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 CHPATER I  

INTRODUCTION 

 

The heart: the body’s electric pump 

Cardiovascular disease is the leading cause of death in developed 

countries.  To treat cardiovascular disease we must better understand how the 

heart functions.  The heart’s primary function is to move blood around the body, 

de-oxygenated blood to the lungs and oxygenated blood to all of the body’s 

tissues.  To accomplish this task the heart is organized with four chambers 

(Figure 1-1A).  De-oxygenated blood (Figure 1-1A, blue) returns to the heart into 

the right atrium (RA), which contracts to fill the right ventricle (RV).  When the RV 

contracts blood is sent to the lungs, becomes oxygenated (Figure 1-1A, red) and 

returns to the heart’s left atrium (LA).  The LA contraction fills the left ventricle, 

which contracts to send oxygenated blood throughout body.  All of the chambers, 

atria and ventricles, are separated by one-way valves that keep the blood moving 

in the correct direction and prevent any back flow.   

To move blood efficiently the heart’s chambers must contract in a 

coordinated manner for several important reasons.  A coordinated contraction 

prevents any single chamber from contracting out of synchrony with the other 

chambers.  To best fill the ventricles the atria should contract just before the 

ventricles.  Ventricular contraction begins on the inside (endocardium) and 

bottom (apex) of the heart and move towards the outside (epicardium) of the 
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heart.  The heart comes equipped with a conduction system, similar to nerve 

fibers, which facilitate coordinated contraction.  The electrical signal to contract 

B

Figure 1-1: A) Schematic of the heat (RA = right atrium, RV = right ventricle, 
LA = left atrium, LV = left ventricle) showing blood flow (blue = deoxygenated, 
red = oxygenated) and conduction system (SA = sinoatrial node, AV = 
atrioventricular node, PF = purkinje fibers). B) Schematic of an 
electrocardiogram (ECG) depicting the electrical activity of the heat as related 
to a ventricular myocyte action potential and with corresponding ionic currents 
(red = repolarizing, blue = depolarizing).
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begins in the RA with the sinoatrial (SA) node (Figure 1-1A), which sets the rate 

of contraction for the entire heart.  The electrical signal from the SA node moves 

unimpeded to the LA (Figure 1-1A) but is slowed in reaching the ventricles by the 
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atrioventricular (AV) node (Figure 1-1A).  The AV node allows the atria to 

contract and fill the ventricles with blood before the ventricles contract.  After 

passing the AV node the electrical signal moves rapidly through the Purkinje 

fibers (PF) (Figure 1-1A) located within the RV and LV.  The PF permit the 

ventricles to move blood efficiently by optimizing ventricular contraction.   

If the electrical activity of the heart becomes irregular (arrhythmia) the 

heart does not move blood properly, a condition that can lead to reduced cardiac 

performance, loss of consciousness and death.  Electrical activity of the heart 

may be observed by an electrocardiogram (ECG), which is an electrical readout 

of the heart’s activity (Figure 1-1B).  The P wave is the electrical representation 

of atrial systole, the QRS represents ventricular systole and the T wave 

represents ventricular repolarization.  

The heart is made up of contractile cells called myocytes, specialized 

conduction cells (SA nodal, AV nodal, Purkinjie Fibers) and support cells 

including fibroblasts and endothelial cells. Cardiomyocytes are highly structured, 

electrically excitable and contractile.  Each myocyte responds to, generates and 

propagates action potentials (Figure 1-1B), which are created by the movement 

of ions across the cell membrane (Figure 1-1B).  An action potential begins when 

the cell membrane depolarization reaches a threshold (about -40 mV) that allows 

Na+ conducting voltage gated channels (NaV) to open and allow Na+ ions to 

move into the cell down an electrochemical gradient (Figure 1-1B, phase 0) as 

depolarizing current.  Despite only being open briefly (Figure 1-1B, phase 1), the 

Na+ channels depolarize the myocyte membrane and trigger Ca2+ conducting 
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voltage gated channels (CaV) and K+ conducting voltage gated channels (KV) to 

open (Figure 1-1B).  The electrochemical gradient for Ca2+ causes Ca2+ ions to 

move into the cell as a depolarizing current (Figure 1-1B) and the 

electrochemical gradient for potassium causes K+ ions move out of the cell 

(Figure 1-1B) as a repolarizing current (positive).  The depolarizing Ca2+ current 

elongates the action potential contributing to the plateau phase (Figure 1-1B, 

phase 2).  When the Ca2+ channels close, the K+ current repolarizes the cellular 

membrane (Figure 1-1B, phase 3).  The cell membrane voltage will return to the 

resting membrane potential (Figure 1-1B, phase 4), a negative value near the 

equilibrium potential of K+ (about -90mV) as predicted by the Nernst equation.  

The Nernst equation calculates the membrane potential necessary for no net 

movement of an ion based upon the concentration of that ion inside and outside 

the cell.  The myocyte will remain quiescent until another electrical signal triggers 

an action potential. 

 

Long QT Syndrome and afterdepolarizations 

The cardiac action potential relies on a careful balance between 

depolarizing and repolarizing currents.  Defective ventricular repolarization 

causes a long QT interval, Long QT Syndrome, and is a precursor to life-

threatening arrhythmias (Figure 1-2A).  Long QT Syndrome may trigger 
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ventricular tachycardia that may degenerate into ventricular fibrillation (Figure 1-

2A).  Ventricular tachycardia initiated by a Long QT arrhythmia is referred to as 

Torsades de Pointes (TdP).  Long QT Syndrome is either acquired or inherited.  

Acquired Long QT Syndrome results from external stimuli most commonly 

adverse drug interactions.  Whereas inherited Long QT Syndrome results from 

genetic mutations that may be passed to the next generation. 

Inherited Long QT Syndrome is caused by genetic mutations that produce 

a net loss of repolarizing current during the action potential (Figure 1-2B).  

Mutations associated with inherited Long QT Syndrome may affect the pore 

forming subunits of ion channels (LQT1, LQT2, LQT3, LQT7, LQT8), accessory 

subunits of ion channels (LQT5, LQT6, LQT10) and proteins that 

regulate/localize ion channels (LQT4, LQT9, LQT11, LQT12).  A net reduction of 

repolarizing current may result from decrease KV activity (IKs, IKr, IK1) or an 

increase in NaV (INa) and CaV (ICa) activity.  Table 1-1 summarizes the different 

types of inherited Long QT Syndrome.   

A long QT interval indicates a prolonged action potential plateau (phase 2) 

that constitutes primarily inward Ca2+ and outward K+.  The balance of between 

CaV channels and KV channels propagates the plateau phase of the action 

potential.  An early question arose as to how much current is required to maintain 

the action potential plateau.  Experiments designed to answer this question 

injected a small amount of hyperpolarizing current into myocytes and found the 

greatest changes in membrane potential during the action potential plateau 109, 

110.  Using Ohm’s law (Membrane Potential = Current x Membrane Resistance), 
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the action potential plateau is found to have very high resistance, meaning that 

small changes in current during the action potential plateau will have dramatic 

effects on membrane potential.  The changes in membrane potential caused by 

the changes in current during the action potential plateau allow for additional 

action potential defects called afterdepolarizations.  Afterdepolarizations may 

trigger ventricular tachycardia or Torsades de Pointes 87, 119, 125, which can lead 

to sudden death (Figure 1-2A). 

Two main types of afterdepolarizations have been characterized based 

upon where they occur during the action potential.  Early afterdepolarizations 

(EADs) occur during the action potential plateau phase 115 and delayed 

afterdepolarizations (DADs) occur after the action potential plateau 1, 116 (Figure 

1-2B).  EADs and DADs occur from separate molecular mechanism.  EADs are 

believed to be caused by enhanced Ca2+ channel activity 115, whereas DADs are 

initiated by inward Na+ ions through the Na+/Ca2+ exchanger (NCX) 1, 116.  The 

molecular mechanisms that lead to afterdepolarizations need to be better 

understood because failing hearts with LV hypertrophy exhibit 

afterdepolarizations and arrhythmias 119. 

 

Excitation-contraction coupling and intracellular Ca2+ handling 

 As an action potential propagates across the heart, individual 

cardiomyocytes contract through a process called excitation-contraction coupling 

(ECC) 9, 10.  During the ventricular action potential (Figure 1-3, inset black) CaV1.2 

opens and Ca2+ moves into the cell, triggering the release of Ca2+ through 
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Figure 1-3: Excitation contraction coupling (ECC) highlighting key proteins;
Na+ channels (NaV), K+ channels (KV), Ca2+ channels (CaV), Ryanodine 
receptor (RYR), Phospholamben (PLB), Sarcoplasmic Reticulum Ca2+

ATPase (SERCA), Na+/Ca2+ exchanger (NCX). During an action potential  
Na+ and Ca2+ depolarize the cell and K+ repolarizes the cell.  The direction 
of NCX is dictated by the concentration gradient of intracellular Ca2+.  Ca2+

(blue arrows) enters the myocyte through CaV and induces SR Ca2+ release 
through RYR.  SR Ca2+ regulates the CaV and causes contraction at the 
myofibrils.  Ca2+ is cycled out of the myocyte through NCX or returned to 
the SR through SERCA. Inset: Depicts relationship between action 
potential (solid black), Ca2+ wave (solid blue) and contraction (dashed red).

Membrane Potential Ca2+ Cycling

NCX

CaV

PLB
RYR SERCA
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ryanodine receptors (figure 1-3, RYR) by Ca2+-induced Ca2+ release (figure 1-3, 

inset blue) 9.  The SR Ca2+ release initiates myocyte contraction (figure 1-3, inset 

red) 9.  The process resets, as Ca2+ is recycled back into the SR through the 

sarcoplasmic reticulum Ca2+ ATPase (figure 1-3, SERCA) and out of the cell 

through the Na+/Ca2+ exchanger (Figure 1-3, NCX) 9. 

The importance of CaV1.2 during ECC is in converting the electrical signal 

of the action potential (membrane depolarization) into a second messenger 

signal (Ca2+) that helps to initiate and grade contraction (Figure 1-3).  

Furthermore, because CaV1.2 is the primary entry point of Ca2+ into a 

cardiomyocyte, the amount of available Ca2+ in the SR is related to CaV1.2 

activity 27. 

β-adrenergic receptor activation initiates a signaling cascade that leads to 

phosphorylation of several ECC protein targets, including CaV1.2 124, the RYR 75 

and phospholamban (PLB) 96.  Protein kinase A (PKA) is known to phosphorylate 

the pore forming α1c subunit (Ser 1928) 23, 40 and the β subunit (Ser 478/9, Ser 

459) 41 of CaV1.2.  PKA phosphorylation increases CaV1.2 activity 124.  

Experiments expressing an α1c with a Ser 1928 Ala mutation retained an 

adrenergic response 38.  A truncation of the α1c subunit that eliminates an AKAP 

binding site prevented the CaV1.2 adrenergic response 38.  PKA phosphorylation 

of RYR (Ser2809, Ser 2814) results in an increased sensitivity to Ca2+ and an 

increase in opening probability (Po) 75.  PLB binds to SERCA and attenuates its 

activity.  Phosphorylation of PLB by PKA at Ser 16 results in a dissociation of 

PLB from SERCA 68, 107, thereby relieving inhibition of SERCA activity 103.  This 
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adrenergic signaling enhances several aspects of ECC by causing increases 

CaV1.2 activity, greater SR Ca2+ release through RYR and faster cycling of Ca2+ 

through SERCA 9.   

Cycling of Ca2+ is a fundamental aspect of ECC and these oscillations of 

Ca2+ regulate the multifunctional Ca2+/CaM dependent kinase II (CaMKII).  

CaMKII phosphorylates several of the same protein proteins involved in ECC that 

PKA phosphorylates, including CaV1.2, PLB and RYR.  The role of CaMKII in 

ECC is complicated by the fact that the SR is also a critical source of Ca2+ for 

activating CaMKII, which in turn increases ICa 113, 114 and phosphorylates RYR 1, 

108.  CaMKII phosphorylates the CaV1.2 β2a subunit at residue Thr498 and 

increases the channel’s activity 43.  PLB may be phosphorylated at residue Thr 

17 96 and causes a dissociation between PLB and SERCA.  Thr 17 

phosphorylation allows for frequency dependent acceleration of relaxation 

(FDAR) 8, 48 and allows the heart to adapt to changes in rate 8, 48.  However, PLB 

phosphorylation is not the only factor in FDAR because it has been shown that 

FDAR still occurs in PLB genetic knock-out mice 28.  CaMKII is known to 

phosphorylate RYR at residues Ser 2809 and Ser 2815 108, 111.  Phosphorylation 

of RYR by CaMKII has been shown to increase and decrease spontaneous SR 

Ca2+ release 73, 108, 120.  Despite this controversy, failing hearts have been shown 

to have hyperphosphorylated RYR with increased spontaneous SR Ca2+ release 

1, 75.  The role of CaMKII in regulating ECC is a fundamental process in myocytes 

adapting to heart rate frequency changes.  The exact mechanisms of CaMKII 
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regulating ECC are still being investigated, but it is clear that mis-regulation of 

Ca2+ handling proteins allow for action potential defects like EADs and DADs.   

DADs are favored by increased and spontaneous SR Ca2+ during diastole 

1, 116.  The excess intracellular Ca2+ is partly removed by the Na+/Ca2+ exchanger, 

where 3 Na+ ions are moved into the cell and one Ca2+ ion is moved out of the 

cell.  This movement of ions has a net inward current, which depolarizes the 

membrane potential manifesting as a DAD.  The net inward current through the 

exchanger may even trigger a full action potential if the threshold potential for 

NaV is crossed.  EADs occur due to reopening of CaV1.2 during the action 

potential plateau phase and EADs correspond with secondary increases of 

intracellular Ca2+  21. Secondary increases of Ca2+ associated with EADs are 

synchronous throughout the entire myocyte 21.  The synchronous increase of 

intracellular Ca2+ supports the idea of CaV1.2 reopening and triggering SR Ca2+ 

release 21.  The increase of intracellular Ca2+ may trigger an arrhythmia, which 

would magnify the increase of intracellular Ca2+, thereby creating a self-

perpetuating mechanism of arrhythmia for Torsades de Pointes and ventricular 

tachycardia 104. 

 

CaMKII structure and function 

CaMKII is a Ser/Thr kinase that often recognizes the general consensus 

site of RXXS/T on substrates and phosphorylates the S/T of the substrate 17, 85.  

The CaMKII monomer consists of three domains, the catalytic (kinase) domain, a 

regulatory domain and an association domain (Figure 1-4A).  Together these 
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line under sequence). B) Diagram depicting how the holoenzyme structure of 
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domains interact to provide CaMKII the unique ability to undergo Ca2+ dependent 

activation 11, Ca2+ independent activity 65, 71, 94 and respond to intracellular Ca2+ 

transient frequencies and duration 25 in the absence of Ca2+/CaM or 

autophosphorylated Thr286. 

The kinase domain of CaMKII is similar to known Ser/Thr kinases, such as 

PKA and PKC.  The catalytic activity requires the kinase domain to bind Mg2+ to 

stabilize ATP during phosphorylation of a substrate 17.  The inhibitory domain 

binds the kinase domain (Figure 1-4A) and prevents phosphorylation of 

substrates 18-20. 

Portions of the inhibitory domain regulate kinase activation by allowing the 

inhibitory domain to release the kinase domain in the presence of Ca2+ bound 

CaM (Figure 1-4A) 50, 81.  This process results in Ca2+ dependent activity (Figure 

1-4B).  Upon the removal of Ca2+, CaM will no longer interact with the inhibitory 

domain and the kinase domain will once again become bound to the inhibitory 

region of the regulatory domain unless autophosphorylation or Met oxidation has 

occurred 32.  During Ca2+ dependent activity the kinase domain may auto-

phosphorylate Thr286 within the inhibitory domain 93 (Figure 1-4A), which 

increases the binding affinity for CaM 79 and allows for Ca2+ independent activity 

65, 71, 94 (Figure 1-4B).  With Thr286 phosphorylated the inhibitory domain will not 

bind the kinase domain even in the absence of Ca2+ and CaM.  Oxidation of 

paired methionines within the regulatory region also results in Ca2+ independent 

activity 32.  Ca2+ independent activity from phosphorylation may be reversed by 

phosphatase activity de-phosphorylating pThr286 37, 95.  The reversibility of 
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oxidation Ca2+ independent activity is thought to occur by methionine sulfoxide 

reductase 32. 

The association domain of CaMKII allows multiple monomers (6-12 

subunits) to form larger holoenzymes 56, 63, 64 that can collectively respond to 

frequencies and pulse durations of Ca2+ 25 (Figure 1-4B).  The proximity of each 

monomer to its neighbor allows for autophosphorylation during Ca2+ dependent 

activation by Ca2+/CaM.  If the intracellular Ca2+ transients are frequent or 

prolonged enough 25 and a majority of the holoenzyme reaches an auto-

phosphorylated state, then the entire holoenzyme will remain active during the 

absence of Ca2+ 25 (Figure 1-4C).  Longer (1000ms)  Ca2+ transients achieve 

maximal Ca2+ independent activity at low frequencies, whereas shorter durations 

(80ms) of Ca2+ require higher frequencies (10Hz) to achieve the same Ca2+ 

independent activity (Figure 1-4C).  The ability of CaMKII to respond to both 

frequency and duration of Ca2+ transients increases the dynamic range that 

CaMKII can respond to intracellular Ca2+ oscillations. 

Patients and animals with cardiac hypertrophy and failure have increased 

CaMKII activity and expression 47, 55.  Our laboratory established a link between 

increased cardiac CaMKII activity, increased CaV1.2 openings, EADs and 

arrhythmias, in a mouse model of cardiac hypertrophy 117. These cellular 

phenotypes were reversed by cellular dialysis of the CaMKII inhibitory peptide 

(AC3I), while a non-peptide CaMKII inhibitor (KN-93) reduced arrhythmias in vivo 

117. 
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CaV1.2 structure and function 

 Ca2+ enters ventricular myocytes with each heart beat.  The predominant 

pathway for this Ca2+ entry is through voltage-gated, L-type Ca2+ channels.  The 

cardiac L-type Ca2+ channel consists of a pore forming α1c subunit (CaV1.2), a β 

subunit (β2 is the most common heart isoform 45 ) and an α2δ subunit (Figure 1-

5A).  CaV1.2 is one of many voltage gated Ca2+ channels important for human 

physiology (Table 1-2).  The pore forming CaV1.2 subunit is comprised of four 

domains with six transmembrane helices.  Within each domain is a pore loop, 

which is selective for Ca2+, over other physiological cations (but not Ba2+, for 

example) and a voltage sensor (S4) that senses depolarization of the membrane 

through a lysine rich sequence.  The β subunit acts as both a chaperone and 

modulator of CaV1.2 26, 86.  The α2δ subunit supports the interaction between 

CaV1.2 and β subunits.  The C-terminus of CaV1.2 contains many regulatory 

elements including three calmodulin (CaM) binding domains, A, CB IQ 97, 127, 128, 

an AKAP binding domain 40 and a serine residue phosphorylated by PKA 23, 89 

(Figure 1-5A).  The  separate domains (I-IV) of the α1c subunit orientate to form a 

selective pore for Ca2+ ions (Figure 1-5B).  

