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CHAPTER |

INTRODUCTION

1. Introduction

Several control applications require the use of an electrically controllable
proportional rotary brake (e.g., [1]-[16]). Probably the most common and thoroughly
developed example of such a device is the magnetic particle brake (MPB). Magnetic
particle brakes produce a steady-state resistive torque roughly proportional to the input
current. A sectioned view of a magnetic particle brake is shown in Figure 1-1. DC
current applied to the brake coil induces a magnetic field which links fine ferrite
particles to the rotating brake shaft. The amount of current in the coil determines the
strength of the magnetic field, which in turn determines the resistive torque imposed on
the brake shaft. Compared with the closed-loop control of a high-performance DC
torque motor, these devices provide a relatively low electrical power and light-weight
means of exerting controlled dissipative mechanical torque. Further, using an electric
motor as a dissipater requires measurement of velocity, which typically contains phase
lag, which in turn adds energy to the system (rather than dissipating it). A proportional
brake, on the other hand, does not require velocity measurement and is guaranteed to

be energetically passive.



Though the weight of a magnetic particle brake is low relative to a DC motor (for
a given resistive torque), in many cases the weight remains significant. Several efforts to
increase the performance of such devices have been reported, including the
development of magnetorheological fluid brakes, electrorheological fluid brakes, and
piezoelectrically actuated brakes (e.g., [17]-[23]). Magnetorheological and
electrorheological brakes provide improved torque-to-weight characteristics relative to
magnetic particle brakes, but sacrifice bandwidth and dynamic range relative to the
MPB. The piezoelectrically actuated brake described in [23] offers a higher bandwidth
and decreased electrical power consumption for low-frequency excitation relative to a

magnetic particle brake, but provides less torque-to-weight and more torque ripple.

coil
housing
ferrous disc
fixed to
shaft

/ ferrite
output shaft particles
in gap

Figure 1-1. Sectioned view of a magnetic particle brake taken from PrecisionTork.com.



This thesis presents the design of an electrically-actuated proportional brake that
provides a significantly improved torque-to-weight ratio relative to a magnetic particle
brake, while maintaining (or improving) dynamic range and response time. Importantly,
unlike particle brakes, magnetorheological fluid brakes, or electrorheological fluid
brakes, the proposed device can be designed in both a normally unlocked and normally
locked configuration, which offers a greater number of design options for a given
application. The approach utilizes a motor-driven ball screw, which compresses a
multiple-disc mechanism for resistive torque generation. Due to the amplification
effects of a small ball screw lead and a large number of discs in the disc stack, the brake
provides a resistive torque approximately three orders of magnitude larger than the
motor torque. Due to the relatively thin discs used on the brake, the authors refer to the

device as a wafer disc brake (WDB).

Note that electrically actuated multiple disc brakes and clutches are
commercially available and used in heavy equipment applications (e.g., material
handling). Such brakes, however, operate similarly to a magnetic particle brake, in that
they utilize a stack of ferrous discs subjected to an electrically induced magnetic field.
Such brakes are effective, but due to residual magnetism and sticking of plates, do not
provide well-behaved proportional operation. Further, due to the nature of the
attractive forces generated by a magnetic field, implementation of such brakes in a
normally locked configuration would be a nontrivial task. The remainder of this thesis

describes the design of the (wafer disc) brake and characterizes and compares its



performance to that of a commercially available magnetic particle brake of comparable

size.
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CHAPTER I

BRAKE DESIGN ITERATIONS

1. Introduction

The wafer disc brake presented in this thesis evolved over two years of research
and four iterations before arriving at its final embodiment. Each of the three preceding
prototypes offered useful insight regarding design concepts and components. Each
iteration provided greater understanding of how to best model the device such that
better predictions could be made about its performance. For these reasons, this
chapter is included to impart a greater understanding of the wafer disc brake through

the knowledge of its development.

2. Wafer Disc Brake Prototype 1

2.1 Design and Operation

Initially, the intended mechanism for activation (to compress a stack of friction
discs) was an electromagnetic voice coil (such as a BEI KIMCO linear voice coil actuator).
Before adding the complexity of electrical actuation to an unproven concept, the first
prototype of the wafer disc brake was designed with manual actuation so that the

multiple disc stack concept could be evaluated. As shown in Figure 2-1, the first



prototype was comprised of a simple stator body design with four cylindrical slots
running lengthwise along its inside face such that rods could be inserted to serve as
splines for the stator discs. A half inch diameter steel shaft served as the rotor and
turned within bronze bearings held in place by top and bottom caps. The rotor shaft
was keyed such that rotor discs would couple to it via a standard 1/8” key. In this
configuration, 35 rotor discs and 36 stator discs—all 0.010” thick blue spring steel—
were alternatingly coupled to their respective members and would provide a resistive
torque if a compressive force was applied to the stack. To generate this compressive
force, a fine-threaded lead screw was affixed to the top cap of the brake and was
outfitted with a wing nut and a precision compression spring. Knowing the spring
constant and the pitch of the lead screw, a predictable force could be applied to the
friction disc stack via an intermediate stack compressor piece. A photograph of the first

prototype wafer disc brake is shown in Figure 2-2.



lead screw —
wing nut

compression
spring

stack
compressor

friction disc
stack

stator body

stator rod
splines

rotor shaft

Figure 2-1. Sectioned view of wafer disc brake prototype 1.

Figure 2-2. Wafer disc brake prototype 1.



The brake design was analytically evaluated to predict the expected torque
output. Assuming uniform distribution of interface pressure between discs,

P =constant=P, (2-1)

dF; =P, (2zrdr) (2-2)

F, :jf27szrdr = P, (r’ —r?) (2-3)

T =:frqu (27rdr) = %(rj ) (2-4)

3_ .3
_2uF (1)

Tbrake - 3 rz _ rz (2'5)
0 i

where P, P, is the pressure applied to each friction interface, F; is the force of friction

on one surface, I, is the outer radius of the friction interface, I; is the inner radius of

the friction interface, T, is the resistive torque generated at each disc, iz is the

coefficient of friction of the disc material, T,,,,. is the resistive torque generated by the

rake

brake, F, is the normal force applied at the interface surface, and N is the number

of friction interfaces (i.e., one fewer than the total number of discs used). With an inner
radius of contact of 9.53 mm, an outer radius of contact of 27.0 mm, a static friction
coefficient of 0.16, 70 friction interfaces, and a maximum force provided by the spring of

80 N, the predicted maximum torque from wafer disc brake prototype 1 is 17.6 Nm.

10



2.2 Finite Element Analysis

The most significant unknown in this first wafer disc brake prototype was the
performance of the discs. Of particular concern was the stress concentration at the
keyway of the rotor discs (i.e., where the discs couple to the rotor shaft). A finite
element analysis was conducted in CosmosExpress, a Solidworks FEA package, to
determine how the steel discs would handle the high stresses generated during braking.
A 90 Newton force in the plane of the disc was simulated to one of the radial keyway
faces which would correspond to a 25 N-m torque distributed through the 35 rotor discs
at a radial distance of 7.87 mm (i.e., the radial distance from the center of the shaft to
the end of the key). In this first analysis, the disc was constrained from buckling, or

n

“potato-chipping.” The resulting factor of safety in this first study was 1.58. A second
study was conducted with the same parameters as the first with the exception of the
constraint on buckling and with the normal force at the key being slightly offset by 0.005

to initiate a buckling effect. In this case, the factor of safety drops down to 0.35 and the

disc fails due to the onset of buckling. Results of this analysis are shown in Figure 2-3.
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Figure 2-3.  FEA stress analysis of friction discs in brake prototype 1. (a) Normal stress
with disc constrained from buckling; no disc failure. (b) Normal stress with slight
eccentric loading at keyway; disc failure.

2.3 Performance

An experiment was conducted to characterize the holding torque generated by
the brake as it related to the compressive force applied to the disc stack. Holding
torque was recorded by attaching a lever arm of known length to the rotor shaft and
applying a force on the end of the arm while holding the brake stator body stationary. A
digital force gage was used to measure the force applied to the arm and the maximum
value was recorded just before the rotor began to turn. In the manner described in the

previous section, the actuation wing nut was manually turned two revolutions at a time,
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taking a torque reading at each position. The results of this experiment are presented in
Figure 2-4 and show a maximum torque of approximately 25 Nm for a compressive
force of about 80 N. The weight of the brake during this test was 0.79 kg (1.74 lbs) and
its diameter was 76.2 mm (3.0 inches). The total thickness of the brake, including the

shaft but excluding the actuation mechanism was approximately 67 mm (2.64 inches).

Holding Torque vs. Compressive Force
30 T T T T T T T T

25

]
o
T

Holding Torque (N-m)

1 1 1 1
0 10 20 0 40 50 B0 70 a0 90
Compressive Force (N)

Figure 2-4. Holding torque of brake prototype 1 versus compressive force.
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2.4 Conclusions

The first wafer disc brake prototype provided valuable insight into the feasibility
of a small, lightweight, multiple thin-disc brake. Most significantly, it showed that with
comparatively small actuation forces, this type of brake mechanism can produce large
amounts of holding torque. Specifically, this 0.79 kg brake gave a maximum of
approximately 25 N-m of torque from a compressive force of about 80 N. However, a
voice coil actuator which could produce that level of force would be quite large and
make the brake size and shape too restrictive for many applications. For example, BEI
Kimco linear actuator LA28-22-000A is capable of producing 88 N of continuous force,
but adds 1.14 kg (2.51 Ibs) to the brake and extends its length by an additional 55.9 mm
(2.2 inches), making the brake weight and length 1.93 kg (4.25 Ibs) and 123 mm (4.84
inches), respectively. Thus, it was decided that a different actuation mechanism was
needed to provide the compressive force to the disc stack rather than an
electromagnetic voice coil. Additionally, it is noted that the predicted maximum value
of torque from the brake was well short of the actual maximum torque from the brake.
This is largely due to inaccuracy in coefficient of friction. The spring steel discs used in
this first prototype have a “blued” surface finish which is easily worn off as the discs rub
against each other. In friction coefficient testing, it was found that the coefficient
ranged from 0.16 up to 0.29 depending on how much of the bluing had been worn off.
A final observation from the finite element analysis which would later prove important
was that disc buckling would likely prove the primary mechanism of disc failure, rather

than strictly a tearing failure at the keys.
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3. Wafer Disc Brake Prototype 2

3.1 Design and Operation

Having proven with the first disc brake prototype that the concept of a multiple
disc friction mechanism was feasible, the logical next step was to add electronic
actuation. In the second prototype, a small dc motor was used as the primary mover to
turn a ball screw which generated the compressive force for the disc stack. In this way,
the small torque from the motor is amplified through the small pitch of the ball screw to
a large compressive force. The ball screw also plays a role in making the actuation
mechanism backdrivable, such that the force on the disc stack, and therefore the torque
output of the brake, remains in proportion to the current input to the motor. This
backdrivability also allows the brake to be operated in a normally locked configuration,
(see Fig. 2-5), in which compression springs act to compress the disc stack. The motor in
this case operates in reverse to decompress the disc stack such that the output torque

of the motor is inversely proportional to the input current.
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Figure 2-5. Sectioned view of the normally locked wafer disc brake prototype 2.

Consideration was given to keeping the profile of the brake as low as possible.
To this end, a hollow steel shaft was chosen to function as the rotor, allowing all of the
actuation components to be housed concentrically within the shaft. This larger
diameter rotor shaft—as well as three added keyways—also decreased the stress on the
discs at the keyways due to the larger moment arm. The use of conical springs also
aided the effort to minimize brake size due to their low profile operation and ability to

collapse fully. A photo of the second brake prototype is provided in Figure 2-6.
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Figure 2-6. Wafer disc brake prototype 2.

A finite element analysis was conducted during the design of the second brake
prototype to determine a suitable disc thickness. The larger diameter of the rotor shaft
and the addition of three extra keyways permitted 0.006” thick spring tempered
stainless steel discs to be used. This stainless steel was opted for over the blue spring
steel of the first prototype due to its corrosion resistance and to avoid the inconsistency
of the friction provided by the blued discs as the bluing wore off. The brake design was
analytically evaluated to determine the number of discs required to achieve the 50 N-m
target which was set for this brake. Examining the DC motor as the first actuation
component and assuming proportionality between the motor input current and motor

output torque,
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iIK (2-6)

motor —

where T_ ..,

is the output torque of the motor, i is the input current and K is the motor
torque constant. Assuming zero friction in the ball screw, this motor torque may be

related to the linear force produced in the ball screw by,

Fdx =T

motor

do (2-7)

where F is the linear force in the ball screw, and dx and d9 are finite linear and
angular displacements, respectively, which are related by the pitch of the ball screw
such that,

motorT (2_8)

where L is the ball screw lead (i.e., linear distance travelled per revolution). This linear
force serves to compress the friction disc stack and is related by several factors to the
braking torque. Taking Equation 2-5 and substituting for linear force, it is now possible
to relate the brake torque directly to motor input current:

_ 2uIKT)N(E ~ 1)
brake 3L(r02 _ ".2)

The Faulhaber Micromo 2224 dc motor chosen can handle a maximum
continuous current of 1.2 Amps, with a torque constant of 6.92 mNm/A. The lead of the

Steinmeyer miniature ball screw selected was 0.5 mm. With an outer radius of contact
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of 41.3 mm, an inner radius of contact of 31.8 mm, and a coefficient of friction of 0.15,
the number of discs necessary to achieve 50 N-m of holding torque was calculated to be
88. Expecting some losses, however, the brake was designed to accommodate a stack

of 50 rotor discs and 51 stator discs.

