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CHAPTER I 

 

BACKGROUND 

 

1.1 Introduction 

 Alzheimer’s disease (AD) is the most common form of age-related 

dementia.  Western populations are ‘aging’; therefore, AD is poised to afflict up to 

12 million Americans by the year 2020.   The neurodegeneration in Alzheimer’s 

disease is associated with an early increase of oxidative damage (Nunomura, 

Perry et al. 2001), amyloid beta (Aβ) peptide deposition in senile plaques, and 

tau accumulation neurofibrillary tangles (NFTs).  These pathological hallmarks 

are found primarily in frontal, temporal, and parietal cortices as well as in the 

hippocampus.   

 Several risk factors for familial AD exist. Inheritance of the apolipoprotein 

E4 (APOE4) allele among the common alleles APOE2,3,4, is associated with 

increased risk of developing AD (Roses 1998; Tsuang, Larson et al. 1999).  

Mutations in amyloid precursor protein (APP) or Presenilins (PS) 1 and 2 cause 

rare autosomal dominant forms of AD (McPhie, Lee et al. 1997; McPhie, Golde et 

al. 2001).   Familial and late onset AD (LOAD) share common endpoints of 

oxidative damage, plaques, tangles and neurodegeneration; however,  LOAD 

accounts for more than 90% of AD cases.  The links between oxidative damage, 

microtubule (MT) protein modification, axonopathy and their role(s) within the 
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discreet etiology and mechanisms in LOAD pathogenesis are not fully 

understood. 

In the present studies, I have tested the hypotheses that reactive products 

of lipid peroxidation (LPO) are the effectors that lead to neuronal MT (MT) 

collapse and inability to polymerize in cells and that this same loss of MT function 

is recapitulated in human brain tissue from LOAD, frontotemporal dementia with 

Parkinsonism linked to chromosome 17 (FTDP-17), but not mild cognitive 

impairment (MCI).    MT dysfunction in human brain tissue parallels the 

increasing abundance of modifications induced by oxidative damage of MT 

proteins that is also in accordance with protein insolubility.  A proposed scheme 

of AD pathogenesis, adapted from a recent review by Drs. Hardy and Selkoe, is 

presented in the flow chart below (Figure 1).     

 

 

 

 

 

 

 

 

 

 

 

 Increased A ββββ peptide production, aggregation & deposition

Direct damage to neurons Glial activation of innate immunity

Increased neuronal lipid peroxidation Reactive oxyge n and nitrogen species

Altered neuronal microtubules Altered phosphatases/k inases

Release of free tau PHF-tau

Increased A ββββ peptide production, aggregation & deposition

Direct damage to neurons Glial activation of innate immunity

Increased neuronal lipid peroxidation Reactive oxyge n and nitrogen species

Altered neuronal microtubules Altered phosphatases/k inases

Release of free tau PHF-tau

Figure 1. Model of AD pathogenesis adapted from Hardy and Selkoe. 
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Amyloid beta (Aβ) peptide production, aggregation and deposition into 

neuritic plaques may directly damage neurons or activate innate immunity and 

lead to increased neuronal LPO and robust increases in reactive oxygen and 

nitrogen species (ROS and RNS) from glial cells.  ROS, RNS and LPO are part 

of the milieu of self-sustaining and ongoing free radical oxidation mechanisms 

which only end when all available substrates, protein nucleic acid and lipid, are 

consumed.  This oxidative damage and neuronal damage alters MTs, which are 

composed of tubulin heterodimers and MT associated proteins (MAPs).   The 

phosphatases and kinases that modulate tau, a MT stabilizing MAP, are also 

affected and leave tau hyperphosphorylated and with a much weaker affinity for 

tubulins.  Free, hyperphosphorylated tau easily self-associates, creating an intra-

neuronal inclusion characteristic to AD pathology, the NFT. 

 

1.2 Clinical Manifestation of Alzheimer’s Disease 

 AD is a progressive and fatal neurodegenerative disorder manifested by 

cognitive and memory deterioration, progressive impairment of activities of daily 

living, and a variety of neuropsychiatric symptoms and behavioral disturbances. 

The five areas that require assessment (and periodic reassessment) in the 

patient with AD are daily function, cognition, co-morbid medical conditions, 

disorders of mood and emotion, and caregiver status (Cummings and Jeste 

1999; Chung and Cummings 2000; Cummings 2000; Cummings and Cole 2002; 

Cummings, Frank et al. 2002). 
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 Functional and behavioral disturbances are characteristic of the disease. 

Patients progress from the loss of higher-level activities of daily living, such as 

check writing and the use of public transportation, through abnormalities of basic 

activities of daily living, such as eating and grooming, as the disease enters 

advanced phases (Galasko, Bennett et al. 1997).  Behavioral disturbances also 

progress over the course of the illness (Kawas 2003).   Mood change and apathy 

commonly develop early and continue for the duration of the disease. Psychosis 

and agitation are characteristic of the middle and later phases of the disease 

(Mega, Cummings et al. 1996).    

 The typical clinical syndrome of AD includes an amnesic type of memory 

defect with difficulty learning and recalling new information, progressive language 

disorder beginning with anomia and progressing to fluent aphasia, and 

disturbances of visuospatial skills manifested by environmental disorientation and 

difficulty copying figures in the course of mental status examination (Cummings 

and Benson 1986).  There are usually deficits in executive function (planning, 

insight, judgment) and the patient is typically unaware of memory or cognitive 

compromise.  All cognitive deficits progressively worsen.   Neuropsychiatric 

symptoms are common in AD.  Apathy is apparent early in the clinical course 

with diminished interest and reduced concern. Agitation becomes increasingly 

common as the illness advances and is a frequent precipitant of nursing home 

placement.  Depressive symptoms are present in about 50% of patients and 

approximately 25% exhibit delusions (Mega, Masterman et al. 1999).   Motor 

system abnormalities are absent in AD until the final few years of the disease; 
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focal abnormalities, gait changes, or seizures occurring early in the clinical 

course of dementia make the diagnosis of AD unlikely. Patients with AD usually 

survive 7 to 10 years after onset of symptoms and typically die from bronchitis or 

pneumonia (McKhann, Drachman et al. 1984; Bracco, Gallato et al. 1994).  

 

1.3 Neuropathology 

 In AD, six developmental stages can be distinguished on account of the 

predictable manner in which the neurofibrillary changes spread across the 

cerebral cortex. The pathologic process commences in the trans-entorhinal 

region (clinically silent stages I and II), then proceeds into adjoining cortical and 

subcortical components of the limbic system (stages III and IV - incipient AD), 

and eventually extends into association and primary sensory areas of the 

neocortex (stages V and VI - fully developed AD) (Braak, Braak et al. 1996; 

Braak, Griffing et al. 1999).  Beginning in predisposed induction sites in the 

allocortex, the lesions follow a predictable sequence as they engulf other 

territories of the cerebral cortex and a specific set of subcortical nuclei. Some 

components of the brain are devastated, while others remain intact until the end 

phase of the disease. Assessment of the location of the afflicted neurons and the 

severity of the lesions allows the distinction of stages in the development of the 

disease. The degenerative process begins with the emergence of the first 

lesions, at whatever age it occurs. The illness remains subclinical for years and 

proceeds inexorably, gradually laying waste to higher order limbic system 

centers. Clinical symptoms are observed only late in the course of the disease, 
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and their appearance is usually concurrent with the encroachment of the 

destructive process upon neocortical association areas. 

As mentioned earlier, AD is a syndrome with several monogenetic 

autosomal dominant causes, each related to metabolism of the APP and its 

cleavage by β and γ secretases to form amyloid β (Aβ) peptides.  However, the 

much more common form(s) of AD does not have a single genetic cause.  This 

form, referred to as sporadic AD, likely derives significant input from the 

intertwined processes of aging, inherited susceptibilities such as the E4 allele of 

the apolipoprotein gene (APOE4), and environmental factors (Khachaturian, 

Corcoran et al. 2004).  A dominant hypothesis is that all forms of AD share 

increased production or accumulation of Aβ peptides.  Neuritic plaques are a 

pathological hallmark of AD.  Neuritic plaques are extracellular deposits of Aβ 

peptides, composed mostly Aβ40 and Aβ42 as well as other less abundant Aβ 

peptides.  These plaques are surrounded by dystrophic axons and activated 

astrocytes and microglia (Cummings, Su et al. 1992).   In AD, this peptide forms 

detergent- insoluble aggregates and smaller soluble aggregates: oligomers or 

amyloid-derived diffusible ligands (ADDLs) and protofibrils (Klein 2002). The 

precise mechanisms of Aβ mediated neurodegeneration are not yet clear.  One 

proposal is the activation of innate immune response from microglia and 

astrocytes by extracellular Aβ peptide aggregates (Hu, Akama et al. 1998).  

Another is that Aβ peptides are directly toxic to neurons.  Either directly or 

indirectly, the accumulation of Aβ peptides is thought to be the major stimulus of 

increased oxidative stress in AD. 
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APP is a normally expressed protein that has a role in neurogenesis by 

involvement in growth cone formation during development.  Growth cones must 

extend to form synaptic connections.  These cones are mainly composed of 

tubulins, the proteins that form the MTs.  Therefore, even during development, 

the cytoskeletal network and APP or its cleavage products, Aβ, secreted amyloid 

precursor proteins α and β (sAPPα and aAPPβ) are intrinsically linked.  

Overproduction of Aβ40 and Aβ42, which is more toxic and more apt to form fibrils, 

is caused by multiple genetic mutations of the APP or presenilin genes in familial 

AD (Dumery, Bourdel et al. 2001).  However, the mechanism behind the 

accumulation of Aβ peptides in LOAD, which is more than 90% of all AD cases is 

more elusive.  Regardless, the general consensus is that Aβ accumulation leads 

to oligomers and then larger aggregate formation.  These aggregates are 

detergent insoluble.  Other proteins in AD share these characteristics and are in 

accordance with disease progression, specifically tau protein.   

The other pathological hallmark of AD is NFT formation and, its 

ultrastructural correlate, disruption of neuronal MTs.  NFTs are composed 

primarily of paired helical filament PHF-tau.  Tau is a microtubule-associated 

protein (MAP) that is abnormally phosphorylated and modified by reactive 

oxygen and nitrogen species in AD brain and thereby aggregates into PHF-tau.  

How tau becomes abnormally modified is not clear but a proposed pathogenic 

sequence of events is that some stimuli disrupt neuronal MTs with release of tau 

that in combination with altered activity of kinases and phosphatases and 

increased oxidative stress leads to abnormally modified tau that aggregates into 
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PHF-tau.  One hypothesis is that reactive products of lipid peroxidation are the 

stimuli that contribute to neuronal MT collapse and release free tau.   

 In this regard, MTs and tau have received attention in LOAD (Zhang, 

Higuchi et al. 2004; Iqbal, Alonso Adel et al. 2005).  Several morphologic and 

immunohistochemical studies have demonstrated changes consistent with MT 

dysfunction in LOAD, including synaptic vesicles that fail to reach the terminal 

compartment, vesicle accumulation in neuron soma, and increased mitochondrial 

elements in lysosomes (Scheff, DeKosky et al. 1990; Praprotnik, Smith et al. 

1996; Terry 1996; Hirai, Aliev et al. 2001; Stokin, Lillo et al. 2005).   Moreover, a 

few investigators have noted a reduction in stable MTs in brain specimens from 

patients with LOAD, even specimens obtained by biopsy relatively early in the 

course of disease (Paula-Barbosa, Tavares et al. 1987; Hempen and Brion 1996; 

Cash, Aliev et al. 2003).  

 Tau was initially identified as the major component of NFTs, filamentous 

protein aggregates.  In normal human brain, tau is encoded by one gene on 

chromosome 17 that results in 6 alternatively spliced RNA variants that encode 

exons 2, 3, and 10.  Exons 2 and 3 encode part of the N-terminal projection 

domain that allows tau to interact with the neuronal membrane and other 

cytoskeletal elements, and exon 10 splicing determines the presence of a 3 or 4 

MT binding repeat in the intact tau protein.   All three regions, the N-terminal 

projection domain, the proline-rich region, and the C-terminal MT binding 

domains are integral to MT function and the latter 2 domains are susceptible to 

hyperphosphorylation.  Although normal tau function is regulated by kinases and 
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phosphatases to mediate on-and off- MT binding and fluid/labile interactions, 

hyperphosphorylation is hypothesized to be the seeding mechanism initiating 

stepwise NFT formation across all neurodegenerative tauopathies (Buee, 

Bussiere et al. 2000).   

NFTs are found in AD, amyotrophic lateral sclerosis/parkinsonism–

dementia complex of Guam, corticobasal degeneration, Down syndrome, 

parkinsonism, progressive supranuclear palsy, and sometimes in Pick’s disease.  

Tau inclusions have also been detected in normal aging  in the absence of 

clinically defined dementia (Delacourte, David et al. 1999; Buee, Hamdane et al. 

2002; Sergeant, Delacourte et al. 2005). 

Hyperphosphorylated MT-associated tau proteins are the main 

components of the aggregated filaments found in NFT in AD, Tauopathies are 

dependent upon the tau hyperphosphorylation and aggregation caused by 

multiple possible mutations that make tau more susceptible to a change in 

tertiary structure and open to hyperphosphorylation in autosomal dominant 

neurodegenerative tauopathies, e.g., FTDP-17.  LOAD exhibits no tau mutations 

although it has shared hyperphosphorylation (Iqbal, Alonso et al. 1993; Alonso, 

Grundke-Iqbal et al. 1996; Iqbal, Alonso Adel et al. 2005).  Like Aβ plaque 

formation, tau aggregation into NFTs is not due to mutations in sporadic AD.   

Many hypotheses fault kinases such as GSK3-beta in AD, although there is no 

genetic link in LOAD. 

Hyperphosphorylation of tau leading to NFT formation is the major 

determinant of tau aggregation in LOAD and other tauopathies.  Tau has more 
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than 79 putative phosphorylation sites that are present within the MT binding 

regions.  After extensive, abnormal, phosphorylation, the resulting modified 

protein is referred to as paired helical filament (PHF) tau. Tau is also a substrate 

for modification by ubiquitination, advanced glycation endproducts (AGE), redox 

potential, polyanion or lipid interactions and lipid peroxidation (LPO) products.  

Tau is also directly modified by reactive oxygen and nitrogen species (ROS and 

RNS).  All of these non-physiological post-translational modifications or chemical 

adducts have a role in seeding tau leading to NFT formation.  In addition, ROS 

and RNS are key factors in MT protein insolubility and dysfunction, discussed 

further later.   NFTs are preferentially observed in large pyramidal cells of the 

hippocampus and entorhinal cortex; both are substructures of the temporal lobe, 

and are especially susceptible in AD.   

 

1.4 Protein Insolubility Among Neurodegenerative Di seases 

 A dominant biochemical feature of AD is the accumulation of detergent-

insoluble (DI) proteins that can be extracted by highly chaotropic means, such as 

partial solubility in formic acid (FS).  Two proteins of which large proportions 

make this transition from normal solubility to DI/FS are Aβ and tau, the major 

protein constituents of senile plaques and NFTs in AD.  Aβ42 is the main 

component in senile plaques and the key player or model peptide in the 

oligomeric aggregation hypothesis in which peptides or proteins  change 

conformation from α helical to β sheet structures and create increasingly 

insoluble protein aggregates (Trzesniewska, Brzyska et al. 2004). 
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Despite the importance of this transition of a subset of proteins from 

normal solubility to DI/FS, relatively little is known about the mechanisms that 

underlie this change.  Recent elegant studies have demonstrated biophysical 

mechanisms by which Aβ forms insoluble fibrils in vitro, and it seems likely that 

inherent properties of some protein structures and protein-protein interactions will 

be key to determining which proteins transition to abnormal and perhaps 

pathologic insolubility.  Another proposed mechanism for DI/FS is post-

translational modification of protein by oxidative damage.  Indeed, oxidative 

damage to protein, lipid, and nucleic acids has been repeatedly associated with 

diseased regions of brain from patients who died with AD and cerebrospinal fluid 

from patients with early AD and even patients with mild cognitive impairment, a 

prodromal condition that commonly progresses to AD. 