 Single channel recordings of CaV1.2 have revealed three types (gating 

modes) of activity (Figure 1-5C).  An inactive state where current is not moving 

through the channel is called mode 0.  Upon depolarization CaV1.2 may leave the 

inactive state (mode 0) and enter either a brief opening high activity state (mode 

1) or a long opening high activity state (mode 2) 53.  Mode 1 activity is associated 

with brief openings (~1ms), whereas mode 2 is associated with long openings 
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(>10ms) 53.  A shift of CaV1.2 activity from mode 1 to mode 2 will also increase 

the channel Po.  A CaV1.2 dihydropyridine antagonist, such as nifedipine, shifts 

CaV1.2 activity into mode 0 and CaV1.2 dihydropyridine agonists, such as Bay-K 

8644, shift CaV1.2 activity towards mode 2 53.  CaV1.2 is more likely to re-open 

during prolonged action potentials 5, 62 and these reopening events are thought to 

cause  afterdepolarizations by directly depolarizing the cell membrane during the 

action potential plateau (EADs) or by contributing to SR Ca2+ overload, a 

condition that favors DADs 117. 

  Failing hearts have been shown to exhibit increased  CaV1.2 Po.49, 91.  

Phosphorylation by  PKA 21, 88 or CaMKII 30 appears to be an important regulatory 

step that favors mode 2 activity and increasing Po.  Constitutively active CaMKII 

shifts CaV1.2 activity from mode 1 to mode 2 30.  The β2a subunit is critical for 

increasing the Po 43 and that this increase in Po depends on CaMKII 

phosphorylation of the β2a subunit at residue Thr498 43.   

Macroscopic or whole cell CaV1.2 currents (ICa) show that a depolarization 

of the cellular membrane causes CaV1.2 to open (activate) and conduct Ca2+ 

ions into the cell (Figure 1-5D) and then close (inactivate) over time.  Steady 

state ICa inactivation and activation may be plotted as a function of voltage to 

normalized current and the resulting plots overlap yielding a “window” current 

(Figure 1-5E) 78.  This window current indicates that a small percentage of ICa will 

remain active within the membrane voltages associated with the overlap of the 

two plots 78.  The window current helps explain how CaV1.2 may reopen during 
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Table 1-2: Voltage gated Ca2+ channel family

Family α subunit Gene Tissue
L-type CaV1.1 CACNA1S

CaV1.2 CACNA1C
CaV1.3 CACNA1D
CaV1.4 CACNA1F

P/Q-type CaV2.1 CACNA1A Brain
N-type CaV2.2 CACNA1B Brain
R-type CaV2.3 CACNA1E Brain
T-type CaV3.1 CACNA1G

CaV3.3 CACNA1H
CaV3.3 CACNA1I

Skeletal muscle, heart, brain

Brain, heart, bone

Table 1-2: Voltage gated Ca2+ channel family

Family α subunit Gene Tissue
L-type CaV1.1 CACNA1S

CaV1.2 CACNA1C
CaV1.3 CACNA1D
CaV1.4 CACNA1F

P/Q-type CaV2.1 CACNA1A Brain
N-type CaV2.2 CACNA1B Brain
R-type CaV2.3 CACNA1E Brain
T-type CaV3.1 CACNA1G

CaV3.3 CACNA1H
CaV3.3 CACNA1I

Skeletal muscle, heart, brain

Brain, heart, bone
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prolonged action potentials.  Inactivation of CaV1.2 is an important aspect of the 

window current and it is controlled by several different factors. 

ICa peaks and then undergoes a process of inactivation. Where, despite 

the membrane being depolarized, channels stop conducting Ca2+ (Figure 1-5D).  

The process of inactivation is dictated by both Ca2+ 12 and voltage 82.  The 

voltage dependent component of inactivation (VDI) is an intrinsic property of 

CaV1.2 and does not require ions to move through the channel 46, whereas the 

Ca2+ dependent inactivation (CDI) component requires Ca2+ entering the cell to 

interact with CaM 127, 128.  CaM mutations on N-terminus lobe (N) and C-terminus 

lobe (C) eliminate Ca2+ binding 77.  Introducing CaM with C lobe or N and C lobes 

mutated prevents CDI 83.  CaM with only the N lobe mutated has no effect on CDI 

83.  The mechanistic structural bases for VDI and CDI are still unknown, 36.  

However, CDI and VDI may share a final molecular determinants to achieve 

inactivation 36.  A comparison between α1a and α1c examining CDI and VDI with 

different β subunits found that both CDI and VDI were altered 15.  In the CaV1.2 

α1c genetic disease Timothy Syndrome a single mutation causes a loss of VDI 

100, 101.  This mutation favors CaV1.2 entering a higher activity state because of 

the defect within VDI 33.  Interestingly, the Timothy Syndrome mutation may not 

only decrease VDI but also enhance CDI 6.  Cav1.2 inactivation, CDI and VDI, 

are fundamental processes for normal heart rhythm where changes lead to 

human disease.  
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CHAPTER II 

CARDIOMYOCYTE CAV1.2 EXOGENOUS EXPRESSION 

 

Introduction 

 The majority of the work on CaV1.2 function relies on expression within 

heterologous cells, which provide a reliable model to study channel function 

directly.  Heterologous cell studies of CaV1.2 have revealed important biophysical 

features such as CaV1.2 regulation by the β subunit 26, 86, regulation by PKA 40 

and Ca2+ dependent inactivation 83, 128.  However, the function of CaV1.2 is 

integrated into the context of physiological properties where CaV1.2 is 

endogenously expressed.  For cardiovascular CaV1.2 function, this includes the 

ultra-structure of ventricular myocytes, which involves specialized structures like 

T-tubules 13 and the tight coupling of the extracellular membrane with the SR 9.  

These features of ventricular myocytes are critical to the function of CaV1.2.  

Heterologous cells do not contain the ultra-structure found within ventricular 

myocytes and therefore do not provide a sufficient model for studying CaV1.2 

function in the context of cardiovascular biology.  Furthermore, CaV1.2 

participates in physiological events, such as action potentials and intracellular 

Ca2+ handling, which do not occur within heterologous cells.  Using heterologous 

cells helps in predicting how the action potential and Ca2+ handling may change 

in ventricular myocytes, but only experiments that use ventricular myocytes will 

test those hypotheses. 
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 The advantage of using heterologous cells over ventricular myocytes is 

the ease that mutated CaV1.2 may be expressed within heterologous cells and 

the ease that heterologous cell may be cultured.  Advances in expressing 

mutated CaV1.2 in primary cells have allowed for studying CaV1.2 function within 

neurons 29 and ventricular myocytes 38, 39.  These studies rely on silencing the 

endogenous CaV1.2 with a dihydropyridine CaV1.2 antagonist while the 

exogenous CaV1.2 remains functional due to a dihydropyridine insensitivity 

mutation 52, 92.   

The work with adult ventricular myocytes has only examined mutated 

CaV1.2 whole cell currents 38 and not integrated events such as action potentials 

and Ca2+ handling.  An important and uninvestigated area is how over-

expression of CaV1.2 and dihydropyridine silencing may affect integrated 

ventricular myocyte features.  A genetic mouse model of CaV1.2 over-expression 

98 indicates increased ICa and greater Ca2+ transient amplitude, but not changes 

in SR Ca2+ content or spontaneous SR Ca2+ release.  I hypothesized that 

exogenous expression of dihydropyridine resistant CaV1.2 in adult 

ventricular myocytes will not affect cardiomyocyte physiology after 

pharmacological inhibition of endogenous CaV1.2.  To test this hypothesis I 

will use a lenti virus carrying a dihydropyridine resistant CaV1.2 and introduce this 

virus to cultured adult rat ventricular myocytes.  I will focus on assessing 

integrated ventricular myocyte events, including the CaV1.2 inward current 

properties, action potentials and intracellular Ca2+ handling. 
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Results 

Heterologous expression of a modified CaV1.2 

 CaV1.2 was marked by the addition of an extracellular hemaglutanin (HA) 

epitope 2 (Figure 2-1A, B, green circle) and introduced a validated 

dihydropyridine-insensitivity mutation 52, 92 (Figure 2-1A, B, black circle). This 

DHP insensitivity mutation has been used to study L-type Ca2+ channel signaling 

not only in neurons 29 but also in cultured adult cardiomyocytes 38, 39. The 

dihydropyridine-insensitivity mutation (DHPR) allows the virally introduced CaV1.2 

to remain functional while using nifedipine to inhibit endogenous CaV1.2 29.  

Exogenous CaV1.2 expression was confirmed by immunoblot (Figure 2-1C) 

and immunofluorescence (Figure 2-2A) in transduced HEK293T cells. The 

functions of CaV1.2 wild type (WT) and TS were confirmed by recording ICa using 

whole cell voltage clamp in HEK293T cells.  Whole cell voltage clamp recordings 

were consistent with CaV1.2 ICa (Figure 2-2B) 101.  The current and voltage (IV) 

relationship (Figure 2-2C) and the voltage dependence of inactivation (VDI) 

(Figure 2-2D) were as expected 101. 
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Figure 2-2: A) FITC immunofluorescence (HA Ig) of HEk293T cells expressing 
the modified CaV1.2 with corresponding nuclear stain by DAPI (Scale bar, 
10μm) B) Example inward ICa (IV protocol) from HEK293T cells expressing the 
modified CaV1.2. C) Current voltage relationship and D) voltage dependence of 
inactivation.
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Modifications to lenti virus plasmid 

 The initial viral construct to deliver CaV1.2 into cardiomyocytes yielded 

inadequate viral titers (Figure 2-3D).  Titers were determined by immuno-

fluorescence detecting the HA epitope of CaV1.2 (Figure 2-3C).  For each given 

dilution of virus (10-2, 10-3, 10-4, 10-5, 10-6) the number of cells were counted that 

indicated specific HA staining.  The viral titer was determined by averaging the 

number of cells counted after correcting for the dilution factor and volume of virus 

used for each dilution (i.e. 1mL used for each well and 60 cells counted for the 

10-5 dilution and 7 cells counted for the 10-6 dilution equals a 6.5x106 TU/mL viral 

titer).  The low titer was a result of the CaV1.2 (6.5kb) ORF exceeding the 

recommended packaging for lenti virus (6.0kb).  To alleviate the packaging 

problem the lenti virus plasmid was modified.   

The original plasmid, pLenti6, contained a blasticidin resistance gene with 

corresponding mammalian and bacterial promoters (Figure 2-3A).  The utility of 

the blasticidin gene is to allow the generation of stable transductions and for 

bacterial antibiotic selection in addition to the ampicillin resistance gene.  Neither 

of these functions of the blasticidin gene are necessary to virally infect adult 

ventricular myocytes.  Therefore, the blasticidin gene and promoters were 

removed to create pLentiNB (Figure 2-3B).  Upon removal of the blasticidin gene 

and promoters (869bp) the effective packaging was reduced from 6.5kb to 5.6kb.  

This reduction in the amount of DNA for packaging increased the viral titer 

dramatically (Figure 2-3D). 
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Expression of modified CaV1.2 in ventricular myocytes 

 Expression of exogenous CaV1.2 in cultured adult ventricular myocytes 

was confirmed by confocal imaging of immunolabeled HA Ig (Figure 2-4A, B). 

Exogenous CaV1.2 was properly targeted to the transverse-tubule (T-tubule) 

network, based on the punctuate appearance and 1.8 μm spacing of the HA 

immunofluorescence, consistent with known distances between T-tubules in a 

resting sarcomere 10. No HA immunostaining was detected in uninfected 

cardiomyocytes (Figure 2-4B). 

Peak ICa in WT CaV1.2 infected cells was significantly resistant to nifedipine, 

as expected based upon the dihydropyridine-resistant mutation 29, compared to 

mock infected cells (Figure 2-4C). Nifedipine (single arrow, 10nM) resulted in 

peak ICa in WT infected myocytes that was similar to peak ICa measured in non-

infected myocytes in the absence of nifedipine. This (10nM) nifedipine-titrated 

balance of endogenous and exogenous CaV1.2 allowed for the determination of 

the effects of the exogenously expressed CaV1.2 on cardiac electrophysiology 

independent of over-expression induced changes in peak ICa.  The dose 

response (Figure 2-4C) also indicates that high concentration of nifedipine  

(double arrow, 1μM) will overcome the dihydropyridine resistance and block the 

majority of ICa. 
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Preserved ICa during exposure to nifedipine. The single arrow indicates the 
nifedipine concentration (10nM) used to study the cellular consequences of 
the TS mutation, and the double arrow indicates the nifedipine concentration 
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Voltage clamp properties of ventricular myocytes with exogenous CaV1.2 

 Over-expression of exogenous CaV1.2 should only increase the peak 

inward current peak amplitude (Figure 2-4C) 98.  The addition of 10nM nifedipine 

rectifies the difference in peak inward current in ventricular myocytes (figure 2-

4C, single arrow).  I compared the current and voltage (IV) relationship of 

ventricular myocytes expressing WT CaV1.2 under 10nM nifedipine to uninfected 

ventricular myocytes in the absence of nifedipine.  The IV protocol involves a 

single voltage step that changes with each sweep.  Data from the IV protocol is 

plotted to compare the peak current amplitude elicited by each voltage step.  The 

current voltage relationship with Ca2+ as the charge carrier showed no significant 

differences between WT CaV1.2 and uninfected ventricular myocytes (Figure 2-

5A, B).   

Using the same conditions I examined two inactivation properties, voltage 

dependence and time dependence of inactivation.  Voltage dependence of 

inactivation (VDI) results from CaV1.2 closing because of the voltage associated 

with a depolarization.  VDI was examined with a two step protocol.  The first 

voltage step is a long depolarization (conditioning) that allows the population of 

CaV1.2 to reach an inactivation steady state.  The conditioning voltage step 

changes with each sweep.  The second step (test) is the same for all sweeps and 

allows the comparison of available channels to open after the conditioning 

voltage step.  Normalized (% of largest current) peak current from each test 

pulse is plotted against the corresponding conditioning voltage step.  Ventricular 

myocytes expressing WT CaV1.2 inactivated with increasing depolarization 

voltages exactly like uninfected ventricular myocytes (Figure 2-5C).  Time 
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dependence of inactivation (TDI) results from more CaV1.2 inactivation with 

longer depolarizations.  The TDI protocol examines the recovery from time 

dependent inactivation by using a two step protocol.  Both voltage steps are to 

the same voltage for the same duration but the time between the steps is 

increased with each sweep.  With increasing time between the first and second 

voltage steps the peak amplitude of the second voltage step gradually increases 

to that observed in the first voltage step.  The normalized (% of first voltage step) 

peak current from the second voltage step is plotted against the time between 

the two voltage steps.  Ventricular myocytes over-expressing WT CaV1.2 showed 

no changes in recovery from TDI as compared to uninfected ventricular myocytes 

(Figure 2-5D).  

Many properties of CaV1.2 are dependent on Ca2+.  To fully eliminate Ca2+ 

dependent properties all Ca2+ must be sequestered from the channel.  

Extracellular Ca2+ is replaced with Ba2+, which has the unique ability to move 

through CaV1.2 better than Ca2+ 54 but not interact well with Ca2+ binding proteins 

80.  Intracellular Ca2+ is tightly buffered by the addition of a fast Ca2+ chealator 

BAPTA within the pipette solution 115.  Together, Ba2+ and BAPTA eliminate 

CaV1.2 Ca2+ dependent properties.  Repeating the IV, VDI and TDI protocols 

under Ca2+ free conditions found no significant differences between WT CaV1.2 

expressing ventricular myocytes (10nM nifedipine) and uninfected ventricular 

myocytes (no nifedipine). 
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Current clamp properties of ventricular myocytes with exogenous CaV1.2 

 Stimulated action potentials (Figure 2-7A) were recorded from CaV1.2 WT 

expressing and uninfected ventricular myocytes (Figure 2-7B) under increasing 

concentrations of nifedipine.  Exogenous expression of CaV1.2, recorded under 

10nM nifedipine, did not affect action potential duration compared to 

measurements in uninfected cardiomyocytes recorded in the absence of 

nifedipine (Figure 2-7C, D).  No action potential recordings from uninfected, 

without nifedipine, and CaV1.2 over-expressing myocytes yielded 

afterdepolarizations (Figure 2-7E). 

The low concentration of nifedipine (<1nM) used with CaV1.2 WT 

expressing cardiomyocytes yielded an increased action potential duration as 

compared to uninfected without nifedipine (Figure 2-7C, D).  Despite increasing 

action potential duration, low concentrations of nifedipine did not allow for the 

generation of afterdepolarizations from cardiomyocytes with exogenous Cav1.2 

expression (Figure 2-7E).  Ventricular myocytes over-expressing CaV1.2 and 

uninfected cardiomyocytes showed no changes in either peak amplitude (Figure 

2-8A, B) of the action potential or the resting membrane potential (Figure 2-8C, 

D). 
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Figure 2-8: A) Action potential peak membrane depolarization amplitude 
nifedipine dose response for WT CaV1.2 and uninfected ventricular myocytes. 
B) Peak membrane depolarization amplitude summary data comparing WT 
CaV1.2 1nM and 10nM nifedipine to uninfected ventricular myocytes without 
nifedipine. C) Resting membrane potential nifedipine dose response for WT 
CaV1.2 and uninfected ventricular myocytes. D) Resting membrane potential 
summary data comparing WT CaV1.2 1nM and 10nM nifedipine to unifected
ventricular myocytes without nifedipine.
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Intracellular Ca2+ handling 

 Intracellular Ca2+ handling (Figure 1-3) is a fundamental aspect of 

cardiovascular physiology at the cellular level.  A transgenic mouse model of WT 

CaV1.2 over-expression has been shown to increase the amplitude but not affect 

the decay time of the Ca2+ transient 98.  My model is different from the transgenic 

mouse CaV1.2 over-expression in having less over-expression of CaV1.2 and my 

model represents an acute over-expression of CaV1.2 rather than a chronic over-

expression of CaV1.2.  It is important to characterize the Ca2+ handling of this 

model for proper application in future studies utilizing this model. 

Stimulated (1Hz) Ca2+ waves were measured using a fluorescent Ca2+ 

indicator (fluo-3 AM) to measure global changes in Ca2+ handling 99.  Both WT 

CaV1.2 over-expressing and uninfected ventricular myocytes were assessed.  

