
Bioretrosynthetic Construction of a Non-Natural Nucleoside  

Analog Biosynthetic Pathway 

 

By 

 

William Ross Birmingham 

 

Dissertation 

Submitted to the Faculty of the 

Graduate School of Vanderbilt University 

in partial fulfillment of the requirements 

for the degree of 

DOCTOR OF PHILOSOPHY 

In 

Biochemistry 

December, 2013 

Nashville, Tennessee 

 

 

Approved: 

Brian O. Bachmann 

Richard N. Armstrong 

Tina M. Iverson 

Lawrence J. Marnett 

Carmelo J. Rizzo 

 

 

 



ii 
 

 

 

 

 

 

 

 

 

To my wife, Annie, and my family, 

for their continued love, support and encouragement. 



iii 
 

ACKNOWLEDGEMENTS 

 I am appreciative for the positive influence many people have had on my life. I 

know that any measure of thanks stated here can’t begin to do justice to the amount of 

gratitude that needs to be expressed, however, I can at least duly recognize many who 

have helped me along my way. It has been a privilege and greatly rewarding experience 

to have attended Vanderbilt University for my graduate studies. Without the support of 

the Departments of Biochemistry and Chemistry through an awarded Chemical Biology 

Interface Training Grant T32 GM065086, Organic Chemistry and General Chemistry 

Teaching Assistant positions and the D. Stanley and Ann T. Tarbell Endowment Fund, 

my research and this dissertation would not have been possible. 

 First and foremost, I would like to thank my wife for her constant support during 

my hectic years of graduate school. Annie’s love, encouragement and cheerful nature 

made difficult research days seem not so bad in the grand scheme of things. Her smile 

and laugh always remind me how lucky I am to have her in my life. I cannot thank her 

enough for being understanding and patient beyond measure and for her bravery in 

following me to Nashville with her only connection being family friends who generously 

opened their home and made us feel like part of the family. For that, a very special 

thanks is also due to Keith and Kay Simmons for welcoming us to Nashville. 

 I owe a great deal of gratitude to my advisor, Dr. Brian O. Bachmann. This 

specific project that became the focus of my dissertation research was what initially drew 

me to Vanderbilt for graduate school. I thank him for allowing me to take up the reigns in 

this work on enzyme engineering and further my interests in biocatalysis. His scientific 

insight from a broad perspective of organic synthesis, biosynthesis and directed 

evolution has developed my scientific interests for future pursuits. Brian’s guidance in 

making me a better researcher, writer, mentor and scientific thinker as well as his 



iv 
 

excited interest in progressing this work and my career has been much appreciated over 

the past several years. In addition to Dr. Bachmann, I would also like to thank my 

Dissertation Committee members of Dr. Richard Armstrong, Dr. Tina Iverson, Dr. 

Lawrence Marnett and Dr. Carmello Rizzo for their valued discussions and for offering 

their time and energy in assisting my training as a graduate student.  

 I would additionally like to thank Dr. Iverson and her graduate students Dr. Tim 

Panosian and Crystal Starbird for their excellent collaborative work on the structural 

aspects related to my dissertation project. Tim and Chrystal determined the structures of 

wild-type and variant forms of phosphopentomutase that enabled a better understanding 

of the enzyme and the effects of mutagenesis. Tim also worked closely with Dr. David 

Nannemann, an alumnus of the Bachmann research group, on the biochemical 

characterization of phosphopentomutase prior to me joining the lab which allowed me to 

start directly with assay development and mutagenesis. The structural and mechanistic 

insights gained through their work on phosphopentomutase were invaluable for my 

directed evolution experiments. In David’s primary research aims, he set the foundation 

for this biocatalytic project as a whole through his evolution of purine nucleoside 

phosphorylase for use in our proposed engineered biosynthetic pathway. For me, David 

was also a friend and graduate student mentor, actively answering my questions, 

discussing interesting enzyme engineering thoughts and showing me the ropes for 

designing protocols for experiments in directed evolution and biosynthesis assays. I am 

thankful for him passing along his knowledge and experience. 

 To the other members of the Bachmann group, thank you for creating an 

enjoyable research environment. Your camaraderie and sense of community over the 

years has been greatly appreciated. From organizing group activities (outside of lab 

even!) to continuing the search for Waldo, you all have made graduate school much 

more than just a research experience and I thank you for that.  



v 
 

 I would be completely remiss if I did not thank two teachers in particular that first 

inspired and cultivated my interest in science. Pursuing a career in science has been a 

goal of mine ever since high school. I can attribute the major influence for that decision 

to my Advanced Placement Chemistry teacher, Mrs. Linda Pennington. She is truly a 

rare, inspirational teacher who not only made chemistry fun in learning, but also whetted 

my interest to continue studying. I left for college set on obtaining a degree in chemistry 

and had my first academic research experience under the mentoring of Dr. Rebecca 

Alexander at Wake Forest, studying the mechanism of E. coli methionyl-tRNA 

synthetase substrate recognition and catalysis. In the process, I found that my interests 

grew in the direction of biochemistry, specifically toward what I learned to be the growing 

field of synthetic biology. I wanted to research laboratory evolution of enzymes to 

catalyze new reactions and create new products, which ultimately lead me to join Dr. 

Bachmann’s group at Vanderbilt. I really can’t thank Mrs. P. and Dr. Alexander enough 

for shaping my interest in science and showing me how exciting and rewarding it can be. 

 Last, but never least, I would like to thank my family and friends. Thank you for 

everything. Your never ending love and support have made me who I am. I am grateful 

for everything from your encouraging my work to helping me pull away for a while to 

keep perspective. I could not have done this without you. 

 

 



vi 
 

TABLE OF CONTENTS 

Page 

DEDICATION…………………………………………………………………………………..…ii 

ACKNOWLEDGEMENTS……………………………………………………………………....iii 

TABLE OF CONTENTS………………………………………………………………………...vi 

LIST OF TABLES……………………………………………………………………….............ix 

LIST OF FIGURES……………………………………………………………………………....x 

 

Chapter 

I. BIOCATALYST AND BIOSYNTHETIC PATHWAY ENGINEERING ......................... 1 

 

Introduction ......................................................................................................... 1 

Enzyme Engineering for Biocatalysis .................................................................. 5 

Targeted mutagenesis methods .............................................................. 8 

Random mutagenesis methods ..............................................................11 

Repurposing mutant libraries for new targets .........................................17 

Pathway Construction ........................................................................................20 

Theories of Biosynthetic Pathway Evolution .......................................................31 

Pathway Design Through Bioretrosynthesis .......................................................38 

Bioretrosynthetic design of a dideoxyinosine biosynthetic pathway ........42 

Bioretrosynthetic construction of dideoxyinosine biosynthetic pathway ...48 

Dissertation Statement .......................................................................................50 

References ........................................................................................................53 

 

II. TARGETED SATURATION MUTAGENESIS OF BACILLUS CEREUS 

PHOSPHOPENTOMUTASE ACTIVE SITE RESIDUES ..........................................64 

 

Introduction ........................................................................................................64 

Methods .............................................................................................................69 

PPM mutant library generation ...............................................................69 

Library growth and screening .................................................................70 

Enzyme expression and purification .......................................................72 

PPM kinetics assays ..............................................................................72 

Crystallization, data collection, and structure determination of wild-type 

and variant PPM .....................................................................................74 

Synthesis of 2,3-dideoxyribose 5-phosphate ..........................................77 

Results ...............................................................................................................80 



vii 
 

Chemical synthesis of non-natural substrate 2,3-dideoxyribose 

5-phosphate ...........................................................................................80 

Selection of Bacillus cereus PPM progenitor enzyme .............................81 

Saturation mutagenesis of Ser154 .........................................................82 

Saturation mutagenesis of Val158 and Ile195 ........................................86 

Discussion .........................................................................................................88 

Conclusions .......................................................................................................90 

Acknowledgements ............................................................................................91 

References ........................................................................................................93 

 

III. DIRECTED EVOLUTION OF PHOSPHOPENTOMUTASE BY WHOLE GENE 

RANDOM MUTAGENESIS ......................................................................................97 

 

Introduction ........................................................................................................97 

Methods .............................................................................................................98 

PPM mutant library generation ...............................................................98 

Library growth and screening ............................................................... 100 

Enzyme expression and purification ..................................................... 101 

PPM kinetics assays ............................................................................ 102 

Crystallization, data collection, and structure determination of wild-type 

and variant PPM ................................................................................... 103 

Results ............................................................................................................. 105 

Optimization of epPCR mutagenesis conditions ................................... 105 

Random mutagenesis and recombination of PPM variants ................... 107 

Discussion ....................................................................................................... 114 

Conclusions ..................................................................................................... 118 

Acknowledgements .......................................................................................... 119 

References ...................................................................................................... 120 

 

IV. IDENTIFICATION OF DIDEOXYRIBOKINASE PROGENITOR ENZYME ............. 122 

 

Introduction ...................................................................................................... 122 

Methods ........................................................................................................... 126 

Synthesis of 2,3-dideoxyribose ............................................................. 126 

Enzyme expression and purification ..................................................... 127 

Characterization of dideoxyribose activity of kinase enzymes ............... 128 

Inhibition of PPM by ATP, ADP and AMP ............................................. 130 

Results ............................................................................................................. 130 

Chemical synthesis of the non-natural sugar 2,3-dideoxyribose ........... 130 

Identification of potential kinase progenitors ......................................... 131 

Screening progenitor enzymes for dideoxyribokinase activity ............... 135 

ATP regeneration cycle ........................................................................ 136 

Discussion ....................................................................................................... 138 

Conclusions ..................................................................................................... 141 



viii 
 

Acknowledgements .......................................................................................... 142 

References ...................................................................................................... 143 

 

V. BIORETROSYNTHESIS AS A PATHWAY CONCEPTUALIZATION AND 

CONSTRUCTION METHOD ................................................................................. 149 

 

Introduction ...................................................................................................... 149 

Methods ........................................................................................................... 154 

Ribokinase mutagenesis ...................................................................... 154 

Enzyme expression and purification ..................................................... 154 

In vitro production of inosine and dideoxyinosine .................................. 155 

Results ............................................................................................................. 157 

Bioretrosynthetic Step 1: Nucleoside Phosphorylase ............................ 157 

Bioretrosynthetic Step 2: Phosphopentomutase ................................... 158 

Bioretrosynthetic Step 3: RK................................................................. 159 

Discussion ....................................................................................................... 163 

Conclusions ..................................................................................................... 168 

Acknowledgements .......................................................................................... 170 

References ...................................................................................................... 171 

 

VI. DISSERTATION SUMMARY AND FUTURE DIRECTIONS ................................... 174 

 

Synopsis .......................................................................................................... 174 

Significance ..................................................................................................... 178 

Future Directions.............................................................................................. 181 

References ...................................................................................................... 185 

 

Appendix 

A. NMR Spectra…………….……………………………………………….…………….…188 

 

 

 



ix 
 

LIST OF TABLES 

Table              Page 

2-1. Primers used in site directed and saturation mutagenesis of PPM..........................70 

2-2. Data collection and refinement statistics for wild-type and variant PPM ..................76 

2-3. Kinetic Parameters of PPM variants .......................................................................86 

3-1. Primers used in random mutagenesis and recombination of PPM ..........................99 

3-2. Data collection and refinement statistics for wild-type and variant PPM ................ 105 

3-3. Kinetic parameters of all PPM variants ................................................................. 109 

4-1. List of potential kinase progenitors ....................................................................... 134 

5-1. Primers used in site directed mutagenesis of RK .................................................. 154 

 

 

 

 

file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634697
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634698
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634699
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634700
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634701
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634702
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634704


x 
 

LIST OF FIGURES 

Figure              Page 

1-1. Proposed semisynthetic route from glutamic acid to dideoxyinosine ........................ 4 

1-2. Methods for targeted gene mutagenesis.................................................................. 9 

1-3. Methods for random gene mutagenesis .................................................................12 

1-4. Methods for gene shuffling .....................................................................................14 

1-5. Reactions performed by computationally designed enzymes ..................................17 

1-6. Series of engineered ketoreductases .....................................................................18 

1-7. Toolbox of monoamine oxidase variants.................................................................20 

1-8. Pathway construction strategies .............................................................................23 

1-9. Heterologous construction of artemisinic acid biosynthetic pathway .......................24 

1-10. De novo pathways for production of non-natural products ....................................27 

1-11. Production of atorvastatin side chain intermediate ................................................30 

1-12. The patchwork model of gene duplication and enzyme functional divergence ......34 

1-13. Forward and retrograde pathway evolution schemes ............................................36 

1-14. Pathway construction via forward and retrograde evolution schemes ...................40 

1-15. Bioretrosynthetic analysis of inosine biosynthesis routes ......................................44 

1-16. Proposed semi-synthetic route for production of dideoxyinosine ..........................48 

1-17. The single screen requirement of the bioretrosynthetic pathway construction 

strategy ....................................................................................................................49 

2-1. Retro-extension of the dideoxyinosine biosynthetic pathway to 

phosphopentomutase ..............................................................................................67 

2-2. Comparison of PPM and alkaline phosphatase catalytic cycles ..............................68 

2-3. Synthesis of 2,3-dideoxyribose 5-phosphate ..........................................................80 

file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634705
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634706
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634707
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634708
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634710
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634713
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634715
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634718
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634719
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634720
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634721
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634721
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634722
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634722
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634724


xi 
 

2-4. Michaelis-Menten plot of wild-type B. cereus PPM kinetics for dideoxyribose 

5-phosphate.............................................................................................................82 

2-5. Substrate binding in PPM variants ..........................................................................84 

2-6. Additional first shell residues targeted for saturation mutagenesis ..........................87 

2-7. Overlay of the Val158Leu structure and wild-type PPM ..........................................88 

3-1. Iterative process of mutagenesis and screening used in directed evolution of PPM

 .............................................................................................................................. 106 

3-2. Error-prone PCR mutagenesis rates ..................................................................... 107 

3-3. Substrate activity through generations of PPM evolution ...................................... 108 

3-4. Lineage tree of PPM variants ............................................................................... 108 

3-5. Structure comparison of wild-type and 4H11 PPM ................................................ 112 

3-6. Repositioning of Ser154 after domain movement ................................................. 113 

3-7. Positions of mutations mapped onto wild-type PPM ............................................. 117 

4-1. Retro-extension of the dideoxyinosine biosynthetic pathway to a kinase enzyme . 123 

4-2. Examples of cofactor regeneration methods ......................................................... 125 

4-3. Synthesis of 2,3-dideoxyribose from glutamic acid ............................................... 131 

4-4. Phosphorylation reaction and substrate binding interactions in kinase enzymes .. 132 

4-5. Production of didanosine from dideoxyribose by potential kinase progenitors ...... 135 

4-6. Inhibition of PPM by adenine nucleotides ............................................................. 136 

4-7. The five step dideoxyinosine biosynthetic pathway ............................................... 137 

5-1. Bioretrosynthesis applied as pathway planning tool .............................................. 150 

5-2. Model inosine biosynthetic pathway and proposed bioretrosynthesis of 

dideoxyinosine ....................................................................................................... 152 

5-3. Semisynthetic pathway for production of dideoxyinosine ...................................... 153 

5-4. In vitro biosynthetic production of inosine and dideoxyinosone catalyzed by PNP 158 

file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634725
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634725
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634729
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634729
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634730
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634731
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634732
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634736
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634738
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634741
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634742
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634743
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634744
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634744
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634745
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634746


xii 
 

5-5. In vitro biosynthetic production of inosine and dideoxyinosine catalyzed by PPM and 

PNP in tandem ...................................................................................................... 159 

5-6. In vitro biosynthetic production of inosine and dideoxyinosine catalyzed by the full 

biosynthetic pathway ............................................................................................. 160 

5-7. Orientation of ribose by Asp16 in RK .................................................................... 161 

5-8. Progression of the dideoxyinosine biosynthetic pathway components through stages 

of bioretrosynthetic optimization ............................................................................. 167 

5-9. Examples of sugar moieties found in non-natural nucleoside analogs. ................. 169 

6-1. Possible biosynthetic routes from pyruvate and glycolaldehyde to dideoxyribose and 

dideoxyribose 5-phosphate .................................................................................... 183 

6-2. Natural reactions catalyzed by enzymes proposed for dideoxyribose and 

dideoxyribose 5-phosphate biosynthesis ............................................................... 184 

 

file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634747
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634747
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634748
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634748
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634750
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634750
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634751
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634752
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634752
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634753
file:///C:/Users/birminwr/Desktop/Dissertation/Final%20Documents/Title%20Page%20up%20to%20List%20of%20Figures%20121116.doc%23_Toc372634753


1 
 

Chapter I 

 

BIOCATALYST AND BIOSYNTHETIC PATHWAY ENGINEERING 

 

Introduction 

Biocatalysis is defined as the implementation of natural catalysts, such as 

enzymes or whole cells, to perform synthetic chemical reactions(1). As a subset of 

synthetic biology, which in general aims to employ biological functions to perform a 

variety of designated tasks(2), these enzymes or cells are commonly engineered to be 

repurposed for applications and activities that they were not evolved to perform(1). These 

new functional capacities are often instilled into the catalysts through directed evolution, 

a laboratory process that mimics Darwinian selection, whereby mutations are introduced 

into a gene sequence to allow the gain or loss of certain traits in the corresponding 

encoded protein. These mutations serve to evolve the enzyme toward a defined goal, 

which is guided along the way by careful experimental control of the process, hence the 

term directed evolution. 

Biocatalysis offers an attractive alternative to chemical production processes. In 

many chemical routes, great attention and planning is invested in the optimization of 

synthetic schemes to enantioselectively produce a desired compound. However, 

traditional large scale synthetic methods are often met with low yields from incomplete 

conversion or formation of side products, requiring purification and generating high 

solvent waste volumes, all of which contribute to increased costs. Biocatalysts provide 

benefits from environmental and economic standpoints as they are made from 

renewable resources, are biodegradable and non-toxic, and the high reaction selectivity 

and partially aqueous reaction conditions can increase yields and reduce waste 

production and subsequent processing requirements. Additionally, reactions are 
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commonly performed at near ambient temperature, atmospheric pressure and relatively 

neutral pH and are therefore commonly safer and more easily managed than some 

corresponding chemical processes. For these reasons, both engineered and natural 

biocatalysts have been successfully applied to the synthesis of a variety of biofuels, drug 

intermediates, active pharmaceutical ingredients and both fine and commodity 

chemicals. However, as the majority of important synthetic compounds are not natural 

products, they cannot be created through native cellular metabolism. Instead, research 

efforts are invested in the development of individual enzymes and/or full biosynthetic 

pathways capable of forming these non-natural products. 

For example, a small molecule transaminase was evolved to accept a 

considerably larger substrate through a process known as ‘substrate walking’ by 

engineering activity on successively larger substrates until reaching the desired starting 

material(3). Further engineering by directed evolution increased activity ~40,000-fold and 

produced an enzyme that is able to replace the transition-metal based process of 

amination and asymmetric hydrogenation for production of the antidiabetic drug 

sitagliptin. The evolved enzyme was engineered to stereoselectively aminate a ketone 

substrate. The resulting biocatalytic process increased overall yield, productivity and 

enantioselectivity, reduced total waste volume and eliminated the need for 

transition-metal catalysts and is currently used in industrial scale production of 

sitagliptin(3, 4). This one instance highlights many of the potential benefits of performing 

synthesis using biocatalysts. 

In this dissertation, we present a biosynthetic pathway construction paradigm 

based on a model of natural pathway evolution and describe the evolution of multiple 

enzymes joined together to create an engineered biosynthetic pathway for production of 

the nucleoside analog reverse transcriptase inhibitor 2’,3’-dideoxyinosine 

(dideoxyinosine, ddI, didanosine). Dideoxyinosine is one of the many nucleoside analogs 
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prescribed as treatment for patients infected with human immunodeficiency virus (HIV). 

Currently, the World Health Organization estimates the price of dideoxyinosine to be 

US$ 243 per patient per year of treatment for low-income (less than US$ 1,025 gross 

national income per capita) and middle-income countries (US$ 1,026-4,035)(5). These 

regions account for approximately 69% of the estimated 34 million people worldwide 

infected with this virus, and therefore this drug and other similar treatment options are 

unaffordable to the vast majority of those affected(6). 

A major factor affecting the high cost of many of these nucleoside analog drugs 

is the synthetic process to manufacture the active pharmaceutical ingredient. For 

dideoxyinosine, manufacturing the active ingredient is approximately 66% of the direct 

costs, which is itself ~75% of the price per year of treatment, and these figures hold true 

for many similar nucleoside analogs as well(7). The reason for the production process 

contributing such a high percentage of the final cost is due to the measures required for 

synthesis and purification of the active ingredient, primarily involved to retain the proper 

stereochemistry in the final product. There have been several strategies attempted to 

approach this hurdle, however, each have been met with different flaws. Natural 

nucleosides, such as inosine and adenosine, can be used as starting materials to 

produce dideoxyinosine and benefit from the appropriate stereochemistry already being 

in place in the initial compound. However, these materials are quite expensive even in 

bulk quantities and consequently drive up the cost of production. The other main 

production scheme involves a separate synthesis of the non-natural sugar activated at 

the C1 anomeric position, followed by attachment of the suitable nucleobase. In the case 

of dideoxynucleosides, the dideoxy-sugar moiety can be easily produced from glutamic 

acid, a very inexpensive bulk commodity chemical. On the other hand, racemic 

activation of the anomeric center by installation of a leaving group and subsequent 

displacement through addition of the nucleobase leads to the production of several 
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structural and regioisomers that ultimately reduce yield of the desired active nucleoside 

analog drug and increase costs through necessary added purification steps. A step in 

the direction of a potentially more efficient production method has incorporated a 

biocatalytic transformation to form the final product, however these methods still rely 

heavily on a chemical synthetic component to generate the substrate for the enzymatic 

reaction(8-12). 

To reduce the synthetic burden in production, we propose to employ a short and 

simple chemical synthesis route to produce a non-natural sugar that then becomes a 

substrate for a sequence of enzymatic biotransformations to produce dideoxyinosine. 

Dideoxyribose, the proposed non-natural sugar, can be produced in three steps from the 

inexpensive starting material glutamic acid before a series of enzymes recruited from 

natural nucleoside biosynthesis catalyze the production of dideoxyinosine in a 

stereoselective manner (Figure 1-1). Taking advantage of the high stereoselectivity of 

enzymes enables the production of one properly activated C1 anomer of the 

dideoxysugar for subsequent addition of the nucleobase, and in turn could likely reduce 

sample processing and purification and may also increase the total yield of the active 

product. Combining these benefits, a biocatalytic or biosynthetic production route could 

directly affect the cost of production of many industrially relevant compounds, and in 

 

Figure 1-1. Proposed semisynthetic route from glutamic acid to dideoxyinosine and 

comparison of the non-natural compounds dideoxyribose and dideoxyinosine to the 

natural compounds ribose and inosine. 
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cases where manufacturing is a leading contributor to consumer pricing, such as this 

class of nucleoside analogs, their implementation could significantly reduce the final cost 

of the compound and increase overall availability. 

In order to enable a biocatalytic process to be a relevant industrial method for 

manufacturing non-natural products, the productivity and turnover rate must be high 

enough to meet production demands. However, since naturally occurring enzymes are 

rarely capable of producing sufficient quantities of the desired non-natural product, they 

are frequently engineered to increase activity to meet required industrial scale 

production titers. Here, we describe the engineering of enzymes to catalyze a series of 

reactions on dideoxy-sugar substrates in the biosynthesis of the anti-HIV drug 

dideoxyinosine. 

 

Enzyme Engineering for Biocatalysis 

 Although the use of biocatalysts provides many advantages over chemical 

synthetic routes, such as environmentally friendly conditions, high efficiency and 

extraordinary regio-, chemo- and enantio-selectivities(13), successful implementation of 

these processes are not without their difficulties. Most naturally occurring, or wild-type, 

enzymes have normally evolved over time to be quite substrate selective or maybe, at 

best, able to accept a small range of chemically and structurally similar compounds as 

substrates at reduced activity levels. While this is highly beneficial for living biological 

systems, it is frequently a hindrance to their use in biocatalytic applications since many 

desired transformations utilize non-natural compounds. Furthermore, the limited stability 

of enzymes to a narrow window of reaction conditions and a common requirement of 

expensive cofactors limits their use in large scale preparative reactions.  

For these reasons, in order to utilize a biocatalytic component to replace a 

chemical step within a production process, a compromise must be made. In the past, 
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production conditions were tailored to the limitations of the enzyme. Now, enzymes are 

able to be engineered to fit the needs of the desired reaction and reaction conditions, 

such as the presence of organic co-solvents, non-neutral pH and very high substrate 

and product concentrations(1). Typically, efforts are focused to increase the rate of 

catalysis on the target substrate under specific conditions through an iterative process of 

mutagenesis and screening for activity in an effort to evolve the enzymes for the new 

reaction parameters.  

 This practice of enzyme engineering frequently utilizes a two pronged approach, 

combining rational or targeted mutagenesis methods with random mutagenesis 

techniques to create libraries from which new biocatalysts with improved functions can 

be discovered through activity screening. As the first step, a progenitor enzyme must be 

identified for the reaction of interest. Part of the process to select a progenitor can 

involve biochemical characterization of few to many enzyme homologs and scaffolds to 

identify a variant that shows measurable turnover on the desired substrate. Selecting a 

progenitor panel may be as extensive as collecting all, or as many as possible, suitable 

enzymes (that is, those that catalyze the desired chemical transformation) that have 

been reported in recent literature, or may be more limited to only those that have been 

structurally characterized or possibly only variants that exhibit a degree of substrate 

promiscuity for natural and/or non-natural molecules. This last trait can be extremely 

valuable, as naturally present substrate promiscuity is thought to be important for 

engineering new activities(14).  

In addition to demonstrating desirable activity, the availability of structural data 

for an enzyme of interest is highly beneficial. In order to perform targeted mutagenesis, 

some degree of knowledge of the enzyme active site must be determined, either via a 

crystal structure of the enzyme or through homology modeling with a related enzyme. 

This information can be used to identify first or second shell active site residues to target 
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for mutagenesis to analyze the respective contributions to activity through screening 

mutagenesis libraries(15, 16). Mutations at sites directly contributing to substrate binding, 

the so-called first shell, or residues responsible for their positioning, the second shell, 

have been shown to provide the greatest changes in enantioselectivity, substrate 

selectivity and altered catalytic activity, all of which are highly valued traits of engineered 

enzymes for biocatalytic processes(17).  

Following targeted mutagenesis approaches, techniques to introduce random 

mutations are then used to produce mutations throughout the gene. Because of the 

arbitrary addition of mutations at any point within the gene sequence, these methods can 

be used in the absence of structural data. Screening libraries created using these types 

of methods commonly results in mutations at positions that are unlikely to be predicted 

to have a beneficial effect on the desired activity. These sites frequently tend to be 

outside of the active site, accounting for why they may go unpredicted, as the active site 

normally comprises only a small portion of the sequence of the entire enzyme. 

Nonetheless, random mutagenesis methods seem to be the most commonly employed 

in biocatalyst development through directed evolution and are still very successful tools 

in enzyme engineering(18).  

The use of directed evolution to evolve an enzyme for improved biocatalytic 

functions is a laboratory parallel to the natural selection of ‘survival of the fittest,’ but can 

be applied on the much shorter timescale of weeks to months. However, rather than 

survival advantage being the individual selection pressure to guide mutations as seen in 

nature, increases in the specific experimenter-defined activity conferred by the newly 

acquired mutation lead to selection to continue the enzymatic lineage. This activity may 

still provide a survival advantage, such as the degradation of a toxic molecule, but is 

often simply the most productive enzyme identified under experimental in vitro reaction 

conditions. The process of mutagenesis and selection can be iterated until the required 
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level of activity is gained, or until no further activity benefits can be imparted. An 

overview of mutagenesis methods and their application to enzyme engineering for 

biocatalytic process is provided below. 

 

Targeted mutagenesis methods 

 After identifying the enzyme progenitor to be used in the directed evolution study, 

the first step is to create a pool of genetically diverse gene sequences. When structural 

data is available, mutagenesis commonly begins with a targeted approach to take 

advantage of known or predicted functional roles of specific substrate binding residues 

and active site architecture during the process of repurposing an enzyme for application 

in a biocatalytic process. Such targeted approaches, or ‘smart libraries’, reduce library 

size by targeting the points of gene diversity to known interactions between residues and 

specific functional groups of the substrate to reduce selectivity and improve substrate 

promiscuity and can possibly increase the likelihood of success(19). 

 One such method of introducing mutations in a targeted approach is saturation 

mutagenesis(20) (Figure 1-2). In this process, mutagenic primers containing a randomized 

sequence (commonly NNK or NNS, where N=A, T, C or G; K=T or G and S=C or G) at 

one or more codons in the primer are used to amplify a gene/plasmid of interest. The 

randomized codon sequence at specific locations creates a library of variants containing 

all 20 possible amino acids at the indicated position, giving full coverage of mutational 

analysis at the target residue. Since this approach is most effective when targeting 

residues known to contact the substrate, saturation mutagenesis is often used as an 

initial phase of enzyme engineering. O’Conner and coworkers applied saturation 

mutagenesis using the NNK codon at several positions that interacted with bound 

tryptamine in the active site of strictosidine synthase(21). Screening of the resulting 

libraries provided an assortment of enzyme variants what were able to catalyze the 



9 
 

Pictet-Spengler reaction using non-natural tryptamine analogs to produce a variety of 

new strictosidine analogs, several of which were halogenated and may be further 

derivatized through chemical strategies(21).  

 The basic premise of saturation mutagenesis can be applied in a variety of ways. 

For example, rather than targeting mutagenesis to a select few positions in the active 

site, every residue in a protein can be individually randomized in a process known as 

‘gene site saturation mutagenesis’, or GSSM™ (trademark Diversa Co.) (Figure 1-2). 

While GSSM™ is not as commonly used as other methods, due to the generation of 

large libraries that are not focused for specifically targeted residues, one benefit is that 

this method can be used in the absence of structural data as all positions undergo 

mutational analysis by a randomized codon. GSSM™ was indeed shown to be an 

effective method to engineer an R-selective nitrilase for product formation in high 

enantiomeric excess and capable of catalyzing the hydrolysis reaction at substrate 

concentrations up to 3 M(22). Under final conditions, a single mutant nitrilase variant 

identified through GSSM™ was capable of converting 3-hydroxyglutaryl nitrile to the 

 

Figure 1-2. Methods for targeted gene mutagenesis. These methods allow for analysis 

of one or more specific positions in the enzyme through directly targeting locations of 

interest. GSSM: Gene Site Saturation Mutagenesis, CASTing: Combinatorial Active Site 

Testing. 
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corresponding (R)-4-cyano-3-hydroxybutyric acid in 96 % yield at 98.5 % entiomeric 

excess in 15 hours(22).  

 Saturation mutagenesis can also be used iteratively, targeting a new site after 

identification of an advantageous mutation at a previous location. Reetz and coworkers 

combined iterative saturation mutagenesis with their previously published method known 

as the Combinatorial Active Site Test (CAST)(16) in engineering enantioselectivity of a 

lipase from Pseudomonas aeruginosa for a chiral ester(23). CASTing involves the 

simultaneous saturation mutagenesis of multiple residues using one primer containing a 

randomized codon sequence at each of the target positions and can identify synergistic 

mutations where both residues are required to be mutated in order to be effective(16) 

(Figure 1-2). Demonstrating the value of these methods used together, the lipase was 

engineered over only two rounds of iterative CASTing to generate a variant with an 

enantioselective (E-value) factor of 594, which is 540-fold greater than the wild-type 

enzyme, after screening 10,000 total library members(23). By comparison, a lipase variant 

generated using a combination of standard methods of error prone polymerase chain 

reaction (epPCR), saturation mutagenesis and DNA shuffling provided an E-value of 

only 51 after four rounds of mutagenesis with screening of approximately 50,000 

transformants.  

 Another method of protein engineering involves applying a computational based 

protein sequence-activity relationship (ProSAR) algorithm to analyze experimental 

activity results from mutagenesis libraries. Functional data is collected from a library of 

enzyme variants containing multiple mutations, and a key aspect is that each mutation 

must be present in multiple separate clones(24). The activity data is analyzed by the 

algorithm and each mutation is given a probability that the residue change is beneficial, 

neutral or detrimental to the desired activity. Each mutation is then sorted by the 

predicted effect, and all beneficial mutations are combined and incorporated into the 
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gene sequence to produce a new protein template. Codexis applied this ProSAR method 

in the evolution of a halohydrin dehalogenase to catalyze the conversion of ethyl 

(S)-4-chloro-3-hydroxybutyrate to ethyl (R)-4-cyano-3-hydroxybutyrate for use as a 

starting material in the production of the side chain of the cholesterol lowering drug 

atorvastatin(25). Sequence diversity was generated using a combination of random 

mutagenesis, site saturation mutagenesis, gene shuffling and through analysis of the 

enzyme structure and of homologous enzyme sequences. The experimental data for 

activity of the variants under process conditions was then analyzed by the ProSAR 

algorithm after each round to suggest the most beneficial mutations that should be 

combined in the template for the following round of mutagenesis. The final variant after 

18 rounds of evolution contained a total of 35 mutations and produced the desired 

compound at 99.5% purity, >99.9% enantiomeric excess and high yield at a productivity 

rate 4,000-fold greater than the wild-type enzyme(25) and is currently used in large scale 

industrial production of the atorvastatin side chain. 

 

Random mutagenesis methods 

 A broad category of enzyme engineering approaches is composed of the random 

mutagenesis techniques. These methods arbitrarily incorporate mutations into the target 

sequence and allow very little control to the experimenter. Consequently, mutations can 

be identified throughout the entirety of the protein that have beneficial effects on the 

desired activity or trait. Additionally, these methods have the advantage of not requiring 

previously determined structural data, which in some cases can be unavailable or 

difficult to acquire. Because of this, random mutagenesis can be applied to any enzyme 

for directed evolution studies. However, it is commonly used as a complimentary 

approach after completing targeted mutagenesis guided by structural data for the 
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particular enzyme or based on homology modeling in order to further increase the 

desired activity(18).  