 

1.5 Microtubule Impairment and Neurodegeneration   

Synapse loss and dying-back of axons are characteristic of 

neurodegeneration (Schaumburg and Spencer 1979; Ball 2003; Mandelkow, 

Stamer et al. 2003; Stokin, Lillo et al. 2005).  Synapse loss occurs early in the 

disease and correlates with the incipient loss of memory and brain functions 

leading to the hypothesis that one of the neurobiological defects in AD is a failure 

of neuronal plasticity (Buee, Bussiere et al. 2000).  For example, levels of 

neuronal plasticity and synaptic proteins are decreased in frontal association 

cortex areas with high NFT density in AD brains (Callahan and Coleman 1995).   

This impairment in the axons  is also demonstrated by the disruption of 
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axoplasmic flow (Terry 1998), which is a primary function of the MTs.  There is 

also some evidence that axonopathy is caused by or occurs after Aβ 

accumulation and neuritic plaque deposition.  Using a transgenic mouse model 

that overexpresses Aβ, Tg-swAPP mice, a recent study determined that 

cholinergic axons were often unusually large, irregular and were immunoreactive 

for phosphorylated tau (Stokin, Lillo et al. 2005).  Furthermore, these impaired 

axons contained large numbers of organelles and vesicles, were not myelinated, 

and were not associated with postsynaptic densities.  A growing body of 

evidence indicated that tau and tubulin dysfunction preceded synapse loss 

independent of Aβ (Zhang, Higuchi et al. 2004).  An abundance of tau alone 

blocked MT trafficking of organelles and vesicles (Stamer, Vogel et al. 2002).   

The events that may trigger axonopathy are glial mediated oxidative 

stress, production and accumulation of toxic Aβ peptides, and the 

hyperphosphorylation of tau protein. All of these features may develop gradually 

and appear to precede the more overt pathological changes in the brain, such as 

deposition of protein aggregates in the form of amyloid plaques and NFTs.  

Oxidative damage leads to morphological and functional changes in axons.  After 

exposure to hydrogen peroxide (H2O2), one of many products of oxidative 

damage, axonal swelling and axonal beading developed.  No beading was 

observed in glial fibrillary acidic protein (GFAP)-positive astrocytes, indicating 

that the effect is specific to neurons (Roediger and Armati 2003).   

Since neurons are highly elongated cells, they depend on an efficient 

transport system for delivering proteins, lipids and other cell components from 
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the cell body to the synapse. This system is based on MTs which serve as 

tracks, motor proteins which represent the engines, vesicles and organelles 

which are the cargoes, and MAPs which serve as ties for the stabilization of the 

MT tracks.  In axons, tau protein is one of the predominant MAPs. It stabilizes 

MTs and promotes neurite outgrowth. This apparently beneficial role of tau 

contrasts with its anomalous behavior in several neurodegenerative diseases, 

most prominently AD, where it occurs in a highly phosphorylated form, detaches 

from MTs, and aggregates. It has been hypothesized that the detachment of tau 

from MTs is caused by some imbalance in intracellular signaling which favors 

excessive phosphorylation (Alonso, Zaidi et al. 1994; Alonso, Grundke-Iqbal et 

al. 1996; Iqbal and Grundke-Iqbal 1996; Iqbal, Alonso et al. 1998; Trzesniewska, 

Brzyska et al. 2004; Iqbal, Alonso Adel et al. 2005).  This in turn would detach 

tau from MTs, prompt their decay, so that axonal transport would be interrupted, 

while the detached, soluble tau would aggregate and thus cause a generalized 

clogging of cytosolic space. It is not clear whether detachment of tau and its 

aggregation and the breakdown of MTs are the early causes of degeneration or 

the later consequences of Aβ neurotoxicity and plaque formation. 

 

1.6 Microtubule Structure and Function  

MTs are essential cytoskeletal polymers that are made of repeating α/β-

tubulin heterodimers and are present in all eukaryotes. MTs affect cell shape, cell 

transport, cell motility, and cell division. All of these functions involve the 
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interaction of MTs with a large number of MAPs, which are important for the 

regulation and distribution of MTs in the cell.  

In addition to well studied motor proteins such as kinesin and dynein, tau 

protein which is one of the low molecular weight MAPs, is of special interest.   

Normal tau, modulated by tightly regulated phosphorylation, stabilizes the α/β-

heterodimers.  However, in the idiopathic disease process of LOAD, tau is 

hyperphosphorylated and slowly forms intraneuronal inclusions and NFTs.  Motor 

proteins use ATP hydrolysis to move cargo, including the MT proteins 

themselves, along this dynamic MT polymer (Hirokawa, Noda et al. 1998).  

MT regulation may happen at many different stages, via transcription of 

different tubulin isotypes, the control of tubulin monomer folding, the formation of 

functional dimers, the posttranslational modification of tubulin subunits, the 

nucleation of MTs, or during the dynamic addition and disassociation of MT 

subunits in a dynamic polymer (Nogales, Wolf et al. 1998; Nogales 1999).   

Approximately six functional genes encode α-tubulin isotypes in mammals 

(Field, Collins et al. 1984; Cleveland 1987; Luduena 1998).  Alpha-III tubulin, 

encoded by b-alpha-1 gene, is highly expressed in brain.  Blot analyses using 

RNA from a variety of transformed cells derived from different tissues indicate 

that expression of the human alpha-tubulin gene is restricted to cells of 

neurological origin (Hall and Cowan 1985). Among neurological cell types b-

alpha-1 expression is further restricted to adherent cells that are morphologically 

differentiated. The data presented suggest that the b-alpha-1 gene encodes a 

prominent neuronal and glial alpha-tubulin and that b-alpha-1 expression is a 
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function of the differentiated state of these cells.  Like, α-III tubulin, β-III tubulin 

has very high expression during development that deceases during post-natal 

and adult stages in mouse and rat (Miller, Naus et al. 1987; Miller, Naus et al. 

1987).  This α-III tubulin subtype is also increases in AD (Miller and Geddes 

1990).   

Alpha and β-tubulins shared 40% homology, and exhibit the greatest 

divergence at the C-terminus.  The longest unbroken stretch of identical amino 

acids between all the α- and β-tubulins is found in positions 180-186 (Val-Val-

Glu-Pro-Tyr-Asn), a region that is important for binding the guanosine tri-

phosphate (GTP) (Little and Seehaus 1988) in both α and β isoforms.  Seven α-

tubulin isotypes have been identified in mammalian cells, encoded by different 

genes and with a distinct pattern of tissue expression (Luduena 1998).  

Several studies have provided strong evidence for a functional role of the 

tissue-specific expression of individual β-tubulin isotypes (Joshi and Cleveland 

1989; Raff, Fackenthal et al. 1997).  Several of these isotypes, specifically class 

II β-tubulin (encoded by the Hβ9 gene), class III β-tubulin (encoded by the Hβ4 

gene), and class IVa β-tubulin (encoded by the H5β gene), are highly expressed 

in cells of neuronal origin (Luduena 1998).  The βIII isotype has been discovered 

as a taxol resistant tubulin in medulloblastomas and astrocytomas (Katsetos, Del 

Valle et al. 2001; Katsetos, Legido et al. 2003).   From these studies and those 

conducted with chick embryogenesis, β-III tubulin is thought to be neuron-specific 

in brain (Lee, Tuttle et al. 1990).   



16 

Each MT is formed by the parallel association of protofilaments, linear 

polymers of tubulin dimers that are bound head to tail. The tubulin sequence and 

structure contain the information required for the self-assembly of protofilaments 

into polar, dynamic MTs, which in turn interact with a variety of cellular factors.  

This rapid polymerization/depolymerization cycle, termed treadmilling, is the net 

flow of MT subunits from the plus end that “grow” toward the axonal bouton or 

growth cones to the minus end that polarizes toward the MT organizing center at 

the cell body without a  significant change in MT length (Nogales, Wolf et al. 

1998; Nogales 1999).  Treadmilling is essential to MT function.  Alpha and β-

tubulins are arranged in a strict head to tail fashion, such that the plus end is 

oriented away from the cell body and the minus end, toward the cell body within 

the axon.  In dendrites, MTs form shorter protofilaments with a mixed orientation 

of plus and minus ends.  

MTs are highly dynamic and can switch stochastically between growing 

and shrinking phases, both in vivo and in vitro. This non-equilibrium behavior, 

known as dynamic instability (Desai and Mitchison 1997), is based on the binding 

and hydrolysis of GTP by tubulin subunits. Each tubulin monomer binds one 

molecule of GTP. The binding to α-tubulin at the N site is non-exchangeable, 

whereas the binding to β-tubulin at the E site is exchangeable. Only dimers with 

GTP in their E site can polymerize, but, after polymerization, this nucleotide is 

hydrolyzed and becomes non-exchangeable, thus stabilizing the formation of the 

protofilament. The most favored hypothesis to explain dynamic instability is the 

GTP cap model (Mitchison and Kirschner 1984).  In this model the body of the 
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MT, made of GDP-tubulin subunits, is unstable, and the MT structure is stabilized 

by a layer of tubulin subunits at the ends that still retain their GTP. When this cap 

is stochastically lost, the MT rapidly depolymerizes. MT assembly and stability, 

which are self-regulated by the nucleotide state of tubulin, are further modified in 

the cell by interaction with cellular factors that stabilize or destabilize MTs at 

different points in the cell or at different stages in the cell cycle (Hirokawa, Noda 

et al. 1998; McNally 1999) and  during axonal growth and retraction.  

The C-terminus of tubulins immediately follows helices H11 and H12 in the 

dimeric tubulin structure and is thought therefore to be located on the outer 

surface of the MT.  The failure to resolve these residues in the crystal structure 

could be due to the fact that they are disordered, as indicated by some structural 

studies on synthetic carboxy-terminal peptides (Jimenez, Evangelio et al. 1999). 

The carboxy-terminal sequences of α- and β-tubulin are highly acidic and 

constitute the isotype defining regions (Sullivan and Cleveland 1986), where the 

various tubulin isotypes differ most strongly from each other .   

The carboxy-terminal ten residues of α-tubulin and the carboxy-terminal 

18 residues of β-tubulin (Nogales, Wolf et al. 1998) are the site of the 

heterogeneity of tubulin isoforms, binding site for MAPs, and the site of many 

post translational modifications including tyrosination/detyrosination of alpha 

tubulin, polyglycation which may include presence of AGEs found in AD brain 

tissue, polyglutamination, palmitoylation, and phosphorylation (Picklo, Montine et 

al. 2002; Westermann and Weber 2003).   These modifications affect MAPs 

binding and MT dynamics.   With the exception of AGEs, the aforementioned 
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post translational modifications occur under normal physiology.  However, post 

translational modifications may take the form of molecules modified by oxidative 

damage in AD (Montine, Reich et al. 1998; Smith, Sayre et al. 1998; Conrad, 

Marshall et al. 2000; Head, Garzon-Rodriguez et al. 2001; Castegna, Aksenov et 

al. 2002; Castegna, Aksenov et al. 2002; Castegna, Aksenov et al. 2002; Choi, 

Malakowsky et al. 2002; Korolainen, Goldsteins et al. 2002; Castegna, 

Thongboonkerd et al. 2003).   

 

1.7 Glial Activation and Oxidative Damage 

 Oxidative stress is defined as a disturbance in the prooxidant-antioxidant 

balance in favor of the former, leading to potential damage (Sies 1997; Roediger 

and Armati 2003). The central nervous system (CNS) seems to be especially 

vulnerable to oxidative stress on account of its high rate of oxygen utilization and 

the fact that neuronal membranes contain a high proportion of oxidation-prone 

polyunsaturated fatty acids (PUFAs), making them more susceptible to 

peroxidative damage (Sayre, Perry et al. 1999).  Also, the brain appears to 

contain lower levels of molecular antioxidants such as superoxide dismutase and 

glutathione peroxidase (Floyd 1999; Sayre, Perry et al. 1999) as well as lower 

activities of antioxidant enzymes such as catalase (Halliwell 1992) and decrease 

in peptide methionine sulfoxide reductase in AD brain (Gabbita, Aksenov et al. 

1999). Given the sensitivity of the brain to free radical damage, it is not surprising 

that oxidative stress has been implicated in a number of human degenerative 

disorders of the CNS (Smith, Richey Harris et al. 1997). 
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One of the major outcomes of oxidative stress in brain is lipid peroxidation.  

LPO products are generated from free radical attack on PUFAs like arachidonic 

acid (AA) and docosohexanoic acid (DHA) and their normally generated multiple 

products, including hydroxyl alkenals,  neuroprostanes, and malondialdehyde 

among many others (Esterbauer, Schaur et al. 1991; Zollner, Schaur et al. 1991; 

Montine, Quinn et al. 2003) .  LPO is increased in the central nervous system 

(CNS) in patients with AD both early and late in the course of their illness 

(Montine, Neely et al. 2002).   Montine et. al.  accomplished this by employing 

quantitative in vivo biomarkers of lipid peroxidation, F2-isoprostanes (IsoPs) and 

F4-neuroprostanes (NeuroPs) (Montine, Quinn et al. 2004).  Importantly, LPO is 

different from other forms of oxidative damage because it is a self-sustaining 

process that will proceed until terminated by anti-oxidants or until substrate is 

consumed. 

While LPO directly damages the biophysical properties of membranes, the 

major deleterious effect of LPO is believed to be through the generation of 

chemically reactive secondary products that modify cellular macromolecules, 

especially protein.  One of the principal secondary products of LPO is 4-hydroxy-

2-nonenal (HNE). We and others have shown that HNE-protein adducts 

accumulate in brains of patients with AD (Markesbery and Lovell 1998; 

Markesbery and Carney 1999), and are localized to neuronal cytoplasm, and 

others have suggested that HNE is a major effector of the neurotoxic effects of 

Aβ peptides. 
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How HNE and other reactive products of LPO may promote cytoskeletal 

abnormalities is not fully understood.  HNE and related reactive products of LPO 

products exert their effects in tissue by reacting with lysine, cysteine, histidine, 

and arginine side chains of amino acids to form pyrrole and Michael adducts on 

proteins that lead to altered activity of enzymes and structural proteins (Sayre, 

Arora et al. 1993; Nadkarni and Sayre 1995; Cohn, Tsai et al. 1996; Montine, 

Kim et al. 1997; Montine, Reich et al. 1998).   Many of these studies found that 

MT polymerization and structural organization was greatly impaired after direct 

application of LPO products or peroxynitrite (ONOO-) (Olivero, Miglietta et al. 

1990; Miglietta, Olivero et al. 1991; Neely, Sidell et al. 1999; Landino, Hasan et 

al. 2002; Landino, Skreslet et al. 2004; Neely, Boutte et al. 2005). 

Numerous studies of human tissue have employed antibodies to localize 

oxidatively modified proteins; broadly, these studies have localized oxidation, 

glycoxidation, nitrative, and LPO protein adducts to neuron cytosolic proteins and 

sometimes to NFTs in AD (Aksenov, Aksenova et al. 2000; Conrad, Marshall et 

al. 2000; Aksenov, Aksenova et al. 2001; Butterfield, Drake et al. 2001; 

Castegna, Aksenov et al. 2002; Korolainen, Goldsteins et al. 2002; Castegna, 

Thongboonkerd et al. 2003; Reynolds, Berry et al. 2005; Zhang, Xu et al. 2005).  

In addition to these patient-oriented studies, rodent models of AD also have been 

reported to show increased indices of oxidative damage, even before the 

deposition of Aβ-immunoreactive plaques  (Butterfield 2002; Butterfield, 

Castegna et al. 2002; Butterfield and Castegna 2003). 
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Protein nitration is an increasingly recognized target of study as it is also 

part of the grand scheme of damaging oxidative chemistry.   Reactive nitrogen 

species are initially generated by the upregulation of nitric oxide synthases.  

There are 4 isoforms differentially expressed with tissue specificity associated 

with brain and the blood-brain barrier:  neuronal (nNOS), glial or inducible 

(iNOS), and endothelial (eNOS) (Lowenstein, Dinerman et al. 1994).  NO is the 

product of nitric oxide synthase in an unusual reaction that converts arginine and 

oxygen into citrulline and NO. The mechanism of nitric oxide synthesis is not 

completely understood, but it involves the transfer of electrons between various 

cofactors, including flavin adenine dinucleotide, flavin mononucleotide, 

nicotinamide adenine dinucleotide phosphate, tetrahydrobiopterin, and heme 

within the mitochondrial oxidative phosphorylation pathway. Finally, one atom of 

oxygen from oxygen binds with the terminal guanidine nitrogen from arginine to 

form NO (McMillan, Bredt et al. 1992; White and Marletta 1992; Lowenstein, 

Dinerman et al. 1994). 

