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PREFACE 

 

 

Stress-related psychiatric disorders are one of the most common mental disorders in the United 

States, affecting approximately 18% of the U.S. population. Given both its prevalence and 

debilitating nature, many studies have sought to determine the neurological underpinnings of 

these disorders in an attempt to identify potential therapeutic targets. Such studies have 

successfully determined a number of neuroanatomical regions of interest, one of which is the 

central amygdala (CeA). The CeA is a key brain structure that mediates the processing of 

physiological and behavioral aspects of the stress response and its activity strongly correlates 

with the symptomology of stress-related psychiatric illnesses, such as post traumatic stress 

disorder (PTSD). 

Interestingly, the brain’s endocannabinoid (eCB) system has also been implicated in 

stress-related behavior processing as well as the pathophysiology of stress-related psychiatric 

illnesses. This functional and pathological overlap between the CeA and the eCB system suggest 

a potential interaction between both systems in stress-related pathologies. A putative locus for 

this potential interaction may lie at the terminals of excitatory inputs that drive CeA function. 

However, eCB signaling mechanisms at these terminals remain largely unexplored. To examine 

this intriguing possibility, we hypothesized that: 1) eCB signaling mechanisms are present at 

glutamatergic terminals within the lateral division of the CeA (CeAL) and recruit the CeAL 

cholinergic system to enhance eCB mobilization and 2) repetitive exposure to aversive stimuli 

modulates eCB signaling at CeAL excitatory synapses to potentially support eCB-mediated 

adaptive processes that mitigate the pathological consequences of chronic stress exposure.  
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To test these hypotheses, we first characterized the expression of the endocannabinoid 

signaling (eCB) machinery within the CeAL. Thereafter, we utilized ex vivo electrophysiological 

techniques to examine functional eCB signaling at excitatory synapses of the CeAL using a 

combination of pharmacological and genetic tools. These experiments revealed both the 

expression and subcellular localization of CB1 receptors and the eCB synthetic machinery at 

CeAL glutamatergic synapses. The functional significance of these findings was subsequently 

demonstrated by the discovery of short-term eCB signaling mechanisms, in the form of 

depolarization-induced suppression of excitation (DSE), at the glutamatergic terminals of the 

CeAL. Furthermore, we also determined that the cholinergic system of the CeAL recruits distinct 

endocannabinoids using disparate signaling mechanisms via: 1) acute- and persistent- muscarinic 

receptor (mAChR)-driven eCB release as well as 2) calcium-assisted mAChR-driven eCB 

mobilization. As such, CeAL excitatory terminals exhibit mechanistically distinct modes of eCB 

signaling mechanisms that may potentially support diverse synaptic functionalities. Lastly, in an 

effort to determine these putative functionalities, we assessed the effects of chronic stress on 

eCB signaling at glutamatergic CeAL synapses. These experimental approaches revealed that 

homotypic chronic restraint stress enhances 2-AG mobilization and CB1 receptor signaling at 

CeAL glutamatergic synapses. 

Collectively, these results suggest that the eCB machinery is present at CeAL 

glutamatergic terminals and functionally decreases the efficacy of CeAL excitatory drive through 

multiple signaling mechanisms. As such, the eCB system is well-positioned to modulate the 

overall excitatory balance of the CeAL microcircuitry and to decrease the pathological drive for 

CeAL-mediated physiological and behavioral outputs elicited by stress exposure. As such, eCB 



vi 

 

signaling at CeAL excitatory synapses is a potential locus for eCB mediated regulation of 

physiological and behavioral adaptations to acute and repetitive stress exposure.  

  



vii 

 

TABLE OF CONTENTS 

 

 

 Page 

ACKNOWLEDGEMENTS ........................................................................................................... iii 

PREFACE ...................................................................................................................................... iv 

TABLE OF CONTENTS .............................................................................................................. vii 

LIST OF FIGURES ..................................................................................................................... xiii 

LIST OF ABBREVIATIONS ....................................................................................................... xv 

Chapter 

I. INTRODUCTION ....................................................................................................................... 1 

Introduction to Endogenous Cannabinoid System .................................................................. 1 

The Cannabinoid Type 1 Receptor is the Primary Cannabinoid Receptor in the CNS ........... 1 

The Cannabinoid Type 1 Receptor Structure and Functional Signaling ................................. 2 

The Cannabinoid Type 1 Ligand Binding Sites ...................................................................... 3 

Distribution and Density of CB1 receptors at Central Synapses ............................................. 4 

General Features of CB1 Receptor mRNA within the Amygdala .......................................... 5 

CB1 Receptor Protein Expression within the Amygdala ........................................................ 6 

Introduction to Endocannabinoids ........................................................................................... 7 

Biosynthesis and Metabolism of Endocannabinoids ............................................................... 8 

Biosynthesis of 2-AG .............................................................................................................. 9 

Expression of DAGLα in the Amygdala ............................................................................... 10 

2-AG Synthesis in the Central Synapses ............................................................................... 10 

Termination of 2-AG Signaling At Central Synapses ........................................................... 11 

Biosynthesis of Anandamide: NAPE-PLD Dependent Pathway .......................................... 12 

Expression of NAPE-PLD in the CNS .................................................................................. 13 

AEA Biosynthesis: NAPE-PLD Independent Pathways ....................................................... 14 

Termination of AEA Synaptic Signaling at Central Synapses .............................................. 14 

Conclusion ............................................................................................................................. 15 

The Stress Response Represents an Adaptive Mechanism ................................................... 17 

Response to Aversive Stimuli Is Composed of Three Stages ............................................... 18 



viii 

 

 Page 

The Alarm Stage is Facilitated by the Initial Activation of the ANS and the HPA axis ....... 21 

Basal HPA Axis Activity ....................................................................................................... 22 

Endocannabinoid Signaling Acts as Stress Buffer During the Alarm and Resistance     

Stages of Psychosocial Stress ................................................................................................ 22 

Stressor Type Influences the Neuroanatomical Regions Recruited by the Stress Response 23 

The Amygdala is a Key Player in the Adaptive Processes in Response to Physical and 

Psychological Stressors ......................................................................................................... 24 

The Amygdala is Composed of Functionally Integrated Subnuclei ...................................... 25 

Amygdala Exhibits Subregional Stress Response Specialization ......................................... 26 

Endocannabinoid Signaling in the Amygdala Modulates Endocrine Responses to    

Repetitive Homotypic Stressors ............................................................................................ 27 

2-AG and AEA Signaling Plays Distinct Roles in Adaptations to Chronic Stress      

Exposure ................................................................................................................................ 29  

BLA-AEA Tonic Signaling Facilitates Tonic inhibition of Basal HPA Axis Activation ..... 29 

The Central Amygdala Regulates Physiological and Behavioral Components of Stress 

Responses .............................................................................................................................. 30 

The Central Amygdala is Largely Composed of Four Subdivision ...................................... 32 

The CeAL-CeAM Circuitry Controls Central Amygdala Efferent Pathways ....................... 33 

The CeAM is the Major Output Region of the CeAL ........................................................... 34 

Aversive Stimuli Exposure Drives Synaptic Changes within the CeAL Microcircuitry ...... 36 

CeAL Glutamatergic Inputs Drive CeA Function ................................................................. 37 

Endocannabinoid Signaling in the CeAL: Potential Locus for eCB-Mediated Adaptive 

Mechanisms Following Chronic Stress Exposure ................................................................. 38 

eCB-Mediated Synaptic Adaptations within the CeA and its Functional Role in CeA-

Mediated Stress Behavior ...................................................................................................... 38 

The Cholinergic Synapse within the CNS ............................................................................. 39 

Local and Projection Cholinergic Neurons Target Diverse Brain Regions .......................... 40 

mAChRs Display Distinct Regional Distributions and Subcellular Localizations ............... 40 

Pharmacology of Muscarinic Receptors ................................................................................ 41 

mAChR Subtypes Couple to Distinct G-proteins .................................................................. 42 

mAChRs Exhibit Dynamic G-protein Coupling in Response to Orthosteric Activation ...... 42 

Gαq-coupled mAChR activation and Endocannabinoid Signaling ........................................ 43 

Muscarinic Receptor Signaling and Additional Retrograde Signaling ................................. 44 

Muscarinic Receptor Signaling in the Central Amygdala ..................................................... 45 



ix 

 

 Page 

Potential for mAChR-eCB Mediated Synaptic Plasticity in the Lateral Division of the     

CeA and Its Functional Relevance ........................................................................................ 46 

Conclusion ............................................................................................................................. 47 

II. MATERIALS AND METHODS ............................................................................................. 49 

       Animals .................................................................................................................................. 49 

Restraint Stress Paradigm ...................................................................................................... 49 

Drugs and Chemicals ............................................................................................................. 50 

Brain Slice Preparation .......................................................................................................... 50 

Field Potential Recordings .................................................................................................... 51 

Whole-Cell Voltage-Clamp Recordings ................................................................................ 52 

Induction and Quantification of DSE .................................................................................... 53 

LTD Induction Protocol ........................................................................................................ 53 

Chronic Stress Paradigm ....................................................................................................... 53 

Statistical Analysis ................................................................................................................ 54 

Anatomical Experiments ....................................................................................................... 54 

III. EXAMINATION OF ENDOCANNABINOID SIGNALING ELEMENTS AT CeAL 

GLUTAMATERGIC SYNAPSES ............................................................................................... 57 

Introduction ............................................................................................................................... 57 

Results ....................................................................................................................................... 58 

Localization of CB1 Receptors in the CeAL ......................................................................... 58 

Localization of DAGLα Expression in the CeAL ................................................................. 60 

CB1 Receptors Modulate Glutamate Release onto CeAL Neurons ...................................... 62 

Ca
2+

-Driven eCB Release in the CeAL ................................................................................. 67 

Discussion ................................................................................................................................. 67 

eCB Signaling Components are Present at CeAL Glutamatergic Synapses ......................... 67 

Functional CB1 Receptors are Present at CeAL Glutamatergic Synapses ............................ 69 

Potential Mechanisms for CB1 Mediated Synaptic Depression at CeAL Glutamatergic 

Synapses ................................................................................................................................ 70 

eCB Mobilization by CeAL Neurons Mediates Short-Term Synaptic Plasticity of   

Excitatory CeAL Synapses .................................................................................................... 73 

Conclusion ............................................................................................................................. 74 



x 

 

 Page 

IV. CeAL GLUTAMATERGIC SYNAPSES EXHIBIT SHORT-TERM PLASTICITY: ROLE 

OF MUSCARINIC RECEPTOR ACTIVATION ........................................................................ 75 

Introduction ............................................................................................................................... 75 

Results ....................................................................................................................................... 76 

Depolarization-dependent mACh-Receptor Driven eCB Release Occurs in the CeAL 

Following Prolonged mAChR Activation ............................................................................. 76 

mAChR Activation Enhances CeAL DSE in a CB1 and M1/M3 Dependent Manner ......... 77 

Prolonged mAChR Activation Drives Ca
2+

- and DAGL-Dependent eCB Release .............. 84 

Discussion ................................................................................................................................. 87 

Prolonged Activation of Gαq/11-coupled mAChRs Mobilizes 2-AG to Induce Short-Term 

Depression of CeAL Glutamatergic Transmission ................................................................ 87 

Continuous M1/M3 mAChR Activation Enhances CeAL DSE via Increased 2-AG   

Synthesis ................................................................................................................................ 87 

eCB-independent From of Synaptic Depression Present at CeAL Excitatory Synapses ...... 88 

Prolong mAChR Activation Induces a DAGL- and Ca
2+

 Mediated eCB Release at CeAL 

Glutamatergic Synapses ........................................................................................................ 88 

Mechanisms underlying mAChR-driven 2-AG Synthesis at CeAL Glutamatergic Synapses

 ............................................................................................................................................... 89 

Functional Implications of mAChR-mediated eCB Mobilization at CeAL Glutamatergic 

Synapses ................................................................................................................................ 89 

Conclusion ................................................................................................................................. 90 

V. FUNCTIONAL SEGREGATION BETWEEN DAGL-AND-Ca2+- DEPENDENT AND -

INDEPENDENT ENDOCANNABINOID MOBILIZATION AT CENTRAL AMYGDALA 

GLUTAMERGIC SYNAPSES: CENTRAL ROLE OF TIME-DEPENDENT MUSCARINIC 

RECEPTOR ACTIVATION ........................................................................................................ 91 

Introduction ............................................................................................................................... 91 

Results ....................................................................................................................................... 92 

Acute mAChR-driven eCB signaling in the CeAL ............................................................... 92 

Acute mAChR Activation Drives Ca
2+

- and DAGL-Independent eCB Release .................. 93 

Acute mAChR Activation Drives Synaptic AEA Release .................................................... 97 

Lack of Oxo-M-Mediated Acute or Tonic eCB Signaling At Excitatory Synapses of the 

Striatum ............................................................................................................................... 102 

Discussion ............................................................................................................................... 104 

 



xi 

 

 Page 

Acute mAChR Activation Mediate CB1-Dependent and -Independent Attenuation of   

CeAL Glutamatergic Transmission ..................................................................................... 104 

Acute mAChR Activation Results in a THL and Ca
2+

-insensitive CB1 Synaptic     

Depression at CeAL Glutamatergic Synapses ..................................................................... 105 

 Page 

Acute mAChR Activation Mobilizes Anandamide within the CeAL ................................. 105 

Potential Mechanism Underlying Time-Dependent Dissociation of Multimodal eCB 

Signaling .............................................................................................................................. 106 

Functional Implications of Time-Dependent AEA and 2-AG Recruitment at CeAL 

Glutamatergic Synapses ...................................................................................................... 107 

Conclusion ............................................................................................................................... 109 

VI. EFFECTS OF CHRONIC RESTRAINT STRESS ON ENDOCANNABINOID 

SIGNALING AT CeAL GLUTAMATERGIC SYNAPSES ..................................................... 110 

Introduction ............................................................................................................................. 110 

Results ..................................................................................................................................... 113 

Effects of Repetitive Restraint Stress on DSE of Locally Evoked CeAL Glutamatergic 

Transmission........................................................................................................................ 113 

Restraint Stress-Enhancement of CeAL DSE is CB1 Receptor Dependent ........................ 114 

Increased 2-AG Biosynthesis at CeAL Glutamatergic Synapses Facilitates Enhanced       

DSE...................................................................................................................................... 115 

Afferent Specific Effects of Homotypic Restraint Stress on CB1 Signaling at         

Amygdalar Glutamatergic Terminals .................................................................................. 118 

Chronic Stress Exposure Enhances 2-AG Biosynthesis at MP-CeAL Synapses ................ 120 

Effects of Repetitive Stress Exposure on MP-CeAL LTD .................................................. 122 

Effects of Augmented 2-AG levels on HPA Axis Activation ............................................. 124 

Discussion ............................................................................................................................... 126 

Repetitive Restraint Stress-Induced Enhancement of CeAL DSE ...................................... 126 

CeAL Glutamatergic Synapses Exhibit Afferent Specific Regulation by Repetitive        

Stress Exposure ................................................................................................................... 128 

Functional Implications of Chronic Restraint Stress-Induced Regulation of CeAL 

Glutamatergic Afferents ...................................................................................................... 129 

Conclusion ............................................................................................................................... 130 

VII. GENERAL CONCLUSION AND FUTURE STUDIES .................................................... 131 



xii 

 

 Page 

Future Studies 134 

Endocannabinoid Signaling at the Level of the CeAL Micro-circuitry .............................. 134 

Mechanisms Driving Repetitive Restraint Stress-Enhancement of CeAL DSE ................. 137 

REFERENCES ........................................................................................................................... 139 

 

  



xiii 

 

LIST OF FIGURES 

 

 

Figure Page 

Figure 1. Endocannabinoid Biosynthetic and Metabolic Pathways at Central Synapses ..............16 

Figure 2. The General Adaptation Syndrome ................................................................................20 

Figure 3. Schematic Representation of Known CeA Afferents and Efferent Pathways ................35 

Figure 4. CB1 Receptors are Present on Excitatory Terminals in the CeAL ................................59 

Figure 5. DAGLα is a Postsynaptic Enzyme in the CeAL ............................................................61 

Figure 6: Activation of CB1 Receptors Modulate Glutamate Release in the CeAL .....................64 

Figure 7. Effects of intracellular BAPTA on baseline glutamatergic transmission in the                                    

CeAL related to Figure 6 ...............................................................................................................66 

Figure 8. mAChRs Modulate Glutamate Release ..........................................................................80 

Figure 9. mAChR antagonists do not affect baseline glutamatergic transmission during   

Prolonged drug exposure, related to Figure 8 ................................................................................83 

Figure 10. Persistent mAChR Activity Drives Ca2+- and DAGL-Dependent eCB Release ........86 

Figure 11. Acute mAChR Activity Drives Ca2+ and DAGL-Dependent eCB Release ................95 

Figure 12. Acute mAChR Receptor Activity Drives Synaptic AEA Signaling ..........................100 

Figure 13. Oxo-M does not elicit acute or tonic eCB release at Excitatory Synapses of the  

dorsal lateral striatum ...................................................................................................................103  

Figure 14. Chronic Restraint Stress Enhances CeAL DSE ..........................................................117 

Figure 15. Afferent Specific Effects of Chronic Stress on eCB Signaling at CeAL                         

Glutamatergic-Synapses ..............................................................................................................121 

Figure 16. MP-CeAL Synapses Also Exhibit Enhanced LTD following Chronic Restraint    

Stress ............................................................................................................................................123 



xiv 

 

Figure Page 

Figure 17. Systemic Increase in 2-AG Attenuates Acute Stress Induced HPA Axis   

Activation .....................................................................................................................................125 

Figure 18. Multiple Mechanistically Distinct Modes of Endocannabinoid Mobilization is  

Present at CeAL Excitatory Synapses ..........................................................................................133 

Figure 19. Conclusions: Functional Implications of Experimental Results ................................136 

 

 



xv 

 

LIST OF ABBREVIATIONS 

 

 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid receptor  .................................. AMPAR 

Acetylcholinesterase ................................................................................................................AChE 

2-Arachidonoylglycerol ........................................................................................................... 2-AG 

(2-R)-amino-5-phosphopentanoate ............................................................................................ AP5 

Anandamide .............................................................................................................................. AEA 

N-arachidonoylethanolamide .................................................................................................... AEA 

Artificial Cerebrospinal Fluid ..................................................................................................ACSF 

D-(-)-2-Amino-5-phosphonopentanoic acid ............................................................................. AP-5 

Basolateral amygdala .................................................................................................................BLA 

Intracellular calcium concentration ......................................................................................... [Ca
2+

]i 

6-cyano-7-nitroquinoxaline-2,3-dione ................................................................................... CNQX 

Calcium-assisted receptor driven endocannabinoid release ............................................. Ca
2+

-RER 

Cannabinoid type 1 receptor ...................................................................................................... CB1 

Cannabinoid type 1 receptor mediated long term depression ........................................... CB1-LTD 

Central nucleus of the amygdala, capsular ................................................................................ CeC 

Central nucleus of the amygdala, lateral .................................................................................. CeAL 

Central nucleus of the amygdala, intermediate ............................................................................ CeI 

Central nucleus of the amygdala, medial ................................................................................ CeAM 

CB1-receptor interacting protein .............................................................................................. CRIP 

Choline acetyltransferase .........................................................................................................ChAT 



xvi 

 

Chronic Restraint Stress ............................................................................................................. CRS 

CP 55940 ....................................................................................................................................... CP 

Central Nervous System ............................................................................................................ CNS 

Corticotropin releasing hormone .............................................................................................. CRH 

cyclic adenosine monophosphate ............................................................................................ cAMP 

cyclic guanosine monophosphate ........................................................................................... cGMP 

Cytoplasmic phospholipase A2.............................................................................................. cPLA2 

Delta-9-tetrahydrocannabinol .............................................................................................. Δ
9
-THC 

Diacylglycerol ........................................................................................................................... DAG 

Diacylglycerol lipase alpha .................................................................................................. DAGLα 

Dorsal lateral striatum ...................................................................................................... dl striatum 

Depolarization-induced suppression of excitation ..................................................................... DSE 

Endocannabinoid ........................................................................................................................ eCB 

Fatty Acid Amide Hydrolase .................................................................................................. FAAH 

Field Excitatory Postsynaptic Potentials ................................................................................. fEPSP 

γ-aminobutyric Acid .............................................................................................................. GABA 

Glutamate decarboxylase .......................................................................................................... GAD 

G-protein coupled receptor ..................................................................................................... GPCR 

Hypothalamic-Pituitary Adrenal Axis .............................................................................. HPA Axis 

Lateral Amygdala ......................................................................................................................... LA 

Late Firing ..................................................................................................................................... LF 

Long term depression ................................................................................................................. LTD 

Medium spiny neuron ............................................................................................................... MSN 



xvii 

 

Metabotropic glutamate receptor ........................................................................................... mGluR 

Monoacylglycerol lipase ........................................................................................................ MAGL 

Medial Amygdala ...................................................................................................................... MeA 

Medially arising pathway ............................................................................................................. MP 

Muscarinic acetylcholine receptor ....................................................................................... mAChR 

Muscarinic acetylcholine receptor subtype 1 ................................................................................ M1 

Muscarinic acetylcholine receptor subtype 2 ................................................................................ M2 

Muscarinic acetylcholine receptor subtype 3 ................................................................................ M3 

Muscarinic acetylcholine receptor subtype 4 ................................................................................ M4 

Muscarinic acetylcholine receptor subtype 5 ................................................................................ M5 

N-methyl-D-aspartate Receptor .......................................................................................... NMDAR 

Nitric Oxide ................................................................................................................................. NO 

Nucleus of the solitary tract ....................................................................................................... NTS 

Nucleus Basalis ............................................................................................................................ NB 

Nucleus Basalis of Meynert ..................................................................................................... NBM 

Oxotremorine-M ...................................................................................................................  Oxo-M 

Parvocellular neuroendocrine cells ............................................................................................ PNC 

Paired pulse facilitation ............................................................................................................... PPF 

Paired pulse ratio ........................................................................................................................ PPR 

Periaqueductal gray ....................................................................................................................PAG 

Phosphotidylethanolamine ............................................................................................................ PE 

Phospholipase A......................................................................................................................... PLA 

Phospholipase C ......................................................................................................................... PLC 



xviii 

 

Phospholipase D......................................................................................................................... PLD 

Phospholipase C beta ............................................................................................................... PLCβ 

Paraventricular Nucleus .............................................................................................................PVN 

Post Synaptic Density ................................................................................................................ PSD 

Posttraumatic Stress Disorder .................................................................................................. PTSD 

Protein Kinase C delta ............................................................................................................. PKCδ 

Receptor driven eCB Release .................................................................................................... RER 

Regular Firing ............................................................................................................................... RF 

Somatostatin .............................................................................................................................. SOM 

Spontaneous Excitatory Postsynaptic Currents .................................................................... sEPSCs 

Short-term depression ................................................................................................................ STD 

Vesicular acetylcholine transporter ....................................................................................... VAChT 

Voltage Gated Calcium Channels .......................................................................................... VGCC 

Wildtype ...................................................................................................................................... WT 

 



1 

 

CHAPTER I 

 

 

INTRODUCTION 

 

 

Introduction to Endogenous Cannabinoid System 

The Cannabis sativa plant has been used for centuries for its therapeutic and stress-attenuating 

properties. Its psychoactive actions such as mood alterations, memory and motor control 

impairments were later found to be mediated by Δ
9
-tetrahydrocannabinol (Δ

9
 THC), the major 

psychoactive component of cannabis (Adams and Martin, 1996; Gaoni and Mechoulam, 1971). 

Since then, a number of biological analogs of Δ
9
 THC have been synthesized and are collectively 

called cannabinoids, due to their cannabimimetic actions (Howlett, 1995).  

The Cannabinoid Type 1 Receptor is the Primary Cannabinoid Receptor in the CNS 

The discovery of Δ
9
 THC paved the way for the discovery of the two major cannabinoid 

receptors, CB1 and CB2 (Matsuda et al., 1990; Munro et al., 1993). Though Δ
9
 THC binds to 

both receptors, they have very different distribution patterns, with CB2 receptors shown to be 

mainly present in the periphery (Munro et al., 1993), although more recent studies have begun to 

reveal low levels of CB2 receptor expression in microglia and neuronal cells in several brain 

regions (Gong et al., 2006; Van Sickle et al., 2005). Of the two cannabinoid receptors,  CB1 

receptors are more abundant in the central nervous system (CNS) and global CB1 knockout mice 

(CB1
-/-

) as well as pharmacological inhibition of CB1 receptors have determined that CB1, as 

compared to the CB2, receptors are primarily responsible for the psychoactive actions of 

exogenous cannabinoids as well as the physiological effects of endogenous cannabinoids within 
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the CNS (Elphick and Egertova, 2001; Ledent et al., 1999). Additionally, CB1 receptors are one 

of the most common GPCRs in the CNS (Glass et al., 1997) which potentially explains the broad 

effects of CB1 activation on CNS-mediated functions. 

The Cannabinoid Type 1 Receptor Structure and Functional Signaling   

The CB1 receptor is a ~ 473 amino acid Gαi/o-coupled protein coupled receptor (GPCR) with 97-

99% homology between rodents and humans (Chakrabarti et al., 1995; Gerard et al., 1990). Once 

activated, presynaptically localized CB1 receptors trigger multiple signaling transduction 

pathways via the Gαi/o family of G proteins (Pertwee, 1997), which functions to activate 

mitogen-activated protein kinases, as well as inhibit adenylate cyclase and calcium influx, via 

inhibition of voltage gated Ca
2+

 channels. This results in the attenuation of neurotransmitter 

release, particularly at glutamate and GABAergic synapses (Kano et al., 2009a). Furthermore, 

CB1-Gαi/o activation also modulates a number of ion channels and enzymes in a cAMP-

dependent or –independent manner resulting in, for example, the activation of A-type and 

inwardly rectifying potassium channels (Mackie et al., 1995), as well as, the inhibition of N-and 

P/Q type calcium channels (Twitchell et al., 1997) and D- and M type potassium channels 

(Morishita et al., 1998; Schweitzer, 2000). As such, eCBs primarily regulate synaptic strength by 

attenuating neurotransmitter release (Betke et al., 2012; Freund et al., 2003). 

The characteristics of the CB1 receptor ligands, however, play a significant role in 

determining the signaling transduction mechanism recruited following CB1 receptor activation. 

Gαi/o-proteins interact with the C-terminus and/or 3
rd

 intracellular loop of the CB1 receptor 

(Mukhopadhyay et al., 2000; Nie and Lewis, 2001). However, distinct Gαi/o-protein types 

interact with specific regions of the CB1 receptor. For example, Gαi1 and Gαi2 interact with the 

3
rd

 intracellular loop of the CB1 receptor, while Gαi3 and Gαo interact only with the C-terminus 
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(Mukhopadhyay and Howlett, 2001). In light of this, orthosteric and allosteric ligand binding 

(e.g. classical or non-classical cannabinoids, etc.), activate different types of Gαi/o proteins, 

suggesting that multiple active conformations of the CB1 receptor exists each of which can be 

differentially stabilized by distinct ligands to facilitate disparate forms of CB- Gαi/o signaling 

(e.g. CB1–mediated, calcium independent vesicle release mechanisms) (Hudson et al., 2010a; 

Mukhopadhyay and Howlett, 2005). Adding to this ligand-directed functional selectivity there is 

evidence to suggest that: 1) activation of CB1 receptors also results in signaling via Gαs (Sugiura 

et al., 2002) and Gαq/11 proteins to activate adenylate cyclase and increase intracellular calcium 

concentrations [Ca
2+

]i (Lauckner et al., 2005) and 2) CB1 receptors may form heterodimers with 

several other receptors indicating that CB1 receptors not only exhibit ligand-directed but also 

heterodimer-directed functional selectivity. Collectively, CB1 receptor activation has the 

potential to recruit a diverse array of signaling pathways that may differentially underlie its 

actions at synapses within the CNS (Hudson et al., 2010).  

The Cannabinoid Type 1 Ligand Binding Sites   

Site-directed mutagenesis experiments reveal that the binding sites of cannabinoids are 

embedded in the transmembrane helices of the CB1 receptor (Song and Bonner, 1996). 

Additionally, NMR spectroscopy experiments have shown that cannabinoids laterally diffuses 

within one membrane leaflet and interact with a hydrophobic grove formed by the CB1 receptor 

helices 3 and 6 (Makriyannis et al., 2005; Tian et al., 2005). It has been proposed that the 

receptor exists as a homodimer in vivo (Wager-Miller et al., 2002) or, as mentioned in the 

previous paragraph, heterodimerize with  a number of other GPCRs such as the type 2 dopamine 

receptor (D2) (Kearn et al., 2005) or the orexin 1 receptor (Hilairet et al., 2003). In addition to 

interactions with other synaptic GPCRS broadening CB1 receptor synaptic functions, more 
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recent studies by Niehaus and co-workers (2007) have determined that CB1 receptor interactions 

with synaptically localized proteins, such as the CB1 receptor interacting protein (CRIP), can 

limit the constitutive activity of the CB1 receptor (Niehaus et al., 2007). Thus, mechanisms for 

increased diversity as well as increased regulation of CB1 receptor signaling exits at central 

synapses (Mackie, 2005).  

