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INTRODUCTION 

 

The Genomic Era and Genomics in Medical Records 

 

In 2003, the conclusion of the human genome project officially brought a start to the 

“genomic era” 
1
. With the start of the genomic era came the beginning of widespread and 

multiplex searches for genetic variants that caused diseases. Simultaneously, the presence of a 

human reference sequence allowed for the development of new genotyping platforms and new 

analysis methods, including the development of genome-wide association studies (GWAS).  

GWAS tests the association of one phenotype with all genotypes available from GWAS 

chips. GWAS chips use tagging single nucleotide polymorphisms (SNPs) as a proxy for variants 

that were in linkage disequilibrium, so that not all variants had to be tested
2
. In 2005 the first 

successful GWASs were published
3–5

. Despite this initial success, and other success stories 

through the years, GWAS has failed to identify as much of the heritability of common diseases 

as expected
6
. The variants identified in GWAS as associated with a disease are not necessarily 

the causal variants, rather the associated SNP may be linked to the causal variant. Even in well 

powered studies, the process of identifying the causal gene and variant extends well after the 

performance of GWAS. 

Importantly, GWAS studies frequently used ascertained case-control populations, which 

required significant time and money to assemble. Groups of cases with shared controls were 

developed, but this was not feasible for all phenotypes that investigators had found to be 

heritable and expected a genetic effect. Performing studies in an electronic medical record 

(EMR), also called an electronic health record (EHR), can be very cost effective compared to 

assembling a case control population
7
. 
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The predecessors of electronic medical records appeared as early as the 1960s. Now, 

more than 50 years later, their uptake continues today. A study from 2009 estimated that only 

1.5% of hospitals had a comprehensive electronic health record system 
8
. The Health Information 

Technology for Economic and Clinical Health (HITECH) Act of 2009 directed the Office of the 

National Coordinator for Health Information Technology (ONC) to promote the adoption and 

meaningful use of electronic health records. More recent estimates indicate that 3 out of 4 

hospitals have a basic EHR system
9
. A variety of information is available from EHRs. Billing 

data, laboratory data, vitals, medication lists, test results, and provider notes are all typically part 

of EMR data 
10

.  Billing data most often consists of International Classification of Disease (ICD) 

and Current Procedural Terminology (CPT) codes. EHRs also contain demographic information 

including age, sex, and physician reported race. 

ICD codes are developed and maintained by the World Health Organization 

(http://www.who.int/classifications/icd/en/HistoryOfICD.pdf). They are a hierarchical way to 

classify diseases and symptoms. The original purpose was to obtain morbidity and mortality 

statistics from around the world. The ICD system has been adapted for use in billing by hospitals 

and insurance companies. ICD is currently in version 10.  CPT codes are a way to identify 

clinical services and procedures for a medical encounter. They are designed and maintained by 

the American Medical Association
11

.  

Importantly, the information contained in medical records is not designed for research 

purposes. The information in medical records is also subject to provider preferences and habits, 

both at the physician and institutional level.  Coding expectations and preferences may vary from 

one medical center to another. Despite this, phenotyping algorithms developed at one medical 

center have been adapted for use at others, though a skilled team is often necessary to 
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successfully deploy it
10

. Additionally, if incorrect information gets in to a medical record, it can 

be difficult to remove it. Medical records are not edited, rather they are amended, with a 

clarifying or correcting note added. This not may not be seen by providers, so incorrect 

information may be propagated through an individuals’ record.  Information in the medical 

record may also depend on the accuracy of information a patient may tell their provider. Patients 

may give an incomplete or incorrect medical history which can influence notes in a record. 

Despite this, there is evidence that studies performed in the EMR can robustly replicate studies 

performed in more traditionally assembled cohorts
12

, and that this phenotyping is of sufficient 

quality for genetic analyses
13

. 

Many of the replication attempts using EMRs focus on associations discovered through 

GWAS. An EHR based study of 21 SNPs implicated in 5 common diseases found that the 

direction of effect of all SNPs tested was in the direction expected. In each disease at least one 

previously reported SNP association was replicated
11

. This study also manually reviewed their 

cases and found that their algorithms had greater than a 95% PPV for each of the 5 phenotypes 

studied. Another study on Rheumatoid Arthritis used a multi-ethnic EHR derived cohort to 

replicate a genetic risk score for rheumatoid arthritis
14

. Some reports also indicate that the 

longitudinal nature of the data in the EMR can assist in differentiating between related 

phenotypes
12

.  

 

BioVU and the Synthetic Derivative  

 

  The Synthetic Derivative (SD) is a de-identified mirror of the EMR from Vanderbilt 

University Medical Center. Several steps are taken to ensure de-identification of records. 

Records numbers go through a one-way hash to be assigned a number for that cannot be traced 
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back to the patient. Additionally, all Health Insurance Portability and Accountability Act 

(HIPAA) identifiers are removed from records. This includes names of individuals (both patients 

and health care providers). All dates in the record are shifted by 1-365 days, consistent within a 

record but variable between records. De-identified records are then available for research 

purposes. Due to the de-identification procedures, the SD has received a non-human subjects 

designation
15

.  

The Vanderbilt DNA Databank, BioVU, uses blood samples leftover from clinical testing 

as a source of DNA
16

. Samples banked are blood remnants that would otherwise be discarded. 

Initially, the DNA databank operated using an “opt-out” model. A statement was included in the 

consent to treat form describing the databank, and patients could opt out by checking a box. This 

resource was linked to de-identified medical records in the SD. In January of 2015, the consent 

process shifted to an opt-in model. Patients now have the option to consent to their samples 

being added to the DNA Databank. The blood samples are linked to de-identified entries in the 

SD. Individuals who had undergone hypertransfusion or bone marrow transplant are flagged as 

having compromised samples. Blood samples are available to be pulled for genotyping, and 

some samples have pre-existing genotype data available.  

Genotyping has been performed on a subset of samples within BioVU. This genotyping is 

paid for by individual investigators for individual research projects, so specific phenotype groups 

are genotyped in specific platforms leading to potential phenotype differences in the populations 

with data available from any given genotyping platform. The existing genotype information is 

everything from Taqman on single SNPs to platforms targeting SNPs in specific pathways, to 

GWAS platforms. Investigators can apply to use existing data for new projects.  
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PheWAS: Theory and Methods 

 

The underlying goal of PheWAS is to test the association of one variant with a range of 

phenotypes. In addition to the discovery of new disease genotype associations, PheWAS allows 

for the discovery of pleiotropy, the ability of a single gene or genetic variant to influence 

multiple traits, and an increased understanding of how phenotypes are related to each other
17

. 

PheWAS can also help differentiate between pleiotropy and comorbidities, and in some cases 

can differentiate between disease subtypes
18

. Many existing associations between genotypes and 

phenotypes have been replicated with PheWAS. PheWAS have also identified novel SNP-

phenotype associations. Despite this, some argue that one of the major accomplishments of 

PheWAS is the establishment of workflows to analyze and visualize complex and multi-

dimensional phenotype-genotype relationships
19

.  

PheWAS using ICD-9 codes for case control classification have repeatedly replicated or 

validated genotype-phenotype associations. The first PheWAS paper replicated seven SNP 

disease associations with p-values of at least 0.05 and odds ratios in the same direction as 

previous studies
20

.  Another study focused on systematically comparing PheWAS results to 

associations previously found in GWAS, mapped existing significantly associated GWAS traits 

to PheWAS phenotypes, determined that they were able to replicate 28% of all tested 

associations with a p-value <0.05 and a consistent direction of effect
21

. Once the authors filtered 

this to only binary GWAS traits with an exact match in the PheWAS catalog that was adequately 

powered in their study, they were able to replicate 66% of SNP-phenotype associations tested.  

Existing PheWAS have successfully shown variants to be pleiotropic. The idea of a 

single genetic factor resulting in multiple phenotypic outcomes is not new; studies going back 

many years have evaluated pleiotropy
22

. GWAS provides information about the correlation 
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between genomic variants, but analyzing only one phenotype at a time does not provide any 

information about the interconnected nature of phenotypes and disease outcomes. While 

pleiotropy has not been systematically studies in human complex trait genetics, it has been 

observed in human Mendelian disease genetics
23

. Several studies have looked at the influence of 

single SNPs on multiple related phenotypes such as immune phenotypes
24

 or cancers
25,26

. A 

recent study evaluated 42 traits with GWAS data, and found 341 pleiotropic loci; some of which 

were associated with unexpected phenotypes given the gene function
27

. Pleiotropy can influence 

multiple diseases through distinct pathways or because one disease is in the pathway of another. 

Looking across the entirety of diseases in the medical record has the potential to enhance our 

understanding of biology by drawing connections between different phenotypes. What is unique 

about PheWAS is situating it in the breadth of phenotype data available in an individual’s EMR.  

As there are many types of information contained in the EMR, a PheWAS could test any 

type of information that could be obtained for a sufficient number of subjects. PheWAS have 

been published using aggregated International Classification of Disease version 9 (ICD-9) 

codes
20

, but natural language processing (NLP) obtained strings, and lab values, or CPT codes 

are all possible starting points for phenotype determination. The PheWAS discussed in this 

dissertation will all use the most basic ICD-9 code aggregation method as a starting point.  

A scheme of aggregating and further hierarchically clustering ICD-9 codes into PheWAS codes 

(Phecodes) was developed and published in the first PheWAS manuscript
20

. Over time, the 

aggregation has been update several times. Using instances of the ICD-9 codes and aggregation 

rules, an individual may be classified as a case, control, or exclusion for a specific PheWAS code 

(Figure 0-A). Individuals can be excluded for multiple reasons: they can have some, but fewer 

than the desired number of ICD-9 codes in their record; or they can appear to be a control, but be 
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a case for something highly related. These exclusions can be used to limit falsely classifying 

individuals as either a case or a control when there is uncertainty or messiness in the record. 

These case/control classifications are then used as the outcome in logistic regression. 

Alternatively, the number of ICD-9 codes in a record can be used as an outcome in linear 

regression.  

 

 

Figure 0-A. Decision flow for classifying an individual as a case, control, or exclusion for 

PheWAS. After classification, individuals are assembled into a PheWAS table where all cells in 

a row indicates whether that individual is a case, control, or exclusion for each PheWAS code, 

and all cells of a column indicate the classification of each individual for that code. 
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In our analyses individuals were required to have two different ICD-9 codes that mapped 

to a Phecode or one ICD-9 code on multiple days (therefore multiple times in their record) in 

order to be considered a case (Figure 0-A). Individuals who had a single instance of an ICD-9 

code and no other ICD-9 codes that mapped to that Phecode were excluded. Individuals who had 

no ICD-9 codes in a Phecode and no exclusions for that Phecode became a control.  

Phecodes can also be grouped into specific phenotype areas, such as “Neoplasms”. This 

gives an added layer of possible aggregation. This aggregation may increase the difficulty of 

what is already the most difficult part of PheWAS, the interpretation of results. It could also 

potentially allow a more specific view. If only one group of phenotypes are of interest, one could 

analyze only that group and ignore the ICD-9 and Phecode record that groups outside the area of 

interest. It is important to note that Phecodes in the same group are often correlated, in some 

cases highly correlated. But Phecodes in separate code groups may be highly correlated or even 

indicative of the same underlying condition depending on the relationship of the ICD-9 

contributing to each.  

About this Dissertation 

 

 While the underlying theme of the work in this dissertation is PheWAS, it is important to 

note that each project described in this dissertation has a slightly different motivation that both 

allows for and requires different follow up to the PheWAS. PheWAS was chosen as an approach 

for a specific reason in each case; each chapter uses PheWAS with a goal in mind. We have 

undertaken PheWAS for many of the same reasons others have before us; to explore pleiotropy, 

identify the functional effects of deleterious variation, and uncover novel associations. 

Importantly, in all cases, PheWAS was used to inform our understanding of the biology 
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underlying genetics. The work presented herein also progresses through different types of 

genetic variation; starting with simple nuclear SNPs, moving to larger deletions, and concluding 

with mitochondrial variation. Each of these variants presents different challenges and 

expectations with PheWAS. While each project was performed as a stand-alone experiment, this 

dissertation aims to draw connections between different analyses to draw qualitative conclusions 

about the method as a whole. Lastly, in the assembled projects, PheWAS is rarely the end point. 

Something is always done after to understand the signal (or lack thereof) seen in the data, to try 

to return to and expand our underlying biological knowledge. 
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This chapter is adapted from a manuscript written with the assistance of C. Michael Stein, 

MBChB; Abiodun Adefurin, MBChB, Msc; Daniel Kurnik, MD; and David C Samuels, PhD. 

 

I.  SEX-SPECIFIC PLEIOTROPY OF THE THR164ILE VARIANT IN THE BETA-2-

ADRENERGIC RECEPTOR 

  

 

Introduction 

 

The beta-2-adrenergic receptor (β2AR ) is one of three subtypes of beta-adrenoceptors, 

βARs
28

. These G-protein coupled receptors are expressed in a variety of tissues, including the 

heart and bronchial and vascular smooth muscle. The β2AR is also the target of beta2-agonists, 

which act through the receptor to mediate bronchodilation and are used clinically in patients with 

bronchoconstriction, e.g. asthma and chronic obstructive pulmonary disease
29

. There is a great 

variability in response to physiological and pharmacological stimulation or blockade of βARs, 

some of which is due to genetic variation among individuals in genes encoding βARs and their 

signal transduction proteins, including ADRB2, the gene encoding the β2AR. 

 There are three polymorphisms in the coding region of ADRB2 that have been shown to 

affect the functional properties of the receptor both in vivo and in vitro
30

. Two of these variants, 

Arg19Cys and Gln27Glu
31

, form a haplotype and have been studied extensively, particularly in 

relation to asthma, heart failure, and hypertension, but it has been difficult to identify robustly 

associated clinical phenotypes
32

.  The third variant, rs1800888, encodes the relatively uncommon 

ADRB2 Thr164Ile variant that occurs at a frequency of only ~2% in individuals of European 

descent. This ADRB2 variant is of particular interest because it is associated with profoundly 

reduced responses to agonist in vitro and has been associated with a five-fold reduction in 
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sensitivity to β2AR agonist-mediated vasodilation in vivo in humans
33

. Thr164 is located in the 

upper part of transmembrane domain 4, and the nonsynonymous change to Ile has been predicted 

to cause a change in probability of transition of the receptor into the activated state
34,35

. Multiple 

experiments have shown that the presence of Ile at position 164 causes a decrease in receptor 

functionality
36,37

. 

 Despite the strong in vitro and in vivo evidence of functional effects, few studies have 

addressed the functional consequences of the Thr164Ile transition in humans, likely because the 

variant is relatively infrequent. While some studies have reported no association between 

Thr164Ile and hypertension phenotypes
38,39

, these studies had limited power. The two largest 

studies to date found associations of the Ile allele to increased blood pressure, but the effect was 

limited to females
40,41

. The Ile variant at position 164 has also been associated with a lesser 

response to beta2-agonist therapy in patients with asthma
42

 and has been identified as a risk 

allele for chronic obstructive pulmonary disease, though other studies failed to detect these 

risks
43–45

. Moreover, Ile164 has been associated with adverse outcomes in patients with 

congestive heart failure
46

. However, the potential pleiotropy of the variant has not been 

systematically explored.   

As the ADRB2 gene has been associated with multiple phenotypes individually, and 

in vivo studies have shown that the Thr164Ile substitution causes a significant attenuation 

of receptor function, we hypothesized that individuals with this variant would manifest 

with other previously unrecognized clinical phenotypes in a systematic search using a 

PheWAS approach. We therefore conducted a PheWAS to investigate the association of 

Thr164Ile with many potentially interrelated phenotypes in an electronic health record (EHR)-

based cohort.  



 12 

Methods 

 

Study Population 

The study population consisted of adult individuals of European descent as identified by 

a third party. These individuals had both ICD.9 code data and genotyping on the Illumina Human 

Exome Bead Chip available in BioVU, Vanderbilt’s DNA biobank
15

. The samples with 

genotyping in BioVU are linked to de-identified EHRs.  

 

Genotypes 

Genotypes for SNPs in ADRB2 genotyped on the Illumina Human Exome Bead Chip 

were obtained
47

 and the Thr164Ile allele was extracted. Population frequency was checked 

against 1000 Genomes. All quality control checks of genetic data were done in Plink
48

.  

 

PheWAS 

Using all ICD.9 codes listed for adult patients (patient aged ≥18 years at time of code) 

with genotyping results in our dataset, we performed a phenome-wide association scan. PheWAS 

uses a predefined hierarchy to aggregate ICD.9 codes into PheWAS codes (Phecodes) which are 

then tested for association with a variant of interest
20

. Individuals with 2 or more ICD.9 codes 

that aggregate into a Phecode become a case for that Phecode. Individuals who have only one 

incidence of an ICD.9 code in the Phecode do not meet the definition of either a case or a control 

and are therefore excluded from analysis, as are individuals who could be a control for a code but 

are a case for a related Phecode. All other individuals become a control for that Phecode. Due to 

the exclusions, different Phecodes may have different numbers of total individuals tested.  
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We used logistic regression adjusting for age at last ICD.9 code and sex with an additive 

genetic model to test association of the ADRB2 genotype with Phecodes. The study was 

restricted to individuals of European descent and to Phecodes with 50 or more cases. Limiting 

our analysis to Phecodes with 50 or more cases helped reduce our multiple testing threshold, 

while increasing the chance we would have power to see an association. Hardy-Weinberg 

equilibrium was checked in each regression. As a secondary analysis, we stratified by sex and 

ran the PheWAS in male and female cohorts separately. All sex-stratified PheWAS analyses only 

examined Phecodes with at least 25 cases. Following PheWAS, chi-square and Fisher’s exact 

tests were used to check the allele distribution in cases and controls. The Bonferroni correction 

for our initial PheWAS was 4.08e-05 as 1224 Phecodes were populated with at least 50 cases. In 

the sex-stratified analyses, the level of statistical significance by Bonferroni correction was 

4.06e-05 for females and 4.5e-05 for males. As Phecodes are often correlated, making a 

Bonferroni correction overly stringent, we also applied a 10% False discovery rate (FDR) 

correction to the data. Any biologically relevant signal that met the FDR level of significance 

was explored more deeply using laboratory data and existing literature.  

  

Blood Pressure Analysis 

As we saw an association between Thr164Il4 and Iatrogenic Hypotension in the PheWAS 

analysis we further explored the effect of the Thr164Ile variant on blood pressure. We studied 

blood pressure measurements first in all individuals, and second, in all individuals excluding 

those with the PheWAS code for Iatrogenic Hypotension. Date and time-stamped blood pressure 

measurements were downloaded and quality-controlled by removing any measurements that 

were not numeric, were negative or duplicate, or had incorrectly formatted dates. Any systolic 
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blood pressure measures greater than 300 mmHg and diastolic blood pressure measures greater 

than 240 mmHg or less than 5 mmHg were removed. Two separate blood pressure analyses were 

performed.  

The first analysis was designed to test the previous association with hypertension and to 

see if our association with Iatrogenic Hypotension extended to general hypotension.  Individuals 

with only one blood pressure measurement were removed. Individuals were categorized 

dichotomously as hypertensive if they had at least two measures greater than 140/90 mmHg in 

their record, and hypotensive if at least two measure less than 90/60 mmHg were present in their 

record. The same individual could therefore be categorized as both hypertensive and 

hypotensive.  

We also performed an analysis to test the influence of the Thr164Il variant on non-

dichotomized summary blood pressure measures. Median, 10
th

 percentile, and 90
th

 percentile 

summary measures were calculated for systolic blood pressure, diastolic blood pressure, and 

mean arterial pressure (MAP) using individuals who had more than 10 measures. Mean arterial 

pressure is a measure that combines both systolic and diastolic blood pressure measures 

(Equation 1).  Linear regression for individuals with 10 or more blood pressure measures was 

performed.  

