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CHAPTER I 

 

INTRODUCTION 

 

1.1 Overview 

There has been an increased reliance on numerical models and simulation codes recently 

for predicting the behavior of complex engineering systems. With the advent of modern 

super computers, complex natural phenomena are sought to be modeled without actually 

performing full-scale experiments. The test-only based approach is very expensive and 

does not make use of available analytical models of system behavior, failure modes and 

sensitivities. Inexpensive modeling and simulation-based methods are able to use such 

information. However, with the approximations in the computational models and the 

limited amount of statistical data on the input variables, it is difficult to associate a high 

degree of confidence with prediction based only on computational methods. When 

physics is not well understood, selecting a wrong model could induce model form error 

while the discrete solution for a continuum domain could introduce numerical errors and 

convergence problems. The use of a mathematical or a computational model leads us to a 

common question: How good are these models? How valid are the models?  

 The performance of a model is judged by comparing the outcomes derived from 

the model with the observations made during the experiments. There is also uncertainty 

and error in the measurement of both input data and output response. These random 

effects and the approximations also affect the deviation of the model predictions from the 

nature. Verification and validation (V&V) under uncertainty thus involves quantifying 
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the error in the model prediction and effectively comparing the prediction with the 

experimental result when both prediction and test data are stochastic. The main goal of 

model validation is to assess the predictive capabilities of a computational code for 

specific applications. We also need to quantify the model errors using validation 

experiments. A key element in the model validation methodology is the definition of 

validation metrics or measures within a probabilistic framework. Also, the concept of 

model validation has to be extended to system-level problems where full-scale testing is 

impossible. Component-level validation results may be used to derive a system-level 

validation measure. This derivation again depends on the knowledge of inter-

relationships between component modules. Another issue is the validation of statistical 

model or distribution as opposed to the validation of single response. The probability 

density function characterizing the uncertainty in a model prediction may be compared 

with a small set of experimental data that span the possible values of model response. 

A computational model may also generate multiple response quantities (decision 

variables) at a single location or the same response quantity at multiple locations, and a 

validation experiment might yield corresponding measured responses in a single test. For 

instance, stress, strain, displacement and peak acceleration etc. are all derived from same 

finite element field. In each case, the multiple responses, being derived from same input, 

could be dependent on each other. In both the events, model validation involves 

comparison of multiple quantities of model prediction and test data (multivariate 

analysis). A single response quantity may be predicted at different points in the space, 

time or frequency domain. (e.g., spectral dynamic response, mode shapes of a structure 

etc). Validation in such cases involves comparison of curves or surfaces. Thus, validation 
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metrics need to be developed to compare multiple model outputs to the multiple data 

available. Also, each decision variable can be validated individually or a collective metric 

can be developed to validate the correlated quantities in order to judge the overall 

performance of the code. Markov Chain Monte Carlo methods appear to be a natural 

choice in dealing with multiple variables, and hence were investigated for this purpose. 

The metrics developed in this research will make use of classical and Bayesian 

hypothesis testing. Typically used point null hypothesis testing, where two quantities are 

tested for equality, can be practically not so useful for decision making and hence more 

practical interval-based hypothesis testing methods will be explored. Further one can 

calculate the probability that the model prediction falls within a certain range of data and 

vice versa. Thus a model reliability metric will also be proposed in this research.   

 One challenge in practical problems is to extend what we can learn about the 

model’s predictive capability within the tested region to an inference about the predictive 

capability in the application or untested region. Confidence in the prediction near off-

nominal region by a model, already validated in the nominal region, needs to be 

quantified. One approach is to construct a regression model for the test data in the 

validation domain, and to simulate test data in the untested region using this model. 

Inferences may be made in an incremental fashion from validation region to untested 

region, aided by bootstrapping and cross validation. However, this strategy may not work 

if there is a change in physics from the validation domain to the application domain. 

Therefore, proposed work in this direction will explore other extrapolation strategies 

under nonlinear behavior. If some linking or common variables can be established 

between the two domains, Bayesian methodology may offer some insight into the 
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extrapolation process. Bayesian networks will be explored for this purpose. Advanced 

methods such as adaptive rejection sampling, saddlepoint approximations and Laplace 

expansion methods offer alternatives to rigorous MCMC methods for Bayesian analysis. 

 Physical, information and model uncertainties, errors can introduce additional 

bias and variance in the model prediction. When continuum models are chosen to 

represent the reality and numerical methods such as finite element and finite difference 

methods are used to solve the continuum model, the approximations can result in 

numerical solution error. Similarly inadequate surrogate models can introduce random 

truncation errors in the model response. When the computational models are used for 

design in early stages, one must account for all the above mentioned uncertainties and 

errors. Reliability-based design optimization (RBDO) techniques ensure that the design is 

met with high confidence in light of various sources of uncertainties. As in any 

optimization problem, the constraints or the objective function can be a function of the 

model output. When probabilistic constraints are used, the approximate reliability 

analysis methods like FORM, SORM can also introduce additional errors. The study 

proposes to include model errors in the design explicitly. 

 The study investigates and develops methods for 1) Validation metrics 

appropriate for individual and multiple response quantities 2) Extrapolating or 

interpolating the validation inferences to untested regime, and 3) Quantifying model 

form, numerical solution and reliability analysis errors, uncertainties and 4) Incorporating 

model errors in the design. 
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1.2 Research objectives 

Based on the discussions so far, the research objectives are summarized as below: 

1. Develop classical and Bayesian statistics-based validation metrics for single 

and multivariate model outputs. Multivariate outputs may include single 

response at multiple locations or multiple outputs at single location. Extend 

Bayesian model validation to include outputs that are stochastic processes 

and fields;  

2. Develop a methodology to assess the predictive capabilities of computational 

models in the application domain based on the data in validation domain. 

Bayesian networks will be explored to propagate uncertainties and inference 

across various domains. 

3. Develop methods to quantify model form errors, numerical solution errors 

due to model resolution, and errors due to approximations in the reliability 

analysis. This is a part of verification process that must be carried out prior 

to validation. However the actual estimates of error can be used to assess the 

solution quality. 

4. Incorporate various uncertainties and errors in the design. When limit-state 

based methods are used to estimate the probability of failure, model errors 

etc., can be explicitly used as additional variables in the reliability analysis.  

 

1.3 Highlights of the research 

The definitions of verification and validation in computational science now have been 

well established by several researchers at different private and government organizations. 
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However the progress on the actual implementation of those concepts has not been slow. 

Model validation itself is a hard statistical problem and a wide variety of techniques 

ranging from hypothesis tests to model reliability metric have been proposed in this 

research. Since most of the model responses are multivariate in nature, we address the 

simultaneous inferences of model output and test results. Whenever the existing statistical 

approaches are found to be inadequate to address the basic questions of validation 

directly, the study proposed some alternative. The proposed Bayesian validation 

methodology combines the prior information on model prediction with the observed data 

and updates our belief on confidence in the model.  

  Assessing the confidence in the model prediction for which we have no data is 

another challenge. Simulating field conditions in the laboratory is infeasible, and 

computer models are being used to design very complex future systems, for which 

historic data is not available. The confidence in such a design would depend on how the 

model behaved in the validation region and how “far” the validation domain is from the 

target application domain. We can then extrapolate the inferences made in validation 

region to application domain. The use of Bayesian networks in model validation is a 

unique concept and has promising use for extrapolation and in system-level model 

validation where full scale testing is often infeasible. The proposed method can include 

the change of physics or the sensitivity of the response in untested region to that from the 

validation domain and estimate the confidence in the extrapolated prediction. This is 

beneficial in using computer models for practical application. 

 While validation is necessary to assess the performance of the model, the ultimate 

goal is to use the computational model to design engineering systems. The proposed 
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study will thus explore the role of verification and validation in design. Even when actual 

model form errors are not available, if a parametric study of the design with respect to 

various errors in the model prediction can be conducted. Such sensitivity analysis can 

help one in resource allocation and identifying the areas of improvement. 

 

1.4 Organization of dissertation 

This dissertation is organized as follows: In Chapter 2, a review of concepts and 

definitions of validation are presented. A literature survey on validation metrics is 

conducted. Classical and Bayesian statistical methods are proposed and applied for 

univariate and multivariate model validation. Numerous examples are provided to 

demonstrate the proposed methodology. 

Chapter 3 considers the various possible cases of extrapolation and extends the Bayesian 

validation methodology for model predictive assessment. Bayesian networks and Markov 

Chain Monte Carlo methods are explored for that purpose. A number of illustrative 

problems are presented to explain the proposed extrapolation method. 

In Chapter 4, various sources of error in computational model prediction are identified 

first and methods to quantify uncertainties and errors are presented. 

In Chapter 5, the model errors estimated using the methods described in Chapter 4 are 

used in RBDO. In the last chapter, some recommendations and research directions for the 

future work are presented. 
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CHAPTER II 

 

 VALIDATION METRICS 

 

2.1 Overview 

Various types of uncertainties and errors occur in computational model predictions that 

attempt to capture the behavior of real physical systems. The uncertainties arise due to 

model form inadequacies, lack of sufficient data, and inherent variabilities in the physical 

properties of the system. The corresponding experimental data needed to validate these 

computational models are also affected by experimental variability, measurement errors 

etc. Model validation under uncertainty thus reduces to comparing two uncertain 

quantities. Validation assessments can be made using qualitative methods, decision-

theoretic methods, or statistical hypothesis testing methods. While a validation method 

should be able to provide an answer to the question whether the computational model 

accurately represents the reality, it should also verify whether the degree of confidence 

with which we accept a model is adequate for the intended model use. Several validation 

metrics are investigated in this study, focusing on their ability to address both accuracy 

and adequacy issues for engineering applications.  

Depending on the nature or form of model output and experimental data, model 

validation may involve comparison of means or variances or even two or more 

probability distributions. The decision maker would like to know whether there is a 

significant difference between the prediction and observation. The validation metric 

would then provide a means for accepting or rejecting the model prediction. Both 
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classical and Bayesian methods will be explored for this purpose. In some problems, the 

model output may be a single response quantity that follows a statistical distribution that 

needs to be compared against single or repeated experimental observations of the same 

quantity. This may be termed univariate validation. In other problems, the model output 

and the corresponding validation data may be multivariate in nature. This study develops 

validation metrics (measures of comparison) for models with multivariate output also. 

Repeating univariate validation separately for several response quantities may give 

conflicting inferences for different quantities. Thus an overall performance measure for 

the computational model is possible only through aggregate validation. 

 In hypothesis testing, we usually formulate the null hypothesis as model 

prediction being exactly equal to an observation and the alternative hypothesis as model 

prediction being not equal to the observation. This is also referred to as “point null 

hypothesis” testing. A well known criticism of point null hypothesis tests is that the null 

hypothesis gets rejected even if the difference between the prediction and observation is 

small enough for all practical purposes. Thus a model rejected by such a test does not 

automatically render the model useless. Also we should expect the hypothesis test to 

increasingly ‘punish’ an invalid model and ‘reward’ a valid model with the availability of 

more data. If we allow for some acceptable difference between the model prediction and 

the observation, we can then test a null hypothesis that the data falls within certain 

bounds of the model prediction. The collection of more data should then increase or 

decrease the confidence consistently using the modified null hypothesis. The drawback in 

point null tests is that all models get rejected with increasing sample size and hence there 

is no incentive to do more tests or build better models. This study will investigate how 
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the interval formulation of hypothesis can address the issue of sample size. For practical 

purposes and ease of interpretation, a more direct approach that formulates model 

validation as a reliability analysis problem is also proposed. The proposed methodologies 

are illustrated throughout this chapter with several numerical examples. 

 

2.2 Background 

The fundamental concepts and terminology for validation and verification of 

computational codes have been established mainly by the ASCI (Accelerated Strategic 

Computing Initiative) program of the United States Department of Energy (DOE), 

American Institute of Aeronautics and Astronautics (AIAA, 1998), Defense Modeling 

and Simulation Office (DMSO) of the U.S. Department of Defense and American Society 

of Mechanical Engineers Standards Committee (ASME PTC#60) on verification and 

validation of computational solid mechanics etc.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.1. Phases of Modeling and Simulation and the Role of V&V (AIAA, 1998) 
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Various other definitions of scientific validation also exist in the literature. Various 

requirements have been defined because of the large variety of applications for modeling. 

The first definition is given by the Institute of Electrical and Electrical Engineers (IEEE) 

for verification and validation (Boehm, 1984), with reference to the products of a 

software development cycle. DMSO (1996) gives definitions for V&V in the context of 

computational models. Verification is defined as the process of determining that a model 

implementation accurately represents the developer's conceptual description and 

specifications. Validation is defined as the process of determining the degree to which a 

model is an accurate representation of the real world from the perspective of the intended 

uses of the model. The study mainly emphasizes on model validation under uncertainty in 

computational mechanics with applications relevant to civil, mechanical and aerospace 

engineering systems only. The use of validation metrics comprises the most important 

part of a validation activity. A validation metric should quantitatively measure the degree 

of difference between model prediction and experimental data and should also include the 

uncertainties in them.  

Several types of metrics have been proposed over the years for the validation of 

computational models. An attempt to collect and discuss various validation metrics was 

made by Oberkampf and Barone (2004) with a comprehensive list of studies by various 

researchers. In this chapter, details on specific metrics are provided, and practically 

useful validation metrics are proposed. Work on systematic model validation methods for 

engineering applications began in the field of fluid dynamics. Coleman and Stern (1997) 

combined various types of errors and uncertainties arising in CFD applications, and 

proposed a validation metric requiring the prediction error to be small. A comparison 
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error E is defined as the actual difference between prediction and data. Then the 

uncertainty associated with that error is computed through a combination of numerical 

errors (ESN), modeling error (ESMA), data or measurement error (ED), and the uncertainties 

in previous data used to build the model (ESPD). All these errors are assumed to be 

independent of each other and are combined linearly. The term uncertainty has been 

synonymously used with standard deviation in that paper. Thus the total uncertainty in 

the comparison error or the standard deviation of E is estimated as 

     2 2 2 2
E SPD SMA SN Dσ σ σ σ σ= + + +                                               (2.1)    

The model prediction is said to be inadequate if |E| < σE. Simply stated, the metric 

verifies whether the actual prediction error is less than its standard deviation value. The 

confidence with which we accept or reject a model prediction is not reported with this 

metric. 

 Since the metric proposed in Eq. (2.1) does not give any measure of statistical 

significance of the result, hypothesis testing using classical statistics was found to be 

more appropriate for comparing data with prediction. For given prediction and data 

vectors xmodel and xexp, a validation metric based on the Mahalanobis distance was 

proposed (Hills and Trucano, 2001): 

  ( ) ( ) ( )( ) ( )12 cov cov
T

model exp model exp model expr
−

= − + −x x x x x x                          (2.2) 

The model prediction is said to be close to the data when r2 is less than some critical 

value χα
2(n) where n is the number of data points or predictions. Thus r2 follows a chi-

square distribution with n degrees of freedom. This metric is valid under assumption that 
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data and prediction vectors are Gaussian and hence cannot be applied to all problems 

unless both the data and prediction are transformed into normal space. Also, the model is 

rejected at α significance level and thus p-value in this case can be computed as P(r2 

> 2
obsr ). 

A quantitative comparison based on probability intervals has been suggested by 

Urbina et al (2003). In their approach, the probability distribution of the difference ∆ 

between model prediction and the data is determined first. Then for any chosen 

proportion p such that 0 < p <1, the values of ∆ corresponding to its CDFs (1 - p)/2 and (1 

+ p)/2 are estimated. Thus there will be a probability of p that ∆ lies within that interval. 

If that 100×p% probability interval contains zero, then the model prediction is said to be 

acceptable. 

 Zhang and Mahadevan (2004) applied Bayesian hypothesis testing and the Bayes 

factor metric for validation of limit state-based reliability prediction models. Suppose the 

model predicts a failure probability of p for a physical system based on the knowledge of 

various uncertainties. If we observed k failures out of n tests, then the validation metric or 

Bayes factor in this case is derived as B = ( ) ( ) ( )!1 1
! !

n kknn p p
n k k

−+ −
−

.  If B is greater 

than 1.0, we conclude that the data favors the model prediction. Recently the method has 

been extended to the validation of more generalized model outputs, both univariate and 

multivariate (Rebba et al, 2004). The validation metric in that case is ratio of posterior to 

prior densities of the model prediction. Other Bayesian approaches for model validation 

focused more on calibration of the model using the data and providing posterior 

probability intervals rather than a direct assessment of degree of match between 
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prediction and observation (Bayarri et al, 2003; Hasselman and Wathugala, 2002; Higdon 

et al, 2004). Similarly multivariate statistical methods are being extensively used in 

meteorological and climate modeling (Wilks, 1995) but their application in civil, 

mechanical and aerospace engineering has been limited. 

 

2.3 Hypothesis testing for model validation 

Depending on the availability of data, model output, the specific problem, validation may 

be considered in several ways: (i) the comparison of a set of discrete data with a single 

prediction (ii) comparing a continuous distribution (model output) with discrete data 

(test) or (iii) the comparison of multivariate model outputs with the corresponding 

observations. Null hypotheses that the difference between model and data is zero, can be 

appropriately constructed in each of these three cases and tested using some evidence 

(test data). Both classical and Bayesian hypothesis testing procedures can be used for this 

purpose. A careful attention is needed in formulating these hypotheses, satisfying the 

underlying assumptions and selecting a relevant significance test. This section discusses 

the issues in using hypothesis testing for model validation especially involving univariate 

comparisons, for the following two cases: 

Case 1: Model prediction is a single number θ0 while the data is X = {x1, x2, …, xn} which 

are replicated experimental measurements taken with the same input as for the model.  

Case 2: Model output follows a continuous distribution f(θ) while the data X = {x1, x2, …, 

xn} is observed not for a particular value of input but for a wide range of input parameters 

during the experiment.  

 



 15

2.3.1 Classical point null testing 

For case 1, the null and alternative hypotheses are formulated as H0: X = θ0 and 

Ha: X ≠ θ 0. For case 2, we test H0: X  = µ and 2
Xs = σ2; Ha: X  ≠ µ and 2

Xs ≠ σ2, where µ 

and σ are mean and standard deviation of θ respectively. The logic of classical hypothesis 

testing is as follows: First, a test statistic T is defined as a function of the difference 

between observation and prediction, and then the actual value of the statistic, t is 

estimated. Assuming that the null hypothesis is true, the probability of getting a test 

statistic value more than t is computed. Finally, this probability P(T ≥ t), also referred to 

as p-value, is compared to the significance level α (usually 0.01 or 0.05). If the p-value is 

less than or equal to the significance level, then the null hypothesis is rejected and the 

outcome is said to be statistically significant, i.e., not by chance. Practically, this can be 

interpreted as follows: if the p-value is too small, the t-statistic (a measure of the error) is 

too large to be acceptable under H0; therefore we reject H0. 

For case 1, suppose the null hypothesis is true, then X  may be assumed to follow 

a normal distribution, due to central limit theorem for a large n, with mean θ0 and say 

known variance σ. Then the test statistic 0n X
T

θ
σ

−
=  follows a Student t distribution 

with n - 1 degrees of freedom. The p-value corresponding to the observed statistic |t| is 

calculated using the two tail regions shown in Fig. 2.2. Similar tests can be conducted for 

Case 2 as well by replacing θ0 with µ and σ with sX and defining an additional chi-square 

statistic χ2 = ( ) 2

2

1 Xn s
σ
−

 to compare the variances. Confidence intervals (CI) for the data 

mean can be constructed such that the area under the distribution curve of the test statistic 
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outside that interval is denoted as α. If the p-value is smaller than α, we can be sure that 

the actual observed test statistic falls outside the CI. Thus both confidence intervals and 

p-value can be used to accept or reject a model; the decision is the same based on either 

criterion. In Case 1 for instance, a tail-area less than 0.05 would mean that under the null 

hypothesis, there is very small chance of obtaining a true difference larger than the 

actually observed difference, and hence the true difference must not be zero. Since the 

true difference is not zero, we reject the null hypothesis. The interpretation is similar in 

Case 2.  

 

 

Fig. 2.2  p-value given by tail area 

 

Although p-value may have legitimate meaning in other applications, its ability to 

explain the difference between prediction and observation under point null hypothesis 

testing has been debated (Berger and Delampady, 1987; Berger and Sellke, 1987). The 

use of p-value can be easily misused by decision makers. As often misinterpreted, the p-

value is NOT the probability that the null hypothesis is true i.e., a small p-value does not 

 - t t 

 p/2 
 p/2 
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mean that there is a small probability that the null hypothesis is true. Thus a p-value can 

be used as a qualitative, indirect indicator for large or small standardized error but cannot 

be treated as a direct quantitative measure of strength of evidence for the null. Refer to 

the paper by Johnson (1999) for more details on definitions related to p-values. 

 

2.3.2 Bayesian point null testing 

In Bayesian hypothesis testing, we assign prior probabilities for the null and 

alternative hypotheses, let these be denoted as P(H0) and P(H1) such that P(H0) + P(H1) 

=1. When an evidence or data D is obtained, the probabilities are updated as P(H0 | D) 

and P(H1 | D) using Bayes theorem. Then Bayes factor (Jeffreys, 1961) B is defined by 

the first term in the ratio in square brackets on the right hand side of Eq. (2.3). 

0 0 0

1 1 1

( | ) ( | ) ( )
( | ) ( | ) ( )

P H D P D H P H
P H D P D H P H

 
=  

 
                                              (2.3) 

If B is greater than one, the data gives more support to H0 than H1. Also the 

confidence in H0, based on the data, comes from the posterior null probability P(H0 | D), 

which can be rearranged from Eq. (2.3) as 0

0 0

( )
( ) 1 ( )

P H B
P H B P H+ −

. Typically, in the 

absence of prior knowledge, we can assign equal probabilities to each hypothesis and 

thus P(H0) = P(H1) = 0.5. Then the posterior null probability can be further simplified to 

B/(B+1). Thus a B value of 1.0 represents only 50% confidence in the null hypothesis 

being true. For the continuous, the Bayes factor can be derived in terms of probability 

density functions. Suppose g(θ) is the density under alternative hypothesis H1: θ ≠ θ0; 

then the Bayes factor or weighted likelihood ratio of H0 to H1 is given by (Berger and 

Delampady, 1987) 
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Prior density 

x

f(x) 

xo

h2

h1

B = h2 / h1 

Posterior density 

          0( | )
( | ) ( )
f xB

f x g dx
θ

θ θ
=

∫
                                                       (2.4) 

In the absence of prior knowledge, g(θ) can be assumed to be f(θ). Thus Eq. (2.4) can be 

rewritten using Bayes theorem as 0( | )
( | ) ( )

f xB
f x f dx

θ
θ θ

=
∫

 =
0

( | )
( )

f x
f θ θ

θ
θ =

, i.e., the Bayes 

factor (validation metric) becomes simply the ratio of posterior to prior densities 

evaluated at the model prediction value. 

 

 

 

 

 

 

 

Fig. 2.3 Bayesian Validation Metric 

 

Bayes factors are sensitive to the prior assumptions on the distributions. However, in the 

context of model validation, the priors are not assumed but the distributions predicted by 

the model output themselves are used as priors (Rebba et al, 2004). Non-informative 

priors like uniform distributions can always be used if the decision maker insists on 

giving more objective (frequentist) treatment to the validation problem. 

Discussion: Numerical studies (Berger and Sellke, 1987) show that Bayesian and 

frequentist conclusions might agree or disagree depending on the problem. In the context 

of model validation and point null testing, what one should be concerned about is the 
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support for H0 based on data and any prior information available. This is directly 

answered by P(H0 | D) whereas the p-value estimates the probability of obtaining an error 

statistic more than the actually observed statistic under null hypothesis H0. Since the data 

is judged under the assumption of null being correct, we can say that p-value estimates 

P(D | Ho). In the classical approach, we reject the null hypothesis because the error 

statistic is too large. In the Bayesian approach, we follow the hypothesis which is more 

probable.  

In order to understand the above argument more mathematically, consider the 

following: the classical approach assumes P(H0) =1 and P(Ha) = 0 and estimates P(D | 

H0) to accept or reject H0. Bayesians argue that prior belief in a null hypothesis is not 

entirely 100% but only 50% thus leaving a certain amount of disbelief in the null in the 

absence of any evidence or data. Hence it is more reasonable to assume P(H0) = P(Ha) = 

0.5. Upon the availability of data D, these prior beliefs are updated to compute the 

probabilities P(H0 | D) and P(Ha | D).  If P(H0 | D)  > 0.5, we have an increased 

confidence in the null hypothesis. Notice that we came to conclusion that “null 

hypothesis is more likely or more probable after the evidence.” This is exactly the reason 

behind Bayesian hypothesis testing and appears to have more practical use. 

Computationally, p-values require minimal effort as opposed to Bayes factors that require 

prior information.  

One argument on behalf of the classical approach is that no assumptions are made 

regarding the prior distributions of the model parameters even though we assume P(H0) = 

1. It should be remembered that in Bayesian model validation, we do not subjectively 

choose the priors but simply treat the probability distribution of the model output as the 
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prior. However, the likelihood function is sometimes assumed to follow normal 

distribution even when there is no evidence to support that assumption in case of small 

data sets. The criticism of classical methods is that suppose we have some prior 

information on the model, the metric ignores that information completely in the analysis. 

Thus no single method is better than the other for all the validation problems in practice. 

The ideal approach would be to use frequentist methods but resort to Bayesian methods 

when there is sufficient information on the prior distributions and likelihood functions. 

 

2.4 Multivariate hypothesis testing for validation 

For model response that changes with location (in space or time coordinates), the 

uncertainty can be characterized by a random field or process depending on the domain 

of interest. Numerically, the ensemble of realizations of the random field or process may 

be expressed in the form of a matrix with each realization represented as a row of values 

at discrete points in the domain. Validation in this situation is performed at finite number 

of locations or time instants since the experimental data are typically collected at a 

discrete points only in practice. The elements of each column of the model output matrix 

may follow a statistical distribution. Measurements made at discrete locations or times 

are often assumed to be taken independently. However, such observations are correlated 

in realistic situations and hence this study emphasizes the inclusion of correlations among 

measurements.  

 Multiple response quantities can be predicted at a single location. For example, 

various quantities like stress, mode shape, displacement etc may be computed from the 

derivatives or the integration of the finite element field combined with the structural 
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parameters. These different quantities are dependent, or in a first order sense correlated, 

since they are based on the same input. The uncertainties in the input parameters 

propagate to these derived quantities. Multivariate distributions can be used to represent 

such quantities. Similarly, the experimentally observed quantities resulting from the same 

input or experiment also have correlations. Since any experimental observation contains 

uncertainty, the measured quantities can be assumed to be correlated random variables. 

