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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Goals  

This thesis seeks to determine whether Raman Spectroscopy (RS) can assess biochemical 

changes that help explain differences in the  fracture resistance of bone among different 

laboratory models of disease.  Identifying spectral signatures will later determine the potential of 

RS as a fracture risk assessment tool. The work measures bone mechanical properties a rigorous 

universal standard of  mechanical testing to determine fracture resistance for both animal models 

of genetic disease and donated human tissue across genders and all decades of adulthood.  

Specific studies will detail the discrimination between, and ultimately isolation of the different 

sources of RS signal contrast in bone tissue as they relate to tissue organization and composition. 

These sources of contrast are then evaluated side-by-side as well as combined to demonstrate 

consistency in the RS signatures of decreased bone mechanical quality across unrelated models 

of brittle bone. Finally, the results of these studies are applied to the complex organizational 

hierarchy of human bone tissue to determine if RS detects any driving factors in the age-related 

decrease in fracture resistance. Ultimately this dissertation will provide the groundwork to 

determine the feasibility of RS for clinical use in fracture resistance assessment, yielding 

optimized outcome metrics and suggestions for instrumentation and data collection parameters. 
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1.2 Motivation 

Bone health deteriorates as we age, and the subsequent loss of tissue mechanical 

properties leads to an increased risk of fracture. Ultimately developing into osteoporosis, the age-

related loss in fracture resistance results in over 9 million annual osteoporotic fractures 

worldwide 1. Although incident rates alone are not as significant as other major diseases 

including atherosclerosis and diabetes, the World Health Organization places osteoporotic 

fracture as the 6th largest source of disease burden in number of years lost 1. The most worrisome 

statistic, however, is that the many patients die within one year of hip fracture, with estimates as 

high as 30%2. Current clinical analyses are largely limited to X-ray based mineral density scans3 

and patient history for concomitant risk factors including diabetes4, 5, neither of which fully 

captures age-related trends in fracture risk6. The idea of “bone quality” 7was invented to 

encompass these factors beyond mineral density. The ability of Raman Spectroscopy(RS) to 

concurrently measure both the mineral and collagen phases of bone, coupled with nondestructive 

and non-invasive potential as shown in other clinical applications, makes the technique a strong 

candidate to complement mineral density and help explain bone quality to improve our 

understanding of fracture risk. Therefore, the overall objective of this doctoral dissertation is to 

define the mechanisms by which Raman Spectroscopy can optically diagnose decreased bone 

quality: first by identifying the sources of signal contrast, then by establishing the consistency 

and nature of RS signatures in controlled animal models, and finally by applying those findings 

to the study of age-related changes in fracture resistance. 
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1.3 Specific Aims 

The current milieu of inconsistent instrument designs, outcome metrics, and disease 

conditions in many of the prominent studies of Raman Spectroscopy for bone 8-10 leaves an 

inconsistent picture of the role of RS for detection of fracture resistance. Can Raman 

Spectroscopy help the field gain a better understanding of the elusive factors underlying fracture 

resistance? If so, could the diagnostic mechanism of contrast between “good” and “bad” bone 

quality be translated into a clinical instrument? What is responsible for the apparent 

inconsistency between studies using RS to discriminate decreased bone quality? To fully answer 

any of these questions could result in more than a lifetime of dedicated study; therefore, to better 

delineate the first and most significant steps, I drew up the following specific aims: 

1. Establish RS sensitivity to differences in composition with respect to organization.by 

correlating polarization effects to bone orientation effects on relative peak intensities. 

At the outset of this dissertation, there were significant questions regarding the best way to 

acquire RS data for the proper characterization of bone quality, including specimen 

preparation techniques, RS processing techniques, and the validity of established RS 

outcomes in the field. Moreover, RS techniques in our lab could not explain differences in 

multiple available models of brittle bone. Finally, the concurrent reports that polarization in 

the Raman spectrum highlighted lamellar structures 11 cast doubt upon the validity of RS 

peak ratios. This goal of this aim (written as Chapter 3) was to resolve these seeming 

conflicts in light of polarization theory, establishing whether RS measures of composition 

could be separated from RS metrics that are also sensitive to polarization and therefore 

organization. Success of this aim was defined qualitatively as the optimization of RS metrics 
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for either organization or composition, such that compositional metrics minimize the 

coefficient of variation under different polarizations or rotation. 

2. Assess RS capability to explain fracture resistance differences due to genetic 

manipulation (mice) and aging (human). 

a. Characterize RS correlation to downstream biomechanics as a function of 

transcription factor deletion. 

Numerous environmental factors combine with lifestyle choices, concomitant disease4, and 

genetic predisposition 5to determine human fracture risk, making the study human risk 

nontrivial. To better understand the mechanisms underlying disease progression, the study of 

rare genetic diseases that present with musculoskeletal defects offers unique insights into the 

biological underpinnings of bone quality. Genetically altered animal models offer scientific 

control, while recapitulating one specific aspect of the human condition.  

Having optimized the polarization sensitivity of RS to organization and composition, this 

aim focuses on re-evaluating the potential of RS to characterize toughness loss in animal 

models. The goal of Aim 2a is to identify the Raman metrics that explain brittleness (peak 

intensities, ratios, and multivariate signatures) in animal models of compromised bone 

mechanical quality. Since RS of composition alone had failed to explain toughness loss at the 

time of proposal, success was defined as any significant explanation of the variance in 

toughness, with greater than 25% variance explained meriting further experimentation. 

Success in the original transcription factor deletion model (Atf4 or activation transcription 

factor 4, written in Chapter 4) led to application of the methods to another model of 

brittleness (deletion of theMmp9 gene) for which compositional RS metrics alone had been 
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insufficient (Chapter 5). This aim also extends the polarization analysis to a multivariate 

expression of the complete spectrum in order to include all polarization and spectral 

information, instead of just specific peaks and peak ratios, since these original outcomes used 

by the field were established for their stability in measuring composition. 

b. Correlate microstructure fracture resistance to RS property mapping. 

With established metrics and methods, it became important to determine if polarization in RS 

properties could distinguish natural microstructural differences in bone beyond what was 

previously shown11, and if so, to what extent did this microstructural contrast correspond to 

the age-related decrease in fracture resistance (Chapter 6). Fracture toughness was 

implemented as part of these studies to ensure state-of-the-art physiologically relevant 

laboratory analogues to quantify fracture resistance.  RS mapping of microstructural 

components provided a strong measure of tissue heterogeneity which is under debate as a 

potential mechanism underlying fracture resistance 12, but until now, little quantitative 

evidence has been demonstrated. Thus the goal of Aim 2b was to quantify RS metrics that 

explain the age-related decrease in human fracture toughness, using both point measures and 

RS mapping. Because concurrent analyses of mineral density and novel modalities including 

NMR and micro-indentation were concurrently conducted on these samples, success of this 

aim was defined as the significant correlation to fracture outcomes, with performance in 

excess of the variance explained by mineral density. 

1.4 Dissertation Outline 

This dissertation has been organized with the following structure: 
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Chapter 1 provides a brief introduction to the main problem addressed by the research, 

while establishing the motivation to conduct the included studies and larger goals of the research 

project. The specific research aims are defined and explained. 

Chapter 2 provides background information including bone and its roles in systems 

physiology; the engineering perspective of bone as a structural material; current clinical 

diagnostics for fracture risk; biomechanical testing and its relationship to fracture mechanics; and 

Raman spectroscopy for the diagnosis of bone quality, with a specific emphasis on the use of 

polarization to determine tissue organization. 

Chapter 3 entails the work accomplished in Specific Aim 1, detailing the experimental 

procedure and results behind isolating the impact of composition and organization in Raman 

spectroscopy with respect to the inherent polarization of commercial instruments and the optical 

theory of light transport through birefringent materials. 

Chapter 4 applies the use of polarization Raman spectroscopy in order to identify the 

underlying mechanism behind bone brittleness due to the loss of activation transcription factor 4 

(Atf4), detailing how organization-sensitive metrics show associated changes, while traditional 

compositional metrics were limited in explanation. 

Chapter 5 extends the analyses accomplished in Chapter 4 to complete Specific Aim 2a, 

by applying the multivariate analysis analytical techniques of Principal Components Analysis 

(PCA) and Sparse Multinomial Logistic Regression (SMLR) in order to establish the impact of 

polarization and a spectral signature of bone brittleness. A detailed analysis suggests how 

consistencies between principal components that explain toughness imply the possibility of a 

universal Raman spectroscopy signature for bone toughness, despite the fundamental difference 



  

 

7 

in the genetic of animal models included. Specificity of the technique is validated by comparing 

results to those with a model of bone maturation, where only strength and not toughness is 

affected. 

Chapter 6 applies the techniques and metric established in Chapters 3-6 to the complex 

hierarchical organization of donated human tissue. Raman Spectroscopy (with and without the 

organizational information from polarization) is assessed for its ability to explain the age-related 

decrease in fracture toughness of human cortical bone, a leading laboratory surrogate for fracture 

resistance. RS maps of microstructure implicate tissue heterogeneity of both composition and 

organization as a driving force behind fracture toughness loss. 

Chapter 7 summarizes the result of Chapters 3-6 with respect to the specific aims as well 

as the overall goals of the project. The greater implications of the dissertation work and 

contributions to the field are discussed. 
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CHAPTER 2 

 

BACKGROUND 

 

Some of the work discussed in this Chapter has also been published in the following: 
 
Nyman, J.S., Makowski, A.J., Patil, C.A., Masui, T.P., O'Quinn, E.C., Bi, X., Guelcher, S.A., 
Nicollela, D.P. and Mahadevan-Jansen, A., "Measuring differences in compositional properties 
of bone tissue by confocal Raman spectroscopy," Calcif Tissue Int 89(2), 111-122 (2011) 
 
Nyman, J.S. and Makowski, A.J., "The contribution of the extracellular matrix to the fracture 
resistance of bone," Current osteoporosis reports 10(2), 169-177 (2012) 
 

2.1 The Growing Statistical Incidence of Bone Disease 

Bone is more than just a structural support system for the body; it is also an endocrine 

organ participating in calcium and phosphate homeostasis. However, when bones fail structurally 

the results are catastrophic. Numerous diseases increase the likelihood of a fracture of bone, and 

the one with the largest impact in terms of morbidity and cost is arguably osteoporosis. The 

World Health Organization (WHO) study on disease burden measured the disability-adjusted 

life-years in diseases across America and Europe, listing osteoporotic fracture at 6th and hip 

fracture separately as 11th. Worldwide data indicated that nearly 9,000,000 osteoporotic 

fractures occurred in the year 20111. Unfortunately, the aging of the US population, largely from 

the baby boomer era, means that the burden and morbidity of this disease will only rise. By 2020, 
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the US Census Bureau estimates that 28.7% of the US population (97.8 million) will reach the 

age range associated with osteoporosis onset2. Of the many issues that hinder fracture as 

diagnosis and prevention, the most concerning is the lack of a definitive mechanism behind the 

clinical development and progression of osteoporosis. In fact osteoporosis as a disease itself has 

defied accurate definition. The word itself is literally Greek for “porous bone” being first coined 

in the 1820s by French pathologist Jean Lobstein, but it was not until years later when Astley 

Cooper related the disease to aging3. Since then, the disease is gradually been defined by 

diagnosis of exclusion, separating it from rickets, scurvy, and various genetic disorders. The 

WHO defines a practical operating definition for osteoporosis by clinical measurement of areal 

bone mineral density (aBMD)1, 4, 5. Specifically, the dual energy X-ray absorptiometry measure 

of aBMD via projection is used to calculate a T-score, such that a diagnosis of osteoporosis is 

given at a T-score less than -2.5 or 2.5 standard deviations below the population mean value 6, 7. 

However, the WHO definition of “established osteoporosis” also usually includes a diagnosed 

fragility fracture1. Fragility fractures are defined by the low amount of energy required to cause 

bone failure, specifically energy equivalent to or less than “falling from less than a standing 

height”. This type of diagnosis after morbid presentation not only limits the potential for 

treatment, but also the study of disease progression. In a shift away from this paradigm, this 

thesis focuses on obtaining a better understanding of the underlying fracture mechanisms behind 

bone disease, while pushing towards better diagnostic criteria and methods.  

Although osteoporosis is the most prominent bone disease by incidents and morbidity, 

there are a surprising number of genetic conditions that display skeletal phenotypes, not all of 

which are rare in incidence. As one example, the Genetics Home Reference of the NIH  cites the 



  

 

11 

incidence of neurofibromatosis type I at as many as 1 in 3000 live human births8. Osteoegenesis 

Imperfecta  is an example of a group of genetic disorders in which mutations affect the structure 

of collagen, affecting as many as 6 to7 people per 100,000 worldwide 9. Beyond the potential to 

help patients with these genetic maladies, the study of genetic disease offers unique opportunities 

to examine specifically altered cellular pathways to gain insight into the mechanisms underlying 

bone function disease. 

 In addition to diseases defined by their skeletal symptoms, systemic diseases often have 

adverse effects on bone function. Type 2 diabetes is associated with an increased risk of 

fracture10, though the mechanisms behind this are not entirely clear. Clinical epidemiology 

programs that aid X-ray based measurements in diagnosing fracture risk often underestimate the 

fracture risk of patients with type 2 diabetes11, and research has shown that calculations require a 

multiplicative factor to correct for the risk associated with diabetes11, independently of age, 

height, smoking, alcohol use, and other known risk factors. One theory behind the increased risk 

proposes that higher circulating glucose leads to increased glycation of collagen which affects 

normal fracture resistance12. These advanced glycation end-products or AGEs are found in 

higher concentrations in postmenopausal women with type 2 diabetes and vertebral body 

fractures associated with osteoporosis12, and the concentrations of AGEs are also higher in 

general among the older adults with diabetes. These advanced glycation end products alter 

collagen in bone13 and have been associated with increased microdamage accumulation in 

bone14, 15.  

Cancer can also have catastrophic effects on bone tissue. Numerous cancers metastasize 

to bone, theoretically due to some combination of the numerous growth factors in this region 
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(Paget’s seed-to-soil hypothesis)16 and by the increased likelihood that cancer cells circulating 

will simply become lodged into bone marrow due to the complex circulatory network by which 

bone supplies blood cells to the body. Cancers can make use of the local cellular remodeling in 

what has been termed a “vicious cycle”17, 18. The cancer secretes growth factors that hijack bone 

remodeling, the coupled actions of osteoblasts (bone forming cell) and osteoclasts (bone 

resorption cells), as described later in Section 2.3. Osteoclasts digest bone matrix releasing 

growth factors that stimulate the cancer cells and the cycle continues. Eventually lesions of 

missing bone (osteolytic) or improperly grown bone tissue (osteoblastic) impact the fracture 

resistance of the bone, requiring surgical resection and reconstruction with implants. 

Complicated traumatic fracture is also on the rise. An increase in improvised explosive 

devices since the Gulf War in military theaters including Afghanistan, have led to an increased 

number of survivable but crippling fractures19. The competitions of physical, chemical, and burn 

trauma, as well as infection, make it difficult to diagnose tissue quality in the fracture when 

making surgical decisions20. Understanding the driving forces of bone tissue quality could help 

make an accurate diagnosis of tissue viability, load-bearing capability, and healing potential. An 

accurate assessment of tissue biomechanics could also help the design of better, even patient-

tailored, implants and materials21-24 preventing excessive wear while still avoiding stress 

shielding25, phenomena where the presence of an implant leads to bone degradation and 

surrounding area.  
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2.2 Physiological Functions of Bone 

Bone is a highly organized composite tissue that is alive with cells that are active in 

repair and involved in several physiological systems. Aside from its obvious support and motility 

functions at the core of the musculoskeletal system, bone is crucial to the circulatory and 

endocrine systems. In the circulatory system, bone marrow serves as the site of differentiation of 

both red blood cells and lymphocytes from progenitor stem cells26. Bone also has numerous 

endocrine functions, including regulation of phosphate metabolism by fibroblast growth factor 

(FGF-23) activity on kidney reabsorption 27, as well as the fact that bone degradation itself 

releases phosphate. Bone secretes osteocalcin, regulates blood sugar, and fat deposition by 

influencing insulin secretion and sensitivity26. Bone is also the major source for regulation of 

serum calcium. Parathyroid hormone (PTH) acts on bone osteoblasts to stimulate the remodeling 

cycle to resorb bone tissue and release calcium into the bloodstream. Briefly, PTH binding to 

osteoblasts increases RANKL expression and inhibits osteoprotegerin (OPG). Since OPG 

competitively binds RANKL, these combined effects of PTH result in increased RANKL to bind 

with osteoclast precursors, inducing their fusion into mature osteoclasts and increasing bone 

resorption. 26 

Thoroughly understanding the biochemical pathways behind bone’s function in normal 

physiology and the role that each cell population plays in maintaining that function is crucial to 

the understanding of the disease states that arise when normal physiology is not preserved, or 

worse yet when it is hijacked by diseases like cancer. Even in normal physiology, milk 

production depletes calcium, initiating remodeling, therefore lactating women may be at a higher 

risk of fracture28. To use NF1 as one example, we recently showed that the targeted knockout of 
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the gene encoding for neurofibromin (NF1) leads to an increase in local pyrophosphate (PPi)29. 

Since pyrophosphate is the body’s fundamental inhibitor of calcification, and phosphate is 

necessary for the formation of calcium hydroxyapatite crystals that mineralize the type I collagen 

of bone, this accumulation of PPi explained the hypomineralization seen in this disease model 

and biopsies from NF1 patients. Knowing that pyrophosphate was also implicated in 

hypophosphatasia, a rare genetic disease in which osteoblasts are deficient in alkaline 

phosphatase, we were able to apply an experimental hypophosphatasia drug to partially rescue 

the hypomineralization phenotype (as measured by Raman Spectroscopy) and the skeletal 

dwarfism that it caused 29. 

2.3 A Brief Overview of the Cellular Biology of Bone 

A more detailed understanding of the roles each cell type in bone is crucial to the understanding 

of disease. For the sake of this engineering thesis, the review of bone cells will be limited to the 

3 major cell types and their roles in material regulation of bone’s skeletal function. The 

osteoblast is the major synthetic cell type in bone, differentiated from the mesenchymal stem cell 

lineage. Osteoblasts are not only responsible for the synthesis of the matrix protein type I 

collagen, but also for key non-collagenous proteins like osteocalcin and osteopontin, each of 

which has various biological functions but together help form structural dilatational bands that 

protect bone for microdamage30. Osteoblasts usually form groups and work in conjunction with 

osteoclasts to form basic multicellular units (BMUs; see Figure 2.1), responsible for replacing 

damaged bone tissue with healthy new osteons. When osteoblasts are embedded in the matrix 

during this process, they form small pores called lacunae and terminally differentiate into  
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osteocytes. While the osteoblast builds bone, the osteoclast, as the name implies, breaks it down 

in the process of resorption. Osteoclasts are large multi-nucleated cells formed through the fusion 

of monocytic progenitor cells. Osteoclasts are thought to anchor to the bone matrix using 

osteopontin, creating a ruffled border that subsequently generates pockets for the release of 

carbonic anhydrase to digest calcium hydroxyapatite mineral. Subsequently osteoclasts are often 

found in resorption pits, known as Howship’s lacunae. After mineral degradation is complete, the 

release of cathepsin K and byproducts of tartrate resistant acid phosphatase (TRAP) degrade the 

type I collagen. Because osteoclasts are multinucleated, it is often difficult to quantify their 

number relative to their activity, although TRAP staining allows for quantification of total bone 

surface in contact with mature active osteoclasts. 

Osteocytes are an interesting part of bone biology. Thought to be osteoblasts embedded 

into the matrix during remodeling, these unique cells live in tombs called lacunae. Recent 

research has shown that they play an active role in bone signaling and remodeling. Osteocytes 

extend processes through a network of tiny spindle like pores called canaliculi extending off of 

their lacunae. Canaliculi are thought to be used for intercellular signaling and the sensation of 

mechanical forces (mechanotransduction) through fluid flow or direct deformation. Recent 

findings suggest that osteocytes undergo apoptosis when damage occurs in the surrounding 

matrix to actively signal the need for local remodeling. Although the precise mechanism behind 

the signal generation is yet unclear, it has a significant impact on osteoporotic disease and 

osteocyte death-related complications from glucocorticoid use. 31 
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2.4 Bone is a Tri-phasic Organic Composite 

Now that a rudimentary understanding of major bone cell populations has been discussed 

as it relates to the remodeling of bone material and structure, a more detailed analysis of the bone 

as a biological organic composite material is merited. Analyzing bone by weight, it is composed 

of 3 major chemical phases, namely mineral, collagen, and water. The mineral phase makes up 

approximately 60% of bone by weight, and is composed largely of carbonated calcium apatites 

either deposited directly upon the collagen scaffold by osteoblasts or accumulated over time. 

Interestingly, research has shown that this deposition is not uniform across the bone matrix and 

tends to occur more frequently in pockets at the C and N terminals of the collagen molecules 

within a fiber, though it is also bound directly along the length of the molecules26. The mineral 

phase of bone is responsible for most of bones material strength and resistance to compressive 

loading forces32. As time goes on and bone tissue ages, carbonate substitution into the crystal 

lattice increases, replacing phosphate groups in the apatitic crystals33, 34. There is also significant 

evidence to suggest that crystals grow longer and thinner as tissue ages35, 36. 

Type I fibrillar collagen composes 30% of bone by weight, and is thought to be 

responsible for bones mechanical toughness, and its resistance to bending and tensile forces. 

Collagen is deposited by osteoblasts organized into highly oriented lamellar structures. Briefly, 

type I collagen is synthesized as a triple helical trimer composed of two α-1 and one α-2 

procollagen molecules, each comprised of a typical Gly – X – Y repeating amino acid structure, 

where X or Y is usually either proline or hydroxyproline, respectively. Assembly of collagen 

occurs according to oxidation by prolyl and lysyl hydroxylases. After oligosaccharide post-

translational modifications, peptidases cleave the molecule at both the C and N terminals to form 
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tropocollagen. Finally, lysyl oxidase aids in forming covalent crosslinks between α -chains to 

form collagen fibrils. Collagen cross-links are also formed between molecules resulting in a large 

fibrillar network. 

The last and perhaps least explored major component of bone by weight is water, 

comprising approximately 10% of bone’s weight. Water can be found in all levels of bone pores 

from Haversian canals to canaliculi (pore water), but is also found between molecules and 

directly incorporated into bonds between mineral and collagen molecules (bound water). Nuclear 

magnetic resonance (NMR) differentiates between bound and pore water, and has been found to 

show significant correlation between bound water content and bone bending strength, pre-yield 

toughness37 and fracture toughness38. 

In spite of a relatively small contribution to the overall weight of bone tissue, a number of 

non-collagenous proteins including osteopontin, osteonectin, and osteocalcin have a significant 

impact on the mechanical integrity and biological function of bone. These proteins are secreted 

from osteoblasts and used as regulators of remodeling both locally and systemically. Because of 

its pro-osteoblastic nature, osteocalcin is associated with bone mineralization and calcium ion 

homeostasis. Outside of bone, osteocalcin is a hormone intricately involved in the body’s 

metabolic functions, believed to be acting upon pancreatic beta cells to regulate insulin release39, 

and upon adipocytes to release adiponectin, thereby increasing insulin sensitivity39(so far 

demonstrated only in mice). Osteonectin is an extracellular matrix glycoprotein that is capable of 

so separately binding both collagen and the mineral phase of bone, promoting mineralization in 

immature tissue 40. Interestingly, osteonectin also has a promoting effect on matrix 

metalloproteinases, and is therefore implicated in the metastasis of cancer to bone 40. 
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Osteopontin, which is also known as bone sialoprotein, is another glycoprotein that forms a small 

but crucial part of the bone’s extracellular matrix. Osteopontin strongly binds available calcium 

ions inhibiting further mineralization. Osteopontin is also implicated as an anchor for osteoclasts 

to begin the remodeling process of bone 40. Although these proteins are small and make up only a 

minor portion of bone’s total volume, they are potent and the information presented here only 

represents a small portion of the known functions that they can have when released into the 

serum to interact with other physiological systems. Beyond the three prominent non-collagenous 

proteins described, and it is notable that bone also serves as a significant reservoir for growth 

factors including members of the TGF-β family 17. 

More recently non-collagenous proteins have also been found to be incorporated in the 

matrix. As embedded cues, matrix remodeling or damage could result in their release and 

initiation of associated signaling pathways. Moreover, Poundarik et al. showed these non-

collagenous proteins have a crucial role in the mechanical integrity of bone as they form small 

but important dilatational bands surrounding larger fibrillar structures of collagen and protecting 

them from microdamage30. 

2.5 Formation, Adaptation, and the Aging of Bone 

As a highly organized tissue undergoing constant damage from repeated loading as well 

as chemical strains due to bone’s other roles in the homeostasis of physiology, bone’s material 

properties would readily degrade not for complex highly orchestrated processes for formation, 

growth, adaptation, and repair. Because investigation of the processes of endochondral bone 
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formation and fracture repair are not investigated in this thesis, they will only be described 

briefly for the sake of contrast to modeling and remodeling processes. 

Long bones in the body are formed by the process known as endochondral ossification. 

Briefly, the body forms a hyaline cartilage scaffold surrounded by a dense connective tissue 

layer which becomes the periosteum, rich with osteoprogenitor cells. Once osteoprogenitors 

differentiate into osteoblasts, bone formation around the cartilage leads to formation of a collar 

of bone resulting in appositional growth. Osteoblasts form more bone, while osteoclasts digest 

tissue to form the medullary cavity. Secondary ossification at epiphyseal plates (at each end of 

the bone) continues a similar mechanism of cartilage growth followed by replacement by bone 

while appositional growth beneath the periosteum increases bone diameter.  

Even as bone is being formed, it is undergoing stress and strain sensed by cells. Our 

understanding of how bone grows and adapts in response to changing forces is one of the oldest 

stories in the collaboration between engineering and orthopedics. Carl Culmann, a civil engineer 

researching crane designs, was visiting the anatomist Georg Hermann von Meyer when he was 

shocked to find that a cross section of a femoral head contained trabecular and cortical structures 

that closely mimicked the force vectors (stress trajectories) in his latest crane design41. Published 

transcriptions on their subsequent discussion of the biological meaning of this observation 

eventually became the motivation behind Julius Wolff’s work on bone adaptation, which we now 

know as Wolff’s Law: the theory that healthy bone actively adapts to the forces under which it is 

placed42. We now know that bone has diverse and complex mechanisms to accomplish these 

adaptations43. 
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Bone undergoes modeling processes as a method to withstand greater forces often 

sustained due to growth43, 44. Modeling happens on opposite surfaces of the bone such that 

osteoclasts are resorbing bone on one surface, usually the endocortical surface, while osteoblasts 

are depositing new bone tissue on the opposite surface (usually periosteal; see Figure 2.2). In the 

case where this results in increased cortical thickness, it is also known as appositional growth; 

however, modeling can also be uneven on the two surfaces resulting in a net loss of tissue. 

Because bone responds to forces in this way, setting broken bones is important for proper 

healing. Moreover, in situations where bones are malformed, like bowed tibia encountered with 

mutations in neurofibromatosis45, improper modeling in response to unusual forces may lead to 

progressive downward spiral that requires surgical intervention. 

Because modeling happens on opposing surfaces of the bone, such that it is unlikely that 

the cell populations are in direct communication, significant efforts have been placed into 

engineering models to better understand the possible role of mechanosensation in this adaptation. 

Modern analytical models to explain bone modeling are often more complex analogues of 

Harold Frost’s original mechanostat theory46. This theory postulated that excessive sensation of 

force indicated the need for more bone tissue and would stimulate growth, while a lack of force 

sensation indicated excess of tissue and would stimulate resorption. The model also accounts for 

a range of homeostasis in which normal force sensation leads to no net change in tissue volume. 

The development of adaptive elasticity theory by Cowin et al. suggested a surface model that 

depends upon the difference in strain between what the cell observed and a theoretical target 

value representative of tissue homeostasis47. With increases in computing power, these models 
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have grown into adaptive finite element models with increasingly complex algorithms, even 

including the presence of cell populations in calculations. 

While modeling is thought to handle bone growth, remodeling is responsible for bone’s 

mechanisms of damage repair43, 44. Unlike modeling, remodeling occurs on one surface or more 

frequently within tissue volumes, in which osteoblasts and osteoclasts work in close physical 

proximity as a cone-shaped basic multicellular unit (BMU) to remove and replace damaged 

tissue (Figure 2.1). Osteoclasts form a cutting cone at the leading edge of the BMU resorbing 

damaged tissue, followed by osteoblasts that gradually fill in the void, resulting in the circular 

lamellar pattern of matrix layers we know at osteon. The mechanisms initiating the formation in 

guiding the movement of the BMU are not fully understood; however, leading theories suggest 

the signal might originate from osteocytes undergoing apoptosis after mechanosensation of 

damage.  

Significant problems arise when the rate of remodeling becomes imbalanced. In normal 

remodeling, osteoblasts and osteoclasts are inherently linked through local cellular mechanisms 

already described. In situations like glucocorticoid-induced osteocyte death, the accumulation of 

damage 31or excessive osteocyte signaling leads to the formation of a large pores instead of 

proper osteons with Haversian canals. Subsequently, compromised local mechanical properties 

cause further increases in tissue damage accumulation, and it becomes easy to envision a 

downward spiral of bone loss. One of the most significant questions that remains unanswered 

about the remodeling process is the mechanism by which osteoblasts know to lay down new 

lamellar structures with the proper orientation to resist the forces encountered. 
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While it is unclear how the process begins, one of the leading theories behind the 

progression of osteoporosis is the uncoupling of proper behavior in modeling and remodeling 

processes leading to decreased bone growth and net resorption of tissue. Hypothesized 

mechanisms vary greatly, and research is currently underway to determine how these processes 

deteriorate during aging. Load-bearing exercise may play an important role, wherein insufficient 

physical activity could lead to a decrease in mechanosensation. Any change in the cell death 

mechanisms of osteocytes with aging including autophagy instead of apoptosis31, could impact 

the initiation of remodeling. Alternatively, decoupling of the relative activity of osteoblasts and 

osteoclasts could shift the actions of remodeling away from the normal homeostasis of bone 

volume, as in lytic cancer17. If the rate of remodeling is inherently insufficient to repair all bone 

damage, gradual entropy would lead to increased damage accumulation and incomplete tissue 

replacement. 

To help us better understand the natural course of modeling and remodeling mechanisms 

in bone, diseases associated with genetic defects can be viewed in terms of their improper 

modeling and remodeling, and by isolating a single aspect of the complex process, directed 

hypotheses may be evaluated. The following are possible example interpretations of how the 

phenotypes of genetically altered animal models could be related to deficits in bone adaptation 

mechanisms. The genetic knockout of activation transcription factor 4 (Atf4), a signaling 

molecule required for the proper differentiation and function of mature osteoblasts that has been 

associated with Coffin-Lowry syndrome48, results in dwarfism and decreased bone mechanical 

toughness as well as fracture toughness. A surprising lack of change in bulk bone tissue 

composition implies a possible difference in organization; therefore, changes in osteoblasts may 
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result in improper organization during lamellar remodeling. MMP9 or matrix metalloproteinase 9 

is an enzyme used by osteoclasts to break down the collagen in bone. When MMP9 is removed 

using genetic knockout in mouse model, a phenotype of dwarfism and bone brittleness is 

observed49. Because of the role of osteoclasts in the resorption of damaged bone tissue during 

adaptation, the brittle phenotype could be the result of microdamage accumulation that is not 

fully cleared in this deficient system. Thus, one can see how it is important to analyze bone 

comprehensively in terms of its systems biology and biochemistry in order to glean a greater 

understanding of the mechanisms underlying age and disease-related loss of fracture resistance. 

2.6 The Complex Organizational Hierarchy of Bone: an Engineering Perspective 

From an engineering perspective, bone is a complex organic composite with a discrete 

organizational hierarchy spanning several length scales. For the sake of this review, the 

organizational hierarchy of bone is limited to the cortical compartment analyzed throughout this 

thesis; however, trabecular bone exhibits a similar organizational structure. At the nanoscale 

(~0.5µm), type I collagen fibrils are formed and covalently cross-linked to one another at lysine 

and hydroxylysine residues, forming parallel sheets with staggered ends, resulting in gaps on the 

order of 10s of nanometers. Mineral crystals of semi-crystalline hydroxyapatite with carbonated 

substitutions are deposited onto the matrix and nucleate in the gaps between fibers44. At the 

submicron level (~3-7µm), lamellar structures of ordered collagen orientation are formed. 

Sequential lamellae are known to have different concentrations of mineral and staggered 

collagen orientation50-53.  
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Concentric circles of lamellae around the central Haversian canal form the bone’s 

primary microstructural (10-500µm) unit, the osteon. Osteons vary in structure based on 

anatomical location, and 3 major types of osteons have been identified based on the collagen 

orientation within their lamellae51, 54-58. Type I osteons are characterized by collagen orientation 

in all lamellae running transverse to the direction of the Haversian canal. These osteons are 

mostly associated with anatomical regions of predominant compression forces59. In the femoral 

midshaft this trend can be seen in the medial quadrant of the tissue. Type II osteons are 

comprised of lamellae that alternate sequentially with collagen orientation running either 

longitudinal or transverse with respect to the Haversian canal. These osteons are associated with 

mixed-mode forces. Type III osteons are comprised of lamellae with predominantly longitudinal 

collagen orientation, are considered to be resistant to tensile forces, and are frequent in the lateral 

femoral midshaft59.  

The other dominant microstructural tissue type is called interstitial space. Interstitial 

spaces are effectively defined by exclusion, such that they encompass all tissue that can no 

longer be classified as a complete osteon. Because of the constant remodeling of bone, interstitial 

space is considered to be the older tissue that remains from previous remodeling processes. This 

tissue has a higher degree of mineralization and increased markers of tissue age, including 

carbonate substitution33, 60, 61. Cortical bone at the microstructural length scale is effectively 

composed of a network of osteons in their surrounding interstitial space. At the macro length 

scale (> 1 mm), the whole bone can then be seen as a structure with an organized cortical shell 

filled with trabecular bone, the structures in which are shaped to resist the primary of loading. 
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Just as the mineralized matrix of bone has its hierarchy of organization, so too is the 

network of pores that is responsible for circulation and innervation in bone. Fluid flow through 

the pores is responsible for nutrient supply, waste removal, and mechanosensation of tissue 

damage. At the nanoscale, there’s a network of canaliculi, tiny pores surrounding transverse 

processes that connect neighboring osteocytes. Thought to be responsible for mechanosensation, 

osteocytes reside in slightly larger pores called lacunae, residing at the lower end of the 

microstructural length scale. Recent evidence shows that osteocytes have the capability to 

gradually remodel their lacunae62. At the microstructural level, the dominant feature is the 

Haversian canal, the main pore in the center of osteons that contains blood vessels and or nerves. 

Another network of pores called Volkmann’s canals, running transverse to the axes of the 

osteons, connects Haversian canals63. Note that in materials like bone64, pores and flaws act as 

stress risers65-67. 

Improper changes at any level of the organizational hierarchy can result in to an 

imbalance of structure and function, leading to functional inequivalence. Such changes could 

result in a decrease in heterogeneity, an imbalance between mass and strength, a change in the 

resistance to the dominant force profile, or an imbalance in the relative composition of mineral 

and collagen. As biomedical engineers, before we can effectively evaluate why bone fails as a 

material, we first need to isolate where bone fails. Specifically, it is crucial to determine where 

bone fails first, and then backtrack to isolate the underlying mechanism of the failure. Therefore, 

it is necessary to be able to measure bone at all of its length scales. 
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2.7 The Clinical Inadequacy of Current Diagnostics 

The clinical gold standard for the measurement of fracture risk is DXA, dual energy x-ray 

absorptiometry, a technique where the acquisition of x-ray projections at two separate energies 

removes the soft tissue signal from the measurement of bone, effectively yielding projection-

based measures of mineral termed areal bone mineral density (aBMD). Note that this is not the 

true bone mineral density, which would be a volumetric measurement, because it is flattened in 

one dimension by the projection based acquisition. High resolution, state-of-the-art images for 

tracking bone loss and evaluating treatment efficacy measure patients at the lumbar spine and 

femoral neck. Higher throughput screening at a low resolution is often conducted on the 

calcaneus, phalanges, and distal radius. Scans frequently last 10 to 30 minutes, with 

manufacturers listing radiation exposure at less than that of a cross-country domestic flight. The 

outcome of the DXA test is termed the T-score, a measure of the number of standard deviations 

of the individual from a population mean, where the population is determined by age, race, 

gender, and geographic location6, 7. However DXA is fundamentally limited to the mineral phase 

of bone. This makes DXA a strong predictor of bone strength68, but a relatively poor predictor of 

other material properties, including fracture toughness69. Kanis and collaborators have tracked 

and developed DXA for osteoporosis screening, showing the aBMD alone does not fully explain 

fracture risk6, 7, 70, 71. In a 10 year post hoc study of fracture risk probability versus T-score 

measurement7, the T-score was not linear relative to fracture risk, and a different curve was 

determined for each age decade. Effectively people of different age receive the same T-score for 

significantly different fracture risk, meaning there is a significant population of undiagnosed 

people who could potentially benefit from treatment. Therefore there has been significant effort 



  

 

29 

in the development of the fracture risk calculator by the World Health Organization entitled 

FRAX, which uses epidemiological factors including family history, concomitant health risk 

(smoking, drinking) and geographic location72-74. Because of the long lead time required to 

collect sufficient data to develop such a large population-based model, specific risk factors like 

diabetes are still under development11, 75. Despite significant increases in the accuracy of patient 

estimates, fracture risk is still not fully explained.  