Equation 1: 𝑀𝐴𝑃 = (
1

3
)(𝑆𝐵𝑃 − 𝐷𝐵𝑃) +  𝐷𝐵𝑃  

 

Liver Enzyme Analysis 

 Since one of the Phecodes that passed the FDR in our analysis was Serum Enzyme 

abnormalities, we downloaded laboratory data for the levels of Aspartate transaminase (AST) 

and Alanine transaminase (ALT).  These measures help quantity liver damage and can also 
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differentiate between possible causes. Non-numeric values, duplicate values, and values with an 

incorrect date and time stamp were removed.  We required individuals to have an AST and ALT 

at the same time, so any measures where only one was present were removed. Median, 

minimum, and maximum values of these enzymes were calculated for each individual. The 

AST/ALT ratio was derived, and the median, minimum, and maximum values were obtained for 

each individual.  

As obesity can impact these measures and has been previously associated with the 

The164Ile allele
49

, we also obtained BMI measures and calculated a median BMI for each 

individual.  

 

Statistical Analyses 

All PheWAS analyses were performed using the PheWAS package for R
50

. Dichotomous 

blood pressure measures were analyzed using logistic regression analyses adjusting for median 

age of all blood pressure measures and sex. Summary blood pressure measures were analyzed 

using linear regression adjusting for median age across blood pressure measures and sex. Sex-

stratified analyses for both types of blood pressure measure were performed adjusting for median 

age. Liver enzyme tests were analyzed using linear regression adjusting for median age over 

measures, sex, and BMI. Sex stratified analyses were also performed. All statistical analyses 

were performed using R 3.1.3
51

. 
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Results 

 

 The population for the study of the ADRB2 Thr164Ile variant included 23,854 individuals 

of European descent; the median age at last ICD.9 code was 64 years, and the median number of 

unique ICD.9 codes per person was 52 (Table 1-A).  

 

Table 1-A. Demographic characteristics of the study population. P-values indicate statistical 

significance of comparisons between males and females. 

 All Males  Females  p-value
1
 

n (%) 23,854 10,971 (46%) 12,883 (54%)  

Median age first ICD.9 

code (IQR) 

54.8 (41.7, 66.4) 57.0 (44.8, 67.0) 52.6 (39.1, 64.7) <0.001 

Median age at last code 

ICD.9 (IQR) 

64.0 (51.9, 75.9) 65.3 (54.3, 76.1) 62.7 (49.8, 75.6) <0.001 

Median number of 

PheWAS codes (IQR) 

23 (11, 44) 23 (10, 43) 24 (11, 44) 0.06 

Median number of ICD.9 

codes (IQR) 

52 (27, 90) 51 (25, 90) 53 (28, 90) 0.002 

Thr164Ile Minor Allele 

Frequency 

0.012 0.013 0.011 0.22 

1
P-value shows statistical significance of Wilcoxon rank sum test  or Fisher’s exact test comparing male and 

females 

 

Our initial PheWAS in the whole cohort showed a statistically significant risk effect for 

Thr164Ile with Iatrogenic Hypotension and Serum Enzyme Abnormalities (Figure 1-A, 

Appendix A). The T allele of Thr164Ile was significantly associated with the risk of Iatrogenic 

Hypotension, OR= 4.98 [95% confidence interval (CI) 2.37-10.47]; p=2.25e-05. This Phecode 

had a limited number of case patients (n=56), and 6 of these cases carried the risk allele (Table 

1-B). By contrast, the Phecode for Serum Enzyme Abnormalities had 336 cases, with an odds 

ratio of 2.50 [95% CI, 1.59 - 3.91]; p= 6.5e-05. 
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Figure 1-A. PheWAS Manhattan plot for the PheWAS of Thr164Ile in a mixed sex population of European descent. The red line is the 

Bonferroni correction for the number of tests, and the blue line is our level of suggestive significance (p=0.001). All hits that passed 

the FDR correction were annotated with their PheWAS description
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Table 1-B. Genotype distribution across cases and controls for statistically significant PheWAS 

codes in males and females combined. 

PheWAS Category and Case Status 
Thr164Ile Minor Alleles 

0 1 2 

Iatrogenic Hypotension Cases 50 5 1 

Iatrogenic Hypotension Controls 18664 451 9 

 

Abnormal Serum Enzyme Level Cases 318 16 2 

Abnormal Serum Enzyme Level Controls 18088 432 6 

 

After sex stratification, no Phecodes were significant in males alone. Two Phecodes, 

Iatrogenic Hypotension and Hypothyroidism, were significant at the level of the Bonferroni 

correction (p-value of 4.06e-05), and an additional three were significant by FDR in females 

(Figure 1-B, Appendix B). Iatrogenic Hypotension remained significant (OR= 7.50 [95%CI, 

3.25-17.30]; p=2.26e-06), but the case number was low in females only as was the number with a 

minor allele (Table 1-C). Acquired Hypothyroidism was the second most significant hit (OR= 

4.64 [95% CI, 2.35-9.15]; p=9.57e-06). Abnormal Serum Enzyme Levels also remained 

significant in females alone (OR=3.14 [95% CI, 1.79-5.50]; p=6.57e-05), followed by Drug-

Resistant Infection (OR= 2.91 [95% CI, 1.70-4.97]; p=9.10e-05). The Phecode for Ingrowing 

Nail was also significant by FDR, but we did not explore this code further. While Acquired 

Hypothyroidism was not significant at a Bonferroni corrected level or by FDR in the whole set it 

was beyond the level of suggested significance of p< 0.001 (Figure 1-C). The signal seen in 

women with Drug-Resistant Infection was present at a much attenuated level of significance in 

the whole cohort.  None of our other expected signals were significant in all individuals or 

women alone (Appendix C).
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Figure 1-B. PheWAS Manhattan for the PheWAS of Thr164Ile in a female-only population of European descent. The red line is the 

Bonferroni correction for the number of tests, and the blue line is our level of suggestive significance (p=0.001). All hits that passed 

the FDR correction were annotated with their PheWAS description. 
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Figure 1-C. Forest plot of PheWAS hits for Thr164Ile is visible in all individuals and in females only.
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Table 1-C. Genotype distribution across cases and controls for statistically significant PheWAS 

codes in females only. 

PheWAS Category and Case Status 

Thr164Ile Minor Alleles 

0 1 2 

Iatrogenic Hypotension Cases 27 4 1 

Iatrogenic Hypotension Controls 10337 263 4 

 

Acquired Hypothyroidism Cases 73 7 1 

Acquired Hypothyroidism Controls 8662 214 2 

 

Drug Resistant Infection Cases 179 12 1 

Drug Resistant Infection Controls 10504 258 4 

 

Abnormal Serum Enzyme Level Cases 156 9 2 

Abnormal Serum Enzyme Level Controls 9909 246 3 

 

  

22,314 of our study subjects had at least two blood pressure measures, including 12024 

females and 10290 males. The median [IQR] number of blood pressure readings in study 

subjects was 154.0[47.0, 673.8]. Analysis of blood pressure measurements using all individuals 

found that Thr164Ile was associated with hypotension (at least two measure less than 90/60 

mmHg) in males and females combined (OR=1.21 [95% CI, 1.01-1.44]) after adjustment for sex 

and median age, and in females alone after adjustment for median age (OR=1.29 [95% CI,1.02-

1.64]).  Sex and age were also significant predictors in several of the regressions; male sex and 

increasing age were associated with both hypertension and hypotension (Table 1-D). After the 55 

Iatrogenic Hypotension cases in our blood pressure analysis were removed, the association 

between Thr164Ile and hypotension in all individuals, and in females, decreased and was no 

longer significant at the 0.05 level, and the odds ratio weakened slightly compared to when the 

Iatrogenic Hypotension cases were included (Table 1-E). 
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Table 1-D. Association of Thr164Ile with hypotension and hypertension in all individuals with a 

minimum of two blood pressure measures. Odds ratio (95% CI) and p-values are shown for the 

importance of each predictor in the regression. Individuals were classified as hypotensive if they 

had two measures less than 90/60 and hypertensive if they had two measures over 140/90.  

Median age was calculated using the ages at all blood pressure measures in the record. 

 
All                              

(n=22,314) 

Males                         

(n=10,290) 

Females                    

(n=12,024) 

 
Hypotensive 

OR (95% CI) 

Hypertensive  

OR (95% CI) 

Hypotensive  

OR (95% CI) 

Hypertensive  

OR (95% CI) 

Hypotensive  

OR (95% CI) 

Hypertensive  

OR (95% CI) 

Thr164Ile 

Allele 

1.21          

(1.01, 1.44) 

p=0.039 

1.13        

(0.96, 1.34) 

p=0.154 

1.11         

(0.85, 1.45) 

p=0.449 

1.27        

(0.98, 1.65) 

p=0.0764 

1.29        

(1.02, 1.64) 

p=0.034 

1.04        

(0.83, 1.30) 

p=0.761 

Median 

Age 

1.011      

(1.009, 1.013) 

p<0.001 

1.012        

(1.011, 1.014) 

p<0.001 

1.015       

(1.013, 1.018) 

p<0.001 

1.003    

(1.000, 1.005) 

p<0.001 

1.007     

(1.005, 1.009) 

p<0.001 

1.02        

(1.017, 1.021) 

p<0.001 

Sex==M 

1.10        

(1.01, 1.17) 

p<0.001 

1.36        

(1.29, 1.44) 

p=0.001 

- - - - 

 

 

 

 

Table 1-E. Association of Thr164Ile with hypotension and hypertension in individuals without 

the Iatrogenic Hypotension Phecode and a minimum of two blood pressure measures. Odds ratio 

(95% CI) and p-values are shown for the importance of each predictor in the regression. 

Individuals were classified as hypotensive if they had two measures less than 90/60 and 

hypertensive if they had two measures over 140/90.  Median age was calculated using the ages at 

all blood pressure measures in the record. 

 
All                              

(n=22,259) 

Males 

(n=10,266) 

Females                    

(n=11,993) 

 
Hypotensive 

OR (95% CI) 

Hypertensive 

OR (95% CI) 

Hypotensive 

OR (95% CI) 

Hypertensive 

OR (95% CI) 

Hypotensive 

OR (95% CI) 

Hypertensive 

OR (95% CI) 

Thr164Il

e Allele 

1.17        

(0.98, 1.40)  

p=0.091 

1.12         

(0.94, 1.33) 

p=0.203 

1.10        

(0.84, 1.44)  

p=0.475 

1.26          

(0.97, 1.64) 

p=0.083 

1.23        

(0.96, 1.57)  

p=0.096 

1.02         

(0.81, 1.28)  

p=0.897 

Median 

Age 

1.011       

(1.009, 1.013)   

p<0.001 

1.012         

(1.011, 1.014)   

p<0.001 

1.016      

(1.013, 1.018)   

p<0.001 

1.002       

(1.000, 1.005)   

p<0.031 

1.007     

(1.004, 1.09)  

p<0.001 

1.019         

(1.017, 1.021)   

p<0.001 

Sex==M 

1.10        

(1.04, 1.17) 

p<0.001 

1.36         

(1.29, 1.44) 

p<0.001 

- - - - 
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In our analysis of summary blood pressure measures, the Thr164Ile variant was not 

significantly associated with median systolic blood pressure, median diastolic blood pressure, or 

median MAP in both males and females combined. In the female only analysis, none of the 

measure were significantly associated with the variant, and while Thr164Ile was marginally 

(p<0.1) associated with increased median systolic blood pressure in males, none of the tests were 

significant at the p=0.05 threshold (Table 1-F).  The same held true for our tests of the variant as 

a predictor of 10
th

 percentile BP (Table 1-G). When looking at the relationship between the 90
th 

 

percentile BP measures, we saw that the Ile allele was associated with increased systolic 

measures in males only (p=0.04), and was nearly statistically significant but did not reach p=0.05 

for MAP (Table 1-H). The variant was not significant for any measures in either all individuals 

or females alone.  

In order to determine if the pattern of PheWAS signals represented several discrete 

phenotypes or sub-phenotypes of a single condition, we identified how many females were cases 

for multiple of our top Phecodes. In females, individuals (including those carrying the Thr164Ile 

variant) who were cases for one of the top Phecode hits were unlikely to be cases for any of the 

other Phecode hits that passed significance thresholds (Figure 1-D-a), indicating that these are 

distinct and pleiotropic genotype-phenotype associations.  
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Table 1-F. Regression coefficients from linear regression for a mixed population, males, and females with median systolic blood 

pressure, diastolic blood pressure, and mean arterial pressure. 

 

 

 

 

 

 

 

 
All 

(n=21,339) 

Males 

(n=9,854) 

Females 

(n=11,485) 

 

Median  

Systolic BP 

Beta  

(95%CI) 

Median 

Diastolic BP  
Beta 

(95%CI) 

Median  

MAP  

Beta  

(95%CI) 

Median 

Systolic BP 
Beta 

(95%CI) 

Median 

Diastolic BP  

Beta  

(95%CI) 

Median  

MAP 

Beta 

(95%CI) 

Median  

Systolic BP   

Beta 

(95%CI) 

Median 

Diastolic BP 
Beta 

(95%CI) 

Median  

MAP  

 Beta 

(95%CI) 

Thr164Ile 

Allele 

0.13 

(-0.95, 1.21) 

p=0.82 

-0.12 

(-0.85, 0.61) 

p=0.75 

0.03 

(-0.72, 0.77) 

p=0.95 

1.38 

(-0.25, 3.01) 

p=0.0961 

0.61 

(-0.49, 1.71) 

p=0.28 

0.91 

(-0.22, 2.04) 

p=0.12 

-1.00 

(-2.42, 0.42) 

p=0.17 

-0.66 

(-1.69, 0.23) 

p=0.14 

-0.74 

(-1.74, 0.25) 

p=0.14 

Median 

Age 

0.20 

(0.19, 0.21) 

p<0.001 

-0.14 

(-0.14, -0.13) 

p<0.001 

-0.01 

(-0.03, -0.02) 

p<0.001 

0.07 

(0.07, 0.10) 

p<0.001 

-0.16 

(-0.17, -0.15) 

p<0.001 

-0.08 

(-0.09, -0.06) 

p<0.001 

0.28 

(0.27, 0.39) 

p<0.001 

-0.12 

(-0.13, -0.11) 

p<0.001 

0.01 

(0.01, 0.02) 

p=0.002 

Sex==M 

1.03 

(0.68, 1.37) 

p<0.001 

2.21 

(1.97, 2.44) 

p<0.001 

1.81 

(1.57, 2.05) 

p<0.001 

- - - - - - 
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Table 1-G. Regression coefficients from linear regression for a mixed population, males, and females with 10th percentile systolic 

blood pressure, diastolic blood pressure, and mean arterial pressure. 

 
All 

(n=21,339) 

Males 

(n=9,854) 

Females 

(n=11,485) 

 

10%  

Systolic BP 
Beta (95%CI) 

10% 

Diastolic BP 
Beta 

(95%CI) 

10%   

MAP  

Beta 

(95%CI) 

10%  

Systolic BP 
Beta 

(95%CI) 

10% 

Diastolic BP 
Beta 

(95%CI) 

10%  

MAP  

Beta 

(95%CI) 

10%  

Systolic BP 
Beta 

(95%CI) 

10% 

Diastolic BP 
Beta 

(95%CI) 

10%   

MAP  

Beta 

(95%CI) 

Thr164Ile 

Allele 

-0.13 

(-1.17, 0.91) 

p=0.81 

-0.03 

(-1.07, 0.46) 

p=0.44 

-0.12 

(-0.87, 0.63) 

p=0.76 

0.38 

(-1.21, 1.97) 

p=0.64 

0.24 

(-0.92, 1.41) 

p=0.68 

0.48 

(-0.67, 1.62) 

p=0.41 

-0.64 

(-1.99, 0.72) 

p=0.36 

-0.76 

(-1.77, 0.26) 

p=0.14 

-0.64 

(-1.62, 0.35) 

p=0.21 

Median 

Age 

0.08 

(0.07, 0.09) 

p<0.001 

-0.14 

(-0.15, -0.14) 

p<0.001 

-0.05 

(-0.06, -0.05) 

p<0.001 

-0.01 

(-0.03, 1.90) 

p=0.09 

-0.16 

(-0.17, -0.14) 

p<0.001 

-0.10 

(-0.10, -0.08) 

p<0.001 

0.14 

(0.13, 0.16) 

p<0.001 

-0.14 

(-0.15, -0.13) 

p<0.001 

-0.02 

(-0.03, -0.02) 

p<0.001 

Sex==M 

0.80 

(0.46, 1.13) 

p<0.001 

2.08 

(1.84, 2.33) 

p<0.001 

1.67 

(1.43, 1.91) 

p<0.001 

- - - - - - 
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Table 1-H. Regression coefficients from linear regression for a mixed population, males, and females with 90th percentile systolic 

blood pressure, diastolic blood pressure, and mean arterial pressure. 

 
All 

(n=21,339) 

Males 

(n=9,854) 

Females 

(n=11,485) 

 

90% 

Systolic BP 
Beta 

(95%CI) 

90% 

Diastolic BP 

Beta 

(95%CI) 

90% 

MAP  

Beta 

(95%CI) 

90%  

Systolic BP  

Beta 

(95%CI) 

90% 

Diastolic BP 
Beta 

(95%CI) 

90% 

MAP  

Beta 

(95%CI) 

90%  

Systolic BP 
Beta 

(95%CI) 

90% 

Diastolic BP 
Beta 

(95%CI) 

90% 

MAP  

Beta 

(95%CI) 

Thr164Ile 

Allele 

0.39 

(-0.89, 1.67) 

p=0.55 

0.07 

(-0.66, 0.81) 

p=0.85 

0.14 

(-0.66, 0.94) 

p=0.74 

2.00 

(0.10, 3.89) 

p=0.04 

0.80 

(-0.32, 1.92) 

p=0.16 

1.14 

(-0.07, 2.34) 

p=0.07 

-1.05 

(-2.76, 0.67) 

p=0.23 

-0.55 

(-1.52, 0.41) 

p=0.26 

-0.73 

(-1.80, 0.33) 

p=0.18 

Median 

Age 

0.33 

(0.32, 0.34) 

p<0.001 

-0.09 

(-0.10, -0.09) 

p<0.001 

0.03 

(0.02, 0.04) 

p<0.001 

1.95 

(0.18, 0.21) 

p<0.001 

-0.14 

(-0.15, -0.13) 

p<0.001 

-0.04 

(-0.05, -0.03) 

p<0.001 

0.43 

(-0.41, 0.44) 

p<0.001 

-0.06 

(-0.07, -0.06) 

p<0.001 

0.08 (0.07, 

0.09) 

p<0.001 

Sex==M 

1.02 

(0.06, 1.43) 

p<0.001 

2.00 

(1.76, 2.23) 

p<0.001 

1.70 

(1.45, 1.96) 

p<0.001 

- - - - - - 
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Figure 1-D. Venn diagram of the overlap of case individuals for PheWAS codes. a) Codes that 

were significant in either the analysis of all individuals or in females only were tested for overlap 

in females. b) The overlap of individuals coded for Drug-resistant Infection, Pneumonia, and 

Poisoning by Other Anti-Invectives in the female only population. 

