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CHAPTER I 

 

 REVIEW ON HEALTH MONITORING OF COMPOSITE MATERIALS 

 

Introduction to COPV 

Composite Overwrap Pressure Vessel (COPV) has increasingly been used in many 

structural systems for automobile, aerospace, and aeronautical applications. The 

composite overwrap increases the pressure carrying capacity of the vessel without adding 

too much weight to the tank. 

 

The composite overwrap is typically in the form of laminates with multiple layers of 

unidirectional carbon fibers. This class of composite material is relatively new to the 

engineering communities and their material behaviors are not as well understood as 

traditional materials such as metals and metallic alloys. To ensure safe operation of the 

structural system consisting COPV, an on-line automatic structural health monitoring 

system is needed to constantly monitor the integrity of the structure. 

 

Many structural health monitoring techniques have been proposed. Most of these 

techniques are based upon global or local dynamic characteristics of the structure or 

material. The structural health monitoring system identifies changes in the global or local 

dynamic characteristics and issues warnings or triggers structural control system to bring 

the structural performance back to normal. This kind of hybrid sensing/control system 

can be achieved by using proper smart materials such as the piezoceramics. 
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The purpose of this project is to test the feasibility of predicting working conditions of a 

structure based on the change of their dynamic characteristics. The analyses are divided 

to two categories: an aluminum tank, and the aluminum tank overwrapped with carbon 

fiber composite materials. For both categories, the tank is filled with water, both with and 

without pressure.  

 

 

 

Figure 1. Pressure vessel used in this study 

 

The composite overwrap pressure vessel (COPV) used in this project is made of 

aluminum alloy and the overwrap is laminated unidirectional carbon fibers. The tank is 

22.25 in. in length and center part has an inner radius of 14.92 in (Figure 1). The 

cylindrical part of the vessel is wrapped with 5 hoop layers of carbon fibers and 2 helical 

layers cover the entire tank.  

 

Composite overwrap greatly increases pressure carrying capacity of the vessel without 

adding too much weight to the tank. Experiments at NASA Marshall Space Flight Center 

show that the burst pressure of an aluminum tank can be increased from 500 psi to 2,850 

psi when the tank is wrapped with 5 layers of carbon fiber composites.  
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Dynamic and Strength Analysis of Composite Pressure Vessel 

When a pressure vessel is overwrapped with composite materials, both its dynamic and 

strength characteristics change dramatically. Sun et al. [3] used finite element methods to 

investigate the fundamental frequencies of laminated anisotropic circular cylindrical 

composite shells, based on extended Sanders' first order shear deformable shell theory. 

Su [4] used a three-dimensional finite element (FE) method to study the effect of 

composite wrapping on the fracture behavior of the steel-lined hoop-wrapped cylinders. 

The influence of the hoop-wrapped materials, the internal pressure and the crack sizes on 

the fracture behavior of the cylinder are discussed. It was found that the transverse 

modulus of elasticity of composites plays a key role in the strengthening of the gas 

cylinders. Kisioglu [5] used both experiment and FEA approaches to determine the burst 

pressure of DOT-39 refrigerant cylinders. The prediction of the BP (burst pressure) in 

filament-wound composite vessels was studied using neural network acoustic emission 

testing by Hill et al. [6], and using the finite element method proposed by Sun et al. [7]. 

The plastic deformation and burst of the multilayered cylinders was developed 

analytically using elastoplastic finite strain theory under generalized plane strain by 

Tadmor and Durban [8] and Blandford et al. [9]. The BP of a vessel was estimated after a 

single application of internal pressure using mathematical and experimental models for 

tensile loading by Updike and Kalnins [10]. Xia [11] presents a simplified elastic solution 

to analyze the stress and deformation of multi-layered filament wound composite pipes 

under internal pressure. Detailed stress and displacement distributions for designs with 

different angle-ply pipes under internal pressure load are investigated. Conder [12] 

described a test program whereby a filament wound vessel filled with liquid nitrogen was 
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subjected to 2000 pressure cycles to 3000 psi without degradation of the structural 

capability of the vessel. It was concluded that the cryogenic cycling and the vacuum 

environment (the vessel was put in a vacuum jacket) did not degrade the structural 

strength of the vessel. The vessel was constructed using an aluminum liner overwrapped 

with Kevlar-epoxy reinforcement. 

 

Hwang [13] conducted probabilistic analysis and experimental tests to predict the 

probabilistic deformation and strength (strain and burst pressure) of carbon/epoxy 

composite pressure vessels subjected to internal pressure loading. A computer code was 

utilized for the progressive failure analysis. Kamat [14] used GENOA Progressive Failure 

Analysis (GENOA-PFA) for simulations of the manufacturing process and subsequent 

assessment of COPV durability and damage tolerance. GENOA-PFA is virtual 

design/analysis software capable of simulating progressive failure of composite structures 

in a variety of situations. Optimization of winding process and ply lay-up for COPV 

design were also investigated.  

 

Fluid-structure Interaction 

The study of the interaction between liquid and structure during vibration is of great 

interest. A wide literature is available, regarding the case of shells with a vertical axis 

completely or partially filled with liquid. But for a simply supported cylindrical shell with 

the axis placed horizontally and partially filled with liquid, the work is limited. This is a 

typical configuration in engineering and constitutes a rather complex problem because of 
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the lack of axial symmetry. Amabili and Dalpiaz [15] experimentally studied this 

problem. 

 

Pal [16] used finite element method to simulate the effects arising from the non-linear 

motion of the liquid free surface, due to sloshing, in a partially filled laminated composite 

container, along with the associated coupling due to fluid–structure interaction. Amabili 

[17] performed experimental modal analysis on an empty and water-filled, circular 

cylindrical tank horizontally suspended. The effect of the fluid in a simply supported tank 

is a large reduction of the natural frequencies of the shell because of the added mass of 

the fluid. 

 

In some applications, the vibration response of cylindrical shells calculated by linear 

theory is inaccurate. When the vibration amplitude becomes comparable to the shell 

thickness, a nonlinear theory should be used. The effect of the fluid is to enhance the 

nonlinear character of shell vibration. A strongly softening behavior is found for a fluid-

filled shell. Hence, nonlinear analysis could be more important for fluid-filled shells than 

for empty ones. Amabili [18] investigated the nonlinear free and forced vibrations of a 

simply supported, completely filled circular cylindrical shell in contact with an 

incompressible and inviscid, quiescent and dense fluid. Donnell’s shallow-shell theory is 

used, so that moderately large vibrations are analyzed. Amabili [19] investigated the 

large-amplitude response of simply supported cylindrical shells to a harmonic excitation 

in the spectral neighborhood of one of the lowest natural frequencies. The effect of 

internal quiescent, incompressible and inviscid fluid is investigated. 
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Amabili [20] presented an analytical solution to the free vibration problem of cylindrical 

shells half-filled with liquid, and with the shell axis orthogonal to the gravitational field. 

Approximate models were proposed to estimate natural frequencies and mode shapes of 

partially filled shells. The presence of a liquid in a shell structure has a great effect on its 

modal characteristics. In the case of partial filling, with the presence of a free liquid 

surface parallel to the shell axis, the circumferential mode shapes are modified. 

 

Dynamics of Composite Materials 

Composites are complex materials exhibiting distinct anisotropic properties. Singh [21] 

and Saravanos [22] investigated the damping of composite cylindrical shells and plates. 

Maeda [23] presented an experimental investigation on the vibrational characteristics of 

angle-ply laminate made of carbon/epoxy composite material. Kadoli et al [24] studied 

the effect of axisymmetric temperature variation on the variation of free vibration natural 

frequencies and active damping ratios, based on FEA. The models are isotropic and 

orthotropic cylindrical shells with bonded piezoelectric material on the inner and outer 

surface of the shell lamina. Parhi [25] investigated the hygrothermal effects on the 

dynamic behavior of delaminated composite plates and shells. Rise in moisture and 

temperature reduces the elastic moduli of the material, reduces the fundamental 

frequency and induces internal initial stresses. To compensate frequency reduction due to 

hygrothermal effects, Rajaa [26] used PZT actuators for active stiffening of angle ply 

laminates based on FE modeling. Detwiler [27] developed a finite element formulation to 

analyze the mechanical-electrical behavior of laminated composite structures containing 

distributed piezoelectric actuators and sensors.  
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Effect of Delamination on Dynamic Modal Parameters 

Common damages for composite materials are matrix cracking, fiber breakage, fibre-

matrix debonding, and delamination between plies [1]. Delamination, probably the most 

frequently occurring damage, appears as a debonding of adjoining plies in laminated 

composites. The causes of delamination such as imperfect bonding, crack in matrix 

materials, separation of adjoining plies, and broken fibers may originate during 

manufacturing. Alternatively, delamination may be induced during in-service loading, 

such as by foreign object impact or by fatigue. 

 

Delamination changes structural dynamic characteristics. Saravanos [28] investigated the 

effects of delaminations on the dynamic characteristics of composite laminates, including 

damping, analytically and experimentally. Tracy and Pardoen [29], Nagesh Babu and 

Hanagud [30], Paolozzi and Peroni [31], and Shen and Grady [32] have analyzed the 

effects of a single delamination on the natural frequencies and modes of composite beams 

using the “four-region” approach; that is, the delaminated beam was divided into four 

regions and beam theory was applied to each region. Tenek et al. [33] used a similar 

approach for plates. On a parallel approach, Anastasiadis and Simitses [34] and Simitses 

[35] have addressed the buckling of delaminated beams. Barbero and Reddy [36] 

developed a finite element model using layer-wise theory for the analysis of delaminated 

laminates. This modeling is further improved by a higher order theory with enhanced 

strains to describe layer-wise displacements more accurately [37]. The layer-wise plate 

theory was later extended by Lee et al. [38] on a finite element based buckling analysis of 

composite beams with multiple delaminations. A laminated shear deformable beam finite 
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element model was developed for analyzing the growth of dynamic delamination [39]. 

The delaminated beam was modeled as two beams above and below the plane of 

delamination. Beam finite elements with nodes offset to the bottom and top are used to 

model the top and bottom sublaminates respectively. This concept is further developed by 

dividing the delaminated part of the beam as three beam finite elements, which are 

connected at the tip of delamination by additional boundary conditions [40]. The 

advantage of this method is that it can be easily modified to accommodate different types 

of damage. 

 

In general, delaminations decrease the stiffness and increase the damping of the structure. 

These, in turn, decrease the frequencies and increase modal damping in delaminated 

structure. The existence of the “delamination modes” in composite beams has been 

proven theoretically and experimentally [41, 42] and it can be an important feature for 

delamination detection. For structural mass, the effects of delamination are usually very 

small and often can be neglected. 

 

Frequency 

The effect of delamination on the natural frequencies of composite beam laminate 

structure depends on the size and location of the delamination. It has been found [29] that 

all first four modes are unaffected for very short delaminations. Among the first four 

modes, mode 1 (lowest frequency) is insensitive to the presence of normal-sized 

delamination while mode 4 is most sensitive. The effect of delamination is much stronger 

in high shear regions than in high curvature regions. The study concludes that the extent 
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of frequency degradation in a particular mode of vibration caused by a delamination 

depends on the size and location of the delamination in the structure. It is also found that 

local delaminations do not have a noticeable effect on the global mode shape of 

vibrations of composite beams [43]. It is pointed out that the delamination caused 

frequency shift and the maximum frequency shifts occurred in the modes where the 

wavelength was approximately of the same size as that of the debonding area. 

 

Damping 

Damping is generally far more sensitive to delamination than stiffness is. This suggests 

that damping would be a better indicator of delamination damage especially in small and 

medium crack lengths. At small delamination sizes, changes in damping were caused 

primarily by changes in the viscoelastic laminate damping of the structure, while 

interfacial friction damping becomes important at large delamination cracks. Although it 

can be a better indicator, damping is a complex factor to consider. 

 

Mode Shape 

Delamination causes irregularity of mode shape curves. The extent of the irregularity of 

the curve depends on the size and location of the delamination [43, 44]. The bigger the 

delamination, the more irregular the mode shape curve. The closer to the surface of the 

structure the delamination, the more irregular the mode shape curve. Overall, small 

delamination (less than 10% of beam span) may not be detectable by monitoring global 

modal characteristics of the beam. Therefore, other local parameters should be monitored 

[28]. Finally, the effect of delamination on the dynamic characteristics of structures is 
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strongly dependent on the laminate configuration, and can be more profound in laminates 

with complex laminations [28]. 