 The most commonly used of these random mutagenesis techniques is error 

prone PCR (epPCR)(18, 26), however, this can be performed in a few different modes 

(Figure 1-3). Early epPCR methods used a Taq polymerase lacking proofreading ability 

in combination with Mn2+ and unbalanced dNTP concentrations(27). This composition 

increases the likelihood of mismatch pairing by the polymerase to increase the error rate 

during gene amplification and can generally be controlled by the concentrations of dNTP 

and Mn2+ added to the PCR sample. Currently, the most frequently used method of 

epPCR employs a DNA polymerase or combination of polymerases that have been 

engineered for lower extension fidelity to introduce mutations at random during DNA 

amplification cycles. Many of these polymerases also have reduced proofreading ability 

so that the incorporated mutations are not corrected during amplification. The 

Genemorph II kit from Stratagene Co. is one such example that is commercially 

available, which consists of a blend of a proprietary DNA polymerase mutant and an 

 

Figure 1-3. Methods for random gene mutagenesis. Each of these mutagenesis 

methods allows for incorporation of mutations into a gene sequence in an arbitrary 

manner, giving little to no preference for location or identity of the new nucleobase. 



13 
 

engineered Taq polymerase to provide a balanced mutation rate of transitions (purine to 

purine or pyrimidine to pyrimidine) and transversions (purine to pyrimidine or pyrimidine 

to purine).  

In other random mutagenesis methods, nucleotide analogs are added into the 

PCR sample. After these non-canonical nucleotides are incorporated into the DNA 

sequence through PCR amplification, the non-natural nucleobases are capable of 

pairing with multiple canonical nucleotides to induce mutations during in vivo 

replication(28) (Figure 1-3). In a similar manner, exposing the DNA template to chemical 

mutagens, such as hydrazine, nitrous acid, formic acid or ethyl methane sulfonate 

(Figure 1-3), can chemically alter nucleobases to create new hydrogen bond donor and 

acceptor groups and allow mismatch pairing upon replication(29, 30). Additionally, E. coli 

mutator strains and whole cell mutagenesis via UV exposure can be used to generate 

random mutations in vivo(31, 32).  

Positions mutated via random mutagenesis occasionally become new sites to 

target for saturation mutagenesis(18, 33-35). The hypothesis is that the process of random 

mutagenesis may pinpoint specific positions in the enzyme, termed ‘hot sports’(36), which 

are sensitive to mutation and are responsible for improved activity. Targeting these sites 

for saturation mutagenesis allows a full analysis of amino acids at the position to 

determine the optimal residue identity for providing the highest level of desired activity. 

This complete characterization of identified hot spots allows targeted and random 

mutagenesis methods to work hand-in-hand to engineer the enzyme for the particular 

application. 

Gene shuffling is another wide-ranging random mutagenesis technique that 

encompasses a number of methods, many with only slight variations. In general, the 

protocol enables the recombination of progenitor genes to create chimeric sequences 

with greater sequence diversity than that available through other random mutagenesis 
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techniques (Figure 1-4). The sequences used may be either naturally occurring 

homologous genes and/or sequences containing beneficial mutations identified through 

other mutagenesis methods. The original DNA shuffling method was introduced by 

Willem P. C. Stemmer using a single gene with randomly identified point mutations(37) 

and was later expanded to demonstrate shuffling of a family of naturally occurring 

homologous genes from different species to provide an array of functional diversity, or 

sequence variation with proven activity(38). In each of these methods, DNA sequences 

 

Figure 1-4. Methods for gene shuffling. Shuffling via the Stemmer method involves the 

recombination of fragmented homologous genes, while the StEP method relies on short 

DNA amplification cycles to allow partially extended genes to anneal with homologous 

templates to create multiple crossovers in the full length gene. 
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were fragmented through mild treatment with DNase and the mixed oligonucleotides 

were reassembled through PCR extension. One particularly interesting application of 

DNA shuffling involved the recombination of thymidine kinase genes from herpes 

simplex virus types 1 and 2 to identify chimeras with increased ability to phosphorylate 

the nucleoside analog zidovudine, creating a metabolite toxic to the E. coli host(39). Four 

rounds of shuffling created two clones that sensitized the bacteria to 32-fold and 

16,000-fold lower zidovudine concentrations than the wild-type type 1 and type 2 

thymidine kinase variants, respectively, indicating significant increases in activity on the 

non-natural substrate. 

In newer variations of gene shuffling, recombination is facilitated in a variety of 

ways, some of which are seemingly inspired by Stemmer’s initial process. In Staggered 

Extension Process (StEP), DNA amplification via PCR uses extremely short annealing 

and extension times, rather than fragmented DNA oligonucleotides, to create gene 

crossovers and chimeras using homologous templates(40) (Figure 1-4). In each cycle, the 

growing DNA fragments anneal to new template DNA based on homologous sequences 

and are partially extended before being melted apart. This cycle is repeated until full 

gene sequences have been created, and typically result in variants with sequence 

elements from multiple parental templates due to several gene crossovers. Other more 

recent methods allow recombination of two nonhomologous sequences by 

time-dependent exonuclease digestion followed by ligation to create chimeric genes. 

Such methods are termed incremental truncation for the creation of hybrid enzymes 

(ITCHY)(41) and sequence homology-independent protein recombination (SHIPREC)(42). 

Another method, SCRATCHY, combines ITCHY and DNA shuffling to create a larger 

number of crossovers and therefore greater sequence diversity for screening(43). 

Although it is most commonly used for improving activity on non-natural 

substrates or in non-natural reaction conditions, enzyme engineering has also been 
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demonstrated to have the capacity to reprogram an enzyme for an entirely different 

activity. Bromoperoxidase A2 from Streptomyces aureofaciens, an α/β-hydrolase fold 

family member, was converted to a lipase after comparison to Bacillus subtilis lipase A of 

the same enzyme fold(33). Removal of the cap-like domain specific to the 

bromoperoxidase followed by remodeling the substrate binding site was sufficient to 

transplant the lipase activity and completely eliminate halogenation activity. Directed 

evolution and site directed mutagenesis were also used to further increase the rate of 

hydrolysis and substrate scope of the new enzyme, showing that not only substrate 

preference can be altered, but also enzyme chemistry can indeed be transformed 

through enzyme engineering(33).  

While not widely used as a stand-alone technique, computational based methods 

have been employed to analyze large numbers of enzyme variants in silico in order to 

suggest functional combinations of active site residues to perform specific reactions 

(Figure 1-5). Additionally, major advantages of protein structure prediction and design 

algorithms, such as RosettaMatch(44), are the ability to identify and design catalytic sites 

in novel protein scaffolds and to introduce a desired function into locations where no 

function previously existed. The new enzyme possessing this designed activity can then 

serve as a progenitor for directed evolution to further optimize the designed function. For 

example, RosettaMatch was used to design a series of enzymes capable of catalyzing a 

retro-aldol cleavage of 4-hydroxy-4-(6-methoxy-2-naphthyl)-2-butanone (commonly 

called methodol) using a Schiff base mechanism(45) that was further evolved to increase 

activity(46) and subsequently lead to an enzyme variant with a completely reconstructed 

active site. The computationally designed catalytic lysine residue was relocated through 

random mutagenesis to a new and unpredicted position within the binding pocket 

resulting in >4,400-fold increased specific activity, nearing the catalytic efficiency of 

some natural enzymes(47).  
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Furthermore, this same protein prediction tool has even been used to engineer 

non-natural enzymatic reactions. RosettaMatch was used to design a series of active 

sites on a number of scaffolds to catalyze a Kemp elimination, with several enzymes 

showing various degrees of detectable activity(48). One candidate was further engineered 

through random mutagenesis and gene shuffling, resulting in a variant with >200-fold 

increased catalytic efficiency(49). Similarly, RosettaMatch was also used to develop a 

Diels-Alderase scaffold that catalyzed the stereoselective cycloaddition of 

4-carboxybenzyl trans-1,3-butadiene-1-carbamate and N,N-dimethylacrylamide. Iterative 

saturation mutagenesis of residues adjacent to those responsible for activating the 

substrates increased activity up to 100-fold(50). 

 

Repurposing mutant libraries for new targets 

With a large variety of methods available for use in directed evolution, it is not 

surprising that many enzyme engineering efforts utilize a combination of methods over 

 

Figure 1-5. Reactions performed by computationally designed enzymes. Adapted from 

Nannemann et al.(18).  
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several rounds of evolution to meet the goals of each particular project(18). In doing so, 

the large libraries of enzyme variants created to improve activity on a specific substrate 

may also be useful in a second enzyme engineering campaign for a new substrate. 

Taking advantage of the available large sequence diversity, these variants may serve as 

an initial progenitor library to identify a template enzyme for the new reaction. A series of 

ketoreductase enzymes were evolved in this way by Codexis, Inc. to catalyze the 

asymmetric reduction of ketones to chiral alcohols in a variety of pharmaceutical 

intermediates(1, 51). Using a ketoreductase from Lactobacillus kefir as the template, a 

library of enzyme variants was first generated through random mutagenesis, gene 

shuffling and ProSAR analysis in an effort to increase enantioselectivity and productivity 

of the enzyme for reduction of tetrahydrothiophene-3-one to 

(R)-tetrahydrothiophene-3-ol, an intermediate in sulopenem-type β-lactam antibiotics(52) 

(Figure 1-6). One of the ketoreductase variants from this library became the starting 

point for evolving activity for production of (S)-1-(2,6-dichloro-3-fluorophenyl)-ethanol, a 

 

Figure 1-6. Series of engineered ketoreductases. For each of the reactions, the original 

template for engineering was generated during evolution for a different substrate in a 

previous directed evolution experiment. 
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raw material for production of crizotinib (Xalkori®), from the ketone substrate(1). Similarly, 

one of the enzymes of this library was used as a progenitor for engineering activity for 

production of a montelukast (Singulair®) intermediate(53), during which time a starting 

point for evolution of a duloxetine (Cymbalta®) intermediate ketoreductase was 

identified(1). In each of these cases, enzyme evolution was facilitated by using a 

non-natural progenitor enzyme that had increased stability for one set of process 

conditions and therefore accelerated the optimization process for the new substrate(1).  

In a similar progression of enzyme engineering, Arnold and coworkers 

engineered a lineage of cytochrome P450 variants capable of converting alkanes of 

differing lengths to the corresponding alcohols using the substrate walking approach. A 

medium chain (C12-C18) fatty acid monooxygenase from Bacillus megaterium was used 

as the progenitor to evolve a new regioselective activity for the oxidation of octane to 

n-octanol(54). The final variant from this study displayed hydroxylation activity on shorter 

chain alkanes down to propane, and was further evolved to enhance activity on this 

small hydrocarbon over several generations, successfully creating an extremely efficient 

propane monooxygenase(55, 56). Eventually, a variant from this series was also evolved to 

produce ethanol by direct oxidation of ethane, providing an alternative method of 

producing this biofuel from petrochemical feedstocks(57). 

In another impressive series, Turner and coworkers engineered a “toolbox” of 

Aspergillus niger monoamine oxidase variants for the production of enantiomerically 

pure chiral amines on a diverse range of racemic amine substrates(58) (Figure 1-7). 

Directed evolution initially began to develop variants capable of selectively oxidizing a 

variety of rather simple primary, secondary and some tertiary amines(31, 59, 60). Coupling 

this catalysis with a nonselective chemical reduction enables the deracemization of 

these amine substrates through kinetic resolution. More recent evolution of these 

enzyme variants targeting residues in the active site and substrate channel has 



20 
 

expanded the substrate scope in several new variants capable of oxidizing significantly 

larger and more substituted complex amines(58, 61, 62). Several of the chiral amine 

products that can now be accessed through these engineered monoamine oxidase 

enzymes are alkaloid natural products possessing interesting biological activities and 

intermediates for the synthesis of a variety of active pharmaceutical ingredients. 

 

Pathway Construction 

 Biosynthetic pathways have the capability of increasing the complexity of 

enzymatically produced compounds in comparison to single enzyme biocatalytic 

reactions(63). However, metabolic flux through natural pathways has been optimized 

through years of evolution to meet the minimal production requirements enabling 

organisms to grow and survive in a large variety of environmental conditions. Natural 

feedback inhibition mechanisms have evolved along with the pathway to regulate flux to 

maintain the concentration of pathway intermediates and final products in a narrow 

range to avoid toxicity(64). In addition to preventing cytotoxic levels of certain metabolites, 

regulation also precludes pathways from diverting an unnecessary amount of resources 

 

Figure 1-7. Toolbox of monoamine oxidase variants and substrates accessible by each 

variant. Adapted from Ghislieri et al.(58). 
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to one particular direction at the expense of others. While all of these traits are 

necessary for growth and healthy cell homeostasis, the associated restrictions limit the 

productivity of a pathway intended to be used for large scale production of compounds. 

In pathway engineering, the goal is to maximize production of the target compound 

rather than meet a certain metabolic need and these limitations must be circumvented 

for useful implementation.  

Constructed biosynthetic pathways can be deemed ‘integrated’, ‘hosted’ or a 

combination of both in reference to how the pathway precursors are supplied(65). 

Integrated biosynthetic pathways consume only natural metabolites produced through 

normal metabolism in the cell and can therefore be generated through 

biotransformations during fermentation of inexpensive and complex feedstocks. To 

contrast, hosted pathways are those where the host organism is only used for 

overexpression of the biosynthetic enzymes, and the necessary substrates are 

separately generated or obtained from commercial sources and added to the bioreactor 

for biocatalytic conversion. These pathways may be more applicable for production of 

completely non-natural compounds from non-natural substrates since the precursors 

would not be produced from central metabolism. In an approach that combines these 

two themes, some of the necessary substrates are natural cellular metabolites while 

others are added exogenously. 

 A classic approach to increase compound production is through metabolic 

engineering of the naturally producing organism. In this strategy, enzymes are either 

deliberately overexpressed to increase the levels of pathway precursors or knocked out 

to decrease consumption of intermediates by divergent metabolic pathways (Figure 

1-8a). Examples of this innate biosynthesis of the natural product include production of 

β-lactams and other antibiotics(66, 67) as well as naturally occurring amino acids(68, 69). 

Although this method has a proven success record for a large variety of compounds(70), 
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not all producing organisms and natural products are amenable to these strategies of 

improving innate biosynthetic production. In some cases, the naturally producing 

organism may not be cooperative to genetic manipulation, culturing in a laboratory 

setting or tolerating up-regulated expression of biosynthetic enzymes and therefore other 

strategies must be employed. 

 Instead, an often used approach is to move the pathway genes into a more 

readily culturable and genetically malleable heterologous host to optimize production 

(Figure 1-8b). In this non-innate biosynthesis strategy, biosynthetic genes can be 

separated from the inherent regulatory mechanisms that control metabolic flux in the 

original organism resulting in increased production of the natural products(71). A recent 

application of this method is in the production of polyhydroxybutyrate in Escherichia coli 

expressing several genes from Cupriavidus necator(72). Heterologous expression of three 

biosynthetic genes placed under an inducible promoter permitted accumulation of 

polyhydroxybutyrate up to 85% of dry cell weight in minimal media, which is comparable 

to the 90% production observed in the native host. Transfer of the pathway to E. coli, 

however, enabled production of the biopolymer in a much faster growing host organism 

that could be lysed more easily for faster and more efficient compound isolation(73). 

Similar to the limitations of metabolic engineering for innate biosynthesis, this 

heterologous or non-innate biosynthesis method also has unpredictable challenges that 

may result in low production titers in the new organism. Poor performance may be the 

result of disproportionate expression or activity of biosynthetic enzymes, suboptimal 

levels of pathway precursors or required cofactors, formation of toxic intermediates or 

products, overall metabolic burden on the host cell or a combination of these and other 

factors(74). Genes transferred from one organism to another are often found to be 

functionally expressed at lower levels due to either different codon bias in the 

heterologous host or consolidation of enzyme to inclusion bodies of insoluble protein. In 
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either case, the result is significantly lower enzymatic activity and, therefore, reduced 

total product formation. A synthetic version of the gene with codon usage optimized for 

the bias of the new organism is a commonly used strategy to improve expression of 

these heterologous genes(75) and fusion of the enzyme to maltose binding protein 

(MBP)(76), glutathione S-transferase (GST)(77), thioredoxin(78) or small ubiquitin-like 

modifier (SUMO)(79) can also aid in improving soluble expression. Additionally, 

production of the biosynthetic pathway may be limited by a single bottleneck enzyme 

that exhibits low activity or expression relative to the other enzymes. While low 

expression can be resolved through gene optimization, low activity of the enzyme may 

be corrected through other methods. 

 

Figure 1-8. Pathway construction strategies. Natural enzymes (En) are collected from 

one or multiple organisms (ovals on left) to create biosynthetic pathways in (a) an 

engineered native producer (beige oval on right) or (b-e) heterologous hosts (green 

ovals on right). Natural substrates are indicated by letters A, B, C, D, F. Engineered 

enzymes (εn) and non-natural substrates or products are noted as greek letters α, β, γ, δ, 

ζ. Adapted from Martin et al.(80). 
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 The more common application of heterologous pathway expression involves the 

combination of genes from multiple source organisms. Often when a biosynthetic 

enzyme, or particular section of the pathway, shows limited activity in a heterologous 

host it can be replaced with a similar enzyme from a different organism to create a more 

productive combined pathway (Figure 1-8c). Demonstration of this pathway construction 

method is epitomized through the assembly of biosynthetic pathways for production of 

precursors to the antimalarial drug artemisinin by the Keasling group, where genes for 

precursor and secondary metabolite production were isolated from three organisms and 

heterologously express in a separate host organism (Figure 1-9). Initial production of the 

isoprenoid amorphadiene in E. coli was first demonstrated after simultaneous 

heterologous expression of the mevalonate-dependent isoprenoid precursor pathway 

from Saccharomyces cerevisiae with the amorphadiene synthase gene from Artemisia 

annua(81). Use of this pathway created a larger pool of isopentenyl pyrophosphate and 

 

Figure 1-9. Heterologous construction of artemisinic acid biosynthetic pathway. Arrows 

indicate enzymatic steps between indicated pathway intermediates and products and are 

color coded to the source organism: E. coli (blue), S. cerevisiae (green), S. aureus (red), 

and Artemisia annua (purple). Chemical synthesis steps to produce artemisinin are 

indicated by orange arrows. 
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dimethylallyl pyrophosphate precursors than the host-provided mevalonate-independent, 

or deoxyxylulose 5-phosphate, pathway due to metabolic regulations in the native host. 

This larger precursor pool led to improved production of isoprenoid compounds, such as 

amorphadiene via the co-expressed amorphadiene synthase. Yeast strain engineering, 

through upregulating expression of genes involved in precursor production and 

preventing substrate flux through divergent isoprenoid pathways, further increased yields 

of amorphadiene. Addition of a cytochrome P450 monoxygenase isolated from the 

native producer A. annua performs the three step oxidation to allow direct production of 

artemisinic acid, a later stage biosynthetic intermediate of artemisinin, at 100 mg/L(82). 

Most recently, production of artemisinic acid was vastly enhanced via additional pathway 

optimization and coexpression of the cognate cytochrome P450 reductase, an alcohol 

dehydrogenase and the artemisinic aldehyde dehydrogenase from A. annua with the 

optimized S. cerevisiae strain to yield 25 g/L artemisinic acid, a production level possibly 

high enough to allow industrial scale preparation of the antimalarial drug artemisinin after 

efficient chemical conversion to the active ingredient(83). Likewise, a similar use of 

heterologous expression and host metabolic engineering was used to create E. coli 

capable of producing taxadiene, the first committed intermediate in production of the 

anticancer drug paclitaxel first isolated from the Pacific yew tree Taxus brevifolia(84). 

 To extend biosynthetic production to a wider variety of products and applications, 

existing natural biosynthetic pathways can be hijacked to produce natural product 

analogs or other non-natural products. General strategies for production in these 

methods typically exploit promiscuous properties of enzymes to catalyze reactions on 

non-natural substrates (creating parallel pathways) or are gained through the addition 

and/or subtraction of tailoring enzymes to create branches from the typical biosynthetic 

pathway(80, 85) (Figure 1-8d). For example, novel polyhydroxyalkanoates containing 

thioether linkages in the side chains were produced after feeding propylthiooctanoic acid 
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or propylthiohexanoic acid to a polyhydroxyalkanoate synthase knockout strain of 

Cupriavidus necator heterologously expressing a broadly specific polyhydroxyalkanoate 

synthase from Pseudomonas mendocina(86). Additionally, naturally produced analogs of 

macbecin were produced after manipulating the gene cluster responsible for producing 

the natural product, thereby producing a large variety of macbecin analogs with some 

still retaining a high level of activity as Hsp90 inhibitors(87). 

 Many industrially useful compounds cannot be created through known 

biochemical routes, creating the need for the ability to design non-natural metabolic 

pathways. Merging the approaches of combinatorial pathway construction and use of 

promiscuous enzymes for diverse production creates a new strategy of de novo pathway 

design. In this scheme, a series of unrelated enzymes is proposed to form a non-natural 

pathway for production of a valuable compound (Figure 1-8e). At a conceptual level, this 

eliminates the necessity of relying on the predetermined natural pathways observed in 

organisms. Instead, de novo pathway design permits the organization of enzymes into 

new biosynthetic pathways not found in nature, capitalizing on enzyme promiscuity and 

the substantial diversity of enzymes and enzymatic reactions to establish biosynthetic 

pathways(85). Such schemes can be utilized to create a more manageable biosynthetic 

pathway (i.e., a shorter, more direct pathway or a replacement for a pathway that is not 

easily heterologously expressed) for natural products, but can also be used to design 

pathways for the production of non-natural products for which a natural biosynthetic 

pathway does not exist(80). As a replacement for a more circuitous but natural metabolic 

route, Moon et al. constructed a synthetic pathway for production of glucaric acid from 

glucose in E. coli, combining five unrelated enzymes from three source organisms(88). 

This de novo pathway is significantly shorter than the 10 step pathway that converts 

glucose or galactose to glucaric acid observed in mammals, and therefore provides a 

more direct production route to this value-added chemical.  
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 Despite the potential of these de novo pathways to allow biosynthetic production 

of a seemingly immense number of compounds, only two cases exist for their use in 

biosynthesis of molecules not found in nature (Figure 1-10). The first example was by 

Frost and coworkers, where dehydrogenase, dehydratase and decarboxylase enzymes 

from Pseudomonas fragi, Pseudomonas putida and E. coli were combined in order to 

generate D- and L-1,2,4-butanetriol from D-xylose or L-arabinose, respectively(89). This 

non-natural polyol serves as a precursor for D, L-1,2,4-butanetriol trinitrate, a more stable 

replacement for nitroglycerin-based explosives. The second case provides production of 

1,4-butanediol, a high volume commodity chemical used to manufacture polymers, from 

 

Figure 1-10. De novo pathways for production of non-natural products. (a) D- and 

L-1,2,4-butanetriol are produced from D-xylose and L-arabinose, respectively. (b) 

1,4-butanediol is generated from citric acid cycle intermediates succinate and 

α-ketoglutarate. Enzymes are indicated by letters or numbers. a: D-xylose 

dehydrogenase (P. fragi), a’: L-arabinoate dehydrogenase (P. fragi), b: D-xylonate 

dehydratase (E. coli), b’: L-arabinoate dehydratase (P. fragi), c: benzylformate 

decarboxylase (P. putida), d: dehydrogenase. 1: α-ketoglutarate decarboxylase, 2: 

succinyl-CoA synthetase, 3: CoA-dependent succinate semialdehyde dehydrogenase, 4: 

4-hydroxybutyrate dehydrogenase, 5: 4-hydroxybutyryl-CoA transferase, 6: 

4-hydroxybutyryl-CoA reductase, 7: alcohol dehydrogenase. Figures adapted from Niu et 

al.(89) and Yim et al.(90). 
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a variety of pure and mixed sugar sources derived from biomass(90). In this work, 

potential biosynthetic pathways were computationally predicted for production of 

1,4-butanediol from E coli central metabolites, and then evaluated and ranked based on 

a number of factors including theoretical yield, pathway steps and thermodynamic 

favorability. The final implemented pathway directed carbon flux to produce succinyl 

semialdehyde, which was sequentially reduced over several steps to yield the desired 

1,4-butanediol in a yield of 18 g/L. While each of these studies employed a combination 

of wild-type enzymes from the host organism and heterologous sources for production of 

these non-natural polyol compounds, these examples demonstrate the vastly different 

biosynthetic possibilities available via de novo pathway design. Completely different 

synthetic schemes were proven to be quite successful for relatively efficient production 

of two very similar compounds, differing only by the presence or absence of the C2 

hydroxyl group. 

While the majority of the pathway construction examples provided above 

involved recruitment of natural enzymes from either one or multiple source organisms to 

meet the activity needs of the pathway, intrinsic characteristics of some natural enzymes 

that limit pathway production titers—such as creating a bottleneck in pathway flux, low 

activity on non-natural substrates, low production of non-natural compounds or formation 

undesirable byproducts—may be unavoidable for wild-type enzymes. For this reason, 

another beneficial and increasingly successful option is improving enzymatic activity 

through enzyme engineering. This approach can be applied to create custom-made 

enzymes with individually tailored traits to meet specific needs where naturally occurring 

enzymes are insufficient for providing the desired activity(80).  

For example, Ran and Frost engineered 2-keto-3-deoxy-6-phosphogalactonate 

aldolase for altered substrate selectivity as a way to circumvent a bottleneck in the 

shikimate biosynthetic pathway(91). The evolved enzyme catalyzes the aldol 



29 
 

condensation of pyruvate and D-erythrose 4-phosphate to form 

3deoxy-D-arabino-heptulosonic acid 7-phosphate (DHAP), which is naturally produced 

by DHAP synthase from phosphoenolpyruvate and D-erythrose 4-phosphate. This 

change in substrate selection to an abundant metabolite removes the dependence on 

phosphoenolpyruvate availability, which is limited due to competition between multiple 

metabolic pathways, allowing production of the downstream metabolite 

3-dehydroshikimic acid in yields up to 19 g/L. This compound is the direct precursor to 

shikimic acid which can be used to produce the antiinfluenza drug Tamiflu, among other 

chemicals of commercial interest.  

The addition of engineered enzymes into existing biosynthetic pathways can also 

expand production capabilities in these parallel pathways to form products for which no 

naturally occurring biosynthetic route exists (Figure 1-8d). Heterologous expression of 

Bacillus subtilis threonine dehydratase and a glutamate dehydrogenase evolved for 

production of L-homoalanine from 2-ketobutyrate permitted the biosynthetic production 

of this pharmaceutically relevant non-natural amino acid in a threonine overproducing 

strain of E. coli(92). Similarly, the natural metabolic pathway responsible for producing 

branched-chain amino acids was directed through an evolved 2-isopropylmalate 

synthase and several downstream enzymes engineered for altered substrate specificity 

to produce 3-methyl-1-pentanol and other novel long chain alcohols via an engineered 

non-natural metabolic pathway(93). Related work from the same lab resulted in the 

production of a wider variety of alcohols via reductions of naturally occuring α-ketoacids 

through the Ehrlich pathway(94). In both of these highlighted cases, natural biosynthetic 

pathways were extended using engineered enzymes in order to produce non-natural 

products. 

To date, there is only one instance where multiple engineered enzymes have 

been concatenated into a de novo biosynthetic pathway for production of a non-natural 
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molecule. The halohydrin dehalogenase previously mentioned that was evolved for 

production of an intermediate of the atorvastatin side chain was used in tandem with an 

engineered ketoreductase and glucose dehydrogenase to create a two-step, three 

enzyme biocatalytic system(95) (Figure 1-11). Each of these three enzymes have been 

engineered for activity on either a new substrate or in new reaction conditions to fit the 

required process parameters. The first step involves the reduction of 

ethyl-4-chloroacetoacetate by the ketoreductase to yield the 

(S)-ethyl-4-chloro-3-hydroxybutyrate product. The presence of glucose and glucose 

dehydrogenase in the reaction allows for in situ regeneration of the NADPH cofactor 

required for ketoreductase activity. Finally, the engineered halohydrin dehalogenase 

catalyzes the replacement of the chloro substituent with a cyano group to provide the 

desired ethyl (R)-4-cyano-3-hydroxybutyrate. Implementation of this biosynthetic 

pathway on large scale in vitro reactions has allowed the production of this intermediate 

at a rate of >100 tons per year(1). 

 

 

Figure 1-11. Production of atorvastatin side chain intermediate 

(R)-4-cyano-3-hydroxybutyrate through an engineered de novo non-natural biosynthetic 

pathway. The semisynthetic pathway continues through multiple chemical and one 

biocatalytic step to produce the full side chain for production of Atorvastatin. 
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Theories of Biosynthetic Pathway Evolution 

 Despite the individual successes of pathway engineering and enzyme evolution 

to produce a large variety of valuable products, de novo pathway design methods and 

enzyme engineering techniques must be combined in order to gain access a greater 

diversity of compounds and fully capitalize on the synthetic potential of biological 

systems. This type of strategy would eliminate the dependence on naturally occurring 

pathways and can even remove the limitation to naturally occurring substrates to enable 

the design of an entirely new biosynthetic route for production of either natural or 

non-natural compounds. However, the major obstacles in delineating a non-natural 

biosynthetic pathway is determining a reasonable arrangement of starting material, 

biotransformations and intermediates that enable the production of the desired 

compound.  

Organization of data collected on metabolic pathways and individual enzymes 

from functional activity assays and genome sequencing into databases such as 

Swiss-Prot(96), BRENDA(97), KEGG(98) and MetaCyc(99) provide a large pool of information 

on natural enzymes that can be used for pathway construction, including details on 

biotransformations that the enzymes can catalyze. The massive amount of enzyme 

characterization and genome sequencing data collected has allowed researchers to 

develop algorithms in an effort to computationally predict sequential transformations to 

propose biosynthetic pathways for a particular molecule, such as the Biochemical 

Network Integrated Computational Explorer (BNICE)(100), the Pathway Prediction System 

of the University of Minnesota Biocatalysis and Biodegradation Database (UM-BBD)(101), 

Retro-Biosynthesis Tool (ReBiT)(85) and DESHARKY(102) along with many other recently 

reviewed computational pathway design tools(103). Essentially, these prediction tools use 

specifically defined biotransformation guidelines based on assigned enzyme 

classification number and/or catalyzed reaction (i.e. functional group transformation) to 
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suggest a variety of metabolic routes connecting two compounds. Pathways can be 

ranked on biosynthetic potential based on a series of criteria including pathway length, 

thermodynamic favorability, host compatibility and predicted flux to name a few. While 

many of these pathway design tools have high potential for facilitating biosynthetic 

pathway design and engineering, unfortunately their regular implementation and success 

has been stifled by the inherent complexity of biological systems(104). Additionally, many 

of these tools are limited to predictions involving known naturally occurring molecules 

(i.e. central metabolism) and/or xenobiotic degradation pathways(105), and are therefore 

less than ideal for constructing de novo biosynthetic pathways to produce non-natural 

compounds. A potentially useful alternative strategy for designing a new de novo 

biosynthetic pathway may be based on one of the multiple hypotheses described for 

natural pathway evolution, some of which are described below. In theory, researchers 

can attempt to construct a de novo non-natural biosynthetic pathway through mimicking 

one of these proposed process, or through combining aspects of the different 

hypotheses for early natural pathway evolution.  

Although the theories on pathway evolution have several organizational ideas 

that separate them into unique models, all appear to have many fundamental aspects in 

common. Each models presupposes a specific set of environmental conditions, primarily 

the presence and availability of particular metabolic compounds, which form the basis of 

the individual theories. The common feature of each pathway evolution theory is the 

widely accepted mechanism of individual enzyme recruitment as the result of a gene 

duplication event(106) followed by functional divergence through gradual change in 

substrate specificity through a process termed neofunctionalization(107). Originally 

outlined by Whaley in 1969(108) and later fully developed by Ycas(109) and Jensen(110) into 

what is known as the patchwork hypothesis, the small genome of an early organism is 

expected to consist primarily of genes encoding enzymes with broad substrate 
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specificity, allowing reactivity on a wide range of different but related substrates. This 

central proposed characteristic of ancestral enzymes would provide a maximal range of 

catalytic capability within the cell with only a limited number of genes and required 

genome size(110). The low specificity of these enzymes creates a ‘biochemical leakiness’ 

that enables the production of new metabolites in low amounts, facilitating recruitment 

and eventual specialization for use in new pathways(110).  

In this patchwork process, the gene for one of these unspecialized promiscuous 

enzymes is duplicated within the genome, creating a second and potentially expendable 

copy. Rather than natural selection strictly encouraging the loss of the spare copy, if the 

side metabolites produced by this enzyme are advantageous, the duplicated gene with 

be selectively maintained to preserve the metabolic benefit(110). Slow and random 

accumulation of mutations within one of the duplicates could prove to be even more 

advantageous, eventually permitting a new predominant activity within the same original 

enzyme scaffold, and continued acquisition of mutations can generate a new specialized 

enzyme with higher substrate specificity that improves metabolic efficiency(108, 110) (Figure 

1-12). In this way, recruitment and specialization of multiple genes in a linear sequence 

are able to form a complete biosynthetic pathway that is metabolically beneficial to the 

organism. 