 

 

In PheWAS hits that passed the p-value threshold of 0.001 for suggestive significance in 

females, three codes (Drug-resistant Infection, Poisoning by Other Anti-infectives, and 

Pneumonia), were related to infection. Of females who had the Phecode for Drug-resistant 

Infection, 58% also had the Phecode for pneumonia (Figure 1-D-b). We also observed the 

Phecode for Poisoning by Other Anti-infectives, but the women with this code were largely 

distinct from those coded for Drug-resistant Infection. The Phecode for Drug-Resistant Infection 

is made up of 19 ICD-9 codes focused exclusively on drug resistance. The Phecode for 

Pneumonia comprised of 67 distinct codes (Appendix D). Most of these codes are immediately 

related to pneumonia, though some relate to congestion or difficulty breathing when an infection 

may be present. No ICD.9 codes are shared between the Phecode for Drug-resistant Infection and 

the Phecode for Pneumonia.  

a b 
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 Our analysis of the liver function test laboratory values produced no significant 

associations after adjustment for BMI.  The Thr164Ile allele was not significantly associated 

with median AST (Beta [95% CI] = -0.94[-2.48,0.60],p=0.23) , median ALT ( -1.26[-2.96,0.44], 

p=0.15) or median AST/ALT ratio (0.02[-0.02, 0.06], p=0.31) after adjustment for BMI  in all 

individuals. In females, the median AST/ALT ratio was not associated with the Thr164Ile allele 

(0.04[-0.01, 0.09], p=0.14), nor was median AST (-0.83 [-2.77, 1.11], p=0.40), but median ALT 

was associated (-2.09 [-4.11, -0.06], p=0.044) with each copy of the Ile allele resulting in 

decreasing ALT. BMI was the most significant predictor of the liver enzymes, and was also 

moderately associated with the Thr164Ile allele.  

 

Discussion 

 

The primary PheWAS association for the Thr164Ile variant in ADRB2 was the code for 

Iatrogenic Hypotension. This association with hypotension was the opposite of what would be 

expected given the previous reports of an association with hypertension in other studies
40,41

  and 

given the observation that the variant was associated with decreased agonist-induced 

vasodilation in translational studies
33

.  

Several reasons could explain our finding. Iatrogenic Hypotension describes a clinical 

scenario where a medical intervention inadvertently results in low blood pressure, i.e. an 

exaggerated hypotensive response to a medication or intervention. The population studied was a 

hospital-based cohort, and patients thus underwent medical interventions and received new 

medications; manual review of the records of the cases with a PheWAS diagnosis of Iatrogenic 

Hypotension revealed that 33 of 56 had undergone surgery shortly before the ICD.9 code was 
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entered into their record. The biology of the β2AR suggests a mechanism whereby individuals 

with the Thr164Ile variant could be at increased risk for hypotension in such circumstances 

despite having impaired β2AR-mediated vasodilation and thus a propensity towards 

hypertension. The β2AR, in addition to mediating vasodilation, also increases heart rate and 

cardiac contraction, and thus cardiac output, a key determinant of blood pressure. Healthy 

Thr164Ile carriers have decreased chronotropic and inotropic responses to beta2-agonists
52

, and 

this attenuated cardiac response was even more pronounced in patients with heart failure
53

.  It is 

therefore possible that individuals with attenuated β2AR-mediated signal transduction may 

become hypotensive in a postoperative setting where compensatory sympathetic stimulation and 

increased plasma catecholamine concentrations are critical to maintain blood pressure by 

increasing heart rate and contractility and thus cardiac output.   

 Consistent with the PheWAS code of Iatrogenic Hypotension, our analysis of all the 

blood pressure readings recorded also indicated that individuals with the Thr164Ile variant (in 

analyses that included and excluded those with the Iatrogenic Hypotension code) had increased 

odds of being hypotensive at some point in their medical record.  Interestingly, this result was 

not visible when the median, 90
th

, and 10
th

 percentile blood pressure measures were used. While 

other studies have shown that carriers of the variant are more likely to be hypertensive, that was 

not the case in this study. However, in males there was a trend in that direction, and in our 

summary analysis, the variant was associated with increased 90
th

 percentile measures in men. 

Many of the blood pressure measures in our dataset were not resting blood pressure measures, 

but rather measures obtained during a hospital stay or other intervention. Thus, the effects of 

stressors such as medications and illness may be magnified under these circumstances.  
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 We observed the significant genotype-hypotension association in all individuals and in 

females  only, consistent with other large studies of the Thr164Ile variant that found an effect on 

hypertension in females only
40,41

. As our study was conducted in an EHR dataset, it is possible 

that there was a difference in coding between males and females for certain traits, but as the case 

distribution was similar in both sexes for our primary hits, it is more plausible that there is a 

fundamental biological difference between the sexes in the effect of the variant. This is in 

keeping with the observation that there are differences among sexes in cardiac physiology, and 

women are more dependent than men on an increase in heart rate to maintain cardiac output 

under conditions of stress
54

. Therefore, an inability to increase heart rate to maintain cardiac 

output in Thr164Ile individuals under conditions of stress would be more likely to manifest as 

hypotension in women.        

The lack of overlap of phenotypes in the same individuals suggests that Thr164Ile is 

associated with multiple distinct phenotypes. Alternatively, the different phenotypes could be 

related and coexist in the same patient, with only one being prominent enough to be listed as ICD 

diagnosis by the physician. 

 The code for Serum Enzyme Abnormalities encompassed only ICD.9 code 790.5 for 

“Other Nonspecific Abnormal Serum Enzyme Levels”, representing predominantly an increase 

in serum liver enzymes. The increase in liver enzymes associated with Thr164Ile may be related 

to altered effects of catecholamines on liver cells
55

 or effects on fat metabolism. Given the 

change in effect we saw after adjusting for BMI, it is also possible that the effect is related to 

BMI. The β2AR mediates lipolysis, and adipocytes from humans heterozygous for the Ile164 

variant had a markedly decreased sensitivity to lipolysis induced by a beta-agonist
56

. Moreover, 

Ile164 was associated with obesity in population studies
49

. Obesity is the main risk factor for 
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non-alcoholic fatty liver disease, a common cause of elevated liver enzyme levels. Indeed, 

ADRB2 variants have previously been associated with liver enzyme levels, and a link to non-

alcoholic fatty liver disease was postulated
57

. 
 

The association of Thr164Ile with Acquired Hypothyroidism in females was unexpected 

but not biologically implausible. Thyroid hormone contributes to the regulation of βAR 

expression and has been associated with hypertension and other cardiovascular phenotypes
58–61

. 

Deficiency of thyroid hormone reduces responsiveness to catecholamines due to reduced βAR 

expression
62

; thus, it is possible that the presence of an ADRB2 variant associated with reduced 

function could magnify the effects of hypothyroidism, facilitating its diagnosis.  

The women who had the PheWAS code for Drug-resistant Infection overlapped 

substantially (58%) with those who were coded for Pneumonia. The Thr164Ile variant has been 

associated with several pulmonary phenotypes, including impaired bronchoconstriction, reduced 

lung function, and chronic obstructive pulmonary disease (COPD)
43

, which are risk factors for 

recurrent pulmonary infections, reduced clearance of infections, and thus antibiotic resistance. 

Moreover, patients with underlying pulmonary diseases such as COPD could be more likely to 

be assigned a diagnosis of pneumonia. Alternatively, cross-talk between the immune and 

adrenergic systems through the β2AR may be implicated
63

. 

The potential mechanisms underlying the sex-specificity of the PheWAS findings are of 

interest.  One possibility is that coding practices among health care providers differ for men and 

women.  However, more likely is that β2AR responses are affected by sex, and there are many 

examples of such sex-related differences in other settings. For example, differences between men 

and women in the contribution of β2AR-mediated responses have been noted for blood pressure 

regulation
64

, cutaneous 
65

 and forearm blood flow
66,67

, neutrophil function
68

, and the anabolic 
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effects of an agonist
69

, or among pre- and post-menopausal women. It is possible similar 

mechanism pertain in the setting of illness.   

 In conclusion, our study has shown that Thr164Ile has pleiotropic effects, and carriers 

are more likely to be assigned certain diagnosis codes by their physicians. Our PheWAS study, 

while testing for association with imperfectly phenotyped case and control groups, allowed us to 

identify genotype-Phecode associations that were plausible given the multiple physiological 

functions of the β2AR. Replication in carefully phenotyped populations will be important for 

validating these associations.
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II.  THE APOBEC3G HIS186ARG VARIANT IMPACTS HUMORAL IMMUNITY IN 

CHILDREN 

  

Introduction 

 

The apolipoprotein B mRNA-editing catalytic polypeptide (APOBEC) family is a group 

of cytidine deaminases that were initially discovered due to the ability of APOBEC3G (A3G) to 

block the replication of Human Immunodeficiency Virus Type 1 (HIV-1)
70

. The APOBEC3 sub-

family is a group of 7 proteins (A3A-A3C, A3DE, A3F-H) encoded on chromosome 22. As 

cytidine deaminases, the members of this family mediate the change from C to T in single 

stranded DNA
71

.  The A3s are thought to have evolved from APOBEC1, and the gene 

duplication events leading to the family are thought to have occurred during the expansion of the 

primate branch as a means of countering the exogenous and endogenous retroviruses
72

. A3G in 

particular has been subject to strong positive selection throughout primate evolution
73

.  The 

APOBEC3s are known to function against exogenous retroviruses and human endogenous 

retroviruses, both through deamination dependent and deamination independent functions.  

A3G and its variation has been thoroughly investigated for its effect in HIV. The A3G 

His186Arg variant is located in exon 4 of the APOBEC3G gene
74

. While this region of the 

protein in not directly involved in deamination, it is thought to be important for RNA binding 

which is involved in several deaminase independent functions and sliding along genetic material 

to promote deamination
75

. Some studies have shown that individuals of African descent with the 

A3G His186Arg variant progress from HIV to AIDs more quickly, but this effect of the variant 

does not seem present in individuals of European descent
74,76,77

. Biochemically, there is 
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increasing evidence that A3G proteins containing the His186Arg change exhibit less antiviral 

activity than wildtype A3G
78

. The effect of the His186Arg variant in populations infected with 

Hepatitis-B virus (HBV) has also been explored, but no effect was seen
79

.  While the global 

allele frequency of A3G His186Arg is 14.6%, the variant is present at a frequency of around 3% 

in populations of European descent
80

. Despite the relatively common global occurrence of this 

variant, it has not been widely explored outside of the context of viral infection. 

Given the limited knowledge of the A3H His186Arg variant and the conflicting 

reports of it importance in the context of HIV1 infection, we hypothesized that it was likely 

this variant manifested in one or more clinically relevant phenotypes in a hospital derived 

cohort. We specifically expected phenotypes of viral infection or other innate immune 

responses. To test this hypothesis, we performed a PheWAS in an EHR based dataset, exploring 

the impact of the A3G His186Arg variant on multiple clinically relevant phenotypes.  

 

Methods 

 

Study Population 

The study population consisted of third-party identified white individuals with both ICD.9 code 

data and genotyping available on the Illumina Human Exome Bead Chip available in BioVU.  

  

Genotypes 

Genotypes for SNPs in A3G genotyped on the Illumina Human Exome Bead Chip were 

obtained. rs8177832, the SNP for His186Arg, was additively encoded and checked against 

published minor allele frequencies
80

. All quality control checks of genetic data were done in 

Plink 
48

.  
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PheWAS Aggregation and Regression 

A record of all ICD-9 codes with date stamps were obtained for all individuals with genotyping. 

These were aggregated using a predefined hierarchy into PheWAS codes (Phecodes) as 

described in the Introduction. Briefly, individuals with 2 or more instances of any ICD-9 code 

that map to a Phecode become cases for that Phecode. Individuals who never have any instance 

of the ICD-9 codes within a Phecode become a control for that code. Individuals who have a 

single occurrence of one ICD-9 code within a Phecode become an “NA” and are excluded from 

analysis for that Phecode. Individuals can also be excluded from analysis if by aggregation they 

would be a control for a given Phecode, but are a case for a highly related Phecode.  This 

exclusion only removes potential controls, never potential cases. ICD-9 codes that occur more 

than once on the same day in a patient’s record are collapsed to one occurrence.  Phecodes are 

then tested for association with a variant of interest.  

Our initial PheWAS used logistic regression adjusting for age at last ICD-9 code in the 

record, and sex. We also performed a second PheWAS limiting our dataset to individuals who 

never reached the age of 20 in their ICD-9 based record. This logistic regression was also 

adjusted for age and sex. In PheWAS tests using all individuals, only Phecodes with at least 50 

cases were tested. In age stratified PheWAS tests, Phecodes with at least 25 cases were tested. 

 

ICD-9 Code Specific Analyses 

Following PheWAS, we performed a series of logistic regressions using the ICD-9 codes within 

the Humoral Immunity Phecode as the outcome. The ICD-9 code records of all individuals were 

evaluated, and two instances of a specific ICD-9 code were considered a case for that ICD-9 
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code. Regressions performed separately in all individuals and individuals under 20, and were 

adjusted for first age at ICD-9 code and sex. Venn diagrams were made with Venny 
81

. 

 

CPT Code Analysis 

CPT codes for immune globulin infusions (82784) were obtained for white individuals 

with genotyping in our dataset. The number of codes each individual had were calculated. The 

minor allele frequency of His186Arg was calculated in individuals with at least one “82784” 

CPT code, and compared to the minor allele frequency in the whole population. A Wilcoxon 

rank sum test was used to see if the number of CPT codes on distinct days was different between 

the carriers and non-carriers of the His186Arg allele. The population overlap between 

individuals with the “82784” CPT code and those with the Deficiency of Humoral Immunity 

Phecode was also calculated.   

 

Laboratory Value Analysis 

Immunoglobulin G (IgG) laboratory values from the IgG Quantitative (IgG-Q) test were 

downloaded for individuals in the set.  IgG values were quality controlled to remove non-

numeric values and were then normalized using the age of the individual at the time of their 

measure and reference information from the Vanderbilt Pathology Laboratory Services (Appendix 

H). 

Maximum, median, and minimum values were calculated using both raw and normalized 

IgG values all individuals with two or more measures. Wilcoxon rank sum tests were used to 

examine if these summary measures of IgG were different between homozygous reference 
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individuals and carriers of the His186Arg variant. Individuals were also stratified based on age at 

the time of measure, and adults and children were analyzed separately.  

 

Results 

 

27547 individuals were in our PheWAS dataset. 3,837 were younger than 20 at the last 

ICD-9 code in their record, and 23,710 had an age at last code greater than 20 (Table 2-A). 

46.7% of the study individuals were male. The allele frequency of the His186Arg variant was not 

significantly different between individuals with an age at last code greater than 20 and an age at 

last code of less than 20, though it was trending towards significance.  

 

Table 2-A. Demographics of the PheWAS analysis set combined and separated by age at last 

ICD-9 record. 

 

 

Our initial PheWAS tested 1215 Phecodes. A single Phecode, Deficiency of Humoral 

Immunity (Odds ratio (OR) = 2.93 [95% Confidence interval (CI) 1.83 -4.68]; p= 7.01E-06), 

passed the Bonferroni level of statistical significance (4.1e-05) (Figure 2-A). There were 108  

 All 
Age at Last Code 

<20 

Age at Last Code 

>=20 
p-value 

N 27547 3837 23710 - 

Male (%M) 12865 (46.7%) 1981 (51.6%) 10884 (45.9%) 0.004 

Median Age First ICD-9 Code 

in Record (IQR) 
51.4 (32.4, 64.7) 2.1 (0.2, 7.0) 55.2 (42.5, 66.6) <2.2e-16 

Median Age Last ICD-9 Code 

in Record (IQR) 
60.7 (42.1, 73.6) 11.7 (6.9, 15.6) 64.1 (52.4, 75.8) <2.2e-16 

Deficiency of Humoral 

Immunity Cases (%) 
108 27 81 0.002 

His186Arg Allele Frequency 0.031 0.035 0.030 0.07 
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Figure 2-A. PheWAS manhattan plot showing the association of the Phecode for Deficiency of Humoral Immunity and the A3G 

His186Arg variant. Red line indicates Bonferroni correction and blue line indicates level of suggestive significance.
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cases for Deficiency of Humoral Immunity, including 19 with the A3G 186R allele (Table 2-B). 

Only one other Phecode, Hallucinations, passed the level of suggestive significance (p=0.001) 

(Appendix E). 

 

Table 2-B. Genotype distribution in Deficiency of Humoral Immunity cases and controls for 

individuals of all ages. 

PheWAS Category and Case Status 
His186Arg Minor Alleles 

0 1 2 

Deficiency of Humoral Immunity Cases 89 19 0 

Deficiency of Humoral Immunity Controls 23668 1463 32 

 

 

Of the 9 ICD-9 codes (Appendix G) that comprised the Deficiency of Humoral Immunity 

PheWAS code only 2 of which were present twice in at least 5 individuals in our dataset. The 

ICD-9 code 279.00 contributes that largest signal, but that there is a second signal from 279.06 

(Table 2-C). These signals contribute similar ORs but have substantially different p-values and 

case sizes. The signal from the union of these two groups is weaker than the signal from just 

279.00 alone, indicating that 279.00 is the primary driver of our association (Figure 1-A). 

 

Table 2-C. Association of His186Arg variant with individuals who have two or more incidences 

of the 279.00, 279.06, and 279.00 or 279.06 ICD-9 codes combined. 

ICD-9 Code OR (95% CI) p-value Case Individuals Control Individuals 

279.06 3.37(1.47, 7.77) 0.004274 30 27353 

279.00 3.50 (2.12, 5.77) 8.66E-07 81 27353 

279.00, 279.06, or 

279.00 and 279.06 in 

combination 

3.21 (1.98, 5.21) 2.28E-06 97 27353 
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Figure 2-B. Venn diagram of distribution of His186Arg minor alleles in individuals with two 

incidences of the 279.00 ICD-9 code or the 279.06 ICD-9 code. 

 

 

 

We then evaluated the median age at which people are first coded with 279.00. The 

median age at first code of heterozygotes (8.9 yrs) was significantly different, p=0.03, then the 

median age at first code of homozygous dominants (50.55 yrs) (Figure 2-C). The number of 

incidences of the 279.00 ICD-9 code in the two groups were not significantly different.  
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Figure 2-C. Histogram of the age at which Deficiency of Humoral Immunity individuals first 

have the 279.00 ICD-9 code in their record. 

 

 

As the ICD-9 specific signal appeared to be driven by children, we wanted to see if other 

signals could be seen in a PheWAS of children alone. In individuals who never passed the age of 

20 in their ICD-9 record, Deficiency of Humoral Immunity was again the only statistically 

significant hit, with an OR of 5.55 [95% CI 2.62 -11.76] and a p-value of 7.7E-06 (Figure 2-D, 

Appendix F). Our number of cases substantially decreased to 27 (9 with the 186R allele) 

reducing our power (Table 2-D), but we saw a stronger effect size in the younger individuals. 
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Figure 2-D. PheWAS manhattan plot for the A3G His186Arg variant in individuals under the age of 20. Red line indicates Bonferroni 

correction and blue line indicates level of suggestive significance.
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Table 2-D. Genotype distribution in Deficiency of Humoral Immunity cases and controls for 

individuals under the age of 20 at their last ICD-9 code entry. 

PheWAS Category and Case Status 
His186Arg Minor Alleles 

0 1 2 

Deficiency of Humoral Immunity Cases 18 9 0 

Deficiency of Humoral Immunity Controls 3295 229 6 

 

 

 Even when we further decreased the age cut off for individuals tested beyond an age at 

last code of 20, we still saw the association in the PheWAS. While we very quickly ran out of 

power to see a signal due to decreasing numbers of individuals with the His186Arg allele, even 

when we subset our data to those under the age of 8, the influence of the variant on Deficiencies 

of Humoral Immunity remained substantial (Figure 2-E). All of our younger groups showed an 

odds ratio of between 5.5 and 7.8, much stronger than in the whole population. 