 

Model-dependent Damage (Delamination) Identification 

Currently available non-destructive evaluation (NDE) methods are mostly non-model 

methods, i.e., either visual or localized experimental methods, such as acoustic or 

ultrasonic methods, magnetic field methods, radiographs, eddy-current methods and 

thermal field methods. Accessing these techniques is time consuming and costly. Some of 

them are also impractical in many cases such as in service aircraft testing, and space 

structure. Almost all of these techniques require that the vicinity of the damage is known 

in advance and that the portion of the structure being inspected is readily accessible for 

human beings. Subjected to these limitations, these non-model methods can provide only 

local damage information and not global information. 

 

Shortcomings of currently available NDE methods indicate a requirement of damage 

inspection techniques that can give global information on the structure and they do not 

require direct human accessibility of the structure. This requirement has led to the 

development of model-based methods that examine changes in the vibration 

characteristics or impedance of the structure and also led to the development of smart 

structures. Smart structures have the ability to detect damage on-line, and the capacity to 

locate the position of the damage, and to estimate its severity using sensor information.  
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The model-based methods undertake analysis of structural models and are usually 

implemented by finite element analysis. Damage is simulated by modifying the models. 

There are basically two approaches: vibration-based approach and impedance-based 

approach. 

 

Vibration-based Approach 

The vibration-based approach utilizes the PZT actuator to generate certain wave to 

propagate in the structure and compares the structural modal parameters (modal shape, 

modal frequency, damping, stiffness, etc.) or response curves (frequency response, time 

response, transfer function, etc.) with those of the healthy state to detect damage.  

 

Modal Analysis Methods 

This group of methods utilizes the information from all modal parameters (modal 

frequencies, mode shapes and modal damping ratio) or combinations of some of them to 

detect damage. The basic idea of these methods is that modal parameters are functions of 

the physical properties of the structure (mass, damping and stiffness). Therefore, changes 

in the physical properties, e.g., damage, will cause changes in the modal properties. 

Usually, damage will decrease the mass and stiffness of the structure and increase the 

damping ratio locally. According to their different detection techniques, the modal 

analysis methods can be divided into the following major categories: modal shape 

changes methods [45, 46], modal shape curve methods [48, 49], sensitivity-based update 

methods [49, 50], eigenstructure assignment methods [51, 52], optimal matrix update 

 11



methods [53, 54], changes in measured stiffness matrix methods [55, 56], frequency 

response function method [57, 58] [60,61], and combined modal parameters method [59]. 

 

The majority of this group of methods uses lower frequencies of the modal data that can  

best describe the global behavior of the structure. Because of their global nature, these 

techniques allow the customization of measurement points. Another major advantage is 

that the modal information is cheap to obtain and easy to extract. 

 

However, there are some shortcomings in utilizing the structural modal parameters in 

health monitoring. These are: 1) modal-based method can only detect the particular forms 

of damage in their diagnostic schemes 2) modal-based method fails to detect small 

defects in global features. 

 

Frequency Domain 

Damage may be detected only using frequency response of the structure. The foundation 

of this group of methods is that damage produces a decrease in structural stiffness, which, 

in turn, produces decreases in natural frequencies. The damage location affects each 

mode differently. From the degree of change in natural frequencies, the location of the 

defect can be estimated. It was suggested [62] that monitoring local high-frequency 

modes of local area provide a better indication of damage for small damage. It was 

suggested that resonant frequency is a better indicator of defects than frequencies because 

it can change more significantly than frequencies do when properties change [62]. 
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There are several other methods available in this frequency domain category such as the 

damage index method [63], the sensitivity analysis method, etc. [64, 65]. 

 

However, natural frequency changes alone may not be sufficient for the unique 

identification of the location of structural damage. The current frequency domain 

methods are either using lower frequencies for providing global information of structures 

or using higher frequencies for providing local information of structures. None of these 

can provide sufficient information for the detection of both small and large defects. 

 

Time Domain 

Basically, all methods in this category are related because they use time history. These 

methods could be independent of modal information although they are usually combined 

with frequency domain methods. Damage is estimated using time histories of the input 

and vibration responses of the structure. Using time response over a long period while at 

the same time taking into account the information in several modes so that the damage 

evaluation is not dependent on any particular one, could be sensitive to any modes [66]. 

The big advantage of the methods in this group is that they can detect damage situations 

both globally and locally by changing the input frequencies. 

 

Impedance Domain-based Approach 

Damage is detected through measuring the changes of impedance in the structure. The 

basis of this technique is that each part of the structure contributes to the impedance of 

structure to some extent. Any variation in the structure integrity will generally result in 

changes in the impedance. This group of methods is capable of multi-location and real-
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time health monitoring [67, 68]. Impedance domain methods are particularly suitable for 

detecting planar defects such as delamination.  

 

The impedance-based qualitative health monitoring technique is a real-time structural 

damage detection method. The initial work of the impedance-based health monitoring 

was proposed by Sun et al [69] on an assembled truss structure. Chaudhry et al [70] 

applied this method in local area health monitoring of aircraft by using piezoelectric 

actuators and sensors. Ayres et al (1998) [71] verified the usefulness of this method for a 

226,80 kg structure quarter-scale deck truss bridge joint. The mechanical impedance is 

measured indirectly through the electrical impedance of the PZT by using the 

electromechanical property of PZT. By converting the impedance measurements into a 

scalar damage index, the real-time implementation of the impedance-based technique has 

proven to be successful. In order to find optimal placement of the piezoelectric sensors 

for the impedance domain-based health monitoring, Esteban et al. (1999) [72] modeled 

the wave propagation generated by the PZT throughout the structure. The authors found 

out that due to high frequency of excitation, the sensing region of the PZT actuator-

sensor was highly localized in the presence of energy dissipation mechanisms. However, 

this method is qualitative, not quantitative. Therefore, if the exact nature of damage is 

desired, other quantitative health monitoring method should be applied.  

 

Tseng et al. (2002) [73] presented the results of an experimental study for the detection 

and characterization of damages using PZT transducers on aluminum specimens. The 

impedance characteristics of the PZT transducer are extracted to detect damage. Different 
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types of damages were simulated by drilling holes of various dimensions on aluminum 

specimens. The admittance (inverse of impedance) response of the PZT transducers was 

studied for change in damage location, damage extent, and damage size. Root-mean-

square deviation (RMSD) between the signatures of two states is applied as damage 

index and was given by  

                          100
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where xi and yi (i=1, 2, 3,…,N) are signatures obtained from the PZT bonded to the 

structure before and after the damage. The experimental results showed that the higher 

frequency ranges were more sensitive in characterization. The RMSD values of different 

specimens showed that the PZT transducer has a very high sensitive to detect damages 

located at the specimens. The advantage of the impedance detection method over the 

other modal analysis techniques is that it does not require the knowledge of the modal 

parameters of the structure.  

 

On-line Delamination Detection 

To implement the on-line monitoring techniques, an essential condition is making the 

structure smart or the material intelligent.  

 

Smart Structure 

A smart structure/intelligent material system contains a network of sensors and actuators, 

real-time control capabilities, computational capabilities and a host structural material. 

The system can inspect the health conditions of the structure automatically and 
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continuously by itself. The actuator induces actuation into the structure, such as vibration 

through strain or displacement. The sensors recognize and measure the signal, such as the 

resultant vibrational response. Information from the sensors is acquired by the 

control/processor unit.  

 

Application of Piezoelectric Materials 

There are a number of sensors and actuators available for use in smart materials, and 

systems. Among them, piezoelectric materials offer a number of advantages. 

Piezoelectric materials can generate a charge in response to mechanical stimulus, or 

alternatively provide a mechanical strain when an electric field is applied across them. 

Due to their low mechanical impedance, a number of piezoelectric films/patches can be 

distributed along the structure with only minor effects on the structure's mechanical 

properties. The films/patches can be readily cut and shaped to conform to the structure 

under consideration. They are especially good for incorporating into composites, usually 

attached to or embedded into a structure. It is important to note that there is an optimum 

size and an optimum placement or arrangement of piezoelectric sensors to give maximum 

sensitivity for the various damage cases and load conditions [74-78]. Research on 

piezoelectric single crystals, such as PZN-PT and PMN-PT, in which very high strains 

can be induced, were investigated for electromechanical actuators [79]. 

 

On-line Health Monitoring with Piezoelectric Transducer 

The group of on-line delamination detection techniques is used to monitor changes in the 

dynamic characteristics or in the dynamic response of a structure. The group of 

techniques usually uses algorithm for finite element model update or test-analysis 
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correlation. Most of these works begin with measured dynamic response and modal 

parameters to find the differences between the undamaged and damaged system. There 

have been a few attempts at on-line delamination detection using piezoelectric sensors 

and actuators. Most of them are combined with Artificial Intelligence-based techniques 

such as neural network. 

 

Wang et al (2001) [80] developed a built-in network of piezoelectric materials for health 

monitoring of fiber-reinforced composites and steel-reinforced concrete. The authors 

presented an active sensing diagnostic system that contained a network of piezoceramics 

used as both actuators and sensors to generate and acquire ultrasonic stress waves in the 

plates. The authors did the health monitoring on composite plates and steel reinforced 

concrete. To detect delamination in the composite plates, a five-peak, narrow-band, 

modulated sinusoidal burst waveform over a wide range of frequencies was selected for 

the actuator. The experiment results showed that delamination in composites could 

significantly reduce the sensor signal strength and arrival time as compared with the 

healthy state sensor signals. When a propagating wave encounters an area where there is 

a change in material properties, scattering occurs in all directions. The X-ray examination 

was implemented on the fiber-reinforced plate and the X-ray images were consistent with 

the result.   

 

An on-line damage diagnostic technique was applied for predicting delamination with 

piezoelectric sensors and actuators attached to the top and bottom of a beam and 

validated by experimental works [81-83]. This diagnostic scheme is a search-based 
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technique with an iterative damage identification algorithm combined with a wave 

response and a frequency domain method. This damage identification technique includes 

three components, a structural model, a response comparator and a damage selector. The 

structural model was also applied to detect impact delamination [84] and further for self-

monitoring of the manufacturing process and self-diagnosis of service-induced damage 

[85]. 

 

An electromechanical structural model combined with neural network was used to 

conduct on-line delamination detection on composite structures with embedded 

piezoelectric sensors and actuators [86]. The structural model was an extension of the 

Tracy and Pardoen modeling of delamination [29] by including unsymmetrical laminates 

and effects of embedded piezoceramic patches. This model was validated by both 

experimental and numerical works. A good match was found in the case of mode shape 

verification. Detecting the presence of damage still called for a conventional technique. 

Two methods are used to locate the damage position and determine the type and size of 

damages. The first method compared numerical with experimental frequency results. The 

second method used a back-propagation neural network, which is trained by the 

frequencies of the first five modes obtained from dynamic modal analysis data. It was 

pointed out that the embedded actuator patches, in addition to acting as exciters, have the 

potential to redistribute strain for damage mitigation. 

 

Another Artificial Intelligent- (AI) based damage detection technique was proposed [87]. 

This technique combined modal analysis with neural network. The delamination is 
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modeled by the structural model of the Mujumdar and Suryanarayan [88] without 

considering the effect of PZT patches. The presence and location of delamination were 

identified by comparing theoretical and experimental results. The size of delamination 

was estimated by neural network. It was found that the third and fourth modal 

frequencies were better indicators of delamination detection. The efficiency of this 

method was demonstrated experimentally. 

 

A neural network method in conjunction with system identification technique [89], which 

can identify various damage cases, was applied for on-line damage detection in 

composite structures. The method contains two parts: training and recognition. In the 

training part, various types of damage modes are designed as the patterns and organized 

into pattern classes according to the location and the severity of the damage. Then system 

identifications are used to extract the transfer functions as the features of the structural 

systems. The multi-layer perception (MLP) was trained by the transfer functions. The 

MLP serves as a nearest-neighborhood classifier. In the pattern recognition part, an 

unforeseen damage in a structure is classified within the closet class in the training set 

and the damage in the structure is identified as that of the class. 

 

There are many other valuable studies using neural networks to detect delamination in 

composite structures, such as an experimental study [90] for a composite/aluminum beam 

to identify the severity and presence of a delamination according to the frequency 

response data obtained from bonded piezoelectric actuators/sensors. This experimental 

work also investigated the effectiveness of different configuration of network. Another 
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example is the dynamic learning rate steepest descent method [91]. This method can 

improve learning convergence speed significantly without increasing the computational 

effort, the memory cost, the algorithm simplicity, and the computational locality in the 

standard layered error back-propagating training algorithm. 

