Structures of the 3,4-Epoxybutene-Derived R- and S-N1-(2-Hydroxy-buten-2-yl) 2' Deoxyinosine DNA Adducts: Regiochemical Control of Glycosidic Torsion Angle Conformation

BY

DENNIS W KUO

Thesis
Submitted to the faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In
Chemical and Physical Biology

December, 2015
Nashville, Tennessee

Approved:
Michael P. Stone, Ph.D.
Carmelo J. Rizzo, Ph.D.

To my parents Mon-Lin and Carol and my sister Angie for always being there for me

To my friends who have shared my journey and made it meaningful To my teachers, past and present, who have helped me explore my curiousity of the world

ACKNOWLEDGEMENTS

I am greatful to all of those who have helped me on the way to this thesis. In particular, I want to thank my advisor Professor Michael P Stone for his guidance and help during my stay in his research group and for all of the things he has taught me. I also want to thank the fellow members of the Stone lab: Dr. Ewa Kowal for her help mentoring me and helping me get my project set up, Dr. Kallie Stavros for answering all my random questions, and Dr. Liang Li and Dr. Marta Szulik for always encouraging me. I also want to thank my labmates Dustin Politica and Drew Kellum for their daily company and support through graduate school, and my undergrad assistant Annirhuda for helping me while being busy with his own studies. In my pursuit of learning NMR, Dr. Markus Voehler was always helpful and always knew what to do to improve my results. I would like to thank my committee members Dr. Martin Egli, Dr. Fred Guengerich, Dr. Neil Osheroff, and Dr. Carmelo Rizzo for encouraging me and pointing me in the right direction.

I also want to extend a big thank you to the entire CPB and departments, especially Lindsay Meyers, who was beyond helpful, Dr. Dave Piston, who helped me through a time when I really needed it, and Dr. Bruce Damon, whose guidance made this work possible. I would also like to thank the BRET office, including Professor Roger Chalkley, who was always interested in helping students, and Mistie Germek, without whose guidance I would have never succeeded.

I would also like to thank all of the other science mentors who have gotten me this far: my undergraduate advisor, Professor Mark Levandowski for getting me excited about structure and biology, Professor Andrew Mobley for getting me to understand what chemical intuition is, and to my highschool teachers Jeff Dilks and Walter Craig for helping me learn the scientific method.

Finally, I would like to all of my friends and family. To the friends I made in Ames, I will never forget our bond. To the friends I made in Grinnell, you helped me grow into who I am today and changed me for the better. And for the friends I've made in Nashville, you have made me feel welcome in a place I wasn't quite sure about. And to my family, who have taught me what it means to be loved.

TABLE OF CONTENTS

Page
Dedication ii
Acknowledgements iii
Chapter

1. INTRODUCTION 1
1.1 Butadiene: Evidence for toxicity in rodents and humans 1
1.2 3,4-Epoxybutene alkylation of adenine 7
1.3 Properties of 3,4-Epoxybutene adducts of adenine 11
1.4 Statement of problem 16
2. STRUCTURE DETERMINATION OF C4 N1-dI ADDUCTS USING NMR AND rMD 18
2.1 Introduction to NMR based structure determination 18
2.2 Methods 22
2.3 Results 27
3. DISCUSSION AND CONCLUSIONS 43
3.1 Discussion of results 43
3.2 Structure-Activity relationships 45
Appendix
A. ATOMIC PARTIAL CHARGES 48
B. CHEMICAL SHIFT ASSIGNMENTS 49
C. DISTANCE RESTRAINT FILES 51
D. MOLECULAR DYNAMICS FILES.. 150

REFERENCES CITED .. 153

LIST OF FIGURES, SCHEMES AND TABLES

Page
Scheme 1. Metabolism of 1,3-butadiene 6
Scheme 2. 3,4-epoxybutene adducts to calf thymus DNA 8
Scheme 3. Regioselective alkylation of adenine by 3,4-epoxybutene 10
Scheme 4. Proposed mechanism of Dimroth rearrangement of N1 adenine adducts into N6 adenine adducts 11
Scheme 5. Chemical structures of the 3,4-epoxybutene N1 inosine adducts. 12
Scheme 6. Proposed mechanism of A to G mutations caused by 3,4-epoxybutene 14
Figure 1. Mutagenic spectra and lesion structures of the carbon 3 3,4-epoxybutene N1 inosine adducts 15
Figure 2. Depiction of the observable NOE interactions between adjacent bases in nucleic acids 20
Figure 3. Method of NMR based structural refinement for oligodeoxynucleotides 21
Table 1. Melting temperatures changes caused by 3,4-epoxybutene alkylation of the ras61 sequence 28
Figure 4.1-D ${ }^{1} \mathrm{H}$ NMR spectra of exchangeable protons of carbon 4 N 1 insoine adducts 28
Figure 5. NOESY spectra of walking region of carbon 4 N 1 inosine adducts 29
Figure 6. COSY spectra of walking region of carbon 4 N 1 inosine adducts 30
Figure 7. NOESY spectra of exchangeable protons of carbon 4 N 1 inosine adducts 31
Figure 8. NOESY spectra of assignment of adduct protons 33
Figure 9. Comparison of resonance intensities of intranucleotide H1' and H6/8 NOE cross peaks. 34
Figure 10. Chemical shift differences of the carbon 4 N 1 inosine adducts compared to unmodified ras61 sequence 36
Figure 11. Views of the calculated carbon 4 N 1 inosine modified duplexes 39
Figure 12. $R_{1} X$ values calculated using CORMA 40
Figure 13. Structure of the carbon 4 adduct lesion site 40
Figure 14. Stacking interactions of the carbon 4 adduct lesion site 42

Chapter 1

Introduction

1.1 Butadiene: evidence for toxicity in rodents and humans

Chemicals in the environment are a constant exogenous challenge to the human body. People can be exposed through ingestion of contaminated food and water or inhalation of contaminated air. Some of these chemicals are known to be carcinogens, including polycyclic aromatic hydrocarbons, the moldproduced aflatoxin, and aromatic or heterocyclic amines. 1,3-Butadiene (BD), a colorless gas, has been classified as a known carcinogen by the National Toxicology Program, but the mechanism and degree of carcinogenicity is the subject of debate ${ }^{1}$.
$B D$ is primarily obtained through petrochemical extraction and is used for a wide variety of applications including the synthesis of various plastics and styrene-butadiene rubber (SBR), and is produced in excess of a million tons per year in the United States alone ${ }^{2}$. Additionally, the EPA estimates that over 200 million pounds are released into the environment as emissions from vehicles and industry ${ }^{3}$. Other sources of BD include combustion products ${ }^{4}$ such as cigarette smoke ${ }^{5}$, and contamination through release of BD from plastic containers'. Exposure to high concentrations of BD primarily occurs in industrial settings. The National Toxicology Program has classified BD a human carcinogen based on: 1) evidence of multi-organ carcinogenicity in animal models, and 2) epidemiological
data that shows an increased incidence of leukemia related mortality in BD workers compared to the general population ${ }^{6}$.

Human Epidemiology of BD

Epidemiological evidence of BD toxicity is primarily derived from three study groups of exposed workers. First, the works of Meinhardt et al ${ }^{7}$ and Matanoski et al8,9, examined SBR factories in operation in 1976. Exposure in these facilities was estimated to be .1-4.2 ppm over 8 h . Results obtained by Meinhardt et al^{7} showed that the mortality due to cancers in BD workers was actually lower compared with the general population except in the case of lymphohematopoietic cancers (LHCs), suggesting that BD exposure could lead to LHC outcomes; however, the sample size of this study was too small to be statistically significant. In order to correct this deficiency, Matanoski et al ${ }^{8}$ examined a cohort of 12,110 North American SBR workers and again found that mortality due to cancers was lower in the sample population than the control, excepting LHCs. These studies pointed toward LHC's as a possible outcome due to BD exposures. The second study group, including the works of Downs et al 10, Divine et al ${ }^{11,12}$, and Divine and Hartman ${ }^{13}$, studied butadiene monomer workers belonging to a WWII era BD manufacturing facility which was the top producing factory of the time. Similar to the above mentioned studies, Downs, Divine, Hartman and collaborators observed an overall lower mortality rate due to cancer in the observed population compared to the general population, but average rates of mortality due to LHCs. The third study group, examined by Matanoski and Santos Burgos et al ${ }^{14,15}$, attempted to control examined cases by
age, employment duration, years of employment, facility of employment, and exposure level ${ }^{14,15}$. Worker exposure data was not available; instead, exposure was estimated by a panel of engineers based on the specific jobs held by each individual. These studies found a correlation between high exposure levels and increased risk of leukemia. Finally, a follow up study done by Delzell et al ${ }^{16,17}$ found a clear increase in leukemia over the general population, especially in workers employed for at least 10 years and followed for at least 20 years. These results suggested that there was a long incubation period between BD exposure and leukemia related mortality. Overall, although some critics disagree ${ }^{18}$, these studies ${ }^{14,15,16,17}$ found that BD exposed workers may have higher risk of developing LHCs than other cancers.

Animal models of $B D$ toxicity

Rodents exposed to BD and its metabolites exhibit genotoxicity, mutagenicity, and multi-organ carcinogenicity. Mice had a higher sensitivity to BD toxicity than rats. Melnick and coworkers ${ }^{19}$ found that $\mathrm{B}_{6} \mathrm{C} 3 \mathrm{~F}_{1}$ mice exposed to inhaled BD had higher incidences of tumors in multiple organs compared to the control; control mice had tumor incidences of 20 and 12 percent in males and females respectively, while BD exposed mice had 80 and 94 percent incidences. These tumors occurred in multiple organs, including lymphomas in the thymus, spleen, lymph nodes, lung, liver, kidney, heart, pancreas and stomach. Of particular note in this study was the absence of tumors in the nasal cavity, which suggested that metabolic activation was a prerequisite of BD mediated toxicity. The BD concentrations examined in this study were 625 and 1250
ppm(compared to the contemporary OSHA standard of 1000 ppm) over 104 weeks, but the study length was shortened to 65 weeks due to cancer related mortality. In order to investigate lower dosages of BD, Melnick et al ${ }^{20}$ chose concentrations of $6.25,20,62.5,200$, and 625 ppm in their next study. Over 65 weeks of exposure, it was found that lymphocytic lymphomas occurred in mice exposed to as low as 62.5 ppm. At the dosage of 625 ppm, 24 male and 59 female mice died before 65 weeks. Of these mice, 75% of males and 33% of females had lymphocytic lymphoma. Other tissues found to have significant tumorigenesis included heart, forestomach, lung, harderian gland, and liver. Owen et al ${ }^{21}$ observed that Sprague-Dawley rats were also sensitive to chronic BD inhalation. Subjects were exposed to either 1000 or 8000 ppm BD over 111 or 105 weeks for males and females respectively. Increased BD concentration was associated with increased mortality in both males and females, which the authors attributed to renal lesions and sacrifice due to subcutaneous masses respectively. Tumors were most common in the mammary gland, the pancreas, the thyroid, and the testes. Through these three studies, Melnick, Owen and coworkers ${ }^{19,20,21}$ show that chronic inhaled $B D$ induces tumorigenesis in BCO_{1} mice and Sprague-Dawley rats. Comparing these three studies, however, one may notice a large difference in the BD dosage necessary to induce tumorigenesis; rats were exposed 1000 and 8000 ppm of BD , while mice were sensitive to doses as low as 6.25 ppm .

Noticing the species differences between mice and rats leads to two important questions: what are the causes of these species differences in BD
toxicity, and do these differences have relevance in human BD toxicity? The differences in toxicity between rats and mice is likely due to species differences in the metabolism of BD^{27}. Mouse and human response to BD toxicity is similar in the type of cancers observed. BD exposure induces lymphatic, hematopoietic, and lung cancers in mice ${ }^{22}$, which may indicate a better model for studying human cancers caused by BD. In addition, studies have shown that rat models tend to be insensitive to leukemia and lymphomas ${ }^{23}$. On the other hand, rat metabolism of $B D$ is more similar to humans, producing similar levels of metabolites at both low at high exposure levels, and concentrations of BD metabolites deposited in various tissues were more similar between rat and human models than in mouse and human models ${ }^{24}$. Therefore, it is unclear whether the rat or mouse model is superior, and both must be considered.

Metabolism of 1,3-butadiene

The mutagenicity of BD towards Salmonella typhimurium increases when co-incubated with rat liver microsomes or S-9 rat liver fractions, suggesting that $B D$ is more potent after metabolic activation ${ }^{25}$. The key step behind BD metabolism and toxicity is oxidation by cytochrome P450 to form reactive epoxide intermediates. Either vinyl carbon is first oxidized by cytochrome P450 2E1 or 2A6 to R - or S-3,4-epoxybutene (EB) ${ }^{26}$. EB is subsequently oxidized to form 1,2,3,4-diepoxybutane (DEB), or hydrolyzed by epoxide hydrolase to form 1,2-dihydroxy-3-butene. The metabolite 1,2-dihydroxy-3,4-epoxybutane (EB-diol) may be produced by the hydrolysis of DEB by epoxide hydrolase or the oxidation
of 1,2-dihydroxy-3-butene by cytochrome P450. These epoxides are highly reactive and can alkylate macromolecules including protein and DNA.

Scheme 1a Cytochrome \mathbf{P}_{450} Mediated Oxidation

${ }^{\text {a }}$ EH is Epoxide Hydrolase, and P_{450} is cytochrome P_{450}

The secondary metabolite DEB is observed to be the most mutagenic epoxide, followed by EB-diol and EB ${ }^{27}$. Mice uptake BD more readily and have a higher rate of both EB and DEB production than both rats and humans. In addition, rats have a higher rate of detoxification of epoxides by hydrolysis and glutathione conjugation than mice ${ }^{28}$. As a consequence, mice have higher tissue accumulation of reactive BD metabolites than rats: EB concentration can be 15 times higher in mice compared to rats, while estimates of relative DEB concentrations range from 3 times higher in mice to 100 times higher in mice ${ }^{29,30}$. These differences in epoxide production and clearance and tissue concentrations
of reactive epoxides are thought to be the primary factors in the relative increase in BD carcinogenicity in mice compared to rats.

Up to 20% of observed mutations in mice chronically exposed to BD occur at $A: T$ pairs ${ }^{22}$. 3,4-epoxybutene has been observed to induce $A: T$ to $G: C$ transitions and $A: T$ to $C: G$ transversions in the splenic T-cells from $\mathrm{BCC3F}_{1}$ mice. These A to G transitions have been found to be particularly common at codon 61 of the oncogene H -ras, occurring in 75% of Harderian gland tumors examined ${ }^{31}$. Taken together, these two studies may implicate EB induced DNA adducts as a culprit for A to G transitions caused by BD . As human ras mutations are associated with leukemia, EB induced mutations may represent crucial targets in the search for the mechanism for BD induced carcinogenicity.

1.2 3,4-epoxybutene alkylation of Adenine

EB can alkylate at epoxide carbon 3 (C-3) or carbon 4 (C-4), and has been shown to react with guanine and adenine in vitro ${ }^{32}$. The direction of ring opening may depend on the mechanism of substitution: $\mathrm{S}_{\mathrm{n}} 1$ like reactions are more likely to occur at the more substituted C-3 position, while $\mathrm{S}_{n} 2$ like reactions are more likely to occur at the less sterically hindered C-4 position ${ }^{32,33}$. All EB adducts can be sorted by product stereochemistry ($R-v s S_{-}$), epoxide regiochemistry (C-3 vs C-4), and nucleotide regiochemistry. The differences in biological processing caused by adduct stereochemistry and regiochemistry are largely unresolved.

Scheme 2a

A

${ }^{\text {a }}$ (A) N1 EB adenine adducts (B) N7 EB guanine adducts (C) N3 EB adenine adducts

When reacted with calf thymus DNA under physiologically relevant conditions, EB-dG adducts were more common than EB-dA adducts ${ }^{32}$. The most prevalent dG adducts were identified as the regioisomeric pair 7-(2-hydroxy-3-buten-1-yl) guanine and 7-(1-hydroxy-3-buten-2-yl), which result from alkylation of the carbon-4 (C-4) and carbon-3 (C-3) of EB respectively ${ }^{32}$. The most abundant dA adducts were identified as the regioisomeric pair of $\mathrm{N}-3$ substituted adducts 3-(2-hydroxy-3-buten-1-yl) adenine and 3-(1-hydroxy-3-buten-1-yl) ${ }^{32}$. The least common adducts were the regioisomeric pair 1-(2-hydroxy-3-buten-1yl) adenine and 1-(1-hydroxy-3-buten-1-yl) (Scheme 2) ${ }^{32}$.

The N-3 EB-dA adducts are unlikely to be responsible for A to G transitions because they are unstable and depurinate to form abasic sites. Some evidence shows that adenine is preferentially inserted across from abasic sites, a
hypothesis known as the "A rule", while studies done with human Y-family polymerases showed a preference for thymine and cytosine ${ }^{34,35}$. Therefore, the N-1 EB adenine adducts may be the most likely suspects in EB related A to G and A to C mutations. Under physiological conditions, EB reacts with adenine at the N-1 position to form two regioisomeric pairs of enantiomers, the C-3 adducts R - and S-1-(1-hydroxy-3-buten-2-yl) adenine and the C-4 adducts R - and S-1-(2-hydroxy-3-buten-2-yl) adenine, which are unstable and have half-lives of 7 and 9.5 hours respectively ${ }^{36}$ (Scheme 4). These adducts can either undergo base catalyzed Dimroth rearrangement to form N-6 adenine adducts or deamination to form $\mathrm{N}-1$ inosine adducts.

Scheme $3^{\text {a }}$

${ }^{\text {a }}$ (A) Regioselective alkylation of adenine by EB at either carbon 3 (C-3_ or carbon 4 (C4) to form initial N1 adenine products (B) Formation of N6 adenine adducts through Dimroth rearrangement or formation of N 1 inosine adducts through deamination

Dimroth rearrangement of adenine adducts is initialized by hydroxide attack at the N3 position, causing the heterocyclic ring to open at the $\mathrm{C}-2-\mathrm{N}-1$ bond ${ }^{29}$. The C-5-C-6 bond can rotated 180°, and upon ring closure, the $\mathrm{N}-1$ alkyl groups have migrated to the exocyclic N6 position. This mechanism has been confirmed by labeling the exocyclic nitrogen in adenosine with ${ }^{15} \mathrm{~N}$, allowing the monitoring of the rearrangement by NMR. Deamination of N1 adenine adducts can occur by acid catalyzed hydrolysis, where a water attacks the electrophilic C6 and displaces the exocyclic amine ${ }^{29}$.

Scheme $4^{\text {a }}$

[^0]
1.3 Properties of adenine adducts

EB alkylation of adenine results in two regioisomeric pairs of stable adducts- The N6 adenine and N1 inosine adducts. In order to determine the role of these EB adenine adducts in BD toxicity, the mutagenic spectra of both C-3 N 1 and N6 adducts were determined in the ras 61 sequence contex ${ }^{37,38}$. The Lloyd group investigated these adducts by ligating 11 mer ras sequences with modified oligonucleotide at the $6^{\text {th }}$ position into bacterial plasmid $\mathrm{M} 13 \mathrm{mp} 7 \mathrm{~L} 2^{37}$. The modified plasmid was transformed into repair deficient E. coli or COS-7 systems, and resulting plaques were probed for misincorporation across from the modified nucleotide.

Scheme 5 ${ }^{\text {a }}$

N1-[1(S)-hydroxy-3-buten-2-yl]-2'-deoxyinosine Adduct
N1-[1(R)-hydroxy-3-buten-2-yl]-2'-deoxyinosine Adduct

N1-[2(S)-hydroxy-3-buten-2-yl]-2'-deoxyinosine Adduct
N1-[2(R)-hydroxy-3-buten-2-yl]-2'-deoxyinosine Adduct
${ }^{\text {a }}$ (A) The ras61 oligodeoxynucleotide (B) The chemical structure of the N1-[1(S)-hydroxy-3-buten-2-yl]-2'-deoxyinosine adduct (C) The chemical structure of the N1-[1(R)-hydroxy-3-buten-2-yl]-2'-deoxyinosine adduct (D) The chemical structure of the N1-[2(S)-hydroxy-3-buten-2-yl]-2'-deoxyinosine adduct (E) The chemical structure of the N1-[2(R)-hydroxy-3-buten-2-yl]-2'-deoxyinosine adduct

Both R - and S - N -6 adducts been observed to be non-mutagenic in E. coli models ${ }^{39}$. In contrast, $\mathrm{C}-3$ regioisomers of $\mathrm{N}-1$ inosine adducts have been shown to be very mutagenic in both E coli and $\mathrm{COS}-7$ cell models ${ }^{37,38}$. Both stereoisomers of $\mathrm{C}-3 \mathrm{~N} 1$ inosine adducts cause primarily A to G mutations in the ras codon 61 sequence context ${ }^{37,38}$. In the bacterial model, Rodriguez et al discovered that these inosine adducts caused A to G mutations over 50% of the time, with the S - isomer being more mutatgenic at $67 \%{ }^{37}$. These results were
mirrored in COS-7 cells, which are a line derived from African green monkeys and presumably more accurate to human response. The S - isomer adduct caused A to G point mutations at 79%, while the R-isomer produced A to G mutations as 48% of products ${ }^{38}$. The next most common mutation observed in these experiments was A to C at 10% in S - isomers and 7% in R-isomers ${ }^{38}$.

In order to explain the high prevalence of the observed mutations, the Lloyd group postulated that the deamination of adenine into inosine would change the preferred base-pairing partners of the modified base to $\mathrm{I}-\mathrm{C}>\mathrm{I}-\mathrm{A}>\mathrm{I}-$ G^{38}. However, the presence of a bulky alkyl chain at the N1 position would block Watson-Crick base pairing between the modified base and a deoxycytidine. Therefore, it was proposed that N 1 adducted nucleotides would rotate into the syn conformation to allow Hoogsteen base pairing with an opposite dC^{38}. These observations led to a three step mechanistic hypothesis of A to G mutations caused by EB adducts of adenine: 1) the alkylation of adenine by EB at the N1 position, 2) the deamination of EB adenine adducts to form inosine adducts, and 3) rotation about the glycosyl bond to from a Hoogsteen base pair with a protonated dC (Scheme 7) ${ }^{38}$.

Scheme 6 ${ }^{\text {a }}$

${ }^{\text {a }}$ Proposed mutation mechanism of carbon 3 (C-3) N1-dl adducts leading to A to G mutations

To test this hypothesis, Scholdberg et al ${ }^{40}$ and Merritt et al ${ }^{41}$ determined the solution structures of the $\mathrm{C}-3$ inosine adducts in the ras codon 61 sequence context using NMR methods. Both isomers were found to closely resemble standard B-type DNA. In both isomers, the BD moiety was found to significantly disrupt DNA conformation at the lesion site, where the modified base X^{6} flipped into the syn conformation. This conformation pointed the BD moiety into the major groove of the duplex, which disrupted the 3 ' neighbor base pair $A^{7}: T^{16}$. The primary piece of evidence for this conformation was the relatively high intensity of the observed NOE between the base proton $\mathrm{X}^{6} \mathrm{H} 8$ and sugar proton $\mathrm{X}^{6} \mathrm{H} 1^{\prime}$, which
indicates that the purine has flipped about the glycosyl bond to bring those two protons closer in space. The presence of the BD moiety at the N1 position also severely destabilized the DNA duplex, causing the melting temperature to fall to $33^{\circ} \mathrm{C}$, a 24^{0} shift. The causes of this dramatic shift in melting temperature include a disruption base stacking around lesion and the loss of base pairing between X^{6} and T^{17}.

Figure 1. Mutagenic spectra and lesion structure of carbon 3 (C-3) N1 EB inosine adducts. (A) Mutation percentage of the site specifically modified S-N1 EB inosine adduct. (B) Mutation percentage of the site specifically modified R-N1EB inosine adduct. (C) Lesion site in the S-N1 EB insoine adduct. (D) Lesion site in the R-N1 EB insoine adduct

These structure observations supported the hypothesis proposed by Lloyd and coworkers ${ }^{38}$ that A to G mutations may be the result of a mispairing between an N1 inosine adduct and a protonated dCTP. The N1 inosine adducted nucleotide assumed the syn conformation even without the ability to form a
favorable hydrogen bond with a suitable base pairing partner. Translesion synthesis could provide a favorable environment for misincorporation to occur at these lesions.

Stereochemical differences between the R - and S - isomers resulted in small conformational differences between the isomers. Merritt ${ }^{41}$ observed that the primary difference between the isomers was the orientation of the hydroxyl group from the BD moiety. The R-hydroxyl was oriented toward the complementary base T^{17} across the major groove, while the S - hydroxyl was pointed away from the duplex and into solution. This difference creates a more solvent accessible lesion site in the S - adduct, which may contribute to differential biological processing by repair mechanisms. This speculation is corroborated by a number of studies that observed stereoselective processing by DNA binding proteins, including phosphodiesterases, Y-family polymerases, and RNA polymerases ${ }^{36,37 \text {, }}$ 38.

1.4 Statement of Problem

Research into BD related toxicity has shown that mutations at $A: T$ pairs cause around 20% of all point mutations observed in mouse models, including mutations at codon 61 in the ras oncogene ${ }^{22}$. These mutations are particularly interesting in the context of BD carcinogenicity because mutations in the ras oncogene are commonly found in hematopoietic and lymphoid cancers. EB has been shown to cause mutations at $A: T$ pairs in vitro, and can form a variety of adducts on adenine, including the N 1 inosine adducts ${ }^{36}$. There are four unique

N 1 inosine adducts as a result of stereo and regioselective alkylation by EB. Research done by the Lloyd group has shown that the C-3 regioisomers are extremely mutagenic and tended to cause A to G adducts ${ }^{37,38}$, with the S adducts causing mutations at a higher rate than the R-isomer. Subsequent work done by the Stone group ${ }^{40,41}$ supported the hypothesis that these $\mathrm{C}-3$ adducts caused the A to G mutations by forming Hoogsteen base pairs with incoming dCTP. These studies beg the question: do the C-4 and C-3 adducts behave in similar ways? To answer that question, this work used NMR methods to determine the solution structure of the $\mathrm{C}-4 R$ - and S - N 1 inosine isomers in the ras codon 61 sequence context (scheme 6).

Chapter 2

Structure determination of C4 N1-dl adducts using NMR and rMD

2.1 Introduction to NMR based structure determination

There are two primary techniques that can be used to obtain atomic resolution structural information from DNA duplexes: X-ray crystallography and nuclear magnetic resonance (NMR). NMR based techniques. X-ray crystallography has been used to study various biological macromolecules, can sometimes achieve resolutions as fine as $1.5 \AA$, and can be used to study complexes between different macromolecules. This technique requires the sample to be in the form of large and stable crystals organized into a uniform lattice ${ }^{42}$. Not all macromolecules will crystalize in such a way, and finding the correct conditions can be a challenging process. In addition, as a result of confining macromolecules to a rigid lattice, information about the conformational flexibility and dynamics about the sample can be lost using X-ray crystallography. On the other hand, NMR techniques can be used reliably with small soluble macromolecules (<40 kDA), and can give give information about dynamics in solution ${ }^{43,44}$. Due to these advantages, NMR was used to determine the structures of these modified DNA duplexes.

The most powerful 2-D NMR experiment for structure determination is the Nuclear Overhauser Effect spectroscopy (NOESY) ${ }^{45}$. This experiment measures the dipolar interactions of spins through space within $\sim 5 \AA$, and is the most widely
used technique in the determination of oligodeoxynucleotide structure. To obtain the best quality spectrum for analysis of non-exchangeable protons, samples were prepared in deuterated solvent to eliminate detection of solvent signals. Labile protons involved in base pairing can be detected in $\mathrm{H}_{2} \mathrm{O}$ solvent with 5% $\mathrm{D}_{2} \mathrm{O}^{45,46,47}$.

Identification of proton signals in NOESY spectra can be done using a method known as sequential assignment ${ }^{48}$. In this method, cross peaks between protons on spatially adjacent bases are identified and used to propagate assignment throughout the duplex. The first step is usually to identify aromatic protons H 6 and H 8 and the cross peaks to their own H 2 ' sugar protons. Going from the 5 ' to 3 ' end, these H2' protons are within $5 \AA ̊$ of the 3 ' neighbor's H 6 or H8. This process is continued until the whole strand is assigned. The entire 5 ' to 3' assignment of cross peaks between aromatic and sugar protons is known as the NOESY walk. These initial assignments can be used as references to assign the rest of the unidentified sugar, aromatic, and exchangeable protons within a DNA duplex. These assignments are useful tools in studying DNA damage, as perturbation of native DNA conformation may lead to breaks in the NOESY walk or other assignments that can be easily observed.

Assignment of the initial NOESY walk can be challenging, especially in duplexes where the "walking region" is disrupted by lesions, or when the target sequence has repeating nucleotides. In order to provide reference points to aid in the assignment of NOESY spectra, 2-D correlation spectroscopy (COSY) is used. In ${ }^{1} \mathrm{H}$ COSY spectra, through bond interactions less than 3 bonds are
observed ${ }^{49}$. In the context of DNA duplexes, these spectra reveal cytosine $\mathrm{H} 5-\mathrm{H} 6$ cross peaks and thymine methyl signals.

Figure 2. Depiction of the observable NOEs between adjacent nucleotides in DNA. Red arrows represent the initial NOESY walk between sugar H1' protons and aromatic H6/8 protons. Green arrows represent sequential connectivity between aromatic $\mathrm{H} 6 / 8$ protons and sugar H2'/2" protons.

Figure 3. The method of NMR based structural refinement for oligodeoxynucleotides

After assignment of NMR spectra, the data is processed by integrating cross peaks to find the intensity of the signal. These volumes can be converted to proton-proton distances using programs such as Matrix Analysis of Relaxation for Discerning Geometry of an Aqueous Solution (MARDIGRAS) ${ }^{50}$. These distances are used as restraints in a restrained molecular dynamics simulation (rMD) using simulated annealing method in order to determine the solution structure ${ }^{51}$. This method works by heating up the simulated DNA duplex so that it may overcome energy barriers to conformational movement, so that it may explore many different conformations. The system is then cooled to find the lowest energy structure. These low energy stable structures are verified using the
program complete relaxation matrix analysis (CORMA) ${ }^{52,53}$, which compares the calculated NOESY intensities of the refined structure to the experimentally obtained intensities(Figure 3).

2.2 Methods

Preparation and Characterization of Oligodeoxynucleotide.

The unmodified oligodeoxynucleotides 5 '-d(CGGACAAGAAG)-3' and 5'$d(C T T C T T G T C C G)-3$ ', purified by anion exchange HPLC, were purchased from the Midland Certified Reagent Co. (Midland, TX). The concentrations of the single stranded oligodeoxynucleotides were determined from their calculated extinction coefficients ${ }^{54}$. The R - and S - modified oligodeoxynucleotides were synthesized via the phosphoramidite method courtesy of Kowalczyk et al55 and were purified with reverse-phase HPLC using a C8(2) column in .1M ammonium formate with the following acetonitrile gradient: 1 to 4% over 5 min, 4 to 6.6% over $30 \mathrm{~min}, 6.6$ to 90% over 3 min . These purified oligonucleotides were annealed to their complements in $10 \mathrm{mM} \mathrm{Na} 2 \mathrm{HPO}_{4}, 0.1 \mathrm{M} \mathrm{NaCl}$, and $50 \square \mathrm{M}$ $\mathrm{Na}_{2} E D T A(\mathrm{pH} 7.0)$. The modified duplexes were annealed by heating to $80{ }^{\circ} \mathrm{C}$ for 15 min and cooled to room temperature. The duplexes were separated from excess single strand DNA using Biogel hydroxyapatite using a 10 to 200 mM $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ gradient (pH 7.0). The duplex was desalted by passing over a Sephadex G-25 column.

DNA Melting Studies

The thermal stabilities of unmodified and modified duplexes were determined by measuring UV absorption at 260 nm vs. temperatures using a Varian Cary 100 Biospectrophotometer (Varian Associates, Palo Alto, CA). The concentrations of the duplexes were 1.5 uM . Samples were prepared in 10 mM $\mathrm{NaH}_{2} \mathrm{PO}_{4}, 1 \mathrm{M} \mathrm{NaCl}$, and $50 \square \mathrm{M} \mathrm{Na} 2 \mathrm{EDTA}(\mathrm{pH} 7)$. The temperature was increased from 5 to $90^{\circ} \mathrm{C}$ at a rate of $0.7^{\circ} \mathrm{C} / \mathrm{min}$. The UV absorbance was monitored at 260 nm . The T_{m} values were determined by taking the first derivatives of the melting curves.

NMR Spectroscopy

The duplexes containing the modified R - and S - adducts were prepared at 1 mM concentration in $10 \mathrm{mM} \mathrm{NaH} 2 \mathrm{PO}_{4}, 0.1 \mathrm{M} \mathrm{NaCl}$, and $50 \square \mathrm{M} \mathrm{EDTA} \mathrm{(pH}$ 7.0). To observe non-exchangable protons, the duplexes were exchanged with $\mathrm{D}_{2} \mathrm{O}$ and dissolved in $99.996 \% \mathrm{D}_{2} \mathrm{O}$. To observe exchangeable protons, the duplexes were dissolved in 9:1 H2O:D2O. ${ }^{1} \mathrm{H}$ NMR spectra were recorded using 900, 800, and 600 MHz spectrometers equipped with cryogenic probes (Bruker Biospin Inc., Billerica, MA). Chemical shifts were referenced to the chemical shift of the water resonance at the corresponding temperature, with respect to 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS). Data were processed using the program TOPSPIN (Bruker Biospin Inc., Billerica, MA). NOESY spectra in $\mathrm{D}_{2} \mathrm{O}$ were collected at $15^{\circ} \mathrm{C}$ at 900 MHz at mixing times 150,200 , and 250 ms with a relaxation delay of $2.0 \mathrm{~s} .{ }^{27,} 28$ The R-isomer spectrum was recorded at a digital resolution of 2048 by 1024 , zero filled to 2048 by 2048. The S-isomer spectrum was recorded at a digital resolution of 2048 by 512, zero filled to 2048 by 1024 .

NOESY spectra in 9:1 $\mathrm{H}_{2} \mathrm{O}: \mathrm{D}_{2} \mathrm{O}$ were collected at $5{ }^{\circ} \mathrm{C}$ at 800 MHz with a relaxation delay of 1.2 s and 250 ms mixing time. Water suppression was achieved using the WATERGATE pulse sequence. A skewed sine-bell square apodization function with a skew factor of 3.0 was used in both dimensions. Spectra were assigned using the program SPARKY ${ }^{56}$.

NMR Distance Restraints

NOESY spectra peak intensities were determined by volume integrations of crosspeaks using the program SPARKY. ${ }^{56}$ The unmodified B-type DNA duplex ${ }^{51} 5^{\prime}-d\left(C^{1} G^{2} G^{3} A^{4} C^{5} X^{6} A^{7} G^{8} A^{9} A^{10} G^{11}\right)-3^{\prime}: 5^{\prime}-$ $\mathrm{d}\left(\mathrm{C}^{12} \mathrm{~T}^{13} \mathrm{~T}^{14} \mathrm{C}^{15} \mathrm{~T}^{16} \mathrm{~T}^{17} \mathrm{G}^{18} \mathrm{~T}^{19} \mathrm{C}^{20} \mathrm{C}^{21} \mathrm{G}^{22}\right)-3$, containing the H -ras codon $60-62$ sequence context was constructed using the program INSIGHT II (ThermoFisher Scientific, Inc., Waltham, MA). To construct the starting structures adenine A^{6} was replaced by either the R - or S - C 4 adducts. Partial charges for the R - or S C4 adducts were calculated with the B3LYP/6-31G* basis set in Gaussian 09^{57} and used to prepare the parameter files in the program XLEAP58. These starting structures were minimized through 1000 cycles of potential energy calculations using the AMBER suite ${ }^{59}$. The NOESY peak intensities, the starting structures, and the AMBER parameter files were used to generate a refined hybrid intensity matrix. The program MARDIGRAS was used to calculate interproton distance vectors with upper and lower bounds at 2, 3, and 4 ns isotropic correlation times. ${ }^{50,52,53}$ The JUMP 3 model was used for methyl protons. ${ }^{60}$ Restrained Molecular Dynamics Calculations

The interproton distance vectors calculated by MARDIGRAS were used to provide distance restraints used in restrained molecular dynamics (rMD) calculations. NOE crosspeaks were sorted into classes based on the confidence in the volume integrations. Class 1 peaks were defined as strong, well-resolved peaks with no overlap, and were assigned 10% error to the obtained volumes. Class 2 peaks were defined as strong peaks with minor overlap or broadening, and volumes obtained were assigned 20% errors. Class 3 peaks were defined as strong, overlapped cross-peaks, and obtained volumes were assigned 30% error. Class 4 and 5 cross-peaks were defined as highly overlapped and/or weak peaks closer to the level of noise, and the volumes obtained were assigned 40% and 50% error respectively. Empirical phosphodiester and deoxyribose pseudorotations restraints from B-DNA were also used ${ }^{61}$. For the modified base X^{6} and its complement T^{17}, square energy potential wells of $\pm 120^{\circ}$ were used. For all other nucleotides, square energy potential wells of $\pm 60^{\circ}$ were used. Pseudorotation restraints for the modified base X^{6} and terminal bases $\mathrm{C}^{1}, \mathrm{G}^{11}$, C^{12}, and G^{22} were not employed. Watson-Crick base pair restraints were used for all base pairs except for the base pair $\mathrm{X}^{6}: \mathrm{T}^{17}$. Base pair restraints on base pair $A^{7}: T^{16}$ were increased by $\pm 0.2 \AA$.

The AMBER ${ }^{59}$ suite was used to perform simulated annealing calculations ${ }^{62}$ using the parm 99 force field. ${ }^{63}$ Force constants of $32 \mathrm{kcal} \mathrm{mol}^{-1} \AA^{-2}$ were used for all restraints. The generalized Born model was used to simulate solvation, and the salt concentration was $1.0 \mathrm{M}^{64}$. The duplex was coupled to the bath temperature to heat the duplex during simulated annealing ${ }^{64}$. Initial
refinements were performed using a 20 ps protocol. For the first ps, the system was heated to 1000 K with a coupling of 0.5 ps , followed by 1 ps at 1000 K . Then, the system was cooled to 100 K over 16 ps with a coupling of 4 ps . Finally, the system was cooled to 0 K over the last 2 ps with a coupling of 1 ps . After initial refinements, a 100 ps protocol was used. The first 5 ps consisted of system heating from 0 K to 1000 K with a coupling of 0.5 ps , followed by 5 ps at 1000 K , followed by cooling to 100 K over 80 ps with a coupling of 4 ps . Finally, the system was allowed to cool to 0 K over the last 10 ps with a coupling of 1 ps . The output structure coordinates were saved after each iteration. To validate these structures, complete relaxation matrix analysis (CORMA) was used to compare experimentally obtained NOE intensities to intensities calculated from the output structure coordinates. ${ }^{52,53}$ The nine best structures were chosen and subjected to potential energy minimization to compile an average refined structure.

2.3 Results

Thermal Melting Studies

The thermal melting temperatures (T_{m} values) of the duplexes were determined by temperature-dependent UV spectroscopy at 260 nm . The adducts reduced the T_{m} values compared to the ras61 unmodified duplex by $22^{\circ} \mathrm{C}$ for the S - isomer and $20{ }^{\circ} \mathrm{C}$ for the R - isomer. In ${ }^{1} \mathrm{H}$ NMR collected at $10{ }^{\circ} \mathrm{C}$ increments from $5{ }^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$, resonances were severely broadened by $25^{\circ} \mathrm{C}$ (Figure 4). At $5^{\circ} \mathrm{C}$, the R - isomer spectrum had ten observed resonances, where the $\mathrm{A}^{7}: T^{16}$
and $A^{4}: T^{19}$ were completely overlapped, and the modified base pair was missing. When the temperature was increased to $15{ }^{\circ} \mathrm{C}$, the $\mathrm{A}^{7}: \mathrm{T}^{16}$ cross-peak was observable but still overlapped with the $A^{4}: T^{19}$ cross-peak. At $25{ }^{\circ} \mathrm{C}$, all resonances were broadened, with the $A^{7}: T^{16}$ cross-peak severely broadened and the terminal base pairs not observed. For the S - isomer, ten distinct resonances were observed at $5^{\circ} \mathrm{C}$, with the modified base pair missing. At $15^{\circ} \mathrm{C}$, the $\mathrm{A}^{7}: T^{16}$ cross-peak was broadened and completely separated from the $A^{4}: T^{19}$ cross peak. At $25{ }^{\circ} \mathrm{C}$, the terminal bases were not observable, and the $A^{7}: T^{16}$ crosspeak was severely broadened.

Table 1 Melting temperature changes as comparted to wild type ras61 DNA duplex in carbon 3 (C-3) and carbon 4 (C-4) adducted sequences

	Regioisomer	S- Isomer	R- Isomer
$\Delta \mathrm{T}_{\mathrm{m}}$	Carbon 4	-22.0	-19.5
(from WT)			
$\Delta \mathrm{T}_{\mathrm{m}}$	Carbon 3	-22.0	-22.0
(from WT			

Figure 4. 1-D ${ }^{1} \mathrm{H}$ NMR of S - isomer (left) and R - isomer (right) carbon 4 (C-4) duplexes at $278,288,298$ and 308 K at 800.13 MHz .

NMR spectroscopy. (a) Base Proton Assignment
Figure 5 shows a representative region of the NOESY spectra exhibiting cross-peaks between deoxyribose anomeric H 1 ' and base aromatic protons of the R - and S-isomers and the unmodified duplex. These assignments were completed with the help of COSY data (Figure 6). The R - isomer adduct induced observable changes in the sequential NOEs between the sugar H 1 ' and base aromatic protons. Especially of note is weak $\mathrm{C}^{5} \mathrm{H} 1^{\prime}-\mathrm{X}^{6} \mathrm{H} 8 \mathrm{NOE}$ compared to the unmodified spectrum, indicating that the conformation of neighbor bases were affected by the adduct. The relative intensity of the $\mathrm{X}^{6} \mathrm{H} 1^{\prime}-\mathrm{A}^{7} \mathrm{H} 8$ cross-peak was also comparatively weak, but overlap with the $\mathrm{A}^{7} \mathrm{H} 1^{\prime}-\mathrm{A}^{7} \mathrm{H} 8$ cross-peak obscures this difference in the shown spectra.

