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ABSTRACT 
 
 

Current chemotherapeutic treatments for cancer utilize systemic administration of 

cytotoxic drugs and produce many side effects in healthy tissues, making optimal treatment of 

cancer hard to achieve. Tumor targeted chemotherapy treatment enables these drugs to 

selectively treat cancer cells with minimal effect on healthy tissues. By using targeting agents 

that specifically recognize receptors present only on cancer cells and neovasculature, tumor-

specific chemotherapy can be achieved. These targeting agents can be used to direct nanoparticle 

drug delivery carriers in order to deliver greater drug doses to tumor tissue, enhance 

bioavailability, pharmacokinetics and pharmacodynamics of many chemotherapy drugs, as well 

as reduce toxicity and undesirable side effects in vivo.  

The development, optimization and evaluation of tumor-specific drug delivery systems 

composed of second generation ‘nanosponges’ has been investigated as a potential therapeutic 

for the treatment of lung cancer. This drug delivery system is hypothesized to optimize 

bioavailability and therapeutic efficacy of chemotherapy drugs in tumors, reduce side effects in 

normal tissues, and result in improved cancer treatment. These nanosponges have been 

developed from optimized linear polyester copolymers using tin (II) triflate catalyzed ring-

opening polymerization methods. They contain functional groups for modification with targeting 

and imaging agents in order to both target malignant tumor cells as well as visualize them in 

vitro and in vivo. Tumor targeting peptides such as cyclo-RGD that target the αvβ3 integrin 

receptor, and the HVGGSSV peptide that target radiation-inducible tax-interacting protein 1 

receptor allow for tumor-specific targeting of nanosponges. These nanosponges enable 



	
   vi	
  

controlled linear drug release of small molecule chemotherapeutics that can optimize 

combination chemotherapy strategies for the treatment of lung cancer.  

Due to their biodegradability, high encapsulation efficiency, and sustained linear drug 

release profiles, these optimized nanosponges are ideal for the encapsulation and controlled 

release of chemotherapy drugs. The applicability of a HVGGSSV peptide targeted nanosponge 

drug delivery system for sequential administration of a microtubule inhibitor (paclitaxel) and 

topoisomerase I inhibitor (camptothecin) was investigated in a lung cancer mouse model. 

Combination therapy with these two drugs will allow for multiple mechanisms of action for 

inhibiting cancer growth, resulting in enhanced cytotoxicity when delivered in varying 

sequences.  
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CHAPTER 1 

 

INTRODUCTION 

 

Cancer chemotherapy 

The majority of cancers diagnosed are solid tumors that can be surgically resected, 

however, remaining malignant cells are difficult to detect and remove and can potentially spread 

after surgical treatment.1-4 Chemotherapy and radiotherapy are commonly used as second line 

treatments to eradicate remaining cancer cells after surgery, and in cases where surgery is not 

possible as first line treatments.1 Achieving complete eradication of cancer cells has proven to be 

a challenge due not only to metastatic cells, but also to poor bioavailability of commonly used 

chemotherapy drugs, limited dosing due to toxicity, damage to normal tissues as a result of 

systemic administration of cytotoxic drugs, multidrug resistance (MDR), and low solubility of 

hydrophobic drugs under physiologic conditions.1-8 Current chemotherapy regimens require 

systemic administration of cytotoxic drugs intravenously, with multiple rounds of treatment 

usually needed. Achievement of a high enough dose to kill the cancer while maintaining 

tolerability to the patient remains a challenge.1-8 Additionally, many cancer patients are 

immunocompromised and the elevated toxicity resulting from certain treatment regimens is not 

well tolerated, possibly even contributing to patient mortality.1-8 Typical cancer drugs are also 

highly hydrophobic and suffer from poor water solubility, requiring them to be administered 

along with a pharmaceutical grade solvent (such as castor oil, ethanol, and surfactants).2-8 These 

solubility enhancing solvents cause severe allergic reactions and other undesirable side effects in 

patients, making them difficult to tolerate for immunocompromised cancer patients.2-8 As a 
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result, systemic chemotherapy continues to have major drawbacks that impact treatment 

outcomes, patient survival and quality of life. Alternative formulations and drug delivery systems 

have been actively investigated to circumvent these problems. Nanoparticle drug delivery 

provides advantages over systemic ‘free’ drug treatment by allowing for more effective 

therapeutic doses to be administered while mitigating many of the side effects. 

 

Nanotechnology for targeting, imaging and therapy  

Development of nanoscale carriers for treatment of cancer has been of particular interest 

since the use of nanoparticles for delivery of chemotherapeutics to malignant tumors offers 

solutions to the problems associated with chemotherapy administration, dosing and formulation 

issues.2-8 Nano-sized carriers are ideal for delivering drugs and imaging agents because they can 

control the release of drug locally, target surface receptors on cancer cells and neovasculature, 

and allow imaging of biodistribution in vivo.2-8 These multifunctional ‘nanotheranostics’ can 

simultaneously deliver and release therapeutic agents, and be used as contrast agents for 

molecular imaging, making them ideal for both therapy and diagnosis (Figure 1.1).5,6 This 

versatile nanoparticle is particularly suited to applications where treatment must be adapted to 

the continuously changing needs of the patient throughout the course of treatment. Additionally, 

it allows for greater convenience for patients with a single treatment serving multiple functions. 

The ability to monitor the effectiveness of treatment using imaging technology is also of huge 

benefit to physicians as it allows for optimized treatment protocols, and greater flexibility for 

switching from ineffective drugs to more effective ones in a timely manner.  
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Figure 1.1.  Nanotheranostics combine nanotechnology with therapy and diagnosis. 
 

Nanoparticle materials 

Nanoparticles have been made from many different materials including synthetic and 

natural polymers, lipids, metals and other inorganic materials. Examples of nanoparticles formed 

from polymers include polymer-drug conjugates, micelles, dendrimers, and nanogels.2-8 

Depending on the application and physiological environment, materials can be rationally 

designed to enhance biocompatibility as well as optimize physicochemical properties.  

Biodegradable polymers have been frequently used for the design of nanoparticles for 

drug delivery applications since they can degrade under physiological conditions, gradually 

release drug in a time-dependent manner, and are physiologically compatible.11,14,16,57 In order 

for a polymer to be considered ‘biodegradable’, it must be capable of undergoing either 
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hydrolytic, enzymatic or oxidative degradation processes.11,4,16 Hydrolytic and enzymatic 

degradation typically occur under physiological conditions given the abundance of water 

molecules and enzymes (such as hydrolases and esterases) available in blood and tissues, and are 

frequent degradation pathways for polymers used in the pharmaceutical industry.11,14,16 

Biocompatibility of these polymers is also important for polymers that remain in vivo for 

extended periods of time, thus the polymer itself and its degradation products must not be toxic 

or generate an immune response. Consequently, biodegradable polymers are highly suitable for 

delivering drugs due to greater biocompatibility and decreased immunogenicity, as well as 

controlled release of drugs via degradation.11,14,16 In addition, functional groups can be built into 

these polymers to allow addition of targeting units such as peptides and antibodies, as well as 

imaging probes for visualization.11-19 Depending on the polymer type, solubility and crystallinity 

can also be tuned to deliver unique polymers customized for specific applications.11-19, 68-70  

A variety of biodegradable polymers have been previously studied including polyesters, 

polyanhydrides, polyurethanes, and polyacrylates.11,14,16 These polymers can range from 

hydrophobic to hydrophilic, with varying degrees of hydrophobicity and hydrophilicity produced 

with copolymer composition. Of these, biodegradable polymers such as poly(lactide)-co-

(glycolide) (PLGA) have been widely used for nanoparticle drug delivery systems due to 

controlled degradation and drug release properties and favorable biocompatibility 

profiles.10,20,67,82-85 However, production of a sustained, linear drug release profile has been 

difficult to achieve in the past due to greater amounts of drug released initially (known as the 

‘burst effect’).12-19  Greater drug encapsulation efficiency, as determined by the amount of drug 

actually loaded into a nanoparticle compared to amount of drug attempted, has also made 
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biodegradable polymer-based nanoparticle preferable over other types of nanoparticles  for drug 

delivery applications.10-20  

The main advantage of using synthetic polymers for nanoparticles lies in their ability to 

be designed to accommodate particular applications. This “tunability” exploits the different 

properties of polymers and copolymer combinations to produce nanoparticles with desirable 

properties. Examples of properties that can be “tuned” include particle size, surface properties 

(charge, hydrophobicity, morphology, and functionalities) and payload density.2-8 In addition, 

several of these factors such as size, surface modification and functionalization with targeting 

ligands can affect clearance and biodistribution of nanoparticles in vivo.2-8 Nanoparticle size has 

been known to affect in vivo clearance, with a range of 10-120 nm considered an optimal range.2-

8 Nanoparticles smaller than 10 nm are rapidly cleared by the kidneys, while those in the upper 

size range can potentially get trapped within tumors via enhanced permeability and retention 

(EPR) effect.2-8  Surface charge can also affect nanoparticle internalization within tumor tissue 

and cells, with a slight negative surface charge (-2 to -5 mV) allowing the nanoparticles to better 

penetrate into tumor cells.2-8 Minimization of size and charge reduces scavenging by 

macrophages and the reticuloendothelial system (liver, spleen, lymph and bone marrow cells). 

Use of a neutral polymer such as polyethylene glycol (PEG) can also reduce surface charge, 

reduce aggregation caused by interactions between nanoparticles, and allow nanoparticles to 

evade the reticuloendothelial system and reduce immunogenicity (interaction with immune cells 

and provocation of an immune response).2-8 In addition, surface modification with PEG increases 

circulation time. Hydrophobicity can be tuned in polymeric nanoparticles by altering the 

monomer type, polymer chain length and molecular weight, and addition of other modifiers such 

as PEG to enhance hydrophilicity.2-8,44-46 Nanoparticle morphology can be affected by changes in 
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molecular arrangement, with variation in percent amorphous and crystalline regions producing 

changes in overall packing structure. Surface functionalities can be tuned with covalent 

attachment of peptides, antibodies, aptamers and other small molecule targeting ligands.2-8 

Surface density of these targeting ligands can be increased or decreased according to presence of 

functional groups available for bonding. Nanoparticles also enable multivalency, with multiple 

ligands on nanoparticle surfaces increasing likelihood of interaction with cell surface receptors.2-

8,35-40 Small molecules such as chemotherapy drugs, proteins and siRNA can be loaded within 

nanoparticles in varying degrees depending on nanoparticle size, porosity and hydrophobicity.  

 

Nanoparticle cancer therapeutics 

Nanoparticles are particularly useful for delivering small molecule drugs that are highly 

toxic, hydrophobic, and rapidly cleared in vivo. Use of nanoparticle carriers can safely solubilize 

these types of drugs, increase plasma half-life, deliver and release them within tumor tissues, 

vasculature and cells.  One of the major benefits of using nanoparticles in drug delivery 

applications is not only increased deposition of drugs within tumors, but also reduced systemic 

exposure.2-8,35-48 Toxic drugs have exposure limits that can prohibit treatment with optimal 

dosages needed for destruction of tumors. In order to avoid exceeding upper exposure limits and 

lethal toxicity levels, physicians are often forced to administer lower doses that may not be 

optimally effective. However, with nanoparticle drug delivery systems greater dosages can be 

achieved with lower side effects, allowing more optimal dosages to be administered with 

improved tolerability.2-8,35-48  Nanoparticle drug delivery can also be used for neoadjuvant 

chemotherapy, reducing the size of a tumor before more radical treatments are performed.2-8 This 

is important in cases where tumors in their original state are non-resectable due to close 
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proximity to major blood vessels, vital organs or extent of malignant tissue. Nanoparticle 

chemotherapy can allow more aggressive neoadjuvant treatments than systemic chemotherapy, 

potentially improving success of more radical treatments afterwards.2-8  

Depending on the particular drug, dosage, and treatment schedule, nanoparticle materials 

can be modified to provide the desired characteristics. These might include encapsulation of 

hydrophobic drugs, various administration methods, biodegradeability, controlled release, 

sustained release, and localized delivery of drug to maximize the therapeutic index and minimize 

systemic toxicity.2-8 Problems that have been encountered with some polymeric nanoparticles 

include potential chemical instability, limited bioavailability, and lack of site specificity.10-16 

These problems are often addressed by modifying the polymer composition and incorporation of 

tumor-specific targeting ligands.13,35,54 The design of the nanoparticles as well as their surface 

chemistry can be used to engineer nanoparticle carriers with properties that can enhance cancer 

treatment while minimizing side effects.  

A variety of chemotherapy drugs have been encapsulated including paclitaxel, 

dexamethasone, 5-fluorouracil, and etoposide.2-20 Applications for these types of drug delivery 

systems have increased over the last decade as more drugs have been encapsulated with greater 

efficiency.  Highly hydrophobic drugs in particular have benefited from the development of 

biodegradable nanoparticles because they are difficult to solubilize for intravenous injection, and 

require use of a pharmaceutical grade solvent or surfactant. In this work, a nanoparticle drug 

delivery system comprised of biodegradable copolymers has been used to deliver the 

chemotherapeutic drugs paclitaxel and camptothecin due to their hydrophobicity and poor water 

solubility (Figure 1.2). In addition, a less hydophobic drug, seliciclib, was also used for in vitro 

drug combination studies. 
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Paclitaxel Camptothecin Seliciclib

Structure

Formula C47H51NO14 C20H16N2O4 C19H26N6O
MW 853.9 348.4 354.5

Source Pacific Yew tree          
(Taxus brevifolia) 

Chinese happy tree 
(Camptotheca acuminata)

synthetic small molecule

Mechanism 
of Action

mitotic inhibitor topoisomerase I inhibitor CDK (2,7,9) inhibitor

Indication breast, lung, ovarian,    
head and neck cancer

ovarian, lung, colon cancer lung cancer, leukemia,    
HIV, inflammation

MW: molecular weight; CDK: cyclin-dependant kinase
 

Figure 1.2.  Structures of chemotherapy drugs used in nanosponge drug delivery systems. 

 

In clinical applications, paclitaxel has been administered using Cremophor® EL, a 

pharmaceutical grade solvent, in order to enhance water solubility.2-20 However, low stability in 

circulation as well as significant side effects (neurotoxicity, hypersensitivity and allergic 

reactions) have made using these solvents undesirable and other formulations have been 

investigated. As a result, alternative nanoparticle formulations for taxanes have been developed 

and studied clinically including Abraxane®.2-20 Abraxane® is an albumin-based nanoparticle used 

to deliver paclitaxel, initially approved by the FDA for use in the treatment of breast cancer in 

2005, and also non-small cell lung cancer and pancreatic cancer in 2013 (Figure 1.3). 

Nanoparticle formulations of camptothecin have not been available on the market, but attempts 

have been made to modify the structure of camptothecin to enhance its water solubility, resulting 

in the analogues irinotecan and topotecan. Figure 1.3 shows other nanoparticle drug delivery 
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systems also approved by the United States FDA including several liposomal formulations for 

the anthracyline analogues doxorubicin (Doxil®) and daunorubicin (DaunoXome®), as well as 

vincristine (Marquibo®) and cytaribine (DepoCyt®).2-20 PEGylated drug compounds have also 

been approved for L-asparaginase (Oncaspar®) and pegfilgrastim (Neulasta®) for blood cancers 

and disorders relating to chemotherapy.2-20 

 

!!
FDA  Approved Nanoparticle Therapeutics for Cancer Treatment 

!!
Drug Delivery 
System 

Therapeutic 
Drug 

Commercial 
Name Indications FDA 

Approval 

!!
Albumin-bound 
paclitaxel (nab) Paclitaxel Abraxane® breast, non-small cell lung cancer, 

pancreatic cancer 
2005, 2013 
2013 

!!Liposomes Vincristine Marqibo® Ph-  acute lymphoblastic leukemia 2012 
!!   Cytaribine DepoCyt® lymphomatous meningitis 2007 
!!   Doxorubicin Doxil® Kaposi's sarcoma, ovarian cancer 1995, 1999 
!!   Daunorubicin DaunoXome® Kaposi's sarcoma 1996 
!!PEGylated drug L-asparaginase Oncaspar® acute lymphoblastic leukemia 2006 
!!   Pegfilgrastim Neulasta® neutropenia 2002 
!!FDA: food and drug administration; nab: nanoparticle albumin bound; Ph- : Philadelphia chromosome negative;              

PEG: polyethylene glycol; PLA: polylactic acid !!  

Figure 1.3.  Nanoparticle drug delivery systems approved by the United States Food and Drug 
Administration for treatment of cancer.2-20 

 

In this study, biodegradable nanosponges were used as nanocarriers to deliver 

chemotherapy drugs to tumors. Due to a cross-linked polymeric architecture, controlled low dose 

drug release profiles were produced that were highly suitable for this application.86-88 

Furthermore, development of a tumor-specific drug delivery system that enhanced drug 

solubility, provided sustained low dose drug release, and could be used with different drug 

combinations provided a unique opportunity for maximizing the potential of chemotherapy while 

reducing the limiting toxicities that lower treatment efficacy. Therefore, biodegradable 

nanosponges were optimized to target and treat tumors. Due to their biodegradable nano-network 
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(a cross-linked 3-dimensional scaffold), drug can be loaded into nanosponges and released in a 

controlled fashion upon degradation in physiological conditions. These nanoparticles can be 

synthesized in different sizes and network densities, and can be functionalized with tumor 

targeting ligands and imaging agents to enable visualization in vivo.86-88 Moreover, hydrophobic 

drugs can be loaded into these nanosponges, enhancing solubility and producing formulations for 

parenteral administration. 

 

Tumor targeting  

In order to direct these nanoparticle carriers to specific sites, such as malignant tumors, 

targeting has played an increasingly important role in drug delivery systems. Both passive and 

active targeting strategies have been explored as ways to efficiently deliver drugs to tumors and 

enhance specificity.38-48  

Passive targeting of drug delivery systems utilizes the enhanced permeability and 

retention (EPR) effect to selectively accumulate in tumors instead of other tissues.38-48 By 

exploiting the greater permeability of tumor microvasculature and poor lymphatic drainage, 

nanoparticles greater than 50 kDa can be retained within tumor tissues.38-48 Since this method of 

targeting does not require the use of targeting units but relies more on nanoparticle size and 

molecular weight, it is known as a passive targeting strategy. While this method is useful for 

delivering and trapping high molecular weight drugs within tumor tissues, it is not as effective 

for low molecular weight drugs due to rapid washout by tumor vascular blood flow.38-48  In 

addition, variation between tumor types (and also within each individual tumor), size and 

location produces differences in blood vessel structure, and can impact treatment effectiveness.  
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Active targeting strategies require the use of receptor-ligand binding and are more 

specific in interaction and binding to tissue types and biomarkers for disease. Receptors present 

on the surface of cancer cells and their microvasculature can be targeted using peptides or 

antibodies that have high affinity and specificity for these receptors.38-48,63,64 There are a variety 

of commonly used targets including the αvβ3 integrin, tax-interacting protein 1 (TIP-1), 

epidermal growth factor receptor (EGFR), and vascular endothelial cell growth factor receptor 

(VEGF), among others.38-50,89-93 Conjugation of peptides or antibodies that target these receptors 

can enable a nanoparticle to home specifically to tissues that express these receptors. Use of 

active over passive targeting strategies presents advantages including receptor specific binding, 

delivery of small molecule drugs independent of size, and greater concentration of drug within 

the tumor compared to normal organs.   

 Tumor-specific targeting using radiation-inducible receptors has been demonstrated in 

various tumor models.89-93 Briefly, exposure of a solid tumor to sub-therapeutic levels of ionizing 

radiation is used to induce expression of receptors on tumor cells and neovasculature. Peptides 

developed using phage display technology can be targeted to these radiation-inducible receptors 

to enable tumor-specific binding.89-93,58-62 Use of these peptides in conjunction with 

nanoparticles, small molecule therapeutics and contrast agents can produce radiation-targeted 

drug delivery and imaging systems for cancer treatment. In this work, the tax-interacting protein-

1 (TIP-1) binding peptide (HVGGSSV) was used as a targeting ligand for tumor-specific 

delivery of chemotherapeutic drugs and imaging agents.90-93 This peptide was shown to bind to 

tumor cells exposed to a sub-therapeutic dose of 3 Gy ionizing radiation in lung, brain, breast, 

colon and prostate cancer models.90-93 By targeting chemotherapy drugs specifically to tumor 

tissue, greater concentrations of drug can be delivered to tumors without exposing healthy tissues 



	
   12	
  

to cytotoxic drugs. Toxic side effects produced from non-specific delivery often compromise 

cancer treatment because of damage to healthy tissues and decreased tolerance in patients, 

causing suboptimal dosages and treatment protocols. Furthermore, radiation is widely used in the 

majority of cancer treatments along with chemotherapy and surgery.1-8 Technological and 

scientific advances have ensured accurate and efficient delivery of radiation dosages to tumor 

sites. Low dose radiation has also been reported to enhance drug delivery by inducing higher 

drug diffusion in solid tumors.1-8,90-93 Since radiation can be used in combination with 

chemotherapy drugs to enhance biological efficacy, it can also be used in conjunction with 

radiation-targeted drug delivery systems to optimize therapeutic efficacy.  

