in high frequency bands (30-150 Hz). These results indicate that in a resting state, 

the dynamic changes of BOLD functional correlations behave more closely to those of low 

frequency than high frequency LFP coherence in S1 cortex. One possible hypothesis is that in S1 

cortex, the frequency ranges from 0.01 to 0.1 Hz of resting state BOLD fMRI signals that are 

standard in preprocessing procedures are more reflective of the cortico-thalamic feedback loop. 

Another possible hypothesis could be that, based on what is reported in the literature, it can be 

generally assumed that large vessels located on the pial surface of the brain have the strong 

contribution to the BOLD signals for superficial-superficial layer connectivity [Jin and Kim, 2008; 

Huber et al., 2016], where some electrophysiological studies have shown that delta (1-4 Hz) and 

alpha (9-14 Hz) generators were present in each of the cortical layers, with a strong source in 

superficial layers [Carracedo et al., 2013; Haegens et al., 2015]. It is worth further investigating 

the laminar profile of LFP signals in different frequency ranges, and the spatial and temporal 

relationships between cortical layer-specific BOLD signals and their corresponding LFPs.  
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CHAPTER VI 

SUMMARY AND FUTURE DIRECTION 

Summary 

The purpose of this thesis was to investigate to what extent functional MRI signals reflect 

underlying neural activities in both stimulation and resting states, and to evaluate the dynamic 

nature of functional connectivity in both fMRI and electrophysiological data. This dissertation 

reports that BOLD signal changes within single-digit representation columns in the primary 

somatosensory cortices of areas 3b and 1 aligned spatially very closely with LFP signals in 

response to tactile stimulation. In addition, resting state BOLD fMRI and LFP signals also 

exhibited very similar intervoxel spatial correlation profiles. These findings indicate that at a 

columnar level, BOLD signals faithfully reflect underlying neuronal activity both during 

information processing and at rest. Importantly, the spread of BOLD activity and correlations at 

high field are no greater than the extent of LFP signals.  

The broad band LFP signals probably reflect assorted contributions from several different 

neural processing pathways, and are traditionally decomposed and analyzed in the frequency 

domain, with the hypothesis that each frequency band may represent corresponding underlying 

neural process. For example, some studies have reported that the oscillations of resting state low 

frequency LFPs are modulated by global neuronal signals [Steriade et al., 1993; Steriade, 2006], 

while resting state high frequency LFPs generated in different brain regions tend to communicate 

locally within a finer-scale micro-organization [Borgers et al., 2005; Fries et al., 2007; Berens et 

al., 2008]. In addition, S1 cortex is a cortical region receiving a convergence of anatomical 

connections from structures in the cortico-thalamic and cortico-cortical loops [Lin et al., 1979; 

Iwamura, 1998]. Low frequency LFP signals may arise in a cortico-thalamic feedback loop 

[Berens et al., 2008], while high frequency LFPs probably are generated by pyramidal cells and 

interneurons within local cortical microcircuits [Mann et al., 2005; Cardin et al., 2009].  

Sliding window technique is one of the most commonly used approach to estimate 

variations in fMRI functional correlations between dynamic signals, however, apparent variations 

over time may also arise from stationary signals when the sample duration is finite. While 

stationary models replicate several features of real data, we showed that a closer representation of 

the behavior of resting-state data acquired from S1 in new world monkeys is obtained only when 
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an underlying dynamic or non-stationary correlation is introduced. This suggests that dynamic 

changes in resting-state connectivity within the primary somatosensory cortex of non-human 

primates are not artifacts of limited sampling duration. The spectral decomposition analysis 

demonstrates that coherences of low frequency (1-15 Hz) LFP signals change significantly faster 

over time than those of high frequency (15-150 Hz) LFP signals. Moreover, the Markov model-

based approach shows that the dynamic changes of BOLD functional connectivity behave more 

closely to those of LFP low frequency coherence than those of high frequency coherence.  

These results suggest that submillimeter resolution fMRI at high magnetic field has the 

ability to delineate brain activity at the columnar level, and resting state BOLD dynamic 

connectivity are reflective more of low frequency LFP coherence than high frequency LFP 

coherence.   