NO, first identified as endothelium-derived relaxing factor, is produced by 

different types of cells in multicellular organisms where it acts as a diffusible 

messenger in many forms of intercellular communication as well as of 

intracellular signaling (Contestabile, Monti et al. 2003; Contestabile and Ciani 

2004)  (Moncada, Palmer et al. 1989; Bredt and Snyder 1992). Its role is as a 

brain messenger molecule, acting as an unconventional neurotransmitter or 

neuromodulator.    Neuronal NOS is hypothesized to be expressed when the 

supply of target-derived trophic factors is absent during early embryogenesis or 
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during injury and, therefore, acts as a neurotrophic signaling molecule. Neuronal 

NOS expression actually increases in cultured dorsal root ganglion (DRG) 

neurons that are “starved” of nerve growth factor (NGF) (Thippeswamy and 

Morris 1997; Thippeswamy, Jain et al. 2001). It was, therefore, supposed that 

NO could be able to protect neurons whose survival was endangered by NGF 

deprivation.   Furthermore, neurons cultured from nNOS knockout mice, are 

more vulnerable to death than in wild-type animals (Keilhoff, Fansa et al. 2002).  

Unlike neuroprotective processes involved in neural differentiation, the 

imbalance or uncontrolled NOS production proceeds unchecked in 

neurodegenerative diseases wherein oxidative modification of a compromised 

neuron as opposed to a newly generated cell leads to disastrous consequences.  

Inflammation in the brain primarily involves the participation of the two types of 

glial cells, microglia and astrocytes (Kreutzberg 1996; Aloisi 1999).  Under 

physiologic conditions; microglia, the resident immune cells in the brain; serve a 

role of immune surveillance. Astrocytes, on the other hand, principally maintain 

ionic homeostasis, buffer the action of neurotransmitters, and secrete nerve 

growth factors. However glia, especially microglia, readily becomes activated in 

response to immunologic challenge and injury (Aloisi 1999).  Activation of glia, a 

process termed reactive gliosis, has been observed during the pathogenesis of 

Parkinson’s disease, AD, multiple sclerosis, and AIDS dementia complex, as well 

as post-neuronal death in cerebral stroke and traumatic brain injury  (Dickson, 

Lee et al. 1993; O'Banion and Finch 1996; Hauss-Wegrzyniak, Dobrzanski et al. 

1998).  In response to LPS stimulation, used in many cell culture and mouse 
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models of inflammation, microglial production of NO and other reactive oxygen 

and nitrogen species leads to neuronal death (Shie, Milatovic et al. in press). 

Cells can greatly increase the toxicity of other ROS from the reaction of 

superoxide and NO to produce ONOO–, one of the fastest reactions known in 

biology (Beckman 1994).  In the presence of carbon dioxide, ONOO- readily 

modifies proteins to form nitrotyrosine.  Nitrotyrosine can be also formed by 

peroxidase oxidation of nitrite, a byproduct of NO metabolism, and hydrogen 

peroxide (Brennan, Wu et al. 2002).  NO can react with membrane lipids to 

induce lipid peroxidation. Indirectly, the combination of NO and superoxide (O2 
• -) 

can form highly reactive intermediates, such as ONOO-, that can induce DNA 

strand breaks, lipid peroxidation, and protein nitration (Beckman 1996).  

The significance of NO contribution to neuronal injury is indicated by the 

use of nitric oxide synthase (NOS) inhibitors and is best documented by the use 

of mutant mice deficient in the neuronal isoform of NOS (nNOS) (Hantraye, 

Brouillet et al. 1996; Przedborski, Jackson-Lewis et al. 1996; Ayata, Ayata et al. 

1997; Eliasson, Huang et al. 1999; Liberatore, Jackson-Lewis et al. 1999).  Older 

mice deficient in nNOS were found to be resistant to related neurodegenerative 

diseases, such as stroke, N-methyl-D-aspartate neurotoxicity  (NMDA), and 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity  in models of 

Parkinson’s disease  (Przedborski, Kostic et al. 1992). In addition to nNOS, other 

studies in human and animal models have also documented the contribution of 

iNOS, the inducible form of NOS, primarily found in brain glial cells (Vodovotz, 

Lucia et al. 1996; Liberatore, Jackson-Lewis et al. 1999) . For example, plaques 
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in multiple sclerosis patients showed increased immunoreactivity for iNOS and 

nitrotyrosine (Bagasra, Michaels et al. 1995).  Nitration has also been associated 

with compromised integrity of the blood-brain barrier in multiple sclerosis (Kean, 

Spitsin et al. 2000).  NO derived from iNOS also contributes to neurotoxicity in 

ALS mouse models as well as in the MPTP model of Parkinson’s disease.  

Blockade of iNOS and microglia activation has been found to be neuroprotective 

in neurodegenerative diseases mouse models, (Wu, Jackson-Lewis et al. 2002; 

Zhu, Stavrovskaya et al. 2002).  Activation of microglia leading to ONOO- 

formation has also been linked to Aβ peptide neurotoxicity (Xie, Wei et al. 2002; 

Ischiropoulos and Beckman 2003).  

NO, like many other molecules of oxidative damage, also modifies MT 

protein directly.  Nitro-tyrosine is transported into mammalian cells and 

selectively incorporated into the extreme carboxyl terminus of α-tubulin, changing  

MT organization and interaction with motor proteins (Eiserich, Estevez et al. 

1999).  Donors of NO lead to a high degree of axonal retraction in cultured chick 

sensory neurons (He, Yu et al. 2002).  Nitration also occurs on the MAP tau in 

differentiated PC12 cells (Cappelletti, Tedeschi et al. 2004).  Recently, nitration 

has been observed using mass spectrometry methods in AD, directly associating 

oxidative damage to AD pathology (Castegna, Thongboonkerd et al. 2003; Shin, 

Lee et al. 2004). 

While the sources of oxidative damage and a true causal role in AD are 

not entirely resolved, they include the potentially partially overlapping processes 
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of Aβ peptide formation, tau aggregation, innate immune activation, mitochondrial 

dysfunction, and MT dysfunction. 

 

1.8 Mass Spectrometry in Discovery of Protein Modif ication by Oxidative 
Damage 
 

An increasing number of studies are using multiple methods of mass 

spectrometry to identify and quantitate oxidative species and oxidatively modified 

proteins in AD (Liu, Yeo et al. 1997; Castegna, Aksenov et al. 2002; Castegna, 

Aksenov et al. 2002; Castegna, Aksenov et al. 2002; Castegna, Thongboonkerd 

et al. 2003; Pamplona, Dalfo et al. 2005; Williams, Lynn et al. 2005) and in 

mouse models (Shin, Lee et al. 2004).  An elegant series of experiments have 

coupled 2-dimensional gel electrophoresis (LC-LC) and immunochemical 

detection of proteins with carbonyl modifications with matrix assisted laser 

desorption ionization (MALDI) coupled to tandem time of flight mass 

spectrometry (TOF-TOF-MS) to obtain a broad view of proteins labile to this form 

of oxidative modification in AD patients and in rats following intracerebral 

injection of Aβ42  (Boyd-Kimball, Sultana et al. 2005).  Another recent study 

determined the amount of 5 different amino acid modifications in frontal cortex 

from AD patients by quantifying modified amino acids by gas chromatography 

(GC)/MS (Pamplona, Dalfo et al. 2005).  While these approaches have provided 

insight into the pathogenesis of protein modification in AD, both studies 

examined proteins extracted into aqueous buffer.  Indeed, no study we are aware 

of has yet sought to associate oxidative protein modifications in AD with 

transition to detergent-insolubility, examined protein modification from the 
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perspective of amino acid sequence, or concentrated on neuronal cytoskeletal 

proteins, proposed to the site of earliest dysfunction in AD pathogenesis.   

A scoring algorithm for spectral analysis (SALSA), which performs 

automated pattern recognition for peptide modifications in tandem mass spectral 

data, has been used to identify oxidative protein modifications in vitro (Badghisi 

and Liebler 2002; Liebler, Hansen et al. 2002), including Aβ40/Cu2+-induced 

histidine and methionine oxidation (Schiewe, Margol et al. 2004).  P-MOD, similar 

to SALSA, is an algorithm and software that identifies and maps modifications to 

peptide sequences using tandem mass spectral data and includes calculation of 

error rates or p-values of peptide modifications (Hansen, Davey et al. 2005).   

This study combines well-established extraction methods with P-MOD analysis to 

identify and map oxidative modifications to four cytoskeletal proteins that are 

associated with the biochemical abnormality of detergent insolubility or 

accumulation into NFTs. 

 

1.9 Summary  

In the present studies, I have tested the hypotheses that reactive products 

of LPO are the effectors that lead to neuronal MT collapse and inability to 

polymerize in cells.  This same loss of MT function is recapitulated in human 

brain tissue from LOAD, FTDP-17, but not MCI or in age-matched controls. Using 

mass spectrometry to define and map modifications, α-tubulin is modified by 

nitration, β-tubulin is extensively modified by oxidation, and tau is modified by 

LPO products, HHE and HNE, within functionally relevant protein regions.  In this 



27 

study, MT dysfunction in human brain tissue parallels the increasing abundance 

of modifications induced by oxidative damage of MT proteins that is also in 

accordance with protein insolubility.  Our proposed scheme for how these 

different facets of AD pathogenesis may be related is presented in the flowchart 

below, adapted from Hardy and Selkoe (Selkoe 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.10 Rationale and Specific Aims 

The experiments described herein test the hypothesis that neuronal 

cytoskeletal protein dysfunction found in AD is similar to that inflicted by LPO 

products and that oxidative damage is linked to pathological cytoskeletal protein 

aggregation.  Several factors underlie this hypothesis.  Oxidative damage is a 

Increased A ββββ peptide (soluable and insoluable) oligomerization, 
aggregation, & deposition

Direct damage to neurons Glial ctivation of innate im munity

Increased neuronal lipid peroxidation Reactive oxyge n and nitrogen species

MICROTUBULE DISSOCIATION
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Release of free tau PHF-tau

β-III tubulin methionine oxidationα-III tubulin nitration

Tau lipid peroxidation

Severe, irreversible microtubule dysfunction
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Figure 2. Modified model of AD pathogenesis adapted from Hardy and Selkoe, focusing on neuronal 
microtubule proteins. 
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well established early and on-going event in AD and may directly affect cellular 

proteins.  Exposure of N2a cells to 10-25 µM HNE cells causes inhibition of 

neurite outgrowth and MT disruption at sub-cytotoxic concentrations through 

Michael addition chemistry (Neely, Sidell et al. 1999).  This effect from HNE is 

due to its reaction with intracellular proteins, and the major cytosolic protein 

bound to HNE has a molecular weight of approximately 55 kDa, corresponding to 

neuronal tubulin and tau among other proteins (Keller, Mark et al. 1997).  One 

limitation of previous studies is that they did not include a myriad of oxidative or 

other pathological events nor did they include a test of MT function and discreet 

assessment of protein post-translational modifications.  

The architecture and function of MTs was further expanded to test the 

effects of HNE and related aldehydes, of a free radical generator, of glial 

mediated oxidative damage, and of increased intraneuronal accumulation of APP 

derived peptides.  In addition, MT function in human tissue from patients with AD 

and related neurodegenerative diseases was investigated.  While oxidative 

damage and aberrant protein structure and function have been linked, no study 

had yet shown changes or trends in oxidative modification of MT proteins at the 

amino acid level using mass spectrometry.  To test the hypothesis that neuronal 

cytoskeletal protein dysfunction found in AD is similar to that inflicted by LPO 

products and that oxidative damage is linked to pathological cytoskeletal protein 

aggregation, the specific aims are as follows: 

1. To determine if LPO products, free radicals, activated glia, or APP 

peptide products inhibits the functionality of MT. 
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2. To determine if MT function is similarly inhibited in neurodegenerative 

diseases. 

3. To examine the type and location of oxidative modifications of 

cytoskeletal proteins that may explain or enhance the reason for loss 

of MT function and increased protein insolubility. 

The goal of these studies is to further our understanding of the links 

between oxidative damage, protein modification, and protein aggregation that 

contribute to AD pathogenesis. 
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CHAPTER II 

 

MECHANISMS OF NEURONAL MICROTUBULE DYSFUNCTION INDU CED 
BY MULTIPLE MODELS OF OXIDATIVE DAMAGE 

 

 

2.1 Introduction 

We have previously shown that LPO products lead specifically and 

potently to dissolution of neuronal MTs and decreased neurite outgrowth in vitro 

(Neely, Sidell et al. 1999).  Indeed, MT collapse from exposure to HNE is the 

most sensitive endpoint yet studied for HNE in neuronal cells.  Specifically, 

incubation of neuronal cells with 25 µM HNE for 15 minutes led to complete MT 

collapse.  HNE is a major aldehyde product of LPO in brain; other LPOs also are 

produced in at least similar quantities, including acrolein and HHE.  Therefore, 

experiments investigated the effects of these aldehydes and their effect on taxol-

stimulated MT polymerization.  Additional cell culture experiments tested the 

ability of glial mediated oxidative damage, of a free radical generator, and of 

endogenous amyloid peptide to lead to changes in tubulin morphology.   

These data suggest that direct application of LPO products, but not 

indirect application via activated glial production of ROS, are the stimuli for MT 

collapse that is characteristic of AD. In contrast, increased amyloid peptide 

expression and aggregation induced an increase in tubulin self-association.  

Although, both Aβ peptides and PHF-tau appear to play central roles in AD, the 

link between them or common mechanisms behind their shared property of 
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aggregation into insoluble material and the degeneration of the cytoskeleton 

remains poorly defined. Mechanisms of HNE-induced neuronal MT dysfunction 

may have a critical role in MT function and morphology in cells, while Aβ and 

related peptides, like C99, may cause cytoskeletal dysfunction in another 

manner. 

 

2.2 Materials and Methods  

Materials  

Chemicals required for the synthesis of 4-hydroxy-2(E)- nonenal (HNE),  

4-hydroxy-2(E)- hexenal (HHE) , 1,1,4-Tris(acetyloxy)-2(E)-nonenal (HNE[Ac]3), 

and acrolein were purchased from Aldrich (Milwaukee, WI). HHE and HNE were 

synthesized as described (Amarnath, Valentine et al. 1998) (Gardner, Bartelt et 

al. 1992) and stock solutions in either dimethyl sulfoxide or ethanol were kept no 

longer than one week at  20 °C. The synthesis of 1,1,4- Tris(acetyloxy)-2(E)-

nonenal  (HNE[Ac]3) was performed as described (Neely, Amarnath et al. 2002) 

and acrolein was distilled prior to use.  Unless otherwise indicated, materials 

used for cell culture were from Invitrogen (Grand Island, NY) and all other 

chemicals were from Sigma (St. Louis, MO).  

 

Cell culture  

Neuro-2a (N2a) neuroblastoma cells were purchased from American Type 

Culture Collection (Rockville, MD). For propagation, the cells were seeded at 20 

X104 cells/ml in growth medium (Dulbecco’s Modified Eagle Medium:  Nutrient 



32 

Mixture F-12 (1:1) (DMEM/F12) containing 10% fetal bovine serum and 

penicillin–streptomycin at 100 units/ ml and 100 µg/ml, respectively, and 

subcultured twice weekly. Unless indicated otherwise, before all experiments, the 

cells were subcultured at the desired cell density and incubated overnight in 

growth medium. The next morning, the cells were washed with DMEM/F12 three 

times and incubated in serum-free N2-medium (DMEM/F12 containing  

penicillin/streptomycin and N2 supplement) for 24 h prior to aldehyde or (2-

amidino- propane) dihydrochloride (AAPH) exposure for either fractionation or 

polymerization assays.  

 

Glial Activation and Dual Well Plating  

 N2a cells were plated for microscopy as described (Neely, Sidell et al. 

1999).  Primary mouse microglia cultures were plated in an upper chamber of 

permeable membrane exactly as described (Shie, Breyer et al. 2005) and treated 

with 10µg/mL LPS (or Aβ 5µM to 0.31µM) for 36hrs.   

 

Immunoflourescence  

 Alpha tubulin immunostaining for N2a cells used in the dual well plating 

system was performed as described (Neely, Sidell et al. 1999). 