Figure 5. Expanded plots of NOESY spectra at a mixing time of 250 ms showing sequential NOE connectivites from the anomeric to aromatic protons. Nucleotides C^{1} to G^{11} of the modified strand of the (A) N1-[2(S)-hydroxy-3-buten-2-yl]-2'-deoxyinosine duplex and (B) N1-[2(R)-hydroxy-3-buten-2-yl]-2'-deoxyinosine duplex. Nucleotides C ${ }^{12}$ to G^{22} of the (C) N1-[2(S)-hydroxy-3-buten-2-yl]-2'-deoxyinosine duplex and (D) N1-[2(R)-hydroxy-3-buten-2-yl]-2'-deoxyinosine duplex.

The complementary strand of the modified duplex exhibited similar disruptions between the $\mathrm{T}^{16} \mathrm{H} 1{ }^{\prime}-\mathrm{T}^{17} \mathrm{H} 6$ and $\mathrm{T}^{17} \mathrm{H} 1^{\prime}-\mathrm{G}^{18} \mathrm{H} 6$ NOEs compared to the unmodified duplex.

The S - isomer adduct spectrum was similar to the R - isomer spectrum. In the walking region of the spectrum, the S - isomer adduct induced changes compared to the unmodified ras61 sequence. The biggest change occurred at C^{5} H1'- $X^{6} H 8$ and $X^{6} H 1^{\prime}-A^{7} H 8$, where the NOEs were weak compared to the unmodified sequence. Similarly, interactions of the complement of the modified
nucleotide with its neighbor bases were notably weak. The $T^{16} \mathrm{H} 1^{\prime}-\mathrm{T}^{17} \mathrm{H} 6$ and $\mathrm{T}^{17} \mathrm{H} 1^{\prime}-\mathrm{G}^{18} \mathrm{H} 6$ cross-peaks were weak compared with the unmodified ras61 sequence.

Figure 6. Expanded plots of the COSY spectra for the N1-[2(S)-hydroxy-3-buten-2-yl]-2'deoxyinosine duplex (left) and the N1-[2(R)-hydroxy-3-buten-2-yl]-2'-deoxyinosine duplex (right).

The remainder of the NOESY spectra were assigned based on these initial sugar H1' to base aromatic cross-peaks. The adenine H 2 protons were assigned based on relative intensities to the base aromatic protons and NOEs to thymine N 1 H protons on their respective complementary bases.

(b) Imino and Amino Proton Assignments

Figure 7 shows a representative plot of the downfield regions of the NOESY spectra containing the hydrogen bonding thymine N1H and guanine N3H resonances. The R - isomer spectrum exhibited sequential connectivity from $G^{2}: C^{21}-G^{3}: C^{20}-A^{4}: T^{19}-C^{5}: G^{18}$ and $A^{7}: T^{16}-G^{8}: C^{15}-A^{9}: T^{14}-A^{10}: T^{13}$. Imino protons for the modified base pair $\mathrm{X}^{6}: \mathrm{T}^{17}$ and terminal base pairs $\mathrm{C}^{1}: \mathrm{G}^{22}$ and $\mathrm{G}^{11}: \mathrm{C}^{12}$ were not observed. Imino proton resonance of the pair $\mathrm{A}^{7}: \mathrm{T}^{16}$ was heavily overlapped with that of the pair $\mathrm{A}^{4}: \mathrm{T}^{19}$. The identity of these peaks was confirmed
by the assignment of their respective adenine H 2 protons to the opposite base
N 1 H .

Figure 7. Explanded plot of a NOESY spectrum at a mixing time of 250 ms showing NOE connectivities for imino protons, and upfield interactions. (A) NOE connectivites for the The chemical structure of the N1-[1(S)-hydroxy-3-buten-2-yl]-2'-deoxyinosine adduct from $G^{2}: C^{21}$ to $A^{10}: T^{13}$. No resonance was observed for base pairs $X^{6}: T^{17}$ and $A^{7}: T^{16}$. (a) NOE between $T^{19} \mathrm{~N} 1 \mathrm{H}$ and $\mathrm{A}^{4} \mathrm{H} 2$. (b) NOE between $\mathrm{T}^{16} \mathrm{~N} 1 \mathrm{H}$ and $\mathrm{A}^{7} \mathrm{H} 2$. (B) NOE connectivities for the R - adduct from $G^{2}: C^{21}$ to $A^{10}: T^{13}$. (c) NOE between $T^{19} \mathrm{~N} 1 \mathrm{H}$ and A^{4} H2. (c) NOE between $T^{16} \mathrm{~N} 1 \mathrm{H}$ and $\mathrm{A}^{7} \mathrm{H} 2$.

For the S - isomer, sequential connectivity between imino protons was observed for base pairs $G^{2}: C^{21}-G^{3}: C^{20}-A^{4}: T^{19}-C^{5}: G^{18}$ and $G^{8}: C^{15}-A^{9}: T^{14}-$ $A^{10}: T^{13}$. Although the sequential connectivity for the $A^{7}: T^{16}$ base pair was not observed, the assignment of the $\mathrm{A}^{7} \mathrm{H} 2-\mathrm{T}^{16} \mathrm{~N} 1 \mathrm{H}$ cross-peak indicated that these bases were still within hydrogen bonding range. Imino protons belonging to terminal base pairs $C^{1}: G^{22}$ and $G^{11}: C^{12}$ and modified base pair $X^{6}: T^{17}$ were not observed.

Adduct Proton Assignments

Adduct protons were assigned using a combination of NOESY spectra and restrained molecular dynamics (rMD) calculations (Figure 8). Relative chemical shifts were first determined by knowledge of the chemical structure. The fully substituted H_{α} carbons were reasoned to be the most upfield, followed by the fully substituted H_{β}, which is geminal to the electronegative hydroxyl group. Next downfield was reasoned to be the $\mathrm{H}_{\bar{\prime}}$ protons, as they are the terminal protons in an alkene. Finally, the most downfield proton was reasoned to be the H_{y} proton, as it is an internal alkene proton viscinal to a hydroxyl group. In the R-isomer, The H_{α} and $\mathrm{H}_{\alpha^{\prime}}$ protons were assigned as the most upfield at 3.64 and 3.08 ppm respectively. H_{β} was assigned at 3.79 ppm , while H_{y} was assigned at 5.29 ppm . Finally, H_{δ} and $\mathrm{H}_{\delta^{\prime}}$ were assigned at 4.78 ppm and 4.80 ppm respectively. The initial reasoning for these assignments was consistent with the pattern of observed cross peaks in the spectra. Specifically, the base proton $\mathrm{X}^{6} \mathrm{H} 2$ was observed to have the most intense NOEs to the closest adduct protons H_{α} and H_{α}, a moderately intense NOE to H_{β}, a smaller NOE to H_{γ}, and the smallest NOE to the distant H_{δ} and H^{\prime}.

Figure 8. Assignment of adduct protons in NOESY spectra at 250 ms mixing time for (A) S - isomer and (B) R-isomer adducts. Experiments were at 900 MHz and $15^{\circ} \mathrm{C}$.

In the S - isomer, The H_{a} and $H_{\alpha^{\prime}}$ protons were assigned as the most upfield at 3.64 and 3.14 ppm , respectively. H_{β} was assigned at 3.85 ppm , while H_{y} was assigned at 5.40 ppm. Finally, H_{δ} and $H_{\delta}{ }^{\prime}$ were assigned at 4.84 ppm and 4.85 ppm respectively.

The H_{α} and $\mathrm{H}_{\alpha^{\prime}}$ protons were tentatively assigned by concurrent rMD calculations utilizing swapped assignments of the α and α^{\prime} protons. The assignments that led to more validated structures as according to structural corroboration with observed chemical shift changes and CORMA analysis (as described later in this work) were selected as the tentative assignments. Glycosidic Torsion Angle Assessment

Glycosidic torsion angle conformations of both R - and S - adducts were evaluated by comparing relative intensities of intrabase anomeric H 1 ' to aromatic base proton NOEs (Figure 9). In both isomers, the intrabase NOEs on the modified base X^{6} were of similar intensity to the rest of the duplex, indicating that the glycosyl torsion angles for all nucleotides remained in the anti conformational range.

Figure 9. Resonance intensities of intranucleotide H 1 ' and $\mathrm{H} 6 / 8{ }^{1} \mathrm{H}$ NOE cross peaks at 900 MHz and $15^{\circ} \mathrm{C}$. Grey bars represent the S - adducts, while black bars represent the R-adducts.

Chemical Shift Perturbations

Chemical shifts were compared between the R - and S-isomer adducts and the unmodified sequence by subtracting chemical shifts observed in the unmodified spectrum from those observed in the modified spectra(Figure 10). Changes were observed in both isomers, with the largest perturbations occurring the bases neighboring the BD modification and diminishing toward the 3' end of
each respective strand. The largest observed difference in the R - isomer spectrum was the $\mathrm{C}^{5} \mathrm{H} 1$ ' resonance, which showed a 0.48 ppm shift downfield. On the same nucleotide, the H 2 " proton showed a strong upfield shift at 0.36 ppm. The 3^{\prime} neighbor base X^{6} exhibited upfield shifts on the H^{\prime} ', H^{\prime} ', and $\mathrm{H}^{\prime \prime}$ protons, at $0.16,0.17$, and 0.21 ppm , respectively. Continuing in the 3 ' direction, base A^{7} showed both downfield and upfield shifts, with the H 1 ' and H 8 protons shifted upfield 0.24 and 0.10 ppm respectively, while the H 2 ' proton was shifted downfield 0.13 ppm. Base G^{8} exhibited moderate shifts downfield, with H^{\prime} proton shifted 0.01 ppm , and the H 8 proton shifted 0.15 ppm . The observed trend continued to base A^{9}, which showed a moderate downfield shift on its H 8 proton at 0.13 ppm , and smaller shifts on its H^{\prime} ' and H 2 protons. Base A^{10} displayed a 0.11 shift downfield on its H 8 proton, and terminal base G^{11} showed a 0.05 shift downfield on its H 8 proton. The complementary strand of the R - isomer also exhibited strong shift changes starting on nucleotide C^{15}, with upfield shifts to the sugar H2' and H2" protons of 0.25 and 0.11 ppm respectively. 3^{\prime} neighbor T^{16} showed a downfield shift to its H 1 ' proton 0.18 ppm , and a large upfield shift to its H 2 " proton of 0.25 ppm. Similarly, the H 1 ' proton of base T^{17} showed a small downfield shift to proton H 1 ' of 0.10 ppm , and large upfield shifts to protons H^{\prime} and H 2 " of 0.22 and 0.28 ppm, respectively. Continuing to A^{18}, the H 2 and H 8
protons showed downfield shifts of 0.12 and 0.18 ppm . G^{19} protons $\mathrm{H}^{\prime}, \mathrm{H}^{2}$, and H8 all exhibited small shifts ($<0.10 \mathrm{ppm}$) downfield. These small downfield shifts continued diminishing to the terminal base C^{22}.

Figure 10. Chemical shift differences of the protons of the carbon 4 (C-4) N1-dl EB

adducts relative to the unmodified ras61 oligodeoxynucleotide. (A) The modified strand of the S - adduct. (B) The modified strand of the R-adduct. (C) The complementary strand of the S - adduct. (D) The complementary strand of the R - adduct. Black bars represent H1' protons, dark grey bars represent H2' protons, light grey bars represent H 2 " protons, and white bars represent H 3 ' protons.

The S - isomer spectrum largely exhibited similar chemical shift perturbations. On the modified strand, the largest chemical shift change with respect to the unmodified ras61 duplex, the $\mathrm{C}^{5} \mathrm{H} 1$ ' proton showed a downfield shift of 0.35 ppm . On the same base, the H 2 " proton showed a large upfield shift of 0.28 ppm . The modified base X^{6} showed large upfield shifts of its sugar
protons, with H^{\prime} ', H 2 ', and H 2 " chemical shifts changing upfield by $0.23,0.31$, and 0.44 ppm. Upfield shifts were observed on 3^{\prime} neighbor A^{8} on protons H^{\prime} ' and H 8 of 0.21 and 0.24 ppm respectively. Base G^{8} showed a moderate shift downfield on its H 8 proton of 0.15 ppm . The trend of downfield shifts on the aromatic proton continued diminishing to the 3^{\prime} terminal base G^{11}. The complementary strand of the S - isomer similarly displayed chemical shift changes starting on C^{15}, with its H 2 'and H 2 " protons shifted upfield 0.21 and 0.10 ppm respectively. Nucleotide T^{16} exhibited both upfield and downfield shifts, as protons H 1 ' and H 2 ' shifted downfield 0.14 and 0.07 ppm , and proton $\mathrm{H}^{\prime \prime}$ shifted upfield 0.22 ppm . The complement of the modified base, T^{17}, showed a moderate shift downfield on its H 1 ' proton of 0.16 ppm , and a large upfield shift on the H 2 ' and H 2 " protons of 0.23 and 0.31 ppm respectively. 3^{\prime} neighbor G^{18} showed moderate downfield shifts, with protons H 2 ' and H 8 shifting 0.14 and 0.17 ppm. This pattern of downfield shifts continued on base T^{19}, with its H 6 proton shifting 0.10 ppm , continuing diminishing to the terminal base G^{22} (Figure 10).

Structural Refinement

Assignment of the C4 S- NOESY spectra led to the generation of 384 distance restraints for use in retrained molecular dynamics (rMD) calculations, of which 201 were intranucleotide restrains, and 183 were internucleotide. The C4 R-NOESY spectra led to the generation of 313 distance restraints, of which 182 were intranucelotide and 131 were internucelotide. 16 deoxyribose pseudorotations, 90 backbone torsion angles, and 42 hydrogen bonding
restraints derived from B-DNA were included as empirical restraints. Resulting structures from rMD calculations (Figure 11) were analyzed using CORMA (Figure 12$)^{52,53}$. The sixth root residuals ($\mathrm{R}_{1} \mathrm{x}$) were mostly below 15%, and generally below 10\%, showing good agreement between the calculated structure and experimental data. Residuals above 15% were the result of very low sample sizes (two or fewer cross-peaks).

Figure 11. Views of the calculated structures obtained from the rMD calculations for the (A: major groove, C: minor groove) N1-[2(S)-hydroxy-3-buten-2-yl]-2'-deoxyinosine duplex and the (B: major groove, D: minor groove) N1-[2(R)-hydroxy-3-buten-2-yl]-2'deoxyinosine duplex.

Figure 12. Distribution of $R_{1} x$ values calculated using CORMA. (A) The modified strand of the S-duplex. (B) The modified strand of the R-duplex. (C) The complementary strand of the S - duplex. (D) The complementary strand of the R-duplex. The dark bars represent intranucleotide values. The light bars represent internucleotide values.

Figure 13. Structure of the (A) N1-[2(S)-hydroxy-buten-2-yl] duplex and (B) N1-[2(R)-hydroxy-buten-2-yl] duplex in the region of the $C^{5}: G^{18}, X^{6}: T^{17}$, and $A^{7}: T^{16}$ base pairs. The butadiene moiety is highlighted in blue. The hydroxyl group is shown in red.

Structures of the Duplexes

The orientation of the BD moiety was very similar for the R - and S adducts. Watson-Crick base pairing was disrupted, as the BD moiety was oriented into the duplex, extending between T^{16} and T^{17} (Figure 13) and extending toward its 3 ' side. The alkene in the BD moiety in both R - and S isomers stacked with the T^{16} base, causing the H_{α} protons in both isomers to be oriented toward the 5^{\prime} base T^{16}. The stereoisomeric carbon C_{β} was oriented close to A^{7}, corroborated by strong NOEs observed between H_{β} and $A^{7} \mathrm{H} 2$. T^{17} was displaced toward the major groove on its 3 ' side, interrupting its base stacking with T^{16} and interfering with 5 ' base stacking with C^{15}. The modified base maintained the anti conformation about the glycosidic bond. Base stacking was disrupted for base pairs $\mathrm{C}^{5}: \mathrm{G}^{18}, \mathrm{X}^{6}: \mathrm{T}^{17}$, and $\mathrm{A}^{7}: \mathrm{T}^{16}$ (Figure 14). In the R - isomer, the minor groove widened from 6 to $14 \AA$, while the major widened from 12 to 16 Å. In the S - isomer, the minor groove widened from 7 to $11 \AA$, while the major widened from 9 to $15 \AA$.

Figure 14. Stacking interactions for the (A, C) N1-[2(S)-hydroxy-buten-2-yl] duplex (B,D) N1-[2(R)-hydroxy-buten-2-yl] duplex. (A, B) Stacking of the $A^{7}: T^{16}$ base pair above the $X^{6}: T^{17}$ base pair. (C, D) Stacking of the $X^{6}: T^{17}$ above the $C^{5} G^{18}$ base pair.

Chapter 3

The structure of the C-4 EB N1 inosine adducts and implications

3.1 Discussion of results

Inhalation of the primary metabolite of BD, EB, was observed to cause A to G transitions at the first $A: T$ pair in codon 61 of the H -ras oncogene in harderian gland tumors in mice. ${ }^{31}$ The C 4 adducts investigated in this work are of interest due to the mutagenicity of regioisomeric pair, the C 3 adducts. ${ }^{36,37}$ These $\mathrm{N} 1-\mathrm{dl}$ adducts were initially studied because they necessarily disrupt WatsonCrick base pairing due to the presence of the BD moiety at the N1 position, which could indicate mutagenic outcomes. The C3 adducts induce predominantly A to G transitions in both E. coli and COS-7 cells ${ }^{37,38}$. It was proposed that these adducts induce A to G transitions by causing a rotation about the glycosyl bond of the modified base, allowing Hoogsteen base pairing with an incoming protonated dCTP during translesion synthesis ${ }^{37,38}$. Structures of the C3 adducts determined using NMR reveal that the BD moiety induces a rotation about the glycosidic bond into the syn conformation, which exposes the Hoogsteen face of the modified nucleotide to its base pairing partner, supporting the Hoogsteen base pairing mechanistic proposal ${ }^{40,41}$. As both $C 3$ and $C 4$ regioisomers can be expected to form upon EB reaction with DNA, we have investigated the structures of the R and S isomers in the H-ras codon 61sequence context. Structures of the R-and S-N1-dl Adducts

Overall, both R - and S - diastereomers adopt similar conformations. In both diastereomers, the cross-peak intensity between $\mathrm{X}^{6} \mathrm{H} 8$ and H 1 ' is comparable to other nucleotides in the duplex (Figure 5). This indicates that the modified base H8 protons remained oriented toward the major groove in the anti conformation. NOEs from H_{β} to $\mathrm{A}^{7} \mathrm{H} 2, \mathrm{~T}^{16} \mathrm{H} 1$ ', and $\mathrm{C}^{5} \mathrm{H} 5$ confirm that the modified base remains in the anti conformation, causing the BD moiety to be oriented into the duplex (Figure 8). In the R - isomer, H_{δ} protons interact with $\mathrm{T}^{17} \mathrm{CH}_{3}$ and $T^{16} \mathrm{CH}_{3}$, as well as $\mathrm{T}^{16} \mathrm{H} 2$ ', confirming the orientation of the vinyl group. In the S - isomer, these peaks overlap with the solvent peak and are therefore not observable (Figure 8). For both diastereomers, NMR resonances of T^{17} imino protons are not observed, which suggests rapid exchange with solvent and provides evidence for the disruption of Watson-Crick base pairing at the modified base pairs (Figure 7). In addition, the T^{16} imino resonance in the S-N1-dl adduct is not observed, and in the $R-\mathrm{N} 1-\mathrm{dl}$ adduct, this resonance is broad and overlaps with the T^{19} imino resonance. However, NOEs from $\mathrm{A}^{7} \mathrm{H} 2$ to $\mathrm{T}^{16} \mathrm{~N} 3 \mathrm{H}$ are observed, suggesting that these two bases are remain Watson-Crick base paired. Both adducts are thermally destabilized relative to the unmodified duplex, which is consistent with the proposed orientation of the BD moiety into the duplex causing a local disruption in base stacking. In particular, T^{17} is forced toward its 3^{\prime} side and into the major groove by the BD moiety, disrupting its base stacking with T^{16}. By assuming this conformation, T^{17} is placed near $\mathrm{T}^{16} \mathrm{H} 2$, which is corroborated by the large upfield shift observed for this resonance (Figure 10). In addition, this 3^{\prime} displacement of T^{17} could explain the chemical shift perturbations extending to
the terminal 3^{\prime} base (Figure 10). The T^{17} residue is twisted toward the 3^{\prime} side, which shields the H^{\prime} ' and H 2 " protons. $\mathrm{C}^{5} \mathrm{H} 1$ ' is shifted especially far downfield, as the stacking of the modified base X^{6} base with C^{5} is disrupted and the minor groove is widened, deshielding the H 1 ' proton. The BD moiety is oriented toward its 3 ' side, explaining the chemical shifts of its 3 ' neighbors diminishing to the terminal base. Of particular interest is the fact that the BD vinyl group has a base stacking interaction with T^{16}. This provides a possible explanation for the difference in conformation between the C3 and C4 regioisomers, as the geometry of the C4 adducts allows for this favorable stacking interaction to occur.

3.2 Structure-Activity Relationships

(a) Implications of the Glycosidic Torsion Angle.

Unlike the C3 adducts, the C4 N1-dl adducts do not undergo a rotation about the glycosidic bond, instead remaining in the anti conformation. The finding that the glycosidic torsion angle for the N 1 adducted dl nucleotide for both the R and S - C 4 adducts remains in the anti conformation is significant. This establishes that the regiochemistry of $\mathrm{N} 1-\mathrm{dl}$ adducts affects adduct conformation in DNA. The C3 adducts cause predominantly A to G mutations in cellular models ${ }^{37,38}$. Structural data for these C 3 adducts indicated that the modified bases of both stereoisomers were flipped into the syn conformation, supporting the hypothesis that the glycosidic bond angle is the primary factor for mutagenic outcome in these N1-dl adducts by facilitating Hoogsteen base pairing with an incoming protonated dCTP ${ }^{40,41}$. By not initially adopting the syn conformation, the
conformation of the C4 adducts may be an indicator that the biological processing of these regioisomers will differ.

There are no obvious structural interactions observed in the determined C4 structures that would stabilize the anti conformation in the modified base instead of the syn conformation. The hydroxyl groups in both R - and S - isomers are oriented into the solvent accessible lesion site, away from potential hydrogen bonding interactions with the duplex. Although the vinyl group of the BD moiety in both R - and S - isomers stack well with the nucleotide T^{16}, melting temperature studies indicate that the thermal stability of the C4 adducts are very similar to the thermal stability of the C 3 adducts, suggesting that the C 4 adducts are no more stable than the C3 adducts due to this stacking interaction. With these two possibilities eliminated, we speculate that the primary contributor to conformational selection between syn and anti is the addition of an sp^{3} hybridized carbon in between the N1 of the modified base and the vinyl group of the $B D$ moiety, allowing the $B D$ moiety the conformational flexibility to find a favorable orientation. In the C4 structures, the vinyl group of the BD moiety is intercalated between T^{16} and T^{17} (Figure 8). The presence of an additional carbon between N1 and the vinyl group allows the BD moiety to be more flexible and extend "over" the opposite base T^{17} to insert the vinyl group in between two nucleotides. In contrast, the C3 adducts do not have this flexibility; if the C3 adducts assumed the anti conformation, the BD moiety would extend directly into the opposite base.
(b) Implications for Biological Processing.

Studies of BD toxicity in B6c3F1 lacl transgenic mice induced point mutations at dG and dA. ${ }^{65,66,67}$ Mutations at A:T base pairs comprised 20% of total mutations, a significant contribution to overall mutagenicity. The mutations observed at these base pairs were primarily A to T transitions ${ }^{37,38}$. However, A to G mutations were observed in H -ras codon 61^{31}. Interestingly, ras codon 61 is highly conserved in mammals, and $(61,2) A$ to G transitions are prevalent in several studies of human cancers ${ }^{68,69}$. The C 3 adducts induce A to G transitions in bacterial and mammalian cell models ${ }^{37,38}$, and their structures provide strong evidence toward a possible mutation mechanism. The results from this study indicate that the C4 adducts may be differently processed due to differential rotation of the glycosyl bond. The recent observation of hpol i using Hoogsteen type pairing to bypass a $1, N^{6}$-ethenodA adduct is consistent with the proposed mutation mechanism for the C3 adducts ${ }^{70,71}$. In addition, it has been observed that hpol k and hpol η preferentially insert dCTP across from dl lesions ${ }^{72}$. The structural data obtained in this study suggest that comparison of translesion synthesis polymerase processing between the C3 and C4 adducts may lead to further understanding of $B D$ induced mutations at $A: T$ pairs. Evidence suggests that DNA damage resulting from 3,4-epoxybutene is repaired through the NER pathway in mice, of which the DNA damage recognition protein XPC is vital ${ }^{73}$. As XPC complexes are known to recognize DNA damage by helical distortion and disruption of Watson-Crick base pairs, these N1-dl adducts are likely to be good binding partners, suggesting that further investigation into NER processing of these adducts may yield useful information ${ }^{74}$.

APPENDIX A

ATOMIC CHARGES

Calculated Charges for the S-N1-(2-Hydroxy-buten-2-yl) -2' Deoxyinosine DNA Adducts

Calculated Charges for the R-N1-(2-Hydroxy-buten-2-yl) -2' Deoxyinosine DNA Adducts

Atomic partial charges calculated using GAUSSIAN 09 and the B3LYP/6-31G* basis set
*Partial charges expected to be identical in both enantiomers. The source of the differences in partial charges is unknown. When R - and S-charges are swapped during rMD calculations, the resulting structures are unchanged from their presented forms.

APPENDIX B

CHEMICAL SHIFT ASSIGNMENTS

Chemical Shift Assignments for the N1-[2(S)-hydroxy-3-buten-2-yl]-2'-deoxyinosine duplex

	H1'	H2'	H2'	H3'	H5	H6	H8	Me
C^{1}	5.91	2.33	2.63	4.69	5.97	7.92		
T^{2}	6.22	2.30	2.68	4.94		7.70		1.71
T^{3}	6.18	2.29	2.62	4.95		7.52		1.70
C^{4}	6.02	2.12	2.49	4.84	5.71	7.64		
T^{5}	6.15	2.24	2.32	4.93		7.46		1.74
T^{6}	5.99	1.98	2.28	4.81		7.43		1.71
G^{7}	5.96	2.75	2.84	4.95			8.05	
T^{8}	6.11	2.24	2.56	4.91		7.39		1.42
C^{9}	5.98	2.16	2.44	4.84	5.70	7.60		
C^{10}	5.63	2.03	2.36	4.85	5.75	7.52		
G^{11}	6.20	2.40	2.67	4.71			7.99	
C^{12}	5.75	1.85	2.35	4.70	5.92	7.60		
G^{13}	5.44	2.70	2.74	4.99			7.93	
G^{14}	5.68	2.66	2.81	5.07			7.85	
A^{15}	6.21	2.62	2.86	5.05			8.17	
C^{16}	5.74	1.77	1.96	4.76	5.30	7.18		
X^{17}	5.55	2.35	2.39				7.90	
A^{18}	5.66		2.72	4.99			8.18	
G^{19}	5.32	2.56	2.63	4.97			7.74	
A^{20}	5.96	2.56	2.63	4.97			8.13	
A^{21}	6.03	2.59	2.89	5.04			8.06	
G^{22}	6.00	2.27	2.37	4.61			7.60	

Adduct Proton Assignments

Ha'	3.64
$H a^{\prime}$	3.14
$H \beta$	3.86
$H \gamma$	5.40
$H \delta^{\prime}$	4.84

Chemical Shift Assignments for the N1-[2(R)-hydroxy-3-buten-2-yl]-2'-deoxyinosine duplex

	H1'	H2'	H2'	H3'	H5	H6	H8	Me
C^{1}	5.93	2.32	2.64	4.69	5.99	7.94		
T^{2}	6.23	2.30	2.68	4.94		7.70		1.71
T^{3}	6.18	2.28	2.64	4.95		7.52		1.69
C^{4}	6.03	2.08	2.48	4.86	5.72	7.64		
T^{5}	6.19	2.20	2.29	4.96		7.45		1.77
T^{6}	5.93	2.00	2.31	4.79		7.36		1.68
G^{7}	5.90	2.73	2.80	4.94			8.05	
T^{8}	6.11	2.24	2.55	4.90		7.38		1.42
C^{9}	5.99	2.15	2.44	4.84		7.60		
C^{10}	5.63	2.03	2.36	4.85	5.75	7.53		
G^{11}	6.21	2.40	2.67	4.71			8.00	
C^{12}	5.76	1.86	2.36	4.70	5.92	7.61		
G^{13}	5.42	2.70	2.75	4.99			7.92	
G^{14}	5.70	2.71	2.82	5.07			7.86	
A^{15}	6.23	2.64	2.89	5.07				
C^{16}	5.86	1.83	1.88	4.84	5.36	7.22		
X^{17}	5.61	2.49	2.62	4.91			8.04	
A^{18}	5.63	2.70		4.99			8.18	
G^{19}	5.35	2.58	2.65	4.98			7.75	
A^{20}	5.96	2.67	2.89	5.07			8.15	
A^{21}	6.03	2.59	2.87	5.04			8.07	
G^{22}	6.01	2.26	2.37	4.61			7.61	

Adduct Proton Assignments

Ha'	3.64
$H \alpha^{\prime}$	3.08
$H \beta$	3.79
$H \gamma$	5.29
$H \delta^{\prime}$	4.78
$H \delta^{\prime \prime}$	4.80

APPENDIX C

RESTRAINT FILES

Combined distance and torsion restraints used in the rMD calculations for the R adduct

```
#
# 1 DC5 H6 1 DC5 H1' 3.360 3.840
    &rst
    ixpk= 0, nxpk= 0, iat= 13, 10, r1= 2.86, r2= 3.36, r3=3.84, r4= 4.34,
        rk2=32.0, rk3=32.0, ir6=1, ialtd=1,
    &end
#
# 1 DC5 H3' 1 DC5 H1' 3.010 4.760
    &rst
    ixpk= 0, nxpk= 0, iat= 24, 10,r1=2.51, r2= 3.01,r3=4.76, r4= 5.26, &end
## 1 DC5 H3' 1 DC5 H5 4.520 7.140 (#4.520 6.540 22 37)
    &rst
    ixpk= 6, nxpk= 0, iat= 24, 15,r1= 4.02, r2= 4.52, r3= 7.14, r4= 7.64, &end
#
# 1 DC5 H2'1 1 DC5 H1' 2.530 3.860
    &rst
    ixpk=6, nxpk= 0, iat= 26, 10, r1= 2.03, r2= 2.53,r3=3.86, r4=4.36, &end
#
# 1 DC5 H2'1 1 DC5 H3' 1.850 2.790 (#1.850 2.490 26)
    &rst
    ixpk=2, nxpk= 0, iat= 26, 24,r1= 1.35, r2= 1.85,r3=2.79, r4=3.29, &end
#
# 1 DC5 H2'2 1 DC5 H1' 1.990 2.740 (#1.990 2.440 19)
    &rst
    ixpk=2, nxpk= 0, iat= 27, 10, r1= 1.49, r2= 1.99, r3=2.74, r4=3.24, &end
#
# 1 DC5 H2'2 1 DC5 H6 2.920 5.070
    &rst
    ixpk=2, nxpk= 0, iat=27, 13,r1=2.42, r2= 2.92,r3=5.07, r4=5.57, &end
#
# 1 DC5 H2'2 1 DC5 H3' 2.590 4.200 (#2.890 4.200 4)
    &rst
    ixpk=4, nxpk= 0, iat= 27, 24,r1=2.09, r2= 2.59, r3=4.20, r4=4.70, &end
#
# 2 DT H6 1 DC5 H1' 3.010 5.640
    &rst
    ixpk=4, nxpk= 0, iat=43,10,r1=2.51,r2=3.01,r3=5.64,r4=6.14, &end
#
# 2 DT H6 1 DC5 H6 4.500 6.480
    &rst
    ixpk=4, nxpk= 0, iat= 43, 13,r1=4.00, r2=4.50,r3=6.48, r4=6.98, &end
#
```

```
# 2 DT H6 1 DC5 H3' 2.940 4.810 (#2.940 4.2107 43)
    &rst
    ixpk= 4, nxpk= 0, iat= 43, 24,r1= 2.44, r2= 2.94, r3=4.81, r4= 5.31, &end
#
# 2 DT H6 1 DC5 H2'2 2.170 3.350 (#2.170 3.050 40)
    &rst
    ixpk=3, nxpk= 0, iat= 43, 27,r1= 1.67, r2= 2.17, r3=3.35, r4=3.85, &end
#
# 2 DT H6 2 DT H1' 2.540 4.510
    &rst
    ixpk=3, nxpk= 0, iat= 43,40,r1= 2.04, r2= 2.54,r3=4.51, r4= 5.01, &end
#
# 2 DT Q5 1 DC5 H1' 3.310 4.830
&rst
    ixpk=3, nxpk= 0, iat= -1, 10, r1= 2.81, r2= 3.31, r3= 5.80, r4= 6.30,
igr1= 46, 47, 48,
&end
#
# 2 DT Q5 1 DC5 H6 2.740 3.200
&rst
    ixpk=3, nxpk= 0, iat= -1, 13, r1=2.24, r2= 2.74, r3=3.84, r4= 4.34,
igr1= 46,47, 48,
&end
#
# 2 DT Q5 1 DC5 H5 2.730 4.180 (#2.730 3.580 10 13)
&rst
    ixpk=3, nxpk= 0, iat= -1, 15,r1=2.23, r2= 2.73,r3=5.02, r4=5.52,
igr1= 46, 47, 48,
&end
#
# 2 DT Q5 1 DC5 H3' 2.980 4.200 (#2.980 3.600 23 25)
&rst
ixpk=3, nxpk= 0, iat= -1, 24,r1=2.48, r2= 2.98, r3= 5.04, r4= 5.54,
igr1= 46, 47, 48,
&end
#
# 2 DT Q5 1 DC5 H2'2 2.650 4.040
&rst
    ixpk=3, nxpk= 0, iat= -1, 27, r1= 2.15, r2= 2.65, r3= 4.85, r4= 5.35,
igr1= 46, 47, 48,
&end
#
# 2 DT Q5 2 DT H6 2.180 2.910
&rst
    ixpk=3, nxpk= 0, iat= -1, 43, r1= 1.68, r2= 2.18, r3=3.49, r4=3.99,
igr1= 46, 47, 48,
&end
#
# 2 DT H3' 2 DT H1' 3.060 4.420
(#2 DT H3' 1 DC5 H1' 3.660 6.730 # 3.660 5.830 1 1415 38(removed))
&rst
```

ixpk $=3$, nxpk $=0$, iat $=56,40, r 1=2.56, r 2=3.06, r 3=4.42, r 4=4.92$, \&end \# \# 2 DT H3' 2 DT H6 2.8804 .870 \&rst
ixpk=3, nxpk= 0 , iat= 56, 43, r1 = 2.38, r2=2.88, r3=4.87, r4=5.37, \&end
\# 2 DT H2'1 2 DT H1' 2.0704 .370
\&rst
ixpk $=3$, nxpk= 0 , iat= $58,40, r 1=1.57, r 2=2.07, r 3=4.37, r 4=4.87$, \&end \#
\# 2 DT H2'1 2 DT H6 1.7602 .760 (\#1.760 2.16024 39)
\&rst
ixpk= 2, nxpk= 0 , iat $=58,43, r 1=1.26, r 2=1.76, r 3=2.76, r 4=3.26$, \&end \#
\# 2 DT H2'2 2 DT H1' 1.670 2.550 (\#1.670 2.250 2)
\&rst
ixpk= 2, nxpk= 0 , iat= 59, 40, r1 = 1.17, r2= 1.67, r3=2.55, r4=3.05, \&end \#
\# 2 DT H2'2 2 DT H6 2.0004 .660
\&rst
ixpk=2, nxpk= 0 , iat $=59,43, r 1=1.50, r 2=2.00, r 3=4.66, r 4=5.16$, \&end
\#
\# 2 DT H2'2 2 DT H3' 2.4003 .260
\&rst
ixpk=2, nxpk= 0 , iat= 59, 56, r1 $=1.90, r 2=2.40, r 3=3.26, r 4=3.76$, \&end \#
\# 3 DT H6 2 DT H1' 2.4605 .030 (\#2.460 4.730 18)
\&rst
ixpk $=4$, nxpk $=0$, iat $=75,40, r 1=1.96, r 2=2.46, r 3=5.03, r 4=5.53$, \&end \#
\# 3 DT H6 2 DT H6 2.8406 .270 (\#2.840 5.970 28)
\&rst
ixpk $=5$, nxpk $=0$, iat $=75,43, r 1=2.34, r 2=2.84, r 3=6.27, r 4=6.77$, \&end \#
\# 3 DT H6 2 DT H2'2 2.1603 .390 (\#2.160 3.090 35)
\&rst
ixpk $=3$, nxpk $=0$, iat $=75,59, r 1=1.66, r 2=2.16, r 3=3.39, r 4=3.89$, \&end \#
\# 3 DT H6 3 DT H1' 2.8704 .560
\&rst
ixpk=3, nxpk=0, iat= $75,72, r 1=2.37, r 2=2.87, r 3=4.56, r 4=5.06$, \&end \#
\# 3 DT Q5 2 DT H1' 2.9405 .550
\&rst
ixpk $=3, \mathrm{nxpk}=0$, iat $=-1,40, \mathrm{r} 1=2.44, \mathrm{r} 2=2.94, \mathrm{r} 3=6.67, \mathrm{r} 4=7.17$, igr1 $=78,79,80$,
\&end
\#
\# 3 DT Q5 2 DT H3' 3.3205 .130 (\#3.320 4.830 34)
\&rst
ixpk $=4$, nxpk $=0$, iat $=-1,56, r 1=2.82, r 2=3.32, r 3=6.16, r 4=6.66$,

```
igr1= 78, 79, 80,
&end
#
# 3 DT Q5 2 DT H2'2 2.700 4.490
&rst
    ixpk=4, nxpk= 0, iat= -1, 59,r1=2.20,r2= 2.70,r3=5.39,r4=5.89,
igr1= 78, 79, 80,
&end
#
# 3 DT Q5 3 DT H1' 4.160 6.220
    &rst
    ixpk=4, nxpk= 0, iat= -1, 72, r1= 3.66, r2= 4.16, r3= 7.47, r4= 7.97,
    igr1= 78, 79, 80,
    &end
#
# 3 DT Q5 3 DT H6 2.460 3.170
&rst
    ixpk=4, nxpk= 0, iat= -1, 75,r1= 1.96,r2= 2.46,r3=3.81, r4= 4.31,
igr1= 78, 79, 80,
&end
#
# 3 DT H3' 3 DT H1' 3.190 5.600
&rst
    ixpk=4, nxpk= 0, iat= 88, 72,r1=2.69, r2=3.19, r3= 5.60, r4=6.10, &end
#
# 3 DT H3' 3 DT H6 2.700 4.660
&rst
    ixpk=4, nxpk= 0, iat= 88, 75,r1=2.20, r2= 2.70,r3=4.66, r4=5.16, &end
#
# 3 DT H2'1 3 DT H1' 2.510 4.010
&rst
    ixpk=4, nxpk= 0, iat= 90, 72,r1=2.01, r2= 2.51,r3=4.01, r4=4.51, &end
#
# 3 DT H2'1 3 DT H6 1.840 2.510
&rst
    ixpk=4, nxpk= 0, iat= 90, 75,r1= 1.34, r2= 1.84,r3=2.51, r4=3.01, &end
#
# 3 DT H2'2 3 DT H1' 1.820 2.780 (#1.820 2.780 27 36)
    &rst
    ixpk=2, nxpk= 0, iat= 91, 72,r1= 1.32, r2= 1.82, r3=2.78, r4=3.28, &end
#
# 3 DT H2'2 3 DT H6 2.220 3.800 (#2.220 3.500 32)
    &rst
    ixpk=3, nxpk= 0, iat= 91, 75,r1= 1.72, r2= 2.22, r3=3.80, r4=4.30, &end
#
# 3 DT H2'2 3 DT H3' 1.650 3.020 (#1.650 2.420 5 16)
&rst
    ixpk=2, nxpk= 0, iat= 91, 88,r1= 1.15, r2= 1.65, r3=3.02, r4=3.52, &end
## 4 DC H1' 3 DT H1' 3.800 4.870 (#3.800 4.570 1 11)
&rst
```