Many research groups have therefore focused on developing more advanced analogues of 

X-ray based techniques. Laboratory investigation often makes use of micro-computed 

tomography (µCT) which utilizes higher radiation to achieve resolutions as well as one micron 

with the added benefit of 3-D reconstruction to yield true tissue mineral density and a separate 

measurement of tissue porosity. However the machines function by reconstruction of a high 

number of planar projections, and their resolution is directly proportional to the distance between 

the excitation source and the detector, effectively limiting maximum sample volume. This often 

means that the level of radiation involved in µCT scanning is too high for clinical use. To 

circumvent radiation exposure while preserving 3-D reconstruction and measurements of 

porosity, a new technique named peripheral quantitative computed tomography or pQCT has 

been designed for application to distal limbs76, 77. The technique allows for detailed descriptions 

of porosity in trabecular structure; however, this is again achieved through close source detector 

spacing, significantly limiting the technique to applications of the distal radius, calcaneus, and 

other peripheral sites. Investigations in the use of this technique have applied engineering finite 

element modeling to the 3-D reconstructions to achieve patient specific estimates of mechanical 

properties and failure criteria 76, 78, 79. 
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Given our knowledge that bone microstructure varies among anatomical sites54, 55, 57 and 

load bearing profiles, the potential of this technique may be limited by the assumption that 

distant anatomical sites are indicative of fracture risk throughout the body. Indeed the distal 

radius suffers from Colle’s fracture, but this is not the most significant source of nonunion, nor 

morbidity and mortality among osteoporotic fractures1. Jepsen et al. showed that anatomical 

changes are often local and not global such that certain subpopulations have differences in 

skeletal traits80, 81. Specifically citing slenderness, or the ratio between cortical thickness and 

bone length, his findings imply that different sets of skeletal traits will result in different 

relationship between varying anatomical site, such that the distal radius might be representative 

of hip fracture for certain subpopulations, but not for others80. 

Despite all advances, the relationship between age-related fracture risk and diagnostic 

criteria remain nonlinear, leading to the hypothesis that there are unexplained factors of “bone 

quality” beyond areal bone mineral density that are essential for the complete explanation of 

fracture risk82. The immediate goal of improving fracture risk assessment is to achieve an 

accurate diagnosis of osteoporosis prior to presentation with fragility fracture. As simple as this 

may seem, for many patients, the diagnosis of osteoporosis is a self-fulfilling prophecy, since 

they are only diagnosed after they are already suffering from fragility fractures. This is crucial 

considering that the current treatment for osteoporosis is bisphosphonate therapy (a chemical 

analog to diphosphonates or pyrophosphate), which effectively inhibits and kills the osteoclast 

population. This prevents tissue resorption and subsequently tips remodeling and modeling 

processes towards increasing bone mass. This treatment may be much more effective if applied 

early in the degradation of bone tissue. However, recent evidence linking atypical femoral 
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fractures to bisphosphonate treatment83 suggests decreased tissue heterogeneity84 and therefore a 

likely increase in the accumulation of microdamage allowing for unstable crack propagation and 

brittle failure85, 86. Therefore physicians are now revisiting bisphosphonate treatment regimens87, 

as well as the prophylactic use of bisphosphonates on a patient by patient basis.  

However, before the role of tissue heterogeneity on fracture risk can be established, there 

is a need to better understand the underlying mechanisms of bone failure. Because DXA 

measures the mineral phase of bone, it is well accepted that it offers a powerful assessment of 

bone strength68, but examining age-related trends in biomechanical properties indicates that the 

loss of bone toughness per decade age is significantly greater than the loss of bone strength88. By 

modeling results from pQCT, it may be possible to achieve better predictors of bone quality 

including criteria for stress, strain, and failure mode. However, the diagnostic modalities are still 

ignoring the crucial contribution of the collagen and water phases of bone to its fracture 

resistance. Therefore other techniques must be applied to establish the role of mechanical 

properties beyond strength as they relate to clinical fracture. Subsequently, a multimodal 

expression of bone mechanical quality could provide a better expression of fracture risk. 

Among the diagnostic modalities being evaluated for the assessment of fracture risk, 

nuclear magnetic resonance shows promise due to its clinical relevance via MRI as well as its 

unique ability to directly measure the water content of bone, separating chemically bound water 

from water in pores using differences in the relaxation time of hydrogen ions. Horch et al. 

established the contribution of each chemical peak89 and successfully related the contribution of 

water to bone strength90, 91. He then translated the technique to clinical machines by developing a 

unique pulse sequence92, 93, allowing for the volumetric clinical imaging of bone water content. 
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Nanoindentation, although not clinically relevant, measures nanoscale mechanical 

properties directly using a diamond tipped probe94, 95. After the precise shape of the probe has 

been characterized (sphere, pyramidal Berkovich tip, etc.), it is depressed slowly into the tissue, 

held for a defined time, and then gradually unloaded. The resulting force-displacement curve is 

convolved with the probe geometry to reach an analytical solution for nanoindentation hardness, 

modulus, and stiffness derived from the unloading slope of the curve96, 97. It is important to note 

that these nanoindentation properties are not direct analogues for macro scale properties of the 

same name. While this technique allows for precise quantification of nanoscale material 

properties, it is extremely sensitive to sampling conditions, including temperature, surface 

roughness, and device frame stiffness. Furthermore, any minor changes in the tip geometry 

require regular calibration to plastic standards. 

In a prototype device directly measuring bone mechanical properties at the microscale 

level, Hansma et al. applied the theories of the Rockwell micro-hardness test and 

nanoindentation to develop clinical reference point micro-indentation (RPI) system98. After a 

small incision and local anesthesia, the device engages the bone at a superficial site (anterior 

tibia) with a hypodermic needle. When the needle is securely pressed against the bone, the 

device cyclically drives a conical indenter head deeper into the tissue. The measurement of 

indentation distance increase (IDI) relative to the hypodermic needle reference point was 

associated with osteoporotic fragility fracture99 as well as bisphosphonate related atypical 

femoral fractures in small cohorts of patients100. While the precise mechanical meaning of this 

outcome metric has not been fully established, several users have suggested that the test itself 

create microcracks (data not published). The same group has also developed another instrument 
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(OsteoProbe™) for the direct measure of mechanical properties based off of a small-scale impact 

test, rather than the cyclic indentation increase101. These techniques show promise as potential 

measurements of bone quality beyond mineral density that could help to complement current 

clinical protocols and better explain fracture risk. 

2.8 The Mechanical Failure of Bone: Advanced Laboratory Tests Approach Reality 

Association between clinical diagnostics and laboratory mechanical tests of structure and 

material properties help determine mechanisms of action and driving forces of human pathology. 

However the goal of statistical correlation doesn’t necessarily indicate that fracture risk 

prediction. Bone can fail in many ways including tensile failure, compressive failure, mixed-

mode bending, torsion, buckling, fatigue failure, and crack propagation102. For each of these 

failure modes, there are unique tests and outcome metrics. An idealized stress-strain curve from a 

three-point bend test is included as a frame of reference in Figure 2.3, illustrating the calculation 

of the Young’s modulus, bending strength, and toughness. Young’s modulus is calculated as the 

slope of the linear elastic portion of the force displacement curve, and it represents the 

relationship between elastic stress and strain. Bending or flexural strength, is calculated as the 

maximum stress undergone by the material at the time of failure, and is representative of a 

material’s ability to withstand loading. Toughness was measured as the area beneath the force 

displacement curve, and is defined as the ability of material to deform (undergo work) without 

permanent damage or failure. Strength and toughness are often normalized to cross-sectional 

area to minimize the influence of structure, and better represent properties of the material itself. 
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 In many natural materials, including for some scenarios with bone, there is an inherent 

conflict between strength and toughness103. For example, polymer materials like rubber bands 

exhibit high toughness but low strength (weakness), whereas glass exhibits very high strength, 

but remarkably low toughness. All of these material properties are useful in the evaluation of 

bone quality; however, they all effectively exclude the presence of pores and flaws in the 

material. Bone, like all materials, has inherent flaws. The ability of a material to resist the 

generation of damage accumulation, crack initiation, and failure by crack propagation is termed 

its “fracture toughness”. In pure homogeneous materials, fracture toughness often follows 

reasonably simplistic equations because the material usually exhibits linear elastic behavior. As 

an organic heterogeneous porous composite, bone exhibits non-linear elastic fracture toughness 

properties, termed elasto-plastic fracture toughness. As the name implies, crack growth is no 

longer linearly based only upon stress intensity induced because of crack toughening 

mechanisms. 

A brief history of fracture mechanics is included here to discuss relevant applications and 

technical advances as they apply to the methods utilized in this thesis. Fracture toughness 

became crucial to our understanding of the mechanical behavior of materials in 1921, when 

Griffith showed that the failure criteria of glass was significantly lower than the theoretical 

predicted failure from the energy of the atomic bonds104, generating a theory that failure occurred 

along the weakest link in the material (damaged regions, cracks, pores). When welded steel plate 

warship designs in World War II famously split in half at the welds under their own weight, this 

theory gained attention. Irwin extended this theory to include the coalescing of cracks in the 

damage region, resulting in gradual crack propagation testing, subsequently relating stress 
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intensity to the length of crack growth in a resistance curve or R-curve105. Rice formulated the J-

integral which in linear elastic fracture mechanics is equivalent to the strain energy release 

rate106, 107, explaining resistance to overall crack growth with an area-under-the-curve 

measurement that can also be used to incorporate nonlinearity in elasto-plastic materials. In 

heterogeneous organic composites like bone, nonlinear elastic behavior, also known as elasto-

plastic behavior, violates some of the traditional assumptions of these original fracture 

mechanics equations, necessitating modification of calculation and testing techniques. The 

calculation of R-curves is practically tested by generating a defined defect using guidelines in 

ASTM standard E1820108. Because the fracture mechanics of materials is often anisotropic with 

respect to organization, there are numerous methods for the generation of samples depending 

upon the fracture mode to be analyzed. Because bone is often analyzed in mode I (opening; see 

Figure 2.4) relative to the orientation of osteons, the discussion in this thesis is subsequently 

limited to the three-point bend of a single edge notched beam (SENB) specimen in mode I 

opening. In the case of this thesis, all fracture toughness tests were conducted in mode I opening 

with the notch orientation transverse to the long axis of the bone sample and therefore the 

majority of microstructural features.  

The fracture toughness specimen dimensions are also critical for the appropriate measure 

of fracture toughness. Specifically, a specific ratio of dimensions is necessary to ensure adequate 

thickness relative total crack propagation length, so that the sample achieves plane-strain 

conditions. Subsequently, the calculations of stress intensity factor K becomes relatively 

constant, thereby representing the maximum stress intensity the material can withstand before 

failure by crack instability. This occurs because the region of sheering at the edges of the sample  
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no longer occupies a significant percentage of the total sample volume. Thus the value of the 

critical stress intensity for crack initiation KIc can be calculated. Under cyclic loading conditions, 

the crack will gradually grow and the relationship between the critical stress intensity observed 

for each crack growth can be defined in proportion to the increase in crack length, generating the 

critical stress intensity for crack propagation Kgrow from the R-curve. Conducting R-curve 

fracture toughness testing on bones is effectively pushing the limit of the method due to the small 

volume of available cortical bone relative to the size of structural features (osteons and pores). 

The fit of the linear regression necessary to generate Kgrow requires a finite number of crack 

propagation events. For example, with exceptionally poor material properties or extraordinarily 

high porosities, the crack can become instantly instable and these assumptions are violated, 

precluding the calculation of Kgrow
38. Finally, because the exact crack length in a three-

dimensional material cannot be accurately measured during the test without tomographic 

imaging109, most protocols require the estimation of crack length using a mechanical 

compliance-based equivalent. 

Moreover the use of fracture toughness testing in small rodent bone is limited by the 

inability to machine the samples to defined dimensions. Rather, the Richie lab developed a 

method that modifies the equations assume the condition of a uniform pipe, allowing for 

geometry factors that explain the non-cylindrical shape of mouse femurs110. However the method 

is derived from the analytical solution of finite element model for the design of nuclear steam 

pipes111 which assumes a homogeneous thin-walled pipe. Given the relatively thick cortical walls 

of the murine femur, the assumption may not be valid for all samples. Stability of the method 
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also depends upon the critical angle of the notch generated through the cross-section of the pipe, 

requiring exacting standards to generate consistent results between samples. 

Despite various shortcomings of fracture toughness testing for the analysis of bone, the 

method allows significant insights into physiological mechanisms of material failure. Bone has a 

rising R-curve, such that as the crack progresses, various mechanisms cause crack toughening; 

therefore, more energy is needed for continued progression of the crack. Damage in the 

peritubular plastic zone preceding the crack tip (including pores and microcracks) leads to 

mechanisms of intrinsic toughening112-114. Bone has also been observed to demonstrate ligament 

crack bridging115, 116, such that unbroken collagen fibers span the gradually growing crack and 

impeded opening. Bone also displayed significant time-dependent crack blunting117, and 

propagating cracks have been observed to deflect around microstructural features like osteons118. 

These findings imply that there are more mechanisms at play in the fracture resistance of bone 

than mineral composition and the strength that it imparts. Therefore, bone quality investigations 

now include expressions of water and collagen content, composition, structure, porosity, 

collagen packing, and the interplay between mineral and collagen phases, in an effort to capture 

more physiologically and clinically relevant expressions of fracture risk. 

Examining bone quality with state-of-the-art fracture mechanics and clinically relevant 

novel diagnostics allows us to quantify how each material phase of bone contributes differently 

to fundamental mechanical properties. It was already established that the mineral phase was 

responsible for bones material strength68, and bound water correlates to toughness and fracture 

toughness37, 38. It is widely accepted that collagen is responsible for the toughness of bone119, 120, 

and this has been measured by FTIR121; however, ideally a diagnostic to complement clinical 



  

 

40 

DXA would be able to measure all 3 phases at once, providing an avenue for the investigation of 

the interplay between the material components. 

2.9 Raman Spectroscopy Concurrently Measures the Mineral and Collagen in Bone 

 Raman scattering is an inelastic process by which a small percentage of the light 

impinging on chemical bonds in a material undergoes a slight shift in wavelength. That shift is a 

relative to the input wavelength and based upon the energy of the chemical bond encountered. 

Although the exact physical mechanisms of Raman scattering are still under debate, current 

theory is delineated here; briefly, a photon excites the chemical bond to a metastable state, and 

when the molecule relaxes, it releases a photon with either one vibrational energy level more or 

less energy than the original photon (see Jablonski Diagram, Figure 2.5). A Stokes shift or 

increase in wavelength results from the loss of energy from the individual photon to the chemical 

bond encountered. While probabilistically less likely, anti-Stokes shift results in a decrease in 

wavelength due to an increase in photon energy imparted by the molecule. The percentage of 

light distributed by wavelength shift produces a spectrum of relative composition of dipolar 

covalent bonds. Because the shift in wavelength is relative to the input wavelength, it can be 

converted into a wavenumber shifts such that Raman Spectroscopy (RS) is inherently 

independent of the excitation wavelength. 

This was first discovered by C.V. Raman in 1928 as part of a series of investigations into 

the nature of light diffraction. Using sunlight and a pair of tuned monochromatic photographic 

filters, he observed that a small portion of the light had shifted in wavelength and was therefore 

not blocked by the second filter in the optical path. Placzek pioneered the use of Raman between  
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1930 and 1934, also discovering the inherent polarizability of the Raman bands based upon the 

chirality and birefringence of the molecules studied. Unfortunately, a lack of available RS 

sources resulted in few applications, and instead, infrared spectroscopy was used to test the 

vibrational energy of chemical bonds. However, the advent of lasers in 1960 122, 123 later provided 

a convenient monochromatic source allowing for greater flexibility in the use of Raman 

spectroscopy. Unlike infrared spectroscopy, Raman spectroscopy is possible on wet, thick 

samples without destructive preparation methods. Moreover, the fact that the wavenumber shift 

occurs with respect to the input allows for the same Raman spectra for all excitation 

wavelengths, subsequently allowing the user to choose the wavelength contextually to avoid 

absorption in the target material. In biological tissue, this range is known as the “Optical 

Window”, where a decrease in protein absorption coefficients coincides with a decrease in 

water’s absorption coefficient, resulting in less heating in the near infrared range124. This 

flexibility allows for applications in tissue when using near infrared laser diodes. In the early 

applications to the analysis of bone quality, the biochemical assignments of peaks in Raman 

spectroscopy were validated by known shifts in the infrared spectrum; however, infrared 

spectroscopy (IR) and Raman spectroscopy (RS) are fundamentally sensitive to different 

molecules. Because of the physical nature RS (the theory of which involves phonons and group 

theory), RS is fundamentally more sensitive asymmetric bonds with dipole moment; however, IR 

is sensitive to symmetric bonds125. The mode of data collection is also fundamentally different 

between the two technologies, such that IR spectroscopy is driven by absorption and measured in 

transmission through thin sections, while RS is driven by scattering and measured in reflection; 

therefore, results between two modalities do not always align. Unfortunately, between the two 
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technologies, RS instrumentation usually have a significantly lower signal to noise ratio of 30:1 

as compared to the IR signal to noise ratio on the order of 1000:1 126. Nonetheless, RS retains the 

distinct advantage of clinical relevance. Near infrared probe-based instrumentation allows for 

minimal heating and nondestructive data acquisition without chemical drying or the need to 

create thin samples. RS also has disadvantages, namely the noise of concurrent tissue florescence 

that can obstruct the signal, requiring careful algorithmic subtraction to isolate the true Raman 

spectrum127. Finally, the most significant recent development in RS that is utilized in this thesis 

is the manipulation of inherent polarization sensitivity that allows RS to be sensitive to the 

organization of birefringent tissues128-131.  

2.10 The Polarization of Light Affects its Interaction with Materials 

Light can be fundamentally viewed as an electromagnetic wave, such that each wave has 

its own oscillating orthogonal electric and magnetic fields. In this sense, all light is essentially 

polarized in the direction of its electric field. When light is viewed as a photon using the particle 

theory of light, any photon that impinges upon matter is either scattered or absorbed132. For this 

discussion of polarization, I will focus on scattering and assume that no significant absorption 

occurs as light interacts with the materials. When light impinges upon or makes contact with the 

new material, the subsequent direction of light travel is determined by Snell’s law, based upon 

the angle between the light and the surface of contact, as well as the index of refraction. Index of 

a fraction is a measure the relative velocity of light within the material132. The amount of light 

transmitted into the material as opposed to the percentage which is reflected back is determined 

by Fresnel’s Laws and also depends upon the angle of incidence and the difference in the index 
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of refraction between the two materials through which the light is traveling132. Once the light 

enters the material, the probabilistic likelihood of a scattering event that changes the trajectory of 

the light is expressed by the tissue scattering coefficient (µs), while the angle of most probable 

scattering is expressed by the scattering anisotropy (g)124. It is important to know that each of 

these three material properties is dependent upon light wavelength. However, certain materials 

display birefringence, an anisotropy of the index of refraction based upon material orientation132. 

Essentially, light polarized at different orientations relative to the material structure will travel at 

different speeds through the material. Birefringent materials are often quite chiral or crystalline 

in nature. Not surprisingly, the collagen and mineral in bone are both birefringent, and this 

property has been used to measure the orientation of collagen and mineral within the osteon 

since as early as 194959, 133. While the precise measure of orientation using Raman spectroscopy 

is convolved with inherent sensitivity to composition, it is possible to measure organization by 

comparing changes in how peaks vary as a function of polarization.  

Light polarization and the birefringence of materials also play significant roles in the 

function of the modern Raman instrument. Because of the nature of laser light, an amplified 

stimulated emission, most lasers emit light that is not only monochromatic but also polarized. 

Therefore, laser-based Raman instrumentation inherently uses polarized light and is sensitive to 

chemical organization. In optics, the purification of light wavelength (as needed in RS) is often 

accomplished utilizing dichroics, which effectively manipulate wavelength-specific 

birefringence to eliminate undesired wavelengths. Moreover, the holographic grating often 

employed in Raman spectroscopy utilizes polarization to help disperse the light (based upon the 

slight shifts in wavelength) onto a detector to create the final Raman spectrum. The collection 
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and delivery method of light in the instrument will also affect the ability to detect polarization in 

the Raman spectrum. Light undergoing scattering may not preserve its polarization, and this is 

more likely in turbid media like bone. Therefore confocal microscopy can be used to limit the 

sample volume and subsequently the number of scattering events encountered by collected light, 

effectively preserving polarization134. Ultimately, commercial RS instrument often have 

polarization sensitivity when utilizing an open beam. Importantly, probe-based instruments based 

upon standard fiber optics effectively scatter the polarization state of the illumination; however, 

if polarization preservation is desired, special polarization-maintaining fibers can be 

implemented. In summary, both the instrument and the sample must be carefully analyzed to 

determine system polarization and sensitivity. Since bone is birefringent and organized, 

polarization in Raman instrumentation logically impacts the Raman measurements of bone 

composition. The empirical support for this statement is located in Chapter 3135. However, it is 

important to note that the sensitivity of polarization to bone organization, if controlled, is not 

necessarily an impedance to the assessment of fracture risk. Measuring organization and 

composition, separately by manipulating polarization, or concurrently using inherent system 

polarization allows for a new dimension of tissue analysis.  

2.11 Raman Sensitivity to Material Changes is Not Limited to Composition 

The Raman spectrum of bone could be thought of as existing on 3 axes: polarization, 

wavenumber, and intensity. As such, five different measures can be extracted from RS when 

used to characterize a material: 
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• RS identifies the presence of specific chemical bonds using wavenumber shift, based 

upon vibrational energy. However, it is important to note that some peaks inherently 

overlap in energy; therefore, context is often important in interpreting the Raman 

spectrum. As one example in bone, phenylalanine and hydroxy phosphate both exist in 

the small range between 1000-1008 cm-1.136 

• The concept can be extended to relative composition, such that the relative intensity 

and ratio of defined peaks can be used to determine the percent composition of the 

material. With a given biochemical assignment for each peak, this can be a powerful 

tool for the interpretation of biological meaning. As an example in bone, we often 

measure the mineral to collagen ratio as a function of overall mineralization, the ratio of 

carbonate peak height to phosphate peak height as the measure of carbonate 

substitution into the crystal lattice60; however, it was important to note that these 

interpretations required empirical validation prior to reliable use33. 

• Raman spectroscopy can also detect mechanical strain and damage as a wavenumber 

shift, largely due to the influence of our group changes on the dipole moment of the 

chemical bond. As an example in bone Timlin et al. demonstrated specific signatures 

for bone microdamage137. One caveat to the use of this method is that slightly different 

biochemical species also have different dipole moments, causing differences in 

wavenumber shift without damage. Therefore, this method is often used to distinguish 

the presence of damage with time course measurements before and after mechanical 

loading. 
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• Molecular orientation can be detected as a function of bond polarization; therefore, RS 

is sensitive to static orientation and repeating structures in materials. This can be seen 

in the quantification of collagen fiber orientation in mouse bone138, 139 validated by the 

known collagen orientation in turkey tendon. Important caveats include the influence of 

intrinsic RS polarization128, 129  as well as birefringence, such that organized chiral or 

handed materials like carbon tetrachloride display polarization sensitivity even without 

organization when the input and collection arms of the instrument contain crossed 

polarizers130. Therefore, care in experimental design and instrument setup, as well as 

attention to the degree of sample scattering, is crucial in utilizing this sensitivity. 

• Crystal size and perfection can be measured using the observed width (effectively the 

distribution of slightly different chemical species) within the peak. This is 

accomplished by measuring the inverse full-with-at-half-maximum intensity of the 

peak, and is often used to describe the mineral crystallinity of bone in both RS and IR 

measure of the ν1 phosphate peak. In tissue, this method has limited application 

because it requires the absence of conflicting peaks and a large degree of inherent 

crystal purity. Moreover, it effectively convolves the influence of crystal defects and 

size with RS system wavenumber resolution. 

These five outcomes of Raman spectroscopy are often used for material science analysis, 

and have previously been employed to characterize crystalline and fibrous organic materials 

including the quality of silkworm silk and the orientation distribution of spider silk140. Dental 

enamel is highly organized and pure in crystal composition. It is known that enamel alternates 

crystal orientation between sequential layers, applications of polarization Raman spectroscopy 
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have used this knowledge to study the organization of enamel141-143 and for the early detection of 

caries144, in which the breakdown of enamel into disorganized tissue results in a loss of 

polarization sensitivity. Polarization RS has also been used to diagnose wound biopsies wounds 

as a function of scar severity and tissue organization145, known metrics of wound healing quality. 

In bone, the sequential lamellae of human osteon and the osteonal-interstitial border have been 

imaged by the contrast in polarization RS52, 146, 147. Subsequently this is been used to demonstrate 

the uniform thickness of osteonal lamellae, and the distribution of osteon size in the tissue147. 

Using the mouse model of osteogenesis imperfecta (oim-/-), the ability to characterize Raman 

polarization in turbid tissue was tested for different instrument configurations148. Because the 

mouse model demonstrates severe heterogeneity (random collagen orientation) that is associated 

with decreased material toughness, instrument sensitivity was characterized by the ability to 

distinguish this disorganization from the collagen fiber organization seen in wild type mice. 

Although the article focused on the finer points of instrument design for polarization RS and no 

direct measure of mechanical properties was correlated to RS outcomes, this was the first 

evidence that suggested polarization RS could be used in turbid media like bone to 

nondestructively assess organization and its impact on toughness148. 

2.12 Goals for the Usage of Raman Spectroscopy in and Beyond This Thesis 

The immediate goal of this thesis is to evaluate the use of Raman spectroscopy as 

noninvasive and nondestructive tool for bone quality diagnosis, with an emphasis on statistical 

explanation of the physiological decreases in mechanical quality with human aging and animal 

models of genetic disease. Specific emphasis will be placed on the ability of RS to explain bone 
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toughness and fracture toughness. To our knowledge neither of these two mechanical properties 

has been significantly explained by a noninvasive, clinically relevant diagnostic to date. In 

addition to the use of Raman spectroscopy, other nascent technologies with clinical potential and 

established metrics for laboratory investigation will be concurrently evaluated for comparison of 

explanatory power (µCT, NMR, RPI, nanoindentation).  

Because the use of Raman spectroscopy has already been established for in vivo 

applications of optical diagnosis including cancer of the skin149, cervix150-152, and breast153, as 

well as the time course of altered wound healing154, this thesis will determine the mechanism by 

which Raman spectroscopy can best diagnose tissue mechanical properties. The versatility in 

tailored instrument design for RS necessitates the early determination of the mechanisms of 

signal contrast in order to best guide device design for optimal diagnostic application. Evaluation 

of RS alongside other developmental tools also implicitly assesses whether it is efficient to invest 

the time and resources necessary to optimize RS tools for the clinical assessment of bone at this 

juncture. 

The original aims of the thesis work as defined at the proposal were as follows: 

1) Establish RS sensitivity to differences in composition with respect to organization. Correlate 

polarization effects to bone orientation effects on relative peak intensities. 

2) Assess RS capability to explain fracture resistance differences due to genetic manipulation 

(mice) and aging (human). 

a) Characterize RS correlation to downstream biomechanics as a function of transcription 

factor deletion. 

b) Correlate microstructure fracture resistance to RS property mapping. 



  

 

50 

 

Since then, the specific aims were expanded and adapted to include multivariate analysis 

of RS to determine how the interplay between composition and organization assist in the 

explanation of bone mechanical quality, expanding aim 2a to include multiple animal models in 

which genetic knockout resulted in bone brittleness (Chapter 5). Furthermore, early observations 

about data variation in human bone lead to the hypothesis that fracture toughness may be driven 

more by the microstructural heterogeneity in bone than its average composition, now emphasized 

in aim 2b (Chapter 6).  

In addition to laboratory applications in investigating the mechanisms underlying human 

fracture risk, the 10 year goals for the project were outlined to include a two-pronged approach 

to clinical assessment. First, an intraoperative probe will be optimized to extract quantitative 

measurements of bone quality in seconds to aid in clinical fracture fixation decisions. 

Specifically, it will be necessary to diagnose whether the quality of bone is sufficient to retain 

surgical hardware.  The second goal would be development of a high throughput screening tool 

for osteoporosis related fracture risk assessment. This requires a library of signals to determine a 

fracture risk score, as well as assessing the anatomical concerns of where the patient should be 

best scanned, and whether transcutaneous recovery of signal through layers of skin and muscle is 

tractable while preserving RS signatures of fracture risk. The following chapters outline the 

advances made in these respects by completing the outlined aims while keeping these ultimate 

goals in mind. 

  



  

 

51 

2.13 References 

1. Johnell, O. and Kanis, J.A., "An estimate of the worldwide prevalence and disability 
associated with osteoporotic fractures," Osteoporos Int 17(12), 1726-1733 (2006) 

2. Toossi, M., "Century of Change: The US Labor Force, 1950-2050, A," Monthly Lab. 
Rev. 125(15 (2002) 

3. Grob, G.N., Aging Bones: A Short History of Osteoporosis, Johns Hopkins University 
Press (2014). 

4. Kanis, J.A., Melton, L.J., 3rd, Christiansen, C., Johnston, C.C. and Khaltaev, N., "The 
diagnosis of osteoporosis," J Bone Miner Res 9(8), 1137-1141 (1994) 

5. Kanis, J.A., Johnell, O., Oden, A., De Laet, C. and Mellstrom, D., "Diagnosis of 
osteoporosis and fracture threshold in men," Calcif Tissue Int 69(4), 218-221 (2001) 

6. Johnell, O., Kanis, J.A., Oden, A., Johansson, H., De Laet, C., Delmas, P., Eisman, J.A., 
Fujiwara, S., Kroger, H., Mellstrom, D., Meunier, P.J., Melton, L.J., 3rd, O'Neill, T., 
Pols, H., Reeve, J., Silman, A. and Tenenhouse, A., "Predictive value of BMD for hip 
and other fractures," J Bone Miner Res 20(7), 1185-1194 (2005) 

7. Kanis, J.A., Johnell, O., Oden, A., Dawson, A., De Laet, C. and Jonsson, B., "Ten year 
probabilities of osteoporotic fractures according to BMD and diagnostic thresholds," 
Osteoporos Int 12(12), 989-995 (2001) 

8. (US), N.L.o.M., "Neurofibromatosis type 1," in Genetics Home Reference N. L. o. M. 
(US), Ed., The Library, Bethesda, MD. 

9. (US), N.L.o.M., "Osteogenesis Imperfecta," in Genetics Home Reference N. L. o. M. 
(US), Ed., The Library, Bethesda, MD. 

10. Yamaguchi, T. and Sugimoto, T., "Bone metabolism and fracture risk in type 2 diabetes 
mellitus," BoneKEy reports 1(36 (2012) 

11. Giangregorio, L.M., Leslie, W.D., Lix, L.M., Johansson, H., Oden, A., McCloskey, E. 
and Kanis, J.A., "FRAX underestimates fracture risk in patients with diabetes," J Bone 
Miner Res 27(2), 301-308 (2012) 

12. Yamamoto, M., Yamaguchi, T., Yamauchi, M., Yano, S. and Sugimoto, T., "Serum 
pentosidine levels are positively associated with the presence of vertebral fractures in 
postmenopausal women with type 2 diabetes," The Journal of clinical endocrinology and 
metabolism 93(3), 1013-1019 (2008) 

13. Viguet-Carrin, S., Roux, J.P., Arlot, M.E., Merabet, Z., Leeming, D.J., Byrjalsen, I., 
Delmas, P.D. and Bouxsein, M.L., "Contribution of the advanced glycation end product 
pentosidine and of maturation of type I collagen to compressive biomechanical properties 
of human lumbar vertebrae," Bone 39(5), 1073-1079 (2006) 



  

 

52 

14. Tang, S.Y. and Vashishth, D., "Non-enzymatic glycation alters microdamage formation 
in human cancellous bone," Bone 46(1), 148-154 (2010) 

15. Tang, S.Y. and Vashishth, D., "The relative contributions of non-enzymatic glycation and 
cortical porosity on the fracture toughness of aging bone," Journal of biomechanics 44(2), 
330-336 (2011) 

16. Paget, S., "The distribution of secondary growths in cancer of the breast," The Lancet 
133(3421), 571-573 (1889) 

17. Mundy, G.R., "Mechanisms of bone metastasis," Cancer 80(8 Suppl), 1546-1556 (1997) 

18. Mundy, G.R., "Metastasis: Metastasis to bone: causes, consequences and therapeutic 
opportunities," Nature Reviews Cancer 2(8), 584-593 (2002) 

19. Owens, B.D., Kragh Jr, J.F., Wenke, J.C., Macaitis, J., Wade, C.E. and Holcomb, J.B., 
"Combat wounds in operation Iraqi Freedom and operation Enduring Freedom," The 
Journal of Trauma and Acute Care Surgery 64(2), 295-299 (2008) 

20. Murray, C.K., Obremskey, W.T., Hsu, J.R., Andersen, R.C., Calhoun, J.H., Clasper, J.C., 
Whitman, T.J., Curry, T.K., Fleming, M.E., Wenke, J.C. and Ficke, J.R., "Prevention of 
infections associated with combat-related extremity injuries," The Journal of trauma 71(2 
Suppl 2), S235-257 (2011) 

21. Kolednik, O., Predan, J., Fischer, F.D. and Fratzl, P., "Bioinspired Design Criteria for 
Damage-Resistant Materials with Periodically Varying Microstructure," Advanced 
Functional Materials 21(19), 3634-3641 (2011) 

22. Fratzl, P. and Weiner, S., "Bio-Inspired Materials – Mining the Old Literature for New 
Ideas," Advanced Materials 22(41), 4547-4550 (2010) 

23. Aizenberg, J. and Fratzl, P., "Biological and Biomimetic Materials," Advanced Materials 
21(4), 387-388 (2009) 

24. Dunlop, J.W. and Fratzl, P., "Biological composites," Annual Review of Materials 
Research 40(1-24 (2010) 

25. Kim, H.W., Knowles, J.C. and Kim, H.E., "Hydroxyapatite porous scaffold engineered 
with biological polymer hybrid coating for antibiotic Vancomycin release," Journal of 
materials science. Materials in medicine 16(3), 189-195 (2005) 

26. Hall, J.E., Guyton and Hall Textbook of Medical Physiology: Enhanced E-book, Elsevier 
Health Sciences (2010). 

27. NCBI, "FGF23 fibroblast growth factor 23," in Entrez (2014). 

28. Cross, N.A., Hillman, L.S., Allen, S.H. and Krause, G.F., "Changes in bone mineral 
density and markers of bone remodeling during lactation and postweaning in women 
consuming high amounts of calcium," Journal of Bone and Mineral Research 10(9), 
1312-1320 (1995) 



  

 

53 

29. de la Croix Ndong, J., Makowski, A.J., Uppuganti, S., Vignaux, G., Ono, K., Perrien, 
D.S., Joubert, S., Baglio, S.R., Granchi, D., Stevenson, D.A., Rios, J.J., Nyman, J.S. and 
Elefteriou, F., "Asfotase-alpha improves bone growth, mineralization and strength in 
mouse models of neurofibromatosis type-1," Nature medicine 20(8), 904-910 (2014) 

30. Poundarik, A.A., Diab, T., Sroga, G.E., Ural, A., Boskey, A.L., Gundberg, C.M. and 
Vashishth, D., "Dilatational band formation in bone," Proceedings of the National 
Academy of Sciences 109(47), 19178-19183 (2012) 

31. Manolagas, S.C. and Parfitt, A.M., "For whom the bell tolls: Distress signals from long-
lived osteocytes and the pathogenesis of metabolic bone diseases," Bone 54(2), 272-278  

32. Guo, X., "Mechanical properties of cortical bone and cancellous bone tissue," Bone 
mechanics handbook 2(10 (2001) 

33. Awonusi, A., Morris, M.D. and Tecklenburg, M.M., "Carbonate assignment and 
calibration in the Raman spectrum of apatite," Calcif Tissue Int 81(1), 46-52 (2007) 

34. Penel, G., Pottier, E.C. and Leroy, G., "Raman investigation of calcium carbonate bone 
substitutes and related biomaterials," Bulletin du Groupement international pour la 
recherche scientifique en stomatologie & odontologie 45(2-3), 56-59 (2003) 

35. Blank, R.D., Baldini, T.H., Kaufman, M., Bailey, S., Gupta, R., Yershov, Y., Boskey, 
A.L., Coppersmith, S.N., Demant, P. and Paschalis, E.P., "Spectroscopically determined 
collagen Pyr/deH-DHLNL cross-link ratio and crystallinity indices differ markedly in 
recombinant congenic mice with divergent calculated bone tissue strength," Connect 
Tissue Res 44(3-4), 134-142 (2003) 

36. Miller, L.M., Vairavamurthy, V., Chance, M.R., Mendelsohn, R., Paschalis, E.P., Betts, 
F. and Boskey, A.L., "In situ analysis of mineral content and crystallinity in bone using 
infrared micro-spectroscopy of the nu(4) PO(4)(3-) vibration," Biochimica et biophysica 
acta 1527(1-2), 11-19 (2001) 