Thus, both computational model outputs and experimentally measured quantities form 

sets of correlated random variables.  

 

2.4.1 Individual versus aggregate validation 

Individual, or univariate, validation compares each model response prediction 

with a corresponding experimental observation. The validation metric value and hence 

the confidence measure for one variable may differ from that for another variable. This 

leads to a practical decision-making problem whether to reject or accept the model when 

different variables give conflicting inferences. When individual validation indicates that 

not all the responses match well with the data, it certainly exposes the deficiencies in the 

model and one must improve the model at that stage. At the same time, it is also 

important to incorporate the correlations among the model outputs introduced by the PDE 

or the computational model in the validation process. While the replications of the 

experimentally observed response may be independent of each other, the various 

measured response variables themselves could be correlated. We wish to capture these 

correlations among the data in the aggregate validation metric. Marginal or univariate 

comparisons do not incoporate the correlation information among multiple responses. 
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 Also, a model that passes the univariate validation process may not pass an 

aggregate test. In a graphical sense, when the realizations of the model output and the 

data form two different clouds, the distance between their centroids may be small but the 

cloud orientations could be different and vice versa. Similarly, their orientations could be 

same but the scatter in each of the principal directions for each cloud could be different. 

Univariate or marginal comparisons may miss such observations. Thus the decision 

maker may use both types of validation metrics, univariate and aggregate, to detect 

different types of weaknesses in the model.  In this regard, aggregate validation helps to 

assess the overall “quality” of the computational model by comparing all the model 

output variables simultaneously accounting for the model and data correlations as 

mentioned above. 

In some practical cases involving the use of surrogate models (response surface-

based), individual comparison may prove to be inadequate. For example, if we compare 

only mean values of two random processes for discrete time intervals individually, we 

would be neglecting the underlying correlation structure of the stochastic process 

entirely. Since any new model prediction (response at future time period) is based on an 

underlying correlation structure of the process, it is more sensible to include those 

dependency relations in the validation metric. It has been argued that multivariate 

methods limit the inflation of Type I experiment-wise error (Thompson, 1994) that is 

observed in multiple univariate analyses (such as t-tests, ANOVAs, etc). Each individual 

univariate analysis adds to the chance that one of these analyses will be due to error, 

hence, the inflation of Type I "experiment-wise" error. More precisely, experiment-wise 

error is the probability (Pew) that one or more of a series of significance tests (say n) 
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result in Type I error. If in any single test, the Type I error probability is α, then Pew = 1-

(1-α)n.  

The metrics discussed in this section are based on hypothesis testing where the 

null hypothesis is that the model is correct and the alterative hypothesis is that the model 

is not correct. Both classical and Bayesian methodologies can be used to derive such 

metrics. Individual validation is handled with univariate analysis while aggregate 

validation is handled with multivariate statistics. 

 

2.4.2 Classical statistical methods 

 Let the multivariate output be represented using a matrix X of size n × p where n 

is the number of random realizations and p is the number of different response quantities, 

or the number of spatial or temporal points at which a single response is predicted or 

observed. Also µ0 is the vector of mean values of each column of X. Let the 

corresponding observation data matrix be represented as Y with same or different 

dimensions as X. Let Y  be the mean vector and S be the covariance matrix of Y. In this 

study, the discussion is limited to matrices of equal dimensions and only one-sample 

hypothesis testing is discussed. See Srivastava (2002) for various other cases. The first 

similarity measure discussed in this study is based on distance between the two matrices 

(observation and prediction). The Mahalanobis distance similarity measure is computed 

as (Srivastava, 2002) 

                     d2 = n(Y -µ0 )TS-1(Y -µ0 )                                                    (2.5) 
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The observed data is said to belong to the population (model output) if d2 is less than a 

critical value, 2
, 1,( 1)crit p f p

f pd F
f p α− +

×
= ×

− +
 where f = n – 1, and Fp, f-p+1, α  comes from the 

F distribution. While Eq. (2.5) measures the difference between the centroids of the two 

data clouds, the covariance structure is a measure of linear dependence among the 

variables and defines the orientation or alignment of the data clouds. Thus a second 

metric, covariance similarity between the model output and observed data, based on the 

log-likelihood ratio test (LRT) is obtained as (Srivastava, 2002) 

            R = - (2m / f) log (λ)                                                           (2.6)  

where m = f – 2d, f = n-1, and 
22 3 1

12( 1)
p pd

p
+ +

=
+

. For large n, R follows a chi-square 

distribution with p(p+1)/2 degrees of freedom, p being the number of model output 

variables under consideration. The likelihood ratio λ is estimated as 

    12 2 2
0 0

1
2

fp f f

e S etr f Sλ − −  = Σ − Σ    
                                         (2.7) 

where Σ0 and S are the population and sample covariance respectively, etr represents 

exponential trace of a matrix. The hypothesis that the two matrices are similar is rejected 

at 100(1-α) % significance level, when R exceeds a threshold value chosen from the chi-

square distribution with p(p+1)/2 degrees of freedom. Also, a test for comparison of the 

first few largest eigenvalues (Lawley, 1956) of the model output and data correlation 

matrices can be performed to check for any significant equality. 

The mean and covariance similarity metrics can be combined into a single 

aggregate metric using the relation shown in Eq. (2.6) but with f = n and  
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22 9 11
12( 3)
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p
+ +
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 and R following a chi-square distribution with p(p+3)/2 degrees of 

freedom. Also the likelihood ratio λ has the extra term as shown below: 

                ( )12 2 2
0 0 0 0

1 ( )( )
2

fp f f
Te S etr f S Y Yλ µ µ− −  = Σ − Σ + − −    

                          (2.8) 

Similarly multivariate two-sample testing can also be performed for matrices of unequal 

sizes. The purpose of combining the two types of validation metrics (mean and 

covariance comparison) in Eq. (2.8) is just to arrive at a single metric that measures the 

overall quality of code rather than to avoid the conflicting inferences each metric may 

provide. The model shall be improved if any one of the two metrics fails to meet the 

accuracy requirements defined by the corresponding hypothesis test.  

 It should also be noted that in both univariate and multivariate cases, afore mentioned  

formulae for statistical tests are only valid under the assumption of normality i.e., x has to 

be normal and the matrices X and Y have to be jointly normal. This condition may not be 

easily satisfied in most practical engineering problems where the output and observations 

could be non-Gaussian and highly skewed. Further, when the two data sets have a large 

number of variables and the measured data is believed to have noise, the data should be 

filtered and excess variance may be removed. Principal component analysis (PCA) may 

achieve these two goals for reducing the dimension and noise in the data (Srivastava, 

2002; Wentzell et al, 1997). 

 

2.4.3 Bayesian method 

Consider p outputs (x1, x2, x3,…, xp) obtained from a computational model; and 

each model output is treated as a random variable. The joint PDF of the multiple response 
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quantities is denoted by fX(x1, x2, x3,…, xp). Similarly, experimentally observed response 

quantities may be treated as a set of correlated random variables (y1, y2, y3,…, yp) with 

each observation assumed to have a Gaussian zero-mean error for the sake of illustration, 

with constant variance σ2. While the validation metric for a single response is simply the 

ratio of its posterior and prior densities evaluated at a particular model prediction value 

(Eq. (2.4)), this univariate case can be extended to a more general multivariate case 

where the overall metric is defined as the ratio of posterior joint probability density to the 

prior joint probability density. The likelihood function for the experimental observation 

was assumed to be proportional to the Gaussian density function in Eq. (2.6). When 

multiple observations (independent as well as dependent) are made, the overall likelihood 

is then proportional to the multi-dimensional Gaussian distribution. Then a collective 

comparison can be made using the Bayesian validation metric similar to Eq. (2.4) as 

  
( ) ( )

( ) ( ) ( )

1
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 ∫ ∫ ∫ X

y x V y x

y x V y x
            (2.9) 

where V is the covariance matrix of the observed data. Again, B is evaluated at a 

particular model prediction set (x1, x2, x3,…, xp)0. The data is said to favor the model if B 

is greater than one. This metric can also be used for a single response quantity predicted 

at multiple locations of space and time by simply replacing any ith response quantity xi 

with x(t).  

 One practical difficulty in the metric shown in Eq. (2.9) is the estimation of the 

joint probability density function for non-normal model outputs. For normal variables, an 

explicit expression for the joint PDF is available but the construction of joint PDFs for 

other non-normal cases is quite cumbersome. Also, the densities computed using non-
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parametric or parametric methods (Scott, 1992; Tapia, 1978) tend to be either too small 

or too large in some cases, thus leading to numerical difficulties in the computation of the 

Bayesian validation metric. Several computational issues need to be resolved before 

implementing classical as well as Bayesian validation metrics to practical problems. 

  

2.4.4 Transformation methods for non-normal data 

The application of transformations to data to achieve normality has been 

suggested and discussed by several authors (e.g., Srivastava, 2002). The transformed 

variables can then be used in the proposed validation metrics. A few of the popular 

transformation methods are discussed in this section, briefly explaining the underlying 

assumptions in each of the methods. A literature survey reveals that each transformation 

technique is found to be suitable for a particular application and according to the 

researcher’s preference. 

Rosenblatt transformation 

Let the non-normal random vector x = (x1, x2,…, xp) have a joint distribution function 

FX(x1, x2,…, xp). A transformation (Rosenblatt, 1952) based on successive conditioning 

can be made as follows: 

Φ(u1) = Fx1(x1) 

Φ(u2) = Fx2(x2 | x1) 

Φ(u3) = Fx3(x3 | x1, x2) 

.. 

Φ(up) = Fxp(xp | x1, x2, …, xp-1)                                                                                     (2.10) 
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Using Φ-1 in each case, one can obtain an independent set of standard normal variables u 

= (u1, u2, u3,..., up). This method requires the knowledge of exact full and conditional 

densities. 

Nataf transformation 

The Nataf transformation (Nataf, 1962) addresses practical problems where we usually 

know only the marginal densities and the correlation structure among various variables. 

Thus one can define standard normal variates u = (u1, u2, u3,..., up) obtained by marginal 

transformations of (x1, x2,…, xp) as  

            ui = Φ-1(Fxi(xi))                                                     (2.11) 

Further assuming that all u's are jointly normal, one can construct the joint PDF of the 

model output variables using the relation 
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where ϕp(u1, u2,…, up, C’) represents a p-dimensional standard normal PDF and the 

elements of the equivalent covariance matrix C’, are obtained by solving the equation  
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∫∫     (2.13) 

where cij and cij’ are the elements of correlation matrices for the original and transformed 

variables respectively. Both posterior and prior joint PDFs may be derived using Eq. 

(2.12) to be used in the Bayesian aggregate validation metric given in Eq. (2.9). But one 

should ensure that u1, u2…etc in Eq. (2.12) are jointly normal before applying in Eq. 

(2.9). 
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Power and Modulus transformations 

Box and Cox (1964) proposed a family of power transformations for the original data 

points x = (x1, x2,…, xm) to define the univariate transformed data as 

1
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1i
i

xu
g

λ

λλ −

−
=      for  λ ≠ 0 

                      = g1 logxi    for  λ = 0                                      (2.14) 

if the data is positive. Here g1 is the geometric mean of the given data calculated as 
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∏ and λ is a parameter that needs to be estimated.  

If some data points are negative, we may consider the transformation 
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∏ and a is chosen such that (xi + a) > 0 for all i. John and Draper 

(1980) proposed alternative transformations as 
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∏ . The value of b is usually chosen as an arithmetic or 

geometric mean of the original data x = (x1, x2,…, xm). One easy way to find the 
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likelihood estimate of λ is to maximize the function L(λ) = - (m - 1) log(s2
λ) where s2

λ is 

the variance of the transformed data ui. 

 The transformations shown in Eqs. (2.14), (2.15) and (2.16) can be applied to 

multivariate data to marginally transform the non-normal data into nearly Gaussian. 

However, marginally normal does not automatically mean jointly normal. Hence, we can 

define a vector of parameters λ = (λ1, λ2,…, λp) that can be used to transform each of the 

random variables. Instead of obtaining the parameters one by one, we can obtain the 

entire vector in a single estimation (Andrews et al, 1971) by finding the maximum value 

of the function L(λ) = - (m -1) log|Sλ| where Sλ is the covariance matrix of the 

transformed random variables uλ.. This transformation produces nearly jointly normal 

variates, but it is desirable to test the normality of transformed data. In both univariate 

and multivariate cases, the parameters can be estimated using any standard optimization 

routines such as steepest descent, Newton-Raphson method etc. 

Suitability of transformation methods 

While the Rosenblatt transformation is quite accurate, actual closed form conditional 

distributions are almost impossible to obtain in many cases. Also, in the context of the 

Bayesian metric, if we do not even know the exact joint PDF of the model output 

variables, constructing an explicit continuous joint CDF and conditional distributions is 

even more impossible for large p and hence this method is discarded. 

 The Nataf transformation has an advantage that one can obtain the normal data 

using marginal densities alone. But these marginally normal data need not be jointly 

normal in all cases and hence the method may be inaccurate in some situations. Thus Eq. 

(2.12) can be used only under the assumption of multivariate normality for the 
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transformed data (u1, u2, u3,..., up). If an exact distribution (closed form) is not available 

for the model output, this method cannot be used easily. Hence this method should be 

used with caution and only after checking that the data is jointly normal using standard 

tests (Srivastava & Hui, 1987). 

 Thus, in this study, we can use the power transformations proposed by Box and 

Cox as they are mathematically tractable, simple to implement and do not have strict 

requirements or significant assumptions. It is also not required to know the exact closed 

form distributions for each of the model response variables in this method. 

 For the purpose of computing the Bayesian aggregate validation metric given in 

Eq. (2.9), the joint PDF can sometimes be either too small or too large, leading to 

numerical overflow or underflow problems. This computational hurdle can be overcome 

as follows. Using the concept of transformation of variables, any multivariate function 

g(w1, w2,…, wn) can be rewritten in terms of a new set of variables h(z1, z2,…,zn) using 

the relation 

            g(w1, w2,…, wn) = h(z1, z2,…,zn)
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                            (2.17) 

In the context of individual transformations that take place according to the multivariate 

case described previously, the joint PDF (being a function of p random variables) can be 

expressed using the standard normal variates as 
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     fX(x1, x2,…, xm) = fY(u1, u2, u3,..., up) 
p

i

i i i

du
dx=

∏                                    (2.18) 

Since the product of various terms in Eq. (2.18) may lead to numerical instability, taking 

natural logarithm on both sides, the right hand side is reduced to a summation of several 

terms like i

i

du
dx

 instead of a product. Also the exponential function evaluation can be 

omitted in the term log(fU(u1, u2, u3,..., up)) since the vector of transformed random 

variables u form a joint normal distribution with a covariance matrix and zero means. 

Since the Bayes factor in Eq. (2.9) is the ratio of posterior to prior joint PDFs, taking the 

natural logarithm of the ratio also leads to significant mitigation of accuracy problems 

anticipated before. Under joint normality assumption for u1, u2, etc., even Eq. (2.12) can 

be used for the Bayesian aggregate validation metric. The posterior densities are usually 

derived using Markov Chain Monte Carlo simulation instead of exact analytical 

integration.  

 

2.4.5 Numerical examples 

Example 1: This example deals with the multivariate transformation of non-normal data. 

Suppose the model output is represented by 4 correlated random variables x = {x1, x2, x3, 

x4} with the same correlation coefficient of 0.75 between any two variables. Further, their 

marginal densities are found to be all exponential with mean values of 0.5, 0.25, 1 and 2 

respectively. The corresponding experimental data points are generated intentionally 

from lognormal distributions and distance and covariance measures based on Eq. (2.5) 

and (6) are compared to check if the model output matrix matches with the experimental 

data matrix. 
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 10,000 samples from the model output joint distribution are generated and 

transformed using the Box-Cox method (based on maximizing the logarithm of 

determinant of the covariance matrix) to obtain the population mean values for the 

normal variates as (-0.362, -0.325, -0.23, 0.36). Also the transformation parameters λ 

were jointly found to be (0.2645, 0.2636, 0.270, 0.2711). It was observed that the Box-

Cox transformation produced nearly joint normal data, since several random linear 

combinations of the data produced normal densities. Using Eq. (2.14), the 50×4 

experimental data points are transformed using this same λ vector, to obtain U, with 

mean values of (-0.272, -0.263, -0.0182, 0.811) and sample covariance as 

S = 

0.107 0.036 0.158 0.317
0.036 0.018 0.071 0.135
0.158 0.071 0.329 0.549
0.317 0.135 0.549 1.351

 
 
 
 
 
 

 

The sample means for the 50 experimental data points are (0.643, 0.327, 1.298, 2.636) 

and sample covariance matrix in the original space is  

S = 

0.402 0.151 0.703 1.499
0.151 0.086 0.339 0.603
0.703 0.339 1.739 2.627
1.499 0.603 2.627 6.629

 
 
 
 
 
 

 

Distance similarity 

The d2-statistics are computed as per Eq. (2.5) and summarized in Table 2.1. Since the 

Nataf transformation cannot guarantee joint normal data, the transformation in this 

example is limited to Box-Cox method only. The critical value for d2 is calculated as 

10.967 for a significance level of 0.05, with degrees of freedom of p = 4 and f = 49. From 

Table 2.1, we can conclude that the experimental data and model output matrices do not 
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have identical mean; the transformed data suggests that there is more error than what we 

would have estimated from the original data.  

Table 2.1. Aggregate comparison 

Data type Observed mean Predicted mean d2 Result 

Untransformed (0.643, 0.327, 
1.298, 2.636) (0.5, 0.25, 1, 2) 3.79 Pass 

Box-Cox (-0.272, -0.263, -
0.018, 0.811) 

(-0.362, -0.325, -
0.230, 0.360) 11.61 Fail 

  

This is evident from the different d2 values in Table 2. 1, and is the expected result, since 

the prediction and observation come from two different distributions. The discussion in 

this example so far relates to the aggregate validation metric from Eq. (2.5) and one can 

compare the marginal distribution statistics of data and model output as well. Thus each 

row of data matrix Y is compared to the marginal densities of x and results summarized in 

Tables 2.2 and 2.3. The critical value for t-statistic in this case is 2.009 for a significance 

level of 0.05 and 49 degrees of freedom. 

 

Table 2.2. Individual comparison for untransformed data 

Variable Pred. mean Obs. mean Obs. std  t 

x1 0.5 0.643 0.64 1.574 

x2 0.25 0.327 0.296 1.87 

x3 1 1.298 1.332 1.608 

x4 2 2.636 2.601 1.739 
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Table 2.3. Individual comparison for transformed data (using Box-Cox method) 

 

 

 

 

 

 

 

The smaller the t value (last columns in Table 2.2 and 2.3), the more acceptable the 

model is. The results from Tables 2.2 and 2.3 indicate that the model passed the 

validation test more easily in the original space than in the normal space. Failure is the 

correct inference here. 

Covariance Similarity 

 The covariance similarity measures in original and normally transformed space 

are computed following the same procedures as in Section 4.3.1 but with Eq. (2.6) instead 

of Eq. (2.5). The results are presented in Table 2.4. For this example, p = 4, and using Eq. 

(2.6), the model is rejected if R exceeds 18.307. 

Table 2.4. Covariance similarity measure 

Data Type R Result 

Untransformed 33.56 Fail 

Transformed 31.67 Fail 

 

 

Variable Pred. mean Obs. mean Obs. std t 

x1 -0.362 -0.272 0.331 1.924 

x2 -0.325 -0.263 0.138 3.158 

x3 -0.23 -0.0182 0.58 2.583 

x4 0.36 0.811 1.174 2.715 
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Combined metric 

Next, a combined metric for distance and covariance similarities is calculated using Eq. 

(2.8) with the critical value for R as 18.307. The results are summarized in Table 2.5 

below. In all cases, the validation inferences are correct. 

 

Table 2.5. Combined metric for distance and covariance similarity 

Data Type R Result

Untransformed 39.69 > 

18.307  

Fail 

Transformed 40.05 > 

18.307 

Fail 

 

Bayesian metric  

 Validation using Bayesian hypothesis testing is illustrated in this subsection. 

Aggregate multivariate as well as multiple univariate comparisons are considered. The 

computational model output xi follows an exponential distribution with parameter θi. In 

the Bayesian context, the parameters '
i sθ are assumed to be random variables with some 

joint density and the experimental data is used to update these random parameters. The 

priors are chosen from the Gamma distribution in this example, since it is a conjugate 

distribution to the exponential distribution (which is the density of each model response 

variable).  

      
1

( )
( )

iba a
i

i
b ef

a

θ θθ
− −

=
Γ

                                           (2.19) 
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Also the correlation coefficient between any two random parameters θi and θj, is assumed 

to be 0.75 (same as for the variables xi and xj). Both assumptions regarding priors and 

correlation were numerically verified to be true for the current example, using Monte 

Carlo simulation. See Jeffreys (1961), Leonard & Hsu (1999) for detailed information on 

the selection of prior density. Table 2.6 shows the priors for the distribution parameters. 

The shape and scale factors (a, b) of the Gamma distribution can be derived from the 

assumed mean and standard deviation values.  

 

Table 2.6. Priors for the parameters of exponential distribution 

Var µ σ  a b 

θ1 2 0.2828 50 25 

θ2 4 0.5657 50 12.5 

θ3 1 0.1414 50 50 

θ4 0.5 0.0707 50 100 

 

 

Further, each data point zj is assumed to have come from the exponential distribution 

(same as the density of model prediction). Thus the likelihood function in this case is 

       ji z
iij ezf θθθ −=)|(                                           (2.20) 

The ratio of posterior to prior joint probability densities of these parameters, evaluated at 

the value (2, 4, 1, 0.5) gives the aggregate validation metric, B. Alternatively, individual 

Bayes factors Bi can be computed as the ratio of posterior and prior marginal densities for 
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each of the variables xi. In either case this factor should be greater than 1.0 in order to 

infer data support for the model prediction.  

The Bayesian updating is performed using Gibbs sampling. We need to evaluate 

the joint density function in computing the aggregate validation metric. At the end of 

Gibbs sampling, we have only a large number of joint samples from which marginal 

densities can be constructed but a closed form equation for the joint PDF is very difficult 

to obtain especially when the output is non-normal. To overcome this difficulty, one can 

transform the joint output into multivariate normal space using the Box-Cox power 

transformation and use Eq. (2.18) to evaluate the joint density (both prior and posterior).  

 

Table 2.7. Posteriors and priors for the parameter θ  of exponential distribution 

Prior Posterior 
Var 

a b a b 
B 

θ1 50 25 139.54 84.98 0.092 

θ2 50 12.5 130.52 40.087 0.083 

θ3 50 50 137.30 169.55 0.062 

θ4 50 100 119.00 296.84 0.067 

 

Table 2.7 shows the prior and posterior Gamma parameters for each response variable. 

The overall Bayes factor for the 4 variables was found to be 6.82×10-5 which indicates 

that model output is not acceptable overall and also the individual comparisons in Table 

2.7 indicate almost no support for the hypothesis that the experimental data belongs to the 

same joint distribution as the model output. Among the several methods considered in 
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this example (univariate in the original space, multivariate in the transformed normal 

space, and the Bayes factor test), the methods in normally transformed space and 

aggregate Bayesian metric reached the correct validation inference.  

Example 2: Validation of a three-parameter energy dissipation model for lap joints 

The example provided in this section deals with the energy dissipation due to friction at 

the lap joints in a structure. Here we consider a three-parameter Smallwood model 

(Smallwood et al, 2001; Urbina et al, 2003) to study the accuracy of the mathematical 

model in predicting the loss of energy dues to friction in a lap joint. The purpose of the 

mathematical model is to predict the dissipation energy D released per cycle at the joint 

when subjected to harmonic force amplitude of F0. The hysteresis curve (force vs. 

displacement graph) for the joint comprises of two symmetrical curves; upper and lower. 

The energy loss in the joint under one cycle of sinusoidal loading is found by integrating 

the area under the hysteresis curve and analytically derived as 

               11
1

n
n

nD k z
n

+− = ∆ + 
                                           (2.21) 

where kn is a nonlinear stiffness, n is a nonlinear exponent and ∆z is the displacement 

amplitude obtained by solving the equation below: 

       02 n
nF k z k z= ∆ − ∆                                           (2.22) 

where k is a linear stiffness term. The three parameters n, kn (or log(kn) in this case) and k 

are quantified from the experiments and the statistics are given in Tables 2.8 and 2.9. 

Each of these parameters is found to follow a normal distribution. Five levels of loading 

were applied in the experiment at 60, 120, 180, 240, and 320 lb that span the range of 

loadings the system may be exposed to. 
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Table 2.8. Statistics of Smallwood parameters 

Variable n log10(kn) k 

Mean 1.36 5.855 1172700 

Std. Dev 0.068 0.1866 12865 

 

Table 2.9. Correlation coefficients among Smallwood parameters 

n log10(kn) k 

1 0.902 0.494 

0.902 1 0.2295

0.494 0.2295 1 

 

 The same five levels are used in the model computation. 10,000 sets of correlated 

Smallwood parameters were generated and substituted into Eq. (2.21) to obtain 10,000 

samples of energy dissipated per cycle for each force level and it was observed that –

log10D in each case followed a normal distribution. 12 sets of experimental data were 

obtained by dismantling the structure and reassembling it, thus simulating the stochastic 

properties of structure (Urbina et al, 2003). This test data for dissipation energy for a 

particular force level may be compared with the D values predicted by the Smallwood 

model.  The comparisons were made marginally (at each of the five different loadings) as 

well as collectively, using both classical and Bayesian hypothesis testing. Since the 

model output is Gaussian, no transformation is needed. The results are summarized in 

Tables 2.10 to 2.13. 
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Table 2.10. Individual t-tests for the mean of predicted energy at each load level 

F0 (lb) 60 120 180 240 320 

t 1.175 0.26 0.526 1.144 1.518 

t11, 0.05 
(critical) 

2.2 2.2 2.2 2.2 2.2 

Result Pass Pass Pass Pass Pass 

 

 

Table 2.11. Individual F-tests for the variance of predicted energy at each load level 

F0 (lb) 60 120 180 240 320 

F 11.09 8.82 8.53 9.78 13.13 

F11, 0.05 
(critical) 

19.675 19.675 19.675 19.675 19.675 

Result Pass Pass Pass Pass Pass 

 

Table 2.12. Aggregate comparison in original space (5 variables) 

Type of Comparison statistic critical value Result 

distance similarity 39.15 31.22 Fail 

covariance similarity - 18.307 N/A 

distance + covariance - 23.685 N/A 

 

The covariance similarity metric in Table 2.12 could not be reported in some cases since 

the test statistic turned out to be a very large positive number indicating that the test 

would definitely fail. One possible explanation for this behavior is that the high 
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correlation among model output variables may have resulted in numerical instabilities 

during the covariance matrix inversion needed for computing the metric given by Eq. 