ixpk $=4$, nxpk $=0$, iat $=104,72, r 1=3.30, r 2=3.80, r 3=4.87, r 4=5.37$, \&end \#
\# 4 DC H6 3 DT H1' 2.7703 .410 (\#3.070 3.410 12) \&rst
ixpk=3, nxpk= 0, iat= 107, 72, r1 = 2.27, r2= 2.77, r3=3.41, r4=3.91, \&end
\# 4 DC H6 3 DT H6 3.300 5.970
\&rst
ixpk $=3, n x p k=0$, iat $=107,75, r 1=2.80, r 2=3.30, r 3=5.97, r 4=6.47$, \&end \#
\# 4 DC H6 3 DT Q5 3.4606 .830
\&rst
ixpk $=3$, nxpk= 0 , iat= 107, $-1, r 1=2.96, r 2=3.46, r 3=8.20, r 4=8.70$,
igr2= 78, 79, 80,
\&end
\#
\# 4 DC H6 3 DT H3' 3.3706 .150
\&rst
ixpk $=3, n x p k=0$, iat $=107,88, r 1=2.87, r 2=3.37, r 3=6.15, r 4=6.65$, \&end \#
\# 4 DC H6 3 DT H2'1 2.6603 .800 \&rst
ixpk $=3, n x p k=0$, iat $=107,90, r 1=2.16, r 2=2.66, r 3=3.80, r 4=4.30$, \&end \#
\# 4 DC H6 3 DT H2'2 2.1702 .900 (\#2.470 2.900 14)
\&rst
ixpk $=2$, nxpk $=0$, iat $=107,91, r 1=1.67, r 2=2.17, r 3=2.90, r 4=3.40$, \&end \#
\# 4 DC H6 4 DC H1' 3.2204 .100
\&rst
ixpk $=2, n \times p k=0$, iat $=107,104, r 1=2.72, r 2=3.22, r 3=4.10, r 4=4.60$, \&end \#
\# 4 DC H5 3 DT H1' 3.5004 .990 (\#3.500 4.090226 30)
\&rst
ixpk $=4$, nxpk= 0 , iat $=109,72, r 1=3.00, r 2=3.50, r 3=4.99, r 4=5.49$, \&end \#
\# 4 DC H5 3 DT Q5 2.6503 .800 (\#2.650 3.500 10)
\&rst
ixpk $=3$, nxpk $=0$, iat= 109, $-1, r 1=2.15, r 2=2.65, r 3=4.56, r 4=5.06$,
igr2= 78, 79, 80,
\&end
\#
\# 4 DC H5 3 DT H3' 3.8306 .260
\&rst
ixpk $=3$, nxpk= 0 , iat $=109,88, r 1=3.33, r 2=3.83, r 3=6.26, r 4=6.76$, \&end \#
\# 4 DC H5 3 DT H2'1 2.9704 .380 (\#2.970 4.08039 41)
\&rst
ixpk $=4$, nxpk $=0$, iat $=109,90, r 1=2.47, r 2=2.97, r 3=4.38, r 4=4.88$, \&end \#
\# 4 DC H5 3 DT H2'2 2.6304 .700 (\#2.930 4.700 17)
\&rst
ixpk $=4$, nxpk= 0 , iat $=109,91, r 1=2.13, r 2=2.63, r 3=4.70, r 4=5.20$, \&end \#
\# 4 DC H5 4 DC H1' 3.6405 .610 (\#3.640 5.0108 29) \&rst
ixpk $=5$, nxpk $=0$, iat $=109,104, r 1=3.14, r 2=3.64, r 3=5.61, r 4=6.11$, \&end \#
\# 4 DC H3' 3 DT H1' 4.2605 .840
\&rst
ixpk $=5, n x p k=0$, iat $=118,72, r 1=3.76, r 2=4.26, r 3=5.84, r 4=6.34$, \&end \#
\# 4 DC H3' 4 DC H1' 3.0004 .940
\&rst
ixpk $=5$, nxpk= 0 , iat $=118,104, r 1=2.50, r 2=3.00, r 3=4.94, r 4=5.44$, \&end \#
\# 4 DC H3' 4 DC H6 3.1104 .350
\&rst
ixpk $=5, n x p k=0$, iat $=118,107, r 1=2.61, r 2=3.11, r 3=4.35, r 4=4.85$, \&end \#
\# 4 DC H3' 4 DC H5 $3.470 \quad 6.570$ (\#3.470 5.97016 32) \&rst
ixpk $=5$, nxpk $=0$, iat= $118,109, r 1=2.97, r 2=3.47, r 3=6.57, r 4=7.07$, \&end \#
\# 4 DC H2'1 3 DT H1' 3.0205 .830 \&rst
ixpk $=5$, nxpk= 0 , iat $=120,72, r 1=2.52, r 2=3.02, r 3=5.83, r 4=6.33$, \&end \#
\# 4 DC H2'1 3 DT H2'2 2.3504 .290 (\#2.350 4.2909 23)
\&rst
ixpk $=4$, nxpk $=0$, iat $=120,91, r 1=1.85, r 2=2.35, r 3=4.29, r 4=4.79$, \&end \#
\# 4 DC H2'1 4 DC H1' 2.4004 .140 \&rst
$\operatorname{ixpk}=4, \mathrm{nxpk}=0, \mathrm{iat}=120,104, r 1=1.90, r 2=2.40, r 3=4.14, r 4=4.64$, \&end \#
\# 4 DC H2'1 4 DC H6 2.0802 .850
\&rst
ixpk $=4$, nxpk $=0$, iat $=120,107, r 1=1.58, r 2=2.08, r 3=2.85, r 4=3.35$, \&end \#
\# 4 DC H2'1 4 DC H5 2.6504 .450 (\#2.650 3.55047 28)
\&rst
ixpk $=3$, nxpk= 0 , iat= 120, 109, r1= 2.15, r2= 2.65, r3=4.45, r4=4.95, \&end
\# 4 DC H2'1 4 DC H3' 1.7802 .510
\&rst
ixpk $=3, n \times p k=0$, iat $=120,118, r 1=1.28, r 2=1.78, r 3=2.51, r 4=3.01$, \&end \#
\# 4 DC H2'2 3 DT H1' 3.7305 .970
\&rst
ixpk $=3, n x p k=0$, iat $=121,72, r 1=3.23, r 2=3.73, r 3=5.97, r 4=6.47$, \&end \#


```
#
# 5 DT Q5 4 DC H1' 3.450 5.280 (#3.450 4.380 5 15 18)
&rst
ixpk=4, nxpk= 0, iat= -1, 104, r1= 2.95, r2= 3.45, r3=6.34, r4= 6.84,
igr1= 140, 141, 142,
&end
#
# 5 DT Q5 4 DC H6 2.770 3.780
&rst
ixpk=4, nxpk= 0, iat= -1, 107, r1= 2.27, r2= 2.77, r3= 4.54, r4= 5.04,
igr1= 140, 141, 142,
&end
#
# 5 DT Q5 4 DC H5 2.820 3.870
&rst
ixpk= 4, nxpk= 0, iat= -1, 109, r1= 2.32, r2= 2.82, r3= 4.65, r4= 5.15,
igr1= 140, 141, 142,
&end
#
# 5 DT Q5 4 DC H3' 3.070 4.270 (#3.070 3.970 24)
&rst
ixpk=3, nxpk= 0, iat= -1, 118, r1= 2.57, r2= 3.07, r3= 5.13, r4= 5.63,
igr1= 140, 141, 142,
&end
#
# 5 DT Q5 4 DC H2'1 2.980 4.170
&rst
ixpk=3, nxpk= 0, iat= -1, 120,r1=2.48, r2= 2.98,r3= 5.01, r4= 5.51,
igr1= 140, 141, 142,
&end
#
# 5 DT Q5 4 DC H2'2 3.120 3.850
&rst
ixpk=3, nxpk= 0, iat= -1, 121, r1= 2.62, r2= 3.12, r3= 4.62, r4= 5.12,
igr1= 140, 141, 142,
&end
#
# 5 DT Q5 5 DT H6 2.510 3.390
(#5 DT Q5 5 DT H1' 2.820 3.530)
&rst
ixpk=3, nxpk= 0, iat= -1, 137, r1= 2.01, r2= 2.51, r3= 4.07, r4= 4.57,
igr1= 140, 141, 142,
&end
#
# 5 DT H3' 4 DC H2'1 3.940 5.910
&rst
ixpk=3, nxpk= 0, iat= 150, 120, r1=3.44, r2= 3.94, r3= 5.91, r4= 6.41, &end
#
# 5 DT H3' 4 DC H2'2 3.530 4.690 (#3.530 4.090 31 44)
&rst
ixpk= 4, nxpk= 0, iat= 150, 121, r1=3.03, r2= 3.53, r3= 4.69, r4= 5.19, &end
```

```
#
# 5 DT H3' 5 DT H1' 3.240 4.450
    &rst
    ixpk=4, nxpk= 0, iat= 150, 134,r1=2.74, r2= 3.24, r3=4.45,r4=4.95, &end
#
# 5 DT H3' 5 DT H6 2.610 3.800 (#2.610 3.200 23 40)
    &rst
    ixpk=3, nxpk= 0, iat= 150, 137,r1=2.11, r2= 2.61,r3=3.80, r4=4.30, &end
#
# 5 DT H2'1 5 DT H1' 2.490 4.540
    &rst
    ixpk=3, nxpk= 0, iat= 152, 134, r1= 1.99, r2= 2.49, r3= 4.54, r4= 5.04, &end
#
# 5 DT H2'1 5 DT H6 2.130 2.860 (#1.830 2.860 46)
&rst
    ixpk=2, nxpk= 0, iat= 152, 137,r1= 1.63,r2= 2.13,r3=2.86, r4=3.36, &end
#
# 5 DT H2'1 5 DT H3' 1.830 3.160 (#2.430 3.160 6 22)
&rst
    ixpk=3, nxpk= 0, iat= 152, 150, r1= 1.33, r2= 1.83, r3=3.16, r4=3.66, &end
#
# 5 DT H2'2 5 DT H1' 2.260 2.610 (#1.960 2.610 48)
&rst
    ixpk=2, nxpk= 0, iat= 153,134,r1= 1.76,r2= 2.26,r3=2.61,r4=3.11, &end
#
# 5 DT H2'2 5 DT H6 2.240 4.140 (#2.240 3.840 39)
&rst
    ixpk=3, nxpk= 0, iat= 153,137,r1=1.74,r2=2.24,r3=4.14,r4=4.64, &end
#
# 6 DT H6 5 DT H1' 4.060 5.600 (#4.960 5.600 18 9)
&rst
    ixpk= 5, nxpk= 0, iat= 169, 134,r1=3.56, r2= 4.06, r3= 5.60, r4= 6.10, &end
#
# 6 DT H6 5 DT H3' 3.860 6.230
&rst
    ixpk=5, nxpk= 0, iat= 169, 150, r1=3.36, r2=3.86, r3=6.23, r4=6.73, &end
#
# 6 DT H6 5 DT H2'1 2.090 4.020 (#2.090 3.720 29)
    &rst
    ixpk=3, nxpk= 0, iat=169,152,r1=1.59,r2=2.09,r3=4.02,r4=4.52, &end
#
# 6 DT H6 5 DT H2'2 1.860 2.860 (#1.860 2.560 28)
    &rst
    ixpk=2, nxpk= 0, iat= 169, 153, r1= 1.36, r2= 1.86, r3= 2.86, r4=3.36, &end
#
# 6 DT H6 6 DT H1' 2.780 4.200
    &rst
    ixpk=2, nxpk= 0, iat= 169,166,r1=2.28,r2=2.78,r3=4.20,r4=4.70, &end
#
# 6 DT Q5 5 DT H1' 2.860 4.550 (#2.860 4.250 37)
&rst
```

$$
\text { ixpk }=4 \text {, nxpk }=0 \text {, iat }=-1,134, r 1=2.36, r 2=2.86, r 3=5.46, r 4=5.96 \text {, }
$$ igr1= 172, 173, 174,

\&end
\#
\# 6 DT Q5 5 DT H3' 3.0404 .480 (\#3.040 4.180 16)
\&rst
ixpk $=4$, nxpk $=0$, iat $=-1,150, r 1=2.54, r 2=3.04, r 3=5.38, r 4=5.88$,
igr1= 172, 173, 174,
\&end
\#
\# 6 DT Q5 6 DT H6 2.2303 .100 (\#2.530 3.100 35)
\&rst
ixpk $=3$, nxpk= 0 , iat $=-1,169, r 1=1.73, r 2=2.23, r 3=3.72, r 4=4.22$, igr1= 172, 173, 174,
\&end
\#
\# 6 DT H3' 6 DT H1' 2.3303 .880 (\#2.330 3.28036) \&rst
ixpk $=3$, nxpk= 0 , iat= $182,166, r 1=1.83, r 2=2.33, r 3=3.88, r 4=4.38$, \&end
\#
\# 6 DT H3' 6 DT H6 2.9704 .600 (\#2.970 4.0004 20)
\&rst
ixpk $=4$, nxpk= 0 , iat= 182, 169, r1 $=2.47, r 2=2.97, r 3=4.60, r 4=5.10$, \&end
\#
\# 6 DT H3' 6 DT Q5 4.4706 .820
\&rst
ixpk $=4$, nxpk $=0$, iat $=182,-1, r 1=3.97, r 2=4.47, r 3=8.19, r 4=8.69$,
igr2= $172,173,174$,
\&end
\#
\# 6 DT H2'1 5 DT H1' 3.1406 .670 (\#3.140 5.170211142641)
\&rst
ixpk $=5$, nxpk $=0$, iat= $184,134, r 1=2.64, r 2=3.14, r 3=6.67, r 4=7.17$, \&end \#
\# 6 DT H2'1 6 DT H1' 2.6803 .760
\&rst
ixpk $=5, n x p k=0$, iat $=184,166, r 1=2.18, r 2=2.68, r 3=3.76, r 4=4.26$, \&end \#
\# 6 DT H2'1 6 DT H6 1.9702 .620
\&rst
ixpk $=5$, nxpk= 0 , iat $=184,169, r 1=1.47, r 2=1.97, r 3=2.62, r 4=3.12$, \&end \#
\# 6 DT H2'1 6 DT Q5 2.8205 .690
\&rst
ixpk $=5$, nxpk= 0 , iat $=184,-1, r 1=2.32, r 2=2.82, r 3=6.83, r 4=7.33$,
igr2= 172, 173, 174,
\&end
\#
\# 6 DT H2'1 6 DT H3' 2.0802 .670 (\#2.380 2.670 19)
\&rst
ixpk $=2$, nxpk $=0$, iat= $184,182, r 1=1.58, r 2=2.08, r 3=2.67, r 4=3.17$, \&end

```
#
# 6 DT H2'2 6 DT H6 2.200 4.090 (#2.200 3.190 12 22 39)
    &rst
    ixpk=3, nxpk= 0, iat= 185,169,r1= 1.70, r2= 2.20,r3=4.09,r4=4.59, &end
#
# 6 DT H2'2 6 DT H3' 2.510 3.500
    &rst
    ixpk=3, nxpk= 0, iat= 185, 182, r1= 2.01, r2= 2.51, r3=3.50, r4=4.00, &end
#
# 7 DG H8 6 DT Q5 4.100 6.510 (#4.100 6.210 15)
    &rst
    ixpk=6, nxpk= 0, iat= 201, -1, r1= 3.60, r2= 4.10, r3= 7.82, r4= 8.32,
igr2= 172, 173, 174,
&end
#
# 7 DG H8 6 DT H3' 3.720 4.710 (#3.720 4.410 17)
&rst
    ixpk=4, nxpk= 0, iat=201, 182,r1=3.22, r2=3.72, r3=4.71, r4= 5.21, &end
#
# 7 DG H8 6 DT H2'1 3.380 4.470 (#3.380 3.870 24 32 40)
&rst
    ixpk=3, nxpk= 0, iat=201, 184,r1=2.88,r2=3.38,r3=4.47,r4=4.97, &end
#
# 7 DG H8 6 DT H2'2 3.050 3.540 (#3.050 3.540 57 104547 51)
&rst
    ixpk=3, nxpk= 0, iat=201, 185,r1=2.55,r2=3.05,r3=3.54,r4=4.04, &end
#
# 7 DG H3' 7 DG H1' 3.270 4.270
&rst
    ixpk=3, nxpk= 0, iat=215,198,r1=2.77,r2=3.27,r3=4.27,r4=4.77, &end
#
# 7 DG H3' 7 DG H8 3.140 4.730
&rst
    ixpk=3, nxpk= 0, iat=215,201,r1=2.64,r2=3.14,r3=4.73,r4=5.23, &end
#
# 7 DG H2'1 7 DG H1' 2.640 4.450
&rst
    ixpk=3, nxpk= 0, iat=217, 198,r1=2.14,r2=2.64,r3=4.45,r4=4.95, &end
#
# 7 DG H2'1 7 DG H8 1.830 2.980 (#2.130 2.680 25 44)
    &rst
    ixpk=2, nxpk= 0, iat=217, 201, r1= 1.33, r2= 1.83,r3=2.98,r4=3.48, &end
#
# 7 DG H2'1 7 DG H3' 2.270 3.280 (#2.270 3.280 30 48)
    &rst
    ixpk=3, nxpk= 0, iat=217, 215,r1= 1.77, r2= 2.27,r3=3.28,r4=3.78, &end
## 7 DG H2'2 7 DG H1' 1.860 2.580
    &rst
    ixpk= 3, nxpk= 0, iat= 218, 198,r1= 1.36, r2= 1.86, r3= 2.58, r4= 3.08, &end
#
```

\# 8 DT H6 7 DG H1' 2.7804 .250 (\#2.780 3.65016 23)
\&rst
ixpk $=3$, nxpk= 0 , iat= 234, 198, r1 $=2.28, r 2=2.78, r 3=4.25, r 4=4.75$, \&end
\#
\# 8 DT H6 7 DG H8 3.5405 .850
\&rst
ixpk $=3, n x p k=0$, iat $=234,201, r 1=3.04, r 2=3.54, r 3=5.85, r 4=6.35$, \&end
\#
\# 8 DT H6 7 DG H3' 3.6905 .670
\&rst
ixpk= 3 , nxpk= 0 , iat= $234,215, r 1=3.19, r 2=3.69, r 3=5.67, r 4=6.17$, \&end
\#
\# 8 DT H6 7 DG H2'1 2.9304 .770
\&rst
ixpk $=3$, nxpk= 0 , iat $=234,217, r 1=2.43, r 2=2.93, r 3=4.77, r 4=5.27$, \&end
\#
\# 8 DT H6 7 DG H2'2 2.3003 .290 (\#2.600 3.290 11)
\&rst
ixpk $=3$, nxpk= 0 , iat= 234, 218, r1 = 1.80, r2= 2.30, r3=3.29, r4=3.79, \&end
\#
\# 8 DT H6 8 DT H1' 3.0904 .250
\&rst
ixpk $=3$, nxpk= 0 , iat $=234,231, r 1=2.59, r 2=3.09, r 3=4.25, r 4=4.75$, \&end
\#
\# 8 DT Q5 7 DG H1' 3.2304 .840
(\#8 DT Q5 6 DT H1' 3.580 6.820)
\&rst
ixpk $=3$, nxpk $=0$, iat $=-1,198, r 1=2.73, r 2=3.23, r 3=5.81, r 4=6.31$,
igr1= 237, 238, 239,
\&end
\#
\# 8 DT Q5 7 DG H8 2.8703 .670 (\#2.870 3.370 27)
\&rst
ixpk $=3$, nxpk $=0$, iat $=-1,201, r 1=2.37, r 2=2.87, r 3=4.41, r 4=4.91$,
igr1= 237, 238, 239,
\&end
\#
\# 8 DT Q5 7 DG H3' 3.4105 .240 (\#3.410 4.3401833 42)
\&rst
ixpk $=4$, nxpk $=0$, iat $=-1,215, r 1=2.91, r 2=3.41, r 3=6.29, r 4=6.79$,
igr1= 237, 238, 239,
\&end
\#
\# 8 DT Q5 7 DG H2'1 2.7004 .440 (\#3.000 4.440 28)
\&rst
ixpk $=4$, nxpk $=0$, iat $=-1,217, r 1=2.20, r 2=2.70, r 3=5.33, r 4=5.83$,
igr1= 237, 238, 239,
\&end
\#
\# 8 DT Q5 7 DG H2'2 2.5603 .870 (\#2.860 3.870 12)
\&rst
ixpk $=3, n \times p k=0$, iat $=-1,218, r 1=2.06, r 2=2.56, r 3=4.65, r 4=5.15$,
igr1= 237, 238, 239,
\&end
\#
\# 8 DT Q5 8 DT H1' 3.9606 .280
\&rst
ixpk $=3$, nxpk $=0$, iat $=-1,231, r 1=3.46, r 2=3.96, r 3=7.54, r 4=8.04$, igr1= 237, 238, 239,
\&end
\#
\# 8 DT Q5 8 DT H6 2.3803 .160 (\#2.680 3.160 13)
\&rst
ixpk $=3$, nxpk= 0 , iat $=-1,234, r 1=1.88, r 2=2.38, r 3=3.79, r 4=4.29$,
igr1= 237, 238, 239,
\&end
\#
\# 8 DT H3' 7DG H2'2 3.7605 .260
\&rst
ixpk $=3$, nxpk= 0 , iat $=247,218, r 1=3.26, r 2=3.76, r 3=5.26, r 4=5.76$, \&end
\#
\# 8 DT H3' 8 DT H1' 3.2604 .530
\&rst
ixpk $=3$, nxpk $=0$, iat $=247,231, r 1=2.76, r 2=3.26, r 3=4.53, r 4=5.03$, \&end \#
\# 8 DT H3' 8 DT H6 2.9804 .900
\&rst
ixpk $=3$, nxpk $=0$, iat=247, 234, r1 $=2.48, r 2=2.98, r 3=4.90, r 4=5.40$, \&end \#
\# 8 DT H3' 8 DT Q5 3.6306 .280 (\#3.630 5.380914 30)
\&rst
ixpk $=5$, nxpk $=0$, iat $=247,-1, r 1=3.13, r 2=3.63, r 3=7.54, r 4=8.04$,
igr2=237, 238, 239,
\&end
\#
\# 8 DT H2'1 7 DG H1' 3.4505 .180 (\#3.450 4.880 21)
\&rst
ixpk $=4$, nxpk= 0 , iat $=249,198, r 1=2.95, r 2=3.45, r 3=5.18, r 4=5.68$, \&end
\# 8 DT H2'1 8 DT H1' 2.4303 .440
\&rst
ixpk $=4, n x p k=0$, iat $=249,231, r 1=1.93, r 2=2.43, r 3=3.44, r 4=3.94$, \&end \#
\# 8 DT H2'1 8 DT H6 1.8902 .810
\&rst
ixpk $=4$, nxpk= 0 , iat= 249, 234, r1 = 1.39, r2 = 1.89, r3= 2.81, r4=3.31, \&end \#
\# 8 DT H2'1 8 DT Q5 2.6605 .460
\&rst
ixpk $=4$, nxpk $=0$, iat $=249,-1, r 1=2.16, r 2=2.66, r 3=6.56, r 4=7.06$, igr2= 237, 238, 239,
\&end
\#
\# 8 DT H2'1 8 DT H3' 1.9602 .810
\&rst
ixpk $=4$, nxpk $=0$, iat $=249,247, r 1=1.46, r 2=1.96, r 3=2.81, r 4=3.31$, \&end \#
\# 8 DT H2'2 8 DT H1' 1.8802 .800 (\#2.180 2.50025 29)
\&rst
ixpk=2, nxpk= 0 , iat=250, 231, r1=1.38, r2=1.88, r3=2.80, r4=3.30, \&end \#
\# 8 DT H2'2 8 DT H6 2.3503 .970 \&rst
ixpk $=2$, nxpk $=0$, iat $=250,234, r 1=1.85, r 2=2.35, r 3=3.97, r 4=4.47$, \&end \#
\# 8 DT H2'2 8 DT Q5 2.7006 .260 (\#2.700 6.56046) \&rst
ixpk $=6$, nxpk $=0$, iat $=250,-1, r 1=2.20, r 2=2.70, r 3=7.52, r 4=8.02$,
igr2= 237, 238, 239,
\&end
\#
\# 8 DT H2'2 8 DT H3' 2.6404 .430 \&rst
ixpk $=6$, nxpk $=0$, iat $=250,247, r 1=2.14, r 2=2.64, r 3=4.43, r 4=4.93$, \&end \#
\# 9 DC H6 8 DT H1' 3.2405 .790
\&rst
ixpk $=6$, nxpk $=0$, iat $=266,231, r 1=2.74, r 2=3.24, r 3=5.79, r 4=6.29$, \&end \#
\# 9 DC H6 8 DT H6 3.2005 .390
\&rst
ixpk $=6, n x p k=0$, iat $=266,234, r 1=2.70, r 2=3.20, r 3=5.39, r 4=5.89$, \&end \#
\# 9 DC H6 8 DT Q5 2.9006 .060
\&rst
ixpk $=6$, nxpk $=0$, iat $=266,-1, r 1=2.40, r 2=2.90, r 3=7.28, r 4=7.78$,
igr2= 237, 238, 239,
\&end
\#
\# 9 DC H6 8 DT H3' 3.7705 .800
\&rst
ixpk $=6$, nxpk= 0 , iat= 266, 247, r1 = 3.27, r2=3.77, r3=5.80, r4=6.30, \&end \#
\# 9 DC H6 8 DT H2'1 2.5804 .530
\&rst
ixpk= 6, nxpk= 0, iat=266,249, r1=2.08, r2=2.58, r3=4.53, r4=5.03, \&end \#
\# 9 DC H6 8 DT H2'2 2.1002 .880 \&rst
ixpk $=6$, nxpk $=0$, iat $=266,250, r 1=1.60, r 2=2.10, r 3=2.88, r 4=3.38$, \&end \# \# 9 DC H5 8 DT H1' 3.3204 .700 (\#3.320 3.700115 31) \&rst
ixpk $=3$, nxpk= 0 , iat= 268, 231, r1 $=2.82, r 2=3.32, r 3=4.70, r 4=5.20$, \&end
\# 9 DC H5 8 DT H6 2.9604 .030 (\#3.260 3.73019 34)
\&rst
ixpk $=3$, nxpk= 0 , iat $=268,234, r 1=2.46, r 2=2.96, r 3=4.03, r 4=4.53$, \&end \#
\# 9 DC H5 8 DT Q5 3.6504 .600
\&rst
ixpk $=3$, nxpk= 0 , iat $=268,-1, r 1=3.15, r 2=3.65, r 3=5.52, r 4=6.02$, igr2= 237, 238, 239,
\&end
\#
\# 9 DC H5 8 DT H3' 4.2806 .100 \&rst
ixpk $=3$, nxpk= 0 , iat $=268,247, r 1=3.78, r 2=4.28, r 3=6.10, r 4=6.60$, \&end \#
\# 9 DC H5 8 DT H2'1 2.6905 .490 (\#2.990 5.490 8) \&rst
ixpk $=5$, nxpk= 0 , iat $=268,249, r 1=2.19, r 2=2.69, r 3=5.49, r 4=5.99$, \&end \#
\# 9 DC H5 8 DT H2'2 2.8704 .330
\&rst
ixpk $=5$, nxpk= 0 , iat $=268,250, r 1=2.37, r 2=2.87, r 3=4.33, r 4=4.83$, \&end \#
\# 9 DC H5 9 DC H1' 3.9505 .470 (\#3.950 4.87057)
\&rst
ixpk $=4$, nxpk $=0$, iat $=268,263, r 1=3.45, r 2=3.95, r 3=5.47, r 4=5.97$, \&end \#
\# 9 DC H3' 9 DC H1' 3.5205 .440
\&rst
ixpk $=4$, nxpk $=0$, iat $=277,263, r 1=3.02, r 2=3.52, r 3=5.44, r 4=5.94$, \&end \#
\# 9 DC H3' 9 DC H6 3.1204 .280 (\#3.120 3.68022 28)
\&rst
ixpk $=3$, nxpk= 0 , iat= 277, 266, r1 = 2.62, r2 $=3.12, r 3=4.28, r 4=4.78$, \&end \#
\# 9 DC H3' 9 DC H5 4.1106 .690 (\#4.110 5.79091738)
\&rst
ixpk $=5$, nxpk= 0 , iat $=277,268, r 1=3.61, r 2=4.11, r 3=6.69, r 4=7.19$, \&end

\# 9 DC H2'1 8 DT H1' 3.9406 .180 (\#3.940 5.880 43)
\&rst
ixpk $=5$, nxpk= 0 , iat $=279,231, r 1=3.44, r 2=3.94, r 3=6.18, r 4=6.68$, \&end \#
\# 9 DC H2'1 9 DC H1' 2.5703 .200
\&rst
ixpk $=5$, nxpk= 0 , iat= 279, 263, r1 $=2.07, r 2=2.57, r 3=3.20, r 4=3.70$, \&end

```
#
# 9 DC H2'1 9 DC H6 1.870 2.740 (#2.170 2.740 25)
    &rst
    ixpk=2, nxpk= 0, iat=279,266,r1= 1.37,r2= 1.87,r3=2.74,r4=3.24, &end
#
# 9 DC H2'1 9 DC H5 2.970 4.520 (#2.970 3.920 4 14)
    &rst
    ixpk=3, nxpk= 0, iat=279,268,r1=2.47,r2= 2.97,r3=4.52,r4=5.02, &end
## 9 DC H2'1 9 DC H3' 1.890 2.860 (#2.190 2.860 32)
    &rst
    ixpk=2, nxpk= 0, iat= 279, 277, r1= 1.39, r2= 1.89, r3= 2.86, r4= 3.36, &end
#
# 9 DC H2'2 9 DC H1' 1.910 2.640 (# 2.210 2.640 41)
    &rst
    ixpk=2, nxpk= 0, iat=280, 263, r1= 1.41,r2= 1.91,r3=2.64, r4=3.14, &end
#
# 9 DC H2'2 9 DC H6 2.230 4.060 (#2.230 2.860 36 10 35)
&rst
    ixpk=2, nxpk= 0, iat=280, 266, r1= 1.73, r2= 2.23, r3=4.06, r4=4.56, &end
#
# 9 DC H2'2 9 DC H5 3.820 5.780
&rst
    ixpk=2, nxpk= 0, iat=280, 268,r1=3.32,r2=3.82,r3=5.78,r4=6.28, &end
#
# 9 DC H2'2 9 DC H3' 2.260 3.000
&rst
    ixpk=2, nxpk= 0, iat= 280, 277,r1= 1.76,r2=2.26,r3=3.00,r4=3.50, &end
#
# 10 DC H1' 9 DC H1' 4.200 6.510 (#4.200 5.910 33 37)
&rst
    ixpk=5, nxpk= 0, iat=293, 263,r1=3.70,r2=4.20,r3=6.51,r4=7.01, &end
#
# 10 DC H6 9 DC H1' 3.280 4.100 (#3.280 3.800 20)
&rst
    ixpk=3,nxpk= 0, iat=296,263,r1=2.78,r2=3.28,r3=4.10,r4=4.60, &end
#
# 10 DC H6 9 DC H2'1 2.500 5.850
    &rst
    ixpk=3, nxpk= 0, iat= 296, 279, r1= 2.00, r2= 2.50, r3= 5.85, r4= 6.35, &end
#
# 10 DC H6 9 DC H2'2 2.250 3.900 (#2.850 3.900 2 23)
    &rst
    ixpk=3, nxpk= 0, iat= 296, 280, r1= 1.75,r2= 2.25,r3=3.90, r4=4.40, &end
#
# 10 DC H6 10 DC H1' 3.440 5.560
    &rst
    ixpk=3, nxpk= 0, iat=296, 293,r1=2.94,r2=3.44,r3=5.56, r4=6.06, &end
#
# 10 DC H5 9 DC H1' 3.840 5.900
    &rst
```

ixpk $=3$, nxpk $=0$, iat $=298,263, r 1=3.34, r 2=3.84, r 3=5.90, r 4=6.40$, \&end \# \# 10 DC H5 10 DC H3' 3.5605 .810 (\#3.560 4.31068121525 43) \&rst
ixpk $=4$, nxpk= 0 , iat $=298,307, r 1=3.06, r 2=3.56, r 3=5.81, r 4=6.31$, \&end \# \# 10 DC H5 9 DC H2'1 3.2004 .240
\&rst
ixpk $=4$, nxpk $=0$, iat $=298,279, r 1=2.70, r 2=3.20, r 3=4.24, r 4=4.74$, \&end
\# 10 DC H5 9 DC H2'2 2.4603 .950 (\#2.760 3.3501124 26)
\&rst
ixpk $=3$, nxpk= 0 , iat $=298,280, r 1=1.96, r 2=2.46, r 3=3.95, r 4=4.45$, \&end \#
\# 10 DC H3' 10 DC H1' 3.4905 .400
\&rst
ixpk $=3$, nxpk= 0 , iat=307, 293, r1 $=2.99, r 2=3.49, r 3=5.40, r 4=5.90$, \&end \#
\# 10 DC H3' 10 DC H6 2.7703 .400 (\#2.770 3.100 32)
\&rst
ixpk $=3$, nxpk= 0 , iat $=307,296, r 1=2.27, r 2=2.77, r 3=3.40, r 4=3.90$, \&end \#
\# 10 DC H2'1 9 DC H2'2 2.1404 .970 (\#2.140 4.0701216 27) \&rst
ixpk $=4$, nxpk $=0$, iat $=309,280, r 1=1.64, r 2=2.14, r 3=4.97, r 4=5.47$, \&end \#
\# 10 DC H2'1 10 DC H1' 2.5303 .200 (\#2.530 2.900 31)
\&rst
ixpk $=2$, nxpk $=0$, iat $=309,293, r 1=2.03, r 2=2.53, r 3=3.20, r 4=3.70$, \&end \#
\# 10 DC H2'1 10 DC H6 2.1602 .660
\&rst
ixpk $=2$, nxpk $=0$, iat $=309,296, r 1=1.66, r 2=2.16, r 3=2.66, r 4=3.16$, \&end \#
\# 10 DC H2'1 10 DC H5 2.9504 .520 (\#2.950 4.220 29)
\&rst
ixpk $=4, \mathrm{nxpk}=0$, iat $=309,298, r 1=2.45, r 2=2.95, r 3=4.52, r 4=5.02$, \&end \#
\# 10 DC H2'1 10 DC H3' 2.1402 .780 (\#2.440 2.7801741)
\&rst
ixpk $=2$, nxpk= 0 , iat= $309,307, r 1=1.64, r 2=2.14, r 3=2.78, r 4=3.28$, \&end \#
\# 10 DC H2'2 10 DC H1' 1.9402 .340
\&rst
ixpk $=2$, nxpk= 0 , iat=310, 293, r1 $=1.44, r 2=1.94, r 3=2.34, r 4=2.84$, \&end
\# 10 DC H2'2 10 DC H6 2.1903 .860 (\#2.190 2.9601321)
\&rst
ixpk $=2$, nxpk= 0 , iat $=310,296, r 1=1.69, r 2=2.19, r 3=3.86, r 4=4.36$, \&end \#
\# 11 DG3 H1' 10 DC H1' 2.2505 .000
\&rst
ixpk $=2$, nxpk $=0$, iat $=323,293, r 1=1.75, r 2=2.25, r 3=5.00, r 4=5.50$, \&end \# \# 11 DG3 H8 10 DC H1' 2.7306 .740 \&rst ixpk=2, nxpk= 0 , iat $=326,293, r 1=2.23, r 2=2.73, r 3=6.74, r 4=7.24$, \&end \# \# 11 DG3 H8 10 DC H6 4.0706 .590 (\#4.370 6.590 30) \&rst
ixpk=6, nxpk= 0 , iat $=326,296, r 1=3.57, r 2=4.07, r 3=6.59, r 4=7.09$, \&end \#
\# 11 DG3 H8 10 DC H5 3.700 6.590
\&rst
ixpk= 6, nxpk= 0 , iat=326, 298, r1=3.20, r2=3.70, r3=6.59, r4=7.09, \&end \#
\# 11 DG3 H8 10 DC H2'1 2.3005 .400
\&rst
ixpk $=6$, nxpk= 0 , iat $=326,309, r 1=1.80, r 2=2.30, r 3=5.40, r 4=5.90$, \&end \#
\# 11 DG3 H8 10 DC H2'2 1.7502 .540 (\#1.750 2.24044) \&rst
ixpk $=2$, nxpk= 0 , iat $=326,310, r 1=1.25, r 2=1.75, r 3=2.54, r 4=3.04$, \&end \#
\# 11 DG3 H8 11 DG3 H1' $2.140 \quad 5.450$
\&rst
ixpk $=2$, nxpk $=0$, iat $=326,323, r 1=1.64, r 2=2.14, r 3=5.45, r 4=5.95$, \&end \#
\# 11 DG3 H3' 11 DG3 H1' 3.1005 .440
(\#11 DG3 H3' 10 DC H2'1 3.2106 .760 \#3.210 5.8609132840 (removed))
\&rst
ixpk $=2$, nxpk $=0$, iat $=340,323, r 1=2.60, r 2=3.10, r 3=5.44, r 4=5.94$, \&end \#
\# 11 DG3 H3' 11 DG3 H8 2.540 5.180 (\#2.540 3.38038101133 37) \&rst
ixpk $=3$, nxpk $=0$, iat $=340,326, r 1=2.04, r 2=2.54, r 3=5.18, r 4=5.68$, \&end \# \# 11 DG3 H2'1 11 DG3 H1' 1.9203 .060
\&rst
ixpk $=3$, nxpk= 0 , iat $=342,323, r 1=1.42, r 2=1.92, r 3=3.06, r 4=3.56$, \&end \#
\# 11 DG3 H2'1 11 DG3 H8 2.260 4.360 (\#2.260 3.76035 38)
\&rst
ixpk $=3$, nxpk= 0 , iat= $342,326, r 1=1.76, r 2=2.26, r 3=4.36, r 4=4.86$, \&end \#
\# 11 DG3 H2'1 11 DG3 H3' 2.1703 .510
\&rst
ixpk $=3$, nxpk= 0 , iat $=342,340, r 1=1.67, r 2=2.17, r 3=3.51, r 4=4.01$, \&end \#
\# 11 DG3 H2'2 10 DC H1' 2.7405 .790 (\#2.740 4.59041418 42)
\&rst
ixpk $=4$, nxpk $=0$, iat $=343,293, r 1=2.24, r 2=2.74, r 3=5.79, r 4=6.29$, \&end

```
#
# 11 DG3 H2'2 11 DG3 H1' 1.640 2.640 (#1.640 2.340 31)
    &rst
    ixpk=2, nxpk= 0, iat= 343, 323, r1= 1.14, r2= 1.64, r3= 2.64, r4=3.14, &end
#
# 11 DG3 H2'2 11 DG3 H8 1.810 4.100 (#1.810 3.2001271124 46 47)
    &rst
    ixpk=3, nxpk= 0, iat=343,326,r1= 1.31,r2= 1.81,r3=4.10, r4=4.60, &end
#
# 11 DG3 H2'2 11 DG3 H3' 1.960 2.900
    &rst
    ixpk=3, nxpk= 0, iat= 343, 340, r1= 1.46, r2= 1.96, r3= 2.90, r4=3.40, &end
#
# 12 DC5 H6 12 DC5 H1' 2.580 3.980 (#2.580 3.380 8 18)
&rst
    ixpk=3, nxpk= 0, iat=358,355,r1=2.08,r2=2.58,r3=3.98,r4=4.48, &end
#
# 12 DC5 H3' 12 DC5 H1' 3.610 5.860
&rst
    ixpk=3, nxpk= 0, iat=369, 355,r1=3.11, r2=3.61, r3=5.86, r4=6.36, &end
#
# 12 DC5 H3' 12 DC5 H6 3.020 4.400 (#3.020 3.800 23 42)
&rst
    ixpk=3, nxpk= 0, iat=369, 358,r1=2.52,r2=3.02,r3=4.40,r4=4.90, &end
#
# 12 DC5 H2'1 12 DC5 H1' 2.640 4.360
&rst
    ixpk=3, nxpk= 0, iat=371,355,r1=2.14,r2=2.64,r3=4.36,r4=4.86, &end
#
# 12 DC5 H2'1 12 DC5 H6 1.880 2.790 (#2.180 2.490 28 29)
&rst
    ixpk=2, nxpk= 0, iat=371,358,r1=1.38,r2= 1.88,r3=2.79,r4=3.29, &end
#
# 12 DC5 H2'1 12 DC5 H5 3.080 4.950 (#3.080 4.650 33)
&rst
ixpk=4, nxpk= 0, iat=371,360,r1= 2.58,r2=3.08,r3=4.95,r4=5.45, &end
#
# 12 DC5 H2'1 12 DC5 H3' 2.010 3.140 (#2.310 3.140 20)
&rst
    ixpk=3, nxpk= 0, iat=371, 369, r1= 1.51,r2=2.01,r3=3.14, r4=3.64, &end
#
# 12 DC5 H2'2 12 DC5 H1' 2.080 2.520
&rst
ixpk=3, nxpk= 0, iat=372, 355,r1= 1.58,r2= 2.08,r3=2.52, r4=3.02, &end
#
# 12 DC5 H2'2 12 DC5 H3' 2.000 3.250 (#2.000 2.650 13 41)
&rst
ixpk=2, nxpk= 0, iat=372, 369, r1= 1.50, r2= 2.00, r3=3.25, r4=3.75, &end
#
# 13 DG H1' 12 DC5 H2'2 3.770 5.290 (#3.770 4.990 31)
&rst
```