 Another target for tumors is the αvβ3 integrin adhesion receptor, a marker for 

angiogenesis. This integrin receptor has been widely used for both imaging and tumor targeted 

drug delivery, and it binds to a variety of peptides and proteins that contain the arginine-glycine-

aspartic acid (RGD) recognition motif.48-50 In particular, radiolabeled αvβ3 integrin antagonists 

(such as Cilengitide) have been used to monitor and treat cancers successfully in clinical trials.48-

50  

Molecular imaging  

Nanoparticles can be modified with imaging probes for a variety of molecular imaging 

applications, such as optical imaging and positron emission tomography (PET). Optical imaging 

modalities have the advantage of higher temporal resolution and safer use (since they do not use 

ionizing radiation or radioactive materials), but they provide lower spatial resolution and 

sensitivity in deep tissues.49,56,71-79 Some of the major limitations of optical imaging are related to 

the optical properties of tissues. A major limitation of optical imaging is the high scattering and 

absorption that occurs in biological tissues and the limited penetration of light in vivo.49,56,71-79 



	
   13	
  

Since tissues and cells have numerous structures, boundaries and differences between each other, 

there are many different diffracting interfaces present. As a result, photons in the shorter 

wavelength visible range tend to be highly scattered, making it difficult to obtain depth resolved 

information from in vivo samples. 49,56,71-79 Some of these photons in the visible range (350–650 

nm) are also absorbed, due to the presence of cytochromes and hemoglobin within cells and 

tissues (see Figure 1.4).  Longer wavelength near infrared light (650-900 nm) tends to be 

absorbed and scattered less by tissues and cells, allowing light to penetrate deeper into tissue. 

49,56,71-79  As a result, many fluorescent probes have been developed for use in near-infrared 

imaging. Despite this, probes in the higher range (closer to 900 nm) tend to have lower signal 

intensity and are less bright compared to ones on the lower end (closer to 650 nm), so probe 

wavelength has to be chosen carefully in order to provide optimal imaging. In addition, 

photostability of fluorophores is important for optimum image quality and consistency, and must 

be taken into account when choosing a fluorophore.  

Near-infrared fluorescence (NIR) imaging is a particular kind of optical imaging that 

exploits the near-infrared range in the spectra to bypass the typical absorption and 

autofluorescence problems seen in optical imaging of biological tissues. 49,56,71-79 Lower 

autofluorescence allows for greater signal-to-background ratio. Typically, tissues exhibit a high 

photon absorbance in both the visible wavelength range (350–650 nm) and the infrared range 

(above 900 nm). 49,56,71-79 However, in the NIR range of 650–900 nm, the absorbance of water 

and tissues in the body is at a minimum and thus allows photons to penetrate tissue more 

efficiently and minimizes scattering. 49,56,71-79 Therefore, functional imaging of molecularly based 

events such as tumor-specific binding can be performed using optical imaging modalities in 

order to provide real time monitoring of biodistribution in vivo. 49,56,71-79  NIR imaging utilizes a 
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laser or bulb to excite a fluorophore at a specific wavelength, and the fluorophore then emits 

light at a different wavelength which then passes through a set of filters and is captured by a 

charge-coupled device (CCD) camera producing an image.49,56,71-79 Although more recent 

advances have led to the development of tomographic (3D) optical imaging methods, planar (2D) 

optical imaging is more common. 

 

 

Figure 1.4.  Absorption at near-infrared wavelengths by common biological molecules.74  
 

While optical imaging is commonly used in small animals, applications in humans and 

larger subjects have been severely limited due to problems with light attenuation. Nuclear 

imaging techniques, like positron emission tomography (PET), offer a major advantage over 

optical techniques due to greater penetration of tissues with radioactive tracers compared to 
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optical tracers.94-97 PET imaging provides superior sensitivity for imaging deeper tissues, but also 

presents challenges unique to radioactive tracers including development, half-life, and safety 

issues.94-97 One of the main considerations with PET imaging would include selection of a 

radiotracer whose half-life is compatible with the kinetics of the nanoparticle drug delivery 

system in vivo. Radiotracers with shorter plasma half-lives than the nanoparticle drug delivery 

systems they are being used to image would present problems with image quality and 

consistency, as the radiotracer would undergo radioactive decay at a faster rate that the 

nanoparticles are cleared, producing lower signal intensity due to radioactive decay rather than 

nanoparticle clearance.  

 

Drug quantification 

Both NIR and PET imaging are non-invasive tools for visualizing tumor targeting in vivo, 

and a complement to more direct chemical quantification such as mass spectrometry.  

Measurement of radiance underestimates nanoparticle binding within the tumor because NIR 

light scatters throughout deeper tissues in vivo. Since the fluorescence intensity values are 

determined from intact tissue and not homogenized tissue, it is possible that the fluorescence 

intensity is not homogeneously distributed in the tissue and thus the values may vary in different 

segments of the same tissue. In contrast, HPLC-MS analysis of tumor drug content reflects 

concentration values determined directly from tissue homogenates.98-100 While PET imaging can 

also be used along with scintigraphy of tissue homogenates to obtain radioactivity levels directly 

from tissues, this method requires careful handling and presents safety concerns due to 

radioactivity. HPLC-MS analysis circumvents limitations from both optical imaging by 

analyzing tissue homogenates, and those of PET imaging by providing a safer alternative to 
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radioactivity. In addition, HPLC-MS provides an analytical method for directly quantifying the 

actual drug or small molecule loaded within nanoparticle drug delivery systems, rather than 

indirect quantification via either an optical or radioactive imaging probe.98-100 The use of HPLC-

MS directly quantifies the content of chemotherapy drugs such as paclitaxel and camptothecin in 

tumors and other tissues.98-100 Like other mass spectrometry methods, it is a highly sensitive tool 

for validating and complementing tumor targeting data provided by NIR optical imaging 

methods. Combining both optical imaging and mass spectrometry techniques enables 

confirmation of results using both imaging and chemical analysis of nanoparticle drug delivery 

systems targeted to tumors.  

 

Summary 

Development of nanoparticles for drug delivery and improved conjugating methods make 

it possible to design and create multifunctional nanoparticles for tumor-targeted drug delivery.  

Multifunctional nanoparticles composed of biodegradable polymers can be used to deliver 

controlled release of therapeutic drugs, functionalized with imaging agents for diagnostic 

purposes, and tumor-specific ligands for targeting of cancer. In this work, biodegradable 

polymeric ‘nanosponges’ were used to optimize targeted delivery of paclitaxel and camptothecin 

to lung cancer. Chapter 2 explores the optimization of linear polyester copolymers via tin (II) 

triflate catalyzed ring opening polymerization of lactone monomers. These low polydispersity 

polyesters are then used to produce optimized nanosponges. Chapter 3 shows the effect of 

paclitaxel or camptothecin loaded nanosponges in various schedules for the  treatment of lung 

cancer cells in vitro. Chapter 4 discusses the synthesis of a cyclic RGD peptide targeted 

nanosponge for targeting and imaging in lung cancer cells. Chapter 5 explores the feasibility of 
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HVGGSSV peptide targeted nanosponges for targeting, imaging and treatment of lung cancer in 

an in vivo mouse model. Chapter 6 examines future directions and final conclusions from these 

works.  
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CHAPTER 2 

 

SYNTHESIS OF SECOND GENERATION POLYESTER ‘NANOSPONGES’ VIA 

RING-OPENING POLYMERIZATION WITH TIN (II) TRIFLATE CATALYST 

 

Abstract 

Nanoparticles made from biomedical polymers are commonly used in drug delivery 

applications because they allow delivery of drugs with degradation of nanocarriers over time. 

These polymers typically come from a class of aliphatic polyesters that are produced via ring-

opening polymerization of lactone monomers. While a large number of catalysts and initiators 

have been previously investigated in the literature for polymerization of lactones, the most 

common catalyst used for these applications is tin (II) octanoate. In order to produce a polymer 

with the desired reaction conditions and characteristics, catalyst selection plays a significant role. 

The aim of this study was to investigate tin (II) triflate as a catalyst for the ring-opening 

polymerization (ROP) of poly(VL-co-AVL) and poly(VL-co-AVL-co-OPD) copolymers. Both 

copolymers were prepared using tin (II) triflate and ethyl alcohol initiator, and results showed 

improved yields and monomer incorporation for both polymers, with narrower PDIs for 

poly(VL-co-AVL) copolymers compared to poly(VL-co-AVL-co-OPD) copolymers. Lower 

polydispersity in linear polymer precursors can translate into greater control and uniformity of 

resulting nanoparticle size distribution. This can in turn allow for more uniform drug release, 

making it easier to predict and control drug release profiles for nanoparticles both in vitro and in 

vivo. 
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Introduction 

Polymers for drug delivery 

Biomedical polymers typically used in drug delivery applications have mostly come from 

a class of aliphatic polyesters widely known for their superior biocompatible and biodegradable 

properties.7-9,52,53 Utilizing biodegradable materials has advantages for drug delivery applications 

because it allows delivery of drugs with degradation of the nanocarrier over time. Ideally, this 

material should degrade at a rate that is compatible with its purpose, and its degradation products 

should be non-toxic and physiologically compatible. 7-9,52,53 In addition, these materials should 

have mechanical properties (crystallinity, morphology, etc.) that are suitable for their intended 

applications. Polyesters are hydrolytically degraded, with ester bonds being broken over time at 

rates that can be controlled depending on the length of the polymer chains.4-6,10,12,14,51 Aliphatic 

polyesters have been used as scaffolds for drug delivery systems with sustained release of drugs 

and other small molecules, as sutures and adhesives, and in tissue engineering applications.7-

9,52,53 Examples of some commonly used polyesters include homopolymers and copolymers of 

poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly(caprolactone) (PCL), 

poly(valerolactone) (PVL) and poly(butyrolactone) (PBL), among others (Figure 2.1).7-9,52,53 The 

resulting polymers are composed of lactide and lactone monomer repeat units bearing different 

functional groups, and are suitable for a variety of applications. By changing the type and ratio of 

monomers used, the composition of these polymers can be controlled and different chemical and 

mechanical properties can be produced for specific applications. Polymerizations of these 

monomers are also similar, allowing for many different combinations of copolymers to be 

produced. Consequently, aliphatic polyesters have been widely used to produce nanoparticles for 

drug delivery applications. 
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Ring-opening polymerization 

Ring-opening polymerization of lactone monomers are important in the development of 

aliphatic polyesters for drug delivery applications. This polymerization method offers the 

potential for preparing homopolymers and copolymers with defined molecular weight, chain 

length, and architecture. These polymers exhibit varying architectures from block and random 

linear copolymers to branched and dendritic structures. Various functional groups pendant on 

polymer backbones can be used to customize the physical and chemical properties of these 

polymers, such as their hydrophilicity and rate of degradation, as well as providing options for 

further chemical modification. Polymerization with allyl valerolactone (AVL) monomer provides 

the possibility of partial epoxidation of these allyl groups for nanoparticle formation using 

amine/epoxide chemistry. Polymerization with 2-oxepane-1, 5-dione (OPD) monomer provides 

additional polar oxygens for increased hydrophilicity of resulting polymers. The sequence of 

monomers in a linear polymer chain is also of consideration, as preparation of a copolymer with 

random monomer distribution (ABABBA) instead of block (AAABBB) provides additional 

amorphousness and decreases the crystallinity of the copolymer, increasing hydrophilicity and 

and rate of degradation. 

 

Material properties 

The hydrolytic degradation rate of a polymer depends primarily on its hydrophobicity and 

crystallinity, as these factors determine how well water molecules can penetrate the polymer.6-10 

Greater hydrophobicity reduces interaction with water molecules and slows down degradation. In 

general, polymers with higher crystallinity degrade slower than polymers with lower 

crystallinity, and polymers with more amorphous regions degrade faster than those with fewer 
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amorphous regions. One way to introduce more amorphous regions into a polymer is to use more 

than one monomer, and thus produce a copolymer. The presence of any sterically hindering 

functional groups at scission sites (where ester bonds are cleaved) also decreases the rate of 

degradation. 

 

 

Figure 2.1.  Commonly used cyclic ester monomers for ring-opening polymerization of 

polyesters. 
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Catalyst optimization 

A large number of catalysts and initiators have been previously investigated in the 

literature for polymerization of lactones.10,12,17,18,51 In order to produce a polymer with the 

desired reaction conditions and characteristics, catalyst selection plays a significant role. The aim 

of this study was to investigate tin (II) trifluoromethanesulfonate (tin triflate or Sn(OTf)2) as a 

catalyst for the ring-opening polymerization (ROP) of poly(VL-co-AVL) and poly(VL-co-AVL-

co-OPD) copolymers. 

Tin (II) bis-(2-ethylhexanoate), also known as tin octanoate or Sn(Oct)2, has been the 

most extensively used metal catalyst for preparation of polymers using ROP methods.15,16 

Because it exhibits lower sensitivity towards water, it is easier to use in the preparation of 

polymers industrially. It also has received approval by the Food and Drug Administration (FDA) 

for the formulation of polymer coatings used in many food packaging materials.4-6,15,16 However, 

high reaction temperatures (above 100 °C) are needed for its use in typical ROP methods, and 

resulting intermolecular and intramolecular esterification tend to produce polymers with wide 

polydispersities.10,12,17,18,51  This can be problematic if polymers of uniform chain length are 

required, such as in the preparation of polymer-based nanoparticles.  

The mechanism of initiation in tin triflate catalyzed polymerization of lactones is shown 

in Figure 2.2. 10-13,17,18,51  An initiating species (tin triflate initiator) is formed, followed by 

coordination-insertion of the monomer into the alkoxide bond produced, and then chain transfer 

of the active polymerizing center to remaining unreacted alcohol. 10-13,17,18,51   The coordination-

insertion reaction with the lactone monomer creates the first actively propagating linear polymer 

chain end. This chain end is composed from the initiating alcohol and the active propagating 

center (from the first monomer unit and tin alkoxide). 10-13,17,18,51   
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Figure 2.2. Ring-opening polymerization with tin (II) triflate catalyst.  

 

The use of triflates such as Sn(OTf)2, has been less frequent in the ROP methods for the 

preparation of polyesters. Due to its high sensitivity to moisture and other impurities, typical 

procedures require extensive purification of monomers prior to polymerization.4-6,10,12,14,51 High 

reactivity coupled with the presence of any impurities can produce bimodal polymers that require 

further purification.  

In this study, we sought to use tin (II) triflate catalysed ROP of δ-valerolactone (VL), α-

allyl(valerolactone) (AVL), and 2-oxepane-1,5-dione (OPD) monomers to produce linear 

polyesters of narrow polydispersity. The resulting random copolymers were then used as 

scaffolds for production of cross-linked ‘nanosponges’ for delivery of chemotherapeutics. In 

order to optimize the linear polymers produced, reaction conditions including catalyst selection 

were first studied and optimized to produce well-defined polymers with narrow polydispersity 

and predictable incorporation of lactones with various functionalities.  

 

 

 



	
   32	
  

Experimental 

Materials and Methods 

Reagents.  Chemical reagents were purchased from Sigma-Aldrich and Strem Chemicals, and 

used as received unless otherwise stated.  

NMR Spectroscopy.  All 1H NMR spectra were acquired using a 400 MHz Bruker AV-400 NMR 

with deuterated chloroform (CDCl3) and tetramethylsilane as internal standard.  

Purification. Biotage Isolera Spektra One flash purification system equipped with a UV λ 

absorbance detector (254 nm) was used to purify AVL monomers. Purification was performed 

using a SNAP HP 50 g silica column with a 5-20% ethyl acetate gradient in n-hexanes with a 

flow rate of 50 ml/min. All monomers (AVL and VL) were vacuum distilled using a Kugelrohr 

distillation apparatus (Sigma Aldrich). 

Gel-permeation chromatography (GPC). All GPC was performed using a Waters 

chromatography system equipped with refractive index and dual λ absorbance detectors, four 5 

mm Waters columns (300 mm x 7.7 mm) with pore size (100, 1000, 100,000 and 1,000,000 Å 

respectively). All samples were dissolved in tetrahydrofuran (THF) or dimethylformamide 

(DMF), with a 20 µl injection volume and 1 mL/min flow rate. 

Transmission electron microscopy (TEM). TEM imaging was performed on nanoparticles by 

dissolving approximately 5 mg in a solution of 1 : 0.4 mL isopropanol/acetonitrile. The dissolved 

nanoparticles were sonicated for 5 minutes and stained with 4 drops of a 3% phosphotungstic 

acid/water solution for 10 minutes. This solution was sonicated once more for 5 minutes before 

the copper grids were prepared. Ultrathin Carbon Type-A 400 mesh copper grids (Ted Pella, 

Redding, CA) were gently immersed into the stained nanoparticle solution and allowed to dry for 

2 hrs prior to analysis. A 200 kV Philips CM20T transmission electron microscope was used to 
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acquire micrographs of the nanoparticles. 

δ-valerolactone monomer (VL) 

Technical grade δ-valerolactone was Kugelrohr distilled to produce a colorless liquid product.  

Synthesis of allyl-substituted valerolactone monomer (AVL) 
 
A flame dried 500 mL two-necked round bottom flask was equipped with a stir bar, sealed with a 

rubber septum, and purged with nitrogen for 30 min. To the flask, 156.25 mL of anhydrous THF 

was added and cooled to -78 °C in a dry ice/acetone bath. Following this, a basic solution of 

lithium diisopropylamine was produced by adding redistilled n,n-diisopropylamine (3.3 mL, 

23.63 mmol) and n-butyl lithium (2.5 M in hexanes) (9.35 mL, 23.38 mmol) dropwise via 

syringe. This solution was stirred for 20 minutes. A nitrogen purged solution of distilled δ-

valerolactone 1 (1.97 mL, 21.23 mmol) in anhydrous THF (56 mL) was then added dropwise via 

syringe over 30 min. After an additional 30 min of stirring, a nitrogen purged solution of allyl 

bromide (2.21 mL, 25.54 mmol) in hexamethylphosphoramide (4.43 mL, 25.46 mmol) was 

added via syringe. The reaction mixture was warmed up to -40 ºC and stirred for 2 hrs. The 

reaction was quenched with excess NH4Cl solution. The crude product was concentrated via 

rotary evaporator, washed three times with saturated NaCl solution, and dried with anhydrous 

MgSO4. The crude product was purified via column chromatography (Biotage Isolera), analyzed 

by thin layer chromatography and Kugelrohr distilled. Chromatography with a gradient of 5-20% 

ethyl acetate in n-hexanes as eluent gave a yellow liquid product. Kugelrohr distillation produced 

a colorless liquid product. Yield: 3.56 g (89%). 1H NMR (400MHz, CDCl3/TMS, ppm) δ: 5.82 

(m, 1H, H2C=CH-), 5.11 (m, 2H, H2C=CH-), 4.32 (m, 2H, -C(O)OCH2-), 2.60 (m, 2H, 

H2C=CHCH2-), 2.34 (m, 1H, H2C=CHCH2CH-), 2.08 (m, 1H, H2C=CHCH2CHCH2-), 1.92 (m, 

2H, C(O)OCH2CH2-), 1.57 (m, 1H, H2C=CHCH2CHCH2-).   
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Synthesis of 2-oxepane-1,5-dione monomer (OPD) 

To a 200 mL round bottom flask, equipped with stir bar, 1,4-cyclohexanedione (4.0 g, 35.84 

mmol) and 3-chloroperoxybenzoic acid (4.5 g, 55.35 mmol) was added. Reagents were dissolved 

in dichloromethane (44 mL) and the reaction mixture was stirred and refluxed for 6 h at 44 ºC in 

an oil bath. The reaction mixture was cooled to room temperature and solvent was removed via 

rotary evaporation. The crude product was washed five times with cold diethyl ether and dried 

under vacuum for 72 hrs. Isolated yield: 2.1g. 1H NMR (400 MHz, CDCl3/TMS, ppm) δ: 4.41 (t, 

J = 5.2 Hz, 2H, -C(O)OCH2CH2C(O)-), 2.81 (m, 4H,  -CH2C(O)CH2-), 2.74 (m, 2H, -

CH2C(O)O-), 2.69 (m, 2H, -CH2C(O)-).  

 
 
Copolymerization of α-allyl-δ-valerolactone (AVL) 2 and δ-valerolactone (VL) 1. 