 

Signal Processing Method for the Health Monitoring Utilizing PZT 

To effectively extract the damage information, the sensor signal is processed by different 

methods to analyze the data. In recent years, wavelet analysis and artificial neural 

network have been successfully applied to detect delamination of composites and for 

health monitoring of reinforced concrete. 

 

Application of Wavelet Analysis to PZT-based Health Monitoring 

Wavelet analysis has recently emerged as a promising tool for structural health 

monitoring (SHM) and damage detection. The wavelet transform can decompose the 

structural vibration response signals into multiple sub-signals. The change corresponding 

to structural damage in each sub-signal may manifest notable differences, and some of 

the sub-signals may possess high sensitivity to minor damages in structure. 

 

Hou et al (2000) [92] presented a wavelet-based approach for SHM and damage 

detection. The research results showed that the structural damage or a change in system 

stiffness may be detected by spikes in the details of the wavelet decomposition of the 

response data. The locations of these spikes may accurately indicate the moments when 

the structural damage occurred. 
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Lin et al (2001) [93] modeled the diagnostic transient waves in an integrated piezoelectric 

sensor/actuator plate with a view to use it as a first step towards establishing an entire 

structural health monitoring system and to provide experimental verification of the 

proposed models. PZT ceramic disks were surface mounted on an aluminum plate to 

generate and collect Lamb waves. Mindlin plate theory was adopted to model the 

propagating waves by taking both transverse shear and rotary inertia effects into account. 

The authors also presented experimental results to show that single-mode Lamb waves in 

the plate can be successfully generated and collected through the integrated PZT disks. 

Na et al (2003) [94] showed that the Lamb wave can propagate a long distance and is 

sensitive to damage inside. Therefore, PZT-based method incorporated with the Lamb 

waves is a promising approach for health monitoring of large-scale structure. 

 

In order to detect the delamination in the composites, Lemistre M et al. (2001) [95] 

proposed a multiresolution process by discrete wavelet transform (DWT) with an 

orthonormal basis. A health monitoring system was presented composed of integrated 

disc-shaped, 100 µm thick and 5 mm diameter piezoelectric transducers (PZTs) working 

sequentially as Lamb wave emitters and receivers. The peculiarity of the DWT is that 

each result obtained with each daughter wavelet corresponds to the time behavior of the 

signal in a frequency band. Location and identification of damage like delamination, fiber 

fracture and matrix cracking in various composite materials are difficult due to the 

presence of high-amplitude interfering echoes mixed within the main signal. The authors 

proposed the time delay equation to locate the delamination. The proposed method (for 
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each resolution) gives a possible damage localization point. The results matched with the 

exact location of damage determined by ultrasonic examination.  

 

Application of Artificial Neural Network (ANN) to PZT-based Health Monitoring 

There have been a lot of successful applications of artificial neural network in the health 

monitoring. This is because artificial neural network has a particular advantage in 

establishing mapping relationships between feature proxy and physical parameters of 

structural damage. When classifications and identification of structural damage is carried 

out, the required task is only to train the ANN in advance using a set of known damage 

feature proxy and damage physical parameters of the structures to be detected.  

 

Yam et al (2003) [96] presented an integrated method for damage detection of composite 

structures using their vibration responses. Vibration signals were decomposed by wavelet 

packet algorithm and the mapping relationships between the structural damage feature 

proxy and damage status (location and severity) was established by artificial neural 

networks. 

  

Delamination is of particular interest in health monitoring because it can cause 

catastrophic failure of the composite structure. Okafor et al (1996) [97] conducted modal 

testing of a perfect beam and beams with different delamination by using polyvinylidene 

fluoride film (PVDF) as sensor and PZT patches as actuators. Back propagation neural 

networks were trained on the basis of the modal frequencies of the beam. The 
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experimental results showed that neural network models developed successfully predict 

the delamination size in the composites. 

 

Although the neural network has the advantage of not requiring a prior knowledge of the 

system, it also has the shortcomings such as lack of precision and the limited ability to 

rationalize solutions. The neural network may not respond properly to the data which is 

not related to the training data. Therefore, if the training data does not contain enough 

information, the neural network may not work properly in practice.  

 

Other Applications of Piezoelectric Materials in Structural Health Monitoring 

Piezoelectric paint film sensor has the advantage that the paint is readily applied over 

large areas of a structural material without drastically affecting its mechanical properties. 

The paint can be applied even to complex shapes of a structural material. Egusa et al 

(1998) [98] prepared piezoelectric paints using PZT ceramic powder as a pigment and 

epoxy resin as a binder. The experimental results proved that the piezoelectric sensitivity 

of the paint film is high enough to determine the natural frequencies and mode shapes of 

the underlying structural material, thus demonstrating the potential of the paint film as a 

vibration modal sensor. Galea et al (1993) [99] also successfully applied the piezoelectric 

films in detecting and monitoring damage in composites. 
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Conclusions 

Impedance domain-based approach and vibration-based approach are two major 

categories of PZT-based health monitoring. The principle of impedance-based method is 

that the measured electrical impedance of the PZT patch is directly related to the 

mechanical impedance, and will be affected by the presence of damage. The impedance 

domain methods are particularly suitable for detecting planar defects such as 

delamination. 

 

The principle of vibration-based approach is to detect the damage by comparing the 

model parameters or response curve with the healthy structure under the excitation of a 

certain vibration source. This method consists of modal analysis method and frequency 

domain method. The modal analysis methods are based on the concept that modal 

parameters are functions of physical properties, which will change if the damage exists. 

The most important task in detecting damage with these methods is to find the particular 

modes which best describes the individual damage event. 

 

Frequency domain methods use only frequency information for damage detection. 

However, natural frequency changes alone may not be sufficient for a unique 

identification of the coordinates of structural damage. 

 

It is very important to apply a proper signal-processing tool to analyze the sensor signal 

for the health monitoring purpose. Artificial neural network and the wavelet analysis are 

the useful tools to analyze the vibration signal of PZT sensor to detect and analyze the 
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delamination, crack or other damages in large-scale structures. In health monitoring of  

structures, neural networks and wavelet analysis are usually combined with modal 

analysis or frequency domain analysis to extract the feature of damage information. 

Successful applications of neural network and wavelet analysis in the PZT-based health 

monitoring have been reviewed. The advantage of neural network is that this method 

does not require too much prior knowledge. The advantage of wavelet analysis is that it 

can detect small cracks or other very low extent damages by analyzing the vibration 

signals. This is because wavelet analysis enables the inspection of relatively narrow 

frequency bands over a relatively short time window. Neural network and wavelet 

analysis incorporated with the piezoelectric sensors and actuators provides a promising 

option for the health monitoring of large-scale structure. 

 

Although piezoelectric materials are promising and have great potential in the health 

monitoring of large structures, there exists some challenges in this field. The main focus 

of health monitoring is to locate precisely the damage and assess the severity of the 

damage. Because the defect may diffract the wave propagation in every direction, the 

exact location is difficult to assess. Different types of damage may have similar effect on 

the response of piezoelectric materials; therefore the extraction of the type of damage 

remains a challenging task.  
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CHAPTER II 

 

 DYNAMIC MODELING OF PRESSURE VESSEL 

 

Since the dynamic characteristics of a structure may be used to identify the working 

conditions of the structure, we want to see how the dynamic characteristics change in 

different conditions. For Chapter II and III, we will discuss how the dynamic properties 

of a pressure vessel change when it is empty, filled with water, and overwrapped with 

composite materials, respectively.  

  

The pressure vessel (PV) used in this research is made of aluminum alloy and the 

overwrap is laminated unidirectional carbon fibers. The tank is 22.25 in. in length and the 

center part has an inner radius of 14.92 in. The cylindrical part of the vessel is wrapped 

with 5 hoop layers of carbon fibers and 2 helical layers cover the entire tank. In this 

study, both the underlying theory and finite element analysis were performed.  

 

Mathematical Model 

In vacuo Analysis 

Firstly, the empty (in vacuo) tank is discussed. The equation of motion describing the 

response of a flexible structure to external excitation may be written as [100] 

                                                                         (1) FKUUCUM V =++ &&&
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Where M, CV, K denote the mass, structural damping and stiffness matrices, respectively. 

The vectors U,  and  represent the structural displacements, velocities, and 

accelerations, respectively, and the column vector F denotes the external forces. 

U& U&&

 

In an in vacuo analysis, the structure is assumed to vibrate in the absence of any 

structural damping and external forces. Equation (1) is reduced to the form 

                                                    0KUUM =+&&                                                    (2) 

The form of equation (2) suggests that one can express the trial solution as 

                                             U=Deiωt                                                                       (3) 

Substituting equation (3) into equation (2) and canceling the common factor eiωt, one 

obtains the following equation 

                                                                                                (4) 0DK)Mω( 2 =+−

Equation (4) describes the simple harmonic oscillations of the free undamped structure 

and the in vacuo principal modes and natural frequencies are determined from the 

associated eigenvalue problem. 

 

Generalized Equation of Motion 

The distortions of the structure may be expressed as the sum of the distortions in the 

principal modes, 

                                                 U = D p(t)                                                     (5) 

where D is the modal matrix whose columns are the in vacuo, undamped mode vectors of 
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the structure. Matrix p is the principal response coefficients matrix. By substituting 

equation (5) into equation (1) and pre-multiplying by DT, the following generalized 

equation in terms of the principal response coefficients of the structure is obtained: 

                                                      Q(t)cp(t)(t)pb(t)pa =++ &&&                                     (6) 

where a, b, c denote the generalized mass, damping and stiffness matrices, respectively, 

and are defined as 

                                         a=DTMD,     b=DTCVD,     c=DTKD,    Q=DTP                      (7)                         

The generalized force matrix Q(t) represents the fluid–structure interaction force, and all 

other external forces. 

 

Dynamic Analysis of Fluid-structure Interaction 

Introduction 

When a structure is in contact with a fluid of comparable density, such as water, the fluid 

loading which depends on the structural surface motions will significantly alter the 

dynamic state of the structure from that of the in vacuo vibration. The fluid–structure 

interaction can be considered as feedback coupling. 

The dynamic fluid–structure interaction problems in which the fluid domain is modeled 

with finite elements are generally formulated using methods based on fluid particle 

displacement, or pressure, or velocity potential, etc., as the major unknown. These 

procedures are quite effective for problems involving a bounded fluid domain. For 

instance, Lim and Petyt [101] investigated the free vibration characteristics of a thin, 

circular cylindrical shell partially or completely-filled with water, using displacement 

potential and displacement as the fundamental unknowns, respectively, in the fluid and 
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structural domains. Alternatively, Olson and Bathe [102] used velocity potential as the 

major unknown in the fluid and presented a finite element method for solving fluid–

structure interaction problems. Using appropriate variational formulations by means of 

the finite element method, Ohayon and Valid [103] and Morand and Ohayon [104] 

derived various symmetric matrix equations for the linear vibrations of elastic structures 

coupled to internal fluids. Mazúch et al. [105] used Ahmad shell elements with reduced 

integration for thin shells and quadratic fluid elements for an inviscid incompressible 

fluid, and calculated and measured the free vibration characteristics (i.e., natural 

frequencies, mode shapes, etc.) of a clamped–free cylindrical shell partially filled with 

water. More recently, Zhang et al. [106] presented a finite element method, based on 

Sanders' non-linear thin shell theory and the classical potential flow theory, for the 

vibration of initially tensioned thin-walled orthotropic cylindrical tubes conveying fluid. 

Boundary integral equation methods are also widely applied for the fluid flow, together 

with a finite element method for the structure displacements. For example, Ergin [100] 

presented a boundary integral equation method in conjunction with the method of images, 

to investigate the dynamic behavior (wet frequencies and associated mode shapes) of 

fluid containing structures. Röhr and Möller [107] described a hydroelastic vibration 

analysis method based on a combined finite element–boundary element procedure. 

Mysore et al. [108] used a finite element method to model an inflatable dam structure, 

and a boundary element technique to determine the behavior of the fluid. Ergin et al. 

[109] studied the dynamic behavior of a thin, horizontal cylindrical shell vibrating at 

fixed positions below a free surface in water of finite depth. By using a boundary element 

technique, they calculated the generalized fluid loading to assess the influence of free 
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surface, rigid boundary and position of submerged cylinder on the dynamic 

characteristics of the shell structure. 