Distribution and Density of CB1 receptors at Central Synapses 

Subcellular analyses of CB1 expressing synapses within the CNS, have revealed that these 

receptors are preferentially targeted to presynaptic elements. As is observed in our study, this 

selective localization results in the dissociation between the regional distribution of CB1 mRNA 

and CB1 immunoreactivity particularly under conditions where CB1 receptors are predominantly 

expressed in projection neurons (Kawamura et al., 2006). Of additional note, CB1 receptors are 

largely condensed within the perisynaptic element on the synaptic side of the axolemma as 

compared to the synaptic and extrasynaptic axonal compartments (Kawamura et al., 2006; Nyilas 

et al., 2008). Thus, CB1 receptors are ideally positioned to bind endocannabinoids (eCBs) that 

are produced on the perisynaptic and extrasynaptic surface of dendritic shafts, cell bodies, and 

spines of the postsynaptic neuron (Katona et al., 2006b; Yoshida et al., 2006). Analyses of CB1 

receptor sub-cellular localization have also revealed that inhibitory synapses generally have a 

higher concentration of CB1 receptors relative to excitatory synapses, with the enrichment at 

inhibitory synapses varying dependent upon the brain region. For example, CB1 labeling on 

inhibitory synaptic elements are 30 times and 6 times higher for hippocampal CA1 pyramidal 

and cerebellar Purkinje cells, respectively, as compared to excitatory synapses on similar cell 

types in these regions (Kawamura et al., 2006; Uchigashima et al., 2007a).  
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General Features of CB1 Receptor mRNA within the Amygdala 

Expression studies have demonstrated that CB1 receptors are found in high concentrations in 

cortico-limbic brain regions responsible for emotional processing and the coordination of the 

stress response. Of particular interest for this study is CB1 receptor expression and subcellular 

localization within the amygdala. In the amygdala, in situ hybridization (ISH) studies have 

separated CB1-mRNA expressing neurons into low expressing and high expressing groups. High 

CB1 mRNA-expressing cells are largely found only within cortical-like structures of the 

amygdala, such as the BLA. On the other hand, low CB1-expressing cells are more evenly 

distributed and found within both the BLA and central amygdala (Berrendero et al., 1998; 

Berrendero et al., 1999; Chhatwal et al., 2005; Hermann and Lutz, 2005; Mailleux et al., 1992a; 

Mailleux et al., 1992b; Marsicano and Lutz, 1999; Matsuda et al., 1993; Matsuda et al., 1990; 

McLaughlin et al., 1994; Wang et al., 2003). As such, a large number of high and low-CB1 

mRNA expressing cells are found within the BLA, while low-expressing CB1 mRNA cells are 

found within the central amygdala (CeA) (Yoshida et al., 2011b).   

 Within the rodents CeA, CB1 mRNA expression has generally been described as lower, 

than that observed within the BLA, but yet still present (Chhatwal et al., 2005; Hermann and 

Lutz, 2005; Marsicano and Lutz, 1999; Matsuda et al., 1993; Yoshida et al., 2011b). 

Furthermore, these low levels of CeA CB1 mRNA is at levels comparable to other brain regions 

such as the global pallidus and the lateral hypothalamus (Hermann and Lutz, 2005). Though CB1 

mRNA expression appears to be low but present within the CeA, earlier studies have not 

addressed whether subregional differences in CB1 mRNA expression exist within subdivisions 

of the CeA.  
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CB1 Receptor Protein Expression within the Amygdala 

Using rodent models, immunohistochemical studies have also revealed high levels of CB1 

receptor protein expression within the amygdala (Egertova et al., 2003; Egertova and Elphick, 

2000; Eggan and Lewis, 2006; Katona et al., 2001; McDonald and Mascagni, 2001; Ong and 

Mackie, 1999; Patel et al., 2005b; Pettit et al., 1998; Tsou et al., 1998b). The first examinations 

of CB1 protein expression was carried out by Tsou and colleagues (1988) using an antibody 

directed against the CB1 receptor N-terminus which showed that CB1 receptor protein was 

found in both the BLA and CeA (Tsou et al., 1998b). A subsequent study by Katona and co-

workers (2001) utilized a CB1 receptor antibody directed against the C-terminus of the CB1 

receptor protein. In parallel with the CB1 mRNA studies discussed in the last paragraph, a high 

expression of CB1 receptor protein was found in the BLA while CB1 receptor protein expression 

remained below detection threshold in the CeA (Katona et al., 2001). Consistent with this below 

threshold CB1 immunoreactivity observed within the CeA, activation of the CB1 receptor using 

the CB1 receptor agonist, WIN 55,212-2, revealed a lack of CB1 receptor signaling on inhibitory 

synaptic transmission (Katona et al., 2001). Conversely, later experimental evidence presented 

by Roberto and colleagues (2008) as well as Kamprath and co-workers (2011) demonstrated the 

functional presence of CB1 receptors within the CeA (Kamprath et al., 2011; Roberto et al., 

2010a). Of particular note, Kamprath and co-workers (2008) also demonstrated that within the 

CeA, CB1 receptor protein is present but largely localized to the medial (CeAM), but not the 

lateral subdivision of the CeA (CeAL) (Kamprath et al., 2009)—suggesting that subregional 

differences in CB1 receptor protein expression may exist within this region. Given the 

conflicting evidence of CB1 receptor protein expression within the CeA, additional assessments 

of CB1 receptor expression and function are needed to conclusively characterize CeAL CB1 

receptors. 
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Introduction to Endocannabinoids 

Endocannabinoids are a class of bioactive lipids, produced by neurons and glia, that act as 

endogenous ligands of the cannabinoid receptors (Kano et al., 2009a). The first endocannabinoid 

was isolated from pig brain and was named N-arachidonoylethanolamide (AEA) or 

“anandamide” based on the Sanskrit word anada which means “bliss”. AEA was later found to 

be a partial agonist of the CB1 and CB2 receptors and present in the brain at concentrations of 

picomoles per gram of tissue (Sugiura et al., 2002). Subsequently, the other major 

endocannabinoid, 2-arachidonoylglycerol (2-AG), was isolated from canine gut and rat brain and 

found to be present at relatively higher concentrations (nanomoles per gram of tissue). Unlike 

AEA, 2-AG was also found to act as a full agonist at both the CB1 and CB2 receptors (Sugiura et 

al., 2006). Despite these differences, AEA and 2-AG share the lipophilicity of Δ
9
 THC and are 

both structurally similar given that they are arachidonate-derived neuroactive lipid signaling 

molecules (Hill et al., 2010c). Aside from these structural similarity, AEA is an N-

acylethanolamine (NAE) whilst 2-AG is a monoacylglycerol (MAG) and are, thus, regulated by 

distinct biosynthetic and metabolic pathways that will be discussed further in the subsequent 

section (Kano et al., 2009a).  

Other putative endocannabinoids include O-arachidonoylethanolamine (viodhamine) 

(Porter et al., 2002) and 2-arachidonoyl glycerol ether (noladin ether) (Hanus et al., 1993). The 

latter, noladin ether, was originally prepared as a metabolically stable analog of 2-AG but was 

later isolated from porcine brain by Mechoulam and co-workers (2001) (Hanus et al., 2001b) and 

found to bind to CB1 receptors with higher affinity than that observed at CB2 receptors. Later 

studies, however, have reported that noladin ether could not be detected in mammalian brain 

(Oka et al., 2003). Given these conflicting data as well as the paucity of information regarding 



8 

 

other putative endocannabinoids, it is not clear whether noladin ether or other putative 

endocannabinoids function as agonists at cannabinoid receptors within the CNS. 

Biosynthesis and Metabolism of Endocannabinoids 

In response to a variety of cellular stimuli, endocannabinoids and related bioactive lipid signaling 

molecules are postsynaptically generated from membrane phospholipids by specific hydrolase or 

a combination of acyltransferases and hydrolases. Unlike classical neurotransmitters, eCBs are 

not stored in vesicles, but are produced and released on demand at central synapses. Upon 

release, eCBs retrogradely activate presynaptic CB1 receptors which, in turn, inhibit 

neurotransmitter release through Gαi/o signaling pathways discussed earlier in the Introduction 

(Wilson and Nicoll, 2002). Significant experimental evidence suggests that the eCBs, AEA and 

2-AG, are recruited by distinct neuronal activity patterns and, once mobilized, appear to mediate 

the unique actions of the eCB system. Following receptor binding, these eCBs are degraded by 

hydrolases. In general, the synthesizing enzymes for AEA and 2-AG are tightly regulated and 

expressed at much lower levels than the degrading enzymes, thus enabling their on demand 

synthesis and fast metabolism (Valenti et al., 2004). Despite this similarity, however, AEA and 

2-AG have very distinct biosynthetic and metabolic pathways, with the latter taking place in 

disparate subcellular localizations with respect to the synapse (Nazzaro et al., 2012). Given these 

non-overlapping characteristics, it is therefore not surprising that AEA and 2-AG appear to play 

distinct roles in eCB-mediated functions within the CNS. Collectively, AEA and 2-AG are not 

merely redundant signaling molecules but perform different roles in eCB functionality in the 

CNS (Long et al., 2009d). 
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Biosynthesis of 2-AG 

2-arachidonoylglycerol (2-AG) is the primary eCB that mediates retrograde synaptic signaling at 

central synapses (Castillo et al., 2012). Numerous biochemical studies have revealed that 2-AG 

is post-synaptically synthesized by a number of pathways. The primary pathway for 2-AG 

synthesis is PLC-mediated hydrolysis of arachidonic acid containing phospholipids which, in 

turn, produces an arachidonyl-containing diacylglycerol (DAG). Thereafter, DAG is converted to 

2-AG by the actions of diacylglycerol lipase, a membrane associated enzyme that preferentially 

hydrolyzes DAG at the sn-1 position (Okazaki et al., 1981). During development, DAGL is 

localized to axon terminals (Brittis et al., 1996), whereas in adulthood, DAGL appears to be 

predominately localized in the axon terminals (Kano et al., 2009a). Early cloning experiments 

revealed that two closely related genes encode two forms of DAGL, DAGL and DAGLβ 

(Bisogno et al., 2003). Experimental over-expression of DAGLα (Bisogno et al., 2003) and 

pharmacological blockade or knockdown of endogenous DAGL α/β (Jung et al., 2005) suggest 

that DAGLα and/or DAGLβ  are the primary 2-AG synthetic enzymes. To determine the 

contributions of the two DAGL isoforms in 2-AG synthesis and retrograde signaling in the brain, 

Tanimura and colleagues (2010) generated rodent models of global DAGLα and DAGLβ loss. 

These experimental analyses revealed that DAGLα deficiency decreased total 2-AG levels and 

eCB-mediated retrograde signaling at central synapses while DAGLβ loss had no effect on these 

measures. Conversely, similar experimental analyses by Gao and co-worker (2010) showed that 

DAGLα reduces brain 2-AG levels by 80% while global DAGLβ loss reduced brain 2-AG levels 

by 50%. Despite this 50% loss of total 2-AG levels in DAGLβ knockout mice, retrograde eCB 

signaling was only impaired in DAGLα knockout mice. Collectively, these results suggest 

strongly suggest that DAGLα is the primary enzyme responsible for 2-AG production and 

retrograde suppression at central synapses.   
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Expression of DAGLα in the Amygdala 

Two studies have examined the expression of DAGL in the amygdala. Patel and co-workers 

(2009) demonstrated heterogeneity in DAGL expression within the amygdala. High levels were 

observed in the BLA and dLA, whereas much lower levels were observed in the vLA and BMA. 

Within the CeA, the CeAL had a higher expression of DAGLα as compared to the medial 

subdivision of the CeA (CeAM). A more recent study by Yoshida et al. (2011) demonstrated a 

similar pattern of DAGLα (Yoshida et al., 2011b). These studies showed that DAGLα protein is 

more heavily expressed in the BLA as compared to the CeA. Further examination of the BLA 

determined that DAGL protein in close apposition to CB1 expressing terminals and is clustered 

at invaginating inhibitory synapses on pyramidal cells within this region. Unlike the BLA, the 

CeA do not exhibit these unique nerve terminals despite having robust DAGL protein 

expression.   

2-AG Synthesis in the Central Synapses 

As mentioned in the previous paragraph, 2-AG can be produced by a number of DAGLα 

mediated biosynthetic pathways (see Figure 1). The first is a calcium-dependent mechanism, 

prototypically elicited by postsynaptic depolarization. This postsynaptic depolarization activates 

L-type calcium channels and enhances the conversion of diacylglycerol to 2-AG via the 

activation of DAGL (Ohno-Shosaku et al., 2005). This form of eCB-mediated retrograde 

suppression is otherwise known as Ca
2+

-dependent endocannabinoid release (Ca
2+

ER) or 

depolarization induced suppression of excitation or inhibition (DSE or DSI). The second and 

third forms of DAGL- mediated 2-AG synthesis are mediated by Gαq-protein-coupled receptor 

(GαqPCR) signaling. The second is a Gαq-protein-coupled receptor (GαqPCR) driven pathway 

mediated via the activation of PLCβ under basal intracellular calcium levels ([Ca
2+

]i). Under 
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basal [Ca
2+

]i, PLCβ activation increases DAG and  subsequently drives 2-AG synthesis via a 

DAGL-dependent process (Hashimotodani et al., 2007). This second form of DAGL- 

mediated 2-AG synthesis is otherwise known as basal receptor driven endocannabinoid release 

(basal RER). Finally, the third form of 2-AG mediated synthesis occurs as a result of increased 

PLCβ activity following increased [Ca
2+

]i (Hashimotodani et al., 2005). This leads to a 

combinatory mechanism whereby depolarization-induced calcium influx facilitates Gαq-receptor 

driven 2-AG release by enhancing PLCβ activity (Hashimotodani et al., 2005; Ohno-Shosaku et 

al., 2012). This third form of endocannabinoid mobilization is also referred to as Ca
2+

-assisted 

receptor driven endocannabinoid release (Ca
2+

-assisted RER) (Kano et al., 2009b).  

Termination of 2-AG Signaling At Central Synapses 

Significant experimental evidence shows that monoacylglycerol lipase (MAGL) is the primary 

enzyme that catalyzes the 2-AG hydrolysis in vivo (see Figure 1). MGL is a member of the serine 

hydrolase family that hydrolyzes 2-AG into arachidonic acid and glycerol (Dinh et al., 2002). 

Studies by the Cravatt group (2010) showed that MAGL accounts for 85% of 2-AG hydrolysis in 

vivo while additional work from this group and others have found that the remaining 15% of 2-

AG hydrolysis is catalyzed by the serine hydrolases, ABHD6 and ABHD12 (Blankman et al., 

2007; Schlosburg et al., 2010). 

 Earlier immunohistochemical studies, using an N-terminal antibody against the rodent 

MGL, revealed punctuate MAGL protein expression within the BLA, but much weaker MAGL 

expression within CeA (Gulyas et al., 2004b)—results that were later confirmed by work 

presented by the Watanabe group (2010). Furthermore, subcellular examinations of MAGL 

within the amygdala revealed that MAGL is localized presynaptically at a subset of axon 

terminals that form asymmetrical and symmetrical synapses within the BLA (Gulyas et al., 
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2004b). These experimental results are consistent with MAGL subcellular localization in other 

brain regions (Kano et al., 2009a). Despite subcellular analyses demonstrating MAGL expression 

at BLA synapses, similar analyses are lacking within the CeA. 

Biosynthesis of Anandamide: NAPE-PLD Dependent Pathway 

In contrast to 2-AG, the mechanisms regulating synaptic AEA synthesis are not well understood 

and has been shown to involve the activation of GαqPCRs (Chavez et al., 2010a; Grueter et al., 

2010a; Huang and Woolley, 2012) ) (see Figure 1). Currently, the canonical pathway for AEA 

biosynthesis is thought to be composed of two enzymatic reactions, collectively referred to as the 

‘transacylation-phosphodiesterase pathway’. The first step of this pathway involves the Ca
2+

 

dependent- N-acyltransferase catalysis of N-arachidonoylphosphatidylethanolamine (NAPE) 

production, via the transfer of the sn-1 acyl group of glycerophospholipids to 

phosphotidylethanolamine (PE) (Di et al., 2005). Subsequent to its production, NAPE is 

hydrolyzed to AEA as well as phosphatidic acid in a reaction that is catalyzed by the enzyme, N-

acylphophatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD). As such, NAT and 

NAPE-PLD are considered to critical for AEA biosynthesis, with the latter demonstrating age-

dependent increases in activity and expression (Morishita et al., 2005), whilst the former exhibits 

the opposite trend (Moesgaard et al., 2000). Subsequent in vivo examinations of the role of 

NAPE-PLD in AEA synthesis have, however, produced inconsistent results. Work by Leung and 

co-workers (2006) showed that NAPE-PLD knockout mice are viable and do not exhibit any 

change in total brain AEA levels (Leung et al., 2006), suggesting that NAPE-independent AEA 

synthetic pathways exist in vivo. Arguing against this, however, is more recent work by the Ueda 

group which showed a greater than 60% decrease in brain AEA levels in their global NAPE-PLD 

knockout mice (Tsuboi et al., 2011). 
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Expression of NAPE-PLD in the CNS 

Analyses of NAPE-PLD presence within the brain reveal that NAPE-PLD mRNA and protein 

exhibit complementary patterns of expression (Egertova et al., 2008). NAPE-PLD is abundantly 

expressed in neuronal cell-types within hippocampus, with weaker expression observed in other 

brain regions such as amygdala. There, NAPE-PLD immunoreactivity is higher in the BLA as 

compared to the CeA (Egertova et al., 2008). Interestingly, this study also revealed that within 

the hippocampus, NAPE-PLD immunoreactivity is present in the granule cell bodies and axons. 

These results suggest that NAPE-PLD catalysis of AEA synthesis occurs presynaptically which 

is inconsistent the canonical postsynaptic locus of eCB synthesis. Consistent with these findings, 

analyses of NAPE-PLD localization by Nyilas and colleagues (2008) demonstrate that NAPE-

PLD is predominantly localized presynaptically on the smooth endoplasmic reticulum of the 

hippocampus. In contrast to these reports, work by Cristino and colleagues (2008) argue that 

NAPE-PLD is postsynaptic expressed within the hippocampus (Cristino et al., 2008) suggesting 

that NAPE-PLD may be localized pre-and postsynaptically in the CNS. In support of these 

findings, recent high resolution immunogold EM analyses demonstrate that NAPE-PLD is 

localized both pre- and post-synaptically in the ventromedial nucleus of the hypothalamus 

(VMH), with a preferential dendritic localization (Reguero et al., 2014). Collectively, these 

studies suggest that: 1) NAPE-PLD may facilitate AEA biosynthesis in both synaptic 

compartments and 2) NAPE-PLD mediated AEA-CB1 receptor signaling may occur in a 

retrograde and/or anterograde manner within the hippocampus and VMH. However, high 

resolution analyses of NAPE-PLD subcellular localization in other brain regions that also exhibit 

NAPE-PLD protein expression, such as the amygdala, will have to be undertaken to determine 

whether NAPE-PLD expression on both sides of the synapse is a generalizable theme in the 

CNS. 
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AEA Biosynthesis: NAPE-PLD Independent Pathways 

Though additional studies (e.g. pharmacological, etc.) will have to be undertaken to characterize 

the role of NAPE-PLD in global and regional AEA synthesis within the brain, NAPE-PLD 

knockout studies suggest that NAPE-dependent and –independent pathways for AEA exists in 

vivo. Indeed, more recent studies have suggested that NAPE-PLD independent AEA synthetic 

pathways exist in vivo (Ueda et al., 2005). These newly discovered multi-step pathways include: 

1) via N-acylated lysophospholipid, 2) members of the PLA/acyltransferase family, and 3) the 

collective action of PLC and protein phosphatase (Kano et al., 2009a; Ueda et al., 2013).  

Termination of AEA Synaptic Signaling at Central Synapses 

FAAH is a serine hydrolase that catalyzes the degradation of anandamide into arachidonic acid 

and ethanolamine (Cravatt et al., 1996) (see Figure 1). It is an important regulator of brain 

anandamide content (Cravatt et al., 2001a; Kathuria et al., 2003; Patel et al., 2005a) and is an 

emerging target for drug discovery for a variety of disease states such as stress-related 

psychiatric disorders (Cravatt and Lichtman, 2003; Kathuria et al., 2003; Lichtman et al., 2004; 

Patel et al., 2004). Initial ISH studies by Cravatt and co-workers (1997) revealed an intense 

hybridization signal within the amygdala specifically within the BLA complex, with a weaker 

signal observed in the CeA (Thomas et al., 1997). These studies were closely followed by 

immunohistochemical localization of FAAH within the central nervous system using a C-

terminal antibody (Tsou et al., 1998c). Within the BLA, FAAH immunoreactivity was described 

to be moderate to strong. Within the CeA, however, only a few cells were found to express 

cytoplasmic FAAH immunoreactivity―which is consistent with the expression of other 

components of the eCB system within this region. Similarly, Elphick and co-workers, using an 

antibody raised against amino acids 38-579 (Patricelli et al., 1998), describe FAAH 
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immunoreactivity within the somata of neurons throughout the BLA (Egertova et al., 2003; 

Egertova et al., 1998). Freund and co-workers, using this same antibody (Patricelli et al., 1998), 

and another generated against a native 6X-His tagged truncation of FAAH (Bracey et al., 2002), 

also published detailed light and EM descriptions of FAAH within the rat and mouse amygdala 

(Gulyas et al., 2004b). At the light microscopic level, strong cellular (cytoplasmic and proximal 

dendritic) and a granular/reticular neuropil staining was observed within the BLA. In the CeA, 

only faint and occasional neurons were FAAH immunoreactive in this study (Gulyas et al., 

2004b). 

Conclusion 

Given the effects of the Cannabis sativa plant on emotionality and stress responsivity, it is not 

surprising that CB1 receptors and other biosynthetic and metabolic components of the eCB 

system are expressed in the amygdala―a critical component of the cortico-limbic circuit that 

regulates emotionality (Hill et al., 2010c). Though these studies suggest that the BLA may act as 

an anatomical substrate for eCB-mediated regulation of emotionality, a number of questions 

remain unanswered. Two such questions include: 1) what is the subcellular localization of the 

eCB synthetic and metabolic machineries in other key subdivisions of the amygdala, such as the 

CeA, and 2) what is the functional consequence of the localization of eCB biosynthetic 

machinery at central synapses within subdivisions of the amygdala? In the remaining sections of 

the Introduction we will examine the role of the amygdala, with a focus on the CeA, in mediating 

the behavioral consequences of exogenous and endogenous cannabinoids.    
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Figure 1. Endocannabinoid Biosynthetic and Metabolic Pathways at Central Synapses. 

2-AG and AEA have distinct biosynthetic and metabolic pathways.( 1) Though both 

postsynaptically produced, 2-AG synthesis can be triggered by the activation of Gαq-PCR and/or 

depolarization-induced activation of voltage-dependent calcium channels. Relatively less is 

known about the biosynthetic pathway for AEA but recent studies reveal Gαq-mediated AEA 

synthetic pathways at central synapses.( 2) Once produced, both eCBs activate presynaptically 

localized CB1 receptors. (3) Thereafter, 2-AG and AEA are metabolized via hydrolysis which is 

catalyzed by two distinct enzymes that display disparate subcellular localizations. AA, 

arachidonic acid; EA, ethanolamine. 
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The Stress Response Represents an Adaptive Mechanism  

Building upon Claude Bernard’s concept of the “internal milieu”, French physiologist Walter 

Canon, described an organism’s homeostasis (derived from the Greek words for “the same”-

homeo and “standing”-stasis) as the net result of mechanisms that maintain stable conditions 

necessary for survival (Cannon, 1929). By describing homeostasis as a necessary means for 

survival, Cannon imbues this state with a sense of priority that all organisms must achieve 

(Ulrich-Lai and Herman, 2009). Of equal importance, Cannon also noted that homeostasis is a 

dynamic process where “changes [are] …automatically met by increased effectiveness of… 

factors that resist this change” (Cannon, 1932).  

In line with Cannon’s earlier work, Hungarian physiologist Hans Selye and colleagues 

performed seminal characterizations of the “factors that resist [homeostatic]…change” following 

challenges to or disruptions of homeostasis” (Selye, 1951). The resulting body of work led to the 

discovery that physical or psychological perturbations to homeostasis elicited by internal or 

external threats—otherwise known as stressors—evoke biological mechanisms to counter these 

disturbances and regain homeostasis. These challenges to homeostasis evoked what Selye 

described as a “General Adaptation Syndrome” (GAS) or stress response. Selye’s early work and 

subsequent experimental evidence in this field (Hill and McEwen, 2010; Ulrich-Lai and Herman, 

2009) has since characterized the stress response as an adaptive process, i.e. a collection of  

biological and/or behavioral change(s) mounted to counteract stressor-activated homeostatic 

perturbations with the goal of maintaining physiologic integrity  in the most demanding of 

circumstances (Herman, 2013; McEwen and Wingfield, 2003; Selye, 1951; Ulrich-Lai and 

Herman, 2009).  
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Response to Aversive Stimuli Is Composed of Three Stages 

As further described by Selye, adaptive processes are supported by three stages of the GAS (See 

Figure 2). The first, is the Alarm stage and is triggered by stressor-related cues that are conveyed 

to the brain by all primary sensory systems which, in turn, mobilizes the stress circuitry— an 

evolutionary conserved synergism of neuronal and neuroendocrine systems that support 

physiological and behavioral changes to appropriately cope with the real or perceived threat 

(Ulrich-Lai and Herman, 2009). At the apex of this rapidly activated stress circuitry is arousal of 

both the adrenomedullary arm of the autonomic nervous system (ANS) and the hypothalamic-

pituitary-adrenal (HPA) axis (Herman, 2013). 

Following this initial stress exposure, the body shifts into the second phase of the General 

Adaptation Syndrome known as the Resistance stage (Selye, 1951). This second stage consists of 

either of two possibilities: the stressor is quickly resolved and ongoing feedback processes are 

recruited to restore homeostatic balance; consequently the stress response is a short-term 

adaptation to the original threat. The alternate possibility manifests when the stressor persists, 

whether continuous or continual, resulting in the protracted recruitment of mechanisms to resist 

threat impact and maintain a state of arousal. One such mechanism is a learning and memory 

process engaged to refine the stress response to subsequent homeostatic challenges. This form of 

adaptation manifests as either habituation, decreased responsivity to highly predictable low-

intensity stimulus presentation, or sensitization, non-specific generalization of a highly aversive 

stimuli— both of which are largely controlled by cortico-limbic brain regions (Castellucci et al., 

1970; Kamprath and Wotjak, 2004) and dependent upon the severity and predictability of the 

stressor. Overall, such mechanisms maintain a persistent state of vigilance in response to 

continuous stress exposures (Herman, 2013). 
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However, the process of adaptation is costly. Chronic stress responses represent attempts 

at adaptation, but can constitute physiologic challenges themselves (Herman, 2013; Sterling and 

Edelmann, 1988). If the exposure to the stressor continues for a substantial time or increases in 

severity /unpredictability, the organism enters the third phase of the GAS, i.e. the exhaustion 

phase. During this period, adaptive processes earlier garnered to resist homeostatic changes 

begin to approach exhaustion (e.g. depletion of energy stores, etc.). Furthermore, continued 

efforts of ANS and HPA axis activation to cope with persistent stressor exposure become 

deleterious to the organism. For example, increased HPA axis activation can impair numerous 

bodily functions, enhance sympathetic drive leading to cardiovascular disease, and precipitate 

pathological changes within the neuronal circuitry that regulate emotional processing (Price and 

Drevets, 2010). Thus, the initially adaptive characteristics of the stress response become 

maladaptive, as biological and behavioral responses to stressors become counterproductive to the 

interests of the organism (Herman, 2013). Given these deleterious characteristics of chronic 

stress, it is not surprising that preclinical and human studies have shown that protracted exposure 

to stress is one of the underlying factors for the generation of stress-related psychiatric disorders, 

such as anxiety and post traumatic stress disorder (PTSD) (Hill et al., 2009d; McEwen, 2007; 

Rosenkranz et al., 2010; Taber and Hurley, 2009; Vyas et al., 2002). 

As will be discussed in this thesis, the endocannabinoid (eCB) system is strongly 

implicated in the three stages of the General Adaptation Syndrome and plays a critical role in 

regulating adaptive processes that attenuate the deleterious consequences of chronic stress 

exposure. As will be further discussed, significant evidence suggests that the eCB system’s stress 

attenuating properties results from its actions within the cortico-limbic stress circuitry that 

control the neuroendocrine, physiological, and behavioral components of the stress response. 
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Figure 2. The General Adaptation Syndrome. 

The General Adaptation Syndrome, originally described by Dr. Hans Selye (1951), consists of 

four consecutive stages: (1) Homeostasis, (2) Alarm, (3) Resistance, and (4) Exhaustion and 

describes the biological patterns triggered by stress exposure over time. Adapted from Han 

Seyle’s General Adaptation Syndrome and Diseases of Adaptation. 
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The Alarm Stage is Facilitated by the Initial Activation of the ANS and the HPA axis  

The central nervous system (CNS) is pivotal to the stress response as it perceives aversive 

stimuli and orchestrates appropriate physiological and behavioral responses to threat (Sanacora 

et al., 2012). Within the CNS, the autonomic nervous system (ANS) and the hypothalamic-

pituitary-adrenocortical (HPA) axis are the primary mechanisms for reinstating homeostasis in 

response to homeostatic challenges. The ANS provides the most immediate response to stressors, 

through its sympathetic and parasympathetic divisions, which incorporate opposing yet 

complementary functions to mediate rapid changes in physiological and behavioral states via 

neural innervations of end organs. First, the sympatho-adrenomedullary axis of the autonomic 

nervous system quickly, i.e. within seconds, change visceral functions (e.g. increased breathing, 

heart rate, etc.) via adrenergic mediated changes in respiratory and cardiovascular systems, 

thereby preparing the organisms to cope with the physiological challenge. Subsequently, the 

activation of the parasympathetic division of the ANS attenuates the activity of the sympatho-

adrenomedullary axis, resulting in a short-lived stress response (Ulrich-Lai and Herman, 2009). 

Activation of the (HPA) axis represents the principal neural regulation of the endocrine 

system and supplements the ANS’s rapid initiation and termination of the stress response. When 

faced with a stressor, activation of the HPA axis begins by the stimulation of the parvocellular 

neuroendocrine cells (PNCs) of the paraventricular nucleus (PVN) of the hypothalamus. These 

cells are the apex of the HPA axis and drive neuroendocrine responses to stress. This stimulation 

allows for the secretion of corticotropin releasing hormone (CRH) from parvocellular terminals 

of the PVN into the portal circulation of the median eminence. PNCs also send axonal 

projections to autonomic targets in the brainstem and spinal cord (Swanson and Kuypers, 1980; 

Ulrich-Lai and Herman, 2009) suggestive of additional co-ordination of neuroendocrine and 

autonomic output at the level of the hypothalamus. Once released, CRH bind to CRH receptors 
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expressed on corticotroph cells within the anterior pituitary to stimulate the synthesis and 

secretion of adrenocorticotropic hormone (ACTH). ACTH, in turn, initiates the synthesis and 

release of glucocorticoids (corticosterone in rodents and cortisol in humans) from the adrenal 

cortex directly into the peripheral circulation. This facilitates the coordination of brain and bodily 

functions, via the actions of the glucocorticoid receptors, geared towards coping with stress, 

recovery, and adaptation (Laryea et al., 2012) (Groeneweg et al., 2011; Roozendaal and 

McGaugh, 1996a, b; Roozendaal et al., 1996). 