37. Horch, R.A., Gochberg, D.F., Nyman, J.S. and Does, M.D., "Non-invasive predictors of 
human cortical bone mechanical properties: T(2)-discriminated H NMR compared with 
high resolution X-ray," PLoS One 6(1), e16359 (2011) 

38. Granke, M., Makowski, A.J., Uppuganti, S., Does, M.D. and Nyman, J.S., "Identifying 
novel clinical surrogates to assess human bone fracture toughness," Journal of Bone and 
Mineral Research (Under Review)((2014) 

39. Lee, N.K., Sowa, H., Hinoi, E., Ferron, M., Ahn, J.D., Confavreux, C., Dacquin, R., Mee, 
P.J., McKee, M.D., Jung, D.Y., Zhang, Z., Kim, J.K., Mauvais-Jarvis, F., Ducy, P. and 
Karsenty, G., "Endocrine regulation of energy metabolism by the skeleton," Cell 130(3), 
456-469 (2007) 

40. NCBI, "SPARC secreted protein, acidic, cysteine-rich (osteonectin)," in Entrez (2014). 

41. Skedros, J.G. and Brand, R.A., "Biographical sketch: Georg Hermann von Meyer (1815-
1892)," Clinical orthopaedics and related research 469(11), 3072-3076 (2011) 



  

 

54 

42. Wolff, J., Das Gesetz der Transformation der Knochen, von Dr Julius Wolff, A. 
Hirschwald, Berlin (1892). 

43. Currey, J.D., "The many adaptations of bone," J Biomech 36(10), 1487-1495 (2003) 

44. Ross, M.H. and Pawlina, W., Histology, Lippincott Williams & Wilkins (2006). 

45. Wang, W., Nyman, J.S., Ono, K., Stevenson, D.A., Yang, X. and Elefteriou, F., "Mice 
lacking Nf1 in osteochondroprogenitor cells display skeletal dysplasia similar to patients 
with neurofibromatosis type I," Human molecular genetics 20(20), 3910-3924 (2011) 

46. Frost, H., "Bone “mass” and the “mechanostat”: a proposal," The Anatomical Record 
219(1), 1-9 (1987) 

47. Cowin, S. and Hegedus, D., "Bone remodeling I: theory of adaptive elasticity," Journal of 
Elasticity 6(3), 313-326 (1976) 

48. Yang, X., Matsuda, K., Bialek, P., Jacquot, S., Masuoka, H.C., Schinke, T., Li, L., 
Brancorsini, S., Sassone-Corsi, P., Townes, T.M., Hanauer, A. and Karsenty, G., "ATF4 
is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for 
Coffin-Lowry Syndrome," Cell 117(3), 387-398 (2004) 

49. Nyman, J.S., Lynch, C.C., Perrien, D.S., Thiolloy, S., O'Quinn, E.C., Patil, C.A., Bi, X., 
Pharr, G.M., Mahadevan-Jansen, A. and Mundy, G.R., "Differential effects between the 
loss of MMP-2 and MMP-9 on structural and tissue-level properties of bone," J Bone 
Miner Res 26(6), 1252-1260 (2011) 

50. Pathak, S., Vachhani, S.J., Jepsen, K.J., Goldman, H.M. and Kalidindi, S.R., "Assessment 
of lamellar level properties in mouse bone utilizing a novel spherical nanoindentation 
data analysis method," Journal of the mechanical behavior of biomedical materials 
13(102-117 (2012) 

51. Carando, S., Portigliatti-Barbos, M., Ascenzi, A., Riggs, C.M. and Boyde, A., 
"Macroscopic shape of, and lamellar distribution within, the upper limb shafts, allowing 
inferences about mechanical properties," Bone 12(4), 265-269 (1991) 

52. Falgayrac, G., Facq, S., Leroy, G., Cortet, B. and Penel, G., "New method for Raman 
investigation of the orientation of collagen fibrils and crystallites in the Haversian system 
of bone," Applied spectroscopy 64(7), 775-780 (2010) 

53. Reznikov, N., Almany-Magal, R., Shahar, R. and Weiner, S., "Three-dimensional 
imaging of collagen fibril organization in rat circumferential lamellar bone using a dual 
beam electron microscope reveals ordered and disordered sub-lamellar structures," Bone 
52(2), 676-683 (2013) 

54. Boyde, A., Bianco, P., Portigliatti Barbos, M. and Ascenzi, A., "Collagen orientation in 
compact bone: I. A new method for the determination of the proportion of collagen 
parallel to the plane of compact bone sections," Metabolic Bone Disease and Related 
Research 5(6), 299-307 (1984) 



  

 

55 

55. Portigliatti Barbos, M., Bianco, P., Ascenzi, A. and Boyde, A., "Collagen orientation in 
compact bone: II. Distribution of lamellae in the whole of the human femoral shaft with 
reference to its mechanical properties," Metabolic Bone Disease and Related Research 
5(6), 309-315 (1984) 

56. Ascenzi, M.G. and Lomovtsev, A., "Collagen orientation patterns in human secondary 
osteons, quantified in the radial direction by confocal microscopy," Journal of structural 
biology 153(1), 14-30 (2006) 

57. Carando, S., Barbos, M.P., Ascenzi, A. and Boyde, A., "Orientation of collagen in human 
tibial and fibular shaft and possible correlation with mechanical properties," Bone 10(2), 
139-142 (1989) 

58. Ascenzi, A. and Bonucci, E., "The tensile properties of single osteons," Anat Rec 158(4), 
375-386 (1967) 

59. Bromage, T.G., Goldman, H.M., McFarlin, S.C., Warshaw, J., Boyde, A. and Riggs, 
C.M., "Circularly polarized light standards for investigations of collagen fiber orientation 
in bone," Anatomical record 274(1), 157-168 (2003) 

60. Nyman, J.S., Makowski, A.J., Patil, C.A., Masui, T.P., O'Quinn, E.C., Bi, X., Guelcher, 
S.A., Nicollela, D.P. and Mahadevan-Jansen, A., "Measuring differences in 
compositional properties of bone tissue by confocal Raman spectroscopy," Calcif Tissue 
Int 89(2), 111-122 (2011) 

61. Makowski, A.J., Patil, C.A., Gorochow, L., Mahadevan-Jansen, A. and Nyman, J.S., 
"Polarization Control of Raman Spectroscopy Optimizes Measures of Bone Quality," in 
American Society for Bone and Mineral Research: Annual Conference, San Diego, CA 
USA (2011). 

62. Tang, S.Y., Herber, R.-P., Ho, S.P. and Alliston, T., "Matrix metalloproteinase–13 is 
required for osteocytic perilacunar remodeling and maintains bone fracture resistance," 
Journal of Bone and Mineral Research 27(9), 1936-1950 (2012) 

63. Standring, S., Gray's Anatomy: The Anatomical Basis of Clinical Practice, Elsevier 
Health Sciences UK (2008). 

64. Inoue, K., Ohgushi, H., Yoshikawa, T., Okumura, M., Sempuku, T., Tamai, S. and Dohi, 
Y., "The effect of aging on bone formation in porous hydroxyapatite: biochemical and 
histological analysis," J Bone Miner Res 12(6), 989-994 (1997) 

65. Zioupos, P. and Currey, J., "The extent of microcracking and the morphology of 
microcracks in damaged bone," Journal of materials science 29(4), 978-986 (1994) 

66. Hernandez, C.J., Gupta, A. and Keaveny, T.M., "A biomechanical analysis of the effects 
of resorption cavities on cancellous bone strength," J Bone Miner Res 21(8), 1248-1255 
(2006) 

67. Slyfield, C., Tkachenko, E., Fischer, S., Ehlert, K., Yi, I., Jekir, M., O'Brien, R., 
Keaveny, T. and Hernandez, C., "Mechanical failure begins preferentially near resorption 



  

 

56 

cavities in human vertebral cancellous bone under compression," Bone 50(6), 1281-1287 
(2012) 

68. Ammann, P. and Rizzoli, R., "Bone strength and its determinants," Osteoporosis 
International 14(3), 13-18 (2003) 

69. Phelps, J.B., Hubbard, G.B., Wang, X. and Agrawal, C.M., "Microstructural 
heterogeneity and the fracture toughness of bone," J Biomed Mater Res 51(4), 735-741 
(2000) 

70. Kanis, J.A., Oden, A., Johnell, O., Jonsson, B., de Laet, C. and Dawson, A., "The burden 
of osteoporotic fractures: a method for setting intervention thresholds," Osteoporos Int 
12(5), 417-427 (2001) 

71. Leslie, W.D., Morin, S., Lix, L.M., Johansson, H., Oden, A., McCloskey, E., Kanis, J.A. 
and Manitoba Bone Density, P., "Fracture risk assessment without bone density 
measurement in routine clinical practice," Osteoporos Int 23(1), 75-85 (2012) 

72. Ettinger, B., Black, D.M., Dawson-Hughes, B., Pressman, A.R. and Melton, L.J., 3rd, 
"Updated fracture incidence rates for the US version of FRAX," Osteoporos Int 21(1), 
25-33 (2010) 

73. Pressman, A.R., Lo, J.C., Chandra, M. and Ettinger, B., "Methods for assessing fracture 
risk prediction models: experience with FRAX in a large integrated health care delivery 
system," J Clin Densitom 14(4), 407-415 (2011) 

74. Kanis, J.A., McCloskey, E., Johansson, H., Oden, A. and Leslie, W.D., "FRAX((R)) with 
and without bone mineral density," Calcif Tissue Int 90(1), 1-13 (2012) 

75. Leslie, W.D., Rubin, M.R., Schwartz, A.V. and Kanis, J.A., "Type 2 diabetes and bone," 
J Bone Miner Res 27(11), 2231-2237 (2012) 

76. Liu, X.S., Stein, E.M., Zhou, B., Zhang, C.A., Nickolas, T.L., Cohen, A., Thomas, V., 
McMahon, D.J., Cosman, F., Nieves, J., Shane, E. and Guo, X.E., "Individual trabecula 
segmentation (ITS)-based morphological analyses and microfinite element analysis of 
HR-pQCT images discriminate postmenopausal fragility fractures independent of DXA 
measurements," J Bone Miner Res 27(2), 263-272 (2012) 

77. Vilayphiou, N., Boutroy, S., Szulc, P., van Rietbergen, B., Munoz, F., Delmas, P.D. and 
Chapurlat, R., "Finite element analysis performed on radius and tibia HR-pQCT images 
and fragility fractures at all sites in men," J Bone Miner Res 26(5), 965-973 (2011) 

78. Orwoll, E.S., Marshall, L.M., Nielson, C.M., Cummings, S.R., Lapidus, J., Cauley, J.A., 
Ensrud, K., Lane, N., Hoffmann, P.R., Kopperdahl, D.L. and Keaveny, T.M., "Finite 
Element Analysis of the Proximal Femur and Hip Fracture Risk in Older Men," Journal 
of Bone and Mineral Research 24(3), 475-483 (2009) 

79. Wang, X., Sanyal, A., Cawthon, P.M., Palermo, L., Jekir, M., Christensen, J., Ensrud, 
K.E., Cummings, S.R., Orwoll, E., Black, D.M., Osteoporotic Fractures in Men Research, 



  

 

57 

G. and Keaveny, T.M., "Prediction of new clinical vertebral fractures in elderly men 
using finite element analysis of CT scans," J Bone Miner Res 27(4), 808-816 (2012) 

80. Jepsen, K.J., Centi, A., Duarte, G.F., Galloway, K., Goldman, H., Hampson, N., Lappe, 
J.M., Cullen, D.M., Greeves, J. and Izard, R., "Biological constraints that limit 
compensation of a common skeletal trait variant lead to inequivalence of tibial function 
among healthy young adults," Journal of Bone and Mineral Research 26(12), 2872-2885 
(2011) 

81. Jepsen, K.J., Pennington, D.E., Lee, Y.L., Warman, M. and Nadeau, J., "Bone brittleness 
varies with genetic background in A/J and C57BL/6J inbred mice," J Bone Miner Res 
16(10), 1854-1862 (2001) 

82. Donnelly, E., Lane, J.M. and Boskey, A.L., "Research perspectives: The 2013 
AAOS/ORS research symposium on Bone Quality and Fracture Prevention," Journal of 
Orthopaedic Research 32(7), 855-864 (2014) 

83. Black, D.M., Kelly, M.P., Genant, H.K., Palermo, L., Eastell, R., Bucci-Rechtweg, C., 
Cauley, J., Leung, P.C., Boonen, S., Santora, A., de Papp, A., Bauer, D.C., Fracture 
Intervention Trial Steering, C. and Committee, H.P.F.T.S., "Bisphosphonates and 
fractures of the subtrochanteric or diaphyseal femur," The New England journal of 
medicine 362(19), 1761-1771 (2010) 

84. Donnelly, E., Meredith, D.S., Nguyen, J.T., Gladnick, B.P., Rebolledo, B.J., Shaffer, 
A.D., Lorich, D.G., Lane, J.M. and Boskey, A.L., "Reduced cortical bone compositional 
heterogeneity with bisphosphonate treatment in postmenopausal women with 
intertrochanteric and subtrochanteric fractures," J Bone Miner Res 27(3), 672-678 (2012) 

85. Ettinger, B., Burr, D.B. and Ritchie, R.O., "Proposed pathogenesis for atypical femoral 
fractures: Lessons from materials research," Bone 55(2), 495-500 (2013) 

86. van der Meulen, M.C. and Boskey, A.L., "Atypical subtrochanteric femoral shaft 
fractures: role for mechanics and bone quality," Arthritis research & therapy 14(4), 220 
(2012) 

87. Donnelly, E., Lane, J.M. and Boskey, A.L., "Research perspectives: The 2013 
AAOS/ORS research symposium on Bone Quality and Fracture Prevention," J Orthop 
Res 32(7), 855-864 (2014) 

88. Burstein, A.H., Reilly, D.T. and Martens, M., "Aging of bone tissue: mechanical 
properties," J Bone Joint Surg Am 58(1), 82-86 (1976) 

89. Horch, R.A., Nyman, J.S., Gochberg, D.F., Dortch, R.D. and Does, M.D., 
"Characterization of 1H NMR signal in human cortical bone for magnetic resonance 
imaging," Magn Reson Med 64(3), 680-687 (2010) 

90. Nyman, J.S., Gorochow, L.E., Adam Horch, R., Uppuganti, S., Zein-Sabatto, A., 
Manhard, M.K. and Does, M.D., "Partial removal of pore and loosely bound water by 



  

 

58 

low-energy drying decreases cortical bone toughness in young and old donors," J Mech 
Behav Biomed Mater 22(136-145 (2013) 

91. Horch, R.A., Gochberg, D.F., Nyman, J.S. and Does, M.D., "Non-invasive predictors of 
human cortical bone mechanical properties: T2-discriminated 1H NMR compared with 
high resolution X-ray," PLoS One 6(1), e16359 (2011) 

92. Manhard, M.K., Horch, R.A., Harkins, K.D., Gochberg, D.F., Nyman, J.S. and Does, 
M.D., "Validation of quantitative bound- and pore-water imaging in cortical bone," Magn 
Reson Med 71(6), 2166-2171 (2014) 

93. Horch, R.A., Gochberg, D.F., Nyman, J.S. and Does, M.D., "Clinically compatible MRI 
strategies for discriminating bound and pore water in cortical bone," Magn Reson Med In 
press((2012) 

94. Oliver, W. and Pharr, G., "Measurement of hardness and elastic modulus by instrumented 
indentation: advances in understanding and refinements to methodology," J Mater Res 
19(3-20 (2004) 

95. Oliver, W.C. and Pharr, G.M., "An improved technique for determining hardness and 
elastic modulus using load and displacement sensing indentation experiments," Journal 
Name: Journal of Materials Research; (United States); Journal Volume: 7:6 Medium: X; 
Size: Pages: 1564-1583 (1992) 

96. Silva, M.J., Brodt, M.D., Fan, Z. and Rho, J.Y., "Nanoindentation and whole-bone 
bending estimates of material properties in bones from the senescence accelerated mouse 
SAMP6," J Biomech 37(11), 1639-1646 (2004) 

97. Rho, J.Y., Roy, M.E., 2nd, Tsui, T.Y. and Pharr, G.M., "Elastic properties of 
microstructural components of human bone tissue as measured by nanoindentation," J 
Biomed Mater Res 45(1), 48-54 (1999) 

98. Hansma, P., Turner, P., Drake, B., Yurtsev, E., Proctor, A., Mathews, P., Lulejian, J., 
Randall, C., Adams, J., Jungmann, R., Garza-de-Leon, F., Fantner, G., Mkrtchyan, H., 
Pontin, M., Weaver, A., Brown, M.B., Sahar, N., Rossello, R. and Kohn, D., "The bone 
diagnostic instrument II: indentation distance increase," Rev Sci Instrum 79(6), 064303 
(2008) 

99. Diez-Perez, A., Guerri, R., Nogues, X., Caceres, E., Pena, M.J., Mellibovsky, L., Randall, 
C., Bridges, D., Weaver, J.C., Proctor, A., Brimer, D., Koester, K.J., Ritchie, R.O. and 
Hansma, P.K., "Microindentation for in vivo measurement of bone tissue mechanical 
properties in humans," J Bone Miner Res 25(8), 1877-1885 (2010) 

100. Guerri-Fernandez, R.C., Nogues, X., Quesada Gomez, J.M., Torres Del Pliego, E., Puig, 
L., Garcia-Giralt, N., Yoskovitz, G., Mellibovsky, L., Hansma, P.K. and Diez-Perez, A., 
"Microindentation for in vivo measurement of bone tissue material properties in atypical 
femoral fracture patients and controls," J Bone Miner Res 28(1), 162-168 (2013) 



  

 

59 

101. Randall, C., Bridges, D., Guerri, R., Nogues, X., Puig, L., Torres, E., Mellibovsky, L., 
Hoffseth, K., Stalbaum, T., Srikanth, A., Weaver, J.C., Rosen, S., Barnard, H., Brimer, 
D., Proctor, A., Candy, J., Saldana, C., Chandrasekar, S., Lescun, T., Nielson, C.M., 
Orwoll, E., Herthel, D., Kopeikin, H., Yang, H.T.Y., Farr, J.N., McCready, L., Khosla, 
S., Diez-Perez, A. and Hansma, P.K., "Applications of a New Handheld Reference Point 
Indentation Instrument Measuring Bone Material Strength," Journal of Medical Devices 
7(4), 041005-041005 (2013) 

102. Turner, C.H. and Burr, D.B., "Basic biomechanical measurements of bone: a tutorial," 
Bone 14(4), 595-608 (1993) 

103. Ritchie, R.O., "The conflicts between strength and toughness," Nature materials 10(11), 
817-822 (2011) 

104. Griffith, A.A., "The Phenomena of Rupture and Flow in Solids," Philosophical 
Transactions of the Royal Society of London. Series A, Containing Papers of a 
Mathematical or Physical Character 221(582-593), 163-198 (1921) 

105. Irwin, G., "Analysis of stresses and strains near the end of a crack traversing a plate," 
Journal of Applied Mechanics 24(361-364 (1957) 

106. Rice, J. and Rosengren, G., "Plane strain deformation near a crack tip in a power-law 
hardening material," Journal of the Mechanics and Physics of Solids 16(1), 1-12 (1968) 

107. Rice, J.R., "A Path Independent Integral and the Approximate Analysis of Strain 
Concentration by Notches and Cracks," Journal of Applied Mechanics 35(2), 379-386 
(1968) 

108. "ASTM E 1820-05a. Standard Test Method for Measurement of Fracture Toughness," 
American Society for Testing and Materials International (2005). 

109. Nalla, R.K., Kruzic, J.J., Kinney, J.H. and Ritchie, R.O., "Effect of aging on the 
toughness of human cortical bone: evaluation by R-curves," Bone 35(6), 1240-1246 
(2004) 

110. Ritchie, R.O., Koester, K.J., Ionova, S., Yao, W., Lane, N.E. and Ager, J.W., 3rd, 
"Measurement of the toughness of bone: a tutorial with special reference to small animal 
studies," Bone 43(5), 798-812 (2008) 

111. Takahashi, Y., "Evaluation of leak-before-break assessment methodology for pipes with a 
circumferential through-wall crack. Part I: stress intensity factor and limit load solutions," 
International journal of pressure vessels and piping 79(6), 385-392 (2002) 

112. Vashishth, D., Behiri, J.C. and Bonfield, W., "Crack growth resistance in cortical bone: 
Concept of microcrack toughening," Journal of Biomechanics 30(8), 763-769 (1997) 

113. Vashishth, D., Tanner, K.E. and Bonfield, W., "Contribution, development and 
morphology of microcracking in cortical bone during crack propagation," Journal of 
Biomechanics 33(9), 1169-1174 (2000) 



  

 

60 

114. Vashishth, D., "Rising crack-growth-resistance behavior in cortical bone:: implications 
for toughness measurements," Journal of Biomechanics 37(6), 943-946 (2004) 

115. Nalla, R.K., Kinney, J.H. and Ritchie, R.O., "Mechanistic fracture criteria for the failure 
of human cortical bone," Nature materials 2(3), 164-168 (2003) 

116. Nalla, R.K., Kruzic, J.J. and Ritchie, R.O., "On the origin of the toughness of mineralized 
tissue: microcracking or crack bridging?," Bone 34(5), 790-798 (2004) 

117. Nalla, R.K., Kruzic, J.J., Kinney, J.H. and Ritchie, R.O., "Aspects of in vitro fatigue in 
human cortical bone: time and cycle dependent crack growth," Biomaterials 26(14), 
2183-2195 (2005) 

118. Nalla, R.K., Stolken, J.S., Kinney, J.H. and Ritchie, R.O., "Fracture in human cortical 
bone: local fracture criteria and toughening mechanisms," J Biomech 38(7), 1517-1525 
(2005) 

119. Nyman, J.S. and Makowski, A.J., "The contribution of the extracellular matrix to the 
fracture resistance of bone," Current osteoporosis reports 10(2), 169-177 (2012) 

120. Carriero, A., Zimmermann, E.A., Paluszny, A., Tang, S.Y., Bale, H., Busse, B., Alliston, 
T., Kazakia, G., Ritchie, R.O. and Shefelbine, S.J., "How Tough Is Brittle Bone? 
Investigating Osteogenesis Imperfecta in Mouse Bone," Journal of Bone and Mineral 
Research 29(6), 1392-1401 (2014) 

121. Courtland, H.W., Spevak, M., Boskey, A.L. and Jepsen, K.J., "Genetic variation in 
mouse femoral tissue-level mineral content underlies differences in whole bone 
mechanical properties," Cells, tissues, organs 189(1-4), 237-240 (2009) 

122. Maiman, T.H., "Stimulated Optical Radiation in Ruby," Nature 187(4736), 493-494 
(1960) 

123. Garwin, L. and Lincoln, T., A Century of Nature: Twenty-One Discoveries that Changed 
Science and the World, University of Chicago Press (2010). 

124. Welch, A.J. and van Gemert, M.J.C., Optical-Thermal Response of Laser-Irradiated 
Tissue, Springer (2011). 

125. Walton, A.G., Deveney, M.J. and Koenig, J.L., "Raman spectroscopy of calcified tissue," 
Calcified tissue research 6(2), 162-167 (1970) 

126. Morris, M.D. and Mandair, G.S., "Raman assessment of bone quality," Clinical 
orthopaedics and related research 469(8), 2160-2169 (2011) 

127. Lieber, C.A. and Mahadevan-Jansen, A., "Automated method for subtraction of 
fluorescence from biological Raman spectra," Applied spectroscopy 57(11), 1363-1367 
(2003) 

128. Placzek, G., "Rayleigh-Streuung und Raman-Effekt," in Handbuch der Radiologie E. 
Marx, Ed., pp. 205-374, Akademische Verlagsgesellschaft, Leipzig, Germany (1934). 



  

 

61 

129. Long, D.A., "Intensities in Raman Spectra. I. A Bond Polarizability Theory," Proceedings 
of the Royal Society of London. Series A, Mathematical and Physical Sciences 
217(1129), 203-221 (1953) 

130. Porto, S., Giordmaine, J. and Damen, T., "Depolarization of Raman Scattering in 
Calcite," Physical Review 147(2), 608-611 (1966) 

131. Levenson, M.D., "Polarization techniques in coherent Raman spectroscopy," J Raman 
Spec 10(1), 9-23 (1981) 

132. Hecht, E., Optics, Addison-Wesley, Reading, Mass. (2002). 

133. Antonio, A., "Quantitative researches on the optical properties of human bone," Nature 
163(4146), 604-604 (1949) 

134. Juang, C.B., Finzi, L. and Bustamante, C.J., "Design and application of a computer-
controlled confocal scanning differential polarization microscope," Rev. Sci. Instr. 
59(11), 2399-2408 (1988) 

135. Makowski, A.J., Patil, C.A., Mahadevan-Jansen, A. and Nyman, J.S., "Polarization 
control of Raman spectroscopy optimizes the assessment of bone tissue," Journal of 
biomedical optics 18(5), 55005 (2013) 

136. Penel, G., Delfosse, C., Descamps, M. and Leroy, G., "Composition of bone and apatitic 
biomaterials as revealed by intravital Raman microspectroscopy," Bone 36(5), 893-901 
(2005) 

137. Timlin, J.A., Carden, A., Morris, M.D., Rajachar, R.M. and Kohn, D.H., "Raman 
spectroscopic imaging markers for fatigue-related microdamage in bovine bone," Anal 
Chem 72(10), 2229-2236 (2000) 

138. Gevorkian, B.Z., Arnotskaia, N.E. and Fedorova, E.N., "[Study of bone tissue structure 
using polarized Raman spectra]," Biofizika 29(6), 1046-1052 (1984) 

139. Gamsjaeger, S., Masic, A., Roschger, P., Kazanci, M., Dunlop, J.W., Klaushofer, K., 
Paschalis, E.P. and Fratzl, P., "Cortical bone composition and orientation as a function of 
animal and tissue age in mice by Raman spectroscopy," Bone 47(2), 392-399 (2010) 

140. Rousseau, M.E., Lefevre, T., Beaulieu, L., Asakura, T. and Pezolet, M., "Study of protein 
conformation and orientation in silkworm and spider silk fibers using Raman 
microspectroscopy," Biomacromolecules 5(6), 2247-2257 (2004) 

141. Leroy, G., Penel, G., Leroy, N. and Brès, E., "Human Tooth Enamel: A Raman Polarized 
Approach," Applied spectroscopy 56(8), 1030-1034 (2002) 

142. Penel, G., Leroy, G., Leroy, N., Behin, P., Langlois, J.M., Libersa, J.C. and Dupas, P.H., 
"[Raman spectrometry applied to calcified tissue and calcium-phosphorus biomaterials]," 
Bulletin du Groupement international pour la recherche scientifique en stomatologie & 
odontologie 42(2-3), 55-63 (2000) 



  

 

62 

143. Penel, G., Leroy, G., Rey, C. and Bres, E., "MicroRaman Spectral Study of the PO4 and 
CO3 Vibrational Modes in Synthetic and Biological Apatites," Calcified tissue 
international 63(6), 475-481 (1998) 

144. Ko, A.C.T., Choo-Smith, L.-P.i., Hewko, M., Sowa, M.G., Dong, C.C.S. and Cleghorn, 
B., "Detection of early dental caries using polarized Raman spectroscopy," Opt. Express 
14(1), 203-215 (2006) 

145. Crane, N., Brown, T., Hawksworth, J., Gage, F., Tadaki, D., Perdue, P., Dunne, J., 
DeNobile, J. and Elster, E., "Raman spectroscopic analysis of warrior wound biopsies: 
What happens when good wounds go bad," Proc Fed Anal Chem Spectrosc Soc (2008) 

146. Kazanci, M., Wagner, H.D., Manjubala, N.I., Gupta, H.S., Paschalis, E., Roschger, P. and 
Fratzl, P., "Raman imaging of two orthogonal planes within cortical bone," Bone 41(3), 
456-461 (2007) 

147. Kazanci, M., Roschger, P., Paschalis, E.P., Klaushofer, K. and Fratzl, P., "Bone osteonal 
tissues by Raman spectral mapping: orientation-composition," Journal of structural 
biology 156(3), 489-496 (2006) 

148. Raghavan, M., Sahar, N.D., Wilson, R.H., Mycek, M.A., Pleshko, N., Kohn, D.H. and 
Morris, M.D., "Quantitative polarized Raman spectroscopy in highly turbid bone tissue," 
Journal of biomedical optics 15(3), 037001 (2010) 

149. Patil, C.A., Kirshnamoorthi, H., Ellis, D.L., van Leeuwen, T.G. and Mahadevan-Jansen, 
A., "A clinical instrument for combined raman spectroscopy-optical coherence 
tomography of skin cancers," Lasers in surgery and medicine 43(2), 143-151 (2011) 

150. Keller, M.D., Kanter, E.M., Lieber, C.A., Majumder, S.K., Hutchings, J., Ellis, D.L., 
Beaven, R.B., Stone, N. and Mahadevan-Jansen, A., "Detecting temporal and spatial 
effects of epithelial cancers with Raman spectroscopy," Disease markers 25(6), 323-337 
(2008) 

151. Robichaux-Viehoever, A., Kanter, E., Shappell, H., Billheimer, D., Jones, H. and 
Mahadevan-Jansen, A., "Characterization of Raman Spectra Measured in Vivo for the 
Detection of Cervical Dysplasia," Applied spectroscopy 61(9), 986-993 (2007) 

152. Mahadevan-Jansen, A., Mitchell, M.F., Ramanujam, N., Malpica, A., Thomsen, S., 
Utzinger, U. and Richards-Kortum, R., "Near-infrared Raman spectroscopy for in vitro 
detection of cervical precancers," Photochemistry and photobiology 68(1), 123-132 
(1998) 

153. Keller, M.D., Vargis, E., de Matos Granja, N., Wilson, R.H., Mycek, M.A., Kelley, M.C. 
and Mahadevan-Jansen, A., "Development of a spatially offset Raman spectroscopy 
probe for breast tumor surgical margin evaluation," Journal of biomedical optics 16(7), 
077006 (2011) 

154. Makowski, A.J., Davidson, J.M., Mahadevan-Jansen, A. and Jansen, E.D., "In vivo 
analysis of laser preconditioning in incisional wound healing of wild-type and HSP70 



  

 

63 

knockout mice with Raman spectroscopy," Lasers in surgery and medicine 44(3), 233-
244 (2012) 

 

 

 

 



  

 

64 

 

CHAPTER 3 

 

POLARIZATION CONTROL OF RAMAN SPECTROSCOPY OPTIMIZES THE 

ASSESSMENT OF BONE TISSUE 

 

Work comprised in this Chapter is published in: 
Makowski, A. J., C. A. Patil, A. Mahadevan-Jansen and J. S. Nyman (2013). "Polarization 
control of Raman spectroscopy optimizes the assessment of bone tissue." J Biomed Opt 18(5): 
55005. 

 

3.1 Abstract 

There is potential for Raman Spectroscopy (RS) to complement clinical tools for bone 

diagnosis due to its ability to assess compositional and organizational characteristics of both 

collagen and mineral. To aid this potential, the present study assessed specificity of multiple RS 

peaks to the composition of bone, a birefringent material, for different degrees of instrument 

polarization. Specifically, relative changes in peaks were quantified as the incident light rotated 

relative to the orientation of osteonal and interstitial tissue, acquired from cadaveric femurs. In a 

highly polarized instrument (106:1 extinction ratio), the most prominent mineral peak (ν1 

Phosphate at 961 cm-1) displayed phase similarity with the Proline peak at 856 cm-1. This 

sensitivity to relative orientation between bone and light observed in the highly polarized regime 

persisted for certain sensitive peaks (e.g., Amide I at 1666 cm-1) in unaltered instrumentation 

(200:1 extinction ratio). Though Proline intensity changed with bone rotation, the phase of 
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Proline matched that of ν1 Phosphate. Moreover, when mapping ν1 Phosphate/Proline across 

osteonal-interstitial borders, the mineralization difference between the tissue types was evident 

whether using a 20x or 50x objective. Thus, the polarization bias inherent in commercial RS 

systems does not preclude the assessment of bone composition when using phase-matched peaks. 

3.2 Introduction 

Despite recent advances in the ability to assess fracture risk 1, 2, definitive metrics do not 

yet exist to identify individuals in need of an intervention that lowers fracture risk. 

Complementary to established X-ray based diagnostics of bone, Raman Spectroscopy (RS) is an 

emerging technology that offers non-destructive 3-7 measures of the biochemical nature of tissue. 

As an indication of its potential to assess fracture risk, RS detected differences in carbonate 

concentration relative to phosphate between bone samples from non-fracture patients and bones 

from osteoporotic fracture cases 8. In addition to quantifying the amount of carbonate in calcified 

tissue 9, RS is sensitive to local changes in mineral accumulation through mineral to collagen 

peak ratios, as well as local changes in mineral maturation through measurements of crystallinity 

10. These properties become less heterogeneous with aging 11, change in response to tissue 

damage 12, and correlate to mechanical strength of rodent bones 13, 14 as well as human cortical 

bone 10. 

While these attributes make RS a candidate for clinical diagnosis of bone quality and 

disease states, unresolved issues regarding instrument polarization and its impact on analysis 

hamper unambiguous derivation of quantities reflecting the biochemical properties of bone 

tissue, referred to henceforth as biomarkers. For example, probe-based instruments have been 
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developed to acquire Raman spectra from bone through the overlying tissue 15-17. However, most 

RS studies assessing bone use laser confocal microscopes 18 in which the laser is polarized 19, 20. 

Since most fiber optic instruments do not preserve polarization, there is potential for significant 

discrepancy between the relevant biomarkers of fracture resistance as obtained from RS 

microscopes and those obtained from existing clinically relevant instruments. 

Earlier studies in FTIR identified that vibrational spectroscopy markers for 

mineralization, crystallinity, carbonation, and collagen cross-linking all significantly associate 

with fragility fracture 21, and while the influence of polarization on FTIR was previously 

characterized 22, 23, the polarization state for this instrument was not reported. FTIR and RS are 

linked as vibrational spectroscopy methods, but fundamental differences give RS an apparent 

clinical advantage that has fueled cross-correlation and validation in RS. 

Recent correlation studies linking RS to the fracture resistance of bone have reported 

different biomarker sensitivity of RS to the biomechanical properties of bone, possibly due to 

instrument polarization differences. In one RS study involving a commercial confocal system, 

differences in v1 Phosphate / CH2-wag between trabecular and cortical bone were related to 

differences in nanomechanical properties between the tissue types 24. In another study analyzing 

cortical bone from genetic mouse models (MMP2-/- and MMP9-/-)  and using a similar 

commercial instrument, correlations among nanoindentation modulus, bending strength, and RS 

were reported for several mineral-to-collagen ratios, but not v1 Phosphate / Amide I 25. On the 

other hand, strength of bone from vehicle- and glucocorticoid-treated mice was correlated to 

various RS peaks when normalized to Amide I in a fiber optic system 26. Despite differences in 
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modes of biomechanical testing among these studies, the polarization state of the instrument 

likely influences which RS biomarkers are sensitive to experimental groups. 

Even though bone is a birefringent material, only a few investigations have intentionally 

examined the effect of polarization on RS peaks of bone 27-30. The vast majority of polarization 

RS studies of mineralized tissues utilized isolator and analyzer polarizers to “fully polarize” both 

the input light and collection arm of the Raman system (Table 3.1). To the best of our 

knowledge, the extent to which polarization may affect various peak ratios used to assess 

composition of bone is not well understood for RS instruments without these added optics. 

Addressing this is important because Raman scattering bands are inherently and differentially 

affected by polarization due to vibrational modes that give rise to the Raman effect 31, 32. Even 

though Legendre polynomials can be used to extract the distribution of collagen and mineral 

orientation by modulating polarization 30, inherent polarization within the instrument can affect 

bands even in the absence of molecular organization (e.g., analyzing carbon tetrachloride) 33. 

Because sample volume, molecular organization, scattering anisotropy, and tissue turbidity 

influence the scattered light 30, it is difficult to predict how polarization affects RS spectra of 

bone tissue (which is both turbid and organized), especially when the input laser light is 

unaltered (Table 3.1). In the context of RS instrumentation, we refer to changes in Raman peak 

intensities due to bone rotation (relative to light polarization) as a “polarization bias”. 

Rather than intentionally polarizing Raman collection, the present study compares RS 

biomarkers of human cortical bone with respect to inherent system polarization using 

commercial instrumentation. The hypothesis of this study was that the intensity of polarization-

sensitive Raman bands would oscillate relative to input polarization. Thus, optimization of the 
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relative phase of these Raman bands oscillations could yield biomarkers that are better suited for 

the study of either composition (phase matched and less polarization sensitive) or structure 

(phase mismatched and polarization sensitive). This study uses polarization theory to quantify 

the phase and amplitude for a number of Raman peaks of bone, and in doing so, identifies phase 

matching as the source of polarization insensitivity in known and newly characterized peak ratios 

of bone composition. Whereas other studies have observed the intensity change of specific peak 

ratios (Table 3.1), the present work establishes phase profiles for many of the prominent peaks 

arising from bone with and without added polarization optics. 