MC65 cells were plated at  2 X 104 cells/mL X 2mL per well on glass 

slides, previously incubated with 0.05mg/mL poly-D-lysine for 24 hrs at 37°C, in 

the presence of  10% FBS, 1% pen/strep in DMEM/ F-12 medium supplemented 

with 1.5ug/uL tetracycline to suppress C99 expression.  After 24hrs to allow 
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adherence, cells were washed then incubated in 1X Optimem with tetracycline 

for 24hrs.  The next day media was replaced with Optimem without tetracycline 

for 24, 48 and 72 hrs.  Cells were washed with warmed 1XHBSS, fixed in 4% PF, 

then washed with 1X PBS.  Cells were permeabilized and blocked with 0.5% 

triton and 2% FBS in 1X PBS  10 minutes, then incubated with 1:4000 αtubulin 

antibody at 4°C for 3hr at RT.  For detection, cells were incubated at 1:100 FITC 

conjugated and anti-mouse IgG antibody for 2 hrs.      

 

Tubulin Fractionation 

Cells plated as described and incubated in 1% N2 media with either AAPH 

or HNE.  Cells were harvested into pipes extraction buffer (80mM PIPES, 2mM 

EGTA, 30% glycerol) with protease inhibitors and 0.1% triton, and centrifuged at 

14, 000 rpm on a table top centrifuge.  Supernatant was boiled for 10min and 

pellets resuspended in an equal volume of 2XSDS “stop” buffer (500mM Tris, pH 

6.8, 10%SDS, 100mM EGTA, 100mM EDTA, 10% glycerol). 

 

 

Tubulin Polymerization  

13.5 ml of N2a cells at 20 X 104 cells/ml were seeded in T-75 mm2 flasks 

and prepared for the experiment as described in the Cell culture section. Cells 

were exposed to varying concentrations of either HNE or HNE(Ac)3, harvested 

with a cell scraper and sedimented. Cell pellets  were washed two times with 

Hank’s Balanced Salt Solution (Invitrogen, Grand Island, NY) and then 
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reconstituted in 200 µl of cold extraction buffer (100 mM 2-[N-morpholino] 

ethanesulfonic acid (MES), 1 mM ethylenglycol-bis(2- aminoethylether)-

N,N,NW,NV-tetraacetic acid (EGTA), 0.5 mM MgCl2, 4 M glycerol, 2 mM 

guanosine 5V-triphosphate (GTP), protease inhibitor cocktail diluted 1/10,000 

(Sigma, St. Louis, MO, #P 8340). Samples were then pulse sonicated (2 times 

for 20 s at 20 W) and the cell lysates centrifuged (100,000  g, 4 8C, 1 h). The 

pellet (P1) was reconstituted in a volume of extraction buffer equal to the volume 

of the sample cell lysate. The protein concentration of the supernatant (S1) was 

determined using the Dc Protein assay kit according to the manufacturers 

instructions (BioRad, Hercules, CA). Protein concentrations in S1 samples were 

then adjusted to be 1.2 mg/mL. S1 solutions with protein concentrations below 

1.2 mg/mL were concentrated with Millipore Ultrafree centrifugal concentrators 

(Fisher Scientific, # UFV5BGC25, Swanee, GA). Taxol and GTP were added to 

final concentrations of 40 µM and 2 mM, respectively, the samples incubated in a 

shaking water bath for 30 min at 37°C and then centrifuged (100,000  g, 37°C, 1 

h). The supernatants (S2) were removed and the pellets (P2, polymerized 

tubulin) homogenized in a volume of extraction buffer equal to S1. All samples 

were stored at 80 °C until further analysis by immunoblot analysis.  Tubulin 

polymerization of MC65 cells was performed as above.  24h after initial plating in 

10%FBS containing media, cells were incubated in 1XOpti-MEM for another 24h, 

both in the presence of tetracycline.  The next day, media was replaced without 

tetracycline for 24h.  
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Immunoblot analysis  

 Samples of the tubulin polymerization assay were diluted in Laemmli 

sample buffer, proteins separated by SDS-PAGE (Laemmli 1970) and transferred 

to a PVDF membrane (Immobilon-P, Millipore, Bedford, MA). For visualization of 

tubulin, the membrane was first incubated with blotto(4% dry milk in Tris-buffered 

saline with 0.2% Tween 20) to block unspecific antibody binding sites, then with 

anti-α-tubulin (Sigma, St. Louis, MO, #T5168) diluted 1000-fold in blotto, followed 

by HRP-conjugated anti-mouse IgG (Amersham, Piscataway, NJ, #NA931) 

diluted 2000-fold in blotto. All incubations were for at least 2 h at room 

temperature or overnight at 4 °C. The signal was developed using a 

chemilluminescence reagent (PerkinElmer Life Sciences, Boston, MA, # 

NEL103) and visualized on Kodak X-OMAT AR film (Sigma, St. Louis, MO).  

 

2.3 Results  

We have previously shown that exposure of N2a cells to HNE results in 

the adduction of this aldehyde to tubulin, but the functional significance of this 

modification had not been demonstrated (Neely, Sidell et al. 1999; Neely, 

Zimmerman et al. 2000). Here, we studied the extent of taxol-induced tubulin 

polymerization in control and HNE-treated N2a cells. Taxol is a diterpene derived 

from the yew tree Taxus brevolia, and allows tubulin polymerization to proceed 

independent of MAPs (Schiff and Horwitz 1981).  Exposure of N2a cells to HNE 

resulted in a concentration and time-dependent inhibition of taxol induced tubulin 

polymerization (Figs. 3A,B). Taxol-induced tubulin polymerization was inhibited in 
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N2a cells exposed to HNE concentrations of 10 µM (Figure 3A) and after 

exposure times as short as 15 min (the shortest time we tested) (Figure 3B). 

HNE(Ac)3, the intracellularly activated analogue of HNE, inhibited taxol-induced 

tubulin polymerization to a similar degree as HNE (Figure 3C).  

Compared to HNE, HNE(Ac)3 compound was about two times less 

efficacious. HNE(Ac)3 has previously been shown to be about two times less 

efficacious in MT disruption than HNE (Neely, Amarnath et al. 2002) . The 

difference in reactivity is likely due to the fact that HNE(Ac)3 is partially 

hydrolyzed into HNE(Ac)1 (Neely, Amarnath et al. 2002).  HNE(Ac)1, just like 

HNE, is an α-β-unsaturated aldehyde and therefore a strong electrophile.  

However, HNE(Ac)1 has an acetyloxy group on the 4 position. This acetyloxy 

group is expected to confer more steric hindrance than the hydroxyl group 

present at that same position in HNE.    

An alternative method to assessing altered function of tubulin is to isolate 

assembled, membrane bound tubulin from free tubulin directly from cells.  

Disruption of MTs leads to a shift in the distribution of tubulin with less assembled 

as MTs and more free tubulin in cytosol.  Figure 4 presents data from N2a cells 

exposed to increasing concentrations of HNE for 1 hr.  These results gave a 

similar conclusion compared to the immunoflourescence microscopy and in vitro 

polymerization assay, viz, approximately 10 µM HNE is the EC50 for a dramatic 

increase in the amount of free (S) tubulin and a decrease organelle bound, 

assembled (P) tubulin in N2a cells. 



37 

Figure 3. 

Figure 3 (A) HNE causes concentration-dependent 

inhibition of taxol induced tubulin polymerization. 

After N2a cells were exposed to a range of HNE 

concentrations (0–100 µM) for 1 h, tubulin 

polymerization was induced in the cytosolic fraction 

with taxol. Microtubules were sedimented by 

ultracentrifugation and the tubulin content in the pellet 

(P, microtubules) and the supernatant (S, 

unpolymerized tubulin) compared by immunoblot 

analysis using anti-tubulin antibodies. While in control 

cells, the majority of tubulin is found in the pellet, the 

fraction of tubulin in the microtubule pellet decreases as the HNE-concentration increases. (B) 

HNE induced inhibition of taxol-induced tubulin polymerization is time dependent. Taxol-induced 

polymerization of cytosolic tubulin of N2a cells exposed to 25 µM HNE for varying times was 

analyzed. The effect of HNE is rapid, such that within 15 min of exposure, the majority of tubulin 

is observed in the supernatant(S), while in control cells, the majority of tubulin is isolated in the 

microtubule pellet (P). (C) HNE(Ac)3 inhibits cytosolic taxol-induced tubulin polymerization. N2a 

cells were exposed to a range of concentrations of HNE(Ac)3 for 1 h and the taxol-induced 

polymerization of cytosolic tubulin was analyzed. Similar to HNE, HNE(Ac)3 caused substantial 

inhibition of taxol-induced tubulin polymerization at 10 �M (S, unpolymerized tubulin; P, 

microtubule pellet). Immunoblots in these figures are representative of a total of three 

experiments for each variable. 
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Figure 4. 

 

 

 

 

 

  

 

 Previously we have observed that N2a cells exposed to HNE are deficient 

in taxol-stimulated (MAP independent) polymerization of tubulin extracted from 

cells.  Although HNE is a major aldehyde product of LPO in brain, others reactive 

aldehydes, LPOs, are also produced in at least similar concentrations.  These 

include acrolein and HHE.  Therefore, we extended our previous experiments to 

include investigation of these aldehydes and their effect on taxol-stimulated MT 

polymerization.  An example of our data for α tubulin is presented in Figure 5 that 

shows reduced polymerization of extracted tubulin following incubation of cells 

with HHE (5A) or acrolein (5B).  These data demonstrated the capacity of 

different aldehydes from LPO to irreversibly alter the ability of α-and β-tubulin to 

polymerize independently from MAPs (Figure B).   Representative Western blot 

of α-tubulin from acrolein-exposed N2a cells. N2a cells were exposed to 5-100 

 

Figure 4. Percent of tubulin from N2a cells assembled in pellet (P) and free in supernatant (S) following 
exposure to HNE.  (A) Percent distribution of tubulin in P and S fractions at different HNE concentrations 
(µM).  (B) Percent tubulin in P fraction expressed as log10 at different HNE concentrations.  N2a cells 
(ATCC #CCL-131) were exposed to HNE for 1 hour.  25µM or greater HNE treatment increases percent 
of free tubulin (S); conversely, percent of bound tubulin (P) is significantly diminished.  Western blots 
were performed as in figure 1.  Peak optical density was determined by using Quantity One (Biorad) and 
expressed as % of tubulin in P or S for each sample. 
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µM acrolein for 1hr, solubilized, and the extract subjected to GTP/taxol-induced 

tubulin polymerization. P2 and S2 are as described in Figure 3. MT 

polymerization was abolished by exposure to 25 µM and higher. 

Results from our concentration-response experiments are presented in 

Figure 6; these data are for α-tubulin although virtually identical results were 

obtained when the same analysis was performed for β-tubulin (not shown).  All 

three aldehydes progressively suppressed the capacity of taxol-stimulated tubulin 

polymerization.  While the maximal effect of all three aldehydes was similar, their 

EC50s were significantly different.  The EC50 (+ 95% confidence interval) for 

acrolein was 23 + 4 µM, for HNE was 46 + 9 µM, and for HHE was 75 + 12 µM 

(ANOVA had P < 0.01).   

 

Figure 5.  
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Figure 5.  Representative Western blot of α-tubulin from HHE (A) and acrolein-exposed (B) 
N2a cells.  N2a cells were exposed to 5-100 µM  HHE or acrolein for 1hr, solubilized, and the 
extract subjected to GTP/taxol-induced tubulin polymerization as previously described. 
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Figure 6. 

 

 

 

 

 

 

 

 

 

MC65 cells produce C99, a cleavage product of APP after cleavage by γ-

secretase (Jin, Hua et al. 2002).  In addition, C99 expression is followed by an 

intracellular increase of isoPs (Woltjer, Nghiem et al. 2005).  Expression is under 

control of the tetracycline promoter; therefore, tetracycline removal allows C99 

expression.  In this study, under conditions similar to those previously described,  

immunoflourescence for α-tubulin showed increased aggregation of tubulin about 

the cell body and retraction away from the cells neurites after 24 hours of C99 

expression.  This change in cytoskeletal morphology was most drastic after 48 

hours of C99 expression (Figure 7).  No neurites were apparent and nearly all 

tubulin was localized to the cell body.  At both 24 and 48 hours in the absence on 

C99 production, cells maintained normal, unchanged tubulin morphology.  

 

 

Figure 6. Concentration response relationships for taxol-stimulated tubulin polymerization 
following aldehyde incubated with N2a cells. Data are % of α-tubulin polymerized relative to 
total α-tubulin extracted from cells + SEM (n > 4 per data point). The calculated EC50s were 
23 + 4 µM, for HNE was 46 + 9 µM, and for HHE was 75 + 12 µM (ANOVA had P < 0.01). 
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Figure 7. 

 

 

 

 

 

 

 

 

 

 MC65 cells were also assayed for tubulin polymerization ability using our 

taxol-GTP method (Figure 8).  Contrary to the effect of free reactive aldehydes, 

tubulin polymerization increased with increasing levels of C99 expression. After 

24 hours of C99 expression, tubulin polymerization was nearly unchanged 

compared to cells not expressing C99. After 48 and 72 hours tubulin 

polymerization was nearly 60% and 150% greater.  

 

 

 

 

Figure 7.  Amyloid precursor protein cleavage product, C99, expression alters microtubule 
morphology in MC65 cells.  MC65 cells were incubated on glass slides in the presence (+) or 
absence (-) of tetracycline and stained for α-tubulin.  C99 expression (tetracycline (-)) leads to 
increased localization of α-tubulin near the cell body after 24h (B).  Neurites are completely 
abolished after 72h (D).  In the absence of C99 (tetracycline (+)), α-tubulin morphology 
remained unchanged at 24h (A) and 72h (C). 
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Figure 8. 

 

 

 

 

 

 

 

  

 Tubulin fractionation is an assay of tubulin dynamics or a comparative 

measure of assembled (P) vs. non assembled (S) tubulin.  N2a cells treated with 

AAPH, a compound that generates free radicals in solution, showed no change in 

fractionation (not shown).  However, HNE treated cells had a drastic decrease in 

tubulin in the pellet fraction as stated above.    

Lastly, using activated microglia, N2a cells were tested for MT integrity.  

Although, the concentrations of Aβ and LPS used lead to abundant microglial 

activation and neuronal cell death (Xie, Smith et al. 2004; Feng-Shiun Shie 2005; 

Figure 8. C99 expression increases tubulin polymerization.  Taxol/GTP tubulin polymerization 
was tested using MC65 cells and immunoblots were probed with α-tubulin.  Values are 
expressed as the percent (%) change in α-tubulin in C99 expressing cells compared to non-
expressing cells.  Tubulin polymerization increased by 60% after 48h and by 160% after 72h 
C99 expression.  Unpolymerized tubulin in the supernatant  increased to 20% after 48h of C99 
induction, but was unchanged after 72h. 
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Shie, Breyer et al. 2005) , these conditions failed to induce cytoskeletal changes 

assayed by α-tubulin microscopy (not shown).   

 

2.4 Discussion 

HNE also adducts to cellular proteins (Dickinson, Iles et al. 2002). In vitro 

incubation of purified bovine brain MT protein (tubulin and MAPs) with HNE 

results in a reduction in the rate and extent of tubulin polymerization (Gabriel, 

Miglietta et al. 1985; Olivero, Miglietta et al. 1990; Miglietta, Olivero et al. 1991).  

However, extrapolations of such in vitro observations with purified proteins to 

cellular events are difficult. The polymerization of purified tubulin depends 

strongly on type of buffers used, divalent cations, MAPs added, and other factors 

(Gillespie 1975; Banerjee, Jordan et al. 1985; Bayley, Schilstra et al. 1989). The 

cellular (in vivo) regulation of MT dynamics is very complex and involves MAPs, 

other cytoskeletal elements, and signaling cascades (Howard and Hyman 2003). 

In addition, issues such as membrane permeability of extracellularly applied HNE 

and nature of actual cellular target proteins have to be addressed. In previous 

experiments, we demonstrated that tubulin is a major target of extracellularly 

applied HNE (Neely, Sidell et al. 1999; Neely, Zimmerman et al. 2000).  

However, the functional significance of this tubulin modification had not been 

examined. Here, we developed an assay to study the effects of HNE on the 

functionality of tubulin of live cells that had been exposed to HNE. Specifically, 

we used taxol to induce tubulin polymerization in the cytosolic fraction of N2a 

cells that had been exposed to HNE or HNE(Ac)3.  Taxol induces tubulin 
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polymerization independent of MT regulatory proteins, such as the MAPs (Schiff 

and Horwitz 1981) . Therefore, the characteristics of taxol-induced tubulin 

polymerization in a cytosolic fraction reflects the functionality of the tubulin 

protein itself. We observed that taxol-induced tubulin polymerization is inhibited 

in the cytosol of N2a cells that had been exposed to HNE. The time and 

concentration dependence of the HNE-induced inhibition of taxol-induced tubulin 

polymerization correlate well with our previous immunocytochemical 

observations (Neely, Sidell et al. 1999).   