In terms of the directionality of constructing the series of enzymes into a 

pathway, there are formally two approaches: recruiting and incorporating enzymes into 

the pathway in the forward direction—that is, in the order of biosynthesis from precursor 

to final metabolite—or proceeding in the reverse direction, meaning opposite the 

direction of biosynthesis, from final product backwards to simple precursors. Each of 

these schemes have been proposed as models for natural biosynthetic pathway 

evolution. The Granick hypothesis suggests the development of biosynthetic pathways in 

the forward direction, toward the creation of complicated biological molecules for simple  
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precursors(112) (Figure 1-13, left). The rationale for this model is that simple compounds 

and metabolites likely predated the presence of complex products, and therefore the 

enzymes catalyzing reactions in the early stages of biosynthesis must have evolved 

before those catalyzing the later steps. In this model, each intermediate within the 

pathway is assumed to be beneficial to the cell in some capacity, as otherwise a 

 

Figure 1-12. The patchwork model of gene duplication and enzyme functional 

divergence. From one progenitor enzyme with a wide substrate scope (green), multiple 

specialized enzymes can be evolved through gene duplication and new specialization. 

Adapted from Fondi et al.(111).  
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selective pressure for maintaining or extending the pathway would not be present, and 

the simultaneous evolution of all enzymes to comprise the pathway is implausible(113).  

While the absolute requirement of beneficial intermediates has limited the 

widespread acceptance of the forward evolution model for anabolic biosynthetic 

pathways, it is duly plausible for catabolic pathways to enable an organism to gain more 

energy through the breakdown of complex molecules into simple products(114). Elements 

of this model have also been preserved in the shell hypothesis more recently proposed 

by Morowitz(115), in which layers of reaction networks with increasing complexity are built 

as shells extending outward from a central metabolic core of enzymatic reactions, 

describing the evolution of metabolism as a whole. Morowitz proposes the core series of 

reactions to be those within the reductive tricarboxylic acid cycle and argues that initially, 

in the very early stages of reactions, this metabolic cycle proceeded in the absence of 

enzymes. Also included in this central shell are the pathways of glycolysis and fatty acid 

biosynthesis.  

Expansion into each new metabolic shell in this model was the result of a novel 

gateway activity that allowed new biochemical reactions to be incorporated into the 

metabolic repertoire. These new activities are added to the outer shells so that the core 

metabolic elements do not change, therefore preserving the components of central 

metabolism. The proposed gateway from the central shell of the tricarboxylic acid cycle 

is the introduction of nitrogen through the conversion of keto acids to amino acids. 

Therefore, this second shell includes many of biosynthetic pathways that produce a 

majority of the naturally occurring amino acids. Stepping outward to the third shell is the 

result of incorporating sulfur into molecules, namely the amino acids cysteine and 

methionine. Access to the fourth shell is through gaining activities for ring closure 

reactions and production of nitrogen containing heterocycles, such as purines, 

pyrimidines and those found in cofactors. In this way, each layer is dependent on all 
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previous layers, and the impetus for evolution through expansion to new shells is 

through the production of a molecule that provides a benefit to catalysis in a more 

central shell(115).  

With the general delineation of the shells of metabolic pathways, certain themes 

can be described to characterize each level(115). The central shell is primarily concerned 

with energetics, producing an amphiphile for eventual use as an encapsulating device 

via membrane formation and finally, providing precursors to biosynthesis. The second 

shell initiates production of amino acids, allowing catalysis via the introduction of chirality 

to cellular metabolites, while incorporation of sulfur in the third shell introduces the basis 

 

Figure 1-13. Forward and retrograde pathway evolution schemes. Forward pathway 

evolution creates more complex molecules from simple precursors. Retrograde pathway 

evolution enables continued production of one complex molecule through extending the 

pathway precursor backward to simple intermediates. Adapted from Rison and 

Thorton(116).  
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for higher protein structures allowed by cysteine disulfide bonds and methionine 

initiation. The fourth shell allows production of molecules such as cofactors to aid 

catalysis in the lower shells in addition to creating nucleobases that are used in the later 

shells dealing with creating templates and providing coding mechanisms. 

The final model describing pathway evolution is for reverse, or retrograde, 

pathway evolution. The hypothesis of retrograde evolution was first explained by 

Horowitz in 1945, and suggests gene duplication and evolution of biosynthetic pathways 

in a step-wise manner in the reverse order to that of biosynthesis, meaning the last 

enzymatic reaction was the first to evolve, followed by the penultimate enzyme, and so 

on to the beginning of the pathway(117) (Figure 1-13, right). Central to this theory is the 

idea that distinct intermediates along the pathway cannot be assumed to provide any 

benefit to the organism and therefore do not provide a selective advantage. Instead, the 

individual reactions of a biosynthetic pathway are only valuable when viewed from the 

perspective of production of the final product, and therefore creation of the pathway is 

driven by improvements to continuously form this metabolite. 

For example, an organism is presumed to be heterotrophic for a particular 

compound, G (Figure 1-13, right). As the environmental supply of G decreases due to 

consumption by the organism, a metabolic strain is created. This strain can be alleviated 

through evolution of an enzyme that is able to produce G from available precursors, E 

and F. Any organism that has gained this ability through the generation of a mutant 

enzyme will have a selective growth advantage over other organisms, especially after 

the levels of G have been completely exhausted. Additionally, under these conditions, a 

mutation to revert back to the original genetic strain, those incapable of producing G 

from E and F, would prove to be lethal, ensuring that this new enzymatic activity is 

maintained and propagated to future generations. Eventually as one of these precursors, 

say compound F, becomes limiting for growth, another retro-extension of the pathway 
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would be gained through a second event of gene duplication and mutation that would 

allow production of F from precursors C and D. These retro-extensions can continue 

until the pathway is connected back to abundant compounds, such as A and B, possibly 

produced in primary metabolism, and in this process the selective pressure is placed on 

the capacity of enzyme evolution to continue metabolite production rather than the 

chance occurrence of novel activity gain(117). In this model, pathway intermediates are 

assumed to be readily available, either from a nutrient rich environment or possibly 

through side activities of endogenous enzymes. This comprises the main criticism of this 

model as many biosynthetic pathway intermediates are unstable due to chemical lability, 

so accumulation into a sufficiently large precursor pool is unlikely(107, 110). Therefore, the 

retrograde pathway evolution hypothesis may be limited to compounds that can be 

produced directly from molecules available in pre-biotic Earth, such as those resulting 

from Miller-Urey type experiments(118, 119). 

 

Pathway Design Through Bioretrosynthesis 

The pathway evolution schemes described above provide a number of 

hypothetical approaches that are available to use as inspiration for de novo construction 

of a non-natural biosynthetic pathway. In perhaps all cases, neofunctionalization via the 

patchwork hypothesis will be a predominant aspect of pathway engineering. Enzyme 

engineering and directed evolution are, by definition, processes for laboratory controlled 

enzyme recruitment through gene duplication and diversification that are analogous to 

those invoked as the basis of the patchwork model. The major difference is that the 

selection pressure for enzyme evolution in nature is organism survival, whereas in the 

laboratory setting the researcher defined quota for high yielding generation of a 

particular product is the mechanism by which suitable activity is judged.  
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The choice, then, in applying a proposed pathway evolution scheme for creation 

of a non-natural pathway is between the forward evolution or retrograde evolution 

hypotheses, as the shell model proposes a process of evolution for metabolism as a 

whole with forward evolution being the primarily force for individual pathway 

formation(115). Applying the forward evolution theme, directed evolution would begin with 

the enzyme catalyzing the first step of the pathway, continuing forward recruiting and 

evolving enzymatic activity step-by-step toward the end of the pathway (Figure 1-14, 

top). Similar to the caveat of forward evolution in a natural pathway in that all pathway 

intermediates must provide a selective advantage to the host, constructing a non-natural 

pathway in this manner would require the development some kind of activity assay for 

every individual enzymatic step in order to observe the appearance and/or improvement 

in the desired activity. As each biosynthetic step presumably performs a different kind of 

biotransformation on the substrate, a unique selection or screen would need to be 

developed to determine activity for each enzyme evolved in the pathway (Figure 1-14, 

gray boxes). Design of a robust and reliable assay can be quite time consuming and in 

some cases may ultimately be the rate determining step for analyzing a library of 

enzyme variants for improved activity, especially when several assays need be 

developed for construction of a non-natural biosynthetic pathway. Additionally, it is also 

often necessary to go back and reoptimize select enzymatic reactions within the 

pathway to optimal flux, balance concentration of intermediates and enzyme expression 

levels or remove feedback inhibition once downstream reactions have been 

concatenated to the biosynthetic sequence(120). 

The alternative is to apply the principles of retrograde evolution(117) to evolve the 

biosynthetic pathway starting with the product forming (ultimate) enzyme and progress in 

the reverse direction toward the beginning of the pathway. This process would entail 

recruiting and evolving appropriate enzymes to catalyze reactions beginning from 
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anticipated pathway intermediates (Figure 1-14, bottom). Laboratory application of this 

strategy has been termed ‘bioretrosynthesis’ and is proposed to be a potentially 

generally applicable approach for non-natural pathway evolution by screening enzymatic 

activity in increasingly tandem assays(105). Constructing a pathway in this way could 

allow a single, product forming assay to be used as the sole selection criterion for 

evolving the entire pathway (Figure 1-14, orange boxes), much like how a natural 

pathway would evolve for production of the beneficial final product in the Horowitz 

hypothesis(117). Theoretically, this may greatly simplify the assay design component 

associated with directed evolution experiments by allowing a single assay to be used for 

screening enzyme variant libraries at each evolved step. As an added benefit, selecting 

for final product formation in the tandem assays required in bioretrosynthesis may ease 

the eventual tuning of pathway flux as each biosynthetic enzyme is engineered for 

increased production in the presence of all downstream enzymes. This progression 

 

Figure 1-14. Pathway construction via forward and retrograde evolution schemes. Greek 

letters represent pathway substrates and products and enzymes are represented by the 

letter E. The order of evolution is indicated by the arrow and number colored the same 

as the corresponding enzyme at each step. Activity screening assays are indicated by 

gray and orange boxes. 
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begins to link the activities of each enzyme together as a biosynthetic unit and facilitates 

pathway optimization throughout the building process. Instead of combining individually 

optimized pieces, enzymatic activity is evolved via comparison to the activity of the 

product forming enzyme, and therefore must only be improved so that it is no longer the 

rate limiting step rather than reaching maximal activity levels. 

One key aspect of constructing a de novo biosynthetic pathway that is not 

encountered in the retrograde evolution of pathways in nature is that a deliberate series 

of biotransformations must be prearranged for conversion of a simple starting material to 

the desired final product, and is especially important for pathways utilizing non-natural 

substrates. Enzyme recruitment in a natural pathway relies on chance events of gene 

duplication and acquiring mutations in order to extend the pathway, however, these 

would not be sufficient for targeted high yielding production of compounds, especially 

when many would not provide a survival or growth benefit to the producing organism. 

Instead, following along with the inspiration from retrograde evolution, another element 

to bioretrosynthesis is the planning of a putative biosynthetic pathway in a strategy 

analogous to the conceptual approach of retrosynthesis used in synthetic organic 

chemistry(105, 121). In a process that may simplify the task of designing a new biosynthetic 

pathway, the large collection of known enzymatic transformations, rather than the body 

of known chemical transformations, is considered in order to propose individual 

biosynthetic steps. Beginning from the final product, the researcher proposes a 

precursor or set of precursors that can undergo a particular enzyme catalyzed 

biotransformation to yield the target compound. These precursors can also then be the 

subject of an additional bioretrosynthetic step through identifying precursors for the 

precursors via another enzymatic activity, and so on until an appropriate simple starting 

material for the biosynthetic pathway has been reached(105). 
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Application of bioretrosynthesis for construction of a de novo biosynthetic 

pathway has several requirements(105). Much like all directed evolution experiments, 

genes encoding potential progenitor enzymes for all steps of the pathway must be 

available. While this condition may be simple and rather obvious in nature, the 

consideration is made more complex when designing pathways catalyzing reactions on 

non-natural compounds. In many cases, a series of related enzymes from different 

genetic sources may need to be identified, collected and preliminarily tested for activity 

to determine a suitable progenitor enzyme for future engineering. Second, starting 

materials and intermediates must be readily available for use in assays. These materials 

may be of commercial or in-house synthetic origin, but as these compounds will likely 

not be generated initially at high yields during pathway evolution, stocks must be kept 

in-hand for screening and characterization of enzyme variants. The final major 

requirement is that of a robust, sensitive and reproducible assay for screening enzyme 

variant libraries. Assays employed should be capable of facilitating at least a medium 

throughput capacity and must be sensitive enough to detect low turnover and small 

increases in activity gained through evolution. Assay sensitivity also becomes a 

necessity as formation of the final product, and therefore detectable signal, may likely 

diminish as the tandem assays are extended into longer biosynthetic pathways.  

 

Bioretrosynthetic design of a dideoxyinosine biosynthetic pathway 

 A biosynthetic pathway for production of dideoxyinosine has been planned using 

the retrosynthetic aspect of the bioretrosynthesis strategy. Biotransformations were 

proposed for the non-natural pathway based on similarity of the non-natural product to 

natural molecules and known enzymatic reactions. The high similarity between 

dideoxyinosine and the naturally occurring nucleoside inosine allowed for potential 

enzymes and biosynthetic pathways to be identified based on the production routes of 
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the known nucleosides described in the BRENDA and KEGG databases. Multiple 

pathways of varying length and complexity can be proposed using these natural 

pathways as a model (Figure 1-15), and each of which will be described. 

 Nucleosides can be generated through two very different biosynthetic pathways. 

The de novo pathway enzymatically builds the nucleobase component step by step onto 

the activated sugar substrate phosphoribosyl pyrophosphate (PRPP) consuming amino 

acids, folate, ATP and CO2 to form the nucleotide. The produced mononucleotide can 

then be dephosphorylated to yield the nucleoside (Figure 1-15, blue arrows). Nucleoside 

production through the full de novo pathway consists of 13-15 enzymes for purines and 

9-14 enzymes for pyrimidines, making biosynthesis through this route is a very 

expensive task from the perspective of energy and metabolites required. Emulating this 

biosynthetic pathway for dideoxyinosine production beginning with a simple sugar 

precursor and continuing through the de novo route would take an extraordinary 

research effort. Production of non-natural nucleosides through this pathway may require 

the evolution of approximately a dozen sequential enzymes to complete the system. 

Primarily for this reason, following the de novo biosynthetic route is not a realistic option 

for production of a non-natural nucleoside analog. 

 Instead of proceeding through the entire de novo route, stepwise construction of 

the nucleobase can be circumvented by creating nucleosides or nucleotides through the 

nucleobase salvage pathway. Salvage enzymes exist so that an organism can reclaim 

high value sources of sugar and nucleobases(122), among other metabolites, from the 

environment as a way to bypass the biosynthesis process from scratch. In addition to the 

de novo pathway, PRPP is similarly a substrate for hypoxanthine phosphoribosyl 

transferase (HPRT) to generate inosine monophosphate through the addition of 

hypoxanthine. Again, the nucleotide formed in this way can yield the unphosphorylated 

nucleoside through the activity of a nucleotidase. Inosine can also be formed directly by 
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purine nucleoside phosphorylase (PNP) from ribose 1-phosphate and hypoxanthine. The 

potential dideoxysugar substrates for these enzymes, if used to produce dideoxyinosine, 

would be 5-phospho-2,3-dideoxyribose 1-pyrophosphate and dideoxyinosine 

monophosphate for the HPRT and nucleotidase reactions, respectively, or 

2,3-dideoxyribose 1-phosphate for PNP. Each of these three enzymes are very well 

 

Figure 1-15. Bioretrosynthetic analysis of inosine biosynthesis routes to identify potential 

dideoxyinosine biosynthetic pathways. Natural substrates and intermediates in inosine 

biosynthesis are indicated in the center, with corresponding dideoxy sugar substrates on 

the left. The series of substrates required for the chosen pathway consisting of 

ribokinase, phosphopentomutase and purine nucleoside phosphorylase (green arrows) 

are shown on the right. PNP: purine nucleoside phosphorylase, Hx: hypoxanthine, 

PRPPS: phosphoribosyl pyrophosphate synthetase, PPM: phosphopentomutase. 
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studied from both a biochemical and structural standpoint, which would be of great help 

in a subsequent directed evolution experiment for improving activity on the potential 

non-natural substrates. 

 Formation of the PRPP precursor, or the non-natural dideoxy sugar analog, could 

occur in a single or dual step process. PRPP can be formed directly from ribose 

5-phosphate in a one-step pyrophosphorylation reaction catalyzed by phosphoribosyl 

pyrophosphate synthetase (PRPPS). Additionally, PRPP can be produced through 

ribose 1,5-bisphosphate phosphokinase catalyzed phosphorylation of ribose 

1,5-bisphosphate, which is generated by phosphoribokinase from ribose 5-phosphate. 

While these three enzymes may be envisioned to catalyze similar reactions on the 

dideoxy substrates, not all may be very likely candidates. Ribose 1,5-bisphosphate 

phosphokinase and phosphoribokinase are very minimally studied enzymes, and only 

the former has been cloned for overexpression and characterization just relatively 

recently(123). PRPPS enzymes from several species, on the other hand, have been 

structurally and biochemically characterized, including activity on multiple substrates as 

well as determining the effects of mutagenesis at certain positions(124-126) and seem to be 

the more suitable candidate enzyme for production of PRPP through this pathway. The 

analogous non-natural substrates for these enzymes would be dideoxyribose 

5-phosphate for PRPPS and phosphoribokinase and dideoxyribose 1,5-bisphosphate for 

ribose 1,5-bisphosphate phosphokinase. 

 Although the previously mentioned phosphoribokinase can phosphorylate ribose 

5-phosphate at the C1 position, prior to my studies no enzyme is known to catalyze this 

reaction on ribose directly. The only enzyme known to perform a similar reaction is 

S-methyl-5-thioribose kinase, which phosphorylates the ribose-like substrate 

5-methylthioribose at the C1 hydroxyl group as part of the methionine salvage pathway 

in bacteria(127). However, this enzyme has not been shown to catalyze the similar 
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reaction with ribose, and as a result may require additional engineering to accept the 

differences in the 5-hydroxy sugar substrate as well as the removal of the hydroxyl 

groups at the C2 and C3 positions. Therefore, when planning the biosynthetic pathway 

prior to beginning enzyme evolution, the ribose 1-phosphate substrate for PNP could 

only be generated by phosphopentomutase (PPM) through isomerization of ribose 

5-phosphate. While very little structural data was available for PPM enzymes at the 

beginning of this project, activity on dideoxyribose 5-phosphate, the analogous 

non-natural substrate for production of dideoxyinosine, has been demonstrated in the 

homolog from Bacillus(128), making this a strong potential candidate for inclusion in the 

dideoxyinosine biosynthetic pathway.  

 The ribose 5-phosphate precursor that feeds into all of the described pathways is 

formed through phosphorylation of the abundant metabolite ribose by ribokinase. 

Ribokinase homologs from many organisms have been extensively characterized, and 

therefore provide a large knowledgebase to use as reference while planning and 

performing directed evolution experiments. For this enzyme, then, the desirable 

non-natural substrate for eventual production of dideoxyinosine would be the simple 

sugar analog 2,3-dideoxyribose, leading to production of dideoxyribose 5-phosphate. 

 Considering these multiple routes, the pathway progressing through PRPP via 

the nucleobase salvage system requires 4-5 enzymes to generate dideoxyinosine from 

dideoxyribose (Figure 1-15, blue and red arrows) while the pathway that utilizes PPM 

consists of only three enzymes (Figure 1-15, green arrows). This shorter, PPM-catalyzed 

route also requires only one equivalent of ATP, versus the 2-3 needed to reach PRPP, 

which is an important consideration for future use of the pathway either as a hosted 

biosynthetic pathway or in an in vitro setting, as meeting the necessary precursor supply 

can often be challenging. Additionally, as each of these enzymes catalyze reactions on 

ribosyl substrates, catalytic activity on any of the proposed dideoxyribosyl molecules 
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would presumably be quite low. For this reason, enzyme engineering is expected to be 

necessary for each enzyme to be used in the dideoxyinosine biosynthetic pathway in 

order to increase activity on the corresponding non-natural substrate. While improved 

methods in directed evolution have increased the number of apparent successes and 

applications of biocatalysis, there is still a certain level of risk associated with enzyme 

engineering in not meeting the desired goals. Following the shortest and most direct 

pathway to the final product that proceeds through well studied enzymes are strategies 

to minimize these risks. Therefore, the biosynthetic pathway consisting of ribokinase 

(RK), phosphopentomutase (PPM) and purine nucleoside phosphorylase (PNP) was 

selected as the most desirable route for production of dideoxyinosine from dideoxyribose 

(Figure 1-15, green arrows). In this pathway, RK will phosphorylate dideoxyribose to 

form dideoxyribose 5-phosphate. This compound is then isomerized by PPM to create 

dideoxyribose 1-phosphate. The biosynthetic pathway is completed though PNP 

catalyzed addition of hypoxanthine to dideoxyribose 1-phosphate to form the desired 

non-natural nucleoside analog dideoxyinosine.  

The sugar analog pathway precursor dideoxyribose can be chemically 

synthesized from glutamic acid in an extension of the procedure provided by Okabe et 

al.(129). Briefly, glutamic acid can be cyclized in the presence of NaNO2 under acidic 

conditions to provide (S)-γ-butyrolactone-γ-carboxylic acid. Cyclization under these 

conditions allows a retention of the stereochemistry at the gamma position due to double 

inversion, which is important for appropriate production of the dideoxy analog of 

D-ribose. Additionally, the very low cost of glutamic acid permits an economical option 

for synthesis of the substrate. A short sequence of reduction reactions on the carboxylic 

acid and the lactone moieties yield the final dideoxyribose substrate that can be 

introduced into the enzymatic portion of the proposed semisynthetic pathway (Figure 

1-16).  



48 
 

 

Bioretrosynthetic construction of dideoxyinosine biosynthetic pathway 

 The bioretrosynthesis strategy not only provides a retrosynthetic platform for 

planning and designing a biosynthetic pathway, but also borrows the theme of 

retrograde evolution(117) in that the pathway is constructed and optimized in reverse. 

Enzyme engineering for the non-natural substrates begins with the product forming 

enzyme, and then continues in a reverse step-wise manner toward the first enzyme in 

the pathway. Following this course, only one screening or selection method for the 

terminal enzyme activity is needed for evolving all enzymes within the biosynthetic 

pathway. In the proposed RK-PPM-PNP pathway, all assays will focus on activity of PNP 

in individual or tandem assays measuring the consumption/production of hypoxanthine 

or production of the final nucleoside (Figure 1-17).  

 To begin optimization, the wild-type human variant of PNP (hPNP) was 

engineered to catalyze the phosphorolysis of dideoxyinosine into dideoxyribose 

1-phosphate and hypoxanthine(130). After analyzing published cocrystal structures with 

the natural substrate and analogs, the active site residue Tyr88 was predicted to 

modulate selectivity for ribosyl substrates. Based on these structures, the computational 

prediction software RosettaLigand(131) was used to calculate binding energies of 

transition state complexes for inosine and dideoxyinosine in single mutants of hPNP at 

 

Figure 1-16. Proposed semi-synthetic route for production of dideoxyinosine. Glutamic 

acid is used to chemically synthesize the non-natural sugar analog dideoxyribose to 

serve as the biosynthetic pathway precursor. 
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position 88, and predicted a Tyr88Phe mutation to improve PNP activity on 

dideoxyinosine. Simultaneous biochemical characterization of the mutants verified 

Tyr88Phe as the most beneficial residue at the position, providing a 9-fold improvement 

in kcat and more than 2-fold decrease in KM. Directed evolution by random mutagenesis 

was then used over three rounds to further improve activity, yielding an enzyme with 

approximately 22-fold increased catalytic efficiency over the wild-type PNP and 36-fold 

increased activity in cell lysate(130).  

Having gained these large improvements in dideoxyinosine catalysis as the 

ultimate step of the pathway, the next phase of the pathway engineering is to evolve the 

penultimate enzyme, phosphopentomutase, to create the required dideoxyribose 

1-phosphate from a dideoxyribose 5-phosphate precursor. The final step of pathway 

construction would then be the engineering of the antepenultimate enzyme, ribokinase, 

to form dideoxyribose 5-phosphate from the sugar analog dideoxyribose in an equivalent 

reaction to the naturally catalyzed phosphorylation of ribose. Successful evolution of 

these three enzymes would create the first biosynthetic pathway for production of a 

nucleoside analog and would serve as a demonstration of the potential of 

bioretrosynthesis as a pathway construction and optimization paradigm. 

 

Figure 1-17. The single screen requirement of the bioretrosynthetic pathway 

construction strategy. Activity of each enzyme, PNP, PPM and RK can be determined 

through measuring activity of the terminal enzymatic step. 
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Dissertation Statement 

 While very few de novo biosynthetic pathways have been created for production 

of non-natural molecules, there is only one example where all biosynthetic enzymes 

were engineered for increased activity(95). These pathways are rare developments as 

there is often a great deal of difficulty in planning, constructing and optimizing the entire 

pathway by hand since no general methods exist to simplify the pathway construction 

process. The research in this dissertation focuses on developing a potentially widely 

applicable strategy for de novo design and construction of non-natural biosynthetic 

pathways and is demonstrated through the creation of a pathway for production of the 

nucleoside analog dideoxyinosine. 

A semi-synthetic pathway to produce dideoxyinosine consisting of a short 

chemical synthesis of the sugar analog dideoxyribose followed by a three enzyme 

biosynthetic sequence has been proposed using the principles of a bioretrosynthetic 

pathway design strategy. Application of a biosynthetic method for production of 

therapeutically useful nucleoside analog drugs from inexpensive starting materials has 

the potential to directly affect the cost of treatment, as a large percentage of treatment 

cost is associated with production of the nucleoside analog itself. Successful 

demonstration and extensive optimization of this biosynthetic pathway may provide a 

foundational process possessing economic advantages over the traditional chemical 

synthesis routes beginning with expensive natural nucleoside precursors, and may 

provide a more affordable and world-wide accessible treatment option. 

 Enzyme directed evolution is an essential aspect of many biocatalyst and 

biosynthetic pathway engineering studies, as turnover rates routinely need to be 

improved for application on a large scale. This is especially true when non-natural 

substrates and/or non-native reaction conditions must be used during the manufacturing 

process. Chapters II and III describe the directed evolution of phosphopentomutase 
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utilizing structure based targeted mutagenesis and whole gene random mutagenesis 

approaches, respectively, as methods to increase activity of the enzyme on the 

non-natural substrate dideoxyribose 5-phosphate. 

 Ribokinase is projected to be the leading candidate for the proposed reaction in 

the designed non-natural biosynthetic pathway to maintain continuity with natural 

nucleoside biosynthetic routes in this analogous pathway and also since ribose is a very 

similar natural metabolite to the non-natural substrate. However, it is equally possible 

that other sugar or small molecule kinase enzymes can fill this role in the proposed 

biosynthetic pathway for dideoxyinosine as phosphorylation of an alcohol group is a very 

common enzymatically catalyzed reaction in metabolism. For this reason, a panel of 

potential kinase progenitor enzymes was identified and screened for the desired activity 

and is presented in Chapter IV. 

 Chapter V describes the retrosynthetic construction of the biosynthetic pathway, 

comparing production of inosine and dideoxyinosine using either wild-type or evolved 

enzymes in vitro. The biosynthetic enzymes are formed into progressively longer tandem 

pathways leading to the demonstration of dideoxyinosine production through the full 

pathway beginning with dideoxyribose. Additionally, initial results in engineering 

ribokinase through site directed mutagenesis are presented. 

 The work presented in this dissertation demonstrates the ‘bioretrosynthesis’ 

strategy for de novo biosynthetic pathway construction and optimization through the 

creation of a biosynthetic pathway for the nucleoside analog drug dideoxyinosine. This 

method is a laboratory application of the theory of retrograde evolution for the creation of 

a non-natural pathway. With the main practical feature being the necessity of only one 

screening assay for evolution of all enzymes within the biosynthetic pathway, this 

approach can simplify the process of pathway evolution by greatly reducing the time and 
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effort required for assay design and should ultimately provide a widely applicable 

strategy for creating de novo biosynthetic pathways to produce non-natural compounds.  
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Chapter II 

 

TARGETED SATURATION MUTAGENESIS OF BACILLUS CEREUS 

PHOSPHOPENTOMUTASE ACTIVE SITE RESIDUES 

 

Introduction 

 Nucleoside analog drugs have been and continue to be prevalent forms of 

treatment with over 30 compounds having received FDA approval for use as antivirals or 

antiretrovirals (most notably in drug combination regimens for HIV treatment(1)), and are 

additionally proving their worth as cancer therapeutics(2, 3). These drugs, however, are 

frequently quite expensive to manufacture chemically, where in some cases expenses of 

producing the active ingredient reach up to 99% of direct costs(4). The cost applied to 

synthesis of these compounds is commonly a result of expensive starting materials and 

low yield due to significant formation of side products.  

Chemical synthesis of nucleoside analogs often proceeds through a sugar 

intermediate that is activated at the C1 position by means of a halide or acetate leaving 

group in a racemic mixture. Due to this lack of stereocontrol, subsequent addition of a 

nucleobase creates an anomeric mixture of products leading to a loss of material due to 

improper addition. This is compounded by the lack of nucleobase regioselectivity, where 

a variety of structural isomers may be formed depending on the specific nitrogen on 

nucleobase that takes part in the nucleophilic addition. Instead, a biocatalytic approach 

could offer a more selective method of preparing the activated sugar or sugar analog 

and also may be used to catalyze the stereospecific addition of a nucleobase through 

synthesis in a tandem enzymatic system. As a large percentage of the therapeutic price 

of these drugs is tied to synthesis of the active ingredient, a more efficient and 

economical approach to synthesizing pharmaceutically relevant nucleoside analogs 
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could immediately alleviate some of these production costs by providing a direct route to 

a stereospecific product with fewer side reactions and wasteful byproducts. 

We are interested in developing a biosynthetic process as a possible 

complementary method for producing nucleoside analogs, specifically 

2’,3’-dideoxyinosine (ddI, didanosine), a nucleoside analog reverse transcriptase 

inhibitor (NRTI) prescribed as treatment for HIV. Dideoxyinosine is considered a 

representative compound in the NRTI class of nucleoside analog therapeutics, as most 

members can be classified as dideoxynucleosides(1). For this reason, a biosynthetic 

process to create dideoxyinosine may have broader applications for enzymatic synthesis 

of other pharmaceutically relevant nucleoside analogs as well.  

Our approach to designing this biocatalytic route to dideoxyinosine, specifically 

an engineered multi-enzyme biosynthetic pathway, has been termed 

‘bioretrosynthesis’(5) and has been outlined in greater detail in Chapter I. In short, this 

pathway construction paradigm is to optimize enzymes for activity on non-natural 

substrates in the reverse order of biosynthesis, starting with the product forming 

enzyme, and selecting for final product formation. Applying this approach, our lab has 

previously engineered a human purine nucleoside phosphorylase (hPNP) variant that 

demonstrated 22-fold improved catalytic efficiency in the phosphorolysis of 

dideoxyinosine to the corresponding dideoxyribose 1-phosphate(6). This enzyme, 

although optimized for the degradation of dideoxyinosine, was also improved in the 

direction of dideoxyinosine synthesis from dideoxyribose 1-phosphate and hypoxanthine, 

and could therefore be used as a foundation to identify and begin evolving an enzyme 

capable of producing dideoxyribose 1-phosphate. 

A prerequisite to the enzyme engineering process is the identification of a 

progenitor enzyme that performs the desired transformation to use as an initial template 

for mutagenesis. Although not absolutely necessary, the progenitor should preferably 
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also show some promiscuous activity on the substrate of interest. The likelihood of 

success increases if the goal of enzyme evolution is to improve activity on the target 

substrate rather than impart a completely new capability(7). A new biocatalyst with 

improved properties can then be generated from the existing enzyme through 

complementary methods in targeted and random mutagenesis. With the aid of structural 

data, active site residues can be rationally selected for targeted mutagenesis in an effort 

to modify enzyme selectivity for a desired substrate. Whole gene random mutagenesis 

through directed evolution can then be applied to discover beneficial mutations in an 

untargeted and more impartial manner.  

Phosphopentomutases (PPMs) catalyze the interconversion of α-D-ribose 

5-phosphate (ribose 5-phosphate) and α-D-ribose 1-phosphate (ribose 1-phosphate), 

creating a metabolic link between glycolysis and RNA metabolism(8). In this pathway, 

ribose 1-phosphate serves as a precursor for nucleoside biosynthesis, accepting a 

nucleobase addition at the activated C1 position by a purine or pyrimidine nucleoside 

phosphorylase to form the respective nucleosides. The biocatalytic potential of PPM and 

nucleoside phosphorylase can be envisioned in a parallel series of reactions with other 

sugars or sugar analogs, taking advantage of the activation step performed by PPM in 

order to form nucleoside analogs, and has indeed been utilized in some biocatalysis 

studies(9-14). 

As a biosynthetic retro-extension from the previously engineered PNP(6), we have 

endeavored to evolve a PPM variant for use in this non-natural biosynthetic pathway 

(Figure 2-1). In a tandem biocatalytic reaction to produce dideoxyinosine, the initial 

substrate for PPM would be 2,3-dideoxyribose 5-phosphate (dideoxyribose 

5-phosphate). This would undergo an isomerization by PPM to form dideoxyribose 

1-phosphate which then becomes a substrate for the previously evolved hPNP variant to 

catalyze the addition of hypoxanthine and form dideoxyinosine through displacing the 
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phosphate group. As dideoxyribose 5-phosphate is not a natural substrate for PPM the 

enzyme must be engineered to increase the level of desired activity.  