 

  



  

 

69 



  

 

70 

  



  

 

71 

3.3 Methods 

3.3.1 Specimen Preparation 

Transverse human cortical bone specimens from the lateral femur midshaft were prepared 

as per previously published methods 18. Briefly, bone samples were mounted to slides using 

cyanoacrylate and ground on silicon carbide papers of sequential grit, then polished with 0.05 

µm alumina beads in solution to an ultimate surface area of ~8mm x ~8mm and thickness of 

approximately 4 mm. One sample from each of 6 donors was used (4 males ages 48, 80, 82 and 

94, 2 females ages 86 and 95). To generate a control sample, a human molar was embedded in 

polymethylmethacrylate; a thick section was cut in the longitudinal direction; and the surfaced 

polished as previously described 18. 

3.3.2 Raman Instrumentation 

To fully examine the influence of instrument polarization and bone structure on collected 

Raman spectra, we conducted several experiments, each with a different collection protocol or 

degree of polarization. Raman spectra were acquired from the polished surface of the bone tissue 

in air using a standard confocal Raman microscope (Ramanscope Mark III and InVia Raman 

Microscope, Renishaw, Hoffman Estates, IL) equipped with Renishaw EasyConfocal, a 35 µm 

slit opening, and a spectral resolution of 1cm-1, equipped with a 785 nm laser diode source with a 

polarization extinction ratio (PER) of 200:1 (Innovative Photonic Solutions, Monmouth Junction, 

NJ). To eliminate grating bias according to Renishaw specifications, the polarization was aligned 

upright within the instrument (left-right when operator faces stage), confirmed with known 

polarizers and silicon standard intensity. Placing a mirror in the sample plane, the PER was also 
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measured as 20:1 after the dichroic and 17:1 after the grating. Additional optics increased 

polarization of the Raman microscope, such that the system operated in a highly polarized 

regime. An isolator (NIR linear polarizer, 1000:1 extinction ratio, Thorlabs, Newton, NJ) was 

used to isolate a polarization angle of input laser light prior to sample incidence. An analyzer 

(additional linear polarizer, same specifications) isolates a particular polarization angle of light 

reflected off the sample. A quartz wedge depolarizer (AR coated  achromatic depolarizer DPU-

25-B, Thorlabs, Newton, NJ) effectively scrambles the polarization state of light in space prior to 

the spectral grating to prevent instrumentation bias by transmitting a pseudo-random polarized 

beam. Removal of the analyzer (1000:1 extinction ratio) decreased system polarization 

sensitivity, but retaining the input polarizer provided an “input polarization regime”. In this 

regime, the bone sample is rotated to examine bias and the depolarizer remains in the system to 

minimize instrumentation bias of the grating.  Without added optics, the system retains a degree 

of inherent polarization sensitivity, henceforth referred to as an “unaltered polarization regime”. 

To preserve system throughput across experiments despite differences in added optics, 

spectral acquisition exposure times were scaled to ensure 480 mW*s apparent exposure at the 

sample. This provided a signal to noise ratio for the low intensity Proline peak in excess of 10:1 

in highly polarized experiments, translating to at least 25:1 in unaltered experiments. Unless 

otherwise stated, spectra were obtained with 3 accumulations after 5 seconds photobleaching. 

Spectra were then binned to a resolution of 3 cm-1 , and processed via least squares modified 

polynomial fit 34 and smoothed for noise using an 2nd order Savitsky-Golay filter 26, 35. After 

fluorescence subtraction, a linear baseline subtraction (based on derivative zero-crossings 

neighboring the peak) was conducted on peaks that overlap with other constituents to ensure no 
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residual fluorescence, namely Proline, Hydroxyproline, ν1 Phosphate, and Carbonate. Spatial 

resolution for each objective used was approximated via edge detection on a polished silicon 

standard. System Raman shift calibration was accomplished using a neon lamp and a silicon 

standard with Renishaw software to account for grating motion. Silicon measurements before 

and after each beam path change and at system “startup” ensured wavenumber calibration 

consistency. 

Since dentin has less heterogeneity in collagen fibril orientation than bone, we collected 

Raman spectra from the same site as a human tooth rotated from 0 to 180 degrees in 20 degree 

increments in order to characterize the polarization sensitivity of our RS instrument without 

additional polarization optics.  In these dentin measurements, known polarization sensitive peaks 

oscillated through rotation with percent changes in mean normalized intensity of 6.6% and 

22.6% for ν1 Phosphate and Amide I, respectively. 

3.3.3 Experimental Design 

3.3.3.1 Highly Polarized Analyzer Rotation 

Polarization analysis used known bias from previous work 19, 28, 36 to confirm the ability 

of Malus’s law to model phase and amplitude of Raman peaks. In effect, our first experiment 

was designed to evaluate phase oscillation for sensitive RS peaks. To account for within sample 

variation, five osteons and neighboring interstitial sites were selected from a single bone sample 

18. In brief, selected osteons were spaced evenly over the surface and distributed by osteon size 

and pore size. Using upright input polarization through our 50x, NA=0.75 objective (lateral 

resolution 3-4 µm, as measured by edge detection) and stationary bone orientation, the analyzer 
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was rotated at each site from 0 to 180 degrees in 20 degree increments. This study used an 

adaptation of Porto’s notations based on microscope translation stage directions since Porto’s 

notations traditionally depend on sample crystallographic axis 37, 38, which varies within cortical 

bone. In this adaptation, the polarization regime is Z(XB)-Z, where B denotes analyzer rotation 

relative to instrument input X (always left-to-right as viewed by operator). Intensity for each of 

the prominent peaks in the bone spectrum was then modeled as a function of polarization angle B 

to compare the degree of oscillation between quantities.    

3.3.3.2 Bone Rotation for Two Polarization Regimes 

Next, spectra were collected as a function of bone orientation to evaluate peak and peak 

ratio sensitivity in less polarization sensitive systems. We analyzed a single osteon and 

neighboring interstitial site from each of three bones under both input polarized (added isolator 

and depolarizer) or unaltered (no added optics) polarization regimes. As was done with tooth, the 

bone sample was rotated around the optical axis using a custom stage to preserve collection 

location while obtaining spectra (50x, NA= 0.75 objective) from 0 to 180 degrees rotation in 20 

degree increments. The polarization regime is Z(Xx)-Z, where x denotes bone rotation around Z 

relative to instrument input X (left-to-right as viewed by operator). 

3.3.3.3 Spectral Mapping of Bone Tissue Rotation  

 Using the unaltered polarization regime, we acquired confocal Raman maps of spatial 

heterogeneity to demonstrate the effects of phase-matching on compositional discrimination of 

known osteonal and interstitial tissue differences. Phase-matching  of peak ratios is defined as 

minimizing the phase difference of the ratio components, effectively choosing peaks that have 

the most similar rotation angle of maximum intensity, subsequently reducing the impact of 
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rotation angle upon the observed ratio intensity.  One osteon and the neighboring interstitial area 

(20x, NA= 0.4 objective, lateral resolution of 12 µm) from each of three bones was mapped 

using unaltered instrumentation at a pixel size of 8 x 8 µm for 0, 45 and 90 degree rotations of 

the bone sample about the optical axis. To analyze discrimination of osteonal from interstitial 

tissue, intensity maps were generated for selected peak ratios applying a uniform scale based 

upon full intensity range, such that a polarization insensitive spectral constituent will show the 

same intensity image in all three acquisitions. Instrument polarization in direction X is denoted 

with X-Y stage directions in each figure panel. For one bone, the mapping process was repeated 

using the 50x objective for an osteonal-interstitial border within the original 20x map to 

demonstrate Raman maps of polarization bias with a smaller sample volume.  

3.3.4 Data modeling and Statistics 

Data modeling and statistics were performed on peak heights extracted from each 

processed spectrum (Figure 3.1 A). Peak intensities were modeled to Malus’ Law 39, 40 (intensity 

varies with polarization angle as a function of cosine squared) for phase and amplitude of 

oscillation (Figure 3.1 B). The custom algorithm employed a least squares fit for amplitude 

nested inside a mean squared error driven optimization (Matlab implementation of Nelder-Mead 

simplex 41, Mathworks, Natick, MA), outputting peak phase, amplitude, and mean intensity as 

illustrated in Figure 3.1 B. The degree of orientation sensitivity across the three generated 

polarization regimes was quantified for each prominent peak as a function of oscillation 

amplitude normalized to mean peak intensity. For less sensitive peaks, individual sample 

oscillations could become noisy or undetectable, such that data fails the underlying assumptions 
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of the Malus’ Law model. Modeled data were excluded from quantitative analysis if the model 

fit was not significant (p<0.05) via ANOVA regression (all fits shown in figures and tables are 

significant). For each peak, the number of samples with statistically significant models and the 

observable percent change in intensity measurements of the same quantity were recorded. 

3.4 Results 

3.4.1 Phase differences in Raman peaks of bone under highly polarized light 

Acquired under a highly polarized regime, RS biomarker peaks exhibited differential 

polarization behavior in both degree and relative phase of intensity oscillation. For the most part, 

relative phase varied insignificantly between osteonal and interstitial tissue types for any given 

peak. However, phase oscillation varied distinctly between different peaks representing the same 

bone compositional element (i.e. Amide I at 1666 cm-1 vs. Amide III at 1247 cm-1, both 

biomarkers of collagen in Figure 3.2). In reference to the ν1 Phosphate peak (961 cm-1), the 

strongest spectral signal for bone mineral, Proline (854 cm-1) was found to have the best phase 

match for the generation of a mineral to collagen ratio, a metric commonly used as an indicator 

of bone quality.  

Building upon our previous findings 18, the observed difference between osteonal and 

interstitial tissue composition (Figure 3.3) was small (2-30% difference) relative to intensity 

change as a function of polarization angle (100-300% difference). However, under the traditional 

calculation of a mineral to collagen ratio using ν1 Phosphate (mineral) and Amide I (collagen) as 

biomarkers, different quantities would be observed at different polarization angles (e.g., 60 vs. 

140 degrees in Figure 3.3 A). As an alternative mineral to collagen ratio that still utilizes the 
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signal strength of ν1 Phosphate, the phase matched Proline peak can be used to represent 

collagen (Figure 3.3 B). Also, as indicated by Kazanci et al. 28, other RS mineral quantities can 

be substituted for ν1 Phosphate (Figure 3.3 C&D). The distinct phase mismatch between ν2  

Phosphate and Amide I (Figure 3.3 C) was reversed by using Amide III for collagen (Figure 3.3 

D).  

3.4.2 Susceptibility of certain Raman peaks to polarization bias 

 When defined as the model amplitude normalized to mean peak intensity, the 

peak sensitivity to polarization decreased from the highly polarized regime to the input polarized 

and unaltered polarized regimes (Figure 3.4). Hydroxyproline (870 cm-1) and Amide I, the two 

most sensitive peaks in the highly polarized regime, remained polarization sensitive in the input 

polarized regime. Despite the fact that spectra were acquired from different bone samples, the 

oscillation sensitivity trends among most peaks remain consistent between the highly polarized 

and input polarized regimes.  Comparing input polarized and unaltered polarization regimes 

(paired measurements of the same sample locations at the same rotation increments), polarization 

sensitivity dropped off markedly for some peaks like Carbonate and Hydroxyproline (Figure 

3.4). However, for other peaks like Amide I and ν1 Phosphate, degree of oscillation amplitude 

remains relatively unchanged. In the unaltered polarization regime, less sensitive peaks like 

Amide III fell into the noise floor, as evidenced by decrease in number of significant model fits 

by ANOVA regression (Table 3.2).  

 An RS surface plot for a single osteon acquired with unaltered polarization 

(Figure 3.5 A) illustrates that ν1 Phosphate peak intensity fluctuations (Figure 3.5 B) were out of  
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phase with Amide I intensity fluctuations (Figure 3.5 C) but matched to the fluctuations of 

Proline (Figure 3.5 D).  Although noise has a significant impact on model fit in the unaltered 

regime, the trends of polarization phase between mineral and collagen peaks (Figure 3.5) 

remained consistent with trends observed when the analyzer was rotated with the bone sample  

stationary (Figure 3.3). Phase mismatch trends of RS biomarkers from highly polarized data 

persisted in unaltered polarization. 

3.4.3 Performance of phase-matched ratios for compositional differences 

 RS maps demonstrate how phase mismatch in RS peak ratios confounds the 

consistent measurement of spatial heterogeneity, even in an unaltered polarization regime 

(Figure 3.6). Expected differences in mineral to collagen ratio between an osteon and 

surrounding interstitial tissue is not maintained throughout bone rotation for polarization 

sensitive ν1 Phosphate / Amide I (Figure 3.6 B); whereas, ν2 Phosphate / Amide III (Figure 3.6 

C) shows consistent overall intensity differences between the tissue types despite rotation. Yet, 

this latter image is noisier than the former image due to significantly lower signal to noise ratio 

(SNR) of the ν2 Phosphate and Amide III peaks, relative to ν1 Phosphate. Maps of ν1 Phosphate 

/ Proline (Figure 3.6 D) illustrate a relatively consistent image of compositional heterogeneity 

throughout rotation, differentiating the osteonal tissue from the more mineralized interstitial 

tissue. This peak ratio map is independent of bone rotation because of the low phase difference 

between ν1 Phosphate and Proline (Table 3.3).  

Figure 3.7 shows how numerical aperture and subsequent differences in sample volume 

averaging affect the apparent sensitivity of mineral to matrix calculations to tissue type. The  
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calculations compare ν1 Phosphate / Amide I sensitivity to the phase matched ν1 Phosphate / 

Proline using a map at 20x magnification and a 50x map of a portion of the same area (panel A). 

The polarization sensitive Amide I ratio produced a distinct intensity change at 50x 

magnification in the 45 degree map (Figure 3.7 C) that was less pronounced but arguably still 

apparent at 20x (Figure 3.7 B). The mineral to matrix ratio with Proline (Figure 3.7 D and E) was 

relatively consistent throughout. 

3.5 Discussion 

Development of Raman spectroscopy methods towards bone diagnostics requires a firm 

understanding of which RS measures are sensitive to bone tissue composition and which are 

sensitive to bone tissue organization. While the potential for highly polarized RS to discriminate 

bone organization is known (Table 3.1), the present study provides a thorough characterization 

of the contribution of polarization bias in a standard Raman microscope to RS measurements of 

bone. When the goal of RS analysis is to assess compositional differences in bone, polarization 

bias adds uncertainty to the measurements. The addition of polarization optics, even to reduce 

polarization bias, leads to increased data collection time. Therefore, this study characterized peak 

and peak ratio specificity without altering instrumentation and found that polarization bias exists 

in a standard microscope and needs to be addressed.  

Consistent with findings from the highly polarized RS analysis of mouse bone by 

Raghavan et al. 30, polarization bias can persist for a low numerical aperture objective (NA= 0.4) 

(Figure 3.7) that effectively averages the signal over larger spatial volumes than a 50x objective 

with a NA of 0.75. Nonetheless, matching polarization-orientation phase, effectively matching  
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the organizational component of RS peaks, allows for consistent measures of composition 

(Figure 3.3 B and 3 D as well as Figure 3.7 C and 7 D). This study used spectral maps of spatial 

heterogeneity within bone (Figure 3.6) to establish that peak ratio sensitivity identified by 

polarized Raman Spectroscopy studies (Table 3.1) remains in unaltered polarization regimes 

(i.e., standard confocal RS instruments). In effect, polarization phase can be exploited to 

distinguish compositional heterogeneity from organizational heterogeneity. Finally, throughput 

costs of added optics can be avoided by using less sensitive peaks and phase-optimized peak 

ratios. 

 Spectral fingerprints of disease may rely upon organization of collagen and mineral as 

much as the relative composition of these constituents. This is of particular importance because 

bone disorders and disease states including osteoporosis and osteogenesis imperfecta can involve 

deleterious changes in bone organization 30. Moreover, the organization of the constituents of 

bone tissue influences the fracture resistance of bone 42-46. The observations of phase difference 

(Figure 3.2) from our modeling of spectral data as a function of analyzer rotation is consistent 

with findings from previous highly polarized studies 19, 28, 36, as well as recent theoretical models 

of collagen orientation within osteons 47. The phase differences between RS biomarker peaks 

arise from the organization of mineral crystals and collagen fibrils, such that information 

encoded within polarization phase may provide new insight for future disease diagnosis or 

fracture risk assessments. However, clear associations of phase and bone’s fracture resistance 

remain to be established. Nonetheless, as RS matures toward clinical use, consistency in 

discriminating composition from organization may contribute to accurate assessment of fracture 

risk.  
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Alternatively, RS could prove especially effective in the diagnosis of bone diseases that 

are pathologically based upon bone composition, including diabetes, chronic kidney disease, and 

the discrimination of grades of osteogenesis imperfecta. Recent investigations employing spatial 

sampling regimens to average out polarization bias concur that alternative mineral to collagen 

ratios (Figure 3.6) exhibit increased sensitivity to known osteonal and interstitial differences in 

composition 18, 48. Specifically, improvement in mineral to collagen ratio variance and 

microstructure delineation when utilizing Proline instead of Amide I as a collagen component 

can be explained by a decrease in underlying polarization phase difference between ν1 Phosphate 

(mineral constituent) and Proline (collagen constituent) (Table 3.3). 

RS acquisition of bone spectra often spans a range of 300- 1800 cm-1 to cover prominent 

peaks, though it is expanded in some studies to 3000 cm-1 to capture a CH peak. Collecting 

Proline, ν1 Phosphate, and Carbonate would require spanning only 300 cm-1, further reducing 

necessary instrumentation, data processing, and collection time. Despite the availability of 

commercial systems, RS instrumentation differs largely between research groups and studies, 

implying that polarization bias from orientation sensitive peaks may vary between studies.   

Changes in Raman spectra as the bone or tooth rotates relative to the incident laser light 

reveal the persistence of a polarization-orientation bias for sensitive peaks like Amide I even 

within less sensitive unaltered RS setups. Polarization sensitivity trends (Figure 3.4) are 

conserved among prominent peaks in both the highly polarized regime and in the input polarized 

regime, despite the fact that spectra were acquired from different bone samples. Phase trends 

seen in highly polarized acquisition of bone appear to persist in unaltered instrumentation as well 

(Figure 3.5). Phase matched peak ratios of mineral to collagen ratio demonstrate lower 
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coefficients of variation and therefore greater consistency (Table 3.3). When determined from 

the same site of bone rotation and then averaged across the various sites, the phase difference 

between ν1 Phosphate and Proline was 2.2 degrees  for bone and 9 degrees for more highly 

organized dentin (Table 3.3), suggesting that these trends in phase difference may be conserved 

between tissues and anatomical locations. Despite the low intensity of Proline, the high intensity 

of the ν1 Phosphate peak may make ν1 Phosphate / Proline a more practical compositional 

metric than ν2 Phosphate / Amide III, which also has a low paired phased difference (Table 3.3). 

In addition, the use of peak phase difference confirmed the compositional nature of carbonate 

substitution (Table 3.3). While results suggest optimal metrics for bone composition and caution 

against possible inconsistent use of other metrics, the polarization-orientation information of RS 

biomarkers may have greater implications for future clinical bone diagnostics. 

Consistent use of less polarization sensitive peaks or phase-matched ratios may allow for 

clearer comparisons between instruments and studies. RS sensitivity to glucocorticoid-treatment 

in rheumatoid arthritis bone shows compositional difference despite normalization to Amide I 

when using a fiber optic (polarization insensitive) system 26. These biomechanical correlations 

are likely separate and distinct from RS correlations to collagen tension changes seen in formal 

polarization analysis 49. Given low instrument polarization and results from less polarization 

sensitive carbonate and Amide III bands, analysis of bone from osteoarthritic patients on 

different load bearing surfaces can be interpreted as a largely compositional effect 50. Phase 

mismatch of v1 Phosphate / CH2 (see Figure 3.2 and Figure 3.6 E) may have contributed to 

biomechanical correlation due to use of a commercial confocal system 24, thereby indicating a 

predominantly organizational phenotype.  Interpretation of results from these and future studies 
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in light of instrument polarization may help to define consistent Raman signatures for 

compositional and structural disease. 

3.6 Conclusions 

Polarization–orientation information in bone biomarkers, as seen in highly polarized 

studies involving Raman Spectroscopy, persists in unaltered commercial systems with lower 

inherent sensitivity to polarization. Modeling this consistent bias shows that matched phase 

information between peaks yields biomarker ratios that are less sensitive to polarization-

orientation, without the loss of throughput necessitated by additional optics. Bias in 

compositional measures can be minimized by phase matching; specifically, findings support 

using ν1 Phosphate / Proline for mineral to collagen and Carbonate / ν1 Phosphate for carbonate 

substitution. In the diagnosis of organizational phenotypes, polarization-orientation can be 

maximized by phase mismatch (i.e. ν1 Phosphate / Amide I) without necessarily including 

polarization optics. Optimizing polarization in the instrument and in biomarkers should help to 

increase discrimination and consistency in future studies of bone.  
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CHAPTER 4 

 

THE LOSS OF ACTIVATING TRANSCRIPTION FACTOR 4 (ATF4) REDUCES BONE 

TOUGHNESS AND FRACTURE TOUGHNESS 

 

 

Work described in this Chapter is published in: 

Makowski, A.J., Uppuganti, S., Wadeer, S.A., Whitehead, J.M., Rowland, B.J., Granke, M., 
Mahadevan-Jansen, A., Yang, X. and Nyman, J.S., "The loss of activating transcription factor 4 
(ATF4) reduces bone toughness and fracture toughness," Bone 62, 1-9 (2014) 

 

4.1 Abstract 

 Even though age-related changes to bone tissue affecting fracture risk are well 

characterized, only a few matrix-related factors have been identified as important to maintaining 

fracture resistance. As a gene critical to osteoblast differentiation, activating transcription factor 

4 (ATF4) is possibly one of these important factors. To test the hypothesis that the loss of ATF4 

affects the fracture resistance of bone beyond bone mass and structure, we harvested bones from 

Atf4+/+ and Atf4-/- littermates at 8 and 20 weeks of age (n≥9 per group) for bone assessment 

across several length scales. From whole bone mechanical tests in bending, femurs from Atf4-/- 

mice were found to be brittle with reduced toughness and fracture toughness compared to femurs 

from Atf4+/+ mice. However, there were no differences in material strength and in tissue 
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hardness, as determined by nanoindentation, between the genotypes, irrespective of age. Tissue 

mineral density of the cortex at the point of loading as determined by micro-computed 

tomography was also not significantly different. However, by analyzing local composition by 

Raman Spectroscopy (RS), bone tissue of Atf4-/- mice was found to have higher mineral to 

collagen ratio compared to wild-type tissue, primarily at 20 weeks of age. From RS analysis of 

intact femurs at 2 orthogonal orientations relative to the polarization axis of the laser, we also 

found that the organizational-sensitive peak ratio, ν1Phosphate per Amide I, changed to a greater 

extent upon bone rotation for Atf4-deficient tissue, implying bone matrix organization may 

contribute to the brittleness phenotype. Target genes of ATF4 activity are not only important to 

osteoblast differentiation but also maintaining bone toughness and fracture toughness. 

4.2 Introduction 

The age-related increase in fracture risk is not solely due to a loss in bone mineral 

density [1], and by extension a decline in  bone strength, leading to the idea that the 

inherent quality of bone tissue is an important attribute of fracture resistance. With respect 

to the apparent material properties of bone, there is a greater loss in cortical bone 

toughness with aging than in bone strength [2] (-8.7% per decade vs. -4.7% per decade 

[3]). In addition to the age-related decrease in post-yield energy dissipation [4], the 

capacity of human cortical bone to resist crack growth (fracture toughness) diminishes 

with advancing age as determined by strain energy release rate (Gc), critical stress intensity 

factor (Kc), J-integral, and R-curve behavior (crack propagation toughness) [5-9]. Despite 

the critical role of collagen as a determinant of bone toughness (i.e., lack of brittleness) [10-
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12] and fracture toughness [13-15], there is an incomplete understanding of what exactly 

regulates these material properties of bone. 

Recent analyses of long bones from different genetic mouse models have started to 

identify genes that may be important in promoting the ability of the bone tissue to resist 

fracture, beyond influencing bone strength. For example, deletion of the proteolysis genes, 

matrix metalloproteinase (MMP)-9 and MMP-13 separately, produced a brittle bone 

phenotype (e.g., low post-yield deflection) [16,17]. Deletion of non-collagenous proteins, 

namely osteopontin (OPN) and osteocalcin (OCN) separately or concurrently, resulted in 

bones with lower fracture toughness in relation to long bones from wild-type mice [18,19]. 

Acquiring femurs from genetic and transgenic mice in which transforming growth factor-

beta (TGF-β) signaling was either low, normal or high, Balooch et al. [20] provided the first 

link between a growth factor and fracture toughness: resistance to crack growth was 

inversely proportional to TGF-β signaling. 

The activating transcription factor 4 (ATF4) is another possible gene important to 

promoting the toughness and fracture toughness of bone. Transcription factors determine 

cell fate, and in the case of osteoblasts, ATF4 activity promotes the expression of the 

aforementioned OCN [21]. Moreover, osteoblasts lacking ATF4 do not fully mature and do 

not adequately synthesize type 1 collagen as amino acid transport is diminished in ATF-

deficient osteoblasts (in vitro) [21]. Thus, Atf4-/- mice have smaller bones and less 

trabecular bone volume fraction than Atf4+/+ mice. To date, there is scant evidence that 

transcription factors regulate the fracture resistance of bone from the perspective of 
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energy dissipation during fracture. Understandably, toughening mechanisms are 

multifactorial given the hierarchical organization of bone’s constituents. Nonetheless, 

evidence that the loss of a transcription factor affects bone toughness or fracture toughness 

opens avenues of research into novel therapeutic targets that go beyond stimulating more 

bone (or preventing loss of bone) to generating better bone tissue with high resistance to 

fracture. Toward this end, we hypothesized that the loss of ATF4 lowers bone’s resistance 

to fracture through changes in the matrix, not necessarily due to deficits in bone structure 

and mineral density. 

4.3 Materials and Methods 

4.3.1 Tissue Collection 

Mice lacking 1 copy of ATF4 were re-derived onto a FVB background from an existing 

colony [21] (C57BL/6 background) because bones from the C57BL/6 strain have relatively low 

ash fraction [22,23] and do not readily snap during load-to-failure tests in the three point bending 

configuration when acquired from young mice. Breeding Atf4+/- mice generated Atf4+/+ (n≥12 

per age group) and Atf4-/- littermates (n=9 per age group) that were euthanized at 8 and 20 

weeks of age following a protocol approved by the local IACUC. Femurs and the L6 vertebrae 

were frozen in phosphate buffered saline (PBS) for biomechanical testing, while tibiae were 

dehydrated in ethanol and embedded in polymethylmethacrylate (PMMA) [24]. For Raman 

Spectroscopy (RS) and nanoindentation, transverse cross sections were cut at the mid-shaft (~6 

mm thick in a region above the tibia-fibula junction) using a diamond embedded band saw (310, 

EXAKT Technologies, Inc., Oklahoma City, OK). The proximal surface of the embedded 
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section was ground on successive grits of silicon carbide paper using a precision grinder (400CS, 

EXAKT Technologies, Inc., Oklahoma City, OK) and then polished on synthetic cloth 

(MasterTex, Buehler, Lake Bluff, IL) with alumina solution (MasterPrep 0.05 μm, Buehler, Lake 

Bluff, IL),[16] using a polisher (VibroMet 2, Buehler, Lake Bluff, IL). The posterior side of the 

right femur from each mouse was micro-notched for fracture toughness testing using first a low 

speed, diamond-embedded saw, and then a razorblade coated with a diamond solution [18]. 

4.3.2 Micro-Computed Tomography Analysis 

Prior to mechanical testing, the mid-shafts of the un-notched, left femurs and the L6 VBs 

were scanned (μCT40, Scanco Medical, Brüttisellen, Switzerland) at an isotropic voxel size of 

12 μm using the same settings (70 kVp/114 μA; 1000 projections per 360° rotation; and 300 ms 

integration time) and a hydroxyapatite (HA) phantom calibration with the manufacturer’s beam 

hardening correction. To calculate structural properties (Ct.Th, Ct.Ar, Imin, etc.) and tissue 

mineral density of cortical bone (Ct.TMD), contours were fit to the outer cortex. To calculate the 

architectural properties (BV/TV, Tb.N, Conn.D, etc.) and TMD of trabecular bone (Tb.TMD), 

contours were drawn by hand inside the cortical shell of the VB for each slice between the 

endplates. The segmentation procedure was consistent among all scans per bone type: global 

thresholds (and a Gaussian filter to suppress image noise) of 715.2 mgHA/cm3 (sigma=0.8 with 

support of 2) for cortical and 421.3 mgHA/cm3 (sigma=0.3 with support of 1) for trabecular 

bone. The central mid-shaft of the notched, right femurs were scanned at an isotropic voxel size 

of 6 μm using the same scanner and scan conditions. Contours were fit to the outer cortex above 

and below the notched region to determine the mean centroid, cortical thickness (Ct.Th), mean 
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radius of the cortex ((cmin + cmax)/2), and Ct.TMD. The notched region was evaluated to ensure 

proper size and to determine the angle of the notch (2θ). 

4.3.3 Whole-Bone Biomechanical Testing 

Three point bending tests of hydrated, un-notched [16] and notched femurs [5] were 

conducted using a bench-top, material testing system (Dynamight 8841, Instron, Canton, OH). 

For the un-notched bones, the span (L) and loading rate were 8 mm and 3 mm/min, respectively. 

For the notched femurs, the span was 4 times the mean outer anterior-posterior diameter (i.e., in 

the direction of loading) of each group. The loading rate of these femurs was 0.06 mm/min. 

Force vs. displacement data were recorded at 50 Hz from a 100 N load cell (Honeywell, , OH) 

and the linear variable displacement transducer. 

In mechanical analysis of the un-notched femur, whole bone stiffness was the slope of the 

initial linear portion of the curve and strength was the peak force (Pf) endured by the mid-shaft. 

Using the moment of inertia (Imin) of the mid-shaft and the distance between the centroid and the 

bone surface in the anterior-posterior direction (cmin) from μCT, we estimated the modulus and 

strength from standard flexural equations [25]. The yield point was deemed to occur when the 

secant stiffness was 15% less than the initial stiffness. Post-yield deflection (PYD) was then 

defined as the displacement at fracture minus the displacement at yielding, and post-yield 

toughness was defined as the area under the force vs. displacement curve after yielding divided 

by the bone cross-sectional area (Ct.Ar) [26]. Kc was quantified assuming the stress intensity at 

the micro-notch root is similar to that of a circumferential through-wall crack in a thin-wall 

cylinder subjected to bending [27]: 
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𝐾𝑐 = 𝐹𝑏
𝑃𝑓𝐿𝑅0

π�𝑅𝑜4−𝑅𝑖
4� �π𝑅𝑚𝜃𝑐  Eq. 3.1 

where the outer, inner, mean radius (Ro, Ri, and Rm) of the bone cortex, and the half-crack angle 

(θ) were determine using μCT. Confirming the ratio Rm/Ct.Th was less than 80.5 and greater 

than 1.5 and that θinit was less than 110° and greater than 0, the geometry factor (Fb) was 

calculated using the equation published by Takahashi [28]. In addition, scanning electron 

microscopy (SEM) imaging of the fracture surface after fracture toughness testing was used to 

determine the θ at which crack propagation transitioned from stable to instable (θinst). The 

instability K (Kc,inst) was calculated using the final force at fracture for θinst (Eq.3.1). 

Each hydrated VB was subjected to axial compression at 3 mm/min in which the 

supporting platen had a rough surface and a moment relief to minimize slippage and off-axis 

loading, respectively. Moreover, all tests were recorded with a high-resolution camera (Canon 

E6, Canon, Melville, NY) with a macro lens.  We observed that 2 VBs were not tested properly 

as they moved laterally during compression.  Data from these two bones were not included in the 

analysis. 

4.3.4 Tissue-level Assessment 

Prior to nanoindentation, 9 spectra (spaced around the cross section) were acquired from 

each embedded bone using a standard confocal Raman microscope (Renishaw InVia Raman 

Microscope, Renishaw, Hoffman Estates, IL) equipped with a 50x (NA=0.75) objective, a 35 µm 

slit opening, and a 785 nm laser diode source (Innovative Photonic Solutions, Monmouth 

Junction, NJ). Each spectrum consisted of 5 accumulations of 30 s integration time to yield a 

high signal to noise ratio (SNR) from 300 to 1800 cm-1  (Hydroxyproline SNR in excess of 25:1). 
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Spectra were processed via least squares modified polynomial fit [29] and smoothed for noise 

using an 2nd order Savitsky-Golay filter [30]. Custom Matlab software (Mathworks, Natick, 

MA) extracted the intensity and wavenumber of the prominent spectral. There was no spectral 

binning in this analysis.  

Twelve indents (4 per side) were attempted throughout the tibia cross-section using a 

nanoindenter (XP, MTS, Eden Prairie, MN) equipped with a Berkovich diamond tip. Loading at 

a constant strain rate to a depth of 1 µm and then unloading after a 30 s dwell, nanoindentation 

modulus and hardness of the tissue (0.25 µm resolution) were calculated from the slope of the 

upper unloading portion of the force vs. displacement curve and the peak force, respectively, as 

described by Oliver and Pharr [31]. Data was excluded if either the force displacement curve or 

post-hoc optical examination of the indent site revealed the presence of sub-surface pores. 

Prior to fracture toughness testing, the anterior side of the right femoral mid-shaft was 

placed under the 50x objective of the Raman InVia microscope. Using mid-shaft vessel 

perforations as landmarks to consistently select the site of analysis across bones, spectra were 

collected at two intact bone orientations: 0° and 90° relative to the polarization axis of the 

incident laser, which had an approximate extinction ratio of 1:200 (i.e., light was not fully 

polarized by adding optics). Laser power and exposure time were optimized to achieve SNR 

similar to embedded samples. Co-localization of spectral collection sites was accomplished 

manually by registering fine structural features in the bright field.  

To determine differences in composition among the experimental groups, we averaged 

the Raman measurements per bone. The Raman properties of interest included: ν1Phosphate 

(961 − 962 cm-1 ) per Amide I (1667 − 1670 cm-1 ), ν1Phosphate per Proline (855 – 858 cm-1 ), 
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ν2Phosphate (430 − 431 cm-1 ) per Amide III (1248 − 1252 cm-1 ), Carbonate (1072 – 1073 cm-1 

) per ν1Phosphate, and the inverse of the full-width at half maximum of ν1Phosphate peak 

([FWHM]-1). Because ν1Phos/AmI is sensitive to polarization bias (i.e., collagen fibril 

orientation) while ν1Phos/Proline and ν2Phos/AmIII are less so [24,32], we examined how a 

change in bone orientation shifted the regression lines among the mineral to collagen ratios 

(MCR) for each genotype as a way to infer differences in matrix organization.  

4.3.5 Statistical analysis 

A two-way analysis of variance (ANOVA) determined whether age and genotype 

affected each property. Pair-wise comparisons were then tested for significance using either 

Student’s t-test (parametric) or Mann-Whitney (non-parametric) depending on normality and 

homoscedasticity of each data set. Differences were deemed significant at a p-value adjusted by 

the Šidák correction for multiple hypothesis testing. Analysis of Covariance determined whether 

linear relationships (i.e., intercept and slope) between peak force and moment of inertia were 

different between genotypes. To examine the effect of bone rotation on the MCR relationships, 

the data were pooled across age groups within genotype and then bootstrapped in order to fit 

general linear models with the initial independent variables being peak ratio, orientation, and 

their interaction. Equations were recorded for models with the highest possible R2 value. 

Statistical analysis was performed using Stata (v11, StataCorp, College Station, TX). 
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4.4 Results 

4.4.1 ATF4 deletion affected trabecular bone architecture and cortical bone structure 

Verifying that the rederivation of the Atf4+/- mice on a different background strain did 

not affect the published phenotype, trabecular bone volume fraction of the L6 VB was much 

lower for the Atf4-/- than for the Atf4+/+ mice, irrespective of age (Table 4.1). There were also 

architectural differences between the genotypes with Atf4-deficient VBs having fewer 

trabeculae, thinner trabeculae, and lower connectivity density (Table 4.1).  Tissue mineral 

density of the trabecular bone however was not different between the genotypes. Still, the low 

BV/TV was sufficient enough that Atf4-/- VBs were weaker in compression than the Atf4+/+ 

VBs.  

Loss of ATF4 affected cortical bone structure as well in that the null femurs had a thinner 

cortex, smaller medullary volume, and a lower moment of inertia, regardless of age (Table 4.2). 

As with the trabecular bone, Ct.TMD increased with age for each genotype, but the difference 

between genotypes was not strictly significant (Table 4.2). Nonetheless, matching the trends in 

bone structure, the femurs from the knock-out mice were less stiff and weaker in bending than 

those from wild-type mice. Moreover, at 20 wk of age, the ability of the Atf4-/- bone to deform 

after yielding was nearly half that of the Atf4+/+ bone (Table 4.2). 

4.4.2 Loss of ATF4 decreased bone toughness with no effect on material strength 

Upon factoring out the structural contribution to whole bone strength as determined by 

peak force, we found that the estimated material strength of the mid-shaft was not different  
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between Atf4+/+ and Atf4-/- mice (Figure 4.1). This observation concurs with the lack of a 

demonstrable difference in Ct.TMD between the genotypes. To further confirm that the 

difference in whole bone strength was primarily due to a structural difference between the 

genotypes, not differences in tissue properties, we compared the slopes and y-intercepts of the 

regression lines for each genotype’s peak force versus moment of inertia relationship. As shown 

for 20 wk bones, there were no differences in the regression parameters (Figure 4.1). The Atf4-/- 

femurs were clearly more brittle with substantially lower post-yield work-to-fracture per bone 

cross-sectional area (Fig 1). The difference in post-yield toughness was more pronounced at 20 

wks of age than at 8 wks of age. As further confirmation of fracture resistance phenotype 

unrelated to material strength, the fracture toughness was lower for the 20 wk old Atf4-/- mice 

than for the 20 wk old Atf4+/+ mice (Figure 4.2). 