A flame dried 25 mL 3-necked round bottom flask was equipped with a stir bar, sealed with 

rubber septa and nitrogen purged. A stock solution of anhydrous ethanol in anhydrous 

tetrahydrofuran was prepared (1.7 M) in a 50 mL flame dried and nitrogen purged round bottom 

flask, and a stock solution of Sn(OTf)2 catalyst in anhydrous tetrahydrofuran was prepared 

(3.7x10-2 M) in a 10 mL flame dried and nitrogen purged round bottom flask.  Ethanol (584 µL, 

1.0 mmol) and Sn(OTf)2 (261 µL, 9.64 x 10-6 mol) were added via syringe to the 25 mL 3-neck 

round bottom flask and the catalyst/initiator solution was allowed to stir at room temperature for 

30 minutes prior to simultaneous addition of δ-valerolactone (2.22 g, 22.0 mmol) and α-

allyl(valerolactone) (0.777 g, 5.548 mmol) monomers via syringe.  After addition of both 

monomers, the reaction was stirred for 24 h at room temperature. The resulting polymer was 

diluted with 1 mL anhydrous THF and purified by dropwise addition into 1 L of chilled methanol 

to remove any remaining monomer and catalyst. The methanol was decanted and the precipitate 
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redissolved in methylene chloride, rotary evaporated and dried in vacuo. The resulting polymer 

was observed as a waxy white solid.  Mw = 3000 Da; 1H NMR (400 MHz, CDCl3/TMS, ppm) δ: 

5.72 (m, H2C=CH-), 5.04 (m, H2C=CH-), 4.08 (m, -CH2-O-), 3.64 (m, CH3CH2O-), 2.34 (m, vl, -

CH2CH2C(O)O-, avl, H2C=CHCH2CH-, H2C=CHCH2CH-), 1.68 (m, avl and vl, -CHCH2CH2-), 

1.26 (t, CH3CH2O-). 

 
Partial epoxidation of poly(VL-co-AVL) 5 

In a 100 mL round bottom flask, equipped with stir bar and rubber septum, a solution of 

poly(VL-co-AVL) (1.0 g, 1.55 x 10-3 mol) was dissolved in 8.5 mL of methylene chloride. To 

this solution, meta-chloroperoxybenzoic acid (121.25 mg, 7.03 x 10-4 mol) was added. The 

solution was stirred for 24 hrs at room temperature and then concentrated via rotary evaporator. 

The crude product was dissolved in a minimal amount of dichloromethane (2 mL) and 

precipitated into an Erlenmeyer flask containing 500 mL cold diethyl ether. The solution was 

decanted, and the white solid was rotary evaporated and dried in vacuo to obtain the final white 

waxy polymer. Yield: 0.768 g (76.8%). 1H NMR (400 MHz, CDCl3/TMS, ppm) δ: Decrease in 

allylic protons at 5.7 and 5.09 ppm and the appearance of small broad resonance peaks at 2.96, 

2.75 and 2.47 ppm due to the formation of the epoxide. Same method used for partial 

epoxidation of poly(VL-co-AVL-co-OPD) copolymer (6).   

 

Formation of nanoparticles using intermolecular crosslinking  

In a 250 mL round bottom flask equipped with stir bar and reflux condenser, a solution of 2,2'-

(ethylenedioxy)diethylamine (10.5 µL, 7.18x10-5 mol) in 29.55 mL methylene chloride was 

heated at 45 °C. A solution of poly(VL-co-AVL-co-EVL), (0.200 g, Mw = 3000 Da) dissolved in 

methylene chloride was added. The mixture was refluxed at 45 ºC for 12 hrs. Residual diamine 
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crosslinker was removed via dialysis against methylene chloride with Spectra/Por Dialysis 

Tubing (MWCO = 10,000). 1H NMR (400 MHz, CDCl3/TMS, ppm) δ: Decrease in number of 

epoxide protons at 2.96, 2.75 and 2.47 ppm and the appearance of signals at 3.5 and 2.89 ppm 

corresponding to the protons near the secondary amine of the diamine crosslinker after the 

reaction. Same method used for formation of nanosponges from poly(VL-co-AVL-co-OPD-co-

EVL) copolymer.   

 

Results and Discussion 

In order to produce polyester-based nanoparticles for drug delivery, linear random 

copolymer precursors were first synthesized from lactone monomers. These lactone monomers 

include δ-valerolactone, α-allyl-δ-valerolactone, and 2-oxepane-1,5-dione. Scheme 2.1 shows the 

synthesis of α-allyl-δ-valerolactone (2) from commercially available δ-valerolactone (1). The 

availability of an allyl functional group presents an opportunity for further modifications. The 

synthesis of this monomer involves the formation of an enolate from δ-valerolactone, prior to 

nucleophilic attack by allyl bromide resulting in the allyl substituted δ-valerolactone. This 

monomer product was purified by column chromatography and Kugelrohr distilled in an 89% 

yield. Figure 2.3 shows a proton NMR of the resulting product, with signals (f, g, h) 

corresponding to the allyl group in the monomer.  

 
 
 
 
 
 
 
 
 
 



	
   37	
  

Synthesis of Allyl-Substituted Valerolactone Monomer using Allyl Bromide 
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Scheme 2.1. Synthesis of α-allyl-δ-valerolactone monomer (AVL) (2).  
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Figure 2.3. 1H NMR of α-allyl-δ-valerolactone monomer in CDCl3. 
 

Synthesis of 2-oxepane-1,5-dione (4) monomer from commercially available 1,4-

cyclohexanedione (3) is shown in scheme 2.2. This single step synthesis involves the Baeyer-

Villiger oxidation of 1,4-cyclohexanedione with m-CPBA to produce a cyclic ester with an 

additional oxygen. This product was purified by filtration with a yield of 53%. Figure 2.4 shows 

a proton NMR of the resulting monomer product. 
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Synthesis of 2-oxepane-1,5-dione monomer  
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Scheme 2.2. Synthesis of 2-oxepane-1,5-dione monomer (OPD) (4).  
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Figure 2.4. 1H NMR of 2-oxepane-1,5-dione monomer in CDCl3. 
 
 
 
 
 
 
 



	
   39	
  

Linear random copolymers of these monomers (VL, AVL and OPD) were then produced 

using ring-opening polymerization (ROP) with ethyl alcohol as an initiator. Previously, Sn(Oct)2 

was used as a catalyst for the ROP of these monomers, however, since linear polymer precursors 

of narrower polydispersity were desired, Sn(OTf)2 was investigated as an alternative catalyst. 

The ROP copolymerization of VL (1) and AVL (2) using ethyl alcohol initiator led to the 

formation of poly(VL-co-AVL) copolymer (5), when in the presence of Sn(OTf)2 catalyst at 25 

°C for 24 hrs. Figure 2.6b shows a table of representative results from six reactions performed. 

These results show that copolymers of narrow polydispersity were produced with PDIs as low as 

1.06, and a single narrow symmetrical peak as shown in the GPC chromatogram (figure 2.6c). 

Incorporation of the AVL monomer into the copolymer product ranged from 55.7% to 81.4%. 

Overall yields for this copolymer varied from 44.5% to as high as 94.0%. The molecular weights 

(Mw) were calculated based on proton NMR, and were in the range expected. Figure 2.5 shows a 

proton NMR of the poly(VL-co-AVL) copolymer (5), with signals (m, n, o) corresponding to the 

allyl functional group from the AVL (2) monomer. 

 

Copolymerization of α-allyl-δ-valerolactone (AVL) 2 and δ-valerolactone (VL) 1. 
 
 

25 °C, 24 hrs
THF

O

O

+ O

O
Sn(OTf)2

O

O

O

O

n m

!-valerolactone
1

"-allyl-!-valerolactone
2

poly(VL-co-AVL) copolymer 
5  

 
 
Scheme 2.3. Preparation of poly(VL-co-AVL) copolymer with Sn(OTf)2 (5).  
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Figure 2.5. 1H NMR of poly(VL-co-AVL) linear polymer in CDCl3. 

 
The ROP copolymerization of VL (1), AVL (2) and OPD (4) using ethyl alcohol initiator 

led to the formation of poly(VL-co-AVL-co-OPD) copolymer (6), when in the presence of 

Sn(OTf)2 catalyst at 25 °C for 24 hrs. Figure 2.9b shows a table of representative results from 

five reactions performed. These results show that copolymers were produced with a range in PDI 

from 1.30-1.35, but with a single wider symmetrical peak as shown in the GPC chromatogram 

(figure 2.9c). These copolymers are of wider polydispersity than copolymer (5) made without the 

use of OPD monomer. Incorporation of the OPD monomer into the copolymer product was much 

higher than the AVL monomer, and ranged from 89.0% to 98.8%. Overall yields for this 

copolymer varied from 76.3% to 90.0%. The molecular weights (Mw) were calculated based on 

proton NMR, and were in the range expected.  
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Preparation of poly(VL-co-AVL) copolymer 

!

Copolymer % allyl 
incorporation 

% 
yield PDI Mw 

(kg/mol) 
Reaction 

Time (hrs) 
1 65.5% 44.5 1.07 2.17 18 
2 61.9% 93.8 1.18 2.74 21 
3 80.4% 56.8 1.06 2.07 18 
4 81.4% 60.2 1.12 2.34 22 
5 65.3% 87.5 1.06 4.64 21 
6 55.7% 94.0 1.07 4.76 21 
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Figure 2.6. Characterization of poly(VL-co-AVL) linear copolymer. (A) Scheme for the ring-
opening polymerization reaction of AVL and VL monomers using tin (II) triflate catalyst and its 
linear copolymer product. (B) Table showing % allyl incorporation from 1H NMR, % yield, 
polydispersity from GPC, Mw from 1H NMR, and reaction time. (C) GPC trace and (D) 1H NMR 
spectra in CDCl3.  
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Copolymerization of 2-oxepane-1,5-dione (OPD) 4, α-allyl-δ-valerolactone (AVL) 2 and δ-
valerolactone (VL) 1. 
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Scheme 2.4. Preparation of poly(VL-co-AVL-co-OPD) copolymer with Sn(OTf)2 (6).   

 

Partial epoxidation of allyl groups from these linear copolymers converts some of the 

allyl groups to epoxides, while maintaining the rest for further modifications after nanoparticle 

formation. Scheme 2.5 shows the partial epoxidation of allyl groups in (3) to epoxides in (7). The 

epoxidation of the double bond from the allyl was performed using m-CPBA, and produced the 

epoxidized product in a 76.8% yield. Figure 2.7 and 2.8 show a proton NMR of the resulting 

copolymer (7) product with a reduction in the signals corresponding to the allyl groups (l, m, n) 

and the appearance of new signals arising from the epoxide groups (t, u).  
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Scheme 2.5. Preparation of poly(VL-co-AVL-co-EVL) copolymer (7). 
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Figure 2.7. 1H NMR of poly(VL-co-AVL-co-EVL) precursor in CDCl3. 
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Figure 2.8. Characterization of poly(VL-co-AVL-co-EVL) copolymer. (A) Scheme for the 
partial epoxidation of allyl groups from its poly(VL-co-AVL) copolymer precursor (3). (B) 1H 
NMR spectrum in CDCl3 for the poly(VL-co-AVL) copolymer precursor, showing 10.25% allyl 
groups. (C) 1H NMR spectra in CDCl3 for the resulting poly(VL-co-AVL-co-EVL) copolymer 
showing conversion of 5.4% of the original allyl groups to epoxides, leaving 5.9% of the original 
allyl groups. 
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Preparation of poly(VL-co-AVL-co-OPD) copolymer 
 

Copolymer % OPD 
incorporation 

% 
yield PDI Mw 

(kg/mol) 
Reaction 

Time (hrs) 
1 92.0% 79.2 1.33 3.4 24 
2 98.8% 84.5 1.34 2.8 24 
3 89.0% 79.2 1.35 2.0 24 
4 96.0% 90.0 1.34 4.9 24 
5 95.0% 76.3 1.30 2.4 24 
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Figure 2.9. Characterization of poly(VL-co-AVL-co-OPD) linear copolymer. (A) Scheme for 
the ring-opening polymerization reaction of OPD, AVL and VL monomers using tin (II) triflate 
catalyst and its linear copolymer product. (B) Table showing % OPD incorporation from 1H 
NMR, % yield, polydispersity from GPC, Mw from 1H NMR, and reaction time. (C) GPC trace 
and (D) 1H NMR spectra in CDCl3.  
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Nanoparticles were formed from these partially epoxidized copolymers using an 

intermolecular crosslinking process as shown in scheme 2.6 and figure 2.11. These copolymers 

have both pendant allyl and epoxide groups, which can be used for various modifications. The 

epoxide groups are reacted with primary terminal amines from a crosslinker, while refluxing in 

dichloromethane for 12 hrs. By adjusting the ratio of amines to epoxides, the crosslinking density 

of the nanoparticle can be tailored to produce varying degradation and drug release rates. These 

nanoparticles are then purified by dialysis in dichloromethane. Figure 2.10 shows a proton NMR 

of nanoparticles formed from copolymer (7), with a decrease in the number of epoxide protons 

(between 2.5 - 3 ppm) and the appearance of new signals near 3.5 ppm (l-u) corresponding to the 

protons near the secondary amine from the crosslinker after completion of the reaction. Figure 

2.11 shows the entire process for the formation of nanoparticles from lactone monomers. 
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Scheme 2.6. Synthesis of poly(VL-co-AVL-co-EVL) nanoparticles.  
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Figure 2.10. 1H NMR of nanoparticles in DMSO-d6.  
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Figure 2.11. Diagram of ‘nanosponge’ formation via intermolecular crosslinking of poly(VL-co-
AVL) linear copolymers with a diamine crosslinker. 
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Characterization of intermolecularly cross-linked nanoparticles 

Nanoparticles were characterized by TEM to analyze size and morphology.  Figure 2.12 below 

shows nanoparticles prepared from both poly(VL-co-AVL-co-EVL) and poly(VL-co-AVL-co-

OPD-co-EVL) copolymers partially oxidized to produce 5% epoxyvalerolactone (EVL) units. 

TEM analysis shows nanoparticles of spherical shape with uniform staining. Figure 2.12 shows a 

representative image taken at 3800x magnification illustrating the distribution of sizes for a 

typical batch of nanoparticles.  

!

!

!" #"

 

Figure 2.12. Size characterization of nanosponges made from tin (II) triflate. TEM micrographs 
and histograms of (A) poly(VL-co-AVL-co-EVL) nanosponges (left) and (B) poly(VL-co-AVL-
co-EVL- co-OPD) nanosponges (right). Scale bar shows 100 nm. 
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Differential scanning calorimetry analysis of poly(VL-co-AVL-co-EVL) and poly(VL-

co-AVL-co-EVL- co-OPD) nanoparticles was performed to evaluate amorphousness (Figure 

2.13). Lower crystallization and melting temperatures were observed with increasing % OPD. 

All three samples show glass transition temperatures between -50 to -57.5°C, indicating that at 

physiological temperatures they are amorphous, making them suitable for in vivo applications. 

!

Nanoparticle %OPD Tg (°C) Tc (°C) Tm (°C) 
1 0 -57.5 15 50 
2 3 -52.5 5 45 
3 7 -50 -15 45 

!
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#"

   
 
Figure 2.13. DSC analysis of poly(VL-co-AVL-co-EVL- co-OPD) nanosponges showing (A) 
heat flux as a function of temperature. (B) Nanosponges with increasing % OPD at the glass 
transition temperature (Tg), crystallization temperature (Tc) and melting temperature (Tm). 
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Conclusion 

Use of tin (II) triflate catalyst for ring opening polymerization of lactones is feasible and 

produces copolymers of narrow PDI with high incorporation of AVL and OPD. Copolymers of 

poly(VL-co-AVL) and poly(VL-co-AVL-co-OPD) were prepared and results showed better 

incorporation of OPD monomer (89-98.8%) in poly(VL-co-AVL-co-OPD) compared to AVL 

monomer (55.7-81.4%) in poly(VL-co-AVL). However, these polymers also showed slightly 

broader PDI (1.3-1.35) compared to copolymers without OPD (1.06-1.18). PDI increased with 

presence of OPD, suggesting that the inclusion of this monomer in high quantities creates less 

uniform polymer chains and a broader distribution of chain lengths. Since this monomer is more 

polar and hydrophilic, it is possible that it attracts more moisture than the other monomers and 

this causes greater chain scission, creating a wider distribution of polymer chain lengths.  

Reaction conditions for such tin (II) triflate polymerizations are preferable over those of 

tin (II) octanoate catalysts, with reactions proceeding at room temperature to completion in under 

24 hrs compared to temperatures over 100 °C and 48 hrs. These improved conditions are not 

only more convenient for laboratory preparation of polyesters, they also provide improved 

yields, and improved monomer incorporation, resulting in greater efficiency per reaction. In 

addition, narrower polydispersities as achieved with tin (II) triflate compared to tin (II) octanoate 

produce more uniform polymer chains, which in turn translates to greater control and uniformity 

of nanoparticle size distribution. This is significant for in vivo applications because nanoparticles 

must remain under 200 nm in order to be compatible with physiological limitations (embolisms, 

immune response, etc.).  In addition, greater uniformity of nanoparticle size distribution also 

allows for more uniform drug release, making it easier to predict and control drug release 

profiles for nanoparticles both in vitro and in vivo. 
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CHAPTER 3 

 

NANOSPONGE DRUG ENCAPSULATION, RELEASE AND 

IN VITRO CELL STUDIES 

 

Abstract 

Development of nanoparticle drug delivery systems has allowed greater control over drug 

release and Despite these advances, however, solubilization of drugs and tailoring drug dosage 

remains a challenge.2,3 To address these concerns, biodegradable drug carriers have been 

investigated and developed for targeting and release of hydrophobic drugs in a controlled 

manner.4-6 In particular, ‘nanosponges’ are well suited for these applications due to their 

biodegradable polyester-based nano-network, composed of a cross-linked 3-dimensional 

scaffold. These nanoparticles can be produced in different sizes and crosslinking densities, and 

can be functionalized with tumor targeting units and imaging agents for visualization in vivo.7-9  

Hydrophobic drugs can be loaded into these nanoparticles, producing readily injectable 

formulations with linear sustained drug release.8  

This study investigated the feasibility of using nanosponge encapsulated paclitaxel and 

camptothecin to determine the optimum drug combination and sequence for treating lung cancer. 

Here, the role of drug combination and sequence in vitro, in both mouse and human lung cancer 

cell lines, was investigated using synthesized nanosponges loaded with either paclitaxel (NP 

PTX) or camptothecin (NP CPT). Results showed not only that paclitaxel and camptothecin 

combination therapy produced the greatest G2/M phase arrest compared to monotherapy, but 

also that sequential administration of NP PTX followed by NP CPT further enhanced caspase-
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dependent cell death compared to simultaneous administration. Paclitaxel, more so than 

campthothecin, was observed to drive cells into G2/M phase arrest and subsequent apoptosis. 

Further studies are necessary to determine the molecular basis for this effect in lung cancer. 

Sequential administration (NP PTX → NP CPT) of nanoparticle drug delivery systems resulted 

in greater cell death and decreased cell proliferation. Collectively, these studies suggest that dual 

combination treatment with administration of paclitaxel prior to camptothecin produces greater 

G2/M phase arrest, microtubule aggregation, cell death and reduced proliferation compared to 

simultaneous and monotherapy treatment. 