3.2 Performance

This brake was experimentally tested in the same manner described for the first
prototype, but with the brake torque output being controlled by the current input to the
motor. The first tests with 101 spring tempered stainless steel discs yielded a maximum
torque of 53.6, which agreed favorably with the predicted value. However, the
minimum torque was very high, over 15 N-m. It was clear that this was being caused by
the internal stresses in the disc stack which were causing the discs to push against each
other (i.e., the discs were not completely flat, and therefore the stack tended to expand
when pressure was relieved). Efforts to improve disc flatness by purchasing the steel in
sheets instead of rolls and by using water-jet cutting instead of laser cutting to reduce
heat effects proved ineffective. A heat treatment was then tried on the disc stack with
the intention of removing residual stresses in the discs caused by cold working during
creation of the steel sheet and to remove any additional warping caused by the laser
cutting process used to cut the discs. The temper annealing process involved raising the
temperature of the discs to 480°C (900°F), holding at this temperature for four hours,

and letting the stack cool back to room temperature gradually, all while being
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compressed by a 0.45 kg (1.0 Ib) weight. This proved effective in increasing the flatness

of the discs, as shown in Figure 2-7.

Figure 2-7. Comparison of stainless steel disc stack flatness before heat treatment
(left) and after heat treatment (right).

Despite the greatly improved flatness, testing of the brake after heat treatment
yielded an increased maximum torque value (122.3 N-m), and only a slightly decreased
minimum torque value (12.7 N-m). Although the heat treatment was effective in
flattening the discs, it had also allowed the disc surfaces to oxidize slightly, which greatly
increased the coefficient of friction between discs. As this was not a desirable effect,
the discs were sanded with fine grit sandpaper and the experiment was repeated. The
results of these efforts were promising, with a maximum torque of 54.2 N-m and a
minimum of 3.5 N-m. However, the minimum torque remained unacceptably high, and
the disc stack was still expanding some when relieved, so it was decided to reduce the

number of discs in the brake to 81. This combination of 81 discs which had been temper
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annealed and sanded gave the best results for wafer disc brake prototype 2: a
maximum torque of 50.2 N-m and a minimum of 0.62 N-m. A summary of these results

is given in Table 2-1.

101 Discs, | 101 Discs, 101 Discs, temper 81 Discs, temper
untreated | temper annealed | annealed and annealed and sanded
sanded
Maximum Torque (N-m) 53.6 122.3 54.2 50.2
Minimum Torque (N-m) >15 12.7 3.5 0.62

Table 2-1. Summary of brake prototype 2 test results.

Dynamic operation of the brake was not evaluated due to inconsistency in ball
screw backdrivability. Even though friction in the ball screw was minimal, the ultra small
pitch of the thread (0.5 mm lead) hindered backdrivability, making dynamic brake

operation unpredictable.

The total weight of the wafer disc brake prototype 2 was 1.12 kg (2.47 lbs), with

a diameter of 102 mm (4.00 inches) and a length of 66.7 mm (2.625 inches).

3.3 Conclusions
The second wafer disc brake prototype improved upon the first prototype in

several ways. Most significantly, the second prototype included the addition of
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electromechanical actuation through the use of a dc motor and a ball screw
transmission. Additionally, the rotor shaft was enlarged and included an additional
three keyways such that the stress at the disc keyways was reduced and thinner discs
could be used. Furthermore, the rotor shaft was hollow, allowing all of the actuation
components to fit concentrically within the shaft to minimize the brake profile. While
this design was acceptable in many aspects, it had the undesirable characteristic of

exposed moving parts (the force distribution cap).

Excellent static maximum and minimum torque values were obtained from the
brake after a process of heat treatment and sanding of the discs. Without this
treatment, the discs proved too warped to work effectively in the brake. However,
significant disc stack expansion still occurred when pressure on the stack was released;
this required a thicker brake profile due to the necessity of allowing room for the stack
to expand. Dynamic results were not obtained due to inconsistency in ball screw

backdrivability (a problem caused partly by the small pitch of the thread).

4. Wafer Disc Brake Prototype 3

4.1 Design and Operation

The goal of the third wafer disc brake prototype was to minimize weight and

length while still providing the torque range obtained in the second prototype. To reach

22



this goal, a significant change was made in the brake design concept; namely the rotor
shaft was removed and the outer barrel of the brake was designed to serve as the
rotating body. Sectioned views of the normally unlocked and normally locked
configurations of the third disc brake prototype are provided in Figures 2-8 and 2-9. The
issue of external moving parts was addressed by incorporating all force transmission
members within the brake body. Of particular importance is the star-shaped
compression member which transmits the force of the ball screw radially outward
through its spokes to the disk stack. A key component in the third prototype which
reduced the brake profile was the Portescap NuvoDisc flat “pancake” motor used to
actuate the brake. Increasing the diameter of the central stator tube allowed for all the
actuation components to remain within the height profile of the brake. This increased
diameter also served to reduce the stress on the discs at the keyways. Further reducing
this stress by including a total of 12 key splines on the stator body and 12 on the rotor
barrel allowed high strength plastics to be considered for disc material. Plastic discs
provide two main advantages over steel discs in this application: 1) they are much
lighter, and 2) they are much flatter, even after being laser cut. A glass epoxy laminate,
G-10, was chosen for its high strength and high working temperature. A finite element
analysis established the thickness of the discs at 0.005 inches. GGB DU bearings were
used in this prototype as they were in the previous. One further design change from the
second to the third prototype involved the selection of the ball screw. Since the 0.5 mm

lead ball screw had proved problematic, a THK brand 1.0 mm lead ball screw was chosen
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with the expectation of improved backdrivability. A photograph of the brake is shown in

Figure 2-10.
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Figure 2-8. Sectioned view of the normally unlocked wafer disc brake prototype 3.
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Figure 2-9. Sectioned view of the normally locked wafer disc brake prototype 3.
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Figure 2-10. Wafer disc brake prototype 3.

Analytical calculations were conducted in the same manner as the previous
prototype, but with new motor and ball screw specifications as well as a new coefficient
of friction for the new disc material. The maximum continuous current of the nuvoDisc
motor is 1.3 A, with a torque constant of 7.8 mNm/A. The Faulhaber Microlinea ED
series ball screw that was chosen had a lead of 1.0 mm. From friction coefficient tests,
the G-10 disc material was shown to have a static coefficient of friction of 0.21. Based
on design constraints, 71 discs were able to fit in the brake. Using these values in
Equation 2-9, along with the new outer radius of contact of 43.6 mm (1.72 inches) and a
new inner radius of contact of 34.9 mm (1.38 inches), a maximum value of static torque

was estimated at 37 N-m.
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4.2 Performance

The third brake prototype was only tested in the normally locked configuration.
As previously described, in this configuration compression springs do the work of
compressing the disc stack and the motor performs the job of relieving the pressure.
Springs were selected to provide a compressive force on the disc stack comparable to
that which the motor was predicted to provide. This resulted in a maximum torque of
33 N-m and a minimum torque of 0.16 N-m. While this range was desirable, the
dynamic performance of the brake was unacceptable due to significant nonlinearity in
the torque response. This nonlinearity was caused by stiction in the ball screw which, in
effect, made the motor underpowered for the task. The weight of the third brake
prototype was 0.73 kg (1.61 lbs) with a diameter of 102 mm (4.00 inches) and a length

of (1.875 inches).

The problem of an underpowered motor was addressed by replacing it with a
larger motor via an external mounting piece as shown in Figure 2-11. The Maxon EC45
flat motor chosen as a replacement was rated for over five times the continuous torque
of the nuvoDisc motor and was quickly shown to provide adequate power for the needs
of the brake. However, while power to overcome the stiction in the ball screw was no
longer a problem, the stiction still produced nonlinearities between the input current

and the output torque.
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Figure 2-11. Maxon ECA45 flat motor affixed on the outside of brake prototype 3.

In light of the nonlinearity in the brake mechanism, a switch was made from
open loop control to closed loop control by adding strain gages to two opposing arms of
the compression star (see Fig. 2-12). In this manner, utilizing a full-bridge arrangement
of strain gages, force feedback on the disc stack was provided. Although the
compression star had not been designed with strain gage application in mind, a strong
strain signal was achieved using semiconductor gages, and good compression force
tracking and step response was achieved (see Figs. 2-13 and 2-14). Despite this
demonstrated ability to control the compression force on the disc stack, the dynamic

torque output of the brake remained sporadic and unpredictable (see Fig. 2-15).
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Figure 2-12. Strain gages applied to two opposing arms of the compression star to
provide force feedback on the disc stack.
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Figure 2-13.  Sinusoidal compressive force tracking in brake prototype 3.
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Figure 2-14. Compressive force step response in brake prototype 3.

Volts

Requested strain gage voltage
Actual strain gage voltage

1 1 1 1 1
100 105 110 115 120 125 130 135
Time (s)
Brake Torgue

P

£

=

R

)

3

=2

£

o

l—
D 1 1 1 1 1 1
100 105 110 115 120 125 130 135

Time (s)

Figure 2-15. Inconsistent torque output relative to good compression force (strain
gage) tracking.
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4.3 Conclusions

Two of the three goals for the third brake prototype were accomplished. The
first goal was to decrease the weight of the brake, which was accomplished by a radical
design change which effectively used the outer barrel as the brake’s rotor shaft. By
using a new “pancake” motor, all the actuation components were within the body of the
brake, reducing its profile. Additionally, a large diameter inner stator body was used
and additional key splines were added so that high strength plastic discs could be used
in place of steel. The second goal was to maintain a large torque output range similar to
that of the second brake prototype, and this goal was also achieved. The third goal,
which was not achieved, was to obtain good dynamic control over torque. Despite the
effective implementation of closed-loop compression force control, unknown
nonlinearities in the generation and transmission of torque within the disc stack
prevented predictable torque control. One additional problem that was encountered
during the testing of the third brake prototype was disc failure. Although the 0.005 inch
thick G-10 discs could theoretically handle the compressive keyway stresses with an
acceptable factor of safety, buckling proved to reduce the factor of safety and often
caused total disc failure at the inner stator discs keyways. To address this problem,
small spacer rings were placed in between each stator disc to provide support from
buckling near the keyways without impeding the compression of the rotor discs against

the stator discs. This added component prevented further disc keyway failures.
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5. Conclusion

The evolution of the wafer disc brake through three prototypes provided the
insight necessary to design the final wafer disc brake, which is presented in the
following chapter. These three prototypes brought the design to a point where several
key characteristics could be addressed in the final design. Primary among these desired
characteristics was the ability to dynamically control the resistive torque in a consistent
way. Also important was the need to provide both normally unlocked and normally
locked operation robustly from the same basic design (albeit with minor modifications).
Additionally, the larger motor attached to the third prototype was incorporated into the
brake to maintain its low profile. Additional issues addressed in the final design
included the desire for a totally enclosed design and the desire for a design which would

be relatively easily manufactured and assembled.
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1. Abstract

This paper presents the design of an electrically-actuated, proportional brake
that provides a significantly greater torque-to-weight ratio than a magnetic particle
brake (considered a benchmark of the state-of-the-art) without sacrificing other
characteristics such as dynamic range, bandwidth, or electrical power consumption. The
multi-disc brake provides resistive torque through a stack of friction discs which are
compressed by a dc-motor-driven ball screw. Unlike nearly all other proportional brakes,
which operate in a normally unlocked mode, the brake presented here is designed such
that it may be configured in either a normally unlocked or normally locked mode. The
latter enables lower electrical energy consumption and added safety in the event of
electrical power failure in certain applications. Following the device description,
experimental data is presented to characterize the performance of the brake. The
performance characteristics are subsequently compared to those of a commercially

available magnetic particle brake of comparable size.