The Ca2+ wave was examined for changes in peak amplitude (Figure 2-9A) and 

decay time (Figure 2-9B).  The peak amplitude of the Ca2+ wave signifies the 

maximum amount of Ca2+ released by the RYR from the SR Ca2+ stores (Figure 

1-3).  Whereas, the decay time represents the ability of SERCA and NCX to 

cycle Ca2+ back into the SR or out of the cell (Figure 1-3).  No significant 

differences were observed between WT CaV1.2 ventricular myocytes and 

uninfected ventricular myocytes (Figure 2-9A, B).  After recording steady-state 

Ca2+ transients the SR Ca2+ stores were fully released by the addition of caffeine 

(10mM).  The caffeine induced SR release of Ca2+ showed no significant 

differences between WT CaV1.2 and uninfected ventricular myocytes (Figure 2-

9C). 
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and uninfected ventricular myocytes. A) Peak Ca2+ transient amplitude. B)
Decay time to 50% peak amplitude. C) Peak SR Ca2+ release by caffeine 
(10mM).



 39

0

0.5

1

1.5

2

F/
Fo

Un WT
0

0.5

1

1.5

2

F/
Fo

Un WT

0

0.5

1

1.5

2

2.5

FW
H

M

Un WT
0

0.5

1

1.5

2

2.5

FW
H

M

Un WT
0

20

40

60

FD
H

M

Un WT
0

20

40

60

FD
H

M

Un WT

Un WT
0
1
2
3
4
5
6

Sp
ar

ks
/m

s/
10

0μ
m

Un WT
0
1
2
3
4
5
6

Sp
ar

ks
/m

s/
10

0μ
mA B

C D

Figure 2-10: Spontaneous RYR SR Ca2+ spark from WT CaV1.2 ventricular 
myocytes and uninfected ventricular myocytes. Ca2+ sparks assesed for A)
frequency, B) peak amplitude, C) width and D) duration.

 



 40

An important aspect of ventricular myocyte Ca2+ handling is the propensity 

of RYR to release SR Ca2+ stores.  The ability of RYR to release SR Ca2+ stores 

is regulated by phosphoyrlation and by Ca2+ 9.  The transgenic mouse model of 

CaV1.2 over-expression found no changes in RYR release of SR Ca2+ 98.  

Spontaneous release of SR Ca2+ by RYR can be measured as Ca2+ sparks using 

fluorescent Ca2+ indicators.  Ca2+ sparks may be examined for changes in 

frequency (Figure 2-10A), peak amplitude (Figure 2-10B), width (Figure 2-10C) 

and duration (Figure 2-10D).  The Ca2+ spark profile between WT CaV1.2 and 

uninfected ventricular myocytes showed no significant differences. 
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Discussion 

 

Importance for studying CaV1.2 in primary cells 

 Many of the most important discoveries on CaV1.2 function were 

discovered in heterologous cells and heterologous cell will remain a fundamental 

tool for investigating CaV1.2 properties.  Studying CaV1.2 within primary cells is 

an important but underutilized experimental direction to fully understand how 

CaV1.2 activity relates to the greater context of the cells that endogenously 

express CaV1.2.  In neurons, mutating the CaM binding IQ motif on the CaV1.2 C-

terminus, and not the ligand gated NMDA receptor Ca2+ channel 29,.was found to 

be critical for MAPK signaling  This finding provide insight into Ca2+ signaling in 

neurons in that what Ca2+ signaling pathway activated depends on where the 

Ca2+ originated and not just global intracellular Ca2+ concentration.  In ventricular 

myocytes, mutating the CaV1.2 C-terminus the PKA phosphorylation site serine 

1928 to an alanine had no effect on adrenergic signaling enhancement of ICa 
38.  

However, deleting the CaV1.2 distal C-terminus prevented adrenergic signaling 

increase of ICa 
38.  These findings are contrary to the long-standing importance of 

serine 1928 for CaV1.2 adrenergic signaling.  Rather, this work suggests that 

localization of PKA, via AKAP79 binding the CaV1.2 C-terminus 40, is more critical 

than serine 1928 phosphorylation during adrenergic signaling.  These findings in 

neurons and ventricular myocytes depended on studying a CaV1.2 within the 

context of a primary cell and have provided profound insight into the mechanisms 

of cellular physiology that CaV1.2 partakes. 



 42

 The previous work conducted in ventricular myocytes did not examine 

integrated events such as action potentials and intracellular Ca2+ handling, both 

of which are fundamental in understanding cardiovascular disease.  My work has 

taken what others have done to study CaV1.2 mutations and increased its utility 

within ventricular myocytes.  I have shown that CaV1.2 may be exogenously 

expressed within ventricular myocytes without affecting the action potential or 

intracellular Ca2+ handling, which provides the framework to study how mutations 

within CaV1.2 affect ventricular myocytes physiology.   
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Methods 

 

Cloning 

 The open reading frame of CaV1.2 α1c subunit (NCBI X15539) was 

amplified by PCR and ligated into a modified pLenti6 plasmid (Invitrogen), 

pLentiNB, which had the blasticidin resistance gene and promoters of the pLenti6 

plasmid removed to facilitate viral packaging. An extracellular hemaglutanin 

epitope was added to CaV1.2 by methods previously published2. The 

dihydropyridine resistance mutation (DHPR, T1066Y) was introduced by using the 

PCR method Quikchange (Stratagene) as per manufacturer’s protocol. 

 

Lenti virus 

The transgene plasmid pLentiNB carrying the modified CaV1.2 was 

transfected (Qiagen, Effectene) with the Lenti viral packaging plasmids 

(Invitrogen’s pLP1, pLP2 and pVSVG) into HEK293FT cells (Invitrogen). Media 

was collected and replaced at 24, 48 and 72 hours post-transfection. The viral 

containing media was concentrated by either ultrafiltration (Millipore Centricon 

Plus-70 30kDa) or ultacentrifugation. Viral titer (transducing units per mL, TU/mL) 

was determined by serial dilution (10-3, 10-4, 10-5, 10-6, 10-7, no virus) on HEK293 

cells followed by immuno-staining (see Immunoflourescence methods) for the 

CaV1.2 HA epitope (anti-HA conjugated Alexa 488 Ig) and counting positively 

stained cells within each dilution. Viral titers achieved were between 105 and 107 
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TU/mL. Extracts from HEK293 cells used to produce virus were analyzed by 

SDS-PAGE and immunoblotting with an affinity-purified HA Ig. 

 

Ventricular myocyte isolation, culturing and viral transduction 

Adult male Sprague-Dawley rats (250-300g) were anesthetized by Avertin 

(2.5%) with Heparin (55 units/mL) through IP injection (0.2mL/10g). Hearts were 

excised, perfused retro-aortically (Langendorff, Figure 3-11) and enzymatically 

digested with a mixture of Collogenase (Worthington, 250units/mL), 

Hyaluronidase (Sigma, 0.01%) and Protease Type XIV (Sigma, 0.0025%) in a 

modified tyrodes solution (0.1mM CaCl2, 10mM BDM). Dissociated 

cardiomyocytes (Figure 2-12A) were washed three times in Joklik MEM (Sigma 

M0518) with 1% Pen/Strep and 1X ITS with increasing Ca2+ (0.25mM, 0.5mM, 

0.75mM). Ventricular myocytes were plated on glass coverslips coated with 

Geltrex (Invitrogen) and allowed to attach for 1 hour. Cells were washed with a 

culture media consisting of a 50:50 mix of DMEM and F10 media with 1% 

Pen/Strep and 1X ITS. Attached cardiomyocytes (Figure 2-12B) were counted 

and the cell density was calculated (Figure 2-13). Lenti virus was added to the 

cells at a multiplicity of infection (MOI) of 1-3 (Figure 2-13), and cells cultures 

were maintained for 24-36 hours (Figure 2-12C,D). 
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Figure 2-11: Schematic of Langendorff used to isolate ventricular myocytes. 
Isolation buffer and enzyme buffer are heated by the water jacket to 34C and 
introduced to the heart by retrograde perfusion.
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Dissociated Attached

24-36 hrs 24-36 hrs

A B

C D

Figure 2-12: A) Ventricular myocytes dissociated from ventricular tissue after 
enzymatic digestion by retrograde perfusion. B) Ventricular myocytes allowed 
to attach to glass coverslips coated with an extracellular matrix.  C)
Ventricular myocytes after 24-36 hours in culture.  D) 40x view of 24-36 hour 
cultured ventricular myocytes.
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Cell # / Well =                                           X
Average Cell # at 20x

19.2 Hemocytometer
Squares

1608mm2

0.04mm2
Cell # / Well =                                           X

Average Cell # at 20x

19.2 Hemocytometer
Squares

1608mm2

0.04mm2

Hemocytometer Square = 0.04mm2

Culture Well = 24mm x 67mm = 1608mm2

MOI = Multiplicity of Infection, ratio of virus particles to each cell
TU/mL = viral titer, determined experimentally

μL Virus = 
MOI   x   Cell # / Well

TU/mL

1000

μL Virus = 
MOI   x   Cell # / Well

TU/mL

1000

Figure 2-13: Equations used to determine the multiplicity of infection (MOI) for 
attached ventricular myocytes to be cultured with virus.
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Electrophysiology 

 For both voltage clamp and current clamp, microelectrode tips were pulled 

(Sutter Instruments, P-97) from (Fisherbrand, 22-362-574) to between 2.0MΩ 

and 3.0MΩ. Recordings were accomplished using an Axopatch 200b amplifier 

(Axon Instruments) and pClamp 9.  

HEK293 ICa recordings for voltage dependence of inactivation (VDI) used 

a two step voltage clamp protocol (repeated 0.1 Hz, resting -80mV, 25°C) with an 

initial conditioning step (0.8s, -50mV to +60mV, Δ10mV) followed by a test pulse 

(300ms, +30mV). Bath solution (Table 2-1) was in mM; 130 NMDG, 10 HEPES, 5 

KCl, 15 CaCl2. Pipette solution (Table 2-2) was in mM; 120 Cs methanesulfonate, 

5 CaCl2, 1 MgCl2, 2 MgATP, 10 HEPES, 10 EGTA. Available current observed 

each test pulse after a given conditioning pulse was accessed a percent of the 

maximum current observed. 

Ventricular myocyte voltage clamp used two sets of bath solutions and 

pipette solutions for conditions with Ca2+ or without Ca2+.  To prevent Ca2+ 

dependent inactivation, Ca2+ was tightly buffered through the use of Ba2+ as the 

charge carrier in the bath solution and BAPTA with no Ca2+ in the pipette 

solution. Bath solution (Table 2-3) was in mM; 137 NMDG, 10 HEPES, 10 

Glucose, 1.8 BaCl2, 0.5 MgCl2, 25 CsCl. Pipette solution (Table 2-4) was in mM; 

120 CsCl, 10 TEA, 1 MgATP, 1 NaGTP, 5 phosphocreatine, 10 HEPES, 20 

BAPTA.  Ca2+ containing conditions used a bath solution (Table 2-5) with in mM, 

137 NMDG, 10 HEPES, 10 Glucose, 1.8 CaCl2, 0.5 MgCl2, 25 CsCl. Pipette 

solution (Table 2-6) was in mM; 120 CsCl, 10 TEA, 1 MgATP, 1 NaGTP, 5 

phosphocreatine, 10 HEPES, 10 EGTA. 
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Figure 2-14: Schematics of voltage clamp protocols. A) Current voltage (IV) 
relationship protocol. B) Voltage dependence of inactivation (VDI) protocol. C) 
Time dependence of inactivation (TDI) protocol.
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Ventricular myocyte current voltage relationship (IV) (Figure 2-14A) used a 

single step protocol (300ms, -80mv to +40mV, Δ10mV, repeated 0.5Hz, resting -

80mV, 25°C).  The peak current each sweep elicited was plotted against the 

voltage step. Cardiomoycte IBa recordings for VDI (Figure 3-14A) used a two step 

voltage clamp protocol (repeated 0.1 Hz, resting -80mV, 25°C) with an initial 

conditioning pulse (2.0s, -80mV to +30mV, Δ10mV) followed by a test pulse 

(300ms, 0mV). Available current observed each test pulse after a given 

conditioning pulse was accessed as a percent of the maximum current observed. 

Time dependence of inactivation (TDI) was recorded using a two step protocol 

(Figure 2-14B) with an initial pre-pulse (0mV, 200ms) followed by a test pulse 

(0mV, 200ms).  The time between the two pulses was gradually increases to 

allow more recovery from inactivation (duration (ms): 10, 20, 30, 40, 50, 70, 90, 

110, 140, 210, 300, 400, 550, 700, 875, 1225, 2500).  The current elicited by the 

test pulse was plotted as a percentage of the current from the pre-pulse and 

plotted against the duration time between the pre-pulse and the test pulse.. 

Cardiomyoycte action potentials (AP) were stimulated (2ms, 1.5-2.5nA) in 

current clamp mode (0.5Hz, 25°C). Bath solution (Table 2-7) was in mM; 140 

NaCl, 4 HEPES, 10 Glucose, 5.4 KCl, 1.8 CaCl2, 1 MgCl2. Pipette solution (Table 

2-8) was in mM; 120 K aspartate, 5 HEPES, 25 KCl, 4 Na2ATP, 1 MgCl2, 10 

EGTA, 2 Na2 phosphocreatine, 1 CaCl2, 2 NaGTP. Recorded APs were analyzed 

using ClampFit’s (Axon Instruments) event detection algorithm and statistics 

decay time (ms) algorithm. 
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The equilibrium potential was determined for each ion (Table 2-9) using 

the Nernst equation (Table 2-10).  For the Nernst equation, the extracellular ion 

concentrations were determined base upon the bath solution (Table 2-8) and the 

intracellular ion concentrations were calculated (Table 2-11) from the program 

MaxChealator (WEBMAXC, http://www.stanford.edu/~cpatton/downloads.htm) 

using the pipette solution (Table 2-8) components.  
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Bath Solution
Chemical F.W. mmol/L Wt.g/L

NMDG 195.2 130 25.376
HEPES 238.3 10 2.383
KCl 74.56 5 0.373
CaCl2 147.02 15 2.205

Titrate to pH 7.4 with 12.1N HCl

Chemical F.W. mmol/L Wt.g/L Wt. g/100mL

Cs methanesulfonate 228 120 27.360 2.736
CaCl2 147.02 5 0.735 0.074
MgCl2 203.31 1 0.203 0.020
MgATP 507.2 2 1.014 0.101
HEPES 238.3 10 2.383 0.238
EGTA 380.04 10 3.800 0.380

Titrate to pH 7.2 with 1N CsOH

Internal Perfusion Solution 

Table 2-1: HEK293 ICa Bath Solution

Table 2-2: HEK293 ICa Pipette Solution 

Chemical F.W. mmol/L Wt.g/L Stock (mM) mL/L

NMDG 195.2 137 26.742
HEPES 238.3 10 2.383
Glucose 180.2 10 1.802
BaCl2 244.3 1.8 0.440 1000 1.8
MgCl2 203.31 0.5 0.102 40 12.5
CsCl 168.4 25 4.210

Bath Solution

Titrate to pH 7.4 with 12.1N HCl

Table 2-3: Ventricular Myocyte IBa Bath Solution
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Chemical F.W. mmol/L Wt.g/L Wt. g/100mL

CsCl 168.4 120 20.208 2.021
CaCl2 147.02 3 0.441 0.044
TEA 165.7 10 1.657 0.166
Mg ATP 507.2 1 0.507 0.051
NaGTP 523.2 1 0.523 0.052
phosphocreatine 255.1 5 1.276 0.128
HEPES 238.3 10 2.383 0.238
BAPTA 476.43 20 9.529 0.953

Titrate to pH 7.2 with 1N CsOH

Internal Perfusion Solution  with BAPTA
Table 2-4: Ventricular Myocyte IBa Pipette Solution

Bath Solution
Chemical F.W. mmol/L Wt.g/L Stock (mM) mL/L

NMDG 195.2 137 26.742
HEPES 238.3 10 2.383
Glucose 180.2 10 1.802
CaCl2 147.02 1.8 0.265 100 18
MgCl2 203.31 0.5 0.102 40 12.5
CsCl 168.4 25 4.210

Titrate to pH 7.4 with 12.1N HCl

Chemical F.W. mmol/L Wt.g/L Wt. g/100mL

CsCl 168.4 120 20.208 2.021
CaCl2 147.02 3 0.441 0.044
TEA 165.7 10 1.657 0.166
Mg ATP 507.2 1 0.507 0.051
NaGTP 523.2 1 0.523 0.052
phosphocreatine 255.1 5 1.276 0.128
HEPES 238.3 10 2.383 0.238
EGTA 380.04 10 3.800 0.380

Titrate to pH 7.2 with 1N CsOH

Internal Perfusion Solution 

Table 2-5: Ventricular Myocyte ICa Bath Solution

Table 2-6: Ventricular Myocyte ICa Pipette Solution
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Chemical F.W. mM Wt.g/L Stock (mM) mL/L

NaCl 58.44 140 8.182
HEPES 238.3 4 0.953
Glucose 180.2 10 1.802
KCl 74.56 5.4 0.403 100 54
CaCl2 147.02 1.8 0.265 100 18
MgCl2 203.31 1 0.203 40 25

Bath Solution

Titrate to  pH 7.4 with 4 mmol NaOH (FW 40.0, 0.016g/100mL)

Chemical F.W. mM Wt.g/L Wt. g/100mL

K aspartate 171.2 120 20.544 2.054
HEPES 238.3 5 1.192 0.119
KCl 74.56 25 1.864 0.186
Na2ATP 551.1 4 2.204 0.220
MgCl2 203.31 1 0.203 0.020
EGTA 380.04 10 3.800 0.380
Na2 phosphocreatine 255.1 2 0.510 0.051
CaCl2 147.02 1 0.147 0.015
Na GTP 523.2 2 1.046 0.105

Titrate to pH 7.2 with 10mmol KOH (F.W. 56.11, .05611g/100mL)

Internal Perfusion Solution

Table 2-7: Ventricular Myocyte AP Bath Solution

Table 2-8: Ventricular Myocyte AP Pipette Solution
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Name Free (M) Total (M)
Ca2+ 1.58E-08 0.001
Mg2+ 0.0000252 0.001
ATP 0.0030395 0.004
EGTA 0.0089856 0.01

pH = 7.2   25 C   0.1 N   Ionic contribution 
[ABS] 0.0257070 N 

Max Chelator

Gas Constant Faraday Const.
R Celsius Kelvin F

8.315 25 298.16 9.65E+04

RT/F (mV) RT/2F (mV) RT/-F (mV)
25.70 12.85 -25.70

Temperature

Ion Extracellular Intracellular [Ion]out/[Ion]in Equil. Potential
(mM) (mM) (mV)

Ca2+ 1.8 1.58E-05 114285.7143 149.64
Mg2+ 1 0.0252 39.6825 47.29
K 5.4 145 0.0372 -84.55
Na 140 14 10.0000 59.17
Cl 151 29 5.2069 -42.40

Table 2-9: Equlibrium Membrane Potential (Nernst Equation) Based upon 
Ventricular Myocyte AP Bath and Pipette Solutions

Table 2-10: Nernst Equation Calculations Based upon Ventricular 
Myocyte AP Bath and Pipette Solutions 

Table 2-11: Intracellular Divalent Ion Concentrations from MaxChealator
using Ventricular Myocyte Bath and Pipette Solutions 
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Immunoflourescence 

Either cardiomyocytes or HEK293 cells, cultured on coverslips (glass #1), 

were gently washed with PBS and fixed for 20 minutes in 2% paraformaldyhyde 

(25°C). Fixed cells were permeabilized for 10 minutes with PBS with 0.1% Triton 

X-100, 2 mg/mL BSA and 2% fish gelatin. Permeabilized cells were blocked with 

PBS with 2 mg/mL BSA and 2% fish gelatin. Cells were incubated overnight 

(4°C) in either anti-HA conjugated Alexa 488 Ig or an affinity-purified HA Ig and 

washed. The cells incubated with HA Ig were then incubated in donkey anti-

mouse Alexa 488 Ig (Molecular Probes) at 4°C. Cardiomyocytes were mounted 

with glass coverslips and Vectashield (with or without DAPI; Vector 

Laboratories). 

