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Chapter 1

INTRODUCTION

1.1 Motivation

Fiber reinforced polymer (FRP) composites present a significant opportunity for increasing

performance and improving energy efficiency in a number of technology sectors, most notably

the automotive and aerospace industries. While great strides have been made in the advancement

of FRP materials in recent years, widespread application of these composite materials has been

elusive. This is in part due to the high costs of manufacturing and material research required to

characterize new material systems. The flexibility of composite design is both a boon and a bane

to development of these materials. The highly customizable nature of the composite allows for

tailored design and nearly limitless configurations to meet the specific requirements of a given ap-

plication. This, however, leads to a limited amount of direct carryover from the behavior of one

composite system to another, at least in terms of traditional mechanical and statistical approaches.

Furthermore, reliability studies, which require a large amount of experimental data in order to

accurately describe the probabilistic nature of a given material system, exacerbate the costs of de-

velopment as each new material system requires its own extensive set of experiments to define

stochastic and low-probability effects. While two separate composite material systems could be

comprised of the same constituent materials, differences in composite layup and microstructural

characteristics, such as fiber volume fraction, often lead to dramatically different material behav-

iors. Better predictive modeling capabilities are required to accurately discern the behavior of the

composite material system based on its constituent materials and the morphology of the composite,

rather than relying solely on homogeneous material behavior, such as that which defines metals.

This would allow experiments of different material systems to be more effectively compared and

utilized in the characterization of new composites. The improved ability to define the effective

1
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Figure 1.1: Multiple Scales of Composite Materials: a) Random Constituent Material, b)
Representative Volume Element, c) Single Ply or Lamina with Random Effective Composite

Properties, d) Laminate or Component, e) Failure Probability of Component Subjected to
Random Load.

composite response from the constituent materials and composite morphology will allow greater

synergy between the design and characterization of composite materials, increasing predictive ac-

curacy and reducing the costs associated with material development.

Failure prediction of composite materials is an inherently multiscale problem from the me-

chanical and probabilistic standpoints. The physical mechanisms that govern failure in composites

operate at multiple spatial scales. For instance, diffuse damage in the form of microcracks and

voids incubates at the scale of the material’s microstructural constituents, grows and coalesces at

the scale of the mesostructure (i.e., representative volume (RVE)), and ultimately leads to failure at

the scale of the macrostructure (i.e., a coupon or component). An illustration of the physical size

scales in an FRP composite is given in Figure 1.1, along with the associated probabilistic effects

at each scale. Accurate and reliable predictions of composite material performance require meth-

ods of communicating information between these disparate scales of interest, while maintaining

computational efficiency. In this dissertation, a multiscale modeling approach is presented which

utilizes computational homogenization with reduced order microscale models to predict the per-

formance of FRP composites under static and fatigue loading, as well as a probabilistic approach

for calibrating constituent material properties from random lamina and laminate scale information.

2



1.2 Literature Review

It is readily apparent that the constituent materials that make up the microstructure of a het-

erogeneous material directly impact the structural performance of the composite. Early predictive

methods for fiber reinforced composites relied on analytical methods to determine composite ef-

fective stiffness and failure criteria at the lamina scale. Many effective stiffness methods such

as the Mori-Tanaka method [65], Hashin-Shtrikman bounds [41], and the self-consistent method

[43] have been presented, along with failure criteria for the anisotropic plies such as the maximum

stress, maximum strain, Hoffman [44], Tsai-Hill [101], Tsai-Wu [102], and Chamis criteria [22].

Such analytical methods represent a pseudo-multiscale approach in that there is no concurrent

analysis of the micro- and macroscales. While these methods rely on information regarding the

strength of the constituent materials and can include the type of failure associated with a loading

state, they lack a high degree of resolution to microscale phenomena.

Multiscale computational modeling has shown tremendous promise for failure prediction of

composite materials and structures. While a number of mathematically robust multiscale compu-

tational modeling methodologies have been proposed (e.g., the multiscale finite element method

[46], generalized method of cells [1], and Voronoi cell finite element method [38]), computational

homogenization (CH) based methods remain among the most popular [34]. Rooted in the mathe-

matical homogenization theory [12, 13, 97, 85], CH has been employed to study failure in various

composite material applications [98, 36, 64, 52, 47, 104]. In CH based approaches, the response

at the scale of the composite RVE or the unit cell is strongly coupled to the macroscopic struc-

ture and the two scales are numerically evaluated in a concurrent fashion. Since these approaches

rely on explicit resolution of the material microstructure and numerical treatment of the fine scale,

composites with arbitrarily complex microstructures (e.g., woven, braided, 3D textile, etc.) can be

modeled within the same framework. One important drawback of CH is that it is computationally

very expensive and evaluation of large structural systems using direct CH is typically not feasible.

The eigendeformation-based homogenization method (EHM) [70, 26] is a CH based modeling

approach that has been developed to overcome the issue of high computational cost. EHM is rooted
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in the transformation field analysis pioneered by Dvorak and coworkers [30, 31], and employs the

idea of precomputing certain microstructural information, (e.g., localization operators, concentra-

tion tensors, and influence functions) collectively referred to as the coefficient tensors, before the

progressive damage and failure analysis at the scale of a structural subelement, element or a com-

ponent. The nonlinear microstructural analyses (defined over a unit cell or an RVE), which are

coupled to the structural analysis, are then concurrently evaluated for a small subset of unknowns.

The precomputed coefficient tensors, along with the state variables evaluated on-the-fly, are em-

ployed to upscale (homogenize) or downscale (localize) the stress and strain fields. EHM can

also account for progressive debonding between fiber and matrix at the scale of the microstruc-

ture, and is equipped with an adaptive model improvement capability to hierarchically increase

model fidelity during a simulation [70]. EHM has been successfully employed in the prediction of

failure under static loading [27, 16], blast [47], compression-after-impact [104], and fatigue load-

ing [28], as well as failure in thin composite plates [72, 68], and in the presence of environmental

effects [53].

Robust predictive models for composite material performance not only require accurate mod-

eling strategies, but also the ability to account for the presence of uncertainty in material behavior

at multiple scales. Natural material variability and manufacturing process-induced defects at each

size scale cause composites to exhibit significant variations in structural strength, failure response

and other mechanical properties. For instance, defects within the microstructural constituents (i.e.,

matrix and fiber); variability in the morphology at the scale of the RVE; and ply misalignment,

thickness variability and interlaminar defects at the lamina scale all lead to the uncertainty and

randomness observed at the macroscale of the composite. A number of approaches have been

proposed in the literature for the incorporation and propagation of uncertainty across these spa-

tial scales. A comprehensive overview of the literature in this area is presented by Sriramula and

Chryssanthopoulos in Reference [96]. The effect of random constituent elastic properties on the

effective composite elastic moduli has been investigated by Kamiński and Kleiber [50] and Sakata

et al. [83] using the stochastic finite element method (SFEM). Shaw et al. [88] estimated effec-
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tive composite properties based on random constituent strength and stiffness using Monte Carlo

(MC) simulation and applied first and second order reliability methods (FORM and SORM) to

predict the failure of a laminated plate based on the Tsai-Hill failure criterion. Reliability of lam-

inated composites based on random composite properties and layer thicknesses was investigated

using SFEM and MC, β, and first order second moment reliability methods [60], the Edgeworth

expansion method [55], and FORM and MC with trained neural networks [62].

In the context of multiscale computational methods, the variability in the composite response

at the lamina scale can be propagated up from the microstructure using methods such as the

∆-criterion [40], the non-concurrent multiscale stochastic method [25], and perturbation based

stochastic finite elements [89, 23], as well as homogenization-based methods such as the general-

ized method of cells [1], stochastic finite elements [50], perturbation-based homogenization [82],

and multiscale spectral stochastic method [100], among others. CH provides a rigorous basis for

linking the fine and coarse scale response of heterogeneous and composite materials, and as such

provides a strong foundation for investigating the effects of uncertainty at multiple spatial scales.

While the extensions of CH to compute the variability in homogenized elastic properties from

known variability at the scale of the microstructure to study stochastic problems have been pro-

posed [50, 82, 100], the application of this approach to study the uncertainty in inelastic behavior

and failure properties has proven more difficult. This difficulty is largely computational – addi-

tional dimensions introduced into the problem by the random treatment of microstructural material

and morphological parameters lead to computational intractability when the material response in-

cludes damage and nonlinearity. The EHM method presents a multiscale CH approach with the

computational efficiency to account for the added computational expense in the probabilistic anal-

ysis.

In each of the previously discussed probabilistic studies, the propagation of uncertainty is a for-

ward problem, where uncertainty at smaller scales leads to randomness at the larger scales. How-

ever, the propagation of uncertainty from larger scales, such as homogeneous effective composite

properties, to randomness in the constituent materials has not received much attention. Whereas
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deterministic calibration of constituent material properties in composites has been conducted in

a number of investigations using gradient-based and genetic algorithm approaches [71, 33], these

calibration methods, however, do not capture the uncertainty in constituent properties coming from

the natural variability of the material, sparse data, errors in the model, or the possibility of multiple

solutions due to the nonlinearity of the model. In contrast to the deterministic approach, Bayesian

calibration is able to quantify the uncertainty in the model parameters based on sparse and incom-

plete date from multiple sources [79, 105]. Due to the high costs of manufacturing composite

materials, large experimental data sets are either non-existent or not available for public access.

As such, data which is available tends to be limited to a small number of replicates over a suite of

different experiments. Resources are typically allocated to characterize a wide range of physical

characteristics, and not necessarily account for stochastic effects. While it is difficult to accurately

quantify randomness over a small number of replicates for a single test, when the data is able to be

considered on aggregate, better quantification of randomness can be achieved.

Bayesian calibration methods can utilize this data from multiple sources and include point data,

interval data, data on statistical distributions, or any combination of these. Bayesian methods are

also desirable due to their ability to quantify uncertainty from sources beyond model parameter

uncertainty, including model form uncertainty, solution approximation error, and measurement er-

ror. Markov chain Monte Carlo (MCMC) simulation is commonly used in implementing Bayesian

calibration. Several MCMC algorithms are available, such as the Metropolis-Hastings algorithm

[63, 42], Gibbs sampling [37], and slice sampling [66]. MCMC simulation requires several thou-

sands of sets of samples to be evaluated using the numerical model. It quickly becomes computa-

tionally impractical to evaluate a finite element model for each set of input parameters required in

the calibration process, and therefore a surrogate model must be introduced. The surrogate model

approximates the predicted response of the original model using an inexpensive function. Gaussian

Process (GP) modeling is a popular choice due to its versatility in handling nonlinear relationships

and the ability to estimate prediction uncertainty in the model [86, 45, 77]. In GP models, the

prediction output is a Gaussian random field, defined by a mean and covariance function. Imple-
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menting Bayesian calibration within the framework of the EHM multiscale approach represents

a robust approach to accurately characterizing composite material reliability, which is dependent

both on the physical phenomenology of the material and the stochastic effects which are present.

1.3 Research Objectives

The goal of this dissertation is to advance the state of the art in composite life prediction in the

following areas:

1. gain additional fundamental understanding on the way in which microscale failure is propa-

gated to discrete lamina and laminate failure in FRP composites,

2. predict the mechanical response of multiple FRP composites laminates under a range of

static and fatigue loading conditions, and

3. quantify the effect of random constituent material properties of FRP composites on effective

composite properties and laminated composite behavior.

1.4 Dissertation Organization

In Chapter 2, the continued development of the EHM multiscale model is presented. Amongst

the novel contributions to this method presented are the development of an approach to address the

tension-compression stiffness anisotropy in unidirectional FRP tape and a novel parameter weight-

ing approach to capture the disparate damage evolution characteristics under uniaxial and shear

loading. The development of these methods was essential to extending the predictive capability

of the EHM approach to concurrently predict laminated composite response under tension, com-

pression, and shear loading conditions, which satisfies the first research objective. Additionally,

the computational improvements gained by transitioning the EHM code from a serial to a parallel

implementation are discussed. The second research objective is accomplished in Chapter 3, which

presents the blind prediction of static and fatigue performance of laminated IM7/977-3 compos-

ites using the EHM approach. The results in Chapter 3 represent the first application of the EHM
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model with a single set of consistent material parameters to predict shear, compression, tension,

and delamination behavior. Two additional layups which had not previously been considered using

the EHM approach were included as well. The third research objective is addressed in Chapters 4

and 5. In Chapter 4, the methods employed in the Bayesian model parameter calibration approach

within the multiscale computational framework are presented. Chapter 5 demonstrates the pro-

posed probabilistic framework in the calibration of random constituent material parameters from

lamina scale experimental data using Bayesian calibration and predicts the probabilistic behav-

ior of laminate composite specimens subject to strain rate dependence effects. This probabilistic

calibration study is a novel approach to parameter calibration applied to laminated composite ma-

terials. Conclusions from this research and suggestions for future research are provided in Chapter

6.
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Chapter 2

MULTISCALE PROGRESSIVE DAMAGE ACCUMULATION MODEL

One of the primary challenges in the prediction of composite material behavior is in accurately

accounting for the complexity in which the accumulation of damage occurs. FRP composites ex-

hibit damage in a significantly different manner than metals. In a laminated composite, many

interacting failure modes can be present, as seen in Fig. 2.1. Three primary modes of damage ac-

cumulation are witnessed in laminated composite specimens - matrix cracking, delamination, and

fiber failure. Matrix cracking is an in-plane failure of the weaker matrix material, and is indicted

by fine white striations in the X-ray images. In the case of 0◦ plies, in which the fiber is oriented

in the loading direction, matrix cracking is often referred to as “fiber splitting” in that in-plane

transfer of load is inhibited due to the crack. Delamination, which presents as a wider white re-

gion, indicates the failure of the matrix material between two adjacent plies in the laminate. Fiber

failure is the breakage of the reinforcing material in the composite, and typically occurs shortly

preceding global failure. Each of these failure modes initiates at the scale of the heterogeneity

between constituent materials, or the microscale. In contrast, structural performance or the behav-

ior of experimental coupons is typically measured at the macroscale where the material exhibits

more homogeneous characteristics. This disparity between scales necessitates a multiscale analy-

sis method which is able to provide meaningful results at the macroscale while retaining fidelity to

the microscale behavior. This multiscale problem setting is discussed in Section 2.1.

In classical computational homogenization, the effective composite stress-strain behavior at a

quadrature point of a nonlinear macroscale analysis is not available in closed form, but is computed

by numerically solving a boundary value problem defined over the RVE or unit cell of the com-

posite. No explicit failure criteria is defined at the lamina or laminate scale, but rather, macroscale

failure is a consequence of the coalescence of damage in the constituent materials within the mi-

crostructure. Due to the nonlinearity of the constituents induced by damage accumulation, each
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Figure 2.1: X-ray CT Image of Damage in a [60,0,-60]3S Specimen After Fatigue.

quadrature point of the macroscale mesh is associated with a separate RVE, within which equilib-

rium and damage evolution must be evaluated, stored, and passed on to the solver of the macroscale

problem. EHM introduces a reduced order approximation to the microstructure problem, where a

much reduced approximation basis is employed compared to a standard direct numerical (e.g. fi-

nite element) solution [26, 29]. The resulting system is computationally much more efficient since

the number of unknowns associated with the numerical solution of the microscale RVE problem

is much larger than the algebraic system size. Section 2.2 presents the overview of the multiscale

EHM method. Furthermore, the fatigue analysis of a laminated composite specimen is not only

multiscale in space, but also in time. As such, multitemporal homogenization is also required to

predict fatigue life performance, as direct analysis of all loading cycles is a computationally in-

tractable problem. This time stepping approach is described in Section 2.2.1. In order to model the

progressive growth of damage, continuum damage mechanics (CDM) is employed. CDM has been

previously implemented with good results both at the macroscale [78, 21, 94] and more recently at
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Figure 2.2: Schematic Illustration of the Composite Volume.

the microscale [57]. The mathematical forms of damage evolution employed within this work are

presented in Section 2.3. Additional details of the computational implementation of these methods

are included in Section 2.4.

2.1 Multiscale Problem Setting

Consider a macroscopic domain of interest, Ω ⊂ Rd (d = 2 or 3 indicates the number of spatial

dimensions), made of a heterogeneous, periodically repeating microscale RVE, Θ ⊂ Rd, which

consists of two or more constituent material phases. The macroscale domain is parameterized by

the spatial coordinate, x. The scale of material heterogeneity is captured by introducing a scaled

coordinate system, y = x/ζ , to parameterize the microscale, in which 0 < ζ � 1 is the scaling

parameter. This multiscale structure is schematically illustrated in Fig. 2.2. The failure response

of the structure under quasi-static conditions (i.e. inertial effects are taken to be small and there-

fore ignored) is governed by equilibrium, the constitutive relationship, and strain-displacement

relationship, respectively, as follows:

∇ · σ(x,y, t) + b(x,y) = 0 (2.1)

σ(x, t) =
[
1− ω(x,y, t)

]
L(y) : ε(x,y, t) = L(y) :

[
ε(x,y, t)− µ(x,y, t)

]
(2.2)

ε(x,y, t) = ∇su(x,y, t) (2.3)
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in which σ is the Cauchy stress, t the time coordinate, b the body force, ω the scalar damage

variable such that ω ∈ [0, 1), L the tensor of elastic moduli, ε the total strain, µ = ωε the inelastic

strain, and u the displacement field. ∇ · (·) and ∇s(·) are the divergence and symmetric gradient

operators, respectively. The macroscale domain is subjected to the boundary conditions:

where û and t̂ are the prescribed displacements and tractions on the boundaries Γu and Γt with

Γ = Γu ∪ Γt and Γu ∩ Γt = ∅, and n is the unit normal to Γ; tf is the time to failure.

Equation 2.2 implies a damage-elastic constitutive behavior for the composite constituents. In

the functional form,

ω̇(x,y, t) = fω(σ(x,y, t), ε(x,y, t), s(x,y, t);ψ(y)). (2.4)

where the superimposed dot indicates the derivative with respect to time, s is the set of internal

state variables which dictate the history dependence of damage evolution, and ψ are the mate-

rial constituent parameters, which govern the damage evolution law. The form for the damage

evolution, fω, is discussed in Section 2.3.

In the multiscale system, response fields (i.e. stress, strain, inelastic strain, and damage) fluc-

tuate at the scale of the microstructure due to the heterogeneity of the constituent materials in Θ.

The response fields are written in terms of both macroscale and microscale coordinates as:

ϕ(x, t) = ϕ̂(x,y(x), t) (2.5)

in which ϕ denotes an arbitrary response field. The displacement field is decomposed through a

two-scale asymptotic expansion with contributions from micro- and macroscopic scales as:

u(x,y, t) = ū(x, t) + ζu1(x,y, t) (2.6)

where ū is the macroscopic displacement field and u1 is the microscopic displacement field.

Asymptotic expansion of the displacements allows the micro- and macroscale problems to be posed

in a separate, but coupled manner.

Considering the strain-displacement relationship in Equation 2.3, the overall strain field con-

12



tains contributions from the macroscale strain state and the locally fluctuating microscale strains,

ε(x,y, t) = ε̄(x, t) +∇s
yu

1(x,y, t) (2.7)

where∇s
y denotes the symmetric gradient operator with respect to the microscopic coordinates and

ε̄ is the macroscale strain obtained by spatial averaging of the microscale strain field over the RVE:

ε̄(x, t) =
1

|Θ|

∫
Θ

ε(x,y, t)dy (2.8)

in which |Θ| is the volume of the RVE. Equation 2.8 is a consequence of the periodicity of the

response fields (e.g. u1) over the boundaries of the microstructural domain. Using the damage-

elastic constitutive law in Equation 2.2, the stress in the microscale is given as:

σ(x,y, t) = L(y) :
[
ε̄(x, t) +∇s

yu
1(x,y, t)− µ(x,y, t)

]
(2.9)

in which the tensor of elastic moduli is taken to vary as a function of the microscopic coordinate

only. The homogenized macroscale stress is expressed as:

σ̄(x, t) =
1

|Θ|

∫
Θ

σ(x,y, t)dy. (2.10)

Substituting the displacement decomposition and strain and stress expressions into the equi-

librium equation (Equation 2.1), along with the scaling relationship, the equilibrium equations at

O(ζ−1) and O(1) are obtained:

O(ζ−1) : ∇y ·
[
L(x,y) : [ε̄(x, t) +∇yu

1(x,y, t)− µ(x,y, t)]
]

= 0 (2.11)

O(1) : ∇x · σ(x,y, t) = 0 (2.12)

Equation 2.11 constitutes the microscale equilibrium equation applied over the domain of the RVE,

Θ. Equation 2.12 is averaged over Θ to obtain the macroscopic equilibrium equation defined over

the macroscale problem domain, Ω.
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2.2 Eigendeformation Based Homogenization

The above procedure leads to the standard computational homogenization (also known as FE2)

method. While accurate, direct implementation of this approach is computationally costly. Instead,

the eigendeformation-based reduced order homogenized method (EHM) originally proposed by

Crouch and coworkers in References [26, 29], is employed herein. In the EHM approach, the

microscale displacement field is defined by the applied macroscopic strain and the inelastic strain

at the microscale as:

u1 = H(y) : ε̄(x, t) +

∫
Θ

h(y, ŷ) : µ(x, ŷ, t)dŷ (2.13)

where H is the elastic influence function and h is the phase damage induced influence function

obtained from the elastic behavior of the microstructure in the absence and presence of damage,

respectively. Numerical Green’s functions are employed to compute these influence functions by

solving linear-elastic problems defined over the RVE using transformational field analysis [30].

The influence functions are computed prior to a progressive damage analysis since they depend

only on elastic properties of constituents and microstructure geometry. In order to achieve the

desired model order reduction, the damage-induced inelastic strain fields in the RVE are approx-

imated with coarse shape functions over a small number of subdomains. The RVE domain, Θ, is

partitioned into n non-overlapping subdomains, θ(γ), referred to as parts, where γ = 1, 2, . . . , n

indicates the part number. These parts comprise the reduced order model (ROM) of the microstruc-

ture. Each part is occupied by a single constituent material and the union of all the parts spans the

domain, Θ. Phase shape functions, N (γ), are defined as piecewise constant functions which form

a partition of unity in the RVE (i.e. N (γ) = 1 if y ∈ θ(γ) and 0 otherwise). The inelastic strains

and scalar damage values are taken to be constant over a given part - thereby the inelastic strains

and scalar damage values at any point in the partitioned microstructure are given by:

µ(x,y, t) =
∑
γ

N (γ)(y)µ(γ)(x, t). (2.14)
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and

ω(x,y, t) =
∑
γ

N (γ)(y)ω(γ)(x, t). (2.15)

where µ(γ) and ω(γ) indicate the inelastic strain and damage value, respectively, associated with

part γ. The RVE is partitioned so as to group the similar regions of the microstructure correspond-

ing to the macroscopic failure modes [93]. The specific form of the ROM model implemented in

the investigations described in this work is presented in Section 3.1.2.1.