2. Introduction

Several control applications require the use of an electrically controllable
proportional rotary brake (e.g., [1]-[16]). Probably the most common and thoroughly
developed example of such a device is the magnetic particle brake (MPB). Magnetic

particle brakes produce a steady-state resistive torque roughly proportional to the input
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current. A sectioned view of a magnetic particle brake is shown in Figure 3-1. DC
current applied to the brake coil induces a magnetic field which links fine ferrite
particles to the rotating brake shaft. The amount of current in the coil determines the
strength of the magnetic field, which in turn determines the resistive torque imposed on
the brake shaft. Compared with the closed-loop control of a high-performance DC
torque motor, these devices provide a relatively low electrical power and light-weight
means of exerting controlled dissipative mechanical torque. Further, using an electric
motor as a dissipater requires measurement of velocity, which typically contains phase
lag, which in turn adds energy to the system (rather than dissipating it). A proportional
brake, on the other hand, does not require velocity measurement and is guaranteed to

be energetically passive.

Though the weight of a magnetic particle brake is low relative to a DC motor (for
a given resistive torque), in many cases the weight remains significant. Several efforts to
increase the performance of such devices have been reported, including the
development of magnetorheological fluid brakes, electrorheological fluid brakes, and
piezoelectrically actuated brakes (e.g., [17]-[23]). Magnetorheological and
electrorheological brakes provide improved torque-to-weight characteristics relative to
magnetic particle brakes, but sacrifice bandwidth and dynamic range relative to the
MPB. The piezoelectrically actuated brake described in [23] offers a higher bandwidth
and decreased electrical power consumption for low-frequency excitation relative to a

magnetic particle brake, but provides less torque-to-weight and more torque ripple.
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Figure 3-1.
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This paper presents the design of an electrically-actuated proportional brake that
provides a significantly improved torque-to-weight ratio relative to a magnetic particle
brake, while maintaining (or improving) dynamic range and response time. Importantly,
unlike particle brakes, magnetorheological fluid brakes, or electrorheological fluid
brakes, the proposed device can be designed in both a normally unlocked and normally
locked configuration, which offers a greater number of design options for a given

application. The approach utilizes a motor-driven ball screw, which compresses a
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multiple-disc mechanism for resistive torque generation. Due to the amplification
effects of a small ball screw lead and a large number of discs in the disc stack, the brake
provides a resistive torque approximately three orders of magnitude larger than the
motor torque. Due to the relatively thin discs used on the brake, the authors refer to the

device as a wafer disc brake (WDB).

Note that electrically actuated multiple disc brakes and clutches are
commercially available and used in heavy equipment applications (e.g., material
handling). Such brakes, however, operate similarly to a magnetic particle brake, in that
they utilize a stack of ferrous discs subjected to an electrically induced magnetic field.
Such brakes are effective, but due to residual magnetism and sticking of plates, do not
provide well-behaved proportional operation. Further, due to the nature of the
attractive forces generated by a magnetic field, implementation of such brakes in a
normally locked configuration would be a nontrivial task. The remainder of this paper
describes the design of the (wafer disc) brake and characterizes and compares its
performance to that of a commercially available magnetic particle brake of comparable

size.

3. Wafer Disc Brake Design

3.1 Brake Configuration

The normally unlocked configuration of the WDB is shown in cross-section in Fig.
3-2. The normally unlocked brake consists of a stack of thin (0.25 mm) high-strength

plastic wafers which are alternately coupled (through splines) to the brake stator and
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rotor. A small brushless motor located inside the brake stator transmits a compressive
force through a ball screw to the stack. Assuming relatively low friction in the ball
screw, the stack is subjected to a compressive force which is proportional to the motor
current. Due to the series arrangement of discs, the resistive torque on the rotor barrel
is the product of the compressive force, the mean radius of contact, and the coefficient
of friction, which is amplified by the number of interfaces between discs. Since the
brake (as shown) contains 45 discs, the effective torque is increased by a gain of 44.
Since the ball screw is back-drivable, the brake torque remains in proportion to the
motor current, and thus is proportional in nature. A compression spring is located
between the motor and ball screw nut to insure full torque release when no electrical
power is supplied. Note that the brake as shown does not incorporate a central output
shaft, as is typical in many brakes, but rather incorporates an annular rotor “barrel.” The
use of an annular rotor (and the lack of a central shaft) is not fundamental to the brake
design, but rather was opted for by the authors in order to better integrate the brake
into a mechanism (i.e., similar to the use of a frameless motor). The WDB in its normally
locked configuration is shown in cross-section in Fig. 3-3. The design of the normally
locked brake is similar to the normally unlocked type, but the discs are preloaded with a
compression spring. Applying current to the motor proportionally unloads the preload,
such that full brake torque occurs at zero motor current, and minimum brake torque
occurs at full motor current. Since the ball screw is back-drivable, the brake torque
remains in inverse proportion to the motor current. Both configurations of the WDB

appear the same from the outside. A photo of a fully functional wafer disc brake (which
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has been alternately configured in both a normally locked and normally unlocked

configuration) is shown in Fig. 3-4.
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Figure 3-2. Sectioned view of normally unlocked wafer disc brake.
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Figure 3-3. Sectioned view of normally locked wafer disc brake.

Figure 3-4.  Fully functional wafer disc brake.
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3.2 Design Relationships

One of the primary design objectives for the WDB is to generate a high torque
output. As such, the relationships that govern the resistive torque capability are
described here. We assume that the compressive force applied to the annular discs is
evenly distributed, and thus that the compressive force results in a constant pressure

applied across the annular area of the disc:

F=P(12 1) 31

where F is the compressive force, P is the pressure between discs, and ri and ro are the
inner and outer radii of the discs, respectively. Assuming Coulomb friction between the

discs, the resistive torque generated by the one disc interface is given by:

T= I ruP(27rdr) = Z?P (r’-r? (3-2)

where T is the resistive torque and mu is the coefficient of friction (either static or
dynamic, depending on whether or not the discs are moving relative to each other).
Combining (3-1) and (3-2), and assuming a stack of discs, the resistive torque is given as

a function of the compressive force by:
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where N is the number of disc interfaces (i.e., between stator and rotor). Assuming that
torque is proportional to current in the DC motor, and neglecting friction in the ball

screw, the resistive torque can be written as a function of motor current as:

_ Zluth (ro3 — r|3) i

T
31 rr-r?

(3-4)

where | is the ball screw lead, kt is the motor torque constant, and i is the motor
current. Note that, in the case of a return spring (see Fig. 3-2), the resistive torque is
somewhat less than that described by (3-4), since the compressive force F is decreased
by the spring stiffness. As indicated by (3-4), maximizing the resistive torque requires
maximizing both the output and input radii (e.g., a narrow ring will provide more torque
than a wide ring, provided they have the same outer radius). Thus, a tradeoff becomes
apparent between maximizing torque and maximizing surface area (which minimizes
disc wear). However, the significant benefit of this dimensional phenomenon for this

application is that rings may be used instead of solid discs. This fact combined with the
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design of the brake such that the outer barrel serves as the rotating body (i.e., does not
require a central shaft) allows all of the actuation and transmission components to be
located concentrically within the disc stack, enhancing compactness of the design. The
compression ring was designed with the aid of a finite element analysis of stress such
that it was lightweight, while still maintaining sufficient strength to reliably transmit the
forces from the ball screw to the disc stack. For a more detailed treatment of torque

estimation from annular contact disc brakes and clutches, see [24].

A 30 W Maxon EC45 DC brushless flat motor was chosen to actuate the brake
due to its thin profile and high torque. Importantly, the lack of a gearhead and the use
of a ball screw instead of a lead screw allow the motor to remain fully backdrivable. As
such, the brake is able to return to either its normally unlocked or normally locked state
when the electrical power input is turned off (i.e., when the brake is powered down). A
Faulhaber Microlinea ED513 ball screw was chosen based on its small lead (1.25 mm)

and low profile ball nut design.

Selection of disc material and disc thickness was accomplished by a finite
element analysis of disc stress and iterative testing of several different candidate
materials. Key factors in material selection were high tensile strength, high coefficient
of friction, and the ability to remain flat after fabrication. While a variety of materials
have been shown to work effectively in the brake, including stainless steel,
polyetherimide (Ultem), and polyetheretherketone (PEEK), the material chosen based

on weight and performance for the brake characterization was wear resistant G-10
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phenolic. This ultra high strength glass-epoxy laminate exhibits high dimensional
stability over temperature, provides a relatively high coefficient of friction, and is
treated to resist wear. The disc thickness was chosen to be 0.25 mm (0.010 in), which
provided sufficient rigidity to resist buckling near the spline interfaces, which was found
to be the primary mode of failure in thinner discs. The splines themselves were
designed as keys inserted into keyways for ease of manufacturing. As an added benefit,
this allowed flexibility in the selection of the materials used for the keys. In the design
shown in Fig. 3-4, Ultem was chosen for the key material, which has a high tensile
strength, a high maximum operating temperature, and an appropriate hardness to
interface with the G-10. The geometrical configuration of the brake prototype, along
with the values for the other design parameters given in (3-4), are given in Table 3-1.
For the normally unlocked configuration, a return spring of stiffness k=3.35 N/mm was
utilized, which deflects approximately 13 mm before the pressure plate contacts the
disc stack, and thus the compressive force provided by the motor is decreased by
approximately 44 N. Accounting for the force required to compress the spring, (4)
indicates a predicted maximum static and dynamic torque of the wafer disc brake in the

normally unlocked configuration of 83.1 N-m and 54.8 N-m, respectively.
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Design Variable [ Value

kq 25.5 mN-m/A
e 2.14 A

| 1.25 mm

M 0.194

n 0.128

N 44

r 39.4 mm

r 44.9 mm

Table 3-1. Results of the analytical and experimental design optimization.

3.3 Special Considerations for the Normally Locked Design

While operating in the normally locked configuration, the motor acts to release
rather than impose compressive force on the disc stack, which essentially decreases
rather than increases the resistive torque. In this case, a set of compression springs
provides the compressive force on the disc stack. To release the brake, the electric
motor must provide (through the ball screw) enough force to match the compressive
force of the springs on the stack, and additionally to compress the springs another
approximately 3 mm (i.e., the disc stack is not perfectly flat, and expands slightly axially
when the compressive force is relieved). The maximum force applied to the stack by the
springs must therefore be less than the maximum force applied by the motor and ball
screw in the normally unlocked case, so that the brake can be fully unlocked. To
minimize the amount of motor torque required for disc expansion, the brake design
maximizes the linear space available to the springs such that the longest springs possible

can be employed. Taking this approach allows the spring constant to be minimized (for
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a given nominal stack force) which reduces the rate of increase of force as the springs
are being compressed. Based on the parameters listed in Table 3-1, the motor and ball
screw transmission can generate a maximum force of 274 N. The springs selected for
the normally locked brake have a spring constant of 3.2 N/mm, and as such a
compression of 3 mm (i.e.,, to fully relieve the disc stack) requires a force of
approximately 10 N. Thus, the normally locked brake can apply a maximum of 264 N to
the disc stack in the unpowered state, which is approximately 3.5% less than that of the
normally unlocked brake at maximum power. Thus, the maximum static and dynamic
torque for the normally locked brake in the unpowered state is predicted to be 80.2 N-

m and 52.9 N-m, respectively.

4. Brake Control

Based on the idealized steady-state relationship described by (3-4), control of
the current in the brushless motor would also provide control of the steady-state
resistive brake torque. Despite this, the dynamic relationship between motor current
and resistive brake torque is more complex, and includes the inertial effects of the ball
screw and motor rotor, Coulomb friction in the transmission, and stiffness of the return
spring and disc stack. The latter two physical effects constitute non-smooth
nonlinearities, which complicate the open-loop control of brake torque. The non-
smooth nature of Coulomb friction is evident. The non-smooth nature of the “load”

stiffness is due to the fact that the discs are not perfectly flat, and as such, three distinct
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load stiffnesses are present. Prior to contact with the discs, the load stiffness consists
only of the return spring; once contact is made with the discs, the load stiffness is the
combined effect of the return spring and the compliance of the non-flat discs; finally,
once all discs are flattened by the compressive force of the motor/ball screw, the load
stiffness increases considerably (i.e., the stiffness is essentially that of the “solid”
annular disc stack). The load stiffness therefore can be modeled as piecewise linear
stiffness consisting of three regimes: the non-contact regime (return spring only), the
flattening regime, and the solid stack regime. As a result of these non-smooth
nonlinearities, open-loop control failed to provide desirable control performance, in
terms of accuracy and bandwidth. In order to improve torque tracking, an inner servo
control loop was first added around the brushless motor, as shown in Fig. 3-5(a). This
inner loop serves to compensate for the inertial dynamics and Coulomb friction in the
transmission. Further, by providing improved output disturbance rejection, the inner
loop mitigates the effects of the varying load stiffness on the stability of the closed loop.
Note that, since the brushless motor incorporates Hall effect sensing for electronic
commutation, implementation of the inner loop did not require the addition of any
sensors. With the inner loop in place, accurate and robust tracking of the pressure plate
motion is provided. However, due to the aforementioned tripartite stiffness, control of
pressure plate motion does not provide known control of the compressive force. If the
relationship between pressure plate motion and the compressive force were well
characterized, the force could be controlled in an open-loop manner. However, there

would still exist a significant nonlinearity between the compressive force and the
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resistive torque, due to the nonlinear friction characteristics in the discs. As such, a
resistive torque control outer loop was implemented around brake output torque, as
shown in Fig. 3-5(b). Note that the implementation of the outer loop does require brake
torque sensing. As shown subsequently, however, accurate and high bandwidth control

of magnetic particle brake also requires a similar closed loop around the brake torque.