Cardiomyocyte images were collected on a Zeiss 510 Meta confocal 

microscope (Carl Zeiss), under 40x magnification (oil, 1.30 NA lens), with a 

pinhole of 1.0 airy disc (Carl Zeiss), using the Zeiss image acquisition software. 

HEK293 images were taken at 40x magnification using both the FITC filter and 

DAPI filter. All images were exported to Photoshop (Adobe) for cropping and 

linear adjustment of contrast. 

 

Statistics 

Data are presented as means with SEM. Sigma Stat was used to compare 

two groups with a Student T-test and multiple groups with an ANOVA. 

Significance was set at a p value < 0.05. Categorical data between two groups 

was compared using a 2-tailed Fisher Exact Test with significance set at P<0.05. 
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CHAPTER III 

PROARRHYTHMIC DEFECTS IN TIMOTHY SYNDROME REQUIRE 

CALMODULIN KINASE II 

 

Introduction 

Timothy Syndrome (TS) is an autosomal genetic disease of the primary 

cardiac Ca2+ channel (CaV1.2) consisting of a missense mutation, G406R, in the 

pore forming α1c subunit protein (Figure 3-1C) 100.  The TS mutation leads to a 

multisystem disease associated with syndactaly, autism, cognitive disorders, 

hypoglycemia, immune defects, arrhythmias and structural heart disease 100, 101.  

In fact, TS patients have an average life expectancy of only 2.5 years due to 

severe cardiac disease.  TS is also known as long QT syndrome 8 (LQT8) and 

the prolonged QT intervals in TS patients (Figure 3-1B) are thought to cause 

cardiac arrhythmias and sudden death. TS disease phenotypes are apparently 

initiated by excessive Ca2+ entry, at least in part, due to impaired voltage 

dependence of inactivation (VDI) of CaV1.2 current (ICa) 100, 101. The loss of VDI is 

independent of accessory β subunits and Ca2+ dependent inactivation 6. 

Mathematical modeling predicts that intracellular Ca2+ overload and action 

potential prolongation stimulate afterdepolarizations that are the cellular 

mechanism underlying the arrhythmias in TS 100, 101. 

 In cardiomyocytes multiple signaling pathways are activated by increased 

intracellular Ca2+ entry, including the multifunctional Ca2+ and calmodulin 
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dependent kinase II (CaMKII) 114, a procardiomyopathic and proarrhythmic 

signaling molecule 126. Increased CaMKII activity causes AP prolongation and 

arrhythmias, similar to observed phenotypes in TS patients, in part by increasing 

sarcoplasmic reticulum (SR) Ca2+ leak and ICa facilitation 73, 117. On the other 

hand, CaMKII inhibition restores normal intracellular Ca2+ homeostasis and 

suppresses arrhythmias 117, 126.  Based upon these concepts, I hypothesized 

that the increased Ca2+ entry in TS cardiomyocytes enhances CaMKII 

actions and that CaMKII activity is important for the proarrhythmic cellular 

phenotype in TS. To test this hypothesis I created an adult ventricular myocyte 

model of TS by viral infection of a dihydropyridine-resistant CaV1.2 α1c subunit 29 

harboring the TS mutation. My studies found that CaV1.2 G406R requires CaMKII 

activity to cause the proarrhythmic phenotypes in adult ventricular myocytes. 

 

Timothy Syndrome introduction and phenotype 

The initial documentation of Timothy Syndrome, in 1995, investigated a 

correlation between a long QT arrhythmia and syndactaly (webbed fingers and 

toes) (Figure 3-1A, B) 74.  Almost ten years later, mutations within domain I helix 

S6 (DI/S6) of CaV1.2 were identified from these patients (Figure 3-1C). The 

mutations (Figure 3-1D) were found either on exon 8a, TS type 1 (TS1) 101, or on 

exon 8, TS type 2 (TS2) 100. TS1 stems from a Gly 406 to Arg missense mutation 

(G1216A transition) on exon 8a.  TS2 originates from either a Gly 406 to Arg 
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Figure 3-1: Timothy Syndrome (TS) A) TS patients exhibit dysmorphic facial 
feature and syndactyly (reprinted from Splawski et. al. Cell 2004).  B) TS 
patients have significantly prolonged QT intervals and have episodes of 
ventricular tachycardia (reprinted from Splawski et. al. PNAS 2005).  C) TS is 
caused by a missense mutation on the I-II loop of CaV1.2 α subunit. D)
Multiple sequence alignment highlighting the location of TS mutations (TS1 = 
Gly 406 Arg, TS2 = Gly 402 Ser).
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(G1216A transition) or a Gly 402 to Ser (G1204A transition) mutation on exon 8.  

The manifestation of Timothy Syndrome, type 1 and type 2, mutations 

may be categorized into three major groups; physical, cognitive and cardiac.  The 

most common physical features of TS include syndactaly, myopia, small teeth 

and baldness at birth 100, 101.  Cognitive defects include developmental delays in 

language and motor skills, and a few cases of diagnosed autism 100-102.  The 

most life-threatening manifestations of TS occur in the heart. ECGs from TS 

patients reveal not only an increased QT interval but also several arrhythmias, 

such as AV block (atria contraction not always followed by ventricular 

contraction), bradycardia (slow rhythm), ventricular tachycardia (fast rhythm) and 

ventricular fibrillation (uncoordinated rhythm) 100, 101.  Treatments for TS patients 

focus on managing the arrhythmias, which are the main cause of death 61, 100, 101. 

 

Expression of CaV1.2 and the distribution of exon 8a/8 

To understand how a single mutation of a Ca2+ channel can have such a 

widespread effect on multiple tissues, initial studies on TS examined CaV1.2 

expression throughout human and mouse.  Northern and mRNA dot blot analysis 

against CaV1.2 reveal expression of the Ca2+ channel in many different tissues, 

including predominately the brain and the heart but also stomach, bladder, 

prostate and uterus 101.  Areas of the heart expressing CaV1.2 included the aorta, 

atria (left and right), ventricles (left and right), septum and apex 101.  In situ 

hybridization of mouse tissue for CaV1.2 (anti sense probe) was used to better 

quantify CaV1.2 distribution.  Expression was found throughout the heart and 
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within specific areas of the brain (cortex, hippocampus, thalamus, hypothalamus, 

caudate putamen and amygdale) 101.  Congruent with additional TS phenotypes, 

CaV1.2 was found in the eye (retina and sclera), developing digits and tooth 

papilla 101. 

Not only is it important to understand where CaV1.2 is expressed but also 

what percent of CaV1.2 carry the TS mutation. Despite Timothy Syndrome being 

a heterozygous disease, the TS mutation is not found in half of all CaV1.2 

because of splice variants between exon 8a and exon 8.  A cloning and PCR 

screen of human cDNA was used to ascertain the actual distribution of CaV1.2 

exon 8 and exon 8a. Exon 8a was found to be within 22.8% of total CaV1.2 in 

heart and 23.2% of total CaV1.2 in brain 101.  Whereas, exon 8 was found to be 

77.2% and 76.8% in heart and brain respectively 101.  Because of these splice 

variations and heterozygosity of TS, TS1 (exon 8a) is found in 11-12% of total 

CaV1.2 101 and the TS2 mutations (exon 8) are found in 38-39% of total CaV1.2 

100. 

Understanding that CaV1.2 is widely expressed in many tissues helps to 

elucidate how so many different pheontypes arise from a single mutation within a 

Ca2+ channel.  Surprisingly, the percent of channels necessary to drastically 

affect physiology may be as little as 11-12%.  In accordance with this 

observation, the longest surviving TS patients, currently in their twenties, are 

mosaics for the TS mutation 61, 100. 
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Biophysics of TS mutation 

To date, the biophysics of the TS mutations have been studied in a 

heterologous cell system using Chinese Hamster Ovarian cells (CHO) and 

Xenopus oocytes 100, 101.  The TS mutations were collectively found to eliminate 

the voltage dependence of inactivation. 

Data on TS CaV1.2 (reconstituted from β2a and α2δ subunit co-expression) 

collected from experiments with CHO cells was obtained using whole cell voltage 

clamp to record Ca2+ currents (ICa) under 15 mM Ca2+. Various biophysical 

properties were studied, such as the current and voltage relationship (IV plot), 

the steady state of activation and the voltage dependence of inactivation (VDI).  

No changes were observed with the IV plot or activation 100, 101.  TS mutation 

causes CaV1.2 to only partially inactivate after 300 ms depolarization, whereas 

wild type CaV1.2 inactivation has almost completed during the same duration 101.  

Furthermore, a VDI plot reveals a minimum ICa availability (56%) at potentials 

+30mV and above 101.  However, wild type CaV1.2 has almost no ICa availability 

for the potentials +20mV and above 101.  Moreover, ICa availability increases 

again for the TS mutation CaV1.2, not for wild type CaV1.2, at potentials +50 mV 

and higher because of a recovery from Ca2+ dependent inactivation (CDI) 35, 101.  

TS mutation CaV1.2 inactivation time constant (τ, ms) plotted against voltage is 

U-shaped, τ is fastest at 0 mV (from CDI) and slows with increasing voltage, 

unlike wild type CaV1.2 where τ becomes faster with voltage (from both CDI and 

VDI) 35, 101. 
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Interpreting the impact of the TS mutations on inactivation kinetics from 

the CHO cell Ca2+ current experiments is complicated by the Ca2+ dependent 

component of inactivation.  CDI can be eliminated by substituting Ba2+ for Ca2+.  

Additional experiments expressed the TS mutation CaV1.2 within Xenopus 

oocytes and whole cell Ba2+ currents (IBa) were recorded with 40 mM Ba2+. In 

the absence of CDI, a +30 mV depolarizing potential inactivated <20% TS 

CaV1.2, whereas the same potential inactivated >90% wild type CaV1.2 100, 101.  

Experiments from CHO cells and Xenopus oocytes reveal not only a loss 

of VDI but also and overall increase in Ca2+ conducted into a cell.  Therefore, TS 

mutations are a gain of function by attenuating the Ca2+ channel’s ability to “turn 

off” after the cellular membrane has depolarized.  

 

Computational models of TS 

Predictions were made on how the CaV1.2 carrying the TS mutation would 

affect the action potential (AP) and trigger arrhythmias.  The Luo-Rudy 

mammalian ventricular cell model, with 11.5% TS1 CaV1.2 or 38% TS2 CaV1.2, 

predicts an elongation in the action potential 35, 100.  Despite the TS CaV1.2 

causing a small overall effect on CaV1.2 inactivation, this small change is enough 

to increase AP duration and thereby increase the QT interval of TS patient 

ECGs.  Modeling a 3Hz train of APs followed by a pause indicates that the TS 

CaV1.2 leads to SR Ca2+ overload and pro-arrhythmic delayed 

afterdepolarizations100. 
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Modeling of ICa during the elongated action potential shows that TS CaV1.2 

causes a larger peak ICa, because the loss of VDI allows fewer CaV1.2 to be 

inactivated during the peak depolarization of the AP 35.  Furthermore, TS CaV1.2 

ICa modeling indicates an increase in ICa during the late phase of the AP, due to a 

recovery from CDI from the decrease in intracellular Ca2+ 35. 

 

Treatment for TS 

Treatment for TS centers on managing the Long QT arrhythmia.  

Therefore, any therapy would need to prevent the AP elongation and DAD 

initiation.  Modeling has helped guide treatment by indicating that a 35% 

reduction of ICa would rescue the AP duration and thereby prevent arrhythmia 

inducing events like DADs 101.   Ca2+ channel antagonists are suitable for 

reducing ICa.  Reducing ICa by directly blocking CaV1.2 has complications.  First of 

all, TS CaV1.2 have a reduced sensitivity for the dihydropyridine Ca2+ channel 

antagonists.  Nisoldipine was shown, in heterologous cells, to have a 50% 

inhibitory concentration (IC50) of 267+/-5 nM for TS rather than the IC50 of 74+/-

7 nM observed with wild type 101.  Secondly, direct Ca2+ channel antagonism may 

cause excessive vasodilation and bradycardia 51.  The Ca2+ channel antagonist, 

verapamil (not a dihydropyridine), has been shown to successfully treat one TS 

patient 61.  More likely a TS patient will receive an implanted cardioverter-

defibrillator (ICD) to control cardiac rhythm and lethal arrhythmias, such as 

ventricular tachycardia and ventricular fibrillation.  The addition of verapamil 

decreased the number of ICD events, but not all ICD events were eliminated 61. 
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Results 

 

An adult ventricular myocyte TS model 

I marked exogenous CaV1.2 by the addition of an extracellular 

hemaglutanin (HA) epitope 2 (Figure 3-2A, green circle) and introduced a 

validated dihydropyridine-insensitivity mutation 29 (Figure 3-2A, black circle). The 

dihydropyridine-insensitivity mutation allows the virally introduced CaV1.2 to 

remain functional while using nifedipine to inhibit endogenous CaV1.2 29. 

Exogenous CaV1.2 expression was confirmed by immunoblot (Figure 3-2B) and 

immunofluorescence (Figure 3-2C) in transduced HEK293T cells. The function of 

CaV1.2 wild type (WT) and TS (G406R exon 8) were confirmed by recording ICa 

using whole cell voltage clamp in HEK293T cells. ICa recorded from TS 

expressing HEK293T cells exhibited a significant loss of VDI (Figure 2-2D), as 

previously published 6, 100, 101. 

Over-expression of CaV1.2 in ventricular myocytes yielded 33.7% increase 

in peak ICa (Figure 3-3A, B) and an average 31.9% increase in total CaV1.2 

protein (Figure 3-3C).  Due to the dihydropyridine-resistance mutation 29, peak ICa 

in CaV1.2 infected ventricular myocytes was significantly resistant to nifedipine, 

as compared to uninfected cells (Figure 3-3A, B).  In TS and WT infected 

ventricular myocytes 10nM nifedipine resulted in a peak ICa (WT 6.6±0.7 pA/pF 

N=5, TS 6.9±0.7 pA/pF N=6) that was similar to the peak ICa (6.7±1.0 pA/pF N=8) 

measured in non-infected myocytes recorded without nifedipine (Figure 3-3A, B).  

This nifedipine engineered balance of endogenous and exogenous CaV1.2 
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allowed me to determine the effects of the TS mutation on cardiac 

electrophysiology independent of over-expression induced changes in peak ICa. 
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Figure 3-2: Dihydropyridine-resistant CaV1.2 α subunit Timothy Syndrome 
(TS) model. A) A topology diagram of CaV1.2 depicting dihydropyridine 
resistance mutation (DHPR, black circle), extracellular hemaglutanin epitope 
(HA, green circle) and the TS mutation (G406R, red circle) on the I-II 
intracellular loop. B) Immunoblot (HA Ig) of HEK293T cells expressing the 
modified CaV1.2 or empty vector control. C) FITC immunofluorescence (HA Ig) 
of HEK293T cells expressing the modified CaV1.2 with corresponding nuclear 
stain by DAPI (Scale bar, 10μm). D) CaV1.2 TS expressing HEK293T cells 
show a reduction in VDI as compared to HEK293T cells transfected with 
CaV1.2 WT (N=5 cells/point). 
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Figure 3-3: CaV1.2 dihyrdropyridine resistance mutation. A) Raw current 
traces showing WT DHPR and endogenous ICa. B) Preserved ICa during 
exposure to nifedipine. The single arrow indicates the nifedipine concentration 
(10nM) used to study the cellular consequences of the TS mutation, and the 
double arrow indicates the nifedipine concentration (1mM) to overcome 
dihydropyridine resistance and block the majority of ICa (N=5-8 cells/point, 
P<0.05 at each nifedipine concentration). (C top) Immunoblot for total CaV1.2 
protein and from ventricular myocytes infected with CaV1.2 WT (lane 1), 
CaV1.2 TS (lane 3) or uninfected (lane 2) as a control.  The average increase 
in WT and TS CaV1.2 protein relative to uninfected was 31.9% (WT=36.4%, 
TS=27.4%) after correcting for total protein loading observed in the (C bottom)
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 TS ventricular myocytes exhibit increased CaMKII autophosphorylation 

I confirmed expression of exogenous CaV1.2 in cultured adult ventricular 

myocytes by immuno-staining for the HA epitope (Figure 3-4D,G). Virally 

introduced CaV1.2 was properly targeted to the transverse-tubule (T-tubule) 

network, based upon the punctate appearance and 1.8 μm spacing of the HA 

immunofluorescence that is consistent with known distances between T-tubules 

in a resting sarcomere 10.  No HA immuno-staining was detected in uninfected 

ventricular myocytes (Figure 3-4A). 