 

  



 129 

 

Future direction 

The relationship between BOLD and infra-slow LFP signals 

Several previous studies of fMRI-electrophysiology in animal models have simultaneously 

recorded the resting state BOLD signals and underlying neural electrophysiology data, including 

both LFPs and spike, from exactly the same anatomical locations. Our previous research found 

that the inter-center distance variation between BOLD and LFP modalities was approximately 0.35 

mm in the S1 cortex of nonhuman primate brains. In addition to the high spatial correspondence 

between high-resolution fMRI and LFP, simultaneous recordings of both modalities can also 

provide more precise temporal relationships between fMRI and LFP than with separate 

experiments. Recently, there has been an increasing interest in investigating the relationship 

between BOLD and the corresponding frequency-specific LFP signals in distributed brain regions 

during resting state. While some studies report that lower frequency band fluctuations have the 

strongest relationship to changes in BOLD signals, other evidence have shown that the oscillations 

in high frequency LFP signals predominantly contribute to the BOLD signal variations. Moreover, 

some researchers have hypothesized that resting state BOLD signals between 0.01-0.1 Hz directly 

correlate to variations in the corresponding underlying neuronal signal frequency range and that 

infra-slow LFP signals below 1 Hz contribute the most to resting state BOLD signals [Pan et al., 

2011; Thompson et al., 2015]. In order to acquire infra-slow LFP signals, glass electrodes with 

silver-silver chloride leads need to be inserted in the cranial regions of interest since traditional 

metal electrodes can suffer from signal drifting issues below 1 Hz. In addition, deep anesthesia 

using isoflurane or dexmedetomidine during LFP signal recording can also help stabilize the infra-

slow LFP signals. However, evidence has also shown that anesthesia levels and agents can change 

the relationship between resting state fMRI signal fluctuations and electrophysiological signal in 

various ways and even in different frequency bands [Lu et al., 2007; Hutchison et al., 2014; Wu et 

al., 2016]. As such, the relationship between modalities needs to be interpreted with great caution 

with the consideration that BOLD and LFP signals are both affected by physiological conditions. 

For these reasons, the spatial and temporal relationships between BOLD and simultaneous infra-

slow LFP signals in both stimulation and resting states require further study.    
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Laminar profiles of BOLD and LFP in stimulation and resting states 

The cerebral cortex displays a laminar structure and the analysis of spontaneous 

fluctuations in neuronal activity in various cortical layers with different depths is a crucial aspect 

for understanding the intrinsic functional architecture of the brain. Evidence has shown that 

information is processed by populations of neurons in multi-layered neural circuits [Thomson and 

Bannister, 2003]. Different types of neurons can cross communicate between different cortical 

regions and across distributed cortical layers. For example, the primary somatosensory (S1) cortex 

is known to have six horizontal laminae which are grouped into three classes: supra-granular layers 

(I-III), a granular layer (IV), and two infra-granular layers (V-VI). In each layer, the percentages 

of type of neurons are different, and therefore the neuronal oscillation generators can be different 

and lead to distinct functional roles. However, in this thesis, the slice thickness of all BOLD images 

is 2 mm and almost covers the entire six horizontal laminae in S1 cortex of new world monkeys.  

Recently, there has been an increasing interest for investigating cortical circuits using 

resting state layer-specific BOLD fMRI with high resolution in both human and animal studies 

[Chen et al., 2013; Huber et al., 2015; Chen et al., 2017]. Several electrophysiological studies have 

shown that frequency-specific LFP neuronal oscillation generators are present in different cortical 

layers. For example, it has been shown that delta (1-4 Hz) and alpha (9-14 Hz) oscillations have 

strong sources in the superficial layers. Additionally, it was found that even with high resolution 

BOLD functional images at high field strength, the spatial sensitivity of BOLD signals would 

decrease due to the contribution of large vessels and could potentially lead to a loss or mix of 

detailed information regarding the underlying neural activity in a laminar structure. Several studies 

have pointed out that large vessels are most likely located on the superficial layers of the cortical 

cortex and have speculated that the main contribution to both measured BOLD activations and 

resting state correlations could be from these large vessels. With the improvement of imaging 

spatial resolution, several studies have demonstrated that resting state fMRI (e.g., BOLD, CBV) 

signals are sensitive at resolving layer-specific functional connectivity [Chen et al., 2017; 

Rockland, K.S., 2017; Huber et al., 2017; Petridou and Siero, 2017], and can detect and analyze 

layer-specific functional connectivity differences at very high (submillimeter) resolution in both 

human and animal studies (e.g., 0.7 × 0.7 × 1 mm3 resolution for humans at 7 T, 0.5 × 0.5 × 0.8 

mm3 resolution for nonhuman primates at 9.4 T). It is worth investigating the laminar profile of 

fMRI (both BOLD and CBV) and LFP signals in different frequency ranges in order to better 
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understand the spatial and temporal relationships between cortical layer-specific BOLD signals 

and their corresponding electrophysiological signatures.  
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