 

Introduction 

Drug delivery systems 

The	
   development	
   of	
   targeted	
   drug	
   delivery	
   systems	
   has	
   allowed	
   cytotoxic	
  

chemotherapeutics	
   to	
   be	
   administered	
   selectively	
   to	
   malignant	
   tumors	
   while	
   sparing	
  

healthy	
   tissues	
   from	
   undesirable	
   side	
   effects.1-­‐6,15	
   Despite	
   these	
   advances,	
   however,	
  

solubilization	
  of	
  drugs	
  and	
  tailoring	
  drug	
  dosage	
  remains	
  a	
  challenge.2,3	
  To	
  address	
  these	
  

concerns,	
  biodegradable	
  drug	
  carriers	
  have	
  been	
  investigated	
  and	
  developed	
  for	
  targeting	
  

and	
   release	
   of	
   hydrophobic	
   drugs	
   in	
   a	
   controlled	
  manner.4-­‐6	
   In	
   particular,	
   ‘nanosponges’	
  

are	
   well	
   suited	
   for	
   these	
   applications	
   due	
   to	
   their	
   biodegradable	
   polyester-­‐based	
   nano-­‐

network,	
   composed	
   of	
   a	
   cross-­‐linked	
   3-­‐dimensional	
   scaffold.	
   These	
   nanoparticles	
   can	
   be	
  

produced	
   in	
   different	
   sizes	
   and	
   crosslinking	
   densities,	
   and	
   can	
   be	
   functionalized	
   with	
  

tumor	
   targeting	
  units	
   and	
   imaging	
  agents	
   for	
  visualization	
   in	
  vivo.7-­‐9	
   	
  Hydrophobic	
  drugs	
  

can	
   be	
   loaded	
   into	
   these	
   nanoparticles,	
   producing	
   readily	
   injectable	
   formulations	
   with	
  

linear	
  sustained	
  drug	
  release.8	
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Drug combinations 

The potential of sequential combination drug delivery using these targeted nanocarriers is 

investigated using mitotic inhibitors and topoisomerase I inhibitors, in addition to establishing 

tumor targeting of these nanosponges with the HVGGSSV peptide. Paclitaxel (Taxol®) has 

shown promise as a chemotherapeutic alone and in combination with other drugs such as 

camptothecin in the treatment of a variety of cancers.14-16,33 As a mitotic inhibitor, its main 

mechanism of action involves the stabilization of microtubules and G2/M phase cell cycle arrest 

(Figure 3.1), disruption of mitosis, and apoptosis.14,15  

 

 
M 

Mitosis 
 

G1 
Preparation 
for synthesis 

 
S 

DNA 
replication 

 

 
G2 

Preparation 
for mitosis 

 

 

 
Figure 3.1.  Phases of the cell cycle: G1 (growth phase 1) preparation for DNA synthesis (6-12 
hrs), S phase DNA synthesis (6-8 hrs), G0 (not shown above) resting state, G2 (growth phase 2) 
preparation for mitosis (3-4 hrs), and M phase shows mitosis or cell division (1 hr). 
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Camptothecin is a topoisomerase I inhibitor that causes DNA damage by reversibly 

stabilizing the covalent enzyme-DNA intermediate, causing DNA double strand breaks, S/G2 

cell cycle arrest (Figure 3.1) and apoptosis.16-19,22,23,34,37 Despite its potency, the use of 

camptothecin in the clinic has been limited greatly due to its poor water solubility, toxicity and 

side effects. While analogues of camptothecin, such as Irinotecan and Topotecan, have been 

developed to enhance water solubility, toxicity still remains a limiting side effect.20 Seliciclib 

(roscovitine) is a small molecule cyclin-dependent kinase (CDK) inhibitor whose main 

mechanism of action involves the preferential inhibition of CDK2, 7 and 9.38-40,31 These CDKs 

affect the growth phase of the cell cycle by coordinating the division of cells in an accurate and 

timely manner (Figure 3.1). Disruption of their activation thus serves as a useful way to inhibit 

the growth and proliferation of cancer cells.38-40,31 While not as hydrophobic a drug as paclitaxel 

and camptothecin, seliciclib can still benefit from nanoparticle technology as it can deliver 

greater concentrations of drug to tumors.  

Targeted drug delivery systems that provide sustained release of highly hydrophobic 

small molecules specifically at tumor sites exhibit particular promise for combination 

chemotherapy, where delivery of lower doses for extended times can help enhance efficacy and 

reduce toxicity. Moreover, continuous low doses of drug over time (metronomic chemotherapy), 

also allows for greater anti-angiogenic efficacy.21 Biodegradable targeted nanosponges with a 

cross-linked polymeric architecture create controlled low dose drug release profiles that are 

highly suitable for this application. In this chapter, the optimal dual drug combination and 

treatment schedule are determined for drug-loaded nanoparticles using in vitro assays in lung and 

prostate cancer cell lines. These results are then used in chapter 5 to investigate effects in an in 

vivo lung cancer model.  



	
   61	
  

Experimental 

Materials and Methods 

Reagents.  Chemical reagents were purchased from Sigma-Aldrich and Strem Chemicals, and 

used as received unless otherwise stated. Chemotherapeutic drugs from LC Laboratories. 

Peptides (GCGGGNHVGGSSV) were purchased from EZBiolab Inc. (Carmel, IN). Spectra/Por® 

Dialysis membrane (MWCO=10,000) in 0.05% sodium azide was purchased from Spectrum 

Laboratories. SnakeSkin® Pleated Dialysis Tubing, regenerated cellulose, was purchased from 

Pierce Biotechnology.  

 

Preparation of Monomers 

δ-valerolactone monomer (VL) 

Technical grade δ-valerolactone was Kugelrohr distilled to produce a colorless liquid product.  

α-allyl-δ-valerolactone monomer (AVL) 

A flame dried 500 mL two-necked round bottom flask was equipped with a stir bar, sealed with a 

rubber septum, and purged with nitrogen for 30 min. To the flask, 156.25 mL of anhydrous THF 

was added and cooled to -78 °C in a dry ice/acetone bath. Following this, a basic solution of 

lithium diisopropylamine was produced by adding redistilled n,n-diisopropylamine (3.3 mL, 

23.63 mmol) and n-butyl lithium (2.5 M in hexanes) (9.35 mL, 23.38 mmol) dropwise via 

syringe. This solution was stirred for 20 minutes. A nitrogen purged solution of distilled δ-

valerolactone (1.97 mL, 21.23 mmol) in anhydrous THF (56 mL) was then added dropwise via 

syringe over 30 min. After an additional 30 min of stirring, a nitrogen purged solution of allyl 

bromide (2.21 mL, 25.54 mmol) in hexamethylphosphoramide (4.43 mL, 25.46 mmol) was 

added via syringe. The reaction mixture was warmed up to -40 ºC and stirred for 2 hrs. The 
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reaction was quenched with excess NH4Cl solution. The crude product was concentrated via 

rotary evaporator, washed three times with saturated NaCl solution, and dried with anhydrous 

magnesium sulfate. The crude product was purified via column chromatography (Biotage 

Isolera), analyzed by thin layer chromatography and Kugelrohr distilled. Chromatography with a 

gradient of 5-20% ethyl acetate in n-hexanes as eluent gave a yellow liquid product. Kugelrohr 

distillation produced a colorless liquid product. Yield: 3.56 g (89%). 1H NMR (400MHz, 

CDCl3/TMS, ppm) δ: 5.7 (m, 1H, H2C=CH-), 5.08 (m, 2H, H2C=CH-), 4.28 (m, 2H, -

C(O)OCH2-), 2.53-2.58 (m, 2H, H2C=CHCH2-), 2.27 (m, 1H, H2C=CHCH2CH-), 2.06 (m, 1H, 

H2C=CHCH2CHCH2-), 1.89 (m, 2H, C(O)OCH2CH2-), 1.55 (m, 1H, H2C=CHCH2CHCH2-). 

Preparation of Linear Polymer Precursors 

Poly(VL-co-AVL) from Sn(OTf)2 catalyst 

A flame dried 25 mL 3-necked round bottom flask was equipped with a stir bar, sealed with 

rubber septa and nitrogen purged. A stock solution of anhydrous ethanol in anhydrous 

tetrahydrofuran was prepared (1.7 M) in a 50 mL flame dried and nitrogen purged round bottom 

flask, and a stock solution of Sn(OTf)2 catalyst in anhydrous tetrahydrofuran was prepared 

(3.7x10-2 M) in a 10 mL flame dried and nitrogen purged round bottom flask.  Ethanol (584 µL, 

1.0 mmol) and Sn(OTf)2 (261 µL, 9.64 x 10-6 mol) were added via syringe to the 25 mL 3-neck 

round bottom flask and the catalyst/initiator solution was allowed to stir at room temperature for 

30 minutes prior to simultaneous addition of δ-valerolactone (2.22 g, 22.0 mmol) and α-

allyl(valerolactone) (0.777 g, 5.548 mmol) monomers via syringe.  After addition of both 

monomers, the reaction was stirred for 24 hrs at room temperature. The resulting polymer was 

diluted with 1 mL anhydrous THF and purified by dropwise addition into 1 L of chilled methanol 

to remove any remaining monomer and catalyst. The methanol was decanted and the precipitate 
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dissolved in methylene chloride, rotary evaporated and dried in vacuo. The resulting polymer 

was observed as a waxy white solid.  Mw = 3000 Da; PDI = 1.09; 1H NMR (400 MHz, 

CDCl3/TMS, ppm) δ: 5.72 (m, H2C=CH-), 5.04 (m, H2C=CH-), 4.08 (m, -CH2-O-), 3.64 (m, 

CH3CH2O-), 2.34 (m, vl, -CH2CH2C(O)O-, avl, H2C=CHCH2CH-, H2C=CHCH2CH-), 1.68 (m, 

avl and vl, -CHCH2CH2-), 1.26 (t, CH3CH2O-). 

Poly(VL-co-AVL) from Sn(Oct)2 catalyst 

A flame dried 25 mL 3-necked round bottom flask was equipped with a stir bar, sealed with 

rubber septa and nitrogen purged. A stock solution of anhydrous ethanol in anhydrous 

tetrahydrofuran was prepared (1.7 M) in a 25 mL flame dried and nitrogen purged round bottom 

flask, and a stock solution of Sn(Oct)2 catalyst in anhydrous tetrahydrofuran was prepared in a 10 

mL flame dried and nitrogen purged round bottom flask. Ethanol (360 µL, 6.14 x10-1 mol) and 

Sn(Oct)2 (330 µL, 1.22 x 10-2 mol) were added via syringe to the 50 mL 3-neck round bottom 

flask and the catalyst/initiator solution was allowed to stir at room temperature for 30 minutes 

prior to simultaneous addition of δ-valerolactone (2.46 g, 28.53 x 10-3  mol) and α-

allyl(valerolactone) (0.93 g, 7.134 x 10-3 mol) monomers via syringe.  After addition of both 

monomers, the reaction was stirred for 48 hrs at 105 °C in an oil bath. The resulting polymer was 

diluted with 1 mL methylene chloride and purified by dropwise addition into 1.5 L of chilled 

diethyl ether to remove any remaining monomer and catalyst. The ether was decanted and the 

precipitate dissolved in methylene chloride, rotary evaporated and dried in vacuo. The resulting 

polymer was observed as a viscous yellow liquid.  1H NMR (300 MHz, CDCl3/TMS, ppm) δ: 

5.72 (m, H2C=CH-), 5.04 (m, H2C=CH-), 4.08 (m, -CH2-O-), 3.64 (m, CH3CH2O-), 2.34 (m, vl, -

CH2CH2C(O)O-, avl, H2C=CHCH2CH-, H2C=CHCH2CH-), 1.68 (m, avl and vl, -CHCH2CH2-), 

1.26 (t, CH3CH2O-). 
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Poly(VL-co-AVL-co-EVL) 

In a 100 mL round bottom flask, equipped with stir bar and rubber septum, a solution of 

poly(VL-co-AVL) (1.0 g, 1.55 x 10-3 mol) was dissolved in 8.5 mL of methylene chloride. To 

this solution, meta-chloroperoxybenzoic acid (121.25 mg, 7.03 x 10-4 mol) was added. The 

solution was stirred for 24 hrs at room temperature and then concentrated via rotary evaporator. 

The crude product was dissolved in a minimal amount of dichloromethane (2 mL) and 

precipitated into an Erlenmeyer flask containing 500 mL cold diethyl ether. The solution was 

decanted, and the white solid was rotary evaporated and dried in vacuo to obtain the final white 

waxy polymer. Yield: 0.768 g (76.8%). 1H NMR (400MHz, CDCl3/TMS, ppm) δ: Decrease in 

allylic protons at 5.7 and 5.09 ppm and the appearance of small broad resonance peaks at 2.96, 

2.75 and 2.47 ppm due to the formation of the epoxide.  

Formation of nanosponges 

In a 250 mL round bottom flask equipped with stir bar and reflux condenser, a solution of 2,2'-

(ethylenedioxy) diethylamine (10.5 µL, 7.18x10-5 mol) in 29.55 mL methylene chloride was 

heated at 45 °C. A solution of poly(VL-co-AVL-co-EVL), (0.200 g, Mw = 3000 Da) dissolved in 

methylene chloride was added. The mixture was refluxed at 45 ºC for 12 hrs. Residual diamine 

crosslinker was removed via dialysis against methylene chloride with Spectra/Por Dialysis 

Tubing (MWCO = 10,000). Nanosponges were made from poly(VL-co-AVL) using Sn(OTf)2 

and Sn(Oct)2 catalysts. 1H NMR (400 MHz, CDCl3/TMS, ppm) δ: Decrease in number of 

epoxide protons at 2.96, 2.75 and 2.47 ppm and the appearance of signals at 3.5 and 2.89 ppm 

corresponding to the protons near the secondary amine of the diamine crosslinker after the 

reaction. 
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Drug Encapsulation of Paclitaxel and Camptothecin in Nanoparticles 

Poly(VL-co-AVL-co-EVL) nanoparticles were encapsulated separately with either paclitaxel or 

camptothecin and emulsified with D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin 

E-TPGS). Nanoparticles (30 mg) and paclitaxel (10 mg) were dissolved together in 1 mL 

dimethyl sulfoxide (DMSO), and nanoparticles (30 mg) and camptothecin (30 mg) were 

dissolved together in 2 mL DMSO prior to dropwise addition to a solution of 0.5% and 2% 

vitamin E-TPGS in distilled water, respectively. The solution was stirred vigorously to form a 

cloudy white suspension over 1-2 minutes and decanted into 50 mL centrifuge tubes. They were 

centrifuged at 7800 rpm for 30 min, and the pellet washed three times by reconstitution in water 

and centrifugation at 7800 rpm for 30 min each. The emulsified drug encapsulated nanoparticles 

were then lyophilized to produce a powder and analyzed by UV-Vis spectrophotometry to give 

approximately 15% drug encapsulation for each drug. (See appendix for calibration curves for 

each drug). 

Cell Culture  

Murine Lewis lung carcinoma (LLC) and A549 lung human carcinoma cells were obtained from 

the American Type Culture Collection (Rockville, MD,). They were grown to 70% confluence in 

Dulbecco’s Modified Eagle Medium or F-12K medium each supplemented with 10% fetal 

bovine serum and 1% antibiotic/antimycotic, respectively. All cultures maintained at 37°C in 

incubator with 95% humidity and 5% CO2. 

Flow Cytometry 

Serum-starved cell cycle analysis  

LLC cells were phase synchronized with serum deprived cell media for 24 hrs prior to treatment 

at IC50 concentrations for each drug or nanoparticle controls for 24 hrs. Sequential treatment 
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groups were also treated with drug loaded nanoparticles for 24 hrs (12 hrs each drug, washed 

with PBS before second drug), washed with PBS, detached and fixed with cold 70% ethanol. All 

cells were stained with a solution of propidium iodide (50 µg/mL) in PBS with 0.1% Triton X-

100 and RNase (200 µg/mL) overnight at 4 °C. After washing twice with PBS, cells were filtered 

and analyzed by flow cytometry.  

Apoptosis studies  

LLC cells were seeded in 6-well tissue culture plates and incubated for 24 hrs. After 72 hrs 

treatment with drug encapsulated nanoparticles or untreated controls, cells were washed with 

PBS, detached and fixed with cold 70% ethanol. Cells were then incubated with rabbit anti-

cleaved caspase-3 primary antibody, washed and incubated with FITC labeled secondary 

antibody. After washing twice with PBS, cells were filtered and apoptotic cell populations were 

quantified by flow cytometry.  All flow cytometry performed using a Becton Dickinson 3-laser 

LSRII flow cytometer. Results were analyzed using FlowJo software. 

Microtubule and proliferation studies: Cell imaging 

Human A549 lung carcinoma cells were grown on cover slips and treated with drug loaded 

nanoparticles or vehicle (DMSO) for 72 hrs, at IC50 (10 µM for NP PTX and 1 µM for NP CPT) 

concentrations for each drug or nanoparticle controls. Simultaneous treatment groups were 

treated with drug-loaded nanoparticles for 72 hrs (NP PTX/NP CPT) Sequential treatment groups 

were treated with drug-loaded nanoparticles for 72 hrs. NP PTX à NP CPT group was exposed 

to PTX for 36 hrs, washed with PBS and exposed to CPT for another 36 hrs. NP CPT à NP 

PTX group was exposed to CPT for 36 hrs, washed with PBS and exposed to PTX for another 36 

hrs.  All groups were washed twice with PBS and fixed with 4% paraformaldehyde. 

Microtubules were stained with anti-beta tubulin antibody conjugated with FITC. Proliferating 
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cells were stained with human anti-Ki67 antibody conjugated with Alexa Fluor 647.  Slides were 

mounted using FluoroShield prior to confocal microscopy. In vitro imaging was performed using 

a Zeiss LSM 710 Meta Inverted confocal microscope at 63x magnification. Images were 

acquired from three fields of view and the numbers of cells showing changes in microtubule 

morphology or expression of Ki67 cell proliferating marker were counted. Bar graphs shown 

represent the number of cells as a percentage of total cells counted. All images were analyzed 

using MetaMorph and ZEN image acquisition and analysis software. 

 

Results and discussion 

Drug release studies: Paclitaxel and Camptothecin 

Poly(VL-co-AVL-co-EVL) nanosponges of varying cross-linking density (5% and 8%) 

were loaded separately with paclitaxel or camptothecin for analysis of drug release over time 

(Figure 3.2). Nanosponges with lower cross-linking density (5% epoxide) were observed to have 

a faster drug release rate for paclitaxel, with over 20% of total drug loaded being released by 24 

hrs. In contrast, nanosponges of similar cross-linking density loaded with camptothecin showed 

less than 10% release by 24 hrs. Nanosponges with higher cross-linking density (8% epoxide) 

were observed to have a relatively slower drug release rate for paclitaxel, with approximately 

10% release by 24 hrs. This pattern is also observed with camptothecin, with approximately 10% 

release by 24 hrs as well. Differences in molecular weight and hydrophobicity may affect the rate 

of drug release in these drugs, by affecting the rate at which individual drug molecules diffuse 

out of the nanosponge.  

Cytotoxicity Studies 
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Nanosponges were loaded separately with paclitaxel, camptothecin, or seliciclib and used to treat 

mouse and human lung carcinoma cells. In vitro dose-response curves for mouse lung cancer 

cells LLC (left) and human A549 (right) were treated with various drug combinations for 24 hrs 

(Figure 3.3). In both cell lines, the combination of paclitaxel/camptothecin lowered IC50 values 

most followed by camptothecin/seliciclib and paclitaxel/seliciclib. 
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Figure 3.2. Drug release studies with poly(VL-co-AVL-co-EVL) nanosponges in phosphate 
buffered saline at 37 °C. (A) Paclitaxel loaded nanosponges with 5% and 8% cross-linking 
density and (B) Camptothecin loaded nanosponges with 5% and 8% cross-linking density. 
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Figure 3.3. MTT cytotoxicity assays with poly(VL-co-AVL-co-EVL) nanosponges of 5% 
epoxide cross-linking density. In vitro dose-response curves for lung cancer cells LLC (left) and 
A549 (right) treated with various drug combinations for 24 hrs. In both cell lines, the 
combination of paclitaxel/camptothecin lowered IC50 values most followed by 
camptothecin/seliciclib and paclitaxel/seliciclib. 
 

In this study we synthesized ‘nanosponges’ (see chapter 2) for tumor-specific delivery of 

hydrophobic small molecule chemotherapeutics paclitaxel (NP PTX) and camptothecin (NP 

CPT), and to evaluate in vitro effects on cell cycle, microtubule dynamics, cell death and 

proliferation. In order to study the effects of this drug combination on cell cycle, LLC cells were 

phase synchronized by serum starvation prior to treatment with monotherapy controls and dual 

drug combinations for 24 hrs (Figure 3.4A-C). Flow cytometry analysis of cell cycle showed the 

highest levels of G2/M phase arrest with sequential NP PTX à NP CPT treatment (67%), a 28% 

increase compared to simultaneous treatment, and 34% increase over the reverse sequential  

treatment NP CPT à NP PTX. Sequential NP PTX à NP CPT showed 13% increase compared 

to NP PTX and 26% increase over NP CPT monotherapy controls, and 52% increase over NP 

controls (Figure 3.4A-C). Interestingly, the highest levels of S phase arrest were seen with 
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simultaneous treatment, and among the lowest in the sequential NP PTX à NP CPT group, 

indicating the sequence of drug administration drove many more cells into G2/M phase arrest 

than would otherwise have occurred with the drug combination itself (Figure 3.4).  

