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CHAPTER 1

INTRODUCTION

1.1 Colonoscopy and Colorectal Cancer

Colorectal cancer is the fourth leading cause of cancer worldwide, claiming more than

600,000 deaths annually [1]. Despite accessibility and awareness of the importance of the

procedure, the western world accounts for more than 63% of these deaths [2]. Colorectal

cancer progression follows a trajectory similar to that of other cancers, generally reaching

malignancy in 5 to 10 years. However, colorectal cancer possesses the unique quality that

if the tumor is detected at an early stage, the prognosis for survival is 90%; however, if

detected too late, the chances of survival decrease to 5% [3]. This emphasizes the importance

of compliance to recommended screening guidelines for populations at risk (i.e., people with

a family history of colorectal cancer or older than 50 years of age), regardless of whether

symptoms are observed.

The traditional method for diagnostic and therapeutic assessment of colorectal cancer is

through colonoscopy, an endoscopic procedure in which a 1.5m-long flexible tube is inserted

through the anus. The endoscopist is able to visualize the colon lumen using the endoscopic

camera and on-board illumination provided by the endoscope. In this manner, polyps are

able to be detected and removed. White light illumination (WLI) is the illumination modality

used during standard colonoscopy; however, WLI can fail to reveal important characteristics
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of the colon wall [4]. Even experienced endoscopists can miss up to 30% of all potential

cancer lesions when using standard WLI [5].

In the last decade, narrow band imaging (NBI) has been introduced to augment diag-

nostic capabilities during endoscopy. NBI employs filters to narrow projected white light

to blue (415 nm) and green (540 nm) wavelengths to generate a colored image. Blue-green

light is able to enhance superficial mucosal capillaries and mucosal surface patterns; greater

absorption of illuminating bands by hemoglobin yields darker-looking blood vessels. Al-

though recent studies demonstrate that NBI does not increase the polyp detection rate when

compared to WLI [6], this imaging modality is today increasingly common in commercial

colonoscopes (e.g., H180AL/I, Olympus, Japan).

Colonoscopy is an outpatient surgery performed under sedation, and usually takes less

than 30 minutes; however, patient compliance with recommended screening is low (i.e., 1

in 3 adults are not being screened [7]). This is attributed to the unpleasant preparation

required, fear of pain during the procedure, and perceived embarrassment. Technological

improvements in the field of endoscopy aim to help patients to overcome these hindrances.

1.2 Teleoperable Flexible Endoscopes

There are several different approaches to encouraging patient participation in colorec-

tal cancer screening, including the development of increasingly flexible endoscopes, wire-

less capsule endoscopy (WCE), and virtual colonoscopy [3]. Alternately, computer-assisted

technologies are also emerging to aid the doctor in detecting malignancies and increasing

control over the intended trajectory of the endoscope. Robotics is playing an increasingly

important role in this field with the development of fully- or semi-automated endoscopic

systems [8, 9, 10, 3, 11, 12].

There are several clinically available computer-assisted endoscopes for increasing the com-

fort of colonoscopy and reducing the rigor and training necessary to perform the procedure.
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The NeoGuide R© system, shown in Figure 1.1a, specifically aims to avoid pain during the pro-

cedure by eliminating the incidence of looping. Looping accounts for 90% of pain episodes

experienced by patients during colonoscopic procedures; it results from the continuing intro-

duction of the endoscope into the tube without a corresponding advance of the endoscope

head [13]. This results in stretching of the colon and displacement of the colon mesentery

(attaches organs to the wall of the abdomen). The NeoGuide R© addresses this problem by

combining endoscope insertion with an electromechanically actuated insertion tube. Upon

insertion of the colonoscope by the endoscopist, the system measures the endoscope’s posi-

tion and angle; thus, at each depth measured, the insertion tube then takes on the shape of

the patient’s colon [14, 15].

The Endotics R© System is a self-propelled highly flexible robotic colonoscope which seeks

to reduce the incidence of pain during colonoscopy. The endoscopic platform is shown in

Figure 1.1b. The principal of operation of the device is much like that of an inchworm,

stretching and shortening by creating anchor points within the colon. This motion pro-

pels the device through the colon. The physician is able to control the system through a

hand-held console which allows for steering, advancing of the device through the colon, and

common endoscopic controls such as insufflation, lens cleaning, and suction. A major asset

of this device is that it maintains all the capabilities of a conventional endoscope, including

a therapeutic channel for removal of polyps and tissue biopsy. Additionally, the Endotics

systems boasts a very short learning curve of a few weeks to properly and effectively operate

the device [16].

The Aero-O-Scope R© is a self-propelling, self-navigating endoscope which functions via

CO2 insufflation. The device has 5 main parts as shown in Figure 1.1c: the rectal introducer,

the supply cable, the scanning balloon, the scope, and the rectal balloon. The scope is

inserted via the rectal introducer, whose balloon then expands to effectively plug the anus.

The scope advances via the scanning balloon, which forms another gas barrier at the tip
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(a) NeoGuide teleoperated flexible en-
doscope [14, 15]

(b) Endotics teleoperated flexible endo-
scope [16]

(c) Aeroscope teleoperable endoscopic
platform [17]

Figure 1.1: Clinically available teleoperable flexible endoscopes.
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of the scope; and the release of carbon dioxide gas behind the scanning balloon therefore

propels the device forward through the colon [17]. A considerable advantage of this platform

is its simplicity from the perspective of the gastroenterologist; it requires only inserting the

rectal introducer and then pressing navigational buttons in order to control the direction of

the endoscope. This platform effectively removes the physical demands and rigorous training

associated with navigating an endoscope through the colon, and allows the physician to focus

on inspection and detection of polyps.

Figure 1.2: Magnetically actuated teleoperated robotic endoscopic platform components.

A number of research platforms are also in development. The Magnetic Air Capsule

(MAC) System, the target platform for this work, is a magnetically actuated flexible en-

doscope which aims to reduce pain episodes among patients and significantly reduce the

learning curve for performing colonoscopy. The platform is shown in Figure 1.2. As shown,

the system consists of a fully equipped flexible endoscope capsule, which contains LEDs, an

endoscopic camera, a 5mmx12mm N42 diametric neodymium magnetic, a water/air chan-

nel, a suction channel, and a tool channel. The flexible endoscope is actuated by a N42

10cmx10cm diametric cylindrical neodymium magnetic, which is affixed to a 6 degree of

freedom (DOF) industrial robot. The robot is controlled by computer software, which allows
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several different interfaces, including a Phantom Omni 6 DOF haptic joystick, a touchscreen

monitor, and standard mouse/keyboard. The system reduces the incidence of looping and

pain by introducing a “front wheel drive”; that is, instead of being pushed from behind, the

device is pulled from the front [8]. For this platform, closed-loop control is a highly desirable

capability; since the link between the endoscope and the actuation mechanism is magnetic

and therefore not rigid, the actuation by the external magnet may not lead to the desired

configuration instructed by the operator.

The introduction of teleoperable robotic endoscopes has the potential to widen the imple-

mentation of colorectal cancer screening and surveillance programs to rural areas, to mobile

camps, or to in-field military bases, and the physical presence of an expert endoscopist may

no longer be required.

1.3 Motion Estimation for Teleoperable Endoscopes

Real-time pose (i.e., position and orientation) estimation of the tip of a flexible endoscope

is desirable for achieving reliable and effective teleoperation. Medical procedures require high

precision and accuracy; an implementation of real-time pose detection confers calculated,

controllable movements which are able to enhance system stability [18]. Additionally, the

environment of the colon is highly variable among patients and by definition compliant; this

aspect may be difficult to accurately model, thus inhibiting the effectiveness of model-based

open-loop control. On the other hand, closed-loop control is effective for disturbance rejection

and error minimization, which results in a system that is able to reduce the difference between

the intended pose (i.e., user-commanded desired pose) and the actual pose (i.e., measured

location of the endoscope tip). Real-time pose estimation facilitates closed-loop control by

providing a feedback signal of the estimated pose of the endoscope head after actuation;

Figure 1.3 illustrates a possible closed-loop control strategy based on image analysis.
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Figure 1.3: Closed-loop control system taking advantage of the proposed pose detection ap-
proach to guide a teleoperated endoscope.

Several methods have been introduced in order to achieve real-time pose detection. Mag-

netic tracking has emerged as a reliable method, and there are several commercial man-

ufacturers of 5 and 6 degree of freedom (DOF) electromagnetic tracking systems [19, 20].

Practically, they can be placed down the tool channel of the endoscope due to their minute

size (i.e., <1.8mm [19]), and used to track the pose of the endoscope head in real-time. In

an alternate implementation, such as in the commercially available ScopeGuide R© (Olympus,

Japan), magnetic trackers have been placed along the entire length of the colonoscope. This

provides the endoscopist visual feedback of the entire instrument pose given with respect to

a global coordinate frame [21]. Real-time pose detection has additionally been achieved in

bronchoscopy through the combination of the endoscopic camera stream with image regis-

tration and fluoroscopy [22, 23, 24, 25].

However, the use of a magnetic tracker requires additional space in the endoscope; this

can result in an increase in the size of the device, possible reduction in the flexibility of
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the endoscope, and reduced accessibility to the therapeutic tool channel of the endoscope

during colonoscopy. For endoscopes with extremely limited operational space such as en-

cephaloscopes, rhinoscopes, and bronchoscopes, minimization of the size of the endoscope

is fundamental. Additionally, a magnetic tracker continually occupying the tool channel of

the endoscope can possibly compromise the standard of care during colonoscopy. Further-

more, both commercial entities and research labs worldwide are proposing platforms based

on magnetic manipulation of endoscopic devices [26, 27, 28, 29, 30, 31, 32]. However, the

magnetic manipulation of the endoscope interferes with the electromagnetic fields generated

in the magnetic tracker system; this results in degraded, inaccurate, or missing localization

estimates from the tracker. Soft body cavities in particular are regions in which accurate

tracking of the endoscope head is essential; localization in conjunction with image registra-

tion is not effective due to the drastic deformations that occur upon repositioning of the

patient [33].

1.4 Related Work

Real-time motion estimation and steering of flexible endoscopes presents a number of

challenges [34, 35]. The endoscopic image stream has been used extensively to identify

structural features of the colon including: isolating the lumen of the colon via evaluating

the darkest region of the image [36, 37], identifying the ring-like haustral folds of the colon

lumen [38, 39, 40], and using specular highlights resulting from illumination [41]. Several

works have used colon structure identification as a basis for endoscopic steering (i.e., cor-

recting the current heading of the camera towards to lumen center) [9, 42], enabling the

possibility for automation. However, these works do not utilize metric motion estimation in

their control strategies, and do not implement closed-loop control (i.e., although the motors

are actuated towards the center of the lumen, there is no feedback as to whether they reached

their intended destination).

8



Image analysis for tracking and motion estimation has been quite successful in other fields,

including mobile robotics, unmanned vehicle navigation [43, 44], and autonomous egomotion

estimation [45]. Popular techniques include using different types of features including: Shi-

Tomasi features [46], FAST features [47], and Scale-Invariant Feature Transform (SIFT) [48]

and Speeded Up Robust Features (SURF) [49] descriptors; different optical flow techniques,

including: Lucas-Kanade [50], Hierarchical Multi-Affine (HMA) [51], and dense HMA [52];

and other popular techniques including visual simultaneous localization and mapping [53],

and structure from motion (SFM) [54].