Nestegård and Mejlænder-Larsen [110] proposed a symmetric boundary integral equation 

method for the fluid flow, coupled with a finite element method for the structure 

displacements, and presented eigenfrequencies and associated mode shapes of partially 

submerged three-dimensional structures. More recently, Ergin and Temarel [111] 

proposed an approach based on a boundary integral equation method and the method of 

images, in order to calculate the fluid–structure interaction forces of a partially filled 

and/or submerged horizontal cylindrical shell. In their investigation they calculated the 

generalized fluid–structure interaction forces in terms of generalized added mass terms, 

and compared the calculated wet frequencies and mode shapes with experimental data 

found in the literature. 

In this thesis, the dynamic characteristics of fluid storage tanks are investigated using a 

boundary element method in conjunction with the method of images in order to impose 

an appropriate boundary condition on the free surface of the fluid. In this investigation, it 

is assumed that the fluid is ideal, i.e., inviscid, incompressible and its motion is 

irrotational. Furthermore, the fluid forces are associated with the inertial effect of the 

fluid, i.e., the fluid pressure on the wetted surface of the structure is in phase with the 

structural acceleration. In the analysis, it is assumed that the flexible structure vibrates in 

its in vacuo eigenmodes when it is in contact with fluid, and that each mode gives rise to 

a corresponding surface pressure distribution on the wet part of the structure. The in 
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vacuo dynamic analysis entails the vibration of the elastic structure in the absence of any 

external force and structural damping.  

At the fluid–structure interface, continuity considerations require that the normal velocity 

of the fluid is equal to that of the structure. The normal velocities on the wetted shell are 

expressed in terms of modal structural displacements, obtained from the in vacuo 

dynamic analysis. By using the boundary integral equation method the fluid pressure is 

eliminated from the problem, and using the method of images (i.e., imposing an 

appropriate free surface boundary condition, namely Φ =0, here  is the deformation 

potential), the fluid–structure interaction forces are calculated solely in terms of 

generalized added mass coefficients. During this analysis, the wet surfaces are idealized 

by using appropriate boundary elements, referred to as hydrodynamic panels. The 

generalized structural mass matrix is merged with the generalized added mass matrix and 

then the total generalized mass matrix is used in solving the eigenvalue problem.  

Φ

 

Formulation of the Fluid Problem 

Suppose the pressure vessel is filled with some kind of fluid. Now we will discuss how 

the fluid affects the dynamic properties of the vessel. The fluid is assumed ideal, i.e., 

inviscid and incompressible, and its motion is irrotational and there exists a fluid velocity 

vector, v, which can be defined as the gradient of the velocity potential function Φ  as 

                                    ( )tzyxtzyx ,,,),,,(v Φ∇=                                    (8) 

where Φ  satisfies Laplace's equation  
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throughout the fluid domain. 

For the structure vibrating with frequency , the response of the structure may be 

expressed as p(t)=p

ω

0eiωt, where p0 is the vibration amplitude. Thus the velocity potential 

function Φ due to the deformed shape of the structure in the rth modal vibration may be 

written as ([111]) 

r

                Mrepzyxitzyx ti
rrr ,...,2,1,),,(),,,( ==Φ ωωφ                      (10) 

where rφ is the deformation potential. i is the imaginary unit and ω is the natural circular 

frequency of vibration. M represents the number of modes of interest, and pr is the 

amplitude of the rth modal vibration.  

On the wetted surface of the vibrating structure, the fluid normal velocity must be equal 

to the normal velocity on the structure and this condition can be expressed as 

                                                   n . u
n

=
∂
∂

−
φ

                                                               (11) 

where u is the displacement vector of the median surface of the structure and n is the unit 

normal vector on the wetted surface and points into the region of interest. 
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In this study, it is assumed that the structure vibrates at relatively high frequencies so that 

the effect of surface waves, for the partially filled and/or submerged shell, can be 

neglected. Therefore, the free surface condition for φ  can be approximated by 

                                                  φ =0, on the free surface                                            (12) 

                                     

 

                                                                            u.n
n

−=
∂
∂φ  

 

                                                    u.n
n

−=
∂
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Figure 2. Wetted surface and image boundary for a partially filled structure (from [109]) 

 

The method of images [111] may be used, as shown in Fig. 2, to satisfy this condition. By 

adding an imaginary boundary region, the condition given by Eq. (12) at the horizontal 
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surface can be omitted; thus the problem is reduced to a classical Neumann case. It 

should also be noted that the normal fluid velocity cannot be arbitrarily specified. It has 

to satisfy the incompressibility condition 

                                                       ∫∫
+

=
∂

∂

imw SS
dS 0

n
φ

                                                 (13) 

where Sw and Sim represent the wetted and image surfaces respectively (see Fig. 2). 

 

Numerical Evaluation of Deformation Potential φ  

The deformation potential, φ , in a three-dimensional inviscid flow field due to the 

oscillating elastic structure, can be obtained for only a limited number of cases. An 

alternative solution method must be employed for a general type of structure and domain.  

 

Green’s theorem suggests that, we can use a method that reduces the calculation of φ  to 

integration over the boundary surfaces. In the present study, a boundary integral equation 

method [114, 115] is applied in order to evaluate the fluid-structure interaction forces. 

The deformation potential, φ , can be expressed by means of a distribution of unknown 

source strength, σ , over the wetted and image surfaces of the structure [114, 115] in the 

following form 

                                                 S
R

imw SS

d
)rr,(

)r()r(
0

0∫∫
+

=
σφ                                           (14) 

where 
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R=[(x−x0)2+(y−y0)2+(z−z0)2]1/2, 

and r=(x,y,z) denotes the position vector of the field point within the fluid, r0=(x0,y0,z0) is 

the position vector of a source point on the wetted/image surface of the structure. 

Substituting boundary conditions (Eq. (11) and Eq. (12)) into Eq. (14), the unknown 

strength σ  can be determined from the set of algebraic equations 
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where ∆Sj represents the area of the jth panel, N is the number of panels required to 

discretize the wetted and image surfaces and uni denotes the modal displacement in the 

direction of the normal at the control point (xi,yi,zi) of the ith panel. 

 

Generalized Fluid-structure Interaction Forces 

Once the deformation potentials φ  due to the oscillation of the body in its in vacuo 

eigenmodes are obtained, the kth component of the generalized fluid-structure interaction 

force amplitude due to the rth modal vibration can be expressed in terms of the pressure 

acting on the wetted surface of the structure as 

                                                 ( ) dStzyxPtF k

S

rkr

w

.nn),,,(∫∫=                                 (16) 

Pr is the pressure acting on the wetted surface due to the rth modal vibration. nk is a unit 

vector in the direction of the kth component force, and n is the unit normal vector of the 

surface. 
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According to the Bernoulli's equation and neglecting the second order terms, the dynamic 

fluid pressure on the mean wetted surface of the flexible structure due to the rth modal 

vibration becomes 

                                                
t
Φρ(x,y,z,t)P r

r ∂
∂

−=                                                   (17) 

By substituting Equation (10) into Equation (17), the following expression for the 

pressure is obtained: 

                                              tiω
rrr e(x,y,z)pρφω(x,y,z,t)P 2=                                    (18) 

The kth component of the generalized fluid-structure interaction force amplitude due to 

the rth modal vibration then takes the form 

                             ( ) dSepdStzyxPtF k
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r
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Because the response of the structure can be expressed as p( tiωet 0p)=  

                                                          
tiω

rr epω(t)p 2−=&&                                             (20) 

The generalized added mass term Akr can be defined as 

                                                          dS.nnk

Sw
∫∫= rkr φρA                                        (21) 

Then according to F=ma, 

                                                          ( ) (t)pAtF rkrkr &&−=                                             (22) 

So Akr can be seen as the effective mass due to the force of the fluid. 
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Calculation of Wet Frequencies and Mode Shapes 

The generalized equation of motion for the dynamic fluid–structure interaction system 

assuming free vibrations with no structural damping is 

                                                      [                                           (23) 0c]pA)(aω2 =++−

where a=DTMD and c=DTKD (Eq. 7) denote the generalized structural mass and stiffness 

matrices, respectively. The matrix A (Akr) represents the generalized added mass 

coefficients.  

 

Solving the eigenvalue problem, expressed by Eq. (23), the wet frequencies and 

associated mode shapes of the elastic structure in contact with fluid are obtained. To each 

wet frequencies ω , there is a corresponding wet eigenvector pr or={pr1,pr2,…,prm} 

satisfying Eq. (23). The corresponding uncoupled mode shapes, ru , for the structure 

partially or totally in contact with fluid are obtained as 

                       rj

M

j
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==                                    (24) 

where uj (x, y, z)={uj, vj, wj} denote the in vacuo mode shapes of the elastic structure 

and M  is the number of mode shapes included in the analysis. 

 

Finite Element Analysis of Pressure Vessel 

In Vacuo Pressure Vessel 

A finite element model was created in NASTRAN to simulate the dynamic characteristics 

of the PV. The aluminum liner of the tank has a varying thickness. The middle of the tank 
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has the smallest thickness of 0.12 in. and the thickness increases to the maximum value 

of 0.37 in. at both openings of the tank. Shell elements with varying thickness were 

created by the FIELD tool in PATRAN. Separate scalar functions were used to represent 

the thickness of the wall, dome and end parts. A total of 8208 elements were used. 

Firstly, modal analysis was performed on the finite element model for the aluminum liner 

tank without composite overwrap and without liquid. The first 6 mode shapes are shown 

in Figure 3. The tank is clamp-free. 

 

 

Figure 3(a).  Vibration shapes and frequencies of Mode 1 (835 Hz) 
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Figure 3(b).  Vibration shapes and frequencies of Mode 2 (864 Hz) 

 

Figure 3(c).  Vibration shapes and frequencies of Mode 3 (963 Hz) 
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Figure 3(d).   Vibration shapes and frequencies of Mode 4 (1090 Hz) 

 

 

Figure 3(e).  Vibration shapes and frequencies of Mode 5 (1199 Hz) 
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Figure 3(f).  Vibration shapes and frequencies of Mode 6 (1518 Hz) 

 

It can be seen that the number of humps in the middle band of the tank for the bending 

modes does not start from a small number and increase sequentially for the higher order 

modes as seen in most in most of the dynamic characteristics for regular structures. 

During the analysis, it is also noted that the natural frequencies are very sensitive to the 

thickness of the tank.  

 
 
The Virtual Fluid Mass Method 

For the analysis of water-filled tank in NASTRAN, the virtual mass method (MFLUID) 

based on the above theory was utilized. Nastran doesn’t provide many tools for fluid-

structure interaction problems. The virtual mass method takes the effect of fluid on a 
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structure as an added mass when analyzing the dynamic properties of the structure. This 

method is easy to use and gives reasonable results.  

 

Introduction [116] 

1.  The virtual mass method allows to model the effect of an incompressible   

     fluid on the structure. 

2.  The fluid domain may be finite or infinite. 

3.  Structural surfaces can be wetted on one side only or on both sides. 

4.  The fluid domain may be composed of several disjoint regions. 

 

Applicability 

There are some presumptions about the virtual mass method: 

1.  Both compressibility and surface waves are ignored. The fluid is considered to be    

     incompressible, inviscid and irrotational. 

2. Thus, the frequency range of interest must be 

      i.  above the frequency range of the sloshing modes. 

      ii. below the lowest acoustic frequency. 

3.  Further restrictions: 

      The fluid density within a volume must be constant. 

4. On the fluid surfaces, the acoustic pressure is assumed to be zero. 

In this analysis, water is used. It meets the requirements of 1 and 3. Our interested 

frequency range is between  that of sloshing modes and acoustic modes. Requirement 4, 

zero acoustic pressure on the fluid surface, can also be easily met.  
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User Interface 

1. The wetted elements are defined on ELIST bulk data entries. 

2. The fluid properties are defined on MFLUID bulk data entries that are selected by 

MFLUID case control commands. 

 

The ELIST Bulk Data Entry 

 

Remarks: 

 

• THRU may be used in fields 3 to 8. 

• Positive element identifiers indicate that the fluid is on the side the element 

normal points to. 

• Negative element identifiers indicate that the fluid is on the opposite side. 

• Only CTRIA3 and CQUAD4 elements may be referenced. 

• LID   List Identification Number 

• E1     Identification number of a structural element 

 

The MFLUID Bulk Data Entry 
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Figure 4.  Illustration of MFLUID bulk data entry (from [116]). 

