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CHAPTER I 

 

INTRODUCTION 

 

1.     Introduction 

 Several control applications require the use of an electrically controllable 

proportional rotary brake (e.g., [1]-[16]).  Probably the most common and thoroughly 

developed example of such a device is the magnetic particle brake (MPB).  Magnetic 

particle brakes produce a steady-state resistive torque roughly proportional to the input 

current.  A sectioned view of a magnetic particle brake is shown in Figure 1-1.  DC 

current applied to the brake coil induces a magnetic field which links fine ferrite 

particles to the rotating brake shaft.  The amount of current in the coil determines the 

strength of the magnetic field, which in turn determines the resistive torque imposed on 

the brake shaft.  Compared with the closed-loop control of a high-performance DC 

torque motor, these devices provide a relatively low electrical power and light-weight 

means of exerting controlled dissipative mechanical torque.  Further, using an electric 

motor as a dissipater requires measurement of velocity, which typically contains phase 

lag, which in turn adds energy to the system (rather than dissipating it). A proportional 

brake, on the other hand, does not require velocity measurement and is guaranteed to 

be energetically passive. 
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Though the weight of a magnetic particle brake is low relative to a DC motor (for 

a given resistive torque), in many cases the weight remains significant. Several efforts to 

increase the performance of such devices have been reported, including the 

development of magnetorheological fluid brakes, electrorheological fluid brakes, and 

piezoelectrically actuated brakes (e.g., [17]-[23]). Magnetorheological and 

electrorheological brakes provide improved torque-to-weight characteristics relative to 

magnetic particle brakes, but sacrifice bandwidth and dynamic range relative to the 

MPB. The piezoelectrically actuated brake described in [23] offers a higher bandwidth 

and decreased electrical power consumption for low-frequency excitation relative to a 

magnetic particle brake, but provides less torque-to-weight and more torque ripple. 

 

 
Figure 1-1.     Sectioned view of a magnetic particle brake taken from PrecisionTork.com. 
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 This thesis presents the design of an electrically-actuated proportional brake that 

provides a significantly improved torque-to-weight ratio relative to a magnetic particle 

brake, while maintaining (or improving) dynamic range and response time. Importantly, 

unlike particle brakes, magnetorheological fluid brakes, or electrorheological fluid 

brakes, the proposed device can be designed in both a normally unlocked and normally 

locked configuration, which offers a greater number of design options for a given 

application. The approach utilizes a motor-driven ball screw, which compresses a 

multiple-disc mechanism for resistive torque generation. Due to the amplification 

effects of a small ball screw lead and a large number of discs in the disc stack, the brake 

provides a resistive torque approximately three orders of magnitude larger than the 

motor torque. Due to the relatively thin discs used on the brake, the authors refer to the 

device as a wafer disc brake (WDB). 

Note that electrically actuated multiple disc brakes and clutches are 

commercially available and used in heavy equipment applications (e.g., material 

handling). Such brakes, however, operate similarly to a magnetic particle brake, in that 

they utilize a stack of ferrous discs subjected to an electrically induced magnetic field. 

Such brakes are effective, but due to residual magnetism and sticking of plates, do not 

provide well-behaved proportional operation. Further, due to the nature of the 

attractive forces generated by a magnetic field, implementation of such brakes in a 

normally locked configuration would be a nontrivial task. The remainder of this thesis 

describes the design of the (wafer disc) brake and characterizes and compares its 
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performance to that of a commercially available magnetic particle brake of comparable 

size. 
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CHAPTER II 

 

BRAKE DESIGN ITERATIONS 

 

1.     Introduction 

 The wafer disc brake presented in this thesis evolved over two years of research 

and four iterations before arriving at its final embodiment.  Each of the three preceding 

prototypes offered useful insight regarding design concepts and components.  Each 

iteration provided greater understanding of how to best model the device such that 

better predictions could be made about its performance.  For these reasons, this 

chapter is included to impart a greater understanding of the wafer disc brake through 

the knowledge of its development. 

 

2.     Wafer Disc Brake Prototype 1 

2.1 Design and Operation 

 Initially, the intended mechanism for activation (to compress a stack of friction 

discs) was an electromagnetic voice coil (such as a BEI KIMCO linear voice coil actuator).  

Before adding the complexity of electrical actuation to an unproven concept, the first 

prototype of the wafer disc brake was designed with manual actuation so that the 

multiple disc stack concept could be evaluated.  As shown in Figure 2-1, the first 
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prototype was comprised of a simple stator body design with four cylindrical slots 

running lengthwise along its inside face such that rods could be inserted to serve as 

splines for the stator discs.  A half inch diameter steel shaft served as the rotor and 

turned within bronze bearings held in place by top and bottom caps.  The rotor shaft 

was keyed such that rotor discs would couple to it via a standard 1/8” key.  In this 

configuration, 35 rotor discs and 36 stator discs—all 0.010” thick blue spring steel—

were alternatingly coupled to their respective members and would provide a resistive 

torque if a compressive force was applied to the stack.  To generate this compressive 

force, a fine-threaded lead screw was affixed to the top cap of the brake and was 

outfitted with a wing nut and a precision compression spring.  Knowing the spring 

constant and the pitch of the lead screw, a predictable force could be applied to the 

friction disc stack via an intermediate stack compressor piece.  A photograph of the first 

prototype wafer disc brake is shown in Figure 2-2. 
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Figure 2-1.     Sectioned view of wafer disc brake prototype 1. 

 

 

Figure 2-2.     Wafer disc brake prototype 1. 
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The brake design was analytically evaluated to predict the expected torque 

output.  Assuming uniform distribution of interface pressure between discs, 

 

mPP  constant    (2-1)    
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where P , mP  is the pressure applied to each friction interface, fF  is the force of friction 

on one surface, or  is the outer radius of the friction interface, ir  is the inner radius of 

the friction interface,  discT  is the resistive torque generated at each disc,   is the 

coefficient of friction of the disc material, brakeT  is the resistive torque generated by the 

brake, stackF  is the normal force applied at the interface surface, and N  is the number 

of friction interfaces (i.e., one fewer than the total number of discs used).  With an inner 

radius of contact of 9.53 mm, an outer radius of contact of 27.0 mm, a static friction 

coefficient of 0.16, 70 friction interfaces, and a maximum force provided by the spring of 

80 N, the predicted maximum torque from wafer disc brake prototype 1 is 17.6 Nm. 
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2.2 Finite Element Analysis 

 The most significant unknown in this first wafer disc brake prototype was the 

performance of the discs.  Of particular concern was the stress concentration at the 

keyway of the rotor discs (i.e., where the discs couple to the rotor shaft).  A finite 

element analysis was conducted in CosmosExpress, a Solidworks FEA package, to 

determine how the steel discs would handle the high stresses generated during braking.  

A 90 Newton force in the plane of the disc was simulated to one of the radial keyway 

faces which would correspond to a 25 N-m torque distributed through the 35 rotor discs 

at a radial distance of 7.87 mm (i.e., the radial distance from the center of the shaft to 

the end of the key).  In this first analysis, the disc was constrained from buckling, or 

“potato-chipping.”  The resulting factor of safety in this first study was 1.58.  A second 

study was conducted with the same parameters as the first with the exception of the 

constraint on buckling and with the normal force at the key being slightly offset by 0.005 

to initiate a buckling effect.  In this case, the factor of safety drops down to 0.35 and the 

disc fails due to the onset of buckling.  Results of this analysis are shown in Figure 2-3. 
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Figure 2-3.     FEA stress analysis of friction discs in brake prototype 1.  (a) Normal stress 
with disc constrained from buckling; no disc failure.  (b) Normal stress with slight 

eccentric loading at keyway; disc failure. 
 
 

 

2.3 Performance 

 An experiment was conducted to characterize the holding torque generated by 

the brake as it related to the compressive force applied to the disc stack.  Holding 

torque was recorded by attaching a lever arm of known length to the rotor shaft and 

applying a force on the end of the arm while holding the brake stator body stationary.  A 

digital force gage was used to measure the force applied to the arm and the maximum 

value was recorded just before the rotor began to turn.  In the manner described in the 

previous section, the actuation wing nut was manually turned two revolutions at a time, 
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taking a torque reading at each position.  The results of this experiment are presented in 

Figure 2-4 and show a maximum torque of approximately 25 Nm for a compressive 

force of about 80 N.  The weight of the brake during this test was 0.79 kg (1.74 lbs) and 

its diameter was 76.2 mm (3.0 inches).  The total thickness of the brake, including the 

shaft but excluding the actuation mechanism was approximately 67 mm (2.64 inches). 

 

 

Figure 2-4.     Holding torque of brake prototype 1 versus compressive force. 
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2.4 Conclusions 

 The first wafer disc brake prototype provided valuable insight into the feasibility 

of a small, lightweight, multiple thin-disc brake.  Most significantly, it showed that with 

comparatively small actuation forces, this type of brake mechanism can produce large 

amounts of holding torque.  Specifically, this 0.79 kg brake gave a maximum of 

approximately 25 N-m of torque from a compressive force of about 80 N.  However, a 

voice coil actuator which could produce that level of force would be quite large and 

make the brake size and shape too restrictive for many applications.  For example, BEI 

Kimco linear actuator LA28-22-000A is capable of producing 88 N of continuous force, 

but adds 1.14 kg (2.51 lbs) to the brake and extends its length by an additional 55.9 mm 

(2.2 inches), making the brake weight and length 1.93 kg (4.25 lbs) and 123 mm (4.84 

inches), respectively.  Thus, it was decided that a different actuation mechanism was 

needed to provide the compressive force to the disc stack rather than an 

electromagnetic voice coil.  Additionally, it is noted that the predicted maximum value 

of torque from the brake was well short of the actual maximum torque from the brake.  

This is largely due to inaccuracy in coefficient of friction.  The spring steel discs used in 

this first prototype have a “blued” surface finish which is easily worn off as the discs rub 

against each other.  In friction coefficient testing, it was found that the coefficient 

ranged from 0.16 up to 0.29 depending on how much of the bluing had been worn off.  

A final observation from the finite element analysis which would later prove important 

was that disc buckling would likely prove the primary mechanism of disc failure, rather 

than strictly a tearing failure at the keys. 
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3.     Wafer Disc Brake Prototype 2 

3.1 Design and Operation 

 Having proven with the first disc brake prototype that the concept of a multiple 

disc friction mechanism was feasible, the logical next step was to add electronic 

actuation.  In the second prototype, a small dc motor was used as the primary mover to 

turn a ball screw which generated the compressive force for the disc stack.  In this way, 

the small torque from the motor is amplified through the small pitch of the ball screw to 

a large compressive force.  The ball screw also plays a role in making the actuation 

mechanism backdrivable, such that the force on the disc stack, and therefore the torque 

output of the brake, remains in proportion to the current input to the motor.  This 

backdrivability also allows the brake to be operated in a normally locked configuration, 

(see Fig. 2-5), in which compression springs act to compress the disc stack.  The motor in 

this case operates in reverse to decompress the disc stack such that the output torque 

of the motor is inversely proportional to the input current.   
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Figure 2-5.     Sectioned view of the normally locked wafer disc brake prototype 2. 

 

 

Consideration was given to keeping the profile of the brake as low as possible.  

To this end, a hollow steel shaft was chosen to function as the rotor, allowing all of the 

actuation components to be housed concentrically within the shaft.  This larger 

diameter rotor shaft—as well as three added keyways—also decreased the stress on the 

discs at the keyways due to the larger moment arm.  The use of conical springs also 

aided the effort to minimize brake size due to their low profile operation and ability to 

collapse fully.  A photo of the second brake prototype is provided in Figure 2-6. 
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Figure 2-6.     Wafer disc brake prototype 2. 

 

A finite element analysis was conducted during the design of the second brake 

prototype to determine a suitable disc thickness.  The larger diameter of the rotor shaft 

and the addition of three extra keyways permitted 0.006” thick spring tempered 

stainless steel discs to be used.  This stainless steel was opted for over the blue spring 

steel of the first prototype due to its corrosion resistance and to avoid the inconsistency 

of the friction provided by the blued discs as the bluing wore off.  The brake design was 

analytically evaluated to determine the number of discs required to achieve the 50 N-m 

target which was set for this brake.  Examining the DC motor as the first actuation 

component and assuming proportionality between the motor input current and motor 

output torque,  
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iKTmotor      (2-6)    

 

where motorT  is the output torque of the motor, i is the input current and K is the motor 

torque constant.  Assuming zero friction in the ball screw, this motor torque may be 

related to the linear force produced in the ball screw by, 

 

dTFdx motor    (2-7)    

 

where F
 is the linear force in the ball screw, and dx and dθ  are finite linear and 

angular displacements, respectively, which are related by the pitch of the ball screw 

such that, 

 

L
TF motor
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    (2-8)    

  

where L  is the ball screw lead (i.e., linear distance travelled per revolution).  This linear 

force serves to compress the friction disc stack and is related by several factors to the 

braking torque.  Taking Equation 2-5 and substituting for linear force, it is now possible 

to relate the brake torque directly to motor input current: 
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 The Faulhaber Micromo 2224 dc motor chosen can handle a maximum 

continuous current of 1.2 Amps, with a torque constant of 6.92 mNm/A.  The lead of the 

Steinmeyer miniature ball screw selected was 0.5 mm.  With an outer radius of contact 
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of 41.3 mm, an inner radius of contact of 31.8 mm, and a coefficient of friction of 0.15, 

the number of discs necessary to achieve 50 N-m of holding torque was calculated to be 

88.  Expecting some losses, however, the brake was designed to accommodate a stack 

of 50 rotor discs and 51 stator discs. 