These approaches have also been applied within the field of image processing in gas-

troenterology. A 3-dimensional reconstruction of the colon using sequential images from

a monocular camera was achieved using SFM reconstruction [55]. This implementation as-

sumes zero rotation within the image; using this assumption, the algorithm is able to produce

estimates of the 3 DOF translation between two images. The SFM algorithm is able to calcu-

late 6 DOF motion up to scale; as a consequence, the metric translation cannot be estimated

unless the scale factor is known. The spherical camera model has been used as a more accu-

rate model due to the endoscopic lens; however, this requires simplifying assumptions about

the rotation of the camera [9]. Focus of expansion has additionally been employed to avoid

numerical instabilities related to optical flow vectors within SFM calculations, and has been

successfully employed in virtual colonoscopy and other real image sets[56, 11]. However,

algorithm performance on computer-generated datasets can vary significantly from datasets

gathered from a silicon human colon simulator or a real human colon [9], and the focus of

expansion may not always be in the image.

Application of artificial intelligence and machine learning techniques within the field have

been mostly limited to signal filtering and amelioration of computer-aided diagnosis (e.g.,

object recognition, segmentation, etc.) [57, 58]. Moving picture expert group (MPEG)-7

features (popular for video and audio compression) combined with fuzzy logic were used
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for localization of a wireless endoscopic capsule within general anatomical regions of the

gastrointestinal tract. Rule-based production systems using fuzzy logic have also been used

to identify the lumen within an image [38]. However, the effectiveness of these algorithms for

teleoperable flexible endoscopes has not been evaluated, and they do not provide quantitative

feedback concerning the metric motion of the endoscope tip.

1.5 Thesis Overview

The remainder of this thesis will describe an algorithm suitable for motion estimation

for a teleoperable flexible endoscope platform and demonstrate its feasibility. The proposed

motion estimation system will be independent of the technological platform on which it is

implemented, provide accurate motion estimates suitable for real-time feedback, and neither

create unwanted interference in the endoscopic system nor increase the size of the endoscope.

The methodology presented in this paper builds upon previous work by using established

optical flow methods to measure the relative motion between two sequential image frames,

and then relate this description of motion within the image to the actual pose displacement

using machine learning methods. The machine learning technique chosen was artificial neural

networks, which are known for their noise rejection and nonlinear estimation capabilities.

The applicability of the proposed method in both a controlled setting and in clinical use was

tested in several robotically actuated experiments as well as using commercial endoscope

operated by an expert endoscopist (>2,000 lifetime procedures). This work will then explore

the impact of the elements of the algorithm upon its performance: the optical flow estimation

method chosen, the illumination modality, and partitioning of the image.

Chapter 2 will provide an overview of main components of the algorithm: optical flow

estimation and neural networks. Chapter 3 will describe the general steps of the algorithm.

Chapter 4 will detail the experiments used to test the algorithm, and also describe elements

of the algorithm which were compared to produce a more accurate algorithm. Chapter 5

10



will present and evaluate the results of the experiments, and Chapter 6 describes the final

findings of the work.
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CHAPTER 2

BACKGROUND

2.1 Coordinate Systems

Essential to the motion estimation and tracking of the endoscope is the calculation of

the translational and rotational pose displacement of the endoscope tip. In several of the

following experiments, the true location of the endoscope tip is given by a magnetic tracker

placed in the tool channel of the endoscope. The magnetic tracker readings are given with

respect to a global coordinate frame established by the electromagnetic fields produced by

the magnetic tracker.

In order to calculate the relative pose displacement, a local coordinate frame is assigned

to the endoscopic tip, and assumed to be coincident with that of the magnetic sensor.

It is essential to calculate the pose displacement of the endoscope relative to its previous

coordinate frame (i.e., not the absolute displacement in the global coordinate frame). To

do this, the initial transformation (rotation and position) is subtracted from the rest of the

data; thus, all the data is given relative to the initial position.

Given a local orientation specified as roll (rotation about x-axis), pitch (rotation about

y-axis), and yaw (rotation about z-axis) parameters, a ZYX Euler rotation matrix R can be
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formed as:

R =


cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ

sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ

−sθ cθsφ cθcφ

 (2.1.1)

Given the initial pose T0 = [R0, t0], where P = [0, 0, 0] describes the global position of

the sensor in 3d space, and the initial orientation is given by:

R0 =


1 0 0

0 1 0

0 0 1

 . (2.1.2)

Given pose following actuation, T1, the change in position of the sensor ∆t1 is calculated

as:

∆t1 = RT
0 (P1 −P0), (2.1.3)

where P0 and P1 are given in the global coordinate frame. The change in rotation of the

sensor ∆R is then given as:

∆R = R0
TR1 (2.1.4)

These two quantities form the pose displacement ∆T1 = [∆R,∆t]. This process is

repeated for each pose following actuation. This calculation can be easily generalized to the

entire sequential data set, where

∆ti = RT
i−1(Pi −Pi−1), (2.1.5)

∆Ri = Ri−1
TRi (2.1.6)

for the ith pose in the data set.
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The ZYX Euler representation is a common orientation representation in robotics, but

particularly in aviation and nautical applications, in which it is frequently referred to as the

Roll-Pitch-Yaw (RPY) convention [59]. The ZYX Euler convention is contrived as a set of 3

rotations about extrinsic angles (i.e., relative to the reference frame) as follows:

1. A rotation about the reference x-axis by an angle φ

2. A rotation about the reference y-axis by an angle θ

3. A rotation about the reference z-axis by an angle ψ.

This work adopts the Euler naming conventions of [59]; however, in this work, roll is

considered to occur about the X-axis, and yaw is regarded to occur about the Z-axis. As

in [59], pitch is considered to occur about the Y-axis.

2.2 Artificial Neural Networks (ANNs)

ANNs are computational networks which are useful in function approximation and pat-

tern recognition, and were created based on biological neurons. The most basic unit of a

neural network is the perceptron, a single “neuron” which performs the mapping

o = f(wTx + b) (2.2.1)

where o is the scalar output of the unit, w is a set of trainable weights which scale the

input, x is the feature vector input to the unit, and b is a scalar bias. The function f is the

activation function, which is usually implemented by hard limiters (i.e., on or off), linear, or

sigmoid/logistic functions. A diagram of a single neuron is shown in Figure 2.1.

Multilayer feed-forward ANNs are interconnected networks of these single units of neu-

rons, depicted in Figure 2.2. As shown, the neurons are arranged in layers, commonly

referred to as input layers, layers which receive an input vector xi from the training set X
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Figure 2.1: Flow diagram for the proposed method for calculating the change in the position
and orientation of the endoscopic module, including the investigated variations
in illumination (WLI or NBI) modality and spatial partitions (grid-based or
lumen-centered).

and perform an identity mapping on its inputs, any number of hidden layers, layers of neu-

rons whose inputs are the outputs of the previous layer, and the output layer, which performs

a similar mapping as the hidden layer, but produces the final output o of the ANN. The

graph structure of these networks requires no self-connections (i.e., the output of a unit is

its own input) or look-ahead connections (i.e., output of of the unit connected to the input

of a non-adjacent layer).

Multilayer feed-forward ANNs are desirable function approximators due to their rejection

of noise and flaws in the training set, ability to accomodate high dimensional problem spaces

with complex interactions, and speed of computation during operation [60, 61]. Multilayer

feed-forward ANNs with certain characteristics (single hidden layer with a finite number of

hidden neurons and arbitrary activation function) are universal approximators. This means

that these ANNs are able to approximation continuous functions of n real variables with
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support in the unit hypercube, although convergence depends on the number of neurons

in the hidden layer and properties of the function being approximated. Thus, ANNs are

powerful for learning complex mappings, given the correct number and size of hidden layers,

and certain characteristics of the function to be mapped from a set of exemplars and their

target outputs [62].

Input Layer 
Hidden Layer 

Output/Target 
Layer 

I 

i0 

i1 

i3 

o0 

o1 

O 

Figure 2.2: 3x4x2 multilayer feedforward ANN topological structure showing input, hidden,
and output layers. Each node in any given layer performs the perceptron map-
ping.

Multilayer feed-forward ANNs employed in this paper are trained via a supervised learn-

ing approach. This means that the method requires a training set representative of the

function to be approximated. A training set consists of n training samples composed of an

input vector and a target output vector pair. Training proceeds as outlined in Algorithm 2.3.

As described, training requires iterating through each input/output vector pair in the train-

ing set. For each pair, the input vector is forward propagated through the network to produce
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an output estimate. After this estimate is compared to the target, the error between these

two values is backpropagated via the desired training algorithm; that is, the ANN weights

adjusted such that the error between the estimations provided by the neural network and the

known outputs is minimized. This proceeds until some criteria for termination is satisfied.

while error minimization cost function has not been satisfied do

repeat

Forward propagate input feature vector xi through ANN to calculate output oi

Compare estimated outputs to target outputs in training set

Calculate and backpropagate error using desired training algorithm

until end of training set has not been reached (i.e., i=n)

end

Figure 2.3: Algorithm for training of neural networks for function approximation

There are many popular algorithms used for neural network training, including gradi-

ent descent and variants, Levenberg-Marquardt backpropagation [63], and Gauss-Newton

backpropagation; all require an error measure to be minimized. The most common error

measures are sum-of-squared error, root mean squared error (RMSE), and mean squared

error.

2.3 Optical Flow Computation

Optical flow is a pixel-based description of the relative motion between two images. There

are many optical flow calculation algorithms; however, in this work we concentrate on three

methods due their ubiquity in practice and applicability to the described problem. These

optical flow methods can be divided into two groups: sparse and dense optical flow. Sparse

optical flow techniques generally begin by identifying small template regions in the image
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It−∆t that present unique qualities and are likely to persist and have similar characteristics in

a proceeding image It. These regions are then identified in image It. Given the assumption

that the scene is static, all motion in the image can be assumed to be caused by motion of

the camera.

2.3.1 Lucas-Kanade (LK) Optical Flow

LK optical flow [50] is a well-established and widely used algorithm for estimating the

relative motion in an image sequence based on certain features. The features commonly

used are Shi-Tomasi (ST) features [46], which are identified based on the strength of their

eigenvalues within a local pixel neighborhood. In the LK formulation, given a pixel region

at location x,y at time t with intensity I, a small camera movement ∆x, ∆y over time ∆t is

given by the equation:

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t) (2.3.1)

Since the movement is small, a Taylor series approximation can be made such that:

I(x+ ∆x, y + ∆y, t+ ∆t) = I(x, y, t) +
δI

δx
∆x+

δI

δy
∆y +

δI

δt
∆t+HOT (2.3.2)

Since

δI

δx
∆x+

δI

δy
∆y +

δI

δt
∆t = 0 (2.3.3)

then dividing by ∆t results in the optical flow equation:

δI

δx
Vx +

δI

δy
Vy = −It (2.3.4)

or

IxVx + IyVy = −It (2.3.5)
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where Vx and Vy are the optical flow in the x and y directions of the image. LK solves

this equation by applying it to all pixels within a local neighborhood of a certain pixel p,

and solves a least squares problem to estimate Vx and Vy. As is evident in this formulation,

LK requires three assumptions - brightness constancy (i.e., the brightness of a tracked pixel

stays constant among frames), small movements, and neighboring points belong to the same

surface and have similar motion [50, 64].