3544 individuals in our dataset had an ‘82784’ CPT code in their record. The number of 

CPT codes for infusion was not different between carriers and non-carriers of the His186Arg 

allele (p=0.12). We also looked to see if the allele frequency in those with the CPT codes was 

higher than expected, but at 0.032 it was not significantly different than the allele frequency seen 

in the whole population used for our PheWAS. Almost all individuals who were PheWAS cases 

for Deficiency of Humoral Immunity (100 out of 108) had a ‘82784’ CPT code in their record, 

including all 19 carriers of the 186Arg allele (Figure 2-F). 
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Figure 2-E. Forest plot for the association of His186Arg in the entire population, a population with an age at last code less than 30, a 

population with an age at last code under 20, 16, 12, and 8. Odd ratio (OR), p-value, and the number of cases in each of the PheWAS 

associations are shown.
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Figure 2-F. Venn diagram of overlap between individuals with an ‘82784’ CPT code for 

Gammaglobulin Influsion and those who were cases for the Deficiency of Humoral Immunity 

PheWAS code. Distribution of individuals who are carriers for the His186Arg allele are also 

shown. 

 

 

865 individuals with genotype data available had more than one IGG measure in their 

record. 198 of these were under the age of 19 at the time of their measure. None of the IGG 

summary measures for either the normalized or raw data were significantly different by genotype 

at the p=0.05 level. None of the summary measures was significant after stratification by age at 

test.
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Discussion 

 

In our analysis, the His186Arg variant in APOBEC3G was associated with the PheWAS 

code for Deficiency of Humoral Immunity. As our a priori hypothesis was that the variant would 

be associated with an immune related phenotype, this was not entirely unexpected, but an 

association that came mostly from young individuals was completely unexpected. We also 

anticipated more of an innate immune phenotype, rather than the adaptive immune phenotype of 

humoral immunity. 

There is no established mechanism for how A3G might affect levels of immunoglobulins. 

A3G is widely expressed in hematopoietic cells, including B-cells, T-cells, and myeloid 

cells
82

.  In these cells A3G protein localizes to the cytoplasm where it performs one of two 

functions; protect against exogenous retroviruses or prevent endogenous retroelements from 

completing retrotranscription and reintegrating into the genome. Within the cytoplasm, A3G 

exists in two forms called high molecular mass (HMM) A3G and low molecular mass (LMM) 

A3G. HMM A3G is A3G bound with ribonuclear protein complexes called P-bodies
83

. HMM 

A3G is less enzymatically active and functions to oppose retrotransposition of endogenous 

retroelements. Endogenous A3G expressed in H9 T-cells and mitogen-activated CD-4 T cells 

exists in a HMM state. The assembly into complexes is thought to be one mechanism of 

regulating the possibly mutagenic properties of A3G. By contrast, LMM A3G is much more 

enzymatically active, and is necessary for activity against exogenous retroviruses
83

. Interestingly, 

some RNA binding proteins involved in cell fate determination are thought to be part of these 

HMM complexes. Unpublished evidence from collaborators in the D’Aquila Lab at 

Northwestern University Medical School indicate that the A3G His186Arg change causes a 
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visible difference in levels of HMM and LMM complexes of A3G by Western Blot (data not 

shown). It is possible that a shift in the levels of HMM and LMM A3G could cause slight 

differences in the ability to deal with endogenous retroelements, which may alter how the 

adaptive immune system recognizes them. A change in the adaptive immune system could 

theoretically change the balance of different immunoglobulins. In the context of already sick 

children this could theoretically cause further immune dysfunction. 

Despite the lack of an established mechanism to connect A3G and a Deficiency of 

Humoral Immunity, our evaluation of CPT codes shows that individuals are receiving 

intravenous immunoglobulin. Manual review of records for many carriers of the Arg allele 

indicates that many individuals in our dataset who receive ICD-9 codes indicating 

hypogammaglobulinemia or common variable immunodeficiency have additional medical 

problems. Many of the younger children in our dataset who were carriers and cases had notes 

indicating B-cell Acute Lymphoid Leukemia in their records previous to the Deficiency of 

Humoral Immunity ICD.9 codes, often by many years. While there is a well-established link 

between Chronic Lymphoid Leukemia (CLL) and hypogammaglobulinemia,
84–86

 we did not see 

any association with CLL. In fact, when tested, the children who had ALL produced only a small 

signal, and those with both ALL and hypogammaglobulinemia produced a smaller signal than 

hypogammaglobulinemia alone. It is possible that our characterization of both CLL and ALL in 

the PheWAS was extremely poor, and our power to observe an association between His186Arg 

and either of these cancers was reduced or eliminated by poor phenotyping.  

Interestingly, several of the other members of the APOBEC family, specifically 

Activation Induced Deaminase (AID) and APOBEC3B (A3B), have been associated with 

cancers
87,88

. One of the hypothesized reasons that A3G forms the HMM complex in the 
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cytoplasm is to stop it from entering the nucleus at certain times in the cell cycle where it could 

potentially damage single stranded DNA
83

, though evidence shows that A3G is excluded from 

accessing chromatin at all stages of mitosis
89

.  Normally, AID plays a role in hypermutation, 

class switch recombination, and gene conversion; the three processes for secondary antibody 

diversification in activated B-cells
90,91

. Mutations in AID have also been associated with hyper-

IgM syndrome
92

. 

We did not see any signals specifically due to viral infection or any cancers. The only 

Phecode other than Deficiency of Humoral Immunity that even passed the suggestive 

significance line in our analysis was for Hallucinations. In the younger age datasets nothing else 

was even close to the threshold of suggestive significance. Given the multiple associations of this 

gene, and all others in the family, it was unexpected that the SNP was not pleiotropic in our 

analysis.   

Given this association, the previous evidence of the role of His186Arg in HIV, and the 

unpublished data from our collaborator, we decided to search the GTEx
93

 database to see if 

His186Arg was identified as an eQTL. In the relevant tissue, whole blood, rs1877832, the SNP 

responsible for the His186Arg change was an eQTL for A3G (t= -3.3, p=0.001) (Figure 2-G) 

though this was not significant once the total number of tissues tested was adjusted for. This 

effect was consistent across the vast majority of the GTEx tissues, where every copy of the Arg 

allele at A3G 186 decreased the expression of A3G.  
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Figure 2-G. Rank normalized gene expression of APOBEC3G from whole blood for 

homozygous reference, heterozygotes, and homozygous alternate individuals for the His816Arg 

allele.  

 

One of the main limitations of our study is the small number of children available, 

especially given the low minor allele frequency of the His186Arg variant. We attempted to 

explore this variant further in African American children as the variant is far more frequent in 

populations of African descent (~27% MAF), but in the more than 3000 African Americans in 

our dataset, there were only two PheWAS cases for Deficiency of Humoral Immunity. Despite 

this, we feel the association seen in Caucasian children is reasonable. 

            There is limited evidence of the function of A3G in children. Studies exploring the 

deamination ability of A3G in HIV-1 infected children found that the level of A3G did not differ 

statistically based on the level of A3G induced hypermutation
94

. Many studies in both children 

and adults with HIV-1 have found that the Arg genotype of A3G His186Arg is associated with a 



 50 

significant decline in CD4 count
95

. Another study found that the Arg allele is associated with 

more rapid HIV-1 progression and central nervous system impairment in children
96

. While there 

is evidence that the adaptive immune systems of children are different than those of adults
97

, how 

those differences might result in hypogammaglobinemia only in children remains unexplained. 

 In conclusion, we found the A3G His186Arg variant to be associated with a Deficiency 

of Humoral Immunity in a PheWAS and the ICD-9 code for Hypogammaglobulinemia in a 

targeted analysis. More analysis on the function of this variant in contexts outside of HIV-1 

infection are necessary to understand its biological importance and further explore the 

association we saw. Further analysis of this variant in non-European descent populations will 

also be important if this association is generalizable to other racial and ethnic groups. 
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III.  THE ASSOCIATION OF THE APOBEC3B DELETION WITH CARDIAC VALVE 

PHENOTYPES 

 

Introduction 

 

The APOBEC3s (A3) are a family of cytidine deaminases located on chromosome 22 

(Chapter II –Introduction). The deletion of APOBEC3B (A3B) is a germline copy number variant 

that deletes the entirety of the coding region of A3B
98

. This deletion spans 29.5kb from the last 

exon of APOBEC3A (A3A) through the last exon of A3B, thereby removing the whole A3B gene 

and creating a fusion transcript that attaches the protein coding region of A3A to the 3’ UTR of 

A3B
99

 (Figure 3-A-a). This A3A_B fusion transcript is more stable than normal A3A, causing an 

increase in the level of A3A enzyme
99

. This deletion occurs in 6% of individuals of European 

descent, 9% of African Americans, and 37% in Asians
98

.  

 

 

Figure 3-A. Location of the A3B deletion. a) The fusion transcript created spans from the last 

exon of A3A to the 3'UTR of A3B. b) Location of A3A, A3B, and the A3A_B fusion transcript 

in the context of the A3 gene family. 
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Recently, much attention has been devoted to understanding the role of the A3A and A3B 

in cancer. These proteins, part of the larger A3 family (Figure 3-A-b), have been established as 

the most likely cause of “mutation clusters” or “kataegis” seen in a variety of cancer types
100–102

. 

Both A3A and A3B are found in the nucleus
103,104

, and these two proteins, like other members of 

the A3s cause deamination at cytosines on single-stranded DNA, resulting in C to T 

transitions
72,105,106

. The cytidine deaminase activity of A3B has been found to be a source of 

mutation in breast and other cancers
88

. The deletion of A3B has been found to increase the risk 

of breast cancer in both Asian and European women
107,108

, possibly through the upregulation of 

A3A. In addition to cellular mutation and cancer, members of the A3s are involved in innate 

immunity to retroviral infection
109,110

 and inhibition of endogenous retroelements
111,112

.  

The importance of this deletion has also been investigated in conjunction with infectious 

disease phenotypes. This deletion was found to be associated increased attenuation of the 

Hepatitis B Virus and hepatocellular carcinoma
113–115

, and has been implicated in resistance to 

malaria
116

. The A3B deletion has been tested for an association with HIV, however results have 

been mixed
117,118

. A3A and A3B have also individually been tested for their importance in 

infectious disease phenotypes. As studies in both cancer phenotypes and infectious diseases 

have shown the A3B deletion to be pleiotropic, we hypothesized that it would have 

additional disease associations.  We tested this hypothesis with using a PheWAS in the 

hopes that we could validate existing phenotypes while discovering new ones.  
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Methods 

 

 

BioVU dataset 

In our preliminary analysis, we used individuals for whom DNA had been collected in 

BioVU, Vanderbilt’s de-identified DNA databank. These samples are linked to electronic 

medical records with all identifying information removed. A subset of individuals in BioVU 

have had genotyping performed on one or more of several platforms, the Illumina Omni-Quad, 

the Illumina 660W, and the Illumina Omni5-Quad . For our discovery analysis, we used data 

from 6332 individuals genotyped on the Illumina Omni-Quad, though data for individuals on all 

platforms was obtained. Age at last record was calculated for all individuals based on their date 

of birth and the last ICD.9 code represented in their medical record. Individuals with a third-

party identified race that was not listed as white or an age at last ICD-9 record less than 18 were 

removed leaving 4948 individuals with phenotypic and demographic data.  

 

Genetic Data Quality Control and Deletion Imputation 

Called genotypes underwent QC before imputation. Each platform underwent quality 

control separately. Briefly, SNPs with a genotype efficiency of less than 98% were removed, as 

were individuals in whom fewer than 98% of SNPs were genotyped. Relatedness between 

individuals in the dataset was checked, and related individuals were removed. Sex and 

Mendelian inheritance checks were also performed. Strand alignment and pre-phasing of study 

genotypes was done with Shapeit
119

.The reference panel used for phasing and imputation was the 

1000Genomes Phase 1 version 3. Imputation was performed on each platform separately using 
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Impute2
120

 in chucks of 5MB. Post-imputation genotypes were called based on a 90% threshold 

filter on the Impute2 values. Genotypes for the A3B deletion were extracted.   

 

eMERGE dataset 

Our replication analysis was performed in individuals genotyped as part of eMERGE 

1
121

. These individuals were from one of four sites, Group Health Cooperative, Marshfield 

Clinic, Mayo Clinic, or Northwestern; each site has a DNA biorepository linked to an EMR, and 

individuals at these sites were genotyped on the Illumina 660W 
27

.Individuals from Vanderbilt 

University are also part of eMERGE, but these individuals were excluded from our study group 

to eliminate possible overlap. Genotype QC and imputation was performed as described above 

for the BioVU dataset.  

 

PheWAS and Phecode correlation 

For individuals in each of our datasets, complete ICD-9 code records were obtained, 

along with the date of each ICD.9 code entry. PheWAS case, control, and exclusion status was 

determined using a minimum of two ICD-9 codes in a category to be a case, as described 

previously. PheWAS analyses and meta-analysis were  performed using the PheWAS package in 

R
50

. Bonferroni, false discovery rate (FDR), and Simple-M corrections were used.  Correlations 

amongst PheWAS codes in individuals in our dataset were also determined using pairwise 

Pearson correlation tests. Correlations were plotted using the “correplot” package in R. 
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Ejection Fraction Analysis 

Ejection fraction (EF) data was obtained for a subset of individuals in our dataset. Data had been 

previously extracted by the Denny group. Ejection fraction measures greater than 55 were 

censored to 55 as this was a common cut off for clinical practice. Once patients have an ejection 

fraction of 55, they clearly do not have a reduced ejection fraction, so many physicians will enter 

55 for any number over 55. Summary measures including median, maximum, and minimum 

ejection fraction were calculated. Individuals were also classified dichotomously as having a 

high EF if their median EF was greater than 50. Median EF measures were split into three 

groups, those greater than 50, 35-50, and less than 35. These thresholds were chosen following 

consultation with physicians. Allele frequency for the A3B deletion was compared across these 

groups. A secondary analysis was performed where individuals that were Aortic valve 

malfunction cases from our PheWAS were removed, as we might expect them to have a different 

range of ejection fraction than other patients.  

 

Statistical Analysis 

We performed PheWAS using logistic regression on PheWAS codes with more than 20 

individuals identified as cases. Age at last ICD.9 code in record, gender, and the first three 

principal components were included as covariates in the regression. For the replication in the 

eMerge dataset, site was included as an additional covariate in our logistic regression analysis. 
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Results 

 

The A3B deletion imputed with an information score of 0.76 on the Illumina Omni-Quad 

used in our discovery analysis. From our BioVU population of 5198 white individuals we were 

able to impute an A3B deletion genotype for 4230 of them (Table 3-A). These 4230 individuals 

were our discovery population. 

 

Table 3-A. Summary statistics of individuals genotypes on the Illumina Omni-Quad and used for 

PheWAS after QC measures were implemented. Shown in the whole dataset and by deletion 

status. 

 All 

n=4829 

A3BΔ==0 

n=3471 

A3BΔ==1 

n=443 

A3BΔ==2 

n=16 

Gender M (%M) 2581 (53.4) 1845 (53.2) 246 (55.5) 10 (62.5) 

Median Age last 

record (IQR) 

61 (49, 71) 61 (49, 71) 60 (47, 71) 58 (46, 67) 

  

Phenotype categories were defined through sets of related ICD.9 codes. We required that 

a phenotype have at least 20 cases for analysis, and 908 PheWAS codes met that requirement, 

resulting in a Bonferroni corrected significance threshold of 0.05/908 = 5.5e-05, though this 

correction is overly stringent given that the tests are not truly independent. Three of the 

phenotype categories reached the Bonferroni corrected significance level (Figure 3-B). All of the 

phenotype categories that passed a suggestive significance level of 0.001 were related to 

abnormalities in cardiac function (Appendix I). Heart Failure NOS was the most significant hit 

(OR [95% CI] =2.03 [1.46, 2.82]; p= 2.63E-05), followed closely by Nonrheumatic Aortic Valve 

Disorders (1.98 [1.42, 2.76]; p=5.02E-05). The category for Systolic/diastolic Heart Failure also 

passed our Bonferroni correction threshold (1.65 [1.30, 2.11]; p=5.16E-05). Two more closely 

related phenotypes, Heart Valve Disorders and Heart Failure, also passed the FDR and Simple-M 
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corrections in our data (Table 3-B). All of these had substantial numbers of case individuals, well 

over the minimum 20 required by our analysis.  These phenotype associations with the A3B 

deletion were used for replication in the eMERGE dataset.  

As we saw a large number of cardiac related PheWAS codes appear as significant, we 

considered whether the same individuals might be driving the association of many different 

codes. Correlation tests amongst all Phecodes that reached the level of p=0.01 or better in 

analysis showed that while there is some overlap between all the cardiac codes, not all cardiac 

codes are correlated (Figure 3-C). Heart Failure NOS and Aortic Valve Disorders, our top two 

hits, while made up of different ICD-9 codes (Appendix J), have partially but not completely 

overlapping case populations. 158 out of the 299 individuals with Aortic Valve Disorders were 

also Heart Failure NOS cases (Figure 3-D). This amounted to 16.8% of Heart Failure NOS 

patients.  
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Figure 3-B.PheWAS manhattan plot. Groups of PheWAS categories are displayed on the x-axis. 

Red line indicates level of Bonferroni correction (5.45 e-5) and black line indicates line of 

suggestive significance (0.001). All dots above the green line are those that are significant 

according to the FDR and Simple-M phenotypes corrections implemented in PheWAS. 
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Figure 3-C. Pairwise correlations amongst PheWAS codes that had a p-value of less than 0.01 in 

our A3B deletion analysis. Cells marked “?” have no individuals with complete pairwise records.   

 

 
Figure 3-D.Venn diagram of overlap of individuals who are cases for Heart Failure NOS and 

Nonrheumatic Aortic Valve Disorders Phecodes. 
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To attempt to confirm our analysis, we performed a meta-analysis within BioVU. We 

performed PheWAS in the Omni5-Quad (1,599 individuals) and 660W populations (3,532 

individuals) before performing a fixed-effect meta-analysis. The A3B deletion had an imputation 

score of 0.72 on the 660W and 0.9 on the Omni5-Quad. None of our top hits from the Omni-

Quad were significant in the other two datasets (Figure 3-E), though the meta-analysis result was 

trending towards significance. The case distribution was quite different between the three sets, 

with far greater case number and case/control ratio for Heart Failure NOS on the Omni-Quad 

than on the other two platforms. The same was true for Nonrheumatic Aortic Valve Disorders. 

The meta-analysis resembled the Omni-Quad results far more than the other platforms, possibly 

due to the uneven case distribution.  

In the eMERGE dataset, we only evaluated those categories that were significant in our 

preliminary analysis. The eMerge dataset consisted of 14,104 European American individuals 

from four different medical centers. The three heart failure codes (Heart Failure NOS, 

Systolic/diastolic Heart Failure, and Heart Failure) that were significant in our Omni-Quad 

discovery analysis were not significant within the eMERGE set. We only evaluated specific 

Phecodes seen in our discovery analysis in the eMerge set; we did not test other codes outside 

those targeted for replication. Both Nonrheumatic Aortic Valve Disorders (1.29 [1.00, 1.66], 

p=0.046), and Heart Valve Disorders (1.26 [1.05, 1.51], p=0.01), were significant at the p=0.05 

level in our replication (Table 3-C). We attempted to replicate five codes, only Heart Valve 

Disorders was significant at the level of the Bonferroni correction.  