 

3.2 Performance 

 This brake was experimentally tested in the same manner described for the first 

prototype, but with the brake torque output being controlled by the current input to the 

motor.  The first tests with 101 spring tempered stainless steel discs yielded a maximum 

torque of 53.6, which agreed favorably with the predicted value.  However, the 

minimum torque was very high, over 15 N-m.  It was clear that this was being caused by 

the internal stresses in the disc stack which were causing the discs to push against each 

other (i.e., the discs were not completely flat, and therefore the stack tended to expand 

when pressure was relieved).  Efforts to improve disc flatness by purchasing the steel in 

sheets instead of rolls and by using water-jet cutting instead of laser cutting to reduce 

heat effects proved ineffective.  A heat treatment was then tried on the disc stack with 

the intention of removing residual stresses in the discs caused by cold working during 

creation of the steel sheet and to remove any additional warping caused by the laser 

cutting process used to cut the discs.  The temper annealing process involved raising the 

temperature of the discs to 480°C (900°F), holding at this temperature for four hours, 

and letting the stack cool back to room temperature gradually, all while being 
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compressed by a 0.45 kg (1.0 lb) weight.  This proved effective in increasing the flatness 

of the discs, as shown in Figure 2-7. 

 

 
Figure 2-7.     Comparison of stainless steel disc stack flatness before heat treatment 

(left) and after heat treatment (right). 

 

 Despite the greatly improved flatness, testing of the brake after heat treatment 

yielded an increased maximum torque value (122.3 N-m), and only a slightly decreased 

minimum torque value (12.7 N-m).  Although the heat treatment was effective in 

flattening the discs, it had also allowed the disc surfaces to oxidize slightly, which greatly 

increased the coefficient of friction between discs.  As this was not a desirable effect, 

the discs were sanded with fine grit sandpaper and the experiment was repeated.  The 

results of these efforts were promising, with a maximum torque of 54.2 N-m and a 

minimum of 3.5 N-m.  However, the minimum torque remained unacceptably high, and 

the disc stack was still expanding some when relieved, so it was decided to reduce the 

number of discs in the brake to 81.  This combination of 81 discs which had been temper 
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annealed and sanded gave the best results for wafer disc brake prototype 2:  a 

maximum torque of 50.2 N-m and a minimum of 0.62 N-m.  A summary of these results 

is given in Table 2-1. 

 

 
 

101 Discs, 
untreated 

101 Discs, 
temper annealed 

101 Discs, temper 
annealed and 
sanded 

81 Discs, temper 
annealed and sanded 

Maximum Torque (N-m) 53.6 122.3 54.2 50.2 

Minimum Torque (N-m) > 15 12.7 3.5 0.62 

Table 2-1.     Summary of brake prototype 2 test results. 

 

 Dynamic operation of the brake was not evaluated due to inconsistency in ball 

screw backdrivability.  Even though friction in the ball screw was minimal, the ultra small 

pitch of the thread (0.5 mm lead) hindered backdrivability, making dynamic brake 

operation unpredictable. 

 The total weight of the wafer disc brake prototype 2 was 1.12 kg (2.47 lbs), with 

a diameter of 102 mm (4.00 inches) and a length of 66.7 mm (2.625 inches). 

 

 

3.3 Conclusions 

 The second wafer disc brake prototype improved upon the first prototype in 

several ways.  Most significantly, the second prototype included the addition of 
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electromechanical actuation through the use of a dc motor and a ball screw 

transmission.  Additionally, the rotor shaft was enlarged and included an additional 

three keyways such that the stress at the disc keyways was reduced and thinner discs 

could be used.  Furthermore, the rotor shaft was hollow, allowing all of the actuation 

components to fit concentrically within the shaft to minimize the brake profile.  While 

this design was acceptable in many aspects, it had the undesirable characteristic of 

exposed moving parts (the force distribution cap). 

 Excellent static maximum and minimum torque values were obtained from the 

brake after a process of heat treatment and sanding of the discs.  Without this 

treatment, the discs proved too warped to work effectively in the brake.  However, 

significant disc stack expansion still occurred when pressure on the stack was released; 

this required a thicker brake profile due to the necessity of allowing room for the stack 

to expand.  Dynamic results were not obtained due to inconsistency in ball screw 

backdrivability (a problem caused partly by the small pitch of the thread). 

 

 

4.     Wafer Disc Brake Prototype 3 

4.1 Design and Operation 

 The goal of the third wafer disc brake prototype was to minimize weight and 

length while still providing the torque range obtained in the second prototype.  To reach 
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this goal, a significant change was made in the brake design concept; namely the rotor 

shaft was removed and the outer barrel of the brake was designed to serve as the 

rotating body.  Sectioned views of the normally unlocked and normally locked 

configurations of the third disc brake prototype are provided in Figures 2-8 and 2-9.  The 

issue of external moving parts was addressed by incorporating all force transmission 

members within the brake body.   Of particular importance is the star-shaped 

compression member which transmits the force of the ball screw radially outward 

through its spokes to the disk stack.  A key component in the third prototype which 

reduced the brake profile was the Portescap NuvoDisc flat “pancake” motor used to 

actuate the brake.  Increasing the diameter of the central stator tube allowed for all the 

actuation components to remain within the height profile of the brake.  This increased 

diameter also served to reduce the stress on the discs at the keyways.  Further reducing 

this stress by including a total of 12 key splines on the stator body and 12 on the rotor 

barrel allowed high strength plastics to be considered for disc material.  Plastic discs 

provide two main advantages over steel discs in this application: 1) they are much 

lighter, and 2) they are much flatter, even after being laser cut.  A glass epoxy laminate, 

G-10, was chosen for its high strength and high working temperature.  A finite element 

analysis established the thickness of the discs at 0.005 inches.  GGB DU bearings were 

used in this prototype as they were in the previous.  One further design change from the 

second to the third prototype involved the selection of the ball screw.  Since the 0.5 mm 

lead ball screw had proved problematic, a THK brand 1.0 mm lead ball screw was chosen 
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with the expectation of improved backdrivability.  A photograph of the brake is shown in 

Figure 2-10. 

 

 
Figure 2-8.     Sectioned view of the normally unlocked wafer disc brake prototype 3. 

 

 

 
Figure 2-9.     Sectioned view of the normally locked wafer disc brake prototype 3. 
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Figure 2-10.     Wafer disc brake prototype 3. 

 

 Analytical calculations were conducted in the same manner as the previous 

prototype, but with new motor and ball screw specifications as well as a new coefficient 

of friction for the new disc material.  The maximum continuous current of the nuvoDisc 

motor is 1.3 A, with a torque constant of 7.8 mNm/A.  The Faulhaber Microlinea ED 

series ball screw that was chosen had a lead of 1.0 mm.  From friction coefficient tests, 

the G-10 disc material was shown to have a static coefficient of friction of 0.21.  Based 

on design constraints, 71 discs were able to fit in the brake.  Using these values in 

Equation 2-9, along with the new outer radius of contact of 43.6 mm (1.72 inches) and a 

new inner radius of contact of 34.9 mm (1.38 inches), a maximum value of static torque 

was estimated at 37 N-m. 
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4.2 Performance 

 The third brake prototype was only tested in the normally locked configuration.  

As previously described, in this configuration compression springs do the work of 

compressing the disc stack and the motor performs the job of relieving the pressure.  

Springs were selected to provide a compressive force on the disc stack comparable to 

that which the motor was predicted to provide.  This resulted in a maximum torque of 

33 N-m and a minimum torque of 0.16 N-m.  While this range was desirable, the 

dynamic performance of the brake was unacceptable due to significant nonlinearity in 

the torque response.  This nonlinearity was caused by stiction in the ball screw which, in 

effect, made the motor underpowered for the task.  The weight of the third brake 

prototype was 0.73 kg (1.61 lbs) with a diameter of 102 mm (4.00 inches) and a length 

of (1.875 inches). 

 The problem of an underpowered motor was addressed by replacing it with a 

larger motor via an external mounting piece as shown in Figure 2-11.  The Maxon EC45 

flat motor chosen as a replacement was rated for over five times the continuous torque 

of the nuvoDisc motor and was quickly shown to provide adequate power for the needs 

of the brake.  However, while power to overcome the stiction in the ball screw was no 

longer a problem, the stiction still produced nonlinearities between the input current 

and the output torque. 
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Figure 2-11.     Maxon EC45 flat motor affixed on the outside of brake prototype 3. 

 

 In light of the nonlinearity in the brake mechanism, a switch was made from 

open loop control to closed loop control by adding strain gages to two opposing arms of 

the compression star (see Fig. 2-12).  In this manner, utilizing a full-bridge arrangement 

of strain gages, force feedback on the disc stack was provided.  Although the 

compression star had not been designed with strain gage application in mind, a strong 

strain signal was achieved using semiconductor gages, and good compression force 

tracking and step response was achieved (see Figs. 2-13 and 2-14).  Despite this 

demonstrated ability to control the compression force on the disc stack, the dynamic 

torque output of the brake remained sporadic and unpredictable (see Fig. 2-15).  



28 
 

 
Figure 2-12.     Strain gages applied to two opposing arms of the compression star to 

provide force feedback on the disc stack. 

 

 
Figure 2-13.     Sinusoidal compressive force tracking in brake prototype 3. 
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Figure 2-14.     Compressive force step response in brake prototype 3. 

 

 

 
Figure 2-15.     Inconsistent torque output relative to good compression force (strain 

gage) tracking. 
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4.3 Conclusions 

 Two of the three goals for the third brake prototype were accomplished.  The 

first goal was to decrease the weight of the brake, which was accomplished by a radical 

design change which effectively used the outer barrel as the brake’s rotor shaft.  By 

using a new “pancake” motor, all the actuation components were within the body of the 

brake, reducing its profile.  Additionally, a large diameter inner stator body was used 

and additional key splines were added so that high strength plastic discs could be used 

in place of steel.  The second goal was to maintain a large torque output range similar to 

that of the second brake prototype, and this goal was also achieved.  The third goal, 

which was not achieved, was to obtain good dynamic control over torque.  Despite the 

effective implementation of closed-loop compression force control, unknown 

nonlinearities in the generation and transmission of torque within the disc stack 

prevented predictable torque control.  One additional problem that was encountered 

during the testing of the third brake prototype was disc failure.  Although the 0.005 inch 

thick G-10 discs could theoretically handle the compressive keyway stresses with an 

acceptable factor of safety, buckling proved to reduce the factor of safety and often 

caused total disc failure at the inner stator discs keyways.  To address this problem, 

small spacer rings were placed in between each stator disc to provide support from 

buckling near the keyways without impeding the compression of the rotor discs against 

the stator discs.  This added component prevented further disc keyway failures. 
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5.     Conclusion 

 The evolution of the wafer disc brake through three prototypes provided the 

insight necessary to design the final wafer disc brake, which is presented in the 

following chapter.  These three prototypes brought the design to a point where several 

key characteristics could be addressed in the final design.  Primary among these desired 

characteristics was the ability to dynamically control the resistive torque in a consistent 

way.  Also important was the need to provide both normally unlocked and normally 

locked operation robustly from the same basic design (albeit with minor modifications).  

Additionally, the larger motor attached to the third prototype was incorporated into the 

brake to maintain its low profile.  Additional issues addressed in the final design 

included the desire for a totally enclosed design and the desire for a design which would 

be relatively easily manufactured and assembled. 
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1.     Abstract 

 This paper presents the design of an electrically-actuated, proportional brake 

that provides a significantly greater torque-to-weight ratio than a magnetic particle 

brake (considered a benchmark of the state-of-the-art) without sacrificing other 

characteristics such as dynamic range, bandwidth, or electrical power consumption. The 

multi-disc brake provides resistive torque through a stack of friction discs which are 

compressed by a dc-motor-driven ball screw. Unlike nearly all other proportional brakes, 

which operate in a normally unlocked mode, the brake presented here is designed such 

that it may be configured in either a normally unlocked or normally locked mode. The 

latter enables lower electrical energy consumption and added safety in the event of 

electrical power failure in certain applications.  Following the device description, 

experimental data is presented to characterize the performance of the brake. The 

performance characteristics are subsequently compared to those of a commercially 

available magnetic particle brake of comparable size. 