(2.6).  

 For the Bayesian model validation, the mean values of energy at different load 

levels (five in this case) are assumed to be random variables that are being updated using 

the available test data. The posterior and prior densities of those means can be used to 

calculate the marginal Bayes factors as shown in Eq. (2.4) or the collective metric given 

in Eq. (2.9). Table 2.13 shows the priors, and the posteriors obtained using a Markov 

Chain Monte Carlo simulation procedure. 

 

Table 2.13. Bayes factors for energy dissipated at different force levels 

Prior Posterior B 

µµ σµ  µ'
µ σ'

µ  f(µ'
µ)/f(µµ)|µµ 

Result 

4.37 0.0275 4.35 0.0138 1.410 Pass 

3.65 0.0275 3.63 0.0114 1.265 Pass 

3.23 0.0275 3.21 0.0111 1.062 Pass 

2.93 0.0275 2.91 0.0114 0.969 Fail 

2.63 0.0275 2.611 0.0123 1.061 Pass 

 

The aggregate Bayes factor as per Eq. (2.9) was found to be 0.013 indicating that the 

model prediction is not supported by the data in an overall sense, although individually it 

is slightly supported by the experimental data at several load levels. 
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 For this particular application problem, the model passes when comparisons are 

made marginally but fails collective comparison. Suppose the correlation among model 

response variables at different load levels is close to zero, the overall Bayes factor is 

simply the product of individual Bayes factors (from Table 2.13) and hence the model 

passes the aggregate comparison test as well. This is an important result, showing that in 

multivariate model validation, the decisions at the end of the validation process are highly 

dependent on the correlation structure among the multiple response quantities of interest. 

 The chapter so far discussed various point-null hypothesis testing methods for 

comparing model predictions and test data. Both classical and Bayesian methods have 

been explored for this purpose. The following section address the issue of practical 

significance of a result as opposed to the statistical significance and also highlights the 

effect of sample size on the validation inference. 

 

2.5 Interval-based hypothesis testing 

 

2.5.1 Effect of sample size on inference 

Apart from philosophical differences, both p-values and Bayes factor (or an 

indirect estimate of posterior null probability, P(H0 | D)) are affected by the number of 

data samples. For example, a typical p-value for equality of means under normality 

assumptions can be computed as 02 1
n x θ

σ

  −
 − Φ      

 for Case 1 described in Section 

2.3.1. Although x converges quickly with increasing n, the p-value however can reject 



 44

the null hypothesis with a large value for n. Thus, even with very small difference 

between x and θ0, the null hypothesis can still be rejected with increasing n.  

In the Bayesian approach, the posterior null probability C = P(H0 | D) can be 

derived in this case with a particular choice of priors (Jeffreys, 1961) as 

( ) ( )

1221
02

21 1 exp
2 1
n x

n
n

θ
σ

−

−
  −  + +  +    

. In the context of model validation however, the priors 

are not chosen by statisticians by experience but they come from the probability 

distributions of the computational model output. Since x  converges very quickly with 

increasing n, for the sake of illustration, it is assumed that | x -θ0|/σ remains to be 0.1 and 

thus independent of n. Then one can plot p-value and Bayesian confidence measure C as 

a function of n as shown in Fig. 2.4. 

 

 

Fig. 2.4 Effect of sample size on p-value and C 
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As n increases both classical and Bayesian hypothesis tests increasingly reject the 

null hypothesis for this problem but one can notice that C reaches a maximum value for a 

particular n whereas p-value monotonously decreases. In order to understand the relation 

between the sample size and p-value or C, we need to explore the kinds of risks we take 

by using these metrics for decision making. 

There are two kinds of errors related to any statistical significance test: Type I and 

Type II errors. If we reject a null hypothesis that is actually valid, we commit Type I 

error (false-positive) and when we accept an invalid hypothesis, we commit Type II error. 

Since we reject a null hypothesis whenever p-value is less than a significance level, say 

0.05, it is said that we limit the probability of committing a Type I error to 0.05. In a 

classical setting, probabilities are never computed under the assumption that Ha is true 

and thus the p-value does not measure or consider the Type II error at all in making a 

statistical decision. As mentioned already in Section 2.3.2, classical hypothesis testing 

assumes P(H0) = 1 or H0 is completely true. The Bayesian approach on the other hand 

assumes both H0 and Ha are equally likely in the absence of prior knowledge. Thus the 

computation of C involves likelihood estimation under both null and alternative 

hypotheses. The Bayesian metric thus includes both types of error in a statistical 

significance test. 

Again it should be remembered that a rejection of null hypothesis would only 

mean that model prediction and experimental observation are not exactly equal. This does 

not automatically render the model useless since there is very low probability for two 

numerical quantities to be equal in practice. Since both p-value and C decrease with 

increasing n, even accurate models can get rejected under point null hypothesis testing. 
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However, that collecting additional data should increase the confidence in the decision to 

accept or reject a model depending on how good or bad the model was in the beginning. 

An interval based approach for hypothesis testing method is formulated below to address 

this problem and arrive at consistent decisions. 

 

2.5.2 Formulation for interval-based testing 

Interval-based model validation test hypotheses may be represented as H0: | X  – 

θ0| < ε versus Ha: | X  – θ0| > ε. From a classical testing perspective, p-value is calculated 

as the probability of a test statistic being greater than the observed value given the null 

hypothesis is true. Then it is not quite obvious what distribution T follows under this new 

H0. When ε is zero, the test statistic T follows t-distribution or T2 follows F-distribution 

with n - 1 degree of freedom for both numerator and denominator. As defined previously 

in this chapter, p-value may estimated as P(T > t | H0) and for the interval hypothesis, the 

null H0 can be expressed as (( X - θ0)2 < ε2). By defining 2

2

s
nεδ = , one can make use of 

non-central F distribution for computing the p-value as 

               p-value = ( )2
1, 1,nP F tδ− >                                   (2.23) 

As ε becomes smaller, the resulting p-value converges to the case of point null 

hypothesis.  

The Bayesian formulation of hypotheses for this case would be H0: |θ - θ0| < ε. Then we 

update this hypothesis after observing the data. Here we are testing if the model 

prediction θ is in fact near θ0. This is not exactly the same as testing H0: | X  – θ0| < ε. 
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First we assume that the null and alternative have equal prior probabilities i.e., P(|θ - θ0| < 

ε) = 0.5 and then calculate P(|θ - θ0| < ε | x ). Again, note that we do not make any 

inference on | X  - θ0| as opposed to the classical hypothesis testing.  

Suppose we have some prior information on model prediction variable θ in the 

form of a probability distribution f(θ), then the Bayes factor can be defined as 

    
( )

( ) ( )

0

0

0

0

| ( )

| ( ) | ( )

f x f d
B

f x f d f x f d

θ ε

θ ε
θ ε

θ ε

θ θ θ

θ θ θ θ θ θ

+

−
− +∞

−∞ +

=

+

∫

∫ ∫
                  (2.24) 

Suppose for the sake of illustration we assume that f( x | θ) is N(θ, σ2/n) and our 

hypothesis is that θ is near θ0 with density N(θ0, β2) where β is some constant.  

Then the posterior null probability C = P(H0 | D) = 
1

B
B +

can be calculated as (Schervish, 

1995) 

   [ ] [ ]0

0

0 0
2 2( | )

n x n x
C f x d

θ ε

θ ε

λ θ λ θε εθ θ
σ λ σ λ

+

−

   − −
= = Φ + − Φ −   

   
∫      (2.25)  

where 
2 2n

βσλ
β σ

=
+

. The above expression given in Eq. (2.25) has been derived under 

a special case of Gaussian assumptions for the model output f(θ). One can numerically 

calculate a more general case of confidence measure using Eq. (2.24). This concept can 

also be extended to the multivariate case.  

A “classical”-type solution corresponding to this formulation has been derived 

from Eq. (2.25) by simply assuming that θ has a very flat density (very large standard 

deviation) and hence indicating that information on θ0 is purely objective (Berger and 
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Delampady, 1987; Schervish, 1995). Thus setting β  → ∞, the expression for C in Eq. 

(2.25) reduces to 0 0| | | |n x n xn nθ θε ε
σ σ σ σ

   − −
Φ + − Φ −      

   
. Thus if θ0 is 

deterministic, one can use this expression to estimate the confidence in the null 

hypothesis. Although this solution tends to an objective, frequentist approach (flat prior), 

this is not the p-value in a classical hypothesis test. 

 

2.5.3 Effect of sample size 

In order to examine the effect of sample size on the Bayesian metric, consider the 

following example: Suppose β =1, ε = 0.2, σ = 1, then the Bayesian confidence measure 

C versus n for the case | x -θ0| = 0.1 and | x -θ0| = 0.25 are given in Fig. 2.5. In the first 

case, the difference | x -θ0| is less than ε, and in the second case, | x -θ0| is greater than ε. 

As the data set becomes larger, the first model should be increasingly acceptable with 

increasing n and the second model should be increasingly reject the model.  

 

 

 

 

 

 

 

Fig. 2.5 Interval-based Bayesian formulation 
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It is clear from Fig. 2.5 that the confidence in the first case increases with large n 

while the confidence drops in the second case where the difference between the model 

prediction and the data is large. Thus the interval-based formulation gives a consistent 

result with increasing data size. Suppose we do not have any prior information on θ i.e., 

θ0 is deterministic, then setting β to some very large value (10000), the plots are given to 

mimic a “classical” result in Fig. 2.5. Again additional data rejects a model that is 

originally not so accurate and accepts a model that is originally accurate enough. Thus 

the interval-based hypothesis testing formulation appears to be practically more useful 

and consistent with data size. The classical approach is difficult to implement with this 

formulation. But the Bayesian approach is easy to implement, and can even be extended 

to provide a frequentist result. 

 

 

 

 

 

 

 

Fig. 2.6 Interval-based classical formulation 

 

2.6 Alternatives to hypothesis testing 

In this section, some alternatives to p-values and Bayes factors are explored for validation 

purposes. Each method has its drawbacks and advantages and the decision maker or 
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model developer has to choose the appropriate metric of comparison depending on the 

problem. 

 

2.6.1 Decision Theoretic Approach  

One approach is the use of decision-theoretic utility or loss functions instead of 

Bayes factors or p-values for testing the null and alternative hypotheses (Ferrandiz, 

1985). Calling d0 as a decision to accept the null H0: θ = θ0, and d1 as a decision to accept 

the alternative H1: θ ≠ θ0, one can define the utility function u(di, θ) of choosing di when 

θ is the parameter. Using the Bayesian approach, having observed the data x, the decision 

d1 is the optimal decision if and only if E[u(d1, θ) – u(d0, θ) | x] > 0. The difference in the 

utility functions is usually chosen as a squared loss function or an absolute error metric 

(Schervish, 1995).  

 

2.6.2 Equivalence Testing  

Model validation is ultimately a test of how well model predictions match with 

experimental or historical observations. One would think that the burden of proof should 

rest with the model, to force it to show that it can make accurate predictions. It has been 

argued that traditional statistical tools (like classical null hypothesis testing) are 

inappropriate since their ability to detect differences between model output and 

observation is greatly influenced by the sample size. Thus if data is observed with high 

variance and has small sample size, the model easily passes the hypothesis test. 

Equivalence tests are along the lines of the practical formulation described in Section 2.4 

and they stress on disproving the alternative hypothesis rather than rejecting a null. 
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Equivalence tests define an acceptable error unlike the point null hypothesis formulation 

(Wellek, 2002; Robinson and Froese, 2004). The null and alternative hypotheses for an 

equivalent test are as follows: 

H0: D > ub or D < ul 

H1: ul < D < ub 

where D is the difference between the data and prediction, and ul and ub are lower and 

upper limits that can be defined for accuracy requirements. If we reject the null on the 

basis of data, we conclude that H1 is true and that model and data are statistically 

equivalent. First, confidence intervals (CI) are defined under normality assumptions for 

the difference D based on the observed difference d. Knowing the sample variance, 

sample size, and actual difference d, the CI can be estimated as d ± t1-α 
s
n

 where t1-α is 

some critical value determined from the t-distribution with n -1 degrees of freedom. If 

this CI falls entirely within the equivalence interval [ul, ub], we say that model and data 

are statistically equivalent and hence accept the alternative hypothesis H1. The concept is 

further illustrated in Fig. 2.7. 

 

Fig. 2.7 Equivalence testing 

D 
ul ubd CIb CIl 

f(D)
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In Fig. 2.7, CIl and CIb represent the lower and upper bounds of the confidence interval. 

Here the entire CI lies within the equivalence interval [ul, ub] and hence we can conclude 

that the difference between model and data is smaller than the allowable difference.  

Also with a large data set or increasing n and if d lies between ul and ub, the 

confidence interval of d converges and collapses to almost a single point near d and the 

model simply passes. That is, for a given observed difference d between ul and ub, the 

chances for the model to pass the validation test increase with increasing sample size. 

Although CIs and conducting equivalence testing seem to be more useful than mere 

reporting of the p-value, it should be remembered that the CI derivation requires t1-α 

which is calculated at a significance level α. Practically, it is hard to estimate the 

distribution of the test statistic under this new null hypothesis and hence the p-values 

cannot be calculated. 

 There are also other subjective ‘effect size’ estimators of practical significance 

that have been defined as alternatives to p-values. These measures of association or 

correlation (Cohen, 1994; Kirk, 1996) have not become popular in the validation 

community since they are only qualitative indicators of difference between model and 

data and do not provide a quantitative measure of evidence for or against the null 

hypothesis. Some of the popular indicators include: Cohen’s d estimate, defined as 

( )1 2 / poold X X S= −  where X1 and X2 are two different sets of observations of quantities 

of interest whose difference we wish to test to be zero, and Spool is the pooled variance of 

the difference. A d value of 0.2 indicates small ‘effect size’ where as d of 0.8 indicates 

large ‘effect size’. Spearman’s rank correlation (Spearman, 1904) is sometimes used as a 

correlational indicator between data and prediction. Similarly, variance effect-size 
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indicators are derived from the proportion of the variance in data or in prediction to the 

total variance such as 
2

2
2

data
2
model data

S
S S

η =
+

. Refer to Fern and Monroe (1996) for a detailed 

discussion on these indicators. 

 

2.7 Model reliability metric 

In Section 2.6.2, it was concluded that model prediction and observation can be 

considered equivalent if the confidence interval for their difference D falls within an 

“equivalence interval”. Although this provides a means to pass or fail a model, it still 

does not give any estimate on the confidence with which we accept or reject the model 

prediction. The statistical significance level used in such tests should not be termed as the 

confidence measure. It would be more useful for a decision maker to have a quantitative 

measure of the “reliability” or probability of success of the model. Then one can be 

confident that the systems designed using highly reliable models are reliable as well. 

Also, expressing the validation results in terms of simple probabilities would be easier to 

interpret than the often misinterpreted, controversial terms like Bayes factors, posterior 

densities or p-values. Another justification for the use of simple metrics for comparison is 

that one can avoid the debate over major philosophical differences between frequentist 

and Bayesian approaches while performing model validation.  

 Along the lines of equivalence testing, we can define a simple metric r = P(-ε < D 

< ε) to indicate the model reliability, i.e., the probability that the observed difference is 

within a small interval. The accuracy requirement here is ε, which helps to estimate the 

probability, and the adequacy (confidence) requirement is c such that we accept the 



 54

model prediction only when P(-ε < D < ε) ≥ c. Depending on the nature of model output 

and data, the difference between them (D) will be an uncertain quantity. In this study, 

uncertainties are characterized using continuous probability distributions only. Also, 

when D is multivariate, multiple threshold values may be defined for ε. Similarly, single 

or multiple confidence requirements for c can be defined while performing marginal or 

collective comparisons. Several cases are considered below: 

Case 1: The model prediction is a single number x0 while the data is X= {x1, x2, …, xn} 

which are replicated experimental measurements taken for the same input. The validation 

question in this case would be to ask if the condition P(| X - θ0| < ε) > c is satisfied. 

Suppose X follows a normal distribution sN x,
n

 
 
 

 where x is the observed sample 

mean of X and s is the sample standard deviation. Then the model reliability is calculated 

as  

      P(H0) = r =
( ) ( )0 0n x n x

s s
ε θ ε θ   − − − − −

Φ − Φ   
      

             (2.26) 

It should be noted that X  ideally follows a t-distribution but for the sake of 

simplicity shown as Gaussian in Eq. (2.26). Suppose | x -θ0| is 0.2 and the standard 

deviation of the data s is 2.0, from the example discussed in Section 2.5.3. Also ε is 

assumed to be 0.1. In a deterministic sense, the observed difference definitely does not lie 

in the interval [-0.1, 0.1] as an accuracy requirement. However since the observed 

difference is a random quantity, it is more rational to estimate the probability of the 

difference falling within a tolerance interval. A plot between model reliability r and 

sample size n is shown in Fig. 2.8. The trend looks similar to the Bayesian confidence 
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measure C given in Fig. 2.4, and the model prediction is judged to be of low reliability as 

n increases. This is the correct inference. 
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Fig. 2.8 Model reliability versus sample size 

 

If the reliability requirement for this case had been defined at 95%, the model will not 

pass for any size of n as seen from Fig. 2.7. The maximum confidence we can report from 

the given information would be 24.2% when n is 108.  
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Fig. 2.9 Model reliability and sample size 
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Suppose | x -θ0| is 0.075 and it falls inside the interval [-0.1, 0.1], then the model 

reliability as a function of the sample size is plotted as shown in Fig. 2.9. Thus when the 

observed difference between the model prediction and the observation falls within the 

predefined interval, the probability of finding that difference in the interval increases with 

increasing sample size. Once again, increasing sample size confirms the correct 

inference. Point null hypothesis testing using classical and Bayesian approaches could not 

capture this feature and hence are of less practical use for model validation. 

When n < 30, the normality assumption may not be valid and hence once can use 

the bootstrap estimate (Efron and Tibshirani, 1993) of sample mean for each resampling 

iteration and count the number of samples with the prediction difference smaller than the 

threshold ε, to compute the model reliability. However, it has been shown through some 

numerical studies (Davison and Hinkley, 1988; Young and Daniels, 1990) that bootstrap 

techniques can produce noticeably biased results and also require some computational 

effort for resampling a large number of samples. Analytical methods can also be used 

with saddlepoint approximations to compute the probabilities (Jensen, 1995).  

In summary, the model reliability metric P(-ε < D < ε) to compare the sample 

mean and a prediction can be calculated using any of these three methods: 

a) closed form equation under normality assumption for large data sets  

b) bootstrap estimates of sample statistics  

c) analytical saddlepoint approximations. 

Case 2: The model output follows a continuous distribution f(x) while the data Y = {y1, 

y2, …, yn} is observed not for a particular value of input but for a wide range of input 

parameters during the experiment. Sometimes, historical data may be used to validate a 
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model in which case also, the corresponding inputs to data and model prediction are 

unknown. The validation question in this case would be to ask if the test data or the 

sample belongs to the population f(x) of model outputs. The classical solution is to 

compare the respective means and standard deviations of sample and population. Since 

two different probability density functions can have the same first two moments, this type 

of comparison is not rigorous enough. The comparison criterion should thus include the 

entire information on the probability density function. It has been recommended to 

compare the moment or cumulant generating functions of data and model output in such 

cases (Koutrouvelis, 1980; Cabana and Quiroz, 2005). 

 For any suitable value of λ, the cumulant generating function (CGF) for the model 

output x is given by ( ) log ( )xK e f x dxλλ
∞

−∞

 
=  

 
∫  while the empirical CGF of the data is 

estimated using the relation 1

1
( ) log i

n
y

n
i

K n eλλ −

=

 
=  

 
∑ . The model reliability in this case is 

defined as r = P(Kn(λ) – k(λ)| < ε). By resampling the data Y using the bootstrap method, 

we can calculate Kn(λ) several times and hence compute the model reliability r. It should 

be noted that ε here carries no physical meaning unlike in case 1 where ε was defined as a 

threshold for limiting predictive inaccuracy. In this case 2, ε can be defined as some 

percentage value of K(λ). Since PDF and CGF are directly related, comparisons at 

different values of λ indirectly represent comparisons across a wide range of model 

predictions. Although asymptotic distributions can been derived for Kn(λ), we will limit 

the analysis to bootstrap in this study for the sake of simplicity. 
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Multivariate Comparison: The univariate comparisons in cases 1 and 2 can easily be 

extended to multivariate problems. Instead of comparing one sample mean at a time to 

the corresponding model prediction, multiple sample means can be compared 

simultaneously to compute the overall model reliability.  

For example, 1 1 1 2 2 2(| | | | ... | | )m m mP y x y x y xε ε ε− < ∩ − < ∩ ∩ − <  can be 

calculated as a system reliability problem as opposed to a component reliability 

formulation used in case 1. Similarly, CGF of the multivariate model output, i.e., K(λ1, 

λ2, λ3, .., λm-1, λm) = 1
1 2 1log ... ( , ,..., ) ...

m

i i
i

x

m me f x x x dx dx
λ

=

∞ ∞

−∞ −∞

 ∑
 
 
 
∫ ∫ can be compared with the 

corresponding empirical CGF Kn(λ1, λ2, ..λm) = 1 ,1 2 ,2 ,...1

1
log i i m i m

n
y y y

i
n eλ λ λ+ + +−

=

 
 
 

∑  using 

bootstrap or analytical approximations. 

In summary, whether it is required to compare the data mean to the model 

prediction or to test if the data set belongs to the predicted distribution, bootstrap or 

saddlepoint approximations (Jensen, 1995) can be used in a reliability estimation 

formulation. Using this approach, both univariate and multivariate problems can be 

addressed. The model reliability assessment is quite different from the point null 

hypothesis testing approach. It clearly incorporates both accuracy and adequacy 

requirements to facilitate practical usefulness, and is not adversely affected by increasing 

sample size. The advantages and drawbacks in using some of the various metrics 

discussed so far in this section are summarized in the Table 2.14. 
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Table 2.14. Statistical methods for model validation 

Method Advantages Disadvantages 
Classical point null hypothesis 
testing  (p-values) 

Simple to estimate, well 
established mathematical 
methods, objective and 
frequentist, addresses adequacy 
and very stringent accuracy 
requirement  

Confusing and often misused, 
ignores Type II error, cannot 
incorporate prior knowledge, no 
direct assessment of the model, 
cannot be used for extrapolation 
purposes 

Bayesian point null 
hypothesis testing  (Bayes 
factors) 

Includes both Type I & II errors, 
incorporates prior knowledge, 
direct assessment of the model, 
addresses adequacy and very 
stringent accuracy requirement, 
can be used for extrapolation 
application domain 

Relatively difficult to compute, 
likelihood is assumed sometimes, 
needs prior distributions (based 
on model, however) 

Probability intervals 
(classical) 

Simple to use, no prior 
assumptions on the distributions, 
addresses adequacy and no 
accuracy requirement 

Not clear how to extrapolate to 
the application domain, 
possibility of misuse in 
interpreting the confidence level 

Interval hypothesis testing 
(classical) Equivalence test 

Better method than point null 
tests, easy to estimate and 
interpret the result, addresses 
adequacy and adequacy 

No direct assessment of 
hypothesis, ignores Type II error, 
cannot incorporate prior 
knowledge, cannot be used for 
extrapolation purposes 

Interval hypothesis testing  
(Bayesian) 
 

Better than point null tests, 
includes both types of errors, 
incorporates prior knowledge 
(model prediction), direct 
inference on the null hypothesis, 
addresses accuracy and 
adequacy, can be used for 
extrapolation 

Difficult to estimate, likelihood is 
assumed sometimes 

Model reliability formulation No priors required, direct 
assessment of model prediction 
quality, addresses adequacy and 
adequacy, relatively easy to 
compute 

Not clear yet how to extrapolate 
to the application domain 

Decision theoretic approach Incorporates prior knowledge, 
easy to interpret the results, can 
include accuracy and adequacy 

Subjective definition of utility 
functions, use for extrapolation 
purposes is questionable 

Effect size indicators Simple to compute, several 
available, addresses adequacy but 
very stringent accuracy 

Qualitative measures, no direct 
assessment of confidence in 
model, cannot be used for 
extrapolation purposes 

  

2.7.1 Numerical examples 

Example 1: The objective of this example is to illustrate the implementation of the model 

reliability analysis formulated in Section 2.7. Consider a cantilever beam that has a 
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natural frequency Ω as a function of material and geometric properties given as (Cruse, 

1997) 

            
2

4562
12

Et
Lρ

Ω =                                (2.27) 

where E is Young’s modulus of the beam, ρ is the density of the material, t is the beam 

thickness and L is the length of the beam. The natural frequency can be treated as the 

model response for given random inputs: E ~ N (30, 0.04), t ~ N (1, 0.1), ρ ~ N (0.01, 

0.002) and L ~ N (20, 2). The probability density function of Ω is calculated numerically 

using Monte Carlo simulation and found to approximately follow a lognormal 

distribution i.e., Ω ~ LN (3.119, 0.251). This however does not mean that the actual 

analytical distribution of Ω itself would be lognormal. Also it should be noted that the 

standard deviations of E and ρ are sufficiently small so that the simulation produced only 

samples that are positive and the problem of calculating the square-root of a negative 

quantity does not arise. Suppose a beam with properties E = 28, ρ = 0.01, t = 1.1 and L = 

22 is tested to measure the natural frequency by some experimental procedure. Since 

measurement uncertainty cannot be captured from a single experimental observation, 

assume several repeated measurements are taken as y = (19.94, 20.03, 18.12, 20.65, 

19.64). These data points are assumed to have come from a Gaussian distribution here, 

but in general can be from any distribution. The corresponding model output for the same 

input values is found to be Ω0 = 19.51 rad/s. 

Now the null hypothesis | y  - Ω0| > ε can be verified using an equivalence test or 

the model reliability metric r = P(-ε + Ω0 < y  < Ω0 + ε). The accuracy threshold ε can be 

chosen as 5% of the model prediction i.e., 1.951. Thus the probability P(18.534 < y < 
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20.485) needs to be computed. Suppose each data point in y follows a normal 

distribution, y  would then follow normal distribution as well with statistics N(19.676, 

0.4222). The summary of model reliability results using normality assumption, bootstrap 

method (million samples), and saddlepoint method are presented in Table 2.15. The 

difference between bootstrap and analytical results was found to be only 0.2% and this 

difference is expected to decrease for large sample sizes.  