These observations, together with our finding that tubulin is a main cellular 

target protein of HNE (Neely, Sidell et al. 1999; Neely, Zimmerman et al. 2000) , 

support the  notion that HNE-adduction to tubulin is the primary cause of the 

HNE-induced loss of cytoplasmic MTs, although we cannot exclude the 

possibility that a possible modification of MT regulatory protein plays an 

additional minor role. Landino and collaborators found the in vitro peroxynitrite-

induced oxidation of tubulin sulfhydryls  to be the primary reason for the inhibition 

of tubulin polymerization, whereas the oxidation of SH groups on MAPs played a 

minor role (Landino, Hasan et al. 2002; Landino, Skreslet et al. 2004) .  

To our knowledge, this is the first demonstration of the mechanism by 

which HNE disrupts cellular MTs in living cells, namely, by adducting to tubulin 

and thereby inhibiting its polymerization.  In addition, we demonstrated that 

exposure of neuronal cells to pathophysiologically relevant concentrations of 

aldehydes derived from LPO resulted in irreversible reduction in taxol/GTP-

stimulated tubulin polymerization and this effect was greatest for acrolein. 



45 

The MC65 cell line expresses a specific C-terminal fragment of APP, C99, 

that is generated by cleavage of APP by γ-secretase.  MC65 cells are also 

hypothesized to produce Aβ fragments as assayed by SDS-PAGE migration.  

Both C99 and these smaller fragments accumulate and aggregate over time and 

are associated with increasing toxicity, mitochondrial dysfunction, and cell death 

(Jin, Hua et al. 2002; Woltjer, Maezawa et al. 2003; Maezawa, Jin et al. 2004; 

Woltjer, Nghiem et al. 2005).  This increase in tubulin polymerization was not 

initially expected because Aβ is also a generator of oxidative damage (Butterfield 

and Kanski 2002) and C99 production leads to increased isoPs (Woltjer, Nghiem 

et al. 2005).   Therefore, related fragments such as C99 were expected to be 

followed by MT collapse, which for our purposes is in part demonstrated by loss 

in polymerization.   However, very recent studies indicate interaction between Aβ 

and tubulin (Verdier, Huszar et al. 2005).  Based on this increase in tubulin within 

the polymerized fraction, C99 may be recruiting tubulin into amphorous 

aggregates.  Tubulin has been shown to associate with Aβ peptides or APP C-

terminal fragments (Baumann, Wisniewski et al. 1996; Islam and Levy 1997; 

Verdier, Huszar et al. 2005). 
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CHAPTER III 

 
 

DIMINISHED BRAIN TUBULIN POLYMERIZATION FROM PATIEN TS WITH 
DEMENTIA, BUT NOT INDIVIDUALS WITH MILD COGNITIVE I MPAIRMENT 

 
 

3.1 Introduction  

The neuronal cytoskeleton has long been proposed as a likely source of 

vulnerability to a variety of stressors because of the need for neurons to transport 

organelles over a much longer distance relative to other cells. Indeed, several 

toxicants that target intermediate filaments or MTs have their primary 

manifestation in neurons (Montine and Graham 2002). MTs are dynamic 

heteropolymers composed of α and β tubulin dimers that rapidly exchange with 

the pool of soluble tubulin as the key mechanism to their “growth” and transport 

of organelles within cells (Nogales 1999). Indeed, tubulin is the most abundant 

component of neuronal MTs, has at least 12 genetic variants, and is 

posttranslationally modified by several processes including, acetylation, 

tyrosinylation, glutamination, and phosphorylation (Westermann and Weber 

2003). All of these modifications influence the ability of tubulin to polymerize or 

MTs to depolymerize, and in combination with MAPs such as tau determine the 

appropriate activity of tubulin and MTs.  

Inheritance of mutations in the gene encoding multiple variants of tau, as 

well as one of three forms of neurofilament (NF), has been associated with 

several neurodegenerative diseases, including forms of Charcot-Marie-Tooth 

disease, Parkinson’s disease, amyotrophic lateral sclerosis, and frontotemporal 
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dementia linked to chromosome-17 (FTDP-17) (Cairns, Lee et al. 2004). Elegant 

studies have shown that some forms of mutant tau are deficient in their ability to 

promote tubulin polymerization into MTs in vitro and also produce 

neurodegenerative features in vivo providing biochemical evidence that 

inheritance of at least some of these Tau mutations is sufficient to produce MT 

dysfunction and some aspects of neurodegeneration (Hong, Zhukareva et al. 

1998; Barghorn, Zheng-Fischhofer et al. 2000; DeTure, Ko et al. 2002; Higuchi, 

Ishihara et al. 2002; del, Mederlyova et al. 2004; Krishnamurthy and Johnson 

2004; Zhang, Higuchi et al. 2004). In contrast, we are unaware of any mutation in 

genes encoding tubulins that has been associated with neurodegeneration. 

These genetic abnormalities in a small number of patients establish the 

relevance of the cytoskeleton as a target for neurodegenerative diseases but do 

not enlighten the mechanisms by which abnormalities of cytoskeletal physiology 

may contribute to neurodegeneration in the many more patients who do not 

inherit mutations. In this regard, MTs and tau have received attention in sporadic 

or LOAD (Trojanowski and Lee 2002; Iqbal, Alonso Adel et al. 2005). Several 

morphologic and immunohistochemical studies have demonstrated changes 

consistent with MT dysfunction in LOAD, including synaptic vesicles that fail to 

reach the terminal compartment, vesicle accumulation in neuron soma, and 

increased mitochondrial elements in lysosomes (Scheff, DeKosky et al. 1990; 

Praprotnik, Smith et al. 1996; Terry 1996; Hirai, Aliev et al. 2001; Stokin, Lillo et 

al. 2005).  Moreover, a few investigators have noted a reduction in stable MTs in 

brain specimens from patients with LOAD, even specimens obtained by biopsy 
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relatively early in the course of disease (Paula-Barbosa, Tavares et al. 1987; 

Hempen and Brion 1996; Cash, Aliev et al. 2003). In combination with these 

morphologic abnormalities, others have demonstrated clear biochemical 

abnormalities in tau from diseased regions of LOAD, viz., abnormal 

phosphorylation and increased ability to self-aggregate, as well as decreased 

activity in promoting tubulin polymerization in vitro.  

While the etiology of MT dysfunction in FTDP-17 and other inherited 

tauopathies seem to derive, at least in part, from inherent dysfunction of mutant 

tau, it is less clear what the sequence of events is in the pathogenesis of LOAD. 

One possibility is that abnormal tau phosphorylation is unable to form MTs but 

instead aggregates as phosphorylated tau (P-tau). This shifts the dynamic state 

of MTs towards the soluble tubulin pool. An alternative is that other factors lead 

to MT dysfunction, resulting in liberation of tau and its subsequent abnormal 

phosphorylation and aggregation. While several studies have demonstrated the 

former by determining the activity of tau isolated from diseased regions of AD 

brain (Trojanowski and Lee 2002; Iqbal, Alonso Adel et al. 2005), we are 

unaware of any study that has directly investigated tubulin function independent 

of MAPs. What etiological factors may be causing MT disruption are not clear, 

but one  suggestion is increased oxidative damage shown to occur in diseased 

regions of AD  brain (Markesbery and Lovell 1998; Montine, Quinn et al. 2004; 

Smith, Nunomura et al. 2005). Increased products of oxidative stress are present 

in the cytosolic compartment of neurons in diseased regions of brain from 

patients with AD (Good, Werner et al. 1996; Smith, Sayre et al. 1996; Montine, 
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Kim et al. 1997; Montine, Olson et al. 1997; Sayre, Zelasko et al. 1997) some of 

which also have been shown to disrupt MTs (Neely, Sidell et al. 1999; Landino, 

Hasan et al. 2002; Roediger and Armati 2003; Allani, Sum et al. 2004) and even 

bind to tubulin (Gabriel, Miglietta et al. 1985; Miglietta, Olivero et al. 1991; 

Miglietta, Olivero et al. 1991; Neely, Sidell et al. 1999). We have shown 

previously that one of these, HNE, both binds to tubulin and disrupts neuronal 

MTs in cell culture (Neely, Sidell et al. 1999). HNE is a major aldehyde product of 

LPO that is elevated in diseased regions of brain and cerebrospinal fluid of 

patients with AD, and produces impaired performance on Morris water maze test 

following bilateral basal forebrain injection in rats (Lovell, Ehmann et al. 1997; 

Bruce-Keller, Li et al. 1998; Markesbery and Lovell 1998).  However, other 

aldehydes, such as acrolein, also are produced in large quantities in  diseased 

regions of brain from AD patients compared to controls (Calingasan, Uchida et al. 

1999; Lovell, Xie et al. 2001). Here we tested the hypothesis that MTs are 

inherently dysfunctional in LOAD, and other neurodegenerative diseases, and 

determined whether this could be replicated by multiple products of oxidative 

damage.  

 
 
3.2 Materials and Methods  

Materials 

HNE and HHE were synthesized as previously described (Neely, Sidell et 

al. 1999; Neely, Boutte et al. 2005).  Acrolein was purified by distillation 

immediately before use.  Unless otherwise indicated, materials used for cell 
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culture were from Invitrogen (Grand Island, NY) and all other chemicals were 

from Sigma (St. Louis, MO).   

 

Human Brain Tissue 

Human gray matter was obtained from the Neuropathology Core of the 

Alzheimer Disease Research Center at the University of Washington (UW) 

following appropriate informed consent, flash frozen in liquid nitrogen at time of 

autopsy, and stored at –80oC.   Use of human tissue was approved by the UW 

Institutional Review Board.  Patients with AD were diagnosed during life probable 

AD and shown by neuropathologic examination that AD was the cause of their 

dementia (NIA 1997).  Patients with inherited AD also were shown to harbor the 

N141I PS2 mutation.  Patients with MCI were diagnosed with MCI during life 

according to accepted guidelines (Petersen, Doody et al. 2001) and were shown 

on neuropathologic examination to have low or intermediate levels of AD 

pathologic changes.  Controls were evaluated within 2 years of death by 

neurological examination and psychometric testing with all results in the normal 

range and had age-related changes only by neuropathologic examination.  

Patients with FTDP-17 were diagnosed with frontotemporal dementia and shown 

to have the V337M or P301L mutation; neuropathologic examination showed 

changes typical of FTDP-17. 

 

Tubulin polymerization assay  

Taxol/GTP-stimulated tubulin polymerization assay using N2a cells was 

performed exactly as previously described (Neely, Boutte et al. 2005).   This 

assay was adapted to human tissue by thawing each piece of frozen tissue at 

1g/mL in ice-cold MES polymerization buffer supplemented with 1:5,000 protease 

inhibitor cocktail.  Tissues were homogenized on ice at 20 second intervals 
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seconds using a pulsed probe sonicator at 1 pulse per second and then carried 

through the assay exactly as extracts from cells. 

 

Immunoblot Analysis  

 Immunoblots were performed exactly as previously described (Neely, Boutte 

et al. 2005).  Blots were probed with monoclonal α-tubulin antibody (1:1000, 

Sigma T5168), β-tubulin (1:1,000), Sigma T0198), or tau antibody (1:2,000, Dako 

Corporation A0024, Carpinteria, CA) and detected with 1:2,000 anti-mouse IgG-

HRP antibody (Sigma, A3682).  Blots were developed with chemilluminescence 

reagent (#NEL103001, NEN, Perkin Elmer Life Sciences, Boston, MA) and 

exposed to film (BioMax Light, Kodak or Blue-Lite film, ISC Bioexpress, Kaysville, 

UT). 

 

Densitometry and Statistical analysis of microtubul e polymerization 

 The percentage of extracted tubulin that was stimulated to polymerize was 

determined exactly as previously described (Neely, Boutte et al. 2005).  

Statistical analyses were performed with Graph Pad Prism (San Diego, CA).   

 

 
3.3 Results 

We determined the capacity of tubulin, extracted from human gray matter, 

to polymerize using the well-established assay of taxol/GTP-stimulated tubulin 

polymerization.  It is important to note that taxol/GTP are a very potent stimuli of 

tubulin polymerization that act independently of MAPs (Schiff and Horwitz 1981; 

Neely, Boutte et al. 2005) .  We utilized extracts of middle frontal gyrus (MFG) 

and superior and middle temporal gyri (SMTG), two regions involved by AD, in 
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patients with LOAD, mild cognitive impairment (MCI), and age-matched controls 

patients who died without disease in the CNS.  Characteristics of these patients 

are presented in Table 1.   

 

. 

Group n age  

(year) 

sex 

(F:M) 

PMI 

(hour) 

Braak 

Stage  

NP Score 

 

Mutation 

Control 10 75 + 15 2:3 6 + 3 I 0 None 

MCI 4 88 + 8 1:3 5 + 2 II Sparse None 

LOAD 12 76 + 9 1:2 5 + 2 VI Frequent None 

AD/PS-2 4 71 + 12 1:1 6 + 4 VI Frequent N141I 

FTDP-17 4 63 + 3 1:1 8 + 3 NA NA V337M, 

P301L 

 

 

Representative western blots for α and β tubulins are presented in Figure 

9.  Average results for relative α and β tubulin in polymerized MT fractions are 

presented in Figures 10A and 10B, respectively.  These results showed a 

significant difference among patient groups (P < 0.0001) but no difference 

between the two brain regions (P > 0.05), with reduced tubulin polymerization in 

AD patients compared to individuals with MCI or controls.  Bonferroni-corrected 

posttests showed that the AD group was different from MCI and control (P < 

Table 1. Characteristics of Individuals Included in human brain tubulin polymerization.  Data 
are mean + SD for age and post mortem interval (PMI), ratio for sex, and mode for Braak 
stage and CERAD NP score (NIA 1997).  ANOVA for age had P = 0.20 and for PMI had P = 
0.23. 
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0.001 for both comparisons), but that MCI and control were not different from 

each other (P > 0.05).     

 

Figure 9. 

 

Of the data presented in Figures 10A and 10B, we had paired 

measurements for MFG and SMTG from the same patient in a total of 38 

samples (21 α-tubulin and 17 β-tubulin).  Figure 10C shows the correlation for 

each pair of samples between the two brain regions.  Overall, there was a highly 

significant linear relationship for taxol-stimulated tubulin polymerization between 

the two brain regions with the slope near unity (P < 0.0001; slope = 0.92 + 0.09).  

Control and MCI values were broadly overlapping with 95% of samples having > 

20% tubulin polymerization.  Correlation for MCI (n=6) or Control (n=15) samples 

was similar to overall values (P < 0.001; slope = 1.04 + 0.12 and 0.98 + 0.17, 

Figure 9.  Tubulin polymerization in human tissue from LOAD is decreased compared to age 
matched controls. Lanes 1 and 4: S1, the first supernatant used for taxol/GTP polymerization, 
from age-matched controls and LOAD patients, respectively, before taxol/GTP stimulated 
polymerization.  Lanes 2, 3, 5, and 6 are P2 and S2 from controls and LOAD patients.   The 
western blot was probed with mouse monoclonal anti-α-tubulin. 
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respectively), a result that indicates that the physiologic processes influencing 

tubulin polymerization in the absence of advanced AD are approximately the 

same in these two brain regions.  Similar analysis of LOAD data revealed two 

categories:  9 of the 17 LOAD samples had no detectable polymerization, and 

thus are plotted at 0, 0 in Figure 10C; the other 7 samples showed no correlation 

between the two brain regions (P > 0.5, slope = -0.04 + 0.49).  Although the 

number of samples is small, these data suggest possible regional differences in 

the pathologic process that underlie diminished tubulin polymerization from in a 

subset of LOAD brain extracts. 

The variance in our taxol/GTP-stimulated tubulin polymerization data from 

LOAD patients suggests possible distinct subsets of patients within LOAD; 

therefore, we decided to investigate a known subset of AD patients distinct from 

LOAD, patients who had AD as a result of mutation in the PS-2 gene.  For 

comparison, we included patients who had another type of inherited 

neurodegenerative disease that afflicts these regions of brain, frontotemporal 

dementia with Parkinsonism linked to chromosome-17 (FTDP-17).  