Phosphopentomutase from Bacillus cereus was identified as a suitable 

progenitor enzyme for evolving activity on dideoxyribose 5-phosphate. As a preface to 

beginning evolution of PPM, we sought to further characterize this enzyme. Sequence 

and structural analysis classifies prokaryotic PPMs as members of the alkaline 

phosphatase superfamily of metalloenzymes, which includes cofactor-independent 

phosphoglycerate mutase, nucleotide pyrophosphatase/phosphodiesterase, 

phosphatases and sulfatases(15-17). While most enzymes of this class function as 

hydrolases, PPM(18) and the cofactor-independent phosphoglycerate mutase(19, 20) 

catalyze phosphomutase reactions. PPM, however, has recently been characterized(21) 

as entering the general alkaline phosphatase mechanism at an altered point to undergo 

a unique intermolecular phosphate transfer reaction rather than an intramolecular 

phosphate transfer analogous to that observed in the cofactor-independent 

phosphoglycerate mutase(19, 20). In this mechanism, active PPM is phosphorylated at 

Thr85, and during catalysis creates ribose 1,5-bisphosphate and a dephosphorylated 

enzyme as catalytic intermediates. A second phosphate transfer from the substrate back 

to Thr85 produces ribose 1-phosphate and the re-phosphorylated active PPM(21) (Figure 

 

Figure 2-1. Retro-extension of the dideoxyinosine biosynthetic pathway to 

phosphopentomutase. 



68 
 

2-2, blue arrow). While undergoing the same overall cycle observed in the standard 

alkaline phosphatase mechanism (Figure 2-2, green arrow), PPMs have adapted to 

proceed through catalysis beginning from an altered entry point in order to perform this 

vital mutase reaction that connects the central metabolic pathways of glycolysis and 

ribonucleoside biosynthesis. 

In this study, we have determined and analyzed cocrystal structures of wild-type 

and PPM variants with natural or non-natural substrates bound to indicate active site 

residues for targeted saturation mutagenesis. First shell active site residues were 

 

Figure 2-2. Comparison of PPM and alkaline phosphatase catalytic cycles. The PPM 

catalyzed intermolecular phosphate transfer follows the reaction cycle indicated in blue 

in order of states 1 through 6. The phosphorylated enzyme 1 binds a phosphorylated 

substrate then transfers the phosphate group to the acceptor hydroxyl on the same 

substrate (indicated in red) to create a bisphosphate substrate and a dephosphorylated 

enzyme as intermediates 2-3. Subsequent steps transfer a phosphate from the donor 

substrate back to the enzyme resulting in a singly phosphorylated substrate and the 

active phosphorylated enzyme 4-6. The alkaline phosphatase cycle (shown in green) 

begins with an unphosphorylated enzyme 4 that binds a phosphorylated substrate and 

proceeds through an intermediate where the enzyme is phosphophorylated 1 before 

transferring the phosphate to the acceptor substrate 6-3. Adapted from Panosian et 

al.(21). 
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selected for mutagenesis based on apparent interactions and close proximity to the 

bound substrates. The activity screening program for this targeted mutagenesis 

approach was designed to identify mutations that reduced natural substrate selectivity by 

comparing the activity of each clone on both substrates, ribose 5-phosphate and 

dideoxyribose 5-phosphate. The Ser154Gly and Val158Leu PPM variants were found to 

have substantially increased substrate selectivity over the wild-type enzyme, 49-fold and 

881-fold, respectively. These two variants were unique in their new active site and 

activity characteristics as a result of each mutation, so both became templates for 

directed evolution to further increase activity. 

 

Methods 

PPM mutant library generation 

Site-directed and saturation mutagenesis were performed using the QuikChange 

II mutagenesis kit (Stratagene) with either the wild-type PPM template (Genbank 

Accession Number Q818Z9.1) (for positions Ser154, Val158 and Ile195) or the 

corresponding Ser154Gly template (positions Val158 and Ile195) in pET28a+ vector(22). 

PCR samples were prepared as recommended in the kit manufacturer’s manual using 

50 ng template and 125 ng forward and reverse primer and amplified through 16 cycles 

with 1 minute annealing at 55°C and 2 minute/kb extension at 68°C. DpnI restriction 

endonuclease was used to digest the template plasmid DNA prior to purification of the 

mutant plasmid by QIAquick PCR Purification Kit (QIAgen, Inc.) and subsequent 

transformation into BL21(DE3) cells (Invitrogen). Primers used for site directed 

mutagenesis and saturation mutagenesis are provided in Table 2-1. 
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Library growth and screening 

Individual colonies were picked to round bottomed 96-well plates and grown in 

100 µL LB medium with 50 µg/mL kanamycin for 24 h at 37°C with shaking at 200 rpm. 

Plates held 4 wells of negative control (E. coli with empty pET28a+ vector), 4 wells of 

positive control (vector with template gene) and 88 wells of the mutant library. For 

saturation mutagenesis libraries (176 clones), plates were replicated to 100 µL and 150 

uL LB medium for ribose 5-phosphate and dideoxyribose 5-phosphate, respectively, 

(wild-type PPM template) or 50 µL and 150 µL LB medium for ribose 5-phosphate and 

dideoxyribose 5-phosphate (Ser154Gly PPM template) and grown for an additional 24 h. 

The 50 µL cultures of Ser154Gly PPM were induced by addition of 50 µL LB medium 

containing 50 µg/mL kanamycin and 2 mM IPTG and grown for an additional 24 h. All 

cells were collected by centrifugation at 1600 rcf and the broth was removed by 

inversion before storing the plates at -80°C until ready for assay.  

PPM activity was determined in tandem assays with purine nucleoside 

phosphorylase and hypoxanthine consumption was measured by xanthine oxidase at 

Table 2-1. Primers used in site directed and saturation mutagenesis of PPM. Mutations 
in each sequence are underlined. N=A, T, C or G. K=G or T. M=C or A. 

Primer 
Name 

Nucleotide Sequence 

S154A for CAGGCTCTTTAATCGTTTATACTGCCGCTGATAGCGTATTGCAAATTGCAGC 

S154A rev GCTGCAATTTGCAATACGCTATCAGCGGCAGTATAAACGATTAAAGAGCCTG 

S154X for GGAAACAGGCTCTTTAATCGTTTATACTNNKGCTGATAGCGTATTGC 

S154X rev GCAATACGCTATCAGCMNNAGTATAAACGATTAAAGAGCCTGTTTCC 

V158X for GCTGATAGCNNKTTGCAAATTGCAGCACACGAAGAAGTAGTGCCAC 

V158X rev GTGGCACTACTTCTTCGTGTGCTGCAATTTGCAAMNNGCTATCAGC 

I195X for GGTAGGTCGTGTTNNKGCTCGTCCATTCGTTGGTGAACCTG 

I195X rev CAGGTTCACCAACGAATGGACGAGCMNNAACACGACCTACC 
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endpoints using a typical hypoxanthine detection assay(23). Thawed cell pellets were 

resuspended in 200 µL (for ribose 5-phosphate assay) or 100 µL (for dideoxyribose 

5-phosphate assay) lysis mix containing 0.1 mM MnCl2, 0.25 mg/mL egg white lysozyme 

(Sigma) and DNase I (Sigma) in 25 mM Tris-HCl, pH 8 and incubated for 10 min at 25°C 

before undergoing a single freeze/thaw cycle at -80°C to 37°C. After centrifugation, 25 

µL of the clarified cell lysate was transferred to a 96-well flat bottomed plate and 55 µL of 

an assay mix was added to initiate the reaction. Final concentrations of components in 

80 µL reactions for the ribose 5-phosphate activity screen were 0.1 mM MnCl2, 5 µM 

PNP, 1 µM glucose 1,6-bisphosphate, 600 µM hypoxanthine and 1 mM ribose 

5-phosphate. Final concentrations of components in 80 µL reactions for the 

dideoxyribose 5-phosphate screen were 0.1 mM MnCl2, 10 µM hPNP-46D6, 1 µM 

glucose 1,6-bisphosphate, 600 µM hypoxanthine and 2 mM dideoxyribose 5-phosphate. 

Assays were incubated at room temperature for 12 min (ribose 5-phosphate) or from 50 

- 80 min (dideoxyribose 5-phosphate) before quenching by addition of either 30 µL 1 M 

HCl (ribose 5-phosphate) or 30.5 µL 1M NaOH (dideoxyribose 5-phosphate). After a 

minimum of 30 min, 30 µL 1 M NaOH or 29.5 µL 1 M HCl was added to neutralize the 

reaction before addition of 35 µL of a developing solution containing 0.2% Triton X-100, 

7.5 mM iodonitrotetrazolium chloride and xanthine oxidase in 25 mM Tris-HCl, pH 8. 

Hypoxanthine consumption was determined by measuring maximal absorbance of the 

colored formazan at 546 nm and normalized to percent activity in comparison to the 

positive and negative controls. Hits from each primary screen were regrown from fresh 

transformants and assayed again in duplicate to validate activity of the top ~45 hits. Top 

4 - 5 hits were assayed in a tertiary screen with extended incubation with ribose 

5-phosphate (25 min) and shorter incubation with dideoxyribose 5-phosphate (40 - 70 

min) to better determine activity of each clone on the two substrates. 
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Enzyme expression and purification 

Plasmids containing wild-type or variant PPM, PNP or hPNP-46D6(6) were 

transformed into E. coli BL21(DE3) and grown at 37°C in LB medium supplemented with 

50 µg/mL kanamycin and induced with 1 mM IPTG for 3 - 6 h after OD600 had reached 

0.5 - 0.6. Cell pellets were resuspended in Buffer A (50 mM Tris-HCl, 300 mM NaCl, 10 

mM imidazole, pH 7.4) and disrupted by passing through a French Pressure cell (1400 

psi). The clarified lysate was applied to HisTrapFFcrude Nickel affinity column (GE 

Healthcare, Inc.) and washed at 10% Buffer B (Buffer A with 500mM imidazole). Protein 

was eluted by a linear gradient from 10% Buffer B to 60% Buffer B, before a step up to 

100% Buffer B to fully elute the column. The purified enzyme was concentrated, 

desalted and exchanged into 25 mM Tris-HCl, pH 8 before storage at -80°C. All enzyme 

concentrations were determined using the BCA Protein Assay Kit (Thermo Scientific, 

Inc.). Xanthine oxidase was purified from raw bovine milk using previously reported 

protocols(24). 

 

PPM kinetics assays 

The activities of wild-type and variant PPMs were measured in tandem assays 

with either PNP or hPNP-46D6. Ribose 1-phosphate formed by PPM was subsequently 

consumed by a catalytic excess of PNP in the presence of hypoxanthine to produce 

inosine. Similarly, production of dideoxyribose 1-phosphate via PPM activity was 

converted to dideoxyinosine in the presence of hypoxanthine and a catalytic excess of 

hPNP-46D6. Inosine or dideoxyinosine produced in the assay was separated from other 

reaction components using a Luna Phenyl-Hexyl column (4.6 X 250 mm, Phenomenex) 

and an isocratic flow of 1.0 mL/min of 10 mM ammonium acetate in 95% water:5% 

acetonitrile, pH 6. A Thermopal autosampler was used to inject 10 µL of the sample for 

analysis. Nucleosides were analyzed on a TSQ Quantum Access triple quadrupole 
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electrospray ionization-LC/MS (Thermo, Inc.) using selected reaction monitoring 

fragmentation to the free nucleobase (inosine [M+H]+ 269 m/z and dideoxyinosine 

[M+H]+ 237 m/z transition to hypoxanthine [M+H]+ 137 m/z) with 2-deoxyguanosine as 

the internal standard ([M+H]+ 268 m/z to guanine [M+H]+ 152 m/z). Nitrogen was used 

for both the auxiliary and sheath gases and was set to 45 units and 30 units, 

respectively. The following instrument parameters were used: source voltage 4.5kV; 

vaporizer temperature 0 °C; capillary temperature 270 °C; tube lens 101 V; skimmer 

offset -5 V; collision energy -10 V. Data acquisition and analysis were conducted with 

Thermo Xcalibur software, version 2.1.  

All reactions were performed in 100 µL volumes in 96-well plates. Wild-type or 

variant PPM was activated at a concentration 10-fold higher than that used in the assay 

by incubation for 10 min at room temperature in 25 mM Tris-HCl and 0.1 mM MnCl2 with 

either 5 µM (wild-type PPM) or 10 µM (variant PPM) glucose 1,6-bisphosphate then held 

at 4°C until assayed. Biochemical assays for PPM activity on ribose 5-phosphate 

contained 0.1 mM MnCl2, 5 µM PNP, 600 µM hypoxanthine and 0 - 500 µM, 0 - 1000 µM 

or 0 - 4000 µM ribose 5-phosphate in 25 mM Tris-HCl, pH 8. Assays for PPM activity on 

dideoxyribose 5-phosphate contained 0.1 mM MnCl2, 10 µM hPNP-46D6, 600 µM 

hypoxanthine and 0 - 5000 µM dideoxyribose 5-phosphate in 25 mM Tris-HCl, pH 8. 

PPM concentrations ranged from 0.02 - 1 µM for ribose 5-phosphate assays and 0.15 - 1 

µM for dideoxyribose 5-phosphate assays. Reactions were initiated by addition of 10 µL 

of the sugar 5-phosphate substrate to 90 µL mix containing all other components and 

were incubated for 2 - 8 min at room temperature before being quenched by addition of 

5 µL 2 M NaOH. After 30 min, 5 µL of 2 M HCl/1 M CaCl2 was added to neutralize the 

mixture and the assay plate was centrifuged to pellet the precipitates. A 40 µL aliquot of 

each sample was combined with 10 µL of 50 µM 2-deoxyguanosine internal standard to 

prepare the sample for LC/MS analysis. Inosine and didanosine formation was quantified 
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by relative peak area of analyte to a 10 µM 2-deoxyguanosine internal standard in 

comparison to a standard curve made using authentic inosine (Acros Organics) and 

didanosine (3B Pharmachem (Wuhan) International Co. Ltd.). Retention times were 

approximately 5 min for inosine, 6.2 min for 2-deoxyguanosine and 14 min for 

didanosine. Kinetic constants were determined by fitting the data to the 

Michaelis-Menten equation using non-linear regression analysis in GraphPad Prism 

version 5.01. 

 

Crystallization, data collection, and structure determination of wild-type and variant PPM  

Purification and preparation of the PPM variants for crystallography was 

performed as previously described(22). In short, crystals of wild-type PPM, the Ser154Ala 

variant, and the Ser154Gly variant were all grown using the hanging-drop vapor diffusion 

method by combining 1 µL of protein solution and 1 µL reservoir solution and incubating 

these over the reservoir solution at 18 °C while crystals of the Val158Leu variant grew 

after combining 2 µL protein solution and 2 µL reservoir solution. Crystals of wild-type 

PPM (12 mg/ml in 1 mM MnCl2, 25 mM Tris-HCl, pH 7.4) grew over a reservoir solution 

containing 13% polyethylene glycol 3350, 50 mM MnCl2, 75 mM NH4CH3COO, and 100 

mM Bis-Tris, pH 5.5. Crystals of the Ser154Ala variant (12 mg/ml in 1 mM MnCl2, 25 mM 

Tris-HCl, pH 7.4) grew over a reservoir solution containing 17% polyethylene glycol 

3350, 50 mM MnCl2, 50 mM NH4CH3COO, and 100 mM Bis-Tris, pH 5.5. Crystals of the 

S154G variant (12 mg/ml in 1 mM MnCl2, 25 mM Tris-HCl, pH 7.4) grew over a reservoir 

solution containing 17% polyethylene glycol 3350, 50 mM MnCl2, 50 mM NH4CH3COO, 

and 100 mM Bis-Tris, pH 5.5. Crystals of the V158L variant (12 mg/ml in 1 mM MnCl2, 

25 mM Tris-HCl, pH 7.4) grew over a reservoir solution containing 20% polyethylene 

glycol 3350, 50 mM MnCl2, 50 mM NH4CH3COO, and 100 mM Bis-Tris, pH 5.45. 

Co-crystals of the Ser154Ala or Ser154Gly variants with ribose 5-phosphate were 
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prepared by soaking fully formed crystals in a solution that contained all components of 

the reservoir solution and 5 mM ribose 5-phosphate for 30 minutes. Co-crystals of the 

Ser154Ala or Ser154Gly variants with dideoxyribose 5-phosphate were prepared by 

soaking fully formed crystals in a solution that contained all components of the reservoir 

solution and 10 mM dideoxyribose 5-phosphate for 30 minutes. All crystals were 

cryoprotected with a solution that was 70% v/v reservoir solution and 30% glycerol 

before flash cooling by plunging in liquid nitrogen.  

Data were collected at a temperature of 100 K using a wavelength of 0.979 Å 

and a MarMosaic225 CCD detector at the Advanced Photon Source (Argonne, IL) 

LS-CAT beamline 21-ID-G (Table 2-2). Data were processed and scaled using the HKL 

suite of programs(25). Space group and unit cell information for all crystals is listed in 

Table 2-2. For wild-type PPM and the Ser154Ala and Ser154Gly variants, initial phases 

were determined by subjecting the structure of wild-type B. cereus PPM (PDB entry 

3M8W(21)) to rigid body refinement using CNS(26). For the Val158Leu variant, initial 

phases were obtained by molecular replacement with Molrep(27) of the CCP4 Suite(28), 

using PDB entry 3UN3(29). The model was refined using iterative rounds of model 

building in COOT(30) and refinement in CNS(26) and Refmac5(28, 31) using 

Translation/Libration/Screw (TLS) refinement(32). Figures 2-5, 2-6 and 2-7 were made 

using PyMOL(33). 
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Synthesis of 2,3-dideoxyribose 5-phosphate 

(S)-γ-butyrolactone-γ-carboxylic acid (2). Compound 2 was generated from 

L-glutamic acid 1 as generally described(34) with the following modifications. Briefly, a 

stirred solution of 53.3 g (363.6 mmol) L-glutamic acid suspended in 170 mL water was 

fixed with separatory funnels containing solutions of NaNO2 (37.5 g, 545 mmol, 1.5 eq, in 

100 mL water) and HCl (90.6 mL of 5.6 N, 508.6 mmol, 1.4 eq), which were added 

drop-wise simultaneously over a period 3 - 4 h. Reaction temperature was maintained 

between 15 - 20 °C during addition using an ice water bath. After complete addition, the 

reaction was warmed to room temperature and stirred overnight before removal of water 

by rotary evaporation and azeotropic dehydration using toluene (3 x 75 mL). The 

resulting solid was resuspended in 500 mL ethyl acetate and dried over anhydrous 

NaSO4. After removing precipitates via filtration, AG50W-X4 resin (20 g, activated by 

washing successively with methanol and ethyl acetate) was added to the solution and 

stirred for 30 min to remove unreacted 1. After filtration, solvent was removed by 

evaporation and the product recrystallized from dichloromethane at -20 °C (18.2 g, 139.9 

mmol 39% yield). Product purity was confirmed by 1H, 13C NMR analysis and 

comparison to reported spectra. 

(S)-γ-(hydroxymethyl)-γ-butyrolactone (3). Butyrolactone 3 was produced via a 

procedure adapted from a previously described synthesis(34). To a solution of 4.95 g 2 

(38.1 mmol) in 25 mL anhydrous THF at 0 °C under Argon was added dropwise 4.38 mL 

BH3SMe2, 10 M in THF, (43.75 mmol, 1.15 eq) over 1 h. The solution was warmed to 

room temperature and stirred for an additional 2 h. Three dropwise additions of 2.25 mL 

methanol were performed to quench the reaction and remove unreacted BH3SMe2 prior 

to removal of solvents by rotary evaporation. Product 3 (3.8 g, 32.7 mmol 86 % yield) 

was sufficiently pure to proceed without further purification. Product purity was confirmed 

by 1H, 13C NMR analysis and comparison to reported spectra. 
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(S)-γ-(dibenzylphosphomethyl)-γ-butyrolactone (4). Butyrolactone 3 (755 mg, 6.5 

mmol) dissolved in 6 mL of anhydrous dichloromethane and 1.5 mL anhydrous 

acetonitrile at 0 °C was added to 38.5 mL tetrazole (3% wt/wt in acetonitrile, 13.0 mmol, 

2 eq) under argon with stirring. A solution of 3.33 mL dibenzyl 

N,N-diisopropylphosphoramidite (9.1 mM, 1.4 eq) dissolved in 18.5 mL anhydrous 

dichloromethane was added dropwise and stirred for 2 h at 0 °C followed by 1.07 mL 7.3 

M tert-butyl hydroperoxide in water (7.8 mmol 1.2 eq) and the reaction was stirred for an 

additional hour. The reaction was extracted with 20 mL half-saturated NaHCO3, twice 

with 20 mL dichloromethane, dried over anhydrous MgSO4 and concentrated by rotary 

evaporation. The crude products were purified by SiO2 flash chromatography (2.5% 

methanol in dichloromethane, then 5% hexanes in ethyl acetate) to yield 1.49 g (4.0 

mmol, 61%) compound 4. TLC (methanol:dichloromethane, 2.5/97.5 v/v): Rf=0.13. 1H 

NMR (400 MHz, CDCl3):  7.35 (s, 10H), 5.1 - 4.99 (m, 4H), 4.64 - 4.55 (m, 1H), 4.17 - 

4.1 (m, 1H), 4.0 - 3.95 (m, 1H), 2.5 - 4.4 (m, 2H), 2.3 - 2.15 (m, 1H), 2.04 - 1.93 (m, 1H). 

13C NMR (100 MHz, CDCl3):  176.7, 135.86 (d, 3Jcp = 2.32 Hz), 135.8 (d, 3Jcp = 2.47 

Hz), 128.98 (d, Jcp = 5.36 Hz), 128.39 (d, Jcp = 3.75 Hz), 77.80 (d, 3Jcp = 8.06 Hz), 69.95 

(d, 2Jcp = 5.63 Hz), 68.29 (d, 2Jcp = 5.48 Hz), 28.3, 23.6. 31P {1H} NMR (200 MHz, CDCl3): 

 0.26 (s). HRMS (m/z): [M+H]+ calculated for C19H22O6P+, 377.1149; found 377.1158. 

(S)-2,3-dideoxyribose 5-(di-O-benzyl)phosphate (5). To a stirred solution of 

compound 4 (539 mg, 1.43 mmol) in 54 mL anhydrous dichloromethane under Argon at 

-78 °C was added dropwise diisobutylaluminium hydride (1.5 M in toluene, 3.8 mL, 5.7 

mM, 4 eq) and the reaction was stirred for 2 h. Methanol (17.5 mL) was added to quench 

the reaction before warming to room temperature. Saturated potassium sodium tartrate 

(74 mL) was added and the mixture was stirred overnight, filtered through a fritted funnel 

and the resulting solid dissolved in water. The solution was extracted with 
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dichloromethane (3 x 25 mL), dried over MgSO4 and concentrated by rotary evaporation. 

Compound 5 was purified by flash SiO2 chromatography (100% ethyl acetate) to yield 

350 mg (0.93 mmol, 65% yield). TLC (ethylacetate): Rf=0.38. 1H NMR (400 MHz, CDCl3, 

mixture of α and β anomers):  7.34 (s, 10H), 5.53 - 5.48 (m, 1H), 5.12 - 4.99 (m, 4H), 

4.39-4.18 (m, 1H), 4.13-4.02 (m, 1H) 4.0-3.88 (m, 1H), 2.14 - 1.58 (m, 4H). 13C NMR 

(100 MHz, CDCl3, mixture of α and β anomers):  135.73 (m), 128.48 (d, Jcp = 3.7 Hz), 

127.90 (d, Jcp = 3.9 Hz), 98.90, 98.86, 78.03 (d, 3Jcp = 6.1 Hz), 76.20 (d, 3Jcp = 7.6 Hz), 

70.97 (d, 3Jcp = 5.8 Hz), 69.43 (d, 3Jcp = 5.5 Hz), 69.27 (m), 69.12 (d, Jcp = 6.0 Hz), 33.60, 

32.58, 25.15, 24.88. 31P {1H} NMR (200 MHz, CDCl3, mixture of α and β anomers):  

0.63, 0.40. HRMS (m/z): [M+H]+ calculated for C19H24O6P+, 379.1305; found 379.1305. 

(S)-2,3-dideoxyribse 5-phosphate, disodium salt (6). To a stirred solution of 

compound 5 (334 mg, 0.88 mmol) in 10 mL ethanol under a hydrogen balloon was 

added 10% palladium on activated carbon (38.3 mg). The reaction was stirred overnight. 

The resulting reaction was filtered through celite, concentrated by rotary evaporation, 

and then dissolved in 2 mL water. A solution of NaHCO3 (148.3 mg, 1.8 mmol) in 1 mL 

water was added to neutralize the solution, giving 150 mg (62.0 mmol, 70% yield) 

compound 6, which was used without further purification. When used in biochemical 

reactions, concentration of 6 was determined using 1H NMR and comparison of integrals 

to an internal standard (2.5 mM of dimethylformamide) with using a relaxation delay of 

15 sec. 1H NMR (400 MHz, D2O, mixture of α and β anomers):  5.58 - 5.48 (m, 1H, CH), 

4.47 - 4.22 (m, 1H), 4.02 - 3.76 (m, 2H), 2.20 - 1.76 (m, 4H). 13C NMR (100 MHz, D2O, 

mixture of α and β anomers):  98.56, 98.30 (CH), 79.27 (3Jcp = 7.99 Hz, CH), 77.60 (3Jcp 

= 7.97 Hz, CH), 68.29 (2Jcp = 5.33 Hz, CH2), 67.07 (2Jcp = 5.25 Hz, CH2), 32.86, 32.28, 

24.61, 24.58 (CH2-CH2). 31P {1H} NMR (200 MHz, D2O, mixture of α and β anomers):  
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1.79, 1.65, 1.58. HRMS (m/z): [M-H]- calculated for C5H10O6P-, 197.0220; found 

197.0209. 

 

Results 

Chemical synthesis of non-natural substrate 2,3-dideoxyribose 5-phosphate 

2,3-Dideoxyribose 5-phosphate was synthesized from L-glutamic acid over 

several steps. Although 2,3-dideoxyribose has also been prepared from D-mannitol(35) 

and D-ribonolactone(36), the lower cost of the glutamic acid starting material and shorter 

synthesis sequence makes this the preferred route for synthesis of dideoxysugar 

substrates(34). Nitrous acid created in situ from NaNO2 and HCl was used to catalyze the 

diazotization of the amino group of glutamic acid (1) and subsequent cyclization to afford 

the (S)-γ-butyrolactone-γ-carboxylic acid (2) in 39% yield with complete retention of 

stereochemistry(34) (Figure 2-3). Compound 2 was reduced to 

(S)-γ-hydroxymethyl-γ-butyrolactone (3) using borane dimethyl sulfide complex in 

anhydrous THF(34), giving 86% yield of sufficient purity to proceed without further 

isolation by column chromatography.  

 

Figure 2-3. Synthesis of 2,3-dideoxyribose 5-phosphate.. 
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The C5 hydroxyl of (S)-γ-hydroxymethyl-γ-butyrolactone (3) was phosphitylated 

and subsequently oxidized(37) to form the dibenzyl-protected phospholactone (4) with 

61% yield over two steps. DIBAL reduction of the lactone lead to the corresponding 

dibenzyl-protected lactol (5) in 65% yield. Finally, hydrogenation(38) to remove the benzyl 

protecting groups followed by treatment with sodium bicarbonate to produce the desired 

2,3-dideoxyribose 5-phosphate sodium salt (6) in 70% yield. This five step route from 

glutamic acid proved to be an effective method of producing dideoxyribose 5-phosphate 

in yields suitable to enable screening of the PPM mutagenesis libraries. 

 

Selection of Bacillus cereus PPM progenitor enzyme 

PPM activity on dideoxyribose 5-phosphate has been characterized for homologs 

from only two different species. The E. coli variant reportedly showed no activity toward 

this non-natural substrate when coupled with purine nucleoside phosphorylase and 

adenosine deaminase(9). The enzyme from Bacillus stearothermophilus, however, 

reportedly demonstrated approximately 12% of the activity on the natural substrate, 

ribose 5-phosphate, when tested at expected saturating conditions in tandem with purine 

nucleoside phosphorylase II(10). Although PPM from Bacillus stearothermophilus was not 

publicly available, a closely related enzyme from Bacillus cereus with 82% sequence 

identity and 92% sequence homology was identified. The gene was cloned from 

genomic DNA(22), expressed and tested for the desired activity on dideoxyribose 

5-phosphate in tandem assays with hypoxanthine and the evolved hPNP-46D6 variant(6). 

After confirming activity on dideoxyribose 5-phosphate (Figure 2-4), PPM from B. cereus 

became the progenitor enzyme for engineering. With an appropriately active template 

enzyme in hand, we next desired to evolve the enzyme for increased dideoxyribose 

5-phosphate turnover. 
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Saturation mutagenesis of Ser154 

 Site directed saturation mutagenesis relies on the availability of structural data to 

identify residues of interest based on interactions with either natural or non-natural 

substrates. For this aspect of PPM evolution our aim was to target substrate interacting 

residues for mutagenesis in order to reduce selectivity for the natural substrate, 

however, no published crystal structures were readily available for PPM from B. cereus 

to aid in this process. We therefore determined costructures of PPM with the natural 

substrate ribose 5-phosphate at 1.8 Å resolution (PDB entry 3M8Z(21)) and the target 

non-natural substrate dideoxyribose 5-phosphate at 2.1 Å resolution (PDB entry 4LRE). 

 The cocrystal structures of each substrate in wild-type PPM shows similar 

binding positions of the phosphate moiety, however the ligand-associated electron 

 

 
 

Figure 2-4. Michaelis-Menten plot of wild-type B. cereus PPM kinetics for dideoxyribose 
5-phosphate. Initial velocities of turnover are plotted against substrate concentration. 
Data are the average of duplicate assays. The calculated KM, Vmax and kcat are 1700 ± 
300 µM, 3.9 ± 0.3 µM min1 and 0.43 ± 0.04 s-1. 
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density of the sugar ring greatly differs between the natural and non-natural substrates 

(Figure 2-5a,b, Figure 2-6). The structure with ribose 5-phosphate shows well defined 

density for the substrate, indicating an organized and consistent binding orientation in 

the crystal. Conversely, only partial electron density for dideoxyribose 5-phosphate is 

observed for the unnatural ligand, suggesting that the dideoxysugar ring of the bound 

substrate is less structured, likely due to rotational disorder, and was therefore not 

optimally aligned with key catalytic residues. The Ser154 side chain Oγ that normally 

forms a hydrogen-bonding interaction with the sugar C3 hydroxyl of ribose 

5-phosphate(21) does not similarly contribute to the orientation of dideoxyribose 

5-phosphate (Figure 2-5a,b, Figure 2-6). Because dideoxyribose 5-phosphate lacks the 

C2 and C3 hydroxyl groups, the interaction of this substrate with Ser154 may be 

repulsive due to an unfavorable environment for the non-polar substrate created by the 

polar side chain. This unfavorable interaction may be contributing to the disorder of the 

dideoxysugar ring in binding of the non-natural substrate, decreasing the quality of 

electron density for dideoxyribose 5-phosphate observed in the structures.  

Accordingly, the Ser154Ala mutant was created to decrease the active site 

polarity to potentially stabilize the more hydrophobic dideoxyribose ring and improve 

catalysis by removing the adverse interaction of the active site residue. Subsequent 

cocrystal structures of this variant indicated subjectively similar electron density for 

dideoxyribose 5-phosphate in both wild-type and Ser154Ala PPM (PDB entry 4LR9, 

Figure 2-5d). Additionally, no change was observed in the conformation of ribose 

5-phosphate binding (PDB entry 4LR8, Figure 2-5c), but a loss of a hydrogen-bond 

between the Ser154Ala mutant and the C3 hydroxyl of ribose 5-phosphate indicates 

fewer substrate interactions specific for ribose 5-phosphate. 
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Figure 2-5. Substrate binding in PPM variants. R5P, left column, is shown in gold and 
ddR5P, right column, is shown in green. Costructure of wild-type PPM with (a) R5P 
(PDB entry 3M8Z(21)) and (b) ddR5P with S154 shown in cyan. Costructure of Ser154Ala 
PPM with (c) R5P and (d) ddR5P with Ser154Ala shown in pink. Costructure of 
Ser154Gly PPM with (e) R5P and (f) ddR5P with Ser154Gly Cα atom shown as a 
sphere in bright green. 
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Since Ser154 appeared to beneficially interact with the natural substrate, but 

made unfavorable contacts to the non-natural substrate, a saturation mutagenesis library 

was created targeting this position. The library was screened for activity on ribose 

5-phosphate as well as dideoxyribose 5-phosphate to compare activity changes of each 

clone. Primary screen hits were validated in duplicate in a secondary assay, and 

sequencing of top hits identified Ser154Gly and Ser154Ala variants as having the 

greatest changes in desired activity. Kinetic characterization of these two top mutants, 

showed improved substrate selectivity in each enzyme, 49-fold in Ser154Gly and 70-fold 

in Ser154Ala, as determined by comparison of the ratio of catalytic efficiencies for both 

substrates between each PPM variant and the wild-type enzyme (Table 2-3). The 

glycine and alanine mutations provided 15-fold and 6-fold reduction in kcat of ribose 

5-phosphate, respectively, while only reducing dideoxyribose 5-phosphate turnover by 

2-fold at most. Additionally, both enzymes showed improvements in substrate binding, 

where ribose 5-phosphate KM value increased 3-fold in each variant and the KM value for 

dideoxyribose 5-phosphate decreased 2-4-fold after removing the polar Ser154 side 

chain (Table 2-3).  

The cocrystal structure of the Ser154Gly variant with dideoxyribose 5-phosphate 

was also associated with low electron density and appeared to still have significant 

rotational disorder of the sugar ring (PDB entry 4LRB). However, this rotational disorder 

was subjectively not as pronounced as it was for wild-type enzyme, with a percentage of 

the dideoxyribose 5-phosphate possibly stabilized in an orientation more similar to that 

seen in wild-type PPM. Similar to the Ser154Ala crystals, no change in the orientation of 

ribose 5-phosphate binding was observed in the Ser154Gly PPM variant (PDB entry 

4LRF, Figure 2-5e,f). Although the Ser154Ala variant was slightly superior to the 

Ser154Gly variant in terms of selectivity and desired catalysis, the latter variant was 

chosen as the template for further evolution since the increased active site area could 
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possibly accommodate later mutations that incorporated large side chains that may 

remodel the binding pocket and benefit dideoxyribose 5-phosphate catalysis. 