 

Table 2.15. Cantilever beam-results of model reliability analysis 

Method r 

CLT 0.9680 

Bootstrap 0.9914 

Analytical 0.9941 

 

Suppose several beams are tested with different materials and available 

dimensions that possibly cover the range of the input parameters. The observations form 

a small subset of all natural frequencies that are possible for the cantilever beam. If we 

have 15 observations y = {23.260, 33.091, 18.248, 16.422, 29.480, 16.338, 24.682, 

21.045, 14.011, 33.832, 23.989, 17.969, 17.689, 22.509, 24.318} on natural frequencies 

available from some database or new experiments, validation in this case would mean 

testing whether these samples come from the probability distribution f(Ω). Since Ω from 

the model prediction follows a lognormal distribution, loge(Ω) follows normal 

distribution with a mean value of 3.119 and standard deviation of 0.251. Then we can test 

if each sample log(yi) belongs to that particular normal distribution. 
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 As suggested previously, we compare the empirical CGF of the data with that of 

the model prediction. For any Gaussian density function N(µ, σ), the CGF K(λ) is defined 

as (µλ + 0.5σ2λ2). The empirical CGF for the data is given by 

15

15
1

( ) log 6.666 iy

i
K eλλ

=

 
=  

 
∑ . A plot of K15(λ) and K(λ) is shown in Fig. 2.10.  

 

Fig. 2.10 Comparison of CGFs 

 

Even graphically, the two CGFs match very well. By resampling y, we can plot a family 

of K15(λ) curves and compare against K(λ) numerically.  
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Fig. 2.11 Model reliability variation with λ 
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As discussed in Case 2 of Section 4, the model reliability r = P(| Kn(λ) – K(λ)| < ε) is 

computed for different values of λ, and with ε chosen as 5% of K(λ). The results are 

shown in Fig. 2.11. 

Discussion: In the first part (Case 1) of the problem, there was nearly 99% chance that 

model prediction is close to the data mean as required by the accuracy limit ε. In the 

second part (Case 2) however, CGFs have been compared. Since all moments can be 

derived from the CGF, comparing the CGFs of data and prediction would be identical to 

comparing their respective moments simultaneously. It is advised that such bootstrap 

comparisons be made at smaller values of λ near zero. In this problem, there is 95-97% 

reliability in the vicinity of λ = 0. Also, the plot shown in Fig. 2.11 is not smooth since 

the data is discrete and hence the CGFs are not smooth.  

As noticed in this example, the accuracy and adequacy thresholds that we define 

are still subjective. However, no distributions were assumed for the data or any where 

else during these calculations. 

Example 2: The objective of this example is to illustrate how various types of validation 

metrics can lead to different conclusions for a multivariate comparison problem. Consider 

a three-parameter Smallwood mode1 shown in Section 2.4.5. The model and test data 

comparisons can be made individually (at each of the five different loadings) as well as 

collectively, using the proposed reliability metric. The mean values of energy predicted 

(×) at different load levels are plotted against the data (-) in Fig. 2.12.  
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Fig. 2.12 Force amplitude vs. Energy 

Individual probabilities P(Li < iE  < Ui) as well as overall probability 
5

1
i i i

i

P L U
=

 
< < 

 
I E  

can be computed where Li and Ui represent lower and upper bounds defined for the 

experimentally observed mean energy iE  at ith load level. Also Li and Ui are chosen as 

0.95 times and 1.05 times the mean predicted energy as given in Table 2.16. 

 

Table 2.16. Error bounds for model prediction 

Load lb Mean 
prediction 

Li Ui 

60 4.3421E-05 4.1250E-05 4.5592E-05 

120 2.2652E-04 2.1519E-04 2.3784E-04 

180 5.9662E-04 5.6679E-04 6.2645E-04 

240 1.1877E-03 1.1283E-03 1.2471E-03 

320 2.3659E-03 2.2476E-03 2.4842E-03 

 

Table 2.17 shows various types of validation metrics determined under classical and 

Bayesian point null hypothesis testing, interval hypothesis testing and the new model 
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reliability formulation. The metrics have been calculated for model prediction and data 

observed at different load levels. If we ignore the correlations among the data and 

compute overall reliability of the model as the product of each reliability estimate, we get 

r = ( )
5

1
i i i

i

P L U
=

< <∏ E =0.00386. However, a joint probability estimate (an analogy to 

system reliability problem) considering the bootstrap samples of the entire 12×5 data 

matrix yield the overall reliability estimate as r = 
5

1
i i i

i

P L U
=

 
< < 

 
I E =0.02. Thus the 

individual reliabilities are much larger than the overall reliability estimate. 

 

Table 2.17. Model validation metrics at each load level 

Load lb 60 120 180 240 320 

Point null p-value (classical) 0.2926 0.76 0.5097 0.1628 0.1013 

Point null posterior 
probability (Bayes) 

0.6723 0.7751 0.7442 0.5622 0.4521 

p-value  
(Interval-based testing) 0.4037 0.999 0.916 0.12 0.037 

C 
Bayesian interval testing 0.3922 0.8567 0.681 0.2916 0.1337 

r = P(Li < iE  < Ui) 
(Model reliability method)  

0.3384 0.7207 0.5714 0.2497 0.1111 

 

In Table 2.17, the p-values computed using interval-based hypothesis testing are 

dependent on the choice of ε. The model reliability metric calculated the probability of 

observing the data within certain bounds of model prediction. When the model 

predictions at each load level are ranked based on the validation metric value, all the 

metrics give the same rank order indicating their general agreement, although their 

interpretations are different. However, for specific load values, different metrics can 
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result in different conclusions regarding the model validity. For example, the point null 

hypothesis test accepts the model prediction at all loads since the p-value is larger than 

0.05, whereas the interval hypothesis test tends to reject the model for three of the loads. 

2.8 Summary 

This study investigated various statistical methods for model validation. The 

inadequacies of point null hypothesis testing are highlighted, and a more practical 

interval-based hypothesis formulation is argued for. Bayesian hypothesis testing is found 

to be a direct way to assess the strength of evidence to a model, as opposed to the use of 

p-values in classical hypothesis testing. A direct approach to estimate the model 

reliability as the probability of the data falling within a range of model prediction has 

been proposed. The model reliability metric and the interval-based Bayesian metric 

consistently reject an invalid model and accept a valid model as the sample size increases 

to large values.  

This chapter also addressed the validation of computational models with multiple 

outputs using multiple observations from the experiments. Both univariate (individual) 

and multivariate (aggregate) comparisons can be implemented using hypothesis tests. In 

the case of classical hypothesis testing, when the normality assumption for the data is 

violated, the original samples are appropriately transformed to normal variates and test 

statistics are calculated. The aggregate Bayesian validation metric requires the ratio of 

posterior to prior joint probability density functions. While a closed form expression is 

available for the multi-normal density, the estimation of non-normal multivariate 

densities is often cumbersome involving series expansions or iterative techniques and 

also the PDF values tend to be too small or too large. In this case, the Box-Cox 
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transformation ensures that the joint PDF be expressed as a product of a multi-normal 

density and a correction factor. This simplifies the calculations and the construction of 

multivariate density without compromising accuracy.  
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CHAPTER III 

 

EXTRAPOLATING VALIDATION INFERENCES TO APPLICATION DOMAIN 

 

3.1 Overview 

Models are often validated in a controlled environment conducting a limited number of 

small scale tests. Also, the response quantity of interest in the target application may be 

different from the validated response quantity. In some cases, validation data may be 

available in the nominal region and the field application may involve off-nominal (tail) 

behavior. When system-level tests are not feasible, component level data may be used to 

make partial inference on the validity of system-level prediction. In all of the above 

cases, inferences from the validation domain have to be extrapolated to the untested 

region. A Bayesian framework for drawing inferences for predictions in the untested 

domain is developed and implemented using Bayesian networks (BN) in this study. Also, 

the proposed Bayesian framework requires numerous evaluations of the computational 

model output or the joint densities, which could be very expensive. In this study, 

saddlepoint approximation and Laplace approximation-based techniques are used to carry 

out multivariate integrations needed for obtaining the marginal and conditional 

distributions. Also the uncertainty in the model output is quantified using saddlepoint 

approximations as well instead of more expensive response surface construction. 

It should be noted that the work reported in this draft is fairly recent and hence no 

extensive literature is available at this stage. However the need for assessing 

extrapolation has been repeatedly stressed in several studies by Oberkampf and Trucano 
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(2002), U.S. Department of Defense (DMSO, 1996), Thacker and Huyse (2002), 

American Society of Mechanical Engineers Standards Committee (ASME PTC#60) on 

verification and validation of computational solid mechanics, etc. Extrapolation itself is 

not a fresh topic in data analysis and is of great importance in various applications. 

Methods have been developed in geographic information science (Pontius and Batchu, 

2003; Pontius et al, 2003) to estimate the precision for an extrapolation into the future, 

based on the validation from a previous time. Combination of validation and calibration 

was used to linearly extrapolate land use changes for a future time period. Statistical 

extrapolation techniques have been widely used in climatic change simulation (Busch and 

Heimann, 2001). In environmental sciences, laboratory results were extrapolated to the 

field conditions and across various ecosystems (Livingston et al, 1985). The need for 

extrapolation in predictive exposure (risk) assessment has been identified by EPA (Beck 

et al, 1994). Linear extrapolation using time series forecasting is a well developed 

research topic in financial and management sectors (Box and Jenkins, 1974; Williams 

and Goodman, 1960).  

 All the extrapolation studies mentioned above assume a linear model behavior 

and restrict to spatial and temporal predictions. Typically, validation experiments are 

limited to a subset of physics and hence may not cover the range of physics required for 

model actual application. A mathematical link between the target application and 

validation experiments must be established (Hills and Leslie, 2003). With such 

knowledge, validation experiments can be weighted to better represent the target 

application (Hills and Trucano, 2001). First order sensitivity factors were taken by Hills 
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and Trucano (2001) as measure of dependency between the validation and extrapolated 

regions and the analysis was limited to Gaussian model outputs. 

 

3.2 Extrapolation methodology 

A Bayesian methodology is pursued in this section, for two cases of extrapolation. The 

first case deals with extrapolating validation inferences for one quantity to a different 

response quantity for which data is absent. The second case addresses the task of 

validation with change in the input conditions. Further this case can be divided into two 

categories: a) A model may be validated using nominal input values for the experimental 

set up while the decision variable could be the model prediction for tail inputs b) nature 

of input condition can be different in validation and target domains i.e., change in type of 

input loading, material etc. In both cases, a mathematical link between the target 

application and validation experiments is established using the Bayes network concept. 

 

3.2.1    Case 1: Validated and decision variables are different 

Often the quantity validated and the decision variable (quantity of interest in 

target application) are quite different. Experimental limitations may define the quantity to 

be measured for the purpose of validating a model. For example, one may validate the 

axial strain predicted by a model using strain measurements in the laboratory, but the 

variable that affects the design decision could be shear or torsional stress. Those decision 

variables can be directly or indirectly related to normal stress through some linking 

variables. Similarly a decision variable could be the probability of failure of the structure 

whereas validation may be limited to stress prediction. If the decision variable is not too 
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different from the validated variable, we can accept the model prediction in untested 

region with some confidence, if a mathematical link between the decision variable and 

validation domain can be established. When such an explicit relation cannot be 

established, sensitivity analysis could give a first order relation between the validation 

and decision variables. The confidence or updated belief in the extrapolation is then 

derived from the validation metric in the tested region.  

Consider a computational model y(x, α) in the validated region. Inferences need 

to be made for a decision variable h(x, α, β) with α being a set of input random variables 

(x could represent space or time co-ordinates) and β an additional set of random variables 

in the application domain. Suppose the computational model y is validated using 

experimental observations z; then the density functions associated with y and hence those 

of α can be updated using the Bayes theorem. Thus the joint probability distribution and 

hence the marginal densities of each of the input parameters in α can be updated as 

                                        
( ) ( | ( , ))

( | )
( ) ( | ( , ))

z
z

z
f f y x

f
f f y x d

=
∫

α αααα α α αα
                                   (3.1)                     

where fα(α) is the prior density, and f(z | y(x, α)) is the likelihood function. The updated 

parameters can then be used to estimate the updated distribution for h by generating input 

parameters from the posterior density fα(α | z) and substituting them in h(α, β | z). The 

new and old densities of h can then be compared similar to Eq. (2.4) to assess the 

predictive capability of the model in the application domain.  
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Fig. 3.1 Bayesian network representation of validation and extrapolation 

 

The ratio, Bh = f(h(α, β | z))/ f(h(α, β))  is treated similar to the Bayes factor in Eq. (2.4) 

in assessing the confidence in the decision variable or the model in the application 

domain. The integration required in Eq. (3.1) can be calculated using Markov Chain 

Monte Carlo techniques. The quantities y, z, α, β, and h can be linked through a Bayes 

network as shown in Fig. 3.1. 

Bayes networks have been used in artificial intelligence (Heckerman et al, 1994), 

engineering decision strategy (Jensen and Jensen, 2001), safety assessment of software-

based systems (Dahll, 2000), and model-based adaptive control (Friis-Hansen et al, 

2000). Bayes networks have also been applied to the risk assessment of water distribution 

systems, as an alternative to fault tree analysis (Castillo et al, 1999). Recently, the Bayes 

network concept was extended for structural system reliability reassessment by 

Mahadevan, Zhang, and Smith (2001) by including multiple failure sequences and 

correlated limit states. Both forward and backward propagation of uncertainty among the 

components and the system were accomplished.  

 Bayes networks are directed acyclic graphical representations (DAGs) with nodes 

to represent the random variables and arcs to show the conditional dependencies among 
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the nodes. Each node has a probability density function associated with it. The arc 

emanates from a parent node to a child node. Each child node thus carries a conditional 

probability density function, given the value of the parent node. The entire network can 

be represented using a joint probability density function. The network also facilitates the 

inclusion of new nodes that represent the observed data and thus the updated densities 

can be obtained for all the nodes.   

The updating methodology is briefly discussed here as follows: Consider the 

Bayes network U with seven nodes a to g as shown in Fig. 3.2. Thus U = {a, b, ..., g}. 

Each node is assigned a probability density function as f(a), f(b| a), f(c| a), f(d| c), f(e| b, 

d), f(f) and f(g| e, f). In the context of this study, the variables or nodes a, b etc., may 

correspond to input random variables as well as quantities computed at each step of the 

computational process. The joint PDF of the entire network is the product of PDFs of 

various nodes in the network i.e,  

          f(U)  =  f(a)×  f(b| a) ×  f(c| a) ×  f(d| c) ×  f(e| b, d) ×  f(f) × f(g| e, f)           (3.2) 

Note that for nodes b, c, d, e and g, only the conditional densities are defined and 

included in the joint PDF in Eq. (3.2).  

 

 

 

 

 

Fig. 3.2 Bayes network before data is collected 
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The marginal PDF of b (for example) can be obtained by the integration of the joint PDF 

over all the values of the remaining variables. This integration is conveniently done using 

Markov Chain Monte Carlo techniques (Gilks et al, 1996. The joint probability density 

function for the network can be updated using the Bayes theorem when data is available. 

Assume that some evidence or test data m for node b is available. A new node m is now 

added to the network (see Fig. 3.3); this new node is associated with a conditional density 

function f(m| b).  Then the joint PDF f(U, m) for this new network is  

   f(U, m)  =  f(a)×  f(b| a) ×  f(c| a) ×  f(d| c) ×  f(e| b, d) ×  f(f) × f(g| e, f) × f(m| b)      (3.3) 

 

 

 

 

 

 

 

Fig. 3.3 Updated Bayes network with additional data node 

 

With this new joint density, the posterior marginal densities of each of the nodes can be 

estimated by integrating the joint density over the range of values of all other nodes. Thus 

the node b represents the validated variable while node g represents the decision variable. 
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3.2.2 Case 2: Extrapolation for changes in input conditions 

Sometimes the variable in the validation domain could be the model prediction y 

evaluated at the nominal value of input variable while the decision variable h could be the 

prediction made using the same model for the input from the tail region, or vice versa. 

For instance, in reliability analysis, failure may occur in the tail regions of the 

distributions of the input random variables, but experimental data may be available only 

at nominal values. Thus By could be 
( | )

( )

zf y

f y
 evaluated at µα while Bh could be the ratio 

( | )

( )

f y

f y

z
 evaluated at (µ + 2σ)α.  

The Bayes network shown in Fig. 3.1 applies to this case as well. Now, h is 

basically the same variable as y; the distinction is that h is evaluated at the tail of the 

input probability density function and y is evaluated at nominal values of the input. Thus 

this is a special case of the general extrapolation in Case 1 where y and h could be 

physically different quantities.  

 Sometimes, the input variables in the validation and application domains could be 

completely different although the model response variable is the same quantity. For 

example, input conditions like type of loading (i.e., distributed vs. concentrated load), 

material properties (e.g., linear vs. nonlinear elasticity), geometry and boundary 

conditions (e.g., rigid vs. flexible joints) could be physically different. In all these cases, 

we need linking variables that connect the two domains. 

Another case of extrapolation is system-level model assessment when only 

component-level data is available (Mahadevan & Rebba, 2005). A large system of codes 

can be decomposed into subsystems, components etc, and represented using a Bayesian 
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network. Once data is available on any of the component level nodes, then all nodes, 

including system level nodes can be updated. The posterior and prior distributions of the 

system level nodes can give an estimate of confidence in the code prediction of system-

level quantities. Thus the Bayes network approach offers a rational and effective 

methodology to extrapolate inferences from the validation domain to the application 

domain, as long as the two domains have common, linking nodes. 

 

Table 3.1. Various cases of extrapolation from validation to application 

 

Validation Domain Extrapolation Domain Case Validated variable Input Conditions Decision variable  Input Conditions 
1 Component-level 

response (energy 
dissipated in a single 
joint) 

loading type 1 
(sinusoidal) 

Component-level 
response (energy 
dissipated in a single 
joint) 

loading type 2 
(shock/ impulse or 
arbitrary load) 

2 Component-level 
response (energy 
dissipated in a single 
joint) 

loading type 1 
(sinusoidal) 

System-level response 
(total energy dissipated in 
an assembly of joints) 

loading type 1 
(sinusoidal) 

3 Component-level 
response (energy 
dissipated in a single 
joint) 

loading type 1 
(sinusoidal) 

System-level response 
(total energy dissipated in 
an assembly of joints) 

loading type 2 
(shock/ impulse or 
arbitrary load) 

4 Response using model 
type 1 (small deflection 
theory) 

load range 1 
(small loads)  

Same response quantity, 
using model type 1 (small 
deflection theory) 

load range 2 
(large loads)  

5 Response using model 
type 2 (large deflection 
theory) 

load range 1 
(small loads)  

Same response quantity, 
using model type 2 (large 
deflection theory) 

load range 2 
(large loads)  

6 response using model 
type 1 (small deflection 
theory) 

load range 1 
(small loads)  

Same response quantity, 
using model type 2 (large 
deflection theory) 

load range 1 
(small loads)  

7 response using model 
type 1 (small deflection 
theory) 

load range 1 
(small loads)  

Same response quantity, 
using model type 2 (large 
deflection theory) 

load range 2 
(large loads)  

8 response quantity 1 
(temperature) 

input 1 
(parameters) 

Response quantity 2 (flux, 
physics change) 

input 1 
(parameters) 

9 response quantity 1 
(stress) 

nominal 
conditions  

Failure data abnormal 
conditions 
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Each of these main cases can further be categorized into sub-cases depending on 

the nature of the problem. For instance, Table 3.1 various sub-cases were derived where 

the validation inferences made in the test domains need to be extrapolated to the untested 

domains; the list is not exhaustive. The terms in parentheses in italics indicate some 

examples that can possible be implemented to understand the concepts involved in the 

extrapolation. 

Fig. 3.4 illustrates the cases 4 to 8 graphically where test data is available for 

validated model M1 for an input i and inferences have to be made for the same model M1 

for input j or model M2 with input i or j. Thus, M2 may be treated as a decision variable 

and M1 as validated variable. This describes the case of a univariate extrapolation. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 3.4. Extrapolation from cases 4-8 

 

As we find the ratio of posterior and prior densities at model prediction x0 (from the 

validation domain), one can also determine the lower and upper bounds for the model 

prediction for which B will be greater than 1.0.  Thus in Fig. 3.5, any prediction in the 

Data unavailable 

M1 

M2 

i j 

Response 

Input

Test data available
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Prior density
Posterior density

x

f(x)

 

xoxL xU 

range [xL, xU] (shaded portion) will have a probability greater than or equal to 50% being 

correct and all the model predictions in that range may be termed as ‘close enough’ to the 

data with more than 50% probability. Thus the interval acts as a ‘domain’ within which 

the model predictions are considered valid. 

 

 

 

 

 

 

Fig. 3.5. Confidence interval for the prediction 

 

3.3 Multivariate extrapolation 

Sometimes, decisions are made based on several variables instead of a single variable. 

For example, the temperature profile across the width of a plate or response of a structure 

to a random load over an entire period of time may determine the design criteria instead 

of critical temperature or stress evaluated at a particular location of space and time. Thus 

when two or more variables interact in an application, both the validation and 

extrapolation must be carried out using multivariate analysis. Thus model response, under 

stochastic conditions, may be represented using a family of curves and having validated 

the ‘mean curve’ or ‘mean surface’, one may need to quantify the confidence in the other 

curves. 
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                             Mean model prediction

        Validation data for model mean

 

Fig. 3.6. Extrapolating a curve 

Methodologies for multivariate extrapolation are given in this section. Note that the 

Bayes factor metric given in Eq. (2.4) can be extended to a multivariate case with m 

variables, as the ratio of posterior joint probability density to the prior joint probability 

density: 

           ( )
( )

1 2 1 2

1 2

, ,..., | , ,...,
( )

, ,...,
m m

m

f x x x y y y
B

f x x x
=

0

X
o

X x

x                   (3.4) 

Here B is evaluated at a particular model prediction set x0 = (x1, x2, x3,…, xm)0. The data 

is said to favor the model if B is greater than one. Similar to the procedure described in 

Section 3.2, both By and Bh can be calculated using Eq. (3.4) but the only difference now 

is that y and h represent a vector of variables. Now, the variable in the validation domain 

could be the model prediction vector y evaluated at its mean input while the decision 

variable h could be the prediction made using the same model y for the input from tail 

region. Thus By could be ( | )
( )

f
f
y z

y
 evaluated at mean vector µαv while Bh could be the 
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ratio ( | )
( )

f
f
y z

y
 evaluated at a tail vector (µ + 2σ)αv. In other words, h and y come from the 

same model in this case.  

In Section 3.2, an interval has been estimated in which model predictions have 

more than 50% chance of being correct. A similar ‘region of acceptance’ for the 

multivariate case can be established and this region defines the bounds within which 

extrapolation can be done with more than 50% confidence. As the model predictions are 

farther away from this region, their acceptance probability drops. 

 
3.4 Dealing with large-scale models 

Practical validation and extrapolation problems deal with very large scale models that 

bring up computational challenges. The Bayesian methodology requires a large number 

of function evaluations for the model output and joint density evaluations especially 

when sampling based methods are employed for Bayesian calculations and replacing 

multiple integrals. Gibbs sampling (Gilks et al, 1996) has been commonly used for 

deriving posterior marginal densities of random model input variables and output 

variables. This Markov Chain Monte Carlo (MCMC) technique involves a rejection 

sampling step to sample each random variable from a full-conditional distribution. Thus 

when the Bayesian network of variables is relatively large and each rejection step calls 

for a number of “black-box” type finite element code evaluations, the joint density of the 

variables in the BN may be difficult to evaluate. Typically, response surfaces are used as 

surrogates to the full-scale computational code. However the accuracy of such surrogate 

models, for highly non-linear problems and large numbers of input variables, is 
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questionable, and construction of the response surface might demand a significant 

number of code evaluations.  

In this study, some of the advanced methods available in the literature are 

explored for improving the rejection sampling schemes and to some extent even avoiding 

sampling-based techniques by deriving closed-form analytical expressions for posterior 

marginal distributions. The applicability of adaptive rejection sampling methods, both 

derivative-based and derivative-free, (Gilks & Wild, 1992; Gilks, 1999) to the Bayesian 

extrapolation framework is investigated. The metric for confidence measure in the 

validation and application domains uses the posterior and prior densities of the model 

responses in their respective domains. This requires computing the posterior and prior 

marginal distributions of input random variables. Even adaptive Gaussian-quadrature 

techniques for numerical evaluation of multiple integrals can be prohibitively expensive 

due to the curse of dimensionality. Such methods however were found to be more 

accurate with low to moderate number of variables in the problem. Saddlepoint and 

Laplace-approximation methods (Tierney & Kadane, 1986) can be used for that purpose 

as an alternative to Gibbs sampling. The efficiency of these approximate techniques will 

be studied. 

Further, with the proposed metric for confidence measure, one need not know the 

entire distribution function for the model output; only one density value needs to be 

evaluated. Also there is a need for eliminating the response surface construction as a way 

to represent the black-box model. Since the model output is a nonlinear function of 

random input variables, Saddlepoint and Laplace expansion techniques allow us to 

approximate the underlying nonlinear function using other simple closed-form 
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expressions. These methods typically use the gradients of model output with respect to 

the input variables and may require much less number of function (black-box code) 

evaluations.  

Response surfaces are usually constructed for the model (or system) response 

with respect to the input variables. An alternative solution would be to directly sample a 

few model outputs and build a non-parametric model to compute the univariate 

probability density function. The basic idea behind this approach is that the total error in 

fitting a response surface for the model output (a hyper-surface) in the multidimensional 

space, will be more than the error that may result due to fitting a nonparametric model for 

the probability distribution function (a curve). However this needs to be verified for some 

problems of interest. In summary the key topics covered in this section are: 

a. Approximate methods for posterior marginal distributions 

b. Approximate methods for density of nonlinear functions 

c. Adaptive rejection sampling techniques to improve MCMC simulation efficiency 

d. Density estimation from limited samples through a non-parametric method 

 

3.4.1 Posterior marginal density estimation 

Consider a vector of random variables θ = (θ1, θ2,…, θm) that can be partitioned 

into a variable θ1 and an (m-1) dimensional vector θ2 =(θ2, …, θm). The joint probability 

density function of θ is π(θ) and the observed data x is described using the log-likelihood 

function L(θ). We are interested in evaluating the marginal posterior density 
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Since the integration in Eq. (3.5) is difficult to evaluate numerically, with the likelihood 

being a function of the computational model, Laplace’s method (Tierney & Kadane, 

1986) may be employed to calculate an approximate density function. Let θ̂  maximize 

π(θ) eL(θ) and Ω be the inverse of the Hessian of [L(θ) + π(θ)] evaluated at θ̂ . Now for a 

given θ1, let 2̂θ (θ1) maximize π(θ1, θ2) eL(θ1, θ2), which is a function of θ2 with constant θ1 

and Ω(θ1) be the inverse of Hessian of [L(θ1, θ2) + π( θ1, θ2)] evaluated at (θ1, 2̂θ ). Then 

the approximate marginal density is given by 
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For the extrapolation problem described in the beginning Section 3.2.1, θ1 could be α. 