4.4.3 ATF4 deletion had differential effects on tissue-level properties between age groups 

Nanoindentation of the embedded bone tissue did not reveal differences in modulus and 

hardness between the genotypes, although there was a trend of a lower modulus for the ATF4-

deficient tissue at 8 wk (Table 4.3). The significant age-related increase in these properties for 

both genotypes was likely related to the age-related increase in mineralization (Table 4.2). 

Interestingly, the MCR, as determined by the polarization (organization)-sensitive ν1Phos/AmI 

was less in the Atf4-/- tibia than in the Atf4+/+ tibia (Table 4.3). This peak ratio increased more 

with age for the knock-out mice than for the wild-type mice. As such, the genotype difference at 

20 wk of age trended toward ν1Phos/AmI being higher, not lower, in the ATF4-deficient tissue. 

The polarization-insensitive ν2Phos/AmIII acquired from the tibia cross-section was not different  
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at 8 wk between genotypes but was greater in the ATF4-deficient tissue suggesting a 

compositional difference in the mineral relative to the collagen existed between Atf4-/- and 

Atf4+/+ mice with skeletal maturity (Table 4.3). Other differential effects of ATF4-deficiency 

between age groups include higher type B carbonate substitution (Carb/ν1Phos) and lower 

crystallinity ([FWHM]-1) with the loss of ATF4 in only the 8 wk group (no differences in the 20 

wk group; Table 4.3). 

4.4.4 ATF4 deletion possibly affected matrix organization in addition to composition 

To identify the potential origins of the brittle bone phenotype of the Atf4-/- mice, we 

compared the effect of ATF4-deficiency on the volumetric TMD of the mid-shaft cortex (by 

μCT) to its effect on MCR (by RS), acquired from the same intact femur mid-shaft (i.e., the 

notched femurs prior to testing). As was observed for the un-notched bone, Ct.TMD was greater 

for femurs from 20 wk than from 8 wk mice with little difference between genotypes at each age 

(Figure 4.3A). In contrast, the Raman-derived MCR measurements (ν1Phos/Proline, 

ν2Phos/AmIII, and ν1Phos/AmI) from the outer cortex of the mid-shaft (anterior side) did not 

increase with age in the Atf4+/+ bone and had a modest increase with age in the Atf4-/- bone 

(Figure 4.3B). This suggests that the amount of mineral relative to collagen in the cortex did not 

vary between 8 wk and 20 wk of age in wild-type mice. In contrast, there was more mineral 

relative to collagen (or less collagen relative to mineral) with the loss of ATF4 by 20 wk (Figure 

4.3B). 
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To gain further insight into whether differences in tissue organization existed between the 

genotypes, we examined the effect of rotating the intact femur on the relationships among the 

three peak ratios representing MCR (Figure 4.4). As expected, the regression line for the 

longitudinal orientation overlapped that of the orthogonal orientation when plotting 

ν2Phos/AmIII versus ν1Phos/Proline, irrespective of genotype (Figure 4.4A & 4B) because these 

peak ratios are relatively insensitive to polarization bias [32,33]. When plotting each insensitive 

peak ratio versus the polarization-sensitive ν1Phos/AmI (Figure 4.4C & 4E), there was a shift in 

the regression line for the wild-type bone such that the y-intercept, but not the slope, depends on 

orientation of the bone relative to the polarization angle of the incident light (Table 4.4). 

Interestingly, the slope of these regression lines changes upon bone rotation from the 

longitudinal to the orthogonal orientation (Figure 4.4D & 4F) for only the Atf4-/- bone (Table 

4.4). The differential effect of bone orientation on MCR regressions between genotypes suggests 

an underlying tissue organizational phenotype exists with loss of ATF4. 

  



  

 

117 

 

  



  

 

118 

  



  

 

119 

4.5 Discussion 

Strength is not the only property that characterizes the ability of bone to resist fracture. 

Fracture risk can increase because bone loses the ability i) to sustain deformation after the on-set 

of permanent deformation (i.e., yield point), ii) to minimize microdamage accumulation, or iii) to 

resist crack growth.  As with other materials subjected to dynamic loads, fracture resistance of 

bone depends on several properties such as i) toughness, ii) fatigue endurance, and iii) fracture 

toughness, respectively. Although aging and certain diseases affect these characteristics (e.g., 

rheumatoid arthritis [34], duration of high fat diet [35,36], and osteogenesis imperfect [37]), 

there is little known about critical regulators of the bone matrix that promote toughening 

mechanisms. Presently, we provide evidence that a transcription factor important to osteoblast 

differentiation influences both the toughness and the fracture toughness of bone (at the material 

level) in addition to proper cortical bone structure and trabecular bone architecture (at the whole 

bone level). 

The reduction in bone toughness and fracture toughness in the Atf4-/- mice compared to 

the Atf4+/+ mice could be due to an imbalance of mineral accumulation relative to the organic 

matrix. As determined by μCT in mgHA/cm3, there was little difference in the TMD between the 

genotypes (Table 4.1, Table 4.2, and Figure 4.3) with TMD increasing with skeletal maturation 

or age in both genotypes. However, as determined by Raman spectroscopy on embedded tibia 

cross-sections and intact femurs, the relative amount of mineral to the amount of collagen did not 

vary between 8 weeks and 20 weeks of age in wild-type mice but did so in knock-out mice 

(Table 4.3 and Figure 4.3B, 3C, & 3D). Taken together, these observations suggest that normal 

mineral accumulation outpaced reduced collagen deposition [21] in the ATF4-deficient bones 
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with respect to wild-type bones. Of note, bone formation rate is lower with the loss of ATF4 [21] 

suggesting tissue age, a determinant of the degree of mineralization, varied between the 

genotypes. In general, mineral density and collagen are the primary determinants of material 

strength and toughness, respectively [38], but bones with higher degree of mineralization (or ash 

fraction) have lower toughness than bones with lower mineralization [39]. Thus, matching the 

trends in tissue composition (no difference in TMD but greater MCR with ATF4 deficiency), 

there was not a significant difference in peak bending strength between the genotypes (Figure 

4.1), but the post-yield deflection (Table 4.2) and fracture toughness (Figure 4.2) were lower for 

bones from the 20 wk Atf4-/- mice.  

The deletion of ATF4 also appeared to affect tissue organization. Although we do not 

have direct measurements of fibril orientation, we can infer organization-related differences by 

examining the effect of bone rotation on the regressions among the RS-derived MCRs. This is 

possible because bone tissue is a birefringent material, and ν1Phos/AmI is sensitive to 

polarization when the RS instrument does not depolarize the laser light (diode lasers are 

inherently polarized even without added optics)[33]. That is, for the same location with a given 

MCR and collagen fibril orientation, ν1Phos/AmI depends on the predominant angle of the 

polarized light relative to the predominant direction of the collagen fibrils. If the collagen fibrils 

at the site of measurement are randomly orientated (i.e., isotropic), then ν1Phos/AmI would have 

minimal change upon rotation. However, mineralized collagen fibrils of bone typically have 

preferentially orientation that can shift from region to region [40,41]. Thus, there is a shift in the 

regression line for ν1Phos/AmI versus ν1Phos/Proline, a polarization-insensitive peak ratio, 

going from longitudinal to orthogonal bone orientation (Figure 4.4). Interestingly, the shift is 
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greater for the ATF4-deficient bone (see horizontal lines in Figure 4.4). This could be due to an 

overall difference in fibril direction or a difference in the net distribution of the collagen fibrils 

(anisotropy) between the genotypes. With respect to the latter possibility, the greater shift 

suggests the tissue anisotropy was greater or organizational heterogeneity was less for ATF4-

deficient bone. This remains to be confirmed.  

Identifying the origins of bone brittleness is challenging because toughening mechanism 

exist at multiple length scales. Thus, there could be other explanations for why bones from Atf4-

/- have lower toughness and fracture toughness than bones from control littermates. Surveying 

reports of other bone brittleness phenotypes, cortical bone from osteopontin (OPN)-deficient 

mice has local regions of hyper-mineralization and more anisotropic collagen fibrils compared to 

the tougher bones from Opn+/+ mice [18]. Similarly, in comparison to wild-type mice with 

higher bone toughness and fracture toughness, the cortical bone from Mmp13-/- mice has local 

regions of hyper-mineralized tissue as well as increases in non-enzymatic collagen crosslinks and 

disrupted birefringent lamellar bands [17]. Thus, a common theme in genetic models with a bone 

brittleness phenotype is a disruption in normal mineralization and collagen organization. As is 

the case with these previous studies in which the gene was deleted in all cells, we cannot 

definitively conclude that the regulation of matrix properties by ATF4 is solely osteoblast-

specific. 

Given that a major downstream target of ATF4 is Ocn gene [21,42] [43,44], the 

biomechanical phenotype of OCN-deficient mice could be similar to that of ATF4-deficient 

mice. With respect to toughness, there is similarity in that the bone from Ocn-/- mice have a 

lower propagation toughness than bone from wild-type mice [19]. Being a charged molecule 
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with Ca2+ binding sites, OCN may directly promote resistance to cracking [19] by acting as a 

sacrificial bond between mineralized collagen fibrils [45,46]. There are no reports of whether the 

loss of OCN reduces post-yield deflection of cortical bone, but there is evidence that OCN-

deficiency does not lower the structural strength of whole bones in intact mice [47]. This is 

different than what we observe for the bone of Atf4-/- mice (Table 4.2). In addition, unlike the 

effect of ATF4 deficiency on MCR, there was no difference in the mineral to matrix ratio [48] as 

determined by Fourier transformed infrared spectroscopy or in ν1Phos/AmI as determined by RS 

[49] between adult (6 mo. and 12 mo.) Ocn-/- and Ocn+/+ mice. Thus, while ATF4 activity may 

certainly regulate bone brittleness through OCN , other proteins under ATF4 control are likely 

influencing the fracture resistance of bone. 

With respect to its role in bone, ATF4 was initially discovered to be the other 

transcription factor, along with Runx2, that binds the promoter region of the osteocalcin gene 

[21]. ATF4 is a downstream target of two important factors in bone maintenance: transforming 

growth factor beta (TGF-β) and intermittent parathyroid hormone (PTH) [44,50]. Among other 

actions in bone, TGF-β signaling preserves the osteoprogenitor pool at the expense of 

differentiation [51], and we previously found that suppressing TGF-β with a neutralizing 

antibody increased trabecular bone volume in Atf4+/+ mice but not in Atf4-/- mice [50]. 

Similarly in an earlier study, Yu et al. [52] found that the anabolic effect of intermittent 

recombinant parathyroid hormone (hPTH(1-34)) on bone was abrogated in growing Atf4-/- mice 

as well as mature, ovariectomized Atf4-/- mice relative to PTH-treated littermate controls. As 

further evidence of the interest in ATF4 as a critical mediator of bone maintenance, high 

expression of a microRNA (miR-214) was recently found to be associated with fractures, and 



  

 

123 

miR-214 was shown to down-regulate ATF4, thereby inhibiting osteoblast activity [53]. The 

findings of the present study suggest that suppressing ATF4 does more than reduce bone 

formation: suppression or specifically the loss of ATF4 can lead to bone brittleness. 

4.6 Conclusions 

The loss of ATF4 results in a brittle bone phenotype that becomes more severe with 

skeletal maturity and includes a loss in fracture toughness but no decrease in material strength. 

Accompanying the difference in bone toughness between Atf4-/- and Atf4+/+ mice is a higher 

mineral to collagen ratio and more fibril anisotropy with ATF4 deficiency. The lack of a 

difference in material strength (independent of structure) between the genotypes concur with the 

lack of significant difference in tissue mineral density, making the ATF4-null model a strong 

candidate for examination of the underlying mechanisms of toughness, as well as for the 

evaluation of therapeutics that target bone toughness and resistance to crack propagation. 
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CHAPTER 5 

 

 

POLARIZATION IN RAMAN SPECTROSCOPY HELPS EXPLAIN BONE BRITTLENESS 

IN GENETIC MOUSE MODELS 

 

 

5.1 Abstract 

Raman spectroscopy (RS) has been used extensively to characterize bone composition; 

however, the link between bone biomechanics and RS measures is not well established. Here we 

leveraged the sensitivity of RS polarization to organization, thereby assessing whether RS can 

explain differences in bone toughness in genetic mouse models for which traditional RS peak 

ratios are not informative. In the selected mutant mice – ATF4 or MMP9 knock-outs − toughness 

is reduced but differences in bone strength do not exist between wild-type and knock-out 

littermates. To incorporate differences in the RS of bone occurring at peak shoulders, a 

multivariate approach was used. Full spectrum principal components analysis of two paired, 

orthogonal bone orientations (relative to laser polarization) improved genotype classification and 

correlation to bone toughness when compared to traditional peak ratios. Applied to femurs from 

wild-type mice at 8 and 20 weeks of age (maturation), principal components of orthogonal bone 

orientations improved age classification but not the explanation of the maturation-related 

increase in strength. Overall, increasing polarization information by collecting spectra from two 
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bone orientations improves the ability of multivariate RS to explain variance in bone toughness, 

likely due to polarization sensitivity to organization changes in both mineral and collagen. 

5.2 Introduction 

The loss of bone fracture resistance, as occurs in osteoporosis and with aging, is not 

solely due to a decrease in bone mass but likely involves deleterious changes to tissue 

organization, including both the mineral phase and the organic matrix. Current X-ray based 

diagnostics predominantly assess bone strength through analysis of mineral density1, 2 and 

macro-structure or micro-architecture3. However, changes to other material properties including 

toughness and fracture toughness may also contribute to fracture risk. In fact, Burstein et al. 

found that the age-related decrease in human bone toughness is greater than the age-related 

decrease in material strength at the apparent-level4 suggesting that brittleness, not just weakness, 

lowers fracture resistance with age. To complement existing clinical diagnostics, many in the 

optics field have begun to explore the use of Raman Spectroscopy (RS) due to its potential to 

noninvasively quantify the biochemical signature of both mineral and collagen concurrently5. 

However, RS is traditionally limited to biochemical content without directly assessing matrix 

organization. Recently, the link inherent between polarization of the Raman phenomenon and 

structural organization of crystals and birefringent molecules6, 7  has been extended to tissue8, 

and specifically the collagen matrix9, 10. Polarization RS may overcome the traditional structural 

limitations and improve the ability of RS to explore the underlying mechanisms that influence 

fracture resistance.  
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The effect of genetic disease on bone is often studied using rodent models as a means to 

understand the mechanisms linking cellular action to tissue biomechanics 11-13. Osteogenesis 

Imperfecta (OI) is perhaps the best characterized human disease of brittle bone; is known to be a 

disease of collagen organization14-16; and the RS peaks of OI mouse models change with 

polarization17. This is perhaps not too surprising, given a growing body of evidence that 

polarized Raman intensity varies with collagen direction10, 18 and can even be used to determine 

collagen orientation in bone19. Other genetic mouse models have also demonstrated brittle bone 

phenotypes that are not necessarily explained by composition but related to matrix 

organization20-22, hence may benefit from polarization RS. We recently reported that polarization 

changes in the RS peak ratios of bones lacking the activating transcription factor 4 (ATF4) imply 

an organizational component to the phenotype that includes toughness loss and decreased 

fracture toughness23, but it is unclear to what extent these polarization RS changes are predictive 

of mechanical bone quality. This is especially interesting given that mice lacking the matrix 

metalloproteinase (MMP9) exhibit no changes in standard RS peak ratios even though they too 

have low bone toughness24. 

In translucent pure media, polarization changes in RS intensities can be quantified 

relative to theory using a depolarization ratio (Iperpendicular/Iparallel) to assess molecular orientation6; 

however, in turbid media like bone this is confounded by the light scattering properties of tissue. 

Therefore, the effect of specific optics instrumentation, including degree of confocality17, on RS 

peaks needed to be characterized prior to implementing assessment of bone organization with 

polarization RS. For different objectives (NA = 0.75 and NA= 0.4), we previously showed that 

observable changes in Raman intensity in polarization sensitive peaks with bone orientation 
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occur across microstructural features of human tissue samples25, such that the ν1 Phosphate peak 

is regularly out of phase with Amide I. However, traditional peak ratios only report a small 

portion of the known spectral changes that occur with polarization as previously characterized by 

others8, 18, 26-28.  Moreover, limiting analysis to established peak ratios may overlook crucial 

aspects of complex toughness phenotypes if they manifest as subtle peak widening or shifting.  

RS analyses of bone are often limited to a set of strong peak intensities and validated 

peak ratios29, including only the characteristic frequencies and relative composition of bone. In 

the absence of tissue complexity, RS is often applied to pure crystalline and polymeric materials 

i) to analyze stress and strain using Raman shift changes30, 31; ii) to determine orientation as a 

function of peak polarization32; and iii) to assess crystal quality and deformation using peak 

width33. While each would require significant empirical support to extend mechanistically to 

turbid bone tissue, unsupervised multivariate analysis allows for the influence of these known RS 

sensitivities to mechanical outcomes without spurious mechanistic suppositions. Indeed, recent 

applications of multivariate RS analyses to bone have helped explain the fracture toughness of 

bone in a model of rheumatoid arthritis34 as well as partial mechanical improvement of OI mouse 

bones after human stem cell transplant35. 

Therefore, we investigated the potential of full spectrum multivariate analysis with a 

“bottom-up” design built upon the principal directions of Raman variance between test groups. 

Using multiple published mouse models in which peak ratios alone did not fully explain the 

mechanical phenotype, we hypothesized that analysis of all wavenumbers within the RS 

“fingerprint region”, while including polarization information, would improve the ability of RS 

to classify knockout mice of a brittle phenotype (versus wild-type of the same strain) and 
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subsequently improve RS correlation to mechanical measures of toughness. However, this may 

not be the case for mechanical properties like strength that can be attributed to composition more 

than organization. To this end, we scanned excised intact femurs of both Atf4-/- and Mmp9-/- 

mice and their corresponding controls prior to mechanical testing at the same location for two 

different orientations at consistent anatomical marker on the anterior midshaft. 

5.3 Methods 

5.3.1 Study Design 

All procedures were approved by the Institutional Animal Care and Use Committee 

(IACUC) at Vanderbilt University Medical Center. Femurs were harvested from young adult 

male mice (unless otherwise noted), stripped of musculature and stored frozen at -20°C in 

phosphate buffered saline until analysis. Freeze thaw cycles were minimized and retained 

consistent among samples within a study to prevent known36 degradation of Raman signals. 

Contamination from modeling clay used for temporarily mounting samples and any notable 

mechanical damage (stress fractures or scratches) to femurs were grounds for exclusion from the 

study, such that a total of 6 femurs were excluded.  To provide a known profile of toughness 

loss, 15 Atf4+/+ and 9 Atf4-/- male mice at 20 weeks of age were sacrificed as part of a 

previously published study23. A study of Mmp9 male mice24 was utilized to provide 7 Mmp9+/+ 

and 6 Mmp9-/- femurs at 16 weeks of age. A larger study of Mmp9 mice including both genders 

(7 wild-type and 5 knockout males and 7 wild-type and 9 knockout females), published here for 

the first time, was used to validate the methods in spite of the possible confounding factor of 

gender on the complex Raman signatures. Finally wild-type mice from the same colony as the 
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Atf4 study at both 8 weeks of age (n=18) and 20 weeks of age (n=15) were used to conduct a 

control for toughness. Because bone strength (which is frequently associated with compositional 

changes) increases during maturation, but toughness remains constant, RS polarization 

specificity to organization changes postulated to affect toughness are examined further. 

5.3.2 Micro-Computed Tomography (µCT) scans 

Prior to mechanical testing, the femoral mid-shafts were scanned (μCT40, Scanco 

Medical, Brüttisellen, Switzerland) at an isotropic voxel size of 12 μm using consistent settings 

(70 kVp/114 μA; 1000 projections per 360° rotation; and 300 ms integration time), calibrated to 

a hydroxyapatite (HA) phantom and corrected for beam hardening using manufacturer’s 

specifications. The outer cortex was contoured to calculated tissue mineral density of cortical 

bone (Ct.TMD) as well as the structural properties23. The consistent segmentation procedure 

entailed a global threshold of 715.2 mgHA/cm3 and a Gaussian noise filter (sigma=0.8 with 

support of 2). 

5.3.3 Mechanical Testing Protocol 

Three point bending tests of hydrated, intact femurs24 were conducted using a bench-top, 

material testing system (Dynamight 8841, Instron, Canton, OH) with a span (L) of 6 times the 

mean outer anterior-posterior diameter (i.e., in the direction of loading) of each group (~8mm) 

and a loading rate of 3 mm/min. Force data were recorded at 50 Hz from a 100 N load cell 

(Honeywell, OH) while the linear variable displacement transducer recorded displacement. 

Whole bone strength was the peak force (Pf) endured by the mid-shaft. Using the moment of 

inertia (Imin) of the mid-shaft and the distance between the centroid and the bone surface in the 
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anterior-posterior direction (cmin) from μCT, we estimated the material strength from standard 

flexural equations37. Toughness was defined as the area under the force vs. displacement curve 

divided by the bone cross-sectional area38. 

5.3.4 Raman Spectroscopy 

Raman spectra were acquired from the anterior midshaft of the intact extracted femurs of 

each animal femur prior to mechanical testing using a standard confocal Raman microscope 

(Renishaw InVia Raman Microscope, Renishaw, Hoffman Estates, IL) set to a 35 µm slit 

opening at 1 cm-1 spectral resolution, and equipped with a 50x (NA=0.75) objective and a model 

locked TEM (0,0) 785 nm laser diode source (Innovative Photonic Solutions, Monmouth 

Junction, NJ), and a 1800 grates/mm holographic grating.  Laser power was measured daily 

before and after measurements at the sample to ensure consistent exposure to 35 mW laser 

power. To eliminate grating bias according to Renishaw specifications, the polarization was 

aligned upright within the instrument (left-right when operator faces stage), confirmed with 

known polarizers and silicon standard intensity. Laser polarization was then confirmed to have 

an approximate extinction ratio of 1:200 (light was not further polarized by additional optics). 

Spot size was approximated at 1.5 µm and Gaussian via edge detection on a polished silicon 

standard39. System Raman shift calibration was accomplished using a neon lamp and a silicon 

standard with Renishaw software to account for grating motion. Daily silicon measurements 

before and after data collection ensured consistency of wavenumber calibration and collection 

arm throughput. 
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The third distal mid-shaft vessel perforation was used as a landmark to consistently select 

the site of analysis across bones40. Bones were thawed to room temperature and then mounted on 

a standard microscope slide using modeling clay, then attached to a rotation stage (accurate to 5 

arcsec) to ensure that the plane of the anterior midshaft would be normal to the incident laser 

beam. Spectra were collected at two intact bone orientations such that the long bone axis was 

oriented either parallel (termed the longitudinal orientation) or perpendicular (termed the 

orthogonal orientation) to the polarization axis of the incident laser. Co-localization of collection 

sites before and after rotation was accomplished manually by registering fine structural features 

in the bright field. Each spectrum consisted of 5 accumulations of 10 s integration time to yield a 

high signal to noise ratio (SNR) from 300 to 1800 cm-1 (Hydroxyproline SNR in excess of 25:1). 

Spectra were processed via least squares modified polynomial fit41 and smoothed for noise using 

an 2nd order Savitsky-Golay filter42. Custom Matlab software (Mathworks, Natick, MA) 

extracted the intensity and wavenumber of the prominent spectral peaks. There was no spectral 

binning in this analysis. After fluorescence subtraction, a linear baseline subtraction (based on 

derivative zero-crossings neighboring the peak) was conducted on peaks that overlap with 

neighboring constituents to ensure no residual fluorescence, namely Proline, Hydroxyproline, ν1 

Phosphate, and Carbonate. This data was then used to generate markers of bone composition for 

mineralization (ν1 Phosphate/ Amide I), carbonate substitution (Carbonate/ ν1 Phosphate) and 

crystallinity (crystal grain size and perfection, determined by the inverse full-width at half 

maximum intensity of the ν1 Phosphate peak).  
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5.3.5 Multivariate Data Analysis and Statistics 

Multivariate analysis of Raman Spectroscopy was used to analyze spectral wavenumbers 

beyond validated peak ratios that are usually reported. Principal components analysis (PCA) was 

selected due to its unsupervised nature of computing fundamental uncorrelated directions of 

variance using eigenvectors, accomplished using a package with options tailored for 

spectroscopy (Eigenvector Research Inc., package for Matlab 7). Prior to PCA, data was “auto 

scaled”, which is the same as “z-scoring” or running PCA on the correlation matrix, such that 

each variable or wavenumber was set to zero mean and unit variance. This is essential in PCA of 

Raman spectra where certain peaks (like ν1 phosphate in bone) have a much higher intensity 

than others, which could inaccurately skew the ability or PCA to predict mechanical properties 

of bone. Because the Raman signal of bone likely contains much more information than that 

which relates to mechanics, PC’s are selected for analysis by screening for those that 

significantly separate genotype or class. PC’s were first screened by F-Test of variance and 

Lillefor’s test for normality. Failing normality in all cases, nonparametric Mann-Whitney U tests 

were used to test significance at α=0.05 (p<0.05). For PC’s significantly separating data class, 

Sparse Multinomial Logistic Regression (SMLR; Duke University) was used to test for best 

classification. SMLR is an iterative multivariate weighting technique that allows for sparsity, or 

the exclusion of features (or in this case PC’s) that do not help discriminate class. Briefly, SMLR 

was run with a Laplacian prior, a direct kernel, no bias, no normalization, component –wise 

updates, and leave-one-sample-out cross-validation. The algorithm was run for various weights 

for sparsity index (λ=0.1, 1, 10, 50) to ensure optimal classification. In all cases single principal 

components yielded better classification than multiple principal components in the same SMLR 
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computation; therefore, Spearman’s correlations were run on single PC’s to test explanation of 

bending strength and toughness. 

5.4 Results 

5.4.1 Differences in Raman Spectra between genotypes become apparent upon bone rotation 

(Polarization) 

Despite the strong toughness reduction in Atf4-/- mice (Supplemental Figure 5.1), only 

slight changes in RS peaks (Figure 5.1 A-C) are seen at any one orientation. To investigate 

whether differences exist between the genotypes in ways beyond traditional peaks and peak 

ratios, the effect of bone rotation on the Raman spectra of bone was examined (Figure 5.1 D&E). 

Upon bone rotation with respect to laser polarization, both Atf4 +/+ (Figure 5.1D) and Atf4-/- 

(Figure 5.1E) RS profiles changed at previously identified polarization-sensitive regions 

including the shoulder of ν4 Phosphate (590 cm-1), the ν3 Phosphate peak (1045cm-1)8, the 

Amide III δ(NH) band (1273 cm-1)27, 43, and Amide I band9. The spectra of Atf4-/- bone had 

smaller variance than Atf4+/+ bone at Amide III δ(NH) band and the Amide I band, yielding 

greater separation between orientations than its wild-type counterpart. 

5.4.2 Classification of brittle bone genotypes improves with inclusion of full spectrum 

polarization information 

To determine whether the principal components derived from polarization-influenced 

Raman spectra improves the ability of RS to classify brittle bone, we performed sparse 

multinomial logistic regression (SMLR) on PCA output and traditional peak ratios. The impact 

of increasing polarization information (Figure 5.2) was examined using models including all  
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principal components that significantly separated Atf4-/- from Atf4+/+ (Mann-Whitney U; 

p<0.05). SMLR using PCA output from only the orthogonal bone orientation (Figure 5.2A) 

classified the genotype for 70.8% of the mice (Table 5.1), misclassifying only 2 Atf4-/- bones. 

However, using spectra from both orthogonal (O) and longitudinal (L) orientations in the PCA 

improves SMLR-based classification capabilities as evident by the increase in the samples 

correctly classified and the improvement in class posterior probability (Figure 5.2B). Thus, Atf4-

/- and Atf4+/+ bones have different degrees of polarization changes in RS upon bone rotation, 

and including multiple orientations to capture this polarization-based RS phenotype improves 

genotype classification (Table 5.1). This finding implies that tissue organization underlies the 

brittleness difference between Atf4+/+ and Atf4-/- mice. 

Improved classification with the inclusion of paired spectra from two bone orientations 

was consistent across studies involving genetic knock-out mice with a brittle bone phenotype 

(see Supplemental Figure 5.1 for differences in bone toughness between Mmp9+/+ and Mmp9-/- 

mice). Unlike the ATF4 study, µCT-derived tissue mineral density (TMD) was significantly 

different between genotypes for the MMP9 study involving only males, but similar to the ATF4 

study, TMD had poor classification accuracy (Table 5.1). With the exception of ν1 

Phosphate/Amide I for the Mmp9 male data set, none of the peak ratios from either bone 

orientation appropriately classified knockout bones as determined by SMLR (i.e. 0% sensitivity), 

such that all bones classified as wild-type. Use of the full spectrum as PCA input for either the O 

or L bone orientation improved SMLR classification sensitivity for all 3 studies (Table 5.1) with 

the two different bone orientations yielding different classification results. Including both  
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orientations as separate variables for PCA (denoted as [O,L]) provided further improvement in 

overall classification accuracy in both MMP9 studies, despite the confounding factor of gender. 

5.4.3 Principal components have a stronger correlation with toughness than traditional 

compositional RS measurements 

Expanding upon the multivariate classification of genotype, we analyzed whether RS 

polarization information improves mechanical bone quality characterization using Spearman’s 

correlation coefficients (Table 5.2). Peak ratios did not correlate with toughness except for 

longitudinal MCR in the ATF4 study, the only study where µCT-derived TMD also correlated 

significantly (Table 5.2). PC1 from either orientation correlated with toughness in the ATF4 and 

MMP9-gender studies, again with differing results between orientations. The inclusion of both 

orientations in the PCA strengthened correlation in all three studies. Notably, none of the peak 

ratios or the genotype separating PC’s from toughness models yielded a significant correlation to 

bending strength. Figure 5.3 shows linear regressions between PC1 from the [O,L] analysis of 

both orientations and toughness for each genotype. As one of few PCs to significantly separate 

genotype (Mann-Whitney U; p<0.05), PC1 was consistently the only PC observed to 

significantly explain toughness variance (Figure 5.3). As such, PC1 had a significant linear 

relationship to toughness for each study (F test: slope ≠ 0; p<0.05), although the slope of this 

relationship was not positive for all studies. The additional MMP9 study including both male and 

female femurs exhibited a significant linear regression despite marked overlap in toughness 

values between the genotypes. That is, there is a notably smaller toughness difference 

(Supplemental Figure 5.1H) in this study than in the MMP9 male only study, but PC1 still 

explains the toughness variance. While regression statistics (R2 values and correlation  
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coefficients) indicate that only a small percentage (<40%) of the total variance was explained, it 

is important to note that full spectrum polarization information improves genotype classification 

and correlation to toughness in all three studies when compared to standard RS peak ratios or 

µCT derived TMD. 

5.4.4 Multivariate analysis of full Raman spectra improves classification of young and mature 

bone, but does not improve correlation to strength 

To establish the link between RS polarization information and toughness of bone, a study 

of strength differences served as a negative control. Strength can often be attributed to changes in 

composition, as seen with the pronounced increase in cortical tissue mineral density (TMD) that 

occurs with bone maturation (Supplemental Figure 5.1 J, L). Indeed, µCT-derived TMD 

separates age significantly (Table 5.3) and correlates to bending strength (Spearman’s ρ= 0.60; 

p<0.05).  Neither MCR nor crystallinity demonstrates SMLR classification sensitivity to 

maturation or correlation to bending strength. Despite decreased specificity in classifying age, 

carbonate substitution is the only peak ratio to significantly, albeit weakly, correlate with 

bending strength (ρ= 0.42 for O and ρ= 0.48 for L). While PC classification of young and mature 

bone was more accurate than peak ratios, the correlation to strength was slightly weaker (ρ=-0.38 

for O, ρ=-0.37 for L) than the aforementioned peak ratio. The PC correlation with strength was 

insignificant when including both orientations. Notably, there were similar results for the 2 

orientations with respect to both classification (Table 5.3) and correlation with strength. Unlike 

models of toughness, adding RS polarization information via full spectrum analysis did not 

improve explanation of strength in the maturation model, and in general, RS measures do not 

outperform TMD.  
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5.4.5 Principal components loadings from RS of brittle bone phenotypes suggest conserved 

elements that are not seen in PCs distinguishing bone maturity 

Examining spectral loadings of the principal components may identify elements of RS 

signatures that explain material property differences. Figure 5.4 compares principal component 

loadings from the [O,L] PCA that used spectra from both bone orientations and that represents 

the greatest explanation of variance. In the ATF4 model of toughness loss, strong negative 

weights of PC1 (differed between genotypes; p<0.05) for both orientations occurred at all the 

mineral peaks, including ν2 Phosphate (430 cm-1), ν4 Phosphate (590 cm-1), ν1 Phosphate 

shoulders (960 cm-1), and Carbonate (1074 cm-1). Strong positive weights occurred at collagen 

peaks including Proline (857cm-1), Hydroxyproline (878cm-1), Amide I (1668cm-1), and Amide 

III (1248cm-1). For several peaks, weights differ between O and L bone orientations, including 

Amide I and CH2 (1454cm-1). PC1 of the MMP9 male study, responsible for best genotype 

classification and correlation to toughness, shows strikingly similar weights to those seen for the 

ATF4 study with strong negative weights on mineral peaks and strong positive weights on 

collagen peaks. 

While principal components explaining toughness display some conserved spectral 

features, the principal components that separate maturation illustrate stark contrast from RS 

signatures of toughness. In Figure 5.4C, PC3 from the maturation experiment did not 

significantly correlate to strength (note that none of the PC’s in the [O,L] input correlated); 

however, the 11% of the variance explained by this PC offers the best observed separation of 

class. For both orientations, carbonate was negatively weighted. Surprisingly, very little to no 

weight was placed on the Amide I peak. Most of the peaks were weighted differently between  
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the two orientations. In summary, mouse genetic models of reduced toughness (loss of ATF4 or 

MMP9) have a similar RS polarization profile in the principal components that explain 

toughness; however, separation of maturation based changes have strong differences in 

orientation that do not correlate to strength, and are loaded differently than RS profiles of 

toughness. 

5.5 Discussion 

This paper presents a multivariate analysis of polarization information in Raman 

Spectroscopy that improves genotype classification and correlation to bone toughness − using 

bones from 2 genetic mouse models − over peak ratios in traditional RS analyses. As this 

technique is further developed, it may help establish the interplay between biochemical 

composition and tissue organization as a factor in bone’s fracture resistance. 

These experiments confirm that traditional peak ratio analysis is not always sufficient to 

explain bone mechanical quality. When classifying genotypes for which there is a difference in 

bone brittleness, only the polarization-sensitive ν1 Phosphate/ Amide I partially identified 

knockout bones (Table 5.1) and weakly correlated with toughness (Table 5.2). Overall, 

univariate and even bivariate analysis of RS factors were insufficient to explain genetic-related 

differences in brittleness, characteristics that depends on defects in matrix organization in 

addition to abnormal biochemical composition. Full spectrum analysis of principal components 

derived from a single bone orientation improved classification when compared to single peak 

ratios (Table 5.1), suggesting that additional RS information assists in the explanation of these 

complex mechanical phenotypes. Notable differences in RS intensity between orthogonal bone 
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orientations (Figure 5.1E) occur mostly at locations previously reported by the Penel group8, 27 to 

be sensitive to polarization: ν3 Phosphate (1045 cm-1), Amide III δ(NH) band (1273 cm-1)43, and 

Amide I (1668 cm-1). The most striking differences occur at peak shoulders, and would therefore 

be overlooked by many standard analyses. Moreover, these orientation effects on Raman spectra 

were more pronounced in brittle bones than wild-type counterparts (compare Figure 5.1D to 

Figure 5.1E), suggesting that polarization RS is sensitive to the orientation and subsequently 

organizational changes underlying toughness loss that occurs with the deletion of ATF4. 

While full spectrum analysis improved classification in these models, data from a single 

orientation alone was insufficient to produce consistent classification and correlation to 

toughness. In Table 5.1, this manifests as disparate classification accuracy when comparing 

principal components of results from longitudinal and orthogonal bone orientations. However, 

use of polarization RS from both bone orientations improves overall classification in all three 

sets of wild-type and corresponding mutant mice (Table 5.1) and improved class posterior 

probabilities (Figure 5.2C vs. 2D). In bones lacking MMP9, this additional organization 

information also improved correlation of RS to toughness. 

Principal components analysis identified the RS signatures of brittle phenotypes, and as 

an unsupervised “bottom up” approach to full spectrum analysis, it lends credence to the 

reliability of mechanical correlation of these biochemical signatures. In each of the ATF4 and 

MMP9 studies, the 1st principal direction of variance explained only 25-30% of the total variance 

of the Raman spectrum, yet it significantly separated genotype and correlated to toughness, 

explaining over 25% of this mechanical variance (Figure 5.3). Utilizing unsupervised 

multivariate analysis potentially runs the risk of over-fitting the data, but sensitivity of the 
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method was validated with two different genetic mouse models and by repeating the MMP9 

study on a different data set. Even when the toughness overlaps between genotypes in the 

additional MMP9 study, which included both genders (Figure 5.3 C), the 1st principal component 

still significantly explained toughness. 