ixpk $=4$, nxpk $=0$, iat $=385,372, r 1=3.27, r 2=3.77, r 3=5.29, r 4=5.79$, \&end \#
\# 13 DG H8 12 DC5 H1' 3.8306 .120
\&rst
ixpk $=4$, nxpk= 0 , iat $=388,355, r 1=3.33, r 2=3.83, r 3=6.12, r 4=6.62$, \&end \#
\# 13 DG H8 12 DC5 H6 3.7606 .500 (\#4.360 6.50024 25)
\&rst
ixpk $=6$, nxpk= 0 , iat $=388,358, r 1=3.26, r 2=3.76, r 3=6.50, r 4=7.00$, \&end \#
\# 13 DG H8 12 DC5 H2'1 2.4803 .350 (\#2.780 3.350 22)
\&rst
ixpk $=3$, nxpk= 0 , iat $=388,371, r 1=1.98, r 2=2.48, r 3=3.35, r 4=3.85$, \&end \#
\# 13 DG H8 13 DG H1' 3.4205 .210
\&rst
ixpk $=3$, nxpk= 0 , iat $=388,385, r 1=2.92, r 2=3.42, r 3=5.21, r 4=5.71$, \&end \#
\# 13 DG H3' 12 DC5 H1' 5.1606 .250 (\#5.160 5.950 34)
\&rst
ixpk $=5$, nxpk= 0 , iat $=402,355, r 1=4.66, r 2=5.16, r 3=6.25, r 4=6.75$, \&end \#
\# 13 DG H3' 12 DC5 H2'1 4.5306 .110 (\#4.530 5.81040) \&rst
ixpk $=5$, nxpk= 0 , iat= 402, 371, r1=4.03, r2=4.53, r3=6.11, r4=6.61, \&end \#
\# 13 DG H3' 12 DC5 H2'2 3.4704 .490 (\#3.470 3.8905 35)
\&rst
ixpk $=3$, nxpk= 0 , iat $=402,372, r 1=2.97, r 2=3.47, r 3=4.49, r 4=4.99$, \&end \#
\# 13 DG H3' 13 DG H1' 3.0204 .140
\&rst
ixpk $=3$, nxpk $=0$, iat $=402,385, r 1=2.52, r 2=3.02, r 3=4.14, r 4=4.64$, \&end \#
\# 13 DG H3' 13 DG H8 3.2405 .400
\&rst
ixpk $=3$, nxpk= 0 , iat $=402,388, r 1=2.74, r 2=3.24, r 3=5.40, r 4=5.90$, \&end \#
\# 13 DG H2'1 12 DC5 H1' 3.5005 .690 (\#.500 4.190911122143)
\&rst
ixpk $=4$, nxpk $=0$, iat $=404,355, r 1=3.00, r 2=3.50, r 3=5.69, r 4=6.19$, \&end \#
\# 13 DG H2'1 12 DC5 H2'1 2.6905 .470
\&rst
ixpk $=4$, nxpk= 0 , iat $=404,371, r 1=2.19, r 2=2.69, r 3=5.47, r 4=5.97$, \&end \#
\# 13 DG H2'1 13 DG H1' 2.0503 .170
\&rst
ixpk $=4$, nxpk= 0 , iat $=404,385, r 1=1.55, r 2=2.05, r 3=3.17, r 4=3.67$, \&end \#
\# 13 DG H2'1 13 DG H8 1.8702 .660

```
&rst
    ixpk=4, nxpk= 0, iat= 404,388,r1= 1.37,r2= 1.87,r3=2.66,r4=3.16, &end
#
# 13 DG H2'2 12 DC5 H2'1 3.110 6.560 (#3.110 4.760146915 32)
&rst
    ixpk= 4, nxpk= 0, iat= 405, 371, r1= 2.61, r2= 3.11, r3=6.56,r4= 7.06, &end
#
# 13 DG H2'2 13 DG H1' 2.100 3.490
    &rst
    ixpk=4, nxpk= 0, iat=405, 385,r1=1.60,r2= 2.10,r3=3.49,r4=3.99, &end
#
# 13 DG H2'2 13 DG H8 2.170 4.140 (#2.170 3.840 38)
&rst
    ixpk=3, nxpk= 0, iat= 405, 388, r1= 1.67, r2= 2.17, r3=4.14,r4= 4.64,&end
#
# 14 DG H1' 13 DG H1' 3.740 5.630 (#3.740 5.330 17)
&rst
    ixpk= 5, nxpk= 0, iat= 418,385,r1=3.24, r2= 3.74,r3=5.63,r4=6.13, &end
#
# 14 DG H8 13 DG H1' 3.120 5.390 (#3.120 5.090 27)
&rst
    ixpk= 5, nxpk= 0, iat= 421, 385,r1= 2.62,r2=3.12,r3=5.39,r4=5.89, &end
#
# 14 DG H8 13DG H3' 4.900 6.650
&rst
    ixpk= 5, nxpk= 0, iat= 421, 402, r1=4.40, r2= 4.90, r3=6.65, r4= 7.15, &end
#
# 14 DG H8 13 DG H2'1 1.900 3.820 (#1.900 2.620 7 13 23 44)
&rst
    ixpk= 2, nxpk= 0, iat= 421, 404, r1= 1.40, r2= 1.90, r3=3.82, r4= 4.32, &end
#
# 14 DG H8 13 DG H2'2 2.480 4.720
&rst
ixpk=2, nxpk= 0, iat=421, 405, r1= 1.98, r2= 2.48,r3=4.72, r4= 5.22, &end
#
# 14 DG H8 14DG H1' 2.970 4.730
&rst
    ixpk=2, nxpk= 0, iat= 421, 418,r1= 2.47,r2= 2.97,r3=4.73,r4=5.23, &end
#
# 14 DG H3' 14 DG H1' 2.650 4.280 (#2.650 3.380 1 15 22)
&rst
    ixpk=3, nxpk= 0, iat= 435, 418, r1= 2.15, r2= 2.65, r3=4.28, r4= 4.78, &end
#
# 14 DG H3' 14 DG H8 3.070 5.810 (#3.370 5.810 8)
&rst
ixpk= 5, nxpk= 0, iat= 435, 421, r1= 2.57,r2= 3.07,r3= 5.81,r4= 6.31,&end
#
# 14 DG H2'2 14 DG H1' 1.920 2.570
&rst
    ixpk= 5, nxpk= 0, iat= 438, 418,r1= 1.42, r2= 1.92,r3= 2.57, r4= 3.07, &end
#
```



```
#
# 15 DA H2'2 15 DA H3' 2.180 3.330
    &rst
    ixpk= 4, nxpk= 0, iat= 470, 467, r1= 1.68, r2= 2.18,r3=3.33,r4=3.83, &end
#
# 16 DC H1' 15 DA H1' 4.580 5.880
    &rst
    ixpk=4, nxpk= 0, iat=483, 451,r1=4.08, r2=4.58,r3=5.88, r4=6.38, &end
#
# 16 DC H1' 15 DA H2'2 3.830 4.760 (#3.830 4.460 30)
    &rst
    ixpk=4, nxpk= 0, iat=483, 470,r1=3.33,r2=3.83,r3=4.76,r4=5.26, &end
#
# 16 DC H6 15 DA H1' 3.200 4.920 (#3.200 3.720 13 37 41 43)
    &rst
    ixpk=3, nxpk= 0, iat=486, 451, r1=2.70, r2=3.20, r3=4.92,r4=5.42, &end
#
# 16 DC H6 15 DA H8 3.410 4.880 (#3.410 3.980 4 7 14)
&rst
    ixpk=3, nxpk= 0, iat=486, 454,r1=2.91, r2= 3.41, r3=4.88, r4= 5.38, &end
#
# 16 DC H6 15 DA H3' 3.690 4.970
&rst
    ixpk=3, nxpk=0, iat=486,467,r1=3.19, r2=3.69,r3=4.97,r4=5.47, &end
#
# 16 DC H6 15 DA H2'1 2.680 4.460 (#2.980 4.460 3)
&rst
    ixpk=4, nxpk=0, iat=486, 469,r1=2.18, r2=2.68,r3=4.46, r4=4.96, &end
#
# 16 DC H6 15 DA H2'2 2.170 2.980 (#2.470 2.980 8)
&rst
    ixpk= 2, nxpk= 0, iat=486, 470, r1=1.67, r2= 2.17, r3= 2.98, r4=3.48, &end
#
# 16 DC H6 16 DC H1' 3.390 4.310
&rst
    ixpk=2, nxpk=0, iat=486, 483,r1=2.89,r2=3.39,r3=4.31, r4=4.81, &end
#
# 16 DC H5 6 DT Q5 4.530 5.420
&rst
    ixpk= 2, nxpk= 0, iat=488, -1, r1= 4.03, r2= 4.53, r3= 6.51, r4= 7.01,
igr2= 172, 173, 174,
&end
#
# 16 DC H5 15 DA H1' 3.760 6.580
    (#16 DC H5 14 DG H1' 3.850 4.950)
&rst
    ixpk=2, nxpk= 0, iat=488,451,r1=3.26,r2=3.76,r3=6.58,r4= 7.08, &end
#
# 16 DC H5 15 DA H8 3.230 4.100 (#3.230 3.800 20)
&rst
ixpk=3, nxpk= 0, iat= 488, 454, r1= 2.73, r2= 3.23, r3=4.10, r4= 4.60, &end
```

```
#
# 16 DC H5 15 DA H3' 4.230 6.670
    &rst
    ixpk=3, nxpk= 0, iat= 488, 467,r1=3.73, r2= 4.23, r3=6.67, r4= 7.17, &end
#
# 16 DC H5 15 DA H2'1 2.360 3.880 (#2.360 2.980 23 34 39)
    &rst
    ixpk=2, nxpk= 0, iat=488, 469, r1= 1.86, r2= 2.36, r3=3.88, r4= 4.38, &end
#
# 16 DC H5 15 DA H2'2 3.220 5.880
    &rst
    ixpk=2, nxpk= 0, iat= 488, 470, r1= 2.72, r2= 3.22, r3= 5.88, r4= 6.38, &end
#
# 16 DC H5 16 DC H1' 4.450 5.650
    &rst
    ixpk=2, nxpk= 0, iat=488, 483,r1=3.95,r2=4.45,r3=5.65, r4=6.15, &end
#
# 16 DC H3' 15 DA H2'2 2.950 3.760 (#2.950 3.460 44)
&rst
    ixpk=3, nxpk= 0, iat=497, 470,r1=2.45,r2= 2.95,r3=3.76,r4=4.26, &end
#
# 16 DC H3' 16 DC H1' 3.250 4.020
&rst
    ixpk=3,nxpk= 0, iat=497, 483,r1=2.75,r2=3.25,r3=4.02,r4=4.52, &end
#
# 16 DC H3' 16 DC H6 2.920 3.680 (#2.920 3.380 35)
&rst
    ixpk=3,nxpk= 0, iat=497, 486,r1=2.42,r2= 2.92,r3=3.68,r4=4.18, &end
#
# 16 DC H3' 16 DC H5 4.600 6.630
&rst
    ixpk=3, nxpk=0, iat=497, 488,r1=4.10, r2=4.60,r3=6.63,r4=7.13, &end
#
# 16 DC H2'1 15 DA H1' 3.750 5.620 (#3.750 5.320 40)
&rst
    ixpk=5, nxpk=0, iat=499,451, r1=3.25,r2=3.75,r3=5.62,r4=6.12, &end
#
# 16 DC H2'1 15 DA H8 6.570 7.000
&rst
    ixpk=5, nxpk=0, iat=499,454,r1=6.07, r2=6.57,r3=7.00, r4=7.50, &end
#
# 16 DC H2'1 15 DA H3' 4.260 6.170 (#4.260 5.870 27)
&rst
ixpk= 5, nxpk= 0, iat= 499, 467, r1=3.76, r2= 4.26, r3=6.17, r4=6.67, &end
#
# 16 DC H2'1 15 DA H2'2 2.740 4.550
&rst
    ixpk= 5, nxpk= 0, iat= 499, 470,r1=2.24, r2= 2.74,r3=4.55,r4=5.05, &end
#
# 16 DC H2'1 16 DC H1' 2.450 3.240
&rst
```

ixpk $=5$, nxpk= 0 , iat $=499,483, r 1=1.95, r 2=2.45, r 3=3.24, r 4=3.74$, \&end \#
\# 16 DC H2'1 16 DC H6 1.720 2.710 (\#2.320 2.71017 26)
\&rst
ixpk $=2$, nxpk $=0$, iat $=499,486, r 1=1.22, r 2=1.72, r 3=2.71, r 4=3.21$, \&end \# \# 16 DC H2'1 16 DC H5 3.0204 .510 (\#3.020 3.9105 29) \&rst
ixpk $=3, \mathrm{nxpk}=0$, iat $=499,488, r 1=2.52, r 2=3.02, r 3=4.51, r 4=5.01$, \&end
\# 16 DC H2'1 16 DC H3' 2.0202 .660 (\#2.320 2.660 15)
\&rst
ixpk $=2$, nxpk $=0$, iat $=499,497, r 1=1.52, r 2=2.02, r 3=2.66, r 4=3.16$, \&end \#
\# 16 DC H2'2 15 DA H2'2 2.9905 .280
\&rst
ixpk $=2, n x p k=0$, iat $=500,470, r 1=2.49, r 2=2.99, r 3=5.28, r 4=5.78$, \&end \#
\# 16 DC H2'2 16 DC H1' 1.9602 .710 (\#2.260 2.710 18) \&rst
ixpk $=2$, nxpk= 0 , iat= $500,483, r 1=1.46, r 2=1.96, r 3=2.71, r 4=3.21$, \&end \#
\# 16 DC H2'2 16 DC H6 2.6703 .630 (\#2.670 3.330 6) \&rst
ixpk $=3$, nxpk $=0$, iat= $500,486, r 1=2.17, r 2=2.67, r 3=3.63, r 4=4.13$, \&end \#
\# 16 DC H2'2 16 DC H5 $3.680 \quad 5.960$
\&rst
ixpk $=3, n x p k=0$, iat $=500,488, r 1=3.18, r 2=3.68, r 3=5.96, r 4=6.46$, \&end \#
\# 16 DC H2'2 16 DC H3' 2.6003 .250
\&rst
ixpk $=3$, nxpk $=0$, iat $=500,497, r 1=2.10, r 2=2.60, r 3=3.25, r 4=3.75$, \&end \#
\# 17 SDI H2'1 17 SDI H1' 2.2603 .370
\&rst
ixpk $=3$, nxpk $=0$, iat $=515,513, r 1=1.76, r 2=2.26, r 3=3.37, r 4=3.87$, \&end \#
\# 17 SDI H2'2 17 SDI H1' 2.2303 .660
\&rst
ixpk $=3$, nxpk= 0 , iat $=516,513, r 1=1.73, r 2=2.23, r 3=3.66, r 4=4.16$, \&end
\# 17 SDI HA1 5 DT H1' 3.9205 .290 (\#3.920 4.4901225 35)
\&rst
ixpk $=4$, nxpk= 0 , iat $=526,134, r 1=3.42, r 2=3.92, r 3=5.29, r 4=5.79$, \&end \#
\# 17 SDI HA1 16 DC H5 4.5705 .360
\&rst
ixpk $=4$, nxpk= 0 , iat $=526,488, r 1=4.07, r 2=4.57, r 3=5.36, r 4=5.86$, \&end
\# 17 SDI HA2 5 DT H1' 4.0505 .910 (\#4.350 5.61030 49)
\&rst
ixpk $=5$, nxpk $=0$, iat $=527,134, r 1=3.55, r 2=4.05, r 3=5.91, r 4=6.41$, \&end \# \# 17 SDI HA2 6 DT H1' 4.9506 .160 (\#4.950 5.860 27) \&rst
ixpk $=5$, nxpk $=0$, iat $=527,166, r 1=4.45, r 2=4.95, r 3=6.16, r 4=6.66$, \&end \# \# 17 SDI HA2 16 DC H5 4.6506 .490 (\#4.650 5.29021619 38) \&rst
ixpk= $5, n x p k=0$, iat $=527,488, r 1=4.15, r 2=4.65, r 3=6.49, r 4=6.99$, \&end \#
\# 17 SDI HB 5 DT H1' 3.4104 .060 (\#3.710 4.060 13)
\&rst
ixpk $=4$, nxpk= 0 , iat $=529,134, r 1=2.91, r 2=3.41, r 3=4.06, r 4=4.56$, \&end \#
\# 17 SDI HB 6 DT Q5 3.3404 .610 (\#3.340 4.310 18) \&rst
ixpk $=4$, nxpk $=0$, iat $=529,-1, r 1=2.84, r 2=3.34, r 3=5.54, r 4=6.04$, igr2= 172, 173, 174,
\&end
\#
\# 17 SDI HB 16 DC H5 4.080 6.090 (\#4.080 4.5909101124 33) \&rst
ixpk $=4$, nxpk $=0$, iat $=529,488, r 1=3.58, r 2=4.08, r 3=6.09, r 4=6.59$, \&end \#
\# 17 SDI HC 5 DT H1' 3.8104 .510 (\#4.110 4.510 36)
\&rst
ixpk $=4$, nxpk $=0$, iat $=531,134, r 1=3.31, r 2=3.81, r 3=4.51, r 4=5.01$, \&end \#
\# 17 SDI H8 16 DC H1' 4.5106 .400
\&rst
ixpk $=4$, nxpk $=0$, iat $=540,483, r 1=4.01, r 2=4.51, r 3=6.40, r 4=6.90$, \&end \#
\# 17 SDI H8 16 DC H6 4.8906 .740
\&rst
ixpk $=4$, nxpk= 0 , iat $=540,486, r 1=4.39, r 2=4.89, r 3=6.74, r 4=7.24$, \&end \#
\# 17 SDI H8 16 DC H3' 3.9705 .810 (\#4.270 5.810 22)
\&rst
ixpk $=5$, nxpk= 0 , iat $=540,497, r 1=3.47, r 2=3.97, r 3=5.81, r 4=6.31$, \&end \#
\# 17 SDI H8 16 DC H2'1 2.9303 .570 (\#2.930 3.270 28) \&rst
ixpk $=3$, nxpk $=0$, iat= $540,499, r 1=2.43, r 2=2.93, r 3=3.57, r 4=4.07$, \&end \#
\# 17 SDI H8 16 DC H2'2 2.6603 .620 (\#2.960 3.32021 31)
\&rst
ixpk $=3, \mathrm{nxpk}=0$, iat $=540,500, r 1=2.16, r 2=2.66, r 3=3.62, r 4=4.12$, \&end \#
\# 17 SDI H8 17 SDI H1' $3.210 \quad 4.110$ (\#3.210 3.810 29) \&rst
ixpk $=3$, nxpk $=0$, iat= $540,513, r 1=2.71, r 2=3.21, r 3=4.11, r 4=4.61$, \&end \# \# 17 SDI H8 17 SDI H2'1 1.9903 .090 (\#2.290 3.090 17) \&rst
ixpk $=3$, nxpk= 0 , iat $=540,515, r 1=1.49, r 2=1.99, r 3=3.09, r 4=3.59$, \&end \#
\# 17 SDI H8 17 SDI H2'2 2.7205 .120
\&rst
ixpk $=3, n x p k=0$, iat $=540,516, r 1=2.22, r 2=2.72, r 3=5.12, r 4=5.62$, \&end \#
\# 18 DA H8 17 SDI H1' 3.7904 .780 (\#3.790 4.480 15)
\&rst
ixpk $=4$, nxpk= 0 , iat $=558,513, r 1=3.29, r 2=3.79, r 3=4.78, r 4=5.28$, \&end \#
\# 18 DA H8 17 SDI H2'1 3.1404 .790
\&rst
ixpk $=4, \mathrm{nxpk}=0$, iat $=558,515, r 1=2.64, r 2=3.14, r 3=4.79, r 4=5.29$, \&end \#
\# 18 DA H8 17 SDI H2'2 3.0003 .970 (\#3.000 3.97044)
\&rst
ixpk $=3$, nxpk= 0 , iat= $558,516, r 1=2.50, r 2=3.00, r 3=3.97, r 4=4.47$, \&end \#
\# 18 DA H8 17 SDI H8 4.8106 .770 (\#4.810 6.17016)
\&rst
ixpk $=6$, nxpk $=0$, iat $=558,540, r 1=4.31, r 2=4.81, r 3=6.77, r 4=7.27$, \&end \#
\# 18 DA H8 18 DA H1' 2.6104 .800
\&rst
ixpk $=6$, nxpk $=0$, iat $=558,555, r 1=2.11, r 2=2.61, r 3=4.80, r 4=5.30$, \&end \#
\# 18 DA H3' 17 SDI H1' 4.1005 .930 (\#4.100 5.0302039 40) \&rst
ixpk $=5$, nxpk= 0 , iat $=571,513, r 1=3.60, r 2=4.10, r 3=5.93, r 4=6.43$, \&end \#
\# 18 DA H3' 18 DA H1' 3.0405 .520
\&rst
ixpk $=5$, nxpk $=0$, iat $=571,555, r 1=2.54, r 2=3.04, r 3=5.52, r 4=6.02$, \&end \#
\# 18 DA H3' 18 DA H8 4.0906 .400
\&rst
ixpk $=5$, nxpk $=0$, iat $=571,558, r 1=3.59, r 2=4.09, r 3=6.40, r 4=6.90$, \&end \#
\# 18 DA H2'2 17 SDI H1' 4.5106 .110 (\#4.510 5.810 32)
\&rst
ixpk $=5$, nxpk $=0$, iat $=574,513, r 1=4.01, r 2=4.51, r 3=6.11, r 4=6.61$, \&end \#
\# 18 DA H2'2 18 DA H1' 1.9602 .610
\&rst
ixpk $=5$, nxpk= 0 , iat= $574,555, r 1=1.46, r 2=1.96, r 3=2.61, r 4=3.11$, \&end
\# 18 DA H2'2 18 DA H8 1.8003 .850 (\#1.800 2.65031821 23)
\&rst
ixpk $=2$, nxpk= 0 , iat $=574,558, r 1=1.30, r 2=1.80, r 3=3.85, r 4=4.35$, \&end \#
\# 18 DA H2'2 18 DA H3' 1.7102 .600 (\#1.710 2.3007244748 50) \&rst
ixpk $=2$, nxpk $=0$, iat $=574,571, r 1=1.21, r 2=1.71, r 3=2.60, r 4=3.10$, \&end \# \# 19 DG H1' 18 DA H2'2 3.7406 .070 (\#3.740 5.1701230 33) \&rst
ixpk $=5$, nxpk= 0 , iat $=587,574, r 1=3.24, r 2=3.74, r 3=6.07, r 4=6.57$, \&end \# \# 19 DG H8 18 DA H1' 3.2204 .080
\&rst
ixpk $=5$, nxpk= 0 , iat $=590,555, r 1=2.72, r 2=3.22, r 3=4.08, r 4=4.58$, \&end \#
\# 19 DG H8 18 DA H8 4.3506 .640
\&rst
ixpk $=5$, nxpk= 0 , iat $=590,558, r 1=3.85, r 2=4.35, r 3=6.64, r 4=7.14$, \&end \#
\# 19 DG H8 18 DA H2'2 2.3803 .260 (\#2.380 3.26042)
\&rst
ixpk $=3$, nxpk= 0 , iat $=590,574, r 1=1.88, r 2=2.38, r 3=3.26, r 4=3.76$, \&end \#
\# 19 DG H8 19 DG H1' 3.1605 .020
\&rst
ixpk $=3$, nxpk $=0$, iat $=590,587, r 1=2.66, r 2=3.16, r 3=5.02, r 4=5.52$, \&end \#
\# 19 DG H3' 19 DG H1' 2.8604 .310 (\#2.860 3.71027 44)
\&rst
ixpk $=3$, nxpk $=0$, iat $=604,587, r 1=2.36, r 2=2.86, r 3=4.31, r 4=4.81$, \&end \#
\# 19 DG H2'1 18 DA H1' 3.9605 .750 (\#3.960 5.450 36)
\&rst
ixpk $=5$, nxpk= 0 , iat $=606,555, r 1=3.46, r 2=3.96, r 3=5.75, r 4=6.25$, \&end \#
\# 19 DG H2'1 19 DG H1' 2.4104 .250
\&rst
ixpk $=5$, nxpk= 0 , iat $=606,587, r 1=1.91, r 2=2.41, r 3=4.25, r 4=4.75$, \&end \#
\# 19 DG H2'1 19 DG H8 1.9203 .340 (\#2.220 3.340 29)
\&rst
ixpk $=3$, nxpk= 0 , iat $=606,590, r 1=1.42, r 2=1.92, r 3=3.34, r 4=3.84$, \&end \#
\# 19 DG H2'1 19 DG H3' 2.0703 .190
\&rst
ixpk $=3, n x p k=0$, iat $=606,604, r 1=1.57, r 2=2.07, r 3=3.19, r 4=3.69$, \&end
\# 19 DG H2'2 18 DA H1' 3.6706 .950 (\#3.670 5.150910111934 35) \&rst
ixpk= 5, nxpk= 0 , iat= 607, 555, r1=3.17, r2=3.67, r3=6.95, r4= 7.45 , \&end \#

```
# 19 DG H2'2 19 DG H1' 2.000 3.240
    &rst
    ixpk= 5, nxpk= 0, iat= 607,587,r1= 1.50, r2= 2.00, r3=3.24, r4= 3.74, &end
#
# 19 DG H2'2 19 DG H8 2.420 4.120 (#2.420 3.820 40)
    &rst
    ixpk=3, nxpk= 0, iat= 607, 590, r1= 1.92, r2= 2.42, r3= 4.12, r4= 4.62, &end
#
# 19 DG H2'2 19 DG H3' 2.340 3.940
    &rst
    ixpk=3, nxpk= 0, iat= 607, 604, r1= 1.84, r2= 2.34, r3=3.94, r4= 4.44, &end
#
# 20 DA H1' 19 DG H1' 4.790 5.830
    &rst
    ixpk=3, nxpk= 0, iat=620, 587, r1=4.29, r2=4.79, r3= 5.83, r4=6.33, &end
#
# 20 DA H8 19 DG H1' 2.710 3.790 (#3.010 3.790 7)
&rst
    ixpk=3, nxpk= 0, iat=623,587, r1= 2.21, r2= 2.71, r3=3.79,r4=4.29, &end
#
# 20 DA H8 19 DG H8 3.590 5.750 (#3.890 5.750 4)
&rst
    ixpk= 5, nxpk= 0, iat=623,590,r1=3.09,r2=3.59,r3=5.75,r4=6.25, &end
#
# 20 DA H8 19 DG H3' 3.200 5.350 (#3.200 3.850 14 22 23 25 28)
&rst
    ixpk=3,nxpk= 0, iat=623,604,r1=2.70,r2=3.20,r3=5.35,r4=5.85, &end
#
# 20 DA H8 19 DG H2'1 2.480 4.530 (#2.780 4.230 38 41)
&rst
    ixpk=4, nxpk= 0, iat=623,606,r1= 1.98,r2=2.48,r3=4.53,r4=5.03, &end
#
# 20 DA H8 20 DA H1' 2.710 4.560
&rst
ixpk=4, nxpk= 0, iat=623,620,r1= 2.21,r2= 2.71,r3=4.56,r4=5.06, &end
#
# 20 DA H3' 19 DG H1' 4.040 6.420 (#4.040 5.820 16 26)
&rst
    ixpk= 5, nxpk= 0, iat=636,587,r1=3.54,r2=4.04,r3=6.42,r4=6.92, &end
#
# 20 DA H3' 20 DA H1' 2.890 4.130
&rst
    ixpk= 5, nxpk= 0, iat= 636,620,r1= 2.39, r2= 2.89,r3=4.13, r4= 4.63, &end
#
# 20 DA H3' 20 DA H8 3.290 5.690
&rst
    ixpk= 5, nxpk= 0, iat=636,623,r1=2.79,r2=3.29,r3=5.69,r4=6.19, &end
#
# 20 DA H2'1 20 DA H1' 2.510 3.860
&rst
ixpk= 5, nxpk= 0, iat= 638,620, r1= 2.01, r2= 2.51, r3= 3.86, r4= 4.36, &end
```

```
#
# 20 DA H2'1 20 DA H8 1.840 2.560
    &rst
    ixpk= 5, nxpk= 0, iat= 638, 623, r1= 1.34, r2= 1.84, r3= 2.56, r4= 3.06, &end
#
# 20 DA H2'1 20 DA H3' 1.850 2.720 (#1.850 2.420 20)
    &rst
    ixpk=2, nxpk= 0, iat=638,636,r1= 1.35,r2= 1.85,r3=2.72, r4=3.22, &end
#
# 20 DA H2'2 19 DG H1' 3.500 6.520 (#3.500 5.320 2 13 17 31)
    &rst
    ixpk= 5, nxpk= 0, iat=639,587,r1=3.00, r2=3.50, r3=6.52, r4= 7.02, &end
#
# 20 DA H2'2 20 DA H1' 1.970 2.840 (#1.970 2.540 27)
    &rst
    ixpk=2, nxpk= 0, iat= 639,620, r1= 1.47, r2= 1.97,r3= 2.84, r4= 3.34,&end
#
# 20 DA H2'2 20 DA H8 2.530 3.980
&rst
    ixpk=2, nxpk= 0, iat= 639, 623,r1=2.03,r2= 2.53,r3=3.98,r4=4.48, &end
#
# 20 DA H2'2 20 DA H3' 2.230 4.170
&rst
    ixpk=2, nxpk= 0, iat=639, 636,r1= 1.73,r2= 2.23, r3=4.17, r4=4.67, &end
#
# 21 DA H8 20 DA H2'1 2.920 4.800
&rst
    ixpk=2, nxpk= 0, iat=655,638,r1=2.42,r2=2.92,r3=4.80,r4=5.30, &end
#
# 21 DA H8 21 DA H1' 2.380 4.250 (#2.380 3.050 35 19 20)
&rst
    ixpk=3, nxpk= 0, iat=655,652,r1= 1.88,r2= 2.38,r3=4.25,r4=4.75, &end
#
# 21 DA H3' 21 DA H1' 2.810 4.190 (#2.810 3.890 21)
&rst
ixpk=3, nxpk= 0, iat=668,652,r1=2.31,r2=2.81,r3=4.19, r4=4.69, &end
#
# 21 DA H3' 21 DA H8 2.750 4.800 (#2.750 4.200 27 33)
&rst
    ixpk= 4, nxpk= 0, iat=668,655,r1=2.25,r2= 2.75,r3=4.80,r4=5.30, &end
#
# 21 DA H2'1 21 DA H1' 2.230 3.610
&rst
    ixpk= 4, nxpk= 0, iat=670,652,r1= 1.73,r2= 2.23,r3=3.61,r4=4.11, &end
#
# 21 DA H2'1 21 DA H8 1.970 3.040 (#1.970 2.740 43)
    &rst
    ixpk=2, nxpk= 0, iat=670,655,r1= 1.47,r2= 1.97,r3=3.04,r4=3.54, &end
#
# 21 DA H2'1 21 DA H3' 2.000 2.670
&rst
```

ixpk $=2, n \times p k=0$, iat $=670,668, r 1=1.50, r 2=2.00, r 3=2.67, r 4=3.17$, \&end \# \# 21 DA H2'2 21 DA H1' 2.0002 .550 \&rst ixpk $=2$, nxpk $=0$, iat $=671,652, r 1=1.50, r 2=2.00, r 3=2.55, r 4=3.05$, \&end
\# 22 DG3 H8 21 DA H1' 2.2704 .790 (\#2.270 2.99078101735 39) \&rst
ixpk $=2$, nxpk= 0 , iat $=687,652, r 1=1.77, r 2=2.27, r 3=4.79, r 4=5.29$, \&end
\# 22 DG3 H8 21 DA H8 3.8806 .420
\&rst
ixpk $=2$, nxpk= 0 , iat $=687,655, r 1=3.38, r 2=3.88, r 3=6.42, r 4=6.92$, \&end
\#
\# 22 DG3 H8 21 DA H3' 3.7105 .880
\&rst
ixpk $=2$, nxpk= 0 , iat $=687,668, r 1=3.21, r 2=3.71, r 3=5.88, r 4=6.38$, \&end \#
\# 22 DG3 H8 21 DA H2'1 1.9703 .740 (\#1.970 2.840618 25)
\&rst
ixpk $=2$, nxpk= 0 , iat= 687, $670, r 1=1.47, r 2=1.97, r 3=3.74, r 4=4.24$, \&end \#
\# 22 DG3 H8 21 DA H2'2 2.4004 .370
\&rst
ixpk $=2$, $n x p k=0$, iat $=687,671, r 1=1.90, r 2=2.40, r 3=4.37, r 4=4.87$, \&end \#
\# 22 DG3 H3' 21 DA H1' 4.1106 .390 (\#4.110 4.590213242832 34) \&rst
ixpk $=4$, nxpk $=0$, iat $=701,652, r 1=3.61, r 2=4.11, r 3=6.39, r 4=6.89$, \&end \#
\# 22 DG3 H3' 21 DA H2'1 $3.180 \quad 6.840$ (\#3.180 5.94012 29 41)
\&rst
ixpk $=5$, nxpk= 0 , iat $=701,670, r 1=2.68, r 2=3.18, r 3=6.84, r 4=7.34$, \&end \#
\# 22 DG3 H3' 21 DA H2'2 3.2105 .380 (\#3.210 4.480143142) \&rst
ixpk $=4$, nxpk $=0$, iat $=701,671, r 1=2.71, r 2=3.21, r 3=5.38, r 4=5.88$, \&end \# \# 22 DG3 H3' 22 DG3 H1' 2.0204 .190 (\#3.220 4.1903419 38) \&rst
ixpk $=4$, nxpk $=0$, iat $=701,684, r 1=1.52, r 2=2.02, r 3=4.19, r 4=4.69$, \&end
\# 22 DG3 H2'1 22 DG3 H8 1.9704 .290 (\#2.570 4.29015 20)
\&rst
ixpk $=4$, nxpk= 0 , iat $=703,687, r 1=1.47, r 2=1.97, r 3=4.29, r 4=4.79$, \&end
\# 22 DG3 H2'1 22 DG3 H3' 2.7104 .430
\&rst
ixpk $=4, n x p k=0$, iat $=703,701, r 1=2.21, r 2=2.71, r 3=4.43, r 4=4.93$, \&end
\#
\# 22 DG3 H2'2 21 DA H1' 2.9606 .010 (\#2.960 5.710 37)
\&rst
ixpk $=5$, nxpk= 0 , iat $=704,652, r 1=2.46, r 2=2.96, r 3=6.01, r 4=6.51$, \&end
\# 22 DG3 H2'2 21 DA H3' 3.2906 .710 (\#3.290 5.51091116 26) \&rst
ixpk $=5$, nxpk= 0 , iat $=704,668, r 1=2.79, r 2=3.29, r 3=6.71, r 4=7.21$, \&end
\# 22 DG3 H2'2 21 DA H2'2 2.5704 .860
\&rst
ixpk $=5$, nxpk $=0$, iat $=704,671, r 1=2.07, r 2=2.57, r 3=4.86, r 4=5.36$, \&end
\#
\# 22 DG3 H2'2 22 DG3 H1' 2.3502 .940
\&rst
ixpk $=5$, nxpk= 0 , iat $=704,684, r 1=1.85, r 2=2.35, r 3=2.94, r 4=3.44$, \&end
\#
\# 22 DG3 H2'2 22 DG3 H8 1.8303 .720 (\#1.830 2.520212236 40) \&rst
ixpk $=2$, nxpk= 0 , iat $=704,687, r 1=1.33, r 2=1.83, r 3=3.72, r 4=4.22$, \&end \#
\# 22 DG3 H2'2 22 DG3 H3' 1.960 2.700 (\#2.260 2.700 33)
\&rst
ixpk $=2$, nxpk= 0 , iat $=704,701, r 1=1.46, r 2=1.96, r 3=2.70, r 4=3.20$, \&end \#
\# 17 SDI HA1 17SDI H2 2.4204 .190 (\#AH2)
\&rst
ixpk $=2$, nxpk $=0$, iat $=526,524, r 1=1.92, r 2=2.42, r 3=4.19, r 4=4.69$, \&end \#
\# 17SDI HA2 17SDI H2 $2.150 \quad 2.530$ (\#AH2)
\&rst
ixpk $=2$, nxpk $=0$, iat $=527,524, r 1=1.65, r 2=2.15, r 3=2.53, r 4=3.03$, \&end \#
\# 17 SDI HB 17 SDI H2 $2.830 \quad 3.810$ (\#AH2 2.830
\&rst
ixpk $=2$, nxpk $=0$, iat $=529,524, r 1=2.33, r 2=2.83, r 3=3.81, r 4=4.31$, \&end \#
\# 18 DA H2 17 SDI HA1 $3.650 \quad 6.780$ (\#AH2)
\&rst
ixpk $=2$, nxpk= 0 , iat $=567,526, r 1=3.15, r 2=3.65, r 3=6.78, r 4=7.28$, \&end
\# 18 DA H2 17 SDI HA2 2.9504 .690 (\#AH2 $2.950 \quad 3.4904143743$)
\&rst
ixpk $=2$, nxpk $=0$, iat $=567,527, r 1=2.45, r 2=2.95, r 3=4.69, r 4=5.19$, \&end
\# 18 DA H2 17 SDI HB $2.700 \quad 3.560$ (\#AH2 2.700 3.260 5)
\&rst
ixpk $=2$, nxpk= 0 , iat $=567,529, r 1=2.20, r 2=2.70, r 3=3.56, r 4=4.06$, \&end \#
\# 1 DC5 H42 22 DG3 O6 1.802 .00
\&rst
ixpk $=0$, nxpk $=0$, iat= 19, 691, r1 = 1.30, r2= 1.80, r3= 2.00, r4= 2.50,
rk2=32.0, rk3=32.0, ir6=1, ialtd=0,
\&end

\&rst
ixpk $=0$, nxpk $=0$, iat $=114,595, r 1=2.35, r 2=2.85, r 3=3.05, r 4=3.55$, \&end
ixpk = 1, nxpk= 0 , iat= 146, 565, r1= 1.11, r2= 1.61, r3= 2.01, r4= 2.51, \&end
\#
\# 5 DT N3 18 DA N1 2.623 .02 (\#2.72 2.92)
\&rst
ixpk $=2$, nxpk= 0 , iat $=145,565, r 1=2.12, r 2=2.62, r 3=3.02, r 4=3.52$, \&end
\#
\# 5 DT O4 18 DA H61 1.742 .14 (\#1.84 2.04)
\&rst
ixpk $=2$, nxpk $=0$, iat $=144,563, r 1=1.24, r 2=1.74, r 3=2.14, r 4=2.64$, \&end
\#
\# 7 DG H1 16 DC N3 1.842 .04
\&rst
ixpk $=2$, nxpk $=0$, iat $=207,493, r 1=1.34, r 2=1.84, r 3=2.04, r 4=2.54$, \&end
\#
\# 7 DG H22 16 DC O2 1.751 .95
\&rst
ixpk $=2$, nxpk $=0$, iat $=211,495, r 1=1.25, r 2=1.75, r 3=1.95, r 4=2.45$, \&end
\#
\# 7 DG N1 16 DC N3 2.853 .05
\&rst
ixpk $=2$, nxpk $=0$, iat $=206,493, r 1=2.35, r 2=2.85, r 3=3.05, r 4=3.55$, \&end
\#
\# 7 DG O6 16 DC H42 1.802 .00
\&rst
ixpk $=2$, nxpk $=0$, iat $=205,492, r 1=1.30, r 2=1.80, r 3=2.00, r 4=2.50$, \&end
\#
\# 7 DG O6 16 DC N4 $2.81 \quad 3.01$
\&rst
ixpk $=2$, nxpk= 0 , iat= 205, 490, r1=2.31, r2= 2.81, r3=3.01, r4=3.51, \&end
\#
\# 8 DT H3 15 DA N1 1.711 .91
\&rst
ixpk $=2$, nxpk= 0 , iat= 243, 461, r1= 1.21, r2= 1.71, r3= 1.91, r4= 2.41, \&end
\#
\# 8 DT N3 15 DA N1 2.72 2.92
\&rst
ixpk= 2, nxpk= 0 , iat= 242, 461, r1= 2.22, r2= 2.72, r3= 2.92, r4= 3.42, \&end
\#

\&rst ixpk $=2$, nxpk= 0 , iat $=241,459, r 1=1.34, r 2=1.84, r 3=2.04, r 4=2.54$, \&end	
9 DC H42 14 DG O6 1.80 2.00	
\&rst ixpk $=2$, $n \times p k=0$, iat $=272,425, r 1=1.30, r 2=1.80, r 3=2.00, r 4=2.50$, \&end	
\# 9 DC N3 14 DG H1 1.84	
\&rst ixpk $=2$, $n \times p k=0$, iat $=273,427, r 1=1.34, r 2=1.84, r 3=2.04, r 4=2.54$, \&end	
\# 9 DC N3 14 DG N1 2.85 3.	
\& rst ixpk $=2$, $n \times p k=0$, iat $=273,426, r 1=2.35, r 2=2.85, r 3=3.05, r 4=3.55$, \&end	
\# 9 DC N4 14 DG O6 2.81 3.01	
\&rst ixpk $=2$, nxpk= 0 , iat $=270,425, r 1=2.31, r 2=2.81, r 3=3.01, r 4=3.51$, \&end	
\# 9 DC O2 14 DG H22 1.75 1.9	
\&rst ixpk $=2$, nxpk $=0$, iat $=275,431, r 1=1.25, r 2=1.75, r 3=1.95, r 4=2.45$, \&end \#	
\# 10 DC H42 13 DG O6 1.80 2.00	
\&rst ixpk=2, nxpk= 0 , iat $=302,392, r 1=1.30, r 2=1.80, r 3=2.00, r 4=2.50$, \&end	
\# 10 DC N3 13 DG H1 1.84 2.0	
\&rst ixpk $=2$, nxpk= 0 , iat $=303,394, r 1=1.34, r 2=1.84, r 3=2.04, r 4=2.54$, \&end	
\# 10 DC N3 13 DG N1 2.85 3.0	
\&rst ixpk $=2$, nxpk= 0 , iat $=303,393, r 1=2.35, r 2=2.85, r 3=3.05, r 4=3.55$, \&end	
\# 10 DC N4 13 DG O6 2.81 3.01	
\&rst ixpk $=2$, nxpk $=0$, iat $=300,392, r 1=2.31, r 2=2.81, r 3=3.01, r 4=3.51$, \&end	
\# 10 DC O2 13 DG H22 1.75 1.95	
\&rst ixpk $=2$, nxpk $=0$, iat $=305,398, r 1=1.25, r 2=1.75, r 3=1.95, r 4=2.45$, \&end	
\# 11 DG3 H1 12 DC5 N3 1.842 .04	
\&rst ixpk $=2$, nxpk= 0 , iat $=332,365, r 1=1.34, r 2=1.84, r 3=2.04, r 4=2.54$, \&end	
\# 11 DG3 H22 12 DC5 O2 1.751 .95	
$\text { ixpk= 2, nxpk= } 0 \text {, iat }=336,367, r 1=1.25, r 2=1.75, r 3=1.95, r 4=2.45 \text {, \&enc }$	

```
#
# 11 DG3 N1 12 DC5 N3 2.85 3.05
    &rst
    ixpk=2, nxpk= 0, iat= 331, 365, r1= 2.35, r2= 2.85, r3=3.05, r4=3.55, &end
#
# 11 DG3 O6 12 DC5 H42 1.80 2.00
&rst
    ixpk=2, nxpk= 0, iat= 330, 364, r1= 1.30, r2= 1.80,r3=2.00, r4= 2.50, &end
#
# 11 DG3 O6 12 DC5 N4 2.81 3.01
&rst
ixpk=2, nxpk= 0, iat=330,362, r1= 2.31, r2= 2.81, r3=3.01, r4=3.51, &end
# 706 atoms read from pdb file Sdl_Major_New_v4.pdb.
# 2 DT ALPHA: (1 DC5 O3')-(2 DT P)-(2 DT O5')-(2 DT C5') -90.0 -30.0
&rst iat = 28, 29, 32, 33,
r1 = -91.0, r2 = -90.0, r3 = -30.0, r4 = -29.0,
rk2 = 100.0, rk3 = 100.0,
&end
# 3 DT ALPHA:(2 DT O3')-(3 DT P)-(3 DT O5')-(3 DT C5') -90.0 -30.0
&rst iat = 60, 61, 64, 65,
        r1 = -91.0, r2 = -90.0, r3 = -30.0, r4 = -29.0,
    &end
#4 DC ALPHA: (3 DT O3')-(4 DC P)-(4 DC O5')-(4 DC C5') -90.0 -30.0
&rst iat = 92, 93, 96, 97,
        r1 = -91.0, r2 = -90.0, r3 = -30.0, r4 = -29.0,
    &end
# 5 DT ALPHA: (4 DC O3')-(5 DT P)-(5 DT O5')-(5 DT C5') -90.0 -30.0
&rst iat = 122, 123, 126, 127,
    r1 = -91.0, r2 = -90.0, r3 = -30.0, r4 = -29.0,
    &end
# 6 DT ALPHA: (5 DT O3')-(6 DT P)-(6 DT O5')-(6 DT C5') -90.0 -30.0
&rst iat = 154, 155, 158, 159,
    r1 = -91.0, r2 = -90.0, r3 = -30.0, r4 = -29.0,
    &end
# 7 DG ALPHA: (6 DT O3')-(7 DG P)-(7 DG O5')-(7 DG C5') -90.0 -30.0
&rst iat = 186, 187, 190, 191,
    r1 = -91.0, r2 = -90.0, r3 = -30.0, r4 = -29.0,
    &end
# 8 DT ALPHA: (7 DG O3')-(8 DT P)-(8 DT O5')-(8 DT C5') -90.0 -30.0
&rst iat = 219, 220, 223, 224,
    r1 = -91.0, r2 = -90.0, r3 = -30.0, r4 = -29.0,
    &end
# 9 DC ALPHA: (8 DT O3')-(9 DC P)-(9 DC O5')-(9 DC C5') -90.0-30.0
&rst iat = 251, 252, 255, 256,
    r1 = -91.0, r2 = -90.0, r3 = -30.0, r4 = -29.0,
```