 

2.     Introduction 

Several control applications require the use of an electrically controllable 

proportional rotary brake (e.g., [1]-[16]).  Probably the most common and thoroughly 

developed example of such a device is the magnetic particle brake (MPB).  Magnetic 

particle brakes produce a steady-state resistive torque roughly proportional to the input 
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current.  A sectioned view of a magnetic particle brake is shown in Figure 3-1.  DC 

current applied to the brake coil induces a magnetic field which links fine ferrite 

particles to the rotating brake shaft.  The amount of current in the coil determines the 

strength of the magnetic field, which in turn determines the resistive torque imposed on 

the brake shaft.  Compared with the closed-loop control of a high-performance DC 

torque motor, these devices provide a relatively low electrical power and light-weight 

means of exerting controlled dissipative mechanical torque.  Further, using an electric 

motor as a dissipater requires measurement of velocity, which typically contains phase 

lag, which in turn adds energy to the system (rather than dissipating it). A proportional 

brake, on the other hand, does not require velocity measurement and is guaranteed to 

be energetically passive. 

Though the weight of a magnetic particle brake is low relative to a DC motor (for 

a given resistive torque), in many cases the weight remains significant. Several efforts to 

increase the performance of such devices have been reported, including the 

development of magnetorheological fluid brakes, electrorheological fluid brakes, and 

piezoelectrically actuated brakes (e.g., [17]-[23]). Magnetorheological and 

electrorheological brakes provide improved torque-to-weight characteristics relative to 

magnetic particle brakes, but sacrifice bandwidth and dynamic range relative to the 

MPB. The piezoelectrically actuated brake described in [23] offers a higher bandwidth 

and decreased electrical power consumption for low-frequency excitation relative to a 

magnetic particle brake, but provides less torque-to-weight and more torque ripple. 
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Figure 3-1.     Sectioned view of a magnetic particle brake taken from PrecisionTork.com. 

 

This paper presents the design of an electrically-actuated proportional brake that 

provides a significantly improved torque-to-weight ratio relative to a magnetic particle 

brake, while maintaining (or improving) dynamic range and response time. Importantly, 

unlike particle brakes, magnetorheological fluid brakes, or electrorheological fluid 

brakes, the proposed device can be designed in both a normally unlocked and normally 
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application. The approach utilizes a motor-driven ball screw, which compresses a 
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multiple-disc mechanism for resistive torque generation. Due to the amplification 

effects of a small ball screw lead and a large number of discs in the disc stack, the brake 

provides a resistive torque approximately three orders of magnitude larger than the 

motor torque. Due to the relatively thin discs used on the brake, the authors refer to the 

device as a wafer disc brake (WDB). 

Note that electrically actuated multiple disc brakes and clutches are 

commercially available and used in heavy equipment applications (e.g., material 

handling). Such brakes, however, operate similarly to a magnetic particle brake, in that 

they utilize a stack of ferrous discs subjected to an electrically induced magnetic field. 

Such brakes are effective, but due to residual magnetism and sticking of plates, do not 

provide well-behaved proportional operation. Further, due to the nature of the 

attractive forces generated by a magnetic field, implementation of such brakes in a 

normally locked configuration would be a nontrivial task. The remainder of this paper 

describes the design of the (wafer disc) brake and characterizes and compares its 

performance to that of a commercially available magnetic particle brake of comparable 

size. 

3.     Wafer Disc Brake Design 

3.1 Brake Configuration 

 The normally unlocked configuration of the WDB is shown in cross-section in Fig. 

3-2. The normally unlocked brake consists of a stack of thin (0.25 mm) high-strength 

plastic  wafers which are alternately coupled (through splines) to the brake stator and 
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rotor. A small brushless motor located inside the brake stator transmits a compressive 

force through a ball screw to the stack.  Assuming relatively low friction in the ball 

screw, the stack is subjected to a compressive force which is proportional to the motor 

current.  Due to the series arrangement of discs, the resistive torque on the rotor barrel 

is the product of the compressive force, the mean radius of contact, and the coefficient 

of friction, which is amplified by the number of interfaces between discs.  Since the 

brake (as shown) contains 45 discs, the effective torque is increased by a gain of 44. 

Since the ball screw is back-drivable, the brake torque remains in proportion to the 

motor current, and thus is proportional in nature. A compression spring is located 

between the motor and ball screw nut to insure full torque release when no electrical 

power is supplied.  Note that the brake as shown does not incorporate a central output 

shaft, as is typical in many brakes, but rather incorporates an annular rotor “barrel.” The 

use of an annular rotor (and the lack of a central shaft) is not fundamental to the brake 

design, but rather was opted for by the authors in order to better integrate the brake 

into a mechanism (i.e., similar to the use of a frameless motor). The WDB in its normally 

locked configuration is shown in cross-section in Fig. 3-3. The design of the normally 

locked brake is similar to the normally unlocked type, but the discs are preloaded with a 

compression spring. Applying current to the motor proportionally unloads the preload, 

such that full brake torque occurs at zero motor current, and minimum brake torque 

occurs at full motor current.  Since the ball screw is back-drivable, the brake torque 

remains in inverse proportion to the motor current. Both configurations of the WDB 

appear the same from the outside. A photo of a fully functional wafer disc brake (which 
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has been alternately configured in both a normally locked and normally unlocked 

configuration) is shown in Fig. 3-4. 

 

 

Figure 3-2.     Sectioned view of normally unlocked wafer disc brake. 
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Figure 3-3.     Sectioned view of normally locked wafer disc brake. 

 

 

Figure 3-4.     Fully functional wafer disc brake. 
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3.2 Design Relationships 

One of the primary design objectives for the WDB is to generate a high torque 

output. As such, the relationships that govern the resistive torque capability are 

described here. We assume that the compressive force applied to the annular discs is 

evenly distributed, and thus that the compressive force results in a constant pressure 

applied across the annular area of the disc: 

 

 )( 22

io rrPF   (3-1) 

 

where F is the compressive force, P is the pressure between discs, and ri and ro are the 

inner and outer radii of the discs, respectively. Assuming Coulomb friction between the 

discs, the resistive torque generated by the one disc interface is given by: 
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where T is the resistive torque and mu is the coefficient of friction (either static or 

dynamic, depending on whether or not the discs are moving relative to each other). 

Combining (3-1) and (3-2), and assuming a stack of discs, the resistive torque is given as 

a function of the compressive force by: 



41 
 

 

 
22

33 )(

3

2

io

io

rr

rrFN
T







 (3-3) 

 

where N is the number of disc interfaces (i.e., between stator and rotor). Assuming that 

torque is proportional to current in the DC motor, and neglecting friction in the ball 

screw, the resistive torque can be written as a function of motor current as: 
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where l is the ball screw lead, kt is the motor torque constant, and i is the motor 

current. Note that, in the case of a return spring (see Fig. 3-2), the resistive torque is 

somewhat less than that described by (3-4), since the compressive force F is decreased 

by the spring stiffness. As indicated by (3-4), maximizing the resistive torque requires 

maximizing both the output and input radii (e.g., a narrow ring will provide more torque 

than a wide ring, provided they have the same outer radius).  Thus, a tradeoff becomes 

apparent between maximizing torque and maximizing surface area (which minimizes 

disc wear).  However, the significant benefit of this dimensional phenomenon for this 

application is that rings may be used instead of solid discs.  This fact combined with the 
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design of the brake such that the outer barrel serves as the rotating body (i.e., does not 

require a central shaft) allows all of the actuation and transmission components to be 

located concentrically within the disc stack, enhancing compactness of the design.  The 

compression ring was designed with the aid of a finite element analysis of stress such 

that it was lightweight, while still maintaining sufficient strength to reliably transmit the 

forces from the ball screw to the disc stack.  For a more detailed treatment of torque 

estimation from annular contact disc brakes and clutches, see [24]. 

 A 30 W Maxon EC45 DC brushless flat motor was chosen to actuate the brake 

due to its thin profile and high torque.  Importantly, the lack of a gearhead and the use 

of a ball screw instead of a lead screw allow the motor to remain fully backdrivable.  As 

such, the brake is able to return to either its normally unlocked or normally locked state 

when the electrical power input is turned off (i.e., when the brake is powered down).  A 

Faulhaber Microlinea ED513 ball screw was chosen based on its small lead (1.25 mm) 

and low profile ball nut design. 

 Selection of disc material and disc thickness was accomplished by a finite 

element analysis of disc stress and iterative testing of several different candidate 

materials.  Key factors in material selection were high tensile strength, high coefficient 

of friction, and the ability to remain flat after fabrication.  While a variety of materials 

have been shown to work effectively in the brake, including stainless steel, 

polyetherimide (Ultem), and polyetheretherketone (PEEK), the material chosen based 

on weight and performance for the brake characterization was wear resistant G-10 
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phenolic.  This ultra high strength glass-epoxy laminate exhibits high dimensional 

stability over temperature, provides a relatively high coefficient of friction, and is 

treated to resist wear.  The disc thickness was chosen to be 0.25 mm (0.010 in), which 

provided sufficient rigidity to resist buckling near the spline interfaces, which was found 

to be the primary mode of failure in thinner discs.  The splines themselves were 

designed as keys inserted into keyways for ease of manufacturing.  As an added benefit, 

this allowed flexibility in the selection of the materials used for the keys. In the design 

shown in Fig. 3-4, Ultem was chosen for the key material, which has a high tensile 

strength, a high maximum operating temperature, and an appropriate hardness to 

interface with the G-10. The geometrical configuration of the brake prototype, along 

with the values for the other design parameters given in (3-4), are given in Table 3-1.  

For the normally unlocked configuration, a return spring of stiffness k=3.35 N/mm was 

utilized, which deflects approximately 13 mm before the pressure plate contacts the 

disc stack, and thus the compressive force provided by the motor is decreased by 

approximately 44 N. Accounting for the force required to compress the spring, (4) 

indicates a predicted maximum static and dynamic torque of the wafer disc brake in the 

normally unlocked configuration of 83.1 N-m and 54.8 N-m, respectively. 
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Design Variable Value 

kt 25.5 mN-m/A 

maxi
 

2.14 A 

l 1.25 mm 

s  
0.194 

k  
0.128 

N 44 

ir  
39.4 mm 

or  
44.9 mm 

Table 3-1.     Results of the analytical and experimental design optimization. 

 

3.3 Special Considerations for the Normally Locked Design 

While operating in the normally locked configuration, the motor acts to release 

rather than impose compressive force on the disc stack, which essentially decreases 

rather than increases the resistive torque.  In this case, a set of compression springs 

provides the compressive force on the disc stack.  To release the brake, the electric 

motor must provide (through the ball screw) enough force to match the compressive 

force of the springs on the stack, and additionally to compress the springs another 

approximately 3 mm (i.e., the disc stack is not perfectly flat, and expands slightly axially 

when the compressive force is relieved).  The maximum force applied to the stack by the 

springs must therefore be less than the maximum force applied by the motor and ball 

screw in the normally unlocked case, so that the brake can be fully unlocked. To 

minimize the amount of motor torque required for disc expansion, the brake design 

maximizes the linear space available to the springs such that the longest springs possible 

can be employed.  Taking this approach allows the spring constant to be minimized (for 
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a given nominal stack force) which reduces the rate of increase of force as the springs 

are being compressed.  Based on the parameters listed in Table 3-1, the motor and ball 

screw transmission can generate a maximum force of 274 N.  The springs selected for 

the normally locked brake have a spring constant of 3.2 N/mm, and as such a 

compression of 3 mm (i.e., to fully relieve the disc stack) requires a force of 

approximately 10 N. Thus, the normally locked brake can apply a maximum of 264 N to 

the disc stack in the unpowered state, which is approximately 3.5% less than that of the 

normally unlocked brake at maximum power.  Thus, the maximum static and dynamic 

torque for the normally locked brake in the unpowered state is predicted to be 80.2 N-

m and 52.9 N-m, respectively. 