Ventricular myocytes were immuno-stained for the CaMKII 

autophosphorylation site, Thr 286, which is a marker of CaMKII activation 71. TS 

ventricular myocytes (Figure 3-4H,I) exhibited greater levels of CaMKII 

autophosphorylation compared to both WT (Figure 3-4E, F) and uninfected 

ventricular myocytes (Figure 3-4B, C). Total CaMKII immuno-staining revealed 

no changes in CaMKII protein levels between WT, TS and uninfected ventricular 

myocytes (Figure 3-5E, H).  These data show that activated CaMKII is recruited 

in TS CaV1.2 expressing ventricular myocytes and suggest that CaMKII activity 

may contribute to the cellular arrhythmia phenotypes in TS. 
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Figure 3-4: CaMKII recruitment in the TS adult ventricular myocyte model. (A-
C) Non-transduced, (D-F) WT and (G-I) TS adult ventricular myocytes. (A,D,G) 
Exogenous CaV1.2 channels are expressed in regularly distributed punctae 
across ventricular myocytes as shown by HA immunostaining. Both WT and 
TS CaV1.2 show spacing consistent with T-tubule network localization. HA 
immunofluorescence section of CaV1.2 WT, TS mutation, and uninfected 
negative control. (H) More activated CaMKII (pCaMKII Thr286) immuno-
stained with (I) TS ventricular myocytes as compared to WT (E and F) and 
non-transduced (B and C) ventricular myocytes. (Scale bar, 10μm) 
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Figure 3-5: Adult ventricular myocytes (A,B,C) non-transduced, infected 
with (D,E,F) WT CaV1.2 virus or infected with (G,H,I) TS CaV1.2 virus (scale 
bar 10μm). TS and WT infected ventricular myocytes show overexpressed
CaV1.2 (D,G) by HA immuno-staining, but no changes in total CaMKII 
protein (E,H) as compared to non-transduced ventricular myocytes (B). 
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Action potential prolongation in TS ventricular myocytes is reversed by 
CaMKII inhibition 

 Stimulated action potentials (arrow head, Figure 3-6A) were recorded in 

nifedipine treated (10 nM) WT and TS ventricular myocytes. Compared to WT, 

the TS mutation significantly prolonged the action potential duration (Figure 3-6A, 

B) as determined by the time to 90% repolarization (APD90%).  Excessive action 

potential prolongation favors the generation of afterdepolarizations 90. I observed 

afterdepolarizations from TS ventricular myocytes (5 out of 10 cells, Figure 3-6A, 

C), whereas none were observed in any of the WT cells (0 out of 10 cells, Figure 

3-6A, C).  Most afterdepolarizations were delayed afterdepolarizations (DADs), 

but early afterdepolarizations (EADs) were also recorded from TS ventricular 

myocytes. DADs are favored by increased diastolic Ca2+ leak from the 

sarcoplasmic reticulum (SR) 1, 116 and EADs are caused by increased ICa 

facilitation 115.  The action potential prolongation and the tendency for 

afterdepolarizations in TS ventricular myocytes are consistent with predictions 

from computational modeling 100, 101. 

Action potential durations from WT and TS ventricular myocytes in 1 μM 

nifedipine were reduced to equivalent times and neither WT nor TS ventricular 

myocytes exhibited afterdepolarizations under these conditions (Figure 3-6B, C).  

The 1 μM nifedipine bath solution overcomes the dihydropyridine resistance 

mutation and inhibited the total peak ICa by >50% (Figure 3-3B, double arrows). 

These findings indicate that the observed TS phenotypes were initiated by 

increased ICa.  
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Figure 3-6: TS mutation causes action potential prolongation and 
afterdepolarizations. A) Action potential recordings from WT and TS 
ventricular myocytes. The first action potential for each sweep was initiated by 
injected current (arrow head), but the subsequent action potentials in TS arose 
from spontaneous afterdepolarizations. B) CaV1.2 TS results in an increased 
action potential duration (N=5-10 cells/group, *P=0.018) and C)
afterdepolarizations (N=5-10 cells/group, *P=0.033). Numerals indicate the 
fraction of cells studied with afterdepolarizations. 
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I tested the role of CaMKII activity in the observed proarrhythmic cellular 

phenotypes observed from TS ventricular myocytes by dialysis of AC3-I, a 

selective CaMKII inhibitory peptide 112, 126.  AC3-I normalized the action potential 

duration in TS to WT levels (P=0.40, Figure 3-7A, B). The inactive control 

peptide, AC3-C 112, 126, had no effect, suggesting that CaMKII-dependent 

increases in ICa contributed to action potential prolongation in TS. The CaMKII 

inhibitory peptide also eliminated afterdepolarizations in TS ventricular myocytes 

(P=1.0, Figure 3-7A, C), whereas AC3-C did not (P=0.04, Figure 3-7A, C). These 

data support the concept that CaMKII activity is required for the proarrhythmic 

electrophysiological phenotypes in TS ventricular myocytes. 

In WT ventricular myocytes the CaMKII inhibitory peptide, AC3-I, resulted 

in a non-significant (P=0.28) shortening of the action potential duration (Figure 3-

7B) compared to WT ventricular myocytes dialyzed with the control peptide, AC3-

C.  WT ventricular myocytes did not exhibit afterdepolarizations after dialysis with 

AC3-I or AC3-C (Figure 3-7C).  I assessed additional action potential 

parameters, including resting cell membrane potential and peak cell membrane 

depolarization amplitude.  Both TS and WT ventricular myocytes exhibited 

equivalent resting membrane potentials and peak action potential amplitudes 

(Table 3-1). Action potential parameters from WT ventricular myocytes, in the 

presence of 10nM nifedipine, were similar to uninfected ventricular myocytes, 

cultured for the same time period (24-36 hours) and recorded without nifedipine 

(Table 3-1). These controls suggest that viral expression of CaV1.2 does not alter 

the action potential when peak ICa is adjusted to normal levels (by 10nM 
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(AP) prolongation and afterdepolarizations. A) Action potential recordings from 
TS ventricular myocytes with either the CaMKII inhibitory peptide, AC3-I, or a 
control peptide, AC3-C. (B and C) Dialyzing AC3-I restored action potential 
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alter the TS mutation affects on action potential duration or afterdepolarizations 
(N=5-10 cells/group, TS with AC3-C compared to TS with AC3-I: APD90% 
*P=0.017, afterdepolarizations *P=0.044). 
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nifedipine) and that the proarrhythmic phenotype observed in TS ventricular 

myocytes was due to the TS mutation. 

Taken together, these findings are the first to demonstrate experimentally 

that the action potential phenotypes observed in TS ventricular myocytes were 

dependent upon increased Ca2+ entry through CaV1.2.  These observations 

suggest that the TS VDI defect is insufficient, in the absence of increased 

CaMKII activity, to cause significant action potential prolongation in ventricular 

myocytes.  
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Table 3-1: AP Data and Statistics

WT TS Uninfected WT:TS WT:Un
Nifedipine (nM) 10 10 0
Number of Cells (n) 10 10 12
APD90% (ms) 46.35 ±8.02 112.00 ±23.47 68.04 ±12.54 0.018 0.17
Afterdepolarizations (#/Total) 0/10 5/10 0/11 0.033 1
Resting Potential (mV) -62.60 ±3.69 -60.85 ±3.20 -67.10 ±1.02 0.497 0.966
Peak Amplitude (mV) 101.77 ±9.42 99.88 ±5.97 113.08 ±3.50 0.799 0.103

P value
WT TS Uninfected WT:TS WT:Un

Nifedipine (nM) 10 10 0
Number of Cells (n) 10 10 12
APD90% (ms) 46.35 ±8.02 112.00 ±23.47 68.04 ±12.54 0.018 0.17
Afterdepolarizations (#/Total) 0/10 5/10 0/11 0.033 1
Resting Potential (mV) -62.60 ±3.69 -60.85 ±3.20 -67.10 ±1.02 0.497 0.966
Peak Amplitude (mV) 101.77 ±9.42 99.88 ±5.97 113.08 ±3.50 0.799 0.103

P value
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TS reduces VDI in ventricular myocytes independent of CaMKII activity 

Expression of TS CaV1.2 in Xenopus oocytes 100, 101 and heterologous 

cells 6, 100, 101 (Figure 3-2D) showed a loss of CaV1.2 VDI.  The Xenopus ooctye 

experiments 100, 101 included Ca2+ independent conditions that would not favor 

CaMKII activation because Ba2+ substituted Ca2+ as the charge carrier.  To test 

the effect of the TS mutation on VDI in ventricular myocytes under conditions not 

permissive to CaMKII activation, I recorded ICa from TS and WT ventricular 

myocytes (10nM nifedipine) using Ba2+ (1.8mM) as the charge carrier and under 

high intracellular Ca2+ buffering (20mM BAPTA). TS ventricular myocytes 

exhibited a loss of VDI as a significant (p = 0.008, Figure 3-8A) rightward shift 

compared to WT.  The TS V1/2 (-30.7 mV) shifted to more positive potentials 

compared to WT V1/2 (-35.8 mV).  In contrast, the peak ICa elicited by the 

conditioning pulses showed no difference between WT and TS (Figure 3-8B), 

confirming equivalent expression of exogenous WT and TS CaV1.2.  No 

differences were observed in peak ICa or VDI recorded from adult ventricular 

myocytes expressing WT dihydropyridine-resistant CaV1.2, with 10nM nifedipine, 

compared to uninfected adult ventricular myocytes, without nifedipine (Table 3-

2).  These findings show that TS causes a loss of CaV1.2 VDI in ventricular 

myocytes, establishing the initial requirement for increased cellular Ca2+ entry 

necessary to recruit CaMKII. 
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Figure 3-8: TS mutation shifts the VDI independent of Ca2+ signaling. A) The 
TS mutation shifts the CaV1.2 IBa VDI (N=5 cells/point, *P=0.008), B) without 
changing the current-voltage (IV) relationship (N=5 cells/group, P=0.88). 

Table 3-2: VDI Data and Statistics

WT TS Uninfected WT:TS WT:Un
Nifedipine (nM) 10 10 0
Number of Cells (n) 5 5 5
VDI V1/2 (mV) -35.8 -30.7 -37.06 0.008 0.507
Peak (pA/pF) 21. 3 ±1.45 21. 7 ±2.48 19.40 ±3.56 0.880 0.583

P value
WT TS Uninfected WT:TS WT:Un

Nifedipine (nM) 10 10 0
Number of Cells (n) 5 5 5
VDI V1/2 (mV) -35.8 -30.7 -37.06 0.008 0.507
Peak (pA/pF) 21. 3 ±1.45 21. 7 ±2.48 19.40 ±3.56 0.880 0.583

P value
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CaMKII is required for TS effects on ICa 

To test the importance of CaMKII for additional ICa changes other than VDI 

in our TS model, I measured CaMKII-dependent ICa facilitation 30, 115. ICa 

facilitation consists of dynamic increases in peak ICa and slowing of inactivation 

with repetitive depolarizations 3, 123. TS ventricular myocytes exhibited maximal 

peak ICa during the first depolarization, whereas WT attained peak ICa after the 

initial depolarization (Figure 3-9A, 3-10A). Subsequent depolarizations showed 

no difference in peak ICa between TS and WT (Figure 3-9A, Figure 3-10A). To 

measure the effects of ICa facilitation on cellular Ca2+ entry, I integrated total ICa 

during the voltage clamp command step. Integrated ICa was significantly greater  

in TS compared to WT during all depolarization steps (First step P=0.029, 

Remaining steps P<0.001, Figure 3-9B).  I found the fast component of ICa 

inactivation (τfast) was slower in TS compared to WT (First step P=0.006, 

Remaining steps P<0.001, Figure 3-9C), consistent with increased ICa facilitation 

and augmented cellular Ca2+ entry in TS ventricular myocytes. 

AC3-I restored the dynamic response characteristics of integrated ICa and 

τfast in TS to levels recorded from WT cells (integrated ICa P=0.522, τfast P=0.294, 

Figure 3-9D, E).  In contrast, dialysis of AC3-C had no effect of τfast or integrated 

ICa.  Dialysis of the CaMKII inhibitory peptide prevented ICa facilitation in WT 

ventricular myocytes (Figure 3-B, C), whereas the control peptide had no effect 

on WT ventricular myocyte ICa facilitation.  These measurements show that 

CaMKII is a significant determinant of ICa from TS mutant channels, along with 

the previously reported shift in VDI. 
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Figure 3-9: TS mutation enhances ICa facilitation. A) TS ventricular myocytes 
exhibit increased peak ICa (arrows) during the first depolarizing voltage clamp 
command step (-80mV to 0mV, 300ms, 0.5Hz) and slowing of inactivation 
during all depolarizing steps. B) Integrated ICa evoked by repetitive depolarizing 
voltage command steps (as in A above) is greater in TS mutation than WT 
(N=6-7 cells/point, First step P=0.029, Remaining steps P<0.001). C) The time 
constant of the fast component of ICa inactivation (τfast) is significantly slower in 
TS ventricular myocytes than WT (N=6-7 cells/point, first step P=0.006, 
remaining steps P<0.001). (D and E) Integrated ICa and τfast were restored to 
WT levels in TS ventricular myocytes dialyzed with the CaMKII inhibitory 
peptide, AC3-I (N=5-6 cells/point, TS with AC3-I compared to WT: integrated ICa
P=0.522, τfast P=0.294). Dialyzing the control peptide, AC3-C, did not alter the 
TS mutation affects on ICa facilitation (N=5 cells/group, TS with AC3-C 
compared to TS with AC3-I: integrated ICa P<0.001, τfast P<0.001). 
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Figure 3-10: TS ventricular myocyte ICa facilitation (A) TS ventricular 
myocytes show increased peak ICa during the first depolarizing voltage clamp 
command step (-80mV to 0mV, 300ms, 0.5Hz) over WT ventricular myocytes 
(N=6-7 cells/point, P=0.02).  With the second depolarizing step WT ventricular 
myocytes match the peak ICa observed with TS ventricular myocytes (N=6-7 
cells/point, P=0.46).  The CaMKII inhibitory peptide, AC3-I, restores normal ICa
facilitation to TS ventricular myocytes (N=5-6, P vs. WT=0.469), but not the 
control peptide AC3-C (N=5-6 cells/point, P vs. WT=0.038). (B) WT 
cardiomyocytes dialyzed with the CaMKII inhibitory peptide, AC3-I, loose the 
dynamic increase of integrated ICa and (C) the dynamic change of the fast time 
constant (τfast) that are associated with facilitation (N=5 cells/point; integrated 
ICa WT AC3-C vs. WT AC3-I P<0.001 ; τfast WT AC3-C vs. WT AC3-I 
P<0.001). (C and D) The control peptide, AC3-C, has no effect on ICa
facilitation (N=5 cells/point; integrated ICa WT AC3-C vs. WT P=0.675;  τfast WT 
AC3-C vs. WT P=0.85). 
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TS augments intracellular Ca2+ 

Mathematical modeling studies predicted alterations in intracellular Ca2+ 

handling in TS, including increased Ca2+ transient amplitude and increased SR 

Ca2+ content 100.  Ca2+ transients were recorded (Figure 3-11A) from WT and TS 

ventricular myocytes loaded with fluo-3 AM and field stimulated at 1Hz 99.  TS 

caused a significant increase in the peak Ca2+ transient compared to WT 

(P=0.04, Figure 3-11B), which is consistent with computer models 35, 99, 100. 

Interestingly, the 50% decay time for Ca2+ transients in TS was significantly 

shortened over WT (P=0.02, Figure 3-11C). A faster decay time implicates 

increased SERCA activity 9, which was not predicted by modeling studies, but is 

associated with CaMKII signaling 8, 28, 48, 84.  These experimental data reveal that 

TS alters intracellular Ca2+ handling by increasing the peak Ca2+ transient 

amplitude and enhancing the decay of the intracellular Ca2+ transient.  

Mathematical modeling also predicted increased SR Ca2+ content with TS, 

due to enhanced ICa from TS CaV1.2. Surprisingly, the TS SR Ca2+ content was 

not different than WT (P=0.55, Figure 3-11D). The increased SR Ca2+ leak in TS 

may balance faster SR Ca2+ uptake 9, thereby preventing a net increase in SR 

Ca2+ content compared to WT. Increased SR Ca2+ leak is implicated in CaMKII 

signaling 44, 73, 108 and in triggering DADs 1, 116, a prominent feature of the TS 

ventricular myocytes (Figure 3-6A,C).  Diastolic SR Ca2+ leak was assessed by 

measuring spontaneous Ca2+ sparks from TS and WT ventricular myocytes 

(Figure 3-11E) 106.  The SR Ca2+ sparks were significantly increased in TS 

compared to WT (P=0.001, Figure 3-11E, F), indicating increased SR Ca2+ leak 

in TS. The spark amplitude for TS was significantly greater than WT (P=0.002, 
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Figure 3-11: The TS mutation augments intracellular Ca2+ handling. A)
Confocal Ca2+ transient recordings from WT and TS ventricular myocytes. B)
Summary data showing TS mutation causes an increase in the peak Ca2+

transient during 1Hz stimulations (N=14-28 cells/group, *P=0.042). C)
Summary data showing the 50% decay time of the whole cell Ca2+ transients 
were faster in TS ventricular myocytes (N=14-28 cells/group, *P=0.047). D) No 
difference was observed in SR Ca2+ content between TS and WT ventricular 
myocytes (N=14-28 cells/group, P=0.524). E) Ca2+ sparks recorded from WT 
and TS ventricular myocytes. F) Summary data showing TS infected 
ventricular myocytes exhibited an increased frequency of Ca2+ sparks during 
diastole (N=22-37 cells/group, *P=0.001). 

1

4

F/F0

WT

30 μm

1 s
1

4

F/F0

WT

30 μm

1 s



 85

Table 3-3), consistent with the increase in peak Ca2+ transient observed with TS.  

The effects of TS on intracellular Ca2+ handling had two unexpected results, first 

the faster decay time and second the increase in spark frequency.  Taken 

together, these data suggest that SR Ca2+ cycling is enhanced in TS ventricular 

myocytes, resulting in significantly increased SR Ca2+ uptake and diastolic Ca2+ 

leak, but without a change in SR Ca2+ content.  

In contrast to TS, WT exhibited no difference in the Ca2+ transient peak 

amplitude or decay time as compared to uninfected ventricular myocytes (Table 

3-3).  No significant changes were observed in the width or duration of the Ca2+ 

sparks (Table 3-3) between WT, TS and uninfected cells. The spark frequency 

and profile of individual sparks showed no difference between WT and uninfected 

ventricular myocytes (Table 3-3) 98. 