Characteristics of these patients are presented in Table 1.  Results for taxol-

stimulated α-tubulin are presented in Figure 11; similar results were achieved 

with β tubulin (not shown).  Our results showed that both sets of diseased 

samples were significantly lower than controls and similar to LOAD.  Again, tau 

distribution following taxol/GTP was approximately 50% with the pellet and 

supernatant fractions and was not significantly different between LOAD and 

FTDP-17 patients.  
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Figure 10. 
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Figure 10 .  Taxol-stimulated α or β tubulin polymerization from middle frontal gyrus (MFG) and superior 
and middle temporal gyrus (SMTG) of patients who died with late onset Alzheimer’s disease (LOAD), 
with mild cognitive impairment (MCI), or without disease in the central nervous system (Controls).  Data 
are the percent of total tubulin that was stimulated to polymerize by taxol/GTP.  Panels A and B have 
results for α and β tubulin polymerization stratified by group.  Two-way ANOVA for α or β tubulin had P < 
0.0001 for group, P > 0.05 for brain region, and P > 0.05 for interaction between these two terms.  Panel 
C presents correlation of tubulin polymerization in the two regions of brain from the same individuals 
stratified by α or β tubulin and the three groups of individuals.  Also shown are the best-fit line (P < 
0.0001) and 95% confidence intervals for the all tubulin polymerization data from the two regions of 
brain. 
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Figure 11. 

 

 

 

 

 

 

 

 

We also probed these same samples for tau (Figure 12) and observed 

approximately 50% of tau in the pellet and the remainder in the supernatant; 

there was neither a difference in relative tau concentration in these two fractions 

among these groups of individuals (ANOVA had P > 0.05) nor was the pattern of 

tau immunoreactive bands different in this soluble extract of gray matter.   

Figure 11 .  Taxol-stimulated α tubulin polymerization from middle frontal gyrus (MFG) and superior and 
middle temporal gyrus (SMTG) of patients who died with Alzheimer’s disease caused by mutations in 
PS2, frontotemporal dementia with parkinsonism linked to chromosome-17 (FTDP-17), or without 
disease in the central nervous system (Controls).  Data are the percent of total tubulin that was 
stimulated to polymerize by taxol/GTP.  Two-way ANOVA had P < 0.001 for group, P > 0.05 for brain 
region, and P > 0.05 for interaction between these two terms. 
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Figure 12.  

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Discussion 

Neuronal MTs are vulnerable targets that are morphologically abnormal in 

diseased regions of brain from patients with LOAD (Paula-Barbosa, Tavares et 

al. 1987; Hempen and Brion 1996; Cash, Aliev et al. 2003). Although there has 

been extensive investigation of tau, we are unaware of any study that has directly 

assessed tubulin function in LOAD. Here we tested the hypothesis that tubulin 

derived from LOAD gray matter was functionally impaired. We used taxol/GTP 

stimulation of tubulin polymerization because this drives tubulin polymerization 

independent of MAPs (Schiff and Horwitz 1981).  We observed that on average, 

the capacity of taxol to stimulate tubulin polymerization was reduced in LOAD, 
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Figure12.  Tau distribution of taxol-stimulated microtubule polymerization from middle 
frontal gyrus (MFG) and superior and middle temporal gyrus (SMTG) of patients who 
died with late onset Alzheimer’s Disease (LOAD), Alzheimer’s disease caused by 
mutations in PS2 (AD-PS2), frontotemporal dementia with parkinsonism linked to 
chromosome-17 (FTDP-17), mild cognitive impairment (MCI), or without disease in the 
central nervous system (Controls).  Data are the percent of total tubulin that was 
stimulated to polymerize by taxol/GTP.  Two-way ANOVA had P < 0.001 for group, P > 
0.05 for brain region, and P > 0.05 for interaction between these two terms. 
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PS2-AD, and FTDP-17 but not individuals with MCI.  These comparisons suggest 

that an inherent impairment of tubulin exists that prevents taxol binding or taxol-

stimulated polymerization in these diseases. Moreover, in samples from patients 

classified as LOAD, we observed loss of correlation between brain regions as 

well as inter-individual heterogeneity in taxol-stimulated tubulin polymerization 

suggesting that pathogenic processes that are altering tubulin may not be 

uniform in this clinical/pathological entity.  Given the known morphological 

abnormalities of MTs in LOAD, it is perhaps not surprising that we observed 

functional abnormalities in taxol-stimulated tubulin polymerization. Moreover, 

even though the etiologies differ, the pathogenic similarities between LOAD and 

PS2-AD again make for the reasonable hypothesis that abnormalities of tubulin 

function observed in one would be observed in the other. However, we were not 

expecting to observe abnormalities in taxol-stimulated tubulin polymerization in 

FTDP-17, a disease caused by abnormalities in tau that are not present in AD. 

From these findings, as well as preservation of tubulin function in samples from 

patients with MCI, we speculate the processes that are leading to tubulin 

dysfunction occur in intermediate or late stages of neurodegeneration and are 

common to LOAD, PS2-AD, and FTDP-17. There are a few (mechanistically 

overlapping) possibilities, including innate immune activation, excitotoxicity, and 

oxidative damage. We were especially interested in the latter because of the 

known ability of products of LPO to disrupt cellular MTs.  Increased oxidative 

damage and subsequent LPO is now firmly established to be present in diseased 

regions of brain from patients with LOAD, PS2-AD, and FTDP-17. Several 
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groups have presented evidence, primarily histochemical and 

immunohistochemical, that neuronal cytoplasmic proteins are modified by 

aldehyde products of LPO in LOAD and other neurodegenerative diseases 

(Smith, Perry et al. 1996; Montine, Olson et al. 1997; Montine, Olson et al. 1997; 

Sayre, Zelasko et al. 1997; Montine, Reich et al. 1998; Velez-Pardo, Jimenez Del 

Rio et al. 1998; Calingasan, Uchida et al. 1999; Gerst, Siedlak et al. 1999). 

Moreover, at least two aldehyde products of lipid peroxidation, HNE and acrolein, 

are increased in tissue from LOAD patients compared to control (Lovell, Ehmann 

et al. 1997; Markesbery and Lovell 1998; Lovell, Xie et al. 2001).   Similar to 

observations of N2a cells treated with pathologically relevant aldehyde 

concentrations, taxol stimulated tubulin polymerization was reduced in tissue 

from patients with LOAD, PS2-AD, and FTDP-17.  Tubulin polymerization 

occurred at similar magnitudes across all three of these diseases.   

There are important limitations to our work that need to be stressed. While 

impaired tubulin polymerization in tissue from patients with neurodegenerative 

disease was similar to what we observed in reactive aldehyde-exposed N2a 

cells, we have not demonstrated that reactive aldehydes from LPO are in fact 

accumulating on tubulin in these diseases. This is a very difficult issue. Since 

immunochemical methods lack the sensitivity and specificity to detect low levels 

of these adducts (Neely, Sidell et al. 1999), definitive demonstration of tubulin 

adducts will require cutting edge mass spectrometric techniques to discern 

among the various potential adducts that may form on different residues within α 

and β tubulin. Moreover, even if some of the different types of adducts from HNE, 
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HHE or acrolein are eventually demonstrated on tubulin from LOAD or these 

other diseases, this will not prove that these adducts alone are necessary or 

sufficient for the reduced capacity of tubulin to polymerize in these diseases. 

Indeed, this is an even more difficult problem that will require site-selective 

replacement of tubulin residues expressed in appropriate systems, such as cell 

culture or animal models.  

In summary, we have demonstrated that exposure of neuronal cells to 

concentrations of aldehydes derived from lipid peroxidation at concentrations that 

occur under pathological states in vivo, results in irreversible reduction in the 

capacity of taxol to stimulate tubulin to polymerize and this effect was greatest for 

acrolein. We also observed similar irreversible loss of taxol-stimulated tubulin 

polymerization in samples from patients with LOAD, PS2-AD, and FTDP-17, but 

not individuals with MCI or controls. Our results show that modification of tubulin 

function, perhaps by aldehydes from LPO or other reactive molecules involved in 

oxidative damage, may contribute to intermediate or late stages in the 

pathogenesis of sporadic and inherited AD as well as FTDP-17. 
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CHAPTER IV 

 

INCREASED FREQUENCIES OF ββββ-III METHIONINE OXIDATION AND TAU 
LIPID PEROXIDATION ALZHEIMER’S DISEASE BRAIN DETERM INED BY 

MASS SPECTROMETRY AND P-MOD ANALYSIS 
 
 

4.1 Introduction 

AD is the most common form of dementia in the elderly and looms as a 

major public health problem in the coming decades.  For these reasons, a large 

research effort is underway to identify key pathogenic steps in AD pathogenesis 

and develop directed therapies.   A dominant biochemical feature of AD is the 

accumulation of detergent-insoluble protein, including sarkosyl-insoluble (SI) 

protein that can be extracted by highly chaiotropic means, such as partial 

solubility in formic acid (FS) (Kakizuka 1998; Trojanowski and Lee 2000; Tabner, 

Turnbull et al. 2001; Ingelsson and Hyman 2002; Hashimoto, Rockenstein et al. 

2003).  Two proteins which undergo this transition from normal solubility to SI/FS 

are Aβ and tau, the major protein constituents of senile plaques and NFTs, 

respectfully.  However, several other proteins also are present in the SI/FS 

fraction in AD, such as tubulins and glial fibrillary acidic protein (GFAP), the 

intermediate filament of astrocytes (Woltjer, Cimino et al. 2005).  SI/FS tubulins 

may be especially important because highly dynamic exchange between soluble 

and polymerized tubulin heterodimers is critical to MT function, and MT 

dysfunction has been proposed as one of the earliest events in AD pathogenesis 

(Stokin, Lillo et al. 2005).   
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Despite the potential importance of this transition of proteins from normal 

solubility to SI/FS, relatively little is known about the mechanisms that underlie 

this change.  Recent elegant studies have demonstrated biophysical 

mechanisms by which Aβ forms insoluble fibrils in vitro (Walsh, Hartley et al. 

1999; Arimon, Diez-Perez et al. 2005; Kirkitadze and Kowalska 2005; Petkova, 

Leapman et al. 2005), and it seems likely that inherent properties of some protein 

structures and protein-protein interactions will be key to determining which 

proteins transition to abnormal and perhaps pathologic insolubility.  Another 

proposed mechanism for transition to SI/FS is post-translational modification of 

protein by oxidative damage (Butterfield, Castegna et al. 2002; Reynolds, Berry 

et al. 2005).  Indeed, oxidative damage to protein, lipid, and nucleic acid has 

been repeatedly associated with diseased regions of brain from patients who 

died with AD and cerebrospinal fluid from patients with early AD or even MCI 

(Smith, Carney et al. 1991; Lyras, Cairns et al. 1997; Markesbery 1997; Smith, 

Richey Harris et al. 1997; Keller, Schmitt et al. 2005), a prodromal condition that 

commonly progresses to AD (Morris and Price 2001; Morris, Storandt et al. 

2001).  Numerous studies of human tissue have employed antibodies to localize 

oxidatively modified proteins; broadly, these studies have localized oxidation, 

glycation, nitration, and LPO protein adducts to neuron cytosolic proteins and 

sometimes to NFTs in AD brain (Smith, Sayre et al. 1998; Aksenova, Aksenov et 

al. 1999).  In addition to these patient-oriented studies, transgenic mouse models 

of AD also have been reported to show increased indices of oxidative damage, 

even before the deposition of Aβ-immunoreactive plaques (Pamplona, Dalfo et 
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al. 2005).  While the sources of oxidative damage in AD are not entirely resolved, 

they include the potentially partially overlapping processes of Aβ peptide 

formation, innate immune activation, excitotoxicity, and mitochondrial 

dysfunction. 

An elegant series of experiments have coupled 2-dimensional gel 

electrophoresis and immunochemical detection of proteins with carbonyl 

modifications studied by tandem mass spectrometry (MS-MS) to obtain a broad 

view of proteins labile to this form of oxidative modification in AD patients 

(Castegna, Aksenov et al. 2002; Castegna, Aksenov et al. 2002; Castegna, 

Aksenov et al. 2002; Korolainen, Goldsteins et al. 2002) and in rats following 

intracerebral injection of Aβ42  (Boyd-Kimball, Sultana et al. 2005).  Another 

recent study determined the amount of five different amino acid modifications in 

frontal cortex from AD patients by quantifying modified amino acids by gas 

chromatography (GC)-MS (Pamplona, Dalfo et al. 2005).  While both of these 

approaches have provided insight into the pathogenesis of protein modification in 

AD, both studies examined proteins extracted into aqueous buffer, i.e., proteins 

with normal solubility.    Indeed, no study we are aware of has associated 

oxidative protein modifications in AD with transition to detergent-insolubility, 

mapped protein modifications, or concentrated on neuronal cytoskeletal proteins, 

proposed to be the site of earliest dysfunction in AD pathogenesis.   

A scoring algorithm for spectral analysis (SALSA), which performs 

automated pattern recognition for peptide modifications in MS-MS data, has been 

used to identify oxidative protein modifications in vitro (Badghisi and Liebler 
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2002; Liebler, Hansen et al. 2002), including Aβ40/Cu2+-induced histidine and 

methionine oxidation (Schiewe, Margol et al. 2004).  A related algorithm, called 

P-MOD identifies and maps modifications to peptide sequences using MS-MS 

data (Hansen, Davey et al. 2005) and provides probability-based estimates of the 

quality of the matches.   Here we combine well-established extraction methods 

with liquid chromatography (LC)-MS-MS and P-MOD analysis to identify and map 

oxidative modifications to four cytoskeletal proteins that are associated with the 

biochemical abnormality of detergent insolubility or accumulation into NFTs.    

 

4.2 Methods 

Human Brain Tissue 

Use of human tissue was approved by the University of Washington (UW) 

Institutional Review Board.  Human brain samples were obtained from the 

Neuropathology Core of the Alzheimer Disease Research Center (ADRC) at UW 

following appropriate informed consent, flash frozen in liquid nitrogen at time of 

autopsy, and stored at –80°C.  Patients with AD were volunteers in the UW 

ADRC where they were diagnosed during life with probable AD and shown by 

neuropathologic examination to have AD (The National Institute on Aging and 

Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological 

Assessment of Alzheimer's 1997).  Control individuals also were volunteers in the 

UW ADRC, were never diagnosed during life with disease of the CNS, and had 

age-related changes only by neuropathologic examination.  
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Extraction and Dissection  

Tissue was first extracted with Buffer A (10 mL/g tissue in 10mM Tris, 

1mM EGTA, 1mM DTT, 10% sucrose, pH 7.5) as previously described  (Wang, 

Woltjer et al. 2005; Woltjer, Cimino et al. 2005).  Following centrifugation at 26, 

500g for 15 minutes at 4°C, the insoluble pellet was sequentially extracted with 

Buffer A plus 1% triton, Buffer A plus 1% n-laurylsarcosyl, and 70% formic acid 

(FA) exactly as we have done previously (Woltjer, Cimino et al. 2005).  Laser 

capture microdissection (LCM) of NFTs was performed exactly as previously 

described by us (Wang, Woltjer et al. 2005).  Briefly, hippocampus obtained at 

autopsy was embedded in cryoprotective compound, frozen, and stored at –

80°C.  Frozen sections were cut at 10 micron thickness, fixed, permeabilized, 

probed with mouse monoclonal anti-tau antibody (Tau-2, Sigma, St. Louis, MO; 

1:250), and LCM of tau-2-immunoreactive structures with the size and shape of 

NFTs was performed in CA1 sector.   A total of approximately 2000 NFTs were 

pooled and extracted with 70% FA.  These protein preparations were repeated 

three times for both extractions and twice for LCM of NFTs.  Proteins extracted in 

Buffer A, the SI/FS fraction, and LCM-obtained proteins were desalted, alkylated 

with iodoacetamide, cleaved with trypsin, and prepared for LC-MS-MS exactly as 

previously described (Wang, Woltjer et al. 2005; Woltjer, Cimino et al. 2005).    

 

Mass Spectrometry 

Each of the three samples of digested peptides from Buffer A and SI/FS 

fractions and both of the samples from LCM NFTs were separately purified with a 
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C18 solid phase extraction column (OasisR MCX, Milford, MT), separated by a 

two dimensional microcapillary high performance LC system, a strong cation-

exchange column with two alternating reversed-phase C18 columns (10 cm X 

180 µm), followed by analysis with MS-MS (Thermo Electron, San Jose, CA) 

exactly as previously described (Wang, Woltjer et al. 2005; Woltjer, Cimino et al. 