In our data, the presence of the A3B deletion was not associated with a lower minimum 

ejection fraction in all individuals, but once individuals with the Nonrheumatic Aortic Valve
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Figure 3-E. Forest plot of PheWAS results for Heart Failure NOS and Nonrheumatic Aortic Valve disorders codes in all BioVU sets 

and in a fixed effects meta-analysis. 
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Table 3-B.Results from the PheWAS that pass the FDR and simple-M correction thresholds. 

PheWAS Code PheWAS Code Description OR (95% CI) p-value N cases N controls 

428.2 
Heart Failure NOS 

2.03 (1.46, 2.82) 2.63E-05 260 2389 

395.2 
Nonrheumatic Aortic Valve Disorders 

1.98 (1.42, 2.76) 5.02E-05 244 2887 

428.1 
Systolic/diastolic heart Failure 

1.65 (1.30, 2.11) 5.16E-05 772 2389 

395 
Heart Valve Disorders 

1.61 (1.26, 2.05) 0.00016 586 2887 

428 
Heart Failure 

1.56 (1.24, 1.98) 0.00019 865 2389 

 

Table 3-C. Replication of hits from preliminary PheWAS in the eMERGE dataset. 

 

PheWAS Code PheWAS Code Description OR (95% CI) p-value N cases N controls 

428.2 Heart Failure NOS 1.04 (0.68, 1.66) 0.78 271 8776 

395.2 Nonrheumatic Aortic Valve Disorders 1.29 (1.00, 1.66) 0.046 898 10164 

428.1 Systolic/diastolic heart Failure 1.05 (0.85, 1.29) 0.66 1994 8776 

395 Heart Valve Disorders 1.26 (1.05, 1.51) 0.01 586 10164 

428 Heart Failure 1.08 (0.88, 1.32) 0.46 865 8776 
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Disorders Phecode were removed, the we saw that the deletion was associated with lower 

minimum ejection fraction  (B [95% CI] = -4.40 [-8.03, -0.77)]; p=0.02) (Table 3-D). Since the 

deletion was associated with valve disorders in our analysis, we were concerned that these 

individuals might have low ejection fraction levels and bias our analysis. As it is often not the 

exact measure, but whether individuals are below a certain threshold, that is clinically important, 

we also tested the impact of the variant on whether individuals had a low ejection fraction. In the 

whole population, the variant was not quite significant (OR [95% CI]=1.44 [0.98, 2.13], p=0.06), 

while in the group lacking the aortic valve malfunction, a copy of the deletion increased the odds 

of having a median ejection fraction considered low (2.26 [1.17, 4.36], p=0.02) (Table 3-E). 

 

 

Table 3-D. Association of the A3B deletion with minimum ejection fraction in all individuals 

and all individuals except those that were Nonrheumatic Aortic Valve Disorders cases in our 

PheWAS. 

 
All 

(n=1,051) 

All except Aortic Valve Malfunction 

(n=482) 

 Minimum Ejection Fraction Minimum Ejection Fraction 

A3BΔ Allele -1.71 (-4.12, 0.70) p=0.17 -4.40 (-8.03,-0.77) p=0.02 

Age at Minimum 0.05 (-0.01, 0.10) p=0.09 0.005 (-0.07, 0.08) p=0.89 

Sex==M -4.48 (-6.20, -2.76) p=4.1e-07 -4.53 (-6.90, -2.15) p=2.1e-04 

 

Table 3-E. The role of the A3B deletion in increasing the odds of having a median ejection 

fraction classified as low. 

 
All 

(n=1,051) 

All except Aortic Valve Malfunction 

(n=482) 

 Low Ejection Fraction Low Ejection fraction 

A3BΔ Allele 1.44 (0.98, 2.13) p=0.06 2.26 (1.17, 4.36) p=0.02 

Age at Minimum 0.99 (0.98, 1.00) p=0.22 1.00 (0.99, 1.02) p=0.71 

Sex==M 2.03 (1.49, 2.78) p=9.2e-06 2.77 (1.57, 4.90) p=4.6e-04 
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 As breast cancer has been previously associated with the A3B deletion
88,107

, we checked 

for an association in our population. The phenotype category Breast Cancer had 162 cases with a 

nonsignificant OR = 1.1 [0.72-1.83], p=0.56. Because the controls in our general analysis were 

both men and women, we performed a specific analysis using only females. In the female-only 

analysis the code for breast cancer was still not significant (OR = 1.2 [0.75-1.93], p=0.44), so we 

did not replicate the previously reported association
88,107

. Furthermore, no infectious disease 

phenotypes reached either significant or suggestive p-value levels, despite the known role of the 

A3 proteins in viral infection control
109,114,122

. The infectious diseases previously associated with 

the A3B deletion, HIV
117

 and HBV
115

, were tested in our PheWAS but had very few cases each 

(36 and 25 respectively).  

 

Discussion 

 

The association of the A3B deletion with phenotypes relating to heart function was 

unexpected. Previous associations have been to viral phenotypes and cancer risks and changes in 

the characteristics of enzymatic mutation in cancer
88,99,102,107,114,115

. One possible hypothesis for 

why the A3B deletion could be associated with heart phenotypes is that in heart tissue the 

deletion causes inflammation, which results in valve issues. However, endocarditis was not 

significantly associated with the A3B deletion in our discovery dataset (OR = 1.4 [0.74, 2.62], p 

= 0.30, 69 cases). If an inflammation related mechanism was at the base of this association, it is 

possible we would not see if despite testing for PheWAS codes including endocarditis because 

not all individuals who have effects from this process are severe enough to be diagnosed as such 

or the ICD.9 code for endocarditis is a poor marker for the actual phenotype. It is also possible 
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that a subset of individuals in this dataset have an infection to which the A3s would respond 

which is driving an association though it is not captured well by ICD.9 codes or we only capture 

it through secondary manifestations. Despite this, we were able to replicate the associations of 

valve phenotypes in an independent EMR dataset. 

As we saw so many cardiac phenotypes in our dataset, it is not clear if the true 

association is to a phenotype represented by the Phecodes we saw or to some other condition for 

which people may be billed with one or more of these ICD-9 codes prior to or during diagnosis. 

There are clearly two distinct populations of cardiac phenotype patients that are enriched for the 

A3B deletion in the Illumina Omni Quad set in BioVU, though only one of those populations 

replicated. These populations seem to be quite different than those on the other BioVU 

genotyping platforms and those in eMerge. As each GWAS platform in BioVU was put together 

based on the presence and absence of individuals with specific phenotypes, it is not surprising 

that the results may be different across platforms. For example, the 660W was assembled 

partially to reduce the presence of cardiac patients on the platform; a vital distinction for our 

analysis. As all controls for PheWAS are potentially case patients for other phenotypes, it is 

possible that this ascertainment procedure causes some difference in association between the 

platforms. In the eMerge set we had to account for the different sites which contributed data, 

especially since each site’s population is ascertained with different criteria.  

The major limitation of this study is that we were unable to replicate previously known 

associations. Our inability to replicate associations with HIV is perhaps not surprising as well 

phenotyped cohorts have discordant results on whether that association is real
123–125

. 

Susceptibility to HBV is another previously existing association of the A3B deletion that we 

were not able to replicate, but case numbers were low, and the availability of a vaccine was not 
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accounted for within the PheWAS controls.  For both of these diseases it is likely that PheWAS 

aggregations of ICD-9 codes alone provide inadequate information for ascertainment of true 

cases and controls.  More concerning is that despite the known association of the A3B deletion 

with multiple cancers, we did not see a signal for any cancers in our analysis. One possible 

reason for this is that the aggregation approach used in PheWAS may not be ideal for capturing 

cancers. While some cancers may be ascertained well if one instance of an ICD-9 code is 

present, others may require 3 or even four instances of ICD-9 codes before they are well 

captured. By requiring two ICD-9 codes for case status, we would be excluding many true cases 

in the former scenario, and falsely classifying individuals as cases in the latter. Both these 

options would cause us to lose power through poor phenotype ascertainment. Also, some of the 

cancers the A3B deletion has been associated with predominantly or only occur in a single sex. 

As our initial PheWAS was mixed sex, we would have decreased our power to see these cancers. 

Despite this, we had assumed we would be able to see a cancer signal before we began our 

analysis. 

Another potential limitation of the study is the genotype itself. The A3B deletion was 

imputed, and while we understand that deletions with reasonable imputation scores should be 

robust (unpublished communication with Evan Eichler), it does leave a certain amount of 

uncertainty in our data. Furthermore, deletions genotypes were assigned absolutely instead of 

using the probability of being a certain genotype for analysis. This means that we have far more 

individuals with missing genotypes than theoretically possible. It also means that more 

individuals are missing the genotype than are missing the SNPs used to impute it, resulting in a 

lower minor allele frequency than many reference populations and other studies report. While the 

imputed genotype does add a degree of uncertainty, there is only one SNP in A3B in strong LD 
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with the deletion, and it is not commonly placed on GWAS platforms. Using the imputed 

deletion allowed us to test a genetic variant that would not have otherwise been possible. This 

assignment of genotypes also creates an issue when analyzing multiple genotyping platforms 

together. Different platforms impute the A3B deletion with different imputation scores, and this 

affects the number of people confidently assigned a genotype. In BioVU, proportionally far more 

individuals on the 660W were missing genotypes than for the Omni5-Quad, because the SNP 

imputed with much greater confidence on the Omni5-Quad.  

Despite these limitations, we were able to find and replicate a novel association of the 

A3B deletion with Aortic Valve phenotypes and provide substantial evidence that the A3B 

deletion is important in a number of cardiac related conditions. Future studies in carefully 

phenotyped cohorts will be important for identifying the condition underlying these PheWAS 

associations.    
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IV.  CHARACTERIZATION OF COMMON DELETIONS ACROSS THE GENOME BY 

THEIR PHENOTYPIC IMPACT 

 

Introduction 

 

 

While SNPs are the most frequently analyzed genetic variants in the genome, they are far 

from the only variation present in the human genome. Deletions large enough to be classified as 

structural variants (SVs) or copy number variants (CNV) are present throughout the genome. 

These CNVs may be individually rare, but many occur in the population
126

. Deletions have long 

been associated with rare diseases
127,128

, and more recently have been investigated for their 

impact in common disease
129

.  

While structural variants have traditionally been difficult to detect, the 1000 Genomes 

database provides a detailed view of both single nucleotide and large polymorphisms in humans 

The phase 1 version 3 research identified more than 14000 large deletions
130

. 1000 Genomes 

defines a SV as an insertion or deletion of 50 basepairs (bp) or larger. Despite a growing ability 

to examine the importance of these deletions in previously obtained data, their impact in disease 

is still not clear. Previous publications on genome-wide CNVs have concluded that common 

CNVs will not account for much of the unexplained heritability in diseases
131

, and some have 

even tested all common CNVs in the genome with a limited group of phenotypes, and have 

found few or no associations
129

. Despite this, smaller studies have found that deletions may play 

an important role in some diseases including schizophrenia
132

, autism spectrum disorders
133

, 

autoimmune diseases, HIV
134

, and risk for certain cancers
108

. CNVs have also been shown to be 

responsible for a portion of the differences in gene expression between individuals
135

.  
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Deletions provide us with a “natural knock out” experiment, allowing us the clearest 

picture of what happens in a human when a piece of DNA is removed. Understanding the impact 

of removing areas of genes, areas of non-coding DNA that are regulatory elements, or areas that 

don’t appear to be either, will enhance our understanding of how our genome contributes to 

disease. We can also examine the impact of the amount of the genome deleted, which will give 

us insight as to whether the size or position of the feature is generally more important. We 

hypothesized that different deletions would have different likelihoods of causing a 

phenotypic consequence depending on deletion characteristics like size and location. For 

example, a deletion overlapping all or part of an exonic region of a gene would be more 

likely to result in a phenotypic effect than those that that did not. We tested this hypothesis 

by performing PheWAS on imputable deletions in BioVU. 

 

Methods 

Deletion Calling 

Initial data processing involved quality control of both the genotype data, and phenotype 

processing. Genotyping performed on the Illumina Omni-Quad GWAS chip was available for 

5,198 self-identified white individuals in BioVU. SNP quality control and imputation is 

described in Chapter 3. While SVs have long been identified as potentially problematic for 

imputation
136,137

, newer reference panels including 1000 Genomes allow imputation with 

reasonable accuracy (unpublished communication with Evan Eichler). A total of 13,805 

deletions were imputed using 1000 Genomes Phase 1 version 3 as a reference panel. These 

deletions were put through a pipeline to prepare them for analysis (Figure 4-A).  
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Figure 4-A. Flowchart of deletion imputation, PheWAS code aggregation, and data merging. 
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Deletion Mapping and Categorization 

First we mapped each imputed deletion to the list of structural variants available through 

the database of genomic variants (DGV) 
138

 using tabix. For this project we used the “esv” 

annotation, which denotes structural variants that were submitted by the European 

Bioinformatics Institute (EBI). Any deletion that did not map to an esv or mapped to more than 

one esv was removed. Next we removed any deletions that did not have a minor allele frequency 

(MAF) of at least 5% or an imputation score of > 0.7 in our population. This left us with 1,255 

deletions for analysis. LD was tested in these deletions and deletions with an r2 >=0.5 were 

identified. We were left with 1167 unique deletions.  

BED files for structural variants were assembled using start and endpoints as determined 

from dbVar
139

 dataset estd199, the structural variants submitted for 1,092 individuals sequenced 

by the 1000 Genomes Project 

(http://www.ncbi.nlm.nih.gov/dbvar/studies/estd199/#experdetailstab). The extent to which 

imputed deletions overlapped with genes (start and end positions) or individual exons was 

determined using BedTools
140

 specifically the intersectBed function. Bed files containing all 

RefSeq transcripts
141

 were downloaded from the UCSC Genome Browser (hg19, refflat table)
142

. 

In order to include each gene just once, we selected transcripts with the earliest transcriptional 

start point and the most distant transcriptional endpoint. In addition, BED files were created for 

the exon of each gene including all exons across multiple isoforms with one or more transcripts 

but with each exon represented only once. The dataset includes over 14 thousand larger deletions 

and captures 98% of variants at 1% frequency enabling the imputation of both common and low 

frequency structural variants. While the majority of variants had clearly defined start and 

endpoints, for several the exact base pair at which the structural variant begins could not be 

https://email.vanderbilt.edu/owa/redir.aspx?C=JvNVDIDS306nb9BbKGEjLaSWO2W4I9EIxRojGKw3dgCuKTfEXfyY93f_jUAz7ptTkFgCPYuOL9M.&URL=http%3a%2f%2fwww.ncbi.nlm.nih.gov%2fdbvar%2fstudies%2festd199%2f%23experdetailstab


 72 

determined with absolute certainty. In these cases, we used the widest region defined by the 

confidence interval, termed “outer-start” and “outer end” in this dataset. 

 

Population Demographics and Phenotypic Data 

Demographic data and ICD-9 code records were obtained. ICD-9 codes were aggregated 

into PheWAS codes as described previously and displayed in Figure 4-A. Sex was obtained from 

third party reporting, and age at last ICD-9 code entry was calculated from date of birth and the 

ICD-9 code record. Data was stratified to only include individuals of European descent with an 

age at last record over 18.  

 

Statistical Analysis 

 PheWAS were performed as logistic regression adjusting for age at last record, sex, and 

the first three principal components using the PheWAS package in R. Statistics for the deletion 

predictor from PheWAS outputs were compared using Kolmogorov–Smirnov (ks) tests and 

Wilcoxon rank sum tests. Statistical analyses were performed with R
51

.  

 

Results 

 

We imputed 1310 deletions. These deletions had info scores between 0.7 and 1, with 1 

being the most common (Figure 4-B-a). 283 deletions had a minor allele frequency between 5% 

and 10%, and the number of deletions in each 5% bin decreased until 40% (Figure 4-B-b).   The 

majority of these deletions did not overlap a gene, and only 9 overlapped more than 2 genes 

(Figure 4-B-c).
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Figure 4-B. Characteristics of imputed deletions. Distribution of a) imputation info scores, b) minor allele frequencies, and c) number 

of genes overlapped.



 74 

Our population consisted of 5198 individuals of European descent previously described 

in Chapter 3(Table 3-A). These individuals had a median age at last code of 61 years old. While 

most of these individuals were PheWAS cases for between 20 and 30 PheWAS codes, some 

were PheWAS cases for over 200 codes (Figure 4-C-a). Individuals had an average of just under 

60 deletions, and around 25 deletions that overlapped genes (Figure 4-C-b).  

 

Figure 4-C. Distribution of a) PheWAS codes and b) deletions in individuals in the set. 
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We then compared deletions that overlapped genes with those that did not. While QQ 

plots show that p-values in deletions overlapping a gene did not substantially deviate from what 

was expected (Figure 4-D-a), and overall did not result in impressive p-values (Appendix K). By 

comparison, those that were not annotated as overlapping a gene visually appeared to have more 

significant p-values than what was expected (Figure 4-D-b). A ks test could not statistically 

determine that these two groups of p-values were drawn from different distributions (p=0.076) 

despite being visually distinct on QQ plots. QQ plots provide a mediocre comparison as we 

notice the inflation of a few specific points many of which are from a single deletion (Appendix 

L), while the lower left corner of the plot has far for data points in it. As deletions were assigned 

as overlapping a gene based on coordinates alone, we wanted to see if overlapping an exon made 

a difference in the best p-value resulting from testing each deletion with PheWAS. There was no 

significant difference (p=0.26) in the distribution of the best p-value of deletions overlapping an 

exon (Figure 4-D-c) and those annotated as overlapping a gene but not an exon (Figure 4-D-d). 

We also wanted to explore if the length of the deletion was correlated with the most significant 

p-value in PheWAS, but there was no correlation (p= 0.69). 
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Figure 4-D. QQ Plots of deletions with different characteristics; a) deletions overlapping a gene, 

b)deletions not overlapping a gene, c) deletions overlapping a gene and an exon, d) deletions 

overlapping a gene but not an exon. 

 

 

 

 

 

 

 

 



 77 

Discussion 

 

Overall, we found that we could not successfully characterize deletions using PheWAS. 

The statistical significance of PheWAS hits did not seem to be different by whether a deletion 

overlapped a gene, exon or neither a gene nor an exon. If anything, deletions not annotated as 

overlapping a gene were the most significant in our analysis. Given that the majority of 

significant GWAS SNPs are in intergenic regions, this is not necessarily surprising. It is perhaps 

more surprising that deletions removing more of the genome are not more likely to give a 

phenotypic association with a lower p-value. One would assume that these deletions would be 

more likely to overlap something functional, whether coding or not. These analyses may have 

been limited by the correlation present in the phenotypic data of the PheWAS, and are certainly 

limited by the deletions we could reliably impute. 

The length of deletions and its potential overlap has been determined by the outermost 

endpoints of the deletion and the gene. For many of the deletions there was one consensus start 

position and one consensus end position, but a small subset of the deletions had an “inner” and 

an “outer” start and end position listed. For these deletions with uncertain length we used the 

“outer” positions for both the start and the end. This may have artificially inflated the length of 

some of the deletions. It is unclear whether this had an impact on the PheWAS associations. For 

some deletions, the “outer” endpoint may have overlapped a gene where the “inner” endpoint 

would not have. To further complicate this, there may be other listed coordinates than the “outer” 

and “inner” that fall between the two, all of which may actually exist in individuals.  

When we annotated a deletion as overlapping a gene, we did not mean that it had to touch 

the exonic region. As many as a single base pair of the deletion coordinates could overlap with 

the gene coordinates, and we would have counted it as overlapping. This is problematic, as a 
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deletion that overlaps five base pairs of a region annotated as a gene would be expected to have a 

different impact than a deletion that removes the entirety of a gene including all its exons. The 

exon overlap criteria helped with this, but some deletions were located in introns and could 

change the splicing of a gene making our reference coordinates inappropriate for the gene as it 

occurs. All these issues with overlap may have caused us to incorrectly classify deletions, 

reducing our ability to see an association.  