Xy PD F. X TRIPARTITE
H(>_ CONTROL ﬁ TRANSMISSION STIFENESS

%

T, ¢ iD SERVO-CONTROLLED DISC
> CONTROL [ X, INNER LOOP F, | FRICTION

Figure 3-5. Schematic of wafer disc brake controller. (a) Servo control inner loop. (b)
Torque control outer loop.

5. Performance Characterization

The wafer disc brake was tested in both operational configurations (normally
unlocked and normally locked). The experimental setup used to test the brake torque is
shown in Fig. 3-6. The brake barrel was driven at a constant rate with a DC motor
(Kollmorgen model U12M4H) which was connected to the brake through a 90:1

transmission, in order to generate sufficient torque to drive the brake. Note that
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resistive torque can only be measured when the brake shaft is moving. An encoder
attached to the motor provided for closed-loop feedback control of motor velocity, so
that velocity remained essentially constant, despite variation in brake torque. Brake
torque was measured with a rotary torque transducer (Interface model T8 ECO)

mounted between the motor and brake.

Figure 3-7 shows the maximum and minimum (low-end) dynamic (i.e.,
when the brake shaft is rotating) steady-state torques of the WDB, measured at a
rotational speed of 20 rev/min (RPM). The average maximum torque of the brake was
30 N-m (265 in-lbs) with approximately 5% torque ripple. This maximum torque was
lower than that predicted in Section Il (i.e., approximately 55% of that predicted by the
equations). However, torque values up to 40 N-m were achieved during sinusoid
tracking trials. This indicates that in addition to the static or dynamic state of the brake
rotor, maximum torque is affected by static friction (or stiction) when the ball screw is
motionless. Thus, for the normally unlocked brake, the maximum average dynamic
friction was 30 N-m when approached quasi-statically and 40 N-m when approached
dynamically. The maximum static torque of the normally unlocked brake was 73 N-m.
These values show better agreement with the expected values of 55 N-m and 83 N-m
and the remaining difference may be attributed largely to uncertainty in the values for
static and dynamic coefficient of friction for the G-10 disc material. The average
minimum torque was 0.40 N-m (3.5 in-lbs), giving a dynamic range of approximately
1:100. The maximum dynamic torque of the normally locked brake was unable to be

measured in either of the two ball screw operational regimes due to insufficiency in the
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brake dynamometer. That is, both values were greater than 50 N-m, which is the
maximum torque the experimental setup could measure under continuous rotation.
The static torque was determined (as was the case for the normally unlocked brake) by
providing manual assistance to increase the dynamometer torque to the brake and was
measured at 74 N-m. As discussed previously, the normally locked brake torque was
predicted to be slightly lower than that of the normally unlocked brake. This deviation
from the predicted results is likely also explained by the ball screw friction exhibited

between static and dynamic performance.

wafer disc brake 90:1 transmission encoder

torque transducer

Figure 3-6. Experimental setup for testing of the wafer disc brake. Note that, since the
output of the WDB is a barrel rather than a shaft, the brake is connected to the setup
through a adapter, which transmits torque from the barrel to a central shaft.
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High and Low End Dynamic Steady State Torque
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Figure 3-7. Maximum and minimum dynamic wafer disc brake torque in normally
unlocked configuration for one revolution at a speed of 20 rev/min.

Figures 3-8 and 3-9 show sinusoid tracking capabilities of the normally unlocked
and normally locked brake, respectively, for a peak-to-peak amplitude of 20 N-m, which
is 50% of the full dynamic range of the normally unlocked brake. Figures 3-10 and 3-11
show rising and falling step responses for each brake configuration, also with a 20 N-m
amplitude. Defining rise time as the amount of time required after a step command has
been issued for the response to rise to 90% of the final steady-state step value, and the
fall time as the reverse, the wafer disc brake demonstrates a rise time of 43 msec and a
fall time of 39 msec in the normally unlocked configuration and 53 msec and 39 msec,
respectively, in the normally locked configuration. Bandwidth plots for sinusoidal

tracking of 20 N-m peak-to-peak commands are provided for each brake configuration
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in Figs. 3-12 and 3-13, which indicate a -3 dB bandwidth of 11 Hz in the normally

unlocked case and 10 Hz in the normally locked case.

An experiment was conducted to determine the power dissipation capacity of
the wafer disc brake, the results of which are shown in Fig. 3-14. A thermocouple was
connected inside the body of the brake to monitor the temperature. The brake speed
and torque were incrementally increased and held for five minutes at a given power
level before the brake temperature was recorded. Due to limitations in power
generation from the dynamometer (Fig. 3-6), data could only be gathered for power
dissipation up to 55 W (see Fig. 3-14). As such, based on this data, the temperature for
increasing power dissipation was projected (using the quadratic trend indicated in the
data). Based on these projections, power dissipation of 125 W would produce an
internal brake temperature of 120 C (250 F), which is the maximum operating
temperature of the brushless DC motor. It should be noted, however, prototype
presented herein was not configured to maximize power dissipation, and as such, it be
expected that some minor modifications (such as adding vents to the brake body) would

result in improved capability for power dissipation.

An experiment was also conducted to determine the rate of wear of the discs.
Specifically, the brake was run at a constant speed and torque over a given length of
time, and the height (or thickness) of the disc stack was measured both before and after
the experiment. The energy dissipation was measured by the dynamometer (based on

shaft torque, speed, and duration of the experiment). Based on these measurements,
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the rate of wear of the discs was determined to be 3.7 microns per kJ of energy
dissipation. Based on the dimensions of the brake and the length of travel along the ball
screw, the disc stack could tolerate approximately 1.5 mm of wear before performance
would begin to degrade. For the case of G-10 discs, this equates to approximately 400
k) of energy dissipation. If wear is of particular concern for a specific application, other
disc materials could be chosen. For example, replacing the G-10 discs with a set of
stainless steel discs would presumably provide greatly increased wear resistance, but

would increase the brake weight from 0.67 kg to 0.81 kg.
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Figure 3-8. Normally unlocked brake sinusoid tracking with a peak-to-peak amplitude
of 20 N-m (50% of full dynamic range).
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Figure 3-9.

Normally locked brake sinusoid tracking with a peak-to-peak amplitude of
20 N-m (50% of full dynamic range).
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Figure 3-10. Normally unlocked brake rising and falling step response with an
amplitude of 20 N-m (50% of full dynamic range).
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Figure 3-11. Normally locked brake rising and falling step response with an amplitude
of 20 N-m (50% of full dynamic range).
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Normally Unlocked Torque Gain vs Frequency
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Figure 3-12. Normally unlocked torque gain vs. frequency for 20 N-m peak-to-peak
oscillations (50% of full dynamic range) indicating a bandwidth of 11 Hz.
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Figure 3-13. Normally locked torque gain vs. frequency for 20 N-m peak-to-peak
oscillations (50% of full dynamic range) indicating a bandwidth of 10 Hz.
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Power Dissipation Capacity
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Figure 3-14. Wafer disc brake power dissipation capacity based on maximum
permissible temperature, predicting a maximum power dissipation level of 125 W.

6. Comparison of Wafer Disc Brake and Magnetic Particle Brake

To the performance of the wafer disc brake in context, the performance
characteristics were compared with those of a commercially available magnetic particle
brake of comparable size. The particle brake utilized for the comparison was a Placid
Industries model B115, which measures approximately 12.0 cm in diameter by 6.7 cm in
length, as compared with the wafer disc brake which measures 10.2 cm in diameter and
4.8 cm in length. While possessing a similar size, it should be noted that the MPB has a
mass of over five times that of the wafer disc brake, weighing 3.63 kg compared to 0.67

kg for the wafer disc brake.
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The most obvious advantage of the wafer disc brake is the high torque capability
relative to its weight. The 0.67 kg WDB provides a maximum dynamic torque of 40 N-m
while the 3.63 kg MPB only provides 13 N-m. This gives the WDB a dynamic torque-to-
weight ratio of about 60 compared to that of the MPB which is about 3.6. Thus, the
wafer disc brake offers a torque-to-weight ratio of over 17 times that of a comparably
sized magnetic particle brake. Additionally the WDB also provides a greater dynamic

range, specifically 1:100 compared to the MPB’s dynamic range of 1:46.

Figure 3-15 shows the step responses of both the wafer disc brake and the
magnetic particle brake. Both operational modes of the WDB are represented and both
control modes (open and closed-loop) of the MPB are represented. The rise times of
the normally unlocked and normally locked brake (as previously presented) are 43 and
53 msec, respectively. The open-loop controlled MPB rise time is 420 msec, and the
closed-loop MPB rise time is 43 msec. It should be noted, however, that the WDB step
represents 20 N-m, while the MPB step represents 6.5 N-m of torque (i.e., both were
characterized at 50% of their respective ranges). Thus, the WDB exhibits similar
response speed to the MPB, but would be significantly faster if characterized in terms of
a torque slew rate. The bandwidth of the MPB for tracking of steady-state sinusoidal
commands (of 50% full scale torque) is 2 Hz and 22 Hz, respectively, for the open-loop
and closed-loop controlled MPB. Thus, while the rise times of the WDB brakes are
comparable to the closed-loop MPB, the latter demonstrates a higher bandwidth than

the closed-loop controlled WDB (although both are on the same order).
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As mentioned previously, a potential advantage of the WDB is a reduction in
electrical power consumption for a given resistive torque. The steady-state power
consumption for the WDB normalized by output resistive torque is 0.26 and 0.22 W/N-
m for the normally unlocked and normally locked brakes, respectively. The MPB
requires 0.87 W/N-m, and thus the WDB requires approximately one third the electrical
power of the MPB for a given output resistive torque. Further, as previously stated, the
normally locked version of the WDB may save additional power in cases that require

greater than 50% duty cycle of resistive torque.

Finally, in comparing the torque ripple of both devices, the open-loop and
closed-loop controlled MPB exhibits 2.7% and 1.5%, respectively, while the WDB (as
previously mentioned) exhibits a torque ripple of approximately 5%. Table 3-2
summarizes the performance characteristics of the wafer disc brake versus those of the

magnetic particle brake.
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Normalized Step Responses of WDB and MPB
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Figure 3-15. Normalized step responses of wafer disc brake and magnetic particle
brake with step command initiation at time = 0 seconds. (a) Normally unlocked brake
=20 N-m). (c)

response (T, =20 N-m). (b) Normally locked brake response (T
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Particle brake response in open-loop (TStep = 6.5 N-m). (d) Particle brake response in

closed-loop (T, = 6.5 N-m).
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Characteristic B115 MPB Normally Normally
Unlocked WDB | Locked WDB

Max Dynamic Torque [N-m](in-lbs.) 13.0 (115) 40 (354) 50+ (443+)
Max Static Torque [N-m](in-Ibs.) 16.6 (147) 73 (646) 74 (655)
Min Torque [N-m](in-lbs.) 0.28 (2.5) 0.40 (3.5) 0.40 (3.5)
Torque Ripple [%],

Open Loop Control 2.7 - -

Closed Loop Control 1.5 5.0 5.0
Dynamic Torque-to-Weight [N-m/kg] 3.58 59.7 74.6+
Dynamic Range 1:46 1:100 1:125+
Rise Time [s], Open Loop Control 0.420 - -

Closed Loop Control 0.043 0.043 0.053
Bandwidth for £ 25% FS Oscillations
[Hz] Open Loop Control 2 - -

Closed Loop Control 22 11 10

Steady-State  Power  Consumption | 0.87 0.26 0.22
(Normalized by torque) [W/N-m]
Max Continuous Power Dissipation [W] | 55 125 125
Weight [kg](Ibs.) 3.63 (8.0) 0.67 (1.48) 0.67 (1.48)
Diameter [mm](in) 120 (4.71) 102 (4.00) 102 (4.00)
Length [mm](in) 66.8 (2.63) | 47.6(1.88) 47.6 (1.88)

Table 3-2. Comparison of the B115 magnetic particle brake with the wafer disc brake.