 

The MFLUID Bulk Data Entry  

SID              Set Identification Number 

CID             Identification of rectangular coordinate system used to specify   

                    the orientation of the free surface and of planes of symmetry 

ZFS             Position of the free surface (default is infinity) 

RHO           Density of the fluid 

ELIST1       Identification number of an ELIST entry that lists the elements  

                    that can be wetted on one side 

ELIST2       Identification number of an ELIST entry that lists the elements  

                    that can be wetted on both sides  

PLANE1,    Planes of symmetry (S), antisymmetry (A) or no symmetry (N),   

PLANE2     no default   Plane 1 = xz-plane, Plane 2 = yz-plane 

RMAX        Interactions between elements with a distance greater than  

                    RMAX will be neglected. (Default: 1.E10) 

FMEXACT Exact integration is used if the distance between two elements is   
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                    less than FMEXACT times the square root of the area of the    

                    larger element. (Default: 1.E15) 

Example: 

 

 

 

Remarks 

   First, the dry modes are computed. 

   Next, the virtual mass matrix is computed and projected onto the dry modes. 

   Finally, the projected eigenvalue problem is solved providing the wet modes. 

 

Analysis of Tank Filled with Pressurized Water 

For the next analysis, the tank is filled with water pressurized at 48 psi. The pressure 

exerts stiffening effect on the shell. NASTRAN uses the static solution to calculate a 

differential stiffness matrix that reflects the stiffening effect of the static modes. It then 

uses that differential stiffness matrix in the modal solution so that different modes are 

obtained.  

 

Setting up the stiffening effect due to pressure in Nastran is carried out by defining 

pressure loads on PLOAD2 or PLOAD4 cards. Then include the following types of 

subcases in Case Control 

 

SUBCASE 1 
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LABEL = PRESSURE LOAD 

LOAD = 1 $ This points to the PLOAD cards 

SUBCASE 2 

LABEL = MODES 

STATSUB=1 

METHOD=1 $  This points to the EIGR or EIGRL card 

In NASTRAN 2004 the SOL 111 is now capable of accepting a static subcase as an 

initial condition which takes the effect of differential stiffness to update the modes. 

 
Results for tank completely filled with water are as the following: 

 

 

Figure 5(a).  Vibration shapes and frequencies of Mode 1   
(357 Hz, water), (375 Hz, 48 psi water) 
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Figure 5(b).  Vibration shapes and frequencies of Mode 2 
(373 Hz, water), (405 Hz, 48 psi water) 

 

 

 

Figure 5(c).  Vibration shapes and frequencies of Mode 3 
 (410 Hz, water), (417 Hz, 48 psi water)                
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Figure 5(d).  Vibration shapes and frequencies of Mode 4 
(461 Hz, water), (504 Hz, 48 psi water) 

 
 

 

Figure 5(e).  Vibration shapes and frequencies of Mode 5 
 (511 Hz, water), (513 Hz, 48 psi water)                
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Figure 5(f).  Vibration shapes and frequencies of Mode 6 
(607 Hz, water), (657 Hz, 48 psi water) 

 
 

 

 Figure 5(g).  Vibration shapes and frequencies of Mode 7 
(800 Hz, water), (856 Hz, 48 psi water) 
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 Table 1.  Natural frequencies of tank completely filled with water (Hz) 

Analysis Mode1  

 

Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 

Water, no 

pressure 

357 373 410 461 511 607 800 

Water, 48 psi 

pressure 

375 405 417 504 513 657 856 

 

 
Remarks: 

Compared with the tank in vacuo, some modes of the water filled tank are switched in 

order. Due to the added mass of water, natural frequencies decrease for each mode. For 

example, the numbers of humps of the first 6 mode shapes from low to high frequencies, 

for empty tank, are: 5, 4, 6, 3, 7, 2. But for water-filled tank, they are: 4, 5, 3, 6, 2, 7. The 

natural frequency of mode 1 decreases from 835 Hz to 357 Hz. For mode 2, it decreased 

from 864 Hz to 373 Hz, etc. Large frequency reduction is observed.  

 

For tank filled with pressurized water, differential stiffness matrix reflecting the 

stiffening effect is calculated for modal analysis. The natural frequencies increase for 

each mode, compared with those with no pressure, due to the stiffening effect of pressure.  

The amounts of increase of frequencies are not very large, and the order of mode shapes 

keeps the same.  
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CHAPTER III 

 

DYNAMIC ANALYSIS OF COMPOSITE OVERWRAP PRESSURE VESSEL 

 

For this part, the pressure vessel is over wrapped by 3 hoop layers of carbon fibers, and 2 

helical layers. The helical layers make an angle of 400 with the hoop layers. Analysis is 

performed for the dynamic properties (normal modes). 

 

MSC.Nastran uses the assumptions of classical lamination theory in formulating shell 

behavior for nonuniform and composite laminate element properties. This approach 

allows the modeling of plates with coupled membrane and bending elastic behavior. This 

behavior can be simulated directly by entering membrane, bending, membrane-bending 

coupling and transverse shear constitutive relationships on the PSHELL input or by using 

the PCOMP entry to define the composite laminate on a ply-by-ply basis. 

 

Classical Lamination Theory 

A two-dimensional composite material is defined as a stacked group of laminae arranged 

to form a flat or curved plate or shell. Each lamina may be considered as a group of 

unidirectional fibers. The principal material axes for the lamina are parallel and 

perpendicular to the fiber directions. The principal directions are referred to as 

“longitudinal” or the 1-direction of the fiber and as “transverse” or the 2-direction for the 

perpendicular direction (matrix direction). 
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Classical lamination theory makes the following assumption regarding the behavior of 

the laminae: 

 

      • The laminae are perfectly bonded together. 

      • The bonds are infinitesimally thin and no lamina can slip relative to another. 

      • Linear variation of strain through the laminate thickness is assumed. 

 

Deformation in the X-Y plan of the plate at any point C at a distance z in the normal 

direction to plate middle surface is [117,118] 

 

                                                                 U =U0 + z θx                                                             (25) 

 

                                                                  V= V0+ z θy                                                              (26) 

 

where U, V, and W are the displacements along the X, Y, and Z directions in the element 

coordinate system, and θx, θy are the rotations.  

 

The strain-displacement-middle surface strain and curvatures relationship are given by: 
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where the ε  and s'0 s'χ  are the middle surface strains and curvatures, respectively. 

 

The stress resultants for an N-layer laminate are obtained by integration of the stresses in 

each lamina through the laminate thickness as: 
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The stress resultant to strain relationship is: 
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where [G]k is the material matrix transformed from the laminate coordinate system into 

the lamina coordinate system. 

 

These relations can be written in the following form used to describe composite elements: 
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are named in composite element literature as the membrane, membrane-coupling, and 

bending matrices, respectively. 

 

In the shell element formulation in Nastran, these relationships take the following form: 
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where: 

                                                         [ 1] TGA =  

 

                                                         [  4
2] GTB −=
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                                                      { = transverse shear resultants 
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                                                      { = transverse shear strains 
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γ }

 

                                              T =  nominal plate thickness 

 

                                                    T  = effective transverse shear material thickness s

 

                                                   = membrane matrix  1G

 

                                                   = bending matrix 2G

 

                                                   = effective transverse shear matrix 3G

 

                                                  = membrane-bending coupling matrix 4G
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MSC.Nastran allows G1, G2, G4, T, G3 and Ts to be input directly in PSHELL or to have 

the composite equivalent material matrices calculated internally from the PCOMP data. 

 

The terms G1, G2, and G4 are defined by the following integrals: 
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The limits on the integration are from the bottom surface to the top surface of the 

laminated composite. The matrix of material moduli, [ , has the following form for 

isotropic materials: 

]eG
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For orthotropic materials, the matrix, [ , is written as follows: ]eG
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Here,  in order to satisfy the requirement that the matrix of elastic moduli be 

symmetric. In general, the user may supply element properties with respect to a particular 

orientation which does not necessarily correspond to the principal material axes. In this 

case, the user must also supply the value of the angle, or material coordinate system that 

orients the element material axis relative to the side G1-G2 of the element. The material 

elastic modulus matrix is then transformed by the program into the element modulus 

matrix through the relation 

1221 EvEv =
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The finite element model for a structure composed of composite materials requires the 

evaluation of the matrix of elastic moduli for each plate element of the model. The 

characteristics of the composite media are totally contained in these matrices. 

 

 

 

 

Figure 6   Exploded View of Three Cross-Ply Laminated Plates (from [117]). 

 

To illustrate the evaluation of these matrices, consider the cross-ply laminates of Figure 

6. In this portion of the discussion, the three configurations shown in Figure 6 are each 

assumed to be represented by a single quadrilateral plate element and the coordinate axes 
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shown are coincident with the element coordinate axes. Then, if it is assumed that each 

lamina of the n-ply laminates is of thickness T/n, where T is the total thickness of each of 

three configurations, the matrices of elastic moduli may be evaluated from the following 

relations: 

 

















+++= ∫ ∫ ∫
+−

−

+−

+−
−

+−

n
TT

T

n
TT

n
TT

T

n
TnT

neee dzGdzGdzzG
T

G
2

2

2
2

2

2

)1(
2

2
2

11 ][...][][1][                          (37)       

 

















+++= ∫ ∫ ∫
+−

−

+−

+−
−

+−

n
TT

T

n
TT

n
TT

T

n
TnT

neee dzzGdzzGdzG
T

G
2

2

2
2

2

2

)1(
2

22
212 ][...][][1][                     (38)       

 

















−++−+−= ∫ ∫ ∫
+−

−

+−

+−
−

+−

n
TT

T

n
TT

n
TT

T

n
TnT

neee dzzGdzzGdzzG
T

G
2

2

2
2

2

2

)1(
2

2124 )(][...)(][)(][1][    (39)       

 

These relations reflect the assumption that the xy-plane of the element coordinate system 

is coincident with the geometric middle plane of the laminate. The xy-plane of the 

element coordinate system is defined in the mean plane of the element so that any offset 

between the mean plane of the connected grid points and the geometric middle plane of 

the laminate would be reflected in the integration limits of the preceding relations. 
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The matrix of elastic moduli for transverse shear, [ is defined as a two-by-two 

matrix of the form 

mG ]3
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and the corresponding matrix transformed into an element coordinate system is given by 
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The mean value of the transverse shear modulus G  for the laminated composite is 

defined in terms of the transverse shear strain energy, U, through the depth 
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A unique mean value of the transverse shear strain is assumed to exist for both x and y 

components of the element coordinate system, but for ease of discussion, only the 

evaluation of an uncoupled x component of the shear moduli will be illustrated here. 
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From equation (42) the mean value of transverse shear modulus may be written in the 

following form 
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where G is an “average” transverse shear coefficient used by the element code and 

 is the local shear coefficient for layer i. To evaluate equation (35), it is necessary 

to obtain an expression for 

ixG )(

))(( zzxτ . This can be accomplished by assuming that the x- 

and y-components of stress are decoupled from one another. This assumption allows the 

desired equation to be deduced through an examination of a beam unit cross-sectional 

width. 

 

 

Figure 7   Illustration of forces and moments acting on composite plies (from [117]) 

 

The equilibrium conditions in the horizontal direction and for total moment are 
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Now, if the location of the neutral surface is denoted by xz  and ρ  is the radius of 

curvature of the beam, the axial stress  may be expressed in the form xE
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Equation (46) may be differentiated with respect to x combined with Equation (44) and 

Equation (45). In a region of constant  the result may be integrated to yield the 

following expression 

xE
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Equation (47) is particularly convenient to use in the analysis of n-ply laminates because 

sufficient conditions exist to determine the constants Ci (i = 1,2,...,n) and the “directional 

bending center” xz . For example, consider the following laminated configuration 
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Figure 8.  A laminated configuration of three plies 

 

At the bottom surface (i=1, z=z0, and xzτ =0) 
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and for the first ply at the interface between plies 1=i  and 2=i  ( ) 1zz =
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At this interface between plies 1=i and 2=i , 
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and as ( 12 )() xzxz ττ =  at 1zz = , 
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Then, in the ply  the shear is  21 zzz <<
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In general, for any ply, ii zzz <<−1 , the shear is  
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At any ply interface, , the shear is therefore iz
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where T  1−−= jjj zz

 

Note that the shear at the top face, ( nxz )τ , is zero and therefore 
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Equation (55) proves that if is the bending center, the shear at the top surface must be 

zero. 

xz

 

Equation (53) could be substituted into equation (44) and integrated. A better form of 

equation (55), for this purpose is 
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Substituting Equation (56) into Equation (57) and after a considerable effort of 

integrating the results, we obtain 
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where 

 66












 +++







 −−+










 −−+=

−−−

−

22
1

2
1

2
1

2
1

2

20
1

4
1

3
1

4
1)2(

3
1

3
1)()(

iiiiiixiix

xiiiixxiixixi

TTTzzTzTzz

fTTzzfTER
                (59)             

 

This expression for the inverse shear modulus for the x-direction may be generalized to 

provide for the calculation of each term in the two-by-two matrix of shear moduli. 
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where  

 

2,1=k  

2,1=l  

 

Note that if no shear is given, [ 0] 1 =−iG . 