2.3.2 Scale-invariant Optical Flow

Scale-invariant feature matching algorithms are particularly well-suited for identification

of robust matching of features between images. Scale-invariant algorithms introduce an

important augmentation of features such as corners by conferring image scale and rotation

invariance; corner descriptors fail in cases in which a feature appears rotated or slightly

larger/smaller than in the reference image. One popular scale-invariant feature matching

algorithm is the Scale-Invariant Feature Transform (SIFT) [48], which proceeds in 4 steps.

The first step is scale-space extrema detection, in which points of interest are identified. This

is done by convolving an image with the Gaussian kernel n times, and taking the difference

between two successive applications of the Gaussian function. This yields a set of difference-

of-Gaussians (DOGs) for a given scale, and is referred to as an octave. The original image is

then downsampled by a factor of 2, and the process is repeated for a number of scales. This

step is essentially for providing scale invariance, and since it is a very close approximation

of the Laplacian, which confers rotation invariance, both scale and rotation invariance can

be achieved.

The second step of the algorithm is detecting the local extrema. This is done by observing

a particular image at each sample point, and comparing it to each of its eight neighbors in

the current image and nine neighbors in the scales above and below it. The point is only

considered a maxima or minima if it is larger than all of these neighbors (maxima) or smaller
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than all of these neighbors (minima). This step serves to eliminate low-contrast and poorly

localized edge extrema.

The third step assigns a consistent orientation to each keypoint to achieve rotation invari-

ance. For computational efficiency, the gradient magnitude and orientation are pre-calculated

for each image point in each image. For each keypoint, an orientation histogram is formed,

which has 36 bins corresponding to the 360 degree range of orientations. Since the peaks

of the histograms represent the strongest directionality of local gradients, this orientation is

strongly representative of the keypoint. A parabola is fit to the 3 histogram values closest

to each peak to accurately estimate the true orientation peak. Additionally, if any bin of

the histogram falls within 80% of the peak, and additional keypoint is created at this same

location with this additional orientation information.

The final step composes the keypoint descriptor. For each point of interest, a Gaussian

weighting function is applied to each pixel within the neighborhood of the pixel of interest.

The descriptor is created by observing 4 4x4 pixel sample regions around the pixel of interest.

An orientation histogram is made for each 4x4 region with 8 orientation bins each, which

results in an 128 element feature vector for each keypoint. Illumination invariance is then

achieved by normalizing the feature vector to unit length; if a brightness change occurs

which uniformly increases the intensity of each of the pixels, this will be cancelled out by

normalization. Non-linear illumination changes are addressed by thresholding the normalize

feature vector at 0.2, and forcing any individual value in the feature vector to be a maximum

of 0.2. The feature vector is then renormalized to unit length. This allows matching of

the distribution of orientations to play more of an important role than matching of strong

gradients.

SURF [49] is a similar algorithm for scale-invariant feature descriptor generator, although

differences include utilization of a different mechanism for generating differences in the image

pyramid and calculation of the feature descriptor. Although SIFT and SURF have compa-
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rable performance, SURF is generally a faster algorithm. An alternative method for using

scale invariant features is to eliminate the feature detection parts of the algorithm, and in-

stead use other algorithms for feature detection. One popular algorithm is the Features from

Accelerated Segment Test (FAST) corner detector [47] due to its computational efficiency.

2.3.3 Hierarchical Multi-Affine (HMA) Optical Flow

HMA is a feature matching refinement algorithm whose purpose is to find regions of sim-

ilarity between two distinct images of the same scene. This differs slightly from optical flow,

in which there are assumptions placed on the movement of the pixels (i.e., HMA does not

necessarily two consecutive frames of video). This algorithm is known for its speed, accuracy,

and robustness to image clutter, and has been used specifically in minimally-invasive laparo-

scopic surgical scenarios. After using a feature identification mechanism (usually SIFT [48])

to identify and describe keypoints, matching is initially performed using the nearest neighbor

distance ratio (NNR) appearance-based criteria [65, 51]. A similarity transformation is then

used to relate the two features of the match, and consists of a rotation, translation, and scale

as si = [δxi, δyi, δσi, δθi].

HMA then proceeds in 3 iterative phases. The clustering phase first partitions the

matches into k subsets based on their keypoint descriptors and their positions in the im-

age. For all the matches of each cluster, similarity-space clustering, based on the similarity

space parameters si occurs. A scaling vector is applied to weight the importance of each of

the parameters, and is clustered via the k-means clustering algorithm. The second phase

is the affine-estimation phase, in which the keypoints in each cluster are used to estimate

the image transformation matrix A, which represents the affine transformation between the

two images. RANSAC [66] and a non-parameteric outlier-detection technique [67] are used

for robust rejection of outliers. The final phase of the algorithm is the correction phase,

which reassigns the outliers to more appropriate clusters, and the transformation matrix A
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is recomputed if necessary. Additionally linear discriminant analysis [61] is used to separate

the clusters such that each cluster belongs to only one class.

The algorithm terminates when all nodes are classified as termination nodes. This is

done by an analysis of the number and ratio of inliers; if the number of inliers is below an

arbitrary threshold τC , or the ratio of inliers is greater than an threshold τρ.
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CHAPTER 3

METHODOLOGY

3.1 Overview

The proposed algorithm calculates the rotational and translational displacement (i.e.,

6 DOF transformation matrix, a common representation of pose in robotics [59] utilizing

3 DOF for position and 3 DOF for orientation) between sequential image frames using

the endoscopic camera stream. The accuracy of the metric 6 DOF motion estimation of the

endoscope relies heavily on the extraction of stable features from the image stream. However,

the gastrointestinal lumen is well-known for its textureless appearance and lack of brightness

constancy due to the changes in illumination due to the motion of the endoscope [9, 68, 56].

In this algorithm, we rely on well-established feature detectors and descriptors (Shi-Tomasi

features, FAST, SIFT, and SURF) to address this challenge, while also reducing possible

noisy data from these disturbances by using a neural network and summary statistics over

image regions.

Figure 3.1 depicts the steps of our proposed algorithm. It begins by first finding strong

feature correspondences in two sequential images, providing a description of the optical

flow (i.e., a measurement of the motion of the endoscope in pixels). A spatial grid is then

applied to form a feature vector which corresponds to the motion of the endoscope, as

described in pixels. At the same time, ground truth data is acquired via an industrial robotic
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manipulator or magnetic tracker to provide the actual metric motion of the endoscope. These

two components form a single pair within the training set, gathered over an entire trajectory

of motion of the endoscope. The performance of the ANN is then tested using another

separate diverse training set.
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Figure 3.1: Flow diagram of methodology used for calculating change in 6 DOF displacement
in orientation and translation from the endoscopic camera stream.

As previously stated in Section 2.3, the essential assumption made is that the scene

is static; as a consequence, movement perceived in the image can be assumed to be due

to the motion of the endoscope only. How valid is this assumption? There are four major

contributors to possible movement of the colonic scene: respiration, deformation of the colon

wall due to the flexible nature of the endoscope, haustral contractions, and insufflation.

The effects of the respiration of the patient are assumed to be negligible since the colon is

insufflated during colonoscopy. Furthermore, on average, a displacement of approximately

7.85mm occurs in the anterior/posterior plane during deep respiration [69]. Due to the high

frame rate of the camera, the contribution of this movement is assumed to be minimal.

The motion of the colon due to the pressure of the endoscope upon the colon walls can be

significant; excessive pressure and stretching of the colon due to looping of the colonoscope

can lead to perforation [13]. Although this motion is clearly significant, this movement occurs
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behind the endoscopic camera; thus, it does not contribute significantly to a change in the

endoscopic scene captured by the camera.

Haustral contractions also cause significant movement within the scene; these events

occur as a result of peristalsis to move the content of the colon forward. These movements

significantly affect the inertness of the scene viewed by the camera. However, these only occur

every 25–30 minutes [70], and a specialized control loop within the teleoperation software

can be used to handle this exception. This control loop would also be useful in halting

motion estimation during insufflation, which also changes the scene viewed by the camera.

However, since this is a function of the endoscope, it can be carefully monitored for changes

commanded by the user.

3.2 Input Descriptor Composition

Figure 3.1 presents a flow diagram of the method used to acquire and process the en-

doscopic camera images. After the illumination modality is chosen, frames are sequentially

captured from the video processor at times t-∆t and t. The images are first processed in

order to preserve only their effective pixels; an endoscopic video feed usually displays infor-

mation superfluous to the algorithm, such as a black region containing the patient’s name and

other personal information and endoscopic system information. Inclusion of this extraneous

information into the algorithm creates easily-avoided noise and data inconsistencies.

After the effective image is converted to grayscale, the optical flow algorithm is applied

to the image. For example, in the case of Lucas-Kanade optical flow, the Shi-Tomasi (ST)

features [46] are first found within image It−∆t. Using the Lucas-Kanade optical flow algo-

rithm, the corresponding features are found in image It. Thus, a broad description of the

optical flow (i.e., relative image motion) is encoded.

The next step of the algorithm is to form an optical flow descriptor of the optical flow

between the two images. This is an essential step; the formulation of these vector descriptors
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(a) Grid-based spatial partition. (b) Lumen-centered spatial partition.

Figure 3.2: Spatial partitioning rules for feature vector composition.

defines the unknown function to be approximated by the ANN, and provide the input to

the ANN for training and testing. In this work, the optical flow descriptors were created

to summarize the nature of the correspondences in specific pre-determined regions (i.e.,

partitions) of the image. The partitioning methods chosen are shown in Figure 3.2. Grid-

based spatial partitioning, shown in Figure 3.2a is a common partitioning method used in

many computer vision applications [71, 72, 73, 56]. It consists of dividing the image in 25

regions (i.e., a 5 × 5 rectangular grid) of equal area. For each grid location g ∈ G, two

feature descriptors are calculated as

dxg =

∑ng

i=1
dxi

ng

and

dyg =

∑ng

i=1
dyi

ng
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where ng is the number of feature correspondences present in image It at grid location g, and

dx and dy are the change in coordinates in the X and Y directions between corresponding

features in image It−∆t and It. These region descriptors are then concatenated into an overall

optical flow descriptor of size 50 (25 grid regions with 2 feature descriptors each) to be used

as input to the ANN.

Lumen-centered spatial partitioning, shown in Figure 3.2b, is based on the anatomical

structural appearance of the colon lumen within an endoscopic image; the colon appears as

a tubular structure with a dark region usually corresponding to the center of the lumen, and

the rest of the image corresponds to the colon wall. This partitioning method is based on

a consistent alignment of the center of the lumen with the center of the dark region in the

image. A lumen segmentation approach similar to a method presented in [9] was taken by

first histogram equalizing the region to increase contrast, and then applying an arbitrary

threshold. This threshold was determined empirically. The resultant image consists of the

lumen, which appears white, while the rest of the image appears black.