 

Saturation mutagenesis of Val158 and Ile195 

Evidence from the wild-type structures also suggested Val158 and Ile195 as 

potential targets for saturation mutagenesis. Each of these residues are within 4.5 Å of 

the bound substrates, so mutations at either position could possibly affect substrate 

binding through changes in steric interactions or polarity/hydrophobicity within the active 

site (Figure 2-6). Saturation mutagenesis libraries were created individually at each 

position on the wild-type and Ser154Gly templates and also tested against both 

substrates to compare activity changes of each clone. Both screens identified a 

Val158Leu mutation as the most beneficial on each template, creating the Val158Leu 

single mutant and the Ser154Gly/Val158Leu double mutant. No favorable mutation was 

observed at the Ile195 position on either template. Kinetic analysis showed that the 

Val158Leu mutation on the wild-type template resulted in a 25-fold increase in KM as 

well as a 25-fold decrease in kcat for ribose 5-phosphate, but a 2.5-fold decrease in KM 

and only a slight decrease in kcat for dideoxyribose 5-phosphate (Table 2-3). In total, this  

Table 2-3. Kinetic Parameters of PPM variants for R5P and ddR5P substrates and 
comparison of changes in substrate selectivity. 

Enzyme Substrate kcat (s
-1) KM (μM) 

kcat/KM (M-1 s-1) 
(x103) 

[kcat / KM (R5P)] / 
[kcat / KM (ddR5P)] 

Fold 
Change 

Wild-Type R5P      10.4±0.2      40±3       260±20 
  

  ddR5P      0.43±0.04  1700±300      0.25±0.05 1028 1 

S154A R5P        1.7±0.1    130±20      13.1±2.2 
  

  ddR5P      0.39±0.02    440±60      0.89±0.13 14.8 70 

S154G R5P      0.71±0.02    130±10        5.5±0.5 
  

  ddR5P      0.21±0.02    800±200      0.26±0.07 20.8 49 

V158L R5P      0.42±0.02  1020±100      0.41±0.04 
  

  ddR5P      0.24±0.01    680±70      0.35±0.04 1.2 881 

S154G/V158L R5P    0.035±0.001    190±20      0.18±0.02 
  

  ddR5P    0.028±0.002    480±90    0.058±0.012 3.2 326 
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single mutation reduced ribose 5-phosphate catalytic efficiency 881-fold to only 1.2-fold 

greater than that of dideoxyribose 5-phosphate (Table 2-3). The Ser154Gly/Val158Leu 

double mutant also showed substantially improved dideoxyribose 5-phosphate substrate 

selectivity (>300-fold), however this benefit came at a severe loss in the rate of catalysis 

of both substrates (Table 2-3).  

Superposition of the structures of wild-type (PDB entry 3M8Z(21)) and Val158Leu 

PPM (PDB entry 4LRC) identified that the active site mutation created steric hindrance 

between the Leu158 side chain and both substrate, ribose 5-phosphate at 2.5 Å, and 

Arg193, a substrate-orienting residue for ribose 5-phosphate(21), at 2.3 Å (Figure 2-7). 

These new putative unfavorable interactions prevent ribose 5-phosphate from binding in 

an orientation optimal for catalysis and would explain the dramatic increase in ribose 

5-phosphate KM observed in the Val158Leu variant (Table 2-3). Since Arg193 does not 

form a hydrogen-bonding interaction with dideoxyribose 5-phosphate (Figure 2-6b), the 

 

Figure 2-6. Additional first shell residues targeted for saturation mutagenesis. Distances 

between (a) R5P (PDB entry 3M8Z(21)) and (b) ddR5P and nearby residues Ser154, 

Val158 and Ile195 are highlighted in the wild-type PPM structures. Due to the close 

proximity of each residue to the bound substrates, both Val158 and Ile195 positions 

were also targeted individually for saturation mutagenesis on wild-type and Ser154Gly 

templates. 
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Val158Leu mutation primarily affects binding of the natural substrate. This steric 

hindrace also explains why cocrystallization with both natural and non-natural substrate 

did not result in the appearance of interpretable electron density in 50 collected datasets.  

 

Discussion 

 Here we present the identification of phosphopentomutase from Bacillus cereus 

for use in the biotransformation of dideoxyribose 5-phosphate to dideoxyinosine in 

tandem experiments with an evolved purine nucleoside phosphorylase(6). This enzyme 

may serve as a key step in the biosynthesis of dideoxyinosine from non-natural starting 

materials, however, in order to be useful in such a pathway, activity on and selectivity for 

dideoxyribose 5-phosphate must be increased to improve pathway productivity. Enzyme 

engineering can address this problem and to aid in the process of targeted rational 

mutagenesis, high resolution cocrystal structures of wild-type and variant PPM with the 

 

Figure 2-7. Overlay of the Val158Leu structure and wild-type PPM. The Val158Leu 

structure (green) is superimposed with the costructure of wild-type PPM (gray) with 

ribose 5-phosphate bound (gold, PDB entry 3M8Z(21)). A favorable hydrogen bond in the 

wild-type structure between Arg193 and ribose 5-phosphate induced upon substrate 

binding is indicated.  
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natural and non-natural substrate have been determined to observe enzyme-substrate 

binding interactions(21). 

PPM is a member of the alkaline phosphatase superfamily of enzymes and folds 

into two distinct domains. The core domain (residues 2-99 and 219-393) is organized 

into an alkaline phosphatase like fold, while the cap domain (residues 102-216) 

comprises a fold that is unique to prokaryotic PPMs, with the active site of the enzyme in 

a cleft created between the domains(21). The cap domain primarily confers the particular 

activity of the enzyme and therefore largely determines the substrate selectivity(17). Since 

the most dramatic effect in altering substrate activity can be gained by active site 

mutations(39), residues projecting into the active site from the cap domain of PPM were 

thought to provide a better starting point for engineering new substrate selectivity and 

were therefore targeted for mutational analysis. 

We began PPM evolution with saturation mutagenesis guided by a series of 

crystal structures with natural and non-natural substrates bound. Costructures of the 

Ser154Ala active site mutant were determined and confirmed this position to interact 

with the natural substrate ribose 5-phosphate and also influence binding of the 

non-natural dideoxyribose 5-phosphate substrate. Additional structure evaluation and 

activity studies of enzyme variants identified Val158 as another modulator of substrate 

selectivity in Bacillus cereus PPM. The top hits determined from the saturation 

mutagenesis screens showed modest (49-fold in Ser154Gly PPM) to extreme (881-fold 

in Val158Leu PPM) changes in substrate preference compared to wild-type PPM (Table 

2-3). The Ser154Gly mutation offered an enlarged active site that held the potential to be 

refit by later mutations to benefit dideoxyribose 5-phosphate binding. In a separate 

series, the rather conservative change in the Val158Leu single mutant triggered a drastic 

25-fold change in both binding and turnover of ribose 5-phosphate, completely 

eliminating substrate selectivity to create a generalist enzyme (Table 2-3). The overlaid 
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comparison of wild-type PPM and the Val158Leu mutant, as well as the lack of success 

at cocrystallization with all substrates, suggests that the side chain extension by an 

additional methylene group is enough to sterically hinder ribose 5-phosphate binding, 

and could possibly also prevent proper movement of the substrate during catalysis. 

When the effects of Ser154Gly and Val158Leu were combined in the double mutant, the 

expanded binding pocket and removal of a strict hydrogen bond interaction provided by 

the Ser154Gly mutation appears to lessen the effect of the proposed steric hindrance of 

ribose 5-phosphate with the Val158Leu mutation. This can be observed by the difference 

in ribose 5-phosphate KM of the Val158Leu variant compared to the similar KM values 

between the Ser154Gly single mutant and the Ser154Gly/Val158Leu double mutant 

(Table 2-3). The total loss in activity observed in the double mutant indicates that each 

mutation can impart large selectivity changes on an individual basis, but cannot be 

combined for cooperative improvement. 

Having two variants with mutually exclusive effects on substrate selectivity 

provided an opportunity to follow the evolution of the same enzyme with two different 

active site features: One variant with a larger active site and the other enzyme showing 

no preference between the two substrates. Accordingly, the Ser154Gly PPM and 

Val158Leu PPM variants were both selected to be progenitors for directed evolution by 

random mutagenesis. Continuing with both templates provides two enzymes with 

interesting and different characteristics to be improved upon through further 

mutagenesis, giving a higher chance of success to arrive at a suitable biocatalyst to use 

in the biosynthetic pathway for production of dideoxyinosine. 

 

Conclusions 

 Saturation mutagenesis of the active site of Bacillus cereus PPM was 

successfully used to identify two residues responsible for regulating substrate selectivity 
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of the enzyme. Mutagenesis of these residues was exploited to engineer substantial 

changes in selectivity between the natural substrate, ribose 5-phosphate, and the target 

non-natural substrate, dideoxyribose 5-phosphate, resulting in a generalist enzyme 

showing no preference between the two compounds. Although not tested within the 

scope of this work, further optimization by mutagenesis at either positions 154 or 158 

may be able to expand the utility of this enzyme to catalyze a similar isomerization 

reaction on other phosphorylated sugars or sugar analogs. Expanding the substrate 

allowance of this enzyme through further mutagenesis to accept sugar analogs with 

methyl-, fluoro- or azido-substitutions at the C2 or C3 positions, as well as activity on 

multiple heterocyclic furanose rings, may be of high value in biosynthetic applications 

toward multiple other nucleoside analogs containing these functionalities, many of which 

are pharmaceutical ingredients as well(3). 
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Chapter III 

 

DIRECTED EVOLUTION OF PHOSPHOPENTOMUTASE BY WHOLE GENE 

RANDOM MUTAGENESIS 

 

Introduction 

 Directed evolution has become a prevailing tool within the array of methods in 

protein engineering. Fundamentally, it is a direct laboratory application of Darwinian 

evolution, harnessing the process of natural selection to gain or increase 

experimenter-defined traits in target enzymes(1). The genetically diverse libraries 

screened in directed evolution experiments are created through a process of random 

mutagenesis. Common methods of generating this population include error-prone PCR, 

DNA shuffling, chemical mutagenesis or the use of E. coli mutator strains. Iterative 

application of these techniques applied through multiple generations leads to an 

accumulation of codon and amino acid mutations that result in improvements in 

characteristics determined by the screening or selection method. Desired new traits may 

be increased stability at higher temperatures; reduced sensitivity to organic solvents; 

higher chemo-, regio- or enantio-selectivity toward a particular substrate; increased 

activity on a non-natural substrate; reduction of unwanted side reactions; improvements 

in solubility or expression or any combination of these. The characteristics necessary for 

implementation of the enzyme in a biocatalytic process (i.e. industrial process 

conditions) determine the goals of the directed evolution project at hand, and may differ 

for each application 

Complementary to the targeted mutagenesis approach used in Chapter II, 

random mutagenesis does not rely on prior knowledge of enzyme structure, mechanism 

or active site architecture in order to improve the desired characteristic. For this reason, 
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methods in directed evolution can also be successfully applied to systems that are 

minimally characterized. Although it is a purely stochastic method, incorporating 

mutations arbitrarily by position and nucleobase shift into a gene, some control can be 

granted to the researcher through carefully designed experimental protocols. Mutation 

frequency can be titered to fit a desired range of mutations per gene by adjusting 

template concentration and PCR amplification cycles. Furthermore, rather than 

amplifying the entire gene, a segment of the sequence can be subjected to the 

mutagenic PCR conditions in order to target mutagenesis to a small portion of the full 

gene. By these methods, beneficial mutations can be identified throughout the protein 

sequence that may otherwise have been difficult to predict. 

In this chapter, PPM variants with beneficial mutations identified through targeted 

active site saturation mutagenesis were subjected to further engineering by directed 

evolution. The Ser154Gly and Val158Leu templates each provided a unique 

characteristic that allowed two interesting avenues of evolution to be pursued through 

random mutagenesis in order to develop the best catalyst for selective activity on 

dideoxyribose 5-phosphate. One round each of error-prone PCR and recombination of 

mutations were used to generate libraries of PPM variants, leading to a final mutant 

possessing four mutations, 3-fold higher turnover of dideoxyribose 5-phosphate in cell 

lysate and 710-fold improved substrate selectivity. 

 

Methods 

PPM mutant library generation 

Error prone PCR (epPCR) was performed using the GeneMorph II Random 

Mutagenesis kit (Stratagene) using 25 replication cycles and 7 - 13 ng/µL template 

plasmid. epPCR products were gel purified, digested with NheI/XhoI (New England 

Biolabs) and gel purified again before ligation into purified pET28a+ that had been 
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Table 3-1. Primers used in random mutagenesis and recombination of PPM. Mutations 
in each sequence are underlined. N=A, T, C or G. K=G or T. M=C or A. 
 

Primer 
Name 

Nucleotide Sequence 

epPCR for CATGGGCAGCAGCCATCATCATCATCATCACAGC 

epPCR rev GTTCCTCCTTTCAGCAAAAAACCCCTCAAGACCCG 

T81I for GCAAGAGAAATCTATTGGTAAAGATACAATGACAG 

T81N for GCAAGAGAAATCTAATGGTAAAGATACAATGACAG 

F101L for ATTGATACACCACTCCAAGTGTTCCCAGAAGG 

M190K for TTAGATGAGAAATACAAGGTAGGTCGTGTTATTGC 

I238I for GACTACGATGTAATTGCTATAGGTAAAATCTCTG 

P361P for CGGACAAGAGTTACCTCTTCGTCAAACATTTGC 

 

similarly digested and treated with alkaline phosphatase (New England Biolabs). 

Ligations were prepared overnight at 4°C using T4 DNA ligase (Promega) and contained 

3:1 insert:vector ratio. Pellet Paint Co-Precipitant (Novagen) was used to concentrate 

DNA before transformation. Libraries generated from 10 of 8 ng/µL template were used 

to create the library of variants for screening, with each gene possessing 1.5 - 2.5 

mutations per gene on average in 10 randomly sequenced clones from each library. 

Random recombination of epPCR mutations was performed using the QuikChange Multi 

Site-Directed Mutagenesis kit (Stratagene) where PCR samples contained a single 

template and a forward primer for each mutation not present at a position on the 

template, allowing any additional mutations to be incorporated at random in any 

combination. For example, the 500F6 sample contained primers for the Thr81Ile, 

Thr81Asn, Phe101Leu and Ile238Ile mutations (See Figure 3-4 for the complete series 

of mutations). PCR samples and thermal cycling for recombination of mutations were 

performed following the recommended protocol by the kit manufacture’s manual. 

Primers used are listed in Table 3-1. Sample preparation for cloning protocols was 

performed as recommended in kit manuals. 
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Library growth and screening 

Colonies were picked to 96-well round bottom plates containing 100 µL LB 

medium with 50 µg/mL kanamycin and grown for 24 h at 37°C with shaking at 200 rpm. 

Plates held 4 wells of negative control (E. coli with empty pET28a+ vector), 4 wells of 

positive control (vector with template gene) and 88 wells of the mutant library. For 

epPCR and recombination libraries (1056 and 88 clones, respectively), initial 100 µL 

overnight plates were copied to 50 µL LB medium with kanamycin and grown for an 

additional 24 h before collecting the cells. All cells were collected by centrifugation at 

1600 rcf and the broth was removed by inversion before storing the plates at -80°C until 

ready for assay. PPM activity was determined in a tandem assay with purine nucleoside 

phosphorylase and hypoxanthine consumption was measured by xanthine oxidase at 

endpoints using a typical hypoxanthine detection assay(2). 

Thawed cell pellets were resuspended in 100 - 200 µL lysis mix containing 0.1 

mM MnCl2, 0.25 mg/mL egg white lysozyme (Sigma) and DNase I (Sigma) in 25 mM 

Tris-HCl, pH 8 and incubated for 10 min at 25°C before undergoing a single freeze/thaw 

cycle at -80°C to 37°C. After centrifugation, 25 µL of the clarified cell lysate was 

transferred to a 96-well flat bottom plate and 55 µL of an assay mix was added to initiate 

the reaction. Final concentrations of components in 80 µL reactions for the 

dideoxyribose 5-phosphate screen were 0.1 mM MnCl2, 10 µM hPNP-46D6, 1 µM 

glucose 1,6-bisphosphate, 600 µM hypoxanthine and 1-2 mM dideoxyribose 

5-phosphate. Assays were incubated at room temperature for 40 - 70 min before 

quenching using 30.5 µL 1 M NaOH. After a minimum of 30 min, the solution was 

neutralized using 29.5 µL 1 M HCl before addition of 35 µL developing solution 

containing 0.2% Triton X-100, 7.5 mM iodonitrotetrazolium chloride and xanthine 

oxidase in 25 mM Tris-HCl, pH 8. Hypoxanthine consumption was determined by 

measuring absorbance of the colored formazan at 546 nm and normalized to percent 
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activity in comparison to the positive and negative controls. The top ~45 hits from each 

primary screen were regrown from fresh transformants and retested in duplicate to 

validate activity. The best 4 - 9 hits after validation were screened in a tertiary assay in 

duplicate under the same conditions as above with 500, 1000 and 2000 µM 

dideoxyribose 5-phosphate to select the top hit from each round. 

Libraries containing the top hits from each round were freshly prepared to directly 

compare activity changes through the rounds of evolution. Plates containing 50 µL 

cultures of colonies hosting empty pET28a+, wild-type PPM, Ser154Gly, 12D2, 500F7, 

2G8, Val158Leu, 650G11, 500F6 and 4H11 were lysed in 150 µL (for dideoxyribose 

5-phosphate) or 200 µL (for ribose 5-phosphate) lysis mix and assayed with 1 mM ribose 

5-phosphate or dideoxyribose 5-phosphate as described above. Reactions were 

incubated for 10-90 min (ribose 5-phosphate) or 45 - 60 min (dideoxyribose 

5-phosphate) before being quenched with 30.5 µL 1 M NaOH then neutralized and 

developed as described above. Turnover was normalized by incubation length then to 

activity of wild-type PPM for final comparison. 

 

Enzyme expression and purification 

Plasmids containing wild-type or variant PPM, PNP, hPNP-46D6(3) were 

transformed into E. coli BL21(DE3) and grown at 37°C in LB medium supplemented with 

50 µg/mL kanamycin and induced with 1 mM IPTG for 3 - 6 h after OD600 had reached 

0.5 - 0.6. Cell pellets were resuspended in Buffer A (50 mM Tris-HCl, 300 mM NaCl, 10 

mM Imidazole, pH 7.4) and disrupted by passing through a French Pressure cell (1400 

psi). The clarified lysate was applied to HisTrapFFcrude Nickel affinity column (GE 

Healthcare, Inc.) and washed at 10% Buffer B (Buffer A with 500mM imidazole). Protein 

was eluted by a linear gradient from 10% Buffer B to 60% Buffer B, before a step up to 

100% Buffer B to fully elute the column. The purified enzyme was concentrated, 
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desalted and exchanged into 25 mM Tris-HCl, pH 8 before storage at -80°C. All enzyme 

concentrations were determined using the BCA Protein Assay Kit (Thermo Scientific, 

Inc.). Xanthine oxidase was purified from raw bovine milk using previously reported 

protocols(4). 

 

PPM kinetics assays 

The activity of wild-type and variant PPMs was measured in a tandem assay with 

either PNP or hPNP-46D6. Ribose 1-phosphate formed by PPM was subsequently 

consumed by a catalytic excess of PNP in the presence of hypoxanthine to produce 

inosine. Similarly, production of dideoxyribose 1-phosphate via PPM activity was 

converted to dideoxyinosine in the presence of hypoxanthine and a catalytic excess of 

hPNP-46D6. Inosine or dideoxyinosine produced in the assay was separated from other 

reaction components using a Luna Phenyl-Hexyl column (4.6 X 250 mm, Phenomenex) 

and an isocratic flow of 1.0 mL/min of 10 mM ammonium acetate in 95% water:5% 

acetonitrile, pH 6. A Thermopal autosampler was used to inject 10 µL of the sample for 

analysis. Nucleosides were analyzed on a TSQ Quantum Access triple quadrupole 

electrospray ionization-LC/MS (Thermo, Inc.) using selected reaction monitoring 

fragmentation to the free nucleobase (inosine [M+H]+ 269 m/z and dideoxyinosine 

[M+H]+ 237 m/z transition to hypoxanthine [M+H]+ 137 m/z) with 2-deoxyguanosine as 

the internal standard ([M+H]+ 268 m/z to guanine [M+H]+ 152 m/z). Nitrogen was used 

for both the auxiliary and sheath gases and was set to 45 units and 30 units, 

respectively. The following instrument parameters were used: source voltage 4.5kV; 

vaporizer temperature 0 °C; capillary temperature 270 °C; tube lens 101 V; skimmer 

offset -5 V; collision energy -10 V. Data acquisition and analysis were conducted with 

Thermo Xcalibur software, version 2.1.  
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All reactions were performed in 100 µL volumes in 96-well plates. Wild-type or 

variant PPM was activated at a concentration 10-fold higher than that used in the assay 

by incubation for 10 min at room temperature in 25 mM Tris-HCl and 0.1 mM MnCl2 with 

either 5 µM (wild-type PPM) or 10 µM (variant PPM) glucose 1,6-bisphosphate then held 

at 4°C until assayed. Biochemical assays for PPM activity on ribose 5-phosphate 

contained 0.1 mM MnCl2, 5 µM PNP, 600 µM hypoxanthine and 0 - 1000 µM or 0 - 4000 

µM ribose 5-phosphate in 25 mM Tris-HCl, pH 8. Assays for PPM activity on 

dideoxyribose 5-phosphate contained 0.1 mM MnCl2, 10 µM hPNP-46D6, 600 µM 

hypoxanthine and 0-5000 µM dideoxyribose 5-phosphate in 25 mM Tris-HCl, pH 8. PPM 

concentrations ranged from 0.02-0.25 µM for ribose 5-phosphate assays and 0.25 µM 

for dideoxyribose 5-phosphate assays. Reactions were initiated by 10 µL addition of the 

sugar 5-phosphate substrate to 90 µL mix containing all other components and were 

incubated for 2-8 min at room temperature before being quenched by addition of 5 µL 2 

M NaOH. After 30 min, 5 µL of 2 M HCl/1 M CaCl2 was added to neutralize the mixture 

and the assay plate was centrifuged to pellet the precipitates. A 40 µL aliquot of each 

sample was combined with 10 µL of 50 µM 2-deoxyguanosine internal standard to 

prepare the sample for LC/MS analysis. Inosine and dideoxyinosine formation was 

quantified by relative peak area of analyte to a 10 µM 2-deoxyguanosine internal 

standard in comparison to a standard curve made using authentic inosine (Acros 

Organics) and dideoxyinosine (3B Pharmachem (Wuhan) International Co. Ltd.). 

Retention times were approximately 5 min for inosine, 6.2 min for 2-deoxyguanosine and 

14 min for dideoxyinosine. 

 

Crystallization, data collection, and structure determination of wild-type and variant PPM  

Purification and preparation of the PPM variants for crystallography was 

performed as previously described(5). Crystals of the 4H11 variant grew after combining 
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2 µL protein solution and 2 µL reservoir solution. Crystals of the 4H11 variant (20 mg/ml 

enzyme in 1 mM MnCl2, 25 mM Tris-HCl, pH 7.4) grew over a reservoir solution 

containing 25% polyethylene glycol 3350, 50 mM (NH4)2SO4, and 100 mM Bis-Tris, pH 

5.45. All crystals were cryoprotected with a solution that was 70% v/v reservoir solution 

and 30% glycerol before flash cooling by plunging into liquid nitrogen. 

Data were collected at a temperature of 100 K using a wavelength of 0.979 Å 

and a MarMosaic225 CCD detector at the Advanced Photon Source (Argonne, IL) 

LS-CAT beamline 21-ID-G (Table 3-2). Data were processed and scaled using the HKL 

suite of programs(6). Space group and unit cell information for all crystals is listed in 

Table 3-2. For the 4H11 variant, initial phases were obtained by molecular replacement 

with Molrep(7) of the CCP4 Suite(8), using PDB entry 3M8Z. The model was refined using 

iterative rounds of model building in COOT(9) and refinement in CNS(10) and Refmac5(8, 11) 

using Translation/Libration/Screw (TLS) refinement(12). Figures 3-5, 3-6 and 3-7 were 

made using PyMOL(13). 
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Results 

Optimization of epPCR mutagenesis conditions 

 Error-prone PCR has become the most common method of generating a random 

mutagenesis library(14). Although several variations of epPCR have been developed 

differing in reaction conditions used to create the random mutations (described in 

Chapter I), this work used the error prone polymerase Mutazyme II from Stratagene to 

generate the mutant pool for activity screening. The mutagenesis and screening process 

is outlined in Figure 3-1. In our application, Mutazyme II was used to create a genetically 

diverse library of PPM variants using plasmids contianing the Ser154Gly and Val158Leu 

PPM variants as templates. The mutant gene pool was subsequently ligated to a 

pET28a expression vector and transformed into E. coli BL21(DE3) to generate the 

Table 3-2. Data collection and refinement statistics for 
wild-type and variant PPM. 

Protein  4H11 
Ligand  none 
PDB entry  4LRD 

Data collection 
Resolution (Å)  50-1.78 
High resolution bin  1.81-1.78 
Space group  P21 
Unit cell   a=39.2 
  b=60.5 
  c=78.9 
  β =98.5 
Total reflections  108,153 
Unique reflections  34,906 
bRsym (%)  7.3 (25.3) 
I/σ  15.3 (3.3) 
Completeness (%)  99.5 (99.7) 
 
Refinement 
cRcryst (%)  13.9 
dRfree (%)  17.9 
aValues in parentheses are for the highest resolution bin 
bRsym=∑ |Iobs-Iavg|(100)/Iavg, 
cRcryst=[∑||Fobs|-|Fcalc|| (100)]/∑|Fobs|  
dRfree is calculated using the same equation as Rcryst using a 
subset of reflections omitted from the refinement process. 
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bacterial library. Individual colonies were picked and grown in 96-well plates, lysed and 

assayed for increased turnover of dideoxyribose 5-phosphate in tandem assays with 

hPNP-46D6 and hypoxanthine. Clones showing improved activity in the primary screen 

were retested in duplicate in a secondary assay and again at varied substrate 

concentrations in a tertiary screen in order to identify the most improved variant from the 

round of mutagenesis. This clone then became the progenitor for a new round of 

mutagenesis to further increase activity.  

 PCR sample conditions for directed evolution must be optimized for the gene of 

interest in order to ensure a sufficiently assorted population of mutants within the library. 

The rate of mutation is easily titered by adjusting the template concentration and number 

of amplification cycles used in thermal cycling. Typically, mutation rates are adjusted to 

provide a dead rate (i.e. <20% of the progenitor activity in this study) of approximately 

30-40%(15). Small libraries of PPM variant were assayed to test epPCR parameters in 

order to arrive at the desirable conditions, which resulted in 45% inactive clones using 

 

Figure 3-1. Iterative process of mutagenesis and screening used in directed evolution of 

PPM. A progenitor gene is mutagenized to create a pool of randomly mutated genes. 

After ligation into an expression vector and transformation into E. coli, clones are grown 

in 96-well plates, lysed and assayed for the desired activity. Secondary screens are 

used to validate activity and the top performing clone is chosen as the progenitor for a 

new round of mutagenesis. 
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500 ng PPM template per 50 µL reaction and 25 replication cycles (Figure 3-2). 

Sequencing a small subset of randomly selected variants within this library indicated an 

average of 1.5 -2 nucleobase mutations per gene and ranging from zero to five 

mutations in the 10 clones.  

 

Random mutagenesis and recombination of PPM variants 

 Since each of the two PPM active site mutations provided large substrate 

selectivity changes through seemingly distinct and potentially competitive mechanisms, 

the Ser154Gly and Val158Leu variants were separately used as templates for random 

mutagenesis by epPCR to further improve dideoxyribose 5-phosphate catalysis. 

Approximately 1000-member libraries for each template were screened for 

dideoxyribose 5-phosphate activity and the top two variants from the first generation 

epPCR libraries for each template provided 150 - 250% higher dideoxyribose 

5-phosphate turnover in cell lysate than the respective progenitor (Figure 3-3). These 

new variants were 12D2 (Thr81Ile mutation and Ile238Ile codon change) and 500F7 

(Phe101Leu) from the Ser154Gly template and 650G11 (Thr81Asn) and 500F6 

 

Figure 3-2. Error-prone PCR mutagenesis rates determined through testing sample 

conditions. Conditions in green were selected for use in directed evolution of PPM as 

they provided a desirable range of inactive colonies. 
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Figure 3-4. Lineage tree of PPM variants. Clone name is given in bold with mutations 

listed below. New mutations accumulated through the indicated method of mutagenesis 

are listed in italics. 

 

  

Figure 3-3. Substrate activity through generations of PPM evolution. Comparison of 
changes in R5P and ddR5P turnover rate per minute by PPM variants in cell lysate 
normalized to wild-type PPM. R5P activity initially shows substantial loss as each single 
mutant, but slowly regains activity through directed evolution. ddR5P activity steadily 
improves throughout directed evolution, reducing overall R5P selectivity in the later 
variants. Data are mean ± s.d. (n=3). Wild-type PPM turnover is 3.18 ± 0.52 µM min-1 for 
R5P and 0.486 ± 0.083 µM min-1 for ddR5P. (R5P, ribose 5-phosphate; ddR5P, 
dideoxyribose 5-phosphate). 
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(Met190Lys and Pro361Pro) from the Val158Leu template (Figure 3-4). Kinetic 

characterization of the top clone in each library of the initial screen revealed increased 

turnover of both substrates, but further improvements in selectivity as a result of large 

changes in substrate KM values in favor of dideoxyribose 5-phosphate (Table 3-3). While 

the Ser154Gly 12D2 variant showed 8.4-fold preference for ribose 5-phosphate, 

selectivity of the Val158Leu 650G11 variant was entirely reversed, actually favoring 

dideoxyribose 5-phosphate at 1.4-fold over the natural substrate ribose 5-phosphate 

after >1400-fold change in substrate selectivity (Table 3-3). 

To maximize the total improvement from this round of evolution, each of these 

four hits were subjected to random recombination using the QuikChange Multi 

Site-Directed Mutagenesis kit from Stratagene. PCR samples contained a single 

template and a forward primer for each mutation not present at a position on the 

template. PCR sample conditions were adjusted according to the kit manual to allow 

Table 3-3. Kinetic parameters of all PPM variants for R5P and ddR5P substrates and 

comparison of changes in substrate selectivity. 

Enzyme Substrate kcat (s
-1) KM (μM) 

kcat/KM (M-1 s-1) 
(x103) 

[kcat / KM (R5P)] / 
[kcat / KM (ddR5P)] 

Fold 
Change 

Wild-Type R5P      10.4±0.2      40±3       260±20 
  

  ddR5P      0.43±0.04  1700±300      0.25±0.05 1028 1 

S154A R5P        1.7±0.1    130±20      13.1±2.2 
  

  ddR5P      0.39±0.02    440±60      0.89±0.13 14.8 70 

S154G R5P      0.71±0.02    130±10        5.5±0.5 
  

  ddR5P      0.21±0.02    800±200      0.26±0.07 20.8 49 

V158L R5P      0.42±0.02  1020±100      0.41±0.04 
  

  ddR5P      0.24±0.01    680±70      0.35±0.04 1.2 881 

S154G/V158L R5P    0.035±0.001    190±20      0.18±0.02 
  

  ddR5P    0.028±0.002    480±90    0.058±0.012 3.2 326 

12D2 R5P      1.08±0.03     180±10        6.0±0.4 
  

  ddR5P      0.27±0.02    380±70      0.71±0.14 8.4 122 

650G11 R5P      1.06±0.04  2160±150      0.49±0.04 
  

  ddR5P      0.32±0.01    470±60      0.68±0.09 0.7 1426 

2G8 R5P        5.4±0.1    230±10      23.5±1.1 
  

  ddR5P      0.38±0.01    450±60      0.84±0.11 27.8 37 

4H11 R5P        4.1±0.1  2830±180        1.5±0.1 
  

  ddR5P      0.41±0.01    410±50        1.0±0.1 1.4 710 
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additional mutations contained on the mutagenic primers to be incorporated at random in 

any combination. Screening 88 clones from each of the four libraries and validating the 

top hits revealed clones 2G8 in the Ser154Gly lineage and 4H11 of the Val158Leu 

lineage as the most active recombinants in the screen, accumulating the mutations listed 

in Figure 3-4. In total, the 2G8 variant showed approximately 300% improved activity 

after gaining six mutations while the 4H11 variant demonstrated nearly 325% greater 

activity than wild-type PPM in cell lysate after accumulating four mutations (Figure 3-3). 

Additional rounds of epPCR on both the 2G8 and 4H11 templates using the same 

epPCR conditions and at a lower template concentration to increase the mutation rate 

failed to produce variants with improved turnover, so each were analyzed as the final 

PPM variants in the directed evolution study.  

In tracking changes of ribose 5-phosphate in cell lysate through PPM evolution, 

initial saturation mutagenesis hits Ser154Gly and Val158Leu lost greater than 95% 

activity on the natural substrate due to the single active site mutations (Figure 3-3). As 

also observed in the purified enzyme kinetic parameters, successive rounds of random 

mutagenesis and recombination slowly recovered a portion of the lost activity, reaching 

55% and 11% of the wild-type level for 2G8 and 4H11, respectively. Comparing the final 

two variants, 2G8 contained all of the mutations present in the 4H11 variant gathered 

through random mutagenesis (Thr81Ile, Met190Lys and Pro361Pro), along with two 

others unique to the Ser154Gly lineage (Phe101Leu and Ile238Ile) (Figure 3-4). 