 

The moduli for individual plies are provided through user input because, in general, 

, will be used for the coupling terms. Finally, 2112 GG ≠
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Modeling Composite Overwrap Pressure Vessel (COPV) Using PCOMP 

The pressure vessel is over wrapped by 3 layers of carbon fibers in the hoop direction,  

and 2 layers in the helical direction. The helical layers make an angle of 400 with the 

hoop layers. 

 

The PCOMP command in NASTRAN is used for the dynamic analysis of the COPV. 

 

The Composite Element (PCOMP) 

PCOMP provides a property definition specifically for performing composite analysis. 

PCOMP uses the material properties for each of the lamina to calculate and treat the 

laminate as an equivalent shell of anisotropic materials. 

 

The format of the PCOMP Bulk Data entry is as follows: 

 

Table 2. Entries of PCOMP 

PCOMP PID Z0 NSM SB FT TREF GE LAM 

 MID1 T1 THETA1 SOUT1 MID2 T2 THETA2 SOUT2 

 MID3 T3 THETA3 SOUT3 Etc.    

 

 

Field                              Contents 

 

PID                                    Property identification number. 

Z0                                      Distance from the reference plane to the bottom surface. 
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NSM                                 Nonstructural mass per unit area. 

SB                                     Allowable shear stress of the bonding material. 

FT                                     Failure theory. 

TREF                                Reference temperature. 

LAM                                 “Blank”, “SYM”, “MEM”, “BEND” option. 

MIDi                                 Material ID of the various plies. The plies are identified   

                                          by serially numbering them from 1 at the bottom layer. 

Ti                                      Thicknesses of the various plies. 

THETAi                           Orientation angle of the longitudinal direction of each   

                                          ply with the material axis of the element. 

SOUTi                              Stress or strain output request. 

              

Each lamina can be modeled as an isotropic material (MAT1), two-dimensional 

anisotropic material (MAT2), or orthotropic material (MAT8). 

 

For this COPV model, The PCOMP has six layers, one for the aluminum skin and one for 

each layer of composite fibers. The entries are organized as the following for the main 

part of the vessel: 

 

PCOMP    2                    0.                                                

                  1       0.128                     2       0.005     90.   

                  2       0.005   50.             2       0.005     90.     

                  2       0.005   -50.            2       0.005    90.     
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The case of COPV filled with water is analyzed in the similar fashion.  

 

Theoretical Description 

MSC.Nastran develops mass and stiffness data from PCOMP input in a two-step process. 

First, the PCOMP input data are considered together with the material data referenced by 

MIDi entries to produce PSHELL/MAT2 combinations that will lead to the required 

stiffness results and then this spawned data are used in the actual stiffness and mass 

calculations. The spawned PSHELL has four MIDis, identifying the MAT2s to be used 

for membrane, bending, transverse shear and membrane-bending coupling.  

 

 

 

Figure 9. Equivalent PSHELL and MAT2 Entries Generation (from [117]) 
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Where  

MID1                          Material identification number for the membrane. 

MID2                          Material identification number for bending. 

MID3                          Material identification number for transverse shear.    

MID4                          Material identification number for membrane-bending coupling. 

 

One specifies the material properties and orientation for each of the layers and 

MSC.Nastran produces the equivalent PSHELL and MAT2 (anisotropic material) entries. 

Additional stress and strain output is generated for each layer and between the layers. 

 

Results 

The first 6 modes are as follows: 

 

   

 

Figure 10(a): Mode shape 1             Figure 10(b): Mode shape 2 
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Figure 10(c): Mode shape 3             Figure 10(d): Mode shape 4 

 

 

        

Figure 10(e): Mode shape 5             Figure 10(f): Mode shape 6 
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Table 3.  Natural frequencies for tank of aluminum, with overwrap and 
overwrap, water-filled respectively 
 

Analysis Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

Aluminum 823 848 955 1069 1193 1493 

Overwrap 913 894 1094 1087 1378 1490 

Overwrap, 

water-filled 
431 391 552 433 735 529 

 

Remark: 

From the above analysis results, it can be seen that, the overall moduli of the composite 

shell structure increase, compared with the empty aluminum tank, due to the high moduli 

of the carbon fiber. This leads to the stiffness increase of the tank. Most of the modal 

frequencies increase, and the orders of some modes are also switched. 
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CHAPTER IV 

 

CONCLUSIONS 

 

Composite Overwrap Pressure Vessel  (COPV) has been widely used in many 

applications. The composite overwrap increases the pressure carrying capacity of the 

vessel while keeps the weight light. The composite overwrap is typically in the form of 

laminates with multiple layers of uni-directional carbon fibers. This class of composite 

material is not well understood for their properties. To ensure safe operation of the 

structural system consisting COPV, an on-line automatic structural health monitoring 

system is needed to constantly monitor the performance of the structure. Many of the 

health monitoring systems utilize the global or local dynamic characteristics of the 

structure. The monitoring system can identify the change of dynamic characteristics of 

the structure, thus detects changes or damages in the structure. In the first part, a review 

is done on the current progress of health monitoring techniques of composite overwrap 

pressure vessel.  

 

This thesis studies the dynamic behavior of composite overwrap pressure vessel. Firstly, 

the dynamic characteristics of the COPV were studied for an empty aluminum tank. Then 

the tank is completely filled with water, and finally the tank is filled with water at a 

pressure of 48 psi.  
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Compared with the tank in vacuo, some modes of the water-filled tank are switched in 

orders. Due to the added mass of water, natural frequencies decrease with each mode.  

For tank filled with pressurized water, the pressure exerts a stiffening effect on the tank. 

The natural frequencies increase with each mode, compared with those with no pressure, 

due to the stiffening effect of the pressure.  

 
Second, the aluminum tank is overwrapped with uni-directional carbon fiber, and then 

filled with water both without and with pressure. Due to the high moduli of the carbon 

fiber overwrapping, the overall moduli of the composite shell structure increase, 

compared with the empty aluminum tank. This leads to the increase of stiffness of the 

tank. Most of the modal frequencies increase, and the orders of some modes are also 

switched, as can be seen from the analysis results. 

 

This research shows that, the dynamic characteristics of the pressure vessel changes at 

different conditions, and composite overwrap changes the overall dynamic characteristics 

too, thus making it possible to identify the working conditions and ensure safety 

operation of the pressure vessel, or a structure. The health monitoring techniques 

introduced in Chapter I are based on this performance of structures.  When proper smart 

materials such as piezoceramics are used in the health monitoring system, the changes in 

the dynamic characteristics of a structure are identified by the system. If the structure is 

not working safely, the health monitoring system may issue warnings or trigger structural 

control system to bring the structural performance back to normal.   

 

 

 75



REFERENCES 

1. Zou, Y., 2000, “Vibration-based Model Dependant Damage (Delamination) 
Identification and Health Monitoring for Composite Structures- a Review”, Journal of 
Sound and Vibration, 230(2), 357-378 

2. Song, Gangbing, Gu, Haichang and Li, Hongnan, 2004, “Application of the 
Piezoelectric Materials for Health Monitoring in Civil Engineering: An Overview”, Earth 
and Space 2004: proceedings of the Ninth biennial ASCE Aerospace Division 
International Conference on Engineering, Construction, and Operations in Challenging 
Environment. 

3. G. Sun, P. N. Bennett and F. W. Williams, 1997, “An Investigation on Fundamental 
Frequencies of Laminated Circular Cylinders Given by Shear Deformable Finite 
Elements”, Journal of Sound and Vibration, 205(3), 265-273 

4. B. Su, Gouri S. Bhuyan, 1998, “Effect of composite wrapping on the fracture behavior 
of the steel-lined hoop-wrapped cylinders”, International Journal of Pressure Vessels 
and Piping 75 (1998), 931–937 
 
5. Y. Kisioglu, J. R. Brevick and G. L. Kinzel, 2001, “Determination of Burst Pressure 
and Location of the DOT-39 Refrigerant Cylinders”, Journal of Pressure Vessel 
Technology 123, 240 (2001).     
 
6. Hill, E. K., Walker, J. L., and Rowell, G. H., 1996, “Burst Pressure Prediction in 
Graphite/Epoxy Pressure Vessels Using Neural Networks and Acoustic Emission 
Amplitude Data”, Materials Evaluations, June. 
 
7. Sun, X. K., Du, S. Y., and Wang, G. D., 1999, “Bursting Problem of Filament 
Composite Pressure Vessels”, Int. J. Pressure Vessels Piping, 76, pp: 55–59. 
 
8. Tadmor, E. B., and Durban, D., 1995, “Plastic Deformation and Burst of Pressurized 
Multilayered Cylinders”, ASME J. Pressure Vessel Technol., 117, Feb., pp. 85–91. 
 
9. Blandford, G. E., Tauchert, T. R., and Leigh, D. C., 1989, “Nonlinear Analysis of 
Axisymmetric Layered Pressure Vessels—Part 1: Theory”, ASME J. Pressure Vessel 
Technol., 111, May, pp. 113–119 
 
10. Updike, D. P., and Kalnins, A., 1998, “Tensile Plastic Instability of Axisymmetric 
Pressure Vessels”, ASME J. Pressure Vessel Technol., 1-0, Feb., pp. 6–11 
 
11. M. Xia, H. Takayanagi and K. Kemmochi, 2001, “Analysis of multi-layered filament-
wound composite pipes under internal pressure”, Composite Structures, Volume 53, Issue 
4, September, Pages 483-491 
 

 76



12. R.L. Conder and N.L.Newhouse, Dec. 1980, “Cyclic Pressure Test of a Filament-
wound vessel containing liquid nitrogen”, Cryogenics, V20 
 
13. Tae-Kyung Hwang, Chang-Sun Hong and Chun-Gon Kim, 2003, “Probabilistic 
Deformation and Strength Prediction for a Filament Wound Pressure Vessel”, 
Composites: Part B 34 (2003) 481–497 
 
14. Shekhar Kamat, Xiaofeng Su, Alpha Star Corp., “Filament Winding Simulation of a 
Composite Overwrapped Pressure Vessel”, 46th International SAMPE Symposium 
 
15. M. Amabili and G. Dalpiza, 1995, “Breathing vibrations of a horizontal circular 
cylindrical tank shell, partially filled with liquid”, Transactions of the American Society 
of Mechanical Engineers, Journal of Vibration and Acoustics 117, 187-191.  