2005).  MS-MS data were searched against the International Protein Database 

using SEQUEST.  The sensitivity and specificity of protein identification were 

determined by Peptide Prophet and Protein Prophet software  (Wang, Woltjer et 

al. 2005; Woltjer, Cimino et al. 2005; Zhang, Goodlett et al. 2005). 

   

P-MOD analysis  

Tryptic peptide fragments 5-30 amino acids in length, with and without 

internal lysines, were generated in silico using the following protein sequences 

obtained from NCBI/ENTREZ or SWISS PROT databases: α-III tubulin (Swiss 

Prot Q71U36), β-III tubulin (Swiss Prot Q13509), PHF tau (Swiss Prot P10636), 

and GFAP (Swiss Prot P14136).  Each file of MS-MS data (three replicates for 

Buffer A, three replicates for SI/FS, and two replicates for LCM NFTs) was 

evaluated separately by P-MOD searching for trypsin-cleaved proteins with and 

without missed lysines, and the results from these replicate evaluations were 

then combined.  Using the Associate of Biomolecular Research Facilities (ABRF) 

Delta Mass (http://www.abrf.org/index.cfm/dm.home) and Unimod 

(http://www.unimod.org/) databases, we tentatively assigned structures to the 

mass shifts identified and mapped by P-MOD.    The average (+ standard 
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deviation) error rate in mass shift determination was 2.5 + 0.2% of all peptides 

included in this study.   Modification frequency was estimated as the number of 

modified amino acids that met the above criteria divided by the total number of 

times those amino acids were present in that specific peptide.  χ-squared tests 

(GraphPad Prism, San Diego, CA) were performed to assess the statistical 

significance of modification frequency for each protein in Buffer A, SI/FS, and 

LCM NFT preparations; since we performed repeated χ-square analyses, we 

accepted as significant only those with P < 0.01.  

 

Cyanogen Bromide Cleavage and Western Blotting 

The SI/FS fraction from temporal cortex from AD patients and the 70% FA 

extract from control temporal cortex were dried, resuspended in water, and 

protein concentration determined using the Biorad Dc Reagent Kit (Biorad, 

Hercules, CA).  50µL of each was dried under vacuum and then resuspended in 

either 500 µL 70% FA or 100 mM CNBr plus 70% FA per 12.4 µg total protein; 

this achieved a 100-fold molar excess of CNBr to tubulin that was estimated to 

be ~10% total cellular protein (McLaughlin, Zemlan et al. 1997; Kaiser and 

Metzka 1999; Hollemeyer, Heinzle et al. 2002).  Samples were digested 

overnight, dried, and resuspended in Laemmli sample buffer containing 200 mM 

DTT for separation by SDS PAGE using Tris-Tricine Ready Gels (Biorad, 

Hercules, CA).  Western blots were performed exactly as previously described 

(Neely, Boutte et al. 2005) using monoclonal anti-α-tubulin antibody (Sigma 

Chemical Co., St. Louis, MO) at 1:1000 dilution or monoclonal anti-β-III tubulin 
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antibody (Covance Research Products, Babco, CA) at 1:1000 dilution.  

Outcomes from Western blots were digitized and band density integrated with 

ImageJ software (National Institutes of Health, Bethesda, MD); statistical 

comparison was made by two-way analysis of variance (ANOVA) (Graph-Pad 

Prism). 

 

4.3 Results  

Extracts were prepared from temporal cortex, a region of brain affected by 

processes of AD, and pooled from 5 patients before LC-MS-MS to limit 

idiosyncratic differences among individuals (Zhang, Goodlett et al. 2005).   

Information on AD patients from whom tissue was obtained is presented in Table 

2.   For each patient, we prepared two serial fractions from the same piece of 

tissue:  a fraction soluble in detergent-free Buffer A and a SI/FS fraction (Wang, 

Woltjer et al. 2005; Woltjer, Cimino et al. 2005).  There are two major advantages 

to comparing normally soluble with insoluble protein from the same AD tissue.  

First, direct comparison of SI/FS protein between AD patients and controls is 

confounded because carefully established control individuals have 6-fold less 

SI/FS protein relative to AD patients, and what is present in SI/FS extracts from 

controls has different protein constituents than extracts from AD patients (Woltjer, 

Cimino et al. 2005).  Second, important issues related to protein changes from 

co-morbid conditions, agonal state, delay in procurement, and slight variation in 

dissection, freezing, and extraction of tissue are removed because the same 

piece of tissue was used to prepare both fractions.  For comparison, a third 
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fraction was prepared by FA extraction of NFTs obtained by LCM of AD 

hippocampal sector CA1  (Wang, Woltjer et al. 2005).     

 

 Extraction for 

P-MOD 

LCM of NFTs for 

P-MOD 

CNBr Cleavage 

Diagnosis AD AD Control 

n 5 4 3 

Age (years) 80 + 1 81 + 4 84 + 4 

F:M 3:2 1:1 2:1 

PMI (hr) 3.4 + 0.8 3.7 + 1.2 4.2 + 1.1 

CERAD NP Moderate or 

Frequent 

Moderate or 

Frequent 

None or Sparse 

Braak VI VI 0 to II 

 

 

Extracts were digested by trypsin and prepared for (LC)-MS-MS as 

previously described (Wang, Woltjer et al. 2005; Woltjer, Cimino et al. 2005); 

even the extensively posttranslationally modified protein in the LCM NFT fraction 

is virtually completely digested by trypsin as assessed by SDS-PAGE and silver 

stain (Wang, Woltjer et al. 2005).  We focused on 4 different cytoskeletal proteins 

identified in each preparation by > 2 unique peptides and a Protein Prophet 

probability score of 1.00:  neuron-enriched α-III tubulin (Hall and Cowan 1985; 

Miller, Naus et al. 1987) and β-III tubulin (Lee, Rebhun et al. 1990; Lee, Tuttle et 

Table 2.  Information on individuals whose tissue was used in P-MOD experiments.  AD tissue 
for CNBr cleavage was the same as that used in extraction studies for P-MOD.   
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al. 1990; Lu, Jones et al. 2003) that are also constituents of NFTs (Wang, Woltjer 

et al. 2005), neuron-enriched tau that is the major constituent of NFTs  

(Harrington, Mukaetova-Ladinska et al. 1991), and astrocyte-enriched GFAP   

(Eng, Ghirnikar et al. 2000; Messing and Brenner 2003).  We used P-MOD to 

analyze the MS-MS data from these four proteins in three different preparations 

for 10 mass shifts on appropriate amino acids that are associated with oxidative 

and nitrative damage (Table 3).  As a confirmation of our approach, we also 

examined phosphorylation (+80 amu) of tau because of the expected increase in 

tau phosphorylation in the SI/FA and NFT preparations compared to Buffer A-

soluble tau  (Alonso, Grundke-Iqbal et al. 1996; Iqbal, Alonso Adel et al. 2005).  

A total of 29,846 peptides were evaluated by P-MOD in this study; the total 

number of peptides analyzed per protein, the median number of peptides 

analyzed per tryptic fragment, and the range of peptides analyzed per tryptic 

fragment are presented in Table 4.  

Modification frequency (the number of modified labile amino acids divided 

by the total number of labile amino acids) was estimated as described in 

Methods.  We used χ-squared analysis of modification frequency in the three 

sample preparations (with ρ = 0.01 because of repeated tests) to assess whether 

modification frequencies were changing significantly from Buffer A to SI/FS to 

LCM NFT fractions.  As expected, the frequency of tau phosphorylation 

increased significantly in SI/FA and NFT fractions compared to Buffer A-

extracted tau from AD temporal cortex.  Of the 48 possible combinations of 10 

oxidative or nitrative modifications on 4 different proteins, four others also had χ-
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squared tests with P < 0.01; these were: β-III tubulin methionine oxidation, α-III 

tubulin nitration, and tau adduction by HHE and HNE.  Table 5 presents a 

summary statistic, the sum of modification frequencies for all labile amino acids 

in the entire protein.  Of the modifications with significantly increased frequency, 

β-III tubulin methionine oxidation, sulfone and sulfoxide combined, was the most 

prevalent with over 80% of all methionine residues within this protein oxidized to 

their corresponding sulfoxide or sulfone.  Figure 13 maps the distribution of 

methionine oxidation frequency in β-III tubulin, and Figure 14 maps the 

distribution of HNE and HHE adducts on tau, in each of the three preparations.     

We pursued verification of the most prevalent adduct, methionine 

oxidation on β-III tubulin, through independent means by determining efficiency 

of CNBr-mediated cleavage, which is blocked by oxidized methionines (Shechter, 

Burstein et al. 1975; Villa, De Fazio et al. 1989; Hollemeyer, Heinzle et al. 2002).  

For comparison, we used SI/FS extract of temporal cortex from the same 5 AD 

patients whose tissue was used in P-MOD analysis and compared that to 

extracts of temporal cortex from three individuals who died without clinical 

evidence of neurological disease and who had age-related changes only in brain 

by neuropathologic examination; characteristics of these individuals are 

presented in Table 2.  Since the total SI extractable protein in controls is very 

small (Woltjer, Cimino et al. 2005), control tissue was extracted directly with 70% 

FA.  Proteins extracted from controls and AD patients were subjected to 

cleavage with CNBr, separated by SDS-PAGE and then probed by Western blots 

with antibodies against α and β-III tubulin; antibodies specific to neuron-enriched 
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α-III tubulin are not available (Figure 15).  Our results showed that CNBr 

treatment cleaved virtually all α and β-III tubulin extracted from control tissue, 

while cleavage of β-III tubulin was selectively and significantly reduced in extracts 

from AD tissue (P < 0.01). 

 

 

Mass Shift Relevant Amino Acid Proposed Adduct/Modi fication 

-64 M Methane sulfenic acid 

-27 R Arginine oxidation to glutamic 

semialdehyde 

+16 or +32 M Methionine Oxidation 

+46 or +62 F, T, Y, W Nitration 

+48 C Cysteic acid 

+56 K Carboxymethyl-lysine, Glyoxal, or  

Acrolein 

+72 C, K, Q, R Methylglyoxal, Carboxyethyl-lysine (K 

only) 

+113 C, H, K 4-hydroxyhexenal (HHE) 

+156 C, H, K 4-hydroxynonenal (HNE) 

 

 

Table 3.  Mass shifts, relevant amino acids, and the corresponding proposed oxidative and 
nitrative modifications investigated with P-MOD. 
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  αααα-III Tubulin ββββ-III Tubulin Tau GFAP 

Buffer A Total # hits 

Median # hits/peptide 

Range of hits /peptide 

3354 

115 

24 - 439 

3118 

131 

27 - 332 

2675 

52 

4 - 288 

3937 

88 

19 - 289 

SI/FS Total # hits 

Median # hits/peptide 

Range of hits /peptide 

3665 

140 

36 - 329 

3086 

135 

10 - 322 

1919 

43 

2 - 265 

4166 

87 

17 - 261 

NFT Total # hits 

Median # hits/peptide 

Range of hits /peptide 

936 

29 

1 - 99 

361 

14 

0* - 52 

1020 

17 

0* - 190 

1609 

32 

0* - 114 

 

 

 

Table 4.  Peptide hits evaluated by P-MOD for each protein in each preparation. * One 
peptide was not observed for these proteins in the NFT faction. 
^ Five peptides were not observed for tau in the NFT fraction. 
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Proposed 
Modification 

Preparation αααα-III tubulin ββββ-III -tubulin tau GFAP 

Phosphorylation Buffer A 
SI/FS 
NFT 
(#) 

-- 
-- 
-- 
-- 

-- 
-- 
-- 
-- 

3.57 
23.80 
21.42* 
(119) 

-- 
-- 
-- 
-- 

Methionine Oxidation Buffer A 
SI/FS 
NFT 
(#) 

0.02 
0.00 
0.03  
(6) 

0.52 
5.16 
11.7* 
(14) 

0.16 
1.00 
1.94  
(8) 

0.15 
0.20 
0.00 
(11) 

Nitration Buffer A 
SI/FS 
NFT 
(#) 

12.65 
11.00 
2.20* 
(55) 

4.90 
0.00 
0.98 
(49) 

6.38 
3.48 
0.58 
(58) 

6.08 
14.44 
10.26 
(38) 

HHE Buffer A 
SI/FS 
NFT 
(#) 

0.41 
0.50 
0.08 
(30) 

0.05 
0.07 
0.04 
(24) 

0.68 
11.00 
0.16* 
(84) 

1.73 
0.36 
0.06 
(31) 

HNE Buffer A 
SI/FS 
NFT 
(#) 

3.90 
0.00 
3.00 
(30) 

0.00 
0.00 
0.00 
(24) 

1.68 
11.76 
2.52* 
(84) 

0.93 
0.00 
4.03 
(31) 

Table 5.  Sum of modification frequencies for those proteins with *P < 0.01 for χ-squared test 
of modification frequency among the three tissue preparations.  For example, 119 amino acids 
contained within tau are labile to phosphorylation (S, T, and Y).  If every time a specific amino 
acids was observed it had a mass shift of +80 ascribed by P-MOD, then the frequency of 
modification at that amino acid would be 1.00.  If every S, T, and Y within tau had an individual 
modification frequency of 1.00, then the sum for the entire protein would be 119.00.  Number 
(#) indicates total possible amino acids labile to the proposed modification. 
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Figure 13.
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Figure 13:  Map of +16 or +32 amu shifts on methionines for tryptic peptides from β-III tubulin 
in the three tissue extracts.  Human temporal cortex from patients with AD was serially 
extracted into Buffer A (BA) or sarkosyl insoluble/70% formic acid soluble (SI/FS) fractions.  A 
third sample, laser captured NFTs, was extracted directly into 70% formic acid.  All samples 
were analyzed by liquid chromatography with tandem mass spectrometry and then evaluated 
by P-MOD.  Data are presented as amino acid sequence from N-terminal to C-terminal with 
every 10th residue shown on the x-axis, tissue preparation on the y-axis, and frequency of 
methionine sulfoxide (M+16) and methionine sulfone (M+32) on the z-axis.   Also designated 
are some functional domains.  χ-squared test for methionine oxidation vs. tissue preparation 
had P < 0.01. 
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Figure 14. 
A. 
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Figure 14. legend opposing page 
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Figure 14:  Map of +113 amu (A) (proposed 4-hydroxyhexenal (HHE) Michael adduct) and 
+156 amu (B) (proposed 4-hydroxynonenal (HNE) Michael adduct) shifts on C, H, and K for 
tryptic peptides from tau in the three tissue extracts.  Human temporal cortex from patients 
with AD was sequentially extracted into Buffer A (BA) or sarkosyl insoluble/70% formic acid 
soluble (SI/FS) fractions.  A third sample, laser captured NFTs, was extracted directly into 
70% formic acid.  All samples were analyzed by liquid chromatography with tandem mass 
spectrometry and then evaluated by P-MOD.  Data are presented as amino acid sequence 
from N-terminal to C-terminal with every 16th residue shown on the x-axis, tissue preparation 
on the y-axis, and frequency of proposed HHE or HNE adducts on the z-axis.   Functional 
domains are also designated.  χ-squared test for HHE or HNE vs. tissue preparation both had 
P < 0.01. 
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Figure 15. 

Figure 15.  Cleavage of α 

and β-III tubulins with CNBr.  

SI/FS temporal cortex 

fraction from the same AD patients analyzed by P-MOD and FS temporal cortex fraction from 

three control individuals were subjected to cleavage by CNBr, separated by SDS-PAGE, and 

probed with α or β-III tubulin antibody.  Data are presented as the percent change from samples 

run in parallel that were not incubated with CNBr.  Two-way ANOVA had P < 0.05 for α vs. β-III 

tubulin, P < 0.01 for control vs. AD, and P < 0.05 for interaction between these  two  terms.  