7. Conclusion and Recommendations

The authors have presented a design for an electrically actuated proportional brake,
called a wafer disc brake (WDB), that offers some advantages relative to a magnetic
particle brake (MPB, considered the benchmark of such devices). Specifically, the WDB
exhibits a torque-to-weight ratio that is (more than) an order of magnitude larger than
the MPB, while requiring less than one third of the steady-state electrical power for a
given level of resistive torque. Further, unlike the MPB (and most other previously

reported devices), the WDB can be configured in a normally unlocked or normally

locked configuration.
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The WDB also has some disadvantages relative to an MPB. One potential
disadvantage of the WDB is disc wear, although this could be mitigated with the use of
more wear-resistant discs (such as stainless steel or ceramic). The WDB also exhibits
greater torque ripple relative to the MPB. As discussed herein, control of the WDB is
more complex than control of the MPB, although accurate torque tracking and good
dynamic performance requires an outer torque loop for both. Finally, as currently

designed, the WDB is likely more expensive to produce than a MPB.
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APPENDIX A

PART LIST AND DRAWINGS

TABLE A-1. Wafer Disc Brake Fabricated and Modified Parts.

Part No. Name Description Quantity
1 Stator Tube 7075 aluminum central brake body 1
2 Rotor Barrel 7075 aluminum outer brake body 1
3 Top Cap 7075 aluminum 1
4 Bottom Cap 7075 aluminum 1
5 Compression Star 7075 aluminum force transmission member 1
6 Motor Cover 301 stainless steel disc to enclose the brake 1
7 Stator Disc Laser-cut from 0.010” G-10 wear resistant film 23
8 Rotor Disc Laser-cut from 0.010” G-10 wear resistant film 22
9 Spring Guide ABS plastic hemispheres to hold normally locked 6

springs in place
10 Disc Spacer ABS plastic disc to position the disc stack vertically 1
11 Stator Key Laser-cut “stator splines” from 1/8” Ultem sheet 18
12 Rotor Key Laser-cut “rotor splines” from 1/8” Ultem sheet 18
13 DU Radial Bearing Cut from 56DU32 GGB DU dry bearing 2
14 DU Thrust Bearing Water-jet cut from DI0594x5.00 GGB DU flat strip 2
material
15 Motor #200142 Maxon EC 45 flat 30 W brushless motor
16 Ball Screw and Nut Faulhaber Microlinea ED513X / V501X precision

ball screw and nut
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Stator tube detail drawing.

Figure A-1.
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Rotor barrel detail drawing.

Figure A-2.
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Top cap detail drawing.

Figure A-3.
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Bottom cap detail drawing.

Figure A-4.
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Compression star detail drawing.
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Figure A-5.
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Motor cap detail drawing.
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Figure A-6.
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Stator disc detail drawing.

Figure A-7.
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Rotor disc detail drawing.

Figure A-8.
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Spring guide detail drawing.

Figure A-9.
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Disc spacer detail drawing.

Figure A-10.
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Stator key detail drawing.

Figure A-11.
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Rotor key detail drawing.

Figure A-12.
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DU radial bearing detail drawing.

Figure A-13.
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DU thrust bearing detail drawing.

Figure A-14.
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Motor alteration detail drawing.
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Ball screw alteration detail drawing.

Figure A-16.
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APPENDIX B

COMPONENT LIST AND DATA SHEETS

TABLE B-1. Wafer Disc Brake Purchased Components.

Component Name Description Quantity
No.
1 Motor #200142 Maxon EC 45 flat 30 W brushless 1
motor
2 Ball Screw and Nut Faulhaber Microlinea ED513X / V501X 1
precision ball screw and nut
3 DU Radial Bearing 56DU32 GGB DU dry bearing 2
4 DU Thrust Bearing GGB DU flat strip material 2
5 Flanged Ball Bearing ABEC-5 flanged double shielded stainless steel 2
5 Normally Unlocked Spring Spring tempered steel compression spring; 1
5/8” long, 19.10 Ibs./inch
6 Normally Locked Spring 302 stainless steel compression spring; 1-1/2” 3

long, 18.33 Ibs./inch
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EC 45 flat ©45 mm, brushless, 30 Wait

A with hall sensoms B sensorless

kL0

M1:2

I Stook program
[ Standand program
Spaainl program (on requast)
& with Hal sarmams -EEE-_I—_ ki _

B sansoress

______
Values ot rominal vol ege
1 Memiral volnga v 12.0 120 24.0 4.0 30 38.0
2 Mo load spesd rpm 4370 43E0 4370 4370 4TED ATHD
3 Mo load ourrant mé 151 150 TES TEZ =1 5.0
4 Mominal spead rpm 2880 BEED 2BED 2040 F0 azio
§ Mominal orque (mox contiruousioqual  mNm 50.0 4.3 8.8 EF.5 TO.8 0.5
8 Mominal cument [mak continuous oument) A 214 200 1.07 1605 =} ] 0.8@2
7 Sl iorque mhm 255 21 253 243 |0 380
8 Starting cument A 10.0 BET 4.08 477 B35 5.22
0 Max oficiancy = 7 TE byl 7 a1 Bl
Charactaristics
10 Termiral resisiance phasa to phas o 1.20 1.4 4.84 504 ar 6.0
11 Tarmiral induciance phasa to phasa mH 0.5680 = 2.24 224 420 4.20
12 Tomua conslant i A 255 BEE B0 510 TOLE TOE
13 Spead conmiant iy ar4 a74 18T 187 135 135
14 Spead | torque gradiant rpmi{ mim 17.8 208 178 18.5 128 13.2
15 Mechanical tims oorstark ] 171 108 17.2 178 124 12.8
18 Flotor inartia gar? 025 -1 025 -3 -1 [F]

Commeants

Thermal daka A e
rasislanca ‘Continuous operation
1; mmﬂmm mu-.-; ﬁ::: In chsarvation of above listed thanmal resistance
19 Tranmalima aonsiant wirdng 1928 {5 inas 17 and 1BH the rrl:nnum pnnn-i:h wirding
Tharmal #rma congiant rmaior 1BEs perature during continuous
21 Amblert empermura =40 . 100G b\:\rlllﬁﬂlrrhﬂ'l‘.
27 Wi panmisshis windng empemhre +IE5'TC = Thamal limit.
Hechankcal dotn |predosded Iﬂlb-aﬂﬂngn
23 M. Isaibl o sped Short ®mm oparation
E Anlmmlulln-i 50N Thie molor may ba brisfly overloaded [recuming].
=50N I:H:l D.1-l-n'|11
25 Radal play ralpaced
26 Mm. mial load 48 H Hami ] powr rating
27 WAL s for preda fin (simic) 5O M =
[statiz, shaft sipporied 1000 N
22 W, mlbu.ﬂng,? 5 mrm rom fanga ESH
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Figure B-1. Motor data sheet.
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vy oo

Dry bearing material with good
wear and friction performance over
a8 wide range of loads, speeds and
temperature conditions

DUE also performs well with
lubrication

Available from stodk in a8 wide
range of standard sizes

Applications
Industrial:

Lifting equipment, hydraulic
pumps and motors, pneumatic
equipment, medical equipment,
textile machinery, agricultural
equipment, scientific equipment,
drying ovens, office equipment,
etc.
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Availability Composition & Structure Operating Conditions
Ex Stodk Steel + porous bronze sinter + PTFE + {} dry very good
Standard cylindrical bushes, Fb
flanged bushes, thrust washers, J'£ oiled good
flanged washers, strip
To arder W | oressed fair
Mon-standard parts 'ﬁ water fofs
@ |processfiuid  [fair
Bearing Properties Unit Value
Dry
Maximum sliding speed U mi's 2.5
Maximum FU factor N'mm? = mfs = Wimm?| 1,8 ETEE + Pk
Coefficient of friction f - 0,02-0,25
General
Maximum temperature Tmax *C +280
Minimum temperature Tmin *C =200
Maximum load P static N/mim? 250 .
Sinter bronze
Maximum load P dynamic N/mim? 140
Shaft surface finish Ra {Dry Operation) | pm 04+01
Shaft hardness HB =200
o  Steel
Figure B-3. DU bearing data sheet.




Flange Part Number: 7804K129
op_={Wd|= 1y,
A — 1':' .
1 ] I Ball Bearing Style
oD Shaft Ball Bearing Type
Dia.
System of Measurement

1 D ¥ For Shaft Diameter
B B [ oy Outside Diameter

-=| |=Flange Width

Thickness

Flange Outside Diameter

Flange Thickness

ABEC Precision Bearing Rating
Dynamic Radial Load Capacity, Ibs.
Dynamic Radial Load Capacity
Range, Ibs.

Maximum rpm

Maximum rpm Range

Temperature Range

Bearing Material

Stainless Steel Material Type

Shield Material
Specifications Met
Note

Ball Bearings
Flanged Double
Shielded
General Purpose
Metric

4 mm

10 mm

4 mm

11.6 mm

.8 mm

ABEC-5

132

6 to 250 Ibs.

56,000

30,001 to 60,000
-65° to +250° F
Stainless Steel
Type 440C Stainless
Steel

300 Series Stainless
Steel

Not Rated

Bearings are
lubricated.

- 16 - -t
r
100 3 -
-0.005 _J L__ 0.8
| McMASTER-CARR ] |2 7804K129
| e Type SA0C Stamess Stesl Flarged
1 2007 W L o Double Sheelded Sall E@amg

Figure B-4. Flanged ball bearing data sheet.
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Part Number: 9637K31

Type Continuous-Length Compression Springs
Material Steel

Steel Type Spring-Tempered Steel

System of Inch

Measurement

Outside "

Diameter 781

Wire Size .062"

Overall Length 11"

Ends Open

Wire Type Round Wire

Coils Per Inch 4

Constant 57.2
To determine how many inches long your spring should
be, take the spring constant and divide it by the number

Note of coils per inch. Then take this value and divide it by
your desired spring rate in Ibs./inch. To cut spring, use
an abrasive cutoff saw.

Sh,/f):tuflcatlons Not Rated

11 |
4.00 Coilsfinch 0.062" .
Wire Dia. ‘—l}— Lzl
it i \ i \
i W R i | i

O] e 9637K31
Spring-Tempered Steel
Compression Spring

Figure B-5. Normally unlocked spring data sheet.
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Part Number: 9435K152
Type

Material

Stainless Steel Type
System of Measurement
Outside Diameter

Precision Compression Springs
Stainless Steel

Type 302 Stainless Steel

Inch

48"

Outside Diameter Tolerance+.008"

Wire Size

Overall Length
Compressed Length
Ends

Wire Type

Load

Deflection at Load
Rate

Rate Tolerance
Specifications Met
Federal Specification

.055"

1-1/2"

.565"

Closed and Ground

Round Wire

13.19 Ibs.

a2"

18.33 Ibs./inch

+ 8% Ibs./in.

Federal Specification (FED)

QQ-P-35

0.48+0.008
0.055

F Wire Diameter _:__—: '='-:

'st '/ - => 1
m@ uffn 9435K152
mmfm | st c :,, p r -':-taﬁlessc‘le|

Figure B-6. Normally locked spring data sheet.
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APPENDIX C

MATLAB SIMULINK MODELS
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Simulink diagram of wafer disc brake and dynamometer controller.

Figure C-1.
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1. Abstract

A hybrid functional electrical stimulation (FES)/orthosis system is being
developed which combines two channels of (surface-electrode-based) electrical
stimulation with a computer-controlled orthosis for the purpose of restoring gait to
spinal cord injured (SCI) individuals (albeit with a stability aid, such as a walker). The
orthosis is an energetically passive, controllable device which 1) unidirectionally couples
hip to knee flexion; 2) aids hip and knee flexion with a spring assist; and 3) incorporates
sensors and modulated friction brakes, which are used in conjunction with electrical
stimulation for the feedback control of joint (and therefore limb) trajectories. This paper
describes the hybrid FES approach and the design of the joint coupled orthosis. A
dynamic simulation of an SCI individual using the hybrid approach is described, and
results from the simulation are presented that indicate the promise of the JCO

approach.

2. Introduction
Previous studies have demonstrated that functional electrical stimulation (FES)
can effectively restore legged mobility to spinal cord injured (SCI) individuals (with the
help of a stability aid), and that such legged mobility can provide significant
physiological and psychological benefits to SCI users [1-18]. Despite this, two significant
factors have hindered FES-aided gait systems from restoring gait to SCl individuals. The
first is the rapid muscle fatigue that results from artificially stimulated muscle

contraction [19], and the second is the inadequate control of joint torques necessary to
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produce reliable and repeatable limb motion and body support. The former (which
significantly influences the latter), is due primarily to the synchronous nature in which
artificial stimulation recruits motor units (i.e., is due to lack of neural specificity in the
stimulation interface). The net effect is that, when stimulated at a high level of effort
and high duty cycle, the muscle quickly (i.e., over tens of seconds) loses its ability to
generate force [12]. Both issues (rapid onset of fatigue and poor controllability) can
potentially result in collapse of the individual, a condition that is unacceptable in any
viable gait restoration system. Additionally, FES-aided gait systems (and especially
surface-based systems) generally provide stimulation for degrees of freedom in the
sagittal plane, but do not provide control over several other degrees-of-freedom
associated with gait, such as hip abduction and adduction in the frontal plane. A lack of
control authority in this plane can result in one foot crossing in front of the other (i.e.,
scissoring), which is a condition that is not easily rectified by the user, and in fact often
requires external assistance.