Suppose we like to partition θ into two vectors of dimensions k and m - k, the marginal 

posterior density of the first k variables is given by (Tierney et al, 1989) 
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3.4.2 Approximate distributions of non-linear functions 

Suppose a computational model y is a nonlinear function of g(θ) of k random 

input variables and let π(θ) be the joint probability distribution of θ. Let θ̂  maximize the 

joint distribution π(θ), then the marginal density of this k dimensional function y = g(θ) is 

given by 
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where Ω is the inverse of Hessian of π(θ) evaluated at θ̂ . Further let θ̂ (y) maximize π(θ) 

subject to the constraint g(θ) = y and Ω(y) be the inverse of Hessian of π(θ) evaluated at 

θ̂ (y). Also ˆ( )y
g

θ
∇ is the gradient 

i

g
θ

∂
∂

 evaluated at ˆ ( )i yθ for i = 1 to k. Note that θ̂ (y) 

sometimes refers to the most probable point (MPP) corresponding to the limit-state g(θ) – 

y = 0 in the well-known first order reliability method (FORM) for estimating failure 

probability (Haldar & Mahadevan, 2000). 

 Now the Bayes factor computation requires both the prior and posterior densities 

of y. To compute the posterior density of y, the procedure is identical to the one describe 

earlier in this section except that the saddlepoints of π(θ) eL(θ) with and without using the 

constraint g(θ) = y are used respectively for the numerator and denominator of Eq. (3.8). 

Here L(θ) represents the log-likelihood function for the data on y. 

 

3.4.3 Improved sampling techniques for MCMC simulation 

This section discusses various techniques used for generating samples from 

posterior marginal densities. Before adaptive rejection sampling (ARS) is described, the 

algorithm for rejection sampling is explained here first. 
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Rejection Sampling 

Suppose we wish to draw a sample from a distribution f(x), we choose a simplified 

sampling density function g(x) and a constant M such that f(x) ≤ Mg(x) ∀ x. Then the 

following steps may be performed: 

Step 1: Sample x* from g(x);  

Step 2: Sample u from uniform U(0, 1); 

Step 3: if u ≥ f(x) / Mg(x), accept x*;  

             else go to Step 1; 

Since the probability of acceptance of a sample is equal to 1/M in this case, depending on 

the choice of M, many evaluations of f(x) may be needed. For the BN shown in Fig. 3.1 

and from Eq. (3.1), this could be the likelihood function f(z | y(α))×fα(α) which is a 

function of black-box type model output and we would be sampling α from it. ARS 

reduces such evaluations by improving the sampling density g(x) with the each iteration. 

Derivative-based ARS 

Suppose the target density f(x) is unimodal and log-concave (which most common 

distributions are). ARS uses an updated candidate density g(x) in the each iteration. The 

method requires selecting k points initially on the curve h(x) = log (f(x)) and drawing 

tangents at those points. Fig. 3.4 shows an enveloping upper bound curve u(x) and a 

lower bound curve l(x). The piece-wise linear functions ui(x) constructed in the region x 

∈ [xi-1, xi] is given by 

       ui(x) = hk(xi) + (x – xi) h′k(x)                                  (3.9) 
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The subscript k in the above Eq. (3.11) refers to the number of abscissa chosen in that 

particular iteration. Similarly, a lower bound for the curve h(x) in the region x ∈ [xi, xi+1] 

is given by the piece-wise linear function 
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Further, the points zi’s represent the intersections of tangents drawn at xi and xi+1:  
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At the each iteration, the target density would be  
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Fig. 3.7. Illustration of derivative-based ARS 

Algorithm: 

Step 1: Initialize Tk = {xi: i = 1, 2,…, k}be the k starting points; 

Step 2: Calculate the upper and lower bound piece-wise linear functions uk(x), lk(x) and 

gk(x);  
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Step 3: Sample x* from gk(x) and u from uniform U(0,1); 

Step 4: Perform squeezing test:  

If u ≤ exp{lk(x*) – uk(x*)} accept x*; else compute hk(x*) and h′k(x*); 

           Perform Rejection test:  

  If u ≤ exp{hk(x*) – uk(x*)} accept x*; else reject x*. 

Step 5: If both hk(x*) and h′k(x*) are computed in Step 4, include x* in Tk to form Tk+1,            

uk+1(x), lk+1(x) etc;  

Thus all the accepted samples x* follow the target distribution function f(x). 

Derivative-free ARS 

This method is similar to the derivative-based ARS but uses secants instead of tangents to 

form an upper-bound hull enveloping the log-concave target distribution. Fig. 3.8 shows 

the extended secants intersect at points zi’s and the title suggests, derivatives of h(x) are 

not needed in this method. However, the savings in the computational effort by 

eliminating the derivative calculation may be partially compensated by slower 

convergence of the candidate density function g(x). Thus both derivative-based and 

derivative-free methods have some tradeoffs in terms of number of function evaluations. 

Convergence studies for these different techniques show that the tangent method works 

slightly better (Gilks et al, 1996). While the above techniques are meant for univariate 

distributions only, sampling schemes for simultaneous multivariate distributions have 

also been developed in the literature but the details are omitted in this study. 
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Fig. 3.8. Illustration of derivative-free ARS 

 

3.4.4 Density estimation from limited samples 

Sometimes, only a limited number of samples can be generated from Gibbs 

sampling or any uncertainty propagation technique, in order to save time and 

computational effort. Parametric models for distributions can be fit to those samples but 

such models suffer in accuracy due to small sample size. One or more models may have 

the same fit to the data in which case it is difficult to choose any particular parametric 

model. Several non-parametric methods like kernel density estimators and Box-Cox 

transformation techniques are available in literature (Devroye & Gyorfi, 1985) but some 

numerical studies (results not provided here) have shown that smoothing is a problem in 

kernel density estimators while the Box-Cox method provides a bad interpolating 

function. In this study, we adopt the orthogonal series expansion for arbitrary random 

variables. The series expansion provides a smoothing function in series form whose 

coefficients are determined by equating the moments on each side. To understand it 
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better, consider a random variable being expanded using Hermite Polynomials (Ghanem 

& Spanos, 1991) as 

    x = a0 + a1ξ + a2 (ξ2-1) + a3 (ξ3-3ξ) + a4 (ξ4-6ξ2+3) + ….              (3.12) 

where ξ follows standard normal distribution. If several samples of x are available, 

moments on both sides of Eq. (3.12) can be computed and equated to solve the 

coefficients a0, a1 etc. Once the coefficients have been estimated, several thousands of 

samples of ξ can be generated from standard normal density to obtain samples of x. Thus 

a smooth function for the distribution of x can be obtained from limited samples. The 

higher moments as a function of the coefficients in RHS of Eq. (3.12) can be obtained 

from symbolic integration using applications like MATLAB or MATHCAD. For 

example, a second order expansion will have a mean value a0 and variance (a1
2 + 2a2

2) 

and a skewness of (8a2
3 + 6a2a1

2). Equating those nonlinear expressions with the 

moments calculated from data, one can solve for a0, a1, a2 respectively.  

 

3.5 Numerical examples 

 

3.5.1 Investigation of Structural Joints 

The safety of critical aerospace components is dependent on their structural 

connections with the surrounding support structure. Several experimental studies are 

being investigated (Gregory et al, 2003) to understand the behavior of bolted-joints under 

dynamic loading. Analytical models are being developed to predict the component 

response to sinusoidal environmental loadings. Also, the energy dissipation in lap-joint 

type connections is of interest in improving the efficiency and safety of the aerospace 
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system. Experiments are conducted for single bolted connections under steady state 

sinusoidal loads to derive energy dissipation curves as a function of input force. These 

data are used to calibrate the analytical models for predicting the loss of energy at 

resonance due to friction in lap-joints. Several assemblies of the joint connections have 

showed the inherent variability (randomness) in the predicted dissipation energy (Urbina 

et al, 2003). In other words, parameters of empirical models for such phenomena are 

treated as random variables.  

These empirical models have been validated using classical and Bayesian 

hypothesis testing methods (Rebba and Mahadevan, 2003; Urbina et al, 2003). The actual 

application in which the aerospace system will be operated is subject to random and 

shock loadings. It may not always be possible to test the bolted connection under such 

loads. Hence the validation inferences made for sinusoidal loadings in the laboratory 

need to be extrapolated for arbitrary load conditions. Due to safety concerns, the 

maximum acceleration transmitted to the component could be below a certain threshold. 

Thus two types of extrapolations ---  1) sinusoidal to arbitrary loading conditions 2) 

component to system-level validation --- are considered in this example.  

High-fidelity computational models can be built to understand the response under 

single bolt connection to the structure. But most often, the critical components in the 

actual structure are supported by three or more connections and it is quite expensive to 

develop high-fidelity models to capture the physics of the system. Hence research is 

being done to formulate simple, low-fidelity models capable of capturing the dynamic 

response of the internal component supported by the surrounding structure (Segalman et 

al, 2003). Thus the maximum acceleration experienced by the critical component and the 
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total energy loss for the system under sinusoidal and arbitrary loadings computed using 

these models needs to be validated. 

 

 

 

 

 

    

 Fig. 3.9a. Single lap joint                                     Fig. 3.9b. Three-legged system 

 

Fig.3.9a shows the single inclined lap joint (component) validated in the laboratory and 

Fig. 3.9b shows the three-legged joint (system) to be used in the actual application. In 

both cases, the bolted joint is connected to a rigid base that will be excited using a known 

dynamic force and a mass representing the critical component is placed on top of the joint 

connection (See Pilch and Trucano (2001) for more details). This study addresses several 

issues in development of such models and includes various uncertainties. Also, the 

predictive capabilities of such low-fidelity system-level models need to be assessed using 

the already validated (Rebba and Mahadevan, 2003; Urbina et al, 2003), high fidelity 

models. The various validation and extrapolation activities to be conducted as part of this 

study are summarized in Table 3.2. These three cases show the increasing levels of tiers 

in the hierarchy of system-level model validation where simple models are validated for 

known loading conditions first and gradually extended to complex models and more 

uncertain conditions. The quantity of interest is maximum acceleration in all examples. 
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Table 3.2 System-level model validation activities 

Case Validation 
Domain 

Application 
Domain 

Response 
Quantity 

Loading in 
Validation 

Domain 

Loading in 
Application 

Domain 
1 Single Leg Single Leg Acceleration Sinusoidal Arbitrary 

2 Single Leg 3-Legged Acceleration Sinusoidal Sinusoidal 

3 Single Leg 3-Legged Acceleration Sinusoidal Arbitrary 

 

Three cases of extrapolation are considered in this example. In case 1, the response of a 

single spring is validated under sinusoidal loading and inferences need to be extrapolated 

to the acceleration under arbitrary loading for the same single leg structure. In Case 2, the 

application domain involves a three-legged system subject to sinusoidal loading. This can 

be treated as a system-level model assessment. Case 3 deals with system-level model 

assessment and change in input conditions at the same time. All the three cases in Table 

3.2 are numerically illustrated using spring-mass systems. These numerical examples 

serve as the initial step to study and better understand the physics of joints behavior under 

dynamic loading, and to further verify the proposed system-level model validation 

methodology using actual system-level data that will be available subsequently. 

The bolted joints are represented using springs with known stiffness k and 

damping coefficient c. The mass attached on the top of the joint is denoted by m. For the 

three-legged system, the individual bolts (or springs) are assumed to have identical 

properties and hence same statistics. The maximum force at any time for a given type of 

loading is limited to 100 lb. During the calculations however, the units are omitted for 

clarity. The sinusoidal excitation at the base has a frequency of Ω rad/s. The experimental 
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m

c 
Fb(t) = F0sin(Ωt) 

y(t) 

k 

m θ 

error in measuring the acceleration of the mass is assumed to be Gaussian with zero mean 

and variance of 9 in/sec2. For the 3-leg system, each spring is assumed to be inclined 

making an angle θi for i = 1, 2, 3, to the horizontal. This angle is assumed to be random to 

model the uncertainties in the configuration of the connections and errors made in their 

assembly.  

Table 3.3 Statistics of parameters in the spring-mass system 

Parameter Type Mean Std. Dev 

k Lognormal 1000 100 

c Lognormal 7 2 

Ω Normal 5 1 

θ Normal 45o  5o 

m Constant 5  

 

The statistics of various parameters are shown in Table 3.3. Fig. 3.10 shows the 

simplified models of the structural joints. 

 

 

 

 

Fig. 3.10a Single leg                                              Fig. 3.10b Three-legged system 

 

The computational model predicting the response (displacement, velocity etc) of the mass 

is denoted by the PDE 
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Further, the maximum acceleration transmitted to the mass for a sinusoidal loading is 

given by this component level model as 
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where the frequency ratio r = 
w
Ω , the natural frequency w = k

m
 and damping factor ζ = 

2
c
mw

. For the three legged system, the effective stiffness and damping coefficient are 

estimated as
3

1
sini i

i
k θ

=
∑ and 

3

1
sini i

i
c θ

=
∑  respectively; Eq. (3.14) is used to predict the 

acceleration of the mass. The statistics of ki and ci will be the same as for k and c (Table 

3.3) to indicate that the same type of joints are used in the 3-legged system; however 

there is variability from joint to joint. BNs will be constructed for the response predicted 

by the single leg and three-legged joint system showing all the relations among the 

different variables given in Table 3.3.  

 

 
 
 
 
 
 
 
 
 
 

 
Fig. 3.11 Pulse Loading  

a) Triangular load                                                                 b) Parabolic load 
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The arbitrary loadings considered are (a)  A triangular impulse load starting from 

zero load and reaching a peak force of F0 =100 within 1 sec (b) an inverted parabolic 

loading that starts at zero and reaches peak value of F0 = 100 at 0.5 sec and goes down to 

zero at 1 sec. The details of implementation for the various cases listed in Table 3.2 are 

discussed next. The validation data (12 points) needed for sinusoidal loading on single 

leg joint is obtained by simulation only to demonstrate the methodology. Thus the 12 

measured accelerations are z = {21.639, 22.940, 24.940, 21.696, 24.816, 25.704, 23.163, 

22.250, 20.816, 23.354, 22.813, 23.661}. A BN for the validated model is shown in Fig. 

3.12. 

 

 

 

 

 

 

 

 

Case 1: The steps involved in validating the maximum acceleration for single-leg joint 

under arbitrary loading are: 

• Update the distribution of acceleration under sinusoidal loading using validation 

data and hence update the statistics of the parameters k, c, Ω etc.  

for(i IN 1 : 12)

z

F0

a

r
we

w

s

c

m

k

Fig. 3.12 BN for single-leg joint validation 
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• Compute the Bayesian validation metric for response under sinusoidal loading as 

the ratio of posterior and prior densities at an acceleration value predicted for a 

particular set of values for k, c, Ω etc. 

• Using the posterior and prior statistics for k, c etc, calculate the density function 

of maximum acceleration for the single leg joint under arbitrary loadings (two 

types mentioned above). 

• Compute the validation metric for response under arbitrary loading (application 

domain) as the ratio of posterior and prior densities at an acceleration value 

predicted for a particular set of values for k, c, Ω etc. 

For the first three cases, the model predictions are made at mean values, k = 1000, c = 7, 

Ω = 5. The maximum response under arbitrary loading is computed using a numerical 

analysis technique (Newmark method). 

Case 2: The steps involved in validating the maximum acceleration for three-legged joint 

under sinusoidal loading are: 

• The first two steps are similar to those described in case 1. 

• Using the posterior and prior statistics for k, c etc, calculate the density function 

of maximum acceleration for the 3-legged joint under sinusoidal loading. Note 

however that k and c will be effective parameters that include the effect of random 

joint inclination θ. 

• Validation metric for the 3-legged joint (application domain) response under 

sinusoidal loading is the ratio of posterior and prior densities at an acceleration 

value predicted for a particular set of values for effective parameters k and c, Ω 

etc. 
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Case 3: The steps involved in validating the maximum acceleration for three-legged joint 

under arbitrary loading are: 

• The first two steps are similar to those described in case 1. 

• Using the new and old statistics for k, c etc, calculate the density function of 

maximum acceleration for the 3-legged joint under arbitrary loading (two types). 

Note however that k and c will be effective parameters that include the effect of 

random joint inclination θ. 

• Validation metric for the 3-legged joint (application domain) response under these 

arbitrary loadings is the ratio of posterior and prior densities at an acceleration 

value predicted for a particular set of values for effective parameters k and c, Ω 

etc. 

The results obtained in each case are summarized in Table 3.4. The variable B refers to 

the validation metric in the each domain. The ratio B (of the posterior to prior densities), 

is always evaluated the mean value of the model prediction in this example.  

Table 3.4. Summary of validation and extrapolation results for the 4 cases 

Case B in Validation 
Domain 

B in Application 
Domain 

1.04 (parabolic pulse) 
1 1.82 1.03 (triangular pulse) 
2 1.82 1.62 

1.1 (parabolic pulse) 3 1.82 1.1 (triangular pulse) 
 

A Bayes factor for the decision variable close to 1.0 indicates that validation data 

are not informative for assessing the model in the application domain. In general, the 

value of B in the extrapolation domain is lower than in the validation, as expected, since 
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there should be less confidence in the extrapolation than in the domain where data is 

available.  

 

3.5.2 Energy dissipation model 

Consider another case which studies the energy loss due to friction in bolted lap 

joints under sinusoidal and arbitrary loadings. Here, the parameters that represent the 

material and geometric properties are quite different from those described in Section 

3.5.1. Thus the following discussion must be viewed as totally different, independent of 

the spring-mass analogies described so far. Here we consider a four parameter Iwan 

model (Iwan, 1966) to study the accuracy of the mathematical model in predicting the 

energy loss due to friction in a lap joint. The purpose of the mathematical model is to 

predict the dissipation energy D released per cycle at the joint when subjected to impact 

harmonic (sinusoidal) force amplitude of F0.  
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where the term r is given by solving the following equation below 
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where the four parameters R, S, χ and φmax are quantified from the experiments and 

whose statistics are given by Urbina et al (2003). β, r and Fs are intermediate variables.  
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This model has been validated using sufficient data sets and is ready for use in the 

energy loss prediction under sinusoidal loadings. Now the task is to assess its predictive 

capabilities under arbitrary loading. Note that this r in Eq. (3.16) is not same as the 

frequency ratio defined earlier. Again, BNs are employed to extrapolate inference from 

the validation domain (harmonic loading) to the application domain (arbitrary loading 

conditions). The computational model given by Eq. (3.17) is valid for sinusoidal or 

harmonic excitations. Any arbitrary loading may be represented using Fourier series 

expansion as 

   ( ) ( )( )0
1

( ) cos sinb n n
n

F t a a n t b n t
∞

=

= + Ω + Ω∑                          (3.17) 

Thus decomposing the total force function into several sinusoidal force components, the 

total energy dissipated in the joint can be estimated as the summation of energies 

dissipated under each of the sine or cosine component. Thus the variable F0 in Eq. (3.17) 

is replaced with a0, an, bn etc for n = 1, 2, 3,… and energy D is computed in parts.  

 

Fig. 3.13 BN for the energy dissipation problem 

D
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The model prediction in the application domain is the summation of those energy values. 

It is also obvious that energy loss under cosine and sine loads will be identical. 

The steps involved in validating the model are 

• Update the distribution of energy D under sinusoidal loading (magnitude of 320 lb 

is chosen) using validation data z (12 data points available) and hence update the 

statistics of the parameters R, S, etc.  

• Validation metric for D under sinusoidal loading is the ratio of posterior and prior 

densities at an energy value predicted for a particular set of values for R, S, etc. 

• Using the new and old statistics for R, S etc, calculate the density function of 

energy loss D1 for the joint under arbitrary loadings (two types mentioned above). 

Again, it should be noted that energy D1 is computed as a sum of energies 

dissipated by Fourier components of the impulse/ shock force. 

• Validation metric for D1 under arbitrary loading (application domain) is the ratio 

of posterior and prior densities at an energy value predicted for a particular set of 

values for R, S, etc. 

The triangular and parabolic impulse loads are represented by Fourier series in Eqs. 

(3.18) and (3.19) respectively. 
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For the sake of illustration, the first 5 components of the Fourier series are used to 

estimate the energy dissipated in the bolted lap-joint and Table 3.5 shows those force 

components. Thus for triangular shock load, the total energy is computed as  
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       D1 = D(0.5F0)+ D(0.318F0) + D(0.159F0) + D(0.106F0) + D(0.079F0)   (3.20) 

where F0 = 320. Similarly, for parabolic shock load, the total energy is computed as  

  D1 =D (0.666F0) + D(0.405F0) + D(0.101F0) + D(0.045F0) + D(0.025F0)   (3.21) 

 

Table 3.5 Fourier components for impulse load 

Load F1 F2 F3 F4 F5 

Triangular 0.5 F0 0.318 F0 0.159 F0 0.106 F0 0.079 F0 

Parabolic 0.666F0 0.405 F0 0.101 F0 0.045 F0 0.025 F0 

 

The results obtained in each case are summarized below in Table 3.6. The variable B 

refers to the validation metric in the each domain. The ratio B is always evaluated the 

mean value of the model prediction in this example. 

 

Table 3.6 Summary of validation and extrapolation results for the 4 cases 

B in Valid. 
Domain 

B in Appl. domain 

2.68 (parabolic pulse) 
5.02 

1.44 (triangular pulse) 

 

3.5.3 Heat flow problem 

Consider a transient one dimensional heat flow problem (Hills and Leslie, 2003). The 

computational model is then time-dependent and so is the target application. Also, the 

new predictive model has two more additional random input variables in it. 
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where 1 2
2 ( 1)n

nA
n

α α
π

 = − − −  . The decision variable for the target application is the 

heat flux defined as d(x, t) = -k dT/dx i.e.,  

      2 2
2 1

1
( , ) exp cos( )n

n p

kd x t k A n n t n x
C

α α π π π
ρ

∞

=

  
= − − + −  

    
∑          (3.23) 

Also, the variable k and ρCp follow the same statistical distribution N (1, 0.1). Model 

output corresponding to t = ∞ gives the steady state response as obtained in Example 1. 

In this example, the model predictive capabilities are tested at time t = 0.25 and at a 

location x = 0.25. Model prediction is made for a set of mean input random variables and 

experimental data was measured with Gaussian error εexp ~ N(0, 0.5). Since both d(x, t) 

and T(x, t) depend on x, t, α1, α2, k and ρCp, the relations are represented using a 

Bayesian network as shown in Fig. 3.14. 

y dT

A4A3

A2

A1

x trcpkT2T1

 

Fig. 3.14.  Bayes network for transient heat flow problem 
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Table 3.7 shows the Bayes factors calculated for the computational model prediction 

using different observed values of temperature (y) and the corresponding inferences on 

the target application. For a fixed model prediction (using a fixed set of inputs), the 

experimental observation value (only single measurement in each case) varied from, 

being far from prediction to close to the prediction value. 

 

Table 3.7. Validation inference extrapolation for transient heat flow problem 

T y d BT Bd 

12.4 10.16 -9.695 0 0.91 

12.4 11.03 -9.695 0.55 1.00 

12.4 11.81 -9.695 1.73 1.07 

12.4 12.45 -9.695 3.28 1.09 

 

A plot of confidence measure in T (0.25, 0.5) versus confidence measure in d (0.25, 0.5) 

is shown in Fig. 3.15. 
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Fig. 3.15. Plot relating confidence in decision variable to validation information 
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A

A very flat plot in Fig. 3.15 indicates that when transient conditions are considered, the 

target application is in fact less sensitive to the validation information. This could be the 

result of additional parameters introduced in the model and mode complexity.  

 

3.5.4 Extrapolation of stress prediction from nominal to tail loading 

A mechanical component in an application is a square plate structure with a 

circular hole in the center. The plate is subjected to distributed loading along the two 

straight edges. Finite element (FE) modeling may be used to predict any response 

quantity of interest related to this plate. The FE model of a quarter the structure is used 

due to the symmetry, as shown in Fig. 3.16, and the vertical displacement of tip A under 

the loading is of interest.         

      

   

 

 

 

 

Fig. 3.16 FE model of the plate 
 

The plate has dimensions of 24”x 24” x 1” and the curved edge has a radius of 8”. The 

Young’s modulus E and the Poisson ratio is v are Gaussian random variables with 

statistics N (10000, 2000) psi and N (0.2 0.025) respectively. The plate is subjected to 

uniform loading of equal magnitudes along its edges. For the purpose of analysis, the 

loading on each edge is assumed Gaussian with statistics w ~ N (500, 50) kips. Elastic 
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small deflection theory was used in the analysis to determine the displacement of tip A. 

Appropriate boundary conditions were applied along the other straight edge portions of 

the plate.  

Since the input loading and material properties are random, the model response is 

also a random quantity. One can estimate the statistical distribution of model response by 

running the FE code several times using randomly sampled values of the input loading 

(w, E, v) each time. To avoid this computationally intensive exercise, a stochastic 

response surface (Tatang et al, 1997) using polynomial chaos expansion (Ghanem and 

Spanos, 1991) was used in this example to represent the tip displacement as a function of 

the distributed loads along the edges. Although we considered the Poisson’s ratio v as a 

random variable, analysis of variance showed that v has insignificant contribution to the 

variance of y and hence v is omitted in the response surface. Thus the model output is a 

function of E and w. 

 

 

 

 

Fig. 3.17 Bayes network for the plate problem: Nominal input to tail input 

 

The stochastic response surface with R2 = 0.999 is 

               y = 1.5306 – 0.3326 ξ1 + 0.1544 ξ2 +0.0666 (ξ1
2 – 1) – 0.03329 ξ1ξ2         (3.24) 

where ξ1 and ξ2 are independent standard normal variables. Here ξ1 and ξ2 are related to 

the physical variables E and w using the relation E = 10000 + 2000ξ1 and w = 500 + 50ξ2. 
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Thus the model response (vertical displacement at tip A) for any values of E and w can be 

obtained by first transforming each of those values into standard normal space and then 

substituting them in Eq. (3.24).  