Bonferroni-corrected post-tests had P < 0.01 for AD but P > 0.05 for controls.  Inset: 

Representative Western blot of control (CNTL) and AD extracts incubated with (+) or without (-) 

excess CNBr and probed with β-III tubulin antibody. 
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Figure 16. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Nt G H L S V E P S G P E L G V A I L S H E E P V D S T C R G K P S R A L K V C Q G V G I D T M S

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

NFT
SI/FS

BA

fr
ac

tio
n 

of
 m

od
ifi

ca
tio

n

microtubule binding regions (4R)

projection domain 

proline rich region

Nt G H L S V E P S G P E L G V A I L S H E E P V D S T C R G K P S R A L K V C Q G V G I D T M S

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

NFT
SI/FS

BA

fr
ac

tio
n 

of
 m

od
ifi

ca
tio

n

microtubule binding regions (4R)

projection domain 

proline rich region

Figure 16. Map of +80 amu  (proposed phosphorylation) shifts on S, T, and Y for tryptic 
peptides from tau in the three tissue extracts.  Human temporal cortex from patients with AD 
was sequentially extracted into Buffer A (BA) or sarkosyl insoluble/70% formic acid soluble 
(SI/FS) fractions.  A third sample, laser captured NFTs, was extracted directly into 70% formic 
acid.  All samples were analyzed by liquid chromatography with tandem mass spectrometry 
and then evaluated by P-MOD.  Data are presented as amino acid sequence from N-terminal 
to C-terminal on the x-axis, tissue preparation on the y-axis, and frequency of proposed 
phosphate adducts on the z-axis.   Functional domains are also designated.  Χ-squared test 
for HHE or HNE vs. tissue preparation both had P < 0.01. 
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4.4 Discussion 

Here we used P-MOD, a recently developed software and algorithm that 

identifies and maps peptide modifications by analyzing MS-MS data, to evaluate 

three different protein fractions obtained from human temporal cortex affected by 

AD:  a biochemically normal protein fraction that was extracted into Buffer A, a 

pathological protein fraction that was insoluble in ionic detergents (SI/FS), and 

proteins associated with NFTs, a histopathologic hallmark of AD.   We focused 

our analysis on neuron-enriched tubulins and tau, as well as GFAP as an internal 

control, because neuronal cytoskeletal dysfunction has been proposed as one of 

the earliest abnormalities in AD pathogenesis  (Stokin, Lillo et al. 2005).  We 

further focused our analysis on 10 mass shifts characteristic of oxidative and 

nitrative modifications because results from several model systems have shown 

that these modifications of tubulins and tau may be pathophysiologically relevant 

and lead to abnormal protein-protein interactions as well as neuronal cytoskeletal 

collapse (Horiguchi, Uryu et al. 2003; Reynolds, Berry et al. 2005; Zhang, Xu et 

al. 2005).      We also investigated tau phosphorylation because of the strongly 

anticipated outcome, based upon many biochemical and immunochemical 

studies  (Kopke, Tung et al. 1993; Alonso, Zaidi et al. 1994; Alonso, Grundke-

Iqbal et al. 1996; Buee, Bussiere et al. 2000), that its frequency would be 

increased in the pathological preparations compared to Buffer A extracts. 

P-MOD evaluated over 28,000 peptides in this study.  Our results 

demonstrated that among the neuron-enriched cytoskeletal proteins investigated, 

detergent insolubility of β-III tubulin was associated with selective methionine 
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oxidation, to the exclusion of its heterodimeric partner, and detergent-insoluble 

tau contained significantly increased modifications by LPO products.  It is 

important to stress, perhaps most so for methionine oxidation, that similar 

changes were not observed on GFAP, an astrocyte-enriched protein that was 

extracted simultaneously.  We confirmed by independent means that CNBr 

cleavage of β-III tubulin was selectively decreased in AD tissue, a result 

consistent with our P-MOD analysis.  Tau phosphorylation was an expected 

result, although never previously demonstrated by this method, and a further 

validation of our approach.  Many reports have demonstrated bulk increased 

levels of methionine oxidation and LPO in AD tissue by biochemical methods and 

localization of these changes primarily to neurons by immunohistochemistry  

(Montine, Kim et al. 1997; Sayre, Zelasko et al. 1997; Montine, Reich et al. 1998; 

McKracken, Graham et al. 2001; Dalle-Donne, Rossi et al. 2002; Stadtman, Van 

Remmen et al. 2005);  these results are consonant with our protein mapping 

study.  

While we think it is informative to include NFT-associated proteins in our 

analysis, there are limitations to interpreting these data.  First, unlike Buffer A 

and SI/FA fractions, NFTs were captured from different pieces of tissue leaving 

the sample vulnerable to the potential sources of variance noted earlier.   

Moreover, proteins obtained by LCM will include not only structurally abnormal 

proteins present in NFTs, but also unknown amounts of protein with normal 

solubility since this dissected tissue was extracted directly into FA because of it 

small mass.  Finally, the biochemical abnormalities of some NFT-associated 
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proteins are likely to be among the most extreme and may confound analysis by 

P-MOD.  These considerations coupled with the relatively smaller amount of 

protein analyzed from the NFT LCM fraction (with consequent incomplete peptide 

coverage, see Table 3) likely make these the least accurate data obtained in 

these experiments.  We observed a lower frequency of tau phosphorylation, β-III 

tubulin methionine oxidation, and tau modification by HHE and HNE in LCM NFT 

compared to SI/FS extracts.  Our data showed that these modifications were 

detectable in these proteins in the LCM NFT preparation and mapped in a 

manner similar to the SI/FA fraction; however, we are cautious about comparing 

the relative frequency of protein modifications between these two preparations 

given the limitations noted above. 

Interestingly, our data showed that nitrative modification of these 

cytoskeletal proteins changed significantly across sample preparations only for β-

III tubulin and actually decreased from Buffer A to the SI/FS fraction.  Still further 

reduction in nitrative frequency was observed in LCM NFT fraction.  Nitrative 

modification of protein does occur as part of normal physiology, including α-

tubulin  (Bolan, Gracy et al. 2000; Greenacre and Ischiropoulos 2001; Bisig, 

Purro et al. 2002);  however, bulk biochemical and immunohistochemical studies 

have concluded that AD is associated with an increase in nitrative modification of 

protein (Smith, Richey Harris et al. 1997; Eiserich, Estevez et al. 1999; 

Castegna, Thongboonkerd et al. 2003).  We are aware of no study that has 

specifically investigated α-III tubulin in this regard and so are left with the 
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possibility that part of AD pathogenesis may be increased nitrative modification of 

some proteins and decreased nitrative modification of others.   

Not only did our analyses detect selective accumulation of oxidative 

modifications on some of these biochemically abnormal neuron-enriched 

cytoskeletal proteins, but we also demonstrated that these modifications were 

non-randomly distributed within the selectively modified protein.  The 

mechanisms underlying this selective distribution of oxidative protein modification 

in AD are not clear but likely represent a complex interaction among generation 

of the oxidizing agent, the inherent susceptibility of specific protein 

microenvironments, and the cellular location of the protein.     

The potential functional significance of regional specificity of β-III tubulin 

methionine oxidation was considered using the bovine and porcine brain 

heterodimer models submitted by Nogales and colleagues (Nogales, Wolf et al. 

1998; Nogales 1999) to the Protein Data Bank 

(http://www.rcsb.org/pdb/index.html).  Oxidation of β-III tubulin methionines was 

observed at increased frequency in pathological fractions (SI/FS and NFTs) in 

regions A63-R77, V155-R162, I163-K175, L263-R276, and A283-K297, which 

include regions related to GTPase or protein-protein binding functions of β-III 

tubulin and so have obvious potential functional significance.   In addition, the 

L253-R262 region, which is located adjacent to the MAP binding region, showed 

methionine oxidation only in pathologic fractions (SI/FS and NFT).  L263-R276 is 

inaccessible in normal protein (de Pereda and Andreu 1996; Nogales, Wolf et al. 

1998), suggesting that abnormal protein folding may have preceded increased 
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methionine oxidation in some regions of β-III tubulin in pathological fractions.   

Commonly oxidized areas are displayed in Figure 17. 

 

 

 

 

 

 

 

 

 

 

Some of the LPO adducts mapped in tau were identified within the MT 

binding regions spanning amino acids from 577 to 683 and therefore have the 

potential to modify the ability of tau to stabilize MTs (Lee, Neve et al. 1989; 

Gustke, Trinczek et al. 1994; Perez, Arrasate et al. 2001; Gamblin, Berry et al. 

2003).  P-MOD-detected mass shifts inferred to be HHE and HNE adducts also 

were found in the proline-rich region that have been proposed to influence the 

interaction of tau with MTs (Gustke, Trinczek et al. 1994; Goode, Denis et al. 

1997).    Prominent N-terminus modification on K24 is in the projection domain of 

tau, the region that interacts with cellular membranes and other cytoskeletal 

Figure 17. Model of β-tubulin methionine oxidation. Oxidized methionine common to all 
fractions tested are highlighted in yellow on the β-tubulin (right, colored blue) protein.  
Structure defines the α/β-tubulin dimer assembled in the presence of taxol and nucleotides in 
both α and β tubulin subunits. 

Bovine α/β-tubulin heterodimer stabilized with zinc and taxol 

β tubulin 

α tubulin 
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elements and is involved in axonal diameter (Chen, Kanai et al. 1992; Brandt, 

Leger et al. 1995). Among the S, T, and Y residues mapped by P-MOD as 

containing a +80 amu shift, serines 214, 355, 397, and 400 also have been 

identified by others using phospho-specific antibodies in pre-tangles and tangles 

and their phosphorylation is proposed to interfere with tau binding to MTs 

(Lauckner, Frey et al. 2003).    Similarly, P-MOD confirmed tau phosphorylation 

at S262, T231, and S235, modifications that have been shown to inhibit tau 

binding to MTs by up to 35%  (Sengupta, Kabat et al. 1998).  

Finally, it is worth recognizing that although we have identified and 

mapped oxidative and nitrative modifications to these neuron-enriched 

cytoskeletal proteins in the detergent-insoluble fraction, other proteins were 

present in this pathological fraction without an associated increase in oxidative or 

nitrative modifications.  For example, what underlies recruitment of α-III tubulin 

into the SI/FS fraction is not clear from our studies.  One possibility is that α-

tubulins are recruited into the detergent-insoluble fraction by virtue of 

heterodimer formation with modified β-III tubulin; a similar mechanisms has been 

proposed for apolipoprotein E  (Golabek, Kida et al. 2000; Munson, Roher et al. 

2000; MacRaild, Stewart et al. 2004; Carter 2005).  Still other mechanisms 

remain.  These include protein misfolding and protein modifications that were not 

a focus of our study and that can lead to changes in function and detergent 

insolubility (Kato, Nakashima et al. 2001; Diaz-Nido, Wandosell et al. 2002; 

Munch, Kuhla et al. 2003; Westermann and Weber 2003; Chen, David et al. 

2004). 
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In summary, we have identified, estimated the frequency of, and mapped 

12 different mass shifts characteristic of oxidative and nitrative modification on 

four different cytoskeletal proteins and associated these with three different 

fractions obtained from AD temporal cortex:  normally soluble, detergent 

insoluble, and presence in LCM NFTs.  Our approach was validated by the 

observation of increased frequency of tau phosphorylation in the pathological 

fractions.  Our results showed selective oxidative modifications of detergent-

insoluble β-III tubulin and tau that mapped to functionally important regions of 

these molecules; independent confirmation of selective modification of β-III 

tubulin was obtained using CNBr cleavage.  Our results suggest that selective 

oxidative modification of some neuron-enriched cytoskeletal proteins may 

contribute to protein dysfunction and detergent insolubility that are characteristic 

of AD pathogenesis. 
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CHAPTER V 

 

SUMMARY 

 

 A well accepted hypothesis of AD etiology is increased Aβ peptide 

production, aggregation, and deposition.  Aβ peptides may directly damage 

neurons or lead to glial activation, which in turn, leads to increased production 

and secretion of ROS and RNS.  Directly or indirectly, both Aβ and ROS/RNS 

lead to neuronal LPO and MT collapse, key features of neuronal damage.  MT 

impairment includes detachment and subsequent hyperphosphorylation of tau 

following alteration of phosphatases and kinases by glial mediated oxidative 

damage.  This project studied how the products of oxidative damage induced 

aberrant structure of cytoskeletal proteins, a pathological characteristic of AD.  

The specific aims of this project were to determine if LPO products inhibited the 

function of the MT, to determine if MT function is similarly inhibited in 

neurodegenerative diseases, and to determine the type and location of oxidative 

modifications of cytoskeletal proteins.  

 The first part of this project studied the effect of exogenous oxidation 

products on tubulin polymerization.  Free radical attack on polyunsaturated fatty 

acids, such as AA and neuronal DHA, generates intracellular acrolein, HHE, and 

HNE.  In a previous study, N2a cells treated with low concentrations of HNE, a 

concentration range found and cerebrospinal fluid and brain tissue of AD cases, 

lead to abnormal morphology of neuronal MTs as assessed by α-tubulin 
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immunoflourescence compared to untreated cells.   To investigate whether 

morphology and function were both affected, I investigated the alterations of 

tubulin function by acrolein, HHE and HNE.  Pathologically relevant, but 

subcytotoxic concentrations of LPO, products prevented tubulin polymerization 

within a concentration range found in AD brain tissue and CSF.  Indeed, of the 

many cytotoxic effects attributed to these LPO products, MT collapse and 

suppression of tubulin polymerization are among the most sensitive and the most 

rapid.  These data established for the first time that LPO products potently 

produce irreversible dysfunction of tubulin and suggest a mechanism by which 

LPO may lead to MT dysfunction in AD. 

 The second part of this project explored tubulin polymerization within 

human brain tissue from individuals diagnosed with neurodegenerative disease.  

Similar to cell culture studies, late onset AD , AD with the presenilin 2 mutation, 

and frontotemporal dementia with Parkinsonism linked to chromosome 17 had 

decreased tubulin polymerization in regions heavily affected by NFT pathology.  

MCI, a prodromal condition that often progresses to LOAD, and age matched 

control tissue did not have significant decreases in tubulin polymerization, 

suggesting that tubulin dysfunction, similar to what we observed in cell culture, 

occurs late in the course of AD pathogenesis.   Thus, both cultures of neuronal 

cells exposed to LPO products and brain tissue from patients with these 

neurodegenerative diseases had similarly dysfunctional tubulin.  What remained 

unclear was whether or not the tubulin in human neurodegenerative diseases 

was modified by LPO products, or any form of oxidative damage. We addressed 
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this gap in our knowledge in the last part of this project. 

 The final series of studies utilized LC-MS-MS of protein extracts from 

diseased regions of AD brain and analyzed these spectra with P-MOD.  While we 

observed the expected increase in tau phosphorylation and modification by some 

LPO products when comparing normal soluble and detergent-insoluble fractions, 

tubulin showed increased methionine oxidation for β-III tubulin to the exclusion of 

its binding partner α-III tubulin, a result that we confirmed with biochemical 

analyses.  Some of these modifications to β-III tubulin occurred within regions 

that are normally hidden from solvent accessible space in a normally folded, fully 

functional protein.  Therefore, a transition from soluble to insoluble tubulin may 

be related to protein misfolding leaving internal methionines vulnerable to 

oxidative damage.  Protein misfolding is becoming a common theme among 

neurodegenerative diseases.  As far as we are aware, this was the first unbiased 

characterization of protein modifications associated with transition from soluble to 

insoluble protein in human disease.  Importantly, our results are consistent with 

the interpretation that methionine oxidation, and not modification by LPO 

products, may be responsible for the dysfunctional tubulin in AD brain.   

 Our aged population is poised to expand dramatically within the next 

decade.  In AD pathogenesis studies, the end point hallmarks or lesions are 

known and well studied; however, the exact processes leading to these lesions 

are not.  Defining early pathological events at the molecular and protein level and 

targeting appropriate therapies to pre-clinical or early stage dementia is 

necessary to avert the coming public health crisis.  This project showed that LPO 
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products can lead to MT dysfunction that is characteristic of AD and that this is 

associated with their accumulation on tau from among the cytoskeletal proteins 

investigated.  In contrast, another type of protein oxidation was observed 

selectively on β-III tubulin.  Together, these data indicate that multiple oxidative 

modifications to cytoskeletal proteins are likely occurring in AD and that these 

can contribute to cytoskeletal dysfunction, leading to a modified model of AD 

pathogenesis (Figure 18).  Furthermore, the results suggest that approaches to 

limit protein oxidation may have the downstream effect of suppressing protein 

insolubility and its consequences.  Perhaps, with further investigation, studies will 

be able to define drug-treatable targets to prevent and slow neurodegenerative 

disease progression. 

    

Figure 18. 

 

 

 

 

 

 

 

 

 

Figure 18. Modified model of AD pathogenesis. 
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