To begin to define the regions of the lumen-centered partition, two methods were com-

pared. Both methods require the computation of the centroid of the lumen, (xc, yc), to define

the location of the center of the lumen. The first method utilized the circumference of the

lumen. This was achieved by summing the edge pixels of the lumen region in the thresholded

image. The radius r is calculated by dividing the circumference by 2π. The second method

resulted in a slightly more stable radius size, and was achieved by calculating the second

moment of the lumen region (i.e., the area A), and then calculating the radius as r =
√

A
π

.

This second method was therefore employed in the algorithm. Together, the centroid of the

lumen and the area within its radius define the first region of the lumen.

The other four quadrants are defined by dividing the image horizontally at yc, and ver-

tically at xc, excluding including the area defined as the lumen center. For each of these 5
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regions, the two feature descriptors are then calculated as

drg =

∑ng

i=1

√
dx2

i + dy2
i

ng

and

dθg =

∑ng

i=1 tan
−1( dyi

dxi
)

ng

where drg is the average distance of optical flow between corresponding features in region g,

and dθg is the average inclination of the flow of the features in region g. These features are

then concatenated into a feature vector of size 10 (5 regions described by 2 feature descriptors

each) for use as inputs to the ANN.

3.3 ANN Training and Usage

The optical flow descriptors created by the procedure outlined in Section 3.2 then define

the inputs to the ANNs. A description of how the output targets in the training set are ac-

quired is left to Chapter 4, since several different methods were employed. It can be assumed

that after the data are acquired and processed, ground truth target data corresponding to

particular input vectors are available, and together, these form the training set.

The set of feature descriptor/target pose pairs generated via the grid-based or lumen-

centered partitioning methods are then used to train multilayer feed-forward ANNs, previ-

ously described in Section 2.2. In order to train the ANNs to accurately estimate the metric

endoscope motion, the full training set is further divided into a slightly smaller training set, a

validation set, and a test set. As outlined in Section 2.2, each input descriptor is presented to

the neural network and forward propagated to produce an output. This output is compared

against ground truth data, and the error is backpropagated through the neural network using

a selected training algorithm. The algorithm utilized in this work was Levenberg-Marquardt

(LMA) error backpropagation, which is a robust algorithm used in ANN training since it is
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able to find a solution even if the initial weights of the network are very incorrect. However,

similarly to other training algorithms, given a complex error surface, LMA can converge to

a local minima rather than a global minima, resulting in sub-optimal network estimation.

Training ends via to early stopping, a termination criterion met when the error in the

validation set begins increasing over a specific number of epochs. Early stopping reduces the

incidence of overtraining (i.e., memorization of the training set, including the noise within

it), and usually confers an enhanced generalization capabilities for the ANN. The testing set

is used as a test of performance by measuring the error before and after training. At this

point, the ANN is considered trained, and is ready for use in practice.
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CHAPTER 4

EXPERIMENTS

4.1 Overview

In order to test the validity of the approach, several experiments were performed to eval-

uate the estimation ability of the algorithm in different environments. All the experiments

examine the role of partitioning of the optical flow input descriptor on the performance of

the resultant ANNs. The first experiment specifically assesses the role of different illumina-

tion modalities on the performance of the ANNs, and compares its performance to that of a

magnetic tracker. Since the magnetic tracker is robotically actuated, this represents a similar

environment in which a magnetic tracker or the algorithm would possibly be employed.

The second experiment evaluates the algorithm practically within a simulated clinical

setting. This is achieved by utilizing a commercial endoscope equipped with WLI and

NBI operated by an expert gastroenterologist (> 2,000 lifetime procedures performed) to

complete four colonoscopies on a colonoscopy training simulator. We again assess the role of

illumination modality and partitioning method; however, we evaluate the efficacy of training

the ANNs on magnetic tracker data, which is more easily obtained in a clinical setting. With

this work, we additionally investigate the disparity in power of features produced under WLI

and NBI, as well as the role of the color channel of the images.
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The final experiment adopts an artificial, but accurate setup similar to the first experi-

ment in order to examine the optical flow descriptor produced, and the role that different

optical flow algorithms can play in the production of a more accurate neural network. In this

experiment, the concentration is solely on the interactions between the partitioning method,

descriptor, and the optical flow technique used; thus, the illumination modality is fixed as

WLI.

4.2 Benchtop Evaluation of Magnetic Tracker vs. Robotic Encoders vs. ANN

Estimates

The benchtop experiment formulated to assess the performance of the four variations of

ANNs based on illumination (WLI vs. NBI) and partitioning (grid-based vs. lumen-centered)

against a magnetic tracker is shown in Figure 4.1. The setup consists of a tethered endoscopic

module (22 mm in length ×27 mm in diameter) rigidly affixed to a 6 DOF industrial robotic

manipulator (RV-6SDL; Mitsubishi Corporation, Japan). This rigid connection with the

robotic enables the 6 DOF position and orientation of the endoscopic module to be accurately

derived from the robot encoders at any given point in time. The data from the robot encoders

is considered to be ground truth, and is used to formulate the known output targets of the

ANNs in the training set.

The endoscopic module houses a 500 × 582 resolution endoscopic camera (291,000 effec-

tive pixels, cross-section 3 mm × 3 mm, and 140◦ field of view; Introspicio 110, Medigus, Ltd,

Israel), 5 white light emitting diodes (LEDs) (NESW007BT; Nichia Corporation, Japan),

and 6 blue light (450nm) LEDs (Kingbright Electronic Company, Ltd, Taiwan) for NBI. The

two illumination systems were designed and driven to have approximately the same light in-

tensity. The unit also houses a 6 DOF magnetic tracking sensor (1.4 mm positional nominal

RMSE, 0.5◦ rotational nominal RMSE, 240-420 Hz update rate; 3D Guidance trakStar, Mid-

range; Ascension Technology Corporation, USA) for comparison to the motion estimation
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Figure 4.1: Experimental setup for benchtop evaluation of magnetic tracker, robot encoders,
and the ANN estiamtes.

outputs of the ANNs. Validation software provided by the manufacturer with the device was

used to appropriately position the magnetic tracker transmitter such that interference could

be minimized and the highest fidelity readings could be realized.

During training and testing, the endoscopic module is actuated along the straight sections

of a plastic human colon simulator (Kyoto Kagaku, Japan). This simulator is very common

in the training of medical doctors for performing colonoscopy, and therefore possesses similar

characteristics in terms of the gross anatomy of the colon. In order to mimic characteristics

of features that are enhanced by NBI, specifically blood vessels and capillaries in the colon,

fresh porcine blood was applied to the interior of the simulator. The setup was then covered

by an opaque black cloth (not shown in figure) to replicate the gastrointestinal environment.
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Result: Trained ANN

Select desired illumination modality

Read in image It−∆t

Record robot encoders and magnetic tracker sensor position at time t

while Not finished with training trajectory do

Move robot/endoscopic camera to next training pose

Read in image It

Generate and record optical flow-based feature vector

Record robot and magnetic tracker sensor position

Set image It−∆t = It

end

Calculate change in pose (∆Ptarget) from ground truth to be used as target vectors for

ANN

while Validation training error has not increased for six epochs do

Forward propagate input vector through ANN to get estimated pose ∆Testimated

Backpropagate error to train network

end

Figure 4.2: Algorithm for training set generation and training of ANNs.
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The system was controlled using interface software written in C++ to send positional

commands via TCP ethernet connection to the robot controller. This moves the arm in real-

time into the desired position. Each time the endoscopic module is moved, the movement of

the robot, the 5 DOF pose given by the tracker, and the corresponding endoscopic image was

recorded. This processed is detailed in Algorithm 4.2. The tracker position was captured

using C++ interface software using functions from Ascension’s 3D Guidance Application

Programming Interface (API). Individual image frames were acquired using a frame grabber

connected to the camera video processor, and were read and saved using OpenCV [74] library

functions.

Table 4.1: Magnitude, direction, and number of training repetitions for generating ANN
training set.

Degree of
Freedom
Tested

Magnitude
of Training
Repetitions

Total
Number of
Training

Repetitions

X only
±0.5 mm to
±5 mm

180

Y only
±0.5 mm to
±3 mm

120

Z only
±0.5 mm to
±3 mm

120

Roll only ±0.5◦ to ±2◦ 80
Pitch only ±0.5◦ to ±2◦ 80
Yaw only ±0.5◦ to ±2◦ 80

Translation
only

Variable 120

Rotation only Variable 80
All degrees Variable 320

Algorithm 4.2 details the procedure for generating the training and testing sets. With

each movement of the robot/endoscopic module, the resultant optical flow feature descriptors

are calculated, and the robot and magnetic tracker positions are recorded. Table 4.1 describes

the training trajectory, where the coordinates are given with respect to the Cartesian axes
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of Figure 4.1. The training trajectory was composed of 1180 steps, which were considered

to be representative of the endoscopic movements during colonoscopy [75]. The training set

allows 10 repetitions of varying magnitudes for each independent DOF independently tested,

and 5 training repetitions for any movement combining multiple DOF. When combinational

movement is tested, the magnitudes of movement can range between 0mm or 0◦ to the

maximum shown in Table 4.1. The conclusion of this training trajectory execution marks

the end of the acquisition of the inputs and targets of the training set, and the beginning of

ANN training.

Training of the ANNs proceeds offline in the manner demonstrated in Figure 3.1, and as

described in Section 2.2. The inputs to the ANNs are the optical flow descriptors, compact

representations of the evolution of the scene between time t-∆t and time t. The output

targets of the algorithm are calculated as a difference between the 6 DOF pose at time t-∆t

and time t. Using these data as the training set, the ANN is trained until completion, and

approximates a function which relates the relative motion in the image to the 6 DOF metric

motion between two time points.

Once the ANNs are trained, testing begins. Testing requires a similar environment and

procedure as training, and so the endoscopic module is actuated along a trajectory, and the

6 DOF pose of the tracker and robot are recorded at each time step, along with the endo-

scopic optical flow descriptors describing the relative motion. The testing set was randomly

generated, so as not to provide a testing set too similar to the training set. The bounds of

the training set were as follows: 0 mm±5 mm in the Z direction; 0 mm±3 mm in the X and

Y directions; and rotations of 0◦±2◦ in roll, pitch, and yaw as defined in Figure 4.1. The

main difference between training and testing is that there is no backpropagation of error or

modification of system weights; the optical flow descriptors are simply forward propagated

to produce the estimated pose. The error measure used to determine the accuracy of the

system is RMSE since the error contains both positive and negative magnitudes. RMSE
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is calculated for the commercial tracker and ANNs against the ground truth given by the

robot.

Implementation was achieved via Matlab’s Neural Network Toolbox; it was used for both

training and testing of the ANNs. The training set was divided so as to allocate 85% of

the data to the set on which the ANNs would be trained, 10% to compose the validation

set, and 5% for the testing set. These were determined empirically to provide good results.

Early stopping was employed to reduce overtraining, and was invoked if the error in the

testing set increased for six successive epochs. The ANNs are constructed to follow the

2n+1 hidden layer architecture suggested in [76], where n is the number of neurons in the

input layer (i.e., the number of descriptors in the optical flow descriptor). Thus, the ANNs

resulting from grid-based partitioning resulted in a network of architecture 50×101×6, and

the lumen-centered partitioning resulted in a network of architecture 10×21×6.