\&end
\# 10 DC ALPHA: (9 DC O3')-(10 DC P)-(10 DC O5')-(10 DC C5') -90.0-30.0 \&rst iat $=281,282,285,286$, $r 1=-91.0, r 2=-90.0, r 3=-30.0, r 4=-29.0$,
\&end
\# 13 DG ALPHA: (12 DC5 O3')-(13 DG P)-(13 DG O5')-(13 DG C5') -90.0 -30.0 \&rst iat $=373,374,377,378$, $r 1=-91.0, r 2=-90.0, r 3=-30.0, r 4=-29.0$,
\&end
\# 14 DG ALPHA: (13 DG O3')-(14 DG P)-(14 DG O5')-(14 DG C5') -90.0-30.0 \&rst iat $=406,407,410,411$, $r 1=-91.0, r 2=-90.0, r 3=-30.0, r 4=-29.0$, \&end
\# 15 DA ALPHA: (14 DG O3')-(15 DA P)-(15 DA O5')-(15 DA C5') -90.0-30.0 \&rst iat $=439,440,443,444$, $r 1=-91.0, r 2=-90.0, r 3=-30.0, r 4=-29.0$, \&end
\# 16 DC ALPHA: (15 DA O3')-(16 DC P)-(16 DC O5')-(16 DC C5') -90.0 -30.0 \&rst iat $=471,472,475,476$, $r 1=-91.0, r 2=-90.0, r 3=-30.0, r 4=-29.0$, \&end
\# 17 SDI ALPHA: (16 DC O3')-(17 SDI P)-(17 SDI O5')-(17 SDI C5')-120.0 0.0 \&rst iat $=501,502,505,506$, $r 1=-121.0, r 2=-120.0, r 3=0.0, r 4=1.0$, \&end
\# 18 DA ALPHA: (17 SDI O3')-(18 DA P)-(18 DA O5')-(18 DA C5') -90.0 -30.0 \&rst iat $=543,544,547,548$, $r 1=-91.0, r 2=-90.0, r 3=-30.0, r 4=-29.0$, \&end
\# 19 DG ALPHA: (18 DA O3')-(19 DG P)-(19 DG O5')-(19 DG C5') -90.0 -30.0 \&rst iat $=575,576,579,580$, $r 1=-91.0, r 2=-90.0, r 3=-30.0, r 4=-29.0$, \&end
\# 20 DA ALPHA: (19 DG O3')-(20 DA P)-(20 DA O5')-(20 DA C5') -90.0 -30.0 \&rst iat $=608,609,612,613$, $r 1=-91.0, r 2=-90.0, r 3=-30.0, r 4=-29.0$, \&end
\# 21 DA ALPHA: (20 DA O3')-(21 DA P)-(21 DA O5')-(21 DA C5') -90.0-30.0 \&rst iat $=640,641,644,645$, $r 1=-91.0, r 2=-90.0, r 3=-30.0, r 4=-29.0$, \&end
\# 2 DT BETA: (2 DT P)-(2 DT O5')-(2 DT C5')-(2 DT C4') 150.0210 .0
\&rst iat $=29,32,33,36$, $r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0$, \&end
\# 3 DT BETA: (3 DT P)-(3 DT O5')-(3 DT C5')-(3 DT C4') 150.0210 .0
\&rst iat $=61,64,65,68$, $r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0$, \&end
\# 4 DC BETA: (4 DC P)-(4 DC O5')-(4 DC C5')-(4 DC C4') 150.0210 .0 \&rst iat $=93,96,97,100$, $r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0$, \&end
\# 5 DT BETA: (5 DT P)-(5 DT O5')-(5 DT C5')-(5 DT C4') 150.0210 .0 \&rst iat $=123,126,127,130$, $r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0$, \&end
\# 6 DT BETA: (6 DT P)-(6 DT O5')-(6 DT C5')-(6 DT C4') 150.0210 .0 \&rst iat $=155,158,159,162$, $r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0$, \&end
\# 7 DG BETA: (7 DG P)-(7 DG O5')-(7 DG C5')-(7 DG C4') 150.0210 .0 \&rst iat $=187,190,191,194$, $r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0$, \&end
\# 8 DT BETA: (8 DT P)-(8 DT O5')-(8 DT C5')-(8 DT C4') 150.0210 .0 \&rst iat = 220, 223, 224, 227, $r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0$, \&end
\# 9 DC BETA: (9 DC P)-(9 DC O5')-(9 DC C5')-(9 DC C4') 150.0210 .0 \&rst iat $=252,255,256,259$, $r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0$, \&end
\# 10 DC BETA: (10 DC P)-(10 DC O5')-(10 DC C5')-(10 DC C4') 150.0210 .0 \&rst iat $=282,285,286,289$, $r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0$, \&end
\# 13 DG BETA: (13 DG P)-(13 DG O5')-(13 DG C5')-(13 DG C4') 150.0210 .0 \&rst iat $=374,377,378,381$, $r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0$, \&end
\# 14 DG BETA: (14 DG P)-(14 DG O5')-(14 DG C5')-(14 DG C4') 150.0210 .0 \&rst iat $=407,410,411,414$, $r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0$, \&end
\# 15 DA BETA: (15 DA P)-(15 DA O5')-(15 DA C5')-(15 DA C4') 150.0210 .0 \&rst iat $=440,443,444,447$, $r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0$, \&end
\# 16 DC BETA: (16 DC P)-(16 DC O5')-(16 DC C5')-(16 DC C4') 150.0210 .0 \&rst iat $=472,475,476,479$, $r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0$, \&end
\# 17 SDI BETA: (17 SDI P)-(17 SDI O5')-(17 SDI C5')-(17 SDI C4') 120.0240 .0 \&rst iat $=502,505,506,509$, $r 1=119.0, r 2=120.0, r 3=240.0, r 4=241.0$, \&end
\# 18 DA BETA: (18 DA P)-(18 DA O5')-(18 DA C5')-(18 DA C4') 150.0210 .0 \&rst iat $=544,547,548,551$, $r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0$, \&end
\# 19 DG BETA: (19 DG P)-(19 DG O5')-(19 DG C5')-(19 DG C4') 150.0210 .0 \&rst iat $=576,579,580,583$, $r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0$, \&end
\# 20 DA BETA: (20 DA P)-(20 DA O5')-(20 DA C5')-(20 DA C4') 150.0210 .0 \&rst iat $=609,612,613,616$, $r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0$, \&end
\# 21 DA BETA: (21 DA P)-(21 DA O5')-(21 DA C5')-(21 DA C4') 150.0210 .0 \&rst iat $=641,644,645,648$, $r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0$, \&end
\# 2 DT GAMMA: (2 DT O5')-(2 DT C5')-(2 DT C4')-(2 DT C3') 30.090 .0 \&rst iat $=32,33,36,35$, $r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0$, \&end
\# 3 DT GAMMA: (3 DT O5')-(3 DT C5')-(3 DT C4')-(3 DT C3') 30.090 .0 \&rst iat $=64,65,68,87$, r1 = 29.0, r2 = 30.0, r3 = 90.0, r4 = 91.0, \&end
\# 4 DC GAMMA: (4 DC O5')-(4 DC C5')-(4 DC C4')-(4 DC C3') 30.090 .0
\&rst iat $=96,97,100,117$, $r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0$, \&end
\# 5 DT GAMMA: (5 DT O5')-(5 DT C5')-(5 DT C4')-(5 DT C3') 30.090 .0 \&rst iat $=126,127,130,149$, $r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0$,
\&end
\# 6 DT GAMMA: (6 DT O5')-(6 DT C5')-(6 DT C4')-(6 DT C3') 30.090 .0 \&rst iat $=158,159,162,181$, $r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0$, \&end
\# 7 DG GAMMA: (7 DG O5')-(7 DG C5')-(7 DG C4')-(7 DG C3') 30.090 .0 \&rst iat $=190,191,194,214$, $r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0$, \&end
\# 8 DT GAMMA: (8 DT O5')-(8 DT C5')-(8 DT C4')-(8 DT C3') 30.090 .0 \&rst iat $=223,224,227,246$, $r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0$, \&end
\# 9 DC GAMMA: (9 DC O5')-(9 DC C5')-(9 DC C4')-(9 DC C3') 30.090 .0 \&rst iat $=255,256,259,276$, $r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0$, \&end
\# 10 DC GAMMA: (10 DC O5')-(10 DC C5')-(10 DC C4')-(10 DC C3') 30.090 .0 \&rst iat $=285,286,289,306$, $r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0$, \&end
\# 13 DG GAMMA: (13 DG O5')-(13 DG C5')-(13 DG C4')-(13 DG C3') 30.090 .0 \&rst iat $=377,378,381,401$, $r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0$, \&end
\# 14 DG GAMMA: (14 DG O5')-(14 DG C5')-(14 DG C4')-(14 DG C3') 30.090 .0 \&rst iat $=410,411,414,434$, $r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0$, \&end
\# 15 DA GAMMA: (15 DA O5')-(15 DA C5')-(15 DA C4')-(15 DA C3') 30.0 90.0 \&rst iat $=443,444,447,466$, $r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0$, \&end
\# 16 DC GAMMA: (16 DC O5')-(16 DC C5')-(16 DC C4')-(16 DC C3') 30.090 .0 \&rst iat $=475,476,479,496$,

$$
\begin{aligned}
& r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0 \text {, } \\
& \text { \&end }
\end{aligned}
$$

\# 17 SDI GAMMA: (17 SDI O5')-(17 SDI C5')-(17 SDI C4')-(17 SDI C3') 0.0120 .0 \&rst iat $=505,506,509,541$, $r 1=-1.0, r 2=0.0, r 3=120.0, r 4=121.0$,
\&end
\# 18 DA GAMMA: (18 DA O5')-(18 DA C5')-(18 DA C4')-(18 DA C3') 30.0 90.0 \&rst iat $=547,548,551,570$, $r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0$, \&end
\# 19 DG GAMMA: (19 DG O5')-(19 DG C5')-(19 DG C4')-(19 DG C3') 30.090 .0 \&rst iat $=579,580,583,603$, $r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0$, \&end
\# 20 DA GAMMA: (20 DA O5')-(20 DA C5')-(20 DA C4')-(20 DA C3') 30.0 90.0 \&rst iat $=612,613,616,635$, $r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0$, \&end
\# 21 DA GAMMA: (21 DA O5')-(21 DA C5')-(21 DA C4')-(21 DA C3') 30.090 .0 \&rst iat $=644,645,648,667$, $r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0$, \&end
\# 2 DT EPSILN: (2 DT C4')-(2 DT C3')-(2 DT O3')-(3 DT P) 165.0225 .0 \&rst iat $=36,55,60,61$, $r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0$, \&end
\# 3 DT EPSILN: (3 DT C4')-(3 DT C3')-(3 DT O3')-(4 DC P) 165.0225 .0 \&rst iat $=68,87,92,93$, $r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0$, \&end
\# 4 DC EPSILN: (4 DC C4')-(4 DC C3')-(4 DC O3')-(5 DT P) 165.0225 .0 \&rst iat $=100,117,122,123$, $r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0$, \&end
\# 5 DT EPSILN: (5 DT C4')-(5 DT C3')-(5 DT O3')-(6 DT P) 165.0225 .0 \&rst iat = 130, 149, 154, 155, $r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0$, \&end
\# 6 DT EPSILN: (6 DT C4')-(6 DT C3')-(6 DT O3')-(7 DG P) 165.0225 .0 \&rst iat $=162,181,186,187$, $r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0$,
\&end
\# 7 DG EPSILN: (7 DG C4')-(7 DG C3')-(7 DG O3')-(8 DT P) 165.0225 .0
\&rst iat $=194,214,219,220$, $r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0$,
\&end
\# 8 DT EPSILN: (8 DT C4')-(8 DT C3')-(8 DT O3')-(9 DC P) 165.0225 .0 \&rst iat = 227, 246, 251, 252, $r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0$, \&end
\# 9 DC EPSILN: (9 DC C4')-(9 DC C3')-(9 DC O3')-(10 DC P) 165.0225 .0 \&rst iat $=259,276,281,282$, $r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0$, \&end
\# 10 DC EPSILN: (10 DC C4')-(10 DC C3')-(10 DC O3')-(11 DG3 P) 165.0225 .0 \&rst iat $=289,306,311,312$, $r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0$, \&end
\# 13 DG EPSILN: (13 DG C4')-(13 DG C3')-(13 DG O3')-(14 DG P) 165.0225 .0 \&rst iat $=381,401,406,407$, $r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0$, \&end
\# 14 DG EPSILN: (14 DG C4')-(14 DG C3')-(14 DG O3')-(15 DA P) 165.0225 .0 \&rst iat $=414,434,439,440$, $r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0$, \&end
\# 15 DA EPSILN: (15 DA C4')-(15 DA C3')-(15 DA O3')-(16 DC P) 165.0225 .0 \&rst iat $=447,466,471,472$, $r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0$, \&end
\# 16 DC EPSILN: (16 DC C4')-(16 DC C3')-(16 DC O3')-(17 SDI P) 165.0225 .0 \&rst iat $=479,496,501,502$, $r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0$, \&end
\# 17 SDI EPSILN: (17 SDI C4')-(17 SDI C3')-(17 SDI O3')-(18 DA P) 135.0255 .0 \&rst iat $=509,541,543,544$, $r 1=134.0, r 2=135.0, r 3=255.0, r 4=256.0$, \&end
\# 18 DA EPSILN: (18 DA C4')-(18 DA C3')-(18 DA O3')-(19 DG P) 165.0225 .0 \&rst iat $=551,570,575,576$, $r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0$, \&end
\# 19 DG EPSILN: (19 DG C4')-(19 DG C3')-(19 DG O3')-(20 DA P) 165.0225 .0 \&rst iat $=583,603,608,609$, $r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0$, \&end
\# 20 DA EPSILN: (20 DA C4')-(20 DA C3')-(20 DA O3')-(21 DA P) 165.0225 .0
\&rst iat $=616,635,640,641$, $r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0$,
\&end
\# 21 DA EPSILN: (21 DA C4')-(21 DA C3')-(21 DA O3')-(22 DG3 P) 165.0225 .0 \&rst iat $=648,667,672,673$, $r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0$, \&end
\# 2 DT ZETA: (2 DT C3')-(2 DT O3')-(3 DT P)-(3 DT O5') -135.0 -75.0
\&rst iat $=55,60,61,64$, $r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0$, \&end
\# 3 DT ZETA: (3 DT C3')-(3 DT O3')-(4 DC P)-(4 DC O5') -135.0 -75.0 \&rst iat $=87,92,93,96$, $r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0$, \&end
\# 4 DC ZETA: (4 DC C3')-(4 DC O3')-(5 DT P)-(5 DT O5') -135.0 -75.0 \&rst iat $=117,122,123,126$, $r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0$, \&end
\# 5 DT ZETA: (5 DT C3')-(5 DT O3')-(6 DT P)-(6 DT O5') -135.0 -75.0 \&rst iat $=149,154,155,158$, $r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0$, \&end
\# 6 DT ZETA: (6 DT C3')-(6 DT O3')-(7 DG P)-(7 DG O5') -135.0-75.0
\&rst iat $=181,186,187,190$, $r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0$, \&end
\# 7 DG ZETA: (7 DG C3')-(7 DG O3')-(8 DT P)-(8 DT O5') -135.0-75.0 \&rst iat $=214,219,220,223$, $r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0$, \&end
\# 8 DT ZETA: (8 DT C3')-(8 DT O3')-(9 DC P)-(9 DC O5') -135.0 -75.0
\&rst iat $=246,251,252,255$, $r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0$, \&end
\# 10 DC ZETA: (10 DC C3')-(10 DC O3')-(11 DG3 P)-(11 DG3 O5') -135.0 -75.0 \&rst iat $=306,311,312,315$, $r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0$, \&end
\# 13 DG ZETA: (13 DG C3')-(13 DG O3')-(14 DG P)-(14 DG O5') -135.0 -75.0 \&rst iat $=401,406,407,410$, $r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0$, \&end
\# 14 DG ZETA: (14 DG C3')-(14 DG O3')-(15 DA P)-(15 DA O5') -135.0 -75.0 \&rst iat $=434,439,440,443$, $r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0$, \&end
\# 15 DA ZETA: (15 DA C3')-(15 DA O3')-(16 DC P)-(16 DC O5') -135.0 -75.0
\&rst iat $=466,471,472,475$, $r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0$, \&end
\# 16 DC ZETA: (16 DC C3')-(16 DC O3')-(17 SDI P)-(17 SDI O5') -135.0 -75.0 \&rst iat $=496,501,502,505$, $r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0$, \&end
\# 17 SDI ZETA: (17 SDI C3')-(17 SDI O3')-(18 DA P)-(18 DA O5') -165.0-45.0 \&rst iat $=541,543,544,547$, $r 1=-166.0, r 2=-165.0, r 3=-45.0, r 4=-44.0$, \&end
\# 18 DA ZETA: (18 DA C3')-(18 DA O3')-(19 DG P)-(19 DG O5') -135.0-75.0 \&rst iat $=570,575,576,579$, $r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0$, \&end
\# 19 DG ZETA: (19 DG C3')-(19 DG O3')-(20 DA P)-(20 DA O5') -135.0 -75.0 \&rst iat $=603,608,609,612$, $r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0$, \&end
\# 20 DA ZETA: (20 DA C3')-(20 DA O3')-(21 DA P)-(21 DA O5') -135.0 -75.0 \&rst iat $=635,640,641,644$, $r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0$, \&end
\# 21 DA ZETA: (21 DA C3')-(21 DA O3')-(22 DG3 P)-(22 DG3 O5') -135.0-75.0
\&rst iat $=667,672,673,676$, $r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0$, \&end
\# 706 atoms read from pdb file Sdl_Major_New_v4.pdb.
\# 2 DT NU0: (2 DT C4')-(2 DT O4')-(2 DT C1')-(2 DT C2') -44.7-14.7
\&rst iat $=36,38,39,37$, $r 1=-45.7, r 2=-44.7, r 3=-14.7, r 4=-13.7$, rk2 $=32.0, \mathrm{rk} 3=32.0, \quad$ \&end
\# 2 DT NU1: (2 DT O4')-(2 DT C1')-(2 DT C2')-(2 DT C3') 18.148 .1
\&rst iat $=38,39,57,55$, $r 1=17.1, r 2=18.1, r 3=48.1, r 4=49.1$, \&end
\# 2 DT NU2: (2 DT C1')-(2 DT C2')-(2 DT C3')-(2 DT C4') -37.2 -6.7
\&rst iat $=39,57,55,36$, $r 1=-38.2, r 2=-37.2, r 3=-6.7, r 4=-5.7$, \&end
\# 2 DT NU3: (2 DT C2')-(2 DT C3')-(2 DT C4')-(2 DT O4')-16.9 24.2 \&rst iat $=57,55,36,38$, $r 1=-17.9, r 2=-16.9, r 3=24.2, r 4=25.2$, \&end
\# 2 DT NU4: (2 DT C3')-(2 DT C4')-(2 DT O4')-(2 DT C1') -1.9 34.0 \&rst iat $=55,36,38,39$, $r 1=-2.9, r 2=-1.9, r 3=34.0, r 4=35.0$, \&end
\# 3 DT NU0: (3 DT C4')-(3 DT O4')-(3 DT C1')-(3 DT C2') -52.1-22.1 \&rst iat $=68,70,71,89$, $r 1=-53.1, r 2=-52.1, r 3=-22.1, r 4=-21.1$, \&end
\# 3 DT NU1: (3 DT O4')-(3 DT C1')-(3 DT C2')-(3 DT C3') 15.045 .0 \&rst iat $=70,71,89,87$, $r 1=14.0, r 2=15.0, r 3=45.0, r 4=46.0$, \&end
\# 3 DT NU2: (3 DT C1')-(3 DT C2')-(3 DT C3')-(3 DT C4') -27.4 2.6 \&rst iat $=71,89,87,68$, $r 1=-28.4, r 2=-27.4, r 3=2.6, r 4=3.6$, \&end
\# 3 DT NU3: (3 DT C2')-(3 DT C3')-(3 DT C4')-(3 DT O4') -25.0 5.0 \&rst iat $=89,87,68,70$, $r 1=-26.0, r 2=-25.0, r 3=5.0, r 4=6.0$, \&end
\# 3 DT NU4: (3 DT C3')-(3 DT C4')-(3 DT O4')-(3 DT C1') 13.543 .5
\&rst iat $=87,68,70,71$, $r 1=12.5, r 2=13.5, r 3=43.5, r 4=44.5$, \&end
\# 4 DC NU0: (4 DC C4')-(4 DC O4')-(4 DC C1')-(4 DC C2') -52.1-22.1 \&rst iat $=100,102,103,119$, $r 1=-53.1, r 2=-52.1, r 3=-22.1, r 4=-21.1$, \&end
\# 4 DC NU1: (4 DC O4')-(4 DC C1')-(4 DC C2')-(4 DC C3') 15.045 .0 \&rst iat $=102,103,119,117$, $r 1=14.0, r 2=15.0, r 3=45.0, r 4=46.0$, \&end
\# 4 DC NU2: (4 DC C1')-(4 DC C2')-(4 DC C3')-(4 DC C4') -27.4 2.6 \&rst iat $=103,119,117,100$, $r 1=-28.4, r 2=-27.4, r 3=2.6, r 4=3.6$, \&end
\# 4 DC NU3: (4 DC C2')-(4 DC C3')-(4 DC C4')-(4 DC O4') -25.0 5.0 \&rst iat $=119,117,100,102$, $r 1=-26.0, r 2=-25.0, r 3=5.0, r 4=6.0$, \&end
\# 4 DC NU4: (4 DC C3')-(4 DC C4')-(4 DC O4')-(4 DC C1') 13.543 .5 \&rst iat $=117,100,102,103$, $r 1=12.5, r 2=13.5, r 3=43.5, r 4=44.5$, \&end
\# 5 DT NU0: (5 DT C4')-(5 DT O4')-(5 DT C1')-(5 DT C2') -52.1-22.1 \&rst iat $=130,132,133,151$, $r 1=-53.1, r 2=-52.1, r 3=-22.1, r 4=-21.1$, \&end
\# 5 DT NU1: (5 DT O4')-(5 DT C1')-(5 DT C2')-(5 DT C3') 15.045 .0 \&rst iat $=132,133,151,149$, $r 1=14.0, r 2=15.0, r 3=45.0, r 4=46.0$, \&end
\# 5 DT NU2: (5 DT C1')-(5 DT C2')-(5 DT C3')-(5 DT C4') -27.4 2.6
\&rst iat $=133,151,149,130$, $r 1=-28.4, r 2=-27.4, r 3=2.6, r 4=3.6$, \&end
\# 5 DT NU3: (5 DT C2')-(5 DT C3')-(5 DT C4')-(5 DT O4') -25.0 5.0 \&rst iat $=151,149,130,132$, $r 1=-26.0, r 2=-25.0, r 3=5.0, r 4=6.0$, \&end
\# 5 DT NU4: (5 DT C3')-(5 DT C4')-(5 DT O4')-(5 DT C1') 13.543 .5 \&rst iat $=149,130,132,133$,

```
    r1 = 12.5, r2 = 13.5, r3 = 43.5, r4 = 44.5,
    &end
```

\# 7 DG NU0: (7 DG C4')-(7 DG O4')-(7 DG C1')-(7 DG C2') -43.9-13.9
\&rst iat $=194,196,197,216$,
$r 1=-44.9, r 2=-43.9, r 3=-13.9, r 4=-12.9$,
\&end
\# 7 DG NU1: (7 DG O4')-(7 DG C1')-(7 DG C2')-(7 DG C3') 22.252 .2
\&rst iat $=196,197,216,214$,
$r 1=21.2, r 2=22.2, r 3=52.2, r 4=53.2$,
\&end
\# 7 DG NU2: (7 DG C1')-(7 DG C2')-(7 DG C3')-(7 DG C4') -44.6-14.6
\&rst iat $=197,216,214,194$,
$r 1=-45.6, r 2=-44.6, r 3=-14.6, r 4=-13.6$,
\&end
\# 7 DG NU3: (7 DG C2')-(7 DG C3')-(7 DG C4')-(7 DG O4') -3.2 26.8
\&rst iat $=216,214,194,196$,
$r 1=-4.2, r 2=-3.2, r 3=26.8, r 4=27.8$,
\&end
\# 7 DG NU4: (7 DG C3')-(7 DG C4')-(7 DG O4')-(7 DG C1') -4.4 25.6
\&rst iat $=214,194,196,197$,
$r 1=-5.4, r 2=-4.4, r 3=25.6, r 4=26.6$,
\&end
\# 8 DT NU0: (8 DT C4')-(8 DT O4')-(8 DT C1')-(8 DT C2') -52.1-22.1 \&rst iat $=227,229,230,248$, $r 1=-53.1, r 2=-52.1, r 3=-22.1, r 4=-21.1$, \&end
\# 8 DT NU1: (8 DT O4')-(8 DT C1')-(8 DT C2')-(8 DT C3') 15.045 .0 \&rst iat $=229,230,248,246$, $r 1=14.0, r 2=15.0, r 3=45.0, r 4=46.0$, \&end
\# 8 DT NU2: (8 DT C1')-(8 DT C2')-(8 DT C3')-(8 DT C4') -27.4 2.6
\&rst iat $=230,248,246,227$, $r 1=-28.4, r 2=-27.4, r 3=2.6, r 4=3.6$, \&end
\# 8 DT NU3: (8 DT C2')-(8 DT C3')-(8 DT C4')-(8 DT O4') -25.0 5.0 \&rst iat $=248,246,227,229$, $r 1=-26.0, r 2=-25.0, r 3=5.0, r 4=6.0$, \&end
\# 8 DT NU4: (8 DT C3')-(8 DT C4')-(8 DT O4')-(8 DT C1') 13.543 .5 \&rst iat $=246,227,229,230$, $r 1=12.5, r 2=13.5, r 3=43.5, r 4=44.5$,
\&end
\# 9 DC NU0: (9 DC C4')-(9 DC O4')-(9 DC C1')-(9 DC C2') -52.1-22.1
\&rst iat $=259,261,262,278$, $r 1=-53.1, r 2=-52.1, r 3=-22.1, r 4=-21.1$, \&end
\# 9 DC NU1: (9 DC O4')-(9 DC C1')-(9 DC C2')-(9 DC C3') 15.045 .0 \&rst iat = 261, 262, 278, 276, $r 1=14.0, r 2=15.0, r 3=45.0, r 4=46.0$, \&end
\# 9 DC NU2: (9 DC C1')-(9 DC C2')-(9 DC C3')-(9 DC C4') -27.4 2.6
\&rst iat $=262,278,276,259$, $r 1=-28.4, r 2=-27.4, r 3=2.6, r 4=3.6$, \&end
\# 9 DC NU3: (9 DC C2')-(9 DC C3')-(9 DC C4')-(9 DC O4') -25.0 5.0 \&rst iat $=278,276,259,261$, $r 1=-26.0, r 2=-25.0, r 3=5.0, r 4=6.0$, \&end
\# 9 DC NU4: (9 DC C3')-(9 DC C4')-(9 DC O4')-(9 DC C1') 13.543 .5 \&rst iat $=276,259,261,262$, $r 1=12.5, r 2=13.5, r 3=43.5, r 4=44.5$, \&end
\# 10 DC NU0: (10 DC C4')-(10 DC O4')-(10 DC C1')-(10 DC C2') -44.7-14.7 \&rst iat $=289,291,292,308$, $r 1=-45.7, r 2=-44.7, r 3=-14.7, r 4=-13.7$, \&end
\# 10 DC NU1: (10 DC O4')-(10 DC C1')-(10 DC C2')-(10 DC C3') 18.148 .1 \&rst iat $=291,292,308,306$, $r 1=17.1, r 2=18.1, r 3=48.1, r 4=49.1$, \&end
\# 10 DC NU2: (10 DC C1')-(10 DC C2')-(10 DC C3')-(10 DC C4') -37.2 -6.7 \&rst iat $=292,308,306,289$, $r 1=-38.2, r 2=-37.2, r 3=-6.7, r 4=-5.7$, \&end
\# 10 DC NU3: (10 DC C2')-(10 DC C3')-(10 DC C4')-(10 DC O4') -16.9 24.2 \&rst iat $=308,306,289,291$, $r 1=-17.9, r 2=-16.9, r 3=24.2, r 4=25.2$, \&end
\# 10 DC NU4: (10 DC C3')-(10 DC C4')-(10 DC O4')-(10 DC C1') -1.9 34.0 \&rst iat $=306,289,291,292$, $r 1=-2.9, r 2=-1.9, r 3=34.0, r 4=35.0$, \&end
\# 13 DG NU0: (13 DG C4')-(13 DG O4')-(13 DG C1')-(13 DG C2') -44.7-14.7 \&rst iat $=381,383,384,403$, $r 1=-45.7, r 2=-44.7, r 3=-14.7, r 4=-13.7$, \&end
\# 13 DG NU1: (13 DG O4')-(13 DG C1')-(13 DG C2')-(13 DG C3') 18.148 .1 \&rst iat $=383,384,403,401$, $r 1=17.1, r 2=18.1, r 3=48.1, r 4=49.1$, \&end
\# 13 DG NU2: (13 DG C1')-(13 DG C2')-(13 DG C3')-(13 DG C4') -37.2 -6.7 \&rst iat $=384,403,401,381$, $r 1=-38.2, r 2=-37.2, r 3=-6.7, r 4=-5.7$, \&end
\# 13 DG NU3: (13 DG C2')-(13 DG C3')-(13 DG C4')-(13 DG O4')-16.9 24.2 \&rst iat $=403,401,381,383$, $r 1=-17.9, r 2=-16.9, r 3=24.2, r 4=25.2$, \&end
\# 13 DG NU4: (13 DG C3')-(13 DG C4')-(13 DG O4')-(13 DG C1') -1.9 34.0 \&rst iat $=401,381,383,384$, $r 1=-2.9, r 2=-1.9, r 3=34.0, r 4=35.0$, \&end
\# 14 DG NU0: (14 DG C4')-(14 DG O4')-(14 DG C1')-(14 DG C2') -43.9-13.9 \&rst iat $=414,416,417,436$, $r 1=-44.9, r 2=-43.9, r 3=-13.9, r 4=-12.9$, \&end
\# 14 DG NU1: (14 DG O4')-(14 DG C1')-(14 DG C2')-(14 DG C3') 22.252 .2 \&rst iat $=416,417,436,434$, $r 1=21.2, r 2=22.2, r 3=52.2, r 4=53.2$, \&end
\# 14 DG NU2: (14 DG C1')-(14 DG C2')-(14 DG C3')-(14 DG C4') -44.6-14.6 \&rst iat $=417,436,434,414$, $r 1=-45.6, r 2=-44.6, r 3=-14.6, r 4=-13.6$, \&end
\# 14 DG NU3: (14 DG C2')-(14 DG C3')-(14 DG C4')-(14 DG O4') -3.2 26.8 \&rst iat $=436,434,414,416$, $r 1=-4.2, r 2=-3.2, r 3=26.8, r 4=27.8$, \&end
\# 14 DG NU4: (14 DG C3')-(14 DG C4')-(14 DG O4')-(14 DG C1') -4.4 25.6 \&rst iat $=434,414,416,417$, $r 1=-5.4, r 2=-4.4, r 3=25.6, r 4=26.6$, \&end
\# 15 DA NU0: (15 DA C4')-(15 DA O4')-(15 DA C1')-(15 DA C2') -43.9-13.9 \&rst iat $=447,449,450,468$, $r 1=-44.9, r 2=-43.9, r 3=-13.9, r 4=-12.9$, \&end
\# 15 DA NU1: (15 DA O4')-(15 DA C1')-(15 DA C2')-(15 DA C3') 22.252 .2 \&rst iat $=449,450,468,466$, $r 1=21.2, r 2=22.2, r 3=52.2, r 4=53.2$,
\&end
\# 15 DA NU2: (15 DA C1')-(15 DA C2')-(15 DA C3')-(15 DA C4') -44.6-14.6 \&rst iat $=450,468,466,447$, $r 1=-45.6, r 2=-44.6, r 3=-14.6, r 4=-13.6$, \&end
\# 15 DA NU3: (15 DA C2')-(15 DA C3')-(15 DA C4')-(15 DA O4') -3.2 26.8 \&rst iat $=468,466,447,449$, $r 1=-4.2, r 2=-3.2, r 3=26.8, r 4=27.8$, \&end
\# 15 DA NU4: (15 DA C3')-(15 DA C4')-(15 DA O4')-(15 DA C1') -4.4 25.6 \&rst iat $=466,447,449,450$, $r 1=-5.4, r 2=-4.4, r 3=25.6, r 4=26.6$, \&end
\# 16 DC NU0: (16 DC C4')-(16 DC O4')-(16 DC C1')-(16 DC C2') -52.1-22.1 \&rst iat $=479,481,482,498$, $r 1=-53.1, r 2=-52.1, r 3=-22.1, r 4=-21.1$, \&end
\# 16 DC NU1: (16 DC O4')-(16 DC C1')-(16 DC C2')-(16 DC C3') 15.045 .0 \&rst iat $=481,482,498,496$, $r 1=14.0, r 2=15.0, r 3=45.0, r 4=46.0$, \&end
\# 16 DC NU2: (16 DC C1')-(16 DC C2')-(16 DC C3')-(16 DC C4') -27.4 2.6 \&rst iat $=482,498,496,479$, $r 1=-28.4, r 2=-27.4, r 3=2.6, r 4=3.6$, \&end
\# 16 DC NU3: (16 DC C2')-(16 DC C3')-(16 DC C4')-(16 DC O4') -25.0 5.0 \&rst iat $=498,496,479,481$, $r 1=-26.0, r 2=-25.0, r 3=5.0, r 4=6.0$, \&end
\# 16 DC NU4: (16 DC C3')-(16 DC C4')-(16 DC O4')-(16 DC C1') 13.543 .5 \&rst iat $=496,479,481,482$, $r 1=12.5, r 2=13.5, r 3=43.5, r 4=44.5$, \&end
\# 18 DA NU0: (18 DA C4')-(18 DA O4')-(18 DA C1')-(18 DA C2') -43.9-13.9
\&rst iat $=551,553,554,572$, $r 1=-44.9, r 2=-43.9, r 3=-13.9, r 4=-12.9$, \&end
\# 18 DA NU1: (18 DA O4')-(18 DA C1')-(18 DA C2')-(18 DA C3') 22.252 .2 \&rst iat $=553,554,572,570$, $r 1=21.2, r 2=22.2, r 3=52.2, r 4=53.2$,
\&end
\# 18 DA NU2: (18 DA C1')-(18 DA C2')-(18 DA C3')-(18 DA C4') -44.6-14.6 \&rst iat $=554,572,570,551$, $r 1=-45.6, r 2=-44.6, r 3=-14.6, r 4=-13.6$, \&end
\# 18 DA NU3: (18 DA C2')-(18 DA C3')-(18 DA C4')-(18 DA O4') -3.2 26.8 \&rst iat $=572,570,551,553$, $r 1=-4.2, r 2=-3.2, r 3=26.8, r 4=27.8$, \&end
\# 18 DA NU4: (18 DA C3')-(18 DA C4')-(18 DA O4')-(18 DA C1') -4.4 25.6 \&rst iat $=570,551,553,554$, $r 1=-5.4, r 2=-4.4, r 3=25.6, r 4=26.6$, \&end
\# 19 DG NU0: (19 DG C4')-(19 DG O4')-(19 DG C1')-(19 DG C2') -43.9-13.9 \&rst iat $=583,585,586,605$, $r 1=-44.9, r 2=-43.9, r 3=-13.9, r 4=-12.9$, \&end
\# 19 DG NU1: (19 DG O4')-(19 DG C1')-(19 DG C2')-(19 DG C3') 22.252 .2 \&rst iat $=585,586,605,603$, $r 1=21.2, r 2=22.2, r 3=52.2, r 4=53.2$, \&end
\# 19 DG NU2: (19 DG C1')-(19 DG C2')-(19 DG C3')-(19 DG C4') -44.6-14.6 \&rst iat $=586,605,603,583$, $r 1=-45.6, r 2=-44.6, r 3=-14.6, r 4=-13.6$, \&end
\# 19 DG NU3: (19 DG C2')-(19 DG C3')-(19 DG C4')-(19 DG O4') -3.2 26.8 \&rst iat $=605,603,583,585$, $r 1=-4.2, r 2=-3.2, r 3=26.8, r 4=27.8$, \&end
\# 19 DG NU4: (19 DG C3')-(19 DG C4')-(19 DG O4')-(19 DG C1') -4.4 25.6 \&rst iat $=603,583,585,586$, $r 1=-5.4, r 2=-4.4, r 3=25.6, r 4=26.6$, \&end
\# 20 DA NU0: (20 DA C4')-(20 DA O4')-(20 DA C1')-(20 DA C2') -43.9-13.9 \&rst iat $=616,618,619,637$,
$r 1=-44.9, r 2=-43.9, r 3=-13.9, r 4=-12.9$, \&end
\# 20 DA NU1: (20 DA O4')-(20 DA C1')-(20 DA C2')-(20 DA C3') 22.252 .2 \&rst iat $=618,619,637,635$, $r 1=21.2, r 2=22.2, r 3=52.2, r 4=53.2$,
\&end
\# 20 DA NU2: (20 DA C1')-(20 DA C2')-(20 DA C3')-(20 DA C4') -44.6-14.6 \&rst iat $=619,637,635,616$, $r 1=-45.6, r 2=-44.6, r 3=-14.6, r 4=-13.6$, \&end
\# 20 DA NU3: (20 DA C2')-(20 DA C3')-(20 DA C4')-(20 DA O4') -3.2 26.8 \&rst iat $=637,635,616,618$, $r 1=-4.2, r 2=-3.2, r 3=26.8, r 4=27.8$, \&end
\# 20 DA NU4: (20 DA C3')-(20 DA C4')-(20 DA O4')-(20 DA C1') -4.4 25.6 \&rst iat $=635,616,618,619$, $r 1=-5.4, r 2=-4.4, r 3=25.6, r 4=26.6$, \&end
\# 21 DA NU0: (21 DA C4')-(21 DA O4')-(21 DA C1')-(21 DA C2') -44.7-14.7 \&rst iat $=648,650,651,669$, $r 1=-45.7, r 2=-44.7, r 3=-14.7, r 4=-13.7$, \&end
\# 21 DA NU1: (21 DA O4')-(21 DA C1')-(21 DA C2')-(21 DA C3') 18.148 .1 \&rst iat $=650,651,669,667$, $r 1=17.1, r 2=18.1, r 3=48.1, r 4=49.1$, \&end
\# 21 DA NU2: (21 DA C1')-(21 DA C2')-(21 DA C3')-(21 DA C4') -37.2 -6.7 \&rst iat $=651,669,667,648$, $r 1=-38.2, r 2=-37.2, r 3=-6.7, r 4=-5.7$, \&end
\# 21 DA NU3: (21 DA C2')-(21 DA C3')-(21 DA C4')-(21 DA O4')-16.9 24.2 \&rst iat $=669,667,648,650$, $r 1=-17.9, r 2=-16.9, r 3=24.2, r 4=25.2$, \&end
\# 21 DA NU4: (21 DA C3')-(21 DA C4')-(21 DA O4')-(21 DA C1') -1.9 34.0 \&rst iat $=667,648,650,651$, $r 1=-2.9, r 2=-1.9, r 3=34.0, r 4=35.0$, \&end