 

 

Table 3-3: Intracellular Ca2+ Handling Data and Statistics

WT TS Uninfected WT:TS WT:Un
Number of Cells (n) 14 20 28
Calcium Transient (F/F 2.76 ±0.26 3.48 ±0.21 2.84 ±0.18 0.042 0.792
50% Decay Time (ms) 208.47 ±23.21 161.97 ±6.09 193.61 ±7.50 0.047 0.475
SR calcium content (F/F 5.52 ±0.38 5.78 ±0.24 5.64 ±0.22 0.524 0.705
Spark Frequency 
(Sparks/ms/100μm) 2.28 ±0.58 4.52 ±0.50 2.50 ±0.51 0.001 0.354

Spark Intensity (F/F0) 1.47 ±0.03 1.75 ±0.06 1.62 ±0.05 0.002 0.138
Spark Duration (FDHM) 2.27 ±0.06 2.22 ±0.07 2.28± 0.08 0.121 0.056
Spark Width (FWHM) 45.02 ±3.13 53.56 ±3.80 44.81 ±8.79 0.457 0.474

P value

0)

0)
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Revised TS mathematical modeling 

 Several studies have modeled the impact of TS on myocardial 

electrophysiology by using a shift in CaV1.2 VDI estimated from measurements in 

non-myocytes35, 100, 101. Using data from our TS ventricular myocyte model, a new 

mathematical model of TS incorporating CaMKII signaling (Figure 3-12A) was 

created. As the basis for a new model of TS, the Luo-Rudy dynamic model (LRd) 

34, 72 was used, because of its established utility in studying cardiac arrhythmia 

mechanisms.  

Our model of TS incorporated three modifications to match the 

experimental observations.  First, the CaV1.2 steady-state VDI was shifted in the 

LRd model to simulate the measured TS defect on channel gating.  Second, the 

downstream CaMKII effect on CaV1.2 ICa facilitation associated with TS was 

simulated by slowing ICa inactivation to increase integrated ICa as measured 

experimentally (Figure 3-13A, B). Third, the CaMKII actions on intracellular Ca2+ 

handling associated with TS was simulated by increasing the mean open time of 

the ryanodine receptor SR Ca2+ release channels, decreasing the threshold for 

spontaneous SR Ca2+ release and increasing SR Ca2+ release. Consistent with 

the experimental measurements, the new model of TS predicted an increase in 

the intracellular Ca2+ transient amplitude without any change in SR Ca2+ load 

compared to WT (Figure 3-13C). The model also predicted an increase in action 

potential duration (Figure 3-12B) and afterdepolarizations (Figure 3-12C) during 

a pause after pacing.  CaMKII inhibition was simulated using the TS LRd model 

by reversing the simulated downstream CaMKII effects, but leaving in place the 

shift in CaV1.2 VDI measured under conditions not permissive for CaMKII activity  
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Figure 3-13: Mathematical model of WT (black) and TS (red) myocytes.  A)
Measured (left) and simulated (right) ICa(L) steady-state voltage-dependent 
inactivation curves. B) Simulated ICa(L) current traces during a voltage pulse to 
0 mV from a holding potential of -80 mV (left). Measured and simulated current 
integrals (right) are determined during the pulse duration (300 ms).  In 
simulations and experiments, Ca2+ was buffered with 10 mM EGTA.  C) 
Measured and simulated Ca2+ transient amplitude (left) and SR Ca2+ content 
(right) after steady-state pacing. 
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(Figure 3-8A). The resulting TS LRd model with ‘CaMKII inhibition’ prevented 

action potential prolongation and afterdepolarizations (Figure 3-12C). These 

mathematical models of TS, with and without CaMKII inhibition, are consistent 

with experimental data from my TS ventricular myocyte model. 
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Discussion 

 

TS is the first arrhythmia syndrome (LQT8) due to a genetic mutation in 

the CaV1.2 pore-forming α subunit 100, 101.  In comparison to cardiac Na+ and K+ 

channels, CaV1.2 has proven to be remarkably resistant to genetic disease. One 

key difference between Ca2+, Na+ and K+ is the prominent role Ca2+ plays as a 

second messenger.  TS patients not only have extremely profound QT interval 

prolongation, but also structural cardiac abnormalities, which are not typical of 

Na+ or K+ channel gene-related long QT syndrome patients.  QT interval 

prolongation reflects increased duration of the ventricular action potential.  The 

action potential duration prolongation in TS was attributed entirely to the defect in 

VDI 100, but this defect in TS VDI was ascertained in heterologous (non-

myocardial) cells, where action potentials could not be directly measured.  

Furthermore, heterologous cells lack the highly ordered ultrastructure that is 

present in ventricular myocytes, for Ca2+ homeostasis and excitation-contraction 

coupling.  The ventricular myocyte TS model allowed me to measure 

electrophysiological, intracellular Ca2+ handling and Ca2+ mediated signaling 

changes that occur downstream to the loss of VDI. 

Despite the relatively modest reduction in CaV1.2 VDI measured in our TS 

model, I found action potential prolongation and spontaneous 

afterdepolarizations that were due to secondary activation of CaMKII.  In 

conclusion, the shift in VDI provides the initial stimulus to trigger intracellular Ca2+ 

signaling that includes CaMKII activation. Increased CaMKII activity appears to 
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be necessary for the cellular phenotype of prolonged action potentials and 

afterdepolarizations, in so far as CaMKII inhibition prevents these phenotypes.  

CaMKII inhibition may be a viable alternative therapeutic approach for TS 

patients treated with the ICa antagonist verapamil 61.  These results showed that 

CaMKII amplifies Ca2+ entry through CaV1.2 in TS, by slowing τfast, and shifting 

the V1/2 of ICa inactivation.  These studies do not exclude the possibility that 

CaMKII inhibition could also affect other depolarizing or repolarizing currents, 

such as Na+ current 105, K+ current 67.  The findings that SR Ca2+ leak is 

increased in TS is consistent with other reports that show proarrhythmic actions 

of CaMKII are due to increasing SR Ca2+ leak 1, thereby enabling a transient 

inward current 116 (INCX) that triggers DADs.  Thus, these data support the 

concept that the ryanodine receptor is a secondary proarrhythmic target for 

excessive CaMKII activity in TS. These data highlight how small changes in 

cellular Ca2+ entry through CaV1.2 can lead to unanticipated, maladaptive 

changes in Ca2+ activated signaling. 

Interestingly a connection between CaMKII and a TS mutation was 

suggested based upon single channel recordings from heterologous expression 

of TS CaV1.2 in baby hamster kidney 6 cells 33.  These experiments found that 

TS CaV1.2 were more likely than WT to exhibit frequent, long openings, so called 

mode 2 gating that are the single channel mechanism underlying CaMKII-

mediated ICa facilitation 30.  The ventricular myocytes model of TS studies add to 

evidence supporting a connection between TS and CaMKII by showing that 

CaMKII is critical for increased ICa facilitation action potential prolongation and 
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afterdepolarizations in our TS ventricular myocyte model.  Enhanced CaMKII 

activity increases ICa facilitation, 17 which may cause generation of EADs 117. 

Although major Ca2+ homeostatic proteins are conserved in ventricular 

myocytes across mammalian species, differences exist between species 

regarding the quantitative contribution of these components to the action 

potential 7.  Thus, one goal of future studies should be to determine if CaMKII, or 

other Ca2+-activated signaling molecules, contribute to TS phenotypes in 

ventricular myocytes from other species.  However, the use of the TS adult 

ventricular myocyte model has contributed new insights about arrhythmia 

mechanisms in TS, by illustrating how a concise defect in CaV1.2 gating can 

initiate downstream recruitment of CaMKII that ultimately enables the 

electrophysiological cellular disease phenotype in TS.  The CNS defects of TS 

patients may also be due to secondary recruitment of Ca2+ activated signaling 

molecules, including CaMKII.  Over-expression of CaMKII is known to interfere 

with neuronal growth and differentiation 76 and a constitutively active CaMKII 

within the mouse brain causes significantly impaired spatial memory 4.  CaMKII 

recruitment in TS ventricular myocytes also suggests the possibility that other 

disease phenotypes in TS patients (e.g. structural heart disease or mental 

retardation), may be initiated by defects in VDI but carried forward, indirectly, by 

recruitment of Ca2+-dependent signaling molecules. 
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Methods 

 

Cloning 

 The open reading frame of CaV1.2 α1c subunit (NCBI X15539) was 

amplified by PCR and ligated into a modified pLenti6 plasmid (Invitrogen), 

pLentiNB, which had the blasticidin resistance gene and promoters of the pLenti6 

plasmid removed to facilitate viral packaging. An extracellular hemaglutanin 

epitope was added to CaV1.2 by methods previously published2. The 

dihydropyridine resistance mutation (DHPR, T1066Y) and TS mutation (G406R) 

were introduced by using the PCR method Quikchange (Stratagene) as per 

manufacturer’s protocol. 

 

HEK293 transfection 

HEK293T cells were transfected with the pLentiNB CaV1.2 WT or TS with 

a pIRES eGFP β2a subunit using Fugene6 (Roche) as described by the 

manufacturer.  For electrophysiology experiments, transfected HEK293T cells 

were detected by expression of eGFP and confirmed by inward ICa.  For 

immunofluorescence, transfected HEK293T cells were fixed with 2% PFA and 

stained as described under immunofluorescence methods.  
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Lenti virus 

The transgene plasmid pLentiNB carrying the modified CaV1.2 was 

transfected (Qiagen, Effectene) with the Lenti viral packaging plasmids 

(Invitrogen’s pLP1, pLP2 and pVSVG) into HEK293FT cells (Invitrogen). Media 

was collected and replaced at 24, 48 and 72 hours post-transfection. The viral 

containing media was concentrated by either ultrafiltration (Millipore Centricon 

Plus-70 30kDa) or ultacentrifugation. Viral titer (transducing units per mL, TU/mL) 

was determined by serial dilution (10-3, 10-4, 10-5, 10-6, 10-7, no virus) on HEK293 

cells followed by immuno-staining (see Immunoflourescence methods) for the 

CaV1.2 HA epitope (anti-HA conjugated Alexa 488 Ig) and counting positively 

stained cells within each dilution. Viral titers achieved were between 105 and 106 

TU/mL. Extracts from HEK293 cells used to produce virus were analyzed by 

SDS-PAGE and immunoblotting with an affinity-purified HA Ig. 

 

Ventricular myocyte isolation, culturing and viral transduction 

Adult male Sprague-Dawley rats (250-300g) were anesthetized by Avertin 

(2.5%) with Heparin (55 units/mL) through IP injection (0.2mL/10g). Hearts were 

excised, perfused retro-aortically (Langendorff) and enzymatically digested with a 

mixture of Collogenase (Worthington, 250 units/mL), Hyaluronidase (Sigma, 

0.01%) and Protease Type XIV (Sigma, 0.0025%) in a modified tyrodes solution 

(0.1mM CaCl2, 10mM BDM). Dissociated cardiomyocytes were washed three 

times in Joklik MEM (Sigma M0518) with 1% Pen/Strep and 1X ITS (Sigma) with 

increasing Ca2+ (0.25mM, 0.5mM, 0.75mM). Ventricular myocytes were plated on 
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glass cover slips (glass #1) coated with Geltrex (Invitrogen, thin layer) and 

allowed to attach for 1 hour. Cells were washed with a culture media consisting 

of a 50:50 mix of DMEM and F10 media with 1% Pen/Strep and 1X ITS. Attached 

cardiomyocytes were counted and the cell density was calculated. Lenti virus 

was added to the cells at a multiplicity of infection (MOI) of 1-3, and cells cultures 

were maintained for 24-36 hours.  Cultured ventricular myocytes (WT, TS, 

uninfected) extracts were analyzed by SDS-PAGE and immuno-blotting with a 

CaV1.2 Ig (ABR). 

 

Electrophysiology 

HEK293 ICa recordings for voltage dependence of inactivation (VDI) used 

a two step voltage clamp protocol (repeated 0.1 Hz, resting -80mV, 25°C) with an 

initial conditioning step (0.8s, -50mV to +60mV, Δ10mV) followed by a test pulse 

(300ms, +30mV). Bath solution was in mM; 130 NMDG, 10 HEPES, 5 KCl, 15 

CaCl2. Pipette solution was in mM; 120 Cs methanesulfonate, 5 CaCl2, 1 MgCl2, 

2 MgATP, 10 HEPES, 10 EGTA. Available current observed each test pulse after 

a given conditioning pulse was accessed a percent of the maximum current 

observed. 

Cardiomyoycte action potentials (AP) were stimulated (2ms, 1.5-2.5nA) in 

current clamp mode (0.5Hz, 25°C). Bath solution was in mM; 140 NaCl, 4 

HEPES, 10 Glucose, 5.4 KCl, 1.8 CaCl2, 1 MgCl2. Pipette solution was in mM; 

120 K aspartate, 5 HEPES, 25 KCl, 4 Na2ATP, 1 MgCl2, 10 EGTA, 2 Na2 

phosphocreatine, 1 CaCl2, 2 NaGTP. Recorded APs were analyzed using 
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ClampFit’s (Axon Instruments) event detection algorithm and statistics decay 

time (ms) algorithm. 

Cardiomoycte IBa recordings for VDI used a two step voltage clamp 

protocol (repeated 0.1 Hz, resting -80mV, 25°C) with an initial conditioning pulse 

(2.0s, -80mV to +30mV, Δ10mV) followed by a test pulse (300ms, 0mV). To 

record only VDI and prevent Ca2+ dependent inactivation, Ca2+ was tightly 

buffered through the use of Ba2+ as the charge carrier in the bath solution and 

BAPTA with no Ca2+ in the pipette solution. Bath solution was in mM; 137 NMDG, 

10 HEPES, 10 Glucose, 1.8 BaCl2, 0.5 MgCl2, 25 CsCl. Pipette solution was in 

mM; 120 CsCl, 10 TEA, 1 MgATP, 1 NaGTP, 5 phosphocreatine, 10 HEPES, 20 

BAPTA. Available current observed each test pulse after a given conditioning 

pulse was accessed a percent of the maximum current observed. 

Cardiomyocyte ICa facilitation was recorded using a single step (300ms, 

0mV) voltage clamp protocol (repeated 0.5Hz, resting -80mV, 25°C). Bath 

solution was in mM; 137 NMDG, 10 HEPES, 10 Glucose, 1.8 CaCl2, 0.5 MgCl2, 

25 CsCl. Pipette solution was in mM; 120 CsCl, 3 CaCl2, 10 TEA, 1 MgATP, 1 

NaGTP, 5 phosphocreatine, 10 HEPES, 10 EGTA. ICa facilitation was integrated 

using ClampFit’s area statistics (pA*ms) algorithm and normalized to cell size 

(pF). Inactivation time constants were calculated using ClampFit. 

 

Immunoflourescence 

HEK293 cells, cultured on coverslips (glass #1), were gently washed with 

PBS and fixed for 20 minutes in 2% paraformaldyhyde (25°C). Cultured adult 
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ventricular myocytes (WT, TS and uninfected) were paced by field stimulation 

(Ion Optix C-pace and C-dish, 1Hz, 35V, 2ms) for 5 minutes in Tyrodes (1.8mM 

CaCl2, 37°C). Immediately following the pacing protocol, ventricular myocytes 

were fixed for 20 minutes in 2% parafomaldyhyde (25°C). Fixed cells were 

permeabilized for 10 minutes with PBS with 0.1% Triton X-100, 2 mg/mL BSA 

and 2% fish gelatin. Permeabilized cells were blocked with PBS with 2 mg/mL 

BSA and 2% fish gelatin. Cells were incubated overnight (4°C) in one of the 

following; anti-HA conjugated Alexa 488 Ig (Molecular Probes), HA Ig (Santa 

Cruz), pCaMKII Thr286 Ig (ABR), CaMKII Ig (Bers Lab) and washed. The cells 

incubated with HA Ig were then incubated in donkey anti-rabbit Alexa 488 Ig 

(Molecular Probes) at 4°C. Cells incubated with pCamKII Thr286 Ig were then 

incubated in donkey anti-mouse 568 (Molecular Probes). Cells incubated with 

CaMKII Ig were then incubated in donkey anti-rabbit 568 (Molecular Probes).  

Ventricular myocytes were mounted with glass coverslips and Vectashield (with 

or without DAPI; Vector Laboratories). 

 Ventricular myocyte images were collected on a Zeiss 510 Meta confocal 

microscope (Carl Zeiss), under 40x magnification (oil, 1.30 NA lens), with a 

pinhole of 1.0 airy disc (Carl Zeiss), using the Zeiss image acquisition software. 

HEK293 images were taken at 40x magnification using both the FITC filter and 

DAPI filter. All images were exported to Photoshop (Adobe) for cropping and 

linear adjustment of contrast. 
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Ca2+ imaging 

Ventricular myocytes were loaded with Fluo-3 AM (5μM) for 20 minutes at 

room temperature. After 20 minutes of de-esterification, the cells were placed on 

recording chamber, and perfused with normal Tyrode solution (1.8 mM Ca2+). 

Confocal Ca2+ imaging was performed with a laser scanning confocal microscope 

(LSM 510 Meta, Carl Zeiss) equipped with a NA=1.35, 63x lens. Line scan 

measurement of Ca2+ transients, SR content and sparks were all acquired at a 

sampling rate of 1.93 ms per line along the longitudinal axis of the myocytes. 

Sparks were measured under resting conditions. Steady state Ca2+ transients 

were achieved by a 30 sec pacing at 1 Hz. SR Ca2+ content was measured as a 

global Ca2+ release induced by 10mM caffeine exposure. All digital images were 

processed offline with IDL 6.0 (Research System Inc.). 

 

Statistics 

Data presented as means with SEM. Sigma Stat was used to compare 

two groups with a Student T-test and multiple groups with an ANOVA. 

Significance was set at a p value < 0.05. Categorical data between two groups 

was compared using a 2-tailed Fisher Exact Test with significance set at P<0.05. 

 

Mathematical modeling 

Mathematical models of the WT and TS myocytes are based on the Luo-

Rudy dynamic model of the mammalian ventricular action potential34, 72. For this 

study, a revised formulation was incorporated for Ca2+ release from the 
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Ca2+ leak from the SR
Increased leak from the SR due to CaMKII was simulated by increasing the 
conductance of Ileak. 
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sarcoplasmic reticulum and regulation by CaMKII based on the model of Livshitz  

and Rudy 69. This model of SR Ca2+ release includes a formulation for 

spontaneous Ca2+ release from the sarcoplasmic reticulum, which occurs when 

the amount of Ca2+ bound to calsequestrin reaches threshold, as described in the 

original LRd model. Cells were paced to steady-state (over 15 min. pacing) at a 

cycle length of 700 ms using a conservative current stimulus 59. 