4.3 Evaluation of Proposed Method using Clinical Protocol

The training method proposed in the previous section provides the most accurate and

reliable data on which to train the ANN, since it depends on the highly accurate encoders

of an industrial manipulator. However, practically, accurate ground truth data may not

be feasible or possible to collect. To address this cause, we performed an experiment more

similar to the training conditions which would be encountered in practice.

The experimental platform created to replicate these conditions is shown in Figure 4.3.

In this experiment, an expert gastroenterologist performed a set of four colonoscopies using

the colonoscopy training model (Kyoto Kagaku, Japan). The plastic human colon simulator

was placed inside in a basic anatomical configuration (Figure 4.3, upper-right corner). In

order to ensure the presence of randomized features, the colon was filled with blood, and then

drained. This prevented the ANNs from observing a similar pattern during each colonoscopy.
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Figure 4.3: Experimental setup for evaluating the proposed method in a clinical setting.

A 5 DOF magnetic tracking system (1.20mm positional nominal RMSE, 0.5◦ rotational

nominal RMSE, 40Hz update rate; Aurora, Tabletop Transmitter; Northern Digital Inc.

(NDI); Waterloo, Canada) was inserted into the tool channel of a state-of-the-art flexible en-

doscope (H180AL/I Colonovideoscope; Olympus, Japan). This endoscope is able to provide

both WLI and NBI for colon inspection. Of the four colonoscopies performed by the expert

gastroenterologist, 2 were performed under WLI and 2 were performed using NBI. Following

each colonscopy, the endoscope was completely removed from the simulator, the interior of

the colon agitated so as to again, prevent the training set from being biased due to repeated

specific blood patterns.

In order to acquire the data from the magnetic tracking sensor and the data from the

endoscopic column, control software was written in C++ using the NDI API and OpenCV.

A trial consisted of at least a full traversal from the sigmoid colon to the cecum, and a sub-

sequent return to the sigmoid colon. In concordance with the previous experiment, optical
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flow descriptors were calculated as described in Section 3.2 for grid-based and lumen-centered

partitioning. However, two amendments were made to the processing of the NBI images.

It was discovered that histogram equalization was ineffective in producing an image with

increased contrast for determining the position of the lumen; thus, this step was ignored.

Additionally, the image mask applied to the image slightly differed from the previous ex-

periment due to the shape of the endoscopic image returned and the location of the patient

information, which obscured some parts of the image.

Result: Trained ANN

Select desired illumination modality

Read in image It

Record magnetic tracker sensor position at time t

while Not finished with colonoscopy do

Read in new image It + ∆t

Generate and record optical flow-based feature vector

Record magnetic tracker sensor position

end

Calculate change in pose (∆Ptarget) from ground truth to be used as target vectors for

ANNs

Generate optical flow input descriptors over entire training set

while Validation training error has not increased for six epochs do

Forward propagate input vector through ANN to get estimated pose∆Ppredicted

Backpropagate error to train network

end

Figure 4.4: Amended algorithm for training set generation and training of ANN in clinical
setting.
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One additional change was made to the procedure, which is reflected in an updated

algorithm detailed in Algorithm 4.4. Instead of calculating the optical flow descriptors

during image acquisition, this was performed offline after all the data was collected. This

allowed the maximum number of images and corresponding poses of the magnetic tracker to

be obtained. The effects of this change do not result in any change that affects the outcome

of the results. Specifically, in the previous experiment, the algorithm was able to take as

long as necessary to perform the optical flow descriptor before the next actuation movement

was made; the offline processing of this experiment therefore results in the same behavior.

The procedure necessary to train the ANNs was maintained; each of the ANNs was

trained using the optical flow descriptor inputs and the calculated translational and rota-

tional displacments of the magnetic tracking system. The training data consisted of one trial

from the WLI or NBI colonoscopies. The remaining trial was used as testing data to eval-

uate the performance of the ANNs when trained on more noisy data. The RMSE measure

was again used as a metric to evaluate the estimation capabilities of the ANNs, and was

calculated as the RMSE between the estimates produced by the ANNs and the known pose

displacement given by the magnetic tracker.

4.4 Assessment of Illumination Modality on Feature Strength

Given the dataset acquired in the previous experiment (Section 4.3), a quantitative com-

parison of the strength of the features extracted from WLI and NBI can be made. This

was performed using features calculated in the ST algorithm, which establish a criteria for

estimating the strength of trackable corners and edges [46]. This well-established and well-

known feature detector determines strong features by calculating the eigenvalues of a pixel

of interest using its local neighborhood. In this way, two types of features can be identified

– corners and edges. Corners are indicated when the eigenvalues are large (i.e., there is a
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large variation in both horizontal and vertical direction), and edges are indicated by one

large eigenvalue.

To evaluate the strength of features, and also consider the role of each individual com-

ponent channel, a single image was first divided into its red, green, and blue channels. A

grayscale version was also employed as a metric to evaluate the validity of using grayscale

instead of full color images. The ST algorithm was run on each of these 4 image components

to find the locations of the good features, and using these points, determine the maximum

eigenvalue for each of the images. This was repeated for 200 images collected from the dataset

acquired from the experiment performed in Section 4.3 for both WLI and NBI. Using these

results, the strength of the features based on illumination as well as the contribution of their

individual color channels can be assessed.

4.5 Investigation of Feature Descriptor

The performance and estimation accuracy of ANNs is highly dependent on the charac-

teristic of the function being approximated and the consistency of the input/output pairs.

For this reason, detection of stable features for consistent optical flow vectors and the for-

mulation of the optical flow input descriptor is essential to accurate ANN estimates. In

this experiment, we first compare the impact of defining the optical flow in a scene with

the [dr, dθ] parameters versus the [dx, dy] parameters. We then evaluate the effectiveness

of the feature descriptors by comparison of the variation within and between certain dis-

tance classes. Additionally, we investigate the use of Principal Component Analysis (PCA)

to reduce the dimensionality of the input vectors, retaining only the principal components

conferring 97% of the variation.

Following this evaluation of the descriptors, we then investigate several different com-

mon and state-of-the-art optical flow calculation techniques, and observe their effect on the

accuracy of the resultant ANNs. A flow diagram describing the algorithm taken to reach
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this purpose is shown in Figure 4.5. This is in contrast to Figure 3.1, which shows only one

optical flow method being investigated. Additionally, the impact of illumination is no longer

considered in this experiment, and WLI is adopted as the sole illumination modality.

Image It 
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Figure 4.5: Algorithm for comparing ANNs based on state-of-the-art methods of computing
optical flow.

A robotically controlled setup, shown in Figure 4.6, was used in order to evaluate the

performance of the algorithm in an artificial scenario (a straight endoscope motion in the

colon) and by attaching the endoscope to a robot’s end effector to precisely record its motion.

This was done in order to mimic the most common and likely movement of a teleoperated

robotic endoscope, and also obtain a result independent of unwanted complexities. The

experimental setup is similar to the setup described in Section 4.2, but utilizes a commercial

endoscope (13803PKS; Karl Storz GmbH and Co.; Germany) rather than an endoscopic

camera, and does not mount a magnetic tracker onboard the module. The endoscope is

rigidly attached to the industrial robotic manipulator.

The mechanism is again actuated using a control software written in C++, at each time

step sending positional commands to the robot to increment its position. The robotically
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Figure 4.6: Experimental setup replicating movements of a teleoperated endoscope within a
human colon simulator for comparison of optical flow generation algorithms.

actuated endoscope moves along the optical axis of the endoscope, which is aligned with

the x-axis of the robot, then laterally along the y-axis, and finally vertically, along the z-

axis. The algorithm employs a one second delay in order to avoid any possible oscillation

of the camera during image acquisition. The data was collected in a similar manner to the

experiments described in both Section 4.2 and Section 4.3, and the training set acquisition

algorithm is described in Algorithm 4.7. In this experiment, the robot pose is collected at

each iteration; however, no magnetic tracker readings are collected, and the composition of

the optical flow descriptors is computed offline. As in the previous experiments, the image

at the time corresponding to the robot data acquisition was acquired. The endoscope moves

within a human plastic colon simulator (shown in Figure 4.6 in increments of ∼ ±0.3mm

from 0.3mm to 4mm for 10 iterations each along the x-axis, and in increments of ∼ ±0.15mm

from 0.15 to 2mm for 10 iterations each along the y and z axes. This resulted in a data set

composed of 260 input/output vector pairs for each DOF.
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Result: Trained ANN

Read in image It

Record robotic encoder pose at time t

while Not finished with training trajectory do

Read in new image It+∆t

Record robotic encoder pose

end

Calculate change in pose (∆Ptarget) from ground truth to be used as target vectors for

ANNs

Generate optical flow input descriptors over entire training set

while Validation training error has not increased for six epochs do

Forward propagate input vector through ANN to get estimated pose ∆Ppredicted

Backpropagate error to train network

end

Figure 4.7: Amended algorithm for training set generation and training of ANN for compar-
ison of efficacy of optical flow techniques.

4.5.1 Evaluation of Descriptor Parameters

Section 3.2 describes the summary statistics used for descriptions of the optical flow vector

for particular regions of an image scene; however, these different representations may have an

effect on the performance of the ANNs. In order to evaluate the magnitude of this difference,

2 additional optical flow descriptors were formed: a combination of lumen-centered parti-

tioning, whose optical flow is calculated using [dx, dy], and grid-based partitioning, whose

optical flow is calculated using [dr, dθ]. This is combined with the original two descriptors to

assess the role of the descriptor representation on the estimation capabilities of the ANNs.
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In order to train the ANNs, the datasets were divided into 2 mutually exclusive groups,

where 75% of the data was used as training data, and the remaining 25% was used for test-

ing. Each of the groups was populated by randomly selecting examples from the dataset.

The same datasets were used for the training and testing of each ANN. In order to reduce

the likelihood of converging to a local minima, 100 ANNs were generated for each parti-

tioning/descriptor representation pair. The best ANN for each combination was selected for

comparison based on the lowest RMSE obtained.

4.5.2 Analysis of Class Variation

A multivariate analysis of class variation was performed to estimate the separability of

the data based on the descriptors. To do this, the data were divided into 72 different classes,

based on the DOF in which the endoscope was moving, and the distance travelled. For

example, there are 26 different increments moved along the x-axis (i.e., 0.3mm, -0.3mm,

0.6mm, -0.6mm, etc.), and 10 iterations done of each movement. Thus, in the x-direction,

there are 26 classes composed of 10 examples each. The length of each example is defined by

the partitioning method (i.e., grid-based partitioning has length 50, whereas lumen-centered

partitioning has length 10).