Basal HPA Axis Activity 

Though the HPA axis is activated by exposure to imminent threat, this neuroendocrine system is 

also active under basal conditions and this, in tune, supports the homeostatic state of the 

organisms (Herman, 2013). Under basal conditions, the synthesis and release of glucocorticoids 

are also dynamically regulated by circadian cues (Biddie et al., 2012). The peak glucocorticoid 

secretion correlates with the anticipation of an organism’s active phase and is supported by an 

hourly ultradian rhythm of hormone secretion. This pulsivity of circulating glucocorticoid 

hormone secretion provides the basis of “continuous dynamic equilibrium” which is believed to 

be critical for optimizing the functional tone of numerous systems (Joels and Vreugdenhil, 1998) 

and maintaining an organism’s stress responsivity, i.e., the flexibility to respond to and recover 

from stress (Lightman and Conway-Campbell, 2010). As will be discussed later, changes in basal 

HPA activity act as an adaptive response to repetitive stress exposure (Hill et al., 2009b). 

Endocannabinoid Signaling Acts as Stress Buffer During the Alarm and Resistance Stages 

of Psychosocial Stress 

As mentioned above, significant evidence points to the endocannabinoid system (eCB) as a 

dynamic facilitator of adaptive processes in response to chronic stress exposure. Such evidence 
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include the critical role of the eCB system in decreasing protracted neuroendocrine, 

physiological, and behavioral responses elicited by persistent exposure to aversive stimuli 

(Haller et al., 2004b; Martin et al., 2002; Steiner et al., 2008c; Uriguen et al., 2004), as well as 

preclinical studies which demonstrate a negative correlation between acute cannabinoid 

consumption (via the Cannabis sativa plant, etc.) and stress responsiveness/ basal anxiety states 

in humans and rodents (Haller et al 2002; Green et al 2003). Collectively, these data demonstrate 

that the eCB system acts as an intrinsic stress buffering mechanism by both limiting the 

deleterious homeostatic changes elicited by the chronic recruitment of the stress response and 

facilitating positive neuroendocrine and behavioral adaptations (such as, increased vigilance and 

active stress coping behaviors) (Campolongo et al., 2009; Haller et al., 2004a; Herman, 2013; 

Marsicano et al., 2002). Though the stress regulating properties of the endocannabinoid system is 

well established, an outstanding question in this field is what are the neuroanatomical substrates 

of eCB stress attenuating actions? Given the ubiquitous distribution of the CB1 receptor in the 

cortico-limbic circuitry (Matsuda et al., 1990; Turner and Herkenham, 1991) as well as the 

regulatory effects of exogenous and endogenous cannabinoids on stress response mechanisms 

elicited by limbic pathways (Atkinson et al., 2010; Cota et al., 2007; Patel et al., 2004; Steiner et 

al., 2008a; Steiner et al., 2008b; Steiner et al., 2008c), most experimental interrogations have 

focused on the limbic system in an attempt to address this outstanding question. 

Stressor Type Influences the Neuroanatomical Regions Recruited by the Stress Response 

The stressor type significantly influences the repertoire of neural populations that perceive the 

stressor and engage in adaptive responses to stress (Joels and Baram, 2009). Physical and 

psychological threats to homeostasis recruit two distinct domains of stress activation. The first, 

i.e. physical stressors (e.g. blood loss, respiratory distress, or pain), represents a homeostatic 
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challenge that is recognized by somatic, visceral, or circumventricular sensory pathways and 

requires an immediate ‘systemic’ reaction that is triggered by reflexive mechanisms (Herman et 

al., 2003).  

The second, i.e. psychological stressors (e.g. immobilization or forced swim stress), 

recruits brain regions involved in higher order processing/ decision-making and represents 

responses mounted in anticipation of, rather than in reaction, to a homeostatic threat. This type of 

stress is generated by previous experiences (i.e. associative learning) or species-specific 

predispositions (e.g. the aversion to snakes in humans or the innate fear of fox feces odor in 

mice) and allows the organism to detect novel stimuli that predict sources of harm (Ohman and 

Mineka, 2001). When activated by threat, psychological stressors engage stress mediators in the 

cortico-limbic circuitry that subserve decision making (e.g. prefrontal cortex), learning and 

memory, and emotionality (e.g. amygdala).  

Though both type of stressors largely recruit different neuronal populations and brain 

regions, they are not entirely segregated systems as physical stressors may have a psychological 

facet and vice versa (Joels and Baram, 2009). Furthermore, the environment associated with a 

physical stressor can itself be conditioned, resulting in an anticipatory response when the 

conditioned physical stressor is next encountered (Herman et al., 2003). One limbic region that 

acts as an anatomical and functional convergence point for both systemic and psychological 

domains of stress activation, as well as a potential substrate for eCB system’s role in the stress 

response, is the amygdala. 

The Amygdala is a Key Player in the Adaptive Processes in Response to Physical and 

Psychological Stressors 

The amygdala supports the neural mechanisms underlying the emotional interpretation of and 

appropriate response to salient environmental stimuli (Davis, 1992; LeDoux, 1995; Sah et al., 
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2003; Weiskrantz, 1956). It accomplishes this through its connectivity with visceral, cortical, and 

subcortical circuits to orchestrate neuroendocrine, such as activation of the HPA axis, as well as 

autonomic and behavioral responses to aversive stimuli (Hill et al., 2010c). Though there appears 

to be inter-species differences in the size and organization of the amygdala, there are strong 

physiological similarities between human and rodent amygdala-mediated functionalities  

(Darwin, 1872; Davis, 1992; LaBar et al., 1998), particularly as it relates to defense actions and 

reactions to threat. In support of this, bilateral amygdala lesion studies in humans (Bechara et al., 

1995; Feinstein et al., 2011), primates (Mair et al., 1979) and rodents (LeDoux et al., 1990a; 

LeDoux et al., 1990b; Roozendaal et al., 1990) demonstrate  attenuated autonomic and 

behavioral stress responses to stimuli previously conditioned to be associated with a threatening 

stimuli. 

The Amygdala is Composed of Functionally Integrated Subnuclei 

The amygdala is a functionally integrated complex, subcortical to the medial temporal lobe, and 

consists of 13 anatomically and physiologically heterogeneous nuclei.  These nuclei evolved 

during different phylogenetical stages and possess distinct cytoarchitectural and neurochemical 

features, as well as specific patterns of connectivity (Berretta et al., 2005). Based on these 

characteristics, these nuclei can be broadly grouped as: frontotemporal (lateral, basal, and 

accessory basal nuclei), autonomic (central and medial nuclei), olfactory groups (main olfactory 

and accessory olfactory nuclei), and a separate set of nuclei that do not separate well with the 

other nuclei (intercalated cell masses and the amygdalo-hippocampal area) (Sah et al., 2003; 

Swanson and Petrovich, 1998). Of these nuclei, the lateral, basolateral and the central 

amygdalas’ integral role in the stress response have been investigated extensively and appear to 

represent an integrated unit in the processing of responses to emotionally relevant stimuli such as 
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environmental threats (Herman et al., 2003; LeDoux, 2003; Tye et al., 2011; Walker and Davis, 

2002a, b). 

Focal lesion, anatomical tracing, ontogenetic, and electrophysiological studies have 

revealed a unique functional and anatomical interconnectivity within the amygdala. Such studies 

have demonstrated that the lateral amygdala nuclei (LA) act as an early site of convergence for 

sensory-related information (LeDoux et al., 1990a; LeDoux et al., 1990b; Quirk et al., 1997) 

from a number of brain regions such as the thalamus and cortex. Following  exposure to a 

stressor, thalamic inputs rapidly deliver sensory information whereas cortical inputs convey 

delayed information from visual, auditory, or somatosensory cortices (LeDoux, 2000). As such, 

there are “multiple roads” of sensory processing recruited to initiate stress responses (LeDoux, 

1994, 1995). The LA, in turn, projects to the central amygdala (CeA) either directly or indirectly 

via the basolateral amygdala (BLA), another amygdala nuclei that receives strong inputs from 

sensory-related brain region and has garnered considerable attention as a stress-regulatory 

structure that, though the activation of GRs and the eCB system, facilitates stress-related cued 

learning and emotional memory (Bhatnagar et al., 2004; Roozendaal et al., 1997a; Roozendaal 

and McGaugh, 1996a). The CeA is considered the output nucleus of the amygdala and, as will be 

described later, lacks the intra-amygdala reciprocal connectivity characteristic of other amygdala 

nuclei, exhibits patterns that strongly implicate the CeA as a site of information integration, and 

mobilizes neuroendocrine, autonomic, and behavioral responses that support an organism’s 

adaptive responses to stress exposure.  

Amygdala Exhibits Subregional Stress Response Specialization  

Stress-induced amygdala activation is essential for responses to novel stressors and adaptation to 

persistent stressors (Kim and Jung, 2006)). However, there is a marked subregional 
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specialization of stress integrative functions within the amygdala.  The medial (MeA) and BLA 

appears to be preferentially activated, as measured by early gene expression changes as an index 

of neuronal activation, by psychological stressors (Cullinan et al., 1995; Dayas et al., 2001a; 

Dayas et al., 2001b; Patel et al., 2005c; Patel et al., 2005d). Conversely, the CeA exhibits a more 

complex activation profile, as similar early gene activation studies suggest that the CeA is not 

only stimulated by psychological stressors but by systemic stressors as well. Furthermore, it 

appears that the CeA is preferentially activated by systemic stressors as compared to 

psychogenic stressors (Cullinan et al., 1995; Ericsson et al., 1994; Xu et al., 1999); suggestive of 

the CeA’s role in the regulation of responses to a broad array of stress responses (Iwata et al., 

1987; LeDoux et al., 1988a; Roozendaal et al., 1990, 1991a, b) . 

Endocannabinoid Signaling in the Amygdala Modulates Endocrine Responses to Repetitive 

Homotypic Stressors  

As mentioned earlier in the Introduction, the endocannabinoid system exhibits dynamic 

responses to the changing climate of stress, thus it is well-suited to mediate adaptive mechanisms 

in response to persistent recruitment of the stress response. In vitro chronic corticosterone 

treatment or repetitive exposure to low aversive homotypic stress paradigms, such as restraint 

stress, results in the habituation of HPA axis activation (Hill et al., 2008a; Rademacher et al., 

2008; Wamsteeker et al., 2010) such that persistent stress exposure induces basal HPA 

hypersecretion and restraint-stress induced hyposecretion. Respectively, these changes increase 

vigilance (Kamprath et al., 2006b; Kamprath et al., 2009; Kamprath and Wotjak, 2004), yet 

decreases energy resources allotted to stressors that prior experience demonstrates as low-

aversive. Consistent with advantageous stress adaptations elicited following homotypic stress 

exposure, habituations in neuroendocrine responses are also accompanied by increases in active 

escape behaviors (Patel et al., 2005d). Subsequent experimental evidence revealed that these 
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advantageous adaptations in the HPA axis and stress-elicited behaviors are mediated by the eCB 

system (Patel et al., 2005c; Rossi et al., 2008b; Steiner et al., 2008a; Steiner et al., 2008b; Steiner 

et al., 2008c) (Haring et al., 2013). Furthermore, evidence presented by Hill and co-workers 

(2010b) demonstrate that dynamic changes in both eCB content and eCB signaling within the 

BLA underlies repetitive homotypic stress-induced adaptations of the HPA axis activation (Hill et 

al., 2010b). Collectively, this evidence strongly suggesting that eCB signaling within the 

amygdala is a key node in mediating the regulatory actions of the eCB system on the stress 

response. 

2-AG and AEA Signaling Plays Distinct Roles in Adaptations to Chronic Stress Exposure 

Chronic homotypic restraint stress exposure (CRS) progressively increases BLA 2-AG content 

and 2-AG mediated short- and long-term eCB synaptic plasticity at inhibitory BLA synapses. 

These changes are hypothesized to underlie the CRS-induced HPA axis hyposecretion (Hill et 

al., 2010c; Ostrander et al., 2006; Patel et al., 2009a) as activity dependent increases in 2-AG- 

mediated signaling may dampen the BLA-HPA circuitry. In support of this hypothesis, Hill and 

others (2009) demonstrate that intra-BLA infusions of the CB1 agonist, HU-210, attenuate 

repetitive stress-induced glucocorticoid release (Hill et al., 2009c). Furthermore, systemic 

increases in 2-AG levels are associated with decreased indices of stress-induced anxiety 

suggesting that CRS-induced cellular, synaptic and endocrine adaptations may be the functional 

consequence of increased BLA-2AG signaling (Patel et al., 2005c; Patel et al., 2005d; Steiner et 

al., 2008b; Steiner et al., 2008d). Consistent with increased CB1 signaling conferring  

advantageous adaptations in the stress response, experimental evidence from Campolongo and 

colleagues (2009) show that BLA infusions of the CB1 receptor agonist, WIN 55, 212-2, 

promotes enhanced memory consolidation which, as the authors argue, may support learning and 
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memory processes engaged to refine the stress response to repetitive homeostatic challenges. 

Collectively, these studies suggest that augmented 2-AG content and 2-AG signaling at central 

facilitates stress habituation in response to repetitive homotypic stress exposure (Campolongo et 

al., 2009). 

BLA-AEA Tonic Signaling Facilitates Tonic inhibition of Basal HPA Axis Activation  

AEA content within the BLA is also affected by chronic homotypic stress exposure but the 

pattern of AEA content change and, thus, its functional consequences are different than that of 2-

AG. Experimental evidence demonstrates that chronic homotypic stress paradigms rapidly 

decrease BLA-AEA content which most likely results from a progressive increase in amygdalar 

FAAH Vmax, the rate of FAAH-catalyzed reactions (Hill et al., 2013b; Rademacher et al., 2008). 

The functional consequence of decreased BLA-AEA content appears to be basal HPA axis 

hypersecretion (Hill et al., 2010c), as demonstrated by evidence generated by Hill and colleagues 

(2005) which show the attenuation of stress-induced corticosterone secretion following 

pharmacological inhibition of BLA-FAAH (Hill et al., 2009b). These experimental results 

support the function of BLA-AEA as a “HPA gatekeeper” (Hill et al., 2010b; Hill et al., 2009b; 

Patel et al., 2004) through tonic basal inhibition.   

These data also strongly suggest that CRS-induced decreases in BLA-AEA levels support 

the adaptive state of heightened vigilance at the neuroendocrine and behavioral levels (Hill et al., 

2010b; Hill et al., 2009c). In support of this, HPA axis activity and behavioral responsiveness are 

more enhanced by novel stressors following prior exposure to a chronic stress paradigm as 

compared to behaviorally naïve controls exposed to similar novel stressors (Bhatnagar et al., 

1998; Bhatnagar and Meaney, 1995; Hauger et al., 1990). Furthermore, following repetitive 

stress exposure, increased HPA axis secretion is observed during the rising phase of HPA axis 
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activity and this rise may further contribute to the observed facilitation of HPA secretion (Windle 

et al., 1998). As such, AEA mediated regulation of HPA axis activity may act as a potential 

mechanism by which eCBs attenuate stress responsivity. Overall, it appears that both 2-AG and 

AEA signaling in the amygdala allows an organism to increase its defensive responses to novel 

aversive stimuli, where the threat value is of an unknown magnitude, whilst decreasing it stress-

related responses to stimuli with threat of known magnitude (Bhatnagar et al., 2003). 

Repetitive exposure to homotypic stressors also results in neuroendocrine, physiological, 

and behavioral changes that rely on the activity of extra-BLA regions within cortico-limbic 

circuitry.  For example, chronic homotypic stressors elicit adaptations in autonomic (e.g. heart 

rate, and blood pressure increases) (Bartolomucci et al., 2003; Moore et al., 2001) and passive 

behavioral stress responses (decreased freezing/startle response)  (Bielajew et al., 2002; 

Kamprath et al., 2006a; Kamprath and Wotjak, 2004). As alluded to above, significant 

experimental evidence demonstrates that these components of the stress response are regulated 

by the eCB system (Hill et al., 2010b). Interestingly, significant evidence also strongly suggest 

that the central amygdala (CeA), an extra-BLA amygdalar region, plays a significant role in 

controlling similar neuroendocrine, physiological, and behavioral responses to aversive stimuli 

via its extensive afferent and efferent connections with other stress responsive brain regions 

which will be discussed in the next section. Given these qualities, the CeA may potentially be a 

critical site for eCB-mediated regulation of neuroendocrine, autonomic, and behavioral 

components of the stress response (Kamprath et al., 2011; LeDoux et al., 1988b). 

The Central Amygdala Regulates Physiological and Behavioral Components of Stress 

Responses  

Experimental evidence supports the role of the CeA as a key site for the integration of stress-

related information and the subsequent regulation of physiological and behavioral components of 
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the stress response. Both acute and chronic stress increases c-fos gene expression within the 

CeA, indicating that increased neuronal activity is recruited within this region following 

exposure to aversive stimuli (Bhatnagar and Dallman, 1998; Bhatnagar et al., 1998; Kollack-

Walker et al., 1997). Early studies demonstrate that these changes in CeA neuronal activity are 

the result of stress-induced adaptations of the intra-CeA circuitry as single-and multi-unit activity 

measurements of antidromically-identified CeA neurons, which project to cardiovascular 

regulatory nuclei in the medulla, decrease following repeated presentations of conditioned 

stimuli (Pascoe and Kapp, 1985). Furthermore, this decrease in CeA neuronal activity is 

paralleled by decreases in heart rate changes following repeated presentation of conditioned 

stimuli (Applegate et al., 1982; Pascoe and Kapp, 1985). As such, the CeA appears to be a 

critical anatomical region for regulating changes in stress responsivity following persistent 

exposure to stressors.  

Consistent with experience-dependent changes in CeA neuronal activity, experimental 

evidence points to the CeA as a key site for the regulation of physiological and autonomic 

responses to stress. Early pharmacological and lesion studies show that bilateral CeA 

inactivation significantly reduced ACTH and glucocorticoid secretion in response to aversive 

stimuli (Beaulieu et al., 1986; Van de Kar et al., 1991), decreased CRH secretion and medial 

eminence immunoreactivity following photic or acoustic stimulation (Feldman et al., 1994), 

impaired both catecholamine release (Roozendaal et al., 1990) and stress-induced heart rate 

changes (Roozendaal et al., 1991a, b), as well as inhibited startle and freezing behavioral 

responses following conditioned and unconditioned aversive stimuli exposure (Roozendaal et al., 

1990). Furthermore, electrical and chemical CeA stimulation elicits autonomic and behavioral 

responses that resemble unconditioned and conditioned responses to systemic and psychological 
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stressors (Ciocchi et al., 2010; Iwata et al., 1987; Li et al., 2013; Reis and Oliphant, 1964) while 

lesions of brain regions to which the CeA projects attenuate autonomic and behavioral responses 

previously elicited by aversive environmental stimuli (Iwata et al., 1986a; Iwata et al., 1986b; 

LeDoux et al., 1988a; van der Kooy et al., 1984). Collectively, these studies support the role of 

the CeA as an integral neurosubstrate that regulates the physiological and behavioral responses 

to aversive stimuli exposure. These diverse functions of the CeA are thought to be consequences 

of its extensive efferent pathways that innervate a number of brain regions implicated in the 

sympathetic, parasympathetic, neuroendocrine, and passive behavioral responses mobilized 

following exposure to aversive stimuli (Bouret et al., 2003; Jolkkonen et al., 2002; LeDoux et al., 

1988b). Although studies characterizing CeA synapses in efferent target circuitry are lacking 

(Penzo et al., 2014), extensive tracing and optogenetic studies have identified a number of CeA 

mono- and multi-synaptic efferent pathways to stress responsive brain regions and these are 

summarized below in Figure 3.  

The Central Amygdala is Largely Composed of Four Subdivision 

The central amygdala is largely composed of four subdivisions: the capsular (CeC), the lateral, 

the intermediate (CeI), collectively known as the lateral nucleus of the central amygdala (CeAL), 

and the medial subdivision (CeAM) (Cassell et al., 1999a; Jolkkonen and Pitkanen, 1998; 

McDonald, 1982a).  The principal (95%) neuronal type of the CeAL is GABAergic medium-

sized densely spinous neurons (MSNs). These MSNs are embryonically striatal in origin 

(Puelles, 2001; Swanson and Petrovich, 1998) and, thus, are morphologically similar to the 

medium spiny neurons (MSNs) of the striatum (Sun and Cassell, 1993). Electrophysiological 

properties of rodent CeAL neurons can be separated into two groups based on firing properties of 
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the cell: regular (RF) and late firing (LF) and each group represents 50% of the CeAL neuronal 

population (Dumont et al., 2002; Lopez de Armentia and Sah, 2004a). 

Unlike the CeAL, the CeAM demonstrate a different distribution of cell types as RF, LF, 

and low-threshold bursting (LTB) neurons exhibit an incidence of 27%, 2%, and 71%, 

respectively (Dumont et al., 2002; Lopez de Armentia and Sah, 2004a). Furthermore, the CeAM 

is largely composed of pyramiform (fusiform/spindle-shaped), sparsely spiny neurons similar to 

the principal neurons found in the ventral pallidum, with a smaller portion of cells appearing to 

be GABAergic (Haubensak et al., 2010; Sun and Cassell, 1993).  However, both rodent and 

primate CeAM display low GABA expression but a high expression of glutamate decarboxylase 

(GAD), the enzyme responsible for converting glutamate to GABA, which suggests that CeAM 

GABAergic neurons may be underestimated (Haubensak et al., 2010; Li et al., 2013; Pitkanen 

and Amaral, 1994; Sun and Cassell, 1993). These features, in addition to the intrinsic 

neurochemical characteristics and intra- and inter- connectivity of the CeAL and CeAM, suggest 

a complex architecture that closely parallels that of the multi-compartmentalized organization of 

the nucleus accumbens and the ventral pallidum (Cassell et al., 1999a).  

The CeAL-CeAM Circuitry Controls Central Amygdala Efferent Pathways 

The organization of the CeAL and CeAM circuitry closely parallels that of the striatal-pallidum 

complex. Similar to the striatum, anatomical and functional studies demonstrate that the CeAL 

exhibit inhibitory control, via locally targeted axon collaterals within the CeAL and a few long-

range projections to extra-CeA stress-responsive brain regions such as the bed nucleus of the 

stria terminalis (Cassell et al., 1986), midbrain periaqueductal gray (PAG) and the 

paraventricular nucleus of the thalamus (Padilla-Coreano et al., 2012; Sun and Cassell, 1993; 

Swanson and Petrovich, 1998). CeAL long-range projecting neurons innervate extra-CeA brain 
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region largely via non-overlapping neurons (Penzo et al., 2014) and act as additional avenues 

through which the CeAL participates in the autonomic, endocrine, and behavioral regulation of 

stress responses. Additionally, the CeAL also extensively innervates the CeAM and provides 

substantial tonic inhibitory control of CeAM neuronal activity (Jolkkonen and Pitkanen, 1998; 

Tye et al., 2011; Veinante et al., 2003). 

The CeAM is the Major Output Region of the CeAL 

In comparison, the CeAM does not exhibit reciprocal projections to the CeAL but, rather, has 

local axonal arborizations that participate in the CeAM intrinsic circuitry (Ciocchi et al., 2010; 

McDonald, 1982a). Furthermore, the CeAM also exhibits efferent pathways ( via the stria 

terminalis and ventral amygalofugal  pathway (Ciocchi et al., 2010; Delaney et al., 2007; 

Hopkins and Holstege, 1978) that innervate diencephalic, mesencephalic, medulallary regions 

within the central nervous system which form the anatomical substrate for the CeA-mediated 

modulation of autonomic, neuroendocrine, and behavioral responses  to stress exposure (Ciocchi 

et al., 2010; Viviani et al., 2011).  

Though synaptic contacts between CeA projection neurons and target regions have been 

less characterized, it is hypothesized that CeA axonal terminals make largely GABAergic 

contacts onto the dendrites and soma within regions of interest, as is demonstrated in the nucleus 

of the solitary tract (NTS) (Jolkkonen et al., 2002; Jolkkonen et al., 2001; Saha et al., 2000). 

Overall, this evidence indicates that the CeAL provides tonic inhibitory control of the CeA 

output circuitry and is, therefore, well-positioned to powerfully restrain the components of the 

stress response via signaling mechanisms such as the eCB system.   
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Figure 3. Schematic Representation of Known CeA Afferents and Efferent Pathways.  
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Aversive Stimuli Exposure Drives Synaptic Changes within the CeAL Microcircuitry  

Similar to the branching patterns found in the matrix of the striatum, Golgi staining studies 

demonstrate that CeAL MSNs can be divided, based on axonal collaboration, into two 

categories: neurons with extensive local collaterals but a relatively unbranched axon extending 

out of the CeAL and a second neuronal type with few local collaterals but extensive branching 

extending out of the CeAL (Cassell et al., 1999b). Recent in vivo single unit recordings in awake, 

behaving animals have also identified two distinct neuronal populations that display inverse 

directionality in synaptic plasticity following exposure to threat-conditioned stimuli. In response 

to conditioned aversive stimuli one subpopulation, the CeALon neurons, display rapid and 

persistent increases in neuronal activity whilst another subpopulation, CeALoff neurons, exhibit 

a delayed and persistent decrease in neuronal activity that results from feed-forward inhibition by 

locally targeting collaterals of CeALon neurons (Ciocchi et al 2010). Accompanying and more 

recent studies have genetically defined these functional neuronal populations as protein kinase C 

delta negative/somatostatin positive (i.e. CeALon /PKCδ
-
/SOM

+
) and protein kinase C delta 

positive/ somatostatin negative (CeALoff /PKCδ
+
/SOM

-
) neurons, respectively (Haubensak et 

al., 2010{Li, 2013 #3984). Work by Li and others (2013) have demonstrated that these disparate 

neuronal populations form a distinct CeAL-microcircuitry where aversive stimuli exposure 

differentially elicits persistent changes in the synaptic efficacy of excitatory neurotransmission 

onto both cell types (Li et al., 2013). These changes, as will be discussed in the subsequent 

section, drive distinct changes in the CeAL microcircuitry which, subsequently, modifies the 

expression of CeA-mediated stress-related functions (Gozzi et al., 2010).  

Parallel to these findings in the CeAL, work by Viviani and others have also 

demonstrated that a unique microcircuitry also exists within the CeAM (Viviani et al., 2011). 

Though relatively unexplored, there appears to be cytochemically and functionally distinct 
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neuronal populations within the CeAM that are targeted by non-overlapping CeAL neurons and, 

in turn, facilitate specific behavioral and physiological components of the stress response. 

Collectively, these data suggest that the CeAL-CeAM circuitry is a powerful locus in the 

regulation of autonomic, endocrine and behavioral responses to stress. 

CeAL Glutamatergic Inputs Drive CeA Function 

The lateral division of the central amygdala (CeAL) receives extensive intra-and inter-amygdala 

glutamatergic inputs carrying sensory information from all modalities. This information is 

relayed to the CeAL via the fast excitatory neurotransmission of α-amino-3-hydroxy-5-

methylisoazole-4-proprionic acid type glutamate receptors (AMPARs) (Li and Neugebauer, 

2004; Lopez de Armentia and Sah, 2003) and GluN2B containing N-methyl-D-aspartate 

(NMDA) receptors.  Intra-amygdala glutamatergic inputs arise from amygdala subnuclei such as 

the LA (Jolkkonen and Pitkanen, 1998; Li et al., 2013) and BLA (Delaney et al., 2007; Sarhan et 

al., 2005; Tye et al., 2011, regions heavily implicated in components of the stress response.  

Extra-amygdala regions conveying sensory- related information to the CeAL include brain stem 

inputs from the parabrachial nucleus ({Krukoff, 1993 #7920) which form asymmetrical 

perisomatic synapses onto CeAL dendritic shafts, spines, and soma (Dong et al., 2010), 2) the 

nucleus of the solitary tract (Batten et al., 2002), 3) hypothalamic inputs from ventromedial 

nucleus (Canteras et al., 1994), 3) thalamic inputs from paraventricular nucleus (Moga et al., 

1995; Turner and Herkenham, 1991; Vertes and Hoover, 2008), and 4) cortical brain regions 

such as the ventral entorhinal (McDonald and Mascagni, 1997), insula (Sun et al., 1994) 

infralimbic, and prelimbic cortices (McDonald et al., 1996). 
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Endocannabinoid Signaling in the CeAL: Potential Locus for eCB-Mediated Adaptive 

Mechanisms Following Chronic Stress Exposure 

Although detailed studies examining the subcellular location of the CB1 receptor were 

previously lacking, early expression studies observed CB1 receptor expression within the CeA 

(Cota, 2007a; Kamprath et al., 2011; Mailleux and Vanderhaeghen, 1992; Matsuda et al., 1990).  

Furthermore, systemic application of the CB1 receptor antagonist, SR141716, increased c-fos 

expression in the CeA of behaviorally naïve Winstar rats, which indicates that tonic CB1 

receptor activity dampens inter- or intra-CeA excitatory drive (Singh et al., 2004). More recent 

studies by Roberto and colleagues (2010) demonstrated that CeAM inhibitory synapses were 

persistently inhibited by tonic CB1 signaling. Collectively, these studies support the presence of 

functional CB1 receptors within the CeA (Roberto et al., 2010a). These described studies, 

however, contradict earlier studies by Katona and colleagues (2001) which found a lack of 

functional CB1 receptors, as interrogated by WIN 55212-2, at CeA inhibitory synapses. 