When considering other mechanical properties and potential RS correlation, tissue 

organization (provided by polarization) may not play as much of a role.  Using growing wild-

type mice as a model for strength increase with no change in toughness, peak bending stress and 

µCT-derived tissue mineral density (TMD) increased with age (Supplemental Figure 5.1). 

Despite this, carbonate substitution was the only peak ratio that correlated with strength, despite 

lower classification accuracy than other compositional properties (Table 5.3). Considering the 

numerous endocrine and cellular changes that occur during maturation, it is not entirely 

unexpected that more bone changes exist in the Raman spectrum than those that explain strength. 

As such, an increase in the amount of Raman wavenumbers sampled improved classification 

accuracy, but did not increase correlation to strength (Table 5.3). Moreover, the PCA of the RS 

data from the individual orientations of bone seem to yield consistent classifications and 

correlations to strength, which is strikingly different from the orientation and polarization-

specific outcomes observed in models of brittleness. Since strength and toughness can be 

diametrically opposed in many materials, including bone in certain instances44, 45, it is perhaps 

not surprising that organizational information from the polarization RS specifically aids the 

explanation of toughness differences between genotypes but not the strength differences between 

age groups. Notably, since ATF4 influences collagen synthesis46 and since MMP-9 is a 

gelatinase that processes denatured collagen24, these genes likely influence matrix organization. 
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On the other hand, secondary mineralization accompanies skeletal maturity47 from 8 weeks to 20 

weeks of age in mice, increasing strength but not toughness. 

Although principal components only represent one straightforward and simple 

application of multivariate analysis to RS, the use of a “bottom up” study design that build upon 

inherent, uncorrelated dimensions of variance allows for the distinct advantage of analyzing 

underlying biochemical signatures for consistency between models. Different component 

loadings (data not shown) between the orthogonal and longitudinal orientations of the same 

bones within each study imply the necessity of different orientations, and subsequently 

organizational information, to explain toughness. There are differences in significant principal 

components between the 2 models of bone brittleness and the model of skeletal maturation 

(Figure 5.4), noting especially heavy weightings for Amide I bands (~1600-1720 cm-1) in Atf4 

(Figure 5.4A) and Mmp9 studies (Figure 5.4B) but not for maturation (Figure 5.4C). Strong 

consistency between the first principal components (PC1) of Atf4 and Mmp9 models includes 

heavy positive weights for Amide III (1235-1280 cm-1) and Amide I bands and heavy negative 

weights for ν2 phosphate (430 cm-1) and ν4 phosphate (590 cm-1). While the mechanistic 

significance of these trends remains to be tested, the data imply some conserved elements in the 

Raman signature of toughness loss (Figure 5.4A and 4B). Note that there is no evidence that 

ATF4 is upstream or downstream of MMP9 activity to date. By correlating RS to bone material 

properties, we are effectively assuming an inherent relationship between biochemistry and 

biomechanics. While the additional RS polarization information allows for a more direct link 

between toughness and tissue organization, the relationship may not always be clear. This is the 
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case in bone maturation, where improved classification with full spectrum analysis did not result 

in an explanation of the age-related increase in strength.  

While polarization effects of the Raman phenomenon have been characterized since 

Placzek48 and the application of vibrational spectroscopy to the characterization of bone has been 

conducted for decades (see Boskey49 and Morris5, 50 for review), relatively little has been 

investigated at the union of these two fields, until recently. Pioneers in the bone field showed that 

crystalline structure was highly organized in enamel and bone8; that the orientation of collagen 

fibers in bone could be extracted from polarization RS19 and aligned with theory51; and that the 

effect of the polarization phenomenon on bone RS could be augmented or minimized by 

appropriate instrumentation choices17. Traditionally, RS probes tissue biochemistry with a high 

degree of molecular specificity, but polarization analysis can be sensitive to differences in tissue 

organization such that RS can then be used to analyze the interaction between bone composition 

and organization. The additional layer of full spectrum multivariate analysis extends RS 

interpretation beyond the relative composition implied by peak ratios. 

Since the goal of the study was to compare the performance of standard peak ratio 

analysis to multivariate expressions of RS polarization in their ability to explain bone mechanical 

quality, Raman spectra were acquired from anatomically consistent surfaces without preparation 

in the region of mechanical testing, and as such, this anterior midshaft site might not yield the 

strongest polarization difference seen in bone. The consistent, observed sensitivity of this method 

to bone mechanical quality is surprising considering vast under-sampling with less than 15 µm3 

sampled per bone. To make an accurate comparison between standard measurements of peak 

ratios and full spectrum analysis that includes polarization information, the instrument was left at 
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its inherent polarization extinction ratio. Therefore, further optimization of the Raman instrument 

may offer continued improvement in the explanation of bone mechanical quality. However, the 

current configuration makes the method readily available for any lab with a confocal RS 

instrument and a rotation stage.  

 In the present study, the subtle spectral changes that occur with polarization sensitivity in 

RS to matrix organization coincides with the loss of mechanical toughness and not changes in 

material strength. Thus, polarization RS shows promise as a novel tool to explore the dynamic 

and subtle underpinnings of the mechanisms behind bone mechanical quality. However, there is 

indubitably more to the RS signature of bone than a complex explanation of mechanics. In 

addition, there are likely contributors to mechanical quality to which RS is not sensitive. Near 

infrared RS, used for clinical relevance, is tuned to be largely insensitive to water, and bound and 

pore water have a significant contribution to the fracture resistance of bone52. RS will not have 

the resolution of atomic force microscopy to map collagen d spacing53, nor the SNR of 2 photon 

fluorescence to examine collagen fiber orientation54. Nonetheless, the inherent interplay between 

chemical composition and tissue organization in RS polarization may prove useful in explaining 

changes in the fracture resistance of complex human microstructures. Ascenzi showed such 

complexity as mechanical properties of osteons for different loading modes (i.e., compression vs. 

tension) were related to the primary collagen orientation relative to the directionality of the 

haversian canals55-57. Both polarized light58 and polarization RS59 are sensitive to osteonal 

lamellae. As such, if the organizational information in polarization RS continues to explain 

mechanical integrity of bone as it is applied to human bone, this technique could be used to 
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explain how microstructural heterogeneity and composition affect bone mechanical quality, 

ultimately producing an RS profile for healthy bone tissue.  

5.6 Conclusions 

Multivariate analysis of Raman spectrum at two bone orientations (enhancing 

polarization sensitivity) assisted in the explanation of a toughness loss in genetic mouse models 

involving 2 different genes (a transcription factor and an enzyme). Across 3 sets of wild-type and 

knockout bones, mineral-to-collagen ratio, which is often used to characterize compositional 

differences, did not explain the difference in bone toughness between genotypes. This was 

effectively achieved with Raman spectral analysis (300 cm-1 to 1800 cm-1) using principal 

components acquired from two orthogonal bone orientations such that the first and largest 

direction of variance consistently separated the brittleness phenotypes and significantly 

correlated with bone toughness. Using the same technique on bones from a mouse model of 

skeletal maturation did not improve the explanation in the age-related increase in strength when 

compared a univariate approach. This implies that multivariate analysis of Raman spectra is not 

simply providing more information, but rather the organizational information provided by 

polarization may specifically aid in explaining variance in toughness but not strength. If the 

observed Raman profiles scale to complex organization of human bone, polarization in Raman 

spectroscopy may have clinical utility for bone quality assessment. 
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CHAPTER 6 

 

 

MICROSTRUCTURAL HETEROGENEITY OF COMPOSITION AND ORGANIZATION 

JOINTLY EXPLAIN THE AGE-RELATED DECREASE IN BONE FRACTURE 

TOUGHNESS 

 

 

6.1 Abstract 

The complex organizational hierarchy of bone makes the accurate assessment of human 

fracture risk a difficult endeavor; thus, the underlying mechanisms that facilitate a loss of 

fracture toughness with disease or aging are not completely defined. Loss of microstructural 

heterogeneity has been implicated as an important factor in the age-related decrease in bone 

fracture toughness. To assess heterogeneity at this length scale, we employed polarization Raman 

Spectroscopy for its sensitivity to both composition and organization. Single edge notched beam 

specimens were generated from the distal lateral midshaft of 62 cadaveric femurs matched for 

age and gender. Raman spectra were collected at 9 different locations in the intended crack path 

prior to mechanical testing. A progressive, loading scheme in a three-point bending configuration 

was used to assess the rising R-curve behavior of each specimen. Then, using a non-linear elastic 
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fracture mechanics approach, three fracture toughness properties were determined. Average peak 

ratios from this initial analysis did not correlate with fracture toughness outcomes. Therefore, 

subset of 33 specimens was then selected for Raman mapping of a single osteonal-interstitial 

border at 2 polarization states. As observed qualitatively from the maps, microstructural 

heterogeneity of both organization-sensitive and composition-sensitive peak ratios across the 

osteonal-interstitial border were positively associated with superior fracture toughness outcomes 

using standard Raman peak ratios. To assess the explanatory power of the technique, image 

heterogeneity was quantified for contrast and energy using prominent peaks and principal 

components of the spectra. Canonical spectral signatures of image energy and contrast explain 

25-75% of the age-related decrease in fracture toughness outcomes. Analysis of weightings and 

component loadings demonstrate interplay between compositional and organizational 

heterogeneity, and imply that opposing biochemical influences on heterogeneity maybe driving 

crack initiation toughness and overall crack growth resistance (J-integral). The evidence is not 

only compelling for the explanation of human fracture risk, but polarization Raman spectroscopy 

shows promise as a means to assess the relationship between heterogeneity and fracture 

toughness for complex organic composites. 

6.2 Introduction 

As an organic composite material, bone tissue has exceptional mechanical properties, 

especially given the combination of low weight, high Young’s modulus, and significant post 

yield toughness. Many of the landmark findings about bone, notably Wolff’s Law1 and Ascenzi’s 

analysis of osteons2, 3, associate its remarkable load bearing ability to its complexity. However, 
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the complex organizational hierarchy of bone makes the accurate assessment of human fracture 

risk a difficult endeavor. Thus, the underlying mechanisms behind age, disease, and even 

treatment related loss of fracture resistance are not completely defined. A growing body of 

evidence suggests that bone fracture resistance depends upon both bone strength, the ability of 

material to withstand stress without failure, and fracture toughness, the resistance to crack 

formation and propagation arising from inherent flaws. While the clinical loss of bone strength is 

well characterized by areal bone mineral density (aBMD) via dual X-ray absorptiometry, BMD 

is not an accurate assessment of fracture risk4, 5. In fact, there is a lack of clinical surrogates that 

are sensitive to fracture toughness properties. Understanding the underlying mechanisms for 

fracture toughness could benefit the design and application of both diagnostics for early fracture 

risk assessment and advanced biocompatible materials. 

Investigations into the fracture mechanics of bone and hard tissue, spearheaded largely by 

Bonfield, Vashishth and Ritchie, suggest that there are several tissue level mechanisms by which 

bone resists damage accumulation, crack initiation, and subsequent crack propagation. As a 

crack propagates, damage accumulated in the plastic zone preceding the crack tip and the 

peritubular region leads to microcracks, often visible at pores and canals, and intrinsic 

toughening6, 7. Several other mechanisms have also been observed including: extrinsic unbroken 

ligament crack bridging8, 9, crack deflection around osteons10, and even time-dependent crack 

blunting11. While the observed mechanisms vary distinctly in which length-scales are involved, 

each is based upon the fact that cracks follow the path of least resistance, and that deflection due 

to damage or material boundaries consumes energy. Therefore, these mechanisms could logically 

lead to the hypothesis that increased heterogeneity in microstructure directly impacts the fracture 
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toughness of bone. In fact, in other materials, local structural and compositional boundaries, like 

metallic grain boundaries, promote fracture toughness12. However it is unclear to what extent 

differences in tissue heterogeneity may drive these observed mechanisms and the role they play 

in the pathological decrease in fracture toughness13. Moreover, current evidence suggests that the 

effects of heterogeneity on fracture risk are strongly context dependent. A recent study 

examining heterogeneity in the femoral neck of fracture patients and cadaveric controls using 

FTIR spectroscopy found that fragility fracture was associated with decreased heterogeneity in 

distributions of mineral to collagen ratio (MCR) as well as carbonate substitution14. However, 

the same study found that fracture was associated with greater heterogeneity in crystallinity. 

Adding to the dichotomy, a qBEI (quantitative backscattered electron imaging) study associated 

alendronate treatment with restoration of normal heterogeneity in the bone mineralization density 

distribution after  long-term treatment (contrary to previous results indicating decreased 

heterogeneity during early treatment)15. Finally, bisphosphonate use in both dogs16 and humans17 

has been associated with decreased tissue microstructural heterogeneity of mineral composition 

as measured by FTIRI16, and may be linked to the incidence of atypical femoral fractures17, 18. 

The myriad of techniques used, length scales examined, and definitions of heterogeneity 

for different pathologies may attribute to these dichotomous results. Specifically, it is unclear 

whether heterogeneity at the microstructural level is more strongly influenced by local 

compositional variance (e.g., degree of mineralization) or organizational variance (e.g., 

distribution of collagen fibril orientation). In addition to the compositional heterogeneity 

examined in association with atypical fractures, it is known through the work of Ascenzi et al. 

that lamellar collagen orientation is associated with resistance to different mechanical forces, 
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such that different osteon types (defined by collagen fibril orientation) dominate different 

anatomical quadrants19-22. To this end, Raman spectroscopy provides a unique opportunity to 

concurrently examine both compositional heterogeneity, due to its inherent sensitivity to 

chemical bonds23 , as well as organizational heterogeneity, due to polarization sensitivity to 

mineral and collagen direction24, 25. The nondestructive measure from Raman spectroscopy 

caused by inelastic scattering allows for the quantitative analysis of mineral to collagen ratios 

(MCR), type-B carbonate substitution, and mineral crystallinity23. Studies have associated 

changes in Raman spectra with tissue aging26-28, mechanical damage29, 30, collagen cross-

linking30, and osteoporotic fracture31, among other bone pathologies. The polarization in Raman 

spectroscopy is consistent between samples25, reveals tissue microstructure including variance in 

osteonal lamellae and differences in osteonal-interstitial tissue types32, 33, and has been linked to 

animal models of diseases with phenotypic loss of mechanical integrity34-37. To provide a more 

detailed analysis of the link between heterogeneity and fracture toughness, we investigated the 

correlation between the age-related decrease in fracture toughness and microstructural tissue 

heterogeneity as measured by polarization Raman spectroscopy. Prior to fracture toughness 

testing, Raman spectra were collected from various microstructures in the intended crack path to 

examine heterogeneity of neighboring microstructures, and polarization mapping of a single 

osteonal-interstitial border at two orthogonal orientations was used to measure heterogeneity 

within microstructures. 
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6.3 Methods 

6.3.1 Study Design  

Fresh frozen human cadaveric femur specimens from 62 age and gender matched donors 

(30 male donors, aged 21 – 98 years old, mean ± standard deviation: 63.5 ± 23.7 years; and 32 

female donors, aged 23 -101 years old, 64.4 ± 21.3 years) were obtained from the 

Musculoskeletal Transplant Foundation (Edison, NJ), the Vanderbilt Donor Program (Nashville, 

TN), and the National Disease Research Interchange (Philadelphia, PA).  Exclusion criteria 

included total hip arthroplasty, joint replacement, diagnosed bone disease, use of 

bisphosphonates, chronic kidney disease, cancer, and infectious cause of death. The lateral 

quadrant of the distal femoral midshaft cortical bone was extracted via low-speed diamond 

osteotomy saw (South Bay Technologies, San Clemente, CA) and machined into a single-edged 

notched beam (SENB) sample with an endocortical notch oriented in the radial direction, such 

that crack propagation occurred normal to osteon direction (Figure 6.1A). Briefly after 

extraction, low torque, low-speed hydrated machining with an end mill was used to remove the 

endosteal and periosteal surfaces producing a uniform beam specimen with dimensions 

proportional to donor cortical thickness (nominally: 1.9–3.3 mm height x 4–6.8 mm width x 19–

31 mm length). To reach ASTM E182038 size standards, the sample was ground on successive 

grades of sandpaper on a plane parallel surface grinder (EXAKT Technologies, Oklahoma City, 

OK) and then polished in one micron alumina solution on a vibratory polisher (Buehler, Lake 

Bluff, IL). A micro-notch was generated to just below ASTM specifications using a low-speed, 

irrigated osteotomy saw equipped with diamond embedded wafering blade after which ASTM 

specified notch length (a0 = 0.9-1.9 mm) was achieved by polishing the crack tip with a 
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razorblade irrigated with 1µm diamond polishing solution. The samples were briefly sonicated to 

remove any solution, and then the bone was frozen in PBS at -20°C until taken for scanning. 

Care was taken to track the freeze thaw cycles of each bone to ensure that each freeze thaw cycle 

lasted less than eight hours and fewer than 4 cycles occurred39 prior to mechanical testing and 

Raman mapping. Micro-computed tomography (µCT) scanning (Figure 6.1B) was used to 

confirm the initial notch length (Scanco Medical, Switzerland). Raman spectroscopy 

measurements were acquired prior to crack propagation to examine heterogeneity of local 

features in the intended crack path (Figure 6.1C). The bone was stored frozen until thawed and 

subjected to cyclic three-point bend fracture toughness testing. After testing, a randomly selected 

half of the specimen was chosen for Raman mapping (Figure 6.1G) and transferred to 70% 

ethanol for 48 hours followed by air drying for 72 hours in a sterile environment, after which the 

specimen was stored sealed in plastic under a vacuum until Raman acquisition. 

6.3.2 Fracture toughness testing 

All fracture toughness tests were conducted in adherence to ASTM E1820 standards38 

with SENB samples subjected to cyclic three-point bending, by an axial servo-hydraulic testing 

apparatus (Instron, Norwood, MA) run in displacement control with progressive load (+0.07 mm 

at 0.01 mm/s)-unload (-0.04 mm at 0.015 mm/s)-dwell cycles (Figure 6.1D). Force and 

displacement data were acquired at 50 Hz from a 1000N load cell and a linear-variable 

displacement transducer, respectively. Scaled photomicrographs were acquired during each 

dwell with a macro lens at 4x magnification (pixel size: ~144 µm2). Oblique lighting was used to  
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highlight crack propagation and qualitatively confirm compliance-based crack growth, as well as 

assess stability and tortuosity of the crack path. 

Processing of fracture toughness data included generating the rising R-curve to 

appropriately encompass the elastic-plastic mechanical behavior of human cortical bone.40-42 

Crack growth was computed from the unloading compliance data as per ASTM E182038. The 

analysis produces measurements of the crack initiation toughness (Kinit), crack growth toughness 

(Kgrow), and overall crack growth resistance (J-Integral) such that the potential energy of crack 

growth is measured with respect to the elasto-plastic stress and strain fields around the crack tip 

(i.e., a non-linear, elastic fracture mechanics approach). Details for the calculations are as per 

Granke et al. 36. Kgrow could not be calculated for specimens when no appreciable stable crack 

propagation is recorded due to brittle instability. This was the case for 11 samples out of total 62, 

and 5 of which mapped by polarization RS.  

6.3.3 Raman Spectroscopy: Data Acquisition 

All Raman spectra were acquired using a confocal Raman microscope (Renishaw InVia 

Raman Microscope, Renishaw, Hoffman Estates, IL) set to a 35 µm slit at 1 cm-1 spectral 

resolution, equipped with a 50x (NA=0.75) near infrared objective and a model locked TEM 

(0,0) 785 nm laser diode (Innovative Photonic Solutions, Monmouth Junction, NJ), dispersed by 

an 1800 lines/mm holographic grating.  Laser polarization was aligned upright according to 

Renishaw specifications and confirmed with known polarizers and silicon standard intensity. 

Laser specifications were tested to have a 1 µm Gaussian spot and a polarization extinction ratio 

of 1:200. Raman shift calibration was accomplished using Renishaw software and supplied 
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standards to account for grating motion. Daily silicon measurements before and after data 

collection ensured wavenumber calibration and light throughput. 

To prevent spurious influence on multivariate analyses, the presence of any cosmic rays 

were removed using custom Matlab software (Mathworks, Natick, MA). Spectra were then 

processed via modified polynomial fit43 and smoothed for noise using a Savitsky-Golay filter34. 

Custom Matlab software extracted the intensity and wavenumber of spectral peaks. After 

fluorescence subtraction, a linear baseline subtraction was conducted on peaks that overlap with 

neighboring constituents to ensure no residual fluorescence, namely Proline, Hydroxyproline, ν1 

Phosphate, and Carbonate. This data was then used to generate peak ratio biomarkers of bone 

composition for mineral-to-collagen ratio (MCR: ν1 Phosphate/ Amide I, ν1 Phosphate/ Proline, 

ν2 Phosphate/ Amide III), Type-B carbonate substitution (Carbonate/ ν1 Phosphate) and 

crystallinity (crystal grain size and perfection, determined by the inverse full-width at half 

maximum intensity of the ν1 Phosphate peak)44.  

For measurements of multiple microstructural features in the crack path prior to fracture 

toughness testing, the bone was aligned with the long axis parallel to laser polarization. A 3 x 3 

grid with ~250 µm linear spacing between each location was centered over the intended crack 

propagation region directly between the notch tip and the periosteal edge. At each of the 9 sites, 

7 accumulations of 10 seconds exposure time were acquired for the fingerprint region from 300-

1800 cm-1 (Figure 6.1C). The osteonal and interstitial nature of each location was balanced 

during site selection. Laser power was measured daily before and after measurements at the 

sample to ensure exposure to 35 mW laser power. 
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For polarization Raman mapping, the bone was mounted to a plastic slide using 

cyanoacrylate subsequently attached to a custom rotation stage, again oriented with the bone 

long axis parallel to laser polarization. A single osteonal-interstitial border of an osteon running 

parallel to the long axis of the bone was chosen with the site no less than 3 mm away from 

visible damage. Proprietary Renishaw Streamline software utilized line scan optics to acquire 

32x 32 pixel raster maps of the selected region (Figure 6.1G). Pixel spacing was set to the system 

resolution of 1.4 µm in each dimension. To capture the fingerprint region, two static grating map 

scans were required, with the grating centered at 930 cm-1 and 1350 cm-1, respectively. 

Corresponding spectra from each location for both grating positions were then overlaid and 

stitched together to encompass the entire 300-1800 cm-1 fingerprint region at the 1 cm-1 system 

resolution. Total dwell time per pixel was set to 180 seconds. Total laser power for the entire line 

was measured at 45mW, and checked for consistency between maps. The bone was then rotated 

90 degrees about the optical axis. Minor error was corrected by manually registering fine 

structural features in the bright field. The accuracy of this method was confirmed to be within 

system tolerance by using Matlab mutual information registration of bright field 

photomicrographs before and after rotation on several samples. After rotation and fine 

registration, the map acquisition protocol was repeated for this orthogonal orientation. For 

multivariate analyses, coregistered pixels from each orientation are then concatenated so that 

both orientations belonging to a single physical location are analyzed as one observation. 
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6.3.4 Statistical Analysis 

For Raman spectra collected prior to fracture toughness testing on hydrated bone, the 

average value and coefficient of variation for standard peak ratios were used to conduct 

correlations to mechanical outcomes. Univariate analyses were conducted using Matlab and 

GraphPad Prism (GraphPad Software, San Diego, CA). Upon failing the F-test of normality, 

Spearman’s correlations were used with significance at a p-value less than 0.05 for the null 

hypothesis of the slope of the correlation is zero. For Raman mapping of dried bone, average and 

coefficient of variation of peak ratios were examined similarly as correlates to fracture 

toughness. Principal components analysis (PCA) was run on the correlation matrix of the full 

spectrum, effectively the same as “z-scoring” each wavenumber, using Matlab built-in functions. 

The scree plot technique was used to screen the cumulative sum of variance to limit further 

analysis to principal components that contain a relevant proportion of the underlying variance45. 

The elbow of the scree plot indicated that 39 principal components should be used, accounting 

for approximately 70% of the total variance of the Raman spectra.  

To perform an accurate analysis of whether heterogeneity plays a role in fracture 

toughness, heterogeneity needed to be defined from the Raman map data, such that a one-to-one 

correspondence existed between heterogeneity and mechanical outcomes. To quantify 

heterogeneity, image processing methods called texture analysis were employed. Specifically, 

the gray level co-occurrence matrix was calculated for each peak and principal component. The 

gray level co-occurrence matrix (glcm) bins an image and calculates the relative frequency of 

neighboring pixels for each possible intensity pair, subsequently used to calculate image 

texture46. Baraldi et al. showed that commonly used metrics for texture homogeneity were in fact 
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a complex combination of both image energy and contrast, each with its own interpretation47. 

Contrast is practically defined as a quantification of spatial frequency and the range of values in 

the image46: 

     

 Eq. 6.1 

 

where i,j represent all possible pixel intensities and p(i,j) is the corresponding element in 

the glcm. Energy is commonly defined as the evenness of the intensity field or the presence of 

regular periodic intensities46: 

 

  Eq. 6.2 

 

 Because both energy and contrast are negatively correlated with homogeneity and 

uncorrelated to each other, image heterogeneity and it’s driving factors are best interpreted using 

the  energy and contrast of the glcm47. Texture analysis parameters, as well as the mean and 

coefficient of variation (COV), were calculated from peak ratios and principal component scores 

of Raman maps. 

More information likely exists in the Raman signatures of bone microstructure than that 

which explains fracture toughness; therefore, the canonical correlation of image heterogeneity 

and fracture toughness was then calculated. Canonical correlation finds the variance output 

explained by the input by maximizing the linear redundancy between the two data sets, 

weighting by singular value decomposition48. To prevent over-fitting and to weight each input 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = �|𝑖 − 𝑗|2𝑝(𝑖, 𝑗)
𝑖,𝑗
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evenly, image heterogeneity data is Z-scored prior to analysis. Accuracy of the analysis as 

measured by percent redundancy and Bartlett’s chi-squared approximation tests for correlation 

significance. Then weighting vectors were applied to the original data (before Z-scoring) to 

examine the true amount of variance explained. Separate analyses were run for energy and 

contrast. Since canonical correlation does not allow for data sparsity and 5 samples have no valid 

Kgrow data, separate analyses were run for Kgrow. Canonical correlation requires data matrices to 

be “full rank”, therefore when fewer observations from the dependent target matrix (fracture 

toughness) exist relative to the number of input metrics (Raman peaks or PCs), Matlab built-in 

algorithms choose data metrics by orthogonal triangular decomposition of rank order to generate 

a full rank matrix (other metrics are subsequently given a zero weight). 

6.4 Results 

6.4.1 Average composition alone is insufficient to explain the age-related decrease in fracture 

toughness 

Fracture toughness decreases with age in this mixed gender cohort; however, correlations 

show that age and biochemical parameters with association to age explain only a small 

percentage of the variance in the fracture toughness properties (Figure 6.2), resulting in 

correlations with limited, if any, meaning.. Examining the average of selected RS properties 

among multiple microstructures, Type-B carbonate substitution (Figure 6.2E) directly, albeit 

weakly, correlates with age (R2 = 0.3), a relationship initially observed for small sample size by 

Akkus et al.49. Compositional ν1 Phosphate/Proline (Figure 6.2D) and crystallinity (Figure 6.2F) 

do not vary with age. However, despite the seeming association with age, Type-B carbonate did  
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not have a significant, meaningful correlation with fracture mechanics outcomes (Figure 6.3B, E, 

H), explaining only 7% of the variance in Kgrow. In fact, none of the typical average peak ratios 

explain even 12% of the variance in any fracture toughness outcome (including compositional 

MCR ν1 Phosphate/Proline and ν2 Phosphate/Amide III, data not shown). As a preliminary 

measure of heterogeneity at this length scale, the coefficient of variation (COV) was calculated 

for each of the standard peak ratios, however, no significant correlations were found for any 

fracture toughness outcomes. The only statistically significant representation of MCR to explain 

fracture toughness was the mean of organization-sensitive ν1 Phosphate/Amide I (Figure 6.3 A, 

D) suggesting that the interplay between organization and composition merits investigation. 

However, average compositional changes are not driving the observed difference in fracture 

toughness. 

6.4.2 Peak ratio intensity maps indicate microstructural heterogeneity as a driving force of 

fracture toughness 

Examining RS maps, microstructural heterogeneity observed at the osteonal-interstitial 

border appears to associate with the age-related loss of fracture toughness. Compositional MCR 

ν1 Phosphate/Proline maps show sharp contrast between the less mineralized osteon and the 

more mineralized interstitial tissue, at least for the specimens with high fracture toughness 

(Figure 6.4A). Samples with lower Kinit and J- integral display a distinct loss of visual 

heterogeneity such that the osteonal-interstitial border is not distinguishable as it is for specimens 

with higher Kinit and J- integral. Mirror image trends in contrast across osteonal and interstitial 

tissue are seen for carbonate substitution maps (Figure 6.4B) in which the amount of crystalline 

lattice substitutions in hydroxyapatite appear to become more similar between the tissue types as  



  

 

178 

  



  

 

179 

  



  

 

180 

the fracture toughness of the bone specimen decreases. Crystallinity demonstrates that lamellar 

contrast in the osteonal region is also associated with the age-related loss in fracture toughness 

(Figure 6.4D). Noise in this measurement is due to system wavenumber resolution limitations, 

effectively discretizing measureable step size. Each of the major RS outcomes (MCR, carbonate, 

and crystallinity) used to characterize bone quality shows its own association with compositional 

heterogeneity at the microstructural level and the age-related loss of fracture toughness. 

Analysis of the ν1 Phosphate/Amide I peak ratio expands upon the role of compositional 

heterogeneity to utilize RS polarization sensitivity and also captures the role of organizational 

heterogeneity. While ν1 Phosphate/Amide I is sensitive to collagen fiber orientation under 

polarized conditions32, it is still a mineral to collagen ratio and therefore also sensitive to 

composition. For specimens with high fracture toughness, both composition and organizational 

heterogeneity are observed across osteonal-interstitial borders. In addition, osteonal lamellae are 

visible when the polarization axis of the laser is orthogonal to the bone long axis (Figure 6.5A), 

such that the trend fades to only osteonal-interstitial contrast for low fracture toughness 

specimens. In the histograms (Figure 6.5B), these changes in contrast manifests as a decrease in 

distribution width and kurtosis, and a general shift towards decreased mineralization with a 

decrease in fracture toughness. However, in the longitudinal orientation, contrast across the 

border at the cement line, not among lamellae, occurs in the specimens with superior fracture 

toughness. The osteonal-interstitial border consistently remains visible in specimens at low 

fracture toughness, but maps are bit noisier. These qualitative assessments indicate a role for 

organizational heterogeneity in explaining the age-related decrease in fracture toughness, but the 

bivariate histograms make the quantification of heterogeneity by standard methods (e.g.,  
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standard deviation, full-width-at-half-max, or kurtosis) intractable. Also, the mixed mode 

contrast of organizational and compositional heterogeneity as well as differences between 

orthogonal bone orientations preclude definitive correlations with the fracture toughness 

properties. 

6.4.3 Heterogeneity of organization and composition jointly improve explanation of the age-

related decrease in fracture 

To overcome these issues and better establish the relative contributions of organizational 

and compositional heterogeneity, image-based quantifications of heterogeneity (Energy and 

Contrast) were determined for Raman maps by using principal components and the following 

prominent peak ratios at each orientation:  ν1 Phosphate/ Amide I, Carbonate/ ν1 Phosphate, 

FWHM-1 (ν1 Phosphate). Univariate correlations were determined for individual peak ratios and 

principal components, showing weak but statistically significant correlations to fracture 

toughness outcomes (Table 6.1; Spearman’s rho r=0.3-0.45) for both heterogeneity and mean 

value. Heterogeneity values showed only slight improvement over the information offered by 

mean and coefficient of variation (COV) of peak ratio maps. Individual peak ratios only 

explained a maximum of 20% of the variance in J-integral, and only 9% of the variance in crack 

growth toughness (Kgrow).  

We previously showed in mouse models of brittle bone (Chapter 5) that using principal 

components of the Raman Spectrum identified underlying directions of variance that are 

associated with mechanical changes. Recall that principal components represent a series of 

uncorrelated underlying directions of variance in data, essentially composite traits of the 

spectrum that are unsupervised. While these were genetically altered models, and not aging as  
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seen here, it was notable that PCA often weighted areas outside traditional peaks and ratios that 

were associated with polarization based changes in tissue organization (Figure 5.4). Therefore, 

principal components of paired spectra in the map may help determine the biochemical signature 

of age-related changes in fracture toughness, and to what degree polarization RS improves upon 

average composition. Table 6.2 illustrates how mean, COV, and imaged-based quantifications of 

heterogeneity derived from PC maps correlate to fracture toughness outcomes. Again there are 

weak, but statistically significant correlations between different measurements of heterogeneity. 

In addition to heterogeneity, the average value of several single principal components explained 

as much as 23% of the variance in either Kinit or Kgrow. Notably, the contrast of principal 

component 11 explains 28% of crack growth toughness. Although an improvement over 

individual peak ratios, this is still not a compelling explanation of fracture toughness.  

Given the complexity of human aging, it is unreasonable to consider only a single 

biochemical peak ratio or underlying spectral signature in attempting to capture the age-related 

changes in fracture toughness. However, the use of multiple peak ratios or orientations would 

multiply the influence of individual peaks, resulting in over fitting. Therefore, canonical 

correlation was used to compare sets of RS data to the set of fracture toughness outcomes, 

comparing the explanatory power of heterogeneity relative to average compositional value using 

either the set of peaks above, or principal components selected by scree analysis (PC1-39). The 

single value decomposition underlying canonical correlation decreases the risk of overfitting 

associated with iterative methods.  Mimicking traditional RS analysis of bone (Figure 6.3), the 

average value of multiple peak intensities acquired at either orthogonal or longitudinal 

polarization (Table 6.3) explained up to 35% of the variance in fracture toughness, performing  
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comparably between orientations. However, energy correlations with J-integral and Kgrow for 

these peaks were higher for longitudinal than for the orthogonal polarization, while contrast 

correlations remain similar among the 3 fracture toughness properties. Canonical correlation 

requires independent variables. Since not all peaks are strongly affected by polarization, 

combining the two orthogonal sets of peaks as variables in one analysis would falsely inflate the 

degrees of freedom, resulting in over-fitting. Moreover, the selection of RS peaks with currently 

established biochemical assignments is inherently biased based. To avoid these risks of over-

fitting while ensuring that canonical correlation accesses the entire spectrum, the average value, 

energy, and contrast of the fundamentally uncorrelated principal components were used. The 

canonical representation of average PC value did not correlate with fracture toughness, yet 

contrast of the underlying direction of variance greatly improves correlation to Kinit, J-integral, 

and Kgrow (see Figure 6.6) with few notable outliers. Interestingly, energy was only found to be 

significant in its correlation to Kgrow, explaining over 50% of the variance. In canonical analyses 

of principal components, direct quantification of heterogeneity demonstrates a stronger 

correlation to the age-related decrease in fracture toughness than average compositional values 

(Table 6.3). Examining weights for each of the principal component correlations between image 

heterogeneity in fracture toughness, there appear to be significant differences in the weightings 

that optimally explain each aspect of fracture toughness. Heavy weights in principal components 

with low numbers indicate stability and reliability of these findings, since fracture toughness is 

driven by heterogeneity in the largest directions of RS variance. Interestingly, several principal 

components including PC3, 7, 9, and 12 were weighted oppositely between Kinit and J-integral.  
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Several the PCs weighted strongly in the explanation of Kgrow exhibit only energy characteristics, 

but others were weighted in several canonical analyses (Figure 6.7). 

In-depth analysis of principal component loadings indicates that both compositional and 

organizational heterogeneity contribute to fracture toughness. Compositional contrast of the 

cement line is associated with high fracture toughness values (Figure 6.7A; PC1), such that 

higher cement line collagen content (relative to neighboring tissue) is associated with higher 

resistance to crack propagation (Kgrow); however, the same contrast has a negative impact on J-

integral. Concurrent organizational lamellar contrast and compositional osteonal-interstitial 

border contrast (Figure 6.7B; PC3) is associated  with superior critical stress intensity for both 

crack initiation(Kinit) and propagation (Kgrow); however, observation of lower fracture toughness 

specimens indicates that low PC3 scores can be driven by a loss of either organizational or 

compositional heterogeneity. Despite a lack of visual features, PC 7 maps that have a higher 

range of contrast in carbonate composition is positively associated with Kinit and negatively 

associated with J-integral (Figure 6.7C). 