Overall, most catalytic parameters were very similar between the final variant 

from each lineage (Table 3-3). The 2G8 variant has a kcat and KM of 0.38 s-1 and 450 µM, 

respectively, for dideoxyribose 5-phosphate, which is a slight decrease in turnover rate 

but a 3.8-fold improvement in KM from the wild-type enzyme. The 4H11 variant shows 

similar dideoxyribose 5-phosphate kinetic parameters with a kcat of 0.41 s-1 and a KM of 

410 µM. Because random mutations were not anticipated to selectively improve 
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dideoxyribose 5-phosphate turnover, it was not surprising that each variant also showed 

increased turnover rate of ribose 5-phosphate over the single mutant progenitors, up to 

5.43 s-1 for 2G8 and 4.11 s-1 for 4H11. The one notable difference between the 2G8 and 

4H11 variants was in KM values for ribose 5-phosphate. The 2G8 variant showed a much 

lower binding constant of 230 µM than the 4H11 variant at 2830 µM, which is 70-fold 

higher than the wild-type enzyme. This large difference in KM values is presumably due 

to the putative steric effects caused by the original Val158Leu mutation. The contribution 

of this difference is reflected in the change in substrate selectivity of each enzyme, 

where wild-type PPM exhibits a >1000-fold preference for ribose 5-phosphate while 

selectivity in the best final variant, 4H11, was reduced by 710-fold so that ribose 

5-phosphate is only favored 1.4-fold over dideoxyribose 5-phosphate (Table 3-3). 

To identify the molecular basis for this greatly improvement in selectivity, we 

determined the structure of the 4H11 variant. The active site of PPM is located between 

two domains(16), and the 4H11 structure was associated with an interdomain rotation that 

resulted in a unique alignment of the substrate binding and catalytic residues at the 

active site. One consequence of the cap domain movement is highlighted in the inset. 

Asp156 has previously been shown to coordinate an active site Mn2+, however, in the 

4H11 structure, the location of this coordinating residue is shifted 4.6 Å away from the 

Mn2+ and the coordination sphere is instead completed by water molecules (Figure 

3-5a).  
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Specifically contributing to the observed domain rotation, the mutations at 

positions 81 and 190 seem to destabilize important hinge region contacts that serve to 

modulate interdomain movement. The Thr81Ile mutation appears to remove a hydrogen 

bond interaction between the wild-type residue and the backbone amide of Asp98 

(Figure 3-5b). The new unfavorable non-polar to polar interactions between these 

residues slightly displaces the beginning of this hinge region, which is propagated 

through the rest of the hinge. Furthermore, the position of the Met190Lys mutation 

seems to allow for potential new interactions with the side chains of Thr99 and Glu187, 

which is suggested, in part, by the altered orientations of these residues observed in the 

4H11 structure (Figure 3-5b). However, the high B-factors observed for the Lys190 side 

chain in the 4H11 structure indicate that this residue does not form a completely stable 

 

Figure 3-5. Structure comparison of wild-type and 4H11 PPM. (a) The core and cap 

domains of the 4H11 variant (green, PDB ID 4LRD) are related by a different 

interdomain angle than wild-type PPM in both its active, phosphorylated form (gray, PDB 

ID 3TWZ(17)) and the unphosphorylated and unactive form (blue, PDB ID 3TX0(17)). The 

insert indicates the extent of domain movement via the shift in Mn2+ coordinating residue 

Asp156. (b) The hinge region of 4H11 PPM (green, PDB ID 4LRD) appears to be 

destabilized as a result of the mutations at positions 81 and 190, contributing to the 

observed domain movement. The Thr81Ile mutation removes a hydrogen bond to the 

backbone of Asp98 in wild-type PPM (gray, PDB ID 3TZW(17)) and the Met190Lys 

mutation may allow for potential new interactions with Thr99 and Gly187. 
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interaction with any of the neighboring residues, possibly further contributing to the 

proposed destabilization and flexibility of this region. Combined, these observations 

suggest that the 4H11 variant is associated with increased interdomain flexibility, which 

could partly explain the increased accommodation of the non-natural dideoxyribose 

5-phosphate substrate. Cocrystallization with ribose 5-phosphate or dideoxyribose 

5-phosphate did not result in the appearance of clear electron density in the active site. 

However, manual docking based on the position of each substrate in the wild-type 

enzyme showed that the domain twist resulted in Ser154, which hydrogen-bonds to 

ribose 5-phosphate in the wild-type enzyme, no longer being positioned for substrate 

interaction (Figure 3-6). Loss of this key interaction could further explain the observed 

increase in KM for ribose 5-phosphate (Table 3-3). 

 

 

 

Figure 3-6. Repositioning of Ser154 after domain movement. Residue Ser154 in wild-

type PPM (gray, PDB ID 3M8Z(16)) interacts with ribose 5-phosphate via a hydrogen 

bond at a distance of 2.8Å. This residue is shifted in the structure of the 4H11 variant 

(green, PDB ID 4LRD) as a result of the domain movement and is no longer able to 

interact with ribose 5-phosphate bound in the same position (4.3Å). 
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Discussion 

Identifying two active site mutations with mutually exclusive effects on substrate 

selectivity, the Ser154Gly and Val158Leu single mutant variants were both selected to 

be progenitors for further evolution by random mutagenesis. The particular active site 

qualities of each enzyme provided an opportunity to evaluate two divergent avenues of 

evolution through random mutagenesis: one following the Ser154Gly variant with a 

larger active site and the other following the generalist Val158Leu variant showing no 

preference between the natural and target non-natural substrates. Hits were found on 

both templates after gaining one or two mutations through random mutagenesis, with 

improvement in dideoxyinosine production in cell lysate up to 210% of wild-type PPM 

activity (Figure 3-3).  

Because the random mutations in the top two hits from each library were an 

assortment of conservative, silent and drastic changes, we generated and screened a 

recombination library to identify further improvements from new beneficial combinations 

of the random mutations. The top performing clones were 2G8 in the Ser154Gly family 

and 4H11 in the Val158Leu line (mutations listed in Figure 3-4). These new variants 

showed an additional 275% and 150% increase in dideoxyinosine formation, 

respectively, over the template enzyme (Figure 3-3). Interestingly, the largest changes in 

activity, for both substrates, were observed after the mutagenesis round where beneficial 

mutations were randomly combined. This seems to suggest that several of the mutations 

act independently to provide new characteristics that are not mutually exclusive with 

respect to the other mutations. Overall, total dideoxyinosine production improvements of 

approximately 3-fold over wild-type PPM were seen in the two final mutants in cell 

lysate. These parameters are also comparable to the 3.4-fold and 3.9-fold increase in 

dideoxyribose 5-phosphate catalytic efficiency seen in the purified 2G8 and 4H11 

variants, respectively (Table 3-3), indicating that the improvements in cell lysate are not 
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solely due to increased expression, but likely a combination of enhanced expression and 

kinetic parameters. 

Accompanying changes in ribose 5-phosphate activity via purified enzyme 

kinetics and assays in cell lysate revealed substantial differences between the two final 

variants and the wild-type enzyme. Kinetic parameters indicate approximately a 700-fold 

change in substrate selectivity in 4H11 PPM (Table 3-3), resulting in only a 1.4-fold 

preference for ribose 5-phosphate over dideoxyribose 5-phosphate, thus preserving the 

bulk of the selectivity imparted by the original Val158Leu single mutation. This extensive 

change of selectivity is reflected in the small percentage of ribose 5-phosphate activity 

remaining in 4H11 in the cell lysate activity comparison (Figure 3-3). The Ser154Gly 

single mutant showed a 14.6-fold loss in ribose 5-phosphate turnover as the main 

contributing factor in the 47-fold change in substrate selectivity. However, through 

directed evolution, the kcat for ribose 5-phosphate was restored to approximately half that 

of wild-type PPM and cell lysate showed 55% of the wild-type enzyme activity in the final 

2G8 variant (Figure 3-3), reducing the substrate selectivity to only a 36-fold improvement 

(Table 3-3).  

Unfortunately, these results contradicted the initial hope that the expanded 

binding pocket of the Ser154Gly variant might permit ensuing evolution to refit the active 

site more specifically to dideoxyribose 5-phosphate, but instead allowed mutations to 

generally improve activity on both substrates. Perhaps if ribose 5-phosphate activity was 

tested in a side-by-side assay throughout the directed evolution process, mutations on 

the Ser154Gly template directly affecting active site architecture and dideoxyribose 

5-phosphate binding could have been identified by only selecting variants that presented 

further improvements in substrate selectivity. Though not necessarily a general gauge of 

predicting success, in this directed evolution study the library beginning with the 

Val158Leu general catalyst proved to be the more advantageous template for 
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engineering. The initial targeted saturation mutagenesis provided a solid foundation of 

engineered selectivity that was maintained through subsequent rounds of directed 

evolution, and, in the case of the 4H11 variant, appears to be integral in maintaining 

selectivity changes as directed evolution was used to improve catalysis on the non-

natural substrate.  

Modeling the location of each mutation onto wild-type PPM reveals that all three 

positions that underwent a beneficial residue change (Thr81, Phe101 and Met190) were 

located in or near the hinge region that connects the PPM core and cap domains rather 

than within the active site (Figure 3-7). Instead of directly affecting substrate interactions, 

these mutations might allow an improvement of a structural or dynamic capacity to 

generally enhance catalysis, which is partially supported by the domain movement and 

new interactions observed in the 4H11 structure (Figure 3-5). While speculative, it is 

possible that these mutations (i) increase the flexibility of the hinge, allowing a higher 

likelihood of domain closure to improve catalysis, (ii) help stabilize the closed form of the 

enzyme to provide more time for proper catalysis to occur or possibly a combination of 

both. Further crystallography studies may be able to help clarify these potential 

contributions, possibly by aiming to crystallize the 4H11 and 2G8 variants in the normally 

observed interdomain orientation or as well attempting to capture the enzyme in the 

closed form that is suggested to coincide with the enzymatic activity(17). 

Interestingly, one top hit from each random mutagenesis library contained a 

mutation at Thr81, Thr81Ile (along with Ile238Ile) in 12D2 and Thr81Asn as the sole 

mutation in 650G11, and additionally a second variant in the top 5 clones identified in the 

Ser154Gly library held Thr81Ile as a lone mutation (not shown). Although the location of 

this residue is outside the substrate binding pocket (Figure 3-7), the fact that multiple 

PPM variants containing a mutation at this position indicates that it may have an impact 

on the active site structure that ultimately affects catalysis. Thr81 is near the 
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phosphorylated Thr85 residue required for PPM catalysis(16, 17). As stated above, the 

observed effect of the Thr81Ile mutation on the hydrogen bond network within the hinge 

region appears to contribute to the domain movement in the 4H11 crystal structure. As 

another possibility, mutations within this loop region may alter the presentation of 

phospho-Thr85 to incoming substrates for the phosphotransfer reactions. This may also 

explain why the Thr81Asn mutation, which is likely still able to form a hydrogen bond 

with the backbone of Asp98, was identified as another beneficial mutation at this 

location. Because mutations at this position were found after modifying the active site 

through saturation mutagenesis, small changes in the orientation of phospho-Thr85 may 

have been necessary to compensate for a slightly altered substrate binding orientation to 

realign the phosphate group for proper and efficient in-line attack during catalysis. 

 

 

Figure 3-7. Positions of mutations mapped onto wild-type PPM with ribose 5-phosphate 

bound (PDB ID 3M8Z(16)). Positions 81, 238 and 361 are located in the core domain, 154 

and 158 are located in the cap domain and 101 and 190 are in the hinge region 

connecting the two domains. Combinations of mutations specific to each PPM variant in 

the directed evolution process are provided in Figure 3-4. 
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Conclusions 

Directed evolution using whole gene epPCR and screening for activity in cell 

lysate successfully identified improved PPM variants through two rounds of mutagenesis 

in two separate libraries. The most improved mutant, 4H11 PPM, had a catalytic 

efficiency 4-fold greater than the wild-type enzyme, and substrate selectivity was shifted 

from >1000-fold in favor of ribose 5-phosphate to only a 1.4-fold preference. This large 

change in substrate selectivity would greatly aid in production of dideoxyinosine in an in 

vivo or cell lysate process by minimizing undesirable activity on the natural substrate.  

Although attempts at improving activity through further rounds of epPCR after 

random recombination were not met with success, other mutagenesis methods may be 

more beneficial in identifying new mutations to increase activity on dideoxyribose 

5-phosphate, and indeed applying different mutagenesis methods can yield different 

levels of success in enzyme engineering toward a particular goal(18). Additionally, 

random mutagenesis methods are commonly used to identify sequence ‘hotspots’ that 

are later targeted directly for mutagenesis(14, 19, 20), and it is possible that some of the 

positions identified here through random mutagenesis are within such areas. Further 

mutagenesis studies targeting residues in the loop region around Thr81 as well as the 

hinge region near residues Phe101 or Met190, perhaps by saturation mutagenesis or 

focused random mutagenesis, could lead to further improvements in dideoxyribose 

5-phosphate turnover to increase the productivity of the enzyme. However, as indicated 

in the variants identified through this mutagenesis program, changes in activity may not 

be selective for dideoxyribose 5-phosphate but rather be general for both the natural and 

non-natural substrate. A secondary assay for activity on ribose 5-phosphate may be 

required to selectively screen for improvements in non-natural substrate catalysis to 

ensure that a high degree of substrate selectivity is retained through the additional 

rounds of evolution. It should also be noted that in some instances where significant 
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enhancements of non-natural substrates were achieved, enzyme engineering was 

continued through 10-20 rounds of directed evolution using a variety of mutagenesis 

methods(21-23). 

This tandem system consisting of the evolved 4H11 PPM and hPNP-46D6 

represent a step toward the successful engineering of a non-natural biosynthetic 

pathway and a demonstration of bioretrosynthesis applied to pathway construction and 

optimization. Eventual implementation of a multistep biosynthetic pathway for the 

production of nucleoside analogs has great potential to directly affect the high cost of 

these drugs. Providing an economical alternative or at least a supplementary method of 

large volume production of these valuable pharmaceuticals could reduce the 

prohibitively high price of these drugs and make them more affordable to wider 

population in need of treatment. 
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Chapter IV 

 

IDENTIFICATION OF DIDEOXYRIBOKINASE PROGENITOR ENZYME 

 

Introduction 

 As the first step in the process of evolving an enzyme for activity on a non-natural 

substrate, properly identifying a suitable progenitor enzyme can ultimately determine the 

success of a biocatalyst development program. A prerequisite for selection is that the 

enzyme must catalyze the desired transformation, whether it be oxidation, reduction, 

phosphorylation, isomerization, hydrolysis, etc. Ideally, the enzyme would also catalyze 

the reaction on the non-natural substrate of interest. Even indications of low activity give 

a foundation to build upon, as iterative rounds of directed evolution can be used to 

amplify these weak activities into useful traits(1). Additionally, enzymes from large 

families that perform a variety of reactions on diverse substrates tend to indicate a 

degree of ‘evolvability’ by demonstrating a high level of active site mutability that is both 

structurally and functionally accepted(2). Laboratory methods of mutagenesis to impart 

new or enhanced functions can mimic this natural processes of diversification (i.e. 

natural selection) that has successfully expanded the enzyme family, permitting the 

generation of new biocatalysts with specifically tailored traits(1).  

 In addition to performing the desired biotransformation, structural data from 

refined crystal structures or homology models are also beneficial when selecting 

potential enzyme progenitors. Knowledge of the active site architecture and substrate 

binding will aid in determining interactions and roles of catalytic and substrate binding 

residues. This information can then be used to identify specific targets for functional 

analysis through methods such as saturation mutagenesis(3-6) without disturbing crucial 

residues involved in catalysis. Additional biochemical characterization in the form of 
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substrate acceptance is also a consideration when creating a library of prospective 

progenitor enzymes for a non-natural substrate, however, this data is not always 

available. Similar to how a diverse enzyme family can indicate the evolvability of an 

enzyme, awareness of low level promiscuity for additional substrates may prove to be 

useful data to obtain before pursuing a directed evolution campaign, as broad substrate 

acceptance in a wild-type enzyme may be a beneficial trait to indicate the flexibility and 

potential for engineering into a designer biocatalyst. On the other hand, enzymes known 

to exhibit particularly strict natural substrate specificity could be avoided if this 

information is known before-hand. 

 To continue the bioretrosynthetic construction process of a non-natural 

biosynthetic pathway for dideoxyinosine, we must develop a kinase enzyme with activity 

toward the non-natural sugar analog dideoxyribose to form the substrate for the evolved 

PPM (Figure 4-1). An efficient enzyme is necessary to produce dideoxyribose 

5-phosphate to feed into the pathway and undergo successive biotransformations by the 

evolved PPM and PNP enzymes. This retro-extension expands the application of the 

model of retrograde evolution toward construction of a non-natural biosynthetic pathway 

by progressing to a simpler precursor substrate. Additionally, engineering kinase activity 

on the sugar analog will streamline the chemical synthetic component required to make 

 

Figure 4-1. Retro-extension of the dideoxyinosine biosynthetic pathway to a kinase 

enzyme capable of phosphorylating dideoxyribose.  



124 
 

the non-natural sugar substrates needed for biosynthesis of dideoxyinosine, as 

dideoxyribose is much more easily tractable than the phosphorylated sugar analog.  

Extending the biosynthetic pathway to include a kinase enzyme also added an 

additional complexity of requiring a necessary cofactor (ATP) to perform the reaction. 

Biocatalytic processes that consume stoichiometric amounts of biological cofactors 

(such as NAD(P)H, NAD(P)+, ATP, etc) in order to catalyze the desired transformation 

are traditionally coupled to an enzymatic cofactor regeneration cycle. These cofactors 

are often more expensive than the desired product itself, so efficient strategies to recycle 

the used material are required for practical and cost effective application in industrial 

scale synthesis, usually by coupling the regeneration to consumption of inexpensive 

secondary substrates(7). For example, to regenerate reducing equivalents of NAD(P)H, 

the desired reduction reaction can be coupled to the oxidation of formate(8), glucose(9) or 

isopropanol(10) by the respective dehydrogenase enzymes (Figure 4-2a). The oxidized 

form NAD(P)+ can similarly be restored by reducing 2-ketoglutarate by glutamate 

dehydrogenase in the presence of ammonia(11) or by NADH oxidase catalyzed reduction 

of O2
(12) (Figure 4-2b). ATP can also be regenerated from ADP in several methods, using 

pyruvate kinase and the high energy phosphate donor phosphoenolpyruvate(13) or 

through a phosphate transfer from polyphosphate by polyphosphate kinase(14). 

Additionally, in reactions where pyrophosphate is transferred from ATP to form AMP, 

adenylate kinase can be coupled to the activity of pyruvate kinase or polyphosphate 

kinase to convert AMP to ADP then then reform the active ATP cofactor(15) (Figure 4-2c).  

 In this work, we have identified a variety of kinase enzymes that fit the criteria 

above for potential use as the progenitor enzyme in engineering dideoxyribose kinase 

activity. To allow the greatest chance of success, the panel of enzymes selected 

possessed a variety of natural substrate specificities and were also from a diverse group 

of species. Of the ten plasmids received from other research groups and one from 
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previous studies in our lab, five produced soluble His-tagged protein to be assayed for 

activity in vitro. Each were tested in the full pathway in tandem with the engineered 

PPM-4H11 and hPNP-46D6(16), measuring production of dideoxyinosine from 

dideoxyribose to identify the most productive variant to use as the template enzyme in 

rational and random mutagenesis studies to engineer an efficient dideoxyribokinase. 

Additionally, to counteract the stoichiometric requirement of ATP for phosphorylation of 

dideoxyribose by the kinase enzyme, the biosynthetic pathway was further extended to 

include an enzymatic ATP regeneration cycle, bringing the full system to a five enzyme 

pathway. 

 

 

Figure 4-2. Examples of cofactor regeneration methods. In each instance, restoration of 

the required cofactor is provided by consumption of an inexpensive substrate through 

the coupled activity of another enzyme. Adapted from Xue and Woodley(17). 
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Methods 

Synthesis of 2,3-dideoxyribose 

(S)-γ-butyrolactone-γ-carboxylic acid (2). Compound 2 was generated from 

L-glutamic acid 1 as generally described(18) with the following modifications. Briefly, a 

stirred solution of 53.3 g (363.6 mmol) L-glutamic acid suspended in 170 mL water was 

fixed with separatory funnels containing solutions of NaNO2 (37.5 g, 545 mmol, 1.5 eq, in 

100 mL water) and HCl (90.6 mL of 5.6 N, 508.6 mmol, 1.4 eq), which were added 

drop-wise simultaneously over a period 3 - 4 h. Reaction temperature was maintained 

between 15 - 20 °C during addition using an ice water bath. After complete addition, the 

reaction was warmed to room temperature and stirred overnight before removal of water 

by rotary evaporation and azeotropic dehydration using toluene (3 x 75 mL). The 

resulting solid was resuspended in 500 mL ethyl acetate and dried over anhydrous 

NaSO4. After removing precipitates via filtration, AG50W-X4 resin (20 g, activated by 

washing successively with methanol and ethyl acetate) was added to the solution and 

stirred for 30 min to remove unreacted 1. After filtration, solvent was removed by 

evaporation and the product recrystallized from dichloromethane at -20 °C for (18.2 g, 

139.9 mmol 39% yield). Product purity was confirmed by 1H, 13C NMR analysis and 

comparison to reported spectra.  

(S)-γ-(hydroxymethyl)-γ-butyrolactone (3). Butyrolactone 3 was produced via a 

procedure adapted from a previously described synthesis(18). To a solution of 4.95 g 2 

(38.1 mmol) in 25 mL anhydrous THF at 0 °C under Argon was added dropwise 4.38 mL 

BH3SMe2, 10 M in THF, (43.75 mmol, 1.15 eq) over 1 h. The solution was warmed to 

room temperature and stirred for an additional 2 h. Three dropwise additions of 2.25 mL 

methanol were performed to quench the reaction and remove unreacted BH3SMe2 prior 

to removal of solvents by rotary evaporation. Product 3 (3.8g, 32.7 mmol 86 % yield) 
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was sufficiently pure to proceed without further purification. Product purity was confirmed 

by 1H, 13C NMR analysis and comparison to reported spectra. 

(S)-2,3-dideoxyribose (7). To a stirred solution of compound 3 (106 mg, 0.9 

mmol) in 10.6 mL anhydrous dichloromethane at -78°C was added dropwise 

diisobutylaluminium hydride (1.22 mL, 1.5 M in toluene, 2 eq) and stirred for 2 hr. 

Methanol (5 mL) was added to quench the reaction and the solution was warmed to 

room temperature. The reaction was directly purified using flash SiO2 chromatography 

(10% methanol in dichloromethane), yielding 95 mg (88%) compound 7 as an oil. TLC 

(methanol:dichloromethane, 10/90 v/v): Rf=0.25. 1H NMR (400 MHz, D2O, mixture of α 

and β anomers of furanose and pyranose forms):  5.56 - 4.92 (m, 1H) 4.33 - 3.97 (m, 

1H), 3.82 - 3.37 (m, 2H), 2.17 - 1.55 (m, 4H). 13C NMR (100 MHz, D2O, mixture of α and 

β anomers of furanose and pyranose forms):  97.93, 97.55, 93.11, 92.89, 80.30, 78.35, 

66.85, 66.27, 64.51, 63.95, 63.42, 63.07, 32.54, 32.00, 27.44, 26.99, 26.55, 26.47, 

24.20, 24.12. HRMS (m/z): [M+Na]+ calculated for C5H10NaO3
+ 141.0522; found 

141.0528. 

 

Enzyme expression and purification 

Plasmids containing wild-type or variant PPM, PNP, hPNP-46D6(16), wild-type 

RK, adenylate kinase or pyruvate kinase(19) were transformed into E. coli BL21(DE3) and 

grown at 37°C in LB medium supplemented with 50 µg/mL kanamycin or 50 µg/mL 

streptomycin (RK) and induced with 1 mM IPTG for 3 - 6 h after OD600 had reached 0.5 - 

0.6. Plasmids containing Staphylococcus aureus ribokinase(20), Bacillus subtilis 

fructokinase(21), Enterococcus casseliflavus glycerol kinase(22) and Bacillus subtilis 

hydroxyethylthiazole kinase(23) were transformed into E. coli BL21(DE3) and grown at 

37°C in LB or 2xYT medium (hydroxyethylthiazole kinase only) supplemented with 50 
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µg/mL ampicillin and were induced with 0.5 - 2 mM IPTG for 20 hr at 16°C using the 

published protocols. E. casseliflavus glycerol kinase and B. subtilis hydroxyethylthiazole 

kinase were also cotransformed with pREP4 plasmid and media therefore contained 25 

µg/mL kanamycin. Cell pellets were resuspended in Buffer A (50 mM Tris-HCl, 300 mM 

NaCl, 10 mM Imidazole, pH 7.4) and disrupted by passing through a French Pressure 

cell. The clarified lysate was applied to HisTrap FF crude Ni-NTA affinity column (GE 

Healthcare) and washed at 10% Buffer B (Buffer A with 500mM imidazole). Protein was 

eluted by a linear gradient from 10% Buffer B to 60% Buffer B, before a step up to 100% 

Buffer B to fully elute the column. Purified enzymes were concentrated, desalted and 

exchanged into 5 mM MgCl2 25 mM Tris-HCl, pH 8 before storage at -80°C. 

Hydroxyethylthiazole kinase purification buffers also contained 2mM β-mercaptoethanol 

and both hydroxyethylthiazole kinase and fructokinase enzymes were exchanged into 

Tris-HCl and MgCl2 buffer containing 2mM DTT before storage. All enzyme 

concentrations were determined using the BCA Protein Assay Kit (Thermo Scientific). 

 

Characterization of dideoxyribose activity of kinase enzymes 

Dideoxyinosine production by wild-type E. coli ribokinase(19), S. aureus 

ribokinase(20), B. subtilis fructokinase(21), E. casseliflavus glycerol kinase(22) or B. subtilis 

hydroxyethylthiazole kinase(23) was screened to determine the most active enzyme. 

Reactions contained 0.6 mM MnCl2, 0.6 mM MgCl2, 30 mM KCl, 10 µM hPNP-46D6, 10 

µM 4H11 PPM, 100 µM above kinase, 5 µM adenylate kinase, 5 µM pyruvate kinase, 15 

µM glucose 1,6-bisphosphate, 3 mM hypoxanthine, 1 mM ATP, 2 mM 

phosphoenolpyruvate and 1 mM dideoxyribose in 25 mM Tris, pH 8. Reactions were 

initiated by addition of dideoxyribose and incubated 22 h at room temperature. Aliquots 

of 250 µL were quenched by loading onto Oasis® HLB (3 mL, 60 mg) solid-phase 

extraction cartridges (Waters) preconditioned with 3 mL methanol and 3 mL water on a 
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vacuum manifold. Loaded cartridges were then washed with 1 mL water and 

nucleosides were eluted with 1.5 mL methanol(24). The methanol fractions were 

evaporated to dryness and the remaining residue was reconstituted in 50 µL water. A 30 

µL aliquot of each sample was combined with 7.5 µL of 50 µM 2-deoxyguanosine 

internal standard to prepare the sample for LC/MS analysis.  

Dideoxyinosine produced in the assay was separated from other reaction 

components using a Luna Phenyl-Hexyl column (4.6 X 250 mm, Phenomenex) and an 

isocratic flow of 1.0 mL/min of 10 mM ammonium acetate in 95% water:5% acetonitrile, 

pH 6. A Thermopal autosampler was used to inject 10 µL of the sample for analysis. 

Nucleosides were analyzed on a TSQ Quantum Access triple quadrupole electrospray 

ionization-LC/MS (Thermo, Inc.) using selected reaction monitoring fragmentation to the 

free nucleobase (dideoxyinosine [M+H]+ 237 m/z transition to hypoxanthine [M+H]+ 137 

m/z) with 2-deoxyguanosine as the internal standard ([M+H]+ 268 m/z to guanine [M+H]+ 

152 m/z). Nitrogen was used for both the auxiliary and sheath gases and was set to 45 

units and 30 units, respectively. The following instrument parameters were used: source 

voltage 4.5kV; vaporizer temperature 0 °C; capillary temperature 270 °C; tube lens 101 

V; skimmer offset -5 V; collision energy -10 V. Data acquisition and analysis were 

conducted with Thermo Xcalibur software, version 2.1. Dideoxyinosine formation was 

quantified by relative peak area of analyte to internal standard in comparison to a 

standard curve made using authentic inosine (Acros Organics) and dideoxyinosine (3B 

Pharmachem (Wuhan) International Co. Ltd.). Retention times were approximately 5 min 

for inosine, 6.2 min for 2-deoxyguanosine and 13.5 min for dideoxyinosine. Turnover in 

the reaction mix without the sugar substrate incubated for the same time was subtracted 

from the final turnover measurements.  
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Inhibition of PPM by ATP, ADP and AMP 

 The extent of inhibition of wild-type PPM by ATP, ADP and AMP was measured 

in tandem assays with wild-type PNP. All reactions were performed in 100 µL on 96-well 

plates. Assays contained 0.1 mM MnCl2, 10 nM PPM, 5 µM PNP, 0.5 µM glucose 

1,6-bisphosphate, 600 µM hypoxanthine, 500 µM ribose 5-phosphate and 0 - 0.5 mM 

ATP, 0 - 0.5 mM ADP or 0 - 5 mM AMP in 25 mM Tris-HCl, pH 8. Reactions were 

initiated by addition of 5 µL ribose 5-phosphate to 95 µL containing all other components 

and were incubated for 20 min at room temperature before being quenched by addition 

of 5 µL 2 M NaOH. After 30 min, 5 µL of 2 M HCl was added to neutralize the mixture 

and 75 µL of the quenched assay was combined with 20 µL of 0.2% Triton X-100, 7.5 

mM iodonitrotetrazolium chloride and xanthine oxidase in 25 mM Tris-HCl, pH 8. 

Hypoxanthine consumption was determined by the absorbance at 546 nm in comparison 

to a standard curve and normalized to turnover measured in the absence of adenosine 

nucleotide. 

  

Results 

Chemical synthesis of the non-natural sugar 2,3-dideoxyribose 

 The synthesis of (S)-γ-hydroxymethyl-γ-butyrolactone (3) from L-glutamic acid 

(1), described in Chapter II, creates to a branching point in the synthesis of 

2,3-dideoxysugar substrates. One path can be followed to produce 2,3-dideoxyribose 

5-phosphate, as previously described in Chapter II, and the other can lead to 

2,3-dideoxyribose (7, Figure 4-3). A simple DIBAL reduction of the lactone (3) to the 

lactol(25) provides the dideoxyribose substrate. This reaction was sufficient to provide 

dideoxyribose in high enough yield for biochemical characterization of kinase progenitors 

in the in vitro non-natural biosynthetic pathway. 
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Identification of potential kinase progenitors 

An understanding of enzyme structure, active site design and substrate 

recognition are necessary for implementing a targeted mutagenesis approach for 

altering enzyme substrate specificity. Considering these elements, we searched the 

Protein Data Bank(26) for available structures of potential kinase progenitors. To limit the 

search, we focused on sugar and other small molecule alcohol kinases. These enzymes 

were more likely to have chemically similar and/or relatively comparable sized substrates 

to dideoxyribose, which may eventually provide a more beneficial foundation to evolve 

the desired non-natural activity(27). Although not utilized in this work, accessing the 

structural and biochemical information available through the Enzyme Function Initiative 

(EFI)(28) is another potential option for choosing enzymes as part of the progenitor 

identification process. The Cores within the EFI work to provide structural and functional 

biochemical characterization of unknown enzymes discovered in genome sequencing 

projects and therefore could also be a valuable resource for this initial step. 

Based on available published structures, we narrowed the list of progenitors to 

several enzyme classes with overall fairly extensive structural characterization, namely 

ribokinase, glycerol kinase, fructokinase, ketohexokinase, xylulokinase and 

hydroxyethylthiazole kinase. Fortunately, many of the structures were deposited as 

cocrystals with natural substrates and/or substrate analogs bound in the active sites, 

which provided additional information about residues involved in substrate binding and 

 

Figure 4-3. Synthesis of 2,3-dideoxyribose from glutamic acid. 
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orientation. Apparent substrate interacting residues are highlighted in Figure 4-4 in a 

representative costructure, as well as the phosphorylation reaction specific to each 

enzyme class. Having identified these six enzyme classes with sufficient structural data, 

we then expanded the search using the Braunschweig Enzyme Database (BRENDA)(29) 

to include genes that had been cloned into expression vectors but not crystallized in 

order to create a more diverse list of homologous enzymes to screen for phosphorylation 

of dideoxyribose. The total list included 27 unique enzyme variants from the classes 

given above and is provided in Table 4-1. 

Of the 27 plasmids requested from other laboratories, 10 were provided for our 

test panel for dideoxyribose phosphorylation activity along with E. coli ribokinase which 

we had on hand from previous experiments(19). However, several of these 10 were not 

able to be tested due to insoluble expression, low expression or absence of a His-tag 

sequence to facilitate purification. The final list of enzymes screened for activity were E. 

coli ribokinase(19), S. aureus ribokinase(20), B. subtilis fructokinase(21), E. casseliflavus 

glycerol kinase(22) and B. subtilis hydroxyethylthiazole kinase(23). 