RefSeq includes as “genes” many long non-coding RNAs and other transcripts with 

unknown function. One solution would be to limit our analysis to only protein coding genes. We 

could do this by using a second database such as Ensemb, to annotate protein-coding genes, and 

only use entries that are shared between the two databases. This may still leave us with some 

transcripts and RNAs, but at least we will know all "genes" are in standard locations.  A third 

option is to manually curate the genes we use. Some of the entries are named as anti-sense 

transcripts or lnc RNAs. These should not have any entries in the RefSeq exon list, and we 

should be able to remove them. We could then re-annotate our deletions to ensure we are only 

including deletions that overlap protein coding genes.  

Another potential issue is that we are using imputed deletions. While deletion imputation 

should be statistically the same as imputing SNPs, imputation of deletions is not widely 

published. A separate project in which we are participating is beginning to compare imputed and 

directly genotyped deletions to determine concordance. Additionally, calling the deletions from 

intensity data in the genotyping platforms may be a more appropriate way to capture them. Even 

deletions called from intensity data will be subject to a major limitation that is important for our 

study, we are limited by the SNPs on the genotyping platform. In this case, the distribution of 

SNPs will affect the deletions we capture as is the tagging nature of the GWAS platform. It is 
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quite possible that if we have ascertained all deletions throughout the human genome, our results 

would like quite different.  

In conclusion, PheWAS does not seem an ideal way to classify imputed deletions in this 

study. This is not due to the nature of a deletion compared to other genetic variants; rather the 

difficulty arose from our use of PheWAS as a blanket classification scheme without considering 

how noise in both the genotypic and phenotypic data might complicate our efforts. Correlations 

in the PheWAS phenotypes complicated our ability to analyze results, as did the uneven 

distribution of our deletions across the genome and the different imputation quality present in 

different deletions. Perhaps given a completely random selection of deletions from all across the 

genome all called with the same error we would have been more successful.  Despite the 

difficulties in this project, it is clear that analyzing a deletion instead of a SNP offers a far clearer 

biological hypothesis in the event of an association.  
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V.  MITOCHONDRIAL HAPLOGROUP BACKGROUNDS MODIFY THE PHENOTYPIC 

IMPACT OF SNPS IN GENES RELEVANT TO MITOCHONDRIAL FUNCTION 

 

Introduction 

 

Mitochondria are double membrane bound organelles derived from an -proteobacterial 

ancestor
143

. Mitochondria are dynamic, and one mitochondrion can split into two or multiple 

may merge into one, forming networks throughout the cell
144

.  The outer membrane holds 

proteins necessary for intracellular signaling. The mitochondrial signaling pathways are involved 

in functions as diverse as regulation of metabolism and apoptosis. The inner mitochondrial 

membrane has folds called cristae that increase the surface area on which it can house the 

proteins in the electron transport chain. The electron transport chain facilitates oxidative 

phosphorylation to produce ATP in the cell
145

. Mitochondria have their own genome, but are still 

dependent on more than 1,000 genes encoded in the nucleus for proper function. Nuclear genes 

encode for proteins including Pol, the mitochondrial polymerase, MAVS, the mitochondrial 

anti-viral signaling protein, and BCL2 which is important for apoptosis. In addition to many 

genes involved in mitochondrial signaling and immune response, nuclear encoded genes 

important for cytoskeletal formation and solute transport are essential for mitochondrial health. 

Polypeptides designated for the mitochondrial matrix have an N-terminal localization signal that 

directs them to pass through both membranes and into the mitochondria
146

. 

The mitochondria and its genome are maternally inherited
147

. The mitochondrial genome 

is comprised of a single circular chromosome. The majority of the mitochondrial DNA (mtDNA) 

is double stranded, except for a 1124 bp portion called the D-loop which is triple stranded and 

contains promoter and replication elements
148

. mtDNA encodes 37 genes; 13 proteins important 



 81 

for oxidative phosphorylation, 22 tRNAs, and 2 rRNAs. Multiple copies of the genome can be 

found in each mitochondria, so a cell can contain many copies of the mitochondrial genome
144

. 

As mitochondria are haploid, mutations can accumulate at a much faster rate than they do in the 

nuclear genome
149

. Both mutations and population level variation are present in the 

mitochondrial genome (Figure 5-A). 

 

 

Figure 5-A. Map of the mitochondrial genome with genes and pathogenic mutations annotated. 

Figure was created by www.mitomap.org and is used under the creative commons license. 
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Population level variation in the mitochondrial genome can be phylogenetically grouped 

into haplogroups
150

 (Figure 5-B). Mitochondrial haplogroups can be determined using SNPs 

commonly available on genotyping platforms. Different mt haplogroups function 

differently
151,152

. Haplogroups have been associated with numerous human diseases: haplogroup 

J  has been associated with both susceptibility
153

 to and protection
154,155

 from Parkinson’s 

Disease as well as susceptibility to Multiple Sclerosis
156,157

, and haplogroup H has been 

associated with age related maculopathy
158

.  

 

 

 

Figure 5-B. Mitochondrial Haplogroup tree showing relationship between mitochondrial 

haplogroups. European ancestry haplogroups include I, W, X, J, T, H, and Uk (from U and K 

combined). 
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Genetic variation in both the nucleus and mitochondria are responsible for mitochondrial health, 

but little is known about the relationship of the genetics in the two genomes and their collective 

impact on human disease. As mitochondrial diseases have a variety of phenotypes, we decided 

that a PheWAS would give us the opportunity to detect any possible outcome of nuclear and 

mitochondrial genetic variation. We hypothesized that the phenotypic effect of nuclear SNPs 

relevant to mitochondrial function will be influenced by mitochondrial genetic variation.  

 

Methods 

 

Genotypes and Haplogroup Determination 

Nuclear and mtSNPs were obtained for individuals genotyped on the Human Exome 

Bead chip in BioVU. Heterozygous mtSNPs (due to either genotyping errors or potentially 

heteroplasmy) were set to missing for this analysis. Remaining mtDNA genotypes were 

classified into standard haplogroups using Haplogrep
159,160

.  Fine level haplogroups were then 

assembled into analysis groups using racial information, since mitochondrial haplogroups are 

closely tied to continental ancestry. Individuals not of European descent by provider assigned 

race were removed from analysis.  

Nuclear SNP genotypes underwent quality control. Briefly, SNPs with less than 95% 

genotyping efficiency were removed as were individuals with more than 5% missingness in the 

exome data. All nuclear SNPs with a minor allele frequency (MAF) over 10% present in genes 

on the MitoCarta2 Gene list
161

, a list of genes involved in mitochondrial function, were 

extracted. The high MAF threshold was used since we would be further subdividing the analysis 

by mitochondrial haplogroups with population frequencies of ~10-50%. SNPs were additively 

encoded. 
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Figure 5-C. Flowchart of nuclear and mt SNP filtering and PheWAS performed on SNPs, haplogroups, and for SNP Haplogoup 

modification tests. 
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SNP-Haplogroup Regression Models 

As limited studies have explored the relationship between nuclear and mitochondrial 

SNPs it is not clear exactly how to model the interaction or co-occurrence of the two. We 

decided to model the nuclear-mitochondrial SNP interaction in three ways (Figure 5-C). Model 

1is based on the model traditionally used for SNP-SNP interactions. We will refer to this model 

as the “Main effects model” as it accounts for the main effects of the SNP and haplogroup in 

addition to the SNP-haplogroup effect, which is what we report here in our statistics. Model 2 

models the nuclear-mito relationship without the individual effects of either the SNP or the 

haplogroup. We will call this the “mitochondrial haplogroup mediated SNP effect” model or 

“mtDNA mediated effect” model for short as we are testing individuals with both the SNP and 

haplogroup against those without either the SNP or the haplogroup. Model 3 stratifies by 

haplogroup and determines the effect of the SNP within each haplogroup. We will refer to this 

model as the “stratified model”. All three models were run for all SNP-haplogroup combinations. 

To complement our models and allow us to look at all facets of the data, SNPs and haplogroups 

were each tested alone as well. Regression models were compared visually with QQplots and 

forest plots.  

 

PheWAS 

ICD-9 codes were obtained for all individuals. Duplicate entries, entries with corrupted 

dates, and non-numeric entries were removed. ICD-9 codes were aggregated to PheWAS codes. 

Demographics including sex, date of birth, and third-party assigned race, were obtained for all 

individuals in our set. Age at last ICD-9 code was calculated using the combined date of birth 

and ICD-9 information. Individuals with an age-at-last-ICD-9 code less than 18 or greater than 
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90 were removed. PheWAS was performed using each of the regression models and each variant 

from genes in the MitoCarta2 list, testing all phenotypes with more than 50 cases.  

 

Result Filtering and Prioritization 

PheWAS results were filtered in three major ways. First, we prioritized evaluation of two 

haplogroups, haplogroup H and  haplogroup J. Haplogroup H is the most frequent of the 

European haplogroups (45% of the European descent population) and therefore would likely 

provide the best statistical power. Haplogroup J has the most existing disease associations, which 

provides us a base for which associations are biologically reasonable. The second filter, was 

statistical, and based on p-value, effect size, and the number of cases with the SNP-haplogroup 

combination. We predominantly viewed the results for each haplogroup separately, though we 

did compare the levels of significance of the top hits in different groups. Our last filter was an a 

priori prioritization of the disease categories in PheWAS. We thought that Phecodes in the 

Sensorineural, Neurological, and Musculoskeletal categories were most likely to be true 

associations if the Phecode reached the level of significance. While other disease categories were 

plausible, these would take priority if all else was the same.  

 

Results 

 

The population used to study the relationship between nuclear and mitochondrial genetics 

consisted of 20,064 adults of European descent. Haplogroups H, J, T, Uk, and haplogroup clade 

IWX were common enough to be evaluated; all other individuals were grouped into the category 

of Other. The haplogroup frequencies in our population were consistent with expected 

frequencies (Table 5-A). The median age at last code in our record was 65, and this metric was  



 87 

 

Table 5-A. Demographic information for individuals of European descent used for our nuclear encoded mitochondria relevant SNP 

haplogroup analysis. 

 All H IWX J 
T 

 
Uk Other 

N (%) 20064 9419 (46.9) 1290 (6.4) 2100 (10.5) 2241 (11.2) 4548 (22.7) 466 (2.3) 

N males (%) 9325 (45.5) 4325 (45.9) 586 (45.4) 981 (46.7) 1068 (47.7) 2157 (47.4) 208 (44.6) 

Median age first ICD.9 

code (IQR) 

56 
(43, 67) 

56 
(43, 67) 

56 
(42, 67) 

56 
(44, 67) 

55 
(42, 67) 

56                
(43, 67) 

54 (40, 67) 

Median age at last code 

ICD.9 (IQR) 

65 
(53, 77) 

65 
(53, 77) 

65 
(54, 77) 

65 
(54, 77) 

65 
(53, 77) 

65 
(53, 77) 

63 (51, 76) 

Median number of 

PheWAS codes (IQR) 

24 
(11, 43) 

24 
(11, 42) 

24 
(11, 45) 

24 
(12, 44) 

23 
(11, 43) 

23 
(11, 43) 

23        

(11,41)      

Median number of ICD.9 

code entries (IQR) 

143 
(68, 280) 

143 
(68, 279) 

146 
(69, 283) 

147 
(69, 282) 

143 
(68, 273) 

141 
(66, 282) 

137          

(70, 265) 
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consistent in all haplogroup subsets. The median number of PheWAS codes that individuals were 

cases for and the number of ICD.9 code entries were also consistent between haplogroups.  

The PheWAS performed in mitochondrial haplogroup alone as a predictor (Figure 5-D-a) 

was much weaker than the signal we saw from SNPs in mitochondrial related genes (Figure 5-D-

b). The PheWAS on the SNPs alone allowed us to see some known signals, including the 

association of SNPs in ARMS2 with age-related macular degeneration (OR [95% CI] ==3.06 

[2.30, 4.07]; p=1.26E-14). The best signal in the haplogroup specific analysis was the Phecode 

for Intestinal Infection Due to C. difficile with haplogroup IWX (OR [95% CI] =2.00 [1.42, 

2.81]; p= 6.4E-05). This was not quite below the Bonferroni correction for Haplogroup IWX 

(p=4.35E-5), and well below the correction when considering all haplogroups.  

From our analysis of SNP- haplogroup co-occurence, one of the most consistent results 

was haplogroup J modifying the effect of rs3736032 in SLC25A37 on Other cerebral 

degenerations, which was the best signal seen in haplogroup J (Appendix M). This association 

was visible using all three of our models (Figure 5-E), though it was by far the strongest using 

the mtDNA mediated effect model (OR [95% CI]= 4.96[3.10, 7.92]., p=2.-3e-11 We saw a 

moderate effect of haplogroup J alone on the Phecode for Other Cerebral Degenerations (1.81 

[1.32, 2.47], p=2e-04), but no signal from the SNP alone (1.27 [0.95, 1.70], p=0.12). In the main 

effects model, Other Cerebral Degenerations was still the best signal we saw (4.38[2.25, 8.55]; 

p=1.48e-05). In our stratified model, the Other Cerebral Degenerations signal was significant in 

haplogroup J (4.00[2.28, 7.01], p=1.28e-06), but not in the not-J group or individually in any of 

the other haplogroups (Figure 5-F). None of the other haplogroups had any significant signal at 

all. Other Phecodes with signals beyond suggestive significance thresholds for J and rs3736032 

were also related to central nervous system complications. 
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Figure 5-D.  QQ plots of p-values from a) PheWAS using mitochondrial haplogroups as predictors and b) SNPs in mitochondria 

relevant genes as predictors. All individuals, males, and females are shown. 
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Figure 5-E.  PheWAS Manhattan plots for the association of rs3736032 on Other Cerebral Degenerations modified by haplogroup J in  

a) the main effects model, b) the mtDNA mediated effect model, and the stratified model c) in haplogroup J individuals and d) in not J 

individuals.
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Figure 5-F. Forest plot of one of the most consistent results, haplogroup J modifying the effect of 

rs3736032 and haplogroup J on Other cerebral degenerations. Effects of SNP, haplogroup, and 

all three models are shown. The association of rs3736032 with Other cerebral degenerations is 

also shown in each non-J haplogroup for completeness. 
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A more unexpected association with a different pattern of expression was the association 

of rs17850652 with Tobacco Use Disorder modified by haplogroup H. This was not the most 

significant hit in SNPs tested for modification with group H (Appendix N), but was an 

interesting phenotype and was fairly consistent across models. While the mtDNA mediated 

effect model was still the most significant of the models tested (1.53[1.29, 1.83], p=1.12e-06) 

(Figure 5-G), the stratified analysis (1.54[1.29, 1.86], p=3.21e-06) looked more like the mtDNA 

mediated effect model, rather than the main effects model (1.68 [1.28, 2.21], p=1.7e-04). In this 

case, the SNP has a small effect alone (1.19 [1.04, 1.36], p=0.01), while the haplogroup alone is 

not significant (1.07 [0.96, 1.19], p=0.22). Despite the difference in p-values, all three models 

provided similar odds ratio estimates (Figure 5-H). No other Phecodes were significant in the 

analysis of this SNP-haplogroup combination.   

As the examples we specifically investigated showed similar odds ratios despite different 

p-values, we wanted to know if this extended to all results. For all SNP-haplogroup-phenotype 

combinations present in both models with a p-value for the interaction term less than 0.01, we 

plotted the betas from the main effects model against those from the mtDNA mediated effect 

model. We found that the betas from the main effects models and the mtDNA mediated effect 

model were highly correlated (p<2e-16) (Figure 5-I). While the p-values from the mtDNA 

mediated effect model tended to be stronger, the betas from the main effects model are slightly 

stronger. The same trend also holds true even when no p-value threshold is placed on the SNP-

haplogroup interaction term.   
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Figure 5-G. PheWAS Manhattans for the association of rs17850652 on Tobacco Use Disorder modified by haplogroup H in  a) the 

main effects model, b) the mtDNA mediated effect model, and the stratified model c) in haplogroup H individuals and d) in not H 

individuals. 
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Figure 5-H. Forest plot of haplogroup H modifying the effect of rs17850652 on Tobacco Use 

Disorders. Effects of SNP, haplogroup, and all three models are shown. The association of 

rs17850652 on Tobacco Use Disorders in other European haplogroups is also shown. 
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Figure 5-I. Correlation of betas from Main Effects model and mtDNA Mediated Effect model. 
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Discussion 

 

We were able to see mitochondrial haplogroup background influence the effect of SNPs 

resulting in phenotypes relevant to mitochondrial function. The modification of association we 

are most confident about is the influence of rs3736032 on Other Cerebral Degenerations in 

haplogroup J. Haplogroup J has previously been associated with Parkinson’s Disease and 

Multiple Sclerosis
154,156

, so the cerebral degeneration related phenotype is reasonable. rs3736032 

causes a Arg96Gln amino acid change in SLC25A37, which encodes an iron transporter on the 

inner mitochondrial membrane. This change is predicted to be tolerated by both SIFT and 

PolyPhen, though some transcripts are predicted to undergo nonsense mediated decay when this 

variant is present. Rs3736032 occurs with a MAF of 15%, so it is relatively common. Variants in 

SLC25A37 have been linked to iron imbalances
162,163

. Iron dysregulation occurs in Parkinson’s 

disease
164

 and has been related to other brain diseases
165

. Outside of neurodegenerative diseases,  

this SNP has been evaluated for gene environment interactions between iron intake and type 2 

diabetes
166

, but was not found to be significant.  

Since haplogroup J has been previously associated with similar phenotypes, it is not clear 

if the effects reported in the literature are due independently to haplogroup J, are caused by 

group J individuals with this SNP, or some combination of the two. It is likely that both J and the 

SNP together exaggerate the effect, but J alone causes enough of an effect to see in targeted 

association studies. In our PheWAS (Appendix M), haplogroup J appeared to modify the effect 

of a number of different SNPs on this phenotype, but all three SNPs that were near the top of our 

results were in different genes on different chromosomes and appear to have different functions. 

Further exploration will be necessary to untangle this relationship.  
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While the association of rs17850652 and Tobacco Use Disorder modified by haplogroup 

H, was unexpected, it is not completely unreasonable. rs17850652 is a global 10% MAF variant 

that causes a Lys291Arg change in RARS2. RARS2 is the Mitochondrial Arginyl-TRNA 

Synthetase 2. This change is thought to be benign. As RARS2 is involved in translation of 

mitochondrial encoded proteins, any number of defects could result from a small change in 

protein functionality, but most likely oxidative phosphorylation would be altered slightly.  

Mutations in RARS2 have been associated with Pontocerebellar hypoplasia, a rare 

neurodegenerative disorder
167

. We cannot provide a specific mechanism for how haplogroup 

might affect Tobacco Use Disorder, though there is a  small literature on smoking and 

mitochondria. We initially thought that this phenotype might be indicative of an underling 

predisposition to addiction, but no other signals for addiction are present in our PheWAS. 

Despite this, manual review of the records of patients with this PheWAS code indicate that they 

are smokers, consistent with reports about the reliability of smoking status in ICD-9 codes
168

.  