6.5 Discussion 

The work herein represents the first quantitative evidence that the microstructural 

heterogeneity of both composition and organization in bone (as observed in polarization-

influenced Raman spectra) is a determinant of fracture toughness, alternative to the idea that bulk 

compositional properties alone explain age-related changes in bone fracture resistance. Indeed, 

the measurement of local compositional properties (with high sampling at the osteonal-interstitial 

border) provided correlations to fracture toughness for individual peak ratios and PCs, However, 
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quantification of the loss in microstructural heterogeneity as measured by canonical signatures 

accounts for a greater proportion of the age-related decrease in crack propagation toughness, 

such that preservation of microstructural heterogeneity observed in young bone could preserve 

fracture toughness and subsequently bone mechanical quality throughout aging. Prominent peak 

ratios (ν1 Phosphate / Proline, ν1 Phosphate/ Amide I , Carbonate / ν1 Phosphate and FWHM-

1(ν1 Phosphate)) showed qualitative association between microstructural heterogeneity of both 

organization and composition and fracture toughness, and subsequent quantification of image 

heterogeneity established the complexity of these observations of heterogeneity as well as a role 

for heterogeneity in the loss of fracture toughness, with multivariate signatures of heterogeneity 

outperforming average tissue composition as well as the coefficient of variation (COV). It is 

important to note that measurements of image texture, like energy and contrast, incorporate 

spatial heterogeneity, unlike the distribution heterogeneity of COV or full-width-at-half-

maximum. Also, the supervised nature and bias of choosing peaks, combined with the potential 

for over fitting, makes the uncorrelated, unsupervised principal component results more reliable. 

Finally, principal components of polarization RS defined spectral signatures of both composition 

and organization that explain fracture toughness.  

Landmark observations by von Meyer1, 50 and Ascenzi19, 22 about the complex 

organizational hierarchy of bone suggest, by the principle of Occam’s razor, that heterogeneity 

plays a crucial role in bones mechanical integrity. Otherwise, it would not be preserved during 

remodeling. Surprisingly, evidence to evaluate this hypothesis has only recently been uncovered, 

and is largely limited to compositional heterogeneity as it relates to the incidence of pathological 

fracture14 or the extended use of bisphosphonate treatment17, which impairs natural remodeling. 
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However this does not imply that an increase in heterogeneity is always beneficial to the fracture 

toughness of bone. Fracture toughness, like bone mass, probably exists on a normally distributed 

continuum such that changes outside the optimal window of heterogeneity could be detrimental. 

Specifically, insufficient spatial heterogeneity could reduce crack-deflecting boundaries, and 

excess spatial heterogeneity could lead to strain concentration and thereby a more definitive 

crack path through weak interfaces. This is evidenced by the strong dichotomy of heterogeneity 

weighting between the canonical explanations of critical stress intensity for crack initiation Kinit 

and that of strain energy release rate J-integral, much in the same way that Ritchie et al. 

demonstrated the inherent conflict between strength and toughness51. This may also be the case 

in the dichotomy relating heterogeneity and fragility fracture, such that there was insufficient 

heterogeneity in carbonate substitution but excess heterogeneity in crystallinity14, or bone 

mineral density distribution15 as observed by qBEI. Regardless, current evidence suggests that 

proper heterogeneity is crucial to fracture resistance. 

While these data support the influence of heterogeneity on the age-related decrease in 

fracture toughness, many aspects of bone heterogeneity remain unexplored. This analysis was 

limited to microstructural heterogeneity of cortical bone, leaving questions about the 

implications of nanoscale and mesoscale heterogeneity. Heterogeneity of composition between 

neighboring features was probed, but no trends were observed. To emphasize study size, only 

one osteonal-interstitial border was mapped, undersampling the fracture toughness specimen as a 

whole. Strong trends suggest that the loss of microstructural heterogeneity would be observed 

across many osteons, but a more thorough analysis may help determine the relative contribution 

of entropy-based microdamage accumulation52-54 versus cell-based imbalanced remodeling 18, 28, 
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55 as a potential biological mechanisms for these findings, ultimately helping to direct and screen 

future therapeutics. 

These findings are especially encouraging given the broad applicability of polarization 

Raman spectroscopy. With its nondestructive near infrared capabilities, Raman spectroscopy is 

shown promise clinically in its diagnosis of cancer56 and osteomyelitis57. Heterogeneity measures 

could be conducted on a bone biopsy, or a custom polarization-preserving probe could be 

inserted through the skin. The current study was limited in correlation due to sample size and 

rank limitations of the canonical correlation analysis; however, a large patient bank could 

establish fracture risk predictors to complement DXA or FRAX58. Because of RS inherent 

sensitivity to local dipolar bonds, it would not be surprising if certain RS components correlate 

strongly to other potential fracture toughness surrogates, including bound water and pore water36, 

or collagen cross-linking and advanced glycation end products59. Once RS signatures of bone 

mechanical quality are fully established, nondestructive measures could determine optimal 

allograft quality and guide surgical resection and fixation decisions. 

The current work also extends to the greater study of the fracture mechanics of materials. 

Highly polarized RS is already used to study protein conformation and fiber orientation in 

organics like silks and electrospun polymers60, 61, but this study shows that inherent levels of 

polarization can be used to study organization in turbid fibrous composites, allowing for 

concurrent analysis of organizational and compositional heterogeneity. These techniques could 

be used to design, validate, or even optimize manufacture of composite polymers and organic 

scaffolds to match desired mechanical specifications. In the study of fracture toughness of 

composite polymers, polarization RS could be used to identify structural and compositional 
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boundaries, or even for quality assurance and fabrication processes for structural materials. In 

patient tailored medicine, an accurate RS assessment of mechanical integrity could allow implant 

heterogeneity to be tuned to match mechanical properties of existing tissue, preventing wear and 

stress shielding62. Polarization Raman spectroscopy may provide a powerful tool for assessing 

fracture toughness, overcoming the practical limitations associated with quantitative analysis of 

impure biological materials. 

6.6 Conclusions 

Microstructural heterogeneity partially explained the age-related decrease in fracture 

toughness. Analysis by Raman spectroscopy implicates both organizational heterogeneity and 

compositional heterogeneity as significant contributing factors to fracture toughness. In a 

constrained multivariate expression of RS, image heterogeneity outperforms average 

composition, finding that the interplay between organization and composition is crucial for a 

reliable, robust explanation of fracture toughness. Finally, the observation of opposing forces 

driving the critical stress intensity of crack initiation and the strain energy release rate suggest a 

balancing phenomenon in optimal fracture toughness, a common theme in the biomechanical 

mechanisms of bone. These findings not only provide deeper insight into the pathological 

progression age-related bone disease, but the use of polarization Raman spectroscopy to 

concurrently examine composition and organization may prove to be a crucial tool for assessing 

and validating optimal bone therapeutics, and applying our knowledge of nature for improved 

synthetic material manufacture.  
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CHAPTER 7 

 

SUMMARY AND CONCLUDING REMARKS 

 

7.1 Summary of Dissertation Findings 

This work has assessed the ability of Raman spectroscopy (RS) to evaluate and explain 

the mechanical quality of bone by establishing a relationship between biochemical profiles 

detected by RS and mechanical differences caused by genetic manipulation and aging. Moreover, 

in this work, I established that the manipulation of polarization in Raman spectroscopy assesses 

the organization of bone concurrently with its composition. Chapter 3 established that the 

organization of bone impacts Raman spectroscopy at low, instrument-inherent, polarization 

states. I established that polarization sensitivity followed optical theory and could be optimized 

to either eliminate or magnify its influence depending on the desired analysis. These findings 

were found to be consistent across spatial locations and donors of varying age, thereby offering 

potential reconciliation for notable inconsistencies in other studies of compromise bone quality. 

Building upon these findings, the work presented in Chapter 4 (the study of ATF4 bone quality) 

showed that RS polarization changes were associated with the loss of bone toughness and 

fracture toughness even when biochemical compositional property measurements by RS were 

insensitive to the mechanical changes. However, aging the animal model changed the mechanical 

phenotype and subsequently, compositional Raman spectroscopy peak ratios were then able to 
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detect the resulting changes in strength. In Chapter 5, correlation between polarization in Raman 

spectroscopy and bone toughness was confirmed by analyzing brittle knockout models (either 

ATF4-/- or MMP9-/-). Using multivariate principal components analysis, I showed that the 1st 

and largest principal component (i.e., underlying direction of variance in the data), significantly 

explains bone toughness in both models. Moreover, the load profile of RS peaks was similar for 

both models despite the fundamental difference in genetic mutation. Finally, insensitivity of 

principal components to strength in the maturation model indicated specificity of polarization 

Raman spectroscopy as a significant correlation to bone toughness. Combining multivariate 

analysis with the polarization sensitivity of Raman spectroscopy to the orientation in bone (using 

techniques developed in Chapters 3-5), the work in Chapter 6 correlated age-related decrease in 

fracture toughness of human cortical bone to organizational and compositional heterogeneity at 

the microstructural length scale. Mapping the osteonal-interstitial boundary for two orientations 

(parallel and orthogonal to the bone long axis) and registering the maps allowed for an 

organization-sensitive quantification of microstructural heterogeneity. The canonical correlation 

of image texture analysis quantifications of contrast and energy (both shown to be driving forces 

in heterogeneity) indicated that a decrease in both compositional and organizational 

microstructural heterogeneity explained a significant proportion of the age-related decrease in 

fracture toughness. 

The application of polarization Raman spectroscopy has been found by this thesis to 

explain the biochemical basis of elusive mechanical properties of toughness and fracture 

toughness not otherwise explained by conventional Raman measurements of composition could 

not. Note that unlike strength, neither of these mechanical properties is explained by currently 
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established clinical techniques that assess patient fracture risk. The primary implication of my 

dissertation findings is that polarization content of Raman spectroscopy facilitates concurrent 

analysis of composition and organization of bone mineral and collagen, which was not possible 

in other nondestructive analyses.  

7.2 Major Conclusions 

• Refuting common practice, the influence of polarization on Raman spectroscopy for 

organized samples like bone is present in commercial confocal microscope systems, even at 

lower magnifications (and numerical apertures) due to the inherent polarization bias 

generated by laser sources, dichroic mirrors, and holographic gratings. 

• The polarization of Raman peaks follows Malus’s law in the absence of explicit 

depolarization, despite the confounding factors of tissue turbidity and multiple scattering. 

Therefore the amplitude and phase of peak polarization can be modeled. Peaks in bone were 

ranked for polarization sensitivity by amplitude, such that the assessment of composition and 

organization can be optimized by comparing peak phase when defining peak ratios. 

• Peak phase and ratio sensitivity to polarization (and subsequently organization) are both 

consistent among microstructures and across bones from multiple donors of varying age, in 

accordance with bone birefringence and current theories of mineral and collagen organization 

in bone. 

• In the analysis of animal bone from genetically modified rodent models, RS measures of 

changes in bone composition are usually indicative of changes in mechanical strength, and 
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are not found in prominent models of bone brittleness. Instead, polarization-sensitive RS 

measurements of bone organization are associated with these brittle phenotypes. 

• When performing polarization Raman spectroscopy measurements for multiple orientations 

of a turbid birefringent material, it is best practice to include all the variables as individual 

features, rather than attempt to mathematically combine paired observation at each 

wavenumber. The former allows for data reduction by principal components analysis, while 

the latter produces spurious results due to the inappropriate rescaling of data variance. 

• The first (and largest) principal component of polarization RS variance significantly 

correlates to toughness in multiple animal models of bone brittleness, suggesting that the 

interplay between orientation and composition that results in bone brittleness has consistent 

elements and comprises the majority of biochemical differences in these altered tissues. 

• In the analysis of human cortical bone, only a small portion of the age-related decrease in 

fracture toughness can be explained by bulk compositional properties. Quantification of 

image heterogeneity over osteonal-interstitial bone tissue generated from the principal 

components of Raman maps significantly explains the age-related loss of fracture toughness, 

including stress intensity factors for crack initiation and growth, as well as the strain energy 

release rate J-integral. 

• The weight of principal components generated from the Raman maps of osteonal-interstitial 

bone tissue suggest a significant contribution of both composition and organization in the 

explanation of fracture toughness. There is distinct interplay between organization and 

composition in the RS signatures of microstructural heterogeneity. 
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• The relationship between heterogeneity of the principal components and fracture toughness 

suggest an inherent struggle between critical stress intensity and the release rate of non-linear 

strain energy, much like the known conflicts between strength and toughness for many 

situations in bone. 

7.3 Implications of This Work and Future Directions 

The most prominent potential applications of this work include: application of polarized 

Raman spectroscopy for the diagnosis and analysis of tissue organization; Raman spectroscopy 

in general for the measurement of bone quality; the specialized use of multivariate statistics on 

Raman spectroscopy data for correlation to continuous outcome variables; addressing anatomical 

differences and concerns in the relationship between bone structure and function; implications 

for the Raman assessment of the mechanics of materials; the relationship between compositional 

and structural heterogeneity and fracture mechanics; the clinical and surgical potential and likely 

limitations of polarization Raman spectroscopy for bone quality; and the greater meaning and 

potential hypotheses generated by the application of these findings current theories of bone 

biology and aging. 

7.3.1 Raman spectroscopy for the optical diagnosis of mineralized tissue 

As a growing optical detection technique, Raman spectroscopy is often touted for 

superior chemical sensitivity and specificity, as well as the potential for nondestructive 

measurement with minimal tissue heating. Herein lies the true strength and weakness of Raman 

spectroscopy as a modality for optical diagnosis: its context-specific versatility. Depending upon 

a given hypothesis or target tissue, one can modify laser wavelength, delivery system, the sample 
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volume probed, and —with advances in polarization— even the relative sensitivity to orientation 

and composition. While this is a fortuitous circumstance for the evaluation of well-posed 

hypotheses, these variables also imply that inherent differences exist among the myriad of 

specialized Raman instruments, data acquisition techniques, and protocols may significantly 

drive scientific findings. Because Raman spectroscopy is inherently sensitive to all dipole 

moments and changes in tissue optical properties, there is little that can be done to a biological 

sample without changing its Raman spectrum. This is evidenced by the study performed by 

McElderry et al (Morris lab) showing that nearly all prominent peaks in the Raman spectrum of 

bone are altered by as few as 3 to 4 freeze thaw cycles of less than 8 hours each1. However, 

mechanical properties of bone samples show no notable changes with this number of freeze thaw 

cycles. Not surprisingly, related Raman studies of bone often have seemingly opposed 

interpretations. In reality, experimental design is usually lacking in at least one of these studies, 

largely due to unintentional ignorance of at least one context-specific variable that happens to be 

important. Such was likely the case for the large discrepancy in results of bone studies that 

attempted to use Raman spectral changes as a biomarker for diseases of decreased bone 

mechanical quality (see 2.4 Discussion)2-6. Those studies finding a significant association 

between mineral to collagen ratio and diseases of decreased mechanical quality often cited the 

use of the prominent peak ratio ν1 phosphate/amide I. Others citing no association between 

mineral to collagen ratio and diseases of decreased bone mechanical quality, happened to be 

using mineral to collagen ratios of ν2 phosphate/amide III or ν1 phosphate/proline. However, the 

observation that the mineral collagen ratio ν2 phosphate/amide III showed no differences as a 

function of disease may be equally valid. In fact, the differences between outcomes, now 
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examined in light of the results from the thesis, may imply that the results of the two studies 

agree insofar as the differences in mineral to collagen ratio observed by ν1 phosphate/amide I 

were driven by changes in local tissue organization and not composition.  

Aforementioned discrepancies in research findings may be driven by the fact that the use 

of Raman spectroscopy for the diagnosis of bone disease is pushing the limits of commercially 

available RS technologies and systems. The historic use of Raman spectroscopy for chemical 

quality assurance was based upon the principle that certain peaks would move or be entirely 

absent under different chemical formulations due to a significant change in the distribution of 

dipolar bonds. More recent uses of near infrared Raman spectroscopy for the diagnosis of cancer 

can rely upon the fact that cancer greatly up-regulates amount of nuclear material relative to 

normal cells. Such a large change in chemical composition is not the case in the use of Raman 

spectroscopy for the assessment of bone quality because bone only has the three major dipolar 

chemical components: calcium hydroxyapatite, type I collagen, and water. The relative 

composition of bone is remarkably stable from the perspective of analytical chemistry. 

Essentially, to the untrained eye, the Raman spectrum of poor quality mouse bone and healthy 

adult human bone would appear the same. Rough estimates from data acquired during this thesis 

indicate that the bulk compositional change of bone with respect to age-related disease is well 

below 10%. Effectively, the mild progression of age-related bone disease, as well as the 

heterogeneous presentation of many major genetic bone diseases (including NF17, which 

displays heterogeneous cortical porosity and hypomineralization), implies that the traditional 

application of Raman spectroscopy may not be optimal for early detection of osteoporosis or 

heritable skeletal maladies. That said, the findings of this thesis indicate that RS can be 



  

 

207 

extremely effective as an investigative tool in the laboratory when instrumentation is 

appropriately modified to evaluate a specific hypothesis. 

 Rather than examining diseases where compositional change is arguably mild, there are 

several conditions where strong changes in composition are optimally matched to traditional 

Raman measurements. The exact compositional changes and mechanisms behind the formation 

of heterotopic ossification (the presence of mineralized collagenous nodules outside of bone) are 

still under debate8; however, Raman could easily identify the presence of ossified nodules. 

Infectious disease of bone is a source of major health burden associated with surgical revision 

and amputation, both for injured soldiers and hospital patients exposed to antibiotic resistant 

bacteria9. Virulent strains of Staphylococcus aureus are especially known for their formation of 

biofilms in bone, sequestering them from exposure to pharmacological treatment10. Early 

detection of these biofilms could be used to indicate the presence of Staphylococcus aureus and 

guide treatment decisions. Raman spectroscopy is also ideally suited to tracking and identifying 

the degradation products of biomaterials used in coatings implants and defect-filling cement. In 

this application, I envision a library-based function of known degradation products being 

matched to experimental samples to determine the relevant breakdown and better grasp the 

degree of material biocompatibility. Osteomyelitis, another example of infectious bone disease, 

is currently being investigated for detection potential by Raman Spectroscopy at the Morris lab. 

In the presence of diabetic neuropathy, lesions with specific osteomyelitis involvement contain 

brushite, mineralized phosphate-based material commonly associated with the exoskeleton of 

coral. Incidentally, brushite has a distinctly different phosphate peak from bone, allowing high 

sensitivity of detection11, 12. Finally, it may be possible to use Raman spectroscopy to help 
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investigate the finer points underpinning osteolytic and osteoblastic cancer lesions13. While the 

use of Raman spectroscopy as an early diagnostic technique for metastasis is intractable, given 

that metastatic lesions theoretically start as single cell entities, understanding exactly what 

happens compositionally when the cancer manipulates the surrounding bone extracellular matrix 

may prove to be valuable information when differentiating between potential mechanisms. 

Raman Spectroscopy is not ideally sensitive to the presence of water in samples. While 

Raman shifts for water do exist, they reside beyond the fingerprint region, in high wavenumber 

bands. Therefore these bands were not included in this thesis. The effects of hydrogen bonding 

between tissue and water can also be measured with Raman Spectroscopy, but the very low 

wavenumber shifts are often swamped by specular reflectance of the laser input wavelength. 

That said, RS measurements may be related to NMR findings from bound and pore water 

hydrating the bone tissue. Decreased tissue hydration leads to brittleness14 and a decrease in 

fracture toughness15, even at physiological levels. Because artificial dehydration of collagen 

results in decreased sample volume and a change in the relative spacing between collagen 

molecules, it is possible that this happens at physiological levels as well. An increase in the local 

density of collagen molecules could lead to small changes in light throughput, and with confocal 

Raman, this could alter the content of Raman scattering reflected by each sample. Because 

Raman is sensitive to mechanical strain16, observed shifts in wavenumber or subsequent changes 

in molecular alignment from polarized RS signatures could be the downstream results of changes 

in tissue hydration. It remains to be seen whether the body has any active mechanisms for 

controlling the incorporation of bound water into the bone matrix, or if the process is purely a 

passive component of matrix maturation in an aqueous environment. It will be important to 
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examine the effect of collagen packing in bone and its relationship to water, especially since the 

treatment raloxifene is purported to increase matrix hydration17. Examining the local 

heterogeneity of water content and how it corresponds to tissue microstructure could be 

accomplished by modifying Raman instrumentation and collection protocols to allow for full 

analysis of the high wavenumber RS signature of water in bone.  

7.3.2 Polarization Raman spectroscopy for tissue organization 

Traditionally RS is used for measuring chemical composition and to measure large 

changes in tissue biochemistry; however,information gathered throughout this thesis suggests 

that polarization in the Raman spectrum of bone has significant implications for the study of 

bone tissue organization. The polarization trends observed arise from several different factors. 

Placzek showed that the "Raman effect" is inherently affected by polarization, such that a pair of 

orthogonally oriented or “crossed” polarizers can be used to generate a depolarization ratio for 

each particular peak or bond as an inherent measure of the strength of the dipole and molecular 

chirality. In larger molecules or repeating structures including fibers and crystals, this translates 

into the inherent sensitivity of Raman polarization to molecular orientation. Because Raman 

spectroscopy is a scattering phenomenon, tissue birefringence also affects the propagation and 

subsequently measure of polarized light. Chapter 3 of the thesis shows that while this 

phenomenon could be effectively eliminated either by modulation of the instrument to depolarize 

the input laser beam, or by generating ratios of peaks that are matched in their polarization phase, 

polarization in Raman spectroscopy allows for the concurrent analysis of both composition and 

organization.  Repeating patterns of birefringence and organized fibers and crystalline materials 
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are in fact common throughout the body, especially given the birefringence of fibrillar collagen 

molecules that make up a large proportion of the body’s structural extracellular matrix. The 

techniques described in this thesis could also be applied to recognize the organizational structure 

in other tissues, as well as diagnosing the pathological loss of the interplay between organization 

and composition. Skeletal and cardiac muscle are composed of fibrous actin and myosin 

complexes, and are known to demonstrate birefringence. Muscle damage and disease 

investigations could benefit from the concurrent examination of fiber organization and 

compositional changes associated with their pathology.  

The study of skin wound healing presents another exciting possibility. As skin heals, 

highly organized scar tissue is formed, and it is known that the degree of orientation, specifically 

heterogeneity in the directionality of collagen fibers contained within the scar, is associated with 

the mechanical integrity of the healed tissue. Chemical and burn wounds that denature the 

collagen of skin are currently examined by polarized light microscopy, such that worse burns 

show greater loss of tissue birefringence. The more detailed information regarding chemical 

composition and its interplay with fiber organization may assist in determining better metrics for 

tissue viability and mechanisms preceding the onset of tissue necrosis. It is important to note, 

however, that current technology for polarized Raman would be limited to examination of 

superficial or excised tissue. Polarization is not preserved through multiple scattering events in 

turbid media (most biological tissues), such that polarization Raman has the best high sensitivity 

to organization when coupled to confocal open beam microscopes. The use of polarization 

preserving fibers or other optics could allow access to deeper tissues; however, specific 

instrument redesign would be necessary in the context of these experiments. 
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7.3.3 The application of multivariate correlation analysis to Raman spectroscopy 

The proper choice among statistical methods forms a crucial part of the effective analysis 

of any scientific hypothesis, but the analysis of Raman spectroscopy for bone poses its own 

unique set of problems. The methods employed throughout this thesis demonstrate the 

application of engineering problem solving methods to preserve data reliability while 

maximizing analytical power. The primary issue with the statistical analysis of Raman 

spectroscopy arises from the fact that the number of observations or samples “n” is significantly 

less than the observed number of variables. The vast majority of available statistical methods are 

predicated upon the assumption that the opposite is in fact true. Most multivariate statistical 

analyses are designed for psychological and epidemiological surveys, such that the expected 

number of samples would exceed the number of variables by several orders of magnitude18. To 

overcome the difficulty that this often poses in the analysis of Raman spectroscopy, spectral 

binning is employed to reduce the number of wavenumber based variables. Alternatively, the 

number of variables can be limited to prominent peaks or peak ratios that have previously been 

assigned a biochemical meaning19. However this is not possible in the case of multivariate 

analysis, especially when attempting to check the subtle changes that often arise outside the 

maximum peak intensity, as is the case for many of the polarization based changes that represent 

the organization of bone tissue20, 21. Previous works of Madahevan-Jansen {Mahadevan-Jansen, 

1998 #238;Mahadevan-Jansen, 1996 #239} , applied multivariate dimension reduction and 

feature extraction techniques to classify disease states (ordinal outcome variables). This is a 

different statistical scenario than the continuous outcome variables given by bone biomechanics. 

Multivariate analysis in this situation can lead to singularities or “Heywood cases”22 where the 
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iterative solution of complex multivariate methods may not converge to the correct answer, or to 

any answer at all. 

Engineering a design from the “bottom-up” implies starting with fundamental principles, 

such that a bottom up statistical analysis would use the fundamental directions of variance or 

established variables. Alternatively, engineering from the “top-down” implies targeting the 

ultimate outcome and then choosing the best methods to achieve that outcome. Statistically, top-

down designs would weight any variables, no matter how redundant or nonsensical, to achieve 

the best representation of the desired outcome. Bottom-up design focus on the reliability of 

results such that statistical analysis by principal components chooses the fundamental 

uncorrelated directions of variance, offering greater reliability and stability for interpretation at 

the possible sacrifice of under-explaining the data, as opposed to top-down designs which could 

potentially over fit the data set. This is especially challenging for bone where subtle changes 

occurring outside main biochemical peaks were found to associate with profound changes in 

mechanical outcomes. Recall that RS measures biochemical bond profiles in bone, and as such, 

indirectly associates with any mechanical changes. Moreover, mechanical changes are not 

necessarily the only changes associated with the age-related changes in bone biochemistry. 

Therefore, unlike the diagnosis of cancer where the largest biochemical changes likely 

correspond to the presence or class of disease, only a small subset of the biochemical changes in 

aging bone may be responsible for decreased fracture resistance. 

This application of engineering design principles to the surplus number of variables in 

Raman spectroscopy successfully allowed the identification of RS signatures that have classified 

the bones of brittle animal models as well as correlated to continuous outcomes of fracture 
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toughness as a function of age. I utilized bottom-up data reduction via principal components 

constraining the model to the fundamental directions of variance and preventing over-fitting. 

Classifying bone in Chapter 5, I utilized sparse multinomial logistic regression of the principal 

components that significantly separate genotype (by a univariate nonparametric analysis) in a 

top-down iterative classification scheme, with the additional safety factor of leave-one-sample-

out cross validation. Correlating image heterogeneity to bone fracture toughness in Chapter 6, we 

again constrain the statistical model using principal components to prevent over-fitting and 

bolster the validity of interpretation, while employing a top-down canonical correlation that 

weights the principal components to maximize linear redundancy and therefore the explanation 

of fracture toughness. Finally, the benefit of using the bottom-up method of principal 

components allows the user to view the spectral weightings in order to assign an appropriate 

biochemical meaning to the result. 

Because high spectral resolution is necessary to fully characterize the subtle changes in 

polarization sensitive peak shoulder and overlapping peaks detailed in this dissertation, as 

polarization RS techniques improve, attempts should be made to analyze Raman spectra with 

even higher wavenumber resolution to find more subtle cues about the early underpinnings of 

progressive disease or slight differences in material properties. However analyses of samples 

from patients with rare atypical subtrochanteric femoral fractures (associated with long-term 

bisphosphonate use) and from rare human diseases (like Nf1) are even more precious than those 

used in this dissertation, further limiting the number of potential specimens. Applying these 

engineering principles in study design and statistical analysis will help to produce robust and 

reliable results in the future without sacrificing potentially critical information. Ultimately, the 
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real power of any statistical analysis is derived from the intelligent interpretation of meaning in 

light of the hypothesis posed. Nevertheless appropriate planning of a proper statistical design 

will result in less waste, and fewer spurious interpretations that could arise from the improper 

design of statistics when employing RS.  

7.3.4 Bone heterogeneity across the anatomy: a link to biological mechanisms  

The direct link between micro structural heterogeneity and the fracture toughness of bone 

will pose new hypotheses more than it validates existing ones. This thesis may represent the 1st 

time a quantitative measure of microstructural heterogeneity has been directly correlated to a 

quantitative measure of human fracture resistance, especially considering the microstructural 

heterogeneity of organization herein. The most prominent limitation across the studies was 

undersampling of anatomical diversity, given the presence and importance of heterogeneity as I 

observed in the femur. Specifically it will be important to evaluate whether or not 

microstructural heterogeneity is a strong determinant of fracture toughness throughout the 

anatomy or just in loadbearing long bones. We know from Wolff’s law that bone adapts to the 

forces encountered, driving biological mechanisms of modeling and remodeling to allow the 

bone to resist diverse and changing force profiles23. The work of Jepsen et al. has shown that 

sources of anatomical variation have developed over time into specific anatomical traits, and 

these traits, including bone slenderness, impact how well the same bone from different people 

withstands similar mechanical forces24. Viewed in terms of Frost’s mechanostat theory25, 

anatomical differences and individual traits would affect the range of mechanical loads 

considered homeostatic, such that neither bone formation nor resorption would dominate. If this 

is accurate, the degree of tissue microstructure heterogeneity may be much more valuable to the 



  

 

215 

fracture resistance of certain individuals. One must also consider the findings of Ascenzi 

regarding the relationship between collagen orientations in sequential osteonal lamellae as it 

relates to the predominant mechanical forces encountered by a given region of the bone26. 

Different types and configurations of osteons (i.e. different collagen fibril orientations in 

sequential lamellae) are known to be found in different quadrants of long bones27, 28, so it stands 

to reason that the relative impact of organizational heterogeneity may depend on the loadbearing 

role of the bone tissue in the body. For example, organizational heterogeneity of osteonal 

lamellae may be crucial to the fracture toughness of the femur, which is exposed to consistent 

cyclic heavy loading; however, the heterogeneity of composition may play a more significant 

role in the fracture toughness of a humerus or radius when experiencing momentary high level 

forces from an impact or static forces from carrying a burden. Knowledge that the fracture 

toughness mechanisms of bone are in fact rate-dependent29, 30 makes this a distinct possibility. 

Due to the tissue volume, ease of machining, and established methods of mechanical 

testing, the results of this thesis were derived almost entirely from the analysis of cortical bone; 

however, trabecular bone also exists at sites of osteoporotic fracture including the hip, distal 

radius, and lumbar spine vertebral bodies31. Since heterogeneity has already been associated with 

iliac crest biopsies32 in the presence of fragility fracture33, 34, it is likely that the results of 

microstructural heterogeneity for both composition and organization will translate directly to 

trabecular bone; however, the analysis of trabecular bone will present its own challenges, given 

that trabecular bone itself is comprised of heterogeneous features such as plates and rods at 

levels above the microstructural lamellar features. Therefore individual Raman measurements on 

one specific feature may be less representative of an entire structure. These hypotheses merit 
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validation before a direct link can be established between the value of microstructural 

heterogeneity and clinical osteoporotic fracture risk. The next step in the research process is to 

validate the heterogeneity findings across additional anatomical sites, specifically those 

implicated in osteoporosis (distal radius, lumbar spine, iliac crest, and femoral neck). Then it will 

be possible to determine the minimum sampling rate necessary to capture changes in 

organizational heterogeneity. 

7.3.5 The use of Raman spectroscopy for the evaluation of the mechanical properties of 

materials 

Methods and protocols in this thesis have applications outside of bone biomechanics, and 

even biological materials. Measurement of material organization using polarization Raman 

spectroscopy could provide significant new insights into the development of superior man-made 

materials ranging from biocompatible implant materials that could theoretically match patient 

specific mechanical properties, to structural composites used in building and manufacturing. 

Microstructural heterogeneity is known as an important factor in the determinant of material 

fracture resistance, especially for organic composites35-38. In the modern manufacture of 

lightweight but reliable composites, Raman spectroscopy could be used as a gatekeeper for 

quality assurance, and as a validation of new designs and manufacturing methods. That said, it is 

important to keep in mind the true benefits of Raman spectroscopy are twofold. Firstly, RS 

demonstrates superior sensitivity and specificity to narrowband changes in chemical bonds. 

Raman is able to detect even slight changes in the material that can be caused by environmental 

factors or gradual degradation. This can be seen in spectral changes during the fixation of bone19, 

as well as the minute changes that happen in the spectrum of bone that undergo gradual 
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dehydration on the microscope stage. However, specifically because of the sensitivity to minute 

variation, it is important to note that the advantage of Raman spectroscopy is not statistical 

power; therefore, the use of RS to predict material properties will likely not reduce the number of 

samples necessary to complete a study. Rather, the best method to determine the effect of 

material composition and organization upon mechanical properties would be to build extensive 

library functions to weight appropriate spectral components with known impacts, necessitating 

large datasets to yield optimal results.  

The second major advantage of using Raman to predict mechanical properties of 

materials would be its versatility. Specifically, the ability to manipulate RS instrumentation to 

evaluate different hypotheses makes the development of new protocols and methods more 

versatile in their application. For example, polarization maintaining fibers could be used to 

develop a probe that measures both organization and composition concurrently to be inserted 

deep within materials or the body, while confocal hand-held probes 39 could be used to measure 

the contribution of changes in heterogeneity from various layered structures, both natural and 

human-made. 

Analysis of the principal components weightings that explained microstructural 

heterogeneity and the age-related decrease in human fracture toughness (Chapter 6) poses a 

significant question. Does the observed trend of competition between critical stress intensity (K) 

and strain energy release rate (J-integral) extends beyond aging to other diseases of bone, to 

other bodily tissues, or even to other organic composites? If so, these findings have a broader 

impact on our understanding of the fracture resistance of materials. In our constantly evolving 

digital society, there is a growing demand for lighter, more durable materials, all while still 
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increasing biointegration, both for medical implants within our own bodies, and for integration 

with the surrounding environment. Subsequently, polarization RS could be used in the iterative 

design of materials, owing largely to its unique capability to analyze the interplay between 

organization and composition across various length scales. 

7.3.6 Discussing the influence of bone tissue heterogeneity on biomechanics 

While synthetic materials could be designed to decouple critical stress intensity (K) from 

the strain energy release rate (J-integral) in the same way that some materials are both strong and 

tough, the materials comprising bone and biological tissues are fundamentally limited to 

production capabilities of the body. Therefore, a greater understanding of the relationship 

between fracture resistance and heterogeneity across the length scales will ultimately lead to 

better medicine for both diagnosis and improved therapeutics. While Chapter 6 provides 

quantitative evidence supporting theories suggesting that heterogeneity is a driving factor in the 

age-related loss of fracture toughness40, a deeper analysis of the observed trends lends credence 

to the dichotomy of results observed by others33, 41. Examining the mechanics of materials in 

general, properties describing the maximum value of the load sustained by material until failure 

are often diametrically opposed to “area under the curve” properties that describe work to failure 

or energy dissipated. This is evidenced by the inherent conflict between strength and toughness 

in many natural and basic synthetic materials42. For example, polymeric materials like rubber 

bands have a high degree of toughness but low ultimate strength, while glass is strong yet brittle. 

The relationship between heterogeneity and fracture toughness, even within the microstructural 

length scale examined, likely exists on a bell curve distribution, such that there is an optimal 



  

 

219 

range of heterogeneity to produce the maximum fracture toughness outcomes. Insufficient 

heterogeneity would lead to a decrease in fracture toughness driven by a lack of compositional 

and organizational boundaries to deflect and deter crack growth and propagation. Excess 

heterogeneity would result in such large contrast between neighboring features like lamellae, that 

there would be a clearly defined path of least resistance along which the crack will propagate 

based solely upon the amount of energy required.  

It is important to note that by the same principle heterogeneity at larger length scales is 

likely detrimental to bone. Results indicated that in spite of microstructural heterogeneity, 

average properties from the RS measurements of composition and organization between different 

microstructures average to the same value, having little correlation with fracture toughness. 

Changes severe enough to imbalance the average compositional properties of bone observed 

would likely have catastrophic results. Since the osteonal-interstitial border of only one 

microstructure in each bone was observed, it is also possible that the loss of microstructural 

heterogeneity is unique to only a small handful of features within each bone as a function of age. 

This would translate to a weakest link theory at a higher length scale, such that the osteon 

displaying a lack of heterogeneity would be the preferred location of crack propagation. Note 

that these two theories have opposite interpretations regarding the biological origins of age-

related fracture toughness loss. Moreover, the current dichotomy of results regarding the impact 

of heterogeneity on fracture toughness doesn’t suggest either of these mechanisms is more likely 

than the other. 

While reality of complex biomechanics likely involves more contributing mechanisms 

(including the accumulation of microdamage or the shape and frequency of pores that serve as 



  

 

220 

stress risers), the findings of this thesis may indicate that optimal fracture toughness properties 

involve balancing J, K, and heterogeneity, effectively conserving mass and mechanical 

properties. On the other hand, it is also possible that the idea that bone achieves an “optimal” 

fracture toughness value for healthy individuals is an inherently flawed concept. The structural 

support the bone provides for the body is only one of its many functions, and in considering the 

degradation of mechanical properties like fracture toughness, it is easy to overlook imbalances 

caused by bone’s other functions as a regulator of calcium and acid homeostasis, as well as 

regulation of metabolism through its action on insulin. 

7.3.7 The implications for Raman spectroscopy is a diagnostic tool in the orthopedic clinic 

This thesis has established the added value of analyzing polarization in Raman 

spectroscopy to achieve a greater explanation of the fracture resistance of bone; however, this 

also implies that the standard compositional measurements derived from RS analysis are 

insufficient on their own. Subsequently a paradigm shift in instrument design and data 

acquisition might be required for optimal explanation of bone quality. Namely, current Raman 

instruments for clinical application are built around fiber-optic delivery systems, but the vast 

majority of fiber optics do not preserve polarization, with systems opting instead for higher light 

throughput over larger volumes of tissue. This inherently allows for faster data acquisition in the 

clinic while minimizing the necessary laser exposure, applying a safety factor to established 

standards for laser irradiation. Moreover, current fiber-optic collection techniques allow for 

multiple scattering events in the tissue, resulting in a decrease in the preservation of polarization. 