In order to evaluate the separability of classes, within-class and between-class variation

was calculated. The within-class variation W and between-class variation B are given as:

W =
k∑
i=1

n∑
j=1

(yij − yi)(yij − yi)
′ (4.5.1)

B = n

k∑
i=1

(yi − y)(yi − yi)
′ (4.5.2)
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where k is the number of classes, and n is the number of examples in the class. The other

expressions are calculated as:

yi =
n∑
j=1

yij (4.5.3)

y =
k∑
i=1

n∑
j=1

yij (4.5.4)

ȳi =
yi

n
(4.5.5)

ȳ =
y

kn
(4.5.6)

where yi and y are the column-wise sum of the examples in the class, and all the examples,

respectively; then, yi and y are the mean of each class, and the overall mean. Given these

definitions, W and B were calculated for each degree of freedom, with each increment repre-

senting a separate class; and over the entire dataset, with each DOF representing a separate

class. For each case, Wilks’ Λ statistic, was calculated as:

Λ =
|W|

|B + W|
. (4.5.7)

The within-class and between-class parameters were then tested by assembling a set of classes

with a common feature to create a smaller dataset. To determine the relationship between

the variance within the 10 increments tested for a single class to the entire dataset for a

DOF, 3 smaller subset datasets were formed, representing each DOF. The Λ obtained from

this dataset reflects the ability to distinguish between different increments for a single DOF.

Another subset was formed comprising the entire dataset, where each DOF represented a

class. This dataset will reflect the ability to distinguish in which DOF a movement occurred.

10 more subsets were formed for the [±0.3mm, 0.6mm, 0.9mm, 1.2mm, and 1.5mm]

groups. Each of these subsets contain a total of 30 examples, 10 from each DOF for the
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selected increment moved. This information will describe how well the same increment can be

distinguished among different DOF. Further details regarding multivariate variance analysis

can be found in [77].

4.5.3 Effects of Dimensional Reduction

Dimensional reduction can be advantageous for applications whose samples have a large

number of elements. This can be particularly beneficial in the case that ANNs are used; a

higher dimensionality generally confers a more complex error surface, which can result in the

ANNs converging to local minima instead of the global one. Additionally, ANNs are very

sensitive to the training data; the more consistent the data, the better the ANN is able to

approximate the function. Lastly, a high dimensionality input vector requires more ANN

units and thus a longer time and more computation is necessary for training the ANN.

Dimensional reduction results in a loss of information; in order to make sure the most

relevant information is obtained, PCA was used as a method to transform the data into a

lesser dimension, while retaining the most variability in terms of variance/covariance. To

do this, a new coordinate system is created based on the eigenvalues and eigenvectors of

the original data; using the largest eigenvalues and corresponding eigenvectors, a basis is

formed which represents the axes of maximum variability in the dataset. For this work, the

dimensionality was chosen based on the number of eigenvectors required to explain 97% of

the variation in the data.

This was done by first preprocessing the data by mean centering and unit variance. Mean

centering removes a bias in the variables and introduces a common point of reference for all

dimensions of the data, and creating a common unit variance to account for the range of the

dimension. The new scaled version s of an element x in a dimension i is therefore:

s =
x− µi
σ

(4.5.8)
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Following this operation, the covariance matrix C for the transformed data set S is:

C =
1

n− 1
STS, (4.5.9)

where n represents the number of examples in the data set. Eigenvalue decomposition is

performed on the square covariance matrix to yield a diagonal matrix of eigenvalues Λ and

corresponding eigenvectors Q such that C = QΛQ−1. The matrices are rearranged such that

the diagonalized eigenvalues appear in decreasing order. In order to determine the minimum

number of principal components pmin required to account for 97% of the data, the ratio r

was calculated as:

r[j] =

∑j
k=1 λk∑n
m=1 λm

, (4.5.10)

where j is the index of the eigenvalue. The value j which corresponded to an r ratio closest

to but no less than 0.97 was considered to be the number of eigenvector basis vectors required

to represent the data set. The value j and eigenvectors Q were calculated for each of the

4 data sets derived from combinations of partitioning (grid-based vs. lumen-centered) and

descriptor representation ([dx, dy] vs. [dr, dθ]).

For training and testing of the ANNs, 75% of the data was used for training, and 25%

of the data was used for testing; these two sets are mutually exclusive. The training and

testing datasets were selected randomly from the overall dataset. The training and testing

of the ANNs proceeded in a manner identical to the methods in the previous experiments.

In an effort to increase the likelihood of converging to a global minima, 100 different ANNs

were trained for each partitioning/descriptor representation combination. The best ANN

(i.e., the one with the lowest RMSE) was used for comparison in the results.
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4.5.4 Comparison of Optical Flow Algorithms on Performance

In order to reduce the effects of interference between DOFs, a single DOF was selected for

usage as the dataset in this experiment. The DOF chosen was the X DOF along the optical

axis, as it is arguably the most important DOF necessary for accurate pose estimation.

This large dataset is divided into two mutually exclusive groups for training and testing

data. Two-thirds of the data was used to train the neural network, and the remaining third

was used for testing the performance. Again, the procedure necessary to train the ANNs

was maintained; each of the ANNs was trained using the optical flow descriptor inputs and

the calculated metric relative motion given the robot’s encoders. The mean and standard

deviations were used as a metric to evaluate the estimation capabilities of the ANNs, and was

calculated as the mean and standard deviation between the estimates produced by the ANNs

and the known pose displacement given by the ground truth information given by the robot’s

encoders. In this experiment, the same approach was taken in order to reduce the effects

of Levenberg-Marquardt convergence to local minima; 100 ANNs were generated for each

optical flow algorithm/partitioning method. Using the the means and standard deviations

as a basis for evaluation, the best ANNs were chosen as representatives for comparison of

the ANNs’ performance of the motion estimations.
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CHAPTER 5

RESULTS AND DISCUSSION

5.1 Benchtop Comparison of ANNs vs. Commercial Magnetic Tracker

Figure 5.1 shows a comparison of the performance of the ANNs and magnetic tracker

vs. ground truth over the entire testing set. For all four types of ANNs for all positional

DOF, the RMSE is less than 5mm. The ANNs best estimate the motion along the x-axis

(i.e., the optical axis of the endoscopic module), which is arguably the axis requiring the

most accurate estimates. Although the ANNs perform similarly, the grid-based partitioning

method using WLI is the best performing ANN. This is confirmed in the Y and Z DOF.

Of particular interest is the Y DOF, in which all of the ANNs outperform the commercial

magnetic tracker.

On the other hand, the best performing ANN for the orientation DOF was the ANN

combining lumen-centered partitioning with NBI. This resulted in an ANN with RMSE of

less than 1.7◦ for each DOF. In the yaw DOF, the WLI/lumen-centered partitioning ANN

slightly outperforms the NBI/lumen-centered partitioning ANN. In the orientation DOF,

the commercial tracker performs better than the ANNs; however, the average difference is a

somewhat trivial 0.7◦.

An important result of this trial is the comparability of the algorithm to data produced

by the magnetic tracker, which is used in a setting similar to that of a teleoperable flexible
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(a) RMSE for translational DOF (b) RMSE for rotational DOF

Figure 5.1: RMSE and standard deviation of the ANN variations and state-of-the-art mag-
netic tracker with respect to ground truth based on robot encoder readings.

endoscope. It is likely that the degraded performance of the tracker is related to its proximity

to the actuating motors of the robot; however, the endoscopic module is approximately

300mm from the nearest motors, which are not even used when actuating the translational

DOF.

5.2 Clinical Validation Trial with Commercial Endoscope

Figure 5.2 shows a comparison between the performance of the ANN variations for po-

sition and rotation DOF. Although the ANNs are able to predict the full 6 DOF given a

measurement device that reports 6 DOF, the magnetic tracker used is only able to report 5

DOF. Approximately 1% of the data was removed to account for outliers present in the ANN

estimations. Furthermore, the results for grid-based partitioning are not shown in Figure 5.2

since their error is up to an order of magnitude greater than that of the lumen-centered

partitioning approach.

A comparison of the illumination modalities for lumen-centered partitioning reveals that

ANNs trained under NBI conditions are able to constantly achieve slightly better perfor-

50



(a) RMSE for translational DOF (b) RMSE for rotational DOF

Figure 5.2: RMSE and standard deviation of ANN pose estimations against magnetic tracker
readings during clinical evaluation of the algorithm.

mance in terms of accuracy and precision than WLI ANNs. Thus, lumen-centered parti-

tioning combined with NBI can be considered to be a superior mechanism to WLI for a

vision-based motion estimation in this application. However, this outperformance is mini-

mal; the possibility for convergence to local minima of the ANNs, and importance of the

randomly initialized weights should be carefully considered before drawing conclusions about

the efficacy of the approach. This is especially important considering that both approaches

have comparable RMSE, which is less than 2mm in for positional DOF and 3◦ in orientation

DOF.

An essential result of this trial is evidence that ANNs can be trained on noisy data,

and still produce estimates similar to that of when ground truth is known very accurately.

This is shown most clearly by the results in the X, Y, and yaw directions. This reflects

the noise filtering and generalization capabilities of ANNs. Furthermore, by performing an

experiment similar to a clinical setting with a commercial endoscope handled by an expert

gastroenterologist, this verifies that this approach is relatively robust. During this trial,

the gastroenterologist cleaned the lens using the endoscope’s water channel due to blood
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sometimes obscuring the image, and the endoscope was moved sharply and suddenly. All of

these elements produce significant noise and disturbances in the image; obscuring the image

with blood and cleaning the lens even violates the static scene assumption. Even further, the

effect of the roll movement of the endoscope was essentially filtered out from the data set; the

5 DOF sensor was unable to report this DOF, so it could not be measured or accounted for

within the algorithm. Regardless, the algorithm was able to perform satisfactorially despite

these challenges.

A major contributor in the pose estimation error is likely due to these types of noise,

which obscure the image and violate essential constraints governing the behavior of elements

within the algorithm. It is essential to note that this experiment was performed by an expert

gastroenterologist, not a robotically controlled endosocope; since a higher degree of control

can be obtained using a robotically actuated endoscope, the noise introduced by sudden

and fast movement can be eliminated by placing constraints on the types of movements the

control system is able to command. This will create smooth, controlled movements.

With a robotically actuated endoscope, algorithms can also be employed to pause motion

estimation during periods in which the lens is being cleaned. Again, due to the robotic nature

of the device, these events can be sensed from the input device commanded by the user so

that motion estimation can be paused while the endoscope is forced to remain motionless.

One final source of error that cannot be overlooked is turning around corners encountered

during the endoscopy. This is probably a major contributor to the reduced performance of the

grid-based partitioning when performed along the entirety of the colon, especially compared

to its accuracy when used in estimations along straight sections of the colon as tested in

Section 4.2.

Finally, an important quantity to note when considering real-time motion estimation

is the time required for the algorithm to execute and the estimation to be made. Given

the frame It−∆t, the time required to both acquire the current frame It and return a mo-
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tion estimate is approximately 280 ms during the highest magnitude of movement tested

for lumen-centered partitioning, the most computationally expensive out of the two parti-

tioning methods. However, this value is strongly influenced by the number of ST feature

correspondences found during each iteration. The maximum number of features allowed in

this implementation was capped at 10,000. Additionally, this algorithm was tested using a

standard laptop (Lenovo Thinkpad T520, Intel Core i5-2520M CPU at 2.50 GHz, Windows

7 Professional; Lenovo; USA) with unoptimized code. Thus, it is expected that the compu-

tational time will be reduced by parallelizing the computation of ST feature correspondences

(e.g., by utilizing different processor cores to simultaneously process different regions of the

image) and ANN computations, optimizing the code, and using a more capable computer.