However, based on the data that I will discuss in my thesis, these discrepancies may be explained 

by potential differences in the CB1 sensitivity of inhibitory synapses within CeA. 

eCB-Mediated Synaptic Adaptations within the CeA and its Functional Role in CeA-

Mediated Stress Behavior 

The CeA exhibits experience-dependent modifications of eCB-mediated synaptic plasticity 

following exposure to aversive stimuli. For example, recent studies by Kamprath and colleagues 

(2011) reveal enhanced depolarization-induced suppression of BLA-CeAM as well as CeAL-

CeAM synapses (Kamprath et al., 2011) following exposure to aversive stimuli. To determine 

the functional relevance of experience-dependent adaptations of eCB-signaling within the CeAL, 

the authors infused the CB1 agonist, AM 251, within the CeA prior to exposure to the 

conditioned stimuli. The results from this experiment reveal that  inhibiting CB1 receptors within 
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the CeA increased the freezing response of mice during the initial exposure to the conditioned 

stimuli, suggesting that CeA-CB1 signaling gates short-term adaptations to aversive stimuli 

(Kamprath et al., 2011). In support of this conclusion, earlier studies by Zarrindast and co-

workers (2008) show that intra-CeA infusion of the CB1 agonist, ACPA, decreased measures of 

anxiety in rats as measured by elevated plus maze (Zarrindast et al., 2008). Collectively, these 

studies support the role of eCB signaling within the CeA as gating behavioral responses to 

aversive stimuli. However, with the exception of work by Kamprath and colleagues (2011), there 

remains a paucity of studies that have examined whether eCB signaling mechanisms within CeA 

microcircuitry, such as muscarinic receptor driven eCB synthesis observed in other stress 

responsive brain regions (Narushima et al., 2007b; Uchigashima et al., 2007c), underlie this 

functional interaction between the CeA and eCB system (Kamprath et al., 2011). 

The Cholinergic Synapse within the CNS 

Acetylcholine (ACh) is the first neurotransmitter to be discovered and primarily modulates  

synaptic transmission in the brain (Picciotto et al., 2012). ACh is synthesized in the nerve 

terminal from acetyl coenzyme A (acetyl-CoA), which is derived from pyruvate generated by 

glycolysis and choline, which is present within the plasma at a concentration of 10mM. Choline 

is transported from the plasma into the nerve terminal by a sodium dependent choline 

transporter. Once within the nerve terminal, the synthesis of ACh via acetyl-CoA and choline 

condensation is catalyzed by the cytosolic enzyme, choline acetyltransferase, (Fischer et al., 

2010a; Fischer et al., 2010b) and packaged into synaptic vesicles by the vesicular ACh 

transporter. Once released within the synapse, acetylcholine concentration rapidly increases 

50,000 fold in milliseconds. Subsequently, cholinergic signaling is rapidly terminated by the 

hydrolysis of ACh by acetylcholinesterase (AChE) (Nair et al., 1994), a serine hydrolase.  AChE 
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has a high catalytic activity (5000 molecules of ACh/AChE/second) and hydrolyzes ACh to 

acetate and choline, which, in turn, cycles back into the ACh biosynthetic pathway. 

Local and Projection Cholinergic Neurons Target Diverse Brain Regions 

ACh is targeted to different brain regions via local cholinergic interneurons (largely found within 

the striatum, nucleus accumbens, and neocortex of rodents and humans) or long-range projection 

neurons that innervate distal brain regions (Benagiano et al., 2003; Mesulam, 1995). Cholinergic 

projections neurons are organized into relatively discrete cell groups, Ch1-Ch6, which innervate 

distinct brain regions (Bubser et al., 2012). The basal forebrain cholinergic projection neurons 

(Ch1-Ch4) consist of synaptically interconnected groups of cells located within the medial 

septum, diagonal band of Broca, and the nucleus basalis of Meynert (NBM). Upon further 

examination, the NBM was found to constitute an aggregation of discontinuous islands of large 

multipolar cells, with extensive dendritic trees, and acts as the major source of ACh for the CeA 

(Bigl and Arendt, 1991; Schwaber et al., 1987). 

mAChRs Display Distinct Regional Distributions and Subcellular Localizations 

Acetylcholine exerts it physiological actions via the activation of a family of GPCRs known as 

muscarinic acetylcholine receptors (mAChRs).  mAChRs are members of the Family-A G-

protein coupled receptors (GPCRs) and consists of five subtypes, M1-M5 (numbered in the order 

of their discovery). These mAChR subtypes are expressed throughout the CNS, but each subtype 

exhibits different regional distributions and subcellular localizations throughout the brain 

(Bonner et al., 1987; Bonner et al., 1988; Levey, 1993; Levey et al., 1991b). Of the 5 subtypes, 

the M5 subtype has the lowest expression in the CNS and is expressed in select brain regions (the 

highest receptor density is found within the striatum: ~25fmol/mg) (Vilaro et al., 1990). On the 

other hand, the M1, M2, and M4 subtypes are the most abundant. Moreover M1/4 and M2 mAChRs 
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have opposite expression patterns with the M1/4 expression being the highest rostral brain regions 

and decreasing caudally while the M2 mAChR has the converse expression pattern (Wall et al., 

1992a, b) (Weiner et al., 1990). As such, M1/4 mAChRs are the most predominant mAChR in the 

cortex, striatum, and hippocampus and is largely thought to be localized postsynaptically. 

Conversely, M2 mAChRs are the most predominant mAChR in the thalamus, hypothalamus, 

cerebellum, and brainstem and are largely thought to be localized presynaptically (Levey, 1993; 

Levey et al., 1991a; Rouse et al., 1998).  

Pharmacology of Muscarinic Receptors 

All five muscarinic subtypes show high sequence homology among the amino acid residues, 

within transmembrane domains 3,5-7, which forms the orthosteric ACh-binding pocket. Greater 

sequence variability is observed at the N-and C-termini as well as the third intracellular loop 

which displays the largest sequence divergence and length and is often the target for subtype 

specific antibodies. As a consequence, M1-M5 mAChRs range from 460 to 589 amino acids 

(Bonner et al., 1987; Hulme et al., 2003a; Hulme et al., 2003b; Wess, 1996; Wess et al., 1996). 

Within the binding domain, a carboxylic acid group from a highly conserved aspartic acid 

residue in the third transmembrane domain of the mAChR provides the negative charge for 

binding to the positively charged ACh headgroup (Burgen, 1965; Hanin et al., 1966; Hulme, 

1990). A consequence of this high sequence homology, however, is that very few sub-type 

specific agonists and antagonists have been developed (Hulme et al., 2003a; Hulme et al., 

2003b). As such, most muscarinic agonists, such as Oxotremorine-M (Oxo-M), have similar 

affinities across subtypes (Kukkonen et al., 1996; Thomas et al., 2008) and, thus, have a broad 

array of in vivo side effects, one of the most notable being the SLUD syndrome (salivation, 

lacrimation, urination, defecation) following systemic Oxo-M application (Karanth et al., 2007). 
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 In addition to the acetylcholine orthosteric binding site, muscarinic receptor subtypes 

have a number of allosteric sites that can modulate agonist function (Digby et al., 2012). These 

mAChR allosteric binding sites are the targets of newly developed, subtype specific mAChR 

ligand such as the M1 specific agonist, VU0357017 (Digby et al., 2012). Furthermore, non-

selective mAChR antagonists ,such as Atropine, are being replaced by more selective antagonists 

such as Pirenzepine, a M1 preferring antagonist (Buckley et al., 1989; Wess et al., 1989) and 4-

diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP), a M3 preferring antagonist 

(Lambrecht et al., 1989). As their selectivity description suggests, none of the currently available 

muscarinic antagonists are highly selective with most compounds only exhibiting a 10-fold 

higher affinity for the mAChR subtypes for which they are most selective. 

mAChR Subtypes Couple to Distinct G-proteins 

The importance of mAChR subtype-specific pharmacological control is further highlighted by 

the diversity of signaling cascades recruited by mAChR activation. Based on sequence 

comparison and the biochemical consequences of mAChR activation, the M1-M5 mAChR 

subtypes can be divided into two functionally distinct groups. One group includes the M2 and M4 

receptors that selectively activate Gαi/o-type G proteins that negatively coupled to adenylate 

cyclase (Migeon and Nathanson, 1994; Migeon et al., 1994; Picciotto et al., 2012). The other 

group is composed of M1, M3, and M5 receptors which show selectivity for Gαq/11 G-proteins and 

diverse PLC-mediated second messenger signaling cascades implicated in eCB biosynthesis 

(Kano et al., 2009a).        

mAChRs Exhibit Dynamic G-protein Coupling in Response to Orthosteric Activation 

In addition to these mAChR-specific signaling cascades, evidence of orthosteric agonism-

induced changes in mAChR G-protein functional coupling has also been reported. Although 10-



43 

 

fold right shifted, M1/3 mAChRs have been shown to couple to Gαs signaling (Burford and 

Nahorski, 1996; Thomas et al., 2008) and Gαi/o coupled signaling (Akam et al., 2001; Thomas et 

al., 2008) which suggests that orthosteric agonism of mAChRs can recruit noncanonical  

downstream signaling pathways. For example, M1 mAChR stimulation has been shown to 

stimulate a pertussis-toxin sensitive component of M-current inhibition (Haley et al., 2000; 

Lechner et al., 2003), PKC/Ca
2+

-independent, Gαs-dependent signaling (Migeon et al., 1994), as 

well as M1/3 mAChR recruitment of  PLA2 signaling pathways. To further add to this 

complexity, though much of the literature has focused Gαq/11-PLC coupled signaling of M1/3 

mAChRs some in vitro experiments results suggest that brief high dose orthosteric activation of 

M1/3 mAChRs also induces PLD activity in a dose- (Sandmann and Wurtman, 1990) and time-

dependent manner which, over time, leads to PLD activity desensitization (~30 minutes) and the 

concomitant sensitization of PLC activity (McKenzie et al., 1992b; Schmidt et al., 1995b).  

Given this diversity in mAChRs’ functional coupling, dissimilar secondary signaling cascades 

and their respective effectors may be recruited following orthosteric mAChR activation. This 

promiscuous signal transduction following orthosteric receptor activation is also observed in 

other G-protein families such as the calcium receptor (Rey et al 2005), as well as, the A1 

adenosine receptor (Cordeaux et al., 2000) and represents additional diversity in GPCR 

signaling.  

Gαq-coupled mAChR activation and Endocannabinoid Signaling 

One signaling cascade recruited via the activation of mAChR is that which can elicit eCB 

biosynthesis. The Alger research group (2002) was the first to demonstrate that orthosteric 

agonism of mAChR activation dose-dependently enhances eCB release. Moreover, this synthesis 

and release was found to occur via a postsynaptic mechanism, as measured by two forms of 
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eCB-mediated synaptic plasticity: RER-Ca
2+

 assisted- and RER- eCB release at hippocampal 

inhibitory synapses (Kim et al., 2002b). In subsequent experiments by additional groups, 

mAChR-driven eCB mobilization was also identified in other brain regions (namely the striatum 

and periaqueductal gray) and determined to mediated via M1/3 mAChR signaling (Fukudome et 

al., 2004b; Ohno-Shosaku et al., 2003) and capable of mediating both in vitro AEA (van der Stelt 

et al., 2005) (Stella and Piomelli, 2001) and 2-AG synthesis (Edwards et al., 2006b) (Lau and 

Vaughan, 2008; Narushima et al., 2007a; Uchigashima et al., 2007a). Despite the collective 

evidence for mAChR-driven eCB production in a number of brain regions, two discrepancies 

have arisen: evidence for PLCβ/DAGL Ca
2+

-dependent and-independent forms of mAChR-eCB 

release within the striatum, cerebellum, and hippocampus. Though the underlying cause of this 

inconsistency is unknown, the lack of functional bias exhibited by orthosteric mAChR activation 

may be a potential reason(Hashimotodani et al., 2005) (Chiu and Castillo, 2008) (Uchigashima et 

al., 2007a). 

Muscarinic Receptor Signaling and Additional Retrograde Signaling 

Inconsistencies in eCB biosynthetic pathways recruited by mAChR activation may also be 

explained by the ability of mAChRs to recruit additional retrograde signaling pathways. 

Significant experimental evidence demonstrate that activation of mAChRs  also drive synthesis 

of the diffusible retrograde signal molecule, nitric oxide (NO) (Christopoulos and El-Fakahany, 

1999; Wang et al., 1994) and NO-mediated synaptic plasticity (Wotta et al., 1998) (Borda et al., 

1998; Makara et al., 2007). Interesting, a number of studies have also demonstrated that 

interactions between the NO and eCB systems can also attenuate synaptic transmission.  

In support of this, components of the nitric oxide synthetic pathway have been shown at CB1 

containing synapses and, similarly to Ca
2+

 and Ca
2+

-RER forms of eCB synthesis, synaptic NO 
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can be mobilized by increases in intracellular calcium (Crosby et al., 2011). Furthermore, NO as 

been shown to augment eCB mediated synaptic plasticity at both inhibitory and excitatory 

synapses within a number of brain regions such as the hypothalamus (Crosby et al., 2011) 

cerebellum (Safo and Regehr, 2005) striatum (Chepkova et al., 2009), and the hippocampus 

(Makara et al., 2007). Though the exact mechanism for this interaction is unknown, it has been 

determined that NO can act upstream (Makara et al., 2007) or downstream (Chepkova et al., 

2009; Safo and Regehr, 2005) of CB1 receptor signaling. Alternatively, NO can also directly 

regulate CB1 receptors and prevent agonist induced desensitization and internalization via the 

nitrosylation of GPCR kinases that mediate GPCR mediated internalization (Kokkola et al., 

2005; Whalen et al., 2007). Alternatively, NO can also modulate synaptic transmission, 

independent of CB1 receptors, via downstream cyclic guanosine monophosphate (cGMP)- 

mediated processes such as the activation of cGMP-dependent protein kinase G which modulates 

the transmitter release machinery (Lange et al., 2012). 

Muscarinic Receptor Signaling in the Central Amygdala 

Though cholinergic signaling at synapses within the lateral division of the central amygdala 

(CeAL) has yet to be examined, components of cholinergic system are expressed within this 

region. The CeAL receives strong cholinergic innervations from the nucleus basalis of Meynert, 

with the majority of VAChT-positive terminal fields forming perisomatic basket-like 

terminations around the soma of CeAL neurons (Heckers et al., 1994) (Schafer et al., 1998b). 

Furthermore, other cholinergic markers such as heavy ChAT and weaker AChE 

immunoreactivity are also present throughout the CeAL in non-human primates (Amaral and 

Bassett, 1989) and rodents (Saha et al., 2000) (Van der Zee and Keijser, 2011).  Pan-mAChR 

staining in the CeAL, using the M-35 mAChR antibody, also demonstrates robust mAChR 
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staining which overlaps strongly with GABAergic markers (overlap between mAChR and GAD 

is 94%) (Van der Zee and Keijser, 2011; van der Zee and Luiten, 1999. ). Additionally, subtype 

specific immunocytochemical analyses reveal that M1-M4 subtypes are robustly expressed within 

the CeAL, with M2/3/4 mAChRs displaying the greatest expression levels (Levey et al., 1993; 

Levey et al., 1991b).  

Potential for mAChR-eCB Mediated Synaptic Plasticity in the Lateral Division of the CeA 

and Its Functional Relevance 

Though yet to be explored, the presence of the cholinergic system within the CeAL alludes to the 

potential for mAChR-mediated synaptic plasticity within the CeAL circuitry. One such mAChR-

mediated synaptic plasticity is mAChR-eCB mobilization particularly given the high expression 

of PLCβ1 mRNA (Watanabe et al 1998), the potential expression of CB1 receptors within this 

region, (Matsuda et al., 1990) (Tsou et al., 1998a) (Cota, 2007b) as well as evidence of weak 

FAAH and MAGL expression (Gulyas et al., 2004a) (Yoshida et al., 2011b) within the CeAL. 

Given the critical role of the CeAL circuitry in controlling the physiological and behavioral 

responses to stress, a potential locus for this eCB-mediated effect on the stress response may lie 

at the glutamatergic synapses that drive CeAL synapses. Furthermore, given evidence of Gαq-

coupled  mAChR-mediated eCB mobilization in other brain regions (Edwards et al., 2006b; 

Kano et al., 2009a; Lau and Vaughan, 2008; Narushima et al., 2007a; Uchigashima et al., 

2007a), mAChR-eCB release at CeAL synapses may enhance eCB signaling under basal and  

even chronic stress conditions. In support of  the latter, acute immobilization and footshock 

stressors increase acetylcholine release in the prefrontal cortex and amygdala, suggesting that 

acute exposure to aversive stimuli facilitates stress-induced adaptive changes in cholinergic 

signaling (Mark et al., 1996). In additional support of stress-induced facilitation of amygdalar 

mAChR signaling, Gilad  and colleagues (1984 and 1985) also demonstrate that chronic stress 
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exposure results in adaptations in cholinergic terminals as measured by post-stress hippocampal 

synaptosomal preparations (Finkelstein et al., 1985; Gilad et al., 1985; Rabey et al., 1984). These 

experiments revealed that repetitive immobilization stress decreased cholinergic uptake while 

progressively increasing acetylcholine release. Taken together, these results suggest that stress 

exposure enhances cholinergic signaling which, in turn, act as the substrate through eCB 

synthesis is increased to buffer against adverse synaptic and subsequent physiological, 

autonomic, and behavioral changes elicited by chronic stress exposure.  

Conclusion 

The amygdala regulates the processing of autonomic, physiological, and behavioral reactions to 

aversive stimuli. Furthermore, compelling evidence in limbic brain regions such as the BLA, 

strongly implicates the eCB system in both the processing of the stress response, as well as 

neuroadaptations to chronic stress exposure. Interestingly, this eCB-mediated function remains 

largely unexplored in the CeA: the amygdala’s “output” structure that mediates the processing of 

stress-related behavior and whose activity strongly correlates with the symptomology of stress-

related psychiatric illnesses, such as post traumatic stress disorder. The CeA’s ability to 

orchestrate stress-related responses lie, in part, with CeAL glutamatergic inputs that bring 

sensory-related information from extra-CeAL stress-responsive brain regions.  

Given this critical role of excitatory CeAL afferents, it is likely that eCB-mediated 

modulation, at these terminals, significantly contributes to the eCB system’s role regulating 

stress responsivity.  In support of this, the CeAL is highly enriched with the Gαq/11-coupled 

mAChR which have been implicated in receptor-driven eCB production in other stress-

responsive brain regions. As such, the aim of my thesis work was is three-fold: 1) to explore the 

expression of the eCB system and  2) to examine mechanisms of eCB- mediated synaptic 
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plasticity at CeAL glutamatergic synapses, as well as 3) to determine whether eCB-mediated 

synaptic plasticity at CeAL glutamatergic synapses are affected by repetitive stress exposure. 
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CHAPTER II 

 

 

MATERIALS AND METHODS 

 

 

Animals  

Anatomical experiments, with the exception of the double immunofluorescence labeling (ICR 

mice, Harlan Indianapolis, IN), were carried out in wild type and CB1
-/-

 C57BL/6 mice. All 

electrophysiology experiments were performed using male ICR mice (Harlan, Indianapolis, IN) 

4-6 weeks old. Wild type, CB1
-/-

 , and FAAH
-/-

 mice, on the ICR background, were derived from 

heterozygote breeding pairs (kindly provided by Dr. C.J. Hillard, Medical College of Wisconsin, 

Milwaukee, WI). Mice were housed on a 12:12 light-dark cycle with food and water available ad 

libitum.  All studies were approved by the Vanderbilt University Institutional Animal Care and 

Use Committee as well as the Committee of the Scientific Ethics of Animal Research 

(22.1/4027/0033/2009). Furthermore, all studies were carried out in accordance with the National 

Institute of Health Guide for the Care and Use of Laboratory Animals, as well as the institutional 

guidelines of ethical code, and the Hungarian Act of Animal Care and Experimentation (1998. 

XXVIII. Section 243/1998). 

Restraint Stress Paradigm 

Mice were brought to the restraint room daily and subjected to 1 hour of restraint in modified 

50ml conical tubes, for 10 consecutive days between 0900-1100 hours. During restraint, mice 

were placed in a ventilated animal housing cabinet and immediately upon termination of the 

restrain stress, the mice were returned to their home cage and animal care facility housing room. 

Control mice were only handled during tail marking at the beginning of, and as needed 
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throughout, the 10 day stress paradigm. Following each stress episode, restraint tubes were 

washed thoroughly with soap and warm water, then rinsed with 70% ethanol. 

Drugs and Chemicals 

SR141716 (Rimonabant) was a gift from the National Institute on Mental Health Drug Supply 

Program. JZL 184 was also a gift from the National Institute on Drug Abuse Drug Supply 

Program. Oxotremorine-M (Oxo-M) and 4-DAMP were purchased from Tocris Bioscience 

(Ellisville, MO) while Pirenzepine dihydrochloride and Atropine were obtained from Sigma-

Aldrich (St. Louis, MO). PF-3845 was kindly provided by Dr. Douglas Johnson (Pfizer). 

Picrotoxin was purchased from Abcam Biochemicals (Cambridge, MA). All other drugs were 

acquired from Cayman Chemicals (Ann Arbor, MI). Drugs sparingly soluble in aqueous 

solutions were first dissolved with DMSO and, thereafter, diluted in artificial cerebral spinal 

fluid (ACSF). For experiments utilizing lipophilic drugs, the ACSF was supplemented with 

0.5g/L fatty acid-free bovine serum albumin (BSA; Sigma-Aldrich) to increase drug solubility 

and minimize nonspecific binding of lipophilic compounds. Equal amounts of DMSO and BSA 

were used in control solutions. 

Brain Slice Preparation  

Mice were anesthetized with isoflurane, then transcardially perfused with ice-cold high sucrose, 

low Na
+
-containing ACSF and sacrificed by decapitation. Following decapitation, the brain was 

removed and a 3mm coronal block of the amygdala was cut using an ice-chilled, coronal brain 

matrix. Thereafter, hemisected coronal slices (200-300µm) were made using a Leica VT1000S 

vibratome (Leica Microsystems, Bannockburn, IL) in a 1-4°C oxygenated (95% v/v O2, 5% v/v 

CO2) high sucrose, low Na
+ 

- containing ACSF comprised of (in mM): 208 sucrose, 2.5 KCl, 1.6 

NaH2PO4, 1 CaCl2∙2H2O, 4 MgCl2∙6H2O, 4 MgSO4∙7H2O, 26 NaHCO3, 1 ascorbate, 3 Na-
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pyruvate, and 20 glucose. Once cut, slices were transferred to a 32°C oxygenated recovery buffer 

composed of (in mM): 100 sucrose, 60 NaCl, 2.5 KCl, 1.4 NaH2PO4, 1.1 CaCl2∙2H2O, 3.2 

MgCl2∙6H2O, 2 MgSO4∙7H2O, 22 NaHCO3, 1 ascorbate, 3 Na-pyruvate, and 20 glucose for 20 

minutes followed by a minimum of 30 minutes in 24°C, oxygenated ACSF (in mM): 113 NaCl, 

2.5 KCl, 1.2 MgSO4∙7H2O, 1 NaH2PO4,2.5 , 2.5 CaCl2∙2H2O, 26 NaHCO3, 1 ascorbate, and 3 

Na-pyruvate, and 20 glucose. Thereafter, slices were placed in a submerged recording chamber 

where they were continuously perfused with oxygenated ACSF (30-32°C) at a flow rate of 2-3 

milliliters/minute. For all electrophysiology experiments, other than those examining 

GABAergic currents, the ACSF was supplemented with the GABAA receptor antagonist, 

pircotoxin (25-50μM), to isolate excitatory neurotransmission. To isolate eIPSCs, the ACSF was 

supplemented with AP-5 (50μM) and CNQX (20μM). 

Field Potential Recordings 

A bipolar stainless-steel stimulating electrode and a borosilicate glass recording electrode filled 

with ACSF were placed in the CeAL to elicit and record extracellular field responses (fEPSPs), 

respectively. fEPSPs were elicited at a rate of 0.05 Hz, with stimulation intensities ranging from 

~100-200µA and measured with a low resistance (2-3 MΩ) extracellular  electrode pulled with 

borosilicate glass on a Flaming-Brown Micropipette Puller (Sutter) and filled with ACSF. 

Stimulating electrode was placed medial to the recording electrode in the lateral division of the 

central amygdala (CeAL). Stable baseline fEPSPs were recorded for 20 min, followed by oxo-M 

(1µM) bath application for the indicated time period. For atropine + oxo-M (1µM) experiments, 

1µM atropine was bath applied prior to (~30 min) and during baseline acquisition, as well as 

during 1µM oxo-M application. For all experiments, the N1 was monitored online and 
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experiments that demonstrated a ≥ 20% change in N1 were discarded. Analyses measured the 

percent change of the N2, following drug application, relative to baseline. 

Whole-Cell Voltage-Clamp Recordings 

Whole-cell voltage-clamp recordings were performed on CeAL neurons easily identified visually 

by their medium-sized, spherical somata. Patch electrodes were pulled on a Flaming/Brown 

microelectrode puller (Sutter Instruments) and filled with solution containing (in mM): 120 K
+
-

gluconate, 4 NaCl, 10 HEPES, 20 KCl, 4 Mg-ATP, 0.3 Na-GTP, and 10 Na-phosphocreatine 

(pH 7.25-7.35, adjusted with KOH). For intracellular loading of the calcium chelator, BAPTA 

(Sigma-Aldrich), 20-40mM K
+
-gluconate was replaced with 20-40mM BAPTA sodium salt. For 

all experiments, access resistance (Ra) was monitored online and cells that demonstrated a >20% 

change in Ra were excluded from analysis. Additionally, a time period of ≥5 minutes, post 

break-in, was allowed for internal solution exchange and stabilization of membrane properties 

prior to initiation of experiments.  

Monosynaptic evoked excitatory postsynaptic currents (eEPSCs) were elicited via 

constant-current stimulation of local glutamatergic fibers via an ACSF-filled glass electrode 

placed ~100µm from the cell soma. All recordings were carried out at a holding potential of        

-70mV. eEPSC amplitudes were typically adjusted to 200-1200pA, with stimulation intensities 

ranging from 10-70µA.  For drug application studies, paired stimulations were elicited at a rate 

of 0.1Hz, with an interstimulus interval of 50ms, and six consecutive responses were averaged to 

generate one data point per minute. Following a five- six minute baseline, drugs of interest were 

bath applied. The magnitude of the drug effect was calculated as a percentage of averaged 

responses relative to baseline. Calculated paired-pulse ratios (PPRs) were defined as the ratio of 

the second eEPSC amplitude relative to that of the first. PPR changes in response to alterations 
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in presynaptic release probability and was compared before and after drug application or DSE 

induction. 

Induction and Quantification of DSE 

For DSE studies, responses were evoked with a single stimulation pulse delivered every 5 

seconds to generate a 50 sec- and 100 sec- epoch prior to and following DSE induction, 

respectively. To induce DSE, a depolarizing pulse (-70 to 0mV) was applied to the postsynaptic 

neuron for 2-10 seconds as specified by the experimental conditions. The maximum DSE was 

classified as the first eEPSC following the depolarizing pulse. Within each DSE trial, eEPSC 

amplitudes were normalized to the averaged baseline response and data from two DSE trials, per 

cell, were averaged for analyses.  

LTD Induction Protocol 

Stimulus induction of MP-CeAL LTD consisted of 1 seconds of 4-Hz alternating with 1 seconds 

of rest for 180 iterations (total protocol time of 6 minutes). Following LTD induction, eEPSPs 

recovered to a new baseline which was generally lower than that of the original.  

Chronic Stress Paradigm 

Daily, mice were brought into the restraint room and subjected to 1 hour of restraint in modified 

50 ml conical tubes for 10 consecutive days (between 0900-1100 hours). During the restraint 

period, mice were placed in a sound attenuating, ventilated animal housing cabinet. Upon 

termination of restraint, mice were placed in their home cage and returned to the animal care 

facility housing room. Control mice were left undisturbed in their home cages, except for tail 

marking at the beginning of the experiment. After each stress episode, plastic tubes were washed 

with soap and water, rinsed with 70% ethanol and left to air dry.  
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Statistical Analysis 

Statistical analyses were performed using GraphPad Prism 6.01. Statistical significance between 

the means of two independent groups was assessed using two-tailed paired or unpaired  t-test 

unless variance differed significantly (Bartlett’s test for equal variances),  in which case non-

parametric Mann-Whitney (U) tests were used. Statistical comparisons between two or more 

groups were performed using one or two-way analysis of variance (ANOVA). F and P values for 

ANOVA are provided above individual figures. Post hoc analyses were conducted by Dunnett’s 

or Sidak’s test as indicated in the text. F-test for equality of variances between two independent 

groups was also used as indicated in the text. Cumulative probability plots were analyzed by 

Kolmogorov-Smirnov (KS) test. Statistical significance is indicated as follows: *p<0.05, ** 

p<0.01, ***p<0.001, ****p<0.0001. Averaged data are presented as means ± S.E.M.   

Anatomical Experiments 

For in situ hybridization, immunoperoxidase labeling, and electron microscopic analyses 

anesthetized male C57BL/6 mice (n=12) were perfused transcardially with 100 ml of 4% 

paraformaldehyde dissolved in 0.1 M phosphate buffer (PB, pH: 7.4). After perfusion, the brain 

was removed from the skull, cut into blocks, and 50 µm thick coronal sections containing the 

amygdala were cut with a Leica Vibratome (Leica Microsystems, Weitzlar, Germany) and kept 

in washing buffer for further treatment. For confocal microscopy, male ICR mice (Harlan, 

Indianapolis, IN), 4 to 6 weeks old, were used. Mice were anesthetized using isoflurane and 

transcardially perfused with cold phosphate buffered solution (10ml) followed by ice-cold 20% 

formaldehyde. Brains were then removed, postfixed for 24 hours in the same fixative, and 

cryoprotected in 30% sucrose for 4 days. 40µm coronal sections of the amygdala were cut on a 
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cryostat (Leica, CM 3050 S) and stored in an anti-freeze solution (0.1M phosphate buffer, 

ethylene glycol, and sucrose), at -20°C, before fluorescent immunohistochemical staining. 