The homogenized macroscale stress is expressed in terms of the macroscale strain, ε̄, the phase

averaged damage induced inelastic strains (or eigenstrains), µ(α), and the phase damage, ω(α), as:

σ̄ =
n∑

∆=1

{(
1− ω(∆)

)(
J(∆) : ε̄+

n∑
α=1

H(∆α) : µ(α)

)}
(2.16)

The eigenstrains, µ(α), are obtained by solving the following nonlinear system of equations:

n∑
∆=1

{(
1− ω(∆)

)(
A(α∆) : ε̄+

n∑
β=1

B(α∆β) : µ(β)

)}
= 0, α = 1, ..., n (2.17)

in which the coefficient tensors A(α∆), B(α∆β), H(∆), and J(∆α) are expressed as:

A(η∆) =

∫
Θ(∆)

P(η)
ᵀ (y) : L(y) : (I + G(y)) dy (2.18)

B(η∆γ) =

∫
Θ(∆)

P(η)
ᵀ (y) : L(y) : P(γ)(y)dy (2.19)

H(∆γ) =
1

|Θ|

∫
Θ(∆)

L(y) : P(γ)(y)dy (2.20)

J(∆) =
1

|Θ|

∫
Θ(∆)

L(y) : (I + G(y)) dy (2.21)

P(∆)(y) =

∫
Θ(∆)

gph(y, ŷ)dŷ (2.22)

where gph and G are the damage-induced and elastic polarization functions computed from partic-

ular solutions of the unit cell problem, I is the identity tensor, and subscript ᵀ denotes the transpose

operator. Further details of the derivation and computation of these coefficient tensors for the EHM

analysis can be found in Reference [26].
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2.2.1 Multitemporal Homogenization

Under cyclic fatigue loading, a microchronological scale exists on the order of a single load

cycle and a macrochronological scale exists on the order of the fatigue life of the component. The

microtime coordinate is parameterized as τ = t/η, where 0 < η � 1 is the scaling parameter, sim-

ilar to that scaling employed in the multispatial homogenization. In microtime, the fast oscillations

of the loading cycle lead to damage similar to a static analysis. In macrotime, the accumulation of

damage over multiple loading cycles leads to a redistribution of stress through the component, lead-

ing to changes in the characteristic nature of damage accumulation macroscopically. For fatigue

life analyses on the order of thousands and hundreds of thousands of load cycles, it is infeasible to

resolve each microchronological load cycle to follow this stress redistribution. The need to resolve

each individual load cycle is eliminated through the use of adaptive cycle-jumping [73, 29]. In the

cycle-jumping approach, the rate of damage growth over a single load cycle is used to approximate

the rate of damage evolution over subsequent cycles. Adaptive cycle-jumping selects the number

of cycles to jump based on comparing the average damage evolution throughout the component

for the cycle with a damage criterion. This ensures that the effect of load redistribution is mini-

mal from resolved cycle to resolved cycle and also ensures thermodynamic equilibrium is satisfied

throughout the macrotemporal analysis.

Due to the irreversibility of damage evolution over a single step, the traditional concept of

periodicity used in multispatial homogenization is not directly applicable to the multitemporal ho-

mogenization. Because the change in damage at a material point over a microchronological cycle

is taken to be small but non-zero, the response fields over the component are considered to be

almost-periodic with respect to the homologous microtemporal point on successive load cycles.

In order to upscale the microtemporal response to the macrotemporal scale, a homogenization op-

erator must be employed. In the context of multiple scales in space, a spatial averaging operator

is typically used. Due to the cyclic nature of the fatigue loading, it is preferable from a compu-

tational standpoint to employ a fixed-point temporal homogenization operator, (̃·), where for an

arbitrary response field, ϕ, ϕ̃ = ϕ(τ ∗) [28]. In this approach, an arbitrary but fixed point in the
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microchronological cycle, τ ∗ is considered throughout the macrochronological analysis. In what

follows, a general description of the boundary value problems solved through coupled multispa-

tial/multitemporal analysis is provided.

Microchronological - microscopic problem: The homogenized macroscale stress is com-

puted as:

σ̄(τ, t̆) =
n∑

∆=1

[
1− ω(∆)(τ ∗, t̆)

][
J(∆) : ε̄(τ, t̆) +

n∑
α=1

H(α∆) : µ(α)(τ, t̆)

]
, (2.23)

in which τ varies over the microchronological scale while t is constant at the fixed macrochrono-

logical point (i.e., load cycle), t̆, of interest. Due to almost-periodicity, the damage state throughout

the microchronological step is taken to be equal to the damage state at the fixed point, τ ∗. The evo-

lution of damage with respect to microtime is computed according to the damage evolution law:

ω(γ)
,τ (τ, t̆) = f 1(σ(τ, t̆)(γ), ε(τ, t̆)(γ), s(γ)(τ, t̆),ψ(γ)) (2.24)

where f 1 is the functional form of damage evolution with respect to microtime.

Microchronological - macroscopic problem: At the macroscale, equilibrium is satisfied over

the load cycle as:

∇ · σ̄(x, τ, t̆) = 0; x ∈ Ω; τ ∈ [0, τ0] (2.25)

Where the applied boundary conditions are represented as:

û(x, τ, t̆) = û0(x, t̆) + û1(x, τ); x ∈ Γu; τ ∈ [0, τ0] (2.26)

t̂(x, τ, t̆) = t̂0(x, t̆) + t̂1(x, τ); x ∈ Γt; τ ∈ [0, τ0] (2.27)

where û0 and t̂0 are the slowly varying component of the macroscale displacement and traction

boundary conditions over macrotime, and û1 and t̂1 the fast oscillating components of the displace-

ment and tractions which comprise the loading cycle. As a consequence of almost-periodicity, the

solution of the macroscale boundary value problem over microtime reduces to a linear-elastic prob-

lem, wherein the stiffness does not change over the microchronological step.

Macrochronological - microscopic problem Over the scale of multiple loading cycles, the
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rate of damage evolution with respect to macrotime is given as:

ω̃
(γ)
,t (t) = f 0(σ̃(t)(γ), ε̃(t)(γ), s̃(γ)(t),ψ(γ)) + ω(γ)

ap (t) (2.28)

where f 0 is the functional form of damage evolution with respect to macrotime and ω̇ap is the

rate of damage evolution from almost periodicity computed as the amount of damage accumulated

over a single microchronological load cycle. Homogenized stress is computed as in Equation 2.23,

setting τ to the fixed point τ ∗ and replacing the stress at an arbitrary τ value, σ̄(τ, t), with the fixed

point homogenized stress, ˜̄σ(t). In macrotime, because the damage at the fixed point is changing

due to the accumulation of almost periodic damage and the long time scale damage evolution, the

fixed point inelastic strains will evolve over time. Microscale equilibrium is satisfied as in Equation

2.17, for the fixed point where:

n∑
∆=1

{[
1− ω̃(∆)(t)

][
A(α∆) : ˜̄ε+

n∑
γ=1

B(α∆γ) : µ̃(γ)

]}
= 0 ∀α = 1, 2, . . . , n. (2.29)

Macrochronological - macroscale problem: In macrotime, equilibrium is satisfied in the

presence of evolving damage fields at the microchronological fixed point:

∇ · ˜̄σ(x, t) = 0; x ∈ Ω; t ∈ [0, tf ] (2.30)

Similarly the boundary conditions are applied at the fixed point:

û(x, t) = û0(x, t) + ˜̂u1(x); x ∈ Γu; t ∈ [0, tf ] (2.31)

t̂(x, t) = t̂0(x, t) + ˜̂t1(x); x ∈ Γt; t ∈ [0, tf ] (2.32)

As the damage is allowed to evolve at the macrochronological scale, the macrochronological-

macroscale problem is a non-linear problem, where thermodynamic consistency is satisfied through-

out the macrochronological scale.
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2.2.2 Adaptive Cycle Stepping

To improve the computational efficiency of the laminated composite fatigue predictions, adap-

tive cycle stepping is employed to reduce the number of fully resolved load cycles. Let D′(t) be

the set of all micro-spatial damage accumulation rates, ω(α)
m , computed over a single load cycle:

D′(t) =


ω

(1)
m (x1, t) · · · ω

(n)
m (x1, t)

... . . . ...

ω
(1)
m (xng , t) · · · ω

(n)
m (xng , t)

 (2.33)

where ng is the number of quadrature points over the entire macroscale domain and n is the number

of parts in the microscale ROM. A linear macrochronological damage growth is applied starting

from the microscale damage state D(ti) at time ti and approximating the damage at time ti+1 =

ti + ∆t as

D(ti+1) = D(ti) + ∆tD′(ti) (2.34)

The cycle jump, ∆t, is adaptively computed at each macrochronological increment such that the

mean damage growth over the macrochronological step, ∆D̄(t) = ∆tD̄′(t) is less than a threshold

damage value, Dmax:

∆t =
∆Dmax

D̄′(t)
(2.35)

In this manner, the number of microchonological loading cycles to be jumped in a single macrochrono-

logical increment depends on the current state of damage evolution throughout the analysis. When

the accumulation of damage over a single loading cycle is low, the adaptive approach jumps over

a large number of cycles. When the accumulation of damage in a single cycle is high, the mul-

titemporal analysis resolves a greater number of cycles in order to more fully describe the stress

redistribution and damage interaction behavior occurring in the macroscale. For further details on

the multichronological time stepping employed, refer to references [29, 27].
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2.3 Damage Evolution in Constituent Materials

The primary failure modes in FRP composites are fiber breakage, matrix cracking, and de-

lamination. CDM utilizes internal state variable theory to idealize these failure modes as the

accumulation of diffuse microscopic damage within the constituents. A large number of dam-

age evolution models have been proposed in the literature for a variety of materials, see, e.g. the

books by Lemaitre [56], Voyiadjis [103], and Kachanov [49]. The fundamental components of the

damage evolution frameworks are the state variables which define damage, the physical quanti-

ties which drive the damage evolution, and the functional form that relates the “driver” variable

to the damage state [20, 91]. Previous works have investigated the behavior of composites us-

ing both rate-independent and rate-dependent phenomenological models [91, 3, 2]. Experiments

have shown the response of composite materials to exhibit strain-rate dependence under mono-

tonic [76, 99] and fatigue loading [4, 24] for a variety of composite materials. For cases where

rate-effects are not considered, however, it is more expedient to use a rate-independent evolution

law as fewer parameters are required to be calibrated for the rate-independent model.

2.3.1 Rate Independent Damage Evolution

The evolution of the damage state within part γ of the ROM, ω(γ), is driven by the damage

equivalent strain, υ(γ), defined as:

υ(γ) =

√
1

2
(F (γ)ε̂(γ)) : L̂(γ) : (F (γ)ε̂(γ)) (2.36)

in which ε̂(γ) is the vector of principal strains within part γ computed as the eigenvalues of the

part strain tensor ε(γ), L̂(γ) is the rotated elastic moduli tensor for the constituent material in part

γ with respect to the principal strains, and F (γ) is the strain weighting matrix that accounts for the
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tension/compression damage anisotropy. The strain weighting matrix is given as:

F (γ) =


h1 0 0

0 h2 0

0 0 h3

 ; hξ =


1 if ε̂ξ > 0

c(γ) otherwise

for ξ = 1, 2, 3 (2.37)

where c(γ) is the tension/compression anisotropy factor for part γ.

The damage potential, Φ, is computed from the damage equivalent strain following the arctan-

gent evolution function [69, 35]:

Φ(υ(γ)) =
arctan(a(γ)〈υ(γ) − υ(γ)

0 〉 − b(γ)) + arctan(b(γ))
π

2
+ arctan(b(γ))

(2.38)

where a(γ), b(γ) and υ(γ)
0 control the shape of the damage evolution function and 〈·〉+ indicates

Macaulay brackets (〈·〉+ = (·)+|·|
2

).

A highly non-linear stress-strain response of laminated composites [74, 84] and epoxy resin

[39, 61] has been observed under shear loading. This is in contrast to the typically brittle failure of

the composite in uniaxial tension. The ductility of the material is controlled by the shape of its dam-

age evolution curve. To account for the discrepancy in damage evolution between shear-dominated

and uniaxial-dominated loading, a novel weighting is employed for the parameter controlling the

brittleness of failure, b(γ), which is computed as:

b(γ) = kbb
(γ)
s + (1− kb)b(γ)

n (2.39)

kb =
γ

(γ)
max

γ
(γ)
max/2 + ε

(γ)
max

; ∈ [0, 1] (2.40)

where b(γ)
s and b(γ)

n are parameters controlling strain to failure in part γ for shear and normal load-

ing, respectively, γmax is the maximum engineering shear strain, and εmax the maximum absolute

principal strain. For purely shear loading, kb = 1, for purely hydrostatic loading, kb = 0.

The rate of damage evolution in the part is defined as:

ω̇(γ) = gp
dΦ(υ(γ))

dυ(γ)

〈
υ̇(γ)
〉

+
where 0 ≤ g =

Φ(υ(γ))

ω(γ)
≤ 1; γ = 1, 2, . . . , n (2.41)

21



where the superimposed dot indicates the first time derivative. The g term is introduced to account

for the ratio of the damage potential to the present state of damage at the material point. If the

damage potential is equal to or greater than the current state of damage, damage evolves according

to the arctangent function. For conditions where υ(γ) is increasing, but the damage potential is

less than the damage state, such as the case in cyclic loading, damage evolves at a penalized rate

governed by the cyclic damage sensitivity parameter, p:

p(γ) = d
(γ)
0 + d

(γ)
1 υ(γ)

max + d
(γ)
2 (υ(γ)

max)
2 (2.42)

where d(γ)
0 , d(γ)

1 , and d(γ)
2 are material parameters and υ(γ)

max is the largest damage equivalent strain

value in the part γ experienced over the entire loading history:

υ(γ)
max = max

0≤τ≤t
{υ(γ)(τ)}. (2.43)

For monotonic loading conditions, i.e. the damage potential is equal to the damage state, Equation

2.41 reduces to:

ω(γ) = Φ(υ(γ)
max) (2.44)

2.3.2 Rate Dependent Damage Evolution

In cases where it is desired to predict the effect of loading rate-dependence on the performance

of structures, an alternative power law damage evolution function is implemented. In the rate-

dependent formulation, the accumulation of damage in constituent part θ(γ) is driven by the internal

state variables of phase damage equivalent strain, υ(γ), and the monotonically increasing phase

damage hardening variable, r(γ). The damage potential function, Φrd, is expressed as:

Φrd(υ
(γ), r(γ)) = φrd(υ

(γ))− φrd(r(γ)) (2.45)

in which φrd is the damage evolution function given by the power law relationship

φ
(γ)
rd (v) = a(γ)〈v − υ(γ)

0 〉b
(γ)

(2.46)
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where a(γ) and b(γ) are material parameters and v can represent υ(γ) or r(γ). The parameter a(γ)

controls the ultimate stress of the material and b(γ) controls the ductility of failure. The phase

damage equivalent strain, υ(γ), is computed as in Equation 2.36. Evolution of the phase damage

hardening variable and microscopic damage are expressed as:

ṙ(γ) = λ̇ (2.47)

ω̇(γ) = λ̇
∂φrd
∂υ(γ)

. (2.48)

For the rate dependent damage law, the consistency parameter λ̇ is given as:

λ̇ =
1

q(γ)

〈
Φrd

(
υ(γ), r(γ)

)〉p(γ)

(2.49)

where p(γ) and q(γ) are material parameters that govern rate-dependency [91].

2.4 Computational Implementation

2.4.1 Static Prediction Algorithm

Figure 2.3 outlines the computational implementation strategy and procedure for the evalua-

tion of a composite specimen with EHM under static loading. Preprocessing of the composite

microstructure is performed using an in house code to generate the parts, the EHM model, and

compute the associated coefficient tensors. The inputs to the microstructural analysis are the

morphology of the unit cell (e.g., fiber volume fraction, cell type) and the constituent material

parameters. The coefficient tensor values and the numerical specimen configuration (i.e., layup,

orientations, and mesh) are the inputs to the macroscale finite element analysis performed using the

commercially available FEM code, Abaqus. The microscale problem is solved at each quadrature

point throughout the macroscale analysis using the user material subroutine (UMAT) functional-

ity. The UMAT computes the homogenized secant stiffness tensor and stress at each point from

the macroscale strain given by the FEM solver. Python scripting is utilized to post-process the

information present in the Abaqus output database (i.e., .odb) files generated from the numerical
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simulation. The stress and strain information is extracted from the .odb file to produce the stress-

strain plots and damage contours are produced through python scripting and the Abaqus GUI.

Microstructure
Analysis Code

FEM mesh for
microstructure

Generate ROM
parts and order

Microstructure
morphological

properties, e.g fiber
volume fraction

Compute
Coefficient Tensors

in-house code

Constituent Elastic Parameters

E
(f)
1 , E

(f)
3 , G

(f)
13 ,

ν
(f)
12 , ν

(f)
31 , E(m), ν(m)

Constituent Damage Parameters

a(f), b(f), c(f), v
(f)
0 , a(m),

b
(m)
s , b

(m)
n , c(m), and v

(m)
0 .

Macroscale FEM
input file

FEM analysis
commercial code

User Material
Subroutine

Component
geometry, layup,

boundary conditions

Macroscale Analysis

Outputs

Ultimate strength,
damage contours

Figure 2.3: Computational Implementation of the EHM model in Static Failure Prediction.

2.4.2 Fatigue Prediction Algorithm

The multitemporal homogenization scheme is implemented through the use of a Python driver

script, whose algorithm is presented in Figure 2.4. Before the progressive failure analysis, the

microstructure of the composite is preprocessed to generate the ROM and EHM coefficients and

assign the constituent material parameters. The macroscale analysis in both micro- and macro-
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time is performed in Abaqus. The Abaqus input file is constructed using the coefficients and

material parameters of the microstructure and the geometry, layup, and boundary conditions of

the specimen. The python driver then uses that input file to perform the multitemporal analysis:

evaluating a single microchronological load cycle to determine the rate of damage evolution over

the cycle, computing the number of cycles to jump in the macrotemporal analysis, and then solving

the macrochronological problem, sequentially until the specimen fails or the maximum number of

cycles is reached. In both the micro- and macrochronological problems, the UMAT is called to

perform the microscale analysis at each quadrature point. One feature of the EHM method is that

the same UMAT is employed for both time scales and is also a consistent subroutine between static

and fatigue analysis, providing a great deal of flexibility in the range of loading scenarios which

can be predicted with the EHM approach. Python scripting was additionally used to obtain the

stress and strain response of the specimens at each resolved step to generate stiffness vs. cycles

curves and was used to produce the damage contour plots to demonstrate progressive damage

accumulation patterns.

2.4.3 High Performance Parallel Computing

Even with the computational savings achieved by the use of the EHM approach over standard

CH, the multiscale analysis of laminated composites still presents significant computational ex-

pense. One method to drastically reduce the time required to perform this analysis is the use of

high performance parallel computing. This time savings is particularly important in multitemporal

analyses where analyses run on the order of weeks for serial analyses. Parallel computing environ-

ments are ubiquitous from personal laptop and desktop computers which come with two to eight

computing cores up to government sponsored supercomputers with thousands of compute nodes.

The ability to leverage this computational capability is essential to predicting FRP composite be-

havior in a fast manner. Several challenges exist in the transitioning of computer programs from

serial processing to a parallel configuration. These include the selection of where to incorporate

parallelization, ensuring proper communication between threads so that variables do not interact
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Figure 2.4: Computational Implementation of the EHM model in Fatigue Failure Prediction.
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Figure 2.5: Elapsed Wall Time for EHM Analysis vs. Number of CPUs.

in an undesired manner, and coordinating threads in the writing from private variables to shared

variables and external sources. In the EHM analysis, parallelization is implemented in two ways.

First, the built-in parallel capability of Abaqus was exercised in solving the macroscale finite ele-

ment problem. Second, the ROM analysis of each quadrature point was performed using a parallel

do loop. In order to achieve parallel capability over the quadrature points, the UMAT subroutine

was rewritten to significantly reduce the use of global variables, and organize the writing to large

global arrays such that race and overwrite conditions were eliminated. Figure 2.5 displays the

comparison of simulation wall times for analyses run on 1 to 128 processors performing 100 solu-

tion increments of an EHM model for the prediction of a single quasi-isotropic open hole laminate

in tensile loading. The finite element mesh consists of 42,652 elements with 8-point quadrature.

Parallelization was implemented in such a way as to allow performance both in shared memory and

distributed memory parallel configurations. In serial, the analysis required 22 hours of wall time

to complete. Employing 4 processors in parallel, a common setup for mid-range modern desktops,

the computational time was reduced to about 6 hours. Utilizing resources on the scale of a cluster

computing environment, the computational time is further reduced. This time savings is essential

in debugging, calibration, and rapid result collection.

To further demonstrate the computational costs of the EHM approach, several laminated com-

posite static failure prediction cases were considered. Simulation of the numerical specimens was
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performed using a parallel computing cluster with 16 2.1GHz AMD Opteron(TM) 6272 Processors

and 128 GB shared memory on each compute node. Each of the simulations were performed using

8 cpus on a single compute node in a shared memory parallel configuration. The finite element

mesh and wall time for each of the twelve prediction cases is shown in Table 2.1. In the description

of load cases, UNT stands for unnotched tension, OHT for open hole tension, UNC for unnotched

compression, and OHC for open hole compression.

Table 2.1: Numerical Specimen Mesh Sizes and Wall Clock Times for Failure Analysis.