5.3 Strength of Features based on Illumination Modality and Color Channel

Figure 5.3 depicts the optical flow vectors created by a 5mm translation along the optical

axis of the endoscope during the first experiment (described in Section 4.2). This figure

provides a visual comparing the appearance of the colon under the different imaging modal-

ities and spatial partitioning methods. Visual inspection reveals a definitive pattern in the

optical flow due to the movement of the camera relative to the static environment.

An analogous image set is shown in Figure 5.4, but the WLI and NBI pictured here are

provided by the commercial endoscope. A comparison between Figure 5.3 and this figure

demonstrate a visual difference in the appearance of the colon due to utilizing the artificial

NBI LEDs versus the NBI provided by the commercial endoscope. Regardless, the effect of

the illumination modality is evident; qualitative inspection of the image shows that blood

features are more prominent and distinguished using NBI as compared to those of WLI. In

the figures shown, the partitioning lines are drawn to illustrate the delineation of regions

under the different partitioning methods; however, in practice the division is not created on

the image, but only used as boundaries within the processing program.
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Figure 5.3: Typical optical flow patterns for a 5 mm translation along the Z axis with com-
binations of illumination modalities and spatial partitions. Tests were performed
in a human colon simulator with porcine blood staining.

Figure 5.5 presents a quantitative comparison of the strengths of features garnered from

a grayscale representation of the image versus the red (R), green (G), and blue (B) channels

for WLI and NBI based on the images obtained from the commercial endoscope. Since

corners and edges represent areas of the image with high variation across their local pixel

neighborhood, they are indicated by regions with high eigenvalues. As is evident in the

figure, NBI creates features with more than twice the strength of WLI features. Although

it has a higher variation (i.e., larger standard deviation) in terms of these eigenvalues, even

the lowest mean value, given the standard deviation, still far exceeds that of WLI.

The average number of WLI features is approximately 12,600 for all color channels; on

average, NBI images have slightly fewer, with approximately 11,700 detected features. This

suggested that although WLI is able to produce more features than NBI, they are half the
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Figure 5.4: A comparison of the image of the lumen of the colon under WLI and NBI using
a commercial endoscope.

quality of NBI features. Additionally, this figure demonstrates that utilizing a grayscale

image within the algorithm rather than the entire color image is justified, since the feature

strengths from the grayscale image have nearly the same mean feature strengths as the other

color channels. This allows a faster processing time since a one-channel image can be used

instead of a 3-channel image.

These results coincide with those found in Section 5.2, as well as the visual inspection of

the images in Figure 5.4, which reflect a higher contrast between the walls of the colon and

the blood features under NBI. However, given the improved strength of features under NBI,

one would expect a greater disparity between the performance of the WLI and NBI ANNs.

This similarity of response is likely due to the ANNs themselves; since ANNs are sensitive

to their initial weights, which causes them to sometimes to converge to local minima, it is

possible that these ANNs found represent suboptimal function approximations.
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Figure 5.5: A comparison of the strength of features between WLI and NBI per color channel.
K represents a grayscale version of the image, R is the red channel, B is the blue
channel, and G is the green channel.

5.4 Evaluation of Feature Descriptors

5.4.1 Descriptor Representation

The effects of the parameters used to describe the optical flow vectors are shown in

Figure 5.6. For the translation DOF, the best mechanism for partitioning appears to be

lumen-centered partitioning, using the [dx, dy] parameters. In general, the [dx, dy] param-

eters appear to produce slightly more accurate ANNs. For the rotational DOF, the best

ANN is clearly the ANN resulting from lumen-centered partitioning and [dr, dθ] parameters.

However, all the errors produced are very low, and should be since there was never rotation

in the motion dataset. The reason these errors appear at all is likely due to the initial

weights, backpropagation, and early stopping used with the ANNs. Because of these factors,

the training likely does not last long enough for the weights to converge to zero.
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(a) RMSE for translational DOF for
ANNs comparing descriptor param-
eters

(b) RMSE for orientation DOF for
ANNs comparing descriptor param-
eters

Figure 5.6: RMSE for ANNs based on combinations of partitioning and feature descriptor
representation

5.4.2 Class Variation

Figure 5.7 shows the Wilks statistic Λ for each of the subsets of the data. As shown in

Figure 5.7a, Λ is low for each of the combinations of partitioning and representation. This

means that comparatively, each example for a given class is closer to its mean than to the

overall subset mean. Consequently, this suggests that given that the DOF being tested is

known, it is rather straightforward to distinguish increments of ± 0.3mm. The O subset

removes the assumption that the DOF in which the actuation takes place is known; this

leads to a much higher Λ value. This suggests that the appearance of movement even within

a single DOF varies greatly; thus, it is difficult to distinguish in which DOF a movement

occurred. This is particularly pronounced with the [dx, dy] representation, particularly in

the lumen-centered partitioning. This result suggests that the within-class variation (i.e.,

the variation in appearance for a particular DOF) for this combination accounts for more

than 70% of the overall variation in the feature descriptor.
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(a) Within-class variation ratio for each
DOF, where class is given by the in-
crement moved

(b) Within-class ratio for selected incre-
ments moved in a positive direction,
where class is given by the DOF

(c) Within-class ratio for selected incre-
ments moved in a negative direction,
where class is given by the DOF

Figure 5.7: Within-class ratio based on selected subsets of the data.
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Figures 5.7b and 5.7c show the ability of the lumen-centered partitioning to distinguish

to which DOF a given increment belongs. Grid-based partitioning is not shown, since the

length of an example (i.e., 50) is greater than kn, or the number of examples in a dataset

(30). This leads to a singularity in the within-class matrix. Additionally, these two figures

are separated for readability only.

For the [dx, dy] representation, the within-class variation ratio is generally less than the

corresponding data in Figure 5.7a. This suggests that given a certain increment, it is easier to

distinguish it from other increments in other DOF of the same distance than if the distance

is known. The same is generally true for the [dr, dθ] representation. However, as shown,

the within-class variation in the [dr, dθ] representation appears to be greater. Again, it is

important to note that all of these values are on the order of 10( − 4), which is a relatively

small variation. The data thus suggests that the grid-based [dr, dθ] representation may be

the best, since (1) given the DOF, the the distance which was moved can be differentiated

from other distances, (2) movement in each DOF can be distinguished from movements in

other DOF, and (3) given the distance moved, the DOF in which it occurred can be discerned

from other DOF.

5.4.3 Dimensional Reduction

Applying PCA to the datasets determined that the dimension that accounts for 97% of

the variation in the data using grid-based partitioning was 27 for the [dx, dy] representation

and 18 for the [dr, dθ] representation. For lumen-centered partitioning, the the number of

principal components was 6 in both cases.

Figure 5.8 shows the performance of the ANNs with the dimension of the inputs reduced.

Compared to the translational DOF in figure 5.6, PCA does not present any significant

gains in terms of reduction with RMSE for the [dx, dy] representation. However, the [dr, dθ]
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(a) RMSE for translational DOF for
ANNs comparing descriptor param-
eters with dimensional reduction

(b) RMSE for orientation DOF for
ANNs comparing descriptor param-
eters with dimensional reduction

Figure 5.8: RMSE for ANNs based on combinations of partitioning and feature descriptor
representation with reduced dimensionality

representation resulted in a significant increase in RMSE. For these two cases, dimensional

reduction, although retaining 97% of the variation, does not aid in reducing the RMSE.

In terms of the rotational DOF, PCA had a similar effect: exchanging a decrease in

RMSE for one combination while increasing the RMSE for another. However, in this case,

only the grid-based [dx, dy] representation was affected, and all the RMSE fell under 3x10−3

degrees.

For this particular assignment of the training set, dimensional analysis aided some DOF,

while hurting others. The desirable quality is shown by lumen-centered partitioning with

[dx, dy]; for each DOF, either the RMSE stayed nearly the same, or it decreased significantly

with dimensionality reduction. Because of this, the reduced dimension is equivalent or better

than the full dataset; by reducing the number of inputs, the training time of the ANNs can be

significantly reduced. For grid-based partitioning with [dx, dy] representation, it can also be

argued that dimensionality reduction may also be useful in practice; the error introduced in
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the rotational DOF may not be significant enough to pose a problem, although the dimension

is cut nearly in half.

It is important to note that these data vary with the training and testing sets randomly

populated, and are additionally dependent on the random initial weights, although hopefully

the effect of this latter contributor was diminished by the sampling of 100 ANNs. Thus, it will

be useful to consider instead of just one training set, several training sets, and training several

ANNs on each one. PCA also highlights the importance of a dataset that is representative

of the combinations that will be encountered in the testing set, and enough examples such

that an accurate representative of the true function can be found.

5.4.4 Optical Flow Algorithm Comparison

Figure 5.9 demonstrates a worst-case scenario in which few feature correspondences can

be found within an image. As shown, the sparse methods LK, FAST-SIFT, and FAST-SURF

(shown in Figures 5.9c, 5.9d, 5.9e produce very few optical flow vectors, and the ones which

are produced have a seemingly random pattern. On the other hand, dHMA (Figure 5.9f)

produces a very consistent OF, and can likely provide a better input to the ANNs.

The pose estimation capabilities of each of the optical flow methods combined with

grid-based or lumen-centered partitioning is shown in Figure 5.10 for the 1 DOF robotic

actuation along the optical axis of the endoscope through the colon simulator. Figure 5.10a

reports the mean and standard deviation for the error (i.e., the signed difference between

the ground truth provided by the robot encoders and the estimations output by the ANNs)

for grid-based partitioning. As shown, the two dense optical flow methods perform similarly,

producing an average absolute mean of 1.3mm±1.9mm error along the actuation direction,

and definitively outperformed the sparse methods. The maximum mean error produced for

the test trajectory was 14.6mm using FAST with SURF descriptors.
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(a) [It−∆t] (b) It

(c) LK (d) FAST-SURF

(e) FAST-SIFT (f) dHMA

Figure 5.9: Comparison of optical flow vectors produced in a worse-case scenario.

62



Methods 

X Y Z 

E
rr

o
r 

(i
n

 m
m

) 
25 

20 

15 

10 

5 

0 

-5 

(a) Mean and standard deviation for
translational DOF

Trajectory Step 

P
o
s
it
io

n
 (

in
 m

m
) 

0 

10 

20 

30 

40 

50 

60 

-10 

0 20 40 60 80 

(b) Integrated trajectory of the test tra-
jectory

Figure 5.10: Experimental results with grid-based partitioning combined with sparse and
dense optical flow techniques.

Additionally, Figures 5.10a and 5.11a demonstrate that the algorithm is able to accurately

able to identify the moving direction since the translation errors along the Y and Z DOF

are zero. This means that the ANN weights have been accurately trained to produce a zero

output. Not included in the results are graphs for orientation errors, which were also zero

in all cases for both grid-based and lumen-centered ANNs.

Figure 5.10b shows the integrated trajectories of the different optical flow methods com-

bined with grid-based partitioning. The details the performance of the algorithm along the

entire test trajectory as compared to ground truth. As shown, the dense optical flow tech-

niques perform similarly, with a final difference in endpoint of 3.61mm over a test trajectory

174mm in length. FAST-SURF again performed the worse, with a deviation of 19.51mm

from the endpoint given by ground truth.