16. N. C. Pal, S. K. Bhattacharyya and P. K Sinha, 2003, “Non-linear Coupled Slosh 
Dynamics of Liquid-filled Laminated Composite Containers: a Two Dimensional Finite 
Element Approach”, Journal of Sound and Vibration Volume 261, Issue 4, 3 April, Pages 
729-749 

17. M. Amabili, F. Pagnanelli & M. Pellegrini, “Experimental Modal Analysis of a 
Water-filled Circular Cylindrical Tank”, Fluid Structure Interaction, pp. 267-276, WIT 
press, 2001 

18. M. Amabili, F, 1998, “Nonlinear Vibration of Simply Supported, Circular Cylindrical 
Shells, Coupled to Quiescent Fluid”, Journal of Fluids and Structures (1998) 12, 883–
918 

19. M. Amabili, R. Garziera & F. Pagnanelli, 2001, “Comparison of Theoretical and 
Experimental Results for Large-amplitude Vibrations of Fluid-filled, Circular Cylindrical 
Shells”, Fluid Structure Interaction, WIT press, page 119-128 

20. Amabili M., 1996, “Free Vibration of Partially Filled, Horizontal Cylindrical Shells”, 
Journal of Sound and Vibration Volume 191, Issue 5, 18 April, Pages 757-780 

21. S. P. Singh and K. Gupta, 1994, “Damped Free Vibrations of Layered Composite  
Cylindrical Shells”, Journal of Sound and Vibration 2 , 28 April 1994, Pages 191-209 

22. D. A. Saravanos, 1999, “Damped Vibration of Composite Plates with Passive 
Piezoelectric-resistor Elements”, Journal of Sound and Vibration Volume 221, Issue 5, 
15 April 1999, Pages 867-885 

23. T. Maeda, V. Baburaj, Y. Ito and T. Koga, 1998, “Flexural–Torsional Coupling 
Effect on Vibrational Characteristics of Angle-ply Laminates”, Journal of Sound and 
Vibration Volume 210, Issue 3, 26 February 1998, Pages 351-365 

 77



24. Ravikiran Kadoli and N. Ganesan, 2004, “Studies on Dynamic Behavior of 
Composite and Isotropic Cylindrical Shells with PZT Layers under Axisymmetric 
Temperature Variation”, Journal of Sound and Vibration Volume 271, Issues 122, 22 
March 2004, Pages 103-130 

25. P. K. Parhi, S. K. Bhattacharyya and P. K. Sinha, 2001, “Hygrothermal Effects on the 
Dynamic Behavior of Multiple Delaminated Composite Plates and Shells", Journal of 
Sound and Vibration Volume 248, Issue 2, 22 November 2001, Pages 195-214 

26. S. Rajaa, P. K. Sinha, G. Prathapc and D. Dwarakanathan, 2004, “Influence of Active 
Stiffening on Dynamic Behavior of Piezo-hygro-thermo-elastic Composite Plates and 
Shells”, Journal of Sound and Vibration Article in Press, Corrected Proof 

27. D. T. Detwiler, M. -H. H. Shen and V. B. Venkayya, 1995, "Finite Element Analysis 
of Laminated Composite Structures Containing Distributed Piezoelectric Actuators and 
Sensors", Finite Elements in Analysis and Design Volume 20, Issue 2, June 1995, Pages 
87-100 

28. Saravanos D. A. and Hopkins D. A., 1996, “Effects of Delaminations on the Damped 
Dynamic Characteristics of Composite Laminates: Analysis and Experiments”, Journal 
of Sound and Vibration Volume 192, Issue 5, 23 May 1996, Pages 977-993 

29. J. J. Tracy and G. C. Pardoen, 1989, “Effect of Delamination on the Natural 
Frequencies of Composite Laminates”, Journal of Composite Materials 23, 1200-1215.   

30. G.L. Nagesh Babu and S. Hanaguid, 1990, “Delaminations in Smart Composite 
Structures: a Parametric Study on Vibrations”, 31st AIAA/ASME/ASCE/AHS/ASC SDM 
Conference, AIAA Paper 90-1173-CP, 2417-2426.  

31. A.Paolozzi and I. Peroni, 1990, “Detection of Debonding Damage in a Composite 
Plate through Natural Frequency Variations”, Journal of Reinforced Plastics and 
Composites 9, 369-389. 
 
32.  M. H. H. Shen and J. E. Grady, 1992, “Free Vibrations of Delaminated Beams”, 
American Institute of Aeronautics and Astronautics 30(5), 1361-1370. 
 
33. L. H. Tenek, E. G. Henneke II and M. D. Gunzburger, 1993, “Vibration of 
Delaminated Composite Plates and Some Applications to Non-destructive Testing”, 
Composite Structures 23, 253-262. 
 
34. J. S. Anastasiadis and G. J. Simitses, 1991, “Spring Simulated Delamination of 
Axially-loaded Flat Laminates”, Composite Structures, 17, 67-85.  
 
35. G. J. Simitses, 1995, “Delamination Buckling of Flat Laminates”, in Buckling and 
Postbuckling of Composite Plates (G. J. Turvey and I. H. Marshall, editors), Chapman 
and Hall, 299-328. 
 

 78



36. E. J. Barbero, J. N. Reedy and J. Teply, 1990, “An Accurate Determination of 
Stresses in Thick Composite Laminates Using a Generalized Plate Theory”, 1990 
International Journal for Numerical Methods in Engineering 29,1214.   
 
37. C. M. Dakshinamoorthy and J. N. Reddy, 1998, “Modeling of Laminates Using a 
Layerwise Element and Enhanced Strains”, 1998 International Journal of Numerical 
Mathematical and Engineering 43, 755-779.  
 
38. J. Lee, Z. Gurdal and O. H. Griffin Jr., 1992, “A Layer-wise Approach for the 
Bifurcation Problem in Laminated Composites with Delimitations”, 1992 American 
Institute of Aeronautics and Astronautics Journal 31(2), 331-338.  
 
39. B. V. Sankar, 1991, “A Finite Element for Modeling Delaminations in Composite 
Beams”, Computers and Structures 38, 239-246.  
 
40. M. Krawczuk, W. Ostachowics and A. Zak, 1997, “Dynamic of Cracked Composite 
Material Structures”, Computational Mechanics 20, 79-83.  
 
41. S. Hanagud and H. Luo, 1994, “Modal Analysis of a Delaminated Beam”, SEM 
Spring Conference on Experimental Mechanics, Baltimore, MD.  
 
42. G. L. Nageshbabu and S. Hanagud, “Delaminations in Smart Composite Structures: a 
Parametric Study on Vibrations”, 1990 Proceedings of the 31st 
AIAA/ASME/ASCE/AHS/ASCSDM Conference, Part 4, 2417-2426.  
 
43. M. H. H. Shen and J. E. Grady, 1992, “Free Vibration of Delaminated Beams”, AIAA 
Journal 30, 1361-1370.  
 
44. A. K. Pandey, M. Biswas and M. M. Samman, 1991, “Damage Detection Form 
Changes in Curvature Mode Shapes”, Journal of Sound and Vibration 145, 321-332.  
 
45. H. F. Lam, J.M. Ko and C. W.Wang, 1995, “Detection of Damage Location Based on 
Sensitivity Analysis”, Proceedings of the 13th International Modal Analysis Conference, 
1499-1505.  
 
46. J. H. Kim, H. S. Jeon and C. W. Lee, 1992, “Application of the Modal Assurance 
Criteria for Detecting and Locating Structural Faults”, Proceedings of 10th International 
Modal Analysis Conference, 536-540. 
 
47. O. S. Salawu and C. Williams, 1994, “Damage Location Using Vibration Mode 
Shapes”, Proceedings of the 12th International Modal Analysis Conference, 933-939.  
 
48. J. Chance, G.R. Tomlinson and K.Worden, 1994, “A Simplified Approach to the 
Numerical and Experimental Modeling of the Dynamics of a Cracked Beam”, 
Proceedings of the 12th International Modal Analysis Conference, 778-785. 
 

 79



49. M. J. Schulz, P. F. Pai and A. S. Abdelnaser, 1996, “Frequency Response Function 
Assignment Technique for Structural Damage Identification”, Proceedings of the 14th 
International Modal Analysis Conference, 105-111.  
 
50. T. W. Lim, 1995,  “Structural Damage Detection Using Constrained Eigenstructure 
Assignment”, Journal of Guidance, Control, and Dynamics 18, 411-418.  
 
51. M. Sanayei and O. Onipede, 1991, “Damage Assessment of Structures Using Static 
Test Data”, AIAA Journal 29, 1174-1179.  
 
52. M. Sanayei, O. Onipede and S. R. Babu, 1992, “Selection of Noisy Measurement 
Locations for Error Reduction in Static Parameter Identification”, AIAA Journal 30, 
2299-2309.  
 
53. S. W. Doebling, 1996, “Damage Detection and Modal Refinement Using Elemental 
Stiffness Perturbations with Connectivity”, Proceedings of the AIAA/ASME/AHS 
Adaptive Structures Forum, 360-370.  
 
54. D. C. Zimmerman and M. Kaouk, 1994, “Structural Damage Detection Using a 
Minimum Rank Update Theory”, Journal of Vibration and Acoustics 116, 222-230.  
 
55. L. D. Peterson, K. F. Alvins, S. W. Doebling and K. C. Park, 1993, “Damage 
Detection Using Experimentally Measured Mass and Stiffness Matrices”, Proceedings of 
34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials 
Conference, 1518-1528.  
 
56. O. S. Salawu and C. Williams, 1993, “Structural Damage Detection Using 
Experimental Modal Analysis and a Comparison of Some Methods”, Proceedings of the 
11th International Modal Analysis Conference, 254-260.  
 
57. Z. Wang, R.M. Lin and M. K. Lim, 1997, “Structural Damage Detection Using 
Measured FRF Data”, Computer Methods in Applied Mechanics and Engineering 147, 
187-197.  
 
58. S. K. Thyagarajanm, J. Schulz and P. F. Pai, 1998, “Detecting Structural Damage 
Using Frequency Response Functions”, Journal of Sound and Vibration 210, 162-170. 
 
59. H. F. Lan, J.M.Ko and C. W.Wong, 1998, “Localization of Damaged Structural 
Connections Based on Experimental Modal and Sensitivity Analysis”, Journal of Sound 
and Vibration 210, 91-115.  
 
60. H.-Y. Kim, 2003, Vibration-Based Damage Identification Using Reconstructed FRFS 
in Composite Structures”,  Journal of Sound and Vibration (2003) -59(5), 1131–1146 
 

 80



61. R. P. C. Sampaioa, N. M. M. Maiab and J. M. M. Silva, 1999, “Damage Detection 
Using the Frequency-Response-Function Curvature Method”, Journal of Sound and 
Vibration Volume 226, Issue 5, 7 October 1999, Pages 1029-1042 
 
62. O. S. Salawu, 1997, “Detection of Structural Damage through Changes in Frequency: 
a Review”, Engineering Structures 19, 718-723.  
 
63. P. Cawley and R. D. Adams, 1979, “The Location of Defects in Structure from 
Measurements of Natural Frequencies”, Journal of Strain Analysis 4, 49-57.  
 
64. D. Sanders, Y. I. Kim and R. N. Stubbs, 1992, “Non-destructive Evaluation of 
Damage in Composite Structures Using Modal Parameters”, Experimental Mechanics 32, 
240-251.  
 
65. R. Ceravolo and A. D. Stefano, 1995, “Damage Location in Structure through a 
Connectivistic Use of FEM Modal Analyses”, The International Journal of Analytical 
and Experimental Modal Analysis 10, 176. 
 
66. H. T. Banks, D. J. Inman, D. J. Lwo and Y. Wang, 1996, “An Experimentally 
Validated Damage Detection Theory in Smart Structure”, Journal of Sound and Vibration 
191, 859-880.  
 
67. F. P. Sun, Z. Chaudhry, C. A. Rogers and M. Majmundar, 1995, “Automated Real-
time Structure Health Monitoring via Signature Pattern Recognition”, Proceedings of 
SPIE -The International Society for Optical Engineering Smart Structures and Materials: 
Smart Sensing, Processing, and Instrumentation Vol. 1443, 236-243.  
 
68. Z. Chaudhry, T. Joseph, F. Sun and C. Rogers, 1995,  “Local-area Health 
Monitoring of Aircraft via Piezoelectric Actuator/sensor Patches”, Proceedings of SPIE –
The International Society for Optical Engineering Smart Structures and Materials Smart 
Sensing, Processing, and Instrumentation, Vol. 2443, 268-276 

69. Sun, F. P., 1995, “Automated Real-time Structure Health Monitoring via Signature 
Pattern Recognition”, Proc of the SPIE-Smart Struct and Matls Conf, 2443,236-247 

70. Chaudhry, Z, 1995, “Local-area Health Monitoring of Aircraft via Piezoelectric 
Acutuator/sensor Patches”, Proc of the SPIE-Smart Struct and Matls Conf, 2443,268-276 

71. Ayres, J W., 1998, “Qualitative Impedance-based Health Monitoring of Civil 
Infrastructure,” Smart Matls and Struct, 7(5), 599-605 

72. Esteban, J, 1999, “Wave Localization Due to Material Damping”, Computer Methods 
in Appl Mech and Engrg, 177(122), 93-107 

73. Tseng, K., 2002, “Non-parametric Damage Detection and Characterization Using 
Smart Piezoceramic Material”, Smart Matls and Struct, 11(3), 317-329 

 81



74. S. C. Gales, W.K. Chiu and J. J. Paul, 1993, “Use of Piezoelectric Films in Detecting 
and Monitoring Damage in Composites”, Journal of Intelligent Material Systems and 
Structures 4, 330-336.  
 
75. S. Egusa and N. Iwasawa, 1996, “Piezoelectric Paints as One Approach to Smart 
Structural Materials with Health-monitoring Capabilities”, Smart Materials Structures 7, 
438-445.  
 
76. X. H. Jian, H. S. Tzou, C. J. Lissenden, and L. S. Penn, “Damage Detection by 
Piezoelectric Patches in a Free Vibration Method”, Journal of Composite Materials 31, 
345-359.  
 