No. of No. of Wall time
Layup Case elements nodes (H:MM)

[0,45,90,-45]2S UNT 29264 61216 1:54
[30,60,90,-60,-30]2S UNT 40498 84412 2:29

[60,0,-60]3S UNT 37131 77370 2:15
[0,45,90,-45]2S OHT 42652 86896 4:34

[30,60,90,-60,-30]2S OHT 53340 108768 4:51
[60,0,-60]3S OHT 47853 97836 4:09

[0,45,90,-45]2S UNC 2744 5876 0:40
[30,60,90,-60,-30]2S UNC 3680 7704 0:50

[60,0,-60]3S UNC 3276 6948 0:47
[0,45,90,-45]2S OHC 42652 86896 6:29

[30,60,90,-60,-30]2S OHC 53340 108768 7:31
[60,0,-60]3S OHC 47853 97836 6:17
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Chapter 3

PREDICTIONS OF DAMAGE ACCUMULATION IN CARBON FIBER REINFORCED

POLYMER COMPOSITES

To demonstrate the predictive capability of the EHM approach, the model was employed in a

recent blind prediction exercise sponsored by the Air Force Research Laboratory (AFRL). In the

“Assess and Quantify the Benefits of Applying Damage Tolerant Design Principles to Advanced

Composite Aircraft Structure” (DTDP) program the proposed multiscale model was used to pre-

dict the static and fatigue behavior of laminated IM7/977-3 carbon FRP composites. The goal of

the DTDP program was to assess the current modeling capabilities in commercial software and re-

search codes to accurately predict the strength and progressive damage accumulation in composite

materials with various layup and loading conditions. The program was separated into four phases -

(1) blind prediction of static response, (2) recalibration of the static model, (3) blind prediction of

fatigue response, and (4) recalibration of the fatigue model. Details of the first half of the program

for static predictions are presented in Section 3.1 and the results from the second half for fatigue

are described in Section 3.2.

3.1 Damage Tolerance Design Principles Program - Static Predictions

In the first phase of the DTDP program, a series of blind predictions of laminated composite

strength, stiffness, and damage accumulation were made using EHM on multiple FRP composite

layups and loading configurations. A set of lamina-scale experiments was provided by the AFRL

to calibrate the EHM model for the blind predictions, the multiscale model was constructed and

calibrated, and blind prediction results were submitted to the AFRL. In the second phase, the exper-

imental results for the blind prediction cases were received and the EHM model was recalibrated

and additional recalibrated predictions performed. The experiments used in the static prediction
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portion of the program are included in Section 3.1.1. Sections 3.1.2.1 and 3.1.2.2 The procedures

for the calibration, blind prediction, and recalibration phases are presented below. The results of

EHM model in the static prediction portion of the DTDP program were presented in part at the

AIAA SciTech 2015 conference [16]. This work is also expected to be published in a forthcoming

special issue of the Journal of Composite Materials [18] which will contain additional publications

containing the programmatic aspects of the exercise and the results from the remaining partici-

pants.

3.1.1 Experiments

Two sets of experiments were provided in the static portion of DTDP program. In the first

phase, the data from a suite of experiments made from IM7/977-3 unidirectional tape was released

in order to calibrate the multiscale model. These calibration experiments included 0◦ tension and

compression, 90◦ tension and compression [5, 8], 90◦ three point bending [11], ±45◦ tension [6],

V-notch shear [7], end notch flexure (no official standard provided), and double cantilever beam [9]

tests. In the second phase, the experimental results corresponding to the blind prediction cases were

released for the [0,45,90,-45]2S , [60,0,-60]3S , and [30,60,90,-60,-30]2S layups with open hole and

unnotched configurations under static tension and compression loading. The layup and geometry

of each of these experiments are provided in Table 3.1. All tests were performed using an MTS

testing machine in displacement controlled loading. X-ray radiography and computed tomography

(CT) imaging were employed to generate images of internal damage within the laminates using

zinc-oxide dye penetrant.

3.1.2 Modeling Details

One of the primary ground rules in the DTDP program was that a single consistent modeling

approach be used for all prediction cases. This included the mesh generation method, application

of boundary conditions, and selection of model parameters. Details of the microscale ROM and

the macroscale mesh generation strategy employed in the DTDP predictions are included herein.
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Panel Test ASTM No. Width Thick Length Hole Dia.
Name Layup Type Standard plies (mm) (mm) (mm) (mm)
CC-1 0 tension D3039 8 12.7 1.0 250.0 -
CC-2 90 tension D3039 16 25.4 2.0 250.0 -
CC-3 0 comp. D3410 16 12.7 2.0 140.0 -
CC-4 90 comp. D3410 24 25.4 3.0 140.0 -
CC-5 [0, 90]4S v-notch D7078 16 56 2.0 76.0 -
CC-6 90 3 pt-bend D790 16 12.7 2.0 110.0 -
CC-12 0 DCB D5528 24 25.4 3.0 250.0 -
CC-16 0 ENF Draft 24 25.4 3.0 250.0 -
CC-17 [+45, -45]4S tension D3518 16 25.4 2.0 250.0 -
CC-19 [0,45,90,-45]2S tension D3039 16 25.4 2.0 250.0 -
CC-20 [30,60,90,-60,-30]2S tension D3039 20 25.4 2.5 250.0 -
CC-21 [60,0,-60]3S tension D3039 18 25.4 2.3 250.0 -
CC-22 [0,45,90,-45]2S tension D3039 16 38.1 2.0 250.0 6.35
CC-23 [30,60,90,-60,-30]2S tension D3039 20 38.1 2.5 250.0 6.35
CC-24 [60,0,-60]3S tension D3039 18 38.1 2.3 250.0 6.35
CC-25 [0,45,90,-45]2S comp. D3410 16 25.4 2.0 140.0 -
CC-26 [30,60,90,-60,-30]2S comp. D3410 20 25.4 2.5 140.0 -
CC-27 [60,0,-60]3S comp. D3410 18 25.4 2.3 140.0 -
CC-51 [60,0,-60]3S comp. D3410 18 38.1 2.3 250.0 6.35
CC-52 [0,45,90,-45]2S comp. D3410 16 38.1 2.0 250.0 6.35
CC-53 [30,60,90,-60,-30]2S comp. D3410 20 38.1 2.5 250.0 6.35

Table 3.1: Test Matrix for the Static Prediction Phases of the DTDP Program.

3.1.2.1 Reduced Order Model of the Representative Volume Element

The RVE of the microstructure for the IM7/977-3 composite is idealized as a square-packed

unit cell with a fiber volume fraction of 65% as identified from acid digestion testing of the com-

posite material. The partitioning of the RVE for the EHM model is illustrated in Figure 3.1. Part 1

is comprised of the entire domain of the fiber and parts 2-4 partition the matrix. Fiber failure is in-

terpreted from damage accumulation in part 1. Parts 2 and 3, used to describe the matrix material,

account for the presence of the disparate failure mechanisms of transverse matrix cracking and

delamination, respectively. Part 4, which also describes the matrix, exhibits damage under both

the transverse matrix and delamination failure modes. The coefficient tensors, influence functions,

localization operators, and polarization tensors, which define the EHM model, are computed as a
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preprocessing step before progressive damage analysis. For this microstructure, the use of EHM

reduces the model complexity from a finite element model comprised of 416 nodes and 1206 tetra-

hedral elements to a system with 24 degrees of freedom. The internal state variables required to

be stored to represent the damage evolution is also reduced from 1206 in the direct microstructure

model to 4 variables in the EHM model.

Figure 3.1: Partitioning of the Unidirectionally Reinforced Composite Unit Cell.

Over the course of the DTDP program, a modeling methodology to directly account for the

discrepancy between longitudinal stiffness of 0◦ unidirectional tape under tensile and compressive

loading was devised. Since the coefficient tensors associated with the EHM model are functions

of the moduli of the fiber and matrix, modeling anisotropy requires building a separate model for

tensile and compressive cases. The approach is therefore called the dual-ROM approach. The two

models vary only in the longitudinal modulus of the transversely isotropic fiber, which is taken to

be different for tension and compression, Ef
3T and Ef

3C , respectively. The value of Ef
3C was cali-

brated based on experimental data from the 0◦ compression tests and the value is included in Table

3.3. During the analysis of a laminated specimen, some fibers may be subjected to compressive

stresses even when the specimen is under overall tensile loading. It is therefore appropriate to con-

sider the compressive ROM in specimen subdomains where the fiber is subjected to compression

and the tensile ROM elsewhere. In the current approach, the appropriate model is selected on the

fly in the multiscale analysis based on the current state of strain in the fiber direction associated

with each quadrature point. Using this approach, a consistent set of parameters is used for the
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prediction of specimens in global tension and compression. The use of the dual-ROM and directly

accounting for the discrepancy between longitudinal tension and compression moduli resulted in

a significant improvement in accuracy in the prediction of lamina and laminate level composite

stiffnesses across all of the experimental specimens.

3.1.2.2 Details of the Macroscale Model Discretization

A number of laminated composite specimens are considered in the investigations described

herein including [0,45,90,-45]2S , [30,60,90,-60,-30]2S , and [60,0,-60]3S layups in open hole and

unnotched configurations. A consistent mesh generation approach is implemented for the construc-

tion of the finite element meshes for each laminate to reduce the effects of mesh size sensitivity

and alignment bias. The finite element meshes of the numerical specimens consisted of elements

with a nominal edge length of h = 1mm in the in-plane directions and one element per ply in the

thickness direction (0.125mm). Numerical specimens were constructed according to the geometry

of the gage section in the experiment setups. For symmetric layups, only half of the plies were

modeled, taking advantage of the layup symmetry. The mesh in each layup was generated to be

in alignment with the fiber longitudinal axis in each ply, as shown in Fig. 3.2. Since each ply is

meshed individually, the nodal positions on the surface of each ply within a stack does not neces-

sarily align. In order to ensure load transfer, the plies were connected using surface tie constraints.
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(a)

(b)

(c)

Figure 3.2: Aligned Mesh for (a) 0◦/90◦ Plies, (b) ±45◦ Plies, and (c) ±30◦/60◦ Plies Used to
Construct the Open-Hole Specimen Configurations.
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3.1.2.3 Macroscale Mesh Density Study

The failure strength of materials predicted from CDM based approaches exhibits sensitivity to

the size of the elements used in the finite element mesh in that larger elements tend to correlate

with larger predicted ultimate strengths. A mesh sensitivity study was performed for the [0,45,90,-

45]2S quasi-isotropic layup with an open-hole configuration subjected to compression loading.

The behavior of this layup is consistent with results seen from the other specimens, as well. For

comparison with the baseline mesh of h = 1mm, a coarser and finer mesh were investigated

with edge lengths of 1.5mm and 0.5mm, respectively. A clear trend of a small decrease in the

overall strength with decreasing element size was observed in the simulations. The predicted

ultimate strength was 344 MPa for the coarse mesh, 335 MPa for the baseline, and 328 MPa

for the fine mesh; a difference of 2-3% from the baseline result. This effect is the result of well-

known damage localization. Damage contours provided in Figure 3.3 for 90% of the static ultimate

strength demonstrate the damage localization effect where the width of the damage region in the

loading direction (vertical on the page) is larger for the coarser mesh and smaller for the fine mesh.

In these figures the reduced width of the damage band in the direction of the applied load can be

seen, but the overall damage pattern remains similar for all meshes.

(a) Coarse (b) Baseline (c) Fine

Figure 3.3: Comparison of Transverse Matrix Damage Contours for 90% Ultimate Stress in
[0,45,90,-45]2S Open-Hole Compression Simulations for the Mesh Sensitivity Study.
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3.1.2.4 Macroscale Mesh Alignment Study

The failure behavior of composite material models also exhibits significant mesh alignment

dependency [92]. To investigate the effect of mesh alignment dependency with the EHM models,

four demonstration finite element meshes were considered. In all four models, a single lamina

of unidirectional IM7/977-3 composite subject to uniaxial tension along the fiber orientation was

modeled using EHM. The lamina are shown with the fiber oriented with the page vertical. The

first pair of models considers the case of a lamina with a center crack perpendicular to the fiber

orientation. In the second pair, the center crack is replaced with an open hole with diameter equal

to one-sixth the overall width, as in the open hole tests performed experimentally. Both pairs

contain one model with a structured mesh, i.e. mesh edges are aligned along the fiber direction,

and one unstructured mesh. Using symmetry, only one quarter of each example was modeled.

Fig. 3.4 and Fig. 3.5 show the evolution of transverse matrix damage in the cracked lamina with

respect to the applied strain. The boundary conditions on the undamaged lamina for both models

are shown in 3.4(a) and 3.5(a). In both the structured mesh and unstructured mesh, matrix damage

propagates in a thin band parallel to the fiber orientation. This band is narrower and longer in the

structured mesh 3.4(b) than in the unstructured mesh 3.5(b). Physically, this corresponds to a

phenomenon referred to as “fiber splitting,” where the two adjacent fiber regions are split by the

presence of a transverse matrix crack, which occurs at the crack tip and extends parallel in the fiber

direction and perpendicular to the crack orientation. This is in contrast with the crack propagation

behavior of an isotropic material, where the crack tip would tend to grow in the direction of the

crack orientation. The crack does not grow along its orientation in this case because the stronger

fibers bridge the crack front and restrain its growth in that direction.

At 0.75% applied strain, the damage band continues to propagate vertically in the structured

mesh, Fig. 3.4(c), but begins to widen in the unstructured mesh, Fig. 3.5(c). The stress concentra-

tion at the crack tip is negated with the structured mesh as the right half of the specimen effectively

does not see the crack. In the unstructured mesh, the random element distribution causes stress

concentrations and artificial damage propagation paths into the right side of the structure. The
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Figure 3.4: Damage Evolution in Structured Mesh of an IM7/977-3 Lamina with Center Crack
vs. Applied Strain of (a) 0% to (e) 1.20%.

Figure 3.5: Damage Evolution in Unstructured Mesh of an IM7/977-3 Lamina with Center Crack
vs. Applied Strain of (a) 0% to (e) 1.20%.

spread of damage perpendicular to the fiber direction seen in Fig. 3.5(c) leads to full damage and

specimen failure in Fig. 3.5(d) at an applied strain of 1.05%. In contrast, the structured mesh still

exhibits the thin damage damage at an applied strain of 1.05% (Fig. 3.4(d)) and does not exhibit

failure until an applied strain of 1.20% (Fig. 3.4(e)). The stress vs. strain curves in Fig. 3.6 tell the

same story, showing that the structured mesh fails at a level nearly two times the strength of the un-

structured mesh. In the next example, the mesh alignment effect is also demonstrated to be present

in unidirectional lamina with an open hole, similar to the quasi-isotropic open hole experiments.

Due to rounded geometry of the hole, the structured mesh is not able to be achieved over the entire

width of the specimen, but begins just to the right of the hole. The transverse matrix damage evolu-

tion as a function of applied strain is shown for the structured mesh in Fig. 3.7 and the unstructured

mesh in Fig. 3.8. In Fig. 3.7(b-c) and Fig. 3.8(b-c), up to an applied strain of 0.60%, the damage

pattern looks similar for the structured and unstructured meshes. At a strain of 0.75% however, the
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Figure 3.6: Stress vs. Strain Curves for Structured and Unstructured Meshes of IM7/977-3
Lamina with Center Crack.

difference between the two becomes apparent. The unstructured mesh shows damage propagating

perpendicular to the fiber direction, Fig. 3.8(d), while the damage in the structured mesh continues

to propagate along the fiber direction, Fig. 3.7(d). Damage does not propagate significantly per-

pendicular to the fiber direction until a strain of 0.90%, Fig. 3.7(e). Comparing the stress at failure

from the structured and unstructured meshes in Fig. 3.9, the failure strength of the structured mesh

is about 25% greater than the unstructured mesh. It is apparent from this study that a structured

mesh, aligned with the fibers in the lamina, needs to be used in simulating the anisotropic behavior

of fiber reinforced materials, in order to correctly capture the physically observed fiber splitting

phenomena and associated effect on failure strength.
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Figure 3.7: Damage Evolution in Structured Mesh of an IM7/977-3 Lamina with Open Hole
vs. Applied Strain of (a) 0% to (e) 0.90%.

Figure 3.8: Damage Evolution in Unstructured Mesh of an IM7/977-3 Lamina with Open Hole
vs. Applied Strain of (a) 0% to (e) 0.90%.

Figure 3.9: Stress vs. Strain Curves for Structured and Unstructured Meshes of IM7/977-3
Lamina with Open Hole.
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3.1.3 Calibration

Because of the multiscale characteristics of the EHM approach, the associated model parame-

ters are described at the scale of the composite constituents. In contrast, the calibration experiments

are provided at the lamina or laminate levels. Calibration of the elastic and damage evolution pa-

rameters was therefore performed using a numerical optimization procedure, where the discrete L2

norm of the differences between the effective composite properties observed in the experiments and

those predicted by numerical simulations is minimized. Among the calibration experiments, six

types of experiments were used to calibrate the material parameters: 0◦ tension, 0◦ compression,

90◦ three point bending, 90◦ compression, ±45◦ tension, and V-notch shear tests. The effective

composite properties defined by these tests are summarized in Table 3.2.

Table 3.2: Comparison of Effective Composite Properties from Experiments and
Blind/Recalibrated Static Simulations.

Experiment Simulated
Parameter Description Average Value Calibration Experiment
E1t (GPa) Long. tension modulus 164.3 163.9 0◦ tension
E1c (GPa) Long. compression modulus 137.4 137.4 0◦ compression
E2 (GPa) Transverse modulus 8.85 8.85 90◦ three point bending
G13 (GPa) Shear modulus 4.94 4.94 ±45◦ tension

ν12 Long. Poisson’s ratio 0.3197 0.321 0◦ tension
ν21 Transverse Poisson’s ratio 0.0175 0.0173 0◦ tension

XT (MPa) Long. tension Strength 2905 2905 0◦ tension
XC (MPa) Long. compression Strength 1274/1680 1274/1680 90◦ compression/Literature
YT (MPa) Trans. tension Strength 130.0 130.0 90◦ three point bending
YC (MPa) Trans. compression Strength 247.6 247.7 90◦ compression

The EHM model implemented in this study includes seven parameters to fully describe the

elastic moduli tensor of the transversely isotropic fiber (i.e., Ef
1 , Ef

3 , Gf
13, νf12, and νf31) and the

isotropic matrix (i.e., Em and νm) where the 3-direction is along the direction of the fiber length,

E indicates the Young’s modulus,G the shear modulus, and ν the Poisson’s ratio. The elastic prop-

erties of the fiber and matrix were calibrated to match the mean experimental values reported by

the AFRL from the elastic portions of the 0◦, ±45◦, and 90◦ three point bend tests. The calibrated

constituent parameters are reported in Table 3.3. The experimental data indicates that the lamina
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level stiffness of the 0◦ unidirectionally reinforced specimens was 16.4% lower under compression

compared to tension. While the tension-compression anisotropy may be addressed by considering

a separate compressive and tensile moduli for the fiber (denoted as E3C and E3T , respectively), as

discussed in Section 3.1.2.1, all DTDP program participants agreed to proceed without accounting

for this anisotropy in the blind prediction phase. In the initial calibration and blind prediction stage,

a single longitudinal fiber modulus consistent with the tension tests was chosen. This assumption

was revisited in the recalibration of the model as described in Section 3.1.5.

Table 3.3: Calibrated Material Properties for DTDP Static Predictions.

Property Experiment Blind Prediction Recalibration

Elastic Parameters

E
(f)
1 [GPa] 0◦ Tens. 12.45 12.45

E
(f)
3T [GPa] 0◦ Tens. 257.4 257.4

E
(f)
3C [GPa] 0◦ Comp. 257.4 215.5

G
(f)
13 [GPa] ±45◦ Tens. 146.0 146.0
ν

(f)
12 0◦ Tens. 0.291 0.291
ν

(f)
31 0◦ Tens. 0.206 0.206

E(m) [GPa] 90◦ Tens. 3.70 3.70
ν(m) 90◦ Tens. 0.37 0.37

Damage Evolution Parameters

a(f) 0◦ Tens. 0.04921 0.050562
b(f) 0◦ Tens. 274 274
c(f) 0◦ Comp. 2.3514 1.4481
υ

(f)
0 0◦ Tens. 1367 1367
a(m) 90◦ 3PB 0.001582 0.001592
b
(m)
n 90◦ 3PB 15 15
b
(m)
s ±45◦ Tens. -3.2 -3.2
c(m) 90◦ Comp. 0.567 0.535
υ

(m)
0 90◦ 3PB 636.2 636.2

The accumulation of damage within the fiber was characterized by four model parameters (a(f),

b(f), c(f), and υ(f)
0 ), whereas five parameters (a(m), b(m)

n , b(m)
s , c(m), and υ(m)

0 ) were employed to

characterize the matrix damage evolution. Table 3.3 summarizes the calibrated damage evolution

parameters. The experimental data used to calibrate each parameter are also indicated in Table 3.3.
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Fiber strength and damage evolution (characterized by a(f), b(f), and υ(f)
0 ) primarily control failure

in the 0◦ tension specimens. The fiber compression anisotropy parameter, c(f), governs failure

in the 0◦ compression specimens. The failure of the 90◦ three point bend tests is predominantly

affected by a(m), b(m)
n , and υ

(m)
0 and similarly the failure in the 90◦ compression specimens is

governed by the matrix compression anisotropy parameter, c(m). The ductility of the ±45◦ tension

specimens is dictated by the b(m)
s parameter.

Figures 3.10 and 3.11 show the comparison of the stress-strain response observed experimen-

tally and computed using the calibrated EHM model. Figure 3.10 characterizes the unidirectional

normal behavior, which is quite brittle. The fiber compression anisotropy parameter, c(f), was

calibrated to match the experimental mean of 1274 MPa as reported from the experiments per-

formed at the AFRL (Figure 3.10(b)). This value was revised in the recalibration phase to reflect

higher reported values for this property in literature sources in agreement with all program par-

ticipants. Figure 3.11 shows the ±45◦ and V-notch shear behavior which demonstrate significant

ductility. For shear cases, the matching is performed up to 10% and 5% strain for the ±45◦ ten-

sion and V-notch shear cases, respectively, since the experimental data is reliable only up to these

strain magnitudes due to strain gage failure [6, 7]. The agreement between the experiments and

simulations is excellent. Table 3.2 shows the comparison between the specimen level strength

and stiffness properties from experiments and numerical simulations, which also demonstrate the

accuracy of the calibration.
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Figure 3.10: Composite Normal Stress-Strain Response from (a) 0◦ Tension, (b) 0◦ Compression,
(c) 90◦ Three Point Bending, and (d) 90◦ Compression.
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Figure 3.11: Composite Shear Stress-Strain Response from (a) ±45◦ Tension and (b) V-notch
Shear.
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3.1.4 Blind Prediction

The calibrated EHM model was exercised to predict damage accumulation, stress-strain re-

sponse, and failure strengths of the [0,45,90,-45]2S , [30,60,90,-60,-30]2S , and [60,0,-60]3S spec-

imens with open-hole and unnotched configurations under tension and compression. After cal-

ibrating the EHM model, the blind prediction phase included constructing the macroscale spec-

imen geometry and discretization for each layup and executing the specimen analysis to obtain

the quantities of interest mentioned above. The models used in the blind predictions consisted

of 36,000-48,000 tri-linear hexahedral elements with full Gauss quadrature (i.e., eight integration

points). Only half of the plies in each laminate were modeled, utilizing the symmetry of the layups.