Given that fracture toughness has been determined by heterogeneity of bone organization as 
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measured by polarization RS, decreased polarization information is effectively noise in the 

measurement of bone quality. To accomplish the original goal of using RS to assess bone quality 

for in situ surgical fixation decisions, special polarization maintaining fibers would be necessary. 

I propose the following design for a new polarization preserving probe: multiplexing polarization 

maintaining fibers to both irradiate and collect RS from a significant number of microstructural 

features simultaneously. Due to inherently small diameter of “panda” and “bowtie” fibers, 

several dozen be multiplexed into a probe less than 500 µm in diameter. This would allow for in 

situ imaging on the same length scale as data collected in this dissertation. Fiber lasers should 

allow for much smaller excitation fibers than current probes while preserving the necessary input 

power. From a safety aspect, the device would need to be designed with careful attention to 

fluence (energy per unit area), since the volumes irradiated would decrease drastically relative to 

current designs. The ultimate goal is to provide the surgeon with a quantitative analog for bone’s 

mechanical integrity within several seconds, making it easier to decide whether a certain 

procedure requires surgical pins, plates, or total joint replacement. Such a design could be 

calibrated for bone quality against the measure of pullout tests used to determine mechanical 

integrity for screw retention. 

Polarization information could be acquired directly from the bone tissue when screening 

patients; however, this would require the creation of a small incision and the insertion of the 

Raman probe within a hypodermic needle. The need for sterilization, replaceable parts, local 

anesthesia and subsequent healing all detract from the normal advantages of Raman 

spectroscopy, which is touted for being nondestructive, rapid in acquisition, and relatively low 

cost. Therefore, while this option is feasible from a technological standpoint, human factors limit 
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the potential applicability of such a diagnostic tool. Even if spectral information would be 

defined directly from a probe touching the bone surface, the optimal explanation of mechanical 

bone quality would require the implementation of library functions such that measurements 

would be compared to population-specific statistics, not unlike the methodology currently used 

in scoring DXA and FRAX. 

The final and perhaps most lofty goal for the application of Raman spectroscopy to bone 

quality was the development of a high throughput transdermal screening system for the early 

diagnosis of osteoporosis, such that earlier treatment would have a more significant impact on 

fracture risk prevention. However, the findings of this thesis strongly implicate the influence of 

organization and the need to polarize Raman spectroscopy in order to attain valid predictors of 

bone toughness and fracture toughness. With current RS instrumentation and technology, 

transdermal acquisition of bone through many layers of tissue requires the process called SORS 

(Spatially Offset Raman Spectroscopy), wherein distance between the excitation fiber and 

collection fibers at the surface of the specimen predispose the collection fibers to light that has 

traveled along a deeper “banana curve” shaped path while scattering through the layers of 

tissue43. The Morris lab has also applied this technology directly to the measure of bone through 

skin and muscle44. Because bone is one of the few tissues with a dominant mineral component 

and abnormally strong peaks, library functions of known spectra can be fit to collected data to 

remove the influence of Raman scatter from other tissue layers. However, polarization data is 

largely lost by multiple scattering events; therefore, the acquisition of organization information 

from deeper layers of tissues is currently intractable. Therefore Raman spectroscopy may not be 

the optimal technology for the clinical screening of osteoporosis at this time. In the future, the 
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reconstruction of polarization information after it has traveled through several layers of tissue 

may be possible.  

7.3.8 Potential mechanisms for the age-related decrease in fracture toughness 

Without delving into the application of Raman spectroscopy for future use in orthopedic 

medicine, the finding that the interplay between tissue organization and composition drives 

mechanical bone quality in both human aging and in animal models of several genetic diseases 

may be significant for our understanding of bone biology. Several possible mechanisms could be 

responsible for the observations in Chapters 5 and 6. The observed decrease in heterogeneity 

seems to imply a failure in the normal system by which cells maintain the microstructural 

organization of bone tissue. Under normal circumstances when tissue is damaged, leading 

theories suggest that osteocyte death signaling begins basic multicellular unit processes of 

remodeling; however, it is possible that with aging, a downward spiral of functional 

inequivalence begins. For example, let’s suppose that during the formation of the new osteon, 

osteoblasts require the organization of the matrix to which they are attached in order to correctly 

organize the new bone matrix that they are currently synthesizing. If the matrix undergoes a large 

amount of microdamage accumulation resulting in the entropy of organization, this could lead to 

the failure of mechanosensing. Osteoblasts remodeling the damage would deposit new tissue as 

inappropriately oriented lamellar. Because we know that lamellar orientation is essential for the 

appropriate resistance to local forces, these inappropriately oriented lamellae would subsequently 

sustain more microdamage, and more organizational information would be lost to the next 

remodeling activity. 
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Alternatively a downward spiral could also initiate at the osteoblasts themselves, if they 

lose the ability to sense the organization of the surroundings. This type of failure could occur at 

any step in the process. A change in the speed of osteocyte turnover could result in a failure of 

the tissue to appropriately mechanically sense damage, leading to a failure to remodel. While the 

various redundancies in autocrine and paracrine signaling between bone cells make this option 

less likely, a specific cell population failure could lead to the uncoupling of remodeling and 

subsequently a loss of bone mass that also translates into a loss of microstructural heterogeneity. 

Osteoblasts could be responsible if aging results in a decreased output of collagen and mineral. 

Osteoclasts could be responsible if the long-term maturation and fusion results in greater 

enzymatic production capabilities. Since osteocytes are practically required to live for the 

duration of the bone tissue lifecycle, it is also feasible to hypothesize that osteocytes are more 

likely with age to undergo inappropriate cell death, such that remodeling is not triggered and 

damage accumulates. 

Discussion of possible cellular mechanisms supported by the findings of this thesis 

eventually presents a causality dilemma, the proverbial “chicken and the egg”. Just as cells may 

fail to detect the bone tissue organization properly, it is possible that the bone tissue fails before 

the cellular damage detection and repair mechanisms. In the study of the extracellular matrix, it 

is well known that many smaller proteins embedded into the matrix, and degradable byproducts 

from structural proteins are also cues for cellular signaling, resulting in redundancy that ensures 

proper matrix growth and maintenance. In the case of bone, the non-collagenous proteins 

osteocalcin and osteopontin have structural roles in forming dilatational bands45, local bone cell 

signaling roles, and systemic signaling as part of bone’s non-structural functions. If non-
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collagenous proteins became ineffective, down-regulated, or improperly formed, it would not 

only mean that bone tissue was more susceptible to the formation of microdamage, but also that  

the signaling pathways that regulate remodeling processes responsible for repairing that damage 

would be inhibited. The large number of potential mechanisms discussed could have any number 

of interactions to explain how the complex structure and functions of bone are compromised in 

aging and disease; however, the development of polarization Raman Spectroscopy has led to a 

tool that can be used to help address these hypotheses.   

The greater implications of this work stem from the finding that the proper analysis of 

bone, by Raman spectroscopy requires control of instrument polarization. The elimination of 

polarization from the instrument allows for pure compositional measurements; however, 

dissertation findings support the idea that instead of eliminating polarization as noise, it can be 

used to obtain more detailed information about the structure of bone. The dissertation shows that 

there is a strong link between the biochemical heterogeneity of tissue and its mechanical 

resistance. These findings could be leveraged to advance the use of RS in the study of tissue, as 

detailed above, but they also extend to the study of natural and artificial materials, including bio-

mimicry and the tuning of mechanical properties. Insofar as the traditional RS analyses alone did 

not explain fracture resistance, this dissertation implies that polarization in RS may be necessary 

for the explanation of biochemical profiles that are associated with material properties.  Although 

polarization microscopy has been used for years to analyze birefringent materials (including 

bone), polarized RS offers the additional benefit of quantifying organization of specific 

biochemical moieties. Because I specifically developed the techniques of peak phase matching 

so that instruments would not need complete elimination of polarization, this also allows for 
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“first pass” investigation of whether or not organization plays a role in the chemical profile of 

material mechanics, while still obtaining compositional profiles for which Raman instruments 

are designed. With careful attention to polarization, better RS analysis of bone and other 

materials may lead to greater understanding of the chemical changes underlying the resistance to 

mechanical failure. 

7.4 Contributions to the Field and Societal Impact 

While the most important aspect of scientific research is arguably making careful 

observations in order to form well-posed testable hypotheses, the most difficult aspect of 

research pursuits is indubitably evaluating these hypotheses systematically until the original 

observations are mechanistically explained in a way that has an impact on the greater body of 

science and society. In the field of biomedical engineering, this practically amounts to improving 

our understanding of the human body and disease while developing technology that directly 

impacts patient diagnosis or treatment. Four years ago, I was brought into a project that was 

assessing and standardizing the proper preparation methods for human and animal bone to 

achieve reliable Raman spectroscopy results. This thesis started with the observation that certain 

Raman metrics of bone composition have abnormally high variation. I tied that observation to 

the polarization sensitivity of Raman spectroscopy, and then built upon the relatively small body 

of polarization RS literature to show that trends in sensitivity followed optical theory and were 

therefore dependable as a metric of organization in birefringent tissue like bone. This knowledge 

has helped me produce guidelines for the use of standard RS peak ratios to express bone 

composition and organization, helping to resolve seeming conflict in the interpretation of other 
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Raman studies when instrument polarization and bone organization were not taken into account. 

Armed with this new knowledge, I then assessed the relationship between bone mechanical 

properties and Raman spectroscopy across multiple length scales and species, for both standard 

mechanical analyses and fracture mechanics. The new polarization technique and protocols of 

measuring bone at multiple orientations has allowed me to use RS to identify the influence of 

organization in genetically modified animal models of brittle bone where standard compositional 

RS measurements were insensitive to the phenotype. Applying these techniques to age-related 

changes in fracture risk, we saw early on that the bulk composition of bone was not strongly 

correlated with its fracture toughness, such that the same trend of higher variation in RS data was 

now observed in association with lower fracture toughness. I associated this variability with an 

existing body of literature that implicates microstructural heterogeneity as a factor in human 

fracture risk. Ultimately this led to the finding that polarization RS signatures of microstructural 

tissue heterogeneity serve as a strong driving force in the age-related decrease in fracture 

toughness. In the meantime, field leaders with whom I have had regular correspondence 

regarding heterogeneity, have completed studies suggesting that microstructural heterogeneity is 

associated with fragility fracture in osteoporosis patients. The findings of this thesis help to tie 

these observations to a better mechanistic understanding of the progression of this debilitating 

disease. 

Aside from the main novel results of the thesis, several contributions to the field have 

been made along the way. I participated in standardizing the methods for samples preparation 

and Raman collection, and have subsequently been contacted by colleagues at other universities 

to help establish these protocols in their laboratories. Our results in polarization Raman 
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spectroscopy have resulted in contact from design engineers at Renishaw, a leading manufacturer 

of Raman spectroscopy devices, soliciting advice on the development of next-generation devices 

to allow for more flexible analysis of polarization in Raman spectroscopy. Early results in tissue 

heterogeneity resulted in an invitation to apply for, and subsequently obtain a scholarship to 

attend the 2013 Bone Quality and Fracture Prevention Research Symposium hosted by the 

Orthopedic Research Society and the American Academy of Orthopedic Surgeons, where I was 

given the opportunity to spread the knowledge that fracture risk in bone is more than a question 

of simply assessing bone strength by x-ray. One-on-one discussions with field leaders and 

physician-scientists resulted in the inclusion of my ideas on bone heterogeneity in the published 

report. Since then, I have found multiple articles from attendees with whom I spoke evaluating 

the impact of tissue microstructural heterogeneity of composition and organization on different 

aspects of bone quality. The symposium also led to the discussion of tissue microstructural 

heterogeneity as a possible driving factor behind the atypical femoral fractures associated with 

long-term use of bisphosphonate therapy in a special session at ORS 2014. At this meeting, a 

specific call was made expressing the need for better quantification of tissue heterogeneity in 

relation to this problem. 

In order to complete these scientific studies, it was necessary for me to develop methods, 

protocols, and device components to overcome several technical obstacles. A great deal of 

technical rigor was required in order to integrate light-tissue interactions and optical theory to 

advance polarization RS beyond a method that was previously only being used to visualize 

osteon features and lamellar spacing in the same way this could be accomplished with regular 

polarized light microscopy. Manufacturer’s recommendations for assembly of RS 
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instrumentation often mention polarization only briefly as a potential source of variance in data 

collection, not as a phenomenon that could be exploited to explore organization, so limited 

technical specifications are available for existing instrument components. Raman sources are 

marketed and sold without standard reporting of laser polarization extinction ratio. Therefore, 

before acquiring any valid data, I had to establish the impact of each basic optical component on 

polarization preservation through the instrument, and then systematically prove that my 

observations were not simply an artifact of instrument design. In order to validate my theory, I 

needed to develop custom rotation stages for both the samples and the laser housing. To make 

my findings usable by the rest of the field, I also established that inherent instrument polarization 

was sufficient to acquire a measure of bone organization from a minimal data set, requiring only 

replication of the measurement at 0° and 90° relative to the bone long axis using a set of peak 

ratios specifically defined based upon their polarization phase. I furthered these techniques to 

include multivariate analysis, where I had to overcome analysis issues for the new methods of 

polarization analysis. I attempted various mathematical combinations, but subsequent 

multivariate data reduction weighted nonsensical components. To use all the wavenumbers from 

both orientations, I resolved the issue of excessive variables (known as rank deficiency) in full 

spectrum RS analysis by employing engineering design strategies to balance assumptions about 

the data. By choosing and evaluating unsupervised data reduction methods, I identified RS 

signatures of brittle genotypes using established classification algorithms, and explained fracture 

toughness using canonical correlation. Bottom-up designs also allowed for post-hoc analysis of 

heavily weighted features to explain the biochemistry underlying these statistical operations.   
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Throughout this thesis, I have actively spread knowledge of the applicability of Raman 

spectroscopy as well as the need for better measurements of bone quality that appropriately 

explain bone mechanics. I assessed the mechanics of bone across multiple length scales using 

nanoindentation, reference point indentation at the microstructural level, fracture toughness 

testing, and whole bone biomechanics. I actively developed and validated detailed protocols and 

standard operating procedures for the preparation of both whole animal bones and  human bone 

samples (single edge notched beams) for fracture toughness testing, even performing a study 

where I evaluated existing techniques by altering the location of the notch in mouse femurs. 

Using materials science knowledge I had learned during collaboration with the Pharr lab at UT 

Knoxville in the preparation for and conducting of nanoindentation testing, I then modified these 

protocols to include specimen grinding and polishing, eliminating material damage from the 

machining process and it’s known impacts on Raman spectroscopy46 as a source of noise. I have 

also applied these methods and protocols outside of the projects directly included in this thesis. I 

used the technique of polarization Raman spectroscopy to nondestructively analyze the effects of 

a drug used to treat defects of bone mineralization on the skeleton of mice with NF1 gene 

ablation, confirming the partial rescue of hypomineralization in a high-profile Nature Medicine 

study that may help guide future treatment parameters for young children. I’m thankful for the 

opportunity to have applied these techniques in such high-profile studies that may eventually 

impact the practice of orthopedic medicine. 
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	5.3 Methods
	5.3.1 Study Design
	All procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at Vanderbilt University Medical Center. Femurs were harvested from young adult male mice (unless otherwise noted), stripped of musculature and stored frozen at -2...
	5.3.2 Micro-Computed Tomography (µCT) scans

	Prior to mechanical testing, the femoral mid-shafts were scanned (μCT40, Scanco Medical, Brüttisellen, Switzerland) at an isotropic voxel size of 12 μm using consistent settings (70 kVp/114 μA; 1000 projections per 360  rotation; and 300 ms integratio...
	5.3.3 Mechanical Testing Protocol

	Three point bending tests of hydrated, intact femurs24 were conducted using a bench-top, material testing system (Dynamight 8841, Instron, Canton, OH) with a span (L) of 6 times the mean outer anterior-posterior diameter (i.e., in the direction of loa...
	5.3.4 Raman Spectroscopy

	Raman spectra were acquired from the anterior midshaft of the intact extracted femurs of each animal femur prior to mechanical testing using a standard confocal Raman microscope (Renishaw InVia Raman Microscope, Renishaw, Hoffman Estates, IL) set to a...
	The third distal mid-shaft vessel perforation was used as a landmark to consistently select the site of analysis across bones40. Bones were thawed to room temperature and then mounted on a standard microscope slide using modeling clay, then attached t...
	5.3.5 Multivariate Data Analysis and Statistics

	Multivariate analysis of Raman Spectroscopy was used to analyze spectral wavenumbers beyond validated peak ratios that are usually reported. Principal components analysis (PCA) was selected due to its unsupervised nature of computing fundamental uncor...

	5.4 Results
	5.4.1 Differences in Raman Spectra between genotypes become apparent upon bone rotation (Polarization)
	Despite the strong toughness reduction in Atf4-/- mice (Supplemental Figure 5.1), only slight changes in RS peaks (Figure 5.1 A-C) are seen at any one orientation. To investigate whether differences exist between the genotypes in ways beyond tradition...
	5.4.2 Classification of brittle bone genotypes improves with inclusion of full spectrum polarization information

	To determine whether the principal components derived from polarization-influenced Raman spectra improves the ability of RS to classify brittle bone, we performed sparse multinomial logistic regression (SMLR) on PCA output and traditional peak ratios....
	principal components that significantly separated Atf4-/- from Atf4+/+ (Mann-Whitney U; p<0.05). SMLR using PCA output from only the orthogonal bone orientation (Figure 5.2A) classified the genotype for 70.8% of the mice (Table 5.1), misclassifying on...
	Improved classification with the inclusion of paired spectra from two bone orientations was consistent across studies involving genetic knock-out mice with a brittle bone phenotype (see Supplemental Figure 5.1 for differences in bone toughness between...
	orientations as separate variables for PCA (denoted as [O,L]) provided further improvement in overall classification accuracy in both MMP9 studies, despite the confounding factor of gender.
	5.4.3 Principal components have a stronger correlation with toughness than traditional compositional RS measurements

	Expanding upon the multivariate classification of genotype, we analyzed whether RS polarization information improves mechanical bone quality characterization using Spearman’s correlation coefficients (Table 5.2). Peak ratios did not correlate with tou...
	coefficients) indicate that only a small percentage (<40%) of the total variance was explained, it is important to note that full spectrum polarization information improves genotype classification and correlation to toughness in all three studies when...
	5.4.4 Multivariate analysis of full Raman spectra improves classification of young and mature bone, but does not improve correlation to strength

	To establish the link between RS polarization information and toughness of bone, a study of strength differences served as a negative control. Strength can often be attributed to changes in composition, as seen with the pronounced increase in cortical...
	5.4.5 Principal components loadings from RS of brittle bone phenotypes suggest conserved elements that are not seen in PCs distinguishing bone maturity

	Examining spectral loadings of the principal components may identify elements of RS signatures that explain material property differences. Figure 5.4 compares principal component loadings from the [O,L] PCA that used spectra from both bone orientation...
	While principal components explaining toughness display some conserved spectral features, the principal components that separate maturation illustrate stark contrast from RS signatures of toughness. In Figure 5.4C, PC3 from the maturation experiment d...
	the two orientations. In summary, mouse genetic models of reduced toughness (loss of ATF4 or MMP9) have a similar RS polarization profile in the principal components that explain toughness; however, separation of maturation based changes have strong d...

	5.5 Discussion
	This paper presents a multivariate analysis of polarization information in Raman Spectroscopy that improves genotype classification and correlation to bone toughness − using bones from 2 genetic mouse models − over peak ratios in traditional RS analys...
	These experiments confirm that traditional peak ratio analysis is not always sufficient to explain bone mechanical quality. When classifying genotypes for which there is a difference in bone brittleness, only the polarization-sensitive ν1 Phosphate/ A...
	While full spectrum analysis improved classification in these models, data from a single orientation alone was insufficient to produce consistent classification and correlation to toughness. In Table 5.1, this manifests as disparate classification acc...
	Principal components analysis identified the RS signatures of brittle phenotypes, and as an unsupervised “bottom up” approach to full spectrum analysis, it lends credence to the reliability of mechanical correlation of these biochemical signatures. In...
	When considering other mechanical properties and potential RS correlation, tissue organization (provided by polarization) may not play as much of a role.  Using growing wild-type mice as a model for strength increase with no change in toughness, peak ...
	Although principal components only represent one straightforward and simple application of multivariate analysis to RS, the use of a “bottom up” study design that build upon inherent, uncorrelated dimensions of variance allows for the distinct advanta...
	While polarization effects of the Raman phenomenon have been characterized since Placzek48 and the application of vibrational spectroscopy to the characterization of bone has been conducted for decades (see Boskey49 and Morris5, 50 for review), relati...
	Since the goal of the study was to compare the performance of standard peak ratio analysis to multivariate expressions of RS polarization in their ability to explain bone mechanical quality, Raman spectra were acquired from anatomically consistent sur...
	In the present study, the subtle spectral changes that occur with polarization sensitivity in RS to matrix organization coincides with the loss of mechanical toughness and not changes in material strength. Thus, polarization RS shows promise as a nov...

	5.6 Conclusions
	Multivariate analysis of Raman spectrum at two bone orientations (enhancing polarization sensitivity) assisted in the explanation of a toughness loss in genetic mouse models involving 2 different genes (a transcription factor and an enzyme). Across 3 ...
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	Chapter 6
	Microstructural heterogeneity of composition and organization jointly explain the age-related decrease in bone fracture toughness
	6.1 Abstract
	The complex organizational hierarchy of bone makes the accurate assessment of human fracture risk a difficult endeavor; thus, the underlying mechanisms that facilitate a loss of fracture toughness with disease or aging are not completely defined. Loss...

	6.2 Introduction
	As an organic composite material, bone tissue has exceptional mechanical properties, especially given the combination of low weight, high Young’s modulus, and significant post yield toughness. Many of the landmark findings about bone, notably Wolff’s ...
	Investigations into the fracture mechanics of bone and hard tissue, spearheaded largely by Bonfield, Vashishth and Ritchie, suggest that there are several tissue level mechanisms by which bone resists damage accumulation, crack initiation, and subsequ...
	The myriad of techniques used, length scales examined, and definitions of heterogeneity for different pathologies may attribute to these dichotomous results. Specifically, it is unclear whether heterogeneity at the microstructural level is more strong...

	6.3 Methods
	6.3.1 Study Design
	Fresh frozen human cadaveric femur specimens from 62 age and gender matched donors (30 male donors, aged 21 – 98 years old, mean ± standard deviation: 63.5 ± 23.7 years; and 32 female donors, aged 23 -101 years old, 64.4 ± 21.3 years) were obtained fr...
	6.3.2 Fracture toughness testing

	All fracture toughness tests were conducted in adherence to ASTM E1820 standards38 with SENB samples subjected to cyclic three-point bending, by an axial servo-hydraulic testing apparatus (Instron, Norwood, MA) run in displacement control with progres...
	highlight crack propagation and qualitatively confirm compliance-based crack growth, as well as assess stability and tortuosity of the crack path.
	Processing of fracture toughness data included generating the rising R-curve to appropriately encompass the elastic-plastic mechanical behavior of human cortical bone.40-42 Crack growth was computed from the unloading compliance data as per ASTM E1820...
	6.3.3 Raman Spectroscopy: Data Acquisition

	All Raman spectra were acquired using a confocal Raman microscope (Renishaw InVia Raman Microscope, Renishaw, Hoffman Estates, IL) set to a 35 µm slit at 1 cm-1 spectral resolution, equipped with a 50x (NA=0.75) near infrared objective and a model loc...
	To prevent spurious influence on multivariate analyses, the presence of any cosmic rays were removed using custom Matlab software (Mathworks, Natick, MA). Spectra were then processed via modified polynomial fit43 and smoothed for noise using a Savitsk...
	For measurements of multiple microstructural features in the crack path prior to fracture toughness testing, the bone was aligned with the long axis parallel to laser polarization. A 3 x 3 grid with ~250 µm linear spacing between each location was cen...
	For polarization Raman mapping, the bone was mounted to a plastic slide using cyanoacrylate subsequently attached to a custom rotation stage, again oriented with the bone long axis parallel to laser polarization. A single osteonal-interstitial border ...
	6.3.4 Statistical Analysis

	For Raman spectra collected prior to fracture toughness testing on hydrated bone, the average value and coefficient of variation for standard peak ratios were used to conduct correlations to mechanical outcomes. Univariate analyses were conducted usin...
	To perform an accurate analysis of whether heterogeneity plays a role in fracture toughness, heterogeneity needed to be defined from the Raman map data, such that a one-to-one correspondence existed between heterogeneity and mechanical outcomes. To qu...
	Eq. 6.1
	where i,j represent all possible pixel intensities and p(i,j) is the corresponding element in the glcm. Energy is commonly defined as the evenness of the intensity field or the presence of regular periodic intensities46:
	Eq. 6.2
	Because both energy and contrast are negatively correlated with homogeneity and uncorrelated to each other, image heterogeneity and it’s driving factors are best interpreted using the  energy and contrast of the glcm47. Texture analysis parameters, a...
	More information likely exists in the Raman signatures of bone microstructure than that which explains fracture toughness; therefore, the canonical correlation of image heterogeneity and fracture toughness was then calculated. Canonical correlation fi...

	6.4 Results
	6.4.1 Average composition alone is insufficient to explain the age-related decrease in fracture toughness
	Fracture toughness decreases with age in this mixed gender cohort; however, correlations show that age and biochemical parameters with association to age explain only a small percentage of the variance in the fracture toughness properties (Figure 6.2)...
	not have a significant, meaningful correlation with fracture mechanics outcomes (Figure 6.3B, E, H), explaining only 7% of the variance in Kgrow. In fact, none of the typical average peak ratios explain even 12% of the variance in any fracture toughne...
	6.4.2 Peak ratio intensity maps indicate microstructural heterogeneity as a driving force of fracture toughness

	Examining RS maps, microstructural heterogeneity observed at the osteonal-interstitial border appears to associate with the age-related loss of fracture toughness. Compositional MCR ν1 Phosphate/Proline maps show sharp contrast between the less minera...
	the fracture toughness of the bone specimen decreases. Crystallinity demonstrates that lamellar contrast in the osteonal region is also associated with the age-related loss in fracture toughness (Figure 6.4D). Noise in this measurement is due to syste...
	Analysis of the ν1 Phosphate/Amide I peak ratio expands upon the role of compositional heterogeneity to utilize RS polarization sensitivity and also captures the role of organizational heterogeneity. While ν1 Phosphate/Amide I is sensitive to collagen...
	standard deviation, full-width-at-half-max, or kurtosis) intractable. Also, the mixed mode contrast of organizational and compositional heterogeneity as well as differences between orthogonal bone orientations preclude definitive correlations with the...
	6.4.3 Heterogeneity of organization and composition jointly improve explanation of the age-related decrease in fracture

	To overcome these issues and better establish the relative contributions of organizational and compositional heterogeneity, image-based quantifications of heterogeneity (Energy and Contrast) were determined for Raman maps by using principal components...
	We previously showed in mouse models of brittle bone (Chapter 5) that using principal components of the Raman Spectrum identified underlying directions of variance that are associated with mechanical changes. Recall that principal components represent...
	seen here, it was notable that PCA often weighted areas outside traditional peaks and ratios that were associated with polarization based changes in tissue organization (Figure 5.4). Therefore, principal components of paired spectra in the map may hel...
	Given the complexity of human aging, it is unreasonable to consider only a single biochemical peak ratio or underlying spectral signature in attempting to capture the age-related changes in fracture toughness. However, the use of multiple peak ratios ...
	comparably between orientations. However, energy correlations with J-integral and Kgrow for these peaks were higher for longitudinal than for the orthogonal polarization, while contrast correlations remain similar among the 3 fracture toughness proper...
	Several the PCs weighted strongly in the explanation of Kgrow exhibit only energy characteristics, but others were weighted in several canonical analyses (Figure 6.7).
	In-depth analysis of principal component loadings indicates that both compositional and organizational heterogeneity contribute to fracture toughness. Compositional contrast of the cement line is associated with high fracture toughness values (Figure ...

	6.5 Discussion
	The work herein represents the first quantitative evidence that the microstructural heterogeneity of both composition and organization in bone (as observed in polarization-influenced Raman spectra) is a determinant of fracture toughness, alternative t...
	Landmark observations by von Meyer1, 50 and Ascenzi19, 22 about the complex organizational hierarchy of bone suggest, by the principle of Occam’s razor, that heterogeneity plays a crucial role in bones mechanical integrity. Otherwise, it would not be ...
	While these data support the influence of heterogeneity on the age-related decrease in fracture toughness, many aspects of bone heterogeneity remain unexplored. This analysis was limited to microstructural heterogeneity of cortical bone, leaving quest...
	These findings are especially encouraging given the broad applicability of polarization Raman spectroscopy. With its nondestructive near infrared capabilities, Raman spectroscopy is shown promise clinically in its diagnosis of cancer56 and osteomyelit...
	The current work also extends to the greater study of the fracture mechanics of materials. Highly polarized RS is already used to study protein conformation and fiber orientation in organics like silks and electrospun polymers60, 61, but this study sh...

	6.6 Conclusions
	Microstructural heterogeneity partially explained the age-related decrease in fracture toughness. Analysis by Raman spectroscopy implicates both organizational heterogeneity and compositional heterogeneity as significant contributing factors to fractu...
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	Chapter 7
	Summary and Concluding Remarks
	7.1 Summary of Dissertation Findings
	This work has assessed the ability of Raman spectroscopy (RS) to evaluate and explain the mechanical quality of bone by establishing a relationship between biochemical profiles detected by RS and mechanical differences caused by genetic manipulation a...
	The application of polarization Raman spectroscopy has been found by this thesis to explain the biochemical basis of elusive mechanical properties of toughness and fracture toughness not otherwise explained by conventional Raman measurements of compos...

	7.2 Major Conclusions
	 Refuting common practice, the influence of polarization on Raman spectroscopy for organized samples like bone is present in commercial confocal microscope systems, even at lower magnifications (and numerical apertures) due to the inherent polarizati...
	 The polarization of Raman peaks follows Malus’s law in the absence of explicit depolarization, despite the confounding factors of tissue turbidity and multiple scattering. Therefore the amplitude and phase of peak polarization can be modeled. Peaks ...
	 Peak phase and ratio sensitivity to polarization (and subsequently organization) are both consistent among microstructures and across bones from multiple donors of varying age, in accordance with bone birefringence and current theories of mineral an...
	 In the analysis of animal bone from genetically modified rodent models, RS measures of changes in bone composition are usually indicative of changes in mechanical strength, and are not found in prominent models of bone brittleness. Instead, polariza...
	 When performing polarization Raman spectroscopy measurements for multiple orientations of a turbid birefringent material, it is best practice to include all the variables as individual features, rather than attempt to mathematically combine paired o...
	 The first (and largest) principal component of polarization RS variance significantly correlates to toughness in multiple animal models of bone brittleness, suggesting that the interplay between orientation and composition that results in bone britt...
	 In the analysis of human cortical bone, only a small portion of the age-related decrease in fracture toughness can be explained by bulk compositional properties. Quantification of image heterogeneity over osteonal-interstitial bone tissue generated ...
	 The weight of principal components generated from the Raman maps of osteonal-interstitial bone tissue suggest a significant contribution of both composition and organization in the explanation of fracture toughness. There is distinct interplay betwe...
	 The relationship between heterogeneity of the principal components and fracture toughness suggest an inherent struggle between critical stress intensity and the release rate of non-linear strain energy, much like the known conflicts between strength...

	7.3 Implications of This Work and Future Directions
	7.3.1 Raman spectroscopy for the optical diagnosis of mineralized tissue
	As a growing optical detection technique, Raman spectroscopy is often touted for superior chemical sensitivity and specificity, as well as the potential for nondestructive measurement with minimal tissue heating. Herein lies the true strength and weak...
	Aforementioned discrepancies in research findings may be driven by the fact that the use of Raman spectroscopy for the diagnosis of bone disease is pushing the limits of commercially available RS technologies and systems. The historic use of Raman spe...
	Rather than examining diseases where compositional change is arguably mild, there are several conditions where strong changes in composition are optimally matched to traditional Raman measurements. The exact compositional changes and mechanisms behin...
	Raman Spectroscopy is not ideally sensitive to the presence of water in samples. While Raman shifts for water do exist, they reside beyond the fingerprint region, in high wavenumber bands. Therefore these bands were not included in this thesis. The ef...
	7.3.2 Polarization Raman spectroscopy for tissue organization

	Traditionally RS is used for measuring chemical composition and to measure large changes in tissue biochemistry; however,information gathered throughout this thesis suggests that polarization in the Raman spectrum of bone has significant implications ...
	The study of skin wound healing presents another exciting possibility. As skin heals, highly organized scar tissue is formed, and it is known that the degree of orientation, specifically heterogeneity in the directionality of collagen fibers contained...
	7.3.3 The application of multivariate correlation analysis to Raman spectroscopy

	The proper choice among statistical methods forms a crucial part of the effective analysis of any scientific hypothesis, but the analysis of Raman spectroscopy for bone poses its own unique set of problems. The methods employed throughout this thesis ...
	Engineering a design from the “bottom-up” implies starting with fundamental principles, such that a bottom up statistical analysis would use the fundamental directions of variance or established variables. Alternatively, engineering from the “top-down...
	This application of engineering design principles to the surplus number of variables in Raman spectroscopy successfully allowed the identification of RS signatures that have classified the bones of brittle animal models as well as correlated to contin...
	Because high spectral resolution is necessary to fully characterize the subtle changes in polarization sensitive peak shoulder and overlapping peaks detailed in this dissertation, as polarization RS techniques improve, attempts should be made to analy...
	7.3.4 Bone heterogeneity across the anatomy: a link to biological mechanisms
	The direct link between micro structural heterogeneity and the fracture toughness of bone will pose new hypotheses more than it validates existing ones. This thesis may represent the 1st time a quantitative measure of microstructural heterogeneity has...
	Due to the tissue volume, ease of machining, and established methods of mechanical testing, the results of this thesis were derived almost entirely from the analysis of cortical bone; however, trabecular bone also exists at sites of osteoporotic fract...
	7.3.5 The use of Raman spectroscopy for the evaluation of the mechanical properties of materials

	Methods and protocols in this thesis have applications outside of bone biomechanics, and even biological materials. Measurement of material organization using polarization Raman spectroscopy could provide significant new insights into the development ...
	The second major advantage of using Raman to predict mechanical properties of materials would be its versatility. Specifically, the ability to manipulate RS instrumentation to evaluate different hypotheses makes the development of new protocols and me...
	Analysis of the principal components weightings that explained microstructural heterogeneity and the age-related decrease in human fracture toughness (Chapter 6) poses a significant question. Does the observed trend of competition between critical str...
	7.3.6 Discussing the influence of bone tissue heterogeneity on biomechanics

	While synthetic materials could be designed to decouple critical stress intensity (K) from the strain energy release rate (J-integral) in the same way that some materials are both strong and tough, the materials comprising bone and biological tissues ...
	It is important to note that by the same principle heterogeneity at larger length scales is likely detrimental to bone. Results indicated that in spite of microstructural heterogeneity, average properties from the RS measurements of composition and or...
	While reality of complex biomechanics likely involves more contributing mechanisms (including the accumulation of microdamage or the shape and frequency of pores that serve as stress risers), the findings of this thesis may indicate that optimal fract...
	7.3.7 The implications for Raman spectroscopy is a diagnostic tool in the orthopedic clinic

	This thesis has established the added value of analyzing polarization in Raman spectroscopy to achieve a greater explanation of the fracture resistance of bone; however, this also implies that the standard compositional measurements derived from RS an...
	Polarization information could be acquired directly from the bone tissue when screening patients; however, this would require the creation of a small incision and the insertion of the Raman probe within a hypodermic needle. The need for sterilization,...
	The final and perhaps most lofty goal for the application of Raman spectroscopy to bone quality was the development of a high throughput transdermal screening system for the early diagnosis of osteoporosis, such that earlier treatment would have a mor...
	7.3.8 Potential mechanisms for the age-related decrease in fracture toughness

	Without delving into the application of Raman spectroscopy for future use in orthopedic medicine, the finding that the interplay between tissue organization and composition drives mechanical bone quality in both human aging and in animal models of sev...
	Alternatively a downward spiral could also initiate at the osteoblasts themselves, if they lose the ability to sense the organization of the surroundings. This type of failure could occur at any step in the process. A change in the speed of osteocyte ...
	Discussion of possible cellular mechanisms supported by the findings of this thesis eventually presents a causality dilemma, the proverbial “chicken and the egg”. Just as cells may fail to detect the bone tissue organization properly, it is possible t...

	7.4 Contributions to the Field and Societal Impact
	While the most important aspect of scientific research is arguably making careful observations in order to form well-posed testable hypotheses, the most difficult aspect of research pursuits is indubitably evaluating these hypotheses systematically un...
	Aside from the main novel results of the thesis, several contributions to the field have been made along the way. I participated in standardizing the methods for samples preparation and Raman collection, and have subsequently been contacted by colleag...
	In order to complete these scientific studies, it was necessary for me to develop methods, protocols, and device components to overcome several technical obstacles. A great deal of technical rigor was required in order to integrate light-tissue intera...
	Throughout this thesis, I have actively spread knowledge of the applicability of Raman spectroscopy as well as the need for better measurements of bone quality that appropriately explain bone mechanics. I assessed the mechanics of bone across multiple...
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