Due primarily to these challenges (i.e., the potential of collapse from muscle
fatigue and the need to guide uncontrolled degrees of freedom), hybrid systems, which
combine FES with an orthosis, appear to offer the greatest promise for commercially
viable gait restoration systems. As such, recent efforts by various researchers have
focused (and are focusing) on the development of hybrid systems (e.g., [20-23]). This
paper describes a hybrid FES approach that addresses the shortcomings of muscle
fatigue and limb trajectory control. The approach utilizes surface stimulation of only the

guadriceps muscle group of each leg, along with an energetically passive, controllable
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orthosis which 1) unidirectionally couples hip to knee flexion; 2) aids hip and knee
flexion with a spring assist; and 3) incorporates sensors and modulated friction brakes,
which are used in conjunction with electrical stimulation for the feedback control of

joint (and therefore limb) trajectories.

3. Joint-Coupled Controlled-Brake Orthosis (JCO)

The authors are developing a joint-coupled controlled brake orthosis (JCO),
shown in Fig. D-1, for regulating FES-aided gait. The JCO incorporates multiple features,
which serve multiple functions. First, the JCO incorporates unidirectional joint coupling
between knee and hip flexion, such that knee flexion generates hip flexion. Since the
coupling is unidirectional, however, knee extension does not generate hip extension.
The JCO also includes a biasing spring, such that the knee joint (and due to coupling, also
the hip joint) is biased toward an equilibrium position in which both the knee joint and
the hip joint are flexed. The combination of the (unidirectional) joint coupling and the
biasing spring enables knee flexion, hip flexion, and knee extension, all from surface
stimulation of only the quadriceps muscle group of each leg. The quadriceps muscle
group is among the most powerful and easiest (in the lower limb) to access via surface
stimulation, and thus provides a convenient source of metabolic power for gait. In
addition to the joint coupling and biasing spring, the JCO incorporates controllable
friction brakes at both knees and hips, which can either independently lock these joints
(i.e., to provide for “isometric” muscle contraction), or can modulate the resistive

torque at each joint for purposes of controlling limb motion. The JCO also contains angle
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(and thus also angular velocity) sensing at both hips and knee, which provide essential
information for purposes of feedback control of limb motion. Finally, the JCO constrains
motion along uncontrolled degrees-of-freedom (e.g., ankle flexion and hip adduction)

which enhances the controllability and stability of gait.

Hip brace - «—— Abduction pivot

p* Control electronics
Battery pack

Hip quick-connect

|

K ~— Hip brake

Leg ring /

Ring strap

Figure D-1. Solid model of JCO concept.
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3.1 The JCO Gait Sequence

The gait control approach is described subsequently in the section on gait
control and simulation, but is described briefly here to motivate the design of the JCO.
Postural stability during gait is provided by a stability aid, such as a walker. The knee of
each leg is locked by the controllable friction brakes during stance. Swing is initiated by
unlocking the swing leg knee brake, which releases the energy in the biasing spring,
which flexes the knee joint and (due to the joint coupling) also flexes the hip joint.
During the second half of the swing phase, the hip is locked by the hip brake while the
knee is extended by stimulating the quadriceps group. This knee extension (due to
stimulation of the quadriceps) does not, however, generate ipsilateral hip extension,
since the (cable-based) coupling is unidirectional. Once the knee is fully extended, it

remains locked (by the knee brake) during the stance phase of gait.

3.2 Joint Coupling Design

The purpose of the joint coupling is to provide hip flexion necessary to generate
forward leg motion, which is otherwise a challenge, due to the inaccessibility of the
deep hip flexor muscles via surface stimulation. The JCO design incorporates a Bowden
cable which spans the inside of the femur link and attaches to the hip and knee rotors
on either end (see Fig. D-2). Cable crimps are used in the hip brake as hard stops in only
one direction of rotation, which provides unidirectional coupling of knee flexion to hip
flexion. During knee extension, the distal end of the inner Bowden cable winds around

the inner hip brake rotor without inducing concurrent hip extension.
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As previously mentioned, the power for knee (and therefore hip) flexion is
provided by the quadriceps, but is stored in an extension spring housed within the
femur tube (also in Fig. D-2). This spring is attached to the returning end of the Bowden
cable which is wrapped around the knee brake rotor, thus creating a torque in the
direction of knee flexion as determined by the spring stiffness, equilibrium point, and

preload (against a joint hard stop).

3.3 Wafer Disc Brakes

A key component of the JCO is the wafer disc brake, which serves a threefold
purpose: 1) provide added safety via the normally “locked” design of the knee brake,
which will prevent the wearer from falling should the device lose power; 2) increase
muscle efficiency by locking joints during phases of gait when they are normally static,
thus taking the burden of support off the leg muscles, reducing muscle fatigue and
allowing longer walking times; and 3) smooth and control leg trajectories for a more
natural and repeatable gait by utilizing the brakes as variable dampers controlled in
relation to joint angle feedback. A previous effort to create a controlled brake orthosis
[20, 24, 25] utilized magnetic particle brakes, which require electrical power to impose
resistive torque. In the event of a power failure, the brakes (and thus the orthosis joints)
remain unlocked, which could result in collapse and serious injury to the individual. The
authors have developed a new type of brake, called a wafer disc brake (WDB), which
provides approximately 45 times the torque-to-weight ratio of state-of-the-art magnetic

particle brakes, and importantly, can be designed in either a “normally locked” mode or
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“normally unlocked” mode. Since the knee joints should fail in a locked mode, as
previously mentioned, the knee brakes are thus of the normally locked type. Since the
hip brakes are used primarily for trajectory control and are characterized by relatively
low duty cycle operation, the hip brakes are of the normally unlocked type. Designing
knee brakes to be normally locked and hip brakes to be normally unlocked both
minimizes electrical power consumption (based on data from [25], and importantly
prevents collapse during an electrical power failure. The normally unlocked WDB, which
was designed for the hip joint, consists of a stack of thin high-strength plastic wafers
which are alternatively coupled (through splines) to the brake stator and rotor. A small
brushless motor located inside the brake shaft transmits a compressive force through a
ball screw to the stack. Assuming relatively low friction in the ball screw, the stack is
subjected to a compressive force which is proportional to the motor current. Due to the
series arrangement of discs, the resistive torque on the rotor is the product of the
compressive force, the mean radius of contact, and the coefficient of friction, which is
amplified by the number of interfaces between discs. Since the hip brake contains 61
discs, the effective hip torque is increased by a gain of 60. The net result is a
proportional brake that provides a significantly greater torque-to-weight ratio than a
state-of-the-art in magnetic particle brake. Since the ball screw is back-drivable, the
brake torque remains in proportion to the motor current, and thus is proportional in
nature. The normally locked type of WDB, which is used for the knee joint, is shown in
cross-section in Fig. D-3. A photo of the corresponding assembled prototype is shown in

Fig. D-4. The design is similar to the normally unlocked type, but the discs are preloaded
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with a compression spring. Applying current to the motor proportionally unloads the
preload, such that full brake torque occurs at zero motor current, and minimum brake
torque occurs at full motor current. Since the ball screw is back-drivable, the brake
torque remains in inverse proportion to the motor current.

A first-generation prototype of the knee brake has been constructed and tested.
The mass of this brake is 0.73 kg. The brake was experimentally measured to provide a
maximum torque of 50.7 N-m, which provides a resistive torque-to-weight ratio of 69.4
N-m/kg. In comparison, a state-of-the-art magnetic particle brake (MPB) in a similar size
range provides a torque of 1.7 N-m with a mass of 1.14 kg, and as such has a resistive
torque-to-weight ratio of 1.5 N-m/kg (e.g., Placid Industries model no. B15). As such,
the WDB has a torque-to-weight ratio approximately 45 times greater than the MPB.
Experimental measurements further indicate a minimum torque of 0.16 N-m (i.e., the
brake dynamic range is between approximately 0.16 and 50 N-m). For both brakes, the

torque varies linearly (and inversely, for the knee brake) with input current.

3.4 Ankle Support

The JCO utilizes an ankle-foot-orthosis (AFO) at the ankle, which is sufficiently
compliant to allow dorsiflexion during the stance phase of gait, but sufficiently stiff to
prevent foot drop during the swing phase of gait. Current gait simulations indicate a
stiffness of 15 Nm/rad (for a 75 kg user) provides an appropriate balance between these

objectives.
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Hip brake \

Thigh ring clamp

Hip brake

Spring tensioner drive electronics

Extension spring

Joint-coupling cable

Knee brake

Figure D-2. Femur link detail.
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Ball screw
Stator body
Spring

Disc stack

Rotor barrel

Flat motor

Figure D-3. Cross-section of normally locked knee brake.

Figure D-4. Fully functional knee brake prototype.
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3.5 Mass and Inertia

The total orthosis mass as shown in Fig. D-1, based on the solid model and
prototypes of the brakes, is approximately 6 kg (13 Ibs). Approximately one half of the
orthosis weight is located on the pelvis, and thus does not add significantly to the
rotational inertia or gravitational loads of the lower limbs. The rotational inertia of the
distal link of the orthosis about the knee joint is approximately 5% of a typical shank
inertia, while the inertia of the proximal link about the hip joint is about 10% of a typical

thigh inertia.

4. Gait Control and Simulation

A dynamic simulation of an SCI individual walking with the JCO and a walker was
conducted to 1) validate that the proposed approach can provide a safe and stable gait,
2) develop a robust gait controller, 3) explore variation of primary JCO design
parameters, namely, the joint coupling transmission ratio and the spring stiffness,
preload, and equilibrium point, 4) assess the magnitude of torque and duty cycle of
stimulation required of the quadriceps group (which will help characterize the extent of
expected muscle fatigue), and 5) assess the load borne by the arms (through the walker)
relative to that carried by the legs.

The dynamic simulator has two main parts — the human body model and the
gait controller. The human body model is based in classical rigid body dynamics and is
composed of seven segments and six articulations in three dimensional space, as shown
in Fig. D-5. The associated geometric and inertial parameters normalized to a body

104



height and mass, as given by [26], are listed in Table 1. The spatial model has 12 degrees
of freedom, which is reduced to fewer when the feet are in contact with the ground.
The model is influenced by 10 inputs, 6 of which are produced by the hybrid orthosis
system (i.e., torques in the sagittal plane for both ankles, knees, and hips, applied by a
combination of muscle stimulation and JCO input), and 4 of which result from the
interaction between the user and the walker (i.e., one torque in the sagittal plane and
three forces, all applied symmetrically at the shoulder joints, which are located atop the
torso link). Note that the floor is modeled in the vertical direction as a unidirectional
stiff spring and damper, such that the feet do not penetrate significantly into the floor
(i.e., foot/floor penetration is on the order of a millimeter). In the horizontal direction,
the foot/floor interaction is governed by Coulomb friction, where the coefficient of

friction is assumed to be 0.3.

4.1 Walker Model

The user walks with the JCO on a flat and level surface with the aid of a regular
walker. Note that the use of a walker assumes sufficient upper limb function to do so.
The shoulder force in the frontal plane is modeled as a spring and damper with
equilibrium point at the vertical orientation, which stabilizes the torso in the frontal
plane (i.e., prevents “falling” in that plane). The remaining shoulder inputs, which are all
sagittal plane inputs, are constrained by the nature of the walker. Specifically, the
vertical force is restricted to act only in the upward direction (i.e., the user cannot pull

up on the walker); the horizontal force is restricted by the coefficient of friction
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between the walker and floor (assumed to be 0.3) and the vertical force; and the
horizontal force and shoulder moment are additionally constrained by the structural

stability (i.e., tipping point) of the walker.

UPER BODY
/ (Trunk, Arms, Head)

SHANKS

FEET

Figure D-5. Dynamic simulation solid model, showing the six joint degrees of freedom.

Table D-1. Simulation parameters.

Segment Relative Length * Distance to Relative Mass * Re!ative
(1) Mass Center ** (m/M) Inertia (1/L)
Upper Body 0.29 0.64 0.65 0.50
Thigh 0.23 0.43 0.11 0.32
Shank 0.22 0.40 0.05 0.30
Foot 0.13 0.25 0.02 0.48

*  L=High, M= Mass of subject
** The distance is a fraction of the segment longitude
All units are in the MKS system
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4.2 Orthosis Model

Since the JCO utilizes an AFO at the ankles, ankle inversion/eversion is not
considered, while flexion/extension torques are modeled as a torsional spring and
damper about zero degrees of flexion. Thus, the ankle is not a “controlled” degree of
freedom. The knee torques result from a combination of quadriceps stimulation, joint
coupling, the knee joint spring, and the resistive torque of the brake. These are
combined as described in the gait controller below. The hip torques result from the joint
coupling and the hip brakes. Specifically, the hip joint coupling is modeled as a flexor
torque that has the function to maintain the hip angle equal to the knee angle (in the
case of a knee-angle/hip-angle coupling ratio of 1:1), although only in extension. In the
model, the abduction-adduction movement is locked in the zero position. Note that the
orthosis allows hip abduction/adduction with a limit stop on excessive adduction (to
prevent crossing over). This degree of freedom was not modeled in the simulation, since
frontal plane dynamics are assumed to be controlled by the user via the walker, and
thus are represented as a simplified single degree-of-freedom (i.e., rotation in the

frontal plane).