 

4.     Brake Control 

Based on the idealized steady-state relationship described by (3-4), control of 

the current in the brushless motor would also provide control of the steady-state 

resistive brake torque. Despite this, the dynamic relationship between motor current 

and resistive brake torque is more complex, and includes the inertial effects of the ball 

screw and motor rotor, Coulomb friction in the transmission, and stiffness of the return 

spring and disc stack. The latter two physical effects constitute non-smooth 

nonlinearities, which complicate the open-loop control of brake torque. The non-

smooth nature of Coulomb friction is evident. The non-smooth nature of the “load” 

stiffness is due to the fact that the discs are not perfectly flat, and as such, three distinct 
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load stiffnesses are present. Prior to contact with the discs, the load stiffness consists 

only of the return spring; once contact is made with the discs, the load stiffness is the 

combined effect of the return spring and the compliance of the non-flat discs; finally, 

once all discs are flattened by the compressive force of the motor/ball screw, the load 

stiffness increases considerably (i.e., the stiffness is essentially that of the “solid” 

annular disc stack). The load stiffness therefore can be modeled as piecewise linear 

stiffness consisting of three regimes: the non-contact regime (return spring only), the 

flattening regime, and the solid stack regime. As a result of these non-smooth 

nonlinearities, open-loop control failed to provide desirable control performance, in 

terms of accuracy and bandwidth. In order to improve torque tracking, an inner servo 

control loop was first added around the brushless motor, as shown in Fig. 3-5(a). This 

inner loop serves to compensate for the inertial dynamics and Coulomb friction in the 

transmission. Further, by providing improved output disturbance rejection, the inner 

loop mitigates the effects of the varying load stiffness on the stability of the closed loop. 

Note that, since the brushless motor incorporates Hall effect sensing for electronic 

commutation, implementation of the inner loop did not require the addition of any 

sensors. With the inner loop in place, accurate and robust tracking of the pressure plate 

motion is provided. However, due to the aforementioned tripartite stiffness, control of 

pressure plate motion does not provide known control of the compressive force. If the 

relationship between pressure plate motion and the compressive force were well 

characterized, the force could be controlled in an open-loop manner. However, there 

would still exist a significant nonlinearity between the compressive force and the 
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resistive torque, due to the nonlinear friction characteristics in the discs. As such, a 

resistive torque control outer loop was implemented around brake output torque, as 

shown in Fig. 3-5(b). Note that the implementation of the outer loop does require brake 

torque sensing. As shown subsequently, however, accurate and high bandwidth control 

of magnetic particle brake also requires a similar closed loop around the brake torque. 

 

Figure 3-5.     Schematic of wafer disc brake controller.  (a)  Servo control inner loop.  (b)  
Torque control outer loop. 

 

5.     Performance Characterization 

The wafer disc brake was tested in both operational configurations (normally 

unlocked and normally locked).  The experimental setup used to test the brake torque is 

shown in Fig. 3-6.  The brake barrel was driven at a constant rate with a DC motor 

(Kollmorgen model U12M4H) which was connected to the brake through a 90:1 

transmission, in order to generate sufficient torque to drive the brake. Note that 
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resistive torque can only be measured when the brake shaft is moving.  An encoder 

attached to the motor provided for closed-loop feedback control of motor velocity, so 

that velocity remained essentially constant, despite variation in brake torque. Brake 

torque was measured with a rotary torque transducer (Interface model T8 ECO) 

mounted between the motor and brake. 

 Figure 3-7 shows the maximum and minimum (low-end) dynamic (i.e., 

when the brake shaft is rotating) steady-state torques of the WDB, measured at a 

rotational speed of 20 rev/min (RPM).  The average maximum torque of the brake was 

30 N-m (265 in-lbs) with approximately 5% torque ripple.  This maximum torque was 

lower than that predicted in Section II (i.e., approximately 55% of that predicted by the 

equations).  However, torque values up to 40 N-m were achieved during sinusoid 

tracking trials.  This indicates that in addition to the static or dynamic state of the brake 

rotor, maximum torque is affected by static friction (or stiction) when the ball screw is 

motionless.  Thus, for the normally unlocked brake, the maximum average dynamic 

friction was 30 N-m when approached quasi-statically and 40 N-m when approached 

dynamically.  The maximum static torque of the normally unlocked brake was 73 N-m.  

These values show better agreement with the expected values of 55 N-m and 83 N-m 

and the remaining difference may be attributed largely to uncertainty in the values for 

static and dynamic coefficient of friction for the G-10 disc material.  The average 

minimum torque was 0.40 N-m (3.5 in-lbs), giving a dynamic range of approximately 

1:100.  The maximum dynamic torque of the normally locked brake was unable to be 

measured in either of the two ball screw operational regimes due to insufficiency in the 
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brake dynamometer. That is, both values were greater than 50 N-m, which is the 

maximum torque the experimental setup could measure under continuous rotation.  

The static torque was determined (as was the case for the normally unlocked brake) by 

providing manual assistance to increase the dynamometer torque to the brake and was 

measured at 74 N-m.  As discussed previously, the normally locked brake torque was 

predicted to be slightly lower than that of the normally unlocked brake.  This deviation 

from the predicted results is likely also explained by the ball screw friction exhibited 

between static and dynamic performance. 

 

 

 

Figure 3-6.  Experimental setup for testing of the wafer disc brake. Note that, since the 
output of the WDB is a barrel rather than a shaft, the brake is connected to the setup 

through a adapter, which transmits torque from the barrel to a central shaft. 
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Figure 3-7.  Maximum and minimum dynamic wafer disc brake torque in normally 

unlocked configuration for one revolution at a speed of 20 rev/min. 

 

 Figures 3-8 and 3-9 show sinusoid tracking capabilities of the normally unlocked 

and normally locked brake, respectively, for a peak-to-peak amplitude of 20 N-m, which 

is 50% of the full dynamic range of the normally unlocked brake.  Figures 3-10 and 3-11 

show rising and falling step responses for each brake configuration, also with a 20 N-m 

amplitude.  Defining rise time as the amount of time required after a step command has 

been issued for the response to rise to 90% of the final steady-state step value, and the 

fall time as the reverse, the wafer disc brake demonstrates a rise time of 43 msec and a 

fall time of 39 msec in the normally unlocked configuration and 53 msec and 39 msec, 

respectively, in the normally locked configuration.  Bandwidth plots for sinusoidal 

tracking of 20 N-m peak-to-peak commands are provided for each brake configuration 
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in Figs. 3-12 and 3-13, which indicate a -3 dB bandwidth of 11 Hz in the normally 

unlocked case and 10 Hz in the normally locked case. 

 An experiment was conducted to determine the power dissipation capacity of 

the wafer disc brake, the results of which are shown in Fig. 3-14.  A thermocouple was 

connected inside the body of the brake to monitor the temperature.  The brake speed 

and torque were incrementally increased and held for five minutes at a given power 

level before the brake temperature was recorded.  Due to limitations in power 

generation from the dynamometer (Fig. 3-6), data could only be gathered for power 

dissipation up to 55 W (see Fig. 3-14).  As such, based on this data, the temperature for 

increasing power dissipation was projected (using the quadratic trend indicated in the 

data). Based on these projections, power dissipation of 125 W would produce an 

internal brake temperature of 120 C (250 F), which is the maximum operating 

temperature of the brushless DC motor. It should be noted, however, prototype 

presented herein was not configured to maximize power dissipation, and as such, it be 

expected that some minor modifications (such as adding vents to the brake body) would 

result in improved capability for power dissipation.  

 An experiment was also conducted to determine the rate of wear of the discs. 

Specifically, the brake was run at a constant speed and torque over a given length of 

time, and the height (or thickness) of the disc stack was measured both before and after 

the experiment. The energy dissipation was measured by the dynamometer (based on 

shaft torque, speed, and duration of the experiment). Based on these measurements, 
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the rate of wear of the discs was determined to be 3.7 microns per kJ of energy 

dissipation.  Based on the dimensions of the brake and the length of travel along the ball 

screw, the disc stack could tolerate approximately 1.5 mm of wear before performance 

would begin to degrade.  For the case of G-10 discs, this equates to approximately 400 

kJ of energy dissipation.  If wear is of particular concern for a specific application, other 

disc materials could be chosen.  For example, replacing the G-10 discs with a set of 

stainless steel discs would presumably provide greatly increased wear resistance, but 

would increase the brake weight from 0.67 kg to 0.81 kg. 
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Figure 3-8.     Normally unlocked brake sinusoid tracking with a peak-to-peak amplitude 
of 20 N-m (50% of full dynamic range). 

 

 

 

Figure 3-9.     Normally locked brake sinusoid tracking with a peak-to-peak amplitude of 
20 N-m (50% of full dynamic range). 
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Figure 3-10.     Normally unlocked brake rising and falling step response with an 
amplitude of 20 N-m (50% of full dynamic range). 

 

 

 

Figure 3-11.     Normally locked brake rising and falling step response with an amplitude 
of 20 N-m (50% of full dynamic range). 
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Figure 3-12.     Normally unlocked torque gain vs. frequency for 20 N-m peak-to-peak 
oscillations (50% of full dynamic range) indicating a bandwidth of 11 Hz. 

 

 

 

Figure 3-13.     Normally locked torque gain vs. frequency for 20 N-m peak-to-peak 
oscillations (50% of full dynamic range) indicating a bandwidth of 10 Hz. 
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Figure 3-14.     Wafer disc brake power dissipation capacity based on maximum 
permissible temperature, predicting a maximum power dissipation level of 125 W. 

 

 

6.     Comparison of Wafer Disc Brake and Magnetic Particle Brake 

To the performance of the wafer disc brake in context, the performance 

characteristics were compared with those of a commercially available magnetic particle 

brake of comparable size.  The particle brake utilized for the comparison was a Placid 

Industries model B115, which measures approximately 12.0 cm in diameter by 6.7 cm in 

length, as compared with the wafer disc brake which measures 10.2 cm in diameter and 

4.8 cm in length.  While possessing a similar size, it should be noted that the MPB has a 

mass of over five times that of the wafer disc brake, weighing 3.63 kg compared to 0.67 

kg for the wafer disc brake.   
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 The most obvious advantage of the wafer disc brake is the high torque capability 

relative to its weight.  The 0.67 kg WDB provides a maximum dynamic torque of 40 N-m 

while the 3.63 kg MPB only provides 13 N-m.  This gives the WDB a dynamic torque-to-

weight ratio of about 60 compared to that of the MPB which is about 3.6.  Thus, the 

wafer disc brake offers a torque-to-weight ratio of over 17 times that of a comparably 

sized magnetic particle brake.  Additionally the WDB also provides a greater dynamic 

range, specifically 1:100 compared to the MPB’s dynamic range of 1:46.   

 Figure 3-15 shows the step responses of both the wafer disc brake and the 

magnetic particle brake.  Both operational modes of the WDB are represented and both 

control modes (open and closed-loop) of the MPB are represented.  The rise times of 

the normally unlocked and normally locked brake (as previously presented) are 43 and 

53 msec, respectively.  The open-loop controlled MPB rise time is 420 msec, and the 

closed-loop MPB rise time is 43 msec. It should be noted, however, that the WDB step 

represents 20 N-m, while the MPB step represents 6.5 N-m of torque (i.e., both were 

characterized at 50% of their respective ranges). Thus, the WDB exhibits similar 

response speed to the MPB, but would be significantly faster if characterized in terms of 

a torque slew rate. The bandwidth of the MPB for tracking of steady-state sinusoidal 

commands (of 50% full scale torque) is 2 Hz and 22 Hz, respectively, for the open-loop 

and closed-loop controlled MPB. Thus, while the rise times of the WDB brakes are 

comparable to the closed-loop MPB, the latter demonstrates a higher bandwidth than 

the closed-loop controlled WDB (although both are on the same order). 
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 As mentioned previously, a potential advantage of the WDB is a reduction in 

electrical power consumption for a given resistive torque. The steady-state power 

consumption for the WDB normalized by output resistive torque is 0.26 and 0.22 W/N-

m for the normally unlocked and normally locked brakes, respectively.  The MPB 

requires 0.87 W/N-m, and thus the WDB requires approximately one third the electrical 

power of the MPB for a given output resistive torque. Further, as previously stated, the 

normally locked version of the WDB may save additional power in cases that require 

greater than 50% duty cycle of resistive torque. 