In each case, loading was idealized by applying a pinned boundary condition (i.e. displacement in

the specimen longitudinal direction set to zero) at one end of the specimen and applying a mono-

tonically increasing displacement along the longitudinal direction of the opposite end until failure.

Strain was computed using a “virtual extensometer” mimicking the extensometer employed in the

experiments for the open-hole specimens or the strain gauges in the unnotched specimens. Two

nodes in the mesh of the exterior ply in each numerical specimen were identified corresponding

to the extensometer ends in the experiments. The simulated strain is reported as the change in the

distance between those two nodes divided by the initial separation distance. Stress was computed

from the numerical specimens as the sum of the reaction forces at the pinned end of the specimen

divided by gross cross-sectional area of the specimen modeled.

3.1.5 Recalibration

Upon submission of the blind prediction results to the AFRL, the experimental data for the

twelve experiments were received for recalibration of the EHM model. The purpose of the recal-

ibration was to reevaluate the assumptions made in the blind prediction phase, make corrections

to the model or parameters as necessary, and revise the modeling approach accordingly. The man-

ner in which the initially provided experiments were used to calibrate the multiscale model was
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assessed and ways in which the model could be improved to better utilize the information from

the new experimental datasets were identified. Two changes were made to the multiscale model

in the recalibration phase in this regard. (1) The tension/compression stiffness anisotropy of the

0◦ composite tape under longitudinal loading was directly accounted for in the EHM model, and

(2) the effective longitudinal compressive strength of the composite was increased in agreement

with all of the program participants. In order to remain consistent across all prediction cases, any

change in the model or parameters were applied to the entire suite of blind prediction simulations.

The initial calibration experiments demonstrated a marked discrepancy between the effective

longitudinal modulus of the 0◦ unidirectional tape under tension and compression loading. In the

recalibration phase, the dual-ROM approach described in Section 3.1.2.1 was implemented. Us-

ing this approach, a consistent set of parameters was used for each of the twelve specimens. An

additional recalibration step was implemented to address a perceived experimental issue in the 0◦

compression experiment observed and agreed upon by the team of researchers participating in this

study. The 0◦ compression specimens exhibited a significantly lower failure stress compared to

data available in the literature for identical or very similar material systems. The team decided to

consider the effective longitudinal compression strength to be 1680 MPa compared to the experi-

mentally observed value of 1274 MPa. The recalibrated material parameters are shown in Table 3.3

and the resulting effective composite properties are included in Table 3.2. The increased longitudi-

nal compression strength improved the overall prediction accuracy, particularly in the compression

experiments. A detailed discussion of the results from the blind prediction and recalibration phases

is included below.

3.1.6 Results and Discussion

Overall, the EHM model in the blind prediction phase of the program yielded an average error

of 13.1% for ultimate strength predictions and 13.6% for predictions of elastic stiffness. The

average error was reduced after recalibration to 8.7% for ultimate strength and 4.4% for elastic

stiffness predictions. Summaries of the predicted strength and stiffness values from the blind
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prediction and recalibration phases are provided in Tables 3.4 and 3.5. Table 3.4 includes two

sets of results from the recalibration phase. The first column corresponds to the case where only

the compression stiffness discrepancy was corrected without a change in the compression strength

of the 0◦ undirectional specimens. The second column reflects the effects of both compression

stiffness and strength corrections. Accounting for the tension/compression anisotropy in stiffness

alone accounted for a 2.7% improvement in the recalibrated prediction of strength and a 9.2%

improvement in the prediction of stiffness. The increased compression strength accounted for an

additional 1.7% improvement in the prediction of ultimate strength. All improvements reported

above are the average of all twelve cases.

Table 3.4: Summary of Predicted Ultimate Strength for DTDP Static Simulations.

Ultimate strength over gross cross section [MPa]
Recalibration

Layup Case Exp. Blind Prediction Xc = 1274MPa Xc = 1680MPa
[0,45,90,-45]2S UNT 866 807 -6.9% 896 +3.5% 911 +5.2%

[30,60,90,-60,-30]2S UNT 473 582 +23.0% 492 +4.0% 522 +10.3%
[60,0,-60]3S UNT 1005 802 -20.2% 1012 +0.7% 1014 +0.9%

[0,45,90,-45]2S OHT 554 529 -4.5% 542 -2.2% 558 +0.7%
[30,60,90,-60,-30]2S OHT 409 423 +3.5% 453 +10.8% 449 +9.8%

[60,0,-60]3S OHT 543 498 -8.2% 487 -10.3% 502 -7.6%
[0,45,90,-45]2S UNC 605 451 -25.5% 474 -21.7% 605 0.0%

[30,60,90,-60,-30]2S UNC 392 368 -6.1% 349 -11.0% 425 +8.4%
[60,0,-60]3S UNC 765 437 -42.9% 469 -38.7% 602 -21.4%

[0,45,90,-45]2S OHC 341 335 -1.8% 326 -4.4% 393 +15.2%
[30,60,90,-60,-30]2S OHC 295 299 +1.4% 296 +0.3% 360 +22.0%

[60,0,-60]3S OHC 358 311 -13.1% 297 -17.2% 368 +2.8%
Avg. abs. error 13.1% 10.4% 8.7%

3.1.6.1 [0,45,90,-45]2S Layup

The average prediction error for the quasi-isotropic [0,45,90,-45]2S layup across all config-

urations was 9.6% and 13.3% for strength and stiffness, respectively, in the blind predictions.

This improved to 5.3% and 4.3%, respectively, after recalibration. The stress-strain curves for the

[0,45,90,-45]2S open hole and unnotched tension tests are shown in Figure 3.12. This figure, and
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Table 3.5: Summary of Predicted Stiffness for DTDP Static Simulations.

Stiffness [GPa]
Layup Case Experiment Blind Prediction Recalibration

[0,45,90,-45]2S UNT 60.5 61.52 +1.7% 60.41 -0.1%
[30,60,90,-60,-30]2S UNT 38.0 40.59 +6.8% 39.84 +4.8%

[60,0,-60]3S UNT 59.5 62.13 +4.4% 61.68 +3.7%
[0,45,90,-45]2S OHT 48.3 51.72 +7.1% 50.84 +5.3%

[30,60,90,-60,-30]2S OHT 32.4 35.40 +9.3% 34.57 +6.7%
[60,0,-60]3S OHT 48.8 51.88 +6.3% 50.84 +4.2%

[0,45,90,-45]2S UNC 48.0 61.52 +28.2% 52.80 +10.0%
[30,60,90,-60,-30]2S UNC 33.5 40.59 +21.2% 34.41 +2.7%

[60,0,-60]3S UNC 48.9 62.13 +27.0% 52.36 +7.1%
[0,45,90,-45]2S OHC 44.5 51.72 +16.2% 45.22 +1.6%

[30,60,90,-60,-30]2S OHC 30.1 35.40 +17.6% 31.76 +5.5%
[60,0,-60]3S OHC 44.4 51.88 +16.8% 44.77 +0.8%

Avg. abs. error 13.6% 4.4%

the similar subsequent figures for stress and strain, includes the experimental average stress-strain

curve to failure, the 90% and 95% confidence bounds on ultimate failure strength as provided by

the program coordinators, and the simulated stress-strain curves for the blind prediction, the recal-

ibrated model with Xc = 1274 MPa (Recal. A), and the recalibrated model with Xc = 1680 MPa

(Recal. B). In both blind prediction and recalibration cases for the [0,45,90,-45]2S layups in ten-

sion, the EHM model is in very good agreement with the experimentally observed results. In the

unnotched tension case (Figure 3.12a), the blind prediction under-predicted the ultimate strength

of the specimen, while the recalibrated model slightly over-predicted the ultimate strength. In both

cases, the prediction error was within 7%. For the open-hole specimen (Figure 3.12b), the blind

and recalibrated predictions were within 5% error of the experimental value for ultimate strength.

The correction made on the longitudinal compression modulus during the recalibration has a sig-

nificant impact on the laminate stiffness and strength predictions under tension. This is due to

the complex stress states present in the material constituents and points to advantages of using the

present multiscale approach where the local stress states are available through localization oper-

ations (i.e., σ̄ → σ(i)). The open-hole simulations demonstrated higher ductility near ultimate
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strength as compared to the experiments. In continuum damage approaches such as employed

herein, damage in a quadrature point represents a loss of stiffness over the entire element. Be-

cause this loss of stiffness is not localized to a discrete crack, the width of the region experiencing

the stiffness loss is larger than in the physical specimen, which accounts for the artificially higher

degree of ductility witnessed in the simulations as compared to the experiments.
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Figure 3.12: [0,45,90,-45]2S (a) Unnotched and (b) Open-Hole Tension Experiments and
Blind/Recalibrated Stress vs. Strain Curves.

In the compression cases for the [0,45,90,-45]2S layup, the effect of the recalibration is pro-

nounced. In Figure 3.13a, the prediction of stiffness is significantly improved through the use

of the dual-ROM and directly accounting for the disparity between the longitudinal compression

and tension moduli. In the blind predictions, the stiffness of the unnotched compression test had

28.2% error. After recalibration, this error in the stiffness was reduced to 10.0%. In the open

hole specimens (Figure 3.13b), the error in the stiffness was reduced from 16.2% to 1.6%. The

effect of using the higher value for longitudinal compression strength (Recal. B) is observed in

both the unnotched and open hole compression cases. In the unnotched compression case, using
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Xc = 1680MPa reduced the error in the prediction from over 20% to an error of less than 1% com-

pared to the experiments. In the open hole compression case however, the strength prediction error

increased from 1.8% to 15.1%. In both compression cases, using the higher value of lamina com-

pression strength increased the ultimate strength of the laminate, as expected. The increased error

in the open hole compression case is a result of using the consistent model through all twelve pre-

diction cases, which in this case did not improve the prediction result. The additional nonlinearity

near ultimate failure is also observed in the open hole compression tests.
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Figure 3.13: [0,45,90,-45]2S (a) Unnotched and (b) Open-Hole Compression Experiments and
Blind/Recalibrated Stress vs. Strain Curves.

Damage contour plots from the recalibrated multiscale analysis (Recal. B) are compared to the

experimental X-ray CT images at 90% of the static ultimate strength of the [0,45,90,-45]2S open

hole tension experiment in Figure 3.14. The predicted damage patterns did not change significantly

from the blind predictions to the recalibrated simulations, thus for brevity only the recalibrated

results are shown. Due to the partitioning of the ROM, it is possible to directly interpret separate

failure modes in the composite from the presence of damage in the different ROM parts as shown in
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Figure 3.14: Static Damage Contours for [0,45,90,-45]2S Layup at 90% Ultimate Strength.

Figure 3.1. Fiber failure at a quadrature point corresponds to damage in part 1 of the ROM reaching

unity. The matrix cracking and delamination are similarly interpreted from damage values in parts

2 and 3, respectively. When the corresponding damage values reach unity in an element, the entire

element is highlighted as shown in Figure 3.14. Damage in the [0,45,90,-45]2S open hole layup

under tension is dominated by transverse matrix cracking around the hole, primarily in the 90◦ and

±45◦ plies. The damage initiates near the hole and extends outward in the direction of fibers in each

of the 90◦ and ±45◦ plies. In the ±45◦ plies, some additional damage accumulation propagating

transverse to the fiber direction is predicted. A small amount of matrix damage around the hole in

the 0◦ plies is also observed, indicating the presence of fiber splitting. This matrix damage behavior

is consistent between the simulated damage contours and the CT images. The small amount of fiber

failure at the hole in the 0◦ plies predicted in the simulations does not appear in the CT images.

The simulation also predicts a small amount of delamination around the hole, predominantly near

the 0◦ plies. The presence of such delaminations can be seen in the CT images as well.
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3.1.6.2 [30,60,90,-60,-30]2S Layup

The [30,60,90,-60,-30]2S layup is a “soft” layup that contains no 0◦ plies. The strength of this

layup is therefore markedly lower than the other two layups. The average error in this layup in-

creased from 8.5% to 12.7% in terms of ultimate strength predictions after full recalibration using

the increased longitudinal compression strength (Recal. B). Using the original longitudinal com-

pression strength value of 1274 MPa and only accounting for the tension/compression anisotropy

of the effective longitudinal elastic stiffness (i.e., Recal. A), the average error in laminated strength

was reduced to 6.5%. The recalibration improved the average error in the prediction of the lam-

inate stiffness for the [30,60,90,-60,-30]2S layups from 13.7% in the blind predictions to 4.9%.

The impact of the longitudinal compression strength and elastic modulus on this soft layup is sig-

nificant, given that the layup contains no 0◦ plies. The ultimate strength was over-predicted in

blind prediction and after recalibration in both the open hole and unnotched tension tests of the

[30,60,90,-60,-30]2S layup, as shown in Figure 3.15. The reduced effective longitudinal compres-

sion modulus value in recalibration reduced the ultimate strength prediction for the unnotched

specimen (Figure 3.15a) and increased the ultimate strength prediction in the open hole specimen

(Figure 3.15b). In both cases, the prediction error after recalibration was approximately 10%.

In the [30,60,90,-60,-30]2S compression tests shown in Figure 3.16, the accuracy of the pre-

dicted stiffness was significantly improved after recalibration from errors of 21.2% and 17.6% for

the unnotched and open hole compression tests, respectively, to 2.7% and 5.5%, respectively, af-

ter recalibration (Recal. B). The increased longitudinal compression strength after recalibration

resulted in a slightly larger prediction error in the [30,60,90,-60,-30]2S layups under compression

loading.

Figure 3.17 displays the damage contour comparison between the recalibrated simulation and

the experiments at 90% of the ultimate static strength of the specimen. Similar to the [0,45,90,-

45]2S layup, the dominant failure mode is transverse matrix cracking. In the±60◦ plies, the matrix

is completely failed in the load ligament regions. There is also significant matrix damage in the

±30◦ and 90◦ plies both originating at the open hole and at the edges of the specimen. Minor
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Figure 3.15: [30,60,90,-60,-30]2S (a) Unnotched and (b) Open-Hole Tension Experiments and
Blind/Recalibrated Stress vs. Strain Curves.

delamination regions are predicted around the hole in each ply as well.

52



Strain [%]

0 0.2 0.4 0.6 0.8 1 1.2 1.4

S
tr

es
s 

[M
P

a]

0

50

100

150

200

250

300

350

400

450
CC-26 [30,60,90,-60,-30]2S Compression

Exp. Avg. - 392 MPa

Blind - 368 MPa (-6.2%)

Recal A - 349 MPa (-10.8%)

Recal B - 425 MPa (+8.4%)

90% C.B. [318,433]

95% C.B. [307,444]

(a)
Strain [%]

0 0.5 1 1.5 2

S
tr

es
s 

[M
P

a]
0

50

100

150

200

250

300

350

400
CC-53 [30,60,90,-60,-30]2S OH Compression

Exp. Avg. - 295 MPa

Blind - 299 MPa (+1.4%)

Recal A - 296 MPa (+0.3%)

Recal B - 360 MPa (+22.1%)

90% C.B. [299,292]

95% C.B. [300,291]

(b)

Figure 3.16: [30,60,90,-60,-30]2S (a) Unnotched and (b) Open-Hole Compression Experiments
and Blind/Recalibrated Stress vs. Strain Curves.
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Figure 3.17: Static Damage Contours for [30,60,90,-60,-30]2S Layup at 90% Ultimate Strength.
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3.1.6.3 [60,0,-60]3S Layup

Figure 3.18 shows the tensile loading results for the [60,0,-60]3S specimen with the unnotched

and open-hole configurations. The recalibration of the model to account for the tension/compression

anisotropy of the longitudinal compression stiffness (Recal. A) resulted in an improvement from

20.2% error in the blind prediction to less than 1% error after recalibration for the unnotched con-

figuration. For the unnotched case, correcting for the longitudinal compression strength of the 0◦

lamina had only a minor impact on the predicted ultimate strength. In the [60,0,-60]3S open hole

tension specimen, recalibration of the model did not significantly improve the prediction result. In

all cases for the open hole tension specimen, the prediction error was between 7.6% and 10.3%

(see Figure 3.18b).
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Figure 3.18: [60,0,-60]3S (a) Unnotched and (b) Open-Hole Tension Experiments and
Blind/Recalibrated Stress vs. Strain Curves.

The ultimate strength of the [60,0,-60]3S unnotched compression test was under-predicted by

a large margin in both blind prediction and recalibration, as displayed in Figure 3.19a. The blind

prediction had 42.9% error and after recalibration the error improved to 21.3%. This case repre-
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sented the largest prediction error for all twelve specimens. The prediction of the [60,0,-60]3S open

hole compression strength in Figure 3.19b was significantly improved in recalibration from 13.1%

in blind prediction to 2.8% after recalibration.
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Figure 3.19: [60,0,-60]3S (a) Unnotched and (b) Open-Hole Compression Experiments and
Blind/Recalibrated Stress vs. Strain Curves.

The damage contour plots for the [60,0,-60]3S specimen with the open hole in tension at 90%

of the ultimate static strength are displayed in Figure 3.20 for both the recalibrated prediction and

the experiments. In the simulation of damage evolution, the accumulation of transverse matrix

damage is significantly over-predicted in the ±60◦ plies as compared with the experiments. The

higher degree of ductility observed in the prediction of stress-strain curves are consistent with

and caused by this over-predicted damage extent in the simulations. Matrix cracks are observed

in the CT images, but at a lesser degree than in the prediction. The simulation does predict the

accumulation of transverse matrix cracks in the 0◦ plies adjacent to the hole, accompanied by

small regions of delamination. This is consistent with the vertical fiber splitting cracks observed in

the CT images adjacent to the open hole in the 0◦ plies. The simulation also predicts the initiation

of fiber failure in the 0◦ plies near the open hole at the 90% ultimate strength load.
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Figure 3.20: Static Damage Contours for [60,0,-60]3S Layup at 90% Ultimate Strength.

3.2 Damage Tolerance Design Principles Program - Fatigue Predictions

The fatigue prediction portion of the DTDP program took place directly following the comple-

tion of the static recalibration phase. The calibrated EHM model for fatigue predictions was char-

acterized by the material parameters identified in the recalibration of the static prediction model

and the cycle-sensitivity parameters calibrated from a suite of fatigue-life experiments provided

by the AFRL. In the third phase of the DTDP program, blind predictions of laminated composite

fatigue stiffness-life curves, compressive and tensile residual strength after fatigue, and accumu-

lated damage contour plots after fatigue were predicted using the calibrated EHM model for the

three composite layups ([0,45,90,-45]2S , [30,60,90,-60,-30]2S , and [60,0,-60]3S) with open hole

configurations. The fourth phase of the program consisted of the recalibration of the EHM model

following the distribution of the experimental results for the blind prediction cases. This work is

expected to be published in a forthcoming special issue of the Journal of Composite Materials [19].
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3.2.1 Experiments

Similar to the static prediction portion, in the fatigue prediction phases, two sets of experi-

mental data were released separately to the program participants. The first set of experiments was

delivered at the start of the blind prediction phase in order to calibrate the cyclic damage evolution

behavior of the model. This data set included 0◦ and 90◦ tension-tension, 90◦ three point bending,

±45◦ tension-tension, and end notch flexure fatigue experiments. In each case, the stiffness vs. cy-

cles curves for a range of applied stress amplitudes were provided. In the fatigue recalibration

phase, the results of the [0,45,90,-45]2S , [30,60,90,-60,-30]2S , and [60,0,-60]3S layups with open

hole configuration under tension-tension fatigue were reported, in addition to the residual strength

after fatigue in tension and compression and the X-ray CT images of damage progression for each

of these layups. The applied stress amplitude for the [0,45,90,-45]2S layup was 50% of the mean

static ultimate strength for the layup, for the [60,0,-60]3S layup was 80%, and for the [30,60,90,-

60,-30]2S layup was 40%. Residual strength after fatigue was tested after 300K cycles for the

[0,45,90,-45]2S layup and after 200K cycles for the [30,60,90,-60,-30]2S and [60,0,-60]3S layups.

In each case for the calibration and prediction experiments, the fatigue load was applied at 10Hz

with an R-ratio of 0.1. The geometry of each of these specimens was consistent with those deliv-

ered in the static phase (Table 3.1).

3.2.2 Calibration

Eight material parameters (a(m), b(m)
n , b(m)

s , c(m), υ(m)
0 , d(m)

0 , d(m)
1 , and d

(m)
2 ) were used in

the EHM model to calibrate the damage evolution properties of the matrix and seven properties

(a(f), b(f), c(f), υ(f)
0 , d(f)

0 , d(f)
1 , d(f)

2 } were used for the fiber. The values for these parameters are

presented in Table 3.6. An additional column is included in the table showing the delamination

part parameters which were included only in the recalibrated EHM model. The majority of the

parameters were carried over from the recalibrated EHM model from the static prediction phases

of the DTDP program. The only additional parameters calibrated in the blind prediction phase

57



were the factors controlling the cycle-sensitivity parameter from Equation 2.42.

Table 3.6: Calibrated Material Damage Evolution Properties for DTDP Fatigue Predictions.