 Non-radioactive free-floating in situ hybridization was carried out following the protocol 

as previously described in detail (Peterfi et al., 2012). We prepared antisense and sense 

riboprobes against a 1170 base pair (bp) long section (from position 1967 to 3136 in the open 

reading frame) of mouse DAGLα coding sequence using the following primers: forward, 5’-TCA 

TGG AGG GGC TCA ATA AG; reverse, 5’-CTA GCG TGC CGA GAT GAC CA (Katona et 

al., 2006). The CB1 riboprobe was generated against a 738 bp long region of mouse CB1 coding 

sequence (from position 548 to 1285 in the open reading frame; forward primer, 5’-CTA ATC 

AAA GAC TGA GGT TA; reverse primer, 5’- CAC AGA GCC TCG GCA GAC GT). Free-

floating immunoperoxidase staining also followed the previously established protocol (Peterfi et 

al., 2012). The antibody (diluted 1:3000) against an internal segment of the DAGLα protein was 

described earlier (Katona et al., 2006a), and its specificity was recently confirmed in DAGLα 

knockout mouse forebrain sections (Ludanyi et al., 2011). The antibody (diluted 1:200) against 

the C-terminus of CB1 was previously described in (Fukudome et al., 2004a)) and its specificity 

has been confirmed in many studies, including the present one. The DAGL-α, MAP2, and M1 

immunohistochemistry presented in Figure 5F-H and Figure 5E were generated using the rabbit 

anti-DAGLα polyclonal antibody (1:500), the mouse anti-MAP2 monoclonal antibody obtained 

from Millipore (1:2000), and the rabbit anti-M1 receptor polyclonal antibody purchased from 

Alamone labs Ltd. (1:200).  Thenceforth, brain sections were washed in 3 changes of tris-

buffered saline (TBS), incubated in 10mM sodium citrate (pH=9; 80°C) for 30 minutes, followed 

by (3x10 min) TBS washes. Subsequently, slices were incubated in TBS+ (TBS supplemented 

with 4% horse serum and 0.2% Triton X-100) for 30 minutes and in primary antibody (room 
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temperature) overnight. The next day, slices were washed in TBS+ (3x10 min) and incubated 

with Alexa Fluor 546 donkey anti-rabbit IgG (Life Technologies, 1:1000) and DyLight 488 

donkey anti-mouse IgG (Jackson ImmunoResearch, 1:500) for 2.5 hours at room temperature. 

Stained slices were then washed using TBS (3x10 min), mounted unto slides with 0.15% gelatin 

solution, and imaged with a Zeiss LSM 710 confocal microscope. Images were analyzed with 

Zeiss LSM Image Browser software.  

For electron microscopic analyses, after development of the immunostaining, the sections 

were treated with 0.5% OsO4, dehydrated in an ascending series of ethanol and acetonitrile 

solutions, and finally embedded into Durcupan
TM

 ACM Fluka (Sigma). During dehydration, 

sections were also treated with 1% uranyl acetate in 70% ethanol for 20 minutes. After overnight 

incubation in Durcupan, the sections were mounted onto glass slides and coverslips were sealed 

by polymerization of Durcupan at 56 ºC for 48 hours. From sections embedded in Durcupan, 

areas of interest from the CeAL were re-embedded and re-sectioned for electron microscopy. 

Sections were collected on Formvar-coated single-slot grids, stained with lead citrate, and 

examined with a Hitachi 7100 electron microscope (Hitachi High-Technologies Corporation, 

Tokyo, Japan).  
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CHAPTER III 

 

 

EXAMINATION OF ENDOCANNABINOID SIGNALING ELEMENTS AT CeAL 

GLUTAMATERGIC SYNAPSE 

 

 

Introduction 

Endocannabinoids are a class of bioactive lipids produced by neurons and glia (Kano et al., 

2009a). 2-arachidonoylglycerol (2-AG) is thought to be the primary eCB that mediates 

retrograde synaptic signaling at central synapses (Castillo et al., 2012). 2-AG is post-synaptically 

synthesized by diacylglycerol lipase  (DAGL) via calcium- and Gαq-protein-coupled receptor 

(GαqPCR)-dependent mechanisms (Hashimotodani et al., 2007; Hashimotodani et al., 2005; 

Ohno-Shosaku et al., 2005; Ohno-Shosaku et al., 2012). In contrast to 2-AG, the mechanisms 

regulating synaptic anandamide (AEA) synthesis are not well understood, but can involve 

GαqPCR activation (Chavez et al., 2010a; Grueter et al., 2010a; Huang and Woolley, 2012). 

Once produced, 2-AG and AEA are primarily degraded by monoacylglycerol lipase and fatty 

acid amide hydrolase, respectively (Cravatt et al., 2001b; Dinh et al., 2002; Long et al., 2009b), 

both of which were previously demonstrated to exhibit weak expression patterns within the 

CeAL (Gulyas et al., 2004a; Yoshida et al., 2011b). This expression, albeit weak, alludes to the 

potential of eCB mediated signaling despite earlier studies demonstrating the lack of expression 

and CB1 receptor mediated signaling in this region (Kamprath et al., 2011; Katona et al., 2001). 

In this study, we address this discrepancy by utilizing new reagents to examine the expression of 

eCB signaling elements at CeAL glutamatergic synapses. Subsequently, we also examine 
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whether these signaling elements mediate eCB-mediated synaptic plasticity of CeAL 

glutamatergic neurotransmission. 

Results 

Localization of CB1 Receptors in the CeAL 

Although prior studies suggested a negligible role of eCBs in the modulation of CeA synaptic 

signaling (Katona et al., 2001), our in situ hybridization studies revealed a detectable CB1 

receptor (CB1) in situ signal within the CeAL and strong expression in the basolateral amygdala 

(BLA) of wild-type, but not CB1 knockout (KO; CB1
-/-

), mice (Figure 8A-C). The presence of 

CB1 mRNA in the majority of BLA neurons suggests that BLA-CeAL glutamatergic terminals 

may express CB1 protein (Figure 8C). If this were true, we would expect to see CB1 

immunoreactivity in the CeAL, in spite of its low CB1 in situ signal, as CB1 receptors are 

preferentially targeted to presynaptic elements (Fukudome et al., 2004b; Kawamura et al., 2006). 

To test this hypothesis, we employed a CB1 antibody previously used to localize CB1 receptors 

on excitatory terminals in other brain regions (Uchigashima et al., 2007c) (Yoshida et al., 

2011a). Using this antibody, CB1 receptors were detected at high levels in both the CeAL and 

CeAM of wild type, but not CB1
-/-

 mice (Figure 8D-F). Additionally, electron microscopic (EM) 

examinations revealed CB1 receptor expression in the majority of presynaptic boutons forming 

asymmetric synapses onto dendritic shafts and spines within the CeAL (Figure 8G1-2 and I). 
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Figure 4. CB1 Receptors are Present on Excitatory Terminals in the CeAL.  

(A) In situ hybridization reveals the presence of CB1 mRNA in both the CeA and the BLA of 

wild type mice. (B) The specificity of the riboprobe is confirmed by using CB1
-/-

 animals. (C) 

The very high levels of CB1 mRNA observed in a few scattered neurons in the BLA likely 

correspond to GABAergic interneurons. The vast majority of BLA neurons express moderate 

levels of CB1 mRNA. In contrast, CB1 mRNA expression in the CeA was only slightly above 

detection threshold. (D-E) Immunoperoxidase staining demonstrates the presence of the CB1 

protein in both the CeA and BLA, which was confirmed in our CB1
-/-

 samples. (F) Higher 

magnification light micrographs reveal the dense CB1 labeling in the neuropil throughout the 

CeAL. Asterisks depict CB1-immunonegative cell bodies, whereas CB1-immunopositive 

labeling appears as punctate staining indicating the compartmentalized distribution of the 

protein. (G1-G2) Serial electron micrographs illustrate the selective presynaptic accumulation of 

CB1 in boutons (b+), which form mainly asymmetric (flanked by black arrowheads) and 

sometimes symmetric (white arrowheads) synapses with dendrites (d) and spine heads (s). CB1 

staining remained under detection threshold in a few axon terminals (b-), which highlights 

quantitative differences in CB1 expression between terminal types innervating the CeAL.  (H-I) 

The anatomical nature of the synapse type is illustrated at higher magnification. Scale bars: A, B, 

D, E are 200 µm; C is 50 µm; F is 20 µm; G1, G2, H, I are 100 nm. 
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Localization of DAGLα Expression in the CeAL 

Considering that 2-AG is one of the primary ligands mediating eCB retrograde signaling at 

central synapses, we next examined the expression of the 2-AG synthesizing enzyme, DAGL, 

in the CeA. In situ hybridization confirmed the expression of DAGL mRNA in both the BLA 

and CeAL (Figure 5A-C). Subsequent immunohistochemical analyses, using an anti-DAGL 

antibody whose specificity in the forebrain has been confirmed in DAGL
-/-

 mice (Ludanyi et 

al., 2011), uncovered punctate staining patterns throughout the CeAL (Figure 5D-E). 

Furthermore, double immunofluorescence labeling and subsequent confocal microscopy revealed 

DAGL-positive puncta in close apposition to and a few immunoreactive overlap with MAP2 

labeled dendritic shafts in the CeAL (Figure 5F-H). These results suggest that DAGLα is 

localized within and outside of dendrites either in pre- or postsynaptic compartments. To 

differentiate between these two possibilities, we performed immunoperoxidase labeling and 

utilized EM to visualize DAGL at the synaptic level. We found that DAGL was indeed 

localized postsynaptically in the majority of dendritic shafts and spine heads forming asymmetric 

synapses in the CeAL (Figure 5I-L). Taken together these data conclusively demonstrate the 

presence of eCB signaling elements at glutamatergic synapses in the CeAL. 
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Figure 5. DAGLα is a Postsynaptic Enzyme in the CeAL. 

(A-B) In situ hybridization demonstrates the expression of DAGLα mRNA in both the BLA and 

CeA. AS and S depicts experiments performed by antisense and sense riboprobes, respectively. 

(C) Expression of DAGLα mRNA is notably higher in the BLA compared to the CeA. (D) 

However, at the protein level there is less difference between the two regions. (E) High 

magnification of the boxed region in D reveals that granular DAGLα-immunoreactivity (labeled 

by arrows) is present in the neuropil among cell bodies. (F-H) Confocal immunofluorescence 

analysis shows that DAGLα-immunoreactivity (red puncta indicated by white arrows) outlines 

MAP2-positive dendritic profiles (green). Asterisks denote CeAL cell bodies. (I-L) Electron 

micrographs provide ample evidence for the postsynaptic localization of DAGLα. 

Immunoreactivity represented by the black diaminobenzidine (DAB) precipitate was often 

present in dendrites (d+) and spine heads (s+), but never in boutons (b). Black arrowheads 

indicate the edge of the asymmetric synapses. Black arrowheads highlight asymmetric synapses. 

Scale bars: A-B are 200 µm; C-D are 50 µm; E is 20 µm; F is 5µm; G-H are 2.5µm; I-L are 100 

nm. 
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CB1 Receptors Modulate Glutamate Release onto CeAL Neurons 

To determine the functional significance of CB1 receptor expression in the CeAL, we conducted 

whole-cell voltage-clamp electrophysiological recordings in the presence of saturating 

concentrations of the GABAA receptor antagonist, picrotoxin (25-50M), to isolate 

glutamatergic currents. Consistent with the localization of CB1 receptors on excitatory axon 

terminals in the CeAL, we found that activation of CB1 receptors with the cannabinoid agonist 

,CP55940 (5M), significantly depressed eEPSC amplitude to 52±4% of baseline in CeAL 

neurons from wild-type (WT) mice (WT 52.47±3.94% vs. CB1
-/-  

114±8%; t(8)=7.18, p<0.0001; 

Figure 6A-B). No significant effect on PPR was observed following 5M CP55940 application 

to WT or CB1
-/-

 cells (normalized PPR: WT 1.06±0.06 vs. CB1
-/-

 0.89±0.06; t(8)=2, p=0.08; 

Figure 6C). Additional analyses of spontaneous EPSCs (sEPSCs) revealed a selective effect of 

5M CP55940 to reduce sEPSC frequency (vehicle 4.35±0.92 Hz vs. CP55940 1.59±0.27 Hz; 

U=50.00, p=0.008).  

Although the selective effect of CP55940 on frequency, but not amplitude, of sEPSCs 

suggests a presynaptic locus of action, the lack of effect on PPR was surprising. Therefore, we 

evaluated the effects of 2-AG-ether, a metabolically stable analog of 2-AG (Laine et al., 2002), 

to better elucidate the mechanisms by which eCB signaling with an endogenous (Hanus et al., 

2001a), rather than a synthetic, agonist modulates glutamate release. Indeed, 50 M 2-AG-ether 

caused robust synaptic depression (baseline 100.3±1.2% vs. 2-AG-ether 49.1±9.5%; t(3)=6.13, 

p<0.01 by paired t-test; Figure 6G ) that was associated with a significant increase in PPR 

(t(3)=3.9, p<0.05 by paired t-test; Figure 6G inset). Collectively, these data indicate that CB1 

function to suppress glutamate release onto CeAL neurons.  
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Since CB1 receptors in other brain regions robustly modulate GABAergic transmission 

(Castillo et al., 2012; Kano et al., 2009a), we also tested the effects of CP55940 (5M) on 

GABAergic currents in the CeAL recorded in the presence of CNQX (20M) and AP-5 (50M). 

Generally consistent with our previous report (Katona et al., 2001), and our electron microscopic 

observation of only a few CeAL GABAergic terminals being CB1-positive (Figure 4G1-G2 and 

H), the effects on GABAergic transmission were small and inconsistent (baseline 100.0±0.0% 

vs. 76.19.3%; t(7)=2.6, p<0.05; Figure 6H). When compared to the effects of CP55940 (5M) 

on glutamatergic transmission (from CeAL cells depicted in Fig. 6B), CP55940-induced 

depression of GABAergic transmission showed a significantly greater variance compared to 

effects on glutamate release (F-test to compare variances, p<0.05; Figure 6I). These data suggest 

that the major role of CB1 signaling in the CeAL is to broadly regulate glutamatergic 

transmission, while synapse- or cell type-specific modulation of GABAergic transmission may 

also occur. 
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Figure 6. Activation of CB1 Receptors Modulate Glutamate Release in the CeAL. 

(A-C) CP55940 depresses eEPSC amplitude in WT but not CB1
-/-

 mice, but does not affect PPR. 

(D-F) CP55940 reduces sEPSC frequency (E) but not amplitude (F). (G) 2-AG-ether depresses 

eEPSC amplitude and increases PPR (inset). (H) CP55940 decreases eIPSC amplitude. (I) 

Comparison of CP55940 effects on eIPSC and eEPSC amplitude. *p<0.05, **p<0.01. 

Calibration scale bars in (A): 200pA, 25ms. Calibration scale bars for sEPSCs (D) at lower 

magnification (10pA, 100ms) and higher magnification (10pA, 20ms). All other scale bars: 

10ms, 100pA. Data presented as mean ± SEM.  
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Figure 6 continued (contd.). CeAL Glutamatergic Synapses Exhibit DSE. 

(J-L) Effects of postsynaptic depolarization on eEPSC amplitude; DSE in representative cell (J-

K), and summary data of DSE after 2, 5 or 10 seconds of postsynaptic depolarization relative to 

corresponding baseline (L). (M-N) Effects of SR141716 on DSE after 10- second depolarization. 

(O) Summary data showing effects of SR141716, CB1 deletion, THL, and intracellular BAPTA 

loading on DSE magnitude relative to control 10 second DSE. Control group in (O) represents 

the same data set as 10 second depolarization in (L). *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001. Numbers of tested cells are indicated in bars for this and subsequent figures. All 

scale bars: 10ms, 100pA. Data presented as mean ± SEM. Also see Figure 7. 
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Figure 7. Effects of intracellular BAPTA on baseline glutamatergic transmission in the 

CeAL, related to Figure 6. 

Intracellular BAPTA does not affect CeAL spontaneous excitatory postsynaptic current (sEPSC) 

(A) frequency or (B) amplitude. (Frequency: control 4.350.9 Hz vs. BAPTA 4.11.0 Hz, 

p>0.05; Figure 7A); (Amplitude: control 21.01.0 pA vs. BAPTA 25.12.6 pA, p>0.05; Figure 

7B). Statistical comparison performed using unpaired t-test. 
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Ca
2+

-Driven eCB Release in the CeAL 

We next examined whether CeAL glutamatergic synapses express depolarization-induced 

suppression of excitation (DSE), a Ca
2+

-DAGL-dependent form of 2-AG-mediated eCB 

retrograde signaling (Ohno-Shosaku et al., 2012). Two-way ANOVA revealed a significant 

effect of DSE (depolarization) and postsynaptic depolarization duration (Figure 6J-L) on eEPSC 

amplitude. Post-hoc Sidak’s analysis revealed depolarization of CeAL neurons from   -70 to 0 

mV resulted in a transient depression of eEPSC amplitude that was significantly different from 

corresponding baseline values after 5 (p<0.001) and 10 seconds (p<0.001) of postsynaptic 

depolarization. One-way ANOVA followed by Dunnett’s post hoc analysis revealed that CeAL 

10 second DSE was blocked by the CB1 receptor antagonist, SR141716 (control 77.65±2.06% 

vs. 5M SR141716 95.84±4.84%, p<0.001; Figure 6M-O) and absent in CB1
-/-

 mice (CB1
-/-

 

102.5±3.84%, p<0.0001; Figure 6O). DSE was also blocked by the DAGL inhibitor THL (10M 

THL 91.20±2.13%, p<0.05; Figure 6O) and postsynaptic calcium chelation with 40mM BAPTA 

(BAPTA 92.07±1.46%, p<0.05; Figure 6O), indicating that Ca
2+

-driven short-term eCB 

mobilization at CeAL glutamatergic synapses is mediated by 2-AG activation of CB1 receptors. 

Intracellular loading of BAPTA alone did not affect frequency or amplitude of eEPSCs in CeAL 

neurons (control frequency 4.350.9 Hz vs. BAPTA 4.11.0 Hz, p>0.05; control amplitude 

21.01.0 pA vs. BAPTA 25.12.6, p>0.05; Figure 7).  

Discussion 

eCB Signaling Components are Present at CeAL Glutamatergic Synapses 

Our results demonstrate DAGLα and CB1 receptor are expressed and functional at CeAL 

glutamatergic synapses. DAGL protein expression is observed in the CeAL at both the mRNA 

and protein level, with ultrastructural studies demonstrating clear localization within 
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postsynaptic dendritic spine heads and dendritic shafts adjacent to asymmetric synapses. This 

localization of DAGLα to dendritic spine heads and shafts is consistent with earlier studies 

showing: 1) DAGLα present, but not forming perisomatic clustering, within the CeA (Yoshida et 

al., 2011b) and 2) a similar pattern of DAGLα synaptic localization at CB1-expressing excitatory 

terminals in other brain regions such as the hippocampus, cerebellum, and striatum 

(Uchigashima et al., 2007c; Yoshida et al., 2011b). 

In contrast to DAGLα, our high-resolution analyses showed CB1 localized to presynaptic 

terminals forming asymmetric synapses onto postsynaptic dendrites and dendritic spines (Kano 

et al., 2009b). Earlier expression studies demonstrate CB1 present within the CeA (Matsuda et 

al., 1990; Tsou et al., 1998a), yet later studies argued against CB1 receptor expression in this 

region (Kamprath et al., 2011; Katona et al., 2001). As such, we utilized an antibody previously 

used to detect CB1 expression at glutamatergic synapses to conclusively address this discrepancy 

(see (Katona et al., 2006a; Uchigashima et al., 2007b). These experimental results 

unambiguously demonstrate the presence of CB1 protein at excitatory CeAL terminals. 

We hypothesize that the lack of CB1 detection in earlier studies arose as a result of two 

reasons. The first is potential qualitative differences in CB1 characteristics at glutamatergic and 

GABAergic terminals that differently affect CB1 antigen recognition. Such differences may 

include differential masking by anchoring proteins such as CB1-receptor interacting protein 

(CRIP) (Niehaus et al., 2007) or distinct intracellular conformations that result in disparate levels 

of access to the CB1 antibody recognition site at the two terminals. In support of this hypothesis, 

antibodies that successfully detected CB1 receptor expression within the CeA targeted the N 

termini of CB1 (Matsuda et al., 1990; Tsou et al., 1998a) while antibodies that failed to detect 

CB1 expression above detection threshold where targeted to the C-termini, which is located 
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intracellularly (Kamprath et al., 2011; Katona et al., 2001). The antibody used in this study 

addresses this problem as it is a polyclonal antibody, thus it is a mixture of ~30 individual 

monoclonal IgGs which increases the probability of having IgGs that are able to recognize a 

broader scale of CB1 receptor conformations that perhaps include unique receptor conformations 

unique to glutamatergic terminals. If this hypothesis were true, CB1 expression on glutamatergic 

terminals of the CeAL would be above threshold using this as compared to previously utilized 

antibodies.  

Alternatively, quantitative differences in CB1 receptor expression in the CeAL may also 

underlie the lack of previous CB1 detection in this region. Immunohistological experiments in 

other brain regions have noted a difference of up to 30 fold on GABAergic terminals as 

compared to glutamatergic terminals (Kawamura et al., 2006). If this pattern of high CB1 density 

detection is true for all brain regions, CB1 levels at CeAL glutamatergic synapses may be below 

threshold in density and, thus, remained undetected by previously utilized antibodies. Given that 

we are able to successfully demonstrate CB1 expression at glutamatergic synapses, the CB1-

antibody used in this study likely has anti-CB1 IgGs in a high enough titer to be able to bind to 

the few CB1 that are expressed in this region. However, a final measurement of IgG 

concentrations, using spectrophotometry, for this and previously used CB1 antibodies would be 

needed to provide stronger support for this latter hypothesis. 

Functional CB1 Receptors are Present at CeAL Glutamatergic Synapses 

Consistent with the anatomical data, our additional analysis of eCB signaling also supports the 

presence of functional CB1 in the CeAL. We found that direct activation of CB1 reliably reduced 

eEPSC amplitude, while effects on GABAergic transmission were more variable. The greater 

CB1 sensitivity of glutamatergic as compared to GABAergic synapses is consistent with our 
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anatomical data, which shows less CB1 receptors expressed at inhibitory synapses. This data also 

explains the lack of CB1 sensitivity reported earlier (Katona et al., 2001) and is a potential 

mechanism for eCB signaling modulation of inhibitory signaling within the CeAL 

microcircuitry. 

This pattern of terminal bias in CB1 density and sensitivity, however, is inconsistent with 

that which is observed in other brain regions (Kano et al 2009). As alluded to earlier, CB1 

receptors display a higher density and greater CB1 sensitivity at inhibitory as compared to 

excitatory terminals in other regions of the amygdala (Yoshida et al 2011) and extra-amygdalar 

CB1-sensitive brain regions (Kano et al., 2009a). Utilizing a similar CB1 antibody (Fukudome et 

al., 2004b), these studies revealed CB1 receptor expression differences that ranges from 3-4 fold 

in striatum (Uchigashima et al., 2007c) to 30 fold in the hippocampus (Kawamura et al., 2006).  

Analogous to the terminal-differences in CB1 sensitivity found in our study, the difference in 

CB1 density in these brain regions corresponds with a similar disparity in the CB1 activation 

threshold for both terminal types (Tanimura et al., 2012; Tanimura et al., 2010). As such, the 

CeAL appears to be unique in its terminal preference for CB1 receptor density and sensitivity 

and, given the role of glutamatergic signaling in driving CeAL activity (Ciocchi et al., 2010), 

suggests that eCB signaling at CeAL glutamatergic terminals is positioned to strongly modulate 

central amygdala activation and, therefore, function. 

Potential Mechanisms for CB1 Mediated Synaptic Depression at CeAL Glutamatergic 

Synapses 

Consistent with a presynaptic locus of CB1 activity, 2-AG-ether and DSE both induce synaptic 

depression associated with an increase in PPR, i.e. paired pulse facilitation (PPF). This 

presynaptic locus of CB1 activity is further supported by changes in the frequency, but not 

amplitude, of sEPSCs following CP55940 (CP) bath application. However, in contrast to these 
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data, CP55940 application reduced evoked EPSCs (eEPSCs) without having an effect on PPR 

which suggests that CP-mediated inhibition of eEPSC does not occur through CB1-induced 

decreases in glutamate release probability. This result is surprising given our other data 

supporting a presynaptic locus of CB1 receptor activity in this region. Furthermore, previous 

studies have observed a presynaptic locus of CB1 agonist-mediated glutamatergic depression as 

indicated by CP-induced PPF in the extended amygdala (Puente et al., 2011a) and decreased 

coefficient of variation in the prefrontal cortex (Lafourcade et al., 2007). Traditionally, most 

experimental interrogations of exogenous CB1 agonist-mediated synaptic depression have 

utilized WIN 55212-2 (WIN), a member of the aminoalkylindole class of cannabinoid agonists 

(Howlett et al., 2002). These experiments have consistently demonstrated a presynaptic locus, 

via PPF, of CB1-inhibition of synaptic transmission (Kano et al., 2009a). As such, our CP 

mediated effects on CeAL eEPSCs is not consistent with our other data or with that of other CB1 

exogenous agonists application to eEPSCs in other brain regions.  

The inconsistency in CP-mediated effects on CeAL eEPSCs can be explained by the 

following possibilities. First, WIN 55212-2 and CP55940 are dissimilar structurally and generate 

different receptor conformations upon agonist binding (Georgieva et al., 2008), with WIN shown 

to interact with distinct residues than those targeted by classical, non-classical, and eicosanoid 

agonists (Shim and Howlett, 2006). These differences are thought to be one of the underlying 

reasons why WIN is the least restrictive of the cannabinoid agonists in its ability to activate all 

CB1-G protein subtypes (CB1-Gαi = CB1-Gαs > CB1-Gαq/11= CB1-Gαo). Conversely, CP 

demonstrates greater selectivity in CB1-G protein activation as it preferentially activates CB1-

Gαi signaling (Bonhaus et al., 1998; McIntosh et al., 2007) and thus was our agonist of choice. 

Therefore, CP55940 activation of CB1 may selectively target the synaptic release machinery 



72 

 

primarily via Gαi/o coupled mechanisms which, based on the WIN-induced pleiotropic CB1-G 

protein signaling, may manifest as a different manner of presynaptic inhibition than that 

observed with WIN or other CB1 agonists (Hudson et al., 2010b). 

One such mechanism, which serves as a second possibility for the observed 

inconsistencies, is Ca
2+

-independent attenuation of vesicle release. Though Gαi/o-coupled 

inhibition of synaptic release via Ca
2+

-dependent mechanisms, i.e. decreased [Ca
2+

]i, is well 

established (Kreitzer and Regehr, 2001) (Herlitze et al., 1996; Ohno-Shosaku et al., 2001; Wu 

and Saggau, 1995a), Ca
2+

-independent inhibition is also observed following the activation of 

Gαi/o-coupled GPCRs (Blackmer et al., 2001; Delaney et al., 2007; Silinsky, 1984). In vitro 

experiments demonstrate that this mechanism occurs via  βγ interactions with the C-terminus of 

the SNAP-25 protein which, in turn, occludes the synaptotagmin-SNAP25 interactions needed 

for calcium dependent vesicular release (Yoon et al., 2007; Zhao et al., 2010) following activity 

induced increases in [Ca
2+

]i. This alternative pathway explains receptor-mediated inhibition of 

spontaneous release events (mEPSCs) that occurs independently of evoked calcium entry in the 

peripheral and central nervous system (Silinsky, 1984; Stephens, 2009). Additionally, both Ca
2+

-

dependent and -independent forms of Gβγ signaling: 1) co-exist in the same terminal yet are 

recruited by different types of presynaptic receptors (Hamid et al., 2014) and 2) can be mobilized 

by the same GPCR localized in different brain regions (Cox et al., 2000; Wu and Saggau, 

1995b). Though the mechanisms underlying this diversity is not well understood, agonist-

induced functional selectivity of recruited effectors and regional differences in the expression of 

Gβγ subunits, respectively, are potential reasons underlying this diversity in Gαi/o-recruited Ca
2+

-

dependent and -independent vesicular release (Betke et al., 2014).  
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Likewise, noradrenergic-α2A receptor activation inhibit Ca
2+

 channels in sensory neurons 

(Dunlap and Fischbach, 1978), yet ex vivo examinations of noradrenergic-α2A receptors reveal a 

Gαi/o-coupled Gβγ/SNARE-mediated inhibition of vesicular release at CeAL excitatory terminals 

(Delaney et al., 2007). Given the lack of [Ca
2+

]i dependence on the inhibition of synaptic release, 

agonist-induced-Gβγ/SNARE interactions affected the number of presynaptic release sites (N), 

with no measurable effects of PPR. Given that these excitatory terminals are also recruited in our 

population of evoked EPSCs, the potential for CP-induced Gβγ/SNARE mediated synaptic 

inhibition, despite evidence of CP-Ca
2+ 

dependent mechanisms in other brain regions, potentially 

explains the lack of change in PPR.  

eCB Mobilization by CeAL Neurons Mediates Short-Term Synaptic Plasticity of Excitatory 

CeAL Synapses 

Consistent with our studies demonstrating eCB signaling elements at CeAL excitatory synapses 

and CB1 receptor-mediated depression of glutamatergic signaling, we found that CeAL neurons 

express prototypic 2-AG-mediated eCB signaling, i.e. DSE, mediated via a calcium-dependent, 

THL-sensitive, and CB1-dependent mechanism.  Congruent with the calcium dependency of 

eCB mobilization at central synapses (Kreitzer and Regehr, 2001), increasing CeAL postsynaptic 

depolarization time increases DSE magnitude as also observed at excitatory synapses within the 

striatum (Uchigashima et al., 2007c) and the BLA (Yoshida et al., 2011b). Though not 

significantly different from CB1
-/-

 conditions, BAPTA and THL DSE conditions exhibit non 

significant residual DSE which may reflect activity-induced residual DAGLα and Ca
2+

-

independent forms of CB1 receptor signaling (Azad et al., 2004). 
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Conclusion 

Collectively, these data support the well-established anatomical substrate for retrograde eCB 

signaling at central synapses (Katona and Freund, 2012). Furthermore, these studies adds to the 

previous demonstration of FAAH and MAGL expression in the CeAL (Gulyas et al., 2004a), 

recent demonstration of DSE in the CeAM (Kamprath et al., 2011), and tonic eCB release at 

CeAM GABAergic synapses (Roberto et al., 2010b). As discussed above, there are distinct 

differences in the density and non-classical agonist induced CB1 signaling that appear to be 

unique to the CeAL as compared to other regions that exhibit eCB mediated synaptic plasticity. 