77. G. P. Dube, P. C. Dumir and C. Balaji Kumar, 1999, Segmented Sensors and 
Actuators for Thick Plates and Shells Part I: Analysis Using FSDT, Journal of Sound and 
Vibration (1999) 226(4), 739-753 
 
78. P. C. Dumir, G. P. Dube and C. Balaji Kumar, 1999, “Segmented Sensors and 
Actuators for Thick Plates and Shells Part II: Parametric Study”, Journal of Sound and 
Vibration (1999) 226(4), 755-767 
 
79. S.-E. Park and T.R. Shrout, J. Appl. Phys., 82, (4), 1804 (1997). 
 
80. Wang, C S, 2001, “Structural Health Monitoring from Fiber-reinforded Composites 
to Steel-reinforced Concrete”, Smart Matls and Struct, 10(3), 548-552 
 
81. C. H. Keilers, Jr. and F.-K. Chang, 1993, “Damage Detection and Diagnosis of 
Composites Using Built-in Piezoceramics”, Proceedings of SPIE-The International 
Society for Optical Engineering Smart Structures and Intelligent System Vol. 1917, 
1009-1015.  
 
82. C. H. Keilers Jr., and F.-K. Chang, 1995, “Identifying Delamination in Composite 
Beams Using Built-in Piezolectrics: Part I-Experiments and Analysis”, Journal of 
Intelligent Materials Systems and Structures 6, 649-663. 
 
83. C. H. Keilers Jr., and F.-K. Chang, 1995, “Identifying Delamination in Composite 
Beams Using Built-in Piezolectrics: Part II-An Identification Method”, Journal of 
Intelligent Material Systems and Structures 6, 664-672. 
 
84. K. Choi, C. H. Keilers, Jr., and F.-.K. Chang, 1994, “Impact Damage Detection in 
Composite Structures Using Distributed Piezoceramics”, Proceedings of the 
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials 
Conference Vols. 18-20, 118-124.  
 
85. B. S. Shen, M. Tracy, Y.-S. Roh and F.-K. Chang, 1996, “Built-in Piezoelectrics for 
Processing and Health Monitoring of Composite Structures”, Proceedings of the 
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials 

 82



Conference, 390-397 
 
86. A. S. Islam and K. C. Cralg, 1994, “Damage Detection in Composite Structures 
Using Piezoelectric Materials”, Smart Materials and Structures 3, 318-328.  
 
87. A. C. Okafor, K. Chandrashekhara and Y. P. Jiang, “Delamination Prediction in 
Composite Structures with Built-in Piezoelectric Devices Using Modal Analysis and 
Neutral Network”, Smart Materials and Structure 5, 338-347. 
 
88. P. M. Majumdar and S. Suryanarayan, 1988, “Flexural Vibrations of Beams with 
Delaminations”, Journal of Sound and Vibration 125, 441-461. 
 
89. J. Rhim and S. W. Lee, 1995, “A Neural Network Approach for Damage Detection 
and Identification of Structures”, Computational Mechanics 16, 437-443.  
 
90. Z. Chaudhry and A. J. Ganino, 1994, “Damage Detection Using Neural Networks: an 
Initial Experimental Study on Debonded Beams”, Journal of Intelligent Material Systems 
and Structures 5, 585-589.  
 
91. H. Luo and S. Hanagud, 1997, “Dynamic Learning Rate Neural Network Training 
and Composite Structural Damage Detection”, AIAA Journal 35, 1522-1527.  
 
92. Hou, Z, 2000, “Wavelet-based Approach for Structural Damage Detection.” J of 
Engrg Mech, 126(7), 677-683 
 
93. Lin, X. 2001, “Diagnostic Lamb Waves in an Integrated Piezoelectric Sensor/actuator 
Plate Analytical and Experimental Studies” Smart Matls and Struct, 10(5), 907-913 
 
94. Na, W, 2003, “Lamb Waves for Detection Delamination Between Steel Bars and 
Concrete” Computer Aided Civil and Infrast Engrg, 18, 58-63. 
 
95. Lemistre, M, 2001, “Structural Health Monitoring System Based on Diffracted Lamb 
Wave Analysis by Multiresolution Processing” Smart Matls and Struct, 10(3), 504-511 
 
96. Yam, L H, 2003, “Vibration-based Damage Detection for Composite Structures 
Using Wavelet Transform and Neural Network Identification” Composite Struct, 60(4), 
403-412 
 
97. Okafor, A C, 1996, “Delamination Prediction in Composite Beams Built-in 
Piezoelectric Devices Using Modal Analysis and Neural Network” Smart matls and 
Struct, 5(3), 338-347 
 
98. Egusa, S, 1998, “Piezoelectric Paints as One Approach to Smart Structural Materials 
with Health-monitoring Capabilities” Smart Matls and Struct, 7(4), 438-445. 
 

 83



99. Galea, C S, 1993, “Use of Piezoelectric Films in Detecting and Monitoring Damage 
in Composites” J of Intell Matl System and Struct, 4, 683-689 
 
100. A. Ergin, B. Ugurlu, 2004, “Hydroelastic Analysis of Fluid Storage Tanks by Using 
a Boundary Integral Equation Method”, Journal of Sound and Vibration, Volume 275, 
Issues 3-5, 23 August 2004, Pages 489-513 

101. S.P. Lim, M. Petyt, 1980, “Free Vibration of a Cylinder Partially Filled with a 
Liquid”, Proceedings of the International Conference on Recent Advances in Structural 
Dynamics, Institute of Sound and Vibration, Southampton University, 7–11 July 1980, 
pp. 447–455.  

102. L.G. Olson and K.J. Bathe, Analysis of fluid–structure interactions, A direct 
symmetric coupled formulation based on the fluid velocity potential. Computers and 
Structures 21 (1985), pp. 21–32.  

103. R. Ohayon and R. Valid, True symmetric variational formulations for fluid–structure 
interaction in bounded domains-finite element results. In: R.W. Lewis, P. Bettess and E. 
Hinton, Editors, Numerical Methods in Coupled Systems, Wiley, New York (1984), pp. 
293–325.  

104. H.J.-P. Morand and R. Ohayon. Fluid Structure Interaction, John Wiley and Sons, 
Paris (1995).  

105. T. Mazúch, J. Horá ek, J. Trnka and J. Veselý, Natural modes and frequencies of a 
thin clamped–free steel cylindrical storage tank partially filled with water: FEM and 
measurements. Journal of Sound and Vibration 193 (1996), pp. 669–690.  

106. Y.L. Zhang, D.G. Gorman and J.M. Reese, 2001, “Finite Element Method for 
Modeling the Vibration of Initially Tensioned Thin-walled Orthotropic Cylindrical Tubes 
Conveying Fluid”, Journal of Sound and Vibration 245 (2001), pp. 93–112.  

107. U. Röhr and P. Möller, 2001, “Hydroelastic Vibration Analysis of Wetted Thin-
walled Structures by Coupled FE-BE-procedure”, Structural Engineering and Mechanics 
12 (2001), pp. 101–118.  

108. G.V. Mysore, S.I. Liapis and R.H. Plaut, 1998, “Dynamic Analysis of Single-anchor 
Inflatable Dams”, Journal of Sound and Vibration 215 (1998), pp. 251–272.  

109. A. Ergin, W.G. Price, R. Randall and P. Temarel, 1992, “Dynamic Characteristics of 
a Submerged, Flexible Cylinder Vibrating in Finite Water Depths”, Journal of Ship 
Research 36 (1992), pp. 154–167.  

110. A. Nestegård, M. Mejlænder-Larsen, 1994, “Hydrodynamic Added Mass of a 
Floating Vibrating Structure”, in: O. Faltinsen, et al. (Eds.), Hydroelasticity in Marine 
Technology, A.A. Balkema, Rotterdam, 1994, pp. 261–272.  

 84



111.  A. Ergin and P. Temarel, 2002, “Free Vibration of a Partially Liquid-filled and 
Submerged, Horizontal Cylindrical Shell”, Journal of Sound and Vibration 254 (2002), 
pp. 951–965.  

112. M. Amabili, M.P. Païdoussis and A.A. Lakis, 1998, “Vibrations of Partially Filled 
Cylindrical Tanks with Ring-stiffeners and Flexible Bottom”, Journal of Sound and 
Vibration 213 (1998), pp. 259–299.  

113. F. Kito, 1970, Principles of Hydro-Elasticity, Keio University Publications, Tokyo 
(1970).  

114. J.L. Hess and A.M.O. Smith, 1967, “Calculation of Potential Flow about Arbitrary 
Bodies”, In: D. Küchemann et al. Progress in Aeronautical Sciences Vol. 8, Pergamon 
Press, New York (1967), pp. 1–138.  

115. J.L. Hess, 1975, “Review of Integral-equation Techniques for Solving Potential-
flow Problems with Emphasis on the Surface-source Method”, Computer Methods in 
Applied Mechanics and Engineering 5 (1975), pp. 145–196. 
 
116. Johannes Wandinger, 2002, “The Virtual Mass Method”, Virtual Mass Seminar, 
MSC Corporation. 
 
117. MSC.Nastran, User’s Manual, MSC.Software Corporation, Santa Ana, CA 

118. Issac M. Daniel, Engineering Mechanics of Composite Materials, Oxford University 
Press, 1994 
 

 85


	Frequency
	Damping
	Mode Shape
	Modal Analysis Methods
	Frequency Domain
	Time Domain
	On-line Delamination Detection
	
	Application of Wavelet Analysis to PZT-based Health Monitoring
	Application of Artificial Neural Network (ANN) to PZT-based Health Monitoring
	Generalized Fluid-structure Interaction Forces


	Calculation of Wet Frequencies and Mode Shapes
	It can be seen that the number of humps in the middle band of the tank for the bending modes does not start from a small number and increase sequentially for the higher order modes as seen in most in most of the dynamic characteristics for regular struct
	The Virtual Fluid Mass Method
	
	Introduction [116]

	Applicability
	
	User Interface
	The ELIST Bulk Data Entry
	Remarks:
	The MFLUID Bulk Data Entry
	The MFLUID Bulk Data Entry
	Remarks
	First, the dry modes are computed.
	Next, the virtual mass matrix is computed and projected onto the dry modes.
	Finally, the projected eigenvalue problem is solved providing the wet modes.


	Analysis of Tank Filled with Pressurized Water
	
	For the next analysis, the tank is filled with water pressurized at 48 psi. The pressure exerts stiffening effect on the shell. NASTRAN uses the static solution to calculate a differential stiffness matrix that reflects the stiffening effect of the stati
	Setting up the stiffening effect due to pressure in Nastran is carried out by defining pressure loads on PLOAD2 or PLOAD4 cards. Then include the following types of subcases in Case Control��SUBCASE 1�LABEL = PRESSURE LOAD�LOAD = 1 $ This points to the P
	In NASTRAN 2004 the SOL 111 is now capable of accepting a static subcase as an initial condition which takes the effect of differential stiffness to update the modes.
	Results for tank completely filled with water are as the following:
	Table 1.  Natural frequencies of tank completely filled with water (Hz)
	Remarks:
	Compared with the tank in vacuo, some modes of the water filled tank are switched in order. Due to the added mass of water, natural frequencies decrease for each mode. For example, the numbers of humps of the first 6 mode shapes from low to high frequenc
	For tank filled with pressurized water, differential stiffness matrix reflecting the stiffening effect is calculated for modal analysis. The natural frequencies increase for each mode, compared with those with no pressure, due to the stiffening effect of
	The amounts of increase of frequencies are not very large, and the order of mode shapes keeps the same.




	Classical Lamination Theory
	
	
	
	For tank filled with pressurized water, the pressure exerts a stiffening effect on the tank. The natural frequencies increase with each mode, compared with those with no pressure, due to the stiffening effect of the pressure.



	REFERENCES
	5. Y. Kisioglu, J. R. Brevick and G. L. Kinzel, 2
	
	
	17. M. Amabili, F. Pagnanelli & M. Pellegrini, “E




	TABLE OF CONTENTS.pdf
	On-line Delamination Detection…………………………………………………..15
	Calculation of Wet Frequencies and Mode Shapes……………………
	The Virtual Fluid Mass Method………………………………………………41
	
	Introduction…………………………………………………………….42

	Applicability……………………………………….…………………..42
	
	User Interface……………………………………….………………….43



	Classical Lamination Theory……………………………………………………..51