Afterdepolarization events were monitored during a pause following steady-state 

pacing. Ordinary differential equations in the model were integrated numerically 

using the Forward Euler Method and an adaptive time step.  Details on the 

mathematics involved in the model can be found in the Equations Section. 
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IV. SYNOPSIS AND FUTURE DIRECTION OF TS VENTRICULAR MYOCYTE 

MODEL 

 

Implications of TS Mathematical Modeling 

 The initial observation of the TS mutation in heterologous cells found a 

loss of VDI.  This loss of VDI was used in a mathematical model of a ventricular 

myocyte to make predictions on how this mutation would affect myocyte 

physiology.  However, this mathematical model of TS was never tested 

experimentally until I developed my adult ventricular myocyte model of TS.  The 

original modeling proved very helpful in guiding my experimental design in 

determining what experiments were necessary to undertake in a ventricular 

model of TS.  The mathematical model proved helpful in interpreting our results, 

especially when our experimental data did not correspond with the model’s 

predictions.  Such as, we may not have examined the intracellular Ca2+ handling 

as extensively had we not had the predictions from original TS model for 

comparison.  The initial model predicted an overload of SR Ca2+ and enhanced 

Ca2+ transients.  Only after we observed an enhanced Ca2+ transient with no 

change in SR Ca2+ content did we examine spontaneous SR Ca2+ release.  After 

we observed the increase in spontaneous SR Ca2+ release, we understood how 

to revise a future version of the mathematical model of TS. 

 The data we collected from adult TS ventricular myocytes included action 

potential recordings, VDI curves, ICa facilitation, Ca2+ transients, SR Ca2+ content 



 102

and spontaneous SR Ca2+ release.  We observed changes in nearly all of these 

aspects of myocyte physiology.  This highlights the complexity of ventricular 

myocyte physiology.  Mathematical modeling presents an opportunity to integrate 

all of these data into one system where they may be analyzed collectively.  Our 

TS mathematical model incorporated all of the experimental data including the 

shift in VDI, change in ICa facilitation and augmentation of intracellular Ca2+ 

handling.  We found experimentally a prolongation of the action potential and 

DADs and our revised mathematical model of TS also showed prolonged action 

potentials and DADs.  However, the action potential prolongation predicted in our 

mathematical model of TS does not correspond with the degree of action 

potential prolongation we observed experimentally.    Two possible explanations 

could account for the discrepancy between the experimental data and our 

mathematical model.  First, we may have incorrectly incorporated experimental 

observations into the mathematical model of TS.  Second, our experiments may 

not have accounted all of the possible downstream affects of the TS mutation.  

Many of our experiments use conditions that are significantly different to those 

the mathematical model requires.  Therefore, translating the experimental 

observations into the mathematical model must be done cautiously to avoid 

misrepresentation of the data.  Perhaps with our mathematical model of TS we 

were too captious in extrapolating the experimental data into the mathematical 

model.  More likely is the second explanation that the TS mutation has more 

widespread consequences than we measured experimentally.  These could 

include alterations of additional ion channels that prolong the action potential due 
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to activation of CaMKII.  We would be able to use the mathematical model and 

published data to better hypothesize as to which ion channels may also be 

affected by activated CaMKII in TS ventricular myocytes.  We would then be able 

to test experimentally these new hypotheses and incorporate any new 

observations into the next revision of the mathematical model of TS. 

 

Downstream CaMKII Phosphorylation in the TS Ventricular Myocyte Model 

 Our data indicates that the TS mutation leads to the activation of CaMKII 

and we observed many physiological changes in an adult ventricular myocyte 

that correspond with enhanced CaMKII activity.  These include enhanced ICa 

facilitation, increased Ca2+ transient peak amplitude, faster Ca2+ transient decay 

time and increased spontaneous SR Ca2+ release.  If our observations are 

associated with CaMKII activation each of these affects would correspond with 

phosphorylation events of involved proteins.  ICa facilitation has been associated 

with Thr498 phosphorylation of the β2a subunit of CaV1.2.  However, CaV1.2 is 

known to be phosphorylated by CaMKII directly at Ser1512, Ser1570, Ser1922 

(Chapter V) and Ser1928 (Chapter V).  The increased peak Ca2+ transient and 

enhanced SR Ca2+ leak may be caused CaMKII phosphorylation of RYR at 

Ser2809 or Ser2814.  A potential future direction would be to further investigate 

these substrates of CaMKII in TS ventricular myocytes.  Faster Ca2+ transient 

decay times may be due to CaMKII phosphorylation of Thr17 on PLB that has 

been associated with enhanced SERCA activity.  All of these CaMKII 
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phosphorylation events could be investigated to gain a better understanding into 

the downstream affects of the TS mutation. 

 

Response of TS ventricular myocytes to adrenergic signaling 

 The TS CaV1.2 disrupts Ca2+ handling involved in excitation contraction 

coupling by activating CaMKII.  During adrenergic stimulation PKA enhances the 

activity of many of the proteins we believe are phosphorylated by CaMKII in TS 

ventricular myocytes.  The published articles on TS patients suggest more sever 

arrhythmias during situations of increased adrenergic stimulation.  Many of the 

patients appear to have experienced their worst arrhythmias or cardiac arrest 

while at play 101.  One child had his first cardiac arrest (4 years old) while 

climbing onto a trampoline 100.  The same child (11years old) has severe cardiac 

arrhythmias once a week associated with night terrors while sleeping 100.  

Another TS patient (21 years old) also has episodes of ventricular fibrillation 

preceded or during night terrors while sleeping 61.  Together these observations 

suggest adrenergic stimulation worsens the phenotype of TS.  In future studies 

we would hypothesize that adrenergic signaling would exacerbate the TS pro-

arrhythmic phenotype in ventricular myocytes.  Our TS ventricular myocyte 

model would allow this hypothesis to be tested by measuring action potentials 

and intracellular Ca2+ handling following adrenergic stimulation.   

 

 



 105

Using a CaMKII small molecule inhibitor as a therapeutic agent to treat TS. 

 Current treatment for TS includes CaV1.2 antagonists such as Verapamil 

61 and ICDs 61, 100, 101, both treatments help but neither reverses the TS 

phenotype like CaMKII inhibition did in the ventricular myocyte model of TS.  

Implantation of ICDs has been the most successful treatment for TS patients, but 

has had complications.  Many of the TS patients require the ICD to pace the 

atrium because direct pacing of the ventricle triggered Torsades de Pointes 100.  

The pharmacological treatment using a CaV1.2 antagonist improves TS patients 

by reducing the number of ICD shocks.  However, TS patients still receive many 

ICD shocks and therefore there is room for improvement. 

 My experiments on a ventricular myocyte model of TS found that active 

CaMKII was responsible for the pro-arrhythmic defects.  I also found that higher 

concentrations of the CaV1.2 antagonist, nifedipine, rescued that action potential 

duration and afterdepolarizations.  I believe that in my experiments with high 

concentrations of nifedipine that enough ICa was blocked to prevent CaMKII 

activation.  I would assume that verapamil improves TS patients by also reducing 

the amount of CaMKII activation.  Therefore, I believe a direct inhibition of 

CaMKII, as opposed to indirect inhibition attained with verapamil, would yield 

better results in TS patients.  However, an ICD may still be advisable as the long 

term effects of CaMKII inhibition in people remains un-studied.   

 CaMKII is known to have a very important role in the brain for memory.  

Therefore, inhibition of CaMKII could have adverse side effects associated with 

memory loss.  However, any side effects observed from CaMKII inhibition in the 
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CNS would have to be balanced against the benefit of treating the life-

threatening arrhythmias.  The brain is protected by the blood-brain barrier and a 

CaMKII inhibitor may not cross this barrier or it may be altered to not cross this 

barrier.  Furthermore, many of the adverse phenotypes associated with TS are 

related to defects in the brain.  Potentially, inhibition of CaMKII may lessen the 

impact of some of these phenotypes.  However, the brain, unlike the heart, 

requires a complex network of electrically excitable neurons that develop early in 

life.  For TS patients the damage may already be complete after development of 

the brain.  Additionally, other Ca2+ dependent signaling pathways adversely 

activated by the TS mutation of CaV1.2 may be responsible for the CNS defects 

and not CaMKII. Therefore, inhibition of CaMKII would do nothing.  To better 

asses the impact of inhibition CaMKII for TS patients the TS CaV1.2 mutation 

must be studied in the context of neurons as we have done in ventricular 

myocytes. 
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CHAPTER IV 

CAMKII REGULATION OF CAV1.2 

 

Introduction 

 CaV1.2 ICa is regulated by many different proteins (Figure 4-1A) involved in 

adrenergic signaling, such as PKA, AKAP and CaMKII.  CaMKII is known to 

dynamically affect the ICa of CaV1.2.  While pacing cardiomyocytes the peak ICa 

increases and the CaV1.2 inactivation kinetics become slower (Figure 4-1B).  

These properties are collectively called ICa facilitation 3, 123.  Facilitation of wild 

type CaV1.2 occurs in cardiomyocytes, at least in part because facilitation 

requires SR Ca2+ release 113, 115.  CaMKII is also required for facilitation, 

because dialyzing a CaMKII inhibitory peptide (AC3-I) into cardiomyocytes 

prevents facilitation 30, 113. 

Several lines of evidence indicate that CaMKII may phosphorylate the C-

terminus of CaV1.2.  CaMKII has already been shown to phosphorylate the β2a 

subunit and CaMKII is known to phosphorylate the closely CaV1.2 related 

skeletal Ca2+ channel α1s (CaV1.1) 16.  CaMKII and PKA effects on CaV1.2 ICa 

parallel each other, and CaMKII activity is important for a full β-adrenergic 

response in the heart 126.  β-adrenergic adrenergic stimulation leads to an 

increase in intracellular Ca2+, which activates CaMKII.  The activated CaMKII 

phosphorylates target proteins required for complete myocardial responses to β-

adrenergic stimulation.  In cardiomyocytes the targets of PKA and CaMKII have 
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striking overlap and include RYR, PLB and CaV1.2 30, 70, 103 (Figure 4-1C) Both 

PKA and CaMKII similarly increases the opening probability (PO) of CaV1.2 31.  

When either PKA or CaMKII are added to an excised patch the Po of CaV1.2 

increases dramatically 31.  The C-terminus of CaV1.2 is already known to be a 

substrate for kinases: both PKC 121 and PKA 23 phosphorylate serine 1928 of the 

CaV1.2 C-terminus (Figure 4-1A).  This suggests that the CaV1.2 C-terminus may 

be a substrate for additional kinases.  Together, these data point towards the 

CaV1.2 C-terminus as a CaMKII substrate for phosphorylation. However, the 

specific sites of CaMKII phosphorylation on the CaV1.2 C-terminus are not fully 

characterized.  I hypothesized that CaMKII phosphorylates the C-terminus of 

CaV1.2.  To address this hypothesis the C-terminus of CaV1.2 will be assessed 

as a substrate for CaMKII.   
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Results 

CaV1.2 C-terminus is a CaMKII substrate 

 In vitro kinase assays of CaV1.2 C-terminus found that the CaV1.2 C-

terminus was a substrate for CaMKII phosphorylation.  GST was fused with 

CaV1.2 at the proximal end of the CaV1.2 C-terminus.  The CaV1.2-GST fusion 

protein was purified using glutathione agarose beads.  Following purification, the 

fusion protein’s expression and size were confirmed by immuno-blot with an anti 

GST Ig.  The purified GST-CaV1.2 C-terminus protein was assayed for CaMKII 

(100 nM) phosphorylation by in vitro kinase assay.  The kinase assays allows for 

the detection of 32Phosphate incorporation into a substrate from a resulting 

phosphorylation event.  Phosphorylation by CaMKII of the CaV1.2 C-terminus 

was assayed by autoradiography (Figure 4-2A).  

 As a negative control purified GST, which is not a substrate for CaMKII, 

was shown to not be phosphorylated by CaMKII in the in vitro kinase assay 

(Figure 4-2A).  Autophosphorylation of CaMKII was observed on the SDS-PAGE 

autoradiograph (Figure 4-2A) and confirms the activation of CaMKII during the 

kinase assay.  PKA (100 nM) phosphorylation of the CaV1.2 C-terminus (Figure 

4-2C) confirmed that the GST fusion protein was still able to interact as a 

substrate with a kinase known to phosphorylate the CaV1.2 C-terminus.  
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Figure 4-2: CaMKII phosphorylates the Cav1.2 C-terminus A) Western blot 
with anti-GST for CaV1.2 C-terminus GST fusion protein B) CaMKII in vitro
kinase assay autoradiograph; (top) GST-CaV1.2 C-terminus fusion protein 
(WT) 32P incorporation; (bottom) CaMKII autophosphorylation. C) PKA in vitro
kinase assay autradiograph.
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CaMKII phosphorylates the distal carboxy terminus of CaV1.2 

 Smaller portions of the CaV1.2 C-terminus were examined to refine the 

identification of the CaMKII phosphorylation sites.  Isolation of CaV1.2 from native 
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tissue has suggested that the C-terminus of CaV1.2 is cleaved into two separate 

proteins 22, 24, 57.  The portion still associated with the channel is the proximal C-

terminus (PCT) and the cleaved portion is the distal C-terminus (DCT) 57, 58 

(Figure 4-3).  Previous data predicted the cleavage point to be around residue 

1909 (Figure 4-3) 14.  Recent work indicates that the cleavage point may be 

around residue 1803 57 (Figure 4-3).  Unfortunately, the specific protease has not 

been identified and therefore the cleavage point has not been fully characterized.  

The DCT was created as a GST fusion protein from residues 1909 through 2171 

with GST fused on the carboxy end of the DCT.  

 

 

Figure 4-3: Multiple sequence alignment between rabbit CaV1.2 C-terminus, 
used in experiments, and human CaV1.2 C-terminus. Gray shaded area 
indicates the proximal C-terminus (PCT). Blue shaded area indicates the distal 
C-terminus (DCT). The lighter blue represents the predicted DCT of residues 
1909-2171. The darker blue represents current data on DCT, residues 1803-
2171, and the dashed line is the believed cleavage site between the PCT and 
DCT. Green highlighted seqeunce are CaMKII predicted phosphorylation sites. 
(*) Marks the PKA and PKC phosphorylation site at serine 1928. Solid black 
line is the location that AKAP79 binds the CaV1.2 DCT. 

*

rabbit: FVAVIMDNFDYLTRDWSILGPHHLDEFKRIWAEYDPEAKGRIKHLDVVTLLRRIQPPLGFGKLCPHRVACKRLVSMNMPLNSDGTVMFNATLFALVRTAL :1600
human : FVAVIMDNFDYLTRDWSILGPHHLDEFKRIWAEYDPEAKGRIKHLDVVTLLRRIQPPLGFGKLCPHRVACKRLVSMNMPLNSDGTVMFNATLFALVRTAL :1570

rabbit: RIKTEGNLEQANEELRAIIKKIWKRTSMKLLDQVVPPAGDDEVTVGKFYATFLIQEYFRKFKKRKEQGLVGKPSQRNALSLQAGLRTLHDIGPEIRRAIS :1700
human : RIKTEGNLEQANEELRAIIKKIWKRTSMKLLDQVVPPAGDDEVTVGKFYATFLIQEYFRKFKKRKEQGLVGKPSQRNALSLQAGLRTLHDIGPEIRRAIS :1670

rabbit: GDLTAEEELDKAMKEAVSAASEDDIFRRAGGLFGNHVSYYQSDSRSAFPQTFTTQRPLHISKAGNNQGDTESPSHEKLVDSTFTPSSYSSTGSNANINNA :1800
human : GDLTAEEELDKAMKEAVSAASEDDIFRRAGGLFGNHVSYYQSDGRSAFPQTFTTQRPLHINKAGSSQGDTESPSHEKLVDSTFTPSSYSSTGSNANINNA :1770

rabbit: NNTALGRLPRPAGYPSTVSTVEGHGSPLSPAVRAQEAAWKLSSKRCHSQESQIAMACQEGASQDDNYDVRIGEDAECCSEPSLLSTEMLSYQDDENRQLA :1900
human : NNTALGRLPRPAGYPSTVSTVEGHGPPLSPAIRVQEVAWKLSSNRCHSRESQAAMAGQEETSQDETYEVKMNHDTEACSEPSLLSTEMLSYQDDENRQLT :1870

rabbit: PPEEEKRDIRLSPKKGFLRSASLGRRASFHLECLKRQKNQGGDISQKTVLPLHLVHHQALAVAGLSPLLQRSHSPTSLPRPCATPPATPGSRGWPPQPIP :2000
human : LPEEDKRDIRQSPKRGFLRSASLGRRASFHLECLKRQKDRGGDISQKTVLPLHLVHHQALAVAGLSPLLQRSHSPASFPRPFATPPATPGSRGWPPQPVP :1970

rabbit: TLRLEGADSSEKLNSSFPSIHCGSWSGENSPCRGDSSAARRARPVSLTVPSQAGAQGRQFHGSASSLVEAVLISEGLGQFAQDPKFIEVTTQELADACDL :2100
human : TLRLEGVESSEKLNSSFPSIHCGSWAETTPGG-GGSSAARRVRPVSLMVPSQAGAPGRQFHGSASSLVEAVLISEGLGQFAQDPKFIEVTTQELADACDM :2069

rabbit: TIEEMENAADDILSGGARQSPNGTLLPFVNRRDPGRDRAGQNEQDASGACAPGCGQSEEALADRRAGVSSL :2171
human : TIEEMESAADNILSGGAPQSPNGALLPFVNCRDAGQDRAGGEE-DAGCVRARG-APSEEELQDSRVYVSSL :2138
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Figure 4-4: CaMKII phosphorylates the CaV1.2 distal C-terminus A) Western 
blot with anti-GST for purified CaV1.2 distal C-terminus (DCT) GST fusion 
protein B) CaMKII in vitro kinase assays of CaV1.2 C-terminus GST fusion 
protein (WT), CaV1.2 distal C-terminus GST fusion protein (DCT) and GST 
alone (GST) C) PKA in vitro kinase assay of WT, DCT and GST.
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 Sequence analysis of the CaV1.2 DCT (Figure 4-3) indicates that it would 

be a likely CaMKII substrate.  The DCT not only contains several predicted 

CaMKII phosphorylation sites, but also is a focal point for kinase activity.  The 

serine at position 1928 is known to be phosphorylated by both PKA 23, 89 and 

PKC 121.  Furthermore, a region of the DCT has been shown to bind an AKAP 40 

that is known to associate with phosphatases that are necessary to reverse 

kinase mediated phosphorylation. 

 The CaV1.2 DCT GST fusion protein was purified with glutathione agarose 

beads and the protein size and expression was confirmed by western blot for 

GST (Figure 4-4A).  In vitro kinase assays with CaMKII were repeated as with 

the CaV1.2 C-terminus GST fusion protein.  The resulting autoradiograph 

indicates that the CaV1.2 DCT was a substrate for CaMKII phosphorylation 

(Figure 4-4B).  As a positive control, the CaV1.2 DCT was shown to also be 

substrate for PKA (Figure 4-4C).  The CaMKII and PKA kinase assays of the 

CaV1.2 C-terminus GST fusion protein were repeated as an additional positive 

control (Figure 4-4B, C).  The autoradiograph indicates that the CaV1.2 DCT is as 

good or better substrate for CaMKII than the CaV1.2 C-teminus.  GST was used 

in both CaMKII and PKA kinase assays as a negative control (Figure 4-4B, C) 

and was not phosphorylated by either CaMKII or PKA. 