As will be discussed in subsequent chapters, anomalous characteristics of CeAL eCB signaling 

emerges as a strong theme in our analysis of eCB mobilization mechanisms at CeAL 

glutamatergic synapses. 
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CHAPTER IV 

 

 

CeAL GLUTAMATERGIC SYNAPSES EXHIBIT SHORT-TERM PLASTICITY: ROLE 

OF MUSCARINIC RECEPTOR ACTIVATION 

 

 

Introduction 

In addition to Ca
2+

-dependent eCB-STD, pharmacological- and afferent stimulation-induced 

activation of Gαq/11-receptors also facilitate 2-AG and AEA-mediated synaptic plasticity (Kano et 

al., 2009a). These mechanisms of eCB-mediated synaptic modulations are known as: 1) calcium-

assisted receptor driven eCB release (Ca
2+

-RER) produced from the synergistic effect of 

depolarization induced [Ca
2+

]i elevation and Gαq/11-coupled receptor activation (Hashimotodani 

et al., 2005) as well as 2) Gαq/11-receptor-driven eCB release (RER) under basal Ca
2+

 conditions 

(Maejima et al., 2001)—both of which results in enhanced eCB production at central synapses 

via the mobilization of PLCβ  following Gαq/11-coupled receptor activation (Kano et al., 2009a).  

Of particular relevance to the CeAL is Gαq/11- coupled muscarinic receptors (mAChRs) 

given that the CeAL receives dense cholinergic inputs from the basal forebrain (Hecker and 

Mesulam, 1994) in addition to exhibiting high expression of Gαq/11- mAChRs, namely M1/M3 

muscarinic receptor subtypes (Levey, 1993; Roozendaal et al., 1997b; van der Zee et al., 1997) 

,as well as, other cholinergic synaptic components (Schafer et al., 1998a). As such, the substrate 

for Gαq/11–coupled mAChR mediated Ca
2+

-RER and RER are present within the CeAL. Indeed, 

other brain regions with similar expression patterns of cholinergic signaling components, such as 
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the hippocampus and striatum, exhibit mAChR-mediated enhanced eCB mobilization (Kim et 

al., 2002b; Narushima et al., 2007b; Uchigashima et al., 2007c). Furthermore, acute and chronic 

stress exposure enhances cholinergic signaling in limbic brain regions such as the hippocampus 

(Finkelstein et al., 1985; Gilad et al., 1987; Gonzalez and Pazos, 1992) and amygdala (Mark et 

al., 1996), thus increased cholinergic signaling in the CeAL may enhance eCB influence on 

CeAL functionality in the stress response.  

To determine whether mAChR-mediated forms of eCB mobilization takes place at CeAL 

glutamatergic synapses, we first examined whether Gαq/11-coupled mAChRs are expressed and 

functional in the CeAL. Subsequently, we determined whether mAChR activation can induce 

eCB mobilization in the form of Ca
2+

-assisted- and mAChR receptor-driven eCB release at 

CeAL glutamatergic synapses. 

Results 

Depolarization-dependent mACh-Receptor Driven eCB Release Occurs in the CeAL 

Following Prolonged mAChR Activation 

To determine whether activation of mAChRs drives eCB mobilization in the CeAL, we first 

sought to examine the functional effects of mAChR activation on CeAL glutamatergic 

transmission. Experimental results from CeAL field potential recordings (fEPSPs) demonstrated 

that bath application of the mAChR agonist, Oxo-M (1M), reduced the amplitude of fEPSPs to 

44.40±3.69% of baseline (baseline 100.90±1.18% vs. maximal Oxo-M-induced depression 

44.40±3.69%, p<0.0001 by paired t-test; Figure 8A), an effect that reversed following drug 

washout (baseline 100.90±1.18% vs. post Oxo-M washout 96.14±7.13%, p=0.79 by paired t-test; 

Figure 4A). To test whether this Oxo-M induced depression was mediated by mAChR activation, 

we bath applied 1M atropine, a non-selective mAChR antagonist, prior to and during Oxo-M 
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(1M) application. Atropine application completely blocked the effect of 1M Oxo-M on 

fEPSPs (baseline 100.3±0.79% vs. atropine+Oxo-M 96.47±4.38%, p=0.87 by paired t-test; 

Figure 8A). Using whole-cell recordings we found that Oxo-M caused robust depression of 

eEPSC amplitude, an effect reduced by the M1-preferring antagonist, pirenzepine (1M; 

p<0.0001) and eliminated by the M3-preferring antagonist 4-DAMP (500 nM, p<0.0001; Figure. 

8B). Oxo-M-induced synaptic depression was associated with a large increase in PPR, which 

was attenuated by pirenzepine (p<0.001) and blocked by 4-DAMP (p<0.0001; Figure 8C), 

suggesting Oxo-M induced synaptic depression is mediated by M1/M3 receptor activation and 

expressed presynaptically. Importantly, neither pirenzepine nor 4-DAMP exerted any effects on 

basal glutamatergic transmission when applied alone to control CeAL slices (Figure 9). 

Additionally, our immunofluorescence confocal microscopy data revealed a moderate expression 

of the M1 receptor subtype throughout the CeAL (Figure 8E1-E2). At high magnification, M1 

staining appears as tiny puncta closely apposed to, but not overlapping with, MAP2-positive 

dendrites and perikarya. Together, these data demonstrate the presence of functional M1/M3 

mAChRs in the CeAL.  

mAChR Activation Enhances CeAL DSE in a CB1 and M1/M3 Dependent Manner 

On account of M1/M3 mAChRs functionally present at CeAL glutamatergic synapses, we 

next evaluated the presence of mAChR-driven eCB release at excitatory synapses within the 

CeAL. It has been previously reported that DSE is effectively enhanced by the coincidental 

activation of Gαq/11-coupled receptors, such as M1/M3 receptors, via a mechanism involving Ca
2+ 

enhancement of PLCβ  activity (Hashimotodani et al., 2005; Kim et al., 2002a; Narushima et al., 

2006). Consistent with the presence of Ca
2+

-assisted Gαq/11-receptor driven eCB mobilization, 

our results revealed that pretreatment with Oxo-M (1M), for at least 30 minutes, significantly 
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enhanced 10s DSE as compared to DSE examined under control conditions (control DSE 

84.823.0% vs. Oxo-M DSE 60.72±5.76%; t(18)=4.1, p<0.001; Figure 8F and H). DSE under 

control and Oxo-M conditions were both associated with increases in PPR (p<0.05 and p<0.01 

respectively by paired t-test; Oxo-M DSE PPR is significantly greater than control DSE PPR 

p<0.05; Figure 8G). Thereafter, we investigated the concentration and postsynaptic 

depolarization-time dependency of oxo-M-mediated DSE enhancement. Two-way ANOVA 

revealed a significant effect of depolarization time (F(2,101)= 20.11, p<0.0001)  and oxo-M 

treatment (F(3,101)=6.87, p=0.0003; Figure 8H
1
) on CeAL DSE  

Since mAChR activation enhances CeAL DSE, we next investigated the mechanisms by 

which Oxo-M facilitated DSE enhancement of CeAL glutamatergic transmission. One-way 

ANOVA revealed that 1M Oxo-M-mediated DSE enhancement was attenuated in both CB1
-/-

 

CeAL cells (Oxo-M-WT 57.16±2.56% vs. Oxo-M-CB1
-/- 

87.03±3.77%, p<0.0001; Figure 8 I and 

L) and CeAL cells pretreated with 10M THL for at least 60 minutes (Oxo-M 57.16±2.56% vs. 

THL+ Oxo-M 86.08± 2.73%, p<0.0001; Figure 8I and L). These results suggest that the 

simultaneous activation of mAChRs and postsynaptic depolarization results in the facilitation of 

2-AG release at excitatory synapses within the CeAL. We next examined the muscarinic 

subtypes involved in the Oxo-M-mediated enhancement of depolarization-induced 2-AG release. 

Application of the M1- or the M3-preferring antagonists, 1μM pirenzepine or 500nM 4-DAMP 

respectively, significantly reduced the 1μM Oxo-M-dependent DSE enhancement (Oxo-M 

57.16%±2.56% vs. Oxo-M+pirenzepine 73.92±3.92%, p<0.01; Oxo-M 57.16±2.56% vs. Oxo-

M+4-DAMP 75.32±4.75%, p<0.01, Figure 8J-L). Collectively, these results suggest that both M1 

and M3 receptors play a role in the mAChR-mediated enhancement of CeAL DSE. Interestingly, 

in CB1
-/-

 mice and THL (10μM) pretreatment conditions, 10 second depolarization in the 
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presence of Oxo-M elicited a small residual DSE (CB1
-/-

 baseline 100.00.0% vs. Maximal DSE 

87.03±3.77%, THL baseline 100.0%±0.0% vs. Maximal DSE 86.08%±2.73%,  p<0.01 by paired 

t-test for each condition), suggesting possible CB1- and M1/M3- independent residual effects 

induced by depolarization in the presence of Oxo-M.  
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Figure 8. mAChRs Modulate Glutamate Release.  

(A) 1 M Oxo-M depresses fEPSP amplitude, which is blocked in the presence of atropine. (B) 

Oxo-M-induced eEPSC depression is blocked by pirenzepine and 4-DAMP pretreatment. (C) 

Oxo-M increases PPR, which is blocked by pirenzepine and 4-DAMP pretreatment. (D) 

Representative traces of Oxo-M-induced eEPSC depression under vehicle, pirenzepine and 4-

DAMP conditions. (E) Distribution of M1 receptor (red) and the dendritic marker MAP2 (green) 

in the CeAL at low magnification; higher magnification shows punctate M1 staining in close 

apposition to MAP2 positive dendritic shafts (arrows in inset) (E1; scale bar 100m, E2; bar 

5m, inset 7.5m). **p<0.01, ***p<0.001, ****p<0.0001. Scale bars: 10ms, 100pA. Data 

presented as mean ± SEM. Also see Figure 9.  
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 Figure 8 contd. mAChRs Activation Enhance CeAL DSE. 

(F) 1M Oxo-M enhances DSE induced by 10 second depolarization. (G) PPR is increased by 10 

second depolarization in both control and Oxo-M conditions. (H) Representative traces of 

control and Oxo-DSE. * p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Scale bars: 10ms, 

100pA. Data presented as mean ± SEM.  
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 Figure 8 contd. mAChRs-DSE Enhancement is CB1-and M1/M3- Receptor Dependent.  

(I) DSE in the presence of OXO-M is attenuated by THL and in CB1
-/-

 mice. (J-K) Effects of 

pirenzepine and 4-DAMP on DSE in the presence of 1M Oxo-M; grey faded lines represent 

Oxo-M only DSE condition from (I) for visual comparison purposes. (L) Summary data of the 

effects of THL, CB1 deletion, pirenzepine, and 4-DAMP on 10 second DSE in the presence of 

Oxo-M. **p<0.01, ****p<0.0001. Data presented as mean ± SEM. Also see Figure 9. 
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Figure 9. mAChR antagonists do not affect baseline glutamatergic transmission during 

prolonged drug exposure, related to Figure 8. 

Neither pirenzepine nor 4-DAMP affect fEPSPs in the CeAL.  
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Prolonged mAChR Activation Drives Ca
2+

- and DAGL-Dependent eCB Release  

Given the presence of Ca
2+

-assisted eCB release at CeAL glutamatergic synapses, we next 

examined 
 
mAChR driven endocannabinoid mobilization in the absence of depolarization, i.e., 

receptor driven eCB release (RER). However, as alluded to earlier, one potential confound of 

Oxo-M’s use is CB1- and M1/M3- independent effects of Oxo-M resulting from its high affinity 

for the largely presynaptic Gαi/o mAChRs subtypes, i.e. M2/M4 receptors. To exclude the 

possibility of the CB1-independent component of Oxo-M potentially confounding our analysis, 

we selectively evaluated CB1-dependent synaptic effects of Oxo-M by examining the effects of 

CB1 inhibition in the absence and presence of Oxo-M. We reasoned that if prolonged mAChR 

activation induces tonic eCB release and activation of CB1 that subsequently depresses 

glutamatergic transmission, bath application of a CB1 receptor antagonist should progressively 

relieve this tonic eCB inhibition and cause an apparent synaptic potentiation. Thus, this 

experimental design would allow us to isolate eCB-CB1 mediated synaptic effects induced by 

prolonged mAChR activation.  

To do this we pretreated slices with 1M Oxo-M for ≥ 60 minutes and subsequently 

performed whole-cell patch clamp experiments where, after obtaining a stable baseline, we bath 

applied 5μM SR141716 in the continued presence of 1M Oxo-M (see Figure10A for 

experimental design). Consistent with our hypothesis, SR141716 (5μM) wash-on significantly 

increased eEPSC amplitude in slices pretreated with 1M Oxo-M relative to control (no Oxo-M) 

conditions (Figure10B-D). Maximal potentiation induced by SR141716 in the presence of 

continuous Oxo-M was 143.20±6.59% compared to 113.30±4.09% under control conditions 

(p<0.001; Figure10B-D). Interestingly, unlike eCB release following brief Oxo-M application, 

continuous mAChR activation appeared to promote eCB mobilization through a THL- and a 
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Ca
2+

-dependent mechanism as pretreatment with 10M THL or 20mM intracellular BAPTA 

completely abolished SR141716-induced synaptic potentiation (p<0.0001 for each condition; 

Figure10C-E). Maximal SR141716-induced enhancement after 10M THL pretreatment (vehicle 

113.30±4.09% vs. THL + Oxo-M 107.60±7.54%, p=0.88; Figure10C-D) or 20mM BAPTA 

postsynaptic loading (vehicle 113.30±4.09% vs. BAPTA+ Oxo-M 99.25±6.10%, p=0.34; 

Figure10C-D) was not significantly different from SR141716-induced synaptic potentiation 

under control (no Oxo-M) conditions.  
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Figure 10. Persistent mAChR Activity Drives Ca2+- and DAGL-Dependent eCB Release. 

(A) Diagram of experimental design. (B-C) Representative cells and group data showing that in 

the continuous presence of Oxo-M, SR141716 causes synaptic potentiation relative to vehicle 

conditions. (C) Co-incubation of THL and Oxo-M prevents SR141716-induced synaptic 

potentiation, as does intracellular BAPTA loading. (D) Summary data showing the effects of 

SR141716 under vehicle, Oxo-M, Oxo-M+THL, and Oxo-M+BAPTA pre-treatment conditions. 

(E) Representative traces of summary data in (D). ***p<0.001, ****p<0.0001. Scale bars: 10ms, 

100pA. Data presented as mean ± SEM. 
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Discussion 

Prolonged Activation of Gαq/11-coupled mAChRs Mobilizes 2-AG to Induce Short-Term 

Depression of CeAL Glutamatergic Transmission 

These experimental results reveal that mAChR activation facilitates eCB-mediated synaptic 

depression of CeAL excitatory neurotransmission. Though other brain regions exhibit mAChR-

LTD via postsynaptic mechanisms downstream of mAChR activation (Huang and Hsu, 2010; Jo 

et al., 2010; McCoy and McMahon, 2007), our initial experimental studies uncovered a 

reversible synaptic depression following mAChR agonism. These experimental results are 

consistent with parallel examinations of inhibitory synaptic transmission (Edwards et al., 2006b; 

Hashimotodani et al., 2005) within the hippocampus as well as this and earlier studies 

demonstrating the strong expression of Gαq/11-coupled mAChRs within the CeAL (Levey et al., 

1991b; Yoshida et al., 2011b). Our subsequent experimental results also determined that mAChR 

activation for ~ 30-60 minutes, which was previously determined to cause limited M1 mAChR 

internalization and down-regulation (Thomas et al., 2009), enhances 2-AG-mediated synaptic 

modulation in the form of Ca
2+

-assisted-RER and RER at CeAL glutamatergic synapses.  

Continuous M1/M3 mAChR Activation Enhances CeAL DSE via Increased 2-AG Synthesis 

As similarly observed at striatal inhibitory synapses following the activation of Gαq/11-coupled 

mGluRs (Uchigashima et al., 2007c), examinations of Ca
2+

-RER under conditions of continuous 

mAChR activation reveals a concentration and depolarization-time dependency of CeAL DSE 

enhancement. Also consistent with other brain regions (Kano et al., 2009a), this mAChR-

enhancement of DSE is THL-sensitive, as well as M1/M3- and CB1-dependent, thus implicating 

2-AG as the eCB mobilized following prolong mAChR activation.  
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eCB-independent From of Synaptic Depression Present at CeAL Excitatory Synapses 

Under these experimental conditions, postsynaptic depolarization also generates a statistically 

significant THL insensitive, CB1- and M1/M3- independent depression of CeAL glutamatergic 

synapses potentially a consequence of depolarization induced phasic nitric oxide (NO) synthesis 

as is also observed in the hippocampus following DSE induction subsequent to mAChR 

activation (Makara et al., 2007). Through the mAChR subtype(s) involved in that study remain 

uncharacterized, previous studies have noted that M2/M4 mAChRs, also found postsynaptically 

at striatal dendritic shafts and spines (Hersch et al., 1994), couple to the activation of nitric oxide 

synthase (Waid et al., 2000; Wang et al., 1997), the biosynthetic enzyme of NO (Garthwaite and 

Boulton, 1995). Of further note, both M2/M4 mAChRs and neuronal nitric oxide synthase are 

strongly and weakly (respectively) expressed in the CeAL (Lange et al., 2012; Levey, 1993), 

thus the biosynthetic substrates for mAChR-NO synthesis and downstream modulation of 

synaptic transmission is present within the CeAL and may have been recruited under our 

experimental conditions. 

Prolonged mAChR Activation Induces a DAGL- and Ca
2+

 Mediated eCB Release at CeAL 

Glutamatergic Synapses 

In accordance with enhanced phasic 2-AG mobilization following prolonged mAChR activation, 

continuous mAChR activation (≥ 60 minutes) also enhanced tonic 2-AG release at CeAL 

glutamatergic synapses. Under these experimental conditions, our SR141716 wash-on studies 

revealed strong synaptic potentiation following CB1 blockade in slices incubated with Oxo-M, 

as compared to vehicle pretreatment conditions. This synaptic potentiation required intracellular 

calcium and was THL-sensitive, strongly suggesting that this Oxo-M-induced tonic eCB signal is 

mediated by 2-AG synthesized by the canonical calcium-DAGL-dependent pathway (Kano et al., 
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2009a). These findings are consistent with recent studies in MAGL knock-out mice, which 

suggest that 2-AG can act as a tonic eCB retrograde messenger (Pan et al., 2011).  

Mechanisms underlying mAChR-driven 2-AG Synthesis at CeAL Glutamatergic Synapses 

Collectively, these data argue that prolonged mAChR activation mobilizes 2-AG to modulate 

afferent glutamatergic transmission within the CeAL. In light of this study and previous 

examinations of Gαq/11-coupled eCB mobilization at central synapses (Hashimotodani et al., 

2005; Jung et al., 2012; Tanimura et al., 2010), it appears that M1/M3 mAChR activation results 

in the sequential recruitment of PLCβ, which produces DAG, and DAGLα ,which converts DAG 

to 2-AG, thereby facilitating eCB mediated retrograde suppression of excitation in this region. 

Our morphological studies described in Chapter 3 have shown that DAGLα is present at 

asymmetric synapses within the CeAL while earlier work by Watanabe and colleagues 

(Watanabe et al., 1998) demonstrated that PLCβ1 mRNA is also highly expressed in the CeAL 

region. Furthermore, earlier studies as well as this study have shown that Gαq/11-coupled mAChR 

subtypes are highly expressed in the CeAL (Levey et al., 1991a), thus the molecular substrate for 

mAChR-2-AG synthesis and mobilization are present at CeAL excitatory synapses; perhaps 

forming a  eCB signalosome: a focal point for the generation of a 2-AG pool specifically 

recruited under conditions of prolonged Gαq activation (Jung et al., 2012).  

Functional Implications of mAChR-mediated eCB Mobilization at CeAL Glutamatergic 

Synapses 

The CeAL receives strong cholinergic input from cells within the nucleus basalis (NB) which, as 

demonstrated by rodent models, exhibit increased firing rates following exposure to threatening 

cues (Whalen et al., 1994). Though the NB contains both cholinergic and non-cholinergic cell 

bodies (Gritti et al., 1997), stress-induced increases in ACh content in both the amygdala and 
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other NB projecting brain regions (Mark et al., 1996) lends support to increased amygdala ACh 

content as a result of threat-induced increases in the firing rate of NB cholinergic cells. A 

consequence of this increased endogenous ACh is persistent activation of Gαq/11 coupled mAChR 

which, based on our experimental results, tonically mobilize 2-AG in the form of RER. 

Alternatively, increased endogenous ACh may also provide a state in which depolarization-

induced [Ca
2+

]i, as is elicited by backpropagating action potentials in the presence of mAChR 

agonists (Nakamura et al., 2000) or NMDA receptor activation (Ohno-Shosaku et al., 2007), can 

readily facilitate phasic 2-AG attenuation of afferent input to this region. 

Conclusion 

In the present study we show, for the first time, crosstalk between the eCB and cholinergic 

systems to facilitate attenuation of CeAL excitatory transmission. Following mAChR activation, 

2-AG mediated synaptic depression in the forms of Ca
2+

 assisted- RER and RER mediated 2-AG 

signaling are observed at CeA glutamatergic afferents. Given the key role of the CeAL in 

facilitating physiological and behavioral changes in response to threat exposure (Iwata et al., 

1987; LeDoux et al., 1988a), molecular interactions between the cholinergic and eCB system 

may act as an essential substrate for eCB’s stress attenuating physiological and behavioral 

properties. However, in light of recent insight into the CeA microcircuitry (Ciocchi et al., 2010; 

Li et al., 2013), additional work will have to be undertaken to determine the cell-type specific 

effects of mAChR-2-AG mobilization on CeAL circuitry and stress-related functionality. 
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CHAPTER V 

 

 

FUNCTIONAL SEGREGATION BETWEEN DAGL-AND-Ca2+- DEPENDENT AND -

INDEPENDENT ENDOCANNABINOID MOBILIZATION AT CENTRAL AMYGDALA 

GLUTAMATERGIC SYNAPSES: CENTRAL ROLE OF TIME-DEPENDENT 

MUSCARINIC RECEPTOR ACTIVATION 

 

 

Introduction 

As discussed in Chapter 4, prolonged muscarinic receptor (mAChR) activation facilitates a Ca
2+

 

and DAGLα-dependent form of 2-AG mediated phasic and tonic depression of glutamatergic 

transmission in the CeAL. However, previous studies have also determined that acute activation 

of Gαq/11 –coupled GPCRs can induce Ca
2+

- and/or  2-AG-independent forms of CB1- synaptic 

plasticity in other brain regions such as the hippocampus (Edwards et al., 2006a; Kim et al., 

2002b; Zhang et al., 2011), dorsal raphe nucleus (Haj-Dahmane and Shen, 2005) and cerebellum 

(Maejima et al., 2001). Therefore, to fully achieve the aim of these studies it is also important to 

determine whether both acute and prolonged mAChR activation mobilize similar eCBs at CeAL 

glutamatergic synapses. To test this, we acutely activated mAChRs (for ~20 minutes) and used 

pharmacological and genetic approaches to determine whether acute mAChR activation drives 

CB1 synaptic depression. After this experimental approach, we next determined which eCB 

facilitated this form of eCB-mediated synaptic plasticity. 
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Results 

Acute mAChR-driven eCB signaling in the CeAL 

To determine whether acute application of Oxo-M can induce eCB release at CeAL 

glutamatergic synapses in the absence of depolarization, we applied Oxo-M for ~20 minutes and 

assessed eCB release during this period, using pharmacological and genetic approaches (see 

Figure 11A for experimental design). Our results revealed that Oxo-M application dose-

dependently suppressed eEPSC amplitude with maximal depression observed with 1M Oxo-M 

(baseline 99.77±0.54% vs. Oxo-M 34.61±1.36%, p<0.0001 by paired t-test; Figures 5B-D and 

K). We next explored the contribution of CB1 activation to Oxo-M-mediated synaptic 

depression. Maximal Oxo-M-mediated depression was significantly attenuated in the presence of 

the CB1 receptor antagonist SR141716 following either 0.3μM Oxo-M (Oxo-M 46.24±4.25% vs. 

Oxo-M+SR141716 59.93±2.81%; t(8)=2.69, p<0.05) or 1 M Oxo-M application (Oxo-M 

34.61±1.36% vs. Oxo-M+SR141716 53.11±2.73%; t(17)=5.98, p<0.001; See Figure11C-D and 

K).  

We also examined the effects of SR141716 on Oxo-M induced elevation in PPR and 

found that SR141716 pretreatment significantly attenuated the 1M Oxo-M-induced increase in 

PPR (p<0.0001; Figure11E). Importantly, the residual Oxo-M depression in SR141716-treated 

slices was associated with a residual increase in PPR (p<0.001; Figure11E), indicating that the 

non-CB1 component of Oxo-M-induced depression is also presynaptic in nature. Given these 

findings following the pharmacological inhibition of CB1 receptors, we next sought to confirm 

our pharmacological results using CB1
-/-

 mice. In these experiments, Oxo-M induced synaptic 

depression was significantly attenuated in CB1
-/-

 mice (WT Oxo-M 37.912.83% vs. CB1
-/-

 Oxo-

M 55.945.32%; t(12)=3.0, p<0.05; Figure11F) and the maximal 1μM Oxo-M-mediated increase 
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in PPR was also significantly attenuated in CB1
-/-

 mice (p<0.001; Figure11G). Collectively, 

these data indicate that Gαq/11-receptor driven eCB mobilization can be initiated by mAChR 

activity in the CeAL, which in turn, contributes to Oxo-M-mediated synaptic depression of 

CeAL glutamatergic transmission.  

Acute mAChR Activation Drives Ca
2+

- and DAGL-Independent eCB Release 

In light of previous studies, the roles of intracellular Ca
2+

 and DAGL in Gαq/11-receptor driven 

eCB release remain uncertain (Edwards et al., 2006a; Hashimotodani et al., 2005; Kim et al., 

2002a; Tanimura et al., 2010; Zhang et al., 2011). Therefore, we next examined the requirement 

for Ca
2+

 and DAGL activity in acute mAChR-driven eCB mobilization in the CeAL. First, we 

tested whether Oxo-M-mediated eCB release requires increases in intracellular Ca
2+ 

concentrations [Ca
2+

]i. Postsynaptic loading of the fast Ca
2+

 chelator, BAPTA (20mM), did not 

affect 1M Oxo-M-mediated synaptic depression and the maximal Oxo-M induced depression 

did not differ significantly from those observed under control conditions (p>0.05; Figure 11H 

and 11K). Similarly, THL pretreatment (10M, ≥60 minutes) did not inhibit 1 M Oxo-M-

mediated depression of eEPSC amplitude (p>0.05; Figure11I and K). Lastly, since a recent study 

suggested cytoplasmic phospholipase A2 (cPLA2) may facilitate 2-AG synaptic signaling in the 

cerebellum (Wang et al., 2012) and M1 mAChR orthosteric agonism has also been shown to 

recruit cPLA2 -mediated signaling (Liu et al., 2006). As such, we tested the involvement of 

cPLA2 in Oxo-M-mediated synaptic depression as an alternate mechanism by which mAChR 

activation could release 2-AG. However, the cPLA2 inhibitor, AACOCF3 (10M), did not 

significantly affect Oxo-M-mediated synaptic depression (p>0.05; Figure11J and K). These data 

suggest that acute mAChR-driven eCB release within the CeAL occurs independently of 

increased [Ca
2+

]i, DAGL, and cPLA2 activity—indicative of a 2-AG-independent synaptic 
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depression at CeAL glutamatergic synapses. Collectively, these data suggest a possible time-

dependent switch from a BAPTA- and THL-insensitive to a BAPTA- and THL-sensitive 

mAChR-receptor-driven eCB release mechanism following mAChR stimulation at CeAL 

glutamatergic synapses. 
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Figure 11. Acute mAChR Activity Drives Ca2+- and DAGL-Independent eCB Release. 

(A) Diagram of experimental design. (B-D) Oxo-M induced eEPSC depression is partially 

blocked by SR141716 at 0.3M and 1 M Oxo-M conditions. (E) 1 M Oxo-M-induced 

increase in PPR is attenuated by SR141716; residual depression in the presence of SR141716 is 

associated with a residual increase in PPR. (F) 1M Oxo-M induced eEPSC depression is 

attenuated in CB1
-/-

 mice. (G) The increase in PPR after Oxo-M application is attenuated in CB1
-

/-
 mice. (H-K) Effects of intracellular 40mM BAPTA .*p<0.05, ***p<0.001, ****p<0.0001. 

Scale bars: 10ms, 100pA. Data presented as mean ± SEM.  
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Figure 11 contd. Acute mAChR Activity Drives Ca2+- and DAGL-Independent eCB 

Release. 