 

 

Figure 4-4. (Next page) Phosphorylation reaction and substrate binding interactions in 

kinase enzymes from the enzyme classes identified as potential progenitors for evolving 

dideoxyribokinase activity. Apparent interactions between the substrate and enzyme are 

indicated with dashed lines. All indicated distances are 4.0 Å or less. (a) E. coli 

ribokinase with ribose and β,γ-methyleneadenosine 5′-triphosphate (ADPCP) bound 

(PDB entry 1GQT(30)). (b) E. casseliflavus glycerol kinase with glycerol bound (PDB entry 

1XUP(31)). (c) B. subtilis fructokinase with fructose and ADP bound (PDB entry 3LM9(21)) 

(d) Human ketohexokinase isoform C with fructose and adenosine 

5′-(β,γ-imido)triphosphate (AMP-PNP) bound (PDB entry 3NBV(32)) (e) Human 

xylulokinase with xylose and ADP bound (PDB entry 4BC2(33)). (f) B. subtilis 

hydroxyethylthiazole kinase with 4-methyl-5-β-hydroxyethylthiazole bound (PDB entry 

1C3Q(23)). The active site of this enzyme is at the interface of two subunits which are 

distinguished separately in gray and blue.  
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Table 4-1. List of potential kinase progenitors found through searching the Protein Data 

Bank and BRENDA. Expression plasmids containing genes for all 27 enzymes listed 

were requested from the corresponding author of the respective publications. Ten 

plasmids were received, each denoted with an asterisk (*). ǂ denotes that a structure had 

been posted to the PDB. 

 

Enzyme Organism Ref. 

Ribokinase *ǂE. coli (19) 

 ǂH. orenii (34) 

 *ǂS. aureus (35) 

 ǂHuman (36) 

 Leishmania major (37) 

Deoxyribokinase (Putative) S. enterica serovar typhi (38) 

Glycerol Kinase ǂThermococcus kodakaraensis (39) 

 *ǂPlasmodium falciparum (40) 

 *ǂEnterococcus casseliflavus (22) 

 H. influenza (41) 

 T. brucei (42) 

 Thermus flavus (43) 

 Thermus aquaticus (44) 

Fructokinase *ǂB. subtilis (21) 

 ǂH. orenii (45) 

 L. pseudomesenteroides (46) 

 Thermococcus litoralis (47) 

 Lycopersicon esculentum Mill. (48) 

Ketohexokinase Human (isoforms *ǂA and *ǂC) (49, 50) 

Xylulokinase *Kluyveromyces marxianus NBRC1777 (51) 

 ǂHuman (52) 

 Pichia stipitis (53) 

 *S. cerevisiae (54) 

 Arabinopsis thaliana (55) 

 *Hansenula polymorpha (56) 

Hydroxyethylthiazole Kinase *ǂB. subtilis (23) 
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Screening progenitor enzymes for dideoxyribokinase activity 

 Each of the five enzymes listed above were assayed for in vitro production of 

dideoxyinosine from dideoxyribose. Activity was tested in the presence of the evolved 

PPM-4H11 and hPNP-46D6(16) variants in a tandem system and analyzed by HPLC/MS. 

Determining activity in tandem with these two previously engineered enzymes was found 

to be the most sensitive detection of kinase activity on dideoxyribose for this system, 

more so even than a typical ATP consumption assay(57) following the oxidation of NADH 

to NAD+ at 340 nm in a tandem assay with pyruvate kinase and lactate dehydrogenase 

(data not shown). Assays were incubated for 22 h to allow for any small differences in 

activity to be more apparent in the measured turnover. 

A low level of dideoxyinosine formation was detected in all five pathway series 

(Figure 4-5). Production was clearly highest in the two pathways that contained a 

ribokinase homolog, reaching 2.94 ± 0.05 µM with E. coli ribokinase and 2.76 ± 0.12 µM 

 

Figure 4-5. Production of didanosine from dideoxyribose by potential kinase progenitors. 

Kinases listed were tested in tandem with 4H11 PPM and hPNP-46D6(16) to identify the 

highest producing variant. Reactions were incubated at room temperature for 22 h. (ddI, 

dideoxyinosine; RK, ribokinase; GK, glycerol kinase; ThiK, hydroxyethylthiazole kinase; 

FK, fructokinase). 
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with the S. aureus enzyme. Although the two ribokinase enzymes showed comparable 

activity on dideoxyribose through similar production levels of dideoxyinosine, the 

ribokinase variant from E. coli was chosen to be the progenitor enzyme further evolution 

and use in the biosynthetic pathway for dideoxyinosine. The extensive biochemical and 

structural characterization available for this enzyme was thought to provide a firm 

foundation of functional insight that could be used to guide future mutagenesis studies. 

 

ATP regeneration cycle 

 In constructing the proposed biosynthetic pathway, the retro-extension to 

ribokinase brought the necessary consideration of an ATP regeneration method. In 

addition to avoiding the costly requirement of stoichiometric levels of ATP for 

phosphorylation of dideoxyribose, ATP was also found to inhibit PPM, as did ADP and 

AMP, the products of enzymatic reactions and hydrolysis (Figure 4-6). For these 

 

Figure 4-6. Inhibition of PPM by adenine nucleotides. Consumption of hypoxanthine by 

10 nM PPM in tandem with PNP was determined in the presence of a range of (a) ATP, 

(b) ADP and (c) AMP concentrations to observe the effect on activity. 
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reasons, the concentration of ATP in the reaction must be kept relatively low and levels 

of inactive ADP and AMP nucleotides must also be minimized to prevent enzyme 

inhibition that would ultimately reduce biosynthetic pathway productivity. To address this 

need, a tandem enzymatic system of pyruvate kinase and adenylate kinase were 

introduced to the in vitro reaction along with phosphoenolpyruvate as the source of high 

energy phosphate. Together, these two enzymes recycle any ADP and AMP produced 

as a result of kinase activity and/or hydrolysis over the course of the long incubation 

time. Using this in situ ATP regeneration system, we reduced the concentration of ATP 

to sub-stoichiometric levels and compensated the loss by including 

phosphoenolpyruvate at levels high enough to maintain a steady active ATP 

concentration throughout the extended assay lengths. Including this cofactor 

regeneration system, the full system now consists of a five enzyme biosynthetic pathway 

(Figure 4-7). 

 

 

 

Figure 4-7. The five step dideoxyinosine biosynthetic pathway. Pyruvate kinase (PK) 

and adenylate kinase (AK) form the ATP regeneration cycle, while biosynthesis of ddI 

continues from dideoxyribose via RK, PPM and PNP catalysis. Expected products of 

degradation through non-enzymatic hydrolysis are indicated with dashed arrows. 
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Discussion 

 Identifying a proper progenitor enzyme is a critical aspect of engineering an 

effective biocatalyst. Ideally, a progenitor enzyme that naturally acts on a substrate as 

similar as possible to the desired non-natural substrate would provide the best place to 

begin(27). For this reason, we set out to select a panel of enzyme classes that could be 

useful starting templates for evolving dideoxyribose phosphorylation activity. Aside from 

the chemical nature of the substrate, we considered the desired transformation (i.e. 

phosphorylation of a hydroxyl group) and the availability of structural data indicating 

active site residues involved in enzyme-substrate interactions as part of the analysis. 

This process led us to the ribokinase, glycerol kinase, fructokinase, ketohexokinase, 

xylulokinase and hydroxyethylthiazole kinase enzyme classes as potential progenitors 

(Figure 4-4). 

 After requesting all of the homologs from each class that were published as 

being cloned into expression vectors (Table 4-1), the list of progenitors was considerably 

shortened to five enzymes that were able to be expressed at a high level and purified by 

His-tag affinity chromatography. Each enzyme was individually tested in tandem with the 

evolved PPM and PNP variants in the presence of an ATP regeneration system. The 

assay measuring total production of dideoxyinosine from dideoxyribose by each kinase 

enzyme identified the two ribokinase variants (E. coli and S. aureus) as the most 

productive progenitors.  

E. coli ribokinase has been reported to show low level activity on a variety of 

other naturally occurring D-pentose sugars. In their assay conditions, Chuvikovsky et al. 

detected activity on 2-deoxy-D-ribose, D-arabinose, D-xylose and D-fructose at 31, 0.74, 

1.06 and 0.28% of the measured activity on ribose by the wild-type enzyme(58). This 

noted promiscuous activity may prove to be a valuable quality in future studies to 

engineer activity. The S. aureus enzyme, on the other hand, has not been characterized 
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as having additional substrate allowance, however this enzyme in general has not been 

studied in great detail. Combined with the highest level of activity on dideoxyribose, the 

greater extent of biochemical and structural characterization of this enzyme lead to the 

selection of ribokinase from E. coli as the template for future evolution.  

 The chemical similarity between dideoxyribose and ribose (and dissimilarity 

between dideoxyribose and the natural substrates of the other enzymes) could perhaps 

explain why the ribokinase homologs demonstrated the highest activity of the kinase 

enzymes tested. The two substrates differ only by the presence or absence of the C2 

and C3 hydroxyls, which appear to interact most directly with the active site residue 

Asp16 in E. coli(59) (Figure 4-4a). Although this interaction would likely be unfavorable 

toward dideoxyribose, perhaps dideoxyribose binds in a slightly altered orientation to 

minimize the interaction between the hydrophobic sugar and the negatively charged 

Asp16 residue.  

Dideoxyribose possesses unique structural features when compared to the other 

natural substrates of each enzyme class. The non-natural sugar is somewhat larger than 

glycerol and not as planar as 4-methyl-5-β-hydroxyethylthiazole. The reduced activity on 

dideoxyribose observed in the enzymes responsible for phosphorylating these 

substrates, glycerol kinase and hydroxyethylthiazole kinase, respectively, could simply 

be the result of stearic hindrance in the active site. This would result in limited substrate 

binding due to residues preventing access to the binding pockets in the respective 

kinases. Mutagenesis targeted to specific active site residues with the preference for 

smaller amino acid side chains, such as glycine or alanine, may be able to open the 

active site and relieve some of the potentially unfavorable steric interactions and 

increase catalysis, if indeed this is the reason for the observed low activity. This strategy 

has previously been demonstrated to be quite successful in engineering activity into a 

transaminase where the active site was originally much too small to bind the ketone 
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substrate of interest, and targeted engineering to expand the active site was the first 

priority(60).  

To contrast, the fructose sugar substrate of fructokinase is both larger and also 

more polar than the ribose substrate for ribokinase. Because of these traits, the 

substrate binding pocket of fructokinase has evolved accordingly to appropriately match 

the size and increase number of polar functional groups to accommodate fructose 

binding. These structural and electrostatic differences likely allow the smaller and much 

less polar dideoxyribose to bind in multiple different non-productive orientations in the 

active site. This would reduce the likelihood of acceptable binding and positioning of 

dideoxyribose for proper catalysis, causing fructokinase be rather inefficient in 

phosphorylating dideoxyribose as observed in this study. 

Although not tested here, ketohexokinase could be an interesting progenitor to 

characterize for dideoxyribose kinase activity. This enzyme may also have minimal 

activity on dideoxyribose, comparable to that of fructokinase, as fructose is the natural 

substrate for this enzyme as well. On the other hand, ketohexokinase could possibly 

have a similar activity profile of the two ribokinase enzymes due to structural similarity 

between the three enzymes. Ketohexokinase isoforms A and C are both part of the 

ribokinase-like superfamily of enzymes(50), the same classification of both ribokinase 

enzymes tested in this study, while the fructokinase from B. subtilis is a member of the 

actin-like ATPase superfamily(21) along with the related enzymes glucokinase(61) and 

ATP-glucomannokinse(62). It is possible that this ribokinase-like superfamily and the 

conserved active site architecture offers a more favorable scaffold for catalyzing the 

phosphorylation of dideoxyribose, and ketohexokinase may indeed provide another 

active template for evolution. It is also noteworthy that not all fructokinase enzymes 

belong to the actin-like ATPase superfamily. The structures of homologs from 

Halothermothrix orenii (PDB entry 3HJ6(45)) and Xyella fastidiosa (PDB entry 3LJS) are 
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classified as having a ribokinase-like fold and, if made available, could also be tested for 

the desired activity on dideoxyribose to further expand characterization of this 

superfamily for dideoxyribose phosphorylation. 

 

Conclusions 

 Screening a panel of representative sugar and small molecule kinases led to the 

selection of E. coli ribokinase as the progenitor enzyme for engineering 

dideoxyribokinase activity. Although ribokinase from S. aureus was equivalently active 

toward dideoxyribose in the pathway production experiments, the wealth of structural 

and biochemical data available for the E. coli homolog was a key factor is selecting this 

enzyme as the template for use in the biosynthetic pathway and for further optimization 

in targeted and random mutagenesis studies. 

 Even though E. coli ribokinase was identified as the best wild-type enzyme from 

those tested, further studies investigating the effect of targeted mutagenesis of active 

site residues in select enzymes of the tested panel or of additional kinase enzymes may 

provide more beneficial kinase variants to use as template genes. Carefully targeted 

mutations within the substrate binding pocket of either glycerol kinase or 

hydroxyethylthiazole kinase may provide a necessary increase in active site volume to 

appropriately bind dideoxyribose and allow catalysis on the non-natural substrate. 

Additionally, mutagenesis of the active site Cys198 to aspartate in hydroxyethylthiazole 

kinase has been shown to increase natural substrate specific activity by 9-fold in the 

enzyme from B. subtilis(23), and could possibly affect the activity of this enzyme on 

dideoxyribose as well.  

Expanding the collection of possible template enzymes to include other kinases 

within the ribokinase-like superfamily may also return new potential progenitors. 

Additionally, this exploration could yield a great deal of information regarding the 
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‘evolvability’ of the active site of this particular enzyme superfamily. Comparing 

sequence variation between enzymes in the ribokinase-like superfamily that show 

competent activity on dideoxyribose could suggest residues of interest for mutagenesis 

and new beneficial sequence combinations in an analysis similar to that performed as 

part of the ProSAR algorithm used to evolve a halohydrin dehalogenase for a 

non-natural substrate(63). Progenitor expansion and characterization in this way could 

increase the aspect of rational design in this approach through providing a deeper 

biochemical understanding of the active site of ribokinase-like enzymes, and may 

ultimately lead to a more efficient dideoxyribokinase enzyme. 
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Chapter V 

 

BIORETROSYNTHESIS AS A PATHWAY CONCEPTUALIZATION AND 

CONSTRUCTION METHOD 

 

Introduction 

Many societally important synthetic and natural molecules are currently 

generated using biocatalytic processes. In most cases, individual enzyme-catalyzed 

steps are optimized for incorporation into multi-step synthetic pathways, such as in the 

syntheses of the blockbuster drugs sitagliptin(1), montelukast(2), and simvastatin(3), 

among others(4). With less frequency, secondary metabolites, their intermediates, and/or 

analogs are synthesized via recapitulating and improving existing biosynthetic pathways 

(for example, artimesinic acid(5), taxadiene(6)) or by modifying native pathways (such as, 

pactamycin(7), macbecin(8)). Given the apparent multiplicative benefits of combining 

biotransformations into pathways, it is notable that de novo multistep engineered 

biosynthetic pathways for the synthesis of unnatural compounds are quite uncommon 

(1,2,4-butanetriol(9), 1,4-butanediol(10)), and the small subset of such pathways that 

employ cascades of more than one engineered/evolved enzyme, as in the production of 

the Atorvastatin side chain(11), are truly exceptional. 

One possible reason for this deficiency of engineered non-natural pathways may 

be the lack of a systematic pathway conceptualization strategy to make the challenge of 

de novo pathway design more approachable. Borrowing a technique from synthetic 

chemistry, the process used in the practices of chemical and biochemical retrosynthetic 

analyses(12, 13) can be adapted to the context of a biosynthetic pathway in 

‘bioretrosynthesis’(14), where an analogous series of biotransformations, rather than 

chemical transformations, can be proposed to convert a target non-natural product into 
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increasingly simpler precursors (and precursors of precursors) using the body of known 

enzymatic reactions (Figure 5-1). This approach offers a widely applicable paradigm for 

planning a non-natural pathway through providing a sequence of biotransformations 

toward the target compound and simultaneously delineating a putative and tractable 

biosynthetic pathway, much like how retrosynthesis is used in planning a chemical 

synthesis scheme. 

Within this chapter we apply bioretrosynthesis as an approach to construct an in 

vitro pathway for the synthetic nucleoside analog didanosine (dideoxyinosine, ddI), an 

archetypal off-patent pharmacological inhibitor of HIV-1 reverse transcriptase. The 

selection of this target was based on the following criteria: (1) dideoxyinosine is 

representative of a widely prescribed class of drugs used in antiviral and anticancer 

indications with new members currently in clinical trials, (2) manufacturing costs 

contribute over 75% of the final therapy costs for dideoxyinosine and other nucleoside 

analogs(15), and (3) metabolic progenitor enzymes can be readily identified for each step 

in a conceptual bioretrosynthesis.  

 

Figure 5-1. Bioretrosynthesis applied as pathway planning tool. Known enzymatic 

transformations of natural substrates in the biosynthesis of D from precursor A (top, 

Steps 1-3) are suggested to serve as a biocatalytic route to form non-natural product δ 

from precursor α, catalyzing an analogous series of reactions on non-natural substrates 

(Greek letters) (bottom, Steps 1-3). 
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We developed our retrosynthetic pathway using logical parallels to the natural 

synthesis of inosine. While there are several biosynthetic routes to inosine from primary 

metabolic precursors, the shortest sequence consists of only three enzymes to produce 

inosine from the natural sugar ribose: ribokinase (RK), phosphopentomutase (PPM) and 

purine nucleoside phosphorylase (PNP) (Figure 5-2a). In the proposed non-natural 

pathway (Fig. 5-2b, blue box), dideoxyinosine is generated by a purine nucleoside 

phosphorylase catalyzed addition of hypoxanthine to 2,3-dideoxyribose 1-phosphate. 

Retroconsecutively, 2,3-dideoxyribose 1-phosphate may be accessed by 

phosphopentomutase catalyzed isomerization of 2,3-dideoxyribose 5-phosphate, which 

in turn can be formed by phosphorylation of 2,3-dideoxyribose by ribokinase.  

Beyond the multifold challenges entailed in designing new biochemical 

pathways(16) and engineering multiple enzymes for unnatural substrates(17), a critical 

requirement for advancing unnatural pathway engineering is the development of 

generalizable methods for the assembly and optimization of unnatural biosynthetic 

pathways. Construction of an engineered multistep pathway can progress in one of two 

directions. In the forward direction, pathway evolution proceeds from the beginning of a 

proposed pathway, recruiting and evolving enzymes for each step, and assembling 

steps in the direction of biosynthesis (Fig. 5-2b, top). Engineering a pathway in this 

fashion potentially requires evolving each enzyme and developing a unique 

screening/selection strategy for each step in the designed pathway (Fig 5-2b, gray 

boxes). Assay design can be challenging and, in the event of an intransigent 

intermediary step, new pathway strategies may be required.  

An alternative approach to pathway construction may be inspired by the 

hypothesis of retrograde evolution(18). This hypothesis asserts that biosynthetic pathways 

may be evolved in a stepwise fashion, optimizing each enzyme for its required function, 

but that the order of enzyme recruitment is in the reverse direction of synthesis, 
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beginning with the terminal step (Fig 5-2b, bottom). In this approach, pathway product 

formation is the single selection criterion for evolution at each retro-consecutive step (Fig 

5-2b, orange boxes), thereby reducing the number of selections/screening strategies 

required to a single assay. This model can be experimentally applied to non-natural 

pathway creation as the second aspect of bioretrosynthesis, where non-natural pathway 

construction and evolution is inspired by this model of retrograde evolution, and the 

strategy is to screen for pathway product formation via increasingly tandem enzyme 

 

Figure 5-2. Model inosine biosynthetic pathway and proposed bioretrosynthesis of 

dideoxyinosine. (a) The three enzyme metabolic pathway for inosine used as a model to 

construct a dideoxyinosine pathway. (b) Comparison of the forward and retro-evolution 

strategies of pathway construction. Enzymes evolved in the forward direction proceed in 

the order of biosynthesis (RK, PPM then PNP), requiring individual screening assays for 

each enzymatic step (gray boxes). Retro-evolution requires one screening assay for 

terminal enzyme activity (orange boxes) for evolution of each enzyme in the reverse 

order of biosynthesis (PNP, PPM then RK) in tandem assays. 
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assays in a serially retro-consecutively extended pathway. Once optimized through 

enzyme engineering, this pathway consisting of ribokinase, phosphopentomutase and 

purine nucleoside phosphorylase is anticipated to form the biocatalytic portion of a 

semisynthetic route to dideoxyinosine from dideoxyribose, which can be synthesized in a 

short synthetic sequence from glutamic acid (Figure 5-3). 

Here we assemble and evolve these individual enzymes in a retrograde fashion, 

according to the bioretrosynthetic process, into a five-step pathway including an ATP 

regeneration cycle. The resulting pathway displays a 9,500-fold change in pathway 

substrate selectivity and a 50-fold increase in dideoxyinosine production in comparison 

to the progenitor primary metabolic pathway. An unplanned result of the 

bioretrosynthetic strategy was the discovery of a pathway-shortening biochemical 

bypass and a previously unreported phosphorylation activity elicited by ribokinase. 

Inevitably, this activity was detected through testing for final product formation in the 

bioretrosynthesis evolution strategy rather than possibly having gone overlooked by 

screening for the anticipated dideoxyribose 5-phosphate intermediate.  

 

 

 
Figure 5-3. Semisynthetic pathway for production of dideoxyinosine. The non-natural 

sugar dideoxyribose is synthesized via cyclization of glutamic acid and two sequential 

reductions before entering the enzymatic pathway consisting of ribokinase (RK), 

phosphopentomutase (PPM) and purine nucleoside phosphorylase (PNP). 
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Methods 

Ribokinase mutagenesis 

Site-directed mutagenesis was performed using the QuikChange II mutagenesis 

kit (Stratagene) with wild-type ribokinase (Genbank Accession Number ACT45432.1) in 

pCDFDuet vector(19). DpnI restriction endonuclease was used to digest the template 

plasmid DNA prior to purification of the mutant plasmid by QIAquick PCR Purification Kit 

(QIAgen, Inc.) and subsequent transformation. PCR sample preparation and thermal 

cycling for recombination of mutations were performed following the recommended 

protocol by the kit manufacture’s manual. Primers used are listed in Table 5-1. Sample 

preparation for cloning protocols was performed as recommended in kit manuals. 

 

Enzyme expression and purification 

Plasmids containing PPM variants, PNP variants(20), RK variants, adenylate 

kinase or pyruvate kinase(19) were transformed into E. coli BL21(DE3) and grown at 37 

°C in LB medium supplemented with 50 µg/mL kanamycin or 50 µg/mL streptomycin (RK 

variants) and induced with 1 mM IPTG for 3 – 6 h after OD600 had reached 0.5 – 0.6. Cell 

pellets were resuspended in Buffer A (50 mM Tris-HCl, 300 mM NaCl, 10 mM imidazole, 

Table 5-1. Primers used in site directed mutagenesis of RK. Mutations in each sequence 
are underlined. 

Primer Name Nucleotide Sequence 

Asp16Leu for AGCATTAATGCTCTGCACATTCTTAATCTTCAATC 

Asp16Leu rev GATTGAAGATTAAGAATGTGCAGAGCATTAATGCT 

Asp16Asn for AGTCTTAATGCTAACCACATTCTTAATCTTCAATC 

Asp16Asn rev GATTGAAGATTAAGAATGTGGTTAGCATTAATGCT 

Asp16Ala for AGCATTAATGCTGCCCACATTCTTAATCTTCAATC 

Asp16Ala rev GATTGAAGATTAAGAATGTGGGCAGCATTAATGCT 
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pH 7.4) and disrupted by passing through a French Pressure cell (1400 psi). The 

clarified lysate was applied to a HisTrapFFcrude Nickel affinity column (GE Healthcare, 

Inc.) and washed at 10% Buffer B (Buffer A with 500 mM imidazole). Protein was eluted 

by a linear gradient from 10% Buffer B to 60% Buffer B, before a step up to 100% Buffer 

B to fully elute the column. Purified enzymes were concentrated, desalted and 

exchanged into 25 mM Tris-HCl, pH 8 or 5 mM MgCl2 25 mM Tris-HCl, pH 8 (ribokinase 

variants) before storage at -80 °C. All enzyme concentrations were determined using the 

BCA Protein Assay Kit (Thermo Scientific, Inc.). 

 

In vitro production of inosine and dideoxyinosine 

 Nucleoside production turnover through the one step (PNP only), two step (PPM 

and PNP) and full three step (RK, PPM and PNP) pathways was measured using 

purified enzymes. For the one step pathway, sugar 1-phosphate was generated in situ 

from (2,3-dideoxy)ribose 5-phosphate by preincubation with either wild-type PPM or 

PPM-4H11. The PPM variant (5.27 µM) was activated in the presence of 0.11 mM 

MnCl2, 5.27 µM glucose 1,6-bisphosphate and 3.34 mM hypoxanthine in 25 mM Tris, pH 

8 for 15 min in a volume of 900 µL before addition of 50 µL 50 mM sugar 5-phosphate 

(2.63 mM final) and incubated for 4 h to create the sugar 1-phosphates. Each reaction 

was then passed through a 10 kDa molecular weight cutoff filter at 4 °C to remove PPM 

and aliquoted to 95 µL portions on a 96-well plate before 5 µL of 0.4 µM PNP variant (for 

inosine production) or 10 µM PNP variant (for dideoxyinosine production) was added to 

initiate the reaction. The final reaction performed in duplicate contained 20 nM or 500 nM 

PNP variant, 0.1 mM MnCl2 and 3 mM hypoxanthine in 25 mM Tris, pH 8 with 

equilibrium concentrations of (2,3-dideoxy)ribose 5-phosphate and (2,3-dideoxy)ribose 

1-phosphate and trace amounts of glucose 1,6-bisphosphate. Assays were incubated for 

5 min (for ribose 1-phosphate) and 20 min (for dideoxyribose 1-phosphate) before being 
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quenched by addition of 5 µL 2 M NaOH then neutralized after 30 min by addition of 5 

µL 2 M HCl/1 M CaCl2. Assay plates were centrifuged to pellet the precipitates and 

samples were prepared for LC/MS analysis as described in previous chapters. 

Catalysis via the two step pathway was performed on a 96-well plate in 100 µL 

reactions in duplicate comparing nucleoside production through multiple pairs of PPM 

and PNP variants from sugar 5-phosphates. Samples were initiated by addition of 10 µL 

of 10 mM sugar 5-phosphate to 90 µL of assay mix containing all other reaction 

components. Final reaction conditions were 0.1 mM MnCl2, 0.5 µM glucose 

1,6-bisphosphate, 0.1 µM PPM variant, 2 µM PNP variant, 2 mM hypoxanthine and 1 

mM sugar 5-phosphate. Reactions were incubated for 5 min (ribose 5-phosphate) and 

20 min (dideoxyribose 5-phosphate) before quenching, neutralizing and preparing 

samples for LC/MS as previously described. 

Inosine and dideoxyinsone production through the full three step pathway and 

ATP regeneration cycle was determined comparing production of all three wild-type 

enzymes to production after incorporating the engineered PNP, PPM and RK variants in 

the presence of an ATP regeneration cycle. Conditions for inosine production were 0.6 

mM MnCl2, 0.6 mM MgCl2, 30 mM KCl, 1 µM PNP variant, 0.1 µM PPM variant, 1 µM RK 

variant, 5 µM adenylate kinase, 5 µM pyruvate kinase, 0.5 µM glucose 1,6-bisphosphate, 

0.5 mM ATP and 1 mM ribose. Reactions for dideoxyinosine production were as listed 

above with 10 µM PNP variant, 10 µM PPM variant, 100 µM RK variant, 15 µM glucose 

1,6-bisphosphate and 1mM dideoxyribose. Duplicate assays were initiated by addition of 

ribose or dideoxyribose and incubated at room temperature for 5 min (ribose) or 10 hr 

(2,3-dideoxyribose). Aliquots of 250 µL were quenched by loading onto Oasis® HLB (3 

mL, 60 mg) solid-phase extraction cartridges (Waters) preconditioned with 3 mL 

methanol and 3 mL water on a vacuum manifold. Loaded cartridges were then washed 

with 1 mL water and nucleosides were eluted with 1.5 mL methanol(21). The methanol 
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fraction was evaporated to dryness and the remaining residue was reconstituted in 250 

µL water (ribose pathway) or 50 µL water (2,3-dideoxyribose pathway). Reactions for 

production of nucleosides without PPM were performed identically without the addition of 

the PPM variant and were incubated for 10 h before quenching. Samples were prepared 

for LC/MS as previously described using 10 µM 2-deoxyguanosine as the internal 

standard. Turnover in the reaction mix without the sugar substrate incubated for the 

same time were subtracted from the final turnover measurements.  

 

Results 

Bioretrosynthetic Step 1: Nucleoside Phosphorylase 

We previously improved the terminal reaction of the proposed pathway by 

evolving human purine nucleoside phosphorylase (hPNP) to phosphorolyze 

dideoxyinosine(20), but had not evaluated improvements in the synthesis direction. We 

therefore began evaluating the application of bioretrosynthesis as method in non-natural 

pathway construction by assaying the product forming enzyme for competence in the 

synthesis of inosine and dideoxyinosine by the wild-type and hPNP-46D6 variants from 

the respective sugar 1-phosphates via HPLC/MS. The wild-type hPNP exhibited a 

660-fold higher turnover of ribose 1-phosphate than dideoxyribose 1-phosphate (Figure 

5-4). This selectivity was reduced to 4.7-fold preference for ribose 1-phosphate in the 

optimized hPNP-46D6 variant after 16-fold increase in the rate of dideoxyinosine 

production combined with a corresponding 8.7-fold decrease in inosine formation. With a 

140-fold change in substrate selectivity and a turnover rate of 0.37 µM/min/µM PNP, this 

enzyme was considered to possess sufficient activity for the in vitro tandem assays of 

PPM or PPM-RK required for implementing a bioretrosynthetic strategy for engineering 

the targeted dideoxyinosine pathway. 
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Bioretrosynthetic Step 2: Phosphopentomutase 

The two step pathway showed further production selectivity improvements after 

pairing the two optimized enzymes (Fig. 5-5). The combination of wild-type PPM and 

wild-type PNP showed a 1420-fold bias for ribose 5-phosphate over the dideoxy 

substrate. Incorporating the evolved PNP variant into the pathway provided a 28.9-fold 

increase in dideoxyinosine production and a small loss in inosine formation. The effect 

on inosine biosynthesis was further compounded after pairing the two optimized 

enzymes, showing a 342-fold total change in substrate selectivity to create a tandem 

evolved biosynthetic pathway with 32.5-fold improved dideoxyinosine production and 

only a 4.2-fold preference for the natural substrates. Although the evolved pair of 

enzymes did not provide much increase in dideoxyinosine production over the wild-type 

 

Figure 5-4. In vitro biosynthetic production of inosine and dideoxyinosone catalyzed by 

PNP. Nucleoside production was measured via HPLC/MS analysis from in situ 

generated sugar 1-phosphates in one step biocatalysis (PNP only). Enzyme variants 

used in each reaction are listed under bars. Turnover was normalized to PNP variant 

concentration and assay length. Data are mean ± s.d. (n=2). Ribosyl substrates, R=OH. 

Dideoxyribosyl substrates, R=H. 
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PPM with the evolved PNP under the tested conditions, the PPM-4H11 variant did 

provide a significant change in selectivity by reducing inosine productivity.  

 

Bioretrosynthetic Step 3: RK 

As previously mentioned in Chapter IV, at this point in the bioretrosynthetic 

construction it was also necessary to include a cofactor recycling system as ATP, ADP 

and AMP were found to inhibit PPM. To satisfy this requirement, the high energy 

phosphate donor phosphoenolpyruvate was added to the in vitro production reactions 

along with pyruvate kinase and adenylate kinase to regenerate ATP. This allowed the 

reaction to contain a lower concentration of ATP and prevent loss of cofactor equivalents 

due to hydrolysis over the extended incubation lengths. Including this cofactor 

 

Figure 5-5. In vitro biosynthetic production of inosine and dideoxyinosine catalyzed by 

PPM and PNP in tandem. Nucleoside production was measured via HPLC/MS analysis 

from sugar 5-phosphates in the two-step tandem pathway (PPM and PNP). Enzyme 

variants used in each reaction are listed under bars. Production was normalized to 

incubation time. Data are mean ± s.d. (n=2). Ribosyl sybstrates, R=OH. Dideoxyribosyl 

substrates, R=H. 
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regeneration cycle extended the full system to a five enzyme biosynthetic pathway.  

Unsurprisingly, the complete pathway consisting of all wild-type enzymes 

efficiently produced inosine, reaching 208 µM in five minutes, while dideoxyinosine 

production was only 0.6 µM after 10 h (Fig. 5-6). Retroconsecutively introducing the 

 

Figure 5-6. In vitro biosynthetic production of inosine and dideoxyinosine catalyzed by 

the full biosynthetic pathway. Nucleoside production was measured via HPLC/MS 

analysis from ribose and dideoxyribose in the full biosynthetic pathway (RK, PPM and 

PNP) or the pathway without PPM. Enzyme variants used in each reaction are listed 

under bars (dashed line means no variant included). Direct phosphorylation of the sugar 

C1 position by wild-type RK was tested in tandem with the appropriate PNP variant for 

best detection of activity. The full inosine pathway was incubated for 5 min, while 

dideoxyinosine production was for 10 h. Reactions without PPM were incubated for 10 h, 

however inosine production was normalized to 5 min do be directly comparable to 

production by the full pathway with PPM. Data are mean ± s.d. (n=2). Ribosyl sybstrates, 

R=OH. Dideoxyribosyl substrates, R=H. 
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evolved hPNP-46D6 and then the evolved PPM-4H11 variants reduced inosine 

production by 2-fold and 13.6-fold, respectively, while providing 3-fold and 2.5-fold gains 

in dideoxyinosine production, respectively (Fig. 5-6).  