Distance restraints used in the rMD calculations of the R isomer adduct


```
#
# 2 DT Q5 1 DC5 H6 2.970 3.780 (#3.270 3.780 32)
&rst
ixpk=3, nxpk= 0, iat= -1, 13, r1= 2.47, r2= 2.97, r3= 4.54, r4= 5.04,
igr1= 46, 47, 48,
&end
#
# 2 DT Q5 1 DC5 H5 3.590 5.330
&rst
ixpk=3, nxpk= 0, iat= -1, 15,r1=3.09,r2=3.59,r3=6.40, r4=6.90,
igr1= 46, 47, 48,
&end
#
# 2 DT Q5 1 DC5 H3' 3.410 3.670
&rst
ixpk=3, nxpk= 0, iat= -1, 24,r1= 2.91, r2= 3.41, r3= 4.41, r4= 4.91,
igr1= 46, 47, 48,
&end
#
# 2 DT Q5 1 DC5 H2'2 2.740 3.780
&rst
ixpk=3, nxpk= 0, iat= -1, 27,r1=2.24,r2= 2.74,r3=4.54, r4= 5.04,
igr1= 46, 47, 48,
&end
#
# 2 DT H3' 2 DT H1' 3.170 4.040
&rst
ixpk=3, nxpk= 0, iat= 56, 40,r1=2.67, r2=3.17, r3=4.04, r4=4.54, &end
#
# 2 DT H3' 2 DT H6 2.920 4.020 (#2.920 3.420 20 26)
&rst
ixpk=3, nxpk= 0, iat= 56, 43,r1=2.42, r2= 2.92, r3=4.02, r4=4.52, &end
#
# 2 DT H2'1 2 DT H1' 2.260 3.030
&rst
ixpk=3, nxpk= 0, iat= 58, 40,r1= 1.76, r2=2.26,r3=3.03, r4=3.53, &end
#
## 2 DT H2'2 2 DT H6 1.930 3.370 (#2.230 3.070 25 38)
&rst
ixpk=3, nxpk= 0, iat= 59, 43,r1= 1.43, r2= 1.93,r3=3.37, r4=3.87, &end
#
# 3 DT H6 2 DT H1' 3.500 4.790 (#3.500 4.490 23)
&rst
ixpk=4, nxpk= 0, iat= 75, 40, r1=3.00, r2=3.50, r3=4.79, r4= 5.29, &end
#
# 3 DT H6 2 DT H6 3.400 4.360
&rst
ixpk=4, nxpk= 0, iat= 75, 43,r1= 2.90, r2= 3.40,r3=4.36, r4=4.86, &end
#
# 3 DT H6 2 DT H2'2 2.160 3.380
&rst
```

```
    ixpk= 4, nxpk= 0, iat= 75, 59, r1= 1.66, r2= 2.16,r3=3.38, r4=3.88, &end
#
# 3 DT H6 3 DT H1' 3.160 4.170
    &rst
    ixpk= 4, nxpk= 0, iat= 75, 72,r1= 2.66, r2=3.16,r3=4.17, r4=4.67, &end
#
# 3 DT Q5 2 DT H1' 4.100 5.310
    &rst
    ixpk=4, nxpk= 0, iat= -1, 40, r1= 3.60, r2= 4.10, r3=6.38, r4=6.88,
igr1= 78, 79, 80,
&end
#
# 3 DT Q5 2 DT H2'2 2.770 4.710
&rst
    ixpk=4, nxpk= 0, iat= -1, 59, r1= 2.27, r2= 2.77, r3= 5.66, r4=6.16,
igr1= 78,79, 80,
&end
#
# 3 DT Q5 3 DT H6 2.660 3.360
&rst
    ixpk=4, nxpk= 0, iat= -1, 75,r1=2.16, r2= 2.66, r3= 4.04, r4= 4.54,
igr1= 78,79, 80,
&end
#
# 3 DT H3' 3 DT H6 2.700 3.760 (#2.700 3.160 21 38)
&rst
    ixpk=3, nxpk= 0, iat= 88, 75,r1=2.20, r2= 2.70, r3=3.76, r4=4.26, &end
#
# 3 DT H2'2 3 DT H1' 2.150 3.160
&rst
    ixpk=3, nxpk= 0, iat= 91, 72,r1= 1.65, r2= 2.15,r3=3.16, r4=3.66, &end
#
# 3 DT H2'2 3 DT H6 2.050 3.630 (#2.050 3.030 37 40)
&rst
    ixpk=3, nxpk= 0, iat= 91, 75,r1= 1.55, r2= 2.05,r3=3.63, r4=4.13, &end
#
# 4 DC H1' 3 DT H1' 3.230 4.270 (#3.230 3.670 30 41)
    &rst
    ixpk=3, nxpk= 0, iat= 104,72,r1=2.73,r2=3.23,r3=4.27, r4=4.77,&end
#
# 4 DC H1' 3 DT H2'1 3.540 5.400
&rst
    ixpk=3, nxpk= 0, iat= 104, 90,r1=3.04, r2= 3.54,r3=5.40, r4=5.90, &end
#
# 4 DC H6 3 DT H1' 3.280 4.050
&rst
ixpk=3, nxpk= 0, iat= 107,72,r1=2.78,r2=3.28,r3=4.05, r4=4.55,&end
#
# 4 DC H6 3 DT Q5 3.410 5.030 (#3.410 4.730 10)
&rst
ixpk=4, nxpk= 0, iat= 107, -1, r1= 2.91, r2= 3.41, r3= 6.04, r4= 6.54,
```

igr2 $=78,79,80$,
\&end
\#
\# 4 DC H6 3 DT H3' 3.7205 .170
\&rst
ixpk $=4$, nxpk $=0$, iat $=107,88, r 1=3.22, r 2=3.72, r 3=5.17, r 4=5.67$, \&end
\#
\# 4 DC H6 3 DT H2'1 2.0903 .860 (\#2.690 3.86013 29)
\&rst
ixpk $=3, n x p k=0$, iat $=107,90, r 1=1.59, r 2=2.09, r 3=3.86, r 4=4.36$, \&end \#
\# 4 DC H6 3 DT H2'2 2.3503 .120
\&rst
ixpk $=3, n x p k=0$, iat $=107,91, r 1=1.85, r 2=2.35, r 3=3.12, r 4=3.62$, \&end \#
\# 4 DC H6 4 DC H1' 3.1003 .900
\&rst
ixpk $=3$, nxpk= 0 , iat= $107,104, r 1=2.60, r 2=3.10, r 3=3.90, r 4=4.40$, \&end \#
\# 4 DC H5 3 DT H1' 3.8004 .920 (\#3.800 4.620 32)
\&rst
ixpk $=4$, nxpk= 0 , iat $=109,72, r 1=3.30, r 2=3.80, r 3=4.92, r 4=5.42$, \&end \#
\# 4 DC H5 3 DT H6 3.380 5.180
\&rst
ixpk $=4$, nxpk= 0 , iat $=109,75, r 1=2.88, r 2=3.38, r 3=5.18, r 4=5.68$, \&end \#
\# 4 DC H5 3 DT Q5 3.5904 .070
\&rst
ixpk $=4$, nxpk $=0$, iat $=109,-1, r 1=3.09, r 2=3.59, r 3=4.89, r 4=5.39$,
igr2= 78, 79, 80,
\&end
\#
\# 4 DC H5 3 DT H2'1 3.1203 .900 (\#3.120 3.600 25)
\&rst
ixpk $=3$, nxpk $=0$, iat $=109,90, r 1=2.62, r 2=3.12, r 3=3.90, r 4=4.40$, \&end \#
\# 4 DC H5 3 DT H2'2 3.1204 .300
\&rst
ixpk $=3, n \times p k=0$, iat $=109,91, r 1=2.62, r 2=3.12, r 3=4.30, r 4=4.80$, \&end
\# 4 DC H3' 4 DC H1' 3.6405 .720 (\#4.540 5.720413 22)
\&rst
ixpk= $5, n x p k=0$, iat $=118,104, r 1=3.14, r 2=3.64, r 3=5.72, r 4=6.22$, \&end
\#
\# 4 DC H3' 4 DC H6 2.9104 .160 (\#2.910 3.5605 18)
\&rst
ixpk $=3, \mathrm{nxpk}=0$, iat $=118,107, r 1=2.41, r 2=2.91, r 3=4.16, r 4=4.66$, \&end
\#
\# 4 DC H2'1 3 DT H1' 3.5405 .620 (\#3.540 4.720 9 31)
\&rst
ixpk $=4$, nxpk $=0$, iat $=120,72, r 1=3.04, r 2=3.54, r 3=5.62, r 4=6.12$, \&end \# \# 4 DC H2'1 4 DC H1' 2.2703 .550 (\#2.870 3.5501144) \&rst
ixpk $=3$, nxpk= 0 , iat= $120,104, r 1=1.77, r 2=2.27, r 3=3.55, r 4=4.05$, \&end
\# 4 DC H2'1 4 DC H6 2.1003 .660 (\#2.100 2.7601621 33)
\&rst
ixpk $=2$, nxpk= 0 , iat $=120,107, r 1=1.60, r 2=2.10, r 3=3.66, r 4=4.16$, \&end
\# 4 DC H2'1 4 DC H5 3.2905 .440 (\#3.290 4.540820 35)
\&rst
ixpk $=4$, nxpk= 0 , iat $=120,109, r 1=2.79, r 2=3.29, r 3=5.44, r 4=5.94$, \&end \#
\# 4 DC H2'1 4 DC H3' 2.3503 .760 (\#2.950 3.760273747 48)
\&rst
ixpk $=3$, nxpk= 0 , iat= $120,118, r 1=1.85, r 2=2.35, r 3=3.76, r 4=4.26$, \&end \#
\# 4 DC H2'2 4 DC H1' 2.1903 .240 (\#2.190 2.6402 13) \&rst
ixpk $=2, n \times p k=0$, iat $=121,104, r 1=1.69, r 2=2.19, r 3=3.24, r 4=3.74$, \&end \#
\# 4 DC H2'2 4 DC H6 2.0503 .550 (\#2.650 3.55036) \&rst
ixpk $=3$, nxpk $=0$, iat= $121,107, r 1=1.55, r 2=2.05, r 3=3.55, r 4=4.05$, \&end \#
\# 5 DT H6 4 DC H1' 3.6805 .380
(\#5 DT H1' 4 DC H2'2 2.520 3.090)
\&rst
ixpk $=3$, nxpk $=0$, iat= $137,104, r 1=3.18, r 2=3.68, r 3=5.38, r 4=5.88$, \&end \#
\# 5 DT H6 4 DC H6 2.9504 .290 (\#2.950 3.6917 26)
\&rst
ixpk $=3$, nxpk $=0$, iat $=137,107, r 1=2.45, r 2=2.95, r 3=4.29, r 4=4.79$, \&end \#
\# 5 DT H6 4 DC H3' 4.5306 .990 (\#4.830 6.990 23)
\&rst
ixpk $=6, \mathrm{nxpk}=0$, iat $=137,118, r 1=4.03, r 2=4.53, r 3=6.99, r 4=7.49$, \&end \# \# 5 DT H6 4 DC H2'1 3.0303 .830
\&rst
ixpk $=6, n \times p k=0$, iat $=137,120, r 1=2.53, r 2=3.03, r 3=3.83, r 4=4.33$, \&end \#
\# 5 DT H6 4 DC H2'2 2.4903 .210
\&rst
ixpk = 6, nxpk= 0 , iat= 137, 121, r1= 1.99, r2= 2.49, r3=3.21, r4=3.71, \&end \#
\# 5 DT H6 5 DT H1' 3.2304 .900
\&rst
ixpk $=6, n x p k=0$, iat $=137,134, r 1=2.73, r 2=3.23, r 3=4.90, r 4=5.40$, \&end \#

```
# 5 DT Q5 5 DT H2'2 2.770 4.790 (#2.770 3.890 37 39 43)
&rst
    ixpk= 3, nxpk= 0, iat= -1, 153, r1= 2.27, r2= 2.77, r3= 5.75, r4= 6.25,
igr1= 140, 141, 142,
&end
#
# 5 DT Q5 4 DC H1' 4.170 5.400
&rst
ixpk= 3, nxpk= 0, iat= -1, 104, r1= 3.67, r2= 4.17, r3=6.49, r4= 6.99,
igr1= 140, 141, 142,
&end
#
# 5 DT Q5 4 DC H6 2.790 3.540
&rst
    ixpk=3, nxpk= 0, iat= -1, 107, r1= 2.29, r2= 2.79, r3=4.25, r4= 4.75,
igr1= 140, 141, 142,
&end
#
# 5 DT Q5 4 DC H5 2.850 3.520 (#3.150 3.520 22)
&rst
    ixpk= 3, nxpk= 0, iat= -1, 109, r1= 2.35, r2= 2.85, r3= 4.23, r4=4.73,
igr1= 140, 141, 142,
&end
#
# 5 DT Q5 4 DC H2'1 3.300 4.140
&rst
    ixpk=3, nxpk= 0, iat= -1, 120, r1= 2.80, r2= 3.30, r3= 4.97, r4= 5.47,
igr1= 140, 141, 142,
&end
#
# 5 DT Q5 4 DC H2'2 3.250 4.820
&rst
ixpk=3, nxpk= 0, iat= -1, 121, r1= 2.75, r2= 3.25, r3= 5.79, r4=6.29,
igr1= 140, 141, 142,
&end
#
# 5 DT Q5 5 DT H1' 3.040 6.040
&rst
    ixpk=3, nxpk= 0, iat= -1, 134, r1= 2.54, r2= 3.04, r3= 7.25, r4= 7.75,
igr1= 140, 141, 142,
&end
#
# 5 DT Q5 5 DT H6 2.400 3.280 (#2.700 3.280 4)
&rst
ixpk= 3, nxpk= 0, iat= -1, 137, r1= 1.90, r2= 2.40, r3= 3.94, r4= 4.44,
igr1= 140, 141, 142,
&end
#
# 5 DT H3' 5 DT H6 2.650 4.290 (#2.650 3.090289 13)
&rst
ixpk=3, nxpk= 0, iat= 150, 137, r1= 2.15, r2= 2.65, r3= 4.29, r4= 4.79, &end
```


5 DT H3' 5 DT Q5 3.640 5.760 (\#3.640 5.460 13)

 &rst
 ixpk= 5, nxpk= 0, iat= 150, -1, r1= 3.14, r2= 3.64, r3=6.92, r4= 7.42,
 igr2= 140, 141, 142,
\&end

5 DT H2'1 5 DT H1' 2.120 3.770

 &rst
 ixpk= 5, nxpk= 0, iat= 152, 134, r1= 1.62, r2= 2.12, r3=3.77, r4= 4.27, &end

5 DT H2'1 5 DT H6 2.250 2.980 (\#1.950 2.680 46 47)

 &rst
 ixpk=2, nxpk= 0, iat= 152, 137, r1= 1.75, r2= 2.25, r3= 2.98, r4= 3.48, &end

5 DT H2'1 5 DT Q5 2.350 4.550

\&rst
ixpk= 2, nxpk= 0, iat= 152, -1, r1= 1.85, r2= 2.35, r3= 5.46, r4= 5.96,
igr2= 140, 141, 142,
\&end

5 DT H2'1 5 DT H3' 2.410 3.440

 &rst
 ixpk=2, nxpk= 0, iat= 152,150,r1= 1.91,r2=2.41,r3=3.44,r4=3.94, &end

5 DT H2'2 5 DT H1' 1.920 3.100 (\#1.920 2.800 18)

\&rst
ixpk=2, nxpk= 0, iat=153,134,r1=1.42,r2= 1.92,r3=3.10,r4=3.60, \&end

5 DT H2'2 5 DT H6 2.020 5.060 (\#2.320 5.060 5)

\&rst
ixpk= 5, nxpk= 0, iat= 153,137,r1= 1.52, r2= 2.02, r3= 5.06, r4= 5.56, \&end

1 DC5 H1' 2 DT Q5 3.980 4.800 (\#3.980 4.500 10)

\&rst
ixpk=4, nxpk= 0, iat= 10, -1,r1=3.48,r2=3.98,r3= 5.76, r4= 6.26,
igr2= 46, 47, 48,
\&end

6 DT H6 5 DT H1' 3.850 5.710 (\#3.850 5.410 36)

 &rst
 ixpk= 5, nxpk= 0, iat= 169, 134, r1= 3.35, r2= 3.85, r3= 5.71, r4= 6.21, &end

6 DT H6 5 DT Q5 2.630 6.560

 &rst
 ixpk= 5, nxpk= 0, iat= 169, -1, r1= 2.13, r2= 2.63, r3= 7.88, r4= 8.38,
 igr2= 140, 141, 142,
\&end

6 DT H6 5 DT H3' 3.830 5.200 (\#3.830 4.300 16 21 24)

\&rst

```
ixpk \(=4\), nxpk= 0 , iat \(=169,150, r 1=3.33, r 2=3.83, r 3=5.20, r 4=5.70\), \&end \# \# 6 DT H6 5 DT H2'1 2.8004 .470
\&rst
ixpk \(=4\), nxpk= 0 , iat= 169, 152, r1 = 2.30, r2 \(=2.80, r 3=4.47, r 4=4.97\), \&end \#
\# 6 DT H6 6 DT H1' 2.9105 .390
\&rst
ixpk \(=4\), nxpk= 0 , iat \(=169,166, r 1=2.41, r 2=2.91, r 3=5.39, r 4=5.89\), \&end \#
\# 6 DT Q5 5 DT H1' 3.0104 .370
\&rst
ixpk \(=4\), nxpk \(=0\), iat \(=-1,134, r 1=2.51, r 2=3.01, r 3=5.25, r 4=5.75\), igr1= 172, 173, 174,
\&end
\#
\# 6 DT Q5 5 DT H6 3.000 4.090 \&rst
ixpk \(=4\), nxpk= 0 , iat \(=-1,137, r 1=2.50, r 2=3.00, r 3=4.91, r 4=5.41\),
igr1 \(=172,173,174\),
\&end
\#
\# 6 DT Q5 5 DT H2'1 2.5103 .890 \&rst
ixpk \(=4\), nxpk \(=0\), iat \(=-1,152, r 1=2.01, r 2=2.51, r 3=4.67, r 4=5.17\), igr1 = 172, 173, 174,
\&end
\#
\# 6 DT Q5 6 DT H1' 3.3405 .580
\&rst
ixpk \(=4\), nxpk \(=0\), iat \(=-1,166, r 1=2.84, r 2=3.34, r 3=6.70, r 4=7.20\),
igr1= 172, 173, 174,
\&end
\#
\# 6 DT Q5 6 DT H6 2.5503 .220
\&rst
ixpk \(=4\), nxpk \(=0\), iat \(=-1,169, r 1=2.05, r 2=2.55, r 3=3.87, r 4=4.37\),
igr1= 172, 173, 174,
\&end
\#
\# 6 DT H3' 6 DT H1' 3.2204 .580
\&rst
ixpk \(=4\), nxpk \(=0\), iat \(=182,166, r 1=2.72, r 2=3.22, r 3=4.58, r 4=5.08\), \&end

\# 6 DT H3' 6 DT H6 3.0905 .190
\&rst
ixpk \(=4\), nxpk= 0 , iat \(=182,169, r 1=2.59, r 2=3.09, r 3=5.19, r 4=5.69\), \&end \#
\# 6 DT H2'1 6 DT H1' 2.2104 .540 (\#2.810 4.5405 23)
\&rst
ixpk \(=4\), nxpk= 0 , iat \(=184,166, r 1=1.71, r 2=2.21, r 3=4.54, r 4=5.04\), \&end
```


6 DT H2'1 6 DT H6 2.300 3.520 (\#2.000 3.220 20 49)

\&rst
ixpk=3, nxpk= 0, iat= 184, 169, r1= 1.80, r2= 2.30,r3=3.52, r4= 4.02, \&end

6 DT H2'1 6 DT Q5 3.050 4.810 (\#3.050 4.510 32)

\&rst
ixpk= 4, nxpk= 0, iat= 184, -1, r1= 2.55, r2= 3.05, r3= 5.78, r4= 6.28,
igr2= 172, 173, 174,
\&end

6 DT H2'1 6 DT H3' 2.350 2.790

\&rst
ixpk= 4, nxpk= 0, iat= 184, 182, r1= 1.85, r2= 2.35, r3=2.79, r4=3.29, \&end

6 DT H2'2 6 DT H1' 1.950 3.070 (\#1.950 2.570 10 16)

\&rst
ixpk=2, nxpk= 0, iat= 185, 166, r1= 1.45, r2= 1.95, r3=3.07, r4=3.57, \&end

6 DT H2'2 6 DT H6 1.830 3.300 (\#1.830 2.400 37 38 41 47 48)

\&rst
ixpk=2, nxpk= 0, iat= 185,169,r1= 1.33,r2= 1.83,r3=3.30,r4=3.80, \&end

7 DG H8 6 DT H1' 3.890 5.760

\&rst
ixpk=2, nxpk= 0, iat=201, 166, r1=3.39,r2=3.89,r3=5.76,r4=6.26, \&end

7 DG H8 6 DT H6 4.260 6.250

\&rst
ixpk=2, nxpk= 0, iat=201,169, r1=3.76,r2=4.26,r3=6.25,r4=6.75, \&end

7 DG H8 6 DT H3' 3.660 4.960 (\#3.660 4.060 2 8 13)

\&rst
ixpk=4, nxpk= 0, iat=201,182,r1=3.16,r2=3.66,r3=4.96,r4=5.46, \&end

7 DG H8 6 DT H2'1 2.160 3.650 (\#3.060 3.6504 17 25)

\&rst
ixpk=3, nxpk= 0, iat= 201, 184, r1= 1.66, r2= 2.16,r3=3.65, r4= 4.15, \&end

7 DG H8 6 DT H2'2 2.700 3.650 (\#3.000 3.350 30 39)

\&rst
ixpk=3, nxpk= 0, iat= 201, 185,r1= 2.20, r2= 2.70, r3=3.65, r4= 4.15, \&end

7 DG H3' 6 DT H1' 3.670 5.100 (\#3.670 4.200 9 18 27)

 &rst
 ixpk=4, nxpk= 0, iat= 215, 166, r1= 3.17, r2= 3.67, r3= 5.10, r4= 5.60, &end

7 DG H3' 7 DG H1' 3.440 3.950

 &rst
 ixpk= 4, nxpk= 0, iat= 215, 198,r1= 2.94, r2= 3.44, r3= 3.95, r4= 4.45, &end


```
```


7 DG H3' 7 DG H8 3.290 4.430 (\#3.290 4.130 26)

 &rst
 ixpk= 4, nxpk= 0, iat=215, 201, r1= 2.79, r2= 3.29, r3= 4.43, r4= 4.93, &end

7 DG H2'1 7 DG H1' 2.160 4.440 (\#2.760 4.440 13 21)

 &rst
 ixpk= 4, nxpk= 0, iat= 217, 198, r1= 1.66, r2= 2.16, r3= 4.44, r4= 4.94, &end

7 DG H2'1 7 DG H8 2.120 3.930 (\#2.120 2.730137 19)

 &rst
 ixpk=2, nxpk= 0, iat= 217, 201, r1= 1.62, r2= 2.12, r3= 3.93, r4= 4.43, &end

7 DG H2'2 7 DG H1' 2.240 3.160 (\#2.240 2.860 33)

 &rst
 ixpk=2, nxpk= 0, iat=218, 198,r1= 1.74,r2= 2.24, r3=3.16, r4=3.66, &end

7 DG H2'2 7 DG H8 2.450 4.430 (\#2.750 4.430 6)

\&rst
ixpk= 4, nxpk= 0, iat=218, 201, r1= 1.95,r2= 2.45,r3=4.43,r4=4.93, \&end

7 DG H2'2 7 DG H3' 2.460 3.030 (\#2.460 3.230 20)

\&rst
ixpk=3, nxpk= 0, iat=218, 215,r1= 1.96,r2= 2.46,r3=3.03,r4=3.53, \&end

8 DT H6 7 DG H1' 3.050 3.590

\&rst
ixpk=3,nxpk= 0, iat=234, 198,r1=2.55,r2=3.05,r3=3.59,r4=4.09, \&end

8 DT H6 7 DG H8 4.020 5.970

\&rst
ixpk=3, nxpk= 0, iat=234, 201, r1=3.52, r2=4.02, r3=5.97, r4=6.47, \&end

8 DT H6 7 DG H2'1 2.170 4.660 (\#3.070 4.660 5 13 31)

\&rst
ixpk=4, nxpk= 0, iat=234, 217, r1= 1.67, r2= 2.17, r3= 4.66, r4= 5.16, \&end

8 DT H6 7 DG H2'2 2.540 3.560

 &rst
 ixpk=4, nxpk= 0, iat=234, 218,r1=2.04,r2=2.54,r3=3.56,r4=4.06, &end

8 DT H6 8 DT H1' 3.190 3.860 (\#3.190 3.560 13)

 &rst
 ixpk=3, nxpk= 0, iat= 234, 231, r1= 2.69, r2= 3.19, r3= 3.86, r4= 4.36, &end

8 DT Q5 7 DG H1' 3.580 4.250

 &rst
 ixpk=3, nxpk= 0, iat= -1, 198, r1=3.08, r2= 3.58, r3=5.10, r4= 5.60,
 igr1= 237, 238, 239,
\&end

8 DT Q5 7 DG H8 2.950 3.450

```
\&rst
ixpk \(=3\), nxpk \(=0\), iat \(=-1,201, r 1=2.45, r 2=2.95, r 3=4.14, r 4=4.64\), igr1= 237, 238, 239,
\&end
\#
\# 8 DT Q5 7 DG H3' 3.7404 .540 (\#3.740 4.240 22)
\&rst
ixpk \(=4\), nxpk \(=0\), iat \(=-1,215, r 1=3.24, r 2=3.74, r 3=5.45, r 4=5.95\),
igr1= 237, 238, 239,
\&end
\#
\# 8 DT Q5 7 DG H2'1 2.8204 .610
\&rst
ixpk \(=4\), nxpk \(=0\), iat \(=-1,217, r 1=2.32, r 2=2.82, r 3=5.54, r 4=6.04\), igr1= 237, 238, 239,
\&end
\#
\# 8 DT Q5 7 DG H2'2 2.4903 .510 \&rst
ixpk \(=4, n \times p k=0\), iat \(=-1,218, r 1=1.99, r 2=2.49, r 3=4.22, r 4=4.72\), igr1= 237, 238, 239,
\&end
\#
\# 8 DT Q5 8 DT H1' 3.8305 .230 \&rst
ixpk \(=4\), nxpk \(=0\), iat \(=-1,231, r 1=3.33, r 2=3.83, r 3=6.28, r 4=6.78\), igr1= 237, 238, 239,
\&end
\#
\# 8 DT Q5 8 DT H6 2.6203 .170
\&rst
ixpk \(=4\), nxpk \(=0\), iat \(=-1,234, r 1=2.12, r 2=2.62, r 3=3.81, r 4=4.31\),
igr1= 237, 238, 239,
\&end
\#
\# 8 DT H3' 8 DT H1' 3.2104 .690
\&rst
ixpk \(=4\), nxpk \(=0\), iat \(=247,231, r 1=2.71, r 2=3.21, r 3=4.69, r 4=5.19\), \&end \#
\# 8 DT H2'1 7 DG H1' 3.7204 .910 (\#3.720 4.610 24)
\&rst
ixpk \(=4\), nxpk= 0 , iat \(=249,198, r 1=3.22, r 2=3.72, r 3=4.91, r 4=5.41\), \&end \#
\# 8 DT H2'1 8 DT H1' 2.7403 .600
\&rst
ixpk \(=4\), nxpk= 0 , iat \(=249,231, r 1=2.24, r 2=2.74, r 3=3.60, r 4=4.10\), \&end
```



```
\# 8 DT H2'1 8 DT H6 2.1702 .680
\&rst
ixpk \(=4\), nxpk= 0 , iat= 249, 234, r1= 1.67, r2= 2.17, r3= 2.68, r4=3.18, \&end \#
```


8 DT H2'1 8 DT Q5 2.600 4.050

 &rst
 ixpk= 4, nxpk= 0, iat= 249, -1, r1= 2.10, r2= 2.60, r3= 4.86, r4= 5.36,
 igr2= 237, 238, 239,
\&end

8 DT H2'2 8 DT H1' 2.300 2.680

 &rst
 ixpk=4, nxpk= 0, iat=250, 231,r1= 1.80,r2= 2.30,r3=2.68,r4=3.18, &end

8 DT H2'2 8 DT H6 2.540 3.680 (\#2.540 3.380 29)

 &rst
 ixpk=3, nxpk= 0, iat= 250, 234, r1= 2.04, r2= 2.54, r3= 3.68, r4= 4.18, &end

8 DT H2'2 8 DT Q5 2.580 6.340

\&rst
ixpk=3, nxpk= 0, iat=250, -1, r1= 2.08, r2= 2.58, r3= 7.61, r4= 8.11,
igr2= 237, 238, 239,
\&end

9 DC H6 8 DT H1' 2.830 3.640 (\#3.130 3.640)

\&rst
ixpk=3, nxpk= 0, iat=266, 231,r1=2.33,r2=2.83,r3=3.64,r4=4.14, \&end

9 DC H6 8 DT H3' 3.640 4.810 (\#3.640 4.210 17 23)

\&rst
ixpk=4, nxpk= 0, iat=266, 247,r1=3.14,r2=3.64,r3=4.81,r4=5.31, \&end

9 DC H6 8 DT H2'1 3.350 4.930

\&rst
ixpk=4, nxpk= 0, iat=266, 249, r1= 2.85,r2=3.35,r3=4.93,r4=5.43, \&end

9 DC H6 8 DT H2'2 2.520 3.130 (\#2.520 3.130 10 47)

\&rst
ixpk=3,nxpk= 0, iat=266,250,r1=2.02,r2=2.52,r3=3.13,r4=3.63, \&end

9 DC H5 8 DT H1' 3.700 4.170

\&rst
ixpk=3, nxpk= 0, iat= 268, 231,r1=3.20, r2=3.70,r3=4.17, r4=4.67, \&end

9 DC H5 8 DT Q5 3.890 4.540

(\#9 DC H5 8 DT H6 3.630 4.260)
\&rst
ixpk=3, nxpk= 0, iat= 268, -1, r1= 3.39, r2= 3.89, r3= 5.45, r4= 5.95,
igr2= 237, 238, 239,
\&end

9 DC H5 8 DT H2'1 3.010 3.370

\&rst
ixpk= 3, nxpk= 0, iat= 268, 249, r1= 2.51, r2= 3.01, r3=3.37, r4= 3.87, \&end


```

```


10 DC H6 9 DC H1' 3.830 5.300 (\#3.830 4.400 11 22)

 &rst
 ixpk=4, nxpk= 0, iat= 296, 263, r1=3.33, r2= 3.83, r3= 5.30, r4= 5.80, &end

10 DC H6 9 DC H2'1 2.480 3.950 (\#3.080 3.950 10 35)

 &rst
 ixpk=3, nxpk= 0, iat= 296, 279, r1= 1.98, r2= 2.48,r3=3.95, r4=4.45, &end

10 DC H6 9 DC H2'2 2.710 3.240

 &rst
 ixpk=3, nxpk= 0, iat= 296, 280, r1= 2.21, r2= 2.71, r3=3.24, r4=3.74, &end

10 DC H6 10 DC H1' 3.090 3.700

 &rst
 ixpk=3, nxpk= 0, iat=296, 293, r1= 2.59,r2=3.09,r3=3.70, r4=4.20, &end

10 DC H5 9 DC H2'1 3.220 3.470

\&rst
ixpk=3, nxpk= 0, iat=298, 279, r1=2.72, r2=3.22,r3=3.47, r4=3.97, \&end

10 DC H5 9 DC H2'2 2.670 3.610 (\#3.270 3.610 21 29)

\&rst
ixpk=3, nxpk= 0, iat= 298, 280, r1= 2.17, r2= 2.67,r3=3.61, r4=4.11, \&end

10 DC H3' 10 DC H1' 3.830 5.680

\&rst
ixpk=3,nxpk= 0, iat=307, 293,r1=3.33,r2=3.83,r3=5.68,r4=6.18, \&end

9 DC H3' 10 DC H5 3.510 5.080 (\#3.510 3.880 1 13 20 26 29)

\&rst
ixpk=3, nxpk= 0, iat=277,298,r1=3.01,r2=3.51,r3=5.08,r4=5.58, \&end

10 DC H2'1 10 DC H1' 2.250 4.190 (\#2.850 4.190 5 9)

\&rst
ixpk=4, nxpk= 0, iat=309,293,r1= 1.75,r2=2.25,r3=4.19,r4=4.69, \&end

10 DC H2'1 10 DC H6 2.000 3.760 (\#2.000 2.560 2 3 6 13)

\&rst
ixpk=2, nxpk= 0, iat=309, 296, r1= 1.50, r2= 2.00, r3=3.76, r4= 4.26, \&end

10 DC H2'1 10 DC H5 3.150 5.690 (\#3.150 5.090 13 24)

\&rst
ixpk= 5, nxpk= 0, iat= 309, 298, r1= 2.65, r2=3.15, r3= 5.69, r4= 6.19, \&end

10 DC H2'1 10 DC H3' 2.420 3.440

\&rst
ixpk= 5, nxpk= 0, iat= 309, 307, r1= 1.92, r2= 2.42, r3=3.44, r4=3.94, \&end

10 DC H2'2 10 DC H1' 2.140 3.170 (\#2.140 2.570 23 45)

\&rst

```
ixpk \(=2\), nxpk= 0 , iat \(=310,293, r 1=1.64, r 2=2.14, r 3=3.17, r 4=3.67\), \&end \#
\# 10 DC H2'2 10 DC H6 2.3803 .990 (\#2.680 3.990 27) \&rst
ixpk \(=3, n x p k=0\), iat \(=310,296, r 1=1.88, r 2=2.38, r 3=3.99, r 4=4.49\), \&end \#
\# 11 DG3 H8 10 DC H1' 3.6404 .710 (\#3.640 4.11017 19) \&rst
ixpk \(=4\), nxpk \(=0\), iat \(=326,293, r 1=3.14, r 2=3.64, r 3=4.71, r 4=5.21\), \&end \#
\# 11 DG3 H8 10 DC H3' 4.0505 .010
\&rst
ixpk \(=4\), nxpk= 0 , iat \(=326,307, r 1=3.55, r 2=4.05, r 3=5.01, r 4=5.51\), \&end \#
\# 11 DG3 H8 10 DC H2'1 2.8204 .160 (\#3.120 4.160 33)
\&rst
ixpk \(=4\), nxpk= 0 , iat \(=326,309, r 1=2.32, r 2=2.82, r 3=4.16, r 4=4.66\), \&end \#
\# 11 DG3 H8 10 DC H2'2 2.7903 .490
\&rst
ixpk \(=4\), nxpk= 0 , iat \(=326,310, r 1=2.29, r 2=2.79, r 3=3.49, r 4=3.99\), \&end \#
\# 11 DG3 H8 11 DG3 H1' 3.3704 .900
\&rst
ixpk \(=4\), nxpk \(=0\), iat \(=326,323, r 1=2.87, r 2=3.37, r 3=4.90, r 4=5.40\), \&end \#
\# 11 DG3 H3' 11 DG3 H8 2.5004 .580 (\#2.500 3.38081838 40) \&rst
ixpk \(=3\), nxpk \(=0\), iat \(=340,326, r 1=2.00, r 2=2.50, r 3=4.58, r 4=5.08\), \&end \#
\# 11 DG3 H2'1 11 DG3 H1' 1.9803 .080 (\#1.980 2.4803741 ) \&rst
ixpk \(=2\), nxpk \(=0\), iat \(=342,323, r 1=1.48, r 2=1.98, r 3=3.08, r 4=3.58\), \&end \#
\# 11 DG3 H2'1 11 DG3 H8 2.4305 .230
\&rst
ixpk \(=2\), nxpk= 0 , iat \(=342,326, r 1=1.93, r 2=2.43, r 3=5.23, r 4=5.73\), \&end \#
\# 11 DG3 H2'2 11 DG3 H8 2.0002 .520
\&rst
ixpk \(=2\), nxpk= 0 , iat \(=343,326, r 1=1.50, r 2=2.00, r 3=2.52, r 4=3.02\), \&end \#
\# 11 DG3 H2'2 11 DG3 H3' 1.8003 .080
\&rst
ixpk \(=2\), nxpk= 0 , iat \(=343,340, r 1=1.30, r 2=1.80, r 3=3.08, r 4=3.58\), \&end \#
\# 12 DC5 H6 12 DC5 H1' 2.7003 .770 (\# 2.7003 .1707 13)
\&rst
ixpk=2, nxpk= 0 , iat \(=358,355, r 1=2.20, r 2=2.70, r 3=3.77, r 4=4.27\), \&end \#
\# 12 DG5 H3' 12 DC5 H1' 3.6105 .750 (\#3.910 5.750 30)
\&rst
ixpk \(=5\), nxpk= 0 , iat \(=369,355, r 1=3.11, r 2=3.61, r 3=5.75, r 4=6.25\), \&end \#
\# 12 DC5 H2'1 12 DC5 H1' 2.3905 .150 (\#3.190 5.150416 21) \&rst
ixpk \(=5\), nxpk= 0 , iat= \(371,355, r 1=1.89, r 2=2.39, r 3=5.15, r 4=5.65\), \&end
\#
\# 12 DC5 H2'1 12 DC5 H6 2.0403 .830 (\#2.040 2.630192635 46)
\&rst
    ixpk \(=2, n x p k=0\), iat \(=371,358, r 1=1.54, r 2=2.04, r 3=3.83, r 4=4.33\), \&end
\#
\# 12 DC5 H2'1 12 DC5 H5 4.0605 .640
\&rst
    ixpk \(=2\), nxpk \(=0\), iat \(=371,360, r 1=3.56, r 2=4.06, r 3=5.64, r 4=6.14\), \&end
\#
\# 12 DC5 H2'2 12 DC5 H1' 2.0003 .280 (\#2.000 2.6806 36)
\&rst
    ixpk \(=2\), \(n \times p k=0\), iat \(=372,355, r 1=1.50, r 2=2.00, r 3=3.28, r 4=3.78\), \&end
\#
\# 12 DC5 H2'2 12 DC5 H5 2.3305 .340 (\#2.330 3.0401359293942 43)
\&rst
    ixpk \(=3\), nxpk= 0 , iat \(=372,360, r 1=1.83, r 2=2.33, r 3=5.34, r 4=5.84\), \&end
\#
\# 13 DG H8 12 DC5 H1' 3.7606 .470
\&rst
    ixpk \(=3\), nxpk \(=0\), iat \(=388,355, r 1=3.26, r 2=3.76, r 3=6.47, r 4=6.97\), \&end
\#
\# 13 DG H8 12 DC5 H3' 3.1903 .880 (\#3.190 3.58048 )
\&rst
    ixpk \(=3\), nxpk \(=0\), iat \(=388,369, r 1=2.69, r 2=3.19, r 3=3.88, r 4=4.38\), \&end
\#
\# 13 DG H8 12 DC5 H2'1 2.6704 .020
    \&rst
    ixpk \(=3, n x p k=0\), iat \(=388,371, r 1=2.17, r 2=2.67, r 3=4.02, r 4=4.52\), \&end
\#
\# 13 DG H8 12 DC5 H2'2 2.3604 .170
    \&rst
    ixpk \(=3\), nxpk= 0 , iat \(=388,372, r 1=1.86, r 2=2.36, r 3=4.17, r 4=4.67\), \&end
\#
\# 13 DG H8 13 DG H1' 3.1305 .100
    \&rst
    ixpk \(=3\), nxpk= 0 , iat= \(388,385, r 1=2.63, r 2=3.13, r 3=5.10, r 4=5.60\), \&end
\#
\# 13 DG H3' 13 DG H1' 3.3905 .140
\&rst
ixpk \(=3, n x p k=0\), iat \(=402,385, r 1=2.89, r 2=3.39, r 3=5.14, r 4=5.64\), \&end
\#
\# 13 DG H3' 13 DG H8 3.2905 .170
\&rst
    ixpk=3, nxpk= 0 , iat= 402, 388, r1= 2.79, r2=3.29, r3=5.17, r4=5.67, \&end
\#
```


13 DG H2'1 13 DG H1' 2.340 3.730

 &rst
 ixpk=3, nxpk= 0, iat= 404,385,r1= 1.84, r2= 2.34, r3=3.73, r4= 4.23, &end

13 DG H2'1 13 DG H8 1.960 3.190 (\#1.960 2.890 17)

\&rst
ixpk=2, nxpk= 0, iat= 404, 388, r1= 1.46, r2= 1.96, r3=3.19, r4=3.69, \&end

13 DG H2'2 13 DG H1' 2.030 3.160

 &rst
 ixpk=2, nxpk= 0, iat=405,385,r1= 1.53, r2= 2.03,r3=3.16,r4=3.66, &end

13 DG H2'2 13 DG H8 2.290 4.250

 &rst
 ixpk=2, nxpk= 0, iat= 405, 388, r1= 1.79, r2= 2.29, r3=4.25, r4=4.75, &end

14 DG H1' 13 DG H1' 3.250 4.620 (\#3.250 3.720 10 24 26)

\&rst
ixpk=3, nxpk= 0, iat=418,385,r1=2.75,r2=3.25,r3=4.62,r4=5.12, \&end

14 DG H8 13DG H1' 3.210 3.920 (\#3.210 3.620 32)

\&rst
ixpk=3, nxpk= 0, iat=421, 385,r1= 2.71, r2=3.21,r3=3.92, r4=4.42, \&end

14 DG H8 13DG H3' 4.400 6.630

\&rst
ixpk=3, nxpk= 0, iat=421, 402, r1=3.90,r2=4.40,r3=6.63,r4=7.13, \&end

14DG H8 14DG H1' 3.490 3.900

\&rst
ixpk=3, nxpk= 0, iat=421, 418,r1=2.99,r2=3.49,r3=3.90,r4=4.40, \&end

14 DG H3' 14 DG H1' 3.170 4.000 (\#3.170 3.400 7 25)

\&rst
ixpk=3, nxpk= 0, iat=435,418,r1=2.67,r2=3.17,r3=4.00,r4=4.50, \&end

14 DG H3' 14 DG H8 3.210 4.320 (\#3.210 3.420 13 16 21)

\&rst
ixpk=3, nxpk= 0, iat= 435, 421, r1= 2.71, r2= 3.21, r3= 4.32, r4= 4.82, \&end

14 DG H2'1 14 DG H1' 2.400 4.770 (\#3.000 4.770 5 20)

\&rst
ixpk=4, nxpk= 0, iat= 437, 418,r1= 1.90,r2= 2.40,r3=4.77, r4= 5.27, \&end

14 DG H2'2 14 DG H1' 2.250 3.030 (\#2.250 2.730 9)

\&rst
ixpk=2, nxpk= 0, iat= 438, 418, r1= 1.75, r2= 2.25, r3=3.03, r4=3.53, \&end

14 DG H2'2 14 DG H8 2.570 3.270 (\#2.570 2.970 48)

\&rst
ixpk= 2, nxpk= 0, iat= 438, 421, r1= 2.07, r2= 2.57, r3= 3.27, r4= 3.77, \&end

```
```