 Finally, in comparing the torque ripple of both devices, the open-loop and 

closed-loop controlled MPB exhibits 2.7% and 1.5%, respectively, while the WDB (as 

previously mentioned) exhibits a torque ripple of approximately 5%.  Table 3-2 

summarizes the performance characteristics of the wafer disc brake versus those of the 

magnetic particle brake.   
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Figure 3-15.     Normalized step responses of wafer disc brake and magnetic particle 
brake with step command initiation at time = 0 seconds.  (a) Normally unlocked brake 

response ( stepT = 20 N-m).  (b) Normally locked brake response ( stepT  = 20 N-m).  (c) 

Particle brake response in open-loop ( stepT  = 6.5 N-m).  (d) Particle brake response in 

closed-loop ( stepT  = 6.5 N-m). 
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Characteristic B115 MPB Normally 
Unlocked WDB 

Normally 
Locked WDB 

Max Dynamic Torque [N-m](in-lbs.) 13.0 (115) 40 (354) 50+ (443+) 

Max Static Torque [N-m](in-lbs.) 16.6 (147) 73 (646) 74 (655) 

Min Torque [N-m](in-lbs.) 0.28 (2.5) 0.40 (3.5) 0.40 (3.5) 

Torque Ripple [%],    
    Open Loop Control 

                                      Closed Loop Control 

 
2.7 
1.5 

 
- 
5.0 

 
- 
5.0 

Dynamic Torque-to-Weight [N-m/kg] 3.58 59.7 74.6+ 

Dynamic Range 1:46 1:100 1:125+ 

Rise Time [s],   Open Loop Control 
                           Closed Loop Control 

0.420 
0.043 

- 
0.043 

- 
0.053 

Bandwidth for ± 25% FS Oscillations 
[Hz]                  Open Loop Control 
                         Closed Loop Control 

 
2 
22 

 
- 
11 

 
- 
10 

Steady-State Power Consumption 
(Normalized by torque)  [W/N-m] 

0.87 0.26 0.22 

Max Continuous Power Dissipation [W] 55 125 125 

Weight [kg](lbs.) 3.63 (8.0) 0.67 (1.48) 0.67 (1.48) 

Diameter [mm](in) 120 (4.71) 102 (4.00) 102 (4.00) 

Length [mm](in) 66.8 (2.63) 47.6 (1.88) 47.6 (1.88) 

Table 3-2.     Comparison of the B115 magnetic particle brake with the wafer disc brake. 

 

7.     Conclusion and Recommendations 

The authors have presented a design for an electrically actuated proportional brake, 

called a wafer disc brake (WDB), that offers some advantages relative to a magnetic 

particle brake (MPB, considered the benchmark of such devices).  Specifically, the WDB 

exhibits a torque-to-weight ratio that is (more than) an order of magnitude larger than 

the MPB, while requiring less than one third of the steady-state electrical power for a 

given level of resistive torque.  Further, unlike the MPB (and most other previously 

reported devices), the WDB can be configured in a normally unlocked or normally 

locked configuration.   
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The WDB also has some disadvantages relative to an MPB. One potential 

disadvantage of the WDB is disc wear, although this could be mitigated with the use of 

more wear-resistant discs (such as stainless steel or ceramic). The WDB also exhibits 

greater torque ripple relative to the MPB. As discussed herein, control of the WDB is 

more complex than control of the MPB, although accurate torque tracking and good 

dynamic performance requires an outer torque loop for both. Finally, as currently 

designed, the WDB is likely more expensive to produce than a MPB. 
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APPENDIX A 

 

PART LIST AND DRAWINGS 

 

TABLE A-1.     Wafer Disc Brake Fabricated and Modified Parts. 

Part No. Name Description Quantity 

1 Stator Tube 7075 aluminum central brake body 1 

2 Rotor Barrel 7075 aluminum outer brake body 1 

3 Top Cap 7075 aluminum 1 

4 Bottom Cap 7075 aluminum 1 

5 Compression Star 7075 aluminum force transmission member 1 

6 Motor Cover 301 stainless steel disc to enclose the brake 1 

7 Stator Disc Laser-cut from 0.010” G-10 wear resistant film 23 

8 Rotor Disc Laser-cut from 0.010” G-10 wear resistant film 22 

9 Spring Guide ABS plastic hemispheres to hold normally locked 
springs in place 

6 

10 Disc Spacer ABS plastic disc to position the disc stack vertically 1 

11
 

Stator Key Laser-cut “stator splines” from 1/8” Ultem sheet 18 

12 Rotor Key Laser-cut “rotor splines” from 1/8” Ultem sheet 18 

13 DU Radial Bearing Cut from 56DU32 GGB DU dry bearing 2 

14 DU Thrust Bearing Water-jet cut from DI0594x5.00 GGB DU flat strip 
material 

2 

15 Motor #200142 Maxon EC 45 flat 30 W brushless motor 1 

16
 

Ball Screw and Nut Faulhaber Microlinea ED513X / V501X precision 
ball screw and nut 

1 
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Figure A-1.     Stator tube detail drawing. 
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Figure A-2.     Rotor barrel detail drawing. 
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Figure A-3.     Top cap detail drawing. 
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Figure A-4.     Bottom cap detail drawing. 
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Figure A-5.     Compression star detail drawing. 
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Figure A-6.     Motor cap detail drawing. 
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Figure A-7.     Stator disc detail drawing. 
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Figure A-8.     Rotor disc detail drawing. 
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Figure A-9.     Spring guide detail drawing. 
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Figure A-10.     Disc spacer detail drawing. 
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Figure A-11.     Stator key detail drawing. 
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Figure A-12.     Rotor key detail drawing. 
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Figure A-13.     DU radial bearing detail drawing. 
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Figure A-14.     DU thrust bearing detail drawing. 
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Figure A-15.     Motor alteration detail drawing. 
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Figure A-16.     Ball screw alteration detail drawing. 
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APPENDIX B 

 

COMPONENT LIST AND DATA SHEETS 

 

TABLE B-1.     Wafer Disc Brake Purchased Components. 

Component 
No. 

Name Description Quantity 

1 Motor #200142 Maxon EC 45 flat 30 W brushless 
motor 

1 

2 Ball Screw and Nut Faulhaber Microlinea ED513X / V501X 
precision ball screw and nut 

1 

3 DU Radial Bearing 56DU32 GGB DU dry bearing 2 

4 DU Thrust Bearing GGB DU flat strip material 2 

5 Flanged Ball Bearing ABEC-5 flanged double shielded stainless steel 2 

5 Normally Unlocked Spring Spring tempered steel compression spring; 
5/8” long, 19.10 lbs./inch 

1 

6 Normally Locked Spring 302 stainless steel compression spring; 1-1/2” 
long, 18.33 lbs./inch 

3 
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 Figure B-1.     Motor data sheet. 
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 Figure B-2.     Ball screw data sheet. 
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Figure B-3.     DU bearing data sheet. 
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Part Number:  7804K129   

Type Ball Bearings 

Ball Bearing Style 
Flanged Double 

Shielded 

Ball Bearing Type General Purpose 

System of Measurement Metric 

For Shaft Diameter 4 mm 

Outside Diameter 10 mm 

Width 4 mm 

Flange Outside Diameter 11.6 mm 

Flange Thickness .8 mm 

ABEC Precision Bearing Rating ABEC-5 

Dynamic Radial Load Capacity, lbs. 132 

Dynamic Radial Load Capacity 

Range, lbs. 
6 to 250 lbs. 

Maximum rpm 56,000 

Maximum rpm Range 30,001 to 60,000 

Temperature Range -65° to +250° F 

Bearing Material Stainless Steel 

Stainless Steel Material Type 
Type 440C Stainless 

Steel 

Shield Material 
300 Series Stainless 

Steel 

Specifications Met Not Rated 

Note 
Bearings are 

lubricated. 

 
 

 

 
Figure B-4.     Flanged ball bearing data sheet. 

 

http://www.mcmaster.com/itm/find.ASP?tab=find&context=psrchDtlLink&fasttrack=False&searchstring=7804K129
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Part Number:  9637K31 
 

Type Continuous-Length Compression Springs 

Material Steel 

Steel Type Spring-Tempered Steel 

System of 

Measurement 
Inch 

Outside 

Diameter 
.781" 

Wire Size .062" 

Overall Length 11" 

Ends Open 

Wire Type Round Wire 

Coils Per Inch 4 

Constant 57.2 

Note 

To determine how many inches long your spring should 

be, take the spring constant and divide it by the number 

of coils per inch. Then take this value and divide it by 

your desired spring rate in lbs./inch. To cut spring, use 

an abrasive cutoff saw. 

Specifications 

Met 
Not Rated 

 
 

 

 
Figure B-5.     Normally unlocked spring data sheet. 

 

http://www.mcmaster.com/itm/find.ASP?tab=find&context=psrchDtlLink&fasttrack=False&searchstring=9637K31


87 
 

 

 

Part Number:  9435K152 
 

Type Precision Compression Springs 

Material Stainless Steel 

Stainless Steel Type Type 302 Stainless Steel 

System of Measurement Inch 

Outside Diameter .48" 

Outside Diameter Tolerance ±.008" 

Wire Size .055" 

Overall Length 1-1/2" 

Compressed Length .565" 

Ends Closed and Ground 

Wire Type Round Wire 

Load 13.19 lbs. 

Deflection at Load .72" 

Rate 18.33 lbs./inch 

Rate Tolerance ± 8% lbs./in. 

Specifications Met Federal Specification (FED) 

Federal Specification QQ-P-35 
 

 

 

 
 

Figure B-6.     Normally locked spring data sheet. 

 

http://www.mcmaster.com/itm/find.ASP?tab=find&context=psrchDtlLink&fasttrack=False&searchstring=9435K152
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APPENDIX C 

 

MATLAB SIMULINK MODELS 
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Figure C-1.     Simulink diagram of wafer disc brake and dynamometer controller. 
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Figure C-2.     Simulink diagram of brake torque controller. 
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Figure C-3.     Simulink diagram of brake position controller. 
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Figure C-4.     Simulink diagram of dynamometer motor controller. 
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1.     Abstract 

A hybrid functional electrical stimulation (FES)/orthosis system is being 

developed which combines two channels of (surface-electrode-based) electrical 

stimulation with a computer-controlled orthosis for the purpose of restoring gait to 

spinal cord injured (SCI) individuals (albeit with a stability aid, such as a walker). The 

orthosis is an energetically passive, controllable device which 1) unidirectionally couples 

hip to knee flexion; 2) aids hip and knee flexion with a spring assist; and 3) incorporates 

sensors and modulated friction brakes, which are used in conjunction with electrical 

stimulation for the feedback control of joint (and therefore limb) trajectories. This paper 

describes the hybrid FES approach and the design of the joint coupled orthosis. A 

dynamic simulation of an SCI individual using the hybrid approach is described, and 

results from the simulation are presented that indicate the promise of the JCO 

approach. 

 

2.     Introduction 

Previous studies have demonstrated that functional electrical stimulation (FES) 

can effectively restore legged mobility to spinal cord injured (SCI) individuals (with the 

help of a stability aid), and that such legged mobility can provide significant 

physiological and psychological benefits to SCI users [1-18]. Despite this, two significant 

factors have hindered FES-aided gait systems from restoring gait to SCI individuals.  The 

first is the rapid muscle fatigue that results from artificially stimulated muscle 

contraction [19], and the second is the inadequate control of joint torques necessary to 



95 
 

produce reliable and repeatable limb motion and body support. The former (which 

significantly influences the latter), is due primarily to the synchronous nature in which 

artificial stimulation recruits motor units (i.e., is due to lack of neural specificity in the 

stimulation interface). The net effect is that, when stimulated at a high level of effort 

and high duty cycle, the muscle quickly (i.e., over tens of seconds) loses its ability to 

generate force [12]. Both issues (rapid onset of fatigue and poor controllability) can 

potentially result in collapse of the individual, a condition that is unacceptable in any 

viable gait restoration system. Additionally, FES-aided gait systems (and especially 

surface-based systems) generally provide stimulation for degrees of freedom in the 

sagittal plane, but do not provide control over several other degrees-of-freedom 

associated with gait, such as hip abduction and adduction in the frontal plane. A lack of 

control authority in this plane can result in one foot crossing in front of the other (i.e., 

scissoring), which is a condition that is not easily rectified by the user, and in fact often 

requires external assistance. 

Due primarily to these challenges (i.e., the potential of collapse from muscle 

fatigue and the need to guide uncontrolled degrees of freedom), hybrid systems, which 

combine FES with an orthosis, appear to offer the greatest promise for commercially 

viable gait restoration systems. As such, recent efforts by various researchers have 

focused (and are focusing) on the development of hybrid systems (e.g., [20-23]). This 

paper describes a hybrid FES approach that addresses the shortcomings of muscle 

fatigue and limb trajectory control. The approach utilizes surface stimulation of only the 

quadriceps muscle group of each leg, along with an energetically passive, controllable 
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orthosis which 1) unidirectionally couples hip to knee flexion; 2) aids hip and knee 

flexion with a spring assist; and 3) incorporates sensors and modulated friction brakes, 

which are used in conjunction with electrical stimulation for the feedback control of 

joint (and therefore limb) trajectories. 