 We used three different models to test whether mitochondrial haplogroups modify the 

effects of SNPs involved in mitochondrial function. As there are no known positive associations 

for mitochondrial modification of SNP effects, we could not evaluate our models against a 

known standard, so we instead compared them to each other. The similarity of effect in the three 

models is highly dependent on the specific SNP, haplogroup, and phenotype tested. Much of the 

time, the three models gave similar effect sizes for the SNP or SNP-haplogroup co-occurence, 

but not always. One of the things that seemed to effect this was how each of the haplogroups 

contributed to the signal. When testing a SNP, we limit our analysis to biallelic SNPs. For 

haplogroups, individuals not of the haplogroup being tested can be from any of the 4 other 

common European haplogroups or can be grouped into the “other” category. So not-H 
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individuals are not all the same, but belong to one of the other haplogroups. We envisioned two 

scenarios; one in which one haplogroup showed an effect and the others all showed no effect or 

the same opposite effect, and one where two haplogroup show effects in opposite directions and 

the rest have no effect. More specific examples will have to be extracted and interrogated to 

understand the variety of effects we will and will not be able to see with each of these models. 

While we tested traditional interaction models, we were worried that the models accounting for 

the main effects of both the SNP, haplogroup, and the SNP and haplogroup co-occurring together 

might sometimes cancel out the effect in the scenario where different haplogroups have different 

effects. 

The main effects model accounts for the disease prevalence in individuals with the SNP- 

haplogroup combination, just the SNP, or just the haplogroup simultaneously. The mt mediated 

effect model compares disease prevalence in individuals with the SNP and haplogroup to those 

without the SNP-haplogroup combination. This is more similar to the mt haplogroup analysis 

methods comparing the haplogroup to the not-haplogroup population. Testing the co-occurrence 

of the SNP-haplogroup without the main effects of either might allow us to best evaluate 

scenarios where the SNP and haplogroup have no effect except together. We can still detect a 

signal when they each do have an effect, but then we are not properly accounting for it, and may 

inadvertently inflate the association of the combined occurrence. Our third model, stratifying by 

haplogroup and testing the SNP of interest in that group causes us to lose power, but provides the 

most intuitive and easily interpretable model.   

 An interesting side point from this analysis was the general lack of signal from 

haplogroups. Nothing we saw using any of the major European haplogroups as a predictors 

passed the Bonferroni correction for a single PheWAS. This was not completely unexpected as 
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mitochondrial haplogroups tend to have far more moderate significant effects than many SNPs, 

but we had assumed that as we were testing a wide variety of phenotypes, mitochondrial 

haplogroups would be significantly associated with at least one.   

A major issue we encountered in this study was sample size. While haplogroup H seemed 

large enough to allow us sufficient power to see at least some associations, for lower frequency 

haplogroups we had limited power. Perhaps the only reason we were able to detect any signal in 

haplogroup J was the strong effect. In retrospect, combining haplogroups J and T may have 

allowed us more power to see an association, and as they are in the same clade, would be 

biologically reasonable. A higher cut off for the number of cases necessary for PheWAS to be 

performed would also have been helpful. We used a minimum of 50 cases, but perhaps scaling 

this number based on the frequency of the SNP-haplogroup combination would have been better.  

Future directions include trying to replicate the results we have seen. We have begun 

looking within BioVU to validate the associations we have seen with more carefully phenotyped 

data. We would also like to replicate in an external dataset. A dataset used for GWAS, where a 

large number of individuals have been carefully phenotyped and have genetic data available 

would be ideal. We are currently evaluating the hits we think are biologically reasonable to find 

those that have Phecode associations that have existing GWAS proxies. As we were limited to 

Europeans by the nature of haplogroups, it would also be interesting to repeat this analysis in 

other population groups. 

 In vitro studies evaluating the impact of specific SNPs we think might be modified by 

mitochondrial haplogroup would be greatly helpful. Limited information is available for many of 

the genes and SNPs we have tested. In vitro studies to further explore the function of these genes 

and SNPs would help us evaluate our results for follow-up and also provide biological validation 
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for signals we think are real. Trying to decide if a SNP is reasonable is far more difficult when 

the gene has no annotated function. Additionally, for some of the genes on the MitoCarta2 list, it 

is not obvious how they might be relevant to mitochondrial function. The breadth of 

mitochondrial involvement in cell function provides us room to speculate in these cases, but our 

ability to draw biologically relevant connections to phenotypes is more complicated for these 

genes.  

In conclusion, PheWAS seems to be an interesting and adequate way to evaluate the 

potential of mitochondrial haplogroup to modify SNP effects. We saw what we think are 

biologically reasonable associations between the SNP, haplogroup, and phenotype. More 

stringent evaluation of the models will be necessary to determine which is best, though it may be 

that different models are ideal depending on the hypothesis. Further exploration of mechanisms 

to correct for multiple testing in this scenario would assist us in prioritizing the signals we saw 

and guide efforts for statistical or biological validation.  
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CONCLUSION 

 

My dissertation explores a variety of scenarios under which PheWAS is a reasonable 

technique to implement. The projects presented here begin with the most straight-forward 

scenario, directly genotyped single SNPs, and progress to imputed deletions before exploring 

ways to use PheWAS in multi-dimensional studies.  

One of the things that has struck me during my time using this technique is how different 

the follow-up to a PheWAS can be depending on the goal of the study, the existing knowledge of 

the variant, and the expectations of those involved in the work. The majority of my studies 

immediately follow-up a PheWAS by moving down one level of aggregation in the data and 

focusing on the ICD-9 level data. Sometimes a Phecode is made up of many ICD9 codes and this 

provides no clarity, but occasionally looking at the ICD9 code data allows one to shift focus to 

something more specific. Chapter 2 of the work presented here is a great example of the latter, 

where focusing on ICD9 level data directed the rest of the follow-up we performed. Laboratory 

test data and CPT code data are two other data sources I have used for follow-up. Of these, CPT 

code data is by far the easier. Laboratory test data can be some of the most useful data in 

reassuring oneself of a PheWAS association, but can also be extremely complicated to quality 

control. I have encountered tests where the interpretation of results is highly dependent on the 

age of the individual at the time of the test. Tests often have unexpected values, such as a few 

instances when someone enters <30, while the majority of the entries are integers, or text entries 

indicated contaminated specimens will be mixed in with numeric measures. These problems 

have sometimes forced me to adapt my analysis plan to unexpected patterns in the data. Despite 
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these other options, manual review is the best mechanism to be sure that the PheWAS 

association you see truly represents a disorder in the data.  

 I feel that I did not really begin to appreciate all the nuance of the PheWAS method until 

I began to do higher dimensional analyses with the data and to think about how to compare 

different PheWAS outcomes to each other. I have found it difficult to identify how much of the 

correlation between codes in outcome is solely correlation in the ICD-9 codes used for 

aggregation and how much is actual or potential biology of the predictor tested. Studies using 

only SNPs of similar allele frequencies might be helpful to determine how much of the 

variability in PheWAS result is only due to allele frequency and how much is due to other 

factors.  

One interesting connection between almost all the analyses performed was that age or sex 

or both were often stronger predictors than any of the PheWAS codes themselves. While we tried 

to limit the impact of this by stratifying data appropriately, we were not always successful, 

especially when age played an important role. An interesting illustration of how insignificant 

genetic predictors appear to be overall can be seen by performing a PheWAS using sex as the 

primary predictor (adjusting for median age over record). The best p-value signal we saw from a 

genetic predictor in any of our analyses was ~1e-14 from a SNP in ARMS2 with age-related 

macular degeneration. Sex as a predictor, by contrast, results in many p-values less than 10e-30 

(Figure 6-A). While some of this is surely due to power, it still clearly realigns our expectations 

about what we should see from genetic predictors.  
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Figure 6-A. PheWAS manhattan plot using sex as the primary predictor. European descent 

individuals with genotyping on the Exome chip were used. Adjusted for median age over record. 

 

 As we chose each of the types of genetic variation and many specific genetic variants for 

analysis, one interesting dilemma was presented to us that we may not have noticed if we had 

just analyzed everything. How does one proceed when a variant that is known to have disease 

associations does not result in any signal in PheWAS? In our case, as we were primarily 

analyzing variants one at a time, we were able to explore the silent phenotypes in our PheWAS, 

those that we expected but did not see. We often went back to refine the population to optimize 

our chances of seeing the association. In cases where we were analyzing many deletions or 

SNPs, we never did this. There may be interesting reasons that we see some but not all known 

associations represented in our PheWAS outcomes and without detailed exploration of both the 

genotypic and phenotypic specifics in the dataset we would miss them. This does leave us with 

the question of whether we should value any of the PheWAS if we cannot see what we might 
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expect to use as positive controls. The potential development of agnostic methods for prioritizing 

results from multiplexed PheWAS studies provides an interesting thought experiment, though I 

remain unconvinced that any simple method will sufficiently do so. In our analyses, using p-

values provided a preliminary, if occasionally insufficient, filter. Further filtering of the patterns 

of betas and the numbers of cases with the genetic predictor will most certainly be necessary to 

blindly evaluate many SNPs.  

 In conclusion, while I have found PheWAS to be a useful method for interrogating 

genotype-phenotype relationships, I think the merit of the approach lies in how it may direct you 

for future studies of the SNP, protein, or gene. While PheWAS can also be a useful tool for 

steering the learning about underlying biology of a genetic relationship, using it without any 

knowledge of the predictor makes it difficult to know how to interpret the results appropriately.  
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APPENDIX 

Appendix A. PheWAS result for top 25 hits in all individuals from ADRB2 Thr164Ile Analysis. 

PheWAS 

Code 
PheWAS Description SNP Beta OR SE p 

Total 

N 

Case 

N 

Control 

N 

Passes 

Bonferroni 

Passes 

FDR 

458.2 Iatrogenic hypotension Thr164Ile 1.606 4.983 0.379 2.25E-05 19180 56 19124 TRUE TRUE 

573.9 Abnormal serum enzyme levels Thr164Ile 0.914 2.495 0.229 6.50E-05 18862 336 18526 FALSE TRUE 

278.11 Morbid obesity Thr164Ile 0.597 1.817 0.162 2.23E-04 20356 905 19451 FALSE FALSE 

961 Poisoning by other anti-infectives Thr164Ile 1.432 4.186 0.402 3.72E-04 19235 56 19179 FALSE FALSE 

244.2 Acquired hypothyroidism Thr164Ile 1.094 2.987 0.317 5.45E-04 18240 136 18104 FALSE FALSE 

278.3 Localized adiposity Thr164Ile 1.336 3.804 0.402 8.85E-04 19512 61 19451 FALSE FALSE 

303 Psychogenic and somatoform disorders Thr164Ile 1.160 3.188 0.349 9.00E-04 15642 99 15543 FALSE FALSE 

276.42 Alkalosis Thr164Ile 0.992 2.697 0.315 1.64E-03 14885 154 14731 FALSE FALSE 

303.4 Somatoform disorder Thr164Ile 1.239 3.453 0.400 1.96E-03 15611 68 15543 FALSE FALSE 

41.9 Drug-resistant infection Thr164Ile 0.704 2.023 0.230 2.21E-03 20090 383 19707 FALSE FALSE 

530.14 Reflux esophagitis Thr164Ile 1.117 3.055 0.382 3.46E-03 14098 93 14005 FALSE FALSE 

550 Abdominal hernia Thr164Ile 0.386 1.471 0.132 3.47E-03 22302 1899 20403 FALSE FALSE 

260 Protein-calorie malnutrition Thr164Ile 0.400 1.491 0.137 3.57E-03 19088 1652 17436 FALSE FALSE 

297.1 Suicidal ideation Thr164Ile 1.261 3.529 0.436 3.80E-03 15598 55 15543 FALSE FALSE 

594.3 Calculus of ureter Thr164Ile 0.747 2.111 0.259 3.87E-03 22031 282 21749 FALSE FALSE 

369.5 Conjunctivitis, infectious Thr164Ile 0.852 2.344 0.317 7.15E-03 20450 166 20284 FALSE FALSE 

550.2 Diaphragmatic hernia Thr164Ile 0.514 1.672 0.193 7.60E-03 21141 738 20403 FALSE FALSE 

789 Nausea and vomiting Thr164Ile 0.259 1.296 0.101 1.04E-02 21444 4090 17354 FALSE FALSE 

337 
Disorders of the autonomic nervous 

system 
Thr164Ile 0.852 2.345 0.334 1.06E-02 18266 154 18112 FALSE FALSE 

369 Infection of the eye Thr164Ile 0.682 1.977 0.269 1.12E-02 20560 276 20284 FALSE FALSE 

512.2 Painful respiration Thr164Ile 0.634 1.886 0.252 1.18E-02 17302 342 16960 FALSE FALSE 

594 Urinary calculus Thr164Ile 0.433 1.543 0.173 1.22E-02 22657 908 21749 FALSE FALSE 

506 Empyema and pneumothorax Thr164Ile 0.441 1.555 0.178 1.30E-02 16199 866 15333 FALSE FALSE 

377.1 Optic atrophy Thr164Ile 1.119 3.060 0.453 1.35E-02 20619 67 20552 FALSE FALSE 
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Appendix B. PheWAS result for top 25 hits in females only from ADRB2 Thr164Ile Analysis. 

PheWAS 

Code PheWAS Description SNP Beta OR SE p 

Total 

N Case N 

Control 

N 

Passes 

Bonferroni 

Passes 

FDR 

458.2 Iatrogenic hypotension The164Ile 2.015 7.503 0.426 2.26E-06 10636 32 10604 TRUE TRUE 

244.2 Acquired hypothyroidism The164Ile 1.535 4.640 0.347 9.57E-06 8959 81 8878 TRUE TRUE 

573.9 Abnormal serum enzyme levels The164Ile 1.143 3.135 0.286 6.57E-05 10325 167 10158 FALSE TRUE 

41.9 Drug-resistant infection The164Ile 1.068 2.909 0.273 9.10E-05 10958 192 10766 FALSE TRUE 

703.1 Ingrowing nail The164Ile 1.354 3.874 0.363 1.89E-04 11887 80 11807 FALSE TRUE 

480 Pneumonia The164Ile 0.500 1.649 0.150 8.67E-04 11093 1427 9666 FALSE FALSE 

961 Poisoning by other anti-infectives The164Ile 1.491 4.442 0.450 9.19E-04 10438 44 10394 FALSE FALSE 

303 

Psychogenic and somatoform 

disorders The164Ile 1.215 3.372 0.384 1.55E-03 7824 80 7744 FALSE FALSE 

278.3 Localized adiposity The164Ile 1.361 3.900 0.445 2.21E-03 10351 47 10304 FALSE FALSE 

550.2 Diaphragmatic hernia The164Ile 0.696 2.005 0.231 2.58E-03 11682 428 11254 FALSE FALSE 

506 Empyema and pneumothorax The164Ile 0.697 2.007 0.234 2.93E-03 9160 393 8767 FALSE FALSE 

481 Influenza The164Ile 1.144 3.139 0.386 3.06E-03 9759 93 9666 FALSE FALSE 

41 Bacterial infection NOS The164Ile 0.457 1.579 0.156 3.34E-03 12016 1250 10766 FALSE FALSE 

292.4 Altered mental status The164Ile 0.577 1.780 0.197 3.38E-03 10181 657 9524 FALSE FALSE 

705 Disorders of sweat glands The164Ile 1.436 4.202 0.500 4.12E-03 11368 37 11331 FALSE FALSE 

512.2 Painful respiration The164Ile 0.838 2.313 0.292 4.15E-03 9594 200 9394 FALSE FALSE 

303.4 Somatoform disorder The164Ile 1.282 3.603 0.450 4.36E-03 7797 53 7744 FALSE FALSE 

783 Fever of unknown origin The164Ile 0.406 1.501 0.143 4.36E-03 11650 1706 9944 FALSE FALSE 

591 Urinary tract infection The164Ile 0.355 1.426 0.127 5.04E-03 10876 2782 8094 FALSE FALSE 

189.4 

Malignant neoplasm of kidney and 

other urinary organs The164Ile 1.414 4.113 0.511 5.65E-03 12481 37 12444 FALSE FALSE 

939 Atopic or contact dermatitis The164Ile 0.531 1.701 0.196 6.63E-03 10899 689 10210 FALSE FALSE 

276.1 Electrolyte imbalance The164Ile 0.362 1.437 0.134 6.68E-03 10569 2475 8094 FALSE FALSE 

327.3 Sleep apnea The164Ile 0.566 1.761 0.210 6.98E-03 10809 555 10254 FALSE FALSE 

384.4 Perforation of tympanic membrane The164Ile 1.372 3.943 0.509 7.05E-03 11269 39 11230 FALSE FALSE 

530.14 Reflux esophagitis The164Ile 1.245 3.474 0.463 7.18E-03 7676 60 7616 FALSE FALSE 

594 Urinary calculus The164Ile 0.650 1.915 0.242 7.18E-03 12306 363 11943 FALSE FALSE 
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Appendix C. PheWAS results for phenotypes we had anticipated might be associated with ADRB2 Thr164Ile prior to analysis. 

 

PheWAS Description SNP Beta OR SE p Total  N Case N Control N 

All 

         

 

Hypertension Thr164Ile 0.114982 1.121854 0.094509 0.223747 21474 11444 10030 

 

Essential hypertension Thr164Ile 0.129056 1.137754 0.094806 0.173431 21268 11238 10030 

 

Asthma Thr164Ile 0.197687 1.218581 0.166332 0.234633 20053 1284 18769 

 

Chronic obstructive asthma Thr164Ile 0.450507 1.569108 0.382303 0.238635 18948 179 18769 

 

Chronic obstructive asthma with 

exacerbation Thr164Ile NA NA NA NA 18804 35 18769 

 

Asthma with exacerbation Thr164Ile 0.438416 1.55025 0.37969 0.248225 18950 181 18769 

Females 

         

 

Hypertension The164Ile 0.128784 1.137445 0.130667 0.324333 11702 5795 5907 

 

Essential hypertension The164Ile 0.147349 1.158758 0.130903 0.260319 11612 5705 5907 

 

Asthma The164Ile 0.256596 1.292523 0.196963 0.192655 11005 881 10124 

 

Chronic obstructive asthma The164Ile -0.00458 0.995428 0.585769 0.993758 10240 116 10124 

 

Chronic obstructive asthma with 

exacerbation The164Ile 0.371146 1.449394 1.008659 0.712903 10151 27 10124 

 

Asthma with exacerbation The164Ile 0.524153 1.689028 0.415364 0.20698 10264 140 10124 

Males 

         

 

Hypertension Thr164Ile 0.094461 1.099067 0.138747 0.495986 9745 5634 4111 

 

Essential hypertension Thr164Ile 0.103523 1.109071 0.139317 0.457436 9630 5519 4111 

 

Asthma Thr164Ile 0.02469 1.024997 0.320546 0.938604 9030 402 8628 

 

Chronic obstructive asthma Thr164Ile 0.964345 2.623069 0.500894 0.054199 8691 63 8628 

 

Chronic obstructive asthma with 

exacerbation Thr164Ile NA NA NA NA 8636 8 8628 

 

Asthma with exacerbation Thr164Ile 0.018239 1.018406 0.995608 0.985384 8669 41 8628 
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Appendix D. ICD-9 codes mapping to PheWAS codes discussed in Chapter 1. PheWAS Code 

Name and number are bolded followed by all ICD-9 codes in that mapping. 