(H), THL (I), and the PLA2 inhibitor AACOCF3 (J), on 1M Oxo-M-induced eEPSC 

depression. (K) Bar graph and representative traces of summary data depicting the effects of 

SR141716, THL, BAPTA, and AACOCF3 on 1M Oxo-M-mediated maximal eEPSC 

depression. ****p<0.0001. Scale bars: 10ms, 100pA. Data presented as mean ± SEM. 
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Acute mAChR Activation Drives Synaptic AEA Release  

Given that acute mAChR activation promotes a 2-AG independent form of CB1-mediated 

synaptic depression at CeAL glutamatergic synapses, we next assessed whether the other major 

eCB in the CNS, AEA, was mediated this depression. Several studies have indicated that 

pharmacological or afferent stimulation-induced activation of Gαq/11-coupled receptors can 

mobilize AEA mediated synaptic plasticity within the amygdala (Azad et al., 2004), 

hippocampus (Chavez et al., 2010b; Huang and Woolley, 2012), and nucleus accumbens 

(Grueter et al., 2010b). Given this evidence, we next sought to investigate whether the Ca
2+

- and 

DAGL-independent acute Oxo-M-mediated synaptic depression is mediated by AEA, rather than 

2-AG, synthesis and mobilization. 

In comparison to 2AG, the biosynthetic pathway for AEA is poorly characterized (Leung 

et al., 2006), as such, assessments of AEA mediated eCB-mediated synaptic plasticity have 

largely been limited to pharmacologically and genetically inhibiting fatty acid amide hydrolase 

(FAAH) (Chavez et al., 2010b; Grueter et al., 2010b; Huang and Woolley, 2012), the primary 

catabolic enzyme of AEA (Cravatt et al., 2001c). To test the involvement of AEA in mediating 

acute Oxo-M mediated synaptic depression, we assessed the effects of 1uM Oxo-M application 

on CeAL glutamatergic transmission using mice models with global FAAH loss (FAAH
-/-

). 

These experiments revealed no differences between age-matched wildtype (WT) controls and 

FAAH
-/- 

mice (WT+0.3μM Oxo-M 53.76%±5.51% n=6 vs. FAAH
-/- 

+ 0.3μM Oxo-M 

48.25%±3.0% n=8, p>0.05, Figure 12I). Compensatory mechanisms in FAAH
-/- 

conditions could 

account for the lack of difference between the WT and FAAH-/- conditions (Merritt et al., 2008). 

To determine whether this is indeed the case, we also determined the effects of pharmacological 

FAAH inhibition on Oxo-M-mediated acute synaptic depression (see Figure 12A for 

experimental design). Pretreatment with the selective FAAH inhibitor, PF-3845 (5M), 
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attenuated Oxo-M-mediated synaptic depression at both 0.3M and 1 M Oxo-M concentrations 

(p<0.01 for each condition) (Vehicle+ 1μM Oxo-M 55.06%±0.01 n=11, PF 3845+ 1μM Oxo-M 

77.26% ±2.03%; Figure 12B-D).  

We also tested the effects of the monoacylglycerol lipase (MAGL) inhibitor, JZL-184 

(2M), on Oxo-M-induced synaptic depression to further rule out a role for 2-AG in acute Oxo-

M-mediated synaptic depression. Consistent with the lack of BAPTA and THL sensitivity, 

prolonged MAGL blockade did not significantly affect subsequent Oxo-M-mediated acute 

synaptic depression at either 0.3M or 1M Oxo-M concentration (p>0.05 for each; Figure 12B-

D). Together these data indicate that inhibiting AEA, but not 2-AG, degradation modifies acute 

Oxo-M-mediated synaptic depression, however the direction of effect was somewhat 

unexpected. Specifically, if acute Oxo-M application causes release of AEA, blocking AEA 

degradation would be expected to increase Oxo-M synaptic depression rather than decrease it. 

Furthermore, the lack of enhancement was not due to a floor effect as both maximal (1μM) and 

sub-maximal (0.3μM) concentrations of Oxo-M showed reduced efficacy in the presence of 

FAAH, but not MAGL, inhibition.  

An alternate explanation for our results is that PF-3845, but not JZL-184, occludes the 

effects of Oxo-M. If this were the case, PF-3845 would be expected to cause increased AEA and 

a CB1- dependent synaptic depression, thereby occluding subsequent AEA-mediated synaptic 

depression initiated by acute Oxo-M application. Consistent with this hypothesis, 5M PF-3845 

wash-on produced a CB1-dependent synaptic depression of glutamatergic transmission (PF-

3845+vehicle 83.31%±5.34% vs. PF-3845+SR141716 102.80%±3.91%; t(14)=2.79, p<0.05; 

Figure 12E-F). These data, combined with the lack of occlusion of acute Oxo-M-mediated 

synaptic depression by the MAGL inhibitor, JZL-184, strongly implicate AEA, rather than 2-
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AG, as the eCB ligand subserving synaptic depression induced by acute Oxo-M application. 

However, it is possible the lack of occlusion by MAGL inhibition could be due to the fact that 

JZL-184 alone did not significantly increase 2-AG content. To exclude this possibility and 

strengthen the support for an AEA-mediated process, we tested the ability of JZL-184 to cause 

synaptic depression of glutamatergic transmission. Consistent with our hypothesis, JZL-184 

produced a CB1-dependent synaptic depression of glutamatergic signaling (JZL-184+ vehicle 

74.29%±4.24% vs. JZL-184+SR141716 96.38%±2.97%; t(9)=4.1, p< 0.01; Figure 12G-H). 

Taken together, these data provide converging evidence that acute Oxo-M-mediated synaptic 

depression causes synthesis/release of AEA that acts on CB1 receptors to reduce glutamate 

release. Conversely, prolonged Oxo-M stimulation of mAChRs enhances DSE and elicits tonic 

CB1-mediated synaptic depression via the release of 2-AG through the canonical calcium-

DAGL-dependent biosynthetic pathway (Figure 18).  
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Figure 12. Acute mAChR Receptor Activity Drives Synaptic AEA Signaling.  

(A) Experimental design for B-D. (B-D) Oxo-M-induced acute synaptic depression (0.3 M and 

1 M) is partially occluded by the FAAH inhibitor PF-3845, but not the MAGL inhibitor JZL-

184; time-course for 1M Oxo-M condition shown in (B). (E-F) Effects of PF-3845 on synaptic 

depression under control or CB1 antagonist, SR141716, pretreatment conditions. (G-H) Effects 

of JZL-184 on synaptic depression under control or CB1 antagonist, SR141716, pretreatment 

conditions. (I) Diagrammatic representation of differences between acute vs. prolonged mAChR 

activation with Oxo-M. Acute Oxo-M application induces a short-lived “burst” of AEA to reduce 

afferent glutamate release, while prolonged mAChR activation causes a tonic calcium- and 

DAGL-dependent 2-AG release. (J) During prolonged mAChR activation, tonic 2-AG release 

continues and calcium-assisted mAChR-driven 2-AG release is induced by co-incident 

postsynaptic depolarization (i.e. DSE enhancement in the presence of continuous Oxo-M). (+): 

activate; AEA: anandamide; 2-AG: 2-arachidonoylglycerol; Ca++: calcium; Ca
2+

R-eCBR: 

calcium-assisted receptor driven eCB release; CB1: CB1 receptor; DAGL: diacylglycerol lipase; 

M1/3: M1/3 mAChR; PLC: phospholipase C. *p<0.05, **p<0.01. Scale bars: 10ms, 100pA. Data 

presented as mean ± SEM. Also see Figure 13. 
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Figure 12 contd. (I) Acute mAChR Receptor Activation Elicits the Same Degree of eEPSC 

Depression in WT and FAAH -/- mice.  
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Lack of Oxo-M-Mediated Acute or Tonic eCB Signaling At Excitatory Synapses of the 

Striatum 

Thus far, our data indicate that acute Oxo-M activation of mAChRs drives AEA release and 

subsequent depression of glutamatergic signaling via CB1 activation. In contrast, prolonged 

mAChR activity results in 2-AG-mediated tonic CB1 activation and enhancement of DSE. Since 

this is the first demonstration, to the best of our knowledge, of time-dependent generation of 

AEA and 2-AG following Gαq/11 GPCR activation, we wanted to examine whether this was a 

generalizable phenomenon. Therefore, we tested this phenomenon in the striatum given the 

strong morphological, hodological, and cytoarchitectural similarities between the striatum and 

the CeAL (McDonald, 1982b). Acute application of Oxo-M (1M) caused robust presynaptic 

depression in the striatum, however, this depression was not affected by SR141716 pretreatment 

(p>0.05; Figure 13A-C). Similarly, SR141716 failed to produce synaptic potentiation in the 

presence or absence of prolonged Oxo-M (1M) pre-treatment (Figure 13D). In contrast, 

prolonged Oxo-M (1M) application was able to enhance DSE relative to control conditions 

(p<0.01; Figure 13E) and this enhancement was blocked by SR141716 (p<0.0001). These data 

indicate that Oxo-M (1M) is able to enhance DSE in the striatum, but that mAChRs do not 

trigger acute AEA or tonic 2-AG release to regulate glutamatergic transmission in this region. 

Thus, mAChR-driven multimodal eCB release may not be a generalized feature of central 

synapses.  
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Figure 13. Oxo-M does not elicit acute or tonic eCB release at Excitatory Synapses of the 

dorsal lateral striatum. 

 (A-B) Acute application of Oxo-M causes synaptic depression in dorsal striatal neurons, which 

is not affected by pre-incubation with the CB1 receptor antagonist, SR141716. (C) Oxo-M 

induced eEPSC depression is associated with an increase in PPR which is not affected by 

SR141716. (D) After continuous Oxo-M incubation, SR141716 does not induce synaptic 

potentiation. Top and bottom rows are representative current traces from experiments (A) and 

(D), respectively. (E) Oxo-M enhanced DSE magnitude in dorsal striatal neurons, which is 

blocked by the CB1 antagonist, SR141716. **p<0.01, **** p<0.0001 by ANOVA followed by 

Sidak’s multiple comparisons test.   
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Discussion 

Acute mAChR Activation Mediate CB1-Dependent and -Independent Attenuation of CeAL 

Glutamatergic Transmission 

Our data indicate that acute application of Oxo-M causes a robust presynaptically-expressed  

synaptic depression that is partially mediated by CB1 activation. Similar experimental studies by 

Lau and Vaughan (2008) in the periaqueductal grey (PAG), suggest that the CB1-independent 

effect may results from direct suppression of glutamate release via activation of Gαi/o-coupled 

M2 mAChRs. In support of this, previous studies have also shown that M2 mAChRs are highly 

expressed in the CeAL(Buckley et al., 1988). Though the functional implications of partial 

mAChR-CB1 signaling are not entirely clear, cholinergic recruitment of eCB signaling may 

supplement mAChR-driven synaptic plasticity under conditions of high neuronal activity such as 

that observed for a subset of CeAL neurons following exposure to threatening cues (Ciocchi et 

al., 2010; Haubensak et al., 2010) 

In contrast to this partial mAChR-CB1 synaptic depression observed at excitatory 

synapses of the CeAL and PAG, inhibitory synapses in other brain regions such as the 

hippocampus (Edwards et al., 2006b) and the striatum (Narushima et al., 2007b; Uchigashima et 

al., 2007c) exhibit complete mAChR-CB1 mediated synaptic depression. As such, it appears that 

excitatory synapses have a decreased ability to initiate eCB-mobilization via mAChR activation, 

a claim further supported by the lack of mAChR-eCB/CB1 synaptic depression observed at 

excitatory synapses within the dl striatum in our study and similar studies performed by 

Uchigashima and colleagues (Uchigashima et al., 2007c). This difference between excitatory and 

inhibitory dl striatal synapses is not observed following acute Gαq/11-mGluR- CB1 mediated 

synaptic depression (Kreitzer and Malenka, 2005; Uchigashima et al., 2007a), thus excluding the 

possibility of generalizable differences in Gαq/11 signaling between excitatory and inhibitory 
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synapses. This synapse specific distinction may perhaps be explained by greater segregation 

between M2- and M1/M3-exclusively containing synapses for inhibitory as compared to 

excitatory synapses (Fukudome et al., 2004b). Alternatively, distinct subcellular localizations of 

postsynaptic mAChRs at excitatory synapses may result in a relatively less efficient functional 

coupling of postsynaptic mAChRs to the eCB synthesis machinery as is hypothesized, based on 

the subcellular localization of M1 mAChRs, for mAChR-eCB mobilization at striatal 

glutamatergic terminals (Uchigashima et al., 2007a). 

Acute mAChR Activation Results in a THL and Ca
2+

-insensitive CB1 Synaptic Depression 

at CeAL Glutamatergic Synapses 

Mechanistically, acute mAChR-CB1-mediated synaptic depression does not require elevations in 

intracellular calcium, is THL-insensitive, and does not require cPLA2 activity. Moreover, 

inhibition of 2-AG degradation with JZL-184 did not significantly attenuate acute Oxo-M-

mediated synaptic depression, although a trend towards attenuation was observed possibly 

resulting from partial FAAH inhibition observed in vitro and in vivo studies by the Cravatt group 

following JZL-184 treatment (Long et al., 2009a; Long et al., 2009c; Schlosburg et al., 2010). 

Collectively, these data appear to exclude 2-AG as the eCB ligand mediating the acute CB1-

dependent synaptic depression induced by short-term mAChR activation.  

Acute mAChR Activation Mobilizes Anandamide within the CeAL 

In addition to 2-AG, Gαq/11 proteins also appear to couple to AEA biosynthesis as demonstrated 

by rodent models of Gαq/11 forebrain specific deletion which exhibit decreased hippocampal 

AEA content as compared to wildtype controls (Wettschureck et al., 2006). Furthermore, 

activation of Gαq/11-coupled mGluRs in other regions of the amygdala also recruits a Ca
2+

-

independent
  
forms of AEA-synaptic depression (Azad et al., 2004), thus Ca

2+
-independent forms 
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of Gαq/11-AEA interactions may also occur within the CeAL as well. Given this evidence, we 

wondered whether the observed THL and Ca
2+

 insensitive acute mAChR synaptic depression 

was facilitated by AEA release at CeAL glutamatergic synapses.   

We found that FAAH inhibition, which on its own caused a CB1-dependent synaptic 

depression of glutamatergic transmission, partially occluded acute Oxo-M-mediated synaptic 

depression to the same degree as similar experiments performed following genetic and 

pharmacological inhibition of CB1. As such, it appears that AEA may facilitate acute mAChR 

mediated synaptic plasticity. Huang and Woolley (2012), who showed that estrogen/ Gαq/11-

mGluR1-induced depression of GABAergic transmission in the hippocampus was occluded by 

FAAH inhibition, but not MAGL inhibition, also reached similar conclusions (Huang and 

Woolley, 2012). Given that PF 3845 application alone causes a CB1-dependent synaptic 

depression to the same degree as that which is observed in our occlusion studies, it appears that 

continuous FAAH inhibition may maximize the AEA synthetic capacity of CeAL cells thereby 

excluding AEA metabolites from contributing to the recycling, synthesis, and release of new 

AEA (Placzek et al., 2008). Thus, under these conditions, further Gαq/11-mAChR mediated AEA 

synthesis would be occluded as is observed under our experimental conditions. In support of this, 

in vitro studies by McFarland and colleagues (2006) have demonstrated that the AEA 

metabolites, arachidonic acid and ethanolamine, accumulate in lipid rafts in a FAAH dependent 

manner (Day et al., 2001) and this act as microdomains for AEA re-synthesis from its 

metabolites (McFarland et al., 2004; McFarland et al., 2006).   

Potential Mechanism Underlying Time-Dependent Dissociation of Multimodal eCB 

Signaling 

Previous studies have demonstrated that cells within the same brain regions can produce both 

AEA and 2-AG that act as retrograde eCBs signals (Huang and Woolley, 2012; Kim and Alger, 
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2010; Lerner and Kreitzer, 2012; Mathur et al., 2013; Puente et al., 2011b). Similarly, several 

studies have also demonstrated that activation of Gαq/11-coupled receptors can induce 2-AG or 

AEA release in several brain regions (Chavez et al., 2010a; Grueter et al., 2010a; Hashimotodani 

et al., 2013; Lerner and Kreitzer, 2012; Maccarrone et al., 2008a). However, to the best of our 

knowledge, our data are the first to provide experimental evidence that AEA and 2-AG can be 

released in response to activation of the same Gαq/11-coupled receptor depending only on the 

duration of Gαq/11-receptor stimulation. Specifically, acute mAChR activation causes short-lived 

AEA-mediated synaptic depression, while as discussed in Chapter 4, prolonged mAChR 

stimulation causes 2-AG-mediated phasic and tonic depression of CeAL glutamatergic 

transmission. Thus, in CeAL neurons, mAChR stimulation can initiate multimodal eCB signaling 

depending only on the duration (e.g., minutes or hours) of mAChR Gαq/11-receptor stimulation. 

The mechanistic basis for this temporal “switch” in eCB signaling the CeAL remains to be 

determined, but may likely be related to time-dependent differences in the coupling of mAChRs 

to distinct signaling pathways important for AEA and 2-AG synthesis (Mangoura et al., 1995; 

McKenzie et al., 1992a; Schmidt et al., 1995a) or the functional inhibition of 2-AG biosynthesis 

via AEA-mediated suppression of Gαq/11 –glutathione mediated 2-AG biosynthesis, as is 

observed in the ventral striatum (Cristino et al., 2006; Maccarrone et al., 2008b). However, clear 

delineation of the biosynthetic pathway for synaptic AEA synthesis and the development of 

pharmacological tools to probe these claims system will be required to conclusively assign AEA 

as the eCB ligand mediating acute Oxo-M driven synaptic depression.   

Functional Implications of Time-Dependent AEA and 2-AG Recruitment at CeAL 

Glutamatergic Synapses   

Recent studies have begun to highlight the dissociable roles of AEA and 2-AG signaling at 

central synapses. For example, in the bed nucleus of the stria terminalis, AEA mediates long-
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term depression (LTD), while 2-AG mediates short-term depression (STD) in the form of DSE 

(Puente et al., 2011b). Furthermore, different forms of associative neural activity can elicit both 

AEA- and 2-AG-mediated LTD (Lerner and Kreitzer, 2012) at excitatory synapses of the 

striatum. More recently, inhibitory synapses in the striatum have also been shown to release 

AEA and 2-AG in a synapse specific and state-dependent manner (Mathur et al., 2013). Thus, 

AEA and 2-AG appear to not be “redundant” eCB signaling molecules but, rather, rely on 

distinct duration-, activity-, and synapse-dependent mechanisms for biosynthesis and release. In 

support of the non-overlapping mechanisms for AEA and 2-AG synaptic mobilization, both 

eCBs have distinct subcellular localizations of molecular pathways relevant for their synthesis 

and degradation which may provide the anatomical substrate for AEA and 2-AG to be produced 

and released from defined cellular compartments in response to precisely timed stimuli.  

Furthermore, more recent work has begun to shed light on the functional relevance for these 

largely non-overlapping characteristics of AEA and 2-AG. Work by our group (2005) amongst 

others have revealed that both AEA and 2-AG amygdalar content are differentially regulated 

(decreased and increased, respectively) by chronic stress exposure. Furthermore, additional 

evidence strongly suggests that these differential changes in AEA and 2-AG play distinct roles in 

the physiological and behavioral adaptations to chronic homotypic stress exposure (Hill et al., 

2010c; Patel et al., 2005d). Given the enhancing effects of acute and chronic stress exposure on 

acetylcholine synaptic release and content (Das et al., 2000; Finkelstein et al., 1985; Gilad et al., 

1987; Mark et al., 1996), chronic stress may also enhance amygdalar acetylcholine content and, 

in a time dependent manner, recruit distinct eCBs to facilitate CeAL mediated adaptations of 

physiological and behavioral responses to chronic homotypic stress exposure. However, 

additional work will have to be carried out to determine: 1) whether CeAL acetylcholine content 
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changes in response to chronic stressors of diverse duration and saliency and 2) the impact of 

inhibiting CeAL muscarinic signaling on measures of stress response adaptations. 

Conclusion 

Our acute mAChR experiments reveal a partial CB1 synaptic depression at CeAL glutamatergic 

synapses that appears to be mediated by AEA mobilization which is in contrast to the eCB 

mobilized following prolonged mAChR activation at these synapses. As such, it appears that 

mAChR activation causes a time-dependent switch in coupling to AEA and 2-AG release, a 

mechanism that appears to be unique to excitatory synapses of the CeAL. Though shown to be 

mediated via afferent activity dependent mechanisms, other brain regions have also demonstrated 

that the same cell types can mobilize both AEA and 2-AG in response to different stimulation 

profiles. Here we add to this eCB signaling diversity by demonstrating time dependent-

dissociated mobilization of AEA and 2-AG signaling in response to mAChR activation. 

Continued investigation of multimodal eCB signaling could provide insight into the activity-

dependent mechanisms that modulate synaptic efficacy.  
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CHAPTER VI 

 

 

EFFECTS OF CHRONIC RESTRAINT STRESS ON ENDOCANNABINOID 

SIGNALING AT CeAL GLUTAMATERGIC SYNAPSES 

 

 

Introduction 

Stress initiates a collection of adaptive processes that engages physiological, neuroendocrine, 

and behavioral responses elicited to allow an organism to cope with imminent threat (Herman, 

2013; LeDoux, 2014). However, when these mechanisms are persistently recruited the adaptive 

benefits of the acute stress response diminishes as prolonged or cumulative stress exposure 

enlists deleterious changes, ranging from structural (Vyas et al., 2002) to behavioral (Hill et al., 

2011b; Zhong et al., 2014) that often preclude normal function. Accordingly, chronic exposure to 

psychosocial stress is a major risk factor for the development of stress-related psychiatric illness, 

such as post-traumatic stress disorder (PTSD) (Jovanovic and Ressler, 2010). In rodent models, 

chronic psychosocial stressors recapitulate many of the biochemical, structural, and behavioral 

aspects of stress-related psychiatric disorders (Pittenger and Duman, 2008). Thus, parallel studies 

of chronic stress exposure in both rodent models and humans hold significant translational 

advantages for understanding the pathophysiology of and developing critical treatment 

paradigms for stress-related psychiatric disorders.  

Such studies have identified the eCB system, an important regulator of stress responsivity 

(Hill et al., 2010c), as a promising target for the treatment of chronic-stress associated 
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psychiatric illnesses (Fraser, 2009; Leweke et al., 2012). In support of this, genetic (Haller et al., 

2002; Haller et al., 2004b; Hill et al., 2011a; Kamprath et al., 2006b; Marsicano et al., 2002) or 

pharmacological disruption (Hill et al., 2009b; Patel et al., 2004; Steiner et al., 2008c; Varga et 

al., 1995; Wade et al., 2006) of eCB signaling in humans and rodent models precipitates 

phenotypic states similar to those elicited by chronic stress exposure (Christensen et al., 2007; 

Hill et al., 2009d; Moreira et al., 2009). Furthermore, an attractive quality of the eCB system is 

its role in facilitating stress adaptations: a progressive decrease in the recruitment of stress 

responses to limit the deleterious actions that accompany prolonged recruitment of the stress 

response (Herman, 2013). Significant data suggests that the eCB system’s highly dynamic nature 

produces temporally and anatomically distinct changes in eCB signaling components within 

stress-regulating brain regions following exposure to repetitive stress (Hill et al., 2010c). These 

changes, in turn, are thought to be critical for the habituation of the stress response to the 

aversive characteristics of threatening stimuli (Kamprath et al., 2011).    

In human studies, structural changes of neurons within the amygdala as well as increased 

amygdalar activity are associated with PTSD pathology (Price and Drevets, 2010; Shin and 

Liberzon, 2010)—phenotypic states that are also recapitulated in rodent models of chronic stress 

(Vyas et al., 2002; Vyas et al., 2004). Given these stress-induced changes, the amygdala is 

thought to act as a key anatomical substrate in the pathophysiology of stress-related psychiatric 

disorders. In light of this, more recent studies have begun to focus on the functional intersections 

between the amygdala and the eCB system in an effort to determine whether eCB-related 

signaling in this region shapes stress-related pathologies. In doing so, most experimental 

attentions have focused on the BLA which demonstrate changes in both eCB content (i.e. 

increases and decreases in 2-AG and AEA, respectively) (Patel et al., 2005d) and eCB- mediated 
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short- and long-term synaptic plasticity subsequent to repetitive psychosocial stress exposure 

(Hill et al., 2009b; Patel et al., 2009b; Patel et al., 2005d; Rademacher et al., 2008; Ramikie and 

Patel, 2011; Sumislawski et al., 2011). Additionally, work by Hill and colleagues (2013) have 

extended these findings to demonstrate that these stress-engendered changes to the BLA eCB 

system act to facilitate adaptations in the physiological and behavioral responses to repetitive 

stress exposure (Hill et al., 2013b).  

Though these changes in the eCB system have shed light on BLA-eCB functions in stress 

adaptations, less is known about whether these stress-induced changes in eCB function also 

occur at the level of CeAL, the main output nuclei of the amygdala. The CeAL is a key regulator 

of the physiological, endocrine, behavioral responses to aversive stimuli (Bouret et al., 2003; 

Ciocchi et al., 2010; Feldman et al., 1994; Iwata et al., 1987; LeDoux et al., 1988b). Critical to 

the orchestration of these responses is the extensive convergence of excitatory inputs at the level 

of the CeAL. These excitatory inputs arise from stress-responsive brain regions such as the 

cortex, thalamus, and amygdala (Delaney et al., 2007; Li et al., 2013; Tye et al., 2011) which, in 

turn, drive the activity of the CeAL microcircuitry— the output of which activates descending 

projections to brain regions responsible for initiating outcome measures of the stress response 

(Haubensak et al., 2010; Li et al., 2013; Tye et al., 2011). As such, excitatory afferents of the 

CeAL act as crucial custodians of the neural substrates underlying the stress response and are a 

potential site for the regulation of CeAL-mediated stress responses. Indeed, CeAL glutamatergic 

synapses express several forms of synaptic plasticity hypothesized to be important for a variety 

of adaptive and pathological forms of stress-related behaviors (Delaney et al., 2007). In support 

of this, recent work by Li and colleagues (2013) demonstrate that exposure to threatening cues 

recruits experience-dependent synaptic plasticity of CeAL glutamatergic transmission in a cell-
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type specific and bidirectional manner (Li et al., 2013; Penzo et al., 2014). This experience-

dependent synaptic plasticity, the authors argue, ultimately determined the strength and nature of 

CeAL-mediated stress responses.  

As demonstrated in the last three Chapters, activation of the CeAL eCB system is also 

well positioned to modulate synaptic transmission at this critical locus and, perhaps, this 

modulation acts as a neural substrate for the eCB system’s stress attenuating properties. In 

support of this functional intersection between the eCB system and CeAL excitatory synapses, in 

vivo activation of CeA CB1 receptors are anxiolytic as measured by elevated plus maze 

measurements in rodent models (Zarrindast et al., 2008), whilst in vivo inhibition of CeA CB1 

receptors acutely inhibit measures of behavioral adaptations to conditioned aversive stimuli 

(Kamprath et al., 2011). In light of this, we examined the effects of repetitive restraint stress 

exposure on eCB-mediated signaling at CeAL glutamatergic synapses. 

Results 

Effects of Repetitive Restraint Stress on DSE of Locally Evoked CeAL Glutamatergic 

Transmission 

In earlier studies, Kamprath and colleagues (2011) demonstrated enhanced DSE, in the CeAM, 

following prior exposure to aversive stimuli (Kamprath et al., 2011). These results were 

reversible and suggested that excitatory synapses within the CEA are susceptible to transient 

stress-induced modifications of phasic eCB-mediated synaptic plasticity. To test the validity of 

this argument, we also assessed whether prior exposure to stressors also sensitized phasic eCB 

signaling at excitatory CeAL synapses. Given that 10 sec postsynaptic depolarization (10 sec 

DSE) elicited DSE at CeAL excitatory synapses in our earlier experiments (see Chapters 3), we 

first examined whether  similar experimental paradigms would also promote phasic eCB-
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mediated suppression of locally evoked CeAL glutamatergic transmission following repetitive 

stress exposure. Similarly to our previous experiments, excitatory postsynaptic currents 

(eEPSCs) were evoked upon non-specific local electrical microstimulation within the CeAL. To 

induce DSE, CeAL neurons were depolarized from -70mV to 0mV through direct current 

injections (duration of current injections =10 seconds) and the effects of this depolarization on 

eEPSCs were examined. Our experimental analyses revealed that subsequent to 10 consecutive 

days of 1 hour restraint, we observed a significant enhancement (p<0.05) of maximal DSE at 

CeAL glutamatergic synapses (63.37%±3.31% of baseline n=8, Figure 14C and 14D) as 

compared to behaviorally naïve mice (76.67%±3.88% of baseline n=10, Figure 14C and 14D). 

However, our analysis of late DSE (average amplitude of last 10 eEPSCs of the experiment) 

revealed no difference between our control and chronic stress conditions (control 93.62%±2.23% 

n=10 vs. stress 98.34%±2.24% , n=8; p>0.05, Figure 14A). 

Furthermore, stress-induced enhancement of maximal CeAL DSE exhibited a 

postsynaptic depolarization dependency, with significant enhancement of CeAL DSE also 

observed following shorter postsynaptic depolarization times of 5 sec (control 80.52%±2.53% 

n=10 vs. stress 68.53%±3.52%,  n=9; p<0.05, Figure 14B, D), while 2 sec postsynaptic 

depolarization exhibited a non-significant enhancement of CeAL DSE (control 93.86%±3.34% 

n=10 vs. stress 81.25%±6.59%,  n=6; p=0.07, Figure 14C-D). Collectively, these data 

demonstrate that chronic stress exposure enhances phasic eCB signaling at CeAL synapses. 

Restraint Stress-Enhancement of CeAL DSE is CB1 Receptor Dependent  

As enhanced CeAL DSE is observed under our chronic restraint stress conditions, we next 

examined whether this augmented DSE is CB1 dependent given that other retrograde signaling 

molecules that mediate depolarization-induced synaptic depression, such as nitric oxide    
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(Makara et al., 2007), can be increased by chronic restraint stress exposure (Olivenza et al., 

2000). To determine whether the CeAL short-term depression is CB1 dependent, we repeated 

our DSE protocols in the presence of the CB1 receptor antagonist, SR 141716. Following 

pretreatment with the CB1 receptor antagonist, SR 141716 (SR;5μM), maximal CeAL DSE was 

abolished in our chronic stress conditions as compared to controls (stress+vehicle: 

63.37%±3.31%,  n=8 vs. stress+SR: 92.22%±4.15%,  n=10, p<0.0001, Figure 14E). Thus, 

consistent with previously reported modulatory effects of stress exposure on the eCB system, 

chronic restraint stress augments CB1 receptor signaling at CeAL glutamatergic synapses. 