 

 
 
 
 
Figure 3.4. Flow cytometry histograms (A) representing cell cycle distributions of LLC cells 
treated with dual drug combinations (simultaneous NP PTX/NP CPT and sequential NP CPT→ 
NP PTX and NP PTX→ CPT) or monotherapy controls (NP Control, NP PTX and NP CPT). 
G2/M phase cell cycle arrest in response to monotherapy and dual drug combinations (B). 
Percentage of cells in all measured cell cycles: G0, G1, S and G2 phases after monotherapy and 
dual drug treatment (C).  
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Figure 3.4. Confocal microscopy analysis of microtubule aggregation and cell proliferation in 
A549 lung carcinoma cells treated for 72 hrs at IC50 concentrations for each drug. Cells were 
fixed, stained for cellular beta tubulin (green) and Ki67 (red) in 63x magnification. Scale bar 
indicates 20 µm (D). Percentage of dual drug treated cells vs. monotherapy controls exhibiting 
microtubule aggregation (green) (E), percentage of dual drug treated cells vs. monotherapy 
controls expressing Ki67, a marker for cellular proliferation (red) (F). Bars, mean and SE for 
n=3, unpaired Student’s t test (p<0.05).        
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Since microtubules and their associated proteins play a role in the cell cycle and help 

regulate mitosis, microtubule disrupting drugs such as paclitaxel can have multiple 

effects on cells.24,25 Therefore, the effect of paclitaxel and camptothecin drug 

combinations on microtubule morphology in lung cancer cells was examined. Figure 3.4 

shows confocal images of marked microtubule aggregation seen in all paclitaxel 

treatment groups compared to NP only controls. The greatest percentage of cells with 

morphological changes in microtubule structure can be seen with sequential NP PTX à 

NP CPT treatment, with 95.8% of cells exhibiting microtubule-induced ‘bundles’ 

compared to normal microtubule networks seen in NP controls (Figure 3.4). The reverse 

sequence showed only 54.5% of cells affected, and simultaneous treatment produced 

69.4% of cells with microtubule changes (Figure 3.4). In comparison, NP PTX showed 

the greatest microtubule changes among the monotherapy controls with 67.9% of cells 

affected and NP CPT showed only 23.7% cells with affected microtubules (Figure 3.4E). 

Interestingly, the simultaneous dual drug combinations (NP PTX / NP CPT) primarily 

showed evidence of microtubule ‘bundles’, where NP PTX monotherapy controls showed 

microtubule ‘asters’ radiating from centrosomes (Figure 3.4D, insets). These 

morphological changes are consistent with cell cycle changes as mitotic asters generally 

appear in cells undergoing mitosis whereas bundling occurs more throughout G2 phase.24-

27 These results may indicate that addition of camptothecin contributes to cell cycle arrest 

and prevents entry into mitosis. Additionally, reorganization of microtubules into bundles 

may correlate with sensitivity of cells to camptothecin, with initial exposure to paclitaxel 

enhancing the sensitivity of lung cancer cells to the effects of camptothecin. Changes in 

cell proliferation can also be seen with the least number of cells proliferating (54.2%) 
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with sequential NP PTX à NP CPT treatment, compared to the reverse sequence at 

72.7% and simultaneous treatment showing 62.9% proliferation. Monotherapy controls 

had the highest levels of proliferation with NP PTX showing 86.8% of cells still 

proliferating, NP CPT showing 71.1%, and NP controls with the highest population of 

cells proliferating at 89.2% (Figure 3.4F). In addition, sequential treatment with 

paclitaxel and camptothecin was also performed on PC-3 prostate cancer cells in order to 

observe changes in microtubule morphology (Figure 3.5). Results from these studies 

validate those observed in lung cancer cell lines, indicating that cells receiving the 

sequential treatment NP PTX à NP CPT showed the greatest level of microtubule 

polymerization compared to both monotherapy and reverse sequence controls.  

 

 

 

 

 

 

 

 

Figure 3.5. Sequential treatment with NP-paclitaxel before NP-camptothecin exhibited 
greater tubulin polymerization compared to the reverse sequence, NP-paclitaxel alone 
and untreated controls. PC-3 cells treated 24 hrs with NP camptothecin 12 hrs followed 
by NP-paclitaxel, and the reverse sequence of NP-paclitaxel then NP-camptothecin. Cells 
stained for tubulin polymerization (green) and nuclei counterstained with DAPI (blue). 
Fluorescence microscopy images obtained at 20x magnification.  
 
 

!
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In order to evaluate effects on cell death, LLC cells treated as described above were fixed 

and stained for caspase-3 expression, prior to analysis by flow cytometry. Figure 3.6 

shows that cells receiving the sequential treatment NP PTX à NP CPT expressed the 

highest levels of caspase-3 protein, followed by the reverse sequence and NP PTX only, 

simultaneous NP PTX/NP CPT, NP CPT and NP controls. 

 

 

Figure 3.6. Flow cytometry analysis of caspase-dependent cell death in Lewis lung 
carcinoma cells treated for 72 hrs at IC50 concentrations for each drug. Cells were stained 
for presence of caspase-3 and analyzed by flow cytometry. Bars, mean and SE for n=3, 
unpaired Student’s t test (p<0.05). 
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Conclusion 

This study investigated the feasibility of using nanosponge encapsulated 

paclitaxel and camptothecin to determine the optimum drug combination and sequence 

for treating lung cancer. Here, the role of drug combination and sequence in vitro, in both 

mouse and human lung cancer cell lines, was investigated using synthesized nanosponges 

loaded with either paclitaxel (NP PTX) or camptothecin (NP CPT). Results showed not 

only that paclitaxel and camptothecin combination therapy produced the greatest G2/M 

phase arrest compared to monotherapy, but also that sequential administration of NP PTX 

followed by NP CPT further enhanced caspase-dependent cell death compared to 

simultaneous administration. Paclitaxel, more so than campthothecin, was observed to 

drive cells into G2/M phase arrest and subsequent apoptosis. Further studies are 

necessary to determine the molecular basis for this effect in lung cancer. Sequential 

administration (NP PTX → NP CPT) of nanoparticle drug delivery systems resulted in 

greater cell death and decreased cell proliferation. Collectively, these studies suggest that 

dual combination treatment with administration of paclitaxel prior to camptothecin 

produces greater G2/M phase arrest, microtubule aggregation, cell death and reduced 

proliferation compared to simultaneous and monotherapy treatment. In addition, 

paclitaxel appears to show a ‘priming’ effect on the cells that enhances camptothecin’s 

effect on cells when given second.  
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CHAPTER 4 

 

SYNTHESIS AND BIOLOGICAL EVALUATION OF CYCLIC RGDEKf-Ahx-C 

FUNCTIONALIZED NANOSPONGES FOR IN VITRO 

TUMOR TARGETING AND IMAGING IN A LUNG CANCER MODEL 

 

Abstract  

Integrins are an important target for many chemotherapeutic treatments, and RGD 

targeted nanoparticles have the potential to deliver various imaging and therapeutic 

agents to the α!β3 integrin expressing tumor vasculature. Development of RGD probes 

for tumor imaging has created the need for greater affinity and stability of these ligands 

in vivo. Cyclic RGD peptides exhibit enhanced stability and decreased susceptibility to 

chemical and enzymatic degradation compared to their linear counterparts. In this study 

we synthesized a cyclic RGD peptide of the sequence RGDEKf-Ahx-C as a targeting 

ligand for tumor-specific targeting of nanoparticles to lung cancer cells in vitro. This 

cyclic RGD tumor targeting peptide was synthesized using solid phase peptide synthesis, 

attached to nanoparticles, and modified with a fluorescent probe for in vitro cell imaging 

applications. Confocal microscopy showed competitive binding of cyclic RGD targeted 

nanoparticles compared to untargeted controls and competitive binding vitronectin 

controls. These results indicate that this cyclic RGD peptide binds specifically in a dose 

responsive way to the α!β3 integrin receptor present on lung cancer cells in vitro, and can 

be used to target nanoparticles specifically to this receptor on cancer cells.  
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Introduction 

Integrins as therapeutic targets 

Integrins are heterodimeric glycoproteins that mediate cellular adhesion to other 

cells and extracellular matrix.1 They also function as receptors by binding to ligands with 

exposed arginine-glycine-aspartate (RGD) sequences.2 These receptors interact with 

extracellular ligands and stimulate intracellular signaling and gene expression in various 

cellular processes. They also play a role in invasion and metastasis of cancer cells, tumor 

growth and angiogenesis.1-6 As a result, integrins have become an attractive target for 

many chemotherapeutic treatments, and the development of RGD peptide ligands that 

could bind to these integrin receptors has been a rich source of potential tumor targeting 

agents.  

 

RGD peptide ligands  

The Arg-Gly-Asp (RGD) amino acid sequence was  found to be a binding ligand 

to the α!β3 integrin in the early 1970s by Ruoslahti and colleagues.8-12 It was originally 

identified as a cell binding site in the extracellular matrix protein fibronectin, but later on 

this sequence was recognized as the amino acid motif present in many natural ligands 

binding the α!β3 receptor, including fibrinogen, fibronectin, and vitronectin.8-12 Proteins 

that contain an RGD binding motif, along with their integrin receptors, are a major 

recognition system for cell adhesion processes. The integrin-binding activity of adhesion 

proteins can be reproduced by short synthetic peptides containing the RGD sequence. 

The diverse applications for these peptides include inhibiting angiogenesis and tumor 
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formation, coating surfaces for use as biomaterials, enhancing drug delivery systems, and 

imaging for diagnostic purposes.3-5  

 

Linear vs. Cyclic RGD peptides 

Development of RGD probes for tumor imaging has created the need for greater 

affinity and stability of these ligands in vivo.22-25 As a result, differences in conformation 

and structure have been studied between many linear and cyclized forms of different 

RGD containing peptides to determine the most stable conformation. Optimization of 

peptide length and spatial orientation has led to the development of cyclic RGD peptides 

that more closely mimic naturally occurring proteins that bind the α!β3 integrin receptor.8 

It has been demonstrated that cyclization of these RGD peptides enhances stability and 

decreases susceptibility to chemical and enzymatic degradation, partly because of the 

increased conformational stability of the cyclic peptide compared to the linear 

peptide.14,19 One of these cyclic peptides, cyclo(RGDf(NMe)V) (Cilengitide) has been 

used to treat glioblastoma in clinical trials.18-24 Another way to improve affinity is to 

increase the number of molecules available for binding (multivalency) via 

nanoparticles.13,20,21 This binding strategy exploits the surface of nanoparticles as a 

platform for peptide ligand attachment, and is an effective way for obtaining high affinity 

molecular binding.20,21 

 

Synthesis and optimization of RGD peptides 

Optimization of solid-phase peptide synthesis requires the use of coupling 

reagents best suited to the formation of peptide bonds. Typical peptide synthesis methods 



	
   83	
  

use a benzotriazole (such as HOBt and its derivatives) in combination with 

carbodiimides, or immonium (HBTU) and phosphonium (PyBOP) salts.15,16 More 

recently, a uronium salt (COMU) has been shown to have greater coupling efficiency and 

lower racemization than its predecessors, making it a superior reagent for the formation 

of an amide bond.15,16 In addition, shorter coupling reaction times and higher purity 

peptides make COMU a suitable choice for synthesis of cyclic peptides.15,16  

 

Integrin targeted tumor imaging 

To reach tumor cells and tumor-associated parenchymal cells, drugs must cross 

the vascular barrier and penetrate into the stroma. Cancer tissue is heterogeneous, with 

vast differences in tumor structure and physiology. These features translate into steep 

drug gradients and variability in the uptake and distribution of anti-cancer drugs.7 

Although cancer cells are inherently more vulnerable to chemotherapy than the majority 

of normal cells, most chemotherapy drugs are not very selective and can harm normal 

tissues as well. Because of the particular characteristics of the tumor microenvironment 

and tumor angiogenesis, it is possible to design drug delivery systems that specifically 

bring chemotherapy drugs to tumors. Nanometer-sized drug delivery systems can target 

tumors by a passive or active process. Active targeting involves drug delivery to a 

specific site based on molecular recognition, providing the greatest efficiency for cancer 

chemotherapy.5 One approach is to conjugate a ligand that can interact with a receptor at 

the target cell site to a nanoparticle. The angiogenic phenotype of the tumor vasculature, 

and some proteins or receptors expressed at the surface of the endothelial cells are 

considered attractive targets for delivering nanoparticles to tumors. The most popular 
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example is the integrin adhesion molecule α!β3. The α! integrin subunit is highly 

expressed on endothelial cells lining tumors, whereas it is poorly expressed in healthy 

endothelial cells. Targeting the α!β3 integrin with drugs may thus provide an opportunity 

to destroy tumor vessels but keep vessels from normal tissues intact. However, the use of 

complicated modification techniques and the poor conjugation efficiency of the targeting 

ligands have limited the application of most of the nano-sized drug delivery systems.8 

 Peptides based on mentioned the RGD sequence have been used extensively as 

tumor targeting ligands in diagnostics and therapeutics, as they bind preferentially to α!β3 

integrins. RGD-targeted nanocarriers have the potential to deliver various therapeutic 

agents to the α!β3-expressing tumor vasculature. Since the integrins are specifically over-

expressed at the surface of tumor cells and angiogenic endothelial cells at the tumor site, 

RGD-mediated drug delivery generally leads to high levels of accumulation in tumor 

tissues compared to unmodified drug or non-targeted drug delivery systems. Both linear 

RGD and cyclic RGD have been applied for targeted delivery of drugs, genes and 

polymers. Furthermore, there are studies showing that cyclic RGD peptides are more 

stable than their linear precursors.14,19 The increase in stability of the cyclic peptide 

compared with the linear peptide is due to decreased structural flexibility imposed by the 

ring.12 In this study we synthesized a cyclic RGD peptide of the sequence RGDEKf-Ahx-

C as a targeting ligand for tumor-specific targeting of nanosparticles to lung cancer cells 

in vitro. 
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Experimental 

Materials and Methods 

Materials 

Chemical reagents were purchased from Sigma-Aldrich and Strem Chemicals, 

chemotherapeutic drugs from LC Laboratories. Spectra/Por Dialysis membrane 

(MWCO=10,000) in 0.05% sodium azide was purchased from Spectrum Laboratories.  

Preparation of Monomers 

δ-valerolactone monomer (VL) 

Technical grade δ-valerolactone was Kugelrohr distilled to produce a colorless liquid 

product.  

α-allyl-δ-valerolactone monomer (AVL) 

A flame dried 500 mL two-necked round bottom flask was equipped with a stir bar, 

sealed with a rubber septum, and purged with nitrogen for 30 min. To the flask, 156.25 

mL of anhydrous THF was added and cooled to -78 °C in a dry ice/acetone bath. 

Following this, a basic solution of lithium diisopropylamine was produced by adding 

redistilled n,n-diisopropylamine (3.3 mL, 23.63 mmol) and n-butyl lithium (2.5 M in 

hexanes) (9.35 mL, 23.38 mmol) dropwise via syringe. This solution was stirred for 20 

minutes. A nitrogen purged solution of distilled δ-valerolactone (1.97 mL, 21.23 mmol) 

in anhydrous THF (56 mL) was then added dropwise via syringe over 30 min. After an 

additional 30 min of stirring, a nitrogen purged solution of allyl bromide (2.21 mL, 25.54 

mmol) in hexamethylphosphoramide (4.43 mL, 25.46 mmol) was added via syringe. The 

reaction mixture was warmed up to -40 ºC and stirred for 2 hrs. The reaction was 

quenched with excess NH4Cl solution. The crude product was concentrated via rotary 
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evaporator, washed three times with saturated NaCl solution, and dried with anhydrous 

magnesium sulfate. The crude product was purified via column chromatography (Biotage 

Isolera), analyzed by thin layer chromatography and Kugelrohr distilled. 

Chromatography with a gradient of 5-20% ethyl acetate in n-hexanes as eluent gave a 

yellow liquid product. Kugelrohr distillation produced a colorless liquid product. Yield: 

3.56 g (89%). 1H NMR (400 MHz, CDCl3/TMS, ppm) δ: 5.7 (m, 1H, H2C=CH-), 5.08 

(m, 2H, H2C=CH-), 4.28 (m, 2H, -C(O)OCH2-), 2.53-2.58 (m, 2H, H2C=CHCH2-), 2.27 

(m, 1H, H2C=CHCH2CH-), 2.06 (m, 1H, H2C=CHCH2CHCH2-), 1.89 (m, 2H, 

C(O)OCH2CH2-), 1.55 (m, 1H, H2C=CHCH2CHCH2-). 

Preparation of Linear Polymer Precursors 

Poly(VL-co-AVL) 

A flame dried 25 mL 3-necked round bottom flask was equipped with a stir bar, sealed 

with rubber septa and nitrogen purged. A stock solution of anhydrous ethanol in 

anhydrous tetrahydrofuran was prepared (1.7 M) in a 50 mL flame dried round and 

nitrogen purged round bottom flask, and a stock solution of Sn(OTf)2 catalyst in 

anhydrous tetrahydrofuran was prepared (3.7x10-2 M) in a 10 mL flame dried and 

nitrogen purged round bottom flask.  Ethanol (584 µL, 1.0 mmol) and Sn(OTf)2 (261 µL, 

9.64 x 10-6 mol) were added via syringe to the 25 mL 3-neck round bottom flask and the 

catalyst/initiator solution was allowed to stir at room temperature for 30 minutes prior to 

simultaneous addition of δ-valerolactone (2.22 g, 22.0 mmol) and α-allyl(valerolactone) 

(0.777 g, 5.548 mmol) monomers via syringe.  After addition of both monomers, the 

reaction was stirred for 24h at room temperature. The resulting polymer was diluted with 

1 mL anhydrous THF and purified by dropwise addition into 1 L of chilled methanol to 
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remove any remaining monomer and catalyst. The methanol was decanted and the 

precipitate redissolved in methylene chloride, rotary evaporated and dried in vacuo. The 

resulting polymer was observed as a waxy white solid.  Mw = 3000 Da; PDI = 1.09; 1H 

NMR (400 MHz, CDCl3/TMS, ppm) δ: 5.72 (m, H2C=CH-), 5.04 (m, H2C=CH-), 4.08 

(m, -CH2-O-), 3.64 (m, CH3CH2O-), 2.34 (m, vl, -CH2CH2C(O)O-, avl, H2C=CHCH2CH, 

H2C=CHCH2CH-), 1.68 (m, avl and vl, -CHCH2CH2-), 1.26 (t, CH3CH2O-). 

Poly(VL-co-AVL-co-EVL) 

In a 100 mL round bottom flask, equipped with stir bar and rubber septum, a solution of 

poly(VL-co-AVL) (1.0 g, 1.55 x 10-3 mol) was dissolved in 8.5 mL of methylene 

chloride. To this solution, meta-chloroperoxybenzoic acid (121.25 mg, 7.03 x 10-4 mol) 

was added. The solution was stirred for 24 hrs at room temperature and then concentrated 

via rotary evaporator. The crude product was dissolved in a minimal amount of 

dichloromethane (2 mL) and precipitated into an Erlenmeyer flask containing 500 mL 

cold diethyl ether. The solution was decanted, and the white solid was rotary evaporated 

and dried in vacuo to obtain the final white waxy polymer. Yield: 0.768 g (76.8%). 1H 

NMR (400 MHz, CDCl3/TMS, ppm) δ: Decrease in allylic protons at 5.7 and 5.09 ppm 

and the appearance of small broad resonance peaks at 2.96, 2.75 and 2.47 ppm due to the 

formation of the epoxide.  

Formation of nanoparticles 

In a 250 mL round bottom flask equipped with stir bar and reflux condenser, a solution of 

2,2'-(ethylenedioxy)diethylamine (10.5 µL, 7.18x10-5 mol) in 29.55 mL methylene 

chloride was heated at 45 °C. A solution of poly(VL-co-AVL-co-EVL), (0.200 g, Mw= 

3000 Da) dissolved in methylene chloride was added. The mixture was refluxed at 45 ºC 
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for 12 h. Residual diamine crosslinker was removed via dialysis against methylene 

chloride with Spectra/Por Dialysis Tubing (MWCO =10,000). 1H NMR (400 MHz, 

CDCl3/TMS, ppm) δ: Decrease in number of epoxide protons at 2.96, 2.75 and 2.47 ppm 

and the appearance of signals at 3.5 and 2.89 ppm corresponding to the protons near the 

secondary amine of the diamine crosslinker after the reaction.  

Peptide Targeted Nanoparticles  

Addition of targeting peptide via photoinitiated thiol-ene ‘click’ reaction 

Poly(VL-co-AVL-co-EVL) nanosponges were dissolved in dichloromethane and purified 

using Sephedex column chromatography, rotary evaporated and dried in vacuo. 

Anhydrous, degassed DMSO (1 mL) was used to dissolve 20 mg of poly(VL-co-AVL-

co-EVL) nanosponges, 10 mg of cRGD peptide and 1 mg DMPA. Mixture was stirred for 

2 days in an oil bath at 37 °C under ultraviolet light at 365 nm. The product was purified 

by dialysis (MWCO 10,000) against methanol/acetonitrile (1:1) for 2 days, rotary 

evaporated and dried in vacuo.  

Quantification of peptide units on nanoparticles via 1H NMR: 

Since the primary thiol functional group from the cysteine residue in the peptide 

(RGDEKf-Ahx-C) reacts with the allyl groups in the nanoparticle in a 1:1 stoichiometry, 

the allyl groups that are consumed in the reaction directly correlate with how many 

peptides are bound to the nanoparticle. By comparing the percent allyl groups in the 

nanoparticle before and after peptide attachment, the difference can be used to calculate 

the number of bound peptides. The nanoparticle peak at 4.08 ppm is used as an internal 

standard for determining the number of unmodified allyl groups remaining after the 

photoinitiated thiol-ene click reaction for peptide attachment. 
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Modification of RGDEKf-Ahx-C-NPs for confocal imaging with NHS Alexa Fluor 488  

RGDEKf-Ahx-C modified poly(VL-co-AVL-co-EVL) nanosponges and unmodified 

nanoparticles were separately dissolved in anhydrous DMSO. To each solution, NHS 

Alexa Fluor 488 was added and the resulting mixture was stirred for 6 hrs (covered in foil 

to protect from light). The product was purified by dialysis (MWCO =10,000) against 

methanol/acetonitrile (1:1) overnight, rotary evaporated and dried in vacuo (covered in 

foil to protect from light).  