Suppose we validate this model in a test setup at its mean input values (w = 500, E 

= 10,000) whereas in the actual application, the plate experiences larger loads (w = 750, 

E =10,000). This is Case 2 in Section 3.2.2, where the validation and decision variables 

are identical but evaluated at mean and tail loads respectively. Suppose the displacement 

data (5 samples) corresponding to the mean load input is z = {1.215, 1.563, 1.618, 1.962, 

1.294}. 

 

 

 

 

 

Fig. 3.18 Confidence in prediction at non-nominal loads 

 

The Bayesian network depicting the relations between various quantities is given in Fig. 

3.17. Both yn (nominal) and yt (tail) are exactly the same functions of ξ1 and ξ2 but the 

response values are evaluated at different inputs. The validation metric Byn at the mean 

input value is found to be 1.52 which corresponds to 60.3% confidence (i.e., Byn/(Byn 

+1)). The confidence in the model prediction for any other input value (say, from its tail 
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region) can be calculated, as explained in Section 2.2.2, by evaluating Byt = ( | )
( )

f y z
f y

 at 

this new input value (from the tail region) first and then by computing Ch using the 

relation Ch = Bh/ (Bh + 1). Given the experimental data at nominal loading, the confidence 

in the model prediction at different load values (equal magnitude on all edges) is 

estimated and shown in Fig. 3.18. At w = 750, Bh = 0.142 and C = 12.46%. As we collect 

more data at higher load values, one should expect the confidence curve to move to the 

right, indicating increasing confidence at higher loads. With the current information, the 

confidence drops below 50% at w = 612 lb. Thus the proposed methodology can also be 

used to determine the limits of extrapolation. 

Different loading conditions 

 Suppose the plate is subject to uniform loading w of equal magnitude along its 

edges in the validation domain and point load P in the application domain. It is assumed 

that the load P acts at the midpoint along the edge of the quarter plate. For the purpose of 

analysis, the loading on each edge is assumed Gaussian with statistics w ~ N (500, 50) 

kips and P ~ N (6000, 1200) kips. Further the material properties are random variables as 

well with distributions E ~ N (10,000; 1000) psi while v ~ N (0.2, 0.025). A linear elastic, 

small deflection theory was used in the analysis to determine the displacement of tip ‘A’ 

shown in Fig. 3.16. Since the input loading is random, the model response in both 

domains will also be a random quantity. The FE model is the only common link between 

the two domains. The BN for this problem is shown in Fig. 3.19 and the common 

independent variables are E and v.  
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Fig. 3.19 Bayes network for the plate problem: Different loading conditions 

 
 
Model y represents the response under distributed loading while h represents response 

under point loading. The stochastic response surface is constructed for h in terms of E 

and P only since the variable v is found out to have no significant effect on h. 

The stochastic response surface with R2 = 0.999 is 

           h = 0.5623 – 0.1222 ξ1 + 0.1134 ξ3 +0.02447 (ξ1
2 – 1) – 0.02445 ξ1ξ3            (3.25) 

where ξ1 and ξ3 are standard normal variables related to E and P using the relations 

10000 + 2000 ξ1 and 6000 + 1200 ξ3 respectively. Suppose the data z is used to update 

the response in the validation domain y, then the linking variable E and hence the 

decision variable h are updated through the Bayes network. The Bayes factors for y and h 

evaluated at the mean values of E, w and P are estimated to be 1.52 and 1.1 respectively. 

This is Case 2 in Section 3.2.2 where the input conditions are physically different in the 

validation and extrapolation domains.  
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3.5.5 Multivariate extrapolation  

A thermal decomposition model of a polyurethane foam was developed by Hobbs 

et al (1999). The model predicts the foam decomposition front location as a function of 

time and the computational model involves solving a series of partial differential 

equations using numerical methods. Each of those codes corresponds to different 

chemical and physical processes. The boundary condition consists of a uniform rate of 

heating maintaining a constant temperature at one edge of the foam. The rate of 

decomposition depends on several model parameters such as material properties (density, 

specific heat, and emissivity), chemical properties (bond population, heat of reaction etc) 

of the foam, and activation energies (that affect the chemical bond breaking rates). Thus 

the model prediction is a function of 25 input parameters. Further, the uncertainty of 

those parameters is characterized using statistical distributions. The statistics of 16 

activation energy parameters were estimated from 18 experiments (Hills et al, 2004). 

Although the histograms of each of those parameters did not have symmetry and are 

bimodal in some cases, the activation energies were assumed to be Gaussian for the sake 

of analysis. The remaining 9 parameters relating to the material and chemical properties 

of the foam are assumed to be Gaussian as well from a previous analysis (Dowding et al, 

2004). The details of the statistics and correlation have been omitted in this examples as 

they are found in Hills et al (2004).  

 The uncertainty in the model output can be represented using a statistical 

distribution whose statistics can be obtained in two ways; in the first approach, the 18 sets 

of input parameters from 18 experiments can be used directly to calculate the model 

output 18 times. This method however is not so useful for ‘making new predictions’ for a 
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set of input values other than those that have already been used or to predict the response 

at a different time period. Alternatively, an approximate mathematical model such as a 

response surface can be built to predict the response quantity of interest (in this case, 

location of decomposition front) as a function of the random input parameters and time. 

This uncertainty in the inputs can be propagated to the output through this approximate 

mathematical model repeatedly to obtain the output statistics as well as to make 

predictions for future use without accessing the full suit of codes. This reduces the 

computational effort and saves time for later uses of the model for design. Before the 

approximate model is set for use in an application, it needs to be validated at least for the 

range in which the test data is available. Using the validation inference, the confidence in 

the model output for a new set of input parameters outside the validation domain has to 

be computed. This example thus serves as a case study for the multivariate extrapolation 

discussed in Section 3.3.  

 The approximate mathematical model is based on a first-order Taylor series 

expansion, constructed as a function of the random parameters, around the mean values 

of the parameters as 

          ( ) ( )
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∂
= + −
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αα µ                       (3.26) 

where α = {α1, α2, …α25}is the vector of input random parameters and µα, corresponding 

mean vector. In this example, x(µα, t) is assumed to be Gaussian; thus the model output at 

any time instant is Gaussian as well from Eq. (3.26). To validate this model that was built 

around the mean parameter vector, experiments were conducted to measure the actual 

location of the decomposition front. For a given heating rate with a temperature of 600 
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0C, measurements were taken at discrete, irregular time intervals and the response 

observed corresponds to the mean input model parameters.  

 

 

 

 

 

 

 

 

 

Fig. 3.20. Model prediction versus experiment 

 

 The readings are available at 110 different time instants but for illustration 

purposes, only the readings from the first 25 time instants were used in this example. It is 

just a coincidence that the number of random input parameters used in the model is same 

as the number of time locations at which the response is measured. Although the response 

measured at each time period is correlated, no additional information on the correlation 

among the measurements y is available, and thus the measurement uncertainty is assumed 

from previous experience to be Σ = cov(y) = 0.0752 I, where I is the identity matrix of 

dimensions 25 × 25. Also, Σ is substituted for V in Eq. (2.9) to calculate the likelihood. 

Fig. 3.20 shows the plot of mean model prediction x(µα, t) versus the observed response 
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y. Model validation in this case involves determining whether the mean model output 

vector is statistically close enough to the experimental observation vector. 

 Suppose the prior prediction x(µα, tj) for j = 1 to 25, is normal with mean vector 

η = x(µα, t) and covariance matrix Λ. The covariance of the model output is derived from 

the covariance of the input parameters using the relation Λ = ∇αx(α, t).cov(α).∇αx(α, t). 

Having observed the data y with Gaussian measurement uncertainty having zero mean 

and covariance structure Σ = cov(y) = 0.0752 I, the posterior joint density for x will be 

multivariate normal as well. The posterior mean and covariance matrix for the model 

output variables are given by  

ηp = (Λ-1 + Σ-1)-1[Λ-1η + Σ-1y]  

        Λp = (Λ-1 + Σ-1)-1                                           (3.27)  

Using Eq. (2.9), the aggregate validation metric is computed at the mean value η as 
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The Bayes factor for any prediction other than the mean can be obtained using the 

experimental data and prior statistics of mean model output as described in Section 3.3. 

Suppose we need to assess the confidence in an arbitrary model output at x, the Bayes 

factor is calculated as 
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Thus By is found to be 0.215 and Bh evaluated at x(α + 0.1σ, t) is estimated as 0.0018. A 

value of 0.215 indicates that the model prediction at mean is not close enough to the 
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mean observation vector and only 17% confidence exists in the mean model output based 

on the available data. The confidence at x(α + 0.1σ, t) is even smaller.  

  

 

 

 

 

 

 

 

Fig. 3.21. BN for Multivariate Extrapolation 

 

When conjugate priors are not available, a Markov Chain Monte Carlo simulation 

technique like Gibbs sampling (Spiegelhalter et al, 2002) may be employed to calculate 

the metric given in Eq. (3.29). In such cases, multiple nodes for y1, y2, y3.. and h1, h2, h3 

etc are defined as shown in Fig. 3.21. Several reasons can be attributed for this apparent 

model and data discrepancy. Even graphically, the mean model output did not fall within 

the 95% confidence intervals for the measurement most of the time, which should give a 

preliminary indication of model inadequacy.  

(1) Model form error: The first-order Taylor series may be inadequate in representing the 

model prediction for mean inputs in Eq. (3.27) and even the sensitivities ∇αx(α, t) 

calculated using perturbation methods may not have been accurate.  
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(2) UQ for model input and output: Another major source of error could be the 

uncertainty characterization of the input model parameters from limited data. With the 

errors in the estimation of sensitivities, the covariance matrix of the model output 

variables is also affected. 

(3) Experimental error: With the lack of complete information on measurement 

uncertainty, the experimentally observed response at different time periods are assumed 

to be independent in the definition of Σ while the computational model output had perfect 

correlation structure defined using Λ. This metric is affected by such deficiencies. 

Computational aspects: The mean model output being nearly a linear function of time 

results in a highly skewed covariance matrix Λp, which affects the accuracy of the metric 

defined in Eqns. (3.29) and (3.30). Suppose we ignore the correlation among the several 

model output variables, the aggregate metrics By and Bh have been computed under the 

independence assumption and are found to be 240367 and 1927 respectively. The region 

in the multidimensional space where the model outputs have more than 50% probability 

of being correct cannot be estimated easily, unlike the univariate case. It was also 

observed that slight deviations in the experimental result from the model prediction 

resulted in large changes in the validation metric value (details not shown in this 

example). Thus multivariate tests could be more stringent compared to marginal 

comparisons.  

 

3.5.6 Analytical methods for Bayesian analysis 

Consider the finite element plate problem shown in Section 3.5.4. Suppose we do 

not wish to construct a stochastic response surface for the stress prediction y as given in 
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Eq. 3.24 and still wish to compute By and Bh, saddlepoint approximations described in 

Section 3.4 can be applied for that purpose. The Bayesian network for this example is 

shown in Fig. 3.19. The goal is to extrapolation inferences across different loading 

conditions. Once the data z is used to update the response in the validation domain y, the 

linking variables E and v and hence the decision variable h can also be updated. The prior 

and posterior densities of y at some model prediction value y0, can be estimated using Eq. 

(3.8) as 
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             (3.30) 

The posterior density ( )ˆ ˆ ˆ, , |f E v w z shown in Eq. (3.31) can be evaluated using the 

method described in Section 2.2 and Eq. (3.6). When the data z = 0.013 has been 

observed with a Gaussian measurement uncertainty (σexp
2 = 0.0025), the likelihood f(z | y) 

can be taken as Gaussian as well with mean y and variance σexp
2 for substituting in Eq. 

(3.30). The Bayes factors for y and h evaluated at the mean values of E, v, w and P were 

estimated to be 21.4 and 1.21 respectively. If the response quantities of interest in the 

validation and application domains are not sensitive to the linking variables, the posterior 

densities of those common variables do not affect the decision variable as well, in which 

case the Bayes factor for the decision variable will be close to 1.0. In such cases, 
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inferences cannot be drawn effectively for the application domain based on the validation 

data.  

Thus the inferences from one loading condition to the other have been propagated 

through the BN concept proposed in this example and using approximate methods to 

reduce the number of FE code evaluations. A typical Gibbs sampling procedure that calls 

the FE code directly would have required nearly 50,000 function evaluations. (A response 

surface constructed to replace the FE code would also need considerable number of 

function evaluations depending on the nature of the problem. Also, there is no prior 

guarantee that all FE models can be represented by second or third order response 

surfaces with sufficient accuracy). The saddlepoint Laplace approximation required 56 

function evaluations for each type of loading (uniform and point loads), thus far the most 

efficient. 

 

3.6 Summary 

Bayesian methodology helps to propagate inferences from the validation domain to the 

target application domain through the Bayes network approach. Two cases of 

extrapolation were considered: Extrapolation of validation inferences from one response 

quantity (for which data is available) to a different response quantity (for which data is 

absent), and from one input condition to another. The second case included two 

situations: the input variables in validation and application domains are physically 

different, and the inputs in the two domains come from two regions of a distribution.  

From the numerical examples, it is seen that the sensitivity analysis (second-order 

variance-based, especially relevant in Bayesian methodology) must be conducted for the 
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system-level model before component level tests are conducted. The numerical examples 

can also be used to demonstrate the proposed extrapolation methodology when the 

underlying physics changes i.e., materials can have elasto-plastic behavior in the 

application domain. In these particular problems, we have relatively adequate knowledge 

on the behavior of physical systems. However, this is difficult for systems where the 

effects of physics change are unknown. Estimating the confidence bounds in the 

multivariate case is still a numerical challenge which needs further work.  

Saddlepoint-based Laplace approximations were used in this study to carry out 

marginal and conditional density estimation. Although the accuracy of such approximate 

methods has been investigated previously in the literature, extensive study on their use 

for model validation remains to be done. Adaptive rejection sampling (ARS) and 

nonparametric methods have been briefly discussed in this chapter. ARS still has very 

limited use for even a small problem like the plate model with a hole and hence can be 

used for parametric analytical model updating purposes only. We conclude that the 

Laplace approximation methods are promising for validation and extrapolation 

applications involving very large scale models. Future work in this direction involves 

application of these techniques to the case of correlated input variables and accuracy 

estimation studies. 
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CHAPTER IV 

 

ERROR ESTIMATION IN V&V 

 

4.1 Motivation 

The complex phenomena involved in engineering systems are increasingly being sought 

to be modeled and simulated using numerical methods. Several computational methods 

and techniques have been developed to accomplish this objective. There is a need to 

assess the accuracy of these simulations by comparing computational predictions with 

experimental test data. Conducting full-scale physical experiments, however, could be 

uneconomical and time consuming. Also, computational models incorporate many 

assumptions and approximations. Therefore, they need to be subjected to rigorous and 

efficient verification and validation (V & V) before they can be applied to practical 

problems with confidence. While chapters 2 and 3 dealt with the issue of validation, this 

chapter discusses about verification of computational models.  

 Verification refers to the assessment of accuracy of the solution with respect to 

known solutions. The aim of the verification process is to identify, quantify and reduce 

the errors in the computational model (AIAA, 1998). Total uncertainty in computational 

analysis is understood to arise from a full range of modeling and simulation activities 

which can be broadly classified as variabilities, errors, and uncertainties. The 

computational activities which comprise uncertainty quantification can be broadly 

classified as nondeterministic analysis (assessment and propagation of uncertainty) and 
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numerical error estimation.  Also, measurement error should be included in both inputs 

and outputs in the validation metric.  

 Non-deterministic analysis methods have mostly been concerned with 

propagating variabilities in model parameters (usually defined in terms of probability 

distributions) through one or more models with the goal of estimating some statistics of 

interest on the predicted quantities of the models. These methods include Monte Carlo 

simulation (Iman & Conover, 1982; McKay et al, 1979; Deodatis et al, 1995), first-order 

and second-order reliability methods (Hasofer & Lind, 1974; Hohenbichler et al, 1987), 

stochastic finite element methods (Yamazaki & Shinozuka, 1988; Ghanem & Spanos 

1991) and response surface methods (Schueller et al, 1989; Myers & Montgomery, 

1995). A collocation-based stochastic finite element method will be pursued in this study 

for its efficiency in non-deterministic analysis and ability to quantify errors in the 

modeling and simulation process. 

 Thus the current chapter develops methods to quantify and assess the relative 

influence of errors in numerical modeling vs. measurement error in validation 

experiments. One of the errors in numerical solution is discretization error. This error is 

the result of using a discretization method with a finite number of degrees of freedom to 

solve the set of differential equations. These errors lead to a bias in the computed solution 

with respect to the true solution of the continuous differential equations. A detailed 

investigation of discretization error estimation in non-deterministic analysis will be 

presented. In this study, the non-deterministic analysis is performed using a Stochastic 

Response Surface Method (SRSM) in which the output response surface is represented by 

polynomial chaos expansion.  There is truncation error in SRSM due to the finite number 
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of terms in the response surface and this error should be quantified. Besides errors in 

numerical solution, measurement errors in input variables and their effect on the 

prediction, and errors in the measurement of output variables during validation 

experiments will be included in the model validation framework. 

 

4.2 Errors in numerical solution 

When continuum models (such as partial differential equations) are used to represent a 

physical phenomenon, and approximate methods are used to solve those equations, 

numerical errors are introduced in the solution. The different types of numerical error can 

combine linearly or nonlinearly but the scope of this chapter is to quantify those errors. 

Since the errors are derived from the model solution which in turn depends on the 

uncertain inputs, numerical errors may also be treated as uncertain. This section develops 

various error estimation and uncertainty quantification methods that are needed for V&V 

process. 

 

4.2.1 Discretization error (εh) 

When continuum structures are analyzed through discretized models, the 

predictions from such models contain numerical errors. Various measures or error 

estimators have been developed to minimize the discretization error and to adaptively 

refine the deterministic model. Initial studies in error estimation focused on the 

convergence and stability of the solution and not specifically the quantification of error. 

Babushka and Rheinbolt (1978) introduced techniques to approximate the error in energy 

or energy norm and formed a basis for the error estimation. Elemental residual methods 
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and interpolation estimates were developed for a priori error estimation (Demkowicz et 

al, 1984) in the field of computational fluid dynamics. Extrapolation techniques have 

been used to estimate the global estimates for the h- version of finite element method 

(Szabo, 1986). Recovery-based methods, wherein the given solution is compared with the 

solution by a smoothened model, were developed by Zienkiewicz and Zhu (1987). A 

super-convergent patch recovery-based error estimator was also developed by 

Zienkiewicz and Zhu (1992). Also, bounds for the global-error estimates and methods for 

local error estimates (referred to as goal-oriented approach) have been developed 

(Ainsworth & Oden, 1993, 1997; Babuska et al, 1994; Dow, 1999).  

 The subject of a posteriori error estimation is now well established as a result of 

the above studies, and the error estimates are being investigated for application to mesh 

refinement problems involving elliptic, parabolic and hyperbolic partial differential 

equations. The robustness, consistency, stability, and convergence of some these error 

estimators and indicators around singularity locations still require study. Among the error 

estimators (e.g., Ainsworth & Oden, 1993, 1997; Babuska et al, 1994; Dow, 1999) which 

have been developed in deterministic finite analysis as well as in classical methods, four 

easily computable error estimators were extended by Rebba (2002) to numerical analysis 

with stochasticity.  Most of the error estimators have been found to be only useful for 

adaptive mesh refinement, but not for quantifying the actual error. The actual error is best 

described by Richardson extrapolation and its ease of computation has attracted the V&V 

research community (Roache, 2002). Thus, an error estimator based on Richardson 

extrapolation (Richards, 1997) is considered here for the sake of illustration. However, 
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the proposed model validation methodology in this study is quite general, and can be 

implemented with any appropriate error estimator. 

Richardson Extrapolation 

In the Richardson extrapolation, the error due to grid size is given by 
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where y3 is the solution with the finest grid size. The grid refinement ratio is assumed to 

be constant, i.e., r = 
1
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. The rate of convergence p was computed from Eq. (4.2), 

using the mean values of the responses y1, y2, and y3 at three different mesh sizes h1, h2, 

and h3, and using r.  

Note that for a particular realization of the random variables, discretization error 

is by itself deterministic, but in non-deterministic analysis, its randomness arises due to 

randomness in the input variables. Since the random response is a function of random 

input variables, the error in the computation of this response is also random and a 

function of random input variables. Recognition of this fact has led to several studies 

(Alvin, 2000; Babuska & Chatzipantelidis, 2002), attempting to quantify the 

discretization error in non-deterministic analysis. As pointed out by Alvin, the 

dependence of the error estimate on the values of the input parameters of the model 
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should be account for.  Many equations in Babuska and Chatzipantelidis's (2002) clearly 

show the dependence of the error estimate on the input random parameter. 

 

4.2.2 Errors due to element selection and shape function order (εp) 

Elemental errors arise during the formulation of the elements and are usually 

reduced by improving the model prior to the analysis (a priori error analysis). These 

errors may occur due to selection of lower order shape functions and/or due to the 

approximations made in the geometry of the element. The interpolation polynomial 

functions used to compute the displacements might introduce error. For example, the use 

of linear strain elements as opposed to the non-linear elements adds to elemental errors. 

Practical error estimators have not been developed for quantifying these model errors. 

Mesh refinement may reduce these errors to some extent if not completely eliminate 

them. One may use Richardson extrapolation formula for deriving error estimates in a p-

version finite element method. However this method could be computationally not so 

efficient to implement for large scale FE models. 

 

4.2.3 Errors due to stochastic analysis 

           Errors in stochastic analysis are method-dependent, i.e. sampling error occurs in  

Monte Carlo methods and truncation error occurs in series expansion-based methods such 

as spectral stochastic finite element method and response surfaces. For the response 

surfaces, truncation error is usually treated as a Gaussian random variable with zero mean 

and constant variance. This error variance can be minimized by increasing the order of 

polynomial used in the response surface or more sample points are selected to fit the 
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regression models. When Monte Carlo simulation is used to estimate a parameter and if σ 

is its sample variance, then the error due to Monte Carlo sampling follows a Gaussian 

distribution with zero mean and a variance of σ2/n. 

 

4.2.4 Stochastic distribution of discretization error  

If the physical, model and data uncertainties are modeled through probabilistic 

analysis, then the response is not a single value but follows a statistical distribution. 

Various methods are available to carry out probabilistic analysis to quantify the 

uncertainty in the output variables, given the statistical distribution of the input variables. 

Available uncertainty propagation models can be classified into three categories (Haldar 

& Mahadevan, 2000): (a) analytical methods, (b) sampling based methods, and (c) 

response surface methods. The choice of method depends on the nature of model used for 

predicting the output, and the needs with respect to accuracy and efficiency. In this study, 

a response surface approach is pursued to estimate the distribution of the discretization 

error. The statistical distribution of the error can then be easily obtained by simulating the 

input random variables in the response surface model. 

Stochastic Response Surface Method (SRSM) 

A polynomial chaos-based response surface is used, which is found to have 

superior convergence characteristics than traditional response surface models (Rebba, 

2002). The response surface is constructed by approximating both the input and output 

random variables through series expansions of standard random variables ξi. For 

example, a normal random variable can be expressed in terms of its parameters as µ + 

σξ where ξ is a standard normal variable.  A uniform random variable bounded between 
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a and b is expressed as 
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expressed through a polynomial chaos expansion by: 
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where y is the output and ),...,(
1 piip ξξΓ  are multi-dimensional Hermite polynomials of 

degree p given by  

                                       
ξξξξ

ξξ
ξξ

T

p

T

p
ee

ii

p
p

iip
2
1

2
1

...
)1(),...,(

1

1

−

∂∂
∂

−=Γ                         (4.4) 

where ξ is a vector of independent standard normal variables p
kik 1}{ =ξ . The response 

surface in Eq. (4.3) is referred to here as a stochastic response surface, to distinguish it 

from conventional response surfaces. The series could be truncated to a finite number of 

terms. The accuracy of the computational model depends on the order of the expansion. 

Additional transformations are necessary if the variables are correlated.  

The unknown coefficients may be estimated by various methods such as the 

Galerkin method or the collocation method (Isukapalli & Georgopoulos, 1999). The latter 

is used in this study, where the model outputs are computed at a set of collocation points. 

These collocation points are selected from the roots of the Hermite polynomial of a 

higher order and are made to capture points from regions of high probability (Tatang, 

1997). Response surfaces for model output at different mesh sizes y1, y2, y3 can be 
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constructed and substituted in Eq. (4.1) to derive a single response surface for eh. Thus 

statistical distribution of eh can be derived by simulating ξ1, ξ2 etc. 

 
4.3 Errors in experimental measurement 

In measurement theory (Ang & Tang, 1975), the estimated mean value from the 

observations is usually assumed to be the true measurement or true value of the 

underlying variable. The error of the estimated mean value consists of two components: 

systematic error or bias error, random error. Systematic error depends on the quantity 

measured, the experimental conditions, and the measurement technique. It may attributed 

certain well-defined factors whose effects can be determined and thus corrected by a 

constant bias factor. Random error, which is the other component of measurement error, 

has a random distribution and can be quantified using statistics. The Student’s t and Chi-

Square distributions in conjunction with the Central Limit Theorem provide a mechanism 

for determining the required number of observations (Caria, 2000).  When a set of 

observation data is available, the statistical estimate of the mean is  
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The random error about the mean is the standard error of the mean: 
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Thus the total error in x  may be defined as a random variable with Gaussian distribution 

with zero mean and variance (Barford, 1985) as
n
sx

e

2
22 += σσ  in which σ2

e gives the 

contribution from systematic error s2
x/n  is random error which can be reduced by 

increasing the sample size.  The above definition of measurement error is valid for both 

input variables and output variables.  However, the measurement error in the input 

variables will be propagated to the prediction of the output, while the measurement error 

in the output variables will affect the likelihood function to be used in Bayesian model 

validation. 

 

4.3.1 Measurement error in the input (εd) 

               If the relationship between input and output is given by  

  1 2( , ,..., )mu f x x x=                                                             (4.8) 

then the error in the prediction of the output due to the measurement error in the input 

variables can be expressed as 
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first order sensitivity coefficient of the model output u with respect to the ith input 

random variable xi.  Since the measurement error in each input variable can be quantified 

according to Eq. (4.7), the key to quantifying the error term εd is to compute the 

sensitivity coefficients which are partial derivatives. The partial derivatives may be 
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obtained either by analytical differentiation or by numerical differentiation (i.e., finite 

differences). The choice of the method is problem-dependent. 