Iatrogenic 

Hypotension (458.2) 

Poisoning by Other 

Anti-infectives (961) 

Pneumonia (480) 

Continued 

Pneumonia (480) 

Continued 

458.2 961 112.4 482.89 

458.21 961.1 114.0 482.9 

458.29 961.2 114.4 483 

 961.3 114.5 483.0 

Serum Enzyme 

Abnormalities (573.9) 

961.4 130.4 483.1 

961.5 136.3 483.8 

790.5 961.6 480 484 

 

961.7 480.0 484.1 

Drug-resistant 

Infection (041.9) 

961.9 480.1 484.3 

E857 480.2 484.5 

V09 E931 480.3 484.6 

V09.0 E931.1 480.8 484.7 

V09.1 E931.2 480.9 484.8 

V09.2 E931.3 481 485 

V09.3 E931.4 481.0 485.0 

V09.4 E931.5 482 486 

V09.5 E931.6 482.0 513 

V09.50 E931.7 482.1 513.0 

V09.51 E931.9 482.2 513.1 

V09.6 V14.3 482.3 517.1 

V09.7  482.30 V12.61 

V09.70 Pneumonia (480) 482.31  

V09.71 003.22 482.32  

V09.8 020.3 482.39  

V09.80 020.4 482.4  

V09.81 020.5 482.40  

V09.9 021.2 482.41 

 
V09.90 022.1 482.42 

 
V09.91 031.0 482.49 

 
 039.1 482.8 

 
Acquired Hypotension 

(244.2) 

052.1 482.81 

 
055.1 482.82 

 
244.8 073.0 482.83 

 

 

083.0 482.84 
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Appendix E. Top 25 PheWAS hits for all individuals from the A3G His186Arg analysis. 

PheWAS 

Code PheWAS Description SNP Beta OR SE p Total N Case N Control N 

279.11 Deficiency of humoral immunity His186Arg 1.075 2.930 0.239 7.01E-06 25271 108 25163 

292.6 Hallucinations His186Arg 1.119 3.061 0.316 3.96E-04 20674 64 20610 

597 Other disorders of urethra and urinary tract His186Arg 0.502 1.652 0.166 2.42E-03 24887 400 24487 

452 Venous embolism & thrombosis His186Arg -0.413 0.661 0.138 2.65E-03 22086 1396 20690 

242 Thyrotoxicosis His186Arg 0.471 1.602 0.160 3.20E-03 22032 441 21591 

174.3 Neoplasm of uncertain behavior of breast His186Arg 0.843 2.324 0.312 6.81E-03 23780 81 23699 

573.5 Jaundice His186Arg 0.461 1.585 0.172 7.52E-03 22159 370 21789 

242.1 Graves' disease His186Arg 0.557 1.745 0.210 8.02E-03 21821 230 21591 

333 

Extrapyramidal disease and abnormal movement 

disorders His186Arg -0.618 0.539 0.239 9.79E-03 21494 550 20944 

771 Musculoskeletal symptoms referable to limbs His186Arg 0.531 1.701 0.206 1.01E-02 24066 252 23814 

117 Mycoses His186Arg -0.860 0.423 0.355 1.55E-02 23965 299 23666 

306 Random mental disorder. Ignored for now His186Arg 0.698 2.010 0.295 1.80E-02 18704 97 18607 

596.5 Functional disorders of bladder His186Arg 0.353 1.423 0.152 2.02E-02 25016 529 24487 

334 Degenerative disease of the spinal cord His186Arg -0.701 0.496 0.304 2.12E-02 21302 358 20944 

270 

Protein plasma/amino-acid transport and 

metabolism disorder His186Arg -0.519 0.595 0.226 2.20E-02 26060 544 25516 

270.3 Plasma protein metabolism disorder His186Arg -0.594 0.552 0.261 2.29E-02 25961 445 25516 

426.91 Cardiac pacemaker in situ His186Arg 0.287 1.333 0.127 2.34E-02 17613 948 16665 

281.11 Pernicious anemia His186Arg 0.544 1.722 0.248 2.84E-02 17501 170 17331 

371.21 Allergic conjunctivitis His186Arg -0.689 0.502 0.320 3.13E-02 24018 322 23696 

333.4 Torsion dystonia His186Arg -2.133 0.118 1.001 3.31E-02 21082 138 20944 

695.41 Lupus erythematosus His186Arg 0.676 1.966 0.324 3.72E-02 23093 85 23008 

550.6 Incisional hernia His186Arg 0.370 1.448 0.179 3.87E-02 24315 383 23932 

275.5 Calcium/phosphorus disorders His186Arg -0.341 0.711 0.165 3.92E-02 25182 851 24331 

362.3 NA His186Arg 0.512 1.669 0.248 3.93E-02 27309 174 27135 

470 Deviated nasal septum His186Arg -0.390 0.677 0.189 3.96E-02 20008 700 19308 

279.11 Deficiency of humoral immunity His186Arg 1.075 2.930 0.239 7.01E-06 25271 108 25163 
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Appendix F.Top 25 PheWAS hits for individuals under the age of 20 at their last ICD9 code record from the A3G His186Arg analysis. 

PheWAS 

Code PheWAS Description SNP Beta OR SE p Total N Case N Control N 

279.11 Deficiency of humoral immunity His186Arg 1.714 5.549 0.383 7.73E-06 3557 27 3530 

870.3 Other open wound of head and face His186Arg 1.342 3.828 0.434 1.98E-03 3517 24 3493 

714.1 Rheumatoid arthritis His186Arg 1.021 2.775 0.366 5.35E-03 3579 43 3536 

244 Hypothyroidism His186Arg 0.687 1.987 0.263 9.01E-03 3684 123 3561 

788 Syncope and collapse His186Arg 0.809 2.245 0.313 9.73E-03 3696 76 3620 

687.1 Rash and other nonspecific skin eruption His186Arg 0.547 1.728 0.220 1.31E-02 3519 210 3309 

389.2 Conductive hearing loss His186Arg 0.580 1.786 0.234 1.31E-02 3560 176 3384 

327.32 Obstructive sleep apnea His186Arg 0.746 2.108 0.307 1.53E-02 3573 86 3487 

327 Sleep disorders His186Arg 0.568 1.765 0.245 2.05E-02 3649 162 3487 

507 Pleurisy; pleural effusion His186Arg -0.775 0.461 0.345 2.48E-02 3266 263 3003 

597 Other disorders of urethra and urinary tract His186Arg 1.055 2.871 0.479 2.76E-02 3465 27 3438 

588.2 Secondary hyperparathyroidism (of renal origin) His186Arg 1.047 2.848 0.477 2.82E-02 3274 26 3248 

599.4 Urinary incontinence His186Arg 0.715 2.045 0.329 2.96E-02 3374 77 3297 

244.4 NA His186Arg 0.623 1.864 0.288 3.08E-02 3790 107 3683 

599 Symptoms/disorders of the urinary system His186Arg 0.491 1.634 0.232 3.41E-02 3496 199 3297 

261.4 Vitamin D deficiency His186Arg 0.807 2.242 0.383 3.53E-02 2665 47 2618 

851 Complications of transplants and reattached limbs His186Arg 0.939 2.558 0.464 4.30E-02 3384 29 3355 

327.3 Sleep apnea His186Arg 0.551 1.735 0.274 4.39E-02 3617 130 3487 

327.4 Insomnia His186Arg 1.029 2.797 0.513 4.48E-02 3509 22 3487 

242 Thyrotoxicosis His186Arg 1.013 2.755 0.506 4.53E-02 3583 22 3561 

870 Open wounds of head; neck; and trunk His186Arg 0.655 1.924 0.333 4.93E-02 3568 75 3493 

809 Fracture of unspecified bones His186Arg -1.957 0.141 1.003 5.11E-02 3414 101 3313 

416 Cardiomegaly His186Arg -0.618 0.539 0.318 5.24E-02 3650 257 3393 

506 Empyema and pneumothorax His186Arg -1.947 0.143 1.006 5.29E-02 3096 93 3003 

428.4 NA His186Arg -1.940 0.144 1.013 5.55E-02 3828 75 3753 

579 Other symptoms involving abdomen and pelvis His186Arg -1.919 0.147 1.005 5.63E-02 3316 93 3223 

395 Heart valve disorders His186Arg -0.972 0.378 0.510 5.66E-02 3374 140 3234 
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Appendix G. List of all ICD9 codes that map to the Deficiency of Humoral Immunity PheWAS 

code discussed in chapter 2. 

Deficiency of Humoral Immunity (279.11) 

279.0 

279.00 

279.01 

279.02 

279.03 

279.04 

279.05 

279.06 

279.09 

 

 

Appendix H. Screenshot of Vanderbilt Pathology Laboratory Services Test Directory showing 

Reference ranges of IGG Quantitative Blood Test. 
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Appendix I. Top 24 hits from PheWAS of the A3B deletion in all individuals. 

PheWAS 

Code PheWAS Description SNP Beta OR SE p 

Total 

N 

Case 

N 

Control 

N 

Passes 

Bonferroni 

Passes 

FDR 

Passes 

SimpleM 

428.2 Heart failure NOS A3B 0.720 2.054 0.167 1.55E-05 2732 262 2470 TRUE TRUE TRUE 

428.1 Systolic/diastolic heart failure A3B 0.518 1.678 0.123 2.42E-05 3250 780 2470 TRUE TRUE TRUE 

395.2 Nonrheumatic aortic valve disorders A3B 0.700 2.013 0.167 2.77E-05 3220 247 2973 TRUE TRUE TRUE 

395 Heart valve disorders A3B 0.490 1.633 0.124 7.81E-05 3564 591 2973 FALSE TRUE TRUE 

428 Heart failure A3B 0.462 1.587 0.119 1.01E-04 3345 875 2470 FALSE TRUE TRUE 

427.9 Palpitations A3B 0.577 1.781 0.164 4.22E-04 2059 350 1709 FALSE FALSE TRUE 

440 Atherosclerosis A3B 0.556 1.744 0.161 5.61E-04 3094 302 2792 FALSE FALSE FALSE 

425 Cardiomyopathy A3B 0.472 1.604 0.142 8.85E-04 3638 379 3259 FALSE FALSE FALSE 

426 Cardiac conduction disorders A3B 0.462 1.587 0.141 1.02E-03 2364 655 1709 FALSE FALSE FALSE 

429.9 

Cardiac complications, not 

elsewhere classified 
A3B 

1.177 3.244 0.371 1.51E-03 2502 32 2470 FALSE FALSE FALSE 

415.21 NA A3B 0.857 2.357 0.271 1.59E-03 3956 62 3894 FALSE FALSE FALSE 

427 Cardiac dysrhythmias A3B 0.324 1.383 0.107 2.49E-03 3371 1662 1709 FALSE FALSE FALSE 

442 Other aneurysm A3B 0.618 1.855 0.205 2.57E-03 2952 160 2792 FALSE FALSE FALSE 

426.92 Cardiac defibrillator in situ A3B 0.599 1.820 0.201 2.86E-03 1914 205 1709 FALSE FALSE FALSE 

442.1 Aortic aneurysm A3B 0.672 1.958 0.227 3.10E-03 2914 122 2792 FALSE FALSE FALSE 

579.2 NA A3B 0.817 2.263 0.281 3.62E-03 3920 59 3861 FALSE FALSE FALSE 

761 Neck pain A3B -0.695 0.499 0.239 3.63E-03 3747 301 3446 FALSE FALSE FALSE 

426.9 Cardiac pacemaker/device in situ A3B 0.487 1.628 0.169 4.05E-03 2092 383 1709 FALSE FALSE FALSE 

427.21 Atrial fibrillation A3B 0.412 1.509 0.145 4.48E-03 2470 761 1709 FALSE FALSE FALSE 

395.1 Nonrheumatic mitral valve disorders A3B 0.433 1.541 0.152 4.50E-03 3349 376 2973 FALSE FALSE FALSE 

427.22 Atrial flutter A3B 0.616 1.852 0.220 5.09E-03 1897 188 1709 FALSE FALSE FALSE 

425.1 Primary/intrinsic cardiomyopathies A3B 0.424 1.528 0.151 5.09E-03 3595 336 3259 FALSE FALSE FALSE 

428.3 NA A3B 0.447 1.564 0.160 5.17E-03 3904 290 3614 FALSE FALSE FALSE 

394 

Chronic rheumatic disease of the 

heart valves 
A3B 

0.586 1.797 0.211 5.46E-03 3126 153 2973 FALSE FALSE FALSE 
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Appendix J. ICD-9 Codes that map to each of the PheWAS codes discussed in chapter 3. 

Heart Failure NOS 
(428.2) 

Heart Failure 

(428) 

428.1 398.91 

428.9 428 

 428.0 

Nonrheumatic Aortic 
Valve Disorders (395.2) 

428.00 

428.1 

424.1 428.2 

 428.20 

Systolic/Diastolic Heart 
Failure (428.1) 

428.21 

428.22 

398.91 428.23 

428.00 428.3 

428.0 428.30 

 428.31 

Heart Valve Disorders 
(395) 

428.32 

428.33 

424 428.4 

424.0 428.40 

424.1 428.41 

424.2 428.42 

424.3 428.43 

424.91 428.9 

V42.2  

V43.3  
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Appendix K. Top 10 PheWAS hits from deletions annotated as overlapping genes. No deletions appear twice in the top 10. 

PheWAS 

Code PheWAS Description ESV Beta OR SE p Total N Case N Control N 

704.8 Other specified diseases of hair and hair follicles esv2673257 1.271 3.563 0.267 2.02E-06 4428 51 4377 

255.2 Adrenal hypofunction esv2670116 0.930 2.535 0.200 3.13E-06 3994 88 3906 

367.2 Astigmatism esv2664484 1.894 6.649 0.420 6.38E-06 4429 21 4408 

41.12 Methicillin resistant Staphylococcus aureus esv2663159 0.804 2.235 0.179 7.27E-06 3223 121 3102 

530.12 Ulcer of esophagus esv2667558 1.662 5.271 0.374 8.65E-06 2368 27 2341 

355 Complex regional/central pain syndrome esv2666201 1.385 3.995 0.313 9.53E-06 3924 29 3895 

574.3 Cholecystitis without cholelithiasis esv2671657 0.823 2.277 0.187 1.12E-05 4218 81 4137 

348.1 NA esv2677892 0.312 1.366 0.072 1.48E-05 3615 463 3152 

117 Mycoses esv2664490 0.892 2.440 0.207 1.68E-05 3940 124 3816 

272.1 Hyperlipidemia esv2673043 0.209 1.232 0.049 1.90E-05 4203 2219 1984 

 

Appendix L. Top 10 PheWAS hits from deletions not annotated as overlapping genes. Color-coding represents unique signals. 

PheWAS 

Code PheWAS Description ESV Beta OR SE p Total N Case N Control N 

250.1 Type 1 diabetes esv2673441 -0.519 0.595 0.078 2.70E-11 3040 472 2568 

250.12 Type 1 diabetes with renal manifestations esv2673441 -1.014 0.363 0.160 2.46E-10 2696 128 2568 

250.11 Type 1 diabetes with ketoacidosis esv2673441 -0.731 0.481 0.123 2.69E-09 2759 191 2568 

290.11 Alzheimer's disease esv2659215 2.213 9.142 0.404 4.42E-08 3153 25 3128 

272 Disorders of lipoid metabolism esv2672272 -0.362 0.696 0.067 5.82E-08 2595 1361 1234 

272.1 Hyperlipidemia esv2672272 -0.356 0.701 0.067 1.03E-07 2587 1353 1234 

250.13 Type 1 diabetes with ophthalmic manifestations esv2673441 -1.043 0.353 0.205 3.62E-07 2646 78 2568 

250.7 Diabetic retinopathy esv2673441 -0.589 0.555 0.120 9.33E-07 2754 186 2568 

272.11 Hypercholesterolemia esv2672272 -0.420 0.657 0.086 1.16E-06 1842 608 1234 

415.2 Chronic pulmonary heart disease esv2657961 0.816 2.262 0.173 2.29E-06 3483 72 3411 
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Appendix M. Top 15 hits for the SNP-Haplogroup term in haplogroup J. 

PheWAS 

Code PheWAS Description Exome SNP Haplogroup Beta SE P 

Case 

N 

Control 

N 

Total 

N 

331 Other cerebral degenerations exm689825_A J 1.601 0.239 2.03E-11 287 15349 15636 

705.8 Generalized hyperhidrosis exm381852_T J 1.793 0.331 6.09E-08 69 17721 17790 

612 

Breast conditions, congenital or relating to 

hormones exm1036183_A J 1.958 0.362 6.31E-08 102 16954 17056 

724 Other disorders of back exm631536_C J 1.808 0.337 8.07E-08 80 15609 15689 

337 Disorders of the autonomic nervous system exm1649321_T J 1.165 0.223 1.86E-07 132 15347 15479 

303.4 Somatoform disorder exm1623703_C J 1.746 0.338 2.37E-07 56 13106 13162 

337 Disorders of the autonomic nervous system exm1013046_T J 1.622 0.315 2.51E-07 131 15298 15429 

612.2 Hypertrophy of breast (Gynecomastia) exm1036183_A J 1.955 0.385 3.92E-07 85 16954 17039 

331 Other cerebral degenerations exm855988_T J 0.615 0.123 5.43E-07 287 15339 15626 

573.5 Jaundice exm869579_T J 0.910 0.182 6.06E-07 206 15875 16081 

250.14 Type 1 diabetic neuropathy exm117637_G J 1.203 0.245 8.83E-07 194 13545 13739 

281.12 Vitamin B12 deficiency anemia exm1013046_T J 1.579 0.326 1.28E-06 160 12181 12341 

331 Other cerebral degenerations exm1496803_G J 0.576 0.119 1.30E-06 287 15349 15636 

427.22 Atrial flutter exm1013725_G J 0.723 0.152 1.97E-06 534 11561 12095 

703 Diseases of nail exm137983_A J 1.496 0.315 2.01E-06 98 18641 18739 
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Appendix N. Top 15 PheWAS hits for the SNP-Haplogroup term in haplogroup H. 

PheWAS 

Code PheWAS Description Exome SNP Haplogroup Beta SE P 

Case 

N 

Control 

N 

Total 

N 

595 Hydronephrosis exm473294_G H 0.399 0.071 2.11E-08 379 18311 18690 

153.3 Cancer of the lower GI tract exm1523019_T H 0.563 0.107 1.36E-07 384 15722 16106 

153.3 Cancer of the lower GI tract exm1522975_A H 0.563 0.107 1.37E-07 384 15723 16107 

595 Hydronephrosis exm200699_A H 0.388 0.076 4.06E-07 379 18291 18670 

110.13 Dermatophytosis of the body exm620674_C H 1.203 0.240 5.45E-07 63 17059 17122 

318 Tobacco use disorder exm564892_C H 0.430 0.088 1.12E-06 1456 16682 18138 

172.1 Melanoma exm720018_T H 0.449 0.092 1.21E-06 1039 15302 16341 

595 Hydronephrosis exm60331_G H 0.445 0.092 1.27E-06 379 18315 18694 

357 Inflammatory and toxic neuropathy exm1043475_T H 0.960 0.200 1.55E-06 100 17700 17800 

357 Inflammatory and toxic neuropathy exm1043475_T H 0.960 0.200 1.55E-06 100 17700 17800 

153 Colorectal cancer exm1523019_T H 0.377 0.079 1.77E-06 879 15722 16601 

599.3 Dysuria exm869611_A H 0.402 0.084 1.79E-06 843 14099 14942 

153 Colorectal cancer exm1522975_A H 0.377 0.079 1.81E-06 879 15723 16602 

276.42 Alkalosis exm620881_T H 1.032 0.218 2.26E-06 121 12470 12591 

642 Hypertension complicating pregnancy exm1065549_C H 1.253 0.272 4.23E-06 93 19562 19655 
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Appendix O. Mapping of ICD9 codes to PheWAS codes discussed in chapter 5. PheWAS code 

description and number are listed above the mapped ICD9 codes.  

OtherCerebral Degenerations (331) 

330 

330.8 

331.81 

331.89 

331.9 

331 

330.3 

330.1 

330.9 

331.6 

330.2 

330 

331.3 

331.8 

331.4 

331.7 

331.5 

 Tobacco Use Disorder (318) 

649 

305.11 

649.04 

305.12 

649 

305.1 

305.13 

649.02 

649.03 

305.1 

649.01 

 

 

 

 

 