Property Fiber Matrix Delamination

a 0.050562 0.001592 0.018
bn 274 15 304 .0
bs - -3.2 9.45
c 1.4481 0.535 0.492
υ0 1367 636.2 0
d0 10.735 6.0 6.0
d1 −2.068× 10−3 −3.0× 10−3 −6.0× 10−3

d2 −1.04× 10−10 −2.62× 10−10 −2.62× 10−10

The applied stress vs. cycles to failure (S-N) curves for the 90◦ three point bending fatigue

experiments were used to calibrate the matrix parameters, d(m)
0 , d(m)

1 , and d(m)
2 and the S-N curves

from the 0◦ tension-tension fatigue experiments were used to calibrate the fiber parameters: d(f)
0 ,

d
(f)
1 , and d

(f)
2 . In both cases the optimization was performed using the Nelder-Mead simplex

method [67] minimizing the discrete L2 norm of the differences between the experimental power

law fit for cycles to failure and the simulated cycles to failure for a number of stress amplitudes

along the S-N curve for the respective experiment. The resulting calibrated S-N curves are shown

in Figure 3.21. The calibration method was able to generate a model which very closely matches

the power law fit for the experiments.

3.2.3 Blind Prediction

The calibrated EHM model was exercised to predict the S-N curves, progressive damage

accumulation contours, and residual strength after fatigue in tension and compression for the

[0,45,90,-45]2S , [30,60,90,-60,-30]2S , and [60,0,-60]3S specimens with open-hole configurations

under tension-tension fatigue. The macroscale specimen models used in the fatigue predictions

were identical to the corresponding numerical specimens employed in the static phase. In the

cyclic fatigue analysis, a pinned boundary was applied to one end of the specimen constraining

displacement in the coupon longitudinal direction, and a monotonically increasing displacement
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(a) (b)

Figure 3.21: Fatigue Stress vs. Life for (a) 0◦ Tension-Tension Fatigue and (b) 90◦ Three Point
Bending Fatigue.

was applied to the opposite end for the microchronological analysis of a single load cycle. In the

macrochronological step, the displacement was held at the fixed point as the damage over the cycle-

jump was gradually applied to the coupon, satisfying stress equilibrium through the application of

damage. For the prediction of residual strength after fatigue, the internal damage state for the

coupon after the appropriate number of loading cycles was stored, and a monotonically increasing

displacement was applied to the pre-damaged specimen until failure. In the multitemporal analy-

sis, the average damage over the entire macrostructure was limited to a value of ∆Dmax = 0.01

from Equation 2.35.

3.2.4 Recalibration

A clear deficiency in the model predictions for the [60,0,-60]3S specimen was observed from

the blind predictions. The blind prediction of fatigue life for this specimen was 700 cycles, whereas

the experimental specimens each ran out to 2M cycles. One hypothesis for this discrepancy was

that the role of interlaminar shear and delamination was not accurately captured by the EHM blind

prediction model. In order to recalibrate the model to capture the interlaminar shear behavior,

the information from the end notch flexure static and fatigue experiments was utilized. These
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experiments were provided in the calibration experiment data from the AFRL for the respective

static and fatigue phases, but were not used in the static predictions or the fatigue blind prediction

calibration. To better represent delamination effects in the EHM model, the constituent material

parameters of part 3 in the ROM were adjusted to match the ENF static and fatigue experiments,

as shown in Figure 3.22. These material parameters are reported in Table 3.6. Additionally, the

0◦ plies in the [60,0,-60]3S were modeled with 3 elements per ply thickness to better capture the

macroscale localization of delamination effects. This resulted in a significant computational cost

increase for this layup, but the resulting simulation performed much better than the blind prediction

case.

(a) (b)

Figure 3.22: Calibrated Model Comparisons with ENF tests for (a) Stress vs. Strain in Static
Loading and (b) Critical Energy vs. Life in Fatigue.

3.2.5 Results and Discussion

The results from the fatigue prediction study are divided into three main areas of interest:

stiffness vs. cycles, residual strength after fatigue in tension and compression, and progressive

damage contour plots.
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3.2.5.1 Stiffness vs. Cycles under Fatigue

Each of the three open hole layups were cycled under tension-tension fatigue with an R-ratio

of 0.1 up to 2 million cycles or failure. The applied loading was 50% of the static ultimate strength

for the [0,45,90,-45]2S layup, 40% for the [30,60,90,-60,-30]2S layup and, 80% for the [60,0,-

60]3S layup. In both blind predictions and recalibration, the [0,45,90,-45]2S and [30,60,90,-60,-

30]2S simulations matched reasonably well with the experiments. The prediction of the stiffness

degradation curve as a function of number of load cycles for the [0,45,90,-45]2S layup compared

with the individual experiments (Figure 3.23) shows that the simulation predicts the initial stiffness

drop over the first few thousand cycles and the following stiffness plateau. The simulation does not

predict failure in the specimen, which is observed to occur suddenly over a wide range of cycles-to-

failure in the experiments. The simulated stiffness plateau and runout behavior of the [30,60,90,-

60,-30]2S experiments and simulations are shown in Figure 3.24, and were found to be largely in

good agreement with the experiments. The recalibration of the EHM model had only minor effects

on the stiffness vs. cycles behavior for the [0,45,90,-45]2S and [30,60,90,-60,-30]2S specimens.
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Figure 3.23: Stiffness vs. Cycles for [0,45,90,-45]2S Layup under Tension-Tension Fatigue.
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Figure 3.24: Stiffness vs. Cycles for [30,60,90,-60,-30]2S Layup under Tension-Tension Fatigue.

In blind predictions, the EHM prediction of the stiffness vs. cycles response of the [60,0,-

60]3S specimen deviated from the observed behavior as shown in Figure 3.25. This layup contains

the largest percentage of 0◦ plies and the applied load level of 80% is the greatest percentage of

static ultimate strength over all three layups. In blind prediction, failure of the [60,0,-60]3S layup is

predicted after 700 cycles, whereas in the experiments there is a pronounced stiffness drop but the

specimens each continue to runout at 2 million cycles. In the fourth phase of the DTDP program,

the EHM model was recalibrated to better handle interlaminar shear calibrated to the results of

the ENF tests in static and fatigue loading. In the experiments, each replicate displayed a gradual

stiffness degradation over time from an average stiffness of 51.2 GPa at the first cycle to 39.3 GPa

after 2M cycles. This amounted to a 23% degradation of stiffness. In the recalibrated simulation,

the stiffness dropped from an initial value of 51.2 GPa to 34.8 GPa over 100K cycles, where the

stiffness remained at 34.8 GPa up to run out at 2M cycles. The pattern of damage accumulation

leading to this behavior in the experiments and numerical specimens is described in Section 3.2.5.3

and the rationale behind the recalibration and the underlying phenomenological behavior is further

explored in Section 3.3.
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Figure 3.25: Stiffness vs. Cycles for [60,0,-60]3S Layup under Tension-Tension Fatigue.

3.2.5.2 Residual Strength after Fatigue

The residual strength in tension and compression after tension-tension fatigue was predicted

after 300K cycles for the [0,45,90,-45]2S layup and after 200K cycles for the [30,60,90,-60,-

30]2S and [60,0,-60]3S layups. In Figures 3.26 - 3.28, the stress vs. strain curves for the resid-

ual strength experiments are compared to the blind and recalibrated predictions. Additionally, the

experimental mean and the predicted static strength from the static recalibration are shown for

comparison.

The residual strength predictions for the [0,45,90,-45]2S layup are shown in Figure 3.26. The

strength reduction after fatigue for the specimen in tension was 2.0%, comparing the static and

residual experimental mean ultimate strength. In compression a 7.0% strength drop was observed.

This behavior is well captured when comparing the simulated static strength and the simulated

residual strength after fatigue. For tension there is a 2.1% drop in strength after fatigue in the

simulations. For compression there is predicted drop of 6.7% strength. These values are in very

good agreement with the experiments. In this layup, the nonlinearity in the curve due to high

predicted damage extent in the residual strength prediction is still visible.
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Figure 3.26: Residual Strength after 300K Cycles for [0,45,90,-45]2S Layup in (a) Tension and
(b) Compression.

Figure 3.27 shows the residual strength predictions for the [30,60,90,-60,-30]2S layups in ten-

sion and compression. The recalibration step to account for interlaminar shear strength signifi-

cantly increased the residual strength predictions for this layup in both tension and compression.

In tension experiments, a slight 3.6% increase in residual strength over static ultimate strength was

observed, whereas a 7.0% drop was observed in compression experiments. In both tension and

compression, the recalibrated model predicts a drop of 11.7% and 12.6% for tension and compres-

sion residual strength, respectively. The increase in tension residual strength for the experiments

is an interesting effect for this layup as there are no 0◦ plies. This increase may be within the ex-

perimental error range for this layup and may not be due to increase in strength induced by stress

redistribution, as in the case of the [60,0,-60]3S layup. It is also possible that there are further

phenomenological effects that have not been captured in the calibration process which account for

this behavior. It is noted that no calibration data was available to characterize the behavior of±30◦

or ±60◦ plies directly. Only data from 0◦ and 90◦ plies were provided to calibrate longitudinal and
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transverse behavior and±45◦ data to calibrate shear behavior. These tests might not be adequate to

calibrate the mixed loading mode behavior in the 30◦ and 60◦ plies which will experience loading

between the uniaxial and pure shear conditions provided for calibration.
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Figure 3.27: Residual Strength after 200K Cycles for [30,60,90,-60,-30]2S Layup in (a) Tension
and (b) Compression.

No blind prediction of residual strength was made for the [60,0,-60]3S layup due to the early

failure of the simulation under fatigue. However, the recalibrated model predictions of residual

strength were in reasonable agreement with the experiments in Figure 3.28. There was a 24.4%

increase in residual strength in tension after fatigue in the experiments. This is caused by the

fiber splitting and stress shielding effects around the open hole (see Section 3.3). The recalibrated

prediction model is able to capture the general trend of this behavior as well, predicting a strength

increase of 14.6% in the residual strength after fatigue for tension. The effect of the rapid stiffness

drop in the simulation of this layup from fatigue is shown in Figure 3.28(a), accounting for the

stiffness discrepancy. In compression, the experiments show a 5.6% increase in strength after

fatigue. This is not captured in the simulations, where a 2.8% drop in strength is predicted. In both
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residual strength predictions of this layup, the artificial nonlinearity in the curve that was seen in

the static results is not present.
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Figure 3.28: Residual Strength after 200K Cycles for [60,0,-60]3S Layup in (a) Tension and (b)
Compression.

3.2.5.3 Damage Contour Plots from Fatigue Loading

Damage contour plots comparing the prediction of damage accumulation in the fatigue sim-

ulations and the X-ray CT images of experimental damage are included in this section. Figures

3.29-3.31 show the ply-by-ply damage accumulation corresponding to fiber failure, transverse ma-

trix cracking, and delamination from the recalibrated fatigue simulation alongside the experimental

CT images displaying damage in the experiments for the [0,45,90,-45]2S layup after 300K fatigue

cycles. The damage pattern is consistent between the simulations and the experiments. In the 0◦

plies, the growth of a small region of fiber splitting due to transverse matrix damage is seen in both

the experiments and predictions. The major damage mode of transverse matrix cracking in the

fiber direction of the ±45◦ plies is captured in the simulations. The fatigue loading rapidly leads
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Figure 3.29: Fatigue Damage Contours for [0,45,90,-45]2S Layup after 100K Cycles.

to transverse matrix cracks over nearly the full width of the specimen in the +45◦ and −45◦ plies,

with the cracks growing with additional cycles in both the simulations and the experiments. The

presence of these matrix cracks is such a dominant effect that the cracks bleed through multiple

plies. Matrix cracks are also present in the 90◦ plies near the hole, however the predicted matrix

damage in the 90◦ plies was less than that observed in the experiments There is also evidence of

delamination around the hole in the interior 0◦ ply which is predicted in the simulations, but the

delamination regions near the fiber splitting is not observed in the simulations.

Damage accumulation in the [30,60,90,-60,-30]2S layup was predicted to occur predominantly

in the ±60◦ plies as seen in Figures 3.32-3.35. This is in good qualitative agreement with the

experimental images, with the simulation predicting more damage than observed in the experiment.

There is no fiber failure predicted in this layup. In the damage contours shown below, the general

“X” pattern of damage in the 60◦ plies is predicted in the recalibrated simulations, but appears

to be accumulating faster than the CT images show. The growth of damage at the hole near the

stress concentration in the other plies developing around 150k cycles (Figure 3.34) is also visible

67



Fiber Failure

—
–

—
–

L
ine

ofsym
m

etry
–

—
–

—

←
L

oading
D

irection
→

Matrix Cracking

Delamination

Experiment

0-1 +45-1 90-1 -45-1 0-2 +45-2 90-2 -45-2

Figure 3.30: Fatigue Damage Contours for [0,45,90,-45]2S Layup after 200K Cycles.
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Figure 3.31: Fatigue Damage Contours for [0,45,90,-45]2S Layup after 300K Cycles.
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Figure 3.32: Fatigue Damage Contours for [30,60,90,-60,-30]2S Layup after 50K Cycles.

in the predicted damage contours. Delamination is not exhibited in the predicted contours, but

delaminated regions are evident in the experimental images around the major cracks in the ±30◦

directions.

The recalibrated prediction of damage accumulation in the [60,0,-60]3S layup is in good qual-

itative agreement with the experiments in Figures 3.36-3.39, but progresses much more rapidly

than in the experiments. The simulation displays much more significant delaminations than the

CT images display, but the general pattern of the delamination in the 0◦ plies extending above and

below the hole in the loading direction agrees well with the experiments. Additionally, the fiber

splitting from transverse matrix damage on either side of the delamination region is well captured.

The predominance of transverse matrix cracking is seen in the simulations and in the experiments

with the large number of matrix cracks across the width of the specimen in the CT images of the

±60◦ plies, and the near complete predicted transverse matrix damage in the simulated±60◦ plies.

Fiber failure in the predictions is limited to the delaminating region, with no fiber failure propagat-
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Figure 3.33: Fatigue Damage Contours for [30,60,90,-60,-30]2S Layup after 100K Cycles.
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Figure 3.34: Fatigue Damage Contours for [30,60,90,-60,-30]2S Layup after 150K Cycles.

70



Fiber Failure

—
–

—
–

L
ine

ofsym
m

etry
–

—
–

—

←
L

oading
D

irection
→

Matrix Cracking

Delamination

Experiment

+30-1 +60-1 90-1 -60-1 -30-1 +30-2 +60-2 90-2 -60-2 -30-2

Figure 3.35: Fatigue Damage Contours for [30,60,90,-60,-30]2S Layup after 200K Cycles.

ing transverse to the loading direction away from the hole, as was the cause of early failure in the

blind predictions. The premature prediction of such extensive damage is consistent with the rapid

stiffness reduction observed in the stiffness vs. life curve of this specimen in Figure 3.25.
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Figure 3.36: Fatigue Damage Contours for [60,0,-60]3S Layup after 50K Cycles.
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Figure 3.37: Fatigue Damage Contours for [60,0,-60]3S Layup after 100K Cycles.
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Figure 3.38: Fatigue Damage Contours for [60,0,-60]3S Layup after 150K Cycles.
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Figure 3.39: Fatigue Damage Contours for [60,0,-60]3S Layup after 200K Cycles.
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3.3 Failure Mode Interaction

One lesson learned from the fatigue prediction phases of the DTDP program was the impor-

tance of the role of interaction between failure modes in the laminated composite, especially the

roles of interlaminar shear strength and delamination development. In the [60,0,-60]3S layup,

delamination played a significant role in the predicted behavior of the specimen, whereas the

[0,45,90,-45]2S and [30,60,90,-60,-30]2S layups did not display the same sensitivity to delami-

nation development. As more robust predictive models are developed, such as the EHM approach,

increased scrutiny can be placed on the specific roles and interactions between inter- and intraply

failure modes in the laminate, with high-fidelity simulations to support hypotheses on these effects.

In Section 3.3.1, the progressive damage accumulation in [60,0,-60]3S quasi-isotropic laminates

under fatigue loading is explored, particularly the formation of delaminations and fiber-splitting.

Experimental results are compared with simulations to investigate interaction behavior between

failure modes. Discussion of the implications from this investigation is provided in Section 3.3.2,

where an explanation for the experimental behavior is proposed, supported by the experimental

and simulated behavior.

3.3.1 Experimental-Computational Study Results

Figure 3.40 illustrates the state of damage within a [60,0,-60]3S specimen from the DTDP

program through 200K loading cycles as observed using X-ray radiography. The images show

damage at all plies through the thickness of the specimen, which is in contrast with the CT images

which show a slice of damage through the specimen thickness. The initial state of the specimen

is largely defect free with possibly very slight delamination around the hole (Figure 3.40a). The

damage region above and below the hole progressively increases as a function of load cycles with

snapshots shown for every 50K cycles. The rate of progressive damage accumulation appears to be

very stable within this range of cycles. Figure 3.41 further supports the assertion that the nature of

damage accumulation is progressive throughout stiffness reduction and acoustic emission hits as a
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function of load cycles, shown up to 50K cycles. The damage growth as correlated to the reduction

of the stiffness of the composite and the number of AE hits gradually increases with no indication

of a change in the damage mode, which would otherwise register a discontinuity or abrupt rate

change in the curves. It is noted that Figure 3.41 does not distinguish between propagation of

different damage mechanisms that contribute to the property degradation.

(a) (b) (c) (d) (e)

Figure 3.40: X-ray Radiography Images of the [60,0,-60]3S Specimen: (a) Initial State, After
(b) 50K, (c) 100K, (d) 150K, and (e) 200K Cycles.
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Figure 3.41: Acoustic Emission Hits and Stiffness Degradation as a Function of Load Cycles for
Four Identical [60,0,-60]3S Specimens.

Figure 3.42 shows the damage modes within the [60,0,-60]3S specimen that grow under fatigue

loading. The close-up image is obtained by 3-D X-ray CT, where the focus is on the 60-0 ply

interface. While the CT imaging is able to isolate damage to a small depth through the thickness
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of the laminate, damage in the plies behind the interface still bleeds over to the image to a small

degree, which accounts for the -60◦ cracks also visible in the image. The figure clearly shows

transverse matrix cracking in the±60◦ plies and fiber splitting at the 0◦ plies. At the 60-0 interface,

a large delamination zone exists at the top and bottom of the hole, delimited by the extent of fiber

splitting. While the progressive damage accumulation continues throughout the loading history,

none of the [60,0,-60]3S specimens failed within the two million cycle observation period, as seen

in Figure 3.25.

matrix cracking

matrix cracking

fiber splitting
delamination

Figure 3.42: X-ray CT Image of the [60,0,-60]3S Specimen After 150K Cycles Illustrating the
Damage Modes.

In order to understand the role of interacting sub-critical damage mechanisms on the failure be-

havior under fatigue loading, the numerical simulations from the blind prediction and recalibrated

EHM models were further investigated. The blind prediction case corresponds to a model which

includes fiber failure and matrix cracking as possible damage mechanisms whereas the possibility

of delamination is deliberately excluded to understand its role on the failure response and overall

fatigue life. In the recalibrated model, delamination was allowed to develop as calibrated to end
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notch flexure experiments of the IM7/977-3 composite. Figure 3.43 illustrates the stiffness loss

from the numerical simulation for the set of material parameters which do not lead to the devel-

opment of significant delamination and the material parameters such that delamination is present.

The same data is represented in both Figure 3.43(a) and (b); (b) is a zoomed in representation to

better display the rapid stiffness loss in the simulation where delamination does not develop. In

the absence of delamination, the stiffness of the composite specimen degrades very quickly, within

approximately 700 cycles, causing failure of the specimen, in a failure mechanism seen in Fig-

ure 3.44a. The matrix cracking is accompanied by fracture of the fibers within the zero degree

plies that initiate around the hole and propagate outward towards the specimen edges and ulti-

mately cause the specimen failure. The experiments did not exhibit such a substantial fiber failure.

Fiber splitting, which was prevalent in all experimental specimens did not form in the numerical

simulations where delamination was not present. The damage contours for the simulation where

delamination does progress (Figure 3.44b) show significant matrix cracking in the 60◦ plies, which

is consistent with the experimental observation, notwithstanding the pace at which the cracking

occurs. The discrepancy between the failure modes observed in the simulations where delamina-

tion is not present and the experiments points to the role of delamination in determining the failure

characteristics of the composite subjected to fatigue loading.

In contrast to the simulation where the sub-critical damage mode of delamination is omitted, the

model where delamination progresses around the hole along the loading direction does not predict

a premature fatigue failure. At the early stage of loading, a significant amount of damage occurs,

manifested by a drop in the stiffness of the specimen. The damage accumulation rate then reduces

and the specimens run out beyond two millions cycles. The damage modes and the accumulation

characteristics predicted by the model is similar to the experimental observations, as shown in

Figure 3.44b. Fiber splitting and delamination growth are the two dominant damage mechanisms,

whereas fiber fracture propagation is not observed. It is noted that the amplitude of loading applied

is sufficient to lead to fiber fracture around the hole, even at the first loading cycle, due to the stress

concentration from the open hole. Despite the early onset of fiber fracture, fiber fracture does not
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Figure 3.43: Stiffness Loss Curves for [60,0,-60]3S Tension-Tension Fatigue Shown (a) to
Run-out, and (b) Blown-up to Display Behavior with No Delamination.

propagate transverse to the loading direction in the case where delamination is allowed to develop.

The present damage modes and their propagation characteristics are accurately modeled when both

dominant sub-critical modes are included in the model. The rate at which damage propagates with

respect to loading is subject to further investigation.

3.3.2 Discussion of Failure Interactions

The combined experimental-computational investigation described above indicates a strong in-

teractive effect of sub-critical damage mechanisms on the fatigue survivability of laminated com-

posites under high amplitude fatigue loading. The investigation indicates that the following cascade

of damage events controls the failure in the specimen as illustrated by Figure 3.45a: Under the ap-

plied cyclic loading, a shear dominated delamination occurs around the open hole which separates

the 0◦ and 60◦ plies and permits the propagation of fiber splitting in the zero-degree plies. Fiber

splits cause the relaxation of the stress concentration around the hole and redistribute the loading

more evenly across the zero degree plies, reducing the stress on the fibers near the hole. The reduc-

tion of the stresses on the fibers arrest the propagation of the fiber fracture transverse to the loading
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Figure 3.44: Intermediate Damage State for Internal 0◦ Ply of [60,0,-60]3S Simulation during
Fatigue Loading from Simulations (a) Without Delamination and (b) With Delamination
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Figure 3.45: Schematic Illustration of the Interaction Between Damage Patterns (a) in the
Presence of Delamination Mode; (b) in the Absence of Delamination Mode.

direction. In the absence of delamination, this phenomenon cannot occur. Shear stresses that cause

fiber splitting are bridged by the neighboring off-axis plies around the hole and the matrix is left

intact. Stress concentration is not relieved and the fiber fracture propagates as a crack through the

specimen. This process is schematically illustrated in Figure 3.45b.