4.3 Control Algorithm

In the proposed system, two controllers are simultaneously active, which are the
JCO controller (i.e., brakes and electrical stimulation) and the user controller, which
governs interaction with the walker through the arms (i.e., shoulder forces and torques).

The control algorithm is a loop consisting of four states (Fig. D-6):
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4.4 S1: State 1

In the initial condition, both knee brakes are locked in zero degrees of flexion.
The support leg is in front of the swing leg. The upper body can rotate freely at the hips.
The user rotates the upper body forward to an angle of 20 degrees, at which point the
support hip brake is locked. At that moment the center of mass is in front of the support
foot, which causes forward motion and a rotation around the front foot. The controller
switches to the next state when the support leg is vertical and the user has raised the

torso using the walker.

4.5 S2 : State 2

The swing knee brake is unlocked; this allows the spring to flex the knee, and the
hip is concurrently flexed due to the joint coupling. During this state, the user maintains
control of upper body orientation to approximately vertical. The stance hip brake allows
hip extension (and not flexion) to zero degrees (at which point it will lock), while the
stance knee brake remains locked. The controller switches to the next state when the

difference between hip angles ceases to increase.

4.6 S$3: State 3

The swing hip is locked while the swing knee is extended via quadriceps
stimulation. The stance knee remains locked while the stance hip does not allow
extension beyond zero degrees. The controller switches to the next state when the

swing knee is fully extended.
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4.7 S4 : State 4

The swing knee is locked and the swing foot lands due to gravity and user arm
control. The stance hip is free. The swing hip allows flexion such that the upper body
leans forward 20 degrees from the vertical (as in state 1). The swing leg is now in front
and becomes the stance leg; as such the system is returned to state 1 and ready for

another step.

Figure D-6.  Simulation states.
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4.8 Simulation Results

A simulation of the JCO and gait controller was conducted using the parameters
given in Table 1, for a user of height L=1.7m and mass M=65kg. Figure D-7 shows the
results of fifteen seconds of simulation, including position and joint angle data and
ground reaction force data. A video of the simulated walk is included in the supporting
material. Note that the user starts from rest, and remains at rest for the first second of
the simulation. The cadence of the resulting gait was 34 steps per minute and the
average velocity was 0.2 m/s. The upper body never leans backward and the maximum
forward inclination is around 25 degrees. The simulation further indicates that nearly all
the weight is carried by the legs, and thus the approach results in minimal weight
bearing on the arms (i.e., the arms are used chiefly for stabilization and not for support
purposes). Finally, Fig. D-8 shows the evolution of states through the simulation. As
indicated in the figure, the duration of electrical stimulation (stage 3), is small compared
with total cycle. The ratio is 0.1:3.5 seconds, which equates to a quadriceps duty cycle of

approximately 3%.

5. Preliminary Experiments

The authors have conducted preliminary experiments to test the joint coupling
concept, and to assess the extent of fatigue imposed by the bias spring and joint
coupling. A simple, one-legged version of the orthosis was created which included one-
to-one joint coupling between the hip and knee, an adjustable extension spring for knee
flexion, potentiometers on the hip and knee joints for angle measurement, and a locking

111



knee joint with quick release pin. Experiments were conducted to 1) determine if the
spring and joint coupling could provide sufficient knee and hip flexion in the context of
stride, and 2) determine if the quadriceps could repeatably provide the power necessary
to overcome the spring and extend the lower leg without significant fatigue. The first
experiment (see Fig. D-9) involved positioning an able-bodied subject in stance such that
the leg wearing the orthosis was in the rear and ready to begin stride. The spring was
loaded and the knee was locked in the extended position by means of a quick connect
pin. As the pin was pulled by an assistant, the leg swung forward in knee and hip flexion
as shown in Figs. D-9 and D-10. At the peak of hip flexion, the quadriceps was
stimulated, which fully extended the knee and—in this test, due to the absence of a hip
brake—allowed the hip to extend as well, dropping the foot to the ground. The results
of this experiment showed that joint angles comparable to those typical in healthy
subjects could be obtained involuntarily with the JCO system (see Fig. D-10).

The second experiment involved conducting extended sets of pulsed quadriceps
stimulation at a duty cycle of 15%— conservative according to simulations. Ten subjects
underwent three five minute periods of stimulation with a rest period in between each
trial of three minutes. Results from this preliminary fatigue testing showed that muscle
output decreased 7% over five minutes for all the trials combined and averaged. As
such, the quadriceps appears to be quite capable of providing sustained power for the

proposed hybrid approach without significant degradation of performance.
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Figure D-9. FES/JCO generated gait sequence experiment.

Frame 1: Right leg is locked in shown position. Assistant pulls pin to unlock the knee
joint. Frames 2-5: Once pin is pulled, the spring pulls the knee into flexion and the
joint coupling therefore pulls the hip into flexion as well. Frame 5 is the final resting
state under no muscle contraction. Frames 6-8: The quadriceps is stimulated by a
momentary push button switch on the walker handle. This causes the knee to
extend and therefore relieve the joint coupling, allowing the hip to extend also.
Frame 8 is the final resting position of the leg after it has rejoined the ground after
stride.
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Figure D-10. Joint angle data during gait experiment shown in Fig. D-9.
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6. Conclusion

A joint-coupled controlled brake orthosis (JCO) has been designed as part of a
hybrid FES/orthosis system for restoring gait to spinal cord injured individuals. This
device will 1) unidirectionally couple hip to knee flexion; 2) aid hip and knee flexion with
a spring assist; and 3) incorporate sensors and modulated friction brakes, which are
used in conjunction with electrical stimulation for the feedback control of joint (and
therefore limb) trajectories. Dynamic simulations and a one-legged prototype of the
orthosis were used to validate the design concepts and aid in the design development.
The results of these efforts showed that robust walking can be achieved via the orthosis
without significant muscle fatigue. Future work includes characterization of the latest
brake prototype, development of a fully functional, two-legged JCO, control design and

the addition of on-board electronics, and clinical trials of the JCO system.
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1. Abstract

A hybrid functional electrical stimulation (FES)/orthosis system is being
developed which combines two channels of (surface-electrode-based) electrical
stimulation with a computer-controlled orthosis for the purpose of restoring gait to
spinal cord injured (SCI) individuals (albeit with a stability aid, such as a walker). The
orthosis is an energetically passive, controllable device which 1) unidirectionally couples
hip to knee flexion; 2) aids hip and knee flexion with a spring assist; and 3) incorporates
sensors and modulated friction brakes, which are used in conjunction with electrical
stimulation for the feedback control of joint (and therefore limb) trajectories. This paper
describes the hybrid FES approach and the design of the joint coupled orthosis.
Preliminary experiments are presented which test the joint coupling concept and assess

the extent of quadriceps fatigue imposed by the bias spring and joint coupling.

2. INTRODUCTION

Previous studies have demonstrated that functional electrical stimulation (FES)
can effectively restore legged mobility to spinal cord injured (SCI) individuals (with the
help of a stability aid), and that such legged mobility can provide significant
physiological and psychological benefits to SCI users [1-18]. Despite this, two significant
factors have hindered FES-aided gait systems from restoring gait to SCl individuals. The
first is the rapid muscle fatigue that results from artificially stimulated muscle

contraction [19], and the second is the inadequate control of joint torques necessary to

118



produce reliable and repeatable limb motion and body support. The former (which
significantly influences the latter), is due primarily to the synchronous nature in which
artificial stimulation recruits motor units (i.e., is due to lack of neural specificity in the
stimulation interface). The net effect is that, when stimulated at a high level of effort
and high duty cycle, the muscle quickly (i.e., over tens of seconds) loses its ability to
generate force [12]. Both issues (rapid onset of fatigue and poor controllability) can
potentially result in collapse of the individual, a condition that is unacceptable in any
viable gait restoration system. Additionally, FES-aided gait systems (and especially
surface-based systems) generally provide stimulation for degrees of freedom in the
sagittal plane, but do not provide control over several other degrees-of-freedom
associated with gait, such as hip abduction and adduction in the frontal plane. A lack of
control authority in this plane can result in one foot crossing in front of the other (i.e.,
scissoring), which is a condition that is not easily rectified by the user (i.e., is likely to
require external assistance).

Due primarily to these challenges (i.e., the potential of collapse from muscle
fatigue and the need to guide uncontrolled degrees of freedom), hybrid systems, which
combine FES with an orthosis, appear to offer the greatest promise for commercially
viable gait restoration systems. As such, recent efforts by various researchers have
focused (and are focusing) on the development of hybrid systems (e.g., [20-23]). This
paper describes a hybrid FES approach that utilizes surface stimulation of only the
guadriceps muscle group of each leg, along with an energetically passive, controllable

orthosis (see Fig. E-1) which 1) unidirectionally couples hip to knee flexion; 2) aids hip
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and knee flexion with a spring assist; and 3) incorporates sensors and modulated friction
brakes, which are used in conjunction with electrical stimulation for the feedback

control of joint (and therefore limb) trajectories.

Hip brace «— Abduction pivot
"\ Control electronics
Battery pack =~ o <

Hip quick-connect

¥ ~<—— Hip brake

Leg ring /

Ring strap

«— Knee brake

AFO quick-connect

~<«— AFO

Figure E-1.  Solid model of JCO concept.
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3. Joint-Coupled Controlled-Brake Orthosis (JCO)

The authors are developing a joint-coupled controlled brake orthosis (JCO) for
regulating FES-aided gait. The JCO incorporates multiple features, which serve multiple
functions. First, the JCO incorporates unidirectional joint coupling between knee and hip
flexion, such that knee flexion generates hip flexion. Since the coupling is unidirectional,
however, knee extension does not generate hip extension. The JCO also includes a
biasing spring, such that the knee joint (and due to coupling, also the hip joint) is biased
toward an equilibrium position in which both the knee joint and the hip joint are flexed.
The combination of the (unidirectional) joint coupling and the biasing spring enables
knee flexion, hip flexion, and knee extension, all from surface stimulation of only the
guadriceps muscle group of each leg. The quadriceps muscle group is among the most
powerful and easiest (in the lower limb) to access via surface stimulation, and thus
provides a convenient source of metabolic power for gait. In addition to the joint
coupling and biasing spring, the JCO incorporates controllable friction brakes at both
knees and hips, which can either independently lock these joints (i.e., to provide for
“isometric” muscle contraction), or can modulate the resistive torque at each joint for
purposes of controlling limb motion. The JCO also contains angle (and thus also angular
velocity) sensing at both hips and knee, which provide essential information for
purposes of feedback control of limb motion. Finally, the JCO constrains motion along
uncontrolled degrees-of-freedom (e.g., ankle flexion and hip adduction) which enhances

the controllability and stability of gait.

121



Figure E-2. Anthropomorphic 50" percentile male with JCO and with walker for
stability aid.

3.1 The JCO Gait Sequence

The gait control approach is described subsequently in the section on gait
control and simulation, but is described briefly here to motivate the design of the JCO.
Postural stability during gait is provided by a stability aid, such as a walker (see Fig. E-2).
The knee of each leg is locked by the controllable friction brakes during stance (see Fig.
E-3). Swing is initiated by unlocking the swing leg knee brake, which releases the energy
in the biasing spring, which flexes the knee joint and (due to the joint coupling) also

flexes the hip joint. During the second half of the swing phase, the hip is locked by the
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hip brake while the knee is extended by stimulating the quadriceps group. This knee
extension (due to stimulation of the quadriceps) does not, however, generate ipsilateral
hip extension, since the (cable-based) coupling is unidirectional. Once the knee is fully

extended, it remains locked (by the knee brake) during the stance phase of gait.

unlock knee brake, stimulate quadriceps
knee brake locked, | knee and hip flex due | to extend knee (and | —
leg ready for swing to mechanical bias biasing spring),

and joint coupling possibly lock hip brake

lock knee brake in
preparation for
stance phase

Figure E-3. Schematic representation of JCO swing phase of gait, indicating the
cooperative behavior and sequencing of the knee and hip brakes, the mechanical bias
spring, the unidirectional joint coupling, and the quadriceps stimulation.