Figure 5.11 details the performance of the different optical flow methods under lumen-

centered partitioning. FAST-SIFT, FAST-SURF, and dHMA all perform similarly, and

produce approximately 4-5mm of mean error over the entire test set. However, unlike grid-
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Figure 5.11: Experimental results with lumen-centered partitioning combined with sparse
and dense optical flow techniques.

based partitioning, the LK method achieves the lowest mean error (0.31mm). On the other

hand, it possesses the widest distribution of estimates as shown by its large standard devia-

tion (±4.6mm). HMA also provides a low mean error (1.45mm), although it slightly higher

than LK, but provides a much more reliable estimate, as shown by its more narrow standard

deviation range (±2.55mm).

Although the error statistics for grid-based partitioning were relatively indicative of their

performance in the integrated trajectory, this is not the case for lumen-centered partitioning.

As shown, the optical flow algorithm which produces the closest endpoint is the FAST-SIFT

with a final offset of 1.74mm; however, it has one of the highest mean errors. In contrast,

LK, HMA, and DHMA all have endpoints that significantly deviate from the true endpoint,

ending at a maximum of 6.9mm away. However, these 3 algorithms correspond to the lowest

mean errors.

Overall, the grid-based partitioning method produces the top two ANNs with the lowest

error and smallest standard deviation; however, lumen-centered partition appears to have
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the effect of standardizing the scene for each of the optical flow methods, resulting in a lower

overall error for all the optical flow methods. Additionally, this work suggests that given an

ANN able to produce estimates with low mean error and standard deviation, the integrated

trajectory may also be able to be used as an additional input in a control system, using both

together to produce the most accurate estimate.

It is essential to again note the dependence of these results on the training of the ANNs.

In order to reduce the impact of the initial neuronal weights, 100 ANNs were tested for

each of the optical flow/partitioning combinations. However, it is likely that an even more

exhaustive search or alternative training algorithm may be necessary for reliably comparing

these methods. Finally, the results of this experiment may be a result of a small training set.

As in the previous experiment, a significantly larger dataset may provide the ANNs with a

more complete sampling of the function to be approximated.
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CHAPTER 6

CONCLUSION

Colorectal cancer affects the lives of millions of men and women worldwide. Although it

is nearly always preventable, people avoid the procedure due to fear of potential pain, em-

barrassment, and the perceived indignity of the procedure. Teleoperable flexible endoscopes

introduce the possibility of overcoming these deterrences by imparting better control to the

physician and promoting a higher polyp detection rate. These endoscopes can be made more

accurate and precise by the introduction of motion estimation algorithms, which are able to

provide pose feedback reflecting the positional and rotational movement of the endoscope

after actuation. This offers the ability to create a closed-loop control strategy, which can aid

in disturbance rejection, noise rejection, and actuation error minimization for flexible devices

operating in complex environments. The research presented has the potential to enhance

teleoperated and automated endoscopy.

This work first presented an algorithm designed to extract reliable features from an

images, estimate the optical flow between the images, and use the resultant patterns of

optical flow to train an ANN to reliably compute the metric change in motion. Advantages

of the algorithm include that it does not require direct estimation of camera calibration

parameters, does not add to the size of the device, and does not create any interference due

to the actuation mechanism of the device.
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The algorithm was first tested against a state-of-the-art commercial magnetic tracker in a

typical robotically actuated operating environment. In this case, the impact of illumination

was assessed by creating an endoscopic module attached to an industrial robot, equipped

with both white light and narrow band (450nm) LEDs. Methods for best partitioning the

image were also explored (grid-based vs. lumen-centered) in order to create the best input

vector for the ANNs. All the ANNs achieved positional RMSE of less than 5mm, and in

one case, the error in all the ANNs was lower than that of the commercial magnetic tracker.

The best combination of illumination and partitioning was WLI with grid-based partitioning

(2.42mm RMSE). However, in terms of rotational RMSE, the most accurate ANN was the

one using NBI and lumen-centered partitioning (1.69◦ RMSE). During this trial, the tracker

obtained an accuracy of 2.49mm in positional DOF and 0.89◦ in rotational DOF. With these

results, we can conclude that the optical flow-based ANNs have performances comparable

to that of a state-of-the-art commercial tracker.

The algorithm was then evaluated based in the manner in which it would be used in a clin-

ical setting. This was achieved by placing a 5 DOF magnetic tracker down the tool channel

of a state-of-the-art Olympus endoscope equipped with both WLI and NBI. A colonoscopy

training model used for teaching gastroenterologist trainees was then used as a test platform,

and the plastic colon simulator within the model was stained with porcine blood. An ex-

pert gastroenterologist then performed 4 colonoscopies on the simulator; 2 under WLI and 2

under NBI. For each illumination modality, one trial was used for training the ANNs, while

the other was used as a testing set. Again, the 4 combinations utilizing illumination and

partitioning were compared. The performance of lumen-centered partitioning with NBI was

superior, with 1.03mm ± 0.8mm RMSE in positional DOF, and 1.26◦± 0.98◦ RMSE in rota-

tional DOF, while with WLI, the performance was 1.56mm ± 1.15mm RMSE in positional

DOF and 2.45◦ ± 1.90◦ RMSE in rotational DOF.
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This second experiment additionally investigated the role of the color channels and illumi-

nation modality of the strength of the extracted features. Using the images acquired during

the 4 colonoscopies, the features extracted via the ST algorithm were compared based on

their eigenvalues, a measure of their strengths. A comparison of these eigenvalues revealed

that on average, features gathered via NBI were twice as strong as the features extracted

under WLI. WLI on average produced slightly more features. Additionally, no significant

difference between the feature strengths between the red, blue, and green color channels

were observed, and did not vary significantly from a grayscale version of the image. This

demonstrates that a grayscale image is sufficient for feature extraction.

Finally, mechanisms for understanding and thus improving the algorithm were then ex-

plored. One of the most important parts of the algorithm is establishing the optical flow

between two sequential images, since it is the basis of the vector input to the ANNs. Using

an experimental platform similar to the first robotically actuated platform, we actuated the

robot along each individual DOF, the x-axis, the optical axis of the camera, and the two

perpendicular directions - the y-axis and the z-axis. This was performed in a plastic human

colon simulator to gather both the training and testing sets.

We first evaluated the role that the optical flow representation had on the results; it

was shown that the lumen-centered partitioning method was superior, combined with ei-

ther of the [dx, dy] or [dr, dθ] representations. Additionally, the within-class variation and

between-class variation was evaluated for different subsets of the data. In this case, the

grid-based partitioning methods had the most cohesive data classes, and all of the partition-

ing methods/descriptor representation pairs have low within-class variation, which allows

the different DOF classes to be discerned. Also, the multivariate analysis showed that the

within-class variance for the increments for lumen-centered partitioning was lower than that

of the DOF; this suggests that it is easier for using lumen-centered partitioning to distin-

guish between the different DOF in which an increment occurs than differentiating between

68



the different increments within a single DOF. Finally, dimensional reduction showed mixed

results; although it improved one case and another was arguably comparable, the more than

50% reduction in the dimension of the descriptor input accelerated training of the ANNs.

Additionally, we evaluated 5 state-of-the-art, well-established, and ubiquitous methods

for calculating optical flow: LK, FAST-SIFT, FAST-SURF, HMA, and dHMA also for the

purpose of optimizing the descriptor representation introduced to the ANNs. For this com-

parison, only 1 DOF of the dataset acquired in the previous experiment was studied: the

X DOF along the optical axis of the camera. Although we did not compare illumination

modalities within this experiment, we continued to explore the usage of the two proposed

partitioning methods: grid-based and lumen-centered. Using the grid-based partitioning

method, the dense optical flow algorithms were the most accurate (1.3mm±1.9mm error; fi-

nal difference in trajectory 3.61mm over 174mm). The lumen-centered partitioning method

resulted in an overall reduction in mean error for all the algorithms. The LK optical flow

method produced the lowest mean error, although it had a large standard deviation, which

produced large fluctuations and inaccuracies in the integrated trajectories. HMA provides

the best performance with lumen-centered partitioning (1.45mm±2.55mm); it has the small-

est standard deviation, and is able to closely recreate the trajectory as given by ground truth.

Overall, this experiment demonstrates that the grid-based partition produces the two best

performing ANNs based on means and standard deviations; however, the lumen-centered

partition appears to have a significant effect on the optical flow descriptors, which produces

an overall lower mean error.

It is worth mentioning that the ANNs trained within these 3 experiments are not inter-

changeable; although estimation of camera calibration parameters and distortion coefficients

is not strictly used within the algorithm, the effects of these parameters are inherently present

in the optical flow descriptor input to the ANNs. Furthermore, each ANN should be trained

on the data which it expects to see during usage; thus, using the ANNs trained on the
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straight trajectories of the colon would be inappropriate for usage on a training set which

includes the corner folds or irregularly spaced or oriented haustral folds. This raises the

question: practically, how is the algorithm trained for teleoperable endoscopes?

The training portion of the algorithm is meant to be performed once in the lifetime of

the endoscope, provided that the camera optics/illumination do not change significantly.

Initial training of the algorithm would proceed by an endoscopist acquiring training data

in a method similar to the second trial. However, the numerical training and usage of the

ANNs would proceed in an automated manner via software.

6.1 Future Work

Although this work cannot be used for detecting color perforation or looping, it is a novel

method which uses components native to the endoscope for egomotion estimation of the en-

doscopic camera. Future work includes even further exploration of inputs to the ANNs,

including different types of segmentation (e.g. watershed, graph cuts) for better description

of the optical flow, exploration of RGB color features [78], and other aggregated and custom

features. The ANNs themselves will be further explored, including understanding an optimal

size for the training set, and better training and selection mechanisms for finding and select-

ing the “best” ANN. Additionally, alternate methods of regression for performing the motion

estimation based on training will be explored. The algorithm will also be implemented as

part of a real-time closed-loop feedback control system for a teleoperated flexible endoscope

platform to establish feasibility for remote manipulation of a teleoperated platform.

Future work will also include in vivo trials, repeating the experiments inside living colons.

Porcine model experiments using a commercial NBI endoscope will enable a better and more

accurate description of features produced by NBI due to blood vessels. This will also provide

us with a better training set for defining optical features and feature descriptors. In vivo

human trials are also essential, as this will allow for the testing of certain strong assumptions
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made in this work; particularly, we will be able to quantify the effect of the variance of the

appearance and size of the colon among different patients on the algorithm. This will enable

us to determine to what extent re-training/calibration of the ANNs are required, and how

to perform this automatically. In vivo trials will also enable an opportunity to assess the

robustness of the proposed method against haustral contractions and insufflation. The ex-

pected approach is to freeze endoscope motion during haustral contractions and insufflation,

and resume motion estimation after the contraction finishes.

This work demonstrates that an image-based motion estimation algorithm using ANNs

which learn the relationship between optical flow and metric pose displacement is compa-

rable that of a commercially available magnetic tracker. The performance of the ANNs is

enhanced by the usage of the NBI modality, which produces stronger features and slightly

improved motion estimation. The performance of our algorithm demonstrates its feasibility

as a feedback mechanism for enabling real-time closed-loop control of teleoperated flexible

endoscopes.
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