Solid Phase Peptide Synthesis of RGDEKf-Ahx-C peptide 

All Amino acids used were protected by 9-fluoromethoxycarbonyl (Fmoc) and were 

purchased from Advanced ChemTech (Louisville, KY). They included Fmoc-L-

Glu(ODmab)-OH, Fmoc-L-Asp(OtBu)-OH, Fmoc-L-Gly-OH, Fmoc-L-Arg(Pbf)-OH, 

Fmoc-L-Lys(Boc)-OH, Fmoc-D-Phe-OH, and Fmoc-epsilon-Ahx-OH spacer. An Fmoc-

Cys(Trt)-2-Cl-Trt resin was purchased from AAPPTec (Louisville, KY). (1-Cyano-2-

ethoxy-2-oxoethylidenaminooxy)dimethylamino-morpholino-carbenium 

hexafluorophosphate (COMU), N,N-Diisopropylethylamine (DIPEA), trifluoroacetic acid 

(TFA), N,N-dimethylformamide (DMF), dichloromethane (DCM) and piperidine were 

purchased from Sigma Aldrich (St. Louis, MO). HPLC grade acetonitrile (ACN) and 

methanol (MeOH) were obtained from Sigma Aldrich (St. Louis, MO). All chemicals 

were of reagent grade and used as received. HPLC purification of crude peptide was 

performed on a reverse phase column which was eluted with CH3CN in 0.1% aqueous 

TFA and detected at OD 220 nm. 
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Synthesis of cyclic peptides 

Cyclic RGDEKf-Ahx-C was synthesized on the resin via solid-phase peptide synthesis 

methodology using Fmoc strategy, and cyclized in the solvent. The synthesis route could 

be seen in Scheme S1. Briefly, a swelling resin, and further elongation led to a linear 

protected peptide. In each elongation step, coupling was performed with a 2-fold excess 

of Fmoc-amino acid in the presence of COMU/DIPEA mixed solution for 30 min, and 

Fmoc groups were cleaved with 20% (v/v) piperidine in DMF for 10 min. After cleavage 

from resin by 5% TFA/DCM for 2 h, the linear protected peptides were cyclized in the 

solvent by COMU/DIPEA for 2 h. The crude product was yielded after all the protecting 

groups were removed by using 95% TFA/H2O for 2 hrs. The crude cyclic peptides were 

further purified by preparative reversed-phase high performance liquid chromatography 

(RP-HPLC).  

NMR Analysis 

The 1H NMR spectra were obtained on a 600 MHz (Bruker) spectrometer with DMSO-d6 

and TMS as an internal standard. 

Cell Culture 

Human lung carcinoma (A549) cells were purchased from American Type Culture 

Collection (ATCC; Manassas, VA). Cells were cultured at 37 °C in a 5% CO2 atmosphere 

in Dulbecco’s modified Eagle’s medium (DMEM, Gibco) supplemented with 10% fetal 

bovine serum (FBS, Gibco), penicillin antibiotic and streptomycin antimycotic. All 

cultures maintained at 37°C in incubator with 95% humidity and 5% CO2. 
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Cell Imaging  

Human A549 lung carcinoma cells were grown on cover slips and treated with 

synthesized cRGD-NP, untargeted NP controls, or blocked with 1 mg/ml Vitronectin for 

1 hr. All groups were washed twice with PBS and fixed with 4% paraformaldehyde. Cells 

were fixed and visualized by confocal microscopy. In vitro imaging was performed using 

a Zeiss LSM 710 Meta Inverted confocal microscope at 63x magnification. Images were 

acquired from three fields of view. Bar graph shows percent fluorescent intensity. All 

images were analyzed using MetaMorph and ZEN image acquisition and analysis 

software. 

 
Results and discussion 
 

Cyclic RGD peptide was prepared by solid-phase peptide synthesis methods 

(Scheme 4.1). In order to synthesize linear and cyclic RGDEKf-Ahx-C peptides, 

Merrifield solid-phase peptide synthesis (SPPS) methods were used along with Fmoc/tBu 

chemistry.17 An N-protected C-terminal cysteine was anchored via its carboxyl group to a 

polystyrene resin (Scheme 4.1). The peptide sequence was then built linearly from the C-

terminus to the N-terminus using repeated cycles of deprotection and amino acid 

coupling reactions.17 The linear peptide was then cleaved from the resin and any 

remaining protecting groups removed.17 The cyclic peptide was cyclized on the resin 

prior to cleavage and removal of remaining protecting groups. The base–labile N-Fmoc 

group was used to protect the amino functional groups on each amino acid as well as 

acid–labile side-chain protecting groups.17 An ODmab protecting group was used to 

protect the glutamic acid carboxyl group, prior to being removed with 2% hydrazine in 

DMF (Scheme 4.1). The ODmab protection of the carboxyl groups is compatible with the 
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Fmoc strategy as it is stable in piperidine used for peptide synthesis.18 Removal of the 

ODmab group left a deprotected carboxylic acid group available for the final cyclization 

reaction.  
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Scheme 4.1.  Solid-phase peptide synthesis and structure of cyclic RGDEKf-Ahx-C. 

 

Nanosponges of 50-100 nm size were prepared from poly(VL-co-AVL-co-EVL) 

polymers, and functionalized with cyclic RGDEKf-Ahx-C peptide using thiol-ene ‘click’ 

chemistry. The primary thiol functional group from the cysteine residue was reacted with 

allyl functional groups from the nanosponge in a photoinitiated thiol-ene ‘click’ reaction 

(Figure 4.1). The photoinitiator 2,2-dimethoxy-2-phenylacetophenone (DMPA) was used 

in catalytic amounts to initiate a radical reaction in the presence of ultraviolet light (365 
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nm).33,34 Upon absorption of light, DMPA undergoes a homolytic bond cleavage to 

produce two new radicals.33,34 These radical species initiate the thiol-ene reaction by 

attacking the R-SH bond and generating a new sulfenyl radical that propagates the 

reaction by adding to an alkene to form a new carbon radical.33,34 Since this typically 

occurs on the least substituted carbon of the alkene (due to greater stability of the radical 

intermediate formed), the reaction is said to exhibit anti-Markovnikov regioselectivity. 

This new carbon radical further propagates the reaction by reacting with another thiol to 

generate another sulfenyl radical, repeating the cycle.33,34 The reaction terminates when 

two of these sulfenyl or carbon radicals meet and react to form a new bond.33,34  
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Figure 4.1.  Thiol-ene ‘click’ reaction using DMPA photoinitiator. (A) DMPA absorbs 
light and undergoes homolytic bond cleavage producing new radicals. (B) Initiation of 
thiol-ene ‘click’ reaction and generation of sulfenyl radical (C) Propagation of reaction 
with sulfenyl and carbon radicals. (D) Termination of reaction when two radicals meet 
and form a new bond. 
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RGD peptides have been shown to bind to integrins present on cancer cells. Nanosponges 

of 50-100 nm size were modified with these peptides using DMPA photoinitiated thiol-

ene ‘click’ reactions to produce peptide functionalized nanosponges (Figure 4.1).  These 

modified nanosponges were then analyzed by 1H NMR to confirm peptide conjugation 

(Figure 4.2), prior to further functionalization with fluorescent imaging units including 

Alexa fluor 488 for in vitro studies. 
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Figure 4.2.  Photoinitiated thiol-ene ‘click’ attachment of cyclic RGD to nanosponges. 
(A) Cyclic RGDEKf-Ahx-C peptide, (B) Reaction scheme, 1H NMR (600 MHz) spectra 
(C) cyclic RGD-NP (blue), (D) cyclic RGD (green), (E) NP in dmso-d6 (red). 
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Nanosponges functionalized with cyclic RGDEKf-Ahx-C peptide and fluorescent 

imaging moieties were then tested in A549 human lung cancer models to validate α!β3 

integrin receptor targeting (Figure 4.3). Cells were cultured overnight and treated with 

targeted nanosponges, targeted nanosponges and competitor (vitronectin), or untargeted 

control nanosponges.  Following incubation for 1 hr, they were washed twice with 

phosphate buffered saline and prepared for confocal microscopy.  

 

 

 

Figure 4.3.  Imaging RGDEKf-Ahx-C-NP-AF488 binding to cells (cell imaging, bar 
graph of fluorescence). (A) Confocal microscopy analysis of integrin specific targeting in 
A549 lung carcinoma cells treated with synthesized cRGD-NP, untargeted NP controls, 
or blocked with 1 mg/ml Vitronectin for 1 hr. Cells were fixed and visualized by confocal 
microscopy.  Zeiss LSM 710, 63x magnification. (B) Bar graph of fluorescence intensity. 
Bars, mean and SE for 3 fields of view. Unpaired Student’s t test (P ≤ 0.05) 
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The α!β3 integrin receptor present on cancer cell membranes is known to bind RGD 

ligands and peptides with RGD motifs. In order to determine preferential RGD peptide 

binding to integrin receptors, vitronectin (a glycoprotein with an RGD sequence) was 

used to compete with the specific binding of peptides to integrins. Cells treated with the 

targeted group alone show significantly greater fluorescence along the membrane and 

peripheral areas compared to cells treated with vitronectin competitor and untargeted 

controls (Figure 4.4). These studies validate cyclic RGD peptide targeting to integrin 

receptors in human lung cancer cells and show preferential binding compared to 

untargeted controls.  

 

 

Figure 4.4.  Imaging vitronectin competition studies with RGDEKf-Ahx-C-NP-AF488.  
(cell imaging, bar graph of fluorescence). Competition assay with 0, 0.5 and 1 mg/ml 
Vitronectin for 1 hr.  
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Conclusion 

These studies show the synthesis of a cyclic RGDEKf-Ahx-C tumor targeting 

peptide, attachment to nanosponges, and modification with a fluorescent probe for in 

vitro cell imaging applications. Confocal microscopy shows competitive binding of 

cyclic RGD targeted NPs compared to untargeted controls and competitive binding 

controls with vitronectin competitor. These results indicate that this cyclic RGD peptide 

binds specifically in a dose responsive way to the α!β3 integrin receptor present on lung 

cancer cells in vitro, and can be used to target nanosponges specifically to this receptor 

on cancer cells.  
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CHAPTER 5 

 

SEQUENTIAL TARGETED DELIVERY OF PACLITAXEL AND 

CAMPTOTHECIN USING A CROSS-LINKED ‘NANOSPONGE’ NETWORK 

FOR LUNG CANCER CHEMOTHERAPY 

 

Abstract 

The applicability of a HVGGSSV peptide targeted ‘nanosponge’ drug delivery 

system for sequential administration of a microtubule inhibitor (paclitaxel) and 

topoisomerase I inhibitor (camptothecin) was investigated in a lung cancer model. In vivo 

molecular imaging and TEM studies validated HVGGSSV-NP tumor binding at 24 hrs 

and confirmed the presence of Nanogold labeled HVGGSSV-NPs in tumor microvascular 

endothelial cells. Therapeutic efficacy studies conducted with sequential HVGGSSV 

targeted NP PTX and NP CPT showed 2-fold greater tumor growth delay in combination 

versus monotherapy treated groups, and 4-fold greater delay compared to untargeted and 

systemic drug controls. Analytical HPLC/MS methods were used to quantify drug 

content in tumor tissues at various time points, with significant paclitaxel and 

camptothecin levels in tumors 2 days post-injection and continued presence of both drugs 

up to 23 days post-injection. The efficacy of the NP drug delivery system in sequential 

treatments was demonstrated in in vivo lung cancer models resulting in enhanced 

apoptotic cell death, decreased cell proliferation and vascular density. 
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Introduction 

Many conventional chemotherapy protocols for the treatment of cancer produce 

side effects that limit biological efficacy and compromise patient outcomes.1 In addition 

to affecting proliferating cancer cells, these cytotoxic drugs also affect other rapidly 

dividing cells including cells in the gastrointestinal tract, bone marrow cells and hair 

follicles. Additionally, due to the hydrophobic nature of many chemotherapeutic drugs, 

parenteral administration via intravenous infusion typically requires the use of 

formulation vehicles (such as Cremophor® EL), which have been noted to produce 

undesirable biological reactions such as hypersensitivity and toxicity. Although the 

development of targeted drug delivery systems has allowed cytotoxic chemotherapeutics 

to be administered selectively to malignant tumors while sparing healthy tissues from 

undesirable side effects, solubilization of drugs and tailoring the drug dosage remain a 

challenge.2,3 Therefore, degradable drug carriers are being developed to target and release 

drugs in a controlled fashion.4-6 In particular, ‘nanosponge’ materials have been found 

suitable due to their degradable polyester based nano-network, comprised of a cross-

linked 3-dimensional scaffold, which can be synthesized in different sizes, network 

densities and can be functionalized with tumor targeting units and imaging agents to 

enable visualization in vivo.7-9  Moreover, hydrophobic drugs can be loaded into these 

nanosponges via a developed nanosolublization method to result in readily injectable 

formulations for direct administration to create a linear release of the drug.8  

Previous studies have shown that functionalization of nanosponges with tumor 

targeting peptides enhances targeting and significantly reduces tumor growth in a breast 

cancer model compared to systemic paclitaxel.10 Targeting of a wide variety of tumors 
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(breast, brain, lung, prostate, colon, etc.) with peptides to radiation-inducible receptors 

expressed following exposure to sub-therapeutic levels of ionizing radiation has been 

previously established.2,10-13 These results motivated us to investigate combination 

chemotherapy with paclitaxel and camptothecin in order to capitalize on the 

advantageous features of the nanosponge drug delivery system for tumor-specific drug 

targeting, release and solubilization. In this study, the Tax-interacting protein 1 (TIP-1) 

targeting peptide (HVGGSSV) was used to guide the delivery system to lung tumors 

treated with ionizing radiation in a murine lung cancer model.14   

In addition to tumor targeting, the potential of sequential combination drug 

delivery using these targeted nanocarriers is investigated using mitotic inhibitors and 

topoisomerase I inhibitors, in addition to establishing tumor targeting of these 

nanosponges. Paclitaxel (Taxol) has shown promise as a chemotherapeutic alone and in 

combination with other drugs such as camptothecin in the treatment of a variety of 

cancers.15,16 As a mitotic inhibitor, its main mechanism of action involves the 

stabilization of microtubules, G2/M phase cell cycle arrest, disruption of mitosis, and 

apoptosis.15 Camptothecin is a topoisomerase I inhibitor that causes DNA damage by 

reversibly stabilizing the covalent enzyme-DNA intermediate, causing DNA double 

strand breaks, S/G2 cell cycle arrest and apoptosis.17-19 Despite its potency, the use of 

camptothecin in the clinic has been limited greatly due to its poor water solubility, 

toxicity and side effects. While analogues of camptothecin, such as Irinotecan and 

Topotecan, have been developed to enhance water solubility, toxicity still remains a 

limiting side effect.20 As a result, targeted drug delivery systems that can provide 

sustained release of highly hydrophobic small molecules specifically at tumor sites 
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exhibit particular promise for combination chemotherapy where delivery of lower doses 

for extended times can help enhance efficacy and reduce toxicity. Moreover, continuous 

low doses of drug over time (metronomic chemotherapy), also allow for greater anti-

angiogenic efficacy.21 Biodegradable targeted nanosponges with a cross-linked polymeric 

architecture create controlled low dose drug release profiles that are highly suitable for 

this application. Furthermore, development of a tumor-specific drug delivery system that 

enhances drug solubility, provides sustained low dose drug release, and can be used with 

different drug combinations provides a unique opportunity for maximizing the potential 

of chemotherapy while reducing the limiting toxicities that lower treatment efficacy.22, 23 

This work describes a comprehensive study using a developed targeted 

‘nanosponge’ nanoparticle as carriers in a sequential combination treatment approach for 

lung cancer, which has not been investigated despite the known potency of both 

paclitaxel and camptothecin. Briefly, HVGGSSV targeted nanosponges were labeled 

with near-infrared fluorophores and Nanogold® to allow for in vivo optical imaging of 

nanoparticle biodistribution and ultrastructural studies with transmission electron 

microscopy (TEM) showing tumor targeting at the cellular level. In vitro studies compare 

drug loaded nanoparticles (NP PTX and NP CPT) in sequential, simultaneous and single 

drug treatment to determine the optimum combination and sequence (see chapter 3). 

Based on these findings, tumor targeted nanoparticles loaded with paclitaxel and 

camptothecin (HVGGSSV-NP PTX and HVGGSSV-NP CPT) are then administered 

sequentially in an in vivo lung cancer mouse model to study therapeutic efficacy of 

sequential treatment compared to controls. The following new findings are presented: (1) 

sequential administration of paclitaxel prior to camptothecin increases G2 cell cycle 
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arrest compared to simultaneous treatment in lung cancer cells (see chapter 3) (2) 

nanosponge formulation affords metronomic delivery of these drugs in vitro and in vivo 

(3) Tumor-specific targeting lowers increases bioavailability and enhances metronomic 

therapy.  

 

Experimental Materials and Methods 

Nanoparticle Preparation 

Materials 

Chemical reagents were purchased from Sigma-Aldrich and Strem Chemicals, 

chemotherapeutic drugs from LC Laboratories. Peptides (GCGGGNHVGGSSV) were 

purchased from EZBiolab Inc. (Carmel, IN). Spectra/Por Dialysis membrane 

(MWCO=10,000) in 0.05% sodium azide was purchased from Spectrum Laboratories.  

Characterization 

NMR Spectroscopy.  All 1H NMR spectra were acquired using a 400 MHz Bruker AV-

400 NMR with deuterated chloroform (CDCl3) and tetramethylsilane as internal standard. 

Peptide labeled nanoparticles were analyzed using a 600 MHz Bruker AV-II NMR with 

deuterated dimethyl sulfoxide (DMSO-d6) and tetramethylsilane as internal standard. 

Purification. Biotage Isolera Spektra One flash purification system equipped with a UV λ 

absorbance detector was used to purify AVL monomers. Purification was performed 

using a SNAP HP 50 g silica column with a 5-20% ethyl acetate gradient in n-hexanes 

with a flow rate of 50 ml/min. All monomers (AVL and VL) were vacuum distilled using 

a Kugelrohr distillation apparatus (Sigma Aldrich). 
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Gel-permeation chromatography (GPC). All GPC was performed using a Waters 

chromatography system equipped with refractive index and dual λ absorbance detectors, 

four 5 mm Waters columns (300 mm x 7.7 mm) with pore size (100, 1000, 100,000 and 

1,000,000 Å respectively). All samples were dissolved in tetrahydrofuran (THF), with a 

20 µl injection volume and 1 mL/min flow rate. 

Transmission electron microscopy (TEM). TEM imaging was performed on nanoparticles 

by dissolving approximately 5 mg in a solution of 1:0.4 mL isopropanol/acetonitrile. The 

dissolved nanoparticles were sonicated for 5 minutes and stained with 4 drops of a 3% 

phosphotungstic acid/water solution for 10 minutes. This solution was sonicated once 

more for 5 minutes before the copper grids were prepared. Ultrathin Carbon Type-A 400 

mesh copper grids (Ted Pella, Redding, CA) were gently immersed into the stained 

nanoparticle solution and allowed to dry for 2 hrs prior to analysis. A 200 kV Philips 

CM20T transmission electron microscope was used to acquire micrographs of the 

nanoparticles. 

Preparation of Monomers 

δ-valerolactone monomer (VL) 

Technical grade δ-valerolactone was Kugelrohr distilled to produce a colorless liquid 

product.  

α-allyl-δ-valerolactone monomer (AVL) 

A flame dried 500 mL two-necked round bottom flask was equipped with a stir bar, 

sealed with a rubber septum, and purged with nitrogen for 30 min. To the flask, 156.25 

mL of anhydrous THF was added and cooled to -78 °C in a dry ice/acetone bath. 

Following this, a basic solution of lithium diisopropylamine was produced by adding 
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redistilled n,n-diisopropylamine (3.3 mL, 23.63 mmol) and n-butyl lithium (2.5 M in 

hexanes) (9.35 mL, 23.38 mmol) dropwise via syringe. This solution was stirred for 20 

minutes. A nitrogen purged solution of distilled δ-valerolactone (1.97 mL, 21.23 mmol) 

in anhydrous THF (56 mL) was then added dropwise via syringe over 30 min. After an 

additional 30 min of stirring, a nitrogen purged solution of allyl bromide (2.21 mL, 25.54 

mmol) in hexamethylphosphoramide (4.43 mL, 25.46 mmol) was added via syringe. The 

reaction mixture was warmed up to -40 ºC and stirred for 2 hrs. The reaction was 

quenched with excess NH4Cl solution. The crude product was concentrated via rotary 

evaporator, washed three times with saturated NaCl solution, and dried with anhydrous 

magnesium sulfate. The crude product was purified via column chromatography (Biotage 

Isolera), analyzed by thin layer chromatography and Kugelrohr distilled. 