This phenomenon is not specific to the [60,0,-60]3S laminate. The growth of fiber splitting can

also be seen to a much smaller degree in the [0,45,90,-45]2S laminate in Figure 3.31. Fiber splitting

plays a much less significant role in this laminate, which is possibly due to the applied stress for

the [0,45,90,-45]2S tension-tension fatigue experiment in this exercise being only 50% of the static
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ultimate strength. It is clear that the interaction between delamination, fiber splitting, and fiber

failure occurs in a different manner for different layup configurations and applied stress levels.

Spearing et al. [95] also observed the phenomenon of fiber splitting induced relaxation mechanism

in quasi-isotropic samples. In their case, the zero-degree surface plies quickly formed fiber splits

under fatigue loading. When the zero degree plies are on the surface, the delamination mechanism

is no longer needed as the plies are already kinematically unrestricted from splitting.

Further evidence of the stress relaxation effect was observed in the residual strength after fa-

tigue of laminated composite specimens which were performed at the AFRL. Figure 3.46 shows

the residual strength after fatigue of quasi-isotropic ([+45,0,-45,90]2S) specimens as a function of

the applied fatigue load amplitude. The residual strengths were measured after subjecting each

cycle to 200K constant amplitude tension fatigue with an R-ratio of 0.1. For this layup, an in-

crease in the strength from the virgin (i.e., not previously subjected to fatigue) strength is observed

when the specimens are subjected to fatigue cycles. The corresponding damage profiles induced by

prior fatigue loading is shown in Figure 3.47. This figure further demonstrates that the sub-critical

damage mechanisms of delamination induced fiber splitting relieves the stress concentration and

a consequent increase of residual strength. While this phenomenon has been previously observed,

the connection of its occurrence to the interacting damage modes were not made.

The role of interacting damage mechanisms and their accumulation on the fatigue survivability

of laminated composites is particularly important at high amplitude fatigue loading, where signifi-

cant early fiber fracture is likely to occur. At lower amplitude loading, the fibers are able to carry

the loads without the need to redistribute the load. The sub-critical damage mechanisms therefore

may not have as large an impact on specimen survivability.
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Figure 3.46: Residual Strength After 200K Fatigue Cycles of [+45,0,-45,90]2S Specimens as a
Function of Fatigue Load Amplitude.

(a) (b) (c) (d) (e) (f) (g)

Figure 3.47: X-ray Images of the [+45,0,-45,90]2S Specimens Subjected to 200K cycles of
Loading with Maximum Amplitude of (a) 90%; (b) 80%; (c) 70%; (d) 60%; (e) 50%; (f) 40%;

and (a) 30% of Mean Static Ultimate Strength.
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Chapter 4

COMPOSITE UNCERTAINTY AND VARIABILITY

Statistical variability in composite materials arises from a wide range of sources over the mul-

tiple scale of interest present in the material system. These sources of uncertainty, both epistemic

and aleatory are addressed in Section 4.1. Because uncertainty is present at multiple disparate

scales, the problem of quantifying uncertainty from each of these sources is a significant chal-

lenge. Furthermore, many times the sources of uncertainty cannot be directly measured, and the

information that is available comes from larger scales of interest than scale of the quantities being

considered. For instance, in the following investigations, the quantities of interest are the random

underlying constituent material parameter distributions for the fiber and matrix which govern the

microscale damage accumulation behavior, whereas calibration data is available from the compos-

ite lamina scale. In this work, a new probabilistic multiscale methodology is presented to link the

material property variability at the scale of the microstructure to the laminate scale and predict the

uncertainty associated with the composite strength. The proposed methodology relies on EHM

to bridge the micro- and the macroscales. Bayesian statistical analysis forms the foundation of

the uncertainty quantification framework for the calibration of random parameters which define

the multiscale EHM model, as described in Section 4.2. Markov chain Monte Carlo (MCMC)

sampling, found in Section 4.3, is utilized to perform the computation required to generate the

random material distributions. Section 4.4 describes the Gaussian process (GP) modeling which is

employed to approximate the failure response of the multiscale simulations in the rapid sampling

MCMC process as a surrogate model for the EHM model. This work provides a new method to

propagate uncertainty from the constituent materials of a heterogeneous composite to the macro-

scopic scale in the context of computational homogenization, employs the Bayesian statistical

method to stochastic constituent parameter calibration in composites, and characterizes the influ-

ence of microscale parameter variability on the failure response of composite laminates. Numerical
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Figure 4.1: Sources of Uncertainty in Model Prediction.

investigations applying this approach are found in Chapter 5.

4.1 Sources of Uncertainty

Consider the case of a monotonically loaded composite specimen. A suite of experiments have

been performed on this specimen and the intent is to create a mathematical representation of the

physical system to predict the results of the experiments. This model is shown in Figure 4.1 in-

cluding the inputs, outputs, mathematical model form, and model parameters, as well as the types

of uncertainty characteristic of each component. The goal of this model is to predict the ultimate

stress, σult, and strain at failure, εf , for the composite material. These are the outputs, y, of the

model G(x,ψ), for the inputs, x, subject to the model parameters, ψ. Reported output values

from experiments are subject to measurement error from the instruments used to collect this data

and are also subject to error in the experimental setup, collectively considered to be measurement

error. The inputs for both the underlying physical phenomenon and the prediction model, consid-

ering rate-dependent failure behavior, are the strain rate and orientation of the composite ply, as

these values are directly controlled in the experiments. These inputs are also subject to natural

variability, i.e., the applied strain rate fluctuates over time, and measurement error. The mathe-

matical employed to represent the physical phenomenon of interest is subject to uncertainty in the
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form of the model used and its underlying assumptions and numerical aspects, including in the

case of the EHM model FEM discretization error, as well as error in the surrogate model when

the GP model approximation is employed. The parameters for the mathematical model include

the elastic properties, contained in the stiffness matrix, L(γ), and the damage evolution parameters,

a(γ), b(γ), p(γ), q(γ), c(γ), and υ0(α) for each phase, which are subject to natural variability and lack

of knowledge, such as when sufficient data is not available to accurately define the parameters.

The underlying physical response of the composite material is subject to random natural vari-

ability. This is present in the variability of the elastic properties and the damage evolution param-

eters for the each phase of the composite. Epistemic uncertainty is, however, also present in these

parameters from incomplete information on the distribution of the parameters. Of primary concern

in this study are the parameters that govern the rate-dependency of the stress-strain response, ulti-

mate strength and ductility modeled by the a(γ), b(γ), p(γ), and q(γ) parameters of the rate-dependent

damage evolution law from Section 2.3.2. It is difficult to analytically arrive at the distributions of

these parameters directly from experimental data because the observable response of the material

is non-linearly related to these parameters. What is required is an indirect calibration approach to

determine the range of possible combinations of material parameters. Further, multiple parameters

need to be calibrated simultaneously, in order to capture the non-linear relationships between the

parameters. This is accomplished through the use of a Bayesian calibration method, discussed

below. Measurement error is present in the model inputs - strain rate and loading orientation - and

outputs - macroscopic ultimate stress and strain at failure, due to imprecision in the techniques

used to record these values. Slight perturbations in the experimental inputs cause the simulation

model to vary from the natural behavior that is actually occurring, propagating error to the pre-

dicted outputs. Input measurement error is assumed to be small for the experiments considered in

this study and is not explicitly modeled. The uncertainty from output measurement error is com-

monly represented as a Gaussian random variable with zero mean and known or estimated standard

deviation.

Solution approximation error exists in the model from homogenization, finite element dis-
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cretization, and surrogate modeling [59]. As an example of homogenization error, the composite

fiber ratio is given as an average quantity for the entire composite. However, in some areas of the

material, the local fiber ratio can vary significantly from the mean. In this analysis, the stresses and

strains and the fiber ratio for the composite are assumed to be uniform at the structural scale, vary-

ing only at the RVE microscale (i.e. uniform macroscopic response). The uncertainty from these

homogenization assumptions could be further quantified by using RVEs of various fiber ratios,

constructing macroscopic models randomly composed of these RVEs, and analyzing the resulting

macrostructures for the variability in the response. There is additional model uncertainty from

discretization error in the finite element model, which can be reduced by refining the mesh in the

RVE or the macroscale mesh. These additional finite element analyses represent significant com-

putational expense and are not implemented in this investigation. Surrogate models that replace

finite element models also contribute to approximation error. The uncertainty from the surrogate

model approximation is available from the GP prediction variance and a cross-validation approach,

as explained later.

A major source of epistemic uncertainty in the model comes from the model form itself. The

true value of the quantity of interest, ytrue, (e.g. σult or εf ) accounting for various sources of

uncertainty is represented as:

ytrue = ŷ(x,ψ) + δ(x) + εm (4.1)

where ŷ(x,ψ) is the predicted output from the model, εm the measurement error, and δ(x) is

a model discrepancy term introduced by Kennedy and O’Hagan [51]. The δ(x) term is used

to reflect the inherent discrepancy in the model prediction with respect to the experimental ob-

servations. This discrepancy includes the contributions from surrogate model error, model form

uncertainty, homogenization error, and finite element discretization error. (Alternatively, one could

also separately quantify the solution approximation errors and include them in Eq. 4.1, in order

to quantify the model form error). Note that δ(x) depends on the input, x, i.e., the model dis-

crepancy varies depending on the rate of loading applied. This discrepancy terms accounts for
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additional effects which are not explicitly incorporated in the mathematical model. In the context

of the rate-dependent model, this could be the presence of inertial effects or higher-order viscous

effects which are present only at the higher loading rates.

4.2 Bayesian Calibration

The Bayesian statistical approach is employed to calibrate the probabilistic distributions of

the constituent failure parameters and quantify their uncertainty. A critical observation is that the

calibration process itself is multiscale. Calibration data is often measured and meaningful at the

laminate level, whereas the parameters to be calibrated are characterized at the scale of the RVE.

Consider an arbitrary quantity of interest, φlam, (e.g., ultimate stress) that is measurable at the

scale of the laminate. For a given set of input conditions, x, assume the macroscale quantity can

be described as a function, G, of the microscale material parameters, ψ:

φlam = G(ψ) ψ ∈ S ⊂ Rnp (4.2)

where np is the number of constituent parameters, and S the range of parameter values defined by

physical constraints. In this work, G(ψ) represents the response surface defined by the multiscale

mechanical model. Under the deterministic approach, φlam is a scalar value and the goal of the

calibration process is to find a single vector of constituent parameters which produce the desired

output. This is analogous to solving the inverse problem, ψ = G−1(φlam). For multiscale anal-

yses with non-linear material models, however, G is not easily invertible, and requires a rigorous

optimization strategy to identify ψ.

In a probabilistic setting, the desire is not only to find the parameters resulting in a single

value of φlam, but the distribution of parameters, fψ, which lead to the desired random distribution

in the quantity of interest, fφlam . The calibrated parameter distributions must not only reflect

the range of values in fφlam , but also accurately model the stochastic characteristics of the fφlam .

The probabilistic constituent material parameter calibration strategy employed herein is rooted in

Bayes’ Theorem, which is based on the principles of conditional probability. Consider two distinct
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random eventsA andB. The probability of simultaneously observingA andB, denoted as P (AB),

is expressed using the conditional probabilities as:

P (AB) = P (A|B)P (B) = P (B|A)P (A) (4.3)

where, 0 ≤ P (A) ≤ 1 denotes the probability of observing event A, and P (A|B) the conditional

probability of observingA given thatB has been observed. Rearranging the equality yields Bayes’

Theorem:

P (A|B) =
P (B|A)P (A)

P (B)
; P (B) > 0 (4.4)

Considering the collectively exhaustive and mutually exclusive events Ai (i ∈ I := {1, 2 . . . ,m})

where
∑

i P (Ai) = 1 and P (Aj) ≥ 0 ∀ j ∈ I, and using the theorem of total probability, Bayes’

Theorem is expressed in terms of discrete events as:

P (Ai|B) =
P (B|Ai)P (Ai)∑
j P (B|Aj)P (Aj)

(4.5)

Equation 4.5 is interpreted as the probability update procedure. Let B be an event, such as

an observation from an experiment, that has some dependence on Ai, such that P (B|Ai) is well

defined, then P (Ai) and P (Ai|B) are interpreted as the probability distributions of Ai prior to

and posterior to the occurrence of event B, respectively. In the context of the material parameter

updating, Ai are considered to be continuous rather than discrete events. Renaming the variables

and considering continuous events, the parameter update function is expressed as:

f(ψ|yobs) =
f(yobs|ψ)f(ψ)∫

S
f(yobs|χ)f(χ)dχ

(4.6)

in which yobs denotes observed experimental data, f(ψ|yobs) the posterior probability of the pa-

rametersψ given the observed experimental data, f(yobs|ψ) the probability of observing yobs given

parameters ψ, and f(ψ) the prior probability of ψ. The conditional probability, f(yobs|ψ), is the

“likelihood” of parameters ψ producing yobs, and is denoted as L(ψ). For simplicity, prior and

posterior probabilities of ψ are denoted as f ′(ψ) and f ′′(ψ), respectively. The denominator of the

right hand side in Eq. (4.6) is a normalizing constant such that the area under the curve of f ′′(ψ)
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is equal to 1. As will be seen below, the actual value of f ′′(ψ) is not important in the Bayesian

updating procedure, only the ratio between the probability of different parameter points, and there-

fore the expensive integration required to evaluate the denominator does not need to be performed.

The parameter update is then expressed in the alternative form:

f ′′(ψ) ∝ L(ψ)f ′(ψ) = f̄(ψ) (4.7)

where f̄(ψ) is the unnormalized kernel of the posterior probability distribution for ψ, i.e. the area

under the curve for f̄(ψ) over the set of all possible parameter values S is not normalized to unity,

as with a typical probability density function.

When the observations come from a suite of similar or identical experiments, the observation,

yobs, is a distribution characterized by the probability density function, fobs. The observation distri-

bution can be expressed using either a parameterized distribution (i.e normal, log-normal, Weibull,

etc.) or in a non-parametric form, such as the Kernel Spectral (KS) function [80, 75]. In the

following investigations, a non-parametric probability density function is employed in reporting

calibrated values and observation results. The Bayesian calibration methods employed herein are

applicable to both parametric and non-parametric distributions. In this study, the desire was to

consider the information from experiments with as little bias as possible. In using a parametric

distribution, the distribution parameters are enforced on the statistics of the information, which

does effect the results. On the other hand, the use of non-parametric distribution may introduce

fluctuations and features in the predicted distributions which are artifacts of small data sets and

model errors. Ultimately, non-parametric KS distributions were employed to further demonstrate

the flexibility of the Bayesian calibration approach for a wide range of statistical distributions.

Consider a set of experimental observations, yobs = {y1
obs, y

2
obs, . . . , y

p
obs}, the probability den-

sity using the KS approximation is expressed as:

fobs(y) ' 1

ph

p∑
i=1

K

(
y − yiobs

h

)
(4.8)

where p is the total number of observations, h the kernel bandwidth, and K the symmetric kernel.
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In the form of the standard normal density function,

K(x) =
1√
2π

exp

(
−1

2
x2

)
. (4.9)

From Reference [90], the optimal bandwidth for a standard normal kernel is estimated as:

h =

(
4σ5

obs

3p

) 1
5

(4.10)

where σobs is the standard deviation of the experimental observations.

When the experimental observation is a scalar (e.g., strength), using KS density estimation and

recalling that the model prediction of the observed quantity, φlam, is expressed in terms of the

constituent parameters as: φlam = G(ψ), the likelihood function is defined as:

L(ψ) =
1

ph

1√
2π

p∑
i=1

exp

(
−1

2

[
G(ψ)− yiobs

h

]2
)
. (4.11)

4.3 Markov Chain Monte Carlo Simulation

Equation 4.7 provides the mathematical form for computing the posterior probability of the

model parameters for G, but direct computation of this value over the set of all possible material

parameters S, quickly becomes a computational burden, especially when multiple model param-

eters are present. An efficient sampling method is required to accurately and effectively evaluate

f ′′(ψ). MCMC sampling is used to produce a “chain,” or set, of model parameter values from

Monte Carlo simulation whose probability density estimates the posterior distribution of those pa-

rameters. In general, a Markov chain is a memoryless random process where a given state depends

on the previous state only. In the context of parameter updating, the states in the Markov chain

are the parameter values, and each new state is determined by comparing the likelihood estimate

of the previous state and a trial state. The chain is started from set of parameter values, ψ0, whose

likelihood is greater than 0. Given a parameter state in the chain, ψk, a trial parameter state, ψ∗, is

sampled by taking a random walk from ψk. Considering the prior probability times likelihood of
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the two parameter sets:

f̄(ψk) = L(ψk)f
′(ψk) and f̄(ψ∗) = L(ψ∗)f ′(ψ∗). (4.12)

The trial state, ψ∗, is accepted with probability of

a = min(1,
f̄(ψ∗)

f̄(ψk)
) (4.13)

This implies that if the trial parameter state is more likely to yield the observed values than the

current parameter state it is automatically accepted, and if the trial state is less likely, it will be

accepted randomly with a probability diminishing with its comparative likelihood with the current

state. As the acceptance criterion is based on the ratio of likelihoods, the constant denominator

from Equation 4.6 is canceled out, and is not necessary to evaluate. If the trial state, ψ∗ is rejected,

the current state, ψk, is repeated in the chain and a new ψ∗ is sampled and tested.

The completion criteria for MCMC is the convergence of the chain. Chain convergence is

achieved when additional samples do not affect the generated distributions. The posterior density

distributions of each of the parameters can then be evaluated by fitting the chain to a parametric

distribution, or employing KS density for a non-parametric PDF. Additionally, the covariance of

the parameters in the chain is computed as:

σcov(ψ
i,ψj) =

1

Nmcmc − 1

Nmcmc∑
k=1

(ψi
k − ψ̄i)(ψj

k − ψ̄
j) (4.14)

where Nmcmc is the number of MCMC steps and ψ̄i is the sample mean of ψi, which is the chain

of parameters generated for the ith component of ψ. The covariance is important in sampling

correlated random parameters from the generated distributions.

4.4 Surrogate Models using Gaussian Processes

MCMC requires hundreds of thousands of samples evaluated in serial to generate converged

parameter chains. The time required to perform this procedure using the nonlinear multiscale

simulations is prohibitively large. To achieve computational efficiency, a surrogate model is trained
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to approximate the response surface which is otherwise generated by full multiscale simulations.

GP modeling is employed because of its ability to capture nonlinear surfaces and quantify the

uncertainty in the approximation of the response surface [45, 77, 87].

The GP model is a variant of a radial basis function built on Gaussian kernels. The GP model

is trained by a series of simulations performed using the multiscale model. Consider a set of

nt input training parameter sets, ψt = {ψt1 , . . . ,ψtnt} such that ψti ∈ S. In this work, Latin

hypercube sampling is employed to obtain parameter sets spread within S. The multiscale model

is exercised to compute the corresponding set of output values, yt, from parameters ψt. For a

given input prediction point, ψp, the output of the GP, yp, is computed as a Gaussian (Normal)

distribution conditioned upon the prediction point, training points, training point outputs, and the

hyperparameters of the GP, Ψ:

p(yp|ψp,ψt,yt; Ψ) ∼ N(m,S) (4.15)

where m and S are the prediction mean and variance and N denotes a Gaussian distribution.

The covariance, kij , between two points, ψi and ψj , in the input space is defined as

kij = k(ψi,ψj) = θ1 exp

{
− 1

2

np∑
d=1

(ψid − ψjd)2

λ2
d

}
(4.16)

in which θ1 is a scaling factor and λd the length scale parameter in the dth input dimension. θ1

and λd comprise the hyperparameters of the GP model. When λd is small, variation in the output

response is more sensitive to slight perturbations of the input. When λd is large, the output re-

sponse is less sensitive to changes in the input. A covariance matrix is defined for any two sets of

parameters, ψa = {ψa1 , . . . ,ψana} and ψb = {ψb1 , . . . ,ψbnb} such that

KABij = k(ψai ,ψbi). (4.17)

The covariance matrices of interest in the GP model are those between the set of training input

values, denoted by T and the set of prediction input values, denoted by P .

The optimal length scale parameters are inferred in the training of the GP model from the given
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data by maximizing the log marginal likelihood [45, 77]:

logP (yT | xT ; θ) = −1

2
yT

T(KTT + σ2
nI)−1yT −

1

2
log | KTT + σ2

nI | +
np
2

log(2π) (4.18)

where σ2
n is the noise variance of the training points and I indicates the identity matrix whose size

matches KTT .

The prediction mean, m, and variance, S, from the trained GP model are defined as:

m = KPT (KTT + σ2
nI)−1yt (4.19)

S = KPP −KPT (KTT + σ2
nI)−1KTP (4.20)

Where KPP, KPT, and KTP are computed from the set of prediction inputs. For GP model

predictions trained from computer models, σ2
n is taken as 0, as the computer prediction is taken to

be a noiseless process (i.e. the computer output is taken to be always the same for the same input).

Surrogate model error is a function of the distance between the prediction point and the nearby

training points. Model prediction error is taken to be lesser for predictions made closer to the

values used to train the response surface of the GP model, while there are high errors associated

with predicting outputs for inputs that are not near the training points. The surrogate model error

can be estimated in the GP model using a jackknifing or “leave-one-out” cross-validation approach

[45]. For each of the nt training points, a GP model is constructed leaving out the ntht point.

The prediction mean and variance at this point is then determined for each of the nt points in

this manner as a Gaussian ∼ N(m,S). Finally, the surrogate model prediction error, εsu, can be

estimated also as a Gaussian distribution with mean, µsu, and variance, σ2
su:

µsu =
nt∑
i=1

mi (4.21)

σ2
su =

nt∑
i=1

Si (4.22)
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Chapter 5

MODEL PARAMETER CALIBRATION UNDER UNCERTAINTY INVESTIGATIONS

The Bayesian parameter calibration approach described in Chapter 4 was implemented in the

calibration of constituent material parameters for two FRP composite material systems. In the first

investigation, the proposed calibration method was implemented to identify the underlying mate-

rial parameter distributions from experimental data acquired from off-axis loaded unidirectional

S2-glass/epoxy composite specimens, and is presented in Section 5.1. The second investigation,

included in Section 5.2, implements the Bayesian calibration scheme to calibrate underlying mate-

rial parameter distributions from lamina-scale experiments of IM7/977-3 carbon FRP composites

and also predicts the ultimate strength of laminated composite layups from the calibrated material

distributions.