 

4.3.2 Measurement error in the output (εexp) 

Suppose the output response quantity from an experiment is measured as yexp. 

This result deviates from the true solution due to error in measuring the outcome, denoted 

here as εexp.  

       yexp = ytrue – εexp                                                          (4.10) 

 The measurement error εexp is usually assumed to follow a normal distribution 

with zero mean and a constant standard deviation σexp (Barford, 1985) that depends on 

the quantity measured, the experimental conditions, and the measurement technique. 

(Systematic errors in the test can result in a non-zero mean in the measurement error and 

hence should be eliminated. Also, the variance in the measured outcome may have 

resulted from a combination of various factors. Our goal in this study is not to address 

these various factors; it is assumed that the total variance has already been calculated). 

The systematic error is deterministic, related to the accuracy and occurs due to bias in the 

measurement; this error can be eliminated. The random measurement error is difficult to 

measure from a single experiment but the parameters of its distribution can be determined 

from repeated observations. The experimental errors are usually assumed to follow a 

normal distribution due to the following properties (Barford, 1995): 

• Positive and negative errors can occur with equal probability (symmetric 

distribution) 

• Small errors are more likely to occur than large errors in a controlled experiment 
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In general, experimental errors may have zero mean but could still be non-Gaussian.  

 

4.4 Illustration 

A simple numerical example is given here to illustrate the proposed stochastic analysis of 

discretization error. The FEM model (or code) is simply treated as a “black-box” and the 

size of the problem only changes the computational effort but not the concept. Consider a 

plate with a hole in the center subjected to uniform distributed loading on the edges. 

Making use of the symmetry, only a quarter of the plate is analyzed, as shown in Fig. 4.1. 

The Young’s modulus of the plate is assumed to be constant throughout the plate 

(isotropic) and its value is 10,000 ksi. Also, the plate has unit thickness. A finite element 

model of the plate is created using the software ANSYS (Version 6.1). The domain is 

discretized into elemental areas. A linear elastic, plane-stress analysis was performed 

using ANSYS. Consider two independent input lognormal random variables w1, w2 with 

same mean value of 12 ksi and standard deviation of 2.4 ksi; and one output Von Mises 

stress σv  at point A. Two different levels of mesh size are chosen in ANSYS: a coarser 

mesh with 216 elements and a finer mesh with 486 elements. The ratio of the grid sizes, 

r, is found to be 0.666. A finite element analysis with a more refined mesh (1102 

elements) is carried out to estimate the order of convergence p and it is found to be close 

to 0.9 as per Eq. (4.2). For this particular example problem, analytical solution is 

available (Timoshenko & Goodier, 1970) which could also be used to compute p. 

 

 

 



 130

 

 

 

 

 

 

 

 

Fig. 4.1. One quarter of a plate with a circular hole at the center 

 

Clearly, if the model output is uncertain, the convergence parameter p also should be a 

random variable according to Eq. (4.2). In this simple example, the model responses 

corresponding to the mean input loads w1 = 12 and w2 = 12 have been used to estimate p. 

 

 

 

 

 

 

(a) Coarse mesh (216 elements)                     (b) Fine mesh (486 elements) 

Fig. 4.2. Finite element models for the plate  

 

w2

w1 

Point A

12" 

12" 



 131

The error estimate is thus calculated as (σv1- σv2)/(0.6660.9 -1) where σv1 and σv2 are the 

Von Mises stresses at point A for the coarse and fine mesh sizes respectively. The input 

variables are expressed in terms of standard random variables ξ1, ξ2 as (2.465 + 0.198ξ1), 

(2.465 + 0.198ξ2) respectively.  A second order polynomial chaos expansion for a single 

output and two input variables is given by 
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At least 6 sample points are needed to estimate the 6 unknown coefficients in the second 

order response surface in Eq. (4.11), and 17 samples are needed for a third-order response 

surface (Isukapalli & Georgopoulos, 1999). These samples are selected at collocation 

points which are combinations of roots of a Hermite polynomial of one order higher than 

the order of polynomial expansion. The resulting first, second, and third order response 

surfaces are computed using multiple linear regression as  
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The residual errors from the regression for the three different response surfaces are 0.356, 

0.018 and 0.0002 ksi respectively. Relative to the mean Von-Mises stress, the percentage 

errors are 1.65%, 0.08% and 0.001% respectively. For practical applications, one may 

terminate the response surface construction at this stage. Therefore, the 3rd order response 

surface is used for further computations below.  

This same example was also done with normally distributed w1 and w2, in which 

case a first order response surface was found to be adequate i.e, the standard error was 
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estimated as 0.0008 ksi or 0.004% relative error. Thus, simply changing the distribution 

from normal to lognormal made it necessary to use a higher order response surface in Eq. 

(4.12c). Thus higher-order response surfaces may be necessitated by the nature of the 

randomness in the input variables, even when the physical problem is simple and linear. 

The third-order response surface for Von mises stress in Eq. (4.12c) is used now to 

illustrate the stochastic estimation of the discretization error. The response surfaces for 

Von-Mises stress using two different mesh sizes are given by 
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where ε1 and ε2 are the residuals, which are found to follow normal distributions with 

zero mean values and standard deviations of 0.0064 and 0.01 respectively. Since the 

residuals are negligible compared to the actual response, they are not included in further 

calculations. The Richardson extrapolation-based error estimator is thus calculated using 

Eq. (1) as (f1- f2)/(0.694), i.e., 
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The error εh is stochastic, whose distribution is obtained from Eq. (4.14) by 

considering the distributions of the input variables ξ1 and ξ2. The error estimator εh is 

found to follow a normal distribution with a mean value of 1.0212 ksi and standard 

deviation of 0.70777 ksi. 
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4.5 Summary 

Several sources of uncertainties are identified and errors from both simulation and 

experimental measurement are quantified and included in this study. Once these various 

errors are quantified, they can be included as additional variables to the model response. 

Thus the validation metric is affected by these various types of errors. The sensitivities of 

the Bayes factor with respect to the different sources of error can be quantified, in order 

to facilitate model refinement after validation. This chapter examined the role of 

discretization error, error due to stochastic analysis, and measurement errors. The next 

chapter includes model form uncertainty, reliability analysis error etc in the design. 
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CHAPTER V 

 

INCLUSION OF MODEL ERRORS IN DESIGN 

 

5.1 Motivation 

The development of high performance computers in recent years is leading to an ever 

increasing reliance on computational models to analyze and design complex engineering 

systems. However, such simulation models incorporate many assumptions and 

approximations, thus leading to errors in the prediction. Reliability-based design 

optimization (RBDO) commonly evaluates the reliability constraints of the physical 

system through the use of computational models. Before we assess the reliability of the 

actual physical system, the performance of the simulation model itself needs to be 

assessed by comparing the model prediction against observations, using specific 

validation experiments. A rigorous verification and validation process is needed to 

effectively quantify the uncertainties and errors in the system analysis model, and the 

model uncertainties and errors should be accounted for in the design optimization. 

Uncertainty in engineering analysis arises from three types of sources: (1) 

Physical or inherent variability: This is commonly represented through random 

variables in the context of RBDO and generally quantified by probability 

distributions estimated from observed data; (2) Information uncertainty, due to either 

limited or qualitative information: In the context of probabilistic modeling, limited data 

leads to statistical uncertainty, i.e., the uncertainty in the statistical distribution 

parameters of the random variables identified in the first source. Qualitative information 
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is handled through epistemic uncertainty methods such as fuzzy sets, possibility theory, 

evidence theory etc. (3) Model uncertainty and errors, which arise from selection of 

model form and parameters, assumptions, and approximations at several stages of 

analysis. In the context of RBDO, this should not only include concerns about the system 

analysis model, but the reliability estimation method also.  

This study only deals with the above sources of uncertainty in a probabilistic 

context. The reliability analysis in most RBDO studies has been concerned with physical 

uncertainty to estimate the probability of failure or a reliability index. A few recent 

studies have also considered the statistical uncertainty mentioned above, which induces 

scatter in the estimated failure probability. When statistical uncertainties are considered, 

the reliability estimate is not a single number but follows a probability distribution. 

When multiple models are available to describe a physical phenomenon, selecting 

one of the models for use involves model uncertainty, and the resulting model prediction 

will then contain model error. Model selection uncertainty is epistemic in nature, and has 

been sought to be mitigated through Bayesian model averaging in some studies, but not 

directly quantified. On the other hand, model error -- the difference between prediction 

and observation -- can be directly quantified and incorporated in RBDO. Therefore, this 

study focuses on the quantification and inclusion of model error in RBDO. 

The many sources of physical system model error are broadly grouped into two 

components in this study: model form error and solution approximation (numerical) error. 

Model form error includes assumptions about system behavior, boundary conditions, 

model parameters and input variables. When continuum mathematical models are 

discretized using finite element or finite difference methods, the solution approximation 
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contains discretization error. Response surface approximations have been used as 

surrogates for large computational models in many design optimization studies, and this 

introduces additional truncation error in the design solution.  

The reliability analysis used in RBDO also has errors, which can again be 

classified as model form and solution approximation errors.  Methods such as FORM, 

SORM etc., commonly used in reliability analysis introduce solution approximation error 

since they give only approximate estimates of the probability integral. There could also 

be model form error, e.g., selection of distribution types for the random variables used in 

the reliability analysis. Model form error may also be introduced due to incorrect or 

approximate formulation of the limit state function. In addition, there may be statistical 

uncertainty in the distribution parameters of the random variables due to limited data. 

If physical system model error is defined as the difference between test data and 

model prediction, both of which are treated as random variables in this study, then model 

error is also a random variable. Once the model error (which includes both model form 

and numerical errors) statistics are quantified, this study treats this as an additional 

random variable in RBDO. 

Thus the objective of this study is to quantify and include model error in RBDO. 

First a brief overview of concepts and previous work with respect to uncertainties and 

errors in physical system analysis, reliability analysis, and reliability-based design is 

presented. Next a methodology is proposed to quantify model form errors. Two methods 

are proposed to estimate the statistics of model form error. Numerical examples are 

provided in the end to illustrate the application of the proposed methodology to 

mechanical systems design.  
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5.2 Modeling uncertainties and errors 

 

5.2.1 Model form errors 

Model uncertainty arises during the model selection process when we replace 

physical reality with mathematical models. Earlier studies on this topic have focused on 

model uncertainty reduction rather than quantification. When there exist several possible 

models to describe a phenomenon, a Bayesian approach can be used to include all the 

candidate models by assigning weights (the probability of each model being correct). The 

model weights may be updated when new observation/data becomes available. This 

approach has been applied to probability distribution type uncertainty and linear 

regression model uncertainty problems in statistics (Edwards, 1984; Guedes Soares, 

1988; Draper, 1995; Volinsky et al, 1997), and was recently used to account for 

mechanical model uncertainty (Zhang and Mahadevan, 2000; Der Kiureghian, 2001). 

This method reduces the model form uncertainty and model errors but does not quantify 

them explicitly. In many practical situations, only one model may be available, in which 

case Bayesian model averaging is not useful. Whether single or multiple models are used, 

model error (difference between observation and prediction) is directly observable, and 

offers a clear approach to account for model uncertainty in design. 

Bayesian methods have also been used to update prior model error distributions 

using the data (Onatski and Williams, 2003). Model selection has also been addressed 

using a decision-theoretic approach (Radhakrishnan and McAdams, 1995), considering 

the costs of developing or choosing a highly complicated model versus needed adequacy 

for the application. 
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 In finite element (FE) analysis, Mehta (1996) and Reid (1998) list the sources of 

modeling errors, and provide cautions and steps to be implemented to control model form 

error, but do not quantify it. Hierarchical modeling has been suggested (Kurowski and 

Szabo, 1997; Oberkampf et al, 2002) to improve the current simplistic model with a more 

complicated model in increasing steps and check if the solution converges to a limit. 

Hierarchical modeling should be implemented by keeping all other factors (such as mesh 

size, boundary conditions etc) constant, in order to isolate the effect of model form. Since 

various types of errors during modeling may cancel each other, overall comparisons with 

experiments alone can be hazardous for accepting model predictions, and should be 

accompanied by quantification of various error sources (Kurowski, 2001; Rebba et al, 

2004).  

 

5.2.2 Solution approximation errors 

When continuum mathematical problems are solved through discretized 

numerical procedures, the predictions from such models contain numerical solution 

errors. An extensive discussion of the quantification of discretization error and derivation 

of stochastic distribution of the error has been presented in Chapter 4. Hence further 

explanation of this error is limited in this section. 

 

5.2.3 Approximations in reliability analysis 

Model-based reliability analysis generally uses a demand vs. capacity format, 

corresponding to a desired performance criterion. Suppose R is the capacity and S is the 
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demand (both of which are treated as random variables), then a performance function or 

limit state function g is constructed as 

g  = R – S                                                (5.1) 

Failure is defined to occur when g is less than zero, and the corresponding failure 

probability pf is computed as P(g < 0), knowing the statistics of R and S. R and S could be 

functions of a vector of basic random variables X, with a joint probability density 

function )(xf X . Then the failure probability may be estimated as ( )∫
<

=
0g

Xf dxxfp .  The 

accuracy of this probability estimate is affected by both model form errors (limit state 

formulation, selection of distributions of the random variables X) and solution 

approximation errors (e.g., use of FORM, SORM etc.). 

Errors in the computational model of the physical system obviously are 

propagated to the limit state function g in reliability analysis. Also, one might be 

uncertain about the actual physics behind the limit state and use an empirical model (e.g., 

fatigue life prediction limit state). Sometimes, a complicated limit state is simplified for 

the sake of fast evaluation of the reliability index. For the last case, a Model Correction 

Factor (MCF) method (Ditlevsen and Arnbjerg-Nielsen, 1994) has been suggested to 

iteratively shift the most probable point (MPP) on the approximate (linear) limit state to 

the more realistic formulation of the limit state. Several variations of this method have 

been applied in system-level structural reliability analysis and stochastic process 

simulation (Ditlevsen and Johannesen, 1999; Franchin et al, 2002). A model correction 

factor can only reduce the reliability analysis errors to an unknown extent, but it still 
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does not quantify the limit state modeling error. Uncertainty in distribution type has been 

handled by Bayesian averaging as mentioned earlier.  

 

5.2.4 Model uncertainty in Reliability-based design optimization (RBDO) 

Many studies on design under uncertainty, in the context of minimizing expected 

cost subject to reliability constraints, can be found in the literature (Mahadevan, 2004). 

Reliability-based design optimization techniques have been studied for automotive 

industry applications (e.g., Du and Chen, 2000; Hoffman et al, 2003; Zou, 2004), 

structural engineering (e.g., Rao, 1984, Royset et al, 2001; Faber and Sorensen, 2003), 

and aerospace systems (e.g., Smith and Mahadevan, 2005). A typical RBDO problem 

involves (a) minimizing the cost subject to reliability and physical constraints, or (b) 

maximizing the reliability subject to cost and physical constraints. Weight is used as a 

surrogate for cost in many RBDO studies. Cost may include manufacturing, operational, 

maintenance, failure and repair costs (or life cycle costs in general).  

A simple, typical RBDO formulation with only component-level reliability 

constraints is as follows: 

              Minimize h(d, X)                                              (5.2) 

                 s.t. 
if

p = P(gi(X) ≤ 0) < pi         for i = 1, 2,…, k  

where h(.) is the objective function (or cost function), d is a set of design variables, X is a 

set of input random variables and pi could be ith threshold failure probability. Further each 

of the design variables d may be bounded. The vector d includes both deterministic 

design variables and distribution parameters of random design variables. A number of 

RBDO studies have focused on developing computationally efficient methods to solve 
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Eq. (5.2). Various nested, decoupled, and single-loop methods are available. The focus of 

this study is different; we wish to study how model errors in physical system analysis and 

reliability analysis may be included in the final design d.  

 RBDO incorporates physical variabilities through the random variables X but the 

statistical parameters that describe those probability distributions can be uncertain due to 

limited data. This additional statistical uncertainty introduces variability in the reliability 

constraint satisfaction and/or the objective function, and the design must be insensitive 

(robust) to such variations. In that case, we aim to simultaneously optimize the mean and 

variance of the performance measure (cost, reliability etc.). This has been referred to as 

reliability-based robust design (RBRD), and Eq. (2) may be revised as. 

                                 Min: E[h(d, X)] and Min: Var[h(d, X)]                            (5.3) 

  s.t. 
ifpµ  < pi          

                             
ifpσ  < ps

i         for i = 1, 2,…, k 

where d is a set of design variables, X is a set of random variables and, pi and ps
i 

represent user-defined limits on the mean and standard deviation of the failure probability 

estimate for the ith limit state. Thus reliability based robust design (RBRD) uses two 

objective functions, and several multi-objective optimization methods are available to 

solve this problem. When the objective function is in the form of a polynomial response 

surface, Chen et al (2004) have proposed an efficient method to analytically compute the 

mean and variance of the objective function under statistical uncertainty.  

A simple weighted sum formulation for RBRD in terms of the reliability index 

was pursued by Stoebner and Mahadevan (2000), by minimizing the variance of the 
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reliability index while increasing its mean value. Alternatively, Du et al (2003) proposed 

a percentile formulation to combine the two objectives into a single objective problem.  

 This section discussed the occurrence of model errors in system analysis, 

reliability analysis, and reliability-based design. A review of earlier studies shows that 

most of their concern has been with reducing the modeling errors, not quantifying them 

or explicitly including them in the design. Next section proposes techniques to quantify 

model errors so that they can be properly accounted for in reliability-based design 

optimization. 

 

5.3 Quantification of model errors 

As mentioned earlier, the many sources of model error are grouped into two components 

in this study: (1) behavior assumptions and selection of model form and parameters; and 

(2) subsequent approximations in numerical implementation. There are other sources of 

error such as software coding errors and human implementation. It is hoped that they can 

be eliminated with careful verification, and hence are not included in this discussion. Fig. 

5.1 describes the different stages where different types of errors are introduced, all of 

which contribute to overall model error.  

The first step in model-based simulation is to understand the physical concepts 

involved in a phenomenon. The domain or environment in which the system functions 

needs to be stated. For example, fluid-structure interaction or solid-solid impact will be 

modeled differently. Physical mechanisms such as heat transfer, structural dynamics, 

coupled electro-thermal effects, etc. must be identified. The quantity of interest for the 

target application and the required inputs to the system must be defined in the conceptual 
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modeling stage. The next step is to select a mathematical model based on a particular 

theory, perhaps from a set of possible models. The choice is usually made from past 

experience and understanding of the system.  

 

 

 

Fig. 5.1 Errors in phases of modeling and simulation 
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At the model selection stage, we choose a continuum mathematical model (e.g., a 

partial differential equation with appropriate boundary conditions) to represent the 

physical phenomenon. Also model parameters (relating to the boundary conditions, for 

instance), often unknown, are assumed to have some values. At this stage, model form 

errors will be introduced reflecting the discrepancy between the mathematical model and 

physical reality. Actually, model form error is introduced even in the conceptual 

modeling stage, but appears in a quantitative form at the mathematical modeling stage. In 

the next stage (numerical solution), the continuum model is discretized and solved to 

compute the system response.  

 

This discretization process introduces numerical errors due to finite mesh or step sizes, 

convergence tolerances, round-off errors, etc. Errors introduced by response surface 

approximations are referred to as truncation errors. Refererring to Fig. 5.1, the true 

physical system response ytrue is first approximated by a continuum mathematical model 

resulting in model form error εmf.  

                   ytrue = ycont + εmf                                         (5.4) 

where ycont is the continuum solution. In the next step, ycont is approximately calculated by 

a discretized numerical solution ypred (e.g., finite element model), leading to numerical 

solution error εnum. 

                        ycont = ypred + εnum                                    (5.5)         

where ypred is the response predicted by the numerical model. Combining the above two 

equations, we get 

            ytrue = ypred + εmf + εnum                                  (5.6) 
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This approach is different from the popular notation of total error being represented as 

square root of sum of squared errors (RSSE) (e.g., Coleman and Stern, 1997) (In such 

discussions, the term “error” has been actually used to imply variance, and it makes sense 

to add variances and compute the square root of the sum of variances). RSSE is an 

indirect indicator of overall model error and does not quantify the actual error.  

 

5.3.1 Quantification of numerical solution errors (εnum) 

Finite element discretization error may be estimated based on the Richardson 

extrapolation (Richards, 1997) method. In this method, the error due to grid size h1 (for a 

coarse mesh) is given by 
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= pnum r
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ε                                          (5.7) 

where the grid refinement ratio r = h2/ h1, and y1 and y2 are the solutions with coarse and 

fine meshes respectively. The order of convergence p can be obtained from the relation 
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=  where y3 is the solution with the finest grid size, and r = h2/ h1 = 

h3/ h2.  

Other numerical errors 

 The other sources of numerical solution error include bugs in the computer codes, 

convergence tolerances, truncation errors, singularities corrupting the solution, 

inappropriate shape functions (in case of finite element, finite difference-based problems) 

etc. Some of these errors such as response surface error (i.e., truncation error) can be 

quantified. However, all these errors combine in a nonlinear form that is impossible to 
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derive. The best way to handle such errors is to minimize them through careful code 

verification, solution verification, convergence studies etc. If these steps are carried out 

systematically, it is possible that the miscellaneous numerical errors could become 

negligible compared to discretization error and model form error. 

5.3.2 Model form error (εmf) 

This can be quantified only by comparing model prediction to physically 

observed response. However, the experimental observation yobs is a random variable due 

to imprecision in the instrument and variation in test conditions. The true value is equal to 

the observed test result plus the experimental error: 

     ytrue = yobs + εexp                                             (5.8) 

The experimental error εexp is usually assumed to follow a normal distribution as 

described in Chapter 4. In general, experimental errors may have zero mean but could 

still be non-Gaussian. From Eq. (5.6) and Eq. (5.8), one can write: 

         yobs + εexp = ypred + εmf + εnum                          (5.9) 

Denoting (yobs - ypred) as εobs (observed error),  

     εobs = εmf + εnum - εexp                                   (5.10) 

Thus model form error can be expressed as 

              εmf  = εobs - εnum + εexp                                      (5.11) 

 

5.3.3 Model parameter error 

              In this study, this error is lumped into model form error and is not treated separately.  

However, in some applications, it may be necessary to quantify this explicitly. The error 

(during measurement and/or selection) in the model parameters and input variables will 
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be propagated to the prediction of the output. If the relationship between input and output 

is given by 1 2( , ,.. )my u x x x= , then the error in the prediction of the output due to error in 

the input variables may be approximated using a first-order sensitivity analysis as 

                                                            ixx
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i i
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                              (5.12) 

in which δxi is the measurement error in ith input random variable xi and 
xxix

u

=
∂
∂ is the first 

order sensitivity coefficient of the model output y with respect to the ith input random 

variable xi.  

 

5.3.4 Quantification of statistics of model form error 

In Eq. (5.11), εnum is a random variable whose distributions can be estimated from 

the distributions of model outputs at coarse and fine meshes as explained in Section 5.3.1. 

The experimental error εexp is also a random variable but from a single experiment, we do 

not know the precise value of εexp and therefore of εmf. Only the statistics such as mean, 

variance and if possible the distribution of the random variable εexp can be estimated 

based on repeated observations and through prior experience. If all the terms in the right-

hand side of Eq. (5.11) are treated as random variables, then the model form error εmf also 

becomes a random variable. Two methods are investigated below to quantify its statistics.  

Resampling Method 

The assumption in the resampling method is that the underlying distribution of the data is 

parametric and we use the sample data set to generate the underlying population of the 

parameters (Good, 1999). In the basic bootstrapping method (Efron, 1979), we derive the 
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distributions of the statistical parameters such as mean 
mfεµ and standard deviation 

mfεσ of 

the model error by resampling a large number of εobs values from the existing finite data 

set. Each time a value for (εobs – εnum) is resampled, a randomly generated term εexp is 

added to it. Thus, many samples of εmf are obtained, which can be used to compute the 

statistical parameters of εmf. Repeating this procedure a number of times provides several 

sets of samples. These sets can be used to compute the statistics of the distribution 

parameters of εmf. 

When only a finite number of values for εmf are available, the histogram 

constructed for the model form error will be quite coarse as shown in Fig. 5.2, thus not 

suitable for identifying the distribution of εmf. (Fig. 5.2 is only for the sake of illustration; 

hence the scale is irrelevant at this point). However, a smoother histogram can be 

obtained by filling the gaps in the histogram through an interpolation technique. The new 

histogram could then be used to derive an approximate continuous distribution for the 

model form error εmf. A smoothed bootstrapping method based on the interpolation of the 

original data (Silverman and Young, 1987) can be used for this purpose. First we 

resample εmf from the finite number of samples, and a small random term is added to each 

resampled value. This random term is again scaled down so that it does not affect the 

estimation of population statistics.  
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 Fig. 5.2 Discrete histogram for bootstrapped samples 

 

Suppose a bootstrap sample set y1
*, y2

*,…, yn
* is generated by drawing n values at random 

(with replacement) from the original sample x1, x2,…, xn. A smoothed bootstrap resample 

x1
*, x2

*,..., xn
* is obtained by calculating 
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for i = 1,…, n, where *y is the mean of the yi
*, s2 is the sample variance of the 

observations yi, and εi are the random errors drawn from N(0, 1). Here, δ known as 

window size determines the level of smoothing and is usually determined arbitrarily 

as /s n . We repeat this process a large number of times (say 10,000) to obtain 10000n 

unique samples of x. These large number of realizations are then used to construct a 

continuous probability density function for x. In a similar fashion, the smoothed samples 

of εmf can be obtained to derive its empirical distribution. 

Analytical approximation of finite samples 

An alternative approach is to use saddlepoint methods (Jensen, 1995) that make use of 

characteristic functions and their variations to derive approximate empirical probability 
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distributions. Suppose each i.i.d sample xi from the data x = {x1, x2, …, xn} set has some 

common unknown distribution function fX(x) with cumulant generating function (CGF) 

K(λ). By definition, CGF for a continuous random variable x is derived from its PDF 

fX(x) as 

( )( ) log ( )x
XK e f x dxλλ = ∫                                (5.14)       

If we have discrete data set, then a simple calculation gives 
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Then a parameter xλ can be defined as a solution to ( )xdK
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Then the probability density function of x can be written approximately as 
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Further, an analytical CDF of x can be computed as (Daniels, 1987) 

            
1 1( ) ( ) ( )X x x
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w z
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                          (5.18) 

where { }
1
2( ) 2 ( )x x x xw sign n x Kλ λ λ = −   and { }

1
" 2( )x x xz nKλ λ= . Using this idea, an 

empirical continuous PDF or CDF can be derived for the model form error εmf from finite 
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sample size of size n. Obviously, the accuracy of the distributions thus derived using 

saddlepoint approximations improves with increased sample size.  