The functional three enzyme system facilitated preliminary mutagenesis studies 

of RK to observe the effects on pathway product formation. Analysis of the X-ray 

costructure of E. coli ribokinase with ribose (1GQT(22)) shows that the active site residue 

Asp16 interacts with the C2 and C3 hydroxyls of ribose(23) (Fig. 5-7). As these hydroxyl 

functionalities are not present in dideoxyribose, we replaced the charged aspartate with 

non-polar and space filling leucine, the polar isostere asparagine, or alanine 

(Asp16Leu/Asn/Ala mutants) and measured nucleoside production through the 

engineered pathway. All three variants reduced inosine formation to ≤1 µM at five 

minutes, diminishing productivity 200 - 275-fold from the wild-type pathway (Fig. 5-6). 

The Asp16Leu/Asn mutations provided slight increases in dideoxyinosine productivity, 

however the Asp16Ala RK (RK-Asp16Ala) resulted in a 20-fold increase in 

 

Figure 5-7. Orientation of ribose by Asp16 in RK. The interaction between the active site 
residue Asp16 and bound ribose is highlighted in wild-type E. coli RK (PDB entry 
1GQT(22)). This interaction between Asp16 (gold) and ribose (green) was targeted for 
removal in preliminary mutagenesis studies by mutation to leucine, asparagine and 
alanine (Asp16Leu/Asn/Ala). 
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dideoxyinosine production compared to wild-type RK, forming 31 µM after 10 h (Figure 

5-6). Combined with the reduced production of inosine, the pathway of RK-Asp16Ala, 

PPM-4H11 and hPNP-46D6 resulted in a 9,544-fold total change in nucleoside 

production selectivity through the three evolved enzymes and a total of 50-fold increased 

dideoxyinosine production.  

The unexpectedly large increase in productivity in the pathway containing 

RK-Asp16Ala prompted investigation into the functional role of the improved ribokinase. 

In particular, we considered the possibility that previously unobserved anomeric (C1) 

phosphorylation of dideoxyribose could more directly provide the substrate for PNP and 

increase pathway productivity. Indeed, under optimized complete pathway conditions but 

excluding PPM-4H11, the RK-Asp16Ala in tandem with hPNP-46D6 provided the highest 

dideoxyinosine production (verified by HPLC/MS comparison to synthetic dideoxyinosine 

standard) at 44 µM, or 4.4% yield from dideoxyribose and 70-fold greater than the 

wild-type three enzyme pathway. Of note, the turnover of the RK-Asp16Als/hPNP-46D6 

two-enzyme system was 40% higher than the three enzyme pathway including 

PPM-4H11 (Figure 5-6). This suggests that the majority of the RK-Asp16Ala effect on 

activity in the full pathway was in fact due to direct phosphorylation of the anomeric 

hydroxyl group rather than expected O-phosphorylation at the C5 position, which diverts 

ribose into the more indirect (PPM-dependent) pathway. A low level of this activity was 

also observed in the evolved pair of enzymes when ribose was the substrate, and 

additionally in wild-type RK on both substrates (Figure 5-6). Consequently, the 

decreased production in the presence of PPM-4H11 is likely the result of partitioning the 

generated dideoxyribose 1-phosphate into dideoxyribose 5-phosphate by the engineered 

PPM. 

 



163 
 

Discussion 

Through using bioretrosynthesis as a pathway construction method and assaying 

for final product formation, we are able to examine the effect on production that each 

enzyme has at all three biosynthetic steps by simply extending the pathway. In this way, 

we can compare production from natural to non-natural substrates by wild-type and 

evolved enzymes. Nucleoside production from sugar 1-phosphates by wild-type PNP 

and the evolved hPNP-46D6 displayed a 16-fold increase in dideoxyinosine production 

along with a 140-fold change in substrate selectivity by the variant enzyme (Fig. 5-4). In 

addition to creating a greater driving force for total production, improving the turnover 

rate of PNP was necessary to allow the evolution of PPM for this non-natural pathway. 

The product of PPM catalysis is an isomer of the substrate and therefore provides no 

mass change for detection my mass spectrometry, and also lacks a detectable 

chromophore for direct measurement by UV/Vis absorbance. Here, PNP in tandem acts 

as the reporter enzyme enabling PPM activity measurements by either hypoxanthine 

consumption or inosine/dideoxyinosine formation in typical assays to determine PPM 

activity(24), and additionally constitutes the next biosynthetic step within our designed 

non-natural pathway. The improved turnover rate of hPNP-46D6 increased the dynamic 

range of the assay by providing a much more efficient and sensitive method for detection 

of PPM activity on dideoxyribose 5-phosphate. Use of the tandem assay also begins to 

connect the enzymes as a biosynthetic pathway through enabling the evolution of PPM 

in the presence of the evolved PNP. 

As the product-forming enzyme, the efficiency of PNP defines the total yield 

through the pathway, as indicated by the increase in dideoxyinosine production after 

introducing the engineered hPNP-46D6 into biosynthetic pathways (Figures 5-4, 5-5, 

5-6). Selectivity, however, can be affected at each biosynthetic step by integrating 

evolved enzymes into the pathway and is evident in the change in nucleoside production 
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observed after pairing the evolved hPNP-46D6 and PPM-4H11 variants (Figure 5-5). 

This engineered system highlights two main aspects of retro-consecutive pathway 

construction: 1) the substrate selectivity advantage that can be gained through 

combining two evolved enzymes in tandem (342-fold in this pathway by combining the 

evolved PNP and PPM), and 2) demonstrating the use of fundamentally the same assay 

for measuring improvements at two enzymatic steps. As stated previously, this can have 

great implications to simplify the assay design requirement when evolving multiple 

enzymes, as the same assay can be modified to fit the conditions of the tandem system 

rather than needing to design and validate a completely new assay for each enzymatic 

step. 

Another key determinant of total productivity is substrate flux into the pathway. 

Manipulation of these so called ‘gatekeeping enzymes’ can determine the production 

scope of the pathway based on the turnover and substrate selectivity in this first 

committed step(25). For high titer production of one desired compound, this enzyme 

would ideally be substrate specific to reduce wasteful consumption of starting materials. 

Ultimately, this initial biosynthetic step sets the pace for the remaining pathway by 

producing and maintaining the dedicated substrate pool for the subsequent biosynthetic 

enzymes. In terms of this dideoxyinosine biosynthetic pathway, screening multiple 

kinases for production of dideoxyinosine from dideoxyribose in tandem with the evolved 

PPM and PNP enzymes identified E. coli ribokinase as the highest producer and most 

comprehensively characterized and therefore was the best candidate for the pathway 

(Chapter IV).  

The full pathway with E. coli RK demonstrates the in vitro biosynthesis of both 

inosine and dideoxyinosine from simple sugars, indicating the viability of this pathway for 

production of the non-natural nucleoside analog. As anticipated, wild-type RK is fully 

capable of maintaining ribosyl substrate flux into the pathway, quickly generating high 
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levels of inosine (Figure 5-6). However, production of dideoxyinosine through the full 

pathway from dideoxyribose is very inefficient, providing significantly lower yields even at 

long incubations and much higher enzyme concentrations. This result wasn’t completely 

unexpected since despite the noted dideoxyinosine production increase by PPM-4H11 

and hPNP-46D6 in tandem (Figure 5-5), wild-type RK was predicted to be quite 

inefficient in phosphorylating dideoxyribose due, in part, to the reduced number of 

functional groups of the non-natural substrate and the lack of distinct substrate modifiers 

(such as phosphate or Coenzyme-A) that help lower KM by providing more interactions 

with the enzyme(26). This particularly low activity by the first biosynthetic enzyme severely 

limits production through the non-natural pathway, and emphasizes the high level of 

improvement required to become an efficient biocatalyst.  

Targeting the highly conserved active site Asp16 residue for mutagenesis was 

hypothesized to provide a less favorable binding environment for ribose, but possibly 

also improve dideoxyribose binding by reducing the active site polarity to match the 

non-natural substrate. The leucine and asparagine mutations did deliver substantial 

losses in ribose activity, however a considerable improvement in dideoxyinosine 

formation was only found after removing side chain functionality in the Asp16Ala 

mutation, increasing production 20-fold over wild-type RK and a total of 50-fold in the 

three step engineered pathway compared to the all wild-type pathway. Surprisingly, 

more detailed characterization of the ribokinase revealed that the dideoxyinosine 

produced in this system is not due to an antepenultimate retro-extension, but is instead 

primarily the result of a previously unobserved C1 phosphorylation regiochemistry for the 

engineered ribokinase. This newly identified activity enables a pathway shortening 

bypass of the typically required PPM catalyzed isomerization by directly forming a 

substrate for the ultimate, PNP-catalyzed step. Having PPM present in the pathway with 

RK-Asp16Ala actually lowered total yield, presumably by sequestering a portion of 
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substrate as the unproductive dideoxyribose 5-phosphate intermediate due to the 

enzymatic equilibrium. As an underlying level this bypass activity was also detected in 

the wild-type RK variant, the Asp16Ala mutation did not introduce the capacity for direct 

C1 phosphorylation but rather afforded a substantial enhancement, seemingly through 

promoting the unanticipated dideoxyribose binding orientation. Additionally, this C1 

phosphorylation appears to be the predominant activity observed on dideoxyribose since 

production through the full pathway with dideoxyribose is comparable to production in 

the absence of PPM (Figure 5-6). This can also be observed in the pathway with 

wild-type RK through the slight decrease in production after incorporating the more 

efficient PPM-4H11 variant, capable of diverting a larger amount of substrate to the 

non-productive dideoxyribose 5-phosphate pool (Fig. 5-6). Detecting this unexpected 

activity is the direct consequence of the requirement of screening for product formation 

in the bioretrosynthetic model, as this bypass activity may have likely gone unobserved if 

assays were designed to measure production of the anticipated dideoxyribose 

5-phosphate product. Also of note, in a survey of members of the PfkB subfamily of the 

ribokinase-like superfamily to which E. coli RK belongs, the critical Asp16 is conserved 

throughout adenosine kinases and ribokinases(27), aminoimidazole riboside kinases and 

ADP-dependent glucokinases(28), ADP-dependent 6-phosphofructokinases(29) and 

ketohexokinases(30) and has also been observed in phosphofructokinase-2(31) and 

tagatose 6-phosphate kinase(32). To our knowledge, no enzyme has been reported to 

phosphorylate ribose at the 1-position in this or any other superfamily. Therefore, this 

previously unreported activity of the RK-Asp16Ala variant potentially provides a much 

more unique foundation for further engineering dideoxyribose turnover and selectivity. 

Conceptualization of the pathway using bioretrosynthetic analysis and assembly 

from primary metabolic progenitor enzymes resulted in a pathway that produced low 

levels of dideoxyinosine with selectivity vastly favoring the native substrates (Figure 
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5-8a). Subsequent to the directed evolution of the ultimate pathway enzyme hPNP, we 

improved pathway turnover and selectivity and found it beneficial to add an 

ATP-recycling system to optimize precursor concentrations and yield. Evolution of the 

antepenultimate PPM resulted in a new five-enzyme prototype pathway retaining 

turnover with greatly increased selectivity (Figure 5-8b). Finally, engineering of the 

antepenultimate RK provided an unexpected biochemical bypass within the pathway and 

a substantial improvement in turnover (Figure 5-8c). The final improvements in substrate 

selectivity (9,500-fold) and improvements in turnover for target substrates (50-fold) of the 

full pathway illustrate the successful demonstration and practically useful application of 

the retro-evolution hypothesis in vitro. These levels of improvement were also observed 

 

Figure 5-8. Progression of the dideoxyinosine biosynthetic pathway components 
through stages of bioretrosynthetic optimization. (a) The original proposed three enzyme 
biosynthetic pathway. (b) The full pathway including the ATP regeneration cycle after 
identifying the final kinase progenitor for phosphorylation of dideoxyribose. (c) The two 
step dideoxyinosine biosynthetic pathway as a result of the discovered bypass activity of 
the engineered RK. Dashed arrows indicate expected degradation products. 
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in the shortened pathway without PPM, which gave 8,300-fold improved substrate 

selectivity and 70-fold increased production of dideoxyinosine.  

 

Conclusions 

In this study, we provide a proof-of-concept for modeling non-natural pathway 

optimization and construction on the hypothesis of retrograde evolution in a practically 

useful laboratory process termed bioretrosynthesis. Although dideoxyinosine production 

overall is modest in this in vitro demonstration, these results nonetheless demonstrate 

the potential of this pathway as a biosynthetic route to dideoxyinosine. Further 

optimization of this pathway for yield and production conditions may provide a scalable 

biosynthetic route to dideoxyinosine and could aid in increasing accessibility to treatment 

by reducing therapeutic costs. This biocatalytic system may also provide access to a 

larger dideoxynucleoside analog pool after a forward extension of the pathway to an 

engineered nucleoside 2’-deoxyribosyltrasnferase capable of exchanging the 

nucleobase component of dideoxynucleosides(33). An additional retro-extension can also 

be envisioned, recruiting an alcohol dehydrogenase to generate dideoxyribose from 

(S)-1,2,5-pentanetriol (i.e. dideoxyribitol), further simplifying the chemical synthesis 

aspect.  

While the RK-Asp16Ala/hPNP-46D6 system may be the most efficient route for 

the generation of dideoxynucleosides through the enhanced C1 phosphorylation activity 

of the RK variant, direct anomeric phosphorylation of 2- or 3-substituted ribosides via 

RK-Asp16Ala may not be possible due to differences in substrate binding. Biosynthesis 

of these types of substituted nucleosides may therefore require the development and 

use of PPM-based strategies for sugar analog activation described here, potentially 

beginning engineering from the generalist PPM-4H11 variant evolved in this work. Given 

the breadth of diversity found in the sugar moieties of nucleoside analog drugs (Figure 
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5-9), PPM variant enzymes capable of activating the anomeric (C1) position of these 

sugar analogs may find complementary application in biocatalytic generation of a variety 

of compounds within this class of therapeutics. Each enzyme may also be individually 

useful in the ever-growing collection of engineered enzymes for application in other 

biocatalysis studies, and likewise in ‘biocatalytic retrosynthesis’(13) evaluations of new or 

existing chemical synthesis routes to determine if enzymes may be able to replace 

traditional chemical synthesis reactions.  

Retro-evolution can not only be considered a theoretical model of pathway 

evolution but can also be employed as a laboratory method in pathway design and 

optimization for a target non-natural compound. In addition to simplifying the assay 

design requirement for evolution of multi-enzyme pathways, by screening for final 

product formation rather than putative pathway intermediates, bioretrosynthesis can 

inherently allow for the detection of unanticipated pathway bypass reactions due to 

unpredictable activity gains. However, these bypass activities may likely not be a 

commonly observed outcome. This bioretrosynthetic method is a biosynthetic equivalent 

to and a true bench-top application of the established retrosynthetic analysis concept 

used in planning chemical synthesis(12) and has the potential to become a widely 

applicable strategy for engineering multistep non-natural biosynthetic pathways for both 

natural and non-natural products. 

 

 

Figure 5-9. Examples of sugar moieties found in non-natural nucleoside analogs.  
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Chapter VI 

 

DISSERTATION SUMMARY AND FUTURE DIRECTIONS 

  

Synopsis 

Engineered biocatalysts are increasingly being developed to replace traditional 

chemical synthesis steps for materials ranging from drug intermediates(1-5) and active 

ingredients(6, 7) to value-added industrial chemicals(8-11), however most are used in single 

step enzymatic transformations. While multi-enzyme systems are common in catalyzing 

cofactor regeneration(12) and dynamic kinetic resolution(13) reactions, there are very few 

examples that incorporate enzyme evolution in multiple biosynthetic steps, such as in 

the production of the atorvastatin side chain intermediate(14). Instead, engineering of 

multi-step biosynthetic pathways has primarily focused on manipulating wild-type 

enzyme expression and precursor production to guide metabolic flux(15-18) and the 

heterologous recapitulation of full pathways(19, 20), all toward the goal of increasing yields 

of natural products.  

A major difficulty in delineating a non-natural pathway comes in the knowledge 

base and experimental strategy necessary for de novo construction and evolution. We 

have described a useful theoretical approach to propose a biosynthetic route for a 

non-natural product that is borrowed from the retrosynthesis model in organic 

synthesis(21). By performing a similar regressive analysis to increasingly simpler 

substrates using the body of known enzymatic transformations—a process we have 

termed ‘bioretrosynthesis’(22)—a putative biosynthetic pathway can be established for a 

target compound. In this work, the target product was the non-natural nucleoside analog 

reverse transcriptase inhibitor dideoxyinosine (ddI, didanosine). Bioretrosynthesis was 

also validated as an experimental demonstration of the model of retrograde evolution(23) 
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as the core concepts of this theory are merged into a practical laboratory method of 

pathway optimization and construction by evolving the proposed enzymes in the reverse 

order of biosynthesis and testing for final product formation. 

As dideoxyinosine is not known to be a naturally produced nucleoside analog, a 

hypothetical biosynthetic pathway was proposed by applying a bioretrosynthetic analysis 

through suggesting a sequence of enzymatic transformations that would reduce 

substrate complexity to simpler compounds in a reverse step-wise manner. Modeling a 

non-natural biosynthetic pathway for dideoxyinosine after biosynthetic routes of natural 

nucleoside production, the primary metabolic enzymes ribokinase (RK), 

phosphopentomutase (PPM) and purine nucleoside phosphorylase (PNP) were chosen 

for biosynthesis of dideoxyinosine from the non-natural sugar dideoxyribose. Enzyme 

variants from E. coli, Bacillus cereus and human, respectively, were identified as 

progenitor enzymes for evolving activity on the corresponding non-natural dideoxy 

substrates. 

Applying the bioretrosynthesis approach as a practical application of the 

retrograde evolution concept and using dideoxyinosine as a model non-natural product, 

we began evolution of the product forming enzyme, PNP and developed a variant of 

human PNP with enhanced phosphorolysis of dideoxyinosine(24). Here we have 

demonstrated that this enzyme also shows improved synthesis of dideoxyinosine from 

dideoxyribose 1-phosphate and hypoxanthine. Next, we provide a retro-extension to the 

biosynthetic pathway through engineering PPM from Bacillus cereus for conversion of 

dideoxyribose 5-phosphate to dideoxyinosine in tandem assays with the evolved PNP. A 

third retro-extension to an E. coli RK variant provided further improvements in 

dideoxyinosine production and ~9,500-fold change in nucleoside production selectivity in 

a multi-step engineered biosynthetic pathway.  
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The PPM engineering aspect of this work resulted in new understanding of the 

enzyme structure and the relationship of the active site architecture to effective turnover. 

Crystallographic evidence with natural or non-natural substrates bound indicated the 

potential of multiple active site residues to affect substrate selectivity and turnover. 

Targeted saturation mutagenesis at multiple positions validated Ser154 and Val158 as 

directly contributing to this selectivity and overall catalytic efficiency, and screening 

identified Ser154Gly and Val158Leu as individual beneficial mutations in the active site.  

Removing the residue side chain in the Ser154Gly mutation provided an 

increased active site volume that held the potential to allow later mutations accumulated 

through directed evolution to slightly adjust the substrate binding pocket in favor of 

dideoxyribose-5-phosphate. In addition, the mutation eliminated a polar element of the 

active site that was hypothesized to be contributing to the observed disordered 

dideoxyribose-5-phosphate binding. Although cocrystal structures of this variant with 

dideoxyribose-5-phosphate did not indicate more defined ligand density for the bound 

substrate, kinetic characterization did indeed show a significant loss in 

ribose-5-phosphate selectivity. 

In a separate lineage, the side chain methylene extension in the Val158Leu 

mutation decreased active site volume resulting in a generalist enzyme with no substrate 

preference. This variant was not able to be cocrystallized with any substrate (glucose 

1,6-bisphosphate, ribose-5-phosphate or dideoxyribose-5-phosphate), which supported 

the theory that the leucine side chain creates a stearic hindrance toward substrate 

binding. Kinetic analysis of this variant indicates that the more bulky residue has a 

greater effect on the binding of ribose-5-phosphate than dideoxyribose-5-phosphate, 

possibly due to the stearic and polarity conflicts with the C2 and C3 hydroxyls of the 

ribosyl ring. 
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Random mutagenesis and subsequent recombination of mutations created 

variants 2G8 and 4H11 with each showing approximately 3-fold improved production of 

dideoxyinosine in cell lysate over the wild-type enzyme. The 4H11 variant also 

maintained the activity of a generalist enzyme, providing a total 710-fold change in 

substrate selectivity over the wild-type PPM. Several of these newly acquired mutations 

appeared to destabilize known hydrogen bond interactions within the core and catalytic 

domains of PPM, possibly contributing to an increased interdomain flexibility that 

improved catalysis. Unfortunately, no improvements were observed after additional 

mutagenesis using 2G8 and 4H11 as templates. 

Turning to the proposed antepenultimate retro-extension, we surveyed a panel of 

five potential progenitor kinases and identified E. coli RK as the candidate most 

functionally capable of generating dideoxyinosine in tandem with the evolved PPM and 

PNP variants. Mutational analysis of the active site Asp16 residue to a series of amino 

acids aimed to analyze the influence on substrate binding after changing the 

hydrophobicity, polarity and stearic bulk at the position revealed that disrupting ribose 

activity was fairly simple, as all mutations drastically reduce activity. However an 

increase in dideoxyinosine production was observed only once the side chain 

functionality was removed via mutation of aspartate to alanine, providing 20-fold higher 

production than wild-type RK and a total of 50-fold greater in the three step engineered 

pathway compared to the all wild-type pathway. Further characterization of the activity of 

this Asp16Ala RK indicated that production of dideoxyinosine is predominantly the result 

of a previously unreported activity where the C1 position is phosphorylated, rather than 

the typical C5 position, forming a pathway shortening bypass around PPM instead of an 

antepenultimate retro-extension from PPM. The ability to detect this unexpected 

efficiency is the direct consequence of applying the bioretrosynthetic model for pathway 

construction, where the requirement is screening for final pathway product formation, 
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rather than possibly having gone overlooked by screening for the anticipated 

dideoxyribose 5-phosphate intermediate. 

 

Significance 

The work described here in the directed evolution of multiple enzymes and 

production of dideoxyinosine through an engineered biosynthetic pathway demonstrates 

the potential for providing a biocatalytic route to this drug, and possibly an extension to 

include other nucleoside analogs. As a high percentage of the final price per year of 

treatment with many nucleoside analog drugs is tied to chemical manufacturing of the 

active ingredient(25), eventually replacing or, at a minimum, supplementing a portion of 

the production volume with a more environmentally friendly and economical biocatalytic 

route could directly lead to a reduction in production costs that would be passed on in 

the form of lower prices to patients in need of treatment. A productive and industrially 

scalable biosynthetic pathway of this kind could considerably affect the total cost and 

availability of this drug given the features of a short chemical synthesis from inexpensive 

starting material, stereoselective production, use of renewable resources and reduction 

in waste generation and would result in an increased availability of treatment. 

From a pathway evolution standpoint, the bioretrosynthesis paradigm 

demonstrated here provides the first evidence supporting the viability of the hypothesis 

of retrograde evolution as a method of biosynthetic pathway formation first proposed in 

1945(23). It additionally serves as a model strategy for the planning and construction of de 

novo biosynthetic pathways toward either natural or non-natural products. The terminal 

(product forming) enzyme activity based screening strategy can greatly simplify the 

methods and assay development required for engineering multiple enzymes. In general, 

the same detection scheme can be adapted and used in increasingly tandem assays to 
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screen for activity of multiple enzymes in the non-natural pathway, rather than requiring 

design of individual assays for each biotransformation. Cofactor regeneration cycles can 

be added as necessary through retro-extensions to catalyze reactions in sequence to 

reform required pathway components. As indicated here, this product forming assay 

guided aspect of bioretrosynthesis also has the added benefit of discovering an 

unexpected pathway shortening bypass due to unexpected gains in activity acquired 

through directed evolution.  

Although engineered biocatalysts have become quite commonly used for 

individual biotransformations, there are a number of issues as to why biocatalysts have 

not been coupled together into non-natural biosynthetic pathways. First and foremost, 

the process of enzyme engineering is not trivial, and it is likely that many if not all 

enzymes in the proposed biosynthetic pathway would require some degree of evolution 

for activity on the non-natural substrate. Second, the chance of success in reaching an 

appropriate level of activity for practical application cannot be determined prior to 

investing substantial effort into the research, and there may be just as many unreported 

failures as there are published successes meeting the desired goal. A pathway requiring 

the engineering of multiple enzymes increases this risk of not meeting the desired 

production or activity goal as each enzyme must be evolved for optimal flux through the 

pathway. A final factor in contributing to the low number of non-natural biosynthetic 

pathways is a lack of a generalizable approach to conceptualizing, constructing and 

evolving the pathway for desired production. An individual case by case optimization 

strategy does not allow for readily transferable methods to apply in other scenarios. 

Our demonstration of non-natural pathway construction and optimization through 

bioretrosynthesis begins to address a number of these limiting factors. The premise that 

all enzymes in the pathway are evolved and selected for activity based on turnover of 

the product forming enzyme theoretically requires that only one assay need be 
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developed for screening, and in some instances it may be easily adapted to detect 

formation of the final product or consumption of the final cosubstrate. This can 

significantly reduce the burden of developing individual screening assays for evolution of 

each enzyme in the pathway and allow a more streamlined process to engineer each 

biosynthetic enzyme.  

Although the degree of enzyme improvement through directed evolution can 

never be known a priori, an advantage of bioretrosynthesis is that the activity of each 

enzyme is engineered in the presence of all enzymes required for subsequent 

biosynthetic steps. In this way not only is the target enzyme activity evolved, but also the 

production of the pathway is engineered as a cooperative unit, providing initial measures 

for developing a system with optimal metabolic flux. Pathway construction by this 

method may prevent the obstacle in some cases where absolute maximal turnover rate 

by an enzyme actually decreases pathway product yield due to inhibition by high levels 

of substrates or products and can give indications for future optimization by regulated 

gene expression. 

Finally, and most significantly, applied bioretrosynthesis introduces what has the 

potential to become a widely applicable strategy for practical conceptualization, 

construction and optimization of de novo non-natural pathways. The focus on final 

product formation minimizes the chance of pathway deviations through creating side 

products, and reduces the risk of assembling production into dead end pathways. Aside 

from the unexpected discovery of activity creating a pathway bypass, which is still 

indeed an added advantage although likely a more rare finding, the results described 

within this work present a variety of likely general benefits of this approach and indicate 

the potential of bioretrosynthesis as a widely applicable and practical strategy for 

non-natural pathway construction to produce both natural and non-natural products. 
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Future Directions 

Directed evolution was successfully used to increase activity of PPM and RK for 

the non-natural substrates dideoxyribose-5-phosphate and dideoxyribose, respectively. 

Additionally, the full pathway consisting of the engineered RK-PPM-PNP and the partial 

pathway of evolved RK-PNP were shown to produce dideoxyinosine at significantly 

higher levels than the wild-type enzymes. However, production through this system is 

still much too low and inefficient to be useful on a large scale. Further mutagenesis and 

activity engineering for all three enzymes RK, PPM and PNP would likely be necessary 

to increase production to titers more appropriate for scaled up biosynthetic studies. 

PPM was evolved through saturation mutagenesis, epPCR and recombination of 

mutations, however, improvements failed after the third round of mutagenesis in a 

second and third attempt at epPCR even under altered conditions to slightly increase the 

rate of mutagenesis. Continued evolution of this enzyme may require application of 

different mutagenesis methods, such as gene shuffling(26) or a much higher mutagenesis 

rate in epPCR, to increase catalysis. Additionally, targeting active site residues for 

mutation by saturation mutagenesis or CASTing(27) in the 4H11 variant my yield new 

beneficial results now that the active site has been slightly adjusted by the Val158Leu 

mutation. The flexible Arg193 residue might be an interesting target for this strategy due 

to the induced change in conformation upon ribose-5-phosphate binding in wild-type 

PPM(28) and the proposed stearic clash with the Val158Leu mutation based on 

observations from the 4H11 crystal structure.  

Preliminary engineering of E. coli RK resulted in a surprising gain in 

dideoxyribokinase activity in the Asp16Ala variant via a previously undetected 

phosphorylation regiochemistry at the C1 position. This activity is a very significant 

benefit for pathway production and provides a unique foundation to build upon through 

further mutagenesis, which would be absolutely required for increased production 
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volumes. Initial analysis of RK crystal structures suggest that Asn14 and Gly41 might be 

interesting targets for saturation mutagenesis to gain activity or substrate selectivity, and 

could be performed either individually or simultaneously to determine if there may be a 

cooperative effect due to residue identity at these positions. Considerations for whether 

activity would solely be analyzed in the shortened pathway (RK and PNP), the full 

pathway (RK, PPM and PNP) or both would need to be taken into account in the assay 

design since additional active site mutations may improve only one or the other of C1 or 

C5 phosphorylation activity on dideoxyribose and some beneficial activity gains may be 

missed without full characterization. 

In addition to further evolution for greater improvement in turnover and substrate 

selectivity of the enzymes currently in the dideoxyinosine biosynthetic pathway, more 

enzymes could be added to extend the biosynthetic component in either direction. 

Optimization of precursor supply and product efflux may each have beneficial influences 

on production titers. An enzymatic retro-extension could entail recruitment of an alcohol 

dehydrogenase to oxidize (S)-1,2,5-propanetriol (dideoxyribitol) to dideoxyribose. 

Production of the polyol is easily accessible in two steps from L-glutamic acid with 

relatively high yield(29), and would reduce the chemical synthesis requirement through 

replacement with an additional biocatalytic step. On the other end of the pathway, a 

forward extension to an already engineered nucleoside 2’-deoxyribosyltransferase(30) 

could diversify the pool of available dideoxynucleosides through exchanging 

hypoxanthine for a different natural or non-natural nucleobase. 

Although it would likely require the engineering of several more enzymes, it may 

be possible to extend biosynthesis back to simple and abundant natural precursors. For 

example, pyruvate and glycolaldehyde could undergo an aldol condensation to form a 

4,5-dihydroxy-2-keto acid that is subsequently extended by one carbon unit through the 

activity of an engineered 2-hydroxy-3-oxoadipate synthase. This six carbon sugar acid 



183 
 

analog could then proceed through one of several conceivable pathways consisting of 

sugar acid modifying enzymes and a decarboxylase to yield either dideoxyribose or 

possibly the advanced intermediate dideoxyribose 5-phosphate (Figure 6-1). The 

specific route to either substrate, however, would ultimately be determined by which 

enzymes are active or evolvable for activity on the non-natural substrates. Again, this 

may require the evolution of several enzymes since many of the proposed intermediates 

are non-natural substrates for the suggested enzymes (Figure 6-2), nonetheless, 

production through this or a similar pathway could provide additional advantages to the 

biosynthetic process through linking the pathway to central metabolism.  

The series of RK, PPM and PNP presented here, likely after further directed 

evolution for activity changes, could also possibly find use in biosynthetic production of 

other 2’- and 3’-substituted nucleoside analogs from the corresponding substituted sugar 

analogs or the enzymes may even be found individually useful in other biocatalytic 

processes. In summary, the enzyme evolution and pathway optimization work described 

in this dissertation provides a foundation for biosynthetic production of nucleoside 

analogs that can be further optimized, evolved, extended and engineered to increase 

 
Figure 6-1. Possible biosynthetic routes from pyruvate and glycolaldehyde to 

dideoxyribose and dideoxyribose 5-phosphate. Enzyme names corresponding to each 

EC number and the naturally catalyzed reactions are provided in Figure 6-2. 
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yield and broaden application to produce a diverse group of molecules. The 

bioretrosynthesis model of pathway design described and demonstrated here also has 

the potential to be a widely applicable pathway construction and optimization strategy, 

hopefully enabling greater success in accessing non-natural products through de novo 

biosynthetic pathways.  

 

Figure 6-2. Natural reactions catalyzed by enzymes proposed for dideoxyribose and 

dideoxyribose 5-phosphate biosynthesis. Portions highlighted in blue indicate aspects 

not present in the non-natural substrates proposed for the pathway. Red indicates 

functional groups that are altered (i.e. different stereochemistry) in the non-natural 

substrates. 
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APPENDIX A 

 

NMR Spectra 
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Figure A-1. 1H NMR of (S)-γ-butyrolactone-γ-carboxylic acid in d6-DMSO. 
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Figure A-2. 13C NMR of (S)-γ-butyrolactone-γ-carboxylic acid in d6-DMSO.  
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Fig

ure A-3. 1H NMR of (S)-γ-(hydroxymethyl)-γ-butyrolactone in CDCl3. 
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Figure A-4. 13C NMR of (S)-γ-(hydroxymethyl)-γ-butyrolactone in CDCl3. 
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Figure A-5. 1H NMR of (S)-γ-(dibenzylphosphomethyl)-γ-butyrolactone in CDCl3. 
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Figure A-6. 13C NMR of (S)-γ-(dibenzylphosphomethyl)-γ-butyrolactone in CDCl3. 
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Figure A-7. 31P {1H} NMR of (S)-γ-(dibenzylphosphomethyl)-γ-butyrolactone in CDCl3.
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Figure A-8. 1H NMR of 2,3-dideoxyribose-5-(di-O-benzyl)phosphate in CDCl3. 
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Figure A-9. 13C NMR of 2,3-dideoxyribose-5-(di-O-benzyl)phosphate in CDCl3. 
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Figure A-10. 31P {1H} NMR of 2,3-dideoxyribose-5-(di-O-benzyl)phosphate in CDCl3. 
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Figure A-11. 1H NMR of 2,3-dideoxyribse 5-phosphate, disodium salt in D2O. 
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Figure A-12. 13C NMR of 2,3-dideoxyribse 5-phosphate, disodium salt in D2O. 
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Figure A-13. 31P {1H} NMR of 2,3-dideoxyribse 5-phosphate, disodium salt in D2O. 
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Figure A-14. 1H NMR of 2,3-dideoxyribose in D2O. 
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Figure A-15. 13C NMR of 2,3-dideoxyribose in D2O



 