Chromatography with a gradient of 5-20% ethyl acetate in n-hexanes as eluent gave a 

yellow liquid product. Kugelrohr distillation produced a colorless liquid product. Yield: 

3.56 g (89%). 1H NMR (400MHz, CDCl3/TMS, ppm) δ: 5.7 (m, 1H, H2C=CH-), 5.08 (m, 

2H, H2C=CH-), 4.28 (m, 2H, -C(O)OCH2-), 2.53-2.58 (m, 2H, H2C=CHCH2-), 2.27 (m, 

1H, H2C=CHCH2CH-), 2.06 (m, 1H, H2C=CHCH2CHCH2-), 1.89 (m, 2H, 

C(O)OCH2CH2-), 1.55 (m, 1H, H2C=CHCH2CHCH2-). 

 

Preparation of Linear Polymer Precursors 

Poly(VL-co-AVL) from Sn(OTf)2 catalyst 

A flame dried 25 mL 3-necked round bottom flask was equipped with a stir bar, sealed 

with rubber septa and nitrogen purged. A stock solution of anhydrous ethanol in 

anhydrous tetrahydrofuran was prepared (1.7 M) in a 50 mL flame dried and nitrogen 
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purged round bottom flask, and a stock solution of Sn(OTf)2 catalyst in anhydrous 

tetrahydrofuran was prepared (3.7x10-2 M) in a 10 mL flame dried and nitrogen purged 

round bottom flask.  Ethanol (584 µL, 1.0 mmol) and Sn(OTf)2 (261 µL, 9.64 x 10-6 mol) 

were added via syringe to the 25 mL 3-neck round bottom flask and the catalyst/initiator 

solution was allowed to stir at room temperature for 30 minutes prior to simultaneous 

addition of δ-valerolactone (2.22 g, 22.0 mmol) and α-allyl(valerolactone) (0.777 g, 

5.548 mmol) monomers via syringe.  After addition of both monomers, the reaction was 

stirred for 24 hrs at room temperature. The resulting polymer was diluted with 1 mL 

anhydrous THF and purified by dropwise addition into 1 L of chilled methanol to remove 

any remaining monomer and catalyst. The methanol was decanted and the precipitate 

dissolved in methylene chloride, rotary evaporated and dried in vacuo. The resulting 

polymer was observed as a waxy white solid.  Mw = 3000 Da; PDI = 1.09; 1H NMR (400 

MHz, CDCl3/TMS, ppm) δ: 5.72 (m, H2C=CH-), 5.04 (m, H2C=CH-), 4.08 (m, -CH2-O-), 

3.64 (m, CH3CH2O-), 2.34 (m, vl, -CH2CH2C(O)O-, avl, H2C=CHCH2CH-, 

H2C=CHCH2CH-), 1.68 (m, avl and vl, -CHCH2CH2-), 1.26 (t, CH3CH2O-). 

Poly(VL-co-AVL) from Sn(Oct)2 catalyst 

A flame dried 25 mL 3-necked round bottom flask was equipped with a stir bar, sealed 

with rubber septa and nitrogen purged. A stock solution of anhydrous ethanol in 

anhydrous tetrahydrofuran was prepared (1.7 M) in a 25 mL flame dried and nitrogen 

purged round bottom flask, and a stock solution of Sn(Oct)2 catalyst in anhydrous 

tetrahydrofuran was prepared in a 10 mL flame dried and nitrogen purged round bottom 

flask. Ethanol (360 µL, 6.14 x10-1 mol) and Sn(Oct)2 (330 µL, 1.22 x 10-2 mol) were 

added via syringe to the 50 mL 3-neck round bottom flask and the catalyst/initiator 
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solution was allowed to stir at room temperature for 30 minutes prior to simultaneous 

addition of δ-valerolactone (2.46 g, 28.53 x 10-3  mol) and α-allyl(valerolactone) (0.93 g, 

7.134 x 10-3 mol) monomers via syringe.  After addition of both monomers, the reaction 

was stirred for 48 hrs at 105 °C in an oil bath. The resulting polymer was diluted with 1 

mL methylene chloride and purified by dropwise addition into 1.5 L of chilled diethyl 

ether to remove any remaining monomer and catalyst. The ether was decanted and the 

precipitate dissolved in methylene chloride, rotary evaporated and dried in vacuo. The 

resulting polymer was observed as a viscous yellow liquid.  1H NMR (300 MHz, 

CDCl3/TMS, ppm) δ: 5.72 (m, H2C=CH-), 5.04 (m, H2C=CH-), 4.08 (m, -CH2-O-), 3.64 

(m, CH3CH2O-), 2.34 (m, vl, -CH2CH2C(O)O-, avl, H2C=CHCH2CH-, H2C=CHCH2CH-

), 1.68 (m, avl and vl, -CHCH2CH2-), 1.26 (t, CH3CH2O-). 

Poly(VL-co-AVL-co-EVL) 

In a 100 mL round bottom flask, equipped with stir bar and rubber septum, a solution of 

poly(VL-co-AVL) (1.0 g, 1.55 x 10-3 mol) was dissolved in 8.5 mL of methylene 

chloride. To this solution, meta-chloroperoxybenzoic acid (121.25 mg, 7.03 x 10-4 mol) 

was added. The solution was stirred for 24 hrs at room temperature and then concentrated 

via rotary evaporator. The crude product was dissolved in a minimal amount of 

dichloromethane (2 mL) and precipitated into an Erlenmeyer flask containing 500 mL 

cold diethyl ether. The solution was decanted, and the white solid was rotary evaporated 

and dried in vacuo to obtain the final white waxy polymer. Yield: 0.768 g (76.8%). 1H 

NMR (400MHz, CDCl3/TMS, ppm) δ: Decrease in allylic protons at 5.7 and 5.09 ppm 

and the appearance of small broad resonance peaks at 2.96, 2.75 and 2.47 ppm due to the 

formation of the epoxide.  
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Formation of nanosponges 

In a 250 mL round bottom flask equipped with stir bar and reflux condenser, a solution of 

2,2'-(ethylenedioxy) diethylamine (10.5 µL, 7.18x10-5 mol) in 29.55 mL methylene 

chloride was heated at 45 °C. A solution of poly(VL-co-AVL-co-EVL), (0.200 g, Mw = 

3000 Da) dissolved in methylene chloride was added. The mixture was refluxed at 45 ºC 

for 12 hrs. Residual diamine crosslinker was removed via dialysis against methylene 

chloride with Spectra/Por Dialysis Tubing (MWCO = 10,000). Nanosponges were made 

from poly(VL-co-AVL) using Sn(OTf)2 and Sn(Oct)2 catalysts. 1H NMR (400 MHz, 

CDCl3/TMS, ppm) δ: Decrease in number of epoxide protons at 2.96, 2.75 and 2.47 ppm 

and the appearance of signals at 3.5 and 2.89 ppm corresponding to the protons near the 

secondary amine of the diamine crosslinker after the reaction. 

Addition of targeting peptide via photoinitiated thiol-ene ‘click’ reaction 

Poly(VL-co-AVL-co-EVL) nanoparticles were dissolved in dichloromethane and purified 

using Sephedex column chromatography, rotary evaporated and dried in vacuo. 

Anhydrous, degassed DMSO (1 mL) was used to dissolve 20 mg of poly(VL-co-AVL-

co-EVL) nanoparticles, 7.2 mg of GCGGGNHVGGSSV peptide (EZ BioLabs) and 3.4 

mg DMPA (2 eq. with respect to peptide). Mixture was stirred for 2 days in an oil bath at 

37 °C under ultraviolet light at 365 nm. The product was purified by dialysis (MWCO = 

10,000) against methanol/acetonitrile (1:1) for 2 days, rotary evaporated and dried in 

vacuo.  

Quantification of peptide units on nanoparticles via 1H NMR: 

Since the primary thiol functional group from the cysteine residue in the peptide 

(GCGGGNHVGGSSV) reacts with the allyl groups in the nanoparticle in a 1:1 
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stoichiometry, the allyl groups that are consumed in the reaction directly correlate with 

how many peptides are bound to the nanoparticle. By comparing the percent allyl groups 

in the nanoparticle before and after peptide attachment, the difference can be used to 

calculate the number of bound peptides. The nanoparticle peak at 4.08 ppm is used as an 

internal standard for determining the number of unmodified allyl groups remaining after 

the photoinitiated thiol-ene click reaction for peptide attachment. 

Modification of HVGGSSV-NPs for in vivo NIR imaging with NHS Alexa Fluor 750 and 

Mono-Sulfo-NHS Nanogold® 

HVGGSSV modified poly(VL-co-AVL-co-EVL) nanoparticles (30 mg) and unmodified 

nanoparticles (30 mg) were separately dissolved in anhydrous DMSO (600 uL). To each 

solution, NHS Alexa Fluor 750 (75 uL) and Mono-Sulfo-NHS Nanogold® (10 uL) was 

added simultaneously and the resulting mixture was stirred for 6 hrs (covered in foil to 

protect from light). The product was purified by dialysis (MWCO=10,000) against 

methanol/acetonitrile (1:1) overnight, rotary evaporated and dried in vacuo (covered in 

foil to protect from light).  

Cell Culture  

Murine Lewis lung carcinoma (LLC) cells were obtained from the American Type 

Culture Collection (Rockville, MD,). They were grown to 70% confluence in Dulbecco’s 

Modified Eagle Medium supplemented with 10% fetal bovine serum and 1% 

antibiotic/antimycotic. All cultures maintained at 37°C in incubator with 95% humidity 

and 5% CO2. 
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Animal models 

Male athymic nude mice (nu/nu) and C57BL6 mice were purchased from Harlan 

Laboratories (Indianapolis, IN). All in vivo animal protocols were approved by the 

Institutional Animal Care and Use Committee (IACUC). Animals were anesthetized 

using a ketamine and xylazine solution prior to injection of 1 x 106 LLC cells 

subcutaneously in the hind limbs. Once tumors reached an approximate size of 0.5 cm in 

diameter mice were used for in vivo studies.  

Radiation treatment 

In order to stimulate expression of radiation-induced TIP-1 in tumors, each tumor was 

treated with sub-therapeutic levels of ionizing radiation prior to drug administration. 

Mice were anesthetized to inhibit movement and covered with lead blocks of 1 cm 

thickness, leaving only the hind limb tumor exposed for treatment. Tumors were treated 

with 3 Gy ionizing radiation at 300 kV, using a Pantak Therapax 3 linear accelerator 

system (Pantak), with an adjustable collimator set to focus dosage exclusively to tumors. 

Four hours following irradiation, mice were intravenously administered nanoparticle drug 

treatments via lateral tail vein.  

NIR fluorescence imaging and analysis 

Near-infrared (NIR) fluorescence imaging was done on athymic nude mice using a 

Xenogen IVIS 200 small animal imaging system (Xenogen Inc., CA). A filter with 

excitation and emission at 680/775 nm was used for acquisition of all images. Briefly, a 

single dose of 3 Gy radiation was given to tumors in mice receiving targeted HVGGSSV-

NP and no radiation was applied for HVGGSSV-NP controls and untargeted controls. 

Four hours after irradiation, nanoparticles were injected. At 24 hrs post-injection, mice 
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were immobilized with continuous administration of isoflurane gas, and images were 

acquired, with exposure times of 1 second and an f/stop of 2.  In order to compare 

fluorescence in tumor regions quantitatively, regions of interest (ROIs) were created over 

tumor areas, and the total radiance for each ROI was measured in p/s/cm2/sr. Results are 

presented as mean and standard error for groups of three mice. 

Tumor growth delay studies  

For in vivo studies, six-week-old male C57BL6 mice were used. All mice were injected 

with 1 x 106 LLC cells subcutaneously above their right hind limbs. Tumor volume was 

measured manually using calipers, and tumor volume was calculated using the formula: 

volume = 0.5 (length x width2). Upon reaching an approximate diameter of 0.5 cm, mice 

were divided into groups and administered nanoparticle drug conjugates (10 mg/kg 

calculated for amount of each drug, 50-100 µL volume in PBS) intravenously through 

lateral tail vein. Mice receiving targeted treatments on day 1, were given 3 Gy radiation 

and injected 4 hrs later with either HVGGSSV-NP PTX, HVGGSSV-NP CPT, or 

HVGGSSV-NP PTX (day 1) à HVGGSSV-NP CPT (day 9). Mice receiving untargeted 

treatments on day 1 were given no radiation and injected with NP PTX, NP CPT, or 

systemic (free) PTX. Mice receiving radiation (RT) only on day 1 received 3 Gy 

radiation, and mice receiving no drug (control) on day 1 were injected with PBS vehicle. 

Tissue transmission electron microscopy (TEM) 

Peptide modified nanoparticles labeled with Nanogold® were injected intravenously via 

lateral tail vein in a volume of 0.1-0.2 mL. At 24 hrs after injection, tumor tissues were 

excised and cut into 1-2 mm3 cubes with a razor blade and fixed in a solution of 3% 

glutaraldehyde in cacodylate buffer overnight at 4 °C. Tissue sections were subsequently 
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fixed in 2% osmium tetroxide in 100 mM cacodylate buffer, pH 7.4, overnight at 4 °C. 

Following treatment with 2% uranyl acetate for 48 hrs at 37 °C, tumor tissues were 

embedded in epoxy resin and thick-sectioned. Regions of interest were selected under a 

light microscope and recut into thin sections subsequently stained with lead citrate. 

Sections were placed onto copper grids and examined with a Philips/FEI T-12 high-

resolution transmission electron microscope with a 2000 x 2000 AMT CCD camera 

system. Acquired images were then analyzed using AMT image capture software. 

Drug quantification 

At determined time points (days 2, 7, 14, 23) following injections, tumors were excised 

and homogenized. Tumor tissue homogenates (200 µL) were extracted by protein 

precipitation with 500 µL acetonitrile spiked with 100 µL internal standard. Samples 

were vortexed and centrifuged for 10 minutes at 3000 rpm. The supernatant was then 

filtered using centrifugal filters (Amicon Ultra, Millipore) for another 30 minutes at 3000 

rpm, and the resulting filtrate was evaporated. It was reconstituted in 20 mM ammonium 

formate in acetonitrile/water (1:1) and analyzed by HPLC/MS using a Phenomenex Luna 

C18 analytical column, with an injection volume of 20 µL and flow rate of 300 

µL/minute. Mobile phase A was 20 mM ammonium formate in water/acetonitrile (95:5, 

v:v) and mobile phase B was 20 mM ammonium formate in water/acetonitrile (5:95, v:v). 

Immunohistochemistry 

To determine changes in cell proliferation, cell death and tumor vascular density in vivo, 

six-week-old male C57BL6 mice were injected with 1 x 106 LLC cells subcutaneously 

above their right hind limbs. Upon reaching an approximate diameter of 0.5 cm, mice 

were divided into groups and administered drug loaded nanoparticles (10 mg/kg 
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calculated for each drug, 50-100 µL volume in PBS) intravenously through lateral tail 

vein. Mice receiving targeted treatments on day 1, were given 3 Gy radiation and injected 

4 hrs later with either HVGGSSV-NP PTX, HVGGSSV-NP CPT, or HVGGSSV-NP 

PTX (day 1) à HVGGSSV-NP CPT (day 9). Mice receiving untargeted treatments on 

day 1 were given no radiation and injected with either NP PTX or NP CPT. Mice 

receiving no drug (control) on day 1 were injected with PBS vehicle. Fourteen days 

following injections, tumors were excised and fixed in a solution of 10% formalin for 48 

hrs. Paraffin-embedded tissues were sectioned into 10 µm thick sections and treated with 

anti-cleaved caspase-3 antibody for detection of apoptotic cells, anti-Ki67 antibody for 

detection of cell proliferation, and anti-CD31 antibody for detection of blood vessels. 

Slides were viewed using a Zeiss Axiophot wide field microscope, and images taken at 

10x magnification. Images were acquired from three fields of view and the number of 

cells expressing either cleaved caspase-3, Ki67, or CD31 was counted. Dark stained 

nuclei were scored positive, and blue nuclei were scored as negative. Bar graphs shown 

represent the number of cells as a percentage of total cells counted. All images were 

analyzed using MetaMorph image acquisition and analysis software. 

Statistical analysis 

Statistical analysis was performed using mean and standard error (SE), with student’s t 

test and p values less than 0.05 considered significant. P values are shown on bar graphs 

with asterisks, where * represents p ≤ 0.05, ** represents p ≤ 0.01, and *** represents p ≤ 

0.001 per statistical convention.  
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Results and discussion 

Previously, the HVGGSSV peptide has been shown to have tumor-specific binding to the 

TIP-1 protein found in irradiated tumors.14, 28 In this study we report the use of 

HVGGSSV peptide for targeting of polyester nanoparticles in a murine LLC tumor 

model. Nanoparticles were synthesized and functionalized with HVGGSSV peptide 

(HVGGSSV-NP), and labeled with Alexa Fluor® 750 near-infrared fluorophore (Figure 

5.1A,B). These targeted fluorescent nanoparticles were then injected into nude mice with 

irradiated LLC tumors, and imaged via NIR fluorescent imaging to visualize tumor 

binding in vivo (Figure 5.2A). At 24 hrs post-injection, mice receiving HVGGSSV 

targeted nanoparticles exhibited 7.9 times greater fluorescence in irradiated tumors 

compared to unirradiated controls, and over two times greater fluorescence compared to 

untargeted nanoparticle controls (Figure 5.2B). In order to determine specifically where 

in the tumor tissue these targeted nanoparticles were delivered, targeted and untargeted 

nanoparticles were functionalized with Nanogold® (Figure 5.1C). 
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Figure 5.1. Synthesis of polyester nanoparticles functionalized with HVGGSSV 
targeting peptide (A) and Alexa Fluor® 750 near-infrared fluorophore imaging agents (B) 
and Nanogold® -HVGGSSV nanoparticles (C). 
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Figure 5.2. Near-infrared (NIR) fluorescence imaging of HVGGSSV-NPs in an LLC 
model at 24 hrs post-injection (A). Nude athymic mice with heterotopic tumors (right 
hind limb) were intravenously injected with untargeted nanoparticle controls and 
unirradiated (0 Gy) (left), HVGGSSV-NPs in unirradiated (0 Gy) tumor controls 
(middle), or HVGGSSV-NPs in irradiated (3 Gy) tumors (right). Radiance for 
HVGGSSV-NPs in irradiated tumors and unirradiated control tumors compared to 
untargeted nanoparticle controls (B). Color scale bar, radiance in units of 
photons/s/cm2/sr. Bars, mean and SE for n=3, unpaired Student’s t test (p<0.05). 
 

These small (1-2 nm) gold particles have high electron density, producing enhanced 

image contrast in TEM due to greater absorption of these electrons at lower 

magnification. Nanogold® functionalized HVGGSSV-NP and untargeted NP controls 

were injected intravenously into C57BL6 mice and tumors excised 24 hrs post-injection. 

TEM images show preferential accumulation of Nanogold (seen as black ‘dots’ in yellow 

regions of interest) within tumor vascular endothelium in HVGGSSV targeted tumors but 

not in untargeted control tumors at 24 hrs (Figure 5.3 A,B). Areas with higher 

concentrations of Nanogold indirectly show presence of HVGGSSV targeted 

nanoparticles (see insets), and confirm tumor-specific binding of these nanoparticles 

compared to untargeted controls.  
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Figure 5.3. TEM micrographs of LLC tumors treated with Nanogold® labeled 
HVGGSSV-NPs in a murine model at 24 hrs post-injection. C57BL6 mice with 
heterotopic tumors (right hind limb) were intravenously injected with (A) Nanogold® 

labeled HVGGSSV-NP in irradiated (3 Gy) tumors or (B) untargeted nanoparticle 
controls. Tumors were excised at 24 hrs post injection, fixed and processed for TEM 
analysis. A cross-section of a tumor blood vessel is shown in each micrograph. 
Nanoparticles (dark spheres indicated by arrows and yellow regions of interest) can be 
seen localized inside tumor microvascular endothelial cells. Scale bar indicates 2 µm. 
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Based on the results observed in vitro (see chapter 3), the nanoparticle drug combination 

and sequence with the greatest therapeutic effect on cells was selected for 

functionalization with tumor-specific peptide HVGGSSV, and was tested in vivo to 

evaluate tumor-specific targeting, drug delivery and therapeutic efficacy. Specifically, 

sequential targeted HVGGSSV-NP PTX à HVGGSSV-NP CPT (i.e. HVGGSSV-NP 

paclitaxel administered before HVGGSSV-NP camptothecin) was compared to targeted 

and untargeted monotherapy controls, radiation only, and untreated controls. To evaluate 

therapeutic efficacy, tumor growth delay studies in a LLC model were performed to 

compare the tumor volume doubling time across different treatment groups. Figure 5.4A 

shows that untargeted monotherapy controls showed no significant tumor growth delay 

compared to untreated controls, with radiation only and systemic (free) paclitaxel 

controls showing a slight increase (1 day). Both HVGGSSV targeted NP PTX and NP 

CPT showed significant growth delay compared to untargeted controls (4 days). 