5.1 Uncertainty Quantification at the Lamina Scale

. The proposed model calibration and uncertainty quantification approach was employed to

evaluate the response of unidirectional S2-glass/epoxy composite materials. In this study, the

effective composite response of a unidirectional lamina was used to calibrate the underlying ran-

dom constituent material parameters of the fiber and matrix which comprise the composite. The

Bayesian calibration method was employed with MCMC sampling and GP surrogate modeling

to quantify the distributions of the material parameters for the rate-dependent damage evolution

model described in Section 2.3.2. The calibration was validated by comparing the simulation re-

sult of randomly sampled parameter sets from the calibrated distributions with the experimental

results. It is noted that the EHM model is not exercised in this study, but rather this study presents

a significant step in propagating randomness between the lamina or RVE scale and the constituent

material scale. This work below was published in the International Journal for Multiscale Compu-
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Figure 5.1: Uniaxial Tensile Stress Strain Curves for (a) 15◦ and (b) 30◦ Off-Axis Specimens [99]

tational Engineering [14].

Off-axis specimens loaded uniaxially to failure at angles of 15◦ and 30◦ to the fiber direction

with strain rates of 0.0001/s, 0.01/s and 1/s, were considered in this study. The stress strain curves

for these tests, as originally provided by Thiruppukuzhi and Sun [99], are shown in Figure 5.1.

The ultimate strength and the strain to failure for each of the six tests were used in the calibration

effort. This data set provides a fairly sparse amount of information for calibration. As such, only

a subset of the model parameters available were calibrated, specifically a(f), b(f), p(f), and q(f) (f

indicates the fiber phase and m the matrix).

An RVE with a fiber ratio of 65%, shown in Figure 5.2, with periodic boundaries, was created

as a homogenization of the structural scale response for the unidirectional GFRP composite. Strain

load was applied to the RVE by defining relative displacements between the periodic boundaries

equivalent to the transformed strains from the off-axis loadings. The fiber and matrix phases were

both meshed with tetrahedral elements, with 1806 total elements used to define the RVE.

The elastic parameters of the fiber and matrix were chosen assuming isotropic behavior at the

microscale such that the elastic moduli of the overall composite material at 15◦ and 30◦ to the

fiber longitudinal direction match the experimental data. The fiber was modeled with modulus of

elasticity, Ef = 60 GPa, and Poisson ratio, νf = 0.30; the matrix with Em = 4.775 GPa and
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Figure 5.2: Representative Volume Element of the S2-glass GFRP Composite.

νm = 0.29. Neglecting interface damage, 12 parameters remained (a(γ), b(γ), p(γ), q(γ), c(γ), and

υ0(γ) for both the fiber and matrix from Equations 2.37, 2.45, 2.46, and 2.49) governing the material

response of the RVE. c(γ) is used to account for the difference in damage behavior under tensile and

compression loadings and was set to 0 for both phases since only tensile loading was considered.

υ0(γ) , the threshold value below which no damage occurs in the phase set to zero for both the

fiber and matrix, as well, since only ultimate response was considered in this study. This left the

eight damage evolution parameters, a(m), b(m), p(m), q(m), a(f), b(f), p(f), and q(f), unknown. In this

investigation, the parameters governing the matrix response were set at deterministic values (a(m) =

2.0, b(m) =1.5, p(m) = 2.5, and q(m) = 0.001) and the damage parameters of the fiber were calibrated.

The sensitivity of the damage model response to each of the four parameters, a(f), b(f), p(f), and

q(f), was evaluated using a one-element model to set bounds on the prior distributions of each of

these parameters in the calibration. Twelve sets of these model parameters were selected using

Latin Hypercube sampling and were each used to simulate the six strain rate and strain orientation

input conditions from the experimental data. GP models were trained for each experiment for

ultimate stress, σ(f), and strain to failure, εf . The experimental data was then used to calibrate the

parameters of the damage model and discrepancy function as well as the standard deviation of the

measurement errors.
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5.1.1 Parameter Sensitivity Study

The prior distributions for the four calibrated material parameters were obtained by evaluat-

ing the damage evolution in a one-element model for the effect that each parameter displayed on

the stress-strain and strain-damage relationships. The distributions of the parameters a(f), b(f),

p(f), and q(f) were selected, considering the nonlinear relationships in these variables, to keep

the ultimate strength and strain to failure values within a reasonable range of the experimentally

observed values when RVE failure occurs. The rate of damage growth in the constituent is pri-

marily governed by a(f) and b(f). As a(f) increases, the strain to failure decreases and the ultimate

stress attained decreases, seen in Figure 5.3. Figure 5.4 shows the effects of b(f) on stress, strain,

and damage with damage accumulating faster for larger b(f) values, accompanied by lower stress

values.

Figure 5.3: Effect of a(f) on Damage vs. Strain and Stress vs. Strain Behavior.

The parameters p(f) and q(f) govern the rate-dependency of the damage evolution. Figure

5.5 shows the effect of three different values of p(f) for each of the strain rates considered. As

p(f) increases, the response becomes more rate-dependent. Figure 5.6 shows the effect of q(f) on

the rate dependency of the damage accumulation model. For greater q(f) values, the difference

between growth rates from different strain rates is more pronounced.

This analysis yielded prior uniform distributions for the parameters as a(f) = [0, 0.2], b(f) =
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Figure 5.4: Effect of b(f) on Damage vs. Strain and Stress vs. Strain Behavior.

[1, 2] ,p(f) = [1, 2], and q(f) = [0, 0.001].

97



Figure 5.5: Effect of p(f) on Rate Dependence of Damage Accumulation.
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Figure 5.6: Effect of q(f) on Rate Dependence of Damage Accumulation.
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5.1.2 Simulation and GP Model Training

Using Latin Hypercube sampling to draw twelve sets of model parameter values from the prior

distributions above and the six experimental input conditions, 72 finite element simulations were

performed. From these simulations, the stress at the macroscale of the composite was computed as

the component of the homogenized stress acting in the direction of the strain loading. As the RVE

was loaded with the strain oriented at an angle to the fiber direction, the face of the RVE transverse

to the fiber direction accumulated damage at the fastest rate (see Figure 5.7). Structural failure

occurred when the stress carrying capacity in this direction was lost. The resulting stress-strain

curves from all 72 simulations are shown alongside the experimentally obtained curves in Figure

5.8.

Figure 5.7: Matrix Damage Accumulation Transverse to the Fiber Direction.

The ultimate stress and the strain to failure from these simulations were used to train twelve

GP models. A mean (trend) function was used in the training of the GP models as a first fit for

the outputs to the model parameters. To account for the nonlinearity in the model, the form of the

mean function was:

ŷmean = c0 + c1a
(f) + c2b

(f) + c3a
(f)2

+ c4b
(f)2

+ c5a
(f)3

+
c6

a(f)b(f)
+ c7p

(f) + c8ln(q(f)) (5.1)

where ŷmean is the mean function prediction and c0...8 are the coefficients of the mean function.

These coefficients were determined from least-squares regression for each of the twelve surrogate

models. Using this form for the mean function yielded predictions with R-squared values from
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Figure 5.8: Simulated and Experimental Stress vs. Strain curves for (a) 15◦ and (b) 30◦ Load
Application.

0.9 to 0.99 for each of the twelve data sets. The GP model, with a squared exponential covariance

function, was then trained using the difference between the mean function prediction and the actual

training value.

5.1.3 Model Discrepancy and Measurement Error

Recalling Equation 4.1, the trained GP model provides the surrogate for the FEM model pre-

diction, ŷ(x, θ), while the discrepancy, δ(x), and measurement error, ε(m), must still be addressed.

In this study, it was assumed that the model discrepancy was only a function of the strain-rate, ε̇,

and that the function was the same for both the 15◦ and 30◦ tests:

δ(x) = b0 + b1ln(ε̇) (5.2)
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where b0 and b1 are the coefficients of the discrepancy term to be calibrated (two for the stress

discrepancy and two for the strain discrepancy). The prior distributions for these coefficients were

taken as uniform: b0σ = [-10,10], b1σ = [-2,2], b0ε = [-1,1], b1ε = [-0.01,0.01].

Output measurement error was taken as a Gaussian random value with zero mean and standard

deviation, σ(m). Since two types of outputs, ultimate stress and strain to failure were utilized in this

calibration process, two separate values of measurement error standard deviation were calibrated,

σmσ and σmε , for the stress and strain respectively. It was assumed that the measurement error was

independent of the load orientation angle strain rate. The prior density of the standard deviation,

based on the Fisher information criterion [29] is given as:

f ′(σ(m)) ∝ 1

σ(m)
(5.3)

The prior of the standard deviation was assumed to be uniform from 0.1 to 20 MPa for stress

and 0.001% to 0.1% for strain.

5.1.4 Calibration Results

The distributions of ten variables were to be calibrated using MCMC sampling: θ = a(f), b(f),

p(f), q(f), b0σ , b1σ , b0ε , b1ε , σmσ , σmε . For each loop in the MCMC sampling, a random value

was sampled from each distribution. Assuming independence, the prior probability of this set was

proportional to the product of the inverse of the standard deviations, as all the other values were

sampled from uniform distributions. Using a(f), b(f), p(f), and q(f), the GP model predictions for

the twelve outputs were calculated. The discrepancy values were calculated from b0σ , b1σ , b0ε , b1ε ,

using Equation 5.2, and added to the GP prediction. The measurement error standard deviations

σmσ and σmε were then used to compute the likelihood of observing the experimental outputs given

those model parameters and discrepancy values. MCMC simulation was then carried out for five

hundred thousand samples until the chain converged. The results for the calibrated distributions

of the four model parameters are shown in Figure 5.9 through Figure 5.12. In each of the graphs,

posterior distribution of the parameters can be seen to tighten and show preference to a narrower
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band of values. Each of the graphs shows one major spike in the parameter values, with some

minor spikes away from the large spike. This is partly attributed to the nonlinearity of the model

and numerical artifacts from the MCMC method.

Figure 5.9: Calibrated Distribution of a(f).

Figure 5.10: Calibrated Distribution of b(f).

Apart from the natural variability in the material parameters, two major sources of uncertainty

exist in the model: model discrepancy and measurement error. Surrogate model error was esti-

mated by using the “leave-one-out” approach. In the calibration procedure, this surrogate model

error was included in the calibrated model discrepancy. Model discrepancy and measurement error

were evaluated during the calibration process. The estimated error in the surrogate model is given

in Table 5.1. The variance in the stress prediction error was high, indicating that additional train-

ing points are needed to reduce the epistemic uncertainty. With four parameter dimensions, twelve

103



Figure 5.11: Calibrated Distribution of p(f).

Figure 5.12: Calibrated Distribution of q(f).

training points can miss nonlinearities in the model response.

The parameters of the model discrepancy (including model form error and solution approxi-

mation error), calibrated simultaneously with the model parameters, are shown in Figure 5.13 for

stress and Figure 5.14 for strain. If there were no discrepancies in the model, each of the coef-

ficients would be equal to zero. As this is not the case, it is apparent that the damage model or

surrogate model has a discrepancy in capturing all of the rate-dependent effects in the material

response.

The final uncertainty measure that was calibrated is the standard deviation of the measurement

error. The posterior distributions for stress and strain measurements are displayed in Figure 5.15.

These graphs indicate that the standard deviation of the measurement error in the stress is around
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Table 5.1: GP Surrogate Model Error.

Strain Strain Surrogate Model Error
Output Rate Orientation Mean Variance
Stress 0.0001/s 15◦ 0.0142 53.1
Stress 0.01/s 15◦ -0.0050 37.5
Stress 1/s 15◦ -0.5016 134.4
Stress 0.0001/s 30◦ -0.0777 5.6
Stress 0.01/s 30◦ -0.0616 1.4
Stress 1/s 30◦ -0.2251 30.9
Strain 0.0001/s 15◦ 0.001172 0.000479
Strain 0.01/s 15◦ 0.000690 0.000186
Strain 1/s 15◦ -0.000487 0.001545
Strain 0.0001/s 30◦ -0.000197 0.000315
Strain 0.01/s 30◦ 0.000270 0.000487
Strain 1/s 30◦ -0.000075 0.001293

2 MPa and for strain around 0.01%. Additional experimental observations are required to generate

more accurate predictions of the measurement error.

The calibrated model parameters were used to draw samples of the predicted outputs using

Equation 4.1. This prediction for the first experimental set-up with a strain rate of 0.0001/s and

strain applied at a 15◦ angle to the fiber direction is shown in Figure 5.16. A significant amount

of scatter remains around the observed value for the output, but the calibration shows reasonable

performance in achieving results close to the observations. While the range of predicted strain to

failure appears to be centered on the observed results, the range of predicted ultimate stress tends to

be biased below the observed value. The calibration and prediction accuracy can be improved with

further testing and a larger experimental data set. As such, there is not enough data to compare

the statistics of the predicted outputs with the true material behavior. However, the variance in the

model predictions is on the order of material behavior expected for composite materials.

5.2 Uncertainty Quantification at the Laminate Scale

To build upon the work of the previous section, the proposed probabilistic multiscale calibra-

tion approach was applied to investigate the rate-dependent response of IM7/977-3 carbon fiber
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Figure 5.13: Model Discrepancy Parameters for Stress Prediction (δ(x) = b0 + b1ln(ε̇)).

Figure 5.14: Model Discrepancy Parameters for Strain Prediction (δ(x) = b0 + b1ln(ε̇)).

reinforced composite laminates. The random distribution of microscale failure properties was cal-

ibrated based on ply-level experimental data. The calibrated model predictions from EHM were

validated against separate experimental measurements of the ultimate tensile strength of quasi-

isotropic open-hole composite specimens at various loading rates. The effect of macroscopic

spatial distribution of the constituent failure properties on the composite response was also in-

vestigated through a parametric analysis. This study was initially presented at the AIAA SciTech

2013 conference [15] and published in Computational Mechanics [17].
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Figure 5.15: Measurement Error Standard Deviation for Stress and Strain.

Figure 5.16: Sampled Failure Predictions for 0.0001/s Loading Rate at 15◦.

5.2.1 Experimentation

A suite of experiments was conducted to calibrate the material parameters and validate the

proposed computational model for rate dependent damage accumulation in carbon fiber reinforced

epoxy composite laminates. IM7/977-3 composite specimens with three separate layups of uni-

directional laminae were tested: (a) 0◦ specimens consisting of eight unidirectional plies with

fibers oriented parallel to the coupon length; (b) 90◦ specimens consisting of sixteen unidirectional

plies with the fibers oriented perpendicular to the coupon length; and (c) open-hole quasi-isotropic
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specimens with a layup of [+45, 0,−45, 90]2S and hole diameter of 6mm. Specimen configurations

are summarized in Table 5.2. The mean fiber volume fraction of the specimens was determined

to be 65% based on acid digestion testing. Monotonic tension experiments were conducted on

Table 5.2: IM7/977-3 Nominal Specimen Dimensions.

Fiber Number Length Width Thickness # specimens
orientation Of plies (mm) (mm) (mm) tested

0◦ 8 250 13 1 12
90◦ 16 100 13 2 25

[+45, 0,−45, 90]2S 16 250 38 2 6

the 0◦ specimens according to ASTM Standard D3039 [5] at a quasi-static displacement rate of

1.0 mm/min. Strain in the 0◦ specimens was measured using a centrally located extensometer.

Applied load was measured directly from the testing machine and stress was calculated over the

gross cross section of the specimen. Three point bend tests were performed on the 90◦ specimens

with a span length of 44.7 mm at midpoint displacement rates of 0.1 mm/min, 1.0 mm/min, and

100 mm/min according to ASTM Standard D790 [11]. The midpoint displacement and applied

load were measured directly from the testing machine. Stress and strain at the bottom of the beam

at midspan were calculated from elastic beam theory. The quasi-isotropic specimens were tested

according to ASTM Standard D5766 [10] at displacement rates of 1.0 mm/min and 100 mm/min.

Strain was measured using a 1-inch long extensometer centered on the hole. Applied load was

measured from the testing machine and stress was computed over the gross cross-sectional area of

the specimen. All tests were performed on an MTS universal testing machine.

5.2.2 Calibration and Validation

Random failure parameters for the fiber and matrix constituents of IM7/977-3 composites were

probabilistically calibrated using experimental data from the 0◦ and 90◦ unidirectional specimens

at varying load rates. EHM with random failure parameters was employed to predict the failure

strength for a quasi-isotropic IM7/977-3 laminated composite with an open hole under tension at
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a fast and slow loading rate to demonstrate the rate-dependence and uncertainty quantification of

the model. These results of the laminated composite predictions were compared to experimental

results at two applied strain rates.

5.2.3 Model Calibration

The rate-dependent damage evolution model contains six parameters describing the failure

evolution in a part. Every part that lays within the subdomain of the same constituent is associated

with an identical parameter set. For instance, given ψ(m) = {a(m), b(m), υ
(m)
0 , p(m), q(m), c(m)} is

the set of random parameters defining failure in the matrix and the set of random fiber failure

parameters, ψ(f), is defined similarly, then:
ψ(γ) = ψ(m) if θ(γ) ∈ θ(m)

ψ(γ) = ψ(f) if θ(γ) ∈ θ(f)

(5.4)

where θ(m) and θ(f) denote the subdomains of the RVE occupied by the matrix and fiber, respec-

tively. The set of random failure parameters of the proposed model is therefore:

ψ = {ψ(m),ψ(f)} (5.5)

It is natural to consider the elastic moduli tensor of the constituent materials as random vari-

ables due to the presence of manufacturing induced defects in a composite microstructure. The

effect of variability in elastic moduli of constituents on effective composite properties has been

established in a number of publications (e.g. Refs. [23, 32, 50, 81, 88]). However, the focus of the

present effort is on failure parameters only and therefore the moduli were set as deterministic, with

values shown in Table 5.3. The fiber parameters were calibrated from the 0◦ tension tests as fiber

breakage was the primary failure mode. Likewise, the 90◦ three point bending tests isolated ma-

trix cracking as the failure mode and were used for matrix parameter calibration. The response of

the two distinct microstructural materials were sufficiently isolated by calibrating the constituent

components of the computational model in this manner.
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Table 5.3: Elastic Parameters of Fiber and Matrix.

E(m) [GPa] E
(f)
1 [GPa] E

(f)
2 [GPa] G

(f)
12 [GPa] v(m) v

(f)
12 v

(f)
23

3.55 263.0 13.0 27.5 0.35 0.32 0.20

A total of 12 material parameters (6 for the matrix and 6 for the fiber) define the rate dependent

failure behavior of the composite constituents, as outlined in Table 5.4. For both constituents, the

damage thresholds (υ(m)
0 and υ(f)

0 ) were taken to vanish, implying that damage accumulation occurs

from the onset of loading. The tension-compression anisotropy parameters (c(m) and c(f)) were set

such that damage accumulates only under tensile loading (compression loading is not considered

in this study). Because carbon fibers do not exhibit significant rate dependence, p(f) and q(f)

were set to 100 and 1, respectively, which mimics the rate independent limit. The remaining six

parameters were calibrated using the proposed Bayesian approach. The results of the 0◦ monotonic

tension tests were employed to calibrate the failure behavior of the fiber (i.e. a(f) and b(f)) since

fiber failure dominates the failure response in these experiments. The three point bending test

results were used to calibrate the matrix failure parameters (i.e. a(m), b(m), p(m), and q(m)). The

quasi-isotropic specimens were used to validate the response predictions. The ROM representing

the IM7/977-3 microstructure with 65% fiber volume fraction used in this study is described in

Sec. 3.1.2.1.

Table 5.4: Material Properties Describing Rate Dependent Damage Evolution.

Property Description Equation

a(γ) Governs magnitude of failure Eq. (2.46)
b(γ) Governs ductility of failure Eq. (2.46)

p(γ), q(γ) Control rate-dependence Eq. (2.49)
c(γ) Control compression/tension anisotropy Eq. (2.37)
υ

(γ)
0 Threshold value of υ(γ) below which no damage occurs Eq. (2.46)

The stress-strain curves from the twelve 0◦ monotonic tension tests are shown in Fig. 5.17.

The experimental longitudinal mean failure stress, X1, and failure strain, ε1, were 2785 MPa and

1.64%, with standard deviations of 297.2 MPa and 0.185%, respectively. The range of failure stress
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was [2435,3300]MPa, with failure strain in the range of [1.26%,1.87%]. All of the 0◦ tension tests

failed under sudden and catastrophic fiber failure, as seen in Fig. 5.18.
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Figure 5.17: Stress vs. Strain Curves for 0◦ Tension Experiments.

Figure 5.18: Failure Image from 0◦ Monotonic Tension Experiments.

The quantity of interest, φlam, employed in the calibration procedure for the fiber behavior was

the ultimate stress of each replicate. The 12 failure stress values obtained from the 0◦ experiments

were used to formulate the likelihood function (Eq. 4.11) in the MCMC calibration of the fiber

damage evolution properties. Fifty multiscale finite element simulations were evaluated using

EHM and the rate-dependent damage evolution law to train the GP surrogate model of the 0◦

tension test. The parameters for these simulations were selected using Latin hypercube sampling.

One million MCMC steps were performed using the GP model and the resulting chain was used
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to quantify the distributions of a(f) and b(f). From the sampled MCMC chains, probability density

functions (PDFs) were computed using KS density estimation. The covariance matrix C of the

parameters was calculated using Eq. (4.14). The posterior distributions for the fiber constituent

parameters are displayed in Fig. 5.19 against the uniform prior distributions. The results for the
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Figure 5.19: Calibrated Distributions for Fiber Parameters.

calibration of the matrix parameters are displayed in Fig. 5.20. The calibration of the matrix

parameters from the three point bending experiments yields distinct peaks in probability for all

four of the calibrated material parameters.