Increased 2-AG Biosynthesis at CeAL Glutamatergic Synapses Facilitates Enhanced DSE 

Using a similar restraint stress paradigm, earlier studies have demonstrated that amygdalar 2-AG 

content increases following repetitive exposure to stress (Patel et al., 2005e; Rademacher et al., 

2008) (Hill et al., 2010a; Hill et al., 2010c; Malcher-Lopes et al., 2006). In an effort to increase 

the resolution of these earlier studies, our lab has more recently shown that at the level of the 

BLA, homotypic stress exposure increases 2-AG content and phasic signaling capacity at 

inhibitory synapses (Patel et al., 2009a; Sumislawski et al., 2011). This precedence for stress-

induced elevations in amygdalar 2-AG signaling led us to hypothesize that CeAL DSE 

enhancement resulted from stress-induced increases in phasic 2-AG biosynthesis.  

To test this hypothesis, we pharmacologically inhibited the 2-AG biosynthetic enzyme, 

DAGLα (Tanimura et al., 2010), prior to assessing CeAL DSE in our chronic stress conditions. 

Consistent with stress-induced increases in 2-AG biosynthesis, pretreatment with the DAGL 

inhibitor, THL (10μM), significantly attenuated the enhanced CeAL DSE following chronic 

restraint stress (stress+vehicle: 63.37%±3.31%, n=8 vs. stress+THL: 88.63%±2.81%, n=4, 

p<0.001 Figure 14E). Collectively, these data suggests that the enhanced 2-AG phasic 
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biosynthesis, rather than 2-AG metabolism, is one of the mechanisms by which repetitive-stress 

enhances phasic 2-AG signaling at CeAL glutamatergic synapses.  
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Figure 14. Chronic Restraint Stress Enhances CeAL DSE.  

(A-C) Effects of postsynaptic depolarization on CeAL eEPSCs subsequent to chronic restraint 

stress (CRS). D) Average maximal CeAL DSE under control conditions and subsequent to 

chronic restraint stress paradigm. E) CRS-CeAL DSE is inhibited in the presence of the CB1 

receptor inhibitor, SR 141716 (5μM) and the DAGL inhibitor, THL (10μM) as compared to 

vehicle conditions.  *p<0.05, **p<0.01, ****p<0.0001. Data presented as mean ± SEM.  

 

 

  



118 

 

Afferent Specific Effects of Homotypic Restraint Stress on CB1 Signaling at Amygdalar 

Glutamatergic Terminals  

Though our experimental examinations thus far implicate augmented 2-AG biosynthesis as one 

of the underlying mechanism for enhanced CeAL DSE, stress-related increases in CB1 receptors 

signaling may also act in parallel and contribute to phasic inhibition of synaptic transmission. If 

enhanced CB1 activity were indeed an underlying mechanism for enhanced phasic 2-AG 

mobilization at these synapses, our current experimental approach of non-specific afferent 

stimulation, via local electrical microstimulations, may mask afferent specific changes in CB1 

receptor signaling following chronic stress exposure. To address this potential confound, we 

targeted the medial glutamatergic afferent pathway of the CeAL to increase the specificity of our 

electrical stimulation and directly assessed CB1 receptor signaling using the exogenous CB1 

receptor agonist, CP 55940 (10μM).   

In our initial experiments, we electrically stimulated glutamatergic fibers arising medial 

to the CeAL (medial glutamatergic pathway; MP). This pathway consists of afferents originating 

in the lateral parabrachial nucleus (Bernard et al., 1993; Delaney et al., 2007; Lopez et al., 2004) 

,which convey ascending nociceptive information to the CeAL, and thalamic inputs that convey 

sensory-related information to the CeAL (Ehrlich et al., 2009). To directly assess these 

glutamatergic afferents, we examined the effects of direct CB1 receptor activation on evoked 

MP-CeAL postsynaptic potentials. These experiments revealed that 10μM CP 55940 application 

results in a similarly depressed electrically stimulated MP CeAL glutamatergic inputs under both 

control and chronically stressed conditions (control+CP 59.32% ±3.93% n=9 vs. stress+CP 

52.88%±3.837% n=5, p>0.05, Figure 15B). Through the maximal CB1-mediated depression did 

not differ between the two treatment groups, for our chronic stress experimental conditions, our 

two-way ANOVA analysis revealed a significant effect of time (p<0.001), and repetitive stress 
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exposure (p< 0.001) but no interaction effect (p>0.05). Collectively, these data indicate that 

chronic stress exposure does not enhance CB1-mediated suppression of CeAL glutamatergic 

afferents. 

In an alternative experimental approach, we next examined whether this experimental 

result also occurred in other regions of the amygdala that implicated in the stress response. As 

such, we targeting the glutamatergic afferents of the lateral amygdala (LA), as these inputs relay 

critical stress-related sensory information to the LA allowing the LA to, in turn, relay polymodal 

sensory information from the thalamus and cortex to the CeAL (Quirk et al., 1995). In doing so 

the LA-CeAL circuitry modifies CeAL micro-circuitry and functionality in the stress response 

(Li et al., 2013; Quirk et al., 1997). Following repetitive exposure to restraint stress, we 

electrically stimulated the external capsule (EC) to evoke field excitatory postsynaptic potentials 

(fEPSPs) within the LA and subsequently bath applied the CB1 receptor agonist, CP 55940 

(10μM;CP). These experiments reveal that 10μM CP 55940 application maximally suppressed 

fEPSP amplitude to 52.52%±5.69% of baseline (n=5; Figure 15A) in control mice. However, in 

mice exposed to 10 days of restraint stress CP-induced depression was significantly less 

(stress+CP 74.79%±6.29% n=6; Figure), with the maximal CP-induced eEPSP depression 

significantly reduced in our chronic stress conditions as compared to control conditions (p<0.05). 

Two-way ANOVA analysis reveal a significant effect of repeated stress (p<0.0001), time 

(p<0.0001), as well as an interaction between the two parameters (p<0.0001). These data indicate 

that repetitive restraint stress decreases the sensitivity of CB1 receptors localized to 

glutamatergic terminals in the LA but has no effect on MP-CeAL synapses.  
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Chronic Stress Exposure Enhances 2-AG Biosynthesis at MP-CeAL Synapses 

To determine whether increased 2-AG biosynthesis at MP-CeAL synapses also supports CeAL 

DSE enhancement observed in our earlier experiments, we next examined the effects of 

inhibiting MAGL, 2-AG’s primary catabolic enzyme, on CeAL DSE. We reasoned that if 

chronic stress were to increase 2-AG biosynthesis at MP-CeAL excitatory synapses, inhibiting 

tonic MAGL activity would cause greater 2-AG mediated synaptic depression in our chronically 

stressed mice as compared to controls. Consistent with this hypothesis, our experimental results 

indeed show that bath application of  the MAGL inhibitor, JZL-184 (2μM), caused an enhanced 

depression of MP evoked excitatory CeAL potentials in chronic stress conditions as compared to 

non-stressed controls (Figure 15C). Two-way ANOVA analysis showed a significant effect of 

chronic stress (p < 0.0001) and time (p < 0.0001), but no interaction (p>0.05) between the two 

treatment groups. Collectively, the results suggest that repetitive stress augments 2-AG 

biosynthesis at MP-CeAL synapses that enhanced the attenuation of glutamatergic drive to the 

CeAL. 
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Figure 15. Region Specific Effects of Chronic Stress on eCB Signaling at CeAL 

Glutamatergic Synapses. 

(A) CP 55940 (10μM) depresses LA-CeAL fEPSPs greater in behaviorally naïve controls as 

compared to chronically restraint mice. (B) CP 55940 (10μM) depresses MP-CeAL fEPSPs to a 

greater degree in chronically restrained mice as compared to controls. ( C) MP-CeAL 

glutamatergic synapses of chronically restraint mice demonstrate larger JZL-184 (2μM)-induced 

synaptic depression as compared to behaviorally naïve controls. ***p<0.001, ****p<0.0001. 

Data presented as mean ± SEM.  
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Effects of Repetitive Stress Exposure on MP-CeAL LTD 

Our experimental results, thus far, indicate an enhanced capacity for phasic 2-AG synthesis and 

synaptic plasticity at excitatory synapses arising from glutamatergic inputs medial to the CeAL. 

Given that eCB-mediated short-term depression is augmented by chronic stress exposure, we 

next determined whether long-term depression at MP-CeAL synapses was also regulated by 

repetitive stress. Previous reports by Sumislawski and colleagues (2011) have shown that chronic 

stress enhances low-frequency stimulation (LFS)- induced LTD of BLA inhibitory synapses 

through augmented 2-AG signaling (Sumislawski et al., 2011). To determine whether CeAL 

excitatory synapses were similarly affected by chronic stress, we first assessed whether 

administration of another low-frequency stimulation (LFS) paradigm (4Hz, 1-ms stimuli 

alternating with 1 sec of rest for 180 iterations for a total of 6 minutes), previously shown to 

elicit eCB-mediated LTD of hippocampal excitatory synaptic transmission (Kellogg et al., 2009),  

also elicited LTD of MP-CeAL synapses.  In wildtype conditions, administration of this LTD 

stimuli paradigm to MP arising glutamatergic afferents resulted in the persistent suppression of 

MP-CeAL fEPSPs to 77.26%±2.07% (of baseline n=6 ); an effect largely absent in age-matched 

global CB1
-/- 

mice (99.06%±3.37%  n=11, p<0.0001, Figure 16A). 

 Given that our LTD paradigm induces a persistent CB1-dependent depression of evoked 

MP-CeAL glutamatergic responses, we next determined whether this LTD is also modulated by 

prior stress exposure. Following our chronic restraint paradigm, our LTD induction protocol at 

medially arising glutamatergic afferents resulted in a persistent depression of MP-CeAL 

glutamatergic synapses that was significantly larger than that elicited under control conditions 

(control 78.97%±4.06% n=12 vs. stress 58.49%±4.50% n=11, p<0.01, Figure 16B ). 

Collectively, this experimental evidence suggested that chronic stress facilitates enhanced CB1-

mediated LTD at MP-CeAL excitatory synapses. 
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Figure 16. MP-CeAL Synapses Also Exhibit Enhanced LTD following Chronic Restraint 

Stress. 

(A)Low-frequency stimulation (LFS)-induced LTD of MP-CeAL fEPSPs is present in WT mice 

but absent in CB1
-/-

. (B) LFS-induced LTD of MP-CeAL excitatory synapses is enhanced in 

chronically stress mice as compared to behaviorally naïve controls. **p<0.01, ****p<0.0001. 

Data presented as mean ± SEM.  
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Effects of Augmented 2-AG levels on HPA Axis Activation  

Our data thus far suggests that chronic repetitive stress augments phasic 2-AG mobilization and 

CB1-mediated LTD at CeAL glutamatergic synapses. These stress-dependent changes in the 

CeAL eCB system, we hypothesize, will decrease glutamatergic-mediated activation of the 

CeAL and subsequently attenuate CeA-mediated components of the stress response, such as the 

activity of the HPA axis (2001; Ciocchi et al., 2010; Kolber et al., 2008; LeDoux et al., 1988a). 

In a proof of principle experiment, we next tested whether pharmacologically enhancing 

endogenous 2-AG content could attenuate CeA-mediated functions such as basal HPA axis 

activity. To increase endogenous 2-AG levels, 1 hour before exposure to acute restraint stress we 

systemically treated mice with the MAGL inhibitor, JZL 184 (16mg/kg), at a concentration we 

have previously shown increases brain 2-AG levels (Sumislawski et al., 2011). These 

experiments revealed that acute restraint stress increases basal HPA axis activity, as indicated by 

stress-induced increases in corticosterone plasma levels. Furthermore, this stress-corticosterone 

release was significantly attenuated in our JZL-pretreatment conditions as compared to our 

vehicle treated animals (vehicle+ stress 132ng/ml±29.43 vs. JZL184+stress 88.34±21.79ng/ml 

n=5/treatment condition, p<0.05, Figure 17). Collectively, the data presented thus far suggest 

that augmented 2-AG signaling at CeAL glutamatergic synapses may serve to attenuate 

excitatory drive and decrease activation of CeA mediated functions of the stress response.  
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Figure 17. Systemic Increase in 2-AG Attenuates Acute Stress Induced HPA Axis 

Activation. 

Systemic JZL-184 (16mg/kg) treatment significantly attenuated acute stress induced HPA axis 

activation.*p<0.05. Data presented as mean ± SEM.  
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Discussion 

The principal findings from this work are that repetitive restraint stress exposure enhances eCB 

mediated short-and long-term synaptic depression of CeAL glutamatergic synapses. This 

conclusion is supported by evidence demonstrating enhanced phasic 2-AG signaling as well as 

augmented CB1-mediated long-term depression of CeAL excitatory synapses. Furthermore, 

chronic restraint stress elicits afferent-dependent changes in CB1 receptor signaling at stress-

regulating glutamatergic terminals within the amygdala. We reached this conclusion as CB1 

signaling at LA, but not MP-CeAL, glutamatergic afferent terminals is attenuated following 

chronic stress exposure. Lastly, in an effort to determine the functional implications of stress-

dependent enhancement of CeAL 2-AG content, we show that pharmacologically increasing 

systemic 2-AG levels attenuated HPA axis activation—a CeAL-mediated component of the 

stress response. Similar to other studies in our lab, these data suggests that repetitive stress 

exposure sensitizes the eCB system at central synapses of the amygdala. Here we have shown 

that, at the level of CeAL glutamatergic synapses, homotypic chronic restraint stress augments 2-

AG, consequently enhancing eCB-mediated synaptic modulation of CeAL excitatory 

transmission.  

Repetitive Restraint Stress-Induced Enhancement of CeAL DSE  

Prior biochemical and electrophysiological data suggest that repetitive restraint stress exposure 

results in adaptations in amygdalar 2-AG content and signaling capacity (Patel et al., 2009a; 

Rademacher et al., 2008; Sumislawski et al., 2011). In an effort to extend these findings, we 

tested whether this increased amygdalar 2-AG content correlates with enhanced 2-AG 

mobilization at CeAL excitatory synapses. Consistent with this hypothesis, our data reveal that 

repetitive restraint stress exposure enhances the maximal DSE of locally recruited CeAL 
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glutamatergic transmission in a CB1 and 2-AG dependent manner, while causing no change the 

late CeAL DSE. This lack of effect on late CeAL DSE implicate enhanced 2-AG biosynthesis as 

one of the mechanisms underlying enhanced 2-AG phasic synaptic modulation of CeAL 

glutamatergic synapses following chronic stress exposure. 

Interestingly, these outcomes are the converse of experimental observation in the BLA, a 

neighboring amygdala subnuclei that also exhibits increased 2-AG levels and signaling following 

repetitive stress exposure (Hill et al., 2010c). At inhibitory synapses of the BLA, a similar 

restraint stress paradigm did not affect maximal DSE but, on the other hand, enhanced late DSE 

(Patel et al., 2009a). Though these stress-dependent synaptic changes are different, this 

discrepancy in the maximal DSE and the time course of 2-AG mediated synaptic plasticity 

between the two amygdala subnuclei may be explained by morphological differences at 

inhibitory BLA synapses as compared to excitatory synapses of the CeAL. Recent work by 

Yoshida and colleagues (2011) have show that 2-AG mediated DSE is more readily induced and 

saturated at postsynaptic depolarization profiles as low as 0.1 seconds. This, they strongly argue, 

is a consequence of perisomatic invaginating synapses enriched with the molecular components 

of the eCB biosynthetic machinery that are uniquely present in the BLA, but absent in the CeAL 

(Yoshida et al., 2011b). Thus, the 5 seconds postsynaptic depolarization protocol used in our 

earlier studies (Patel et al., 2009a) may have saturated the maximal 2-AG biosynthetic capacity 

at BLA inhibitory synapses, thus occluding detectable differences in the 2-AG biosynthetic 

capacity between behaviorally naïve and repetitively stressed mice. 

Alternatively, two mechanistically distinct modes of action may support stress-induced 

increases in 2-AG levels in the BLA and the CeAL. The enhanced maximal CeAL DSE in our 

chronic stress conditions, with no difference in late CeAL DSE, suggests that stress-induced 
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increases in 2-AG biosynthesis perhaps through increased DAGL activity or postsynaptic 

mechanisms upstream of DAGLα activation, such as Gαq receptor activation (Jung et al., 2012), 

may potentially be at play. On the other hand, augmented 2-AG content and DSE at BLA 

inhibitory synapses were found to be a consequence of repetitive stress-induced MAGL down-

regulation (Patel et al., 2009b). Collectively, these results suggest that repetitive stress exerts 

subregional specific regulation of 2-AG levels by differentially targeting 2-AG biosynthesis and 

metabolism within distinct amygdalar nuclei. However, additional experimental analyses of 

CeAL DAGL expression and activity will be needed to conclusively determine whether this 

chronic stress- dependent differential effect is indeed the case. 

CeAL Glutamatergic Synapses Exhibit Afferent Specific Regulation by Repetitive Stress 

Exposure 

The CeAL receives intra-and inter-amygdaloid afferent inputs largely thought to relay different 

sensory modalities to the CeAL, which results in activity dependent changes in the CeAL 

microcircuitry and stress-related functionalities. CeAL afferents arising medial to the CeAL 

contain afferents originating in the lateral parabrachial area (Bernard et al., 1993; Neugebauer et 

al., 2003)  (Lopez de Armentia and Sah, 2004b) and thalamus (Pitkanen et al., 1995; Sun et al., 

1994; Yasui et al., 1991); each convey nociceptive and sensory related information, respectively.  

Our experimental results reveal that repetitive stress exposure does not affect maximal CB1 

dependent synaptic depression at CeAL glutamatergic synapses. Unlike the CeAL, glutamatergic 

inputs to the LA exhibit functional downregulation of CB1 receptors signaling following 

repetitive stress exposure as compared to behaviorally naïve controls. These experimental results 

are consistent with decreased CB1 receptor signaling in the paraventricular nucleus of the 

hypothalamus (Wamsteeker et al., 2010), BLA (Patel et al., 2009b), and striatum (Rossi et al., 

2008a) subsequent to other chronic stress paradigms (Hill et al., 2005). Given that glutamatergic 
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terminals within the LA facilitate the relay of polymodal sensory information from the LA to the 

CeAL, this stress dependent effect on eCB modulation of LA excitatory drive may have an 

indirect effect on the CeAL microcircuitry. As such, though stress-dependent changes in CeAL 

glutamatergic synapses are not observed following chronic stress exposure, other chronic-stress 

mediated changes in synaptic CB1 receptor functions within the amygdala can still modify the 

information flow through the CeAL microcircuitry and affect the physiological and behavioral 

functions elicited by CeAL activity. 

Conversely, medially arising afferent pathways of the CeAL display enhanced eCB 

signaling (i.e. increased phasic 2-AG biosynthesis) subsequent to repetitive stress exposure as 

compared to controls. Furthermore, these synapses are also sensitive to CB1 mediated LTD, 

which is also enhanced in a chronic stress-dependent manner. Though our initial DSE studies 

suggests that enhanced 2-AG biosynthesis may facilitate this enhanced LTD in our chronic stress 

conditions, additional work will have to be done to determine the eCB (i.e. 2-AG or AEA) 

mediating this persistent depression. As such, MP-CeAL synapses are highly sensitive to eCB-

mediated regulation following repetitive restraint stress exposure. Collectively, these 

experimental results illustrate that chronic restraint stress differentially affects the CB1 

regulation of glutamatergic inputs to CeAL as well as other amygdalar nuclei whose activation 

regulate CeAL outflow.  

Functional Implications of Chronic Restraint Stress-Induced Regulation of CeAL 

Glutamatergic Afferents 

In human studies, converging lines of evidence parallel preclinical findings of stress-induced 

modulation of the eCB system acting as a mechanism for stress adaptation. Work by Hill and 

colleagues (2009) have shown that acute social stress increases circulating levels of 2-AG while 

Chouker and authors (2010) have also reported exaggerated stress responses observed in humans 
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who do not show elevations in 2-AG following exposure to parabolic flight stress (Chouker et 

al., 2010; Hill and Gorzalka, 2009). Thus, consistent with our rodent studies, stress-induced 

elevated 2-AG appears to be an adaptive response that constrains stress responsivity by 

contributing to the termination of the stress response (Evanson et al., 2010; Hill et al., 2011a). 

Similar studies in chronic-stress related psychiatric disorders, such as depression and PTSD, are 

however less clear. Reduction in plasma 2-AG or AEA plasma concentrations are seen in 

individuals with PTSD (Hill et al., 2009b; Hill et al., 2008b). Though future studies will have to 

be undertaken to determine the variables (e.g. trauma differences, genetic background, duration 

and acuity of stress exposure, etc.) that may explain the differences between studies, a theme of 

retained capacity to mount a 2-AG response following exposure to stress is still observed in 

studies that found reduced basal eCB levels. Consistent with this, sustained elevations of 2-AG 

and AEA are found in trauma-exposed populations with PTSD, where the magnitude of the 

stressor is associated with the activation of eCB system (Hill et al., 2013a). Thus, despite the 

differences observed in the studies, the eCB system is mobilized by threat exposure to buffer 

against the negative consequence of stress (Hauer et al., 2013). 

Conclusion 

Overall, these data strongly suggest that eCB signaling mechanisms are modulated by chronic 

repetitive stress and this enhanced eCB-mediated synaptic plasticity potentially facilitate stress-

adaptations through the regulation of excitatory inputs into the CeAL. Though increased 

anatomical resolution of our ex vivo experimental studies will be needed to fully assess the 

behavioral effects of enhanced afferent specific CB1 signaling, our initial studies suggests that 

eCB signaling mechanisms under naïve and repetitive stress conditions provides a locus for eCB 

regulation of CeAL circuitry activation following repetitive stress exposure.  
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CHAPTER VII 

 

 

      GENERAL CONCLUSION AND FUTURE STUDIES 

 

 

Mechanistically Distinct Modes of Endocannabinoid Mobilization is Present at CeAL 

Excitatory Synapses 

Collectively, our data demonstrates that eCB signaling mechanisms are present at CeAL 

glutamatergic synapses. Under control conditions, eCB mediated short-and long-term synaptic 

plasticity are present at CeAL glutamatergic synapses, suggesting that eCB signaling 

mechanisms can be recruited under conditions of strong neuronal activity. Consistent with the 

dynamic nature of the eCB system, diverse experimental contexts such as acute and prolonged 

mAChR activation, as well as, chronic restraint stress exposure augments the eCB-synthesis 

capacity of CeAL neurons. These data demonstrate that the eCB synthesis machinery at CeAL 

glutamatergic synapses is sensitive to the changing contexts within this region and strongly 

implicates the eCB system in the regulation of CeAL activity as well as CeAL-elicited 

physiological and behavioral components of the stress response. In support of this claim, our 

analysis of increased endogenous 2-AG on stress responsivity reveal an attenuation of acute-

stress-induced HPA axis activation. This data suggests that increased eCB content may affect 

CeAL-mediated functions. More detailed analysis will be needed to fully determine the effects of 

eCB-attenuation of CeAL afferent input on its functionality in the stress response. Such analyses 

should include genetic and optogenetic tools that will allow for a more acute analysis of whether 
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eCB-signaling regulate CeAL glutamatergic, or even local inhibitory, synapses in a cell-type or 

afferent-specific manner. 
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Figure 18. Multiple Mechanistically Distinct Modes of Endocannabinoid Mobilization is 

Present at CeAL Excitatory Synapses. 

Under control conditions, CeAL synapses exhibit DSE. However, under conditions of prolonged 

mAChR activation, 2-AG is mobilized under conditions of basal Ca
2+

 levels (R-eCBR) and 

following depolarization-induced increases in [Ca
2+

]i. Conversely, acute mAChR activation 

drives AEA , not 2-AG, mobilization suggesting a time-dependent coupling of mAChRs to 

diverse signaling transduction pathways responsible for the successive synthesis of AEA and 2-

AG. Of further note, this phenomenon appears to be unique to the CeAL. 
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Future Studies 

Endocannabinoid Signaling at the Level of the CeAL Micro-circuitry 

Here, we show that eCB signaling suppresses afferent glutamatergic transmission onto CeAL 

neurons, which could represent an important synaptic mechanism regulating stress response 

physiology and anxiety-like behaviors. As discussed in the Introduction section, the CeAL is 

composed of heterogeneous neurons that form a functional microcircuitry that gates the 

expression of fear- and stress-related responses via different glutamatergic afferent inputs. For 

the experiments discussed in this body of work, we have examined eCB signaling at CeAL 

excitatory synapses without regard of cell type or glutamatergic afferent. However, to truly 

determine the effects of eCB signaling on CeAL microcircuitry output and overall function in the 

stress response, the next steps must involve performing similar studies in a cell-type and afferent 

specific manner as eCB signaling at specific cell types or afferents will have different effects on 

the functionality of the CeAL microcircuit. For example, eCB-mediated inhibition of excitatory 

drive to protein kinase C-δ-expressing GABAergic CeAL projection neurons would disinhibit 

CeAM neurons and increase fear and anxiety responses (Ciocchi et al., 2010; Haubensak et al., 

2010). This model is consistent with well-known behavioral effects of high doses of exogenous 

cannabinoids (Patel and Hillard, 2006) and, therefore, could represent a synaptic correlate of 

cannabinoid anxiogenesis. In contrast, inhibition of glutamatergic drive to locally-targeting 

somatostatin-expressing GABAergic neurons would disinhibit CeAL projection cell activity, 

inhibit CeAM activity, and ultimately reduce anxiety and fear responses which is one of the 

physiological function of eCB signaling (Hill et al., 2009a; Lutz, 2007; Riebe et al., 2012). 

Future studies aimed at elucidating the afferent- and cell type-specific effects of eCB signaling 

within the CeA microcircuitry, particularly using in vivo tools, will be critical to advancing our 
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understanding of the synaptic mechanisms by which eCB signaling modulates stress-responses, 

anxiety, and emotional learning.   
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Figure 19. Conclusions: Functional Implications of Experimental Results. 

Collectively, our data supports two possibilities: A) eCB- mediated attenuation of excitatory 

transmission at synapses of PKCδ
- 
CeAL neurons, which subsequently increases inhibition of 

CeAM neuronal output neurons and attenuates stress response activation. B) Alternatively, CB1- 

mediated attenuation of glutamatergic inputs to PKCδ
+ 

CeAL cells disinhibits CeAM projection 

neurons and increases stress responsivity.  
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Mechanisms Driving Repetitive Restraint Stress-Enhancement of CeAL DSE 

Our data suggests that enhanced 2-AG biosynthesis serves as one of the mechanisms driving 

enhancement of CeAL DSE following repetitive stress exposure. A potential avenue of support 

for stress-induced augmentation of 2-AG synthesis is mAChR-mediated increases in 2-AG 

synthesis. Data presented in Chapters 4 and 5, show that mAChR activation can enhance eCB 

mobilization at CeAL glutamatergic synapses. Furthermore, activation of stress circuits is well-

known to lead to increased synaptic acetylcholine levels, increased mAChR affinity, and 

amygdalar acetylcholine content in limbic regions (Finkelstein et al., 1985; Gilad et al., 1985; 

Mark et al., 1996). Therefore, similarly to the eCB system, the cholinergic system also exhibit 

stress-induced adaptations. As a result, acetylcholine-eCB interactions may potentially act as an 

additional mechanism through which 2-AG biosynthesis is enhanced under conditions of 

repetitive stress exposure. In support of this, our previous pharmacological assessments of 

mAChR-mediated eCB mobilization at CeAL excitatory synapses show an enhancement of 

CeAL DSE to the same degree as that which is observed following chronic restraint stress. 

Though not further probed in our study, we also observed enhanced CeAL LTD in our chronic 

stress conditions, which may potentially be due to augmented 2-AG mobilization as a result of 

stress-dependent increases in cholinergic signaling. Given the evidence presented in this thesis, 

the potential for functional intersections between the cholinergic and eCB systems in facilitating 

stress adaptations at the levels of the CeAL excitatory synapses appears to be very promising and 

may be a potential therapeutic tool in the treatment of stress-related psychiatric disorders. 

 Of further note, the CeAL also expresses a number of Gαq/11-coupled GPCRs that have 

also been implicated in driving eCB synthesis in other brain regions (Kano et al., 2009a). Such 

receptors include peptide receptors, such as the orexin receptor , which has been shown to 

stimulate eCB release using in vitro (Turunen et al., 2012) and ex vivo studies (Haj-Dahmane and 
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Shen, 2005). Furthermore, other Gαq/11-protein coupled receptors such as the group I 

metabotropic glutamate (Kolber et al., 2010), adrenoceptor (Delaney et al., 2007), and oxytocin 

receptors (Viviani et al., 2011) are also highly expressed within the CeAL and have been shown 

to induce eCB release in other stress responsive brain regions (Kano et al., 2009a). As such, 

other forms of Gαq/11-coupled eCB release may also be present at glutamatergic synapses of the 

CeAL and is an interesting avenue to explore in future studies. Interestingly, more recent work in 

the CeAL by the Stoop research group have shown that intra-CeA application of the oxytocin 

agonist, TGOT, decreased conditioned freezing (Viviani et al., 2011), which is the opposite 

result that is observed following intra-CeA application of the CB1 receptor antagonist, 

AM251(Kamprath et al., 2011). Collectively, these results suggests that Gαq/11-protein coupled 

receptors-induced eCB release in the CeAL, such as through oxytocin receptor signaling, is 

potentially one of the neural substrates through which eCB mediate its fear and stress attenuating 

properties and may act as a potential therapeutic target for the treatment of fear and stress-related 

disorders.    
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