14 DG H2'2 14 DG H3' 2.040 3.120 (\#2.640 3.120 15 22)

 &rst
 ixpk=3, nxpk= 0, iat= 438, 435,r1= 1.54, r2= 2.04, r3=3.12, r4= 3.62, &end

15 DA H8 14 DG H1' 3.030 4.350 (\#3.030 3.450 18 23 31)

 &rst
 ixpk=3, nxpk= 0, iat=454,418,r1=2.53,r2=3.03,r3=4.35,r4=4.85, &end

15 DA H8 14 DG H8 3.890 4.550 (\#3.890 4.250 19)

 &rst
 ixpk=4, nxpk= 0, iat=454, 421,r1=3.39,r2=3.89,r3=4.55,r4=5.05, &end

15 DA H8 14 DG H2'2 2.830 3.930

 &rst
 ixpk=4, nxpk= 0, iat=454, 438,r1=2.33,r2=2.83,r3=3.93,r4=4.43, &end

15 DA H8 15 DA H1' 3.020 3.860

\&rst
ixpk=4, nxpk= 0, iat=454, 451,r1=2.52, r2= 3.02,r3=3.86, r4=4.36, \&end

15 DA H3' 15 DA H1' 3.340 3.980

\&rst
ixpk=4, nxpk= 0, iat= 467, 451,r1= 2.84,r2=3.34,r3=3.98,r4=4.48, \&end

15 DA H3' 15 DA H8 2.940 3.930 (\#2.940 3.330 27 48)

\&rst
ixpk=3, nxpk= 0, iat=467, 454,r1=2.44,r2=2.94,r3=3.93,r4=4.43, \&end

15 DA H2'1 15 DA H1' 2.220 4.870 (\#2.520 4.870 7)

\&rst
ixpk=4, nxpk= 0, iat=469,451,r1= 1.72,r2=2.22,r3=4.87,r4=5.37, \&end

15 DA H2'1 15 DA H8 1.970 4.170 (\#1.970 2.970 124 11)

\&rst
ixpk=2, nxpk= 0, iat=469,454,r1= 1.47, r2= 1.97, r3=4.17, r4=4.67, \&end

15 DA H2'2 15 DA H1' 2.030 3.110 (\#2.030 2.810 29)

\&rst
ixpk=2, nxpk= 0, iat=470, 451,r1= 1.53,r2=2.03,r3=3.11,r4=3.61, \&end

15 DA H2'2 15 DA H8 2.510 4.490 (\#2.810 4.490 33)

 &rst
 ixpk=4, nxpk= 0, iat=470,454,r1= 2.01,r2= 2.51,r3=4.49,r4=4.99, &end

16 DC H6 15 DA H1' 3.380 4.610 (\#3.380 3.710 13 20 32)

\&rst
ixpk=3, nxpk= 0, iat= 486, 451,r1= 2.88,r2= 3.38,r3=4.61, r4= 5.11, \&end

16 DC H6 15 DA H8 3.570 4.750 (\#3.570 4.450 24)

\&rst

```
ixpk \(=4\), nxpk \(=0\), iat \(=486,454, r 1=3.07, r 2=3.57, r 3=4.75, r 4=5.25\), \&end \# \# 16 DC H6 15 DA H3' 3.8805 .060 \&rst
ixpk \(=4\), nxpk= 0 , iat \(=486,467, r 1=3.38, r 2=3.88, r 3=5.06, r 4=5.56\), \&end \#
\# 16 DC H6 15 DA H2'1 2.430 5.180 (\#3.030 5.180 11 46)
\&rst
ixpk \(=5, n x p k=0\), iat \(=486,469, r 1=1.93, r 2=2.43, r 3=5.18, r 4=5.68\), \&end \#
\# 16 DC H6 15 DA H2'2 2.4403 .080
\&rst
ixpk \(=5, n x p k=0\), iat \(=486,470, r 1=1.94, r 2=2.44, r 3=3.08, r 4=3.58\), \&end \#
\# 16 DC H5 15 DA H1' 4.3105 .760
(\#16 DC H5 6 DT Q5 4.990 5.670)
\&rst
ixpk \(=5\), nxpk= 0 , iat \(=488,451, r 1=3.81, r 2=4.31, r 3=5.76, r 4=6.26\), \&end \#
\# 16 DC H5 15 DA H8 3.3504 .090 (\#3.350 4.09017 25) \&rst
ixpk \(=4\), nxpk= 0 , iat \(=488,454, r 1=2.85, r 2=3.35, r 3=4.09, r 4=4.59\), \&end \#
\# 16 DC H5 15 DA H2'2 3.1003 .700
\&rst
ixpk \(=4\), nxpk \(=0\), iat \(=488,470, r 1=2.60, r 2=3.10, r 3=3.70, r 4=4.20\), \&end \#
\# 16 DC H3' 16 DC H1' 2.9803 .810
\&rst
ixpk \(=4\), nxpk \(=0\), iat \(=497,483, r 1=2.48, r 2=2.98, r 3=3.81, r 4=4.31\), \&end \#
\# 16 DC H3' 16 DC H6 2.8904 .180 (\#2.890 3.2801619 31)
\&rst
ixpk \(=3, n \times p k=0\), iat \(=497,486, r 1=2.39, r 2=2.89, r 3=4.18, r 4=4.68\), \&end \#
\# 16 DC H3' 16 DC H5 4.4706 .520
\&rst
ixpk \(=3\), nxpk= 0 , iat \(=497,488, r 1=3.97, r 2=4.47, r 3=6.52, r 4=7.02\), \&end \#
\# 16 DC H2'1 16 DC H1' 2.3104 .820 (\#2.910 4.8206 23)
\&rst
ixpk \(=4\), nxpk= 0 , iat \(=499,483, r 1=1.81, r 2=2.31, r 3=4.82, r 4=5.32\), \&end \#
\# 16 DC H2'1 16 DC H6 2.0403 .540 (\#2.040 2.9408 29)
\&rst
ixpk \(=2\), nxpk= 0 , iat \(=499,486, r 1=1.54, r 2=2.04, r 3=3.54, r 4=4.04\), \&end \#
\# 16 DC H2'1 16 DC H5 2.9505 .390 (\# 2.9504 .1904922 36) \&rst
ixpk \(=2\), nxpk= 0 , iat= 499, 488, r1 = 2.45, r2= 2.95, r3=5.39, r4=5.89, \&end \#
```


16 DC H2'1 16 DC H3' 2.140 3.160

 &rst
 ixpk=2, nxpk= 0, iat= 499, 497, r1= 1.64, r2= 2.14, r3=3.16, r4=3.66, &end

16 DC H2'2 16 DC H1' 2.060 3.070 (\#2.060 2.770 10)

 &rst
 ixpk=2, nxpk= 0, iat= 500, 483,r1= 1.56,r2= 2.06,r3=3.07, r4=3.57, &end

16 DC H2'2 16 DC H6 1.950 4.580 (\#2.550 4.580 3 13)

 &rst
 ixpk=4, nxpk= 0, iat= 500, 486,r1= 1.45,r2= 1.95,r3=4.58, r4= 5.08, &end

16 DC H2'2 16 DC H5 2.930 5.450

 &rst
 ixpk=4, nxpk= 0, iat= 500, 488,r1=2.43,r2= 2.93,r3=5.45,r4=5.95,&end

16 DC H2'2 16 DC H3' 2.250 4.940 (\#2.850 4.940 7 15)

\&rst
ixpk=4, nxpk= 0, iat= 500, 497,r1= 1.75,r2= 2.25,r3=4.94,r4=5.44, \&end

17 RDI H2'1 17 RDI H1' 2.400 4.490 (\#2.700 4.490 19)

\&rst
ixpk=4, nxpk= 0, iat= 515,513,r1= 1.90,r2= 2.40,r3=4.49,r4=4.99, \&end

17 RDI H2'2 17 RDI H1' 2.130 3.090

\&rst
ixpk=4, nxpk= 0, iat=516,513,r1=1.63,r2=2.13,r3=3.09,r4=3.59, \&end

17 RDI HA1 5 DT H1' 3.210 5.770 (\#3.210 5.470 26)

\&rst
ixpk= 5, nxpk= 0, iat=526,134,r1=2.71,r2=3.21,r3=5.77,r4=6.27, \&end

17 RDI HA1 6 DT Q5 2.880 4.630

\&rst
ixpk= 5, nxpk= 0, iat= 526, -1, r1= 2.38, r2= 2.88, r3= 5.56, r4=6.06,
igr2= 172, 173, 174,
\&end

17 RDI HA1 17 RDI H2 3.340 3.800

 &rst
 ixpk= 5, nxpk= 0, iat= 526,524, r1= 2.84, r2= 3.34, r3= 3.80, r4= 4.30, &end

17 RDI HA2 17 RDI H2 1.800 2.530 (\#1.800 2.230 42)

\&rst
ixpk=2, nxpk= 0, iat= 527,524, r1= 1.30, r2= 1.80,r3=2.53, r4=3.03, \&end

17 RDI HB 5 DT H1' 4.540 6.120

\&rst
ixpk=2, nxpk= 0, iat= 529, 134, r1= 4.04, r2= 4.54, r3= 6.12, r4= 6.62, \&end

17 RDI HB 17 RDI H2 2.080 2.550 (\#2.140 2.630 13 34(HA2))

```
\&rst
ixpk \(=2\), nxpk \(=0\), iat \(=529,524, r 1=1.58, r 2=2.08, r 3=2.55, r 4=3.05\), \&end \# \# 17 RDI HC 5 DT H1' 2.7003 .360 \&rst ixpk= 2, nxpk= 0 , iat \(=531,134, r 1=2.20, r 2=2.70, r 3=3.36, r 4=3.86\), \&end \# \# 17 RDI HC 6 DT H6 4.3805 .290 \&rst ixpk \(=2\), nxpk= 0 , iat \(=531,169, r 1=3.88, r 2=4.38, r 3=5.29, r 4=5.79\), \&end \#
\# 17 RDI HC 6 DT Q5 3.5406 .280 (\#3.840 6.280 30)
\&rst
ixpk \(=6\), nxpk \(=0\), iat \(=531,-1, r 1=3.04, r 2=3.54, r 3=7.54, r 4=8.04\),
igr2= 172, 173, 174,
\&end
\#
\# 17 RDI HC 17 RDI H2 2.3004 .480 (\#3.540 5.350343738394041 44) \&rst
ixpk= \(5, n x p k=0\), iat \(=531,524, r 1=1.80, r 2=2.30, r 3=4.48, r 4=4.98\), \&end \#
\# 17 RDI HD1 5 DT H6 3.6304 .990 (\#3.630 4.690 27) \&rst
ixpk \(=4\), nxpk= 0 , iat \(=533,137, r 1=3.13, r 2=3.63, r 3=4.99, r 4=5.49\), \&end \#
\# 17 RDI HD1 5 DT Q5 \(3.120 \quad 5.440\)
\&rst
ixpk \(=4\), nxpk= 0 , iat \(=533,-1, r 1=2.62, r 2=3.12, r 3=6.53, r 4=7.03\), igr2= 140, 141, 142,
\&end
\#
\# 17 RDI HD1 5 DT H2'1 2.6003 .410
\&rst
ixpk \(=4, \mathrm{nxpk}=0\), iat \(=533,152, r 1=2.10, r 2=2.60, r 3=3.41, r 4=3.91\), \&end \#
\# 17 RDI HD1 5 DT H1' \(3.560 \quad 6.240\)
\&rst
ixpk \(=4\), nxpk= 0 , iat \(=533,134, r 1=3.06, r 2=3.56, r 3=6.24, r 4=6.74\), \&end \#
\# 17 RDI HD1 6 DT Q5 2.5405 .040 (\#2.840 5.040 23)
\&rst
ixpk \(=5\), nxpk \(=0\), iat \(=533,-1, r 1=2.04, r 2=2.54, r 3=6.05, r 4=6.55\),
igr2= 172, 173, 174,
\&end
\#
\# 17 RDI HD2 5 DT H2'1 3.1305 .560
(\#17 RDI HD1 17 RDI HA2 2.250 3.550)
\&rst
ixpk= 5, nxpk= 0 , iat \(=534,152, r 1=2.63, r 2=3.13, r 3=5.56, r 4=6.06\), \&end \#
\# 17 RDI HD2 6 DT Q5 \(3.310 \quad 5.720\)
```

\&rst
ixpk= 5, nxpk= 0, iat= 534, -1, r1= 2.81, r2= 3.31, r3= 6.87, r4= 7.37,
igr2= 172, 173, 174,
\&end

17 RDI HD2 5 DT H1' 3.320 5.590

 (#17 RDI HD2 17 RDI H2 2.160 3.470 #2.160 2.870 21 29)
 \&rst
ixpk= 5, nxpk= 0, iat= 534, 134, r1= 2.82, r2= 3.32, r3= 5.59,r4= 6.09, \&end

17 RDI H8 16 DC H6 4.540 6.280

 (#17 RDI HD2 17 RDI HA2 2.680 6.090)
 \&rst
ixpk= 5, nxpk= 0, iat= 540, 486, r1=4.04, r2= 4.54, r3=6.28, r4= 6.78, \&end

17 RDI H8 16 DC H3' 3.760 4.260

\&rst
ixpk= 5, nxpk= 0, iat= 540, 497, r1= 3.26, r2= 3.76,r3=4.26,r4=4.76, \&end

17 RDI H8 16 DC H2'1 3.190 4.260

\&rst
ixpk= 5, nxpk= 0, iat= 540, 499, r1= 2.69, r2= 3.19, r3=4.26, r4=4.76, \&end

17 RDI H8 16 DC H2'2 3.220 4.130

\&rst
ixpk= 5, nxpk= 0, iat= 540, 500, r1=2.72, r2=3.22,r3=4.13,r4=4.63, \&end

17 RDI H8 17 RDI H1' 2.900 3.860 (\#2.900 3.560 48)

\&rst
ixpk=3, nxpk= 0, iat= 540, 513,r1=2.40,r2= 2.90,r3=3.86,r4=4.36, \&end

17 RDI H8 17 RDI H2'1 2.020 3.020 (\#2.020 2.720 15)

\&rst
ixpk=2, nxpk= 0, iat= 540, 515,r1= 1.52, r2= 2.02,r3=3.02,r4=3.52, \&end

17 RDI H8 17 RDI H2'2 2.330 4.660 (\#2.930 4.660 3 10)

\&rst
ixpk=4, nxpk= 0, iat= 540, 516, r1= 1.83,r2= 2.33,r3=4.66,r4=5.16, \&end

17 RDI H3' 17 RDI H8 3.260 4.770 (\#3.260 4.170 6 33)

\&rst
ixpk=4, nxpk= 0, iat= 542, 540,r1=2.76,r2=3.26,r3=4.77,r4=5.27, \&end

18 DA H8 17 RDI H1' 3.300 5.770 (\#3.900 5.770 16 31)

\&rst
ixpk= 5, nxpk= 0, iat= 558,513, r1= 2.80,r2=3.30,r3=5.77, r4= 6.27, \&end

18 DA H8 17 RDI H2'1 2.610 4.100 (\#2.910 4.100 22)

\&rst
ixpk= 4, nxpk= 0, iat= 558,515,r1= 2.11, r2= 2.61, r3=4.10, r4= 4.60, \&end


```
```


18 DA H8 17 RDI H2'2 2.830 4.410

 &rst
 ixpk= 4, nxpk= 0, iat= 558, 516, r1= 2.33, r2= 2.83, r3=4.41, r4= 4.91, &end

18 DA H8 17 RDI H3' 3.930 5.360 (\#3.930 4.460 11 20 25)

 &rst
 ixpk= 4, nxpk= 0, iat= 558, 542, r1=3.43, r2= 3.93, r3=5.36,r4= 5.86, &end

18 DA H8 18 DA H1' 3.210 6.280

 &rst
 ixpk=4, nxpk= 0, iat= 558,555,r1=2.71, r2=3.21,r3=6.28, r4=6.78, &end

18 DA H2 17 RDI HA2 2.730 3.730 (\# 2.810 3.2101245724 34 36 45)

 &rst
 ixpk=2, nxpk= 0, iat= 567, 527, r1= 2.23, r2= 2.73,r3=3.73, r4= 4.23, &end

18 DA H2 17 RDI HB 2.790 3.710 (\#2.790 3.110 43 46)

\&rst
ixpk=3, nxpk= 0, iat= 567,529,r1=2.29,r2=2.79,r3=3.71,r4=4.21, \&end

18 DA H2 17 RDI HC 3.190 4.020 (\#3.790 4.020 8 9)

\&rst
ixpk=4, nxpk= 0, iat= 567,531,r1=2.69,r2=3.19,r3=4.02, r4=4.52, \&end

18 DA H2 17 RDI HD1 3.850 6.000

\&rst
ixpk=4, nxpk= 0, iat= 567,533,r1=3.35,r2=3.85,r3=6.00,r4=6.50, \&end

18 DA H2 17 RDI HD2 4.160 6.560

\&rst
ixpk=4, nxpk= 0, iat= 567,534, r1=3.66,r2=4.16,r3=6.56,r4=7.06, \&end

18 DA H3' 18 DA H1' 3.280 5.370

\&rst
ixpk=4, nxpk= 0, iat=571,555,r1=2.78,r2=3.28,r3=5.37,r4=5.87, \&end

18 DA H3' 18 DA H8 3.500 5.450

 &rst
 ixpk=4, nxpk= 0, iat=571,558,r1=3.00,r2=3.50,r3=5.45,r4=5.95, &end

18 DA H2'1 18 DA H1' 1.910 3.010 (\#1.910 2.710 39)

\&rst
ixpk=2, nxpk= 0, iat= 573,555,r1= 1.41, r2= 1.91, r3= 3.01, r4= 3.51, \&end

18 DA H2'1 18 DA H8 1.850 3.360 (\#1.850 2.760 17 18 26 47)

\&rst
ixpk=2, nxpk= 0, iat= 573,558,r1= 1.35, r2= 1.85,r3=3.36,r4=3.86, \&end

19 DG H8 18 DA H1' 3.480 5.120

\&rst
ixpk=2, nxpk= 0, iat= 590, 555,r1= 2.98, r2= 3.48,r3= 5.12, r4= 5.62, \&end

```
```


19 DG H8 18 DA H8 4.290 6.220

 &rst
 ixpk=2, nxpk= 0, iat= 590, 558, r1=3.79, r2= 4.29, r3=6.22, r4=6.72, &end

19 DG H8 18DA H2'1 2.180 3.000

 &rst
 ixpk=2, nxpk= 0, iat= 590,573,r1= 1.68,r2=2.18,r3=3.00,r4=3.50, &end

19 DG H8 19 DG H1' 3.440 5.470

 &rst
 ixpk=2, nxpk= 0, iat= 590, 587, r1= 2.94, r2= 3.44, r3= 5.47, r4= 5.97, &end

19 DG H3' 19 DG H1' 3.420 5.020

 &rst
 ixpk=2, nxpk= 0, iat=604, 587, r1= 2.92,r2=3.42,r3=5.02, r4=5.52, &end

19 DG H2'1 19 DG H1' 2.450 5.660 (\#2.750 5.660 6)

\&rst
ixpk= 5, nxpk= 0, iat=606, 587, r1= 1.95, r2= 2.45,r3=5.66, r4=6.16, \&end

19 DG H2'1 19 DG H8 2.140 3.160 (\#2.140 2.860 25)

\&rst
ixpk=2, nxpk= 0, iat=606,590,r1= 1.64,r2=2.14,r3=3.16,r4=3.66, \&end

19 DG H2'2 19 DG H1' 2.130 3.000 (\#2.130 2.700 2)

\&rst
ixpk=2, nxpk= 0, iat=607,587,r1=1.63,r2=2.13,r3=3.00,r4=3.50, \&end

19 DG H2'2 19 DG H8 2.260 3.860 (\#2.260 3.260 37 42)

\&rst
ixpk=3, nxpk= 0, iat=607,590,r1= 1.76,r2= 2.26,r3=3.86, r4=4.36, \&end

20 DA H8 19 DG H1' 3.040 3.380

\&rst
ixpk=3, nxpk= 0, iat=623,587,r1=2.54,r2=3.04,r3=3.38,r4=3.88, \&end

20 DA H8 19 DG H8 4.020 5.610

 &rst
 ixpk=3, nxpk= 0, iat=623,590,r1=3.52,r2= 4.02,r3=5.61, r4=6.11, &end

20 DA H8 19 DG H3' 3.830 5.620

 &rst
 ixpk=3, nxpk= 0, iat=623, 604, r1=3.33, r2=3.83,r3=5.62, r4= 6.12, &end

20 DA H8 19 DG H2'1 2.930 3.520

\&rst
ixpk=3, nxpk= 0, iat=623,606,r1=2.43,r2=2.93,r3=3.52,r4=4.02, \&end

20 DA H8 20 DA H1' 3.490 4.030

\&rst

```
ixpk \(=3\), nxpk \(=0\), iat \(=623,620, r 1=2.99, r 2=3.49, r 3=4.03, r 4=4.53\), \&end \#
\# 20 DA H3' 20 DA H1' 3.4004 .660
\&rst
ixpk \(=3\), nxpk= 0 , iat \(=636,620, r 1=2.90, r 2=3.40, r 3=4.66, r 4=5.16\), \&end \#
\# 20 DA H2'1 20 DA H1' 2.2904 .250 (\#2.590 4.250 20)
\&rst
ixpk \(=4\), nxpk= 0 , iat \(=638,620, r 1=1.79, r 2=2.29, r 3=4.25, r 4=4.75\), \&end
\# 20 DA H2'2 20 DA H1' 2.0703 .150 (\#2.070 2.8507 7) \&rst
ixpk \(=2\), nxpk \(=0\), iat \(=639,620, r 1=1.57, r 2=2.07, r 3=3.15, r 4=3.65\), \&end \#
\# 20 DA H2'2 20 DA H8 2.1703 .820 (\#2.470 2.920133839 42)
\&rst
ixpk \(=2\), nxpk= 0 , iat= 639, 623, r1 = 1.67, r2= 2.17, r3=3.82, r4= 4.32, \&end \#
\# 20 DA H2'2 20 DA H3' 2.1002 .930 (\#2.100 2.63043 )
\&rst
ixpk \(=2\), nxpk= 0 , iat= \(639,636, r 1=1.60, r 2=2.10, r 3=2.93, r 4=3.43\), \&end \#
\# 21 DA H8 20 DA H1' 3.4004 .110
(\#21 DA H1' 20 DA H2 3.450 3.970)
\& rst
ixpk \(=2\), nxpk \(=0\), iat \(=655,620, r 1=2.90, r 2=3.40, r 3=4.11, r 4=4.61\), \&end \#
\# 21 DA H8 20 DA H8 3.7906 .410 (\#3.790 6.110 29)
\&rst
ixpk \(=6\), nxpk \(=0\), iat \(=655,623, r 1=3.29, r 2=3.79, r 3=6.41, r 4=6.91\), \&end \#
\# 21 DA H8 20 DA H3' 3.6505 .650
\&rst
ixpk \(=6\), nxpk \(=0\), iat \(=655,636, r 1=3.15, r 2=3.65, r 3=5.65, r 4=6.15\), \&end \#
\# 21 DA H8 20 DA H2'1 2.3303 .460 (\#2.930 3.46023 44)
\&rst
ixpk \(=3\), nxpk= 0 , iat= \(655,638, r 1=1.83, r 2=2.33, r 3=3.46, r 4=3.96\), \&end \#
\# 21 DA H8 21 DA H1' 2.9204 .420
\&rst
ixpk \(=3\), nxpk= 0 , iat \(=655,652, r 1=2.42, r 2=2.92, r 3=4.42, r 4=4.92\), \&end \#
\# 21 DA H3' 21 DA H1' 3.2904 .040 (\#3.290 3.740 21)
\&rst
ixpk \(=3, n x p k=0\), iat \(=668,652, r 1=2.79, r 2=3.29, r 3=4.04, r 4=4.54\), \&end \#
\# 21 DA H3' 21 DA H8 3.2804 .120
\&rst
ixpk \(=3\), nxpk \(=0\), iat \(=668,655, r 1=2.78, r 2=3.28, r 3=4.12, r 4=4.62\), \&end \#

```


22 DG3 H2'2 22 DG3 H1' 2.600 4.650

 &rst
 ixpk=4, nxpk= 0, iat= 704,684,r1=2.10, r2=2.60,r3=4.65,r4=5.15, &end

22 DG3 H2'2 22 DG3 H8 2.020 3.120 (\#2.020 2.520 42 43)

 &rst
 ixpk=2, nxpk= 0, iat= 704, 687, r1= 1.52, r2= 2.02, r3=3.12, r4=3.62, &end

17 RDI HA2 7 DG H1 3.250 4.770 (\#H2O 27 35 37)

 &rst
 ixpk= 27, nxpk= 0, iat= 527, 207, r1= 2.75, r2= 3.25, r3= 4.77, r4= 5.27,&end

17 RDI HA2 16 DC H42 4.030 6.070 (\#H2O)

\&rst
ixpk= 27, nxpk= 0, iat= 527, 492,r1=3.53, r2=4.03,r3=6.07, r4=6.57, \&end

16 DC H41 6 DT Q5 2.590 4.940 (\#H2O)

\&rst
ixpk= 27, nxpk= 0, iat=491, -1, r1=2.09, r2= 2.59, r3= 5.93, r4=6.43,
igr2= 172, 173, 174,
\&end

16 DC H42 6 DT Q5 2.600 5.120 (\#H2O)

\&rst
ixpk= 27, nxpk= 0, iat=492, -1, r1=2.10, r2= 2.60, r3=6.15, r4=6.65,
igr2= 172, 173, 174,
\&end

1 DC5 H42 22 DG3 O6 1.80 2.00

\&rst
ixpk= 0, nxpk= 0, iat= 19, 691,r1=1.30, r2= 1.80, r3=2.00, r4=2.50,
rk2=32.0, rk3=32.0, ir6=1, ialtd=0,
\&end