Since the calibration of the model was performed based on the GP model and the GP model is

an approximation to the response surface generated by the actual multiscale model, it is necessary

to “verify” the calibration procedure directly with the multiscale model predictions. Verification in

this case refers to the comparison of the experimental data with full multiscale model simulations

performed by drawing samples from the calibrated parameter distributions; i.e., that the calibration

process achieved its intended result. The verification of the fiber parameter calibration was con-

ducted by drawing ten thousand samples. The PDF of the verification result is plotted in Fig. 5.21

against the KS density distribution of experimental results. Tick marks indicate individual exper-

imental values. The longitudinal failure stress and strain properties of the experiments and the

calibrated model are summarized in Table 5.5. The calibrated distributions show good agreement

in terms of the statistical mean and coefficient of variation for both stress and strain to failure. The
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Figure 5.20: Calibrated Distributions for Matrix Parameters.

strain to failure data was not used in the generation of the likelihood function in the calibration

process, but the resulting verification analysis shows good accuracy to this value.

Table 5.5: Experimental and Calibrated Failure Properties of 0◦ Tension Specimens.

Experiments Calibration
Property Mean CoV Mean CoV

Longitudinal failure stress X1 [MPa] 2785 0.107 2752 0.124
Longitudinal failure strain ε1 [%] 1.64 0.113 1.74 0.125

The mean failure stress from the experiments and simulations were 2785 MPa and 2752 MPa,

respectively, a difference of 1.2%. The standard deviation of the simulations, 340 MPa, is slightly

higher than from the experiments, 297 MPa. The simulated results show a more exaggerated peak

in probability near the cluster of experimental results around 2500 MPa. However, the tails of

the PDFs of the failure stress for experiments and calibrated model (i.e. Fig. 5.21(b)) are in good

agreement, indicating that the simulations captured the extreme values reasonably well. The mean

failure strain from experiments was 1.64% while the simulations predicted a mean of 1.74%. This
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Figure 6: Experimentally observed and simulated PDFs from 0◦ tension specimens: (a) failure
strain, (b) failure stress. Tick marks indicate individual experimental values.

of the failure stress for experiments and calibrated model (i.e. Fig. 6(b)) are in good agreement,

indicating that the simulations capture the extreme values reasonably well. The mean failure strain

from experiments is 1.64% while the simulations predict a mean of 1.74%. This discrepancy is due

to fact that the damage evolution model was calibrated to match the failure stress only, as expressed

above.

The failure parameters of the matrix were calibrated using the same procedure. The stress-strain

curves of the unidirectional 90◦ layups subjected to three point bending at three separate loading

rates are shown in Fig. 7. The loading rate has a noticeable effect on the failure strain and strength

as further illustrated in Fig. 8. The mean transverse failure stress, X2, of the specimens increases

from 102.3 MPa at 0.1mm/min to 118.3 MPa at 100mm/min loading rates. Similarly, the mean

transverse failure strain, ε2, increases from 1.27% at 0.1mm/min to 1.38% at 100mm/min. The

failure stress from all tests is in the range of [82 MPa,135 MPa] and the range of failure strains

is [1.14%,1.61%]. The mode of failure for all of the three point bending experiments was a single

matrix crack through the specimen at the midspan, under the loading point. The failure mode was

19

Figure 5.21: Experimentally Observed and Simulated PDFs from 0◦ Tension Specimens for (a)
Failure Strain and (b) Failure Stress.

discrepancy is due to the fact that the damage evolution model was calibrated to match the failure

stress only, as expressed above.

The failure parameters of the matrix were calibrated using the same procedure as the fiber

parameters. The stress-strain curves of the unidirectional 90◦ specimens subjected to three point

bending at three separate loading rates are shown in Fig. 5.22. The loading rate had a noticeable ef-

fect on the failure stress and strain to failure as further illustrated in Fig. 5.23. The mean transverse

failure stress, X2, of the specimens increased from 102.3 MPa at 0.1 mm/min to 118.3 MPa at

100 mm/min loading rates. Similarly, the mean transverse failure strain, ε2, increased from 1.27%

at 0.1 mm/min to 1.38% at 100 mm/min. The failure stress from all tests was in the range of [82

MPa,135 MPa] and the range of failure strains was [1.14%,1.61%]. The mode of failure for all of
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the three point bending experiments was a single smooth matrix crack through the specimen at the

midspan, under the loading point. The failure mode was consistent over all of the replicates at each

of the loading rates.
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Figure 5.22: Stress vs. Strain Curves for 90◦ Three Point Bending Experiments for 0.1 mm/min,
1 mm/min, and 100 mm/min Displacement Rates.

The Bayesian calibration procedure was repeated to evaluate the distributions for the matrix

failure parameters: a(m), b(m), p(m), and q(m). One hundred multiscale simulations were conducted

using sampled training points to generate predictions with failure stresses within the range of 50

to 200 MPa and train the GP model. The failure behavior of the composite transverse to the fiber

direction was idealized by modeling the critical region of the three point bending specimen at

the bottom of the coupon at midspan. One million MCMC steps were performed using the GP

model to generate the distributions of the failure parameters. In order to verify the calibration,

random samples were drawn from the KS density distributions and ten thousand simulations were

performed using the multiscale model.

Figure 5.24 compares PDFs of failure stress and failure strain of the three point bend specimens

at the three loading rates from the multiscale model and the experimental data. The transverse fail-

ure stress and strain properties of the experiments and the calibrated model at each displacement

rate are summarized in Table 5.6. The mean failure stresses in the simulations were 104.5, 108.7
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Figure 5.23: Effect of Loading Rate on Failure Stress in 90◦ Three Point Bending Specimens.

and 117.9 MPa for the 0.1 mm/min, 1 mm/min, and 100 mm/min displacement rates, respectively,

compared with the experimental means of 102.3, 108.7, and 118.0 MPa. The average stress pre-

dictions were in good agreement with the average stress with percent errors of 2.2%, 0.0%, and

0.1% for the 0.1 mm/min, 1 mm/min, and 100 mm/min displacement rates, respectively. While ten

experiments were used for the faster rate three point bend tests (1 mm/min and 100 mm/min), only

five were available for the 0.1 mm/min rate, which partially explains the slightly higher discrep-

ancy at the slowest rate. The mean failure strain for the slow, medium, and fast rate experiments

respectively were 1.27, 1.32, and 1.38% compared to the mean from simulations of 1.22, 1.27, and

1.38%. The mean failure strain does not correspond to the peak of the PDFs shown in Fig. 5.22,

which is the mode of the PDF and different than the mean for non-Gaussian distributions. The

slight discrepancy in the failure strains is attributed to the fact that the likelihood function in the

calibration process is computed based on the ultimate stress and not failure strain.

The standard deviations of failure stress from the experiments were 7.65, 6.97, and 12.44 MPa

for the 0.1 mm/min, 1 mm/min, and 100 mm/min displacement rates, respectively. In the cali-

brated simulations, the standard deviations were 7.08, 6.62, and 8.37 MPa, respectively. The per-

cent errors between predicted and experimental standard deviations were 7.4%, 5.0%, and 32.7%,

respectively. The variance in the 0.1 mm/min and 1 mm/min displacement rates were in reasonable
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agreement between the experiments and simulations. The experimental variance for the fastest dis-

placement rate was much higher than for the slower two rates. This displacement rate was near

the limits of the capabilities of the MTS testing machine. At the high rate of loading, the greater

variance compared to the variance from the other experiments could be attributed to a greater de-

gree of measurement error in the fastest displacement rate, as well as the presence of additional

physical phenomena that were significant only at the highest loading rate. The standard deviation

from the simulations performed at the fastest displacement rate was much closer to the simulations

of the other two rates than was witnessed in the corresponding experiments.

The PDFs obtained through multiscale simulations with calibrated parameter distributions

show some discrepancy with those obtained by the experiments. The primary reason for the dis-

crepancies is the modeling error associated with the idealization of rate effects. The calibration of

matrix material properties were performed to match behavior at three different load rates together.

When parameters were allowed to vary from rate to rate (i.e., calibration performed using experi-

ments loaded at a single rate), the experimental and simulated PDFs match to the same degree as

Fig. 5.21. This result implies a better model is necessary to capture the rate effect compared to

the power law used here. Nevertheless, a good match is observed between the primary distribution

metrics (i.e. mean and variance).
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Figure 5.24: KS Density PDFs for Strain to Failure and Ultimate Stress for Experimental Results
and Simulated Samples from Calibrated Parameter Distributions for 90◦ Monotonic Three Point

Bending Tests.

Table 5.6: Experimental and Calibrated Failure Properties of 90◦ Three Point Bending Tests.

Experiments Calibration
Property Rate Mean CoV Mean CoV

X2
f [MPa] 0.1mm/min 102.3 0.075 104.5 0.068

1 mm/min 108.7 0.064 108.7 0.061
100 mm/min 118.3 0.105 117.9 0.071

ε2f [%] 0.1mm/min 1.27 0.084 1.22 0.064
1 mm/min 1.32 0.073 1.27 0.060

100 mm/min 1.38 0.112 1.38 0.075

5.2.4 Model Validation

The calibrated EHM model with probabilistic material properties was employed to predict

the failure response of open-hole quasi-isotropic [+45,0,-45,90]2S specimens subjected to uniaxial

tension at two different strain rates and validated against the observed experimental data. Twenty

random correlated parameter sets were drawn from the calibrated parameter distributions. These
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parameters were used in multiscale simulations with the finite element discretization described in

Section 3.1.2.2 and the IM7/977-3 ROM generated as in Section 3.1.2.1. The simulated stress

strain curves at the loading rates of 1 mm/min and 100 mm/min are shown against the experiments

in Fig. 5.25. The average failure stresses from the experiments were 471.2 and 486.8 MPa at

the 1 mm/min and 100 mm/min loading rates, respectively. A consistent failure mechanism

was observed in each of the open hole specimens, predominated by transverse matrix cracking

at the hole in the 90◦ and ±45◦ plies and fiber failure in the 0◦ plies, as seen in Fig. 5.26. The

corresponding average failure stresses predicted by the simulations was 476.5 MPa and 485.1

MPa. The predictions of the mean strength were in excellent agreement with the experimental

observations. The standard deviation of failure stress from the experiments was 20.4 MPa and

31.2 MPa for the slow and fast loading rates, respectively, compared to 30.5 MPa and 34.1 MPa,

respectively, from the calibrated predictions. It is noted that only three experiments were available

for each loading rate and more comprehensive experimental datasets are needed to fully validate

the proposed approach with regards to the standard deviation of the predictions.

The evolution of damage shown in Fig. 5.27 shows good qualitative agreement between the

experimentally observed damage patterns and the predicted damage accumulation of the compu-

tational model. In the experiments, little damage was visible externally or with x-ray imaging

before the load reached 80 percent of the failure stress. The images in Fig. 5.27 show the evolution

from delaminations between plies inside the hole to surface cracks (transverse matrix failure) in

the −45◦ ply, where the cracks propagate parallel to the fiber orientation in the ply. No noticeable

differences were observed between the pattern of damage evolution for the two loading rates in

either experiments or simulations, and the same patterns of damage were observed over each of

the realizations.

The simulations shown in Fig. 5.25 considered the failure parameters of the composite con-

stituents as randomly sampled from the calibrated distributions, but spatially uniform across the

specimen. An additional investigation was performed to understand the effects of treating the

material parameters as spatially varying over the specimen. The length scale parameter, lr, was
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rate and more comprehensive experimental datasets are needed to further validate the proposed

approach with regards to the standard devation of the predictions.
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Figure 11: Stress-strain curves for experiments and simulations of quasi-isotropic open hole
specimens in monotonic tension at (a) 1 mm/min and (b) 100 mm/min.

The simulations shown in Fig. 11 consider the failure parameters of the composite constituents

randomly chosen from the calibrated distributions, but spatially uniform across the specimen. An

additional investigation was performed to understand the effects of treating the material parameters

as spatially varying over the specimen. We consider the length scale parameter, lr, defining the

spatial randomness of the microscale material parameters in the structure. A structure with smaller

lr indicates more rapidly fluctuating parameter values across the realization than one with a large

lr. In this investigation, the random parameters were assigned to the structure in groups parallel to

the fiber orientation of width equal to lr, as shown in Fig. 13. This sampling method was selected

as fiber properties were taken to be constant along the length of the fiber and the in situ matrix

properties are strongly dependent on the confining effects of fiber spacing, which was also taken to

be constant along the length of the fibers.

The samples were drawn from the distributions determined from the MCMC calibration proce-

dure. For each length scale parameter considered, 20 random spatially varying parameter fields were

generated and the multiscale model was exercised to predict the ultimate failure for each realization.

The resulting mean and standard deviation of the ultimate failure strength in the quasi-isotropic

24

Figure 5.25: Stress vs. Strain Curves for Experiments and Simulations of Quasi-Isotropic Open
Hole Specimens in Monotonic Tension at (a) 1 mm/min and (b) 100 mm/min.

introduced such that a structure with smaller lr indicates more rapidly fluctuating parameter values

across the specimen realization than one with a larger lr. In this investigation, the random param-

eters were sampled for the structure in groups parallel to the fiber orientation of width equal to

lr, as shown in Fig. 5.28. This sampling method was selected as fiber properties were taken to be

constant along the length of the fiber and the in situ matrix properties to be strongly dependent on

the confining effects of fiber spacing, which was also taken to be constant along the length of the

fibers.

The samples were drawn from the distributions determined from the MCMC calibration pro-

cedure. For each length scale parameter considered, 20 random, spatially varying parameter fields

were generated and the EHM model was exercised to predict the ultimate failure for each real-

ization. The resulting mean and standard deviation of the ultimate failure strength in the quasi-

isotropic open hole coupon under tension at the slow loading rate is presented in Fig. 5.29. The
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Figure 5.26: Images of Failure from [+45, 0,−45, 90]2S Quasi-Isotropic Open Hole Tension Tests
at 1.0 mm/min and 100 mm/min.

sampling width does not have a significant impact on the mean failure strength of the coupon.

However, there is a pronounced effect on the standard deviation of predicted failures. For real-

izations with a high sampling length, i.e. the parameters fluctuate at a lower frequency over the

realization, the standard deviation is larger than the realizations with more rapidly fluctuating pa-

rameters. A logarithmic fit line for the standard deviation as a function of sampling length is

included in Fig. 5.29(b).

Simulation

Experiment

50% σf 88% σf 90% σf

Figure 5.27: Evolution of Damage at 1mm/min
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Figure 5.28: Sampled Parameter Groups for Spatial Variability with lr = (a) 1mm, (b) 5mm, (c)
20mm
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Figure 14: (a) Mean and (b) standard deviation of ultimate failure strength as a function of the
length of correlated sampling.
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Chapter 6

FUTURE WORK AND CONCLUSIONS

6.1 Future Work

While the EHM approach implemented in the DTDP program performed well in the prediction

of both static and fatigue behavior under a number of loading conditions, significant opportunities

persist for improving the capabilities of this method. Additional experimental results on sym-

metric off-axis laminates would help to provide more precise fundamental understanding on the

manner in which damage evolution in the composite is effected by mixed-mode loading behaviors

and shed light onto additional damage mode interaction effect, particularly in the [60,0,-60]3S and

[30,60,90,-60,-30]2S layups. Experimental data is available primarily for unidirectional or cross-

ply, 0◦, 90◦, and 45◦ layups, but little data is available on configurations such as [+30,−30]nS or

[+60,−60]nS . An experimental investigation using these layups has been initiated at the AFRL to

acquire this data, in part due to the recommendations of this research. From a modeling perspec-

tive, the manner in which delamination is addressed in the ROM could be further refined. Presently,

when damage accumulates in the ROM part associated with delamination failure, a significant im-

pact is observed on the stiffness of the RVE in the transverse direction. This effect is undesired

as the development of delamination is a phenomenon localized to the ply interface. This could be

alleviated by investigating new ROM partitions which use a thinner width of elements to represent

the delamination part, such that the inelastic strain in the ROM due to delamination does not have

as great of an influence on the transverse behavior.

An further opportunity for improvement is in the reduction of spurious residual forces present

in the EHM model after part failure. Utilizing the concept of impotent eigenstrains in the formu-

lation of additional sets of EHM coefficients to represent the post-failure state of the RVE could

reduce the presence of residual stresses after failure. This would also permit the ROM to better
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capture partial failure modes in the microscale, such as the case where delamination has occurred

whilst the in-plane stiffness is preserved, or where the matrix material has failed while the fiber

remains unbroken. The localization and kinematics of failure need to also be addressed using a

macro-element approach. Currently the use of CDM in the EHM approach leads to mesh size

dependence and mesh alignment bias in the failure of laminated composite specimens. Utilizing

finite element formulations with enriched bases or a novel quadrature scheme in the formulation of

elements to account for delamination and the localization of damaged regions would significantly

improve the predictive capability of the EHM approach and also provide a means to predicting

distinct cracks. Work has begun in this arena for composites such as the mesh independent crack-

ing network proposed by Iarve et al. [48], cohesive zone models by Li et al. [58], or virtual crack

closure technique [54]. The methods currently rely on analytical models of composite response to

govern the behavior of discrete cracking events. The EHM framework could be leveraged in con-

junction with these macroscale methods to provide higher fidelity representations of the microscale

behavior governing the discrete cracks.

In addition to improving the mechanics of the EHM model, the application of the Bayesian cal-

ibration scheme presented could be extended to further applications in the prediction of composite

response. One potential opportunity for future works would be the application of the Bayesian

calibration approach of underlying material parameters over a larger set of experimental data, such

as the data set provided in the DTDP program. Not only would the calibration require the con-

sideration of additional interdependent material parameters, the verification and validation of the

method would be strengthened by the additional number of experiments that EHM model is ex-

ercised in predicting. Calibration of random material parameters in this context would also move

towards providing the methodology for developing a comprehensive design approach for compos-

ite materials considering the reliability of laminated composite components. In order to adequately

account for uncertainty in the composite material system from sources beyond just material param-

eter uncertainty, more robust calibration techniques could be applied. Bayesian networks could be

employed to extend the uncertainty quantification framework to consider uncertainty from addi-
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tional scales, such as fiber alignment, fiber volume fraction, statistically representative volumes

instead of unit cells, and ply thickness variability.

6.2 Conclusions

The developments presented in this dissertation present a meaningful addition to the state of

the art in the prediction of the mechanical behavior of advanced composite materials, both from a

deterministic and a probabilistic perspective. The goal of this dissertation was to demonstrate new

fundamental understanding on the way in which microscale failure is propagated to macroscale

discrete failure events in FRP composites, predict the monotonic and fatigue response of compos-

ites using the EHM approach, and quantify the effect of random constituent material properties

of FRP composites on effective composite properties and laminated composite behavior. The in-

herent tension/compression anisotropy of stiffness exhibited in the unidirectional tape of many

FRP composite materials was addressed using the new dual-ROM approach. A novel approach to

predicting damage evolution under both uniaxial and shear-dominate loading conditions was pre-

sented using parameter weighting to modify the resulting ductility of the stress-strain relationship

was also presented. These new predictive methods were employed in predicting a wide range of

IM7/977-3 layups with open hole and unnotched configurations under tension, compression, and

tension-tension fatigue in the DTDP program. These cases exhibited failure modes dominated by

fiber breakage, matrix cracking from normal and shear-dominated failure, delamination, and com-

binations of these modes. The resulting predictions of the EHM from the DTDP program were

in good agreement, both quantitatively and qualitatively, with the experimental data. This demon-

strates the effectiveness of the model improvements presented herein. Additionally, the significant

computational savings achieved by implementing EHM using parallel computational capabilities

as opposed to the previous serial implementation were essential to providing predictions promptly

and on the tight time schedule of the DTDP program.

The propagation of randomness across the scales of composites using Bayesian calibration

of constituent parameters for S2-glass composites and IM7/977-3 carbon fiber composites con-
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sidering rate-dependent failure behavior successfully quantified the effect of random constituent

material properties of FRP composites on effective composite properties and laminated compos-

ite behavior. This work represented the first application of Bayesian parameter calibration to the

prediction of laminated composite response using a CH based approach and is amongst the few

published investigations directed towards the calibration of underlying material parameters as op-

posed to propagating probabilistic effects to larger scales from assumed parameter distributions.

Overall the new contributions to both the prediction of physical behavior using multiscale compu-

tational mechanics and the quantification of uncertainty using Bayesian statistical methods provide

new methods for the prediction of laminated composite behavior.
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[50] M. Kamiński and M. Kleiber. Perturbation based stochastic finite element method for ho-

mogenization of two-phase elastic composites. Comput. Struct., 78:811–826, 2000.

[51] M.C. Kennedy and A. O’Hagan. Bayesian calibration of computer models. J. Roy. Stat.

Soc. B, 63:425–464, 2001.

[52] V. G. Kouznetsova. Computational Homogenization for the multi-scale Analysis of multi-

phase materials. 2002.

[53] A. Krishnan and C. Oskay. Modeling compression-after-impact response of polymer matrix

composites subjected to seawater aging. J. Compos. Mater., 46:2851–2861, 2012.

[54] R. Krueger. Virtual crack closure technique: history, approach, and applications. Appl.

Mech. Rev., 57:109–143, 2004.

[55] D.J. Lekou and T.P. Philippidis. Mechanical property variability in FRP laminates and its

effect on failure prediction. Compos. Part B-Eng., 39:1247–1256, 2008.

[56] J. Lemaitre. A course on damage mechanics. Springer Science & Business Media, 2012.

[57] J. Lemaitre and J.L. Chaboche. Mechanics of Solid Materials. Cambridge University Press,

1994.

[58] S. Li, M. D. Thouless, A. M. Waas, J. A. Schroeder, and P. D. Zavattieri. Use of mode-

I cohesive-zone models to describe the fracture of an adhesively-bonded polymer-matrix

composite. Compos. Sci. Technol., 65:281–293, 2005.

[59] B. Liang and S. Mahadevan. Error and uncertainty quantification and sensitivity analysis in

mechanics computational models. Int. J. Uncertain. Quantif., 1:147–161, 2011.

[60] S. C. Lin. Reliability predictions of laminated composite plates with random system param-

eters. Probab. Eng. Mech., 15:327–338, 2000.

132



[61] J. D. Littell, C. R. Ruggeri, R. K. Goldberg, G. D. Roberts, W. A. Arnold, and W. K.

Binienda. Measurement of epoxy resin tension, compression, and shear stress–strain curves

over a wide range of strain rates using small test specimens. J. Aero. Eng., pages 162–173,

2008.

[62] P.A.M. Lopes, H.M. Gomes, and A.M. Awruch. Reliability analysis of laminated composite

structures using finite elements and neural networks. Compos. Struct., 92:1603–1613, 2010.

[63] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equation of

state calculations by fast computing machines. J. Chem. Phys., 21:1087–1092, 1953.
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