 

3.     Joint-Coupled Controlled-Brake Orthosis (JCO) 

The authors are developing a joint-coupled controlled brake orthosis (JCO), 

shown in Fig. D-1, for regulating FES-aided gait. The JCO incorporates multiple features, 

which serve multiple functions. First, the JCO incorporates unidirectional joint coupling 

between knee and hip flexion, such that knee flexion generates hip flexion. Since the 

coupling is unidirectional, however, knee extension does not generate hip extension. 

The JCO also includes a biasing spring, such that the knee joint (and due to coupling, also 

the hip joint) is biased toward an equilibrium position in which both the knee joint and 

the hip joint are flexed. The combination of the (unidirectional) joint coupling and the 

biasing spring enables knee flexion, hip flexion, and knee extension, all from surface 

stimulation of only the quadriceps muscle group of each leg. The quadriceps muscle 

group is among the most powerful and easiest (in the lower limb) to access via surface 

stimulation, and thus provides a convenient source of metabolic power for gait. In 

addition to the joint coupling and biasing spring, the JCO incorporates controllable 

friction brakes at both knees and hips, which can either independently lock these joints 

(i.e., to provide for “isometric” muscle contraction), or can modulate the resistive 

torque at each joint for purposes of controlling limb motion. The JCO also contains angle 
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(and thus also angular velocity) sensing at both hips and knee, which provide essential 

information for purposes of feedback control of limb motion. Finally, the JCO constrains 

motion along uncontrolled degrees-of-freedom (e.g., ankle flexion and hip adduction) 

which enhances the controllability and stability of gait. 

 

 

 

Figure D-1.     Solid model of JCO concept. 
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3.1 The JCO Gait Sequence 

The gait control approach is described subsequently in the section on gait 

control and simulation, but is described briefly here to motivate the design of the JCO. 

Postural stability during gait is provided by a stability aid, such as a walker. The knee of 

each leg is locked by the controllable friction brakes during stance. Swing is initiated by 

unlocking the swing leg knee brake, which releases the energy in the biasing spring, 

which flexes the knee joint and (due to the joint coupling) also flexes the hip joint. 

During the second half of the swing phase, the hip is locked by the hip brake while the 

knee is extended by stimulating the quadriceps group. This knee extension (due to 

stimulation of the quadriceps) does not, however, generate ipsilateral hip extension, 

since the (cable-based) coupling is unidirectional.  Once the knee is fully extended, it 

remains locked (by the knee brake) during the stance phase of gait.  

 

3.2 Joint Coupling Design 

The purpose of the joint coupling is to provide hip flexion necessary to generate 

forward leg motion, which is otherwise a challenge, due to the inaccessibility of the 

deep hip flexor muscles via surface stimulation. The JCO design incorporates a Bowden 

cable which spans the inside of the femur link and attaches to the hip and knee rotors 

on either end (see Fig. D-2).  Cable crimps are used in the hip brake as hard stops in only 

one direction of rotation, which provides unidirectional coupling of knee flexion to hip 

flexion.  During knee extension, the distal end of the inner Bowden cable winds around 

the inner hip brake rotor without inducing concurrent hip extension.  
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As previously mentioned, the power for knee (and therefore hip) flexion is 

provided by the quadriceps, but is stored in an extension spring housed within the 

femur tube (also in Fig. D-2). This spring is attached to the returning end of the Bowden 

cable which is wrapped around the knee brake rotor, thus creating a torque in the 

direction of knee flexion as determined by the spring stiffness, equilibrium point, and 

preload (against a joint hard stop).    

 

3.3 Wafer Disc Brakes 

A key component of the JCO is the wafer disc brake, which serves a threefold 

purpose: 1) provide added safety via the normally “locked” design of the knee brake, 

which will prevent the wearer from falling should the device lose power; 2) increase 

muscle efficiency by locking joints during phases of gait when they are normally static, 

thus taking the burden of support off the leg muscles, reducing muscle fatigue and 

allowing longer walking times; and 3) smooth and control leg trajectories for a more 

natural and repeatable gait by utilizing the brakes as variable dampers controlled in 

relation to joint angle feedback. A previous effort to create a controlled brake orthosis 

[20, 24, 25] utilized magnetic particle brakes, which require electrical power to impose 

resistive torque. In the event of a power failure, the brakes (and thus the orthosis joints) 

remain unlocked, which could result in collapse and serious injury to the individual.  The 

authors have developed a new type of brake, called a wafer disc brake (WDB), which 

provides approximately 45 times the torque-to-weight ratio of state-of-the-art magnetic 

particle brakes, and importantly, can be designed in either a “normally locked” mode or 
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“normally unlocked” mode. Since the knee joints should fail in a locked mode, as 

previously mentioned, the knee brakes are thus of the normally locked type.  Since the 

hip brakes are used primarily for trajectory control and are characterized by relatively 

low duty cycle operation, the hip brakes are of the normally unlocked type.  Designing 

knee brakes to be normally locked and hip brakes to be normally unlocked both 

minimizes electrical power consumption (based on data from [25], and importantly 

prevents collapse during an electrical power failure. The normally unlocked WDB, which 

was designed for the hip joint, consists of a stack of thin high-strength plastic wafers 

which are alternatively coupled (through splines) to the brake stator and rotor. A small 

brushless motor located inside the brake shaft transmits a compressive force through a 

ball screw to the stack.  Assuming relatively low friction in the ball screw, the stack is 

subjected to a compressive force which is proportional to the motor current.  Due to the 

series arrangement of discs, the resistive torque on the rotor is the product of the 

compressive force, the mean radius of contact, and the coefficient of friction, which is 

amplified by the number of interfaces between discs.  Since the hip brake contains 61 

discs, the effective hip torque is increased by a gain of 60. The net result is a 

proportional brake that provides a significantly greater torque-to-weight ratio than a 

state-of-the-art in magnetic particle brake. Since the ball screw is back-drivable, the 

brake torque remains in proportion to the motor current, and thus is proportional in 

nature. The normally locked type of WDB, which is used for the knee joint, is shown in 

cross-section in Fig. D-3. A photo of the corresponding assembled prototype is shown in 

Fig. D-4.  The design is similar to the normally unlocked type, but the discs are preloaded 
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with a compression spring. Applying current to the motor proportionally unloads the 

preload, such that full brake torque occurs at zero motor current, and minimum brake 

torque occurs at full motor current.  Since the ball screw is back-drivable, the brake 

torque remains in inverse proportion to the motor current.  

A first-generation prototype of the knee brake has been constructed and tested. 

The mass of this brake is 0.73 kg. The brake was experimentally measured to provide a 

maximum torque of 50.7 N-m, which provides a resistive torque-to-weight ratio of 69.4 

N-m/kg. In comparison, a state-of-the-art magnetic particle brake (MPB) in a similar size 

range provides a torque of 1.7 N-m with a mass of 1.14 kg, and as such has a resistive 

torque-to-weight ratio of 1.5 N-m/kg (e.g., Placid Industries model no. B15).  As such, 

the WDB has a torque-to-weight ratio approximately 45 times greater than the MPB. 

Experimental measurements further indicate a minimum torque of 0.16 N-m (i.e., the 

brake dynamic range is between approximately 0.16 and 50 N-m). For both brakes, the 

torque varies linearly (and inversely, for the knee brake) with input current. 

 

3.4 Ankle Support 

The JCO utilizes an ankle-foot-orthosis (AFO) at the ankle, which is sufficiently 

compliant to allow dorsiflexion during the stance phase of gait, but sufficiently stiff to 

prevent foot drop during the swing phase of gait. Current gait simulations indicate a 

stiffness of 15 Nm/rad (for a 75 kg user) provides an appropriate balance between these 

objectives. 

 

2 
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Figure D-2.     Femur link detail. 
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Figure D-3.     Cross-section of normally locked knee brake. 

 

 

 

Figure D-4.     Fully functional knee brake prototype. 
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3.5 Mass and Inertia 

The total orthosis mass as shown in Fig. D-1, based on the solid model and 

prototypes of the brakes, is approximately 6 kg (13 lbs). Approximately one half of the 

orthosis weight is located on the pelvis, and thus does not add significantly to the 

rotational inertia or gravitational loads of the lower limbs. The rotational inertia of the 

distal link of the orthosis about the knee joint is approximately 5% of a typical shank 

inertia, while the inertia of the proximal link about the hip joint is about 10% of a typical 

thigh inertia. 

 

4.     Gait Control and Simulation 

A dynamic simulation of an SCI individual walking with the JCO and a walker was 

conducted to 1) validate that the proposed approach can provide a safe and stable gait, 

2) develop a robust gait controller, 3) explore variation of primary JCO design 

parameters, namely, the joint coupling transmission ratio and the spring stiffness, 

preload, and equilibrium point, 4) assess the magnitude of torque and duty cycle of 

stimulation required of the quadriceps group (which will help characterize the extent of 

expected muscle fatigue), and 5) assess the load borne by the arms (through the walker) 

relative to that carried by the legs. 

The dynamic simulator has two main parts — the human body model and the 

gait controller. The human body model is based in classical rigid body dynamics and is 

composed of seven segments and six articulations in three dimensional space, as shown 

in Fig. D-5. The associated geometric and inertial parameters normalized to a body 
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height and mass, as given by [26], are listed in Table 1. The spatial model has 12 degrees 

of freedom, which is reduced to fewer when the feet are in contact with the ground. 

The model is influenced by 10 inputs, 6 of which are produced by the hybrid orthosis 

system (i.e., torques in the sagittal plane for both ankles, knees, and hips, applied by a 

combination of muscle stimulation and JCO input), and 4 of which result from the 

interaction between the user and the walker (i.e., one torque in the sagittal plane and 

three forces, all applied symmetrically at the shoulder joints, which are located atop the 

torso link).  Note that the floor is modeled in the vertical direction as a unidirectional 

stiff spring and damper, such that the feet do not penetrate significantly into the floor 

(i.e., foot/floor penetration is on the order of a millimeter). In the horizontal direction, 

the foot/floor interaction is governed by Coulomb friction, where the coefficient of 

friction is assumed to be 0.3. 

 

4.1 Walker Model 

The user walks with the JCO on a flat and level surface with the aid of a regular 

walker. Note that the use of a walker assumes sufficient upper limb function to do so. 

The shoulder force in the frontal plane is modeled as a spring and damper with 

equilibrium point at the vertical orientation, which stabilizes the torso in the frontal 

plane (i.e., prevents “falling” in that plane). The remaining shoulder inputs, which are all 

sagittal plane inputs, are constrained by the nature of the walker. Specifically, the 

vertical force is restricted to act only in the upward direction (i.e., the user cannot pull 

up on the walker); the horizontal force is restricted by the coefficient of friction 
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between the walker and floor (assumed to be 0.3) and the vertical force; and the 

horizontal force and shoulder moment are additionally constrained by the structural 

stability (i.e., tipping point) of the walker. 

 

 

Figure D-5.     Dynamic simulation solid model, showing the six joint degrees of freedom. 

 

 

Table D-1.     Simulation parameters. 

 
*     L = High,  M= Mass of subject 
**   The distance is a fraction of the segment longitude 
All units are in the MKS system 
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4.2 Orthosis Model 

Since the JCO utilizes an AFO at the ankles, ankle inversion/eversion is not 

considered, while flexion/extension torques are modeled as a torsional spring and 

damper about zero degrees of flexion. Thus, the ankle is not a “controlled” degree of 

freedom. The knee torques result from a combination of quadriceps stimulation, joint 

coupling, the knee joint spring, and the resistive torque of the brake. These are 

combined as described in the gait controller below. The hip torques result from the joint 

coupling and the hip brakes. Specifically, the hip joint coupling is modeled as a flexor 

torque that has the function to maintain the hip angle equal to the knee angle (in the 

case of a knee-angle/hip-angle coupling ratio of 1:1), although only in extension. In the 

model, the abduction-adduction movement is locked in the zero position. Note that the 

orthosis allows hip abduction/adduction with a limit stop on excessive adduction (to 

prevent crossing over). This degree of freedom was not modeled in the simulation, since 

frontal plane dynamics are assumed to be controlled by the user via the walker, and 

thus are represented as a simplified single degree-of-freedom (i.e., rotation in the 

frontal plane). 

 

4.3 Control Algorithm 

In the proposed system, two controllers are simultaneously active, which are the 

JCO controller (i.e., brakes and electrical stimulation) and the user controller, which 

governs interaction with the walker through the arms (i.e., shoulder forces and torques). 

The control algorithm is a loop consisting of four states (Fig. D-6): 
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4.4 S1 : State 1 

In the initial condition, both knee brakes are locked in zero degrees of flexion. 

The support leg is in front of the swing leg. The upper body can rotate freely at the hips. 