3.2 Joint Coupling Design

The purpose of the joint coupling is to provide hip flexion necessary to generate
forward leg motion, which is otherwise a challenge, due to the inaccessibility of the
deep hip flexor muscles via surface stimulation. The JCO design incorporates a Bowden

cable which spans the inside of the femur link and attaches to the hip and knee rotors
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on either end (see Fig. E-4). Cable compression sleeves are used in the hip brake as hard
stops in only one direction of rotation, which provides unidirectional coupling of knee
flexion to hip flexion. During knee extension, the distal end of the inner Bowden cable
winds around the inner hip brake rotor without inducing concurrent hip extension (see

Fig. E-4d).

(a) (b) (c) (d)

Figure E-4. (a) Femur link shown with joint biasing and coupling cable highlighted in
red, (b) detail view of knee joint, showing joint biasing and coupling cable, (c) detail
view of hip joint, showing joint coupling cable in the engaged position (e.g., during the
knee flexion part of swing phase), and (d) detail view of hip joint, showing joint coupling
cable in the disengaged position (e.g., during knee extension part of swing phase). Note
that while in the disengaged position, the hip cable is guided around the inside of the
hip joint housing, as shown in (d). Note that this figure is clearest when viewed in color.
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As previously mentioned, the power for knee (and therefore hip) flexion is
provided by the quadriceps, but is stored in an extension spring housed within the
femur tube (see Fig. E-5). This spring is attached to the returning end of the Bowden
cable which is wrapped around the knee brake rotor, thus creating a torque in the
direction of knee flexion as determined by the spring stiffness, equilibrium point, and

preload (against a joint hard stop).

Hip brake \

Thigh ring clamp

Hip brake

Spring tensioner drive electronics

Extension spring

Joint-coupling cable

Knee brake

Figure E-5. Femur link detail.
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3.3 Wafer Disc Brakes

A key component of the JCO is the wafer disc brake (WDB), which serves a
threefold purpose: 1) provide added safety via the normally “locked” design of the knee
brake, which will prevent the wearer from falling should the device lose power; 2)
increase muscle efficiency by locking joints during phases of gait when they are normally
static, thus taking the burden of support off the leg muscles, reducing muscle fatigue
and allowing longer walking times; and 3) smooth and control leg trajectories for a more
natural and repeatable gait by utilizing the brakes as variable dampers controlled in
relation to joint angle feedback. A previous effort to create a controlled brake orthosis
[20, 24, 25] utilized magnetic particle brakes, which require electrical power to impose
resistive torque. In the event of a power failure, the brakes (and thus the orthosis joints)
remain unlocked, which could result in collapse and serious injury to the individual. The
authors have developed a new type of brake, called a wafer disc brake, which provides
nearly 45 times the torque-to-weight ratio of state-of-the-art magnetic particle brakes,
and importantly, can be designed in either a “normally locked” mode or “normally
unlocked” mode. Since the knee joints should fail in a locked mode, as previously
mentioned, the knee brakes are thus of the normally locked type. Since the hip brakes
are used primarily for trajectory control and are characterized by relatively low duty
cycle operation, the hip brakes are of the normally unlocked type. Designing knee
brakes to be normally locked and hip brakes to be normally unlocked both minimizes
electrical power consumption (based on data from [25], and importantly prevents

collapse during an electrical power failure. The normally unlocked WDB, which was
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designed for the hip joint, consists of a stack of thin high-strength plastic wafers which
are alternatively coupled (through splines) to the brake stator and rotor. A small
brushless motor located inside the brake shaft transmits a compressive force through a
ball screw to the stack. Assuming relatively low friction in the ball screw, the stack is
subjected to a compressive force which is proportional to the motor current. Due to the
series arrangement of discs, the resistive torque on the rotor is the product of the
compressive force, the mean radius of contact, and the coefficient of friction, which is
amplified by the number of interfaces between discs. Since the hip brake contains 71
discs, the effective hip torque is increased by a gain of 70. Since the ball screw is back-
drivable, the brake torque remains in proportion to the motor current, and thus is
proportional in nature. The normally locked type of WDB, which is used for the knee
joint, is shown in cross-section in Fig. E-6. A photo of the corresponding assembled
prototype is shown in Fig. E-7. The design is similar to the normally unlocked type, but
the discs are preloaded with a compression spring. Applying current to the motor
proportionally unloads the preload, such that full brake torque occurs at zero motor
current, and minimum brake torque occurs at full motor current. Since the ball screw is
back-drivable, the brake torque remains in inverse proportion to the motor current.

A first-generation prototype of the knee brake has been constructed and tested.
The mass of this brake is 0.73 kg. The brake was experimentally measured to provide a
maximum torque of 50.7 N-m, which provides a resistive torque-to-weight ratio of 69.4
N-m/kg. In comparison, a state-of-the-art magnetic particle brake (MPB) in a similar size

range provides a torque of 1.7 N-m with a mass of 1.14 kg, and as such has a resistive
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torque-to-weight ratio of 1.5 N-m/kg (e.g., Placid Industries model no. B15). As such,
the WDB has a torque-to-weight ratio approximately 45 times greater than the MPB.
Experimental measurements further indicate a minimum torque of 0.16 N-m (i.e., the
brake dynamic range is between approximately 0.2 and 50 N-m). Note that this
provides a dynamic range ratio of 250:1. The aforementioned MPB has a dynamic range
of 100:1, and thus the WDB provides significantly improved performance (relative to the
MPB) with respect to both torque/weight ration and dynamic range. For both WDB
brake types, the torque varies linearly (and inversely, for the knee brake) with input

current.

Ball screw
Stator body
Spring

Disc stack
Rotor barrel

Flat motor

Figure E-6.  Cross-section of normally locked knee brake.
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Figure E-7.  Fully functional knee brake prototype.

3.4 Ankle Support

The JCO utilizes an ankle-foot-orthosis (AFO) at the ankle, which is sufficiently
compliant to allow dorsiflexion during the stance phase of gait, but sufficiently stiff to
prevent foot drop during the swing phase of gait. Current gait simulations indicate a
stiffness of 15 Nm/rad (for a 75 kg user) provides an appropriate balance between these

objectives.

3.5 Mass and Inertia

The total orthosis mass as shown in Fig. E-1, based on the solid model and
prototypes of the brakes, is approximately 6 kg (13 Ibs). Approximately one half of the

orthosis weight is located on the pelvis, and thus does not add significantly to the
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rotational inertia or gravitational loads of the lower limbs. The rotational inertia of the
distal link of the orthosis about the knee joint is approximately 5% of a typical shank
inertia, while the inertia of the proximal link about the hip joint is about 10% of a typical

thigh inertia.

3.6 Donning and Doffing

Along with reliability, function, and perceived and measurable benefit, one of
the most important factors in the acceptance and use of a gait restoration system is
ease of use, and chief among this factor is the ability of the user to quickly and easily
don and doff the system. The JCO was designed to be donned (and doffed) quickly,
easily, and independently, while sitting. The JCO consists of five component parts, which
are separately donned and snapped together via structural quick connect joints.
Specifically, the JCO is separated into two AFQ’s, two thigh segments, and a waist

harness, shown in Fig. E-8.

Figure E-8. Depiction of steps for donning JCO.
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4. Simulation

A simulation of the JCO and gait controller was conducted for a user of height
L=1.7m and mass M=65kg. Detailed simulation results are reported in a companion
paper. The cadence of the resulting gait was 34 steps per minute and the average
velocity was 0.2 m/s. A depiction of the simulation progression is shown in Fig. E-9.
Importantly, the simulation indicates a required quadriceps stimulation duty cycle of

approximately 15%.

STATE 4
—_—

] STATE 1

Figure E-9. Progression of simulation states.

5. Preliminary Experiments

The authors have conducted preliminary experiments to test the joint coupling

concept, and to assess the extent of fatigue imposed by the bias spring and joint

131



coupling. A preliminary, one-legged version of the orthosis was created which included
one-to-one joint coupling between the hip and knee, an adjustable extension spring for
knee flexion, potentiometers on the hip and knee joints for angle measurement, and a
locking knee joint with quick release pin. Experiments were conducted to 1) determine
if the spring and joint coupling could provide sufficient knee and hip flexion in the
context of stride, and 2) determine if the quadriceps could repeatably provide the
power necessary to overcome the spring and extend the lower leg without significant
fatigue. The first experiment (see Fig. E-10) involved positioning an able-bodied subject
in stance such that the leg wearing the orthosis was in the rear and ready to begin
stride. The spring was loaded and the knee was locked in the extended position by
means of a quick connect pin. As the pin was pulled, the leg swung forward in knee and
hip flexion as shown in Figs. E-10 and E-11. At the peak of hip flexion, the quadriceps
was stimulated, which fully extended the knee. Based on the resulting motion, the
proposed approach appears to provide hip and knee swing motion necessary for gait
restoration.

The second experiment involved conducting extended sets of pulsed quadriceps
stimulation at a duty cycle of 15%— as indicated by the gait simulations. Ten subjects
underwent three five minute periods of stimulation with a rest period in between each
trial of three minutes.

Representative data (showing stimulation duty cycle and knee and hip angles)
for a few cycles of stimulation for a single subject is shown in Fig. E-12. Note that, since

the test orthosis does not include a locking knee brake, the hip and knee joints return to
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the flexed position immediately following the quadriceps stimulation (unlike in the
proposed gait sequence, in which the knee joint would be locked at full extension
following quadriceps stimulation, and would unlock only during the swing phase of gait).
Representative knee angle data for an entire five-minute trial is shown in Fig. E-13.

For each subject, the amplitude of knee motion corresponding to each
flexion/extension cycle was collected and plotted versus cycle (84 cycles per trial, 252
cycles total for the three trials). A representative plot of this data for a single subject is
shown in Fig. E-14, which also shows a least-squares-fit line through each of the three
consecutive five-minute trials. Note that the discontinuity in the lines is due to the
three-minute rest period between trials. The average decrease in flexion angular
displacement (across all subjects) over the first five-minute trial was 13% and over the
second five-minute trial was 10%. As shown in Fig. E-14, however, the average flexion
amplitude (across all subjects) during the third trial showed no decrease (in fact showed

a 1% increase).
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Figure E-10. FES/JCO generated gait sequence experiment.

Frame 1: Right leg is locked in shown position. Assistant pulls pin to unlock the knee
joint. Frames 2-5: Once pin is pulled, the spring pulls the knee into flexion and the
joint coupling therefore pulls the hip into flexion as well. Frame 5 is the final resting
state under no muscle contraction. Frames 6-8: The quadriceps is stimulated by a
momentary push button switch on the walker handle. This causes the knee to
extend and therefore relieve the joint coupling, allowing the hip to extend also.
Frame 8 is the final resting position of the leg after it has rejoined the ground after
stride.
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Figure E-11. Joint angle data during gait experiment shown in Fig. E-10.
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Figure E-12. Representative data from the quadriceps fatigue experiments, showing
amplitude of quadriceps stimulation, knee angle as measured by the test orthosis, and
hip angle.
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Figure E-13. Representative data from a five-minute trial for FES powered knee
(and hip, via joint coupling) extension while wearing the test orthosis.
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Figure E-14. Representative data from a single subject for three consecutive (five-
minute) trials, and least-squares fit line for each trial. The discontinuity in lines is
due to the three-minute rest between trials.
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Thus, for conditions representative of the proposed approach, the data appears
to indicate stabilization in average flexion amplitude by the third five-minute trial. More
specifically, based on the averaged data of ten subjects, the flexion amplitude appears
to have stabilized at approximately 85% of the mean amplitude exhibited during the
first five-minute trial. Importantly, this apparent stabilization indicates that, for the 15%
duty cycle and workload imposed on the quadriceps by the JCO, the proposed approach
should be capable of providing long periods of locomotion unimpeded by quadriceps

muscle fatigue.

6. Conclusion

A joint-coupled controlled brake orthosis (JCO) has been designed as part of a
hybrid FES/orthosis system for restoring gait to spinal cord injured individuals. This
device will 1) unidirectionally couple hip to knee flexion; 2) aid hip and knee flexion with
a spring assist; and 3) incorporate sensors and modulated friction brakes, which are
used in conjunction with electrical stimulation for the feedback control of joint (and
therefore limb) trajectories. A one-legged joint coupling prototype was used to validate
the joint coupling concept and assess the fatigue induced by the system upon the
guadriceps muscles. Based on the motion obtained using the prototype and quadriceps
stimulation, the proposed approach appears to provide hip and knee swing motion
necessary for gait restoration. Furthermore, results from the preliminary fatigue testing
showed that muscle output appeared to stabilize at 85% of its initial output after 15

minutes of stimulation. As such, the quadriceps appears to be capable of providing

137



sustained power for the proposed hybrid approach to support continuous walking

without significant degradation of performance. Future work includes characterization

of the latest brake prototype, development of a fully functional, two-legged JCO, control

design, on-board electronics, and clinical trials of the JCO system.
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