In this section, errors in various stages of modeling and simulation are identified, 

and procedures for the quantification of various types of errors (in numerical solution and 

model form) are developed. When finite data is available, distributions for the model 

form error can be constructed using saddlepoint approximations or smoothed 

bootstrapping. Next section develops the method to include the effect of model errors in 

the design optimization. 

 

5.4 Inclusion of model errors in rbdo 

The model errors are proposed to be included in RBDO in two steps. In the first step, the 

limit state function is modified to reflect the physical system model error. In the second 

step, the error due to the use of an approximate reliability analysis method is included 

during the RBDO iterations. 

Consider a reliability calculation pf = P(g < 0), where g = R – S. The 

computational model response Smodel may be augmented with the overall error in the 

physical system model εmodel to construct the response quantity S to be used in reliability 

analysis, as 

     S = Smodel + εmodel                                               (5.19) 

where εmodel is the sum of εmf and εnum. The statistical distribution of εmf is estimated using 

either interpolated resampling or saddlepoint approximation described in Section 5.3, and 

the statistical distribution of εnum is estimated using the Richardson extrapolation method. 
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Or in general, gε , the overall error in g, may be computed based on the error in 

calculating S.   

The design formulation is the same as shown in Eq. (5.2), with the additional 

random variable εg introduced as follows:  

              Minimize:  h(d, X)                                          (5.20) 

                 s.t. 
if

p = P(gi(X) + εg ≤ 0) < pi        for i = 1, 2,…, k  

The reliability analysis method (e.g., FORM which is commonly used in RBDO) 

induces errors as well. This error could be reduced by using Monte Carlo simulation to 

evaluate the reliability constraints, which might not be feasible if the function evaluation 

is expensive (e.g., finite element analysis). A more efficient method is proposed here, 

along the following steps:  

1. The RBDO iterations are first conducted using FORM to evaluate the reliability 

constraints. (This means that several efficient single loop and decoupled RBDO 

methods can be used).  

2. Once the FORM-based RBDO reaches an optimum, the reliability constraints are 

evaluated using Monte Carlo simulation. This helps to quantify the error εFORM = 

pMC – pFORM in the evaluation of each reliability constraint.  

3. The right hand side of each reliability constraint is augmented with the term εFORM 

with the appropriate sign. That is, if the Monte Carlo estimate pMC is higher than 

the FORM estimate pFORM, then the target failure probability on the right hand 

side of the ith reliability constraint in Eq. (5.20) becomes pi - i
FORMε . This means 

that if FORM is found to underestimate the failure probability, the constraint 



 153

appropriately becomes more stringent, and vice versa. Thus the optimization 

problem becomes  

          Minimize:  h(d, X)                                              (5.21) 

                             s.t. 
if

p = P(gi(X) + 
igε  ≤ 0) < pi - i

FORMε         for i = 1, 2,…, k  

4. FORM-based RBDO is once again carried out with Eq. (5.21).  

5. Steps 2 to 4 are repeated until convergence.  

After step 2, if FORM is found to overestimate the failure probability, the designer may 

choose one of two options: either continue with the remaining steps till convergence, or 

stop at step 2 and accept the conservative design provided by FORM.  

Notice that the RBDO formulation in Eq. (5.21) incorporates both types of error: 

igε represents the error in the physical system model, and i
FORMε  represents the error due 

to the reliability analysis method. Of course, the estimation of i
FORMε  is based on Monte 

Carlo simulation, which itself has error. A simple formula for the precision (standard 

deviation) Monte Carlo simulation is given as (Haldar and Mahadevan, 2000): 

                                
(1 )T T

f fP P
N

ε
−

=                  (5.22) 

where N is the number of samples, and T
fP  is the true failure probability, approximated 

by the estimated probability. However, the Monte Carlo error is reducible, by increasing 

the number of samples N. Therefore, the Monte Carlo error should first be reduced to a 

negligible amount before quantifying the FORM error.  Several efficient methods such as 

adaptive importance sampling (Zou et al, 2004) are available to reduce the Monte Carlo 

computational effort while achieving the required accuracy.  
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5.5 Numerical examples 

 

5.5.1 Gear-shaft assembly 

Consider a mechanical drive shaft assembled into a press-fit gear wheel as shown 

in Fig. 5.3. The objective is to determine the radii of the solid shaft R and the gear wheel 

R0 such that the assembly meets the design torque requirements reliably without slipping 

at the fit interface (Cruse, 1997). The interface length L is known and the interference fit 

tolerated in this assembly ∆ is also deterministic. The maximum torque T that can be 

transmitted by the assembly (fit) without any slippage can be given in terms of the 

coefficient of friction η at the fit, interface length  L (or gear wheel width in this case), 

interference fit ∆ and the interference pressure p as (Shigley et al, 2004) 

                    T = 2πηpLR2                                      (5.23) 

The interface pressure can be derived using the assumption of a thick cylinder for the 

gear wheel and the shaft as  

                    

( )
2 2
0

0 02 2
0 0

1 1 1
i

p
R RR

E R R E
ν ν

∆
=

  +
+ + −  −  

                                              (5.24) 

where E0 and Ei are Young’s moduli, v0 and vi are the Poisson ratios of the gear wheel 

and the drive shaft respectively. The values for the width of the gear wheel L and the 

interference fit ∆ are assumed deterministic here for the sake of simplicity. The material 

properties and the coefficient of friction have inherent variability and are beyond the 

designer’s control; hence they are assumed to be random variables. The values for the 

deterministic variables and statistics of the various uncertain parameters are given in 

Table 5.1. 
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Fig. 5.3 Torque shaft 

The initial values for the design variables R (shaft radius) and R0 (wheel radius), 

both of which are assumed deterministic in this example, are 8 and 16 respectively. The 

two variables are bounded as 5 ≤ R ≤ 9 and 10 ≤ R0 ≤ 20 respectively. (Strictly speaking, 

they are random; if their variability is significant, we can treat them as random variables 

and use their mean values as design optimization variables). 

Table 5.1. Statistics of variables in assembly design 

Variable Type Mean Std. Dev 

E0 Normal 10000 units 200 units 

Ei Normal 8000 units 200 units 

v0 Normal 0.2 0.05 

vi Normal 0.15 0.05 

η Normal 0.75 0.2 

∆ Deterministic 0.01 units - 

L Deterministic 4 units - 
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Suppose we wish to ensure that the maximum torque transmitted by the assembly fit 

exceeds a threshold value T0. The probability of achieving the design requirement needs 

to be evaluated first. A limit state is defined as g = T – T0 and failure is defined when the 

torque delivered (T) is less than T0 i.e., when g < 0. The analytical model for the interface 

pressure given in Eq. (5.24) is derived on the assumption that the pressure across the 

length L is uniform when the shaft is driven into the gear wheel by force. In reality this 

assumption may not be true and there may be non-uniform pressure built in the interface. 

Since the lengths of the shaft and the hub are not the same, stress concentration can occur 

at each end of the hub (gear wheel). It is also assumed that the two components have only 

elastic strains in them after the fit is assembled and this assumption is never checked. All 

these issues introduce model form error. The equations of the mechanical problem are 

simple and can be solved analytically, no numerical procedure is required; hence 

numerical solution error εnum is not considered in this example. 

Thus accounting for the model form error only, the limit state can be rewritten as 

g = Tpred + εmf  – T0. Knowing the specific densities of the shaft ρi and the gear wheel ρ0, 

the total weight of the assembly can be estimated as  

      W = πLga[ρ0R0
2 + (ρi - ρ0)R2]                                (5.25) 

where ga is the acceleration due to gravity. In this illustrative example, ρ0 and ρi are 

assumed to be 7.85 and 7.95 respectively (this introduces model parameter selection error 

which is lumped in model form error). Also T0 is assumed to be 1000 units.  

Model form error quantification 

Suppose 12 different assemblies (to simulate the variability that might occur in the real 

world) are tested to measure the torque Tobs delivered by the fit. The corresponding model 
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predictions Tpred are obtained using the same inputs used in the test setup (In reality 

however, not all inputs to the computational model can be measured accurately). Using 

observed values Tobs = {4805.943, 4797.649, 3918.362, 4759.615, 5363.197, 7187.641, 

6213.017, 5456.729, 5173.763, 5926.158, 4737.321, 4865.384} and predicted values Tpred 

= {4681.648, 4636.136, 3796.127, 4572.260, 5078.693, 6999.631, 6048.302, 5230.336, 

4898.267, 5690.531, 4616.021, 4645.201,}, εobs or the difference between Tobs and Tpred is 

calculated for 12 data points. The experimental error in this problem is assumed to be 

Gaussian with zero mean and constant variance σ2
exp = 100, for the sake of illustration. 

For this example, the model form error εmf is found to have a normal distribution with 

mean 192 and standard deviation of 73 units. Either the interpolated resampling or 

saddlepoint approximation technique in Section 5.3 may be used to estimate the 

probability distribution of εmf, using the twelve data points and model predictions.  

Reliability-Based Design Optimization 

The RBDO formulation is 

                Min: W = πLga[ρ0R0
2 + (ρi - ρ0)R2]  

 s.t: P(T < T0) ≤ p0                                            (5.26) 

where p0 is assumed to be 0.002 in this example. Since the torque T transmitted by the 

mechanical assembly depends on both R and R0, the probability P(T < T0) also depends 

on those respective radii. One can use Monte Carlo simulation or FORM to evaluate the 

probability constraint in Eq. (5.26). The optimization problem can be solved in three 

ways, depending on the reliability analysis method – FORM alone, Monte Carlo alone, or 

applying corrections to the FORM estimate by comparing with the Monte Carlo estimate 

(using the algorithm developed in Section 5.4). The results of the first two options are 
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shown in Table 5.2, for two cases – ignoring model error, and including model error. 

Table 5.2 reports the optimum solution for the design variables R and R0, the total weight 

W, and mean torque delivered by the optimum design. Comparison of the results of the 

first two options shows very close agreement, therefore the third option is not necessary 

in this problem. 

 Basic Monte Carlo simulation requires a very large number of samples in this 

problem (about 10 million, based on Eq. 5.22) to achieve the level of accuracy needed to 

quantify the FORM analysis error. Therefore, an adaptive importance sampling (AIS) 

procedure (Zou et al, 2004) is used, which achieves similar accuracy within 10,000 

samples. 

Table 5.2. Optimal design solution for the mechanical assembly 

 

Comparing the two columns in Table 5.2 (ignoring model error and including 

model error), it is seen that the structure weight W is less when model error is included. 

In this example, the computational model underestimates the torque delivered by the 

assembly (as evident from positive model form bias), and therefore overestimates the 

failure probability. In order to meet the reliability requirements, the RBDO algorithm 

tries to design for a larger torque and hence produces a heavier structure. When the 

Ignoring model error 
 

Including model error 
 

Probability 
estimation 

method (R, R0)opt W Mean 
Torque 

(R, R0)opt W Mean Torque 

FORM (7.43, 12.91) 1314 4290 units (6.98, 10.69) 854 3360  units 

Monte Carlo 
(AIS) 

(7.42, 12.91) 1313 4290 units (6.98, 10.69) 854 3360 units 
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physical model error is included, the underestimation of the delivered torque is corrected, 

and a lighter structure meets the design requirements.  

Comparison of the optimum solutions across the two rows shows that the use of 

FORM is adequate to evaluate the reliability constraint in this problem. There is very 

little difference between the FORM-based and Monte Carlo-based solutions. For the sake 

of completeness, the probabilities of failure corresponding to the FORM-based solutions 

are calculated using Monte Carlo simulation (AIS), and are found to be 0.00198 and 

0.002 respectively without and with model form error (FORM estimated 0.002 in both 

cases). Since the results of FORM and Monte Carlo are very close, the third option of 

quantifying the FORM analysis error and re-solving the RBDO problem is not pursued. 

The number of limit-state or g evaluations in each of the above methods is shown in 

Table 5.3.  

Table 5.3. Computational efficiency for the assembly design 

Method Ignoring model 

error 

Including model 

error 

FORM 480 560 

Monte Carlo (AIS) 200,000 200,000 

 

Several assumptions regarding the physical behavior of the fit introduced model 

form error in this example. The main objective of the study, to include the effect of model 

error on the reliability constraint and hence on the RBDO solution, was achieved and 

demonstrated in this simple mechanical problem. In the next example, a finite element 

model is used for the system analysis instead of a closed-form analytical equation, thus 

creating both model form and numerical solution errors. 
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5.5.2 Shape optimization of cantilever plate 

Consider a cantilever plate with three holes of equal size as shown in Fig. 5.4. The 

plate has a length L, height h and unit thickness. The structure is subjected to uniform 

loading w along its span. The design goal is to determine the hole radius r that minimizes 

the total weight (or area) of the plate such that the probability of vertical displacement at 

the free end being greater than a threshold level is less than an allowable value. The 

random variables in this problem are Young’s modulus E ~ N (10,000, 200) units and 

loading w ~ N (100, 20) units. The design variable r is in fact deterministic but in order to 

construct a stochastic response surface for the displacement in terms of E, w and r, the 

radius of each hole was varied uniformly in the range 0.25 to 1.25. The Poisson ratio v 

and height h are assumed to be 0.2 and 4 respectively (deterministic). The structure has 

an overall length of L = 12 units with the holes equally spaced apart at a distance of 0.25L 

from each other as shown in Fig. 5.4. 

 

 

Fig. 5.4 Cantilever plate with three holes 
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0.75L

L
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The vertical displacement D at the free end is computed using a finite element code and 

the threshold displacement D0 is set to be 9.0 units. Thus the design optimization problem 

is formulated as 

Minimize: A = Lh – 3πr2 

             s. t: P (g < 0) < 0.002                                   (5.27) 

where g = D0 – D. In this example, a stochastic response surface (Tatang et al, 1997) 

using polynomial chaos (Ghanem and Spanos, 1991) is constructed for the coarse 

computational model first. Three levels of hole radius are chosen and for each such 

configuration, three different mesh sizes were chosen (coarse, fine and finest). The 

response surface corresponding to a coarse model is given by  

        2
1 1 2 3 3 2 3 15.6018 0.113 1.289 0.5769 0.2263 0.1145D ξ ξ ξ ξ ξ ξ ε= − + + + + +          (5.28a) 

where ξ1, ξ2 and ξ3 are standard normal variables related to E, w and r through the 

relations E = 10000 + 200ξ1, w = 100 + 20ξ2, µr = 0.25 + Φ(ξ3). The residual (or 

truncation error) ε1 is observed to follow a normal distribution with zero mean and 

variance of 0.0121. (This is negligible compared to the mean value of D1, thus the 

response surface is accurate). As stated earlier, the reason for varying r as a uniform 

random variable was to construct a single response function in terms of E, w and r instead 

of multiple surfaces for different values of r. Once the response surface is constructed, 

one can derive the probability distribution of D1 for each r value. Thus Eq. (5.28a) may 

be rewritten as  

( ) ( ) ( )21 1 1
1 1 2 2 15.602 0.113 1.29 0.577 .25 0.226 .25 0.1145 .25D r r rξ ξ ξ ε− − − = − + + Φ − + Φ − + Φ − +   

           (5.28b) 
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The response surface in Eq. (5.28b) is then used for computing the statistics of D1 at any 

r by generating 10,000 samples of ξ1, and ξ2. For instance, D1 is observed to follow a 

normal distribution with mean a value of 5.602 units and a standard deviation of 1.295 

units when r = 0.75. The response D1 follows normal distribution with mean 5.315 and 

standard deviation of 1.218 units when r = 0.5 and so forth. Similar to Eq. (5.28a), 

response surfaces for finer and finest mesh sizes are constructed as  

2
2 1 2 3 3 2 3 26.3156 0.12794 1.278 0.9856 0.3917 0.1967D ξ ξ ξ ξ ξ ξ ε= − + + + + +         (5.28c) 

2
3 1 2 3 3 2 3 36.4473 0.1308 1.3066 1.0945 0.443 0.2185D ξ ξ ξ ξ ξ ξ ε= − + + + + +            (5.28d) 

Again, the residuals (or truncation errors) ε2, ε3 and ε had very small mean values and 

variances compared to their respective mean model predictions. Next, based on the 

Richardson extrapolation estimate in Eq. (5.7), the discretization error in this plate 

problem is expressed as 

      2
1 2 3 3 2 30.8378 0.0191 0.1202 0.642 0.2014 0.2173hε ξ ξ ξ ξ ξ ξ ε= − + + + + +             (5.29)  

Similar to D1, the response surface in Eq. (5.29) is used for computing the statistics of εh 

at any r by generating 10,000 samples of ξ1 and ξ2. εh is observed to follow a normal 

distribution with mean value of 0.8378 units (indicating positive model bias) and a 

standard deviation of 0.1217 units when r = 0.75. Thus the statistics of numerical solution 

error are computed. Note that the above computation is used to estimate two types of 

error – discretization error εh due to the finite element discretization of the continuum 

structure, and truncation errors ε1, ε2, and ε3 due to the response surface approximations 

of the finite element model. However the truncation errors were observed to be negligibly 

small, as mentioned above. Thus only discretization error is considered further. 
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The next step is to compute the statistics of model form error. Suppose 8 different 

plates have been tested for displacement over a range of loads (this represents the sample 

of cantilever plates with possible range of configurations). The corresponding predictions 

and measurements are obtained as Dpred = {6.239, 7.017, 7.334, 6.770, 9.146, 6.512, 

5.030, 5.573} and Dobs = {6.095, 7.605, 7.692, 7.367, 9.373, 7.028, 5.464, 5.687} 

respectively. The experimental error is assumed to be Gaussian with zero mean and 

constant variance σ2
exp = 0.01. Using this data, the model form error εmf is found to have a 

Weibull distribution with 3 parameters: scale, shape and location as (0.6316, 2.2846, 

0.8947). The mean of this distribution is 0.34 (indicating positive model bias) and 

standard deviation is 0.26. 

Thus the modeling error in this problem has both components: (1) model form 

error εmf, due to the mathematical modeling of the plate behavior; and (2) numerical 

(finite element) solution of the mathematical model (εh). In this example, the mean value 

of εh (0.837) is larger than that of the model form error εmf (0.1217). The next step is 

RBDO. Either D1 alone can be used for design (i.e., ignoring modeling error) or (D1 + εmf 

+ εh) can be used for design (i.e., including model error). Both cases are considered in 

this example. The RBDO results with three options – FORM alone, Monte Carlo (AIS) 

alone, and quantifying the FORM analysis error and re-solving the RBDO problem using 

FORM – are summarized in Table 5.4.  Table 5.4 reports the optimum solution for the 

hole radius, corresponding area A (indicates weight), and mean displacement produced 

by the optimum design. In this problem, the finite element model appears to 

underestimate the actual displacement and hence overestimate the reliability. The target 

reliability is then achieved with a lighter structure.  When model error is included in the 
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design, the reliability constraint becomes more stringent, and the RBDO results in a 

heavier structure (i.e., smaller hole radius), as shown in Table 5.4.  

 

Table 5.4. Optimal design solution for the cantilever problem 

Ignoring model error 
 

Including model error 
 

Probability 
estimate in the 

constraint ropt A Mean Displ. ropt A Mean Displ. 

FORM 0.595 44.66 5.43 units 0.3695 46.71 5.23 units 

Monte Carlo 
(AIS) 

0.595 44.66 5.43 units 0.3742 46.68 5.24 units 

FORM estimate 
+ εFORM 

- - - 0.3742 46.68 5.24 units 

 

Note that both εmf and εh have positive means in this problem (calculated using 

Dpred and Dobs, and Eq. 5.29), confirming that the computational model underestimates 

the displacement. In Table 5.4, both FORM and Monte Carlo simulation gave the same 

solution when model error is ignored. This is not surprising, since the displacement D 

(approximated by D1) computed by the finite element model is found to have a normal 

distribution, and the limit state function is simply g = D0 – D1, where D0 is a constant. 

Therefore the third method, i.e., estimating FORM error and re-solving the RBDO 

problem, is unnecessary in this case. 

When the discretization error and model form error are included in the RBDO, the 

limit state function becomes g = D0 – (D1 + εmf + εh). Both the error terms are non-

Gaussian, creating non-linearities in the equivalent normal transformation within FORM, 

and hence the FORM and Monte Carlo results are different, as shown in Table 5.4. When 

the FORM solution is evaluated using Monte Carlo simulation, its failure probability is 

found to be 0.00184, i.e., FORM overestimated the failure probability and produced a 
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heavier structure. In the third row of Table 5.4, the FORM reliability analysis error is 

included as per the algorithm in Section 5.4, leading to a lighter structure (same as that 

found by the use of Monte Carlo all the way, i.e., second row in Table 4). The number of 

limit-state g evaluations in each method is shown in Table 5.5.  

 

Table 5.5. Computational efficiency for the cantilever plate design 

Method Without model form error With model form error 

FORM 192 240 

Monte Carlo (AIS) 120,000 120,000 

FORM estimate + εFORM - 40, 960 

 

5.6 Summary 

While previous RBDO methods have included the randomness in physical variables, this 

study proposes a methodology to quantify errors due to system model form, numerical 

solution approximation, and reliability analysis approximation, and then explicitly 

include these errors in reliability-based design optimization, in the context of 

probabilistic analysis. Two different methods were proposed to estimate the statistical 

distribution of model form error using limited data. Richardson extrapolation-based 

estimates can be used to quantify finite element discretization errors. An iterative scheme 

was proposed to include the reliability analysis error in the design using a limited number 

of Monte Carlo analyses.  

 This study grouped the many sources of model error into a few broad categories 

for the purpose of quantification, and further refinement may be pursued to quantify the 
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contributions of other sources to overall model error. For the sake of RBDO, only overall 

model error distribution is required for inclusion in the optimization formulation of Eq. 

(5.20) or (5.21). However, it is desirable to quantify the different sources of error, in 

order to facilitate trade-off decisions regarding resource allocation for model 

improvement. The use of response surfaces or simplified closed form analytical 

expressions is quite common in optimization due to the computational expense, and 

appropriate truncation errors need to be quantified and included in the design. (The 

second numerical example in Section 5.5 quantified the truncation error in the response 

surface, but this error was found to be negligibly small for that particular problem). 

The numerical examples in this study were carried out using the classical nested 

loop RBDO formulation and the number of g evaluations needed in each case was 

reported in Section 5.5. The focus of this study is not on efficiency, but on the inclusion 

of various sources of error in the design optimization. Several more efficient RBDO 

methods (single loop and sequential) have been developed in recent years, and all these 

methods can be enhanced to incorporate model error. Future work in this direction also 

needs to include system reliability constraints, and needs to consider additional 

approximations in calculating system reliability. 
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CHAPTER VI 

 

 CONCLUSIONS AND FUTURE WORK 

 

6.1 Synopsis 

Model validation has mostly been a graphical comparison exercise in the past and 

uncertainties were not rigorously incorporated in making any inferences. While the 

terminology on validation is now well established, this study is the first of its kind in 

actually proposing and implementing a quantitative framework for model validation. 

Several types of validation metrics have been suggested that measure how well the model 

outputs match with the data when both quantities are uncertain. Statistical hypothesis 

testing procedures formed the basis for defining most of the metrics. Numerical examples 

highlighted the different inferences conveyed by point null versus interval-based 

hypothesis testing formulations. Both classical and Bayesian methods have been explored 

depending on the amount of prior information available, nature of model prediction and 

test data. The proposed validation metrics will enable modelers to assess the confidence 

in their computer model predictions and help make informed decisions regarding need 

and resource allocation for further data collection.  

The validation process estimates the confidence in a model prediction made 

within a certain validation domain or the region in which test data is available. Often, the 

decision variable or the target region of application could be different from the response 

quantity validated. In order to assess the predictive capabilities of the model beyond the 

test region, we need to extrapolate the inferences across various domains. The term 
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extrapolation in this study should not be confused with the commonly used time series or 

spatial extrapolation found in financial, geostatistical fields. The goal in this study was to 

derive ‘validation metrics’ for predictions in the application domain, based on those 

estimated in the validation domain. In this regard, the Bayesian network methodology 

was found to be promising. The concept was also used for validating system level models 

where test data may be available only at the component level and Bayesian networks 

were used to represent the components, subsystems and the full system. 

While validation answers the question whether we are solving the right equation, 

verification on the other hand attempts to answer if we are solving the equation right. 

Verification, involving quantification and minimization of various errors and 

uncertainties arising in implementing a computation model for prediction, was 

implemented. This study focused on finite element models where the mesh size could be 

a large contributor of numerical error in the prediction. The study explored stochastic 

response surfaces to estimate uncertainties in the discretization error due to uncertainties 

in the model inputs. This study proposed a way to assess physical model form errors and 

reliability analysis errors for use in design under probabilistic constraints. An iterative 

algorithm was proposed for including model errors and reliability analysis errors in 

optimization. 

 

6.2 Future work 

The validation metrics so far developed in this study deal with continuous random 

variables only. Future work in this direction includes developing metrics to include 

discrete variables and/or a combination of discrete and continuous variables for the input 
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or output. For dynamic response problems, model comparisons may have to be made in 

the frequency domain and methods need to be developed for characterizing uncertainties 

in the spectral densities. Use of expensive simulation techniques like Markov Chain 

Monte Carlo sampling etc., pose computational challenges in model validation. The use 

of efficient techniques for Bayesian updating, such as saddlepoint approximations 

introduced in this study, needs to be investigated further for practical applications. 

Alternative formulations of the extrapolation problem are also expected from a continued 

research. Most DOE (design of experiments) methods have been developed with the aim 

of replacing the full model evaluation each time and for uncertainty propagation. Some 

research is required for developing DOE techniques particularly suited for validation and 

extrapolation. Also, design of validation experiments should make use of the statistical 

information available from the computational model.  

Validation is quite subjective, in the sense that the formulation of the validation 

metric depends on the questions we would like to be answered and the decisions one 

makes at the end of modeling process. If a wrong model is accepted to be valid, the 

model user will face risk in future applications and design. If we decide to reject a valid 

model, the model builder has to collect additional data, spend additional resources and 

time to improve the model. These costs amount to the model developer’s risk. A 

framework for balancing model developer risk vs. code user risk needs to be developed. 

This framework can further be extended to other stages of a V&V process such as model 

selection, code verification, design of experiments etc.   
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