The user rotates the upper body forward to an angle of 20 degrees, at which point the 

support hip brake is locked. At that moment the center of mass is in front of the support 

foot, which causes forward motion and a rotation around the front foot. The controller 

switches to the next state when the support leg is vertical and the user has raised the 

torso using the walker. 

 

4.5 S2 : State 2 

The swing knee brake is unlocked; this allows the spring to flex the knee, and the 

hip is concurrently flexed due to the joint coupling. During this state, the user maintains 

control of upper body orientation to approximately vertical. The stance hip brake allows 

hip extension (and not flexion) to zero degrees (at which point it will lock), while the 

stance knee brake remains locked. The controller switches to the next state when the 

difference between hip angles ceases to increase.  

 

4.6 S3 : State 3 

The swing hip is locked while the swing knee is extended via quadriceps 

stimulation. The stance knee remains locked while the stance hip does not allow 

extension beyond zero degrees. The controller switches to the next state when the 

swing knee is fully extended. 
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4.7 S4 : State 4 

The swing knee is locked and the swing foot lands due to gravity and user arm 

control. The stance hip is free. The swing hip allows flexion such that the upper body 

leans forward 20 degrees from the vertical (as in state 1). The swing leg is now in front 

and becomes the stance leg; as such the system is returned to state 1 and ready for 

another step. 

 

 

 

 

 
Figure D-6.     Simulation states. 
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Figure D-7.     Simulation results. 

 

 

 

Figure D-8.     Procession of simulation states. 

 

___ Right Leg 

----  Left Leg 

Flexion 

Flexion 

Extension 

Extension 

Dorsiflexion 

Plantarflexion 

Forward 

Backward 
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4.8 Simulation Results 

A simulation of the JCO and gait controller was conducted using the parameters 

given in Table 1, for a user of height L=1.7m and mass M=65kg.  Figure D-7 shows the 

results of fifteen seconds of simulation, including position and joint angle data and 

ground reaction force data.  A video of the simulated walk is included in the supporting 

material. Note that the user starts from rest, and remains at rest for the first second of 

the simulation. The cadence of the resulting gait was 34 steps per minute and the 

average velocity was 0.2 m/s. The upper body never leans backward and the maximum 

forward inclination is around 25 degrees. The simulation further indicates that nearly all 

the weight is carried by the legs, and thus the approach results in minimal weight 

bearing on the arms (i.e., the arms are used chiefly for stabilization and not for support 

purposes). Finally, Fig. D-8 shows the evolution of states through the simulation. As 

indicated in the figure, the duration of electrical stimulation (stage 3), is small compared 

with total cycle. The ratio is 0.1:3.5 seconds, which equates to a quadriceps duty cycle of 

approximately 3%.      

 

5.     Preliminary Experiments 

The authors have conducted preliminary experiments to test the joint coupling 

concept, and to assess the extent of fatigue imposed by the bias spring and joint 

coupling.  A simple, one-legged version of the orthosis was created which included one-

to-one joint coupling between the hip and knee, an adjustable extension spring for knee 

flexion, potentiometers on the hip and knee joints for angle measurement, and a locking 

5 6 7 8 
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knee joint with quick release pin.  Experiments were conducted to 1) determine if the 

spring and joint coupling could provide sufficient knee and hip flexion in the context of 

stride, and 2) determine if the quadriceps could repeatably provide the power necessary 

to overcome the spring and extend the lower leg without significant fatigue. The first 

experiment (see Fig. D-9) involved positioning an able-bodied subject in stance such that 

the leg wearing the orthosis was in the rear and ready to begin stride.  The spring was 

loaded and the knee was locked in the extended position by means of a quick connect 

pin.  As the pin was pulled by an assistant, the leg swung forward in knee and hip flexion 

as shown in Figs. D-9 and D-10. At the peak of hip flexion, the quadriceps was 

stimulated, which fully extended the knee and—in this test, due to the absence of a hip 

brake—allowed the hip to extend as well, dropping the foot to the ground. The results 

of this experiment showed that joint angles comparable to those typical in healthy 

subjects could be obtained involuntarily with the JCO system (see Fig. D-10).   

The second experiment involved conducting extended sets of pulsed quadriceps 

stimulation at a duty cycle of 15%— conservative according to simulations. Ten subjects 

underwent three five minute periods of stimulation with a rest period in between each 

trial of three minutes. Results from this preliminary fatigue testing showed that muscle 

output decreased 7% over five minutes for all the trials combined and averaged.  As 

such, the quadriceps appears to be quite capable of providing sustained power for the 

proposed hybrid approach without significant degradation of performance. 
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Figure D-9.     FES/JCO generated gait sequence experiment. 
Frame 1:  Right leg is locked in shown position.  Assistant pulls pin to unlock the knee 
joint. Frames 2-5:  Once pin is pulled, the spring pulls the knee into flexion and the 
joint coupling therefore pulls the hip into flexion as well.  Frame 5 is the final resting 
state under no muscle contraction. Frames 6-8:  The quadriceps is stimulated by a 
momentary push button switch on the walker handle.  This causes the knee to 
extend and therefore relieve the joint coupling, allowing the hip to extend also.  
Frame 8 is the final resting position of the leg after it has rejoined the ground after 
stride. 
 

 

 

Figure D-10.     Joint angle data during gait experiment shown in Fig. D-9. 

1 2 3 4 5 7 8 6 
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6.     Conclusion 

A joint-coupled controlled brake orthosis (JCO) has been designed as part of a 

hybrid FES/orthosis system for restoring gait to spinal cord injured individuals. This 

device will 1) unidirectionally couple hip to knee flexion; 2) aid hip and knee flexion with 

a spring assist; and 3) incorporate sensors and modulated friction brakes, which are 

used in conjunction with electrical stimulation for the feedback control of joint (and 

therefore limb) trajectories. Dynamic simulations and a one-legged prototype of the 

orthosis were used to validate the design concepts and aid in the design development. 

The results of these efforts showed that robust walking can be achieved via the orthosis 

without significant muscle fatigue. Future work includes characterization of the latest 

brake prototype, development of a fully functional, two-legged JCO, control design and 

the addition of on-board electronics, and clinical trials of the JCO system. 
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1.     Abstract 

A hybrid functional electrical stimulation (FES)/orthosis system is being 

developed which combines two channels of (surface-electrode-based) electrical 

stimulation with a computer-controlled orthosis for the purpose of restoring gait to 

spinal cord injured (SCI) individuals (albeit with a stability aid, such as a walker). The 

orthosis is an energetically passive, controllable device which 1) unidirectionally couples 

hip to knee flexion; 2) aids hip and knee flexion with a spring assist; and 3) incorporates 

sensors and modulated friction brakes, which are used in conjunction with electrical 

stimulation for the feedback control of joint (and therefore limb) trajectories. This paper 

describes the hybrid FES approach and the design of the joint coupled orthosis. 

Preliminary experiments are presented which test the joint coupling concept and assess 

the extent of quadriceps fatigue imposed by the bias spring and joint coupling. 

 

 

2.     INTRODUCTION 

Previous studies have demonstrated that functional electrical stimulation (FES) 

can effectively restore legged mobility to spinal cord injured (SCI) individuals (with the 

help of a stability aid), and that such legged mobility can provide significant 

physiological and psychological benefits to SCI users [1-18]. Despite this, two significant 

factors have hindered FES-aided gait systems from restoring gait to SCI individuals.  The 

first is the rapid muscle fatigue that results from artificially stimulated muscle 

contraction [19], and the second is the inadequate control of joint torques necessary to 
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produce reliable and repeatable limb motion and body support. The former (which 

significantly influences the latter), is due primarily to the synchronous nature in which 

artificial stimulation recruits motor units (i.e., is due to lack of neural specificity in the 

stimulation interface). The net effect is that, when stimulated at a high level of effort 

and high duty cycle, the muscle quickly (i.e., over tens of seconds) loses its ability to 

generate force [12]. Both issues (rapid onset of fatigue and poor controllability) can 

potentially result in collapse of the individual, a condition that is unacceptable in any 

viable gait restoration system. Additionally, FES-aided gait systems (and especially 

surface-based systems) generally provide stimulation for degrees of freedom in the 

sagittal plane, but do not provide control over several other degrees-of-freedom 

associated with gait, such as hip abduction and adduction in the frontal plane. A lack of 

control authority in this plane can result in one foot crossing in front of the other (i.e., 

scissoring), which is a condition that is not easily rectified by the user (i.e., is likely to 

require external assistance).  

Due primarily to these challenges (i.e., the potential of collapse from muscle 

fatigue and the need to guide uncontrolled degrees of freedom), hybrid systems, which 

combine FES with an orthosis, appear to offer the greatest promise for commercially 

viable gait restoration systems. As such, recent efforts by various researchers have 

focused (and are focusing) on the development of hybrid systems (e.g., [20-23]). This 

paper describes a hybrid FES approach that utilizes surface stimulation of only the 

quadriceps muscle group of each leg, along with an energetically passive, controllable 

orthosis (see Fig. E-1) which 1) unidirectionally couples hip to knee flexion; 2) aids hip 
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and knee flexion with a spring assist; and 3) incorporates sensors and modulated friction 

brakes, which are used in conjunction with electrical stimulation for the feedback 

control of joint (and therefore limb) trajectories.  

 

 

 

 

 

Figure E-1.     Solid model of JCO concept. 
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3.     Joint-Coupled Controlled-Brake Orthosis (JCO) 

The authors are developing a joint-coupled controlled brake orthosis (JCO) for 

regulating FES-aided gait. The JCO incorporates multiple features, which serve multiple 

functions. First, the JCO incorporates unidirectional joint coupling between knee and hip 

flexion, such that knee flexion generates hip flexion. Since the coupling is unidirectional, 

however, knee extension does not generate hip extension. The JCO also includes a 

biasing spring, such that the knee joint (and due to coupling, also the hip joint) is biased 

toward an equilibrium position in which both the knee joint and the hip joint are flexed. 

The combination of the (unidirectional) joint coupling and the biasing spring enables 

knee flexion, hip flexion, and knee extension, all from surface stimulation of only the 

quadriceps muscle group of each leg. The quadriceps muscle group is among the most 

powerful and easiest (in the lower limb) to access via surface stimulation, and thus 

provides a convenient source of metabolic power for gait. In addition to the joint 

coupling and biasing spring, the JCO incorporates controllable friction brakes at both 

knees and hips, which can either independently lock these joints (i.e., to provide for 

“isometric” muscle contraction), or can modulate the resistive torque at each joint for 

purposes of controlling limb motion. The JCO also contains angle (and thus also angular 

velocity) sensing at both hips and knee, which provide essential information for 

purposes of feedback control of limb motion. Finally, the JCO constrains motion along 

uncontrolled degrees-of-freedom (e.g., ankle flexion and hip adduction) which enhances 

the controllability and stability of gait. 
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3.1 The JCO Gait Sequence 

The gait control approach is described subsequently in the section on gait 

control and simulation, but is described briefly here to motivate the design of the JCO. 

Postural stability during gait is provided by a stability aid, such as a walker (see Fig. E-2). 

The knee of each leg is locked by the controllable friction brakes during stance (see Fig. 

E-3). Swing is initiated by unlocking the swing leg knee brake, which releases the energy 

in the biasing spring, which flexes the knee joint and (due to the joint coupling) also 

flexes the hip joint. During the second half of the swing phase, the hip is locked by the 

                      

Figure E-2.     Anthropomorphic 50th percentile male with JCO and with walker for 

stability aid. 
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hip brake while the knee is extended by stimulating the quadriceps group. This knee 

extension (due to stimulation of the quadriceps) does not, however, generate ipsilateral 

hip extension, since the (cable-based) coupling is unidirectional.  Once the knee is fully 

extended, it remains locked (by the knee brake) during the stance phase of gait.  

 

 

3.2 Joint Coupling Design 

The purpose of the joint coupling is to provide hip flexion necessary to generate 

forward leg motion, which is otherwise a challenge, due to the inaccessibility of the 

deep hip flexor muscles via surface stimulation. The JCO design incorporates a Bowden 

cable which spans the inside of the femur link and attaches to the hip and knee rotors 

 

Figure E-3.     Schematic representation of JCO swing phase of gait, indicating the 

cooperative behavior and sequencing of the knee and hip brakes, the mechanical bias 

spring, the unidirectional joint coupling, and the quadriceps stimulation. 
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on either end (see Fig. E-4).  Cable compression sleeves are used in the hip brake as hard 

stops in only one direction of rotation, which provides unidirectional coupling of knee 

flexion to hip flexion.  During knee extension, the distal end of the inner Bowden cable 

winds around the inner hip brake rotor without inducing concurrent hip extension (see 

Fig. E-4d).  