Sequential injection of camptothecin 8 days after paclitaxel administration produced a 

tumor doubling time of 21 days vs. 9 days for HVGGSSV targeted single drug controls 

(Figure 5.4B). The greatest growth delay was observed between sequential targeted 

treatment groups and untargeted single drug controls (16 days) (Figure 5.4A).  
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Figure 5.4.  Tumor growth delay analysis of HVGGSSV peptide targeted nanoparticles 
loaded with paclitaxel or camptothecin. C57BL6 mice with LLC tumors grown on hind 
limbs were irradiated with 3 Gy on day 1 and injected 4 hrs later with either HVGGSSV-
NP PTX, HVGGSSV-NP CPT, HVGGSSV-NP PTX à HVGGSSV-NP CPT, NP PTX, 
NP CPT, systemic (free) PTX, radiation only, or untreated. Sequential HVGGSSV-NP 
PTX à HVGGSSV-NP CPT treatment group was given second injection on day nine. 
All drugs were administered at a dose of 10 mg/kg, intravenously via tail vein (A).Time 
in days for tumors to reach two-fold volume (B). Bars, mean and SE for n=3, unpaired 
Student’s t test (p<0.05). 
 

To validate presence of drugs in tumor tissues, analytical HPLC/MS was used to quantify 

drug levels at 2, 7, 14 and 23 days post-injection. Tumors treated with targeted 

HVGGSSV-NP PTX showed the highest levels of paclitaxel at day 2 post-injection with 

continued presence of paclitaxel up to 23 days post-injection as shown in Figure 5.5A. 

Tumors treated with targeted HVGGSSV-NP CPT showed similar levels of camptothecin 

over time, in lower concentrations at day 2, with steady concentrations up to day 23 as 
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well. Chromatograms of both drugs present in sequentially treated HVGGSSV-NP PTX 

à HVGGSSV-NP CPT tumor tissues can be seen at day 14 (Figure 5.5B). Differences in 

metabolism, elimination and half-life for each drug can cause changes in drug levels seen 

over time, with NP CPT showing faster metabolism and elimination compared to 

paclitaxel. Continuous and steady levels of both drugs can be seen from day 7 to 23, 

indicating sustained and linear levels of drug release from nanoparticles over time, which 

is important for metronomic chemotherapy (Figure 5.5A). 
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Figure 5.5. Quantification of paclitaxel and camptothecin content in LLC tumor tissues 
following treatment with HVGGSSV-NP PTX, HVGGSSV-NP CPT, and HVGGSSV-
NP PTX à HVGGSSV-NP CPT. Concentrations of paclitaxel and camptothecin in 
tumors at 2, 7, 14 and 23 days post-injection (A). PTX and CPT levels in untargeted 
controls were below the limit of detection (indicated by #). Chromatograms for tumor 
tissue excised at 14 days post-injection show presence of paclitaxel (top) and 
camptothecin (bottom) (B). 
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To determine the mechanism of cell death, further immunohistochemical analyses were 

performed on tumor tissues to probe for cell proliferation, cell death and microvascular 

endothelial cells. Cellular proliferation seen with sequentially targeted treatment (i.e. 

HVGGSSV-NP paclitaxel administered before HVGGSSV-NP camptothecin) was 

significantly decreased compared to targeted camptothecin monotherapy and untreated 

controls, but not targeted paclitaxel monotherapy controls (Figure 5.6A,B).  
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Figure 5.6. Immunohistochemical analysis of cell proliferation. C57BL6 mice with LLC 
tumors were treated with saline (control), NP PTX, HVGGSSV-NP PTX, NP CPT, 
HVGGSSV-NP CPT, or sequential HVGGSSV-NP PTX à HVGGSSV-NP CPT for 
fourteen days. Paraffin sections were stained for cell proliferation via Ki67 nuclear 
protein (A). All sections were counterstained with hematoxylin. Dark stained nuclei were 
scored as positive, and blue nuclei were scored as negative. Zeiss Axiophot, 10x 
magnification, scale bar indicates 100 µm. Percentage of proliferating cells in all 
treatment groups (B). Bars show mean and SE for n=3, unpaired Student’s t test (p<0.05). 
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Sequentially targeted treatment achieved the greatest number of caspase-3 positive 

apoptotic cells, with over 5 times higher levels of apoptosis compared to both 

monotherapy and untreated controls (Figure 5.7A,B).  
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Figure 5.7. Immunohistochemical analysis of cell death. C57BL6 mice with LLC tumors 
were treated with saline (control), NP PTX, HVGGSSV-NP PTX, NP CPT, HVGGSSV-
NP CPT, or sequential HVGGSSV-NP PTX à HVGGSSV-NP CPT for fourteen days. 
Paraffin sections were stained for apoptosis by presence of active caspase-3 (A).  All 
sections were counterstained with hematoxylin. Dark stained nuclei were scored as 
positive, and blue nuclei were scored as negative. Zeiss Axiophot, 10x magnification, 
scale bar indicates 100 µm. Percentage of apoptotic cells in all treatment groups (B). Bars 
show mean and SE for n=3, unpaired Student’s t test (p<0.05). 
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Additionally, sequentially targeted groups displayed fewer blood vessels overall 

compared to targeted paclitaxel and camptothecin monotherapy and untreated controls 

(Figure 5.8A,B).  
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Figure 5.8. Immunohistochemical analysis of tumor vascularity. C57BL6 mice with LLC 
tumors were treated with saline (control), NP PTX, HVGGSSV-NP PTX, NP CPT, 
HVGGSSV-NP CPT, or sequential HVGGSSV-NP PTX à HVGGSSV-NP CPT for 
fourteen days. Paraffin sections were stained for CD31 expression on vascular 
endothelium (A).  All sections were counterstained with hematoxylin. Dark stained nuclei 
were scored as positive, and blue nuclei were scored as negative. Zeiss Axiophot, 10x 
magnification, scale bar indicates 100 µm. Percentage of vascular density in all treatment 
groups (B). Bars show mean and SE for n=3, unpaired Student’s t test (p<0.05). 
 

These results suggest that paclitaxel is more influential in inhibiting cell 

proliferation and camptothecin is driving the anti-angiogenic effect by reducing the 

number of blood vessels, thus inhibiting access to nutrients and growth factors necessary 

for continued tumor growth. Therefore, targeted sequential treatment with these two 
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drugs produces a more powerful effect than either drug alone. This optimized effect may 

be due to paclitaxel enhancing sensitivity to camptothecin, resulting in cells undergoing 

G2/M phase arrest and inducing apoptotic cell death. Subsequent administration of 

camptothecin results in a decrease in vascular density and reduction in blood flow 

available to tumors, further enhancing apoptotic effects produced by exposure to 

paclitaxel. In addition to these effects, decreased cell proliferation observed in the 

sequential sequence validate results from in vitro studies (see chapter 3) where treatment 

with paclitaxel followed by camptothecin produced the greatest changes in microtubule 

morphology and decreased the number of proliferating cells. These results jointly suggest 

enhanced sensitivity of cells to camptothecin after treatment with paclitaxel and indicate 

this drug sequence as having the greatest biological effect in vitro and in vivo. 

Prior studies using the nanosponge delivery system have demonstrated the 

importance of targeting and the unique features of the nanosponge for supporting drug 

solubilization and release, resulting in greater drug efficacy. 10 This study investigated the 

feasibility of tumor-specific delivery and metronomic release of paclitaxel and 

camptothecin to determine the optimum drug combination and sequence for treating lung 

cancer. Initial studies (see chapter 3), examined the role of drug combination and 

sequence in vitro, in both mouse and human lung cancer cell lines, with synthesized 

untargeted nanosponges loaded with either paclitaxel (NP PTX) or camptothecin (NP 

CPT). Results showed not only that paclitaxel and camptothecin combination therapy 

produced the greatest G2/M phase arrest compared to monotherapy, but also that 

sequential administration of NP PTX followed by NP CPT further enhanced caspase-

dependent cell death compared to simultaneous administration. Paclitaxel, more so than 
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campthothecin, was observed to drive cells into G2/M phase arrest and subsequent 

apoptosis. Further studies are necessary to determine the molecular basis for this effect in 

lung cancer. Sequential administration (NP PTX → NP CPT) of nanoparticle drug 

delivery systems resulted in greater cell death and decreased cell proliferation.  

These results were validated in an in vivo mouse model of lung cancer after tumor 

binding of HVGGSSV functionalized targeted nanoparticles (Figure 5.1A-B) were 

confirmed. The targeting enabled nanoparticles to be selectively and specifically guided 

to tumors within 24 hrs after injection (Figure 5.2). TEM images showed preferential 

intracellular accumulation of Nanogold® functionalized targeted nanoparticles (Figure 

5.1C) in tumor vascular endothelial cells at 24 hrs compared to untargeted controls 

(Figure 5.3). Use of the targeted nanoparticle drug delivery system in a sequential 

paclitaxel à camptothecin scheme demonstrated greater cell death, decreased cell 

proliferation and vascular density (Figure 5.7, 5.6, 5.8), translating to increased 

therapeutic efficacy in an in vivo lung cancer model. In vitro studies (see chapter 3) 

showed that the greatest changes in microtubule morphology were seen in cells exposed 

to paclitaxel à camptothecin sequential treatment, and this specific order suggests an 

increased sensitivity to camptothecin following paclitaxel exposure. Based on these 

results, the best drug combination and sequence was selected for targeting and 

therapeutic studies in vivo. Therapeutic efficacy studies conducted with sequential 

HVGGSSV targeted NP PTX and NP CPT showed 2.3 fold greater tumor growth delay 

in combination versus monotherapy treated groups, and 4.2 fold greater delay compared 

to untargeted and systemic (free) drug controls (Figure 5.4). Additionally, effects of these 

two drugs in combination on tumor angiogenesis were studied to determine changes in 
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vascular density (Figure 5.8A,B). Tumor neovasculature presents an attractive therapeutic 

target, with its role in providing nutrients and growth factors to growing tumors, as well 

as abnormally permeable architecture.29 Disrupting blood flow to tumors provides a key 

element in many therapies as it diminishes tumor access to vital growth factors needed 

for continued growth, invasion and metastasis. Drugs with anti-angiogenic properties, 

like camptothecin, provide not only cytotoxic effects to tumor cells, but also damage their 

associated vasculature, providing multiple benefits as demonstrated. Moreover, use of 

nanoparticle carriers with controlled and sustained low dose drug release allows for 

metronomic chemotherapy, which has been shown to enhance anti-angiogenic effects.30  

 

Conclusion 

In conclusion, sequential paclitaxel à camptothecin chemotherapy exhibited a 

‘priming’ effect on lung cancer cells that enhanced camptothecin’s effect on cells when 

given second. Nanosponge functionalization with targeting and imaging agents, sustained 

drug release profiles, and improved water solubility make them ideal for metronomic 

chemotherapy. Tumor-specific targeting of nanosponges to radiation-induced receptors 

increased bioavailability and enhanced therapeutic efficacy. Additionally, radiation 

treatment is commonly included with many chemotherapy regimens, and presents a 

clinically relevant opportunity for combining nanomedicine treatments with 

radiosensitizing drugs like paclitaxel and camptothecin. 
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CHAPTER 6 

 
CONCLUSION AND FUTURE OUTLOOK 

 

Conclusions 

This work shows the development, optimization and evaluation of tumor-specific 

nanosponge drug delivery systems as chemotherapeutics. Nanoparticles made from 

biomedical polymers are commonly used in drug delivery applications because they 

allow for controlled release of drugs and degradation of nanoparticles over time. 

Development of nanoparticles for drug delivery and improved conjugating methods make 

it possible to design and create multifunctional nanoparticles for tumor-targeted drug 

delivery.  Multifunctional nanoparticles composed of biodegradable polymers can be 

used to deliver controlled release of therapeutic drugs, functionalized with imaging 

agents for diagnostic purposes, and tumor-specific ligands for targeting of cancer. In this 

work, biodegradable polymeric ‘nanosponges’ were used to optimize targeted delivery of 

paclitaxel and camptothecin to lung cancer. 

Linear polymers of narrow polydispersity were produced from tin (II) triflate 

catalyzed ring-opening polymerization methods in order to produce nanosponges with 

more uniform size distributions. These linear polymers showed greater monomer 

incorporation, higher yields, and faster reaction times at room temperature. By using 

‘nanosponges’ produced from these optimized linear polyester copolymers, greater 

control over size distribution was able to be achieved producing higher quality 

nanoparticles for in vitro and in vivo applications. These nanosponges were then loaded 
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with hydrophobic chemotherapy drugs paclitaxel and camptothecin for enhanced 

solubility and drug release properties.  

Initial studies were performed to determine the feasibility of using nanosponge 

encapsulated paclitaxel and camptothecin in combination treatment, and to determine the 

optimum drug combination and sequence for treating lung cancer. Here, the role of drug 

combination and sequence in vitro, in both mouse and human lung cancer cell lines, was 

investigated using synthesized nanosponges loaded with either paclitaxel (NP PTX) or 

camptothecin (NP CPT). Results showed not only that paclitaxel and camptothecin 

combination therapy produced the greatest G2/M phase arrest compared to monotherapy, 

but also that sequential administration of NP PTX followed by NP CPT further enhanced 

caspase-dependent cell death compared to simultaneous administration. Paclitaxel, more 

so than campthothecin, was observed to drive cells into G2/M phase arrest and 

subsequent apoptosis. The use of a sequential paclitaxel → camptothecin chemotherapy 

schedule was demonstrated to exhibit a “priming” effect on lung cancer cells that 

enhanced camptothecin’s effect on cells when given second.  

Nanosponges were functionalized with αvβ3 integrin targeting peptides such as 

cyclo RGD and a TIP-1 receptor targeting peptide HVGGSSV. These tumor targeting 

peptides allowed for greater tumor cell-specific delivery of drug-loaded nanosponges, 

optimizing bioavailability and therapeutic efficacy of chemotherapy drugs in tumors.  In 

addition, nanosponge functionalization with targeting and imaging agents, sustained drug 

release profiles, and improved water solubility make them ideal for combination 

treatment and metronomic chemotherapy. 
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While nanosponges are a suitable platform for the delivery of hydrophobic 

chemotherapy drugs, other types of nanoparticles have also been used in the literature to 

achieve this purpose. Micelles and liposomes, due to their lipophilic properties, have 

been used to encapsulate a variety of hydrophobic drugs for the treatment of cancer and 

other diseases. These nanoparticles, however, are often difficult to produce in uniform 

size distributions due to processing methods, and consistent production of nanoparticles 

in smaller size ranges (under 200 nm) remains difficult. As a result, these types of 

nanoparticles are not ideal for intravenous therapeutic applications, but can be used in 

other situations where nanoparticle size is not as critical an issue. In addition to micelles 

and liposomes, other types of nanoparticles such as dendrimer-based scaffolds have also 

been used to deliver hydrophobic drugs. These branched structures offer the opportunity 

for covalent attachment of many drug molecules directly to the scaffold, with different 

methods of cleavage and release of the drugs. Consequently, achieving more gradual drug 

release profiles tends to be more difficult as these methods of cleavage and release 

support more “burst-like” drug release profiles. Nanoparticles made from proteins, such 

as albumin, offer another way to deliver drug molecules to tissues, but also show more 

rapid initial drug release profiles. Comparing lipophilic micelles and liposomes, 

dendrimer-based and protein-based nanoparticles to nanosponges reveals advantages for 

delivery of chemotherapy drugs such as improved size dimensions and drug release 

profiles. These observations highlight the significance of application type to the selection 

of a suitable nanoparticle platform. Thus, matching the requirements of a particular 

application with the attributes of a nanoparticle is key for producing a drug delivery 

system that produces the desired effects.  
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The use of synergistic drug combinations, sequences and ratios presents an 

opportunity for customization of treatments to patients. Selection of drugs and drug 

combinations that an individual patient responds to best, tumor-specific targeting, and 

optimized dosing and delivery of drugs are all effective ways to personalize treatment 

and improve the likelihood of positive therapeutic outcomes while reducing adverse side 

effects. While many of the developments in personalized medicine require genomic 

information and are tailored to individual patients at the genetic level, the use of 

synergistic drugs in combination with nanoparticle drug delivery can help support 

customization of therapy alongside genetic analysis, and provide an excellent 

complement to modern personalized medicine.  

 

Future Aims 

Future studies using these nanosponges should explore a large panel of small 

molecule drugs of varying molecular weight, solubility, and hydrophobicity in order to 

determine the drugs that are best suited to this particular drug delivery system. In vitro 

studies examining the effect of varying nanoparticle drug release rates with drug 

combinations should be performed to determine if drug release rates can be tailored to 

produce optimal drug combination schedules. Synergistic drug combinations could be 

used in sequences that are administered as single bolus injections, with the drug release 

properties of the nanoparticle serving as modulators of sequence administration. Similar 

studies can also be done using nanoparticles of varying crosslinking density to produce 

drug combination cocktails that provide synergistic ratios of multiple drugs to tumors 

over time.  
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Additional areas for further work involve the development of OPD containing 

polymers. Reduction in polydispersity among OPD containing polymers is an area that 

needs to be explored in order to produce nanoparticles with more consistent uniform size 

distributions.  Further studies are also necessary to determine the ideal amount of OPD 

monomer incorporation in polyesters needed to produce polymers that are both water 

soluble while still retaining the ability to hold hydrophobic small molecule drugs. These 

polyesters also hold the potential for producing nanoparticles that can encapsulate 

hydrophilic drugs and small molecules, and this possibility is also worthy of further 

consideration. The studies contained in this work offer a potential starting point for 

investigating these opportunities in future works.  
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APPENDIX 
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Figure A. 1H NMR of δ-valerolactone monomer in CDCl3. 
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Drug Quantification 
 
A. 
 

 
 
B. 
 

Standard 
Specified 
Concentration 
(nM) 

Calculated 
Concentration 
(nM) 

% Diff 

P1 2000.0 1850.6 -7 
P2 1000.0 1159.2 16 
P3 200.0 196.7 -2 
P4 100.0 94.0 -6 
P5 20.0 19.1 -5 
P6 10.0 10.4 4 

 
Figure B.  Calibration curve for paclitaxel analyte using docetaxel as internal standard. 
Paclitaxel (internal standard, Docetaxel) was extracted from tumor tissue homogenate, 
producing a linear calibration curve over the dynamic range of 10-2000 nM with an r2 
coefficient of 0.9885. Samples were run in triplicate at concentrations of 10, 20, 100, 200, 
1000 and 2000 nM. (A) Paclitaxel standards show a linear fit over 10-2000 nM range. (B) 
Accuracy of paclitaxel standards extracted from tumor tissue. 
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B.  
 

Standard 
Specified 
Concentration 
(nM) 

Calculated 
Concentration 
(nM) 

% Diff 

C1 2000.0 2014.1 1 
C2 1000.0 1080.1 8 
C3 200.0 180.2 -10 
C4 100.0 97.1 -3 
C5 20.0 21.3 7 
C6 10.0 9.7 -3 

 
 
Figure C.  Calibration curve for camptothecin analyte using SN-38 as internal standard. 
Camptothecin (internal standard, SN-38) was extracted from tumor tissue homogenate, 
producing a linear calibration curve over the dynamic range of 10-2000 nM with a slope 
and intercept of y = 0.0002x - 0.001 and an r2 coefficient of 0.9985. Samples were run in 
triplicate at concentrations of 10, 20, 100, 200, 1000 and 2000 nM. (A) Camptothecin 
standards show a linear fit over 10-2000 nM range. (B) Accuracy of camptothecin 
standards extracted from tumor tissue. 
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Figure D. Calibration curve for camptothecin using UV-Vis spectrophotometry. 
Camptothecin was dissolved in DMSO at varying concentrations and absorbance was 
measured using UV-Vis NanoDrop. Samples were run in triplicate and a linear 
calibration curve was produced with a slope and intercept of y = 4.177x + 0 and an r2 
coefficient of 0.99841. 
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Figure E. Calibration curve for paclitaxel using UV-Vis spectrophotometry. Paclitaxel 
was dissolved in DMSO at varying concentrations and absorbance was measured using 
UV-Vis NanoDrop. Samples were run in quadruplicate and a linear calibration curve was 
produced with a slope and intercept of y = 0.3956x + 0.0029 and an r2 coefficient of 
0.98689.  
 
 
 

 

 

 

 

 

 