1 DC5 N3 22 DG3 H1 1.84 2.04

 &rst
 ixpk= 0, nxpk= 0, iat=20,693,r1=1.34,r2= 1.84,r3=2.04, r4=2.54, &end

1 DC5 N3 22 DG3 N1 2.85 3.05

 &rst
 ixpk= 0, nxpk= 0, iat=20,692,r1=2.35,r2=2.85,r3=3.05,r4=3.55, &end

1 DC5 N4 22 DG3 O6 2.81 3.01

 &rst
 ixpk= 0, nxpk= 0, iat= 17, 691,r1= 2.31, r2= 2.81,r3=3.01, r4= 3.51, &end

1 DC5 O2 22 DG3 H22 1.75 1.95

 &rst
 ixpk= 0, nxpk= 0, iat= 22, 697,r1= 1.25, r2= 1.75,r3= 1.95,r4= 2.45, &end


```


ixpk \(=2\), nxpk \(=0\), iat \(=270,425, r 1=2.31, r 2=2.81, r 3=3.01, r 4=3.51\), \&end \# \# 9 DC O2 14 DG H22 1.751 .95 \&rst ixpk \(=2\), nxpk= 0 , iat= 275, 431, r1 = 1.25, r2= 1.75, r3=1.95, r4= 2.45, \&end \# \# 10 DC H42 13 DG O6 1.802 .00 \&rst ixpk=2, nxpk= 0 , iat= 302, 392, r1=1.30, r2=1.80, r3=2.00, r4= 2.50, \&end \# \# 10 DC N3 13 DG H1 1.842 .04 \&rst
ixpk \(=2\), nxpk \(=0\), iat \(=303,394, r 1=1.34, r 2=1.84, r 3=2.04, r 4=2.54\), \&end \# \# 10 DC N3 13 DG N1 2.853 .05 \&rst
ixpk \(=2\), nxpk \(=0\), iat \(=303,393, r 1=2.35, r 2=2.85, r 3=3.05, r 4=3.55\), \&end \# \# 10 DC N4 13 DG O6 2.813 .01 \&rst
ixpk= 2, nxpk= 0 , iat \(=300,392, r 1=2.31, r 2=2.81, r 3=3.01, r 4=3.51\), \&end \#
\# 10 DC O2 13 DG H22 1.75 1.95 \&rst
ixpk \(=2\), nxpk \(=0\), iat \(=305,398, r 1=1.25, r 2=1.75, r 3=1.95, r 4=2.45\), \&end \#
\# 11 DG3 H1 12 DC5 N3 1.842 .04
\&rst
ixpk \(=2\), nxpk= 0 , iat \(=332,365, r 1=1.34, r 2=1.84, r 3=2.04, r 4=2.54\), \&end \#
\# 11 DG3 H22 12 DC5 O2 1.751 .95
\&rst
ixpk \(=2\), nxpk \(=0\), iat \(=336,367, r 1=1.25, r 2=1.75, r 3=1.95, r 4=2.45\), \&end \#
\# 11 DG3 N1 12 DC5 N3 2.853 .05
\&rst
ixpk \(=2\), nxpk= 0 , iat \(=331,365, r 1=2.35, r 2=2.85, r 3=3.05, r 4=3.55\), \&end \#
\# 11 DG3 O6 12 DC5 H42 1.802 .00
\&rst
ixpk= 2 , nxpk= 0 , iat= 330, 364, r1= 1.30, r2= 1.80, r3= 2.00, r4= 2.50, \&end \#
\# 11 DG3 O6 12 DC5 N4 2.813 .01
\&rst
ixpk= 2, nxpk= 0 , iat= 330, 362, r1= 2.31, r2= 2.81, r3=3.01, r4=3.51, \&end \# 706 atoms read from pdb file Rdl_Major_New_v3.pdb.
\# 2 DT ALPHA: (1 DC5 O3')-(2 DT P)-(2 DT O5')-(2 DT C5') -90.0-30.0
\&rst iat \(=28,29,32,33\), \(r 1=-91.0, r 2=-90.0, r 3=-30.0, r 4=-29.0\),
rk2 \(=64.0, \mathrm{rk3}=64.0\), \&end
\# 3 DT ALPHA: (2 DT O3')-(3 DT P)-(3 DT O5')-(3 DT C5') -90.0-30.0
\&rst iat \(=60,61,64,65\),
\(r 1=-91.0, r 2=-90.0, r 3=-30.0, r 4=-29.0\),
\&end
\# 4 DC ALPHA: (3 DT O3')-(4 DC P)-(4 DC O5')-(4 DC C5') -90.0-30.0 \&rst iat \(=92,93,96,97\), \(r 1=-91.0, r 2=-90.0, r 3=-30.0, r 4=-29.0\),
\&end
\# 5 DT ALPHA: (4 DC O3')-(5 DT P)-(5 DT O5')-(5 DT C5') -90.0 -30.0 \&rst iat \(=122,123,126,127\), \(r 1=-91.0, r 2=-90.0, r 3=-30.0, r 4=-29.0\), \&end
\# 6 DT ALPHA: (5 DT O3')-(6 DT P)-(6 DT O5')-(6 DT C5') -120.0 -0.0 \&rst iat \(=154,155,158,159\), \(r 1=-121.0, r 2=-120.0, r 3=-0.0, r 4=1.0\), \&end
\# 7 DG ALPHA: (6 DT O3')-(7 DG P)-(7 DG O5')-(7 DG C5') -90.0 -30.0 \&rst iat \(=186,187,190,191\), \(r 1=-91.0, r 2=-90.0, r 3=-30.0, r 4=-29.0\), \&end
\# 8 DT ALPHA: (7 DG O3')-(8 DT P)-(8 DT O5')-(8 DT C5') -90.0 -30.0 \&rst iat \(=219,220,223,224\), \(r 1=-91.0, r 2=-90.0, r 3=-30.0, r 4=-29.0\), \&end
\# 9 DC ALPHA: (8 DT O3')-(9 DC P)-(9 DC O5')-(9 DC C5') -90.0-30.0 \&rst iat \(=251,252,255,256\), \(r 1=-91.0, r 2=-90.0, r 3=-30.0, r 4=-29.0\), \&end
\# 10 DC ALPHA: (9 DC O3')-(10 DC P)-(10 DC O5')-(10 DC C5') -90.0-30.0 \&rst iat \(=281,282,285,286\), \(r 1=-91.0, r 2=-90.0, r 3=-30.0, r 4=-29.0\), \&end
\# 13 DG ALPHA: (12 DC5 O3')-(13 DG P)-(13 DG O5')-(13 DG C5') -90.0 -30.0 \&rst iat \(=373,374,377,378\), \(r 1=-91.0, r 2=-90.0, r 3=-30.0, r 4=-29.0\), \&end
\# 14 DG ALPHA: (13 DG O3')-(14 DG P)-(14 DG O5')-(14 DG C5') -90.0-30.0 \&rst iat \(=406,407,410,411\), \(r 1=-91.0, r 2=-90.0, r 3=-30.0, r 4=-29.0\), \&end
\# 15 DA ALPHA: (14 DG O3')-(15 DA P)-(15 DA O5')-(15 DA C5') -90.0 -30.0
\&rst iat \(=439,440,443,444\), \(r 1=-91.0, r 2=-90.0, r 3=-30.0, r 4=-29.0\), \&end
\# 16 DC ALPHA: (15 DA O3')-(16 DC P)-(16 DC O5')-(16 DC C5') -90.0 -30.0 \&rst iat \(=471,472,475,476\), \(r 1=-91.0, r 2=-90.0, r 3=-30.0, r 4=-29.0\), \&end
\# 17 RDI ALPHA: (16 DC O3')-(17 RDI P)-(17 RDI O5')-(17 RDI C5') -120.0 0.0 \&rst iat \(=501,502,505,506\), \(r 1=-121.0, r 2=-120.0, r 3=0.0, r 4=1.0\), \&end
\# 18 DA ALPHA: (17 RDI O3')-(18 DA P)-(18 DA O5')-(18 DA C5') -90.0 -30.0 \&rst iat \(=543,544,547,548\), \(r 1=-91.0, r 2=-90.0, r 3=-30.0, r 4=-29.0\), \&end
\# 19 DG ALPHA: (18 DA O3')-(19 DG P)-(19 DG O5')-(19 DG C5') -90.0 -30.0 \&rst iat \(=575,576,579,580\), \(r 1=-91.0, r 2=-90.0, r 3=-30.0, r 4=-29.0\), \&end
\# 20 DA ALPHA: (19 DG O3')-(20 DA P)-(20 DA O5')-(20 DA C5') -90.0 -30.0 \&rst iat \(=608,609,612,613\), \(r 1=-91.0, r 2=-90.0, r 3=-30.0, r 4=-29.0\), \&end
\# 21 DA ALPHA: (20 DA O3')-(21 DA P)-(21 DA O5')-(21 DA C5') -90.0-30.0
\&rst iat \(=640,641,644,645\), \(r 1=-91.0, r 2=-90.0, r 3=-30.0, r 4=-29.0\), \&end
\# 2 DT BETA: (2 DT P)-(2 DT O5')-(2 DT C5')-(2 DT C4') 150.0210 .0
\&rst iat \(=29,32,33,36\), \(r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0\), \&end
\# 3 DT BETA: (3 DT P)-(3 DT O5')-(3 DT C5')-(3 DT C4') 150.0210 .0 \&rst iat \(=61,64,65,68\), \(r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0\), \&end
\# 4 DC BETA: (4 DC P)-(4 DC O5')-(4 DC C5')-(4 DC C4') 150.0210 .0 \&rst iat \(=93,96,97,100\), \(r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0\), \&end
\# 5 DT BETA: (5 DT P)-(5 DT O5')-(5 DT C5')-(5 DT C4') 150.0210 .0 \&rst iat \(=123,126,127,130\),
\[
r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0
\]
\&end
\# 6 DT BETA: (6 DT P)-(6 DT O5')-(6 DT C5')-(6 DT C4') 120.0240 .0
\&rst iat \(=155,158,159,162\), \(r 1=119.0, r 2=120.0, r 3=240.0, r 4=241.0\),
\&end
\# 7 DG BETA: (7 DG P)-(7 DG O5')-(7 DG C5')-(7 DG C4') 150.0210 .0 \&rst iat \(=187,190,191,194\), \(r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0\), \&end
\# 8 DT BETA: (8 DT P)-(8 DT O5')-(8 DT C5')-(8 DT C4') 150.0 210.0 \&rst iat \(=220,223,224,227\), \(r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0\), \&end
\# 9 DC BETA: (9 DC P)-(9 DC O5')-(9 DC C5')-(9 DC C4') 150.0210 .0 \&rst iat \(=252,255,256,259\), \(r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0\), \&end
\# 10 DC BETA: (10 DC P)-(10 DC O5')-(10 DC C5')-(10 DC C4') 150.0210 .0 \&rst iat \(=282,285,286,289\), \(r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0\), \&end
\# 13 DG BETA: (13 DG P)-(13 DG O5')-(13 DG C5')-(13 DG C4') 150.0210 .0 \&rst iat \(=374,377,378,381\), \(r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0\), \&end
\# 14 DG BETA: (14 DG P)-(14 DG O5')-(14 DG C5')-(14 DG C4') 150.0210 .0 \&rst iat \(=407,410,411,414\), \(r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0\), \&end
\# 15 DA BETA: (15 DA P)-(15 DA O5')-(15 DA C5')-(15 DA C4') 150.0210 .0 \&rst iat \(=440,443,444,447\), \(r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0\), \&end
\# 16 DC BETA: (16 DC P)-(16 DC O5')-(16 DC C5')-(16 DC C4') 150.0210 .0 \&rst iat \(=472,475,476,479\), \(r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0\), \&end
\# 17 RDI BETA: (17 RDI P)-(17 RDI O5')-(17 RDI C5')-(17 RDI C4') 120.0240 .0 \&rst iat \(=502,505,506,509\), \(r 1=119.0, r 2=120.0, r 3=240.0, r 4=241.0\),
\&end
\# 18 DA BETA: (18 DA P)-(18 DA O5')-(18 DA C5')-(18 DA C4') 150.0210 .0 \&rst iat \(=544,547,548,551\), \(r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0\),
\&end
\# 19 DG BETA: (19 DG P)-(19 DG O5')-(19 DG C5')-(19 DG C4') 150.0210 .0 \&rst iat \(=576,579,580,583\), \(r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0\), \&end
\# 20 DA BETA: (20 DA P)-(20 DA O5')-(20 DA C5')-(20 DA C4') 150.0210 .0 \&rst iat \(=609,612,613,616\), \(r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0\), \&end
\# 21 DA BETA: (21 DA P)-(21 DA O5')-(21 DA C5')-(21 DA C4') 150.0210 .0 \&rst iat \(=641,644,645,648\), \(r 1=149.0, r 2=150.0, r 3=210.0, r 4=211.0\), \&end
\# 2 DT GAMMA: (2 DT O5')-(2 DT C5')-(2 DT C4')-(2 DT C3') 30.090 .0 \&rst iat \(=32,33,36,55\), \(r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0\), \&end
\# 3 DT GAMMA: (3 DT O5')-(3 DT C5')-(3 DT C4')-(3 DT C3') 30.090 .0 \&rst iat \(=64,65,68,87\), \(r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0\), \&end
\# 4 DC GAMMA: (4 DC O5')-(4 DC C5')-(4 DC C4')-(4 DC C3') 30.090 .0 \&rst iat \(=96,97,100,117\), \(r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0\), \&end
\# 5 DT GAMMA: (5 DT O5')-(5 DT C5')-(5 DT C4')-(5 DT C3') 30.090 .0 \&rst iat \(=126,127,130,149\), \(r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0\), \&end
\# 6 DT GAMMA: (6 DT O5')-(6 DT C5')-(6 DT C4')-(6 DT C3') 0.0120 .0 \&rst iat \(=158,159,162\), 181, \(r 1=-1.0, r 2=0.0, r 3=120.0, r 4=121.0\), \&end
\# 7 DG GAMMA: (7 DG O5')-(7 DG C5')-(7 DG C4')-(7 DG C3') 30.090 .0 \&rst iat \(=190,191,194,214\), \(r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0\), \&end
\# 8 DT GAMMA: (8 DT O5')-(8 DT C5')-(8 DT C4')-(8 DT C3') 30.090 .0
\&rst iat = 223, 224, 227, 246, \(r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0\),
\&end
\# 9 DC GAMMA: (9 DC O5')-(9 DC C5')-(9 DC C4')-(9 DC C3') 30.090 .0
\&rst iat = 255, 256, 259, 276, \(r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0\),
\&end
\# 10 DC GAMMA: (10 DC O5')-(10 DC C5')-(10 DC C4')-(10 DC C3') 30.090 .0 \&rst iat \(=285,286,289,306\), \(r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0\), \&end
\# 13 DG GAMMA: (13 DG O5')-(13 DG C5')-(13 DG C4')-(13 DG C3') 30.090 .0 \&rst iat \(=377,378,381,401\), \(r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0\), \&end
\# 14 DG GAMMA: (14 DG O5')-(14 DG C5')-(14 DG C4')-(14 DG C3') 30.090 .0 \&rst iat \(=410,411,414,434\), \(r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0\), \&end
\# 15 DA GAMMA: (15 DA O5')-(15 DA C5')-(15 DA C4')-(15 DA C3') 30.090 .0 \&rst iat \(=443,444,447,466\), \(r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0\), \&end
\# 16 DC GAMMA: (16 DC O5')-(16 DC C5')-(16 DC C4')-(16 DC C3') 30.090 .0 \&rst iat \(=475,476,479,496\), \(r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0\), \&end
\# 17 RDI GAMMA: (17 RDI O5')-(17 RDI C5')-(17 RDI C4')-(17 RDI C3') 0.0120 .0
\&rst iat \(=505,506,509,541\), \(r 1=-1.0, r 2=0.0, r 3=120.0, r 4=121.0\), \&end
\# 18 DA GAMMA: (18 DA O5')-(18 DA C5')-(18 DA C4')-(18 DA C3') 30.090 .0
\&rst iat \(=547,548,551,570\), \(r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0\), \&end
\# 19 DG GAMMA: (19 DG O5')-(19 DG C5')-(19 DG C4')-(19 DG C3') 30.090 .0 \&rst iat \(=579,580,583,603\), \(r 1=29.0, r 2=30.0, r 3=90.0, r 4=91.0\), \&end
\# 2 DT EPSILN: (2 DT C4')-(2 DT C3')-(2 DT O3')-(3 DT P) 165.0225 .0
\&rst iat \(=36,55,60\), 61, \(r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0\), \&end
\# 3 DT EPSILN: (3 DT C4')-(3 DT C3')-(3 DT O3')-(4 DC P) 165.0225 .0
\&rst iat \(=68,87,92,93\), \(r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0\), \&end
\# 4 DC EPSILN: (4 DC C4')-(4 DC C3')-(4 DC O3')-(5 DT P) 165.0225 .0 \&rst iat \(=100,117,122,123\), \(r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0\), \&end
\# 5 DT EPSILN: (5 DT C4')-(5 DT C3')-(5 DT O3')-(6 DT P) 165.0225 .0 \&rst iat \(=130,149,154,155\), \(r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0\), \&end
\# 6 DT EPSILN: (6 DT C4')-(6 DT C3')-(6 DT O3')-(7 DG P) 135.0255 .0 \&rst iat \(=162,181,186,187\), \(r 1=134.0, r 2=135.0, r 3=255.0, r 4=256.0\), \&end
\# 7 DG EPSILN: (7 DG C4')-(7 DG C3')-(7 DG O3')-(8 DT P) 165.0225 .0 \&rst iat \(=194,214,219,220\), \(r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0\), \&end
\# 8 DT EPSILN: (8 DT C4')-(8 DT C3')-(8 DT O3')-(9 DC P) 165.0225 .0 \&rst iat = 227, 246, 251, 252, \(r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0\), \&end
\# 9 DC EPSILN: (9 DC C4')-(9 DC C3')-(9 DC O3')-(10 DC P) 165.0225 .0 \&rst iat = 259, 276, 281, 282, \(r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0\), \&end
\# 10 DC EPSILN: (10 DC C4')-(10 DC C3')-(10 DC O3')-(11 DG3 P) 165.0225 .0
\&rst iat \(=289,306,311,312\), \(r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0\), \&end
\# 13 DG EPSILN: (13 DG C4')-(13 DG C3')-(13 DG O3')-(14 DG P) 165.0225 .0 \&rst iat \(=381,401,406,407\), \(r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0\), \&end
\# 14 DG EPSILN: (14 DG C4')-(14 DG C3')-(14 DG O3')-(15 DA P) 165.0225 .0 \&rst iat \(=414,434,439,440\), \(r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0\), \&end
\# 15 DA EPSILN: (15 DA C4')-(15 DA C3')-(15 DA O3')-(16 DC P) 165.0225 .0
\&rst iat \(=447,466,471,472\), \(r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0\), \&end
\# 16 DC EPSILN: (16 DC C4')-(16 DC C3')-(16 DC O3')-(17 RDI P) 165.0225 .0 \&rst iat \(=479,496,501,502\), \(r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0\), \&end
\# 17 RDI EPSILN: (17 RDI C4')-(17 RDI C3')-(17 RDI O3')-(18 DA P) 135.0255 .0 \&rst iat \(=509,541,543,544\), \(r 1=134.0, r 2=135.0, r 3=255.0, r 4=256.0\), \&end
\# 18 DA EPSILN: (18 DA C4')-(18 DA C3')-(18 DA O3')-(19 DG P) 165.0225 .0 \&rst iat \(=551,570,575,576\), \(r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0\), \&end
\# 19 DG EPSILN: (19 DG C4')-(19 DG C3')-(19 DG O3')-(20 DA P) 165.0225 .0 \&rst iat \(=583,603,608,609\), \(r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0\), \&end
\# 20 DA EPSILN: (20 DA C4')-(20 DA C3')-(20 DA O3')-(21 DA P) 165.0225 .0 \&rst iat \(=616,635,640,641\), \(r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0\), \&end
\# 21 DA EPSILN: (21 DA C4')-(21 DA C3')-(21 DA O3')-(22 DG3 P) 165.0225 .0 \&rst iat \(=648,667,672,673\), \(r 1=164.0, r 2=165.0, r 3=225.0, r 4=226.0\), \&end
\# 2 DT ZETA: (2 DT C3')-(2 DT O3')-(3 DT P)-(3 DT O5') -135.0 -75.0
\&rst iat \(=55,60,61,64\),
\[
r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0,
\]
\&end
\# 3 DT ZETA: (3 DT C3')-(3 DT O3')-(4 DC P)-(4 DC O5') -135.0 -75.0 \&rst iat \(=87,92,93,96\), \(r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0\), \&end
\# 4 DC ZETA: (4 DC C3')-(4 DC O3')-(5 DT P)-(5 DT O5') -135.0 -75.0 \&rst iat \(=117,122,123,126\), \(r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0\), \&end
\# 5 DT ZETA: (5 DT C3')-(5 DT O3')-(6 DT P)-(6 DT O5') -135.0 -75.0 \&rst iat \(=149,154,155,158\), \(r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0\), \&end
\# 6 DT ZETA: (6 DT C3')-(6 DT O3')-(7 DG P)-(7 DG O5') -165.0 -45.0 \&rst iat \(=181,186,187,190\), \(r 1=-166.0, r 2=-165.0, r 3=-45.0, r 4=-44.0\), \&end
\# 7 DG ZETA: (7 DG C3')-(7 DG O3')-(8 DT P)-(8 DT O5') -135.0 -75.0 \&rst iat \(=214,219,220,223\), \(r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0\), \&end
\# 8 DT ZETA: (8 DT C3')-(8 DT O3')-(9 DC P)-(9 DC O5') -135.0-75.0 \&rst iat \(=246,251,252,255\), \(r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0\), \&end
\# 9 DC ZETA: (9 DC C3')-(9 DC O3')-(10 DC P)-(10 DC O5') -135.0-75.0
\&rst iat \(=276,281,282,285\), \(r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0\), \&end
\# 10 DC ZETA: (10 DC C3')-(10 DC O3')-(11 DG3 P)-(11 DG3 O5') -135.0 -75.0 \&rst iat \(=306,311,312,315\), \(r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0\), \&end
\# 13 DG ZETA: (13 DG C3')-(13 DG O3')-(14 DG P)-(14 DG O5') -135.0 -75.0 \&rst iat \(=401,406,407,410\), \(r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0\), \&end
\# 14 DG ZETA: (14 DG C3')-(14 DG O3')-(15 DA P)-(15 DA O5') -135.0 -75.0 \&rst iat \(=434,439,440,443\), \(r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0\),
\&end
\# 15 DA ZETA: (15 DA C3')-(15 DA O3')-(16 DC P)-(16 DC O5') -135.0 -75.0 \&rst iat \(=466,471,472,475\), \(r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0\),
\&end
\# 16 DC ZETA: (16 DC C3')-(16 DC O3')-(17 RDI P)-(17 RDI O5') -135.0 -75.0 \&rst iat \(=496,501,502,505\), \(r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0\), \&end
\# 17 RDI ZETA: (17 RDI C3')-(17 RDI O3')-(18 DA P)-(18 DA O5') -165.0 -45.0 \&rst iat \(=541,543,544,547\), \(r 1=-166.0, r 2=-165.0, r 3=-45.0, r 4=-44.0\), \&end
\# 18 DA ZETA: (18 DA C3')-(18 DA O3')-(19 DG P)-(19 DG O5') -135.0 -75.0 \&rst iat \(=570,575,576,579\), \(r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0\), \&end
\# 19 DG ZETA: (19 DG C3')-(19 DG O3')-(20 DA P)-(20 DA O5') -135.0 -75.0 \&rst iat \(=603,608,609,612\), \(r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0\), \&end
\# 20 DA ZETA: (20 DA C3')-(20 DA O3')-(21 DA P)-(21 DA O5') -135.0 -75.0 \&rst iat \(=635,640,641,644\), \(r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0\), \&end
\# 21 DA ZETA: (21 DA C3')-(21 DA O3')-(22 DG3 P)-(22 DG3 O5') -135.0 -75.0 \&rst iat \(=667,672,673,676\), \(r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0\), \&end
\# 21 DA ZETA: (21 DA C3')-(21 DA O3')-(22 DG3 P)-(22 DG3 O5') -135.0 -75.0 \&rst iat \(=667,672,673,676\), \(r 1=-136.0, r 2=-135.0, r 3=-75.0, r 4=-74.0\), \&end
\# 706 atoms read from pdb file Rdl_Major_New_v3.pdb.
\# 2 DT NU0: (2 DT C4')-(2 DT O4')-(2 DT C1')-(2 DT C2') -44.7-14.7
\&rst iat \(=36,38,39,57\),
\[
r 1=-45.7, r 2=-44.7, r 3=-14.7, r 4=-13.7,
\]
\[
\text { rk2 }=32.0, \text { rk3 }=32.0, \quad \text { \&end }
\]
\# 2 DT NU1: (2 DT O4')-(2 DT C1')-(2 DT C2')-(2 DT C3') 18.1 48.1
\&rst iat \(=38,39,57,55\),
\[
r 1=17.1, r 2=18.1, r 3=48.1, r 4=49.1
\]
\&end
\# 2 DT NU2: (2 DT C1')-(2 DT C2')-(2 DT C3')-(2 DT C4') -37.2 -6.7
\&rst iat \(=39,57,55,36\), \(r 1=-38.2, r 2=-37.2, r 3=-6.7, r 4=-5.7\), \&end
\# 2 DT NU3: (2 DT C2')-(2 DT C3')-(2 DT C4')-(2 DT O4')-16.9 24.2
\&rst iat \(=57,55,36,38\), \(r 1=-17.9, r 2=-16.9, r 3=24.2, r 4=25.2\), \&end
\# 2 DT NU4: (2 DT C3')-(2 DT C4')-(2 DT O4')-(2 DT C1') -1.9 34.0 \&rst iat \(=55,36,38,39\), \(r 1=-2.9, r 2=-1.9, r 3=34.0, r 4=35.0\), \&end
\# 3 DT NU0: (3 DT C4')-(3 DT O4')-(3 DT C1')-(3 DT C2') -52.1-22.1 \&rst iat \(=68,70,71,89\), \(r 1=-53.1, r 2=-52.1, r 3=-22.1, r 4=-21.1\), \&end
\# 3 DT NU1: (3 DT O4')-(3 DT C1')-(3 DT C2')-(3 DT C3') 15.045 .0 \&rst iat \(=70,71,89,87\), \(r 1=14.0, r 2=15.0, r 3=45.0, r 4=46.0\), \&end
\# 3 DT NU2: (3 DT C1')-(3 DT C2')-(3 DT C3')-(3 DT C4') -27.4 2.6 \&rst iat \(=71,89,87,68\), \(r 1=-28.4, r 2=-27.4, r 3=2.6, r 4=3.6\), \&end
\# 3 DT NU3: (3 DT C2')-(3 DT C3')-(3 DT C4')-(3 DT O4') -25.0 5.0 \&rst iat \(=89,87,68,70\), \(r 1=-26.0, r 2=-25.0, r 3=5.0, r 4=6.0\), \&end
\# 3 DT NU4: (3 DT C3')-(3 DT C4')-(3 DT O4')-(3 DT C1') 13.543 .5
\&rst iat \(=87,68,70,71\), \(r 1=12.5, r 2=13.5, r 3=43.5, r 4=44.5\), \&end
\# 4 DC NU0: (4 DC C4')-(4 DC O4')-(4 DC C1')-(4 DC C2') -52.1-22.1 \&rst iat \(=100,102,103,119\), \(r 1=-53.1, r 2=-52.1, r 3=-22.1, r 4=-21.1\), \&end
\# 4 DC NU1: (4 DC O4')-(4 DC C1')-(4 DC C2')-(4 DC C3') 15.045 .0 \&rst iat \(=102,103,119,117\), \(r 1=14.0, r 2=15.0, r 3=45.0, r 4=46.0\), \&end
\# 4 DC NU2: (4 DC C1')-(4 DC C2')-(4 DC C3')-(4 DC C4') -27.4 2.6
\&rst iat \(=103,119,117,100\),
\(r 1=-28.4, r 2=-27.4, r 3=2.6, r 4=3.6\),
\&end
\# 4 DC NU3: (4 DC C2')-(4 DC C3')-(4 DC C4')-(4 DC O4') -25.0 5.0 \&rst iat \(=119,117,100,102\), \(r 1=-26.0, r 2=-25.0, r 3=5.0, r 4=6.0\), \&end
\# 4 DC NU4: (4 DC C3')-(4 DC C4')-(4 DC O4')-(4 DC C1') 13.543 .5 \&rst iat \(=117,100,102,103\), \(r 1=12.5, r 2=13.5, r 3=43.5, r 4=44.5\), \&end
\# 5 DT NU0: (5 DT C4')-(5 DT O4')-(5 DT C1')-(5 DT C2') -52.1-22.1 \&rst iat \(=130,132,133,151\), \(r 1=-53.1, r 2=-52.1, r 3=-22.1, r 4=-21.1\), \&end
\# 5 DT NU1: (5 DT O4')-(5 DT C1')-(5 DT C2')-(5 DT C3') 15.045 .0 \&rst iat \(=132,133,151,149\), \(r 1=14.0, r 2=15.0, r 3=45.0, r 4=46.0\), \&end
\# 5 DT NU2: (5 DT C1')-(5 DT C2')-(5 DT C3')-(5 DT C4') -27.4 2.6 \&rst iat \(=133,151,149,130\), \(r 1=-28.4, r 2=-27.4, r 3=2.6, r 4=3.6\), \&end
\# 5 DT NU3: (5 DT C2')-(5 DT C3')-(5 DT C4')-(5 DT O4') -25.0 5.0 \&rst iat \(=151,149,130,132\), \(r 1=-26.0, r 2=-25.0, r 3=5.0, r 4=6.0\), \&end
\# 5 DT NU4: (5 DT C3')-(5 DT C4')-(5 DT O4')-(5 DT C1') 13.543 .5
\&rst iat \(=149,130,132,133\),
\(r 1=12.5, r 2=13.5, r 3=43.5, r 4=44.5\),
\&end
\# 7 DG NU0: (7 DG C4')-(7 DG O4')-(7 DG C1')-(7 DG C2') -43.9-13.9
\&rst iat \(=194,196,197,216\), \(r 1=-44.9, r 2=-43.9, r 3=-13.9, r 4=-12.9\), \&end
\# 7 DG NU1: (7 DG O4')-(7 DG C1')-(7 DG C2')-(7 DG C3') 22.252 .2 \&rst iat \(=196,197,216,214\), \(r 1=21.2, r 2=22.2, r 3=52.2, r 4=53.2\), \&end
\# 7 DG NU2: (7 DG C1')-(7 DG C2')-(7 DG C3')-(7 DG C4') -44.6-14.6
\&rst iat \(=197,216,214,194\), \(r 1=-45.6, r 2=-44.6, r 3=-14.6, r 4=-13.6\),
\&end
\# 7 DG NU3: (7 DG C2')-(7 DG C3')-(7 DG C4')-(7 DG O4') -3.2 26.8 \&rst iat \(=216,214,194,196\), \(r 1=-4.2, r 2=-3.2, r 3=26.8, r 4=27.8\), \&end
\# 7 DG NU4: (7 DG C3')-(7 DG C4')-(7 DG O4')-(7 DG C1') -4.4 25.6 \&rst iat \(=214,194,196,197\), \(r 1=-5.4, r 2=-4.4, r 3=25.6, r 4=26.6\), \&end
\# 8 DT NU0: (8 DT C4')-(8 DT O4')-(8 DT C1')-(8 DT C2') -52.1-22.1 \&rst iat \(=227,229,230,248\), \(r 1=-53.1, r 2=-52.1, r 3=-22.1, r 4=-21.1\), \&end
\# 8 DT NU1: (8 DT O4')-(8 DT C1')-(8 DT C2')-(8 DT C3') 15.045 .0 \&rst iat \(=229,230,248,246\), \(r 1=14.0, r 2=15.0, r 3=45.0, r 4=46.0\), \&end
\# 8 DT NU2: (8 DT C1')-(8 DT C2')-(8 DT C3')-(8 DT C4') -27.4 2.6 \&rst iat \(=230,248,246,227\), \(r 1=-28.4, r 2=-27.4, r 3=2.6, r 4=3.6\), \&end
\# 8 DT NU3: (8 DT C2')-(8 DT C3')-(8 DT C4')-(8 DT O4') -25.0 5.0 \&rst iat \(=248,246,227,229\), \(r 1=-26.0, r 2=-25.0, r 3=5.0, r 4=6.0\), \&end
\# 8 DT NU4: (8 DT C3')-(8 DT C4')-(8 DT O4')-(8 DT C1') 13.543 .5 \&rst iat \(=246,227,229,230\), \(r 1=12.5, r 2=13.5, r 3=43.5, r 4=44.5\), \&end
\# 9 DC NU0: (9 DC C4')-(9 DC O4')-(9 DC C1')-(9 DC C2') -52.1-22.1 \&rst iat \(=259,261,262,278\), \(r 1=-53.1, r 2=-52.1, r 3=-22.1, r 4=-21.1\), \&end
\# 9 DC NU1: (9 DC O4')-(9 DC C1')-(9 DC C2')-(9 DC C3') 15.045 .0 \&rst iat \(=261,262,278,276\), \(r 1=14.0, r 2=15.0, r 3=45.0, r 4=46.0\), \&end
\# 9 DC NU2: (9 DC C1')-(9 DC C2')-(9 DC C3')-(9 DC C4') -27.4 2.6
\&rst iat \(=262,278,276,259\), \(r 1=-28.4, r 2=-27.4, r 3=2.6, r 4=3.6\), \&end
\# 9 DC NU3: (9 DC C2')-(9 DC C3')-(9 DC C4')-(9 DC O4') -25.0 5.0
\&rst iat \(=278,276,259,261\), \(r 1=-26.0, r 2=-25.0, r 3=5.0, r 4=6.0\),
\&end
\# 9 DC NU4: (9 DC C3')-(9 DC C4')-(9 DC O4')-(9 DC C1') 13.543 .5
\&rst iat \(=276,259,261,262\), \(r 1=12.5, r 2=13.5, r 3=43.5, r 4=44.5\), \&end
\# 10 DC NU0: (10 DC C4')-(10 DC O4')-(10 DC C1')-(10 DC C2') -44.7-14.7 \&rst iat \(=289,291,292,308\), \(r 1=-45.7, r 2=-44.7, r 3=-14.7, r 4=-13.7\), \&end
\# 10 DC NU1: (10 DC O4')-(10 DC C1')-(10 DC C2')-(10 DC C3') 18.148 .1
\&rst iat \(=291,292,308,306\), \(r 1=17.1, r 2=18.1, r 3=48.1, r 4=49.1\), \&end
\# 10 DC NU2: (10 DC C1')-(10 DC C2')-(10 DC C3')-(10 DC C4') -37.2 -6.7 \&rst iat \(=292,308,306,289\), \(r 1=-38.2, r 2=-37.2, r 3=-6.7, r 4=-5.7\), \&end
\# 10 DC NU3: (10 DC C2')-(10 DC C3')-(10 DC C4')-(10 DC O4') -16.9 24.2 \&rst iat \(=308,306,289,291\), \(r 1=-17.9, r 2=-16.9, r 3=24.2, r 4=25.2\), \&end
\# 10 DC NU4: (10 DC C3')-(10 DC C4')-(10 DC O4')-(10 DC C1') -1.9 34.0 \&rst iat \(=306,289,291,292\), \(r 1=-2.9, r 2=-1.9, r 3=34.0, r 4=35.0\), \&end
\# 13 DG NU0: (13 DG C4')-(13 DG O4')-(13 DG C1')-(13 DG C2') -44.7-14.7 \&rst iat \(=381,383,384,403\), \(r 1=-45.7, r 2=-44.7, r 3=-14.7, r 4=-13.7\), \&end
\# 13 DG NU1: (13 DG O4')-(13 DG C1')-(13 DG C2')-(13 DG C3') 18.148 .1 \&rst iat \(=383,384,403,401\), \(r 1=17.1, r 2=18.1, r 3=48.1, r 4=49.1\), \&end
\# 13 DG NU2: (13 DG C1')-(13 DG C2')-(13 DG C3')-(13 DG C4') -37.2 -6.7 \&rst iat \(=384,403,401,381\),
\[
r 1=-38.2, r 2=-37.2, r 3=-6.7, r 4=-5.7,
\] \&end
\# 13 DG NU3: (13 DG C2')-(13 DG C3')-(13 DG C4')-(13 DG O4')-16.9 24.2 \&rst iat \(=403,401,381,383\), \(r 1=-17.9, r 2=-16.9, r 3=24.2, r 4=25.2\), \&end
\# 13 DG NU4: (13 DG C3')-(13 DG C4')-(13 DG O4')-(13 DG C1') -1.9 34.0 \&rst iat \(=401,381,383,384\), \(r 1=-2.9, r 2=-1.9, r 3=34.0, r 4=35.0\), \&end
\# 14 DG NU0: (14 DG C4')-(14 DG O4')-(14 DG C1')-(14 DG C2') -43.9-13.9 \&rst iat \(=414,416,417,436\), \(r 1=-44.9, r 2=-43.9, r 3=-13.9, r 4=-12.9\), \&end
\# 14 DG NU1: (14 DG O4')-(14 DG C1')-(14 DG C2')-(14 DG C3') 22.252 .2 \&rst iat \(=416,417,436,434\), \(r 1=21.2, r 2=22.2, r 3=52.2, r 4=53.2\), \&end
\# 14 DG NU2: (14 DG C1')-(14 DG C2')-(14 DG C3')-(14 DG C4') -44.6-14.6 \&rst iat \(=417,436,434,414\), \(r 1=-45.6, r 2=-44.6, r 3=-14.6, r 4=-13.6\), \&end
\# 14 DG NU3: (14 DG C2')-(14 DG C3')-(14 DG C4')-(14 DG O4') -3.2 26.8 \&rst iat \(=436,434,414,416\), \(r 1=-4.2, r 2=-3.2, r 3=26.8, r 4=27.8\), \&end
\# 14 DG NU4: (14 DG C3')-(14 DG C4')-(14 DG O4')-(14 DG C1') -4.4 25.6 \&rst iat \(=434,414,416,417\), \(r 1=-5.4, r 2=-4.4, r 3=25.6, r 4=26.6\), \&end
\# 15 DA NU0: (15 DA C4')-(15 DA O4')-(15 DA C1')-(15 DA C2') -43.9-13.9 \&rst iat \(=447,449,450,468\), \(r 1=-44.9, r 2=-43.9, r 3=-13.9, r 4=-12.9\), \&end
\# 15 DA NU1: (15 DA O4')-(15 DA C1')-(15 DA C2')-(15 DA C3') 22.252 .2 \&rst iat \(=449,450,468,466\), r1 = 21.2, r2 = 22.2, r3 = 52.2, r4 = 53.2, \&end
\# 15 DA NU2: (15 DA C1')-(15 DA C2')-(15 DA C3')-(15 DA C4') -44.6-14.6 \&rst iat \(=450,468,466,447\),
\[
r 1=-45.6, r 2=-44.6, r 3=-14.6, r 4=-13.6,
\]
\&end
\# 15 DA NU3: (15 DA C2')-(15 DA C3')-(15 DA C4')-(15 DA O4') -3.2 26.8 \&rst iat \(=468,466,447,449\), \(r 1=-4.2, r 2=-3.2, r 3=26.8, r 4=27.8\), \&end
\# 15 DA NU4: (15 DA C3')-(15 DA C4')-(15 DA O4')-(15 DA C1') -4.4 25.6 \&rst iat \(=466,447,449,450\), \(r 1=-5.4, r 2=-4.4, r 3=25.6, r 4=26.6\), \&end
\# 16 DC NU0: (16 DC C4')-(16 DC O4')-(16 DC C1')-(16 DC C2') -52.1-22.1 \&rst iat \(=479,481,482,498\), \(r 1=-53.1, r 2=-52.1, r 3=-22.1, r 4=-21.1\), \&end
\# 16 DC NU1: (16 DC O4')-(16 DC C1')-(16 DC C2')-(16 DC C3') 15.045 .0 \&rst iat \(=481,482,498,496\), \(r 1=14.0, r 2=15.0, r 3=45.0, r 4=46.0\), \&end
\# 16 DC NU2: (16 DC C1')-(16 DC C2')-(16 DC C3')-(16 DC C4') -27.4 2.6 \&rst iat \(=482,498,496,479\), \(r 1=-28.4, r 2=-27.4, r 3=2.6, r 4=3.6\), \&end
\# 16 DC NU3: (16 DC C2')-(16 DC C3')-(16 DC C4')-(16 DC O4') -25.0 5.0 \&rst iat \(=498,496,479,481\), \(r 1=-26.0, r 2=-25.0, r 3=5.0, r 4=6.0\), \&end
\# 16 DC NU4: (16 DC C3')-(16 DC C4')-(16 DC O4')-(16 DC C1') 13.543 .5 \&rst iat \(=496,479,481,482\), \(r 1=12.5, r 2=13.5, r 3=43.5, r 4=44.5\), \&end
\# 18 DA NU0: (18 DA C4')-(18 DA O4')-(18 DA C1')-(18 DA C2') -43.9-13.9 \&rst iat \(=551,553,554,572\), \(r 1=-44.9, r 2=-43.9, r 3=-13.9, r 4=-12.9\), \&end
\# 18 DA NU1: (18 DA O4')-(18 DA C1')-(18 DA C2')-(18 DA C3') 22.252 .2 \&rst iat \(=553,554,572,570\), \(r 1=21.2, r 2=22.2, r 3=52.2, r 4=53.2\), \&end
\# 18 DA NU2: (18 DA C1')-(18 DA C2')-(18 DA C3')-(18 DA C4') -44.6-14.6 \&rst iat \(=554,572,570,551\), \(r 1=-45.6, r 2=-44.6, r 3=-14.6, r 4=-13.6\), \&end
\# 18 DA NU3: (18 DA C2')-(18 DA C3')-(18 DA C4')-(18 DA O4') -3.2 26.8 \&rst iat \(=572,570,551,553\), \(r 1=-4.2, r 2=-3.2, r 3=26.8, r 4=27.8\), \&end
\# 18 DA NU4: (18 DA C3')-(18 DA C4')-(18 DA O4')-(18 DA C1') -4.4 25.6 \&rst iat \(=570,551,553,554\), \(r 1=-5.4, r 2=-4.4, r 3=25.6, r 4=26.6\), \&end
\# 19 DG NU0: (19 DG C4')-(19 DG O4')-(19 DG C1')-(19 DG C2') -43.9-13.9 \&rst iat \(=583,585,586,605\), \(r 1=-44.9, r 2=-43.9, r 3=-13.9, r 4=-12.9\), \&end
\# 19 DG NU1: (19 DG O4')-(19 DG C1')-(19 DG C2')-(19 DG C3') 22.252 .2 \&rst iat \(=585,586,605,603\), \(r 1=21.2, r 2=22.2, r 3=52.2, r 4=53.2\), \&end
\# 19 DG NU2: (19 DG C1')-(19 DG C2')-(19 DG C3')-(19 DG C4') -44.6-14.6 \&rst iat \(=586,605,603,583\), \(r 1=-45.6, r 2=-44.6, r 3=-14.6, r 4=-13.6\), \&end
\# 19 DG NU3: (19 DG C2')-(19 DG C3')-(19 DG C4')-(19 DG O4') -3.2 26.8 \&rst iat \(=605,603,583,585\), \(r 1=-4.2, r 2=-3.2, r 3=26.8, r 4=27.8\), \&end
\# 19 DG NU4: (19 DG C3')-(19 DG C4')-(19 DG O4')-(19 DG C1') -4.4 25.6 \&rst iat \(=603,583,585,586\), \(r 1=-5.4, r 2=-4.4, r 3=25.6, r 4=26.6\), \&end
\# 20 DA NU0: (20 DA C4')-(20 DA O4')-(20 DA C1')-(20 DA C2') -43.9-13.9
\&rst iat \(=616,618,619,637\), \(r 1=-44.9, r 2=-43.9, r 3=-13.9, r 4=-12.9\), \&end
\# 20 DA NU1: (20 DA O4')-(20 DA C1')-(20 DA C2')-(20 DA C3') 22.252 .2 \&rst iat \(=618,619,637,635\), \(r 1=21.2, r 2=22.2, r 3=52.2, r 4=53.2\),
\&end
\# 20 DA NU2: (20 DA C1')-(20 DA C2')-(20 DA C3')-(20 DA C4') -44.6-14.6 \&rst iat \(=619,637,635,616\), \(r 1=-45.6, r 2=-44.6, r 3=-14.6, r 4=-13.6\), \&end
```


20 DA NU3: (20 DA C2')-(20 DA C3')-(20 DA C4')-(20 DA O4') -3.2 26.8

\&rst iat = 637, 635, 616, 618,
r1 = -4.2, r2 = -3.2, r3 = 26.8, r4 = 27.8,
\&end

20 DA NU4:(20 DA C3')-(20 DA C4')-(20 DA O4')-(20 DA C1') -4.4 25.6

\&rst iat = 635, 616, 618, 619,
r1 = -5.4, r2 = -4.4, r3 = 25.6, r4 = 26.6,
\&end

21 DA NU0:(21 DA C4')-(21 DA O4')-(21 DA C1')-(21 DA C2') -44.7 -14.7

\&rst iat = 648, 650, 651, 669,
r1 = -45.7, r2 = -44.7, r3 = -14.7, r4 = -13.7,
\&end

21 DA NU1:(21 DA O4')-(21 DA C1')-(21 DA C2')-(21 DA C3') 18.1 48.1

\&rst iat = 650, 651, 669, 667,
r1 = 17.1, r2 = 18.1, r3 = 48.1, r4 = 49.1,
\&end

21 DA NU2:(21 DA C1')-(21 DA C2')-(21 DA C3')-(21 DA C4') -37.2 -6.7

 &rst iat = 651, 669, 667, 648,
 r1 = -38.2, r2 = -37.2, r3 = -6.7, r4 = -5.7,
 &end
 \# 21 DA NU3: (21 DA C2')-(21 DA C3')-(21 DA C4')-(21 DA O4') -16.9 24.2 \&rst iat $=669,667,648,650$, $r 1=-17.9, r 2=-16.9, r 3=24.2, r 4=25.2$, \&end
\# 21 DA NU4: (21 DA C3')-(21 DA C4')-(21 DA O4')-(21 DA C1') -1.9 34.0 \&rst iat $=667,648,650,651$, $r 1=-2.9, r 2=-1.9, r 3=34.0, r 4=35.0$, \&end

```

\section*{APPENDIX D}

\section*{MOLECULAR DYNAMICS FILES}

File D1. Energy minimization protocol
```

\&cntrl
imin = 1,
igb =0,
maxcyc = 1000,
ncyc = 500,
ntb}=0
cut = 18.0,
\&end

```

File D2. Simulated annealing protocol
simulated annealing protocol, 18A cut off, 100ps
\& cntrl
```

imin=0, ntr=0, ntc=2, ntf=2,

```
cut \(=18.0\), igb \(=1\), saltcon \(=1.0\), gbsa \(=0\), offset \(=0.13\),
ntpr=1000, ntwx=1000, nstlim=100000, dt=0.001,
\(n t t=1, n t x=1\), irest= \(0, \mathrm{ntb}=0\), vlimit \(=20\),
pencut=-0.001, nmropt=1,
\&end
\#
\#Simple simulated annealing algorithm:
\#
\#from steps 0 to 5000: heat the system to 1000 K with short tautp
\#from steps 5000 to 10000: keep the temperature at 1000 K
\#from steps 10001 to 90000: cool down the system to 100K with long tautp
\#from steps 90001 to 100000: cool down the system to OK with short tautp
\#
\&wt type='TEMP0', istep1=0, istep2=5000, value1=0.0,
    value2=1000.0, \&end
\&wt type='TEMP0', istep1=5000,istep2=10000,value1=1000.0,
    value2=1000.0, \&end
\&wt type='TEMPO', istep1=10001, istep2=90000, value1=1000.0,
    value2=100.0, \&end
\&wt type='TEMPO', istep1=90001, istep2=100000, value1=100.0,
    value2=0.0, \&end
\&wt type='TAUTP', istep \(1=0\), istep \(2=10000\), value \(1=0.5\),
    value \(2=0.5\), \&end
\&wt type='TAUTP', istep \(1=10001\),istep \(2=90000\),value \(1=4.0\),
value2=4.0, \&end
\(\& w t\) type='TAUTP', istep1=90001,istep2=100000,value1=1.0, value2=1.0, \&end
\&wt type='REST', istep \(1=0\), istep2=20000, value \(1=0.1\), value2=1.0, \&end
\&wt type='REST', istep1=20001, istep2=100000, value1=1.0, value2=1.0, \&end
\&wt type='END' \&end LISTOUT=POUT
DISANG=Rdlall.rst

\section*{REFERENCES CITED}
(1) National Toxicology Program, Department of Health and Human Services 1,3-Butadiene Report on Carcinogens, Thirteenth Edition 2015
(2) Morrow, L. M.; Environ Health Persp 1990 86, 7-8
(3) U.S. Environmental Protection Agency (EPA) Locating and Estimating air emissions from sources of 1,3-butadiene (EPA-454/R-96-008) Washington DC, 1996
(4) Pelz, N.; Dempster, N. M.; Shore, P. R.; Journal of Chromatographic Science 1990, 28, 230-235.
(5) Brunnemann, K. D.; Kagan, M. R.; Cox, J. E.; Hoffmann, D.; Carcinogenesis 1990, 11, 1863-1868.
(6) National Toxicology Program. Report on Carcinogens: 1,3-Butadiene. 13th ed.; U.S. Department of Health and Human Services, P. H. S., Ed. Research Triangle Park, NC, 2014. (7) Meinhardt, T. J.; Lemen, R. A.; Crandall, M. S.; Young, R. J.; Work Environ Health 1982, 8, 250-9.
(8) Matanoski, G. M.; Schwartz, L.;J. Occup. Med.1987, 29, 675-80.
(9) Matanoski, G. M.; Santos-Burgoa C.; Schwartz, L.; Environ. Health Perspect. 1980, 86, 107.
(10) Downs, T. D.; Crane, M. M.; Kim, K. W.; Am. J. Ind. Med. 1987, 12, 311-29.
(11) Divine, B. J.; IARC Sci. Publ. 1990, 86, 143-7.
(12) Divine, B. J.; Wendt, J. K.; Hartman, C. M.; Am. J. Ind. Med. 1993 127, 345-62.
(13) Divine, B. J.; Hartman, C. M.; Toxicology 1996, 113, 169-81.
(14) Matanoski, G.; Santos-Burgoa, C.; Schwartz, L.; IARC Scientific Publications 1990, 127, 363-74.
(15) Santos-Burgoa, C.; Matanoski, G. M.; Zeger, S.; Schwartz, L Am. J. Epidemiol. 1992, 136, 843-54.
(16) Delzell, E.; Sathiakumar, N.; Macaluso, M.; Hovinga, M.; Larson, R.; Barbone, F.; Beall, C.; Cole, P. A.; Follow-up study of synthetic rubber workers, Final report prepared under contract to International Institute of Synthetic Rubber Producers 1995.
(17) Delzell, E.; Sathiakumar, N.; Macaluso, M.; Hovinga, M.; Larson, R.; Barbone, F.; Beall, C.; Cole, P. A.; Toxicology 1996, 113, 182-9.
(18) Cole, P.; Delzell, E.; Acquavella, J.; Epidemiology 1993, 4, 96-103.
(19) Melnick R L, Huff J E, Haseman J K, McConnell E.; Ann. N. Y. Acad. Sci. 1988, 534, 648-
62.
(20) Melnick, R. L.; Huff, J.; Chou, B. J.; Miller, R. A.; Cancer Res. 1990 50, 6592-9 .
(21) Owen, P. E.; Glaister, J. R.; Gaunt, I. F.; Pullinger, D. H.; Am. Ind. Hyg. Assoc. J. 1987, 48, 407-13.
(22) Huff, J. E.; Melnick, R. L.; Solleveld, H. A.; Haseman, J. K.; Powers, M.; Miller, R. A.; Science, 1985, 227, 548-549.
(23) Melnick R. L.; Kohn M. C.; Carcinogenesis 1995, 16, 157-163.
(24) Kirman, C. R.; Albertini, R. A.; Gargas, M. L.; Critical Reviews in Toxicology 2010, 40, 7492.
(25) Meester, C. D.; Poncelet, F.; Roberfroid, M.; Mercier, M.; Toxicol. Lett. 1980, 6, 125-130.
(26) Duescher, R. J.; Elfarra, A. A.; Arch Biochem Biophys 1994, 311, 342-349
(27) Albertini, R. J.; Carson, M. L.; Kirman, C. R.; Gargas, M. L.; Crit Rev Toxicol 2010, 40, 12-73.
(28) Seaton, M. J.; Follansbee, M. H.; Bond, J. A.; Carcinogenesis 1995. 16, 2297-2293.
(29) Boysen, G.; Georgieva, N. I.; Upton, P. B.; Jayaraj, K.; Li, Y.; Walker, V. E.; Swenberg, J. A.; Cancer Res 2004, 64, 8517-8520.
(30) Filser JG, Hutzler C, Meischner V, Veereshwarayya V, Csanady GA Chem Biol Interact. 2007, 166, 93-103.
(31) Goodrow, T. I.; Nichols, W. W.; Storer, R. D.; Anderson, M. W.; Maronpot, R. R.; Carcinogenesis 1994, 15, 2665-2667.
(32) Tretyakova, N. Lin, Y. P.; Sangaiah, R.; Upton, P. B.; Swenberg J. A.; Carcinogenesis 1997 18, 137-147.
(33) Clayden, J.; Greeves, N.; Warren, S.; Organic Chemistry \(2^{\text {nd }}\) ed. Oxford University Press 2012
(34) Strauss, B.; Bioessays 1991,
(35) Choi J. Y.; Lim S.; Kim E. J.; Jo, A.; Guengerich, F. P.; J Mol Biol 2010, 303, 34-44.
(36) Selzer, R. R.; Elfarra, A. A.; Chemical Research in Toxicology 1996, 9, 875-81.
(37) Rodriguez, D. A.; Kowalczyk, A.; Ward, J. B.; Environmental and Molecular Mutagenesis 2001, 38, 292-296.
(38) Kanuri, M.; Nechev, L. V.; Tamura, P. J.; Harris, C. M.; Harris, T. M.; Lloyd, R. S.; Chem Res Toxicol 2002, 15, 1572-80.
(39) Carmical, J. R.; Nechev, L. V.; Harris, C. M.; Harris, T. M.; Lloyd, R. S.; Environmental and Molecular Mutagenesis 2000, 35, 38-56.
(40) Scholdberg, T. A.; Merritt, W. K.; Dean, S. M.; Kowalcyzk, A.; Harris, C. M.; Harris, T. M.; Rizzo, C. J.; Lloyd, R. S.; Stone, M. P.; Biochemistry 2005, 44, 3327-37.
(41) Merritt, W. K.; Kowalczyk, A.; Scholdberg, T. A.; Dean, S. M.; Harris, T. M.; Harris, C. M.; Lloyd, R. S.; Stone, M. P.; Chem Res Toxicol 2005, 18, 1098-107.
(42) Drenth, J. Principles of Protein X-Ray Crystallography; \(3^{\text {rd }}\) ed; Springer, New York Inc, New York: 2007.
(43) Yaffe, M. B. Crit Care Med 2005, 33, S435-40.
(44) Wuthrich, K. NMR of Proteins and Nucleic Acids; Wiley, New York 1986.
(45) Patel, D. J.; Pardi, A.I Itakura, K. Science 1982, 216, 581-590.
(46) Roy, S.; Redfield, A. G. Nucleic Acids Res. 1981, 97073 -7083.
(47) Patel, D. J. Proc. Natl. Acad. Sci. USA 1982, 79, 6424-6428.
(48) Rance, M.; Sorensen, O. W.; Bodenhausen, G.; Wagner, G; Ernst, R. R.; Wuthrich, K. Biochem Biophys Res Commun 1983, 117, 479-85.
(49) Aue, W. P.; Bartholdi, E.; Ernst, R. R.; Journal of Chemical Physics 1976, 64, 2229-46 .
(50) Borigas, B. A.; James, T. L; Journal of Magnetic Resonance 1990, 87, 475-87.
(51) Sim, A. Y.; Minary, P.; Levitt M.; Curr Op in Struct Bio 2012 22, 1-6
(54) Cavaluzzi, M. J.; Borer, P. N.; Nucleic Acids Res 200432 e13
(55) Kowalczyk, A.; Harris, C. M.; Harris, T. M.; Chem Res Toxicol 2001, 14, 746-53
(56) Goddard, T. D.; Kneller, D. G., SPARKY v. 3.113. University of California, San Francisco: San Francisco, CA, 2006.
(57) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Makatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Kelene; Knox, J. E.; Cross, J. B.; Bakken, V.; Adarno, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, A. D.; Foresman, J. B.; Ortiz, J. V.; Cislowski, J.; Fox, D. J., Gaussian 09. Gaussian, Inc.: Wallingford, CT, 2009.
(58) Schafmeister, C. E. A.; Ross, W. S.; Romanovski, V., XLEAP. University of California, San Francisco: San Francisco, CA, 1995
(59) Case, D. A.; III, T. E. C.; Darden, T.; Gohlke, H.; Luo, R.; JR, K. M. M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J.; the AMBER biomolecular simulation programs. Journal of Computational Chemistry 2005, 21, 1049-74.
(60) Tonelli, M.; James, T. L.; Biochemistry 1998, 37, 11478-11487.
(61) Arnott, S.; Hukins, D. W.; Biochem Biophys Res Commun 1972, 47, 1504-9
(62) Kirkpatrick, S.; Jr, C. D. G.; Vecchi, M. P.; Science 1983, 220, 671-80.
(63) Wang, J. M.; Cieplak, P.; Kollman, P. A.; Journal of Computational Chemistry 2000, 21, 129-52.
(64) Bashford, D.; Case, D. A.;. Annual Review of Physical Chemistry 2000, 21, 129-52.
(65) Recio, L.; Meyer, K.; Environmental and Molecular Mutagenesis 1995, 26, 1-8.
(66) Cochrane, J. E.; Skopek, T. R.; Carcinogenesis 1994, 15, 713-7.
(67) Cochrane, J. E.; Skopek, T. R.; IARC Scientific Publications 1993, 127, 195-204.
(68) Omholt, K.; Karsberg, S.; Platz, A.; Kanter, L.; Ringborg, R.; Hansson, J.; Clinical Cancer Research 2002, 8, 3468-74.
(69) Kalakonda, N.; Rothwell, D. G.; Scarffe, J.; Norton, J. D.; Blood 2001, 98, 1555-60.
(70) Nair, D. T.; Johnson, R. E.; Prakash, L.; Prakash, S.; Aggarwal, A. K.; Nature Structural \& Molecular Biology 2006, 13, 619-25.
(71) Nair, D. T.; Johnson, R. E.; Prakash, S.; Prakash, L.; Aggarwal, A. K.; Nature 2004, 430, 377-80.
(72) Sugasawa, K.; Shimizu, Y.; Iwai, S.; Hanaoka, F.; DNA repair 2002, 1, 95-107.
(73) Yasui, M.; Suenaga, E.; Koyama, N.; Masutani, C.; Hanaoka, F.; Gruz, P.; Shibutani, S.; Nohmi, T.; Hayashi, M.; Honma, M.; Journal of Molecular Biology 2008, 377, 1015-23.
(74) Wicliffe, J. K.; Galbert, L. A.; Ammenheuser, M. M.; Herring, S. M.; Xie, J.; III, O. E. M.; Friedberg, E. C.; Lloyd, R. S.; Ward, J. B.; Environmental and Molecular Mutagenesis 2006, 47, 67-70.```


[^0]:    ${ }^{\text {a }}$ Proposed mechanism of Dimroth rearrangement of N1 adenine adducts into N6 adenine adducts