 

Phospho-amino acid analysis indicates a serine phosphorylation event 

 A phospho-amino acid analysis of CaV1.2 DCT would identify if the 

phosphorylation event by CaMKII was on a threonine, serine or both.  The 
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phospho-amino acid analysis allows the separation of individual residues after 

hydrolysis of the peptide bonds.  Phosphorylated residues can be detected by 

autoradiograph because of incorporation of 32P from an in vitro kinase assay 

preceding the hydrolysis step.  Therefore the CaV1.2 DCT was first 

phosphorylated by CaMKII in vitro and then hydrolysed.  The resulting 

autoradiograph of the hydrolysed CaV1.2 DCT revealed three bands (Figure 4-5). 

 

 

Figure 4-5: CaMKII phosphorylates a 
serine residue on CaV1.2 distal C-
terminus. (left) Autoradiography of 
marker dye indicating phospho serine 
(pSer) and phospho threonine (pThr) 
(right) Autoradiograph (89 hour 
exposure) phospho-amino acid analysis 
of CaV1.2 distal C-terminus GST fusion 
protein.
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To determine the identity of phosphorylated residues, bands found in the 

autoradiograph were compared to a positive control dye standard of phospho-

residues.  The dye standard indicates where phospho-serine and phospho-

threonine would migrate.  Phospho-tyrosine was omitted because CaMKII is a 
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serine/threonine kinase.  The dye standard reveals that the CaMKII 

phosphorylation of CaV1.2 DCT occurs on at least one serine and not on any 

threonine residues (Figure 4-5).   

Aside from phosphorylated residues appearing on the autoradiograph, two 

additional bands are present.  Because hydrolysis is both incomplete and 

random, one band should indicate free phosphate and a second band should be 

unhydrolysed phosphorylated peptides. 

 

Mass spectrometry identified several phosphorylation events 

 Mass spectrometry was used to identify the amino acids being 

phosphorylated on the CaV1.2 C-terminus GST fusion protein by CaMKII.  The 

CaV1.2 C-terminus GST fusion protein was phosphorylated with CaMKII using 

either 32P ATP or unlabeled ATP.  The in vitro kinase assay with 32P ATP 

confirmed, by autoradiograph, CaMKII phosphorylation of the CaV1.2 C-terminus.  

Incubating the unlabeled ATP in vitro kinase assay with glutathione agarose 

beads, the CaV1.2 C-terminus GST fusion protein was re-purified.  This sample 

was submitted for mass spectrometry analysis by liquid chromatography MS-MS 

after proteolytic digestion by either trypsin or chymostrypsin, which were used to 

achieve a higher degree of coverage in order to identify all potential 

phosphorylation sites. 

 Analysis of the mass spectrometry data, trypsin and chymotrypsin, 

identified several peptides with possible phosphorylation events (Table 4-1, 4-2).  

The mass spectrometry data was examined for possible phosphorylation events 
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by identifying either a positive 80 dalton shift in mass (Table 4-1, 4-2), the 

addition of a phosphate group, or a negative 18 dalton shift in mass (Table 4-1, 

4-2), the net mass reduction of a hydroxyl group after the loss of a phosphate 

group during MS-MS fragmentation.  Data mining revealed two peptides with 

phosphorylated serines, the peptide SASLGR with serine 1922 (Figure 4-6) and 

the peptide ASFHLECLK with serine 1928 (Figure 4-6). 

 

 

human  : FVAVIMDNFDYLTRDWSILGPHHLDEFKRIWAEYDPEAKGRIKHLDVVTLLRRIQPPLGFGKLCPHRVACKRLVSMNMPLNSDGTVMFNATLFALVRTAL : 1570
rabbit : FVAVIMDNFDYLTRDWSILGPHHLDEFKRIWAEYDPEAKGRIKHLDVVTLLRRIQPPLGFGKLCPHRVACKRLVSMNMPLNSDGTVMFNATLFALVRTAL : 1600

human  : RIKTEGNLEQANEELRAIIKKIWKRTSMKLLDQVVPPAGDDEVTVGKFYATFLIQEYFRKFKKRKEQGLVGKPSQRNALSLQAGLRTLHDIGPEIRRAIS : 1670
rabbit : RIKTEGNLEQANEELRAIIKKIWKRTSMKLLDQVVPPAGDDEVTVGKFYATFLIQEYFRKFKKRKEQGLVGKPSQRNALSLQAGLRTLHDIGPEIRRAIS : 1700

human  : GDLTAEEELDKAMKEAVSAASEDDIFRRAGGLFGNHVSYYQSDGRSAFPQTFTTQRPLHINKAGSSQGDTESPSHEKLVDSTFTPSSYSSTGSNANINNA : 1770
rabbit : GDLTAEEELDKAMKEAVSAASEDDIFRRAGGLFGNHVSYYQSDSRSAFPQTFTTQRPLHISKAGNNQGDTESPSHEKLVDSTFTPSSYSSTGSNANINNA : 1800

human  : NNTALGRLPRPAGYPSTVSTVEGHGPPLSPAIRVQEVAWKLSSNRCHSRESQAAMAGQEETSQDETYEVKMNHDTEACSEPSLLSTEMLSYQDDENRQLT : 1870
rabbit : NNTALGRLPRPAGYPSTVSTVEGHGSPLSPAVRAQEAAWKLSSKRCHSQESQIAMACQEGASQDDNYDVRIGEDAECCSEPSLLSTEMLSYQDDENRQLA : 1900

human  : LPEEDKRDIRQSPKRGFLRSASLGRRASFHLECLKRQKDRGGDISQKTVLPLHLVHHQALAVAGLSPLLQRSHSPASFPRPFATPPATPGSRGWPPQPVP : 1970
rabbit : PPEEEKRDIRLSPKKGFLRSASLGRRASFHLECLKRQKNQGGDISQKTVLPLHLVHHQALAVAGLSPLLQRSHSPTSLPRPCATPPATPGSRGWPPQPIP : 2000

human  : TLRLEGVESSEKLNSSFPSIHCGSWAETTPGG-GGSSAARRVRPVSLMVPSQAGAPGRQFHGSASSLVEAVLISEGLGQFAQDPKFIEVTTQELADACDM : 2069
rabbit : TLRLEGADSSEKLNSSFPSIHCGSWSGENSPCRGDSSAARRARPVSLTVPSQAGAQGRQFHGSASSLVEAVLISEGLGQFAQDPKFIEVTTQELADACDL : 2100  

human  : TIEEMESAADNILSGGAPQSPNGALLPFVNCRDAGQDRAGGEE-DAGCVRARG-APSEEELQDSRVYVSSL : 2138
rabbit : TIEEMENAADDILSGGARQSPNGTLLPFVNRRDPGRDRAGQNEQDASGACAPGCGQSEEALADRRAGVSSL : 2171
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Table 4-1: LC-MS-MS trypsin digestion results

 

 

 

Table 4-2: LC-MS-MS chymotrypsin digestion results
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In vitro kinase assay confirms CaMKII phosphorylation sites 

 To biochemically validate the mass spectrometry data, the serine 

residues, 1922 and 1928, on the CaV1.2 C-terminus GST fusion protein were 

mutated as either single mutations to alanine (S1922A, S1928A) or double 

mutations to alanines (S1922/28A).  These GST fusion proteins were purified 

and the protein expression and size was checked by immunoblot (Figure 4-7A). 

 The in vitro kinase assays were repeated with both CaMKII and PKA.  In 

addition to the autoradiograph, a set volume of each assay was spotted and the 

cpms were measured after washing away free 32P ATP.  To accurately compare 

phosphorylation levels between the mutants and wild type proteins, the pmoles of 

32P incorporated per pmoles of protein were calculated based upon the 

concentration of GST fusion protein used and cpms measured.  These 

experiments were repeated at least three times in triplicate, using a minimum of 

two GST fusion protein purifications. 

 The in vitro kinase assays with CaMKII revealed an intriguing trend.  Each 

individual serine to alanine mutation (S1922A, S1928A) had no effect on overall 

CaMKII phosphorylation of the CaV1.2 C-terminus GST fusion protein as 

compared to wild type control (Figure 4-7B, C).  However, the double mutant 

(S1922/28A) showed a significant decrease in CaMKII phosphorylation of the 

CaV1.2 C-terminus (Figure 4-7B, C).  PKA in vitro kinase assays followed a 

different pattern from CaMKII.  Only mutations of serine 1928, the canonical PKA 

phosphorylation site, showed a decrease in phosphorylation levels compared to 

wild type (Figure 4-7D). 
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Figure 4-7: In vitro kinase assays on CaV1.2 distal C-terminus GST fusion 
proteins; wild type (DCT), serine 1922 to alanine mutation (S1922A), serine 
1928 to alanine mutation (S1928A), double mutation serines 1922 and 1928 to 
alanines (S1922/28A). A) Western blot for GST of CaV1.2 distal C-terminus 
GST fusion proteins B) Autoradiograph of CaMKII in vitro kinase assay C) 10 
nM CaMKII in vitro kinase assay. D) 10 nM PKA in vitro kinase assay. (* = 
p<.05)
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Discussion 

Implications of CaV1.2 phosphorylation studies 

 Interestingly, this work shows that CaMKII has the ability to phosphorylate 

two residues with close proximity and raises the question as to whether these 

sites have opposing or synergistic affects on CaV1.2 activity.  The ability of 

CaMKII to phosphorylate serine 1922 and serine 1928 has interesting implication 

in relation to PKA phosphorylation of serine 1928 and CaV1.2 response to 

adrenergic stimulation.  PLB is an example of a protein substrate where both 

CaMKII and PKA phosphorylate nearby sites.  CaMKII phosphorylates residue 

threonine 17 96 whereas PKA phosphorylates residue serine 16 107.  The role of 

serine 16 and threonine 17 PLB phosphorylation is conflicted, but the it appears 

that either phosphorylation event releases PLB from SERCA and thereby 

enhances SERCA activity 60.  Another example of close proximity duel 

phosphorylation included CaMKII phosphorylation of Thr498 43 and PKG of 

Ser494 122 of the CaV1.2 β2a subunit.  These two sites on the β2a subunit have 

opposing affects, where CaMKII phosphorylation causes an increase in ICa 43 and 

PKG causes a decrease in ICa 
122.  A future direction would be to examine the 

affect CaMKII phosphorylation of serine 1922 on PKA phosphorylation of serine 

1928 and if this has an impact on the response of ventricular myocyte to 

adrenergic signaling.  Additionally, the ability of CaMKII to phosphorylate serine 

1922 after PKA has phosphorylated serine 1928 could be examined.  However, 

the role of serine 1928 during adrenergic stimulation has been questioned based 
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upon data showing that the C-terminus of CaV1.2 and not serine 1928 is required 

for CaV1.2 to respond to adrenergic signaling. 

 

CaMKII regulation of CaV1.2 

CaMKII was found to phosphorylate the CaV1.2 C-terminus at serine 1512 

and serine 1570 66 (Figure 4-8).  Mutating these sites to alanine prevents voltage 

dependent ICa facilitation, a dynamic increase in ICa after a significant 

depolarizations (+160mV) 66.  The relevance of these data is questionable 

because the significant depolarization required for voltage dependent facilitation 

is not within the membrane voltages physiologically observed.  Moreover, the 

phosphorylation sites were characterized within heterologous cells and not within 

ventricular myocytes where these sites may play a more important role in 

regulating ICa.   

The CaV1.2 C-terminus is cleaved into two domains, the distal C-terminus 

and the proximal C-terminus 57.  The interaction of these domains affects ICa 
58.  

The CaMKII phosphorylation sites serine 1922 and serine 1928 are located on 

the distal C-terminus and serine 1512 and serine 1570 are located on the 

proximal C-terminus.  The ability of CaMKII to phosphorylate these domains 

separately may be critical for the overall function of CaMKII regulation of CaV1.2 

in ventricular myocytes. 

CaMKII phosphorylation of the L-type Ca2+ channel β2a subunit at thr498 

(Figure 4-8) appears to be the central phosphorylation event leading to ICa 

facilitation 43.  Mutating Thr498 to alanine on the β2a subunit prevents ICa 
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facilitation when expressed in adult ventricular myocytes 43.  However, the 

mechanism by which phosphorylation of the β2a subunit changes CaV1.2 activity 

has yet to be elucidated.  It is possible that CaMKII phosphorylation of the CaV1.2 

C-terminus may play an important downstream role to Thr498 phosphorylation in 

ICa facilitation. 
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14-3-3 predictions 

 Sequence analysis 118 of serine 1922 and serine 1928 reveals that 

phosphoserine 1922 may be 14-3-3 binding domain (Figure 4-9).  14-3-3 proteins 
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bind to phosphorylated targets and mediate many different cellular responses 

including protein trafficking.  Work with the CaV1.2 distal C-terminus suggests 

that this domain may translocate to the nucleus and regulate gene expression 42.  

The exact mechanism of the CaV1.2 distal C-terminus movement towards the 

nucleus remains unknown but the process is known to be Ca2+ dependent 42.  

The CaMKII phosphorylation of serine 1922 within the distal C-terminus and 

subsequent interaction with 14-3-3 proteins may play a critical role in nuclear 

translocation of the distal C-terminus. 
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Figure 4-9: Scansite results predicting phospho-serine 1922 as a 14-3-3 
binding motif.

 



 125

Methods 

Cloning GST fusion proteins 

The C-terminus (residues 1507-2171) of CaV1.2 was cloned into the N-

terminal GST fusion protein plasmid, pGEX4T, by PCR.  The forward primer 

annealed at residues 1507 and contained a BaMHI restriction enzyme site.  The 

reverse primer annealed at residues 2171 and contained a stop codon followed 

by a EcoRI restriction enzyme site.  The PCR product was digested with both 

BaMHI and EcoRI and ligated into a pGEX4T plasmid opened with the same 

enzymes.  The ligation was transformed into competent DH5α bacteria and 

plated overnight at 37°C on ampicillin containing agar plates.  Colonies were 

picked, grown in media and screened by restriction enzyme digestion of BaMHI 

and EcoRI.  Positively screened clones were sent for sequencing to confirm the 

ORF of the GST CaV1.2 C-terminus protein. 

Two truncation of the GST CaV1.2 C-terminus ORF were made to create 

the GST CaV1.2 DCT and GST CaV1.2 PCT.  The GST CaV1.2 PCT (residues 

1507-1905) was created by introducing a premature stop codon by PCR 

mutangenesis after residue 1905.  The GST CaV1.2 DCT (residues 1909-2171) 

was created by first introducing a second BaMHI cute site preceding residue 

1909 and then digesting the resulting construct with BaMHI and performing a self 

ligation.  Both GST CaV1.2 DCT and PCT were confirmed by sequencing the 

ORF. 
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Purification of GST fusion protein 

 LB media (100mL) was inoculated with bacteria transformed with a 

pGEX4T construct (CaV1.2 C-terminus, PCT or DCT) and incubated at 37°C 

overnight (16-18 hrs).  The culture was added to pre-warmed media (500mL) and 

incubated at 37°C until the OD660 reached between 0.62 and 0.90.  Protein 

production was induced by the addition of IPTG (final 1mM) to the bacterial 

culture and incubated at 30-37°C for 1-3hrs.  The bacterial culture was pelleted 

and the spent media was discarded.  The bacterial pellet was resuspended and 

lysed by sonication (30 seconds on and 30 seconds off at level 4 for a total of 5 

min.).  The lysed bacteria were pelleted by centrifugation and the supernatant 

was harvested.  Glutathione beads were added to the supernatant and incubated 

at 4C for 1hr while gently shaking.  The beads were collected in a column and 

washed several times.  Bound protein was eluted by the addition of excess 

glutathione and collected within dialysis tubing and washed overnight.  The 

purified protein was aliquoted and stored at -80°C.  The purified protein was 

assessed for purity by SDS-PAGE. 

 

Western blot of GST fusion proteins 

Purified GST fusion protein was loaded (25μL of 5μM protein) into a 10% 

acrylamide gel with stacking and ran until dye front reached bottom of plates.  

Protein from the gel was transferred to a nitrocellulose membrane at 100 volts in 

transfer butter with 15% methanol. The membrane was blocked with 5% milk in 

PBS-Tween overnight at 4°C and immunoblotted with a primary antibody against 
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GST at 1:5000 for 2hrs at room temperature. The blot was washed 6 times with 

PBS-T for 15 minutes and a secondary HRP conjugated bovine anti-goat 

antibody at 1:5000 dilution was added at RT for 2 hours. The blot was washed 

and exposed to film by chemiluminescence. 

 

In vitro kinase assays 

 In vitro kinase assays were performed with either CaMKII (10nM) or PKA 

(10nM) on purified GST fusion proteins (2μM) as substrates.  Phosphorylation of 

the substrate was determined by the amount of 32P incorporated into the 

substrate by measuring cpms from the reaction and by autoradiography of the 

reaction analyzed by SDS-PAGE.  CaMKII kinase reaction consisted of 50mM 

HEPES, 10mM Mg(Ac)2, 0.5mM CaCl2, 1μM CaM, 1mM DTT and 0.4mM 

[32P]ATP.  PKA kinase reaction consisted of 50mM HEPES, 10mM Mg(Ac)2, 

1mM DTT and 0.4mM [32P]ATP.  All kinase reactions were initiated by the 

addition of the kinase and allowed to proceed for 20 minutes at 30°C, whereupon 

a sample of each reaction was spotted on P81 filter paper and each reaction was 

stopped by the addition of sample buffer. 

 

Data analysis and statistics 

 All data reported as means with standard error of the mean (SEM).  Two 

groups were compared using the Student T-test statistical test.  Significance was 

set at a P value < 0.05. 
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Amino peptide mapping 

 Amino peptide mapping was performed, as previously reported43, on in 

vitro CaMKII phosphorylated CaV1.2 DCT GST fusion protein.  The radio-labeled 

GST fusion protein was removed from a dried Coomassie stained SDS-PAGE 

gel, solubilized and hydrolyzed with HCl (5.7M).  Samples were run on thin layer 

chromatography plates with phospho-serine and phospho-threonine standards.  

Plates were stained to reveal the phospho standards and exposed to film. 

 

Mass spectrometry 

 Purified GST fusion proteins were prepared for mass spectrometry 

phosphorylation analysis performing paired in vitro kinase assays.  One sample 

contained [32P] ATP to verify phosphorylation of the substrate and the second 

sample, prepared with cold ATP, was submitted for LC-MS-MS (Amy Hamm, 

Vanderbilt University).  The program P-mod was used to analyze the spectra and 

identify possible phosphorylation events. 
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