 

 

 

 

                       

           (a)             (b)         (c)   (d) 

 

Figure E-4.     (a) Femur link shown with joint biasing and coupling cable highlighted in 
red, (b) detail view of knee joint, showing joint biasing and coupling cable, (c) detail 

view of hip joint, showing joint coupling cable in the engaged position (e.g., during the 
knee flexion part of swing phase), and (d) detail view of hip joint, showing joint coupling 
cable in the disengaged position (e.g., during knee extension part of swing phase). Note 

that while in the disengaged position, the hip cable is guided around the inside of the 
hip joint housing, as shown in (d). Note that this figure is clearest when viewed in color.  
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As previously mentioned, the power for knee (and therefore hip) flexion is 

provided by the quadriceps, but is stored in an extension spring housed within the 

femur tube (see Fig. E-5). This spring is attached to the returning end of the Bowden 

cable which is wrapped around the knee brake rotor, thus creating a torque in the 

direction of knee flexion as determined by the spring stiffness, equilibrium point, and 

preload (against a joint hard stop).    

 

 

 

Figure E-5.     Femur link detail. 
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3.3 Wafer Disc Brakes 

A key component of the JCO is the wafer disc brake (WDB), which serves a 

threefold purpose: 1) provide added safety via the normally “locked” design of the knee 

brake, which will prevent the wearer from falling should the device lose power; 2) 

increase muscle efficiency by locking joints during phases of gait when they are normally 

static, thus taking the burden of support off the leg muscles, reducing muscle fatigue 

and allowing longer walking times; and 3) smooth and control leg trajectories for a more 

natural and repeatable gait by utilizing the brakes as variable dampers controlled in 

relation to joint angle feedback. A previous effort to create a controlled brake orthosis 

[20, 24, 25] utilized magnetic particle brakes, which require electrical power to impose 

resistive torque. In the event of a power failure, the brakes (and thus the orthosis joints) 

remain unlocked, which could result in collapse and serious injury to the individual.  The 

authors have developed a new type of brake, called a wafer disc brake, which provides 

nearly 45 times the torque-to-weight ratio of state-of-the-art magnetic particle brakes, 

and importantly, can be designed in either a “normally locked” mode or “normally 

unlocked” mode. Since the knee joints should fail in a locked mode, as previously 

mentioned, the knee brakes are thus of the normally locked type.  Since the hip brakes 

are used primarily for trajectory control and are characterized by relatively low duty 

cycle operation, the hip brakes are of the normally unlocked type.  Designing knee 

brakes to be normally locked and hip brakes to be normally unlocked both minimizes 

electrical power consumption (based on data from [25], and importantly prevents 

collapse during an electrical power failure. The normally unlocked WDB, which was 
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designed for the hip joint, consists of a stack of thin high-strength plastic wafers which 

are alternatively coupled (through splines) to the brake stator and rotor. A small 

brushless motor located inside the brake shaft transmits a compressive force through a 

ball screw to the stack.  Assuming relatively low friction in the ball screw, the stack is 

subjected to a compressive force which is proportional to the motor current.  Due to the 

series arrangement of discs, the resistive torque on the rotor is the product of the 

compressive force, the mean radius of contact, and the coefficient of friction, which is 

amplified by the number of interfaces between discs.  Since the hip brake contains 71 

discs, the effective hip torque is increased by a gain of 70. Since the ball screw is back-

drivable, the brake torque remains in proportion to the motor current, and thus is 

proportional in nature. The normally locked type of WDB, which is used for the knee 

joint, is shown in cross-section in Fig. E-6. A photo of the corresponding assembled 

prototype is shown in Fig. E-7.  The design is similar to the normally unlocked type, but 

the discs are preloaded with a compression spring. Applying current to the motor 

proportionally unloads the preload, such that full brake torque occurs at zero motor 

current, and minimum brake torque occurs at full motor current.  Since the ball screw is 

back-drivable, the brake torque remains in inverse proportion to the motor current.  

A first-generation prototype of the knee brake has been constructed and tested. 

The mass of this brake is 0.73 kg. The brake was experimentally measured to provide a 

maximum torque of 50.7 N-m, which provides a resistive torque-to-weight ratio of 69.4 

N-m/kg. In comparison, a state-of-the-art magnetic particle brake (MPB) in a similar size 

range provides a torque of 1.7 N-m with a mass of 1.14 kg, and as such has a resistive 
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torque-to-weight ratio of 1.5 N-m/kg (e.g., Placid Industries model no. B15).  As such, 

the WDB has a torque-to-weight ratio approximately 45 times greater than the MPB. 

Experimental measurements further indicate a minimum torque of 0.16 N-m (i.e., the 

brake dynamic range is between approximately 0.2 and 50 N-m).  Note that this 

provides a dynamic range ratio of 250:1.  The aforementioned MPB has a dynamic range 

of 100:1, and thus the WDB provides significantly improved performance (relative to the 

MPB) with respect to both torque/weight ration and dynamic range.  For both WDB 

brake types, the torque varies linearly (and inversely, for the knee brake) with input 

current. 

 

 

 

Figure E-6.     Cross-section of normally locked knee brake. 
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3.4 Ankle Support 

 The JCO utilizes an ankle-foot-orthosis (AFO) at the ankle, which is sufficiently 

compliant to allow dorsiflexion during the stance phase of gait, but sufficiently stiff to 

prevent foot drop during the swing phase of gait. Current gait simulations indicate a 

stiffness of 15 Nm/rad (for a 75 kg user) provides an appropriate balance between these 

objectives. 

 

3.5 Mass and Inertia 

The total orthosis mass as shown in Fig. E-1, based on the solid model and 

prototypes of the brakes, is approximately 6 kg (13 lbs). Approximately one half of the 

orthosis weight is located on the pelvis, and thus does not add significantly to the 

 

Figure E-7.     Fully functional knee brake prototype. 
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rotational inertia or gravitational loads of the lower limbs. The rotational inertia of the 

distal link of the orthosis about the knee joint is approximately 5% of a typical shank 

inertia, while the inertia of the proximal link about the hip joint is about 10% of a typical 

thigh inertia. 

 

3.6 Donning and Doffing 

Along with reliability, function, and perceived and measurable benefit, one of 

the most important factors in the acceptance and use of a gait restoration system is 

ease of use, and chief among this factor is the ability of the user to quickly and easily 

don and doff the system.  The JCO was designed to be donned (and doffed) quickly, 

easily, and independently, while sitting. The JCO consists of five component parts, which 

are separately donned and snapped together via structural quick connect joints. 

Specifically, the JCO is separated into two AFO’s, two thigh segments, and a waist 

harness, shown in Fig. E-8. 

                       

Figure E-8.     Depiction of steps for donning JCO. 
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4.     Simulation 

A simulation of the JCO and gait controller was conducted for a user of height 

L=1.7m and mass M=65kg.  Detailed simulation results are reported in a companion 

paper.  The cadence of the resulting gait was 34 steps per minute and the average 

velocity was 0.2 m/s. A depiction of the simulation progression is shown in Fig. E-9.  

Importantly, the simulation indicates a required quadriceps stimulation duty cycle of 

approximately 15%. 

 

 

 

5.     Preliminary Experiments 

The authors have conducted preliminary experiments to test the joint coupling 

concept, and to assess the extent of fatigue imposed by the bias spring and joint 

 

Figure E-9.     Progression of simulation states. 
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coupling.  A preliminary, one-legged version of the orthosis was created which included 

one-to-one joint coupling between the hip and knee, an adjustable extension spring for 

knee flexion, potentiometers on the hip and knee joints for angle measurement, and a 

locking knee joint with quick release pin.  Experiments were conducted to 1) determine 

if the spring and joint coupling could provide sufficient knee and hip flexion in the 

context of stride, and 2) determine if the quadriceps could repeatably provide the 

power necessary to overcome the spring and extend the lower leg without significant 

fatigue. The first experiment (see Fig. E-10) involved positioning an able-bodied subject 

in stance such that the leg wearing the orthosis was in the rear and ready to begin 

stride.  The spring was loaded and the knee was locked in the extended position by 

means of a quick connect pin.  As the pin was pulled, the leg swung forward in knee and 

hip flexion as shown in Figs. E-10 and E-11. At the peak of hip flexion, the quadriceps 

was stimulated, which fully extended the knee.  Based on the resulting motion, the 

proposed approach appears to provide hip and knee swing motion necessary for gait 

restoration. 

The second experiment involved conducting extended sets of pulsed quadriceps 

stimulation at a duty cycle of 15%— as indicated by the gait simulations. Ten subjects 

underwent three five minute periods of stimulation with a rest period in between each 

trial of three minutes.  

Representative data (showing stimulation duty cycle and knee and hip angles) 

for a few cycles of stimulation for a single subject is shown in Fig. E-12. Note that, since 

the test orthosis does not include a locking knee brake, the hip and knee joints return to 
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the flexed position immediately following the quadriceps stimulation (unlike in the 

proposed gait sequence, in which the knee joint would be locked at full extension 

following quadriceps stimulation, and would unlock only during the swing phase of gait). 

Representative knee angle data for an entire five-minute trial is shown in Fig. E-13. 

For each subject, the amplitude of knee motion corresponding to each 

flexion/extension cycle was collected and plotted versus cycle (84 cycles per trial, 252 

cycles total for the three trials). A representative plot of this data for a single subject is 

shown in Fig. E-14, which also shows a least-squares-fit line through each of the three 

consecutive five-minute trials. Note that the discontinuity in the lines is due to the 

three-minute rest period between trials. The average decrease in flexion angular 

displacement (across all subjects) over the first five-minute trial was 13% and over the 

second five-minute trial was 10%. As shown in Fig. E-14, however, the average flexion 

amplitude (across all subjects) during the third trial showed no decrease (in fact showed 

a 1% increase). 
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Figure E-10.     FES/JCO generated gait sequence experiment. 
Frame 1:  Right leg is locked in shown position.  Assistant pulls pin to unlock the knee 
joint. Frames 2-5:  Once pin is pulled, the spring pulls the knee into flexion and the 
joint coupling therefore pulls the hip into flexion as well.  Frame 5 is the final resting 
state under no muscle contraction. Frames 6-8:  The quadriceps is stimulated by a 
momentary push button switch on the walker handle.  This causes the knee to 
extend and therefore relieve the joint coupling, allowing the hip to extend also.  
Frame 8 is the final resting position of the leg after it has rejoined the ground after 
stride. 
 

 

 

Figure E-11.     Joint angle data during gait experiment shown in Fig. E-10. 
 

1 2 3 4 5 7 8 6 
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Figure E-12.     Representative data from the quadriceps fatigue experiments, showing 
amplitude of quadriceps stimulation, knee angle as measured by the test orthosis, and 

hip angle. 
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Figure E-13.     Representative data from a five-minute trial for FES powered knee 
(and hip, via joint coupling) extension while wearing the test orthosis. 

 

Figure E-14.     Representative data from a single subject for three consecutive (five-
minute) trials, and least-squares fit line for each trial. The discontinuity in lines is 

due to the three-minute rest between trials. 
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Thus, for conditions representative of the proposed approach, the data appears 

to indicate stabilization in average flexion amplitude by the third five-minute trial. More 

specifically, based on the averaged data of ten subjects, the flexion amplitude appears 

to have stabilized at approximately 85% of the mean amplitude exhibited during the 

first five-minute trial. Importantly, this apparent stabilization indicates that, for the 15% 

duty cycle and workload imposed on the quadriceps by the JCO, the proposed approach 

should be capable of providing long periods of locomotion unimpeded by quadriceps 

muscle fatigue. 

 

6.     Conclusion 

A joint-coupled controlled brake orthosis (JCO) has been designed as part of a 

hybrid FES/orthosis system for restoring gait to spinal cord injured individuals. This 

device will 1) unidirectionally couple hip to knee flexion; 2) aid hip and knee flexion with 

a spring assist; and 3) incorporate sensors and modulated friction brakes, which are 

used in conjunction with electrical stimulation for the feedback control of joint (and 

therefore limb) trajectories. A one-legged joint coupling prototype was used to validate 

the joint coupling concept and assess the fatigue induced by the system upon the 

quadriceps muscles.  Based on the motion obtained using the prototype and quadriceps 

stimulation, the proposed approach appears to provide hip and knee swing motion 

necessary for gait restoration.  Furthermore, results from the preliminary fatigue testing 

showed that muscle output appeared to stabilize at 85% of its initial output after 15 

minutes of stimulation.  As such, the quadriceps appears to be capable of providing 
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sustained power for the proposed hybrid approach to support continuous walking 

without significant degradation of performance.  Future work includes characterization 

of the latest brake prototype, development of a fully functional, two-legged JCO, control 

design, on-board electronics, and clinical trials of the JCO system. 
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