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CHAPTER 1 

 

  GENERAL INTRODUCTION 

 

Metabotropic glutamate receptors 

 

Glutamate is not only one of the 22 proteinogenic amino acids, but also the major 

excitatory neurotransmitter in the central nervous system (CNS). The glutamate receptors 

can be divided into two classes: the ionotropic glutamate receptors and the metabotropic 

glutamate receptors. While the ionotropic glutamate receptors (AMPA receptors, NMDA 

receptors and kainate receptors) mediate fast responses elicited by glutamate, the 

metabotropic glutamate (mGlu) receptors provide a mechanism by which glutamate can 

transduce environmental cues and modulate synaptic transmission via second messenger 

signaling pathways with slower time course. Because of their widespread distribution 

especially in the CNS, pharmacological manipulation of mGlus may represent ideal 

therapeutic interventions for a wide range of neurological and psychiatric disorders 

(Reviewed in (Gregory et al., 2013; Niswender and Conn, 2010)). 

 

Classification of mGlus 

 

The Seven Transmembrane Spanning/G Protein Coupled Receptors (7TMR/GPCR) 

account for 4% of the entire protein-coding genome (Bjarnadottir et al., 2006) and 

represent the targets of approximately 40-50% of medicinal drugs on the market 

(Thomsen et al., 2005). The core function of GPCRs is to serve as a transducer of signals 

from the extracellular environment to the intracellular machinery that aggregates to 

govern organismal responses. The GPCR superfamily can be classified into several 

classes: the Class A GPCRs (or Rhodopsin-like receptors) account for almost 85% of the 

GPCR genes, the Class B GPCRs (or secretin-like receptors) include 15 receptors and are 

regulated by peptide hormones, and the Class C GPCRs, which are characterized by a 
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large extracellular N-terminal domain and contain 22 distinct receptors. The Adhesion, 

Frizzled, Taste type-2 and other unclassified receptors comprise the rest of the 

superfamily (Bjarnadottir et al., 2006). 

      

The mGlus belong to the Family C GPCRs, which also encompasses calcium sensing 

receptors, the GABAB receptor, taste receptors and other orphan Class C receptors. Since 

the cloning of rat mGlu1 in 1991, 8 mGlu subtypes have been cloned thus far, named 

mGlu1 through mGlu8. Within the family, the eight mGlu subtypes can be further 

classified into three groups (Table 1.1), with an intragroup sequence homology of about 

70% and an intergroup sequence homology of about 45% (reviewed in (Conn and Pin, 

1997)). The group I mGlus include mGlu1 and mGlu5, group II includes mGlu2 and 

mGlu3, whereas mGlu4, 6, 7 and 8 comprise the group III mGlus. Such classification is 

further confirmed by the G-protein coupling and pharmacological profile of the three 

groups. While the group I mGluRs are coupled to Gq, the group II and group III are 

coupled to Gi/o G proteins.  

 

In addition to the G protein-coupling specificity, the three groups of mGlus also differ in 

their expression patterns. With the exception of mGlu6 which is expressed exclusively in 

ON-bipolar cells in the retina, all mGlus are widely expressed in many locations within 

the brain. Group I mGlus are primarily expressed postsynaptically to modulate neuronal 

excitability, whereas group III mGlus are typically located presynaptically. Both pre- and 

postsynaptic expression has been detected for group II mGlus. In addition, mGlu3 and 

mGlu5 are also expressed in astrocytes. Expression of each mGlu subtypes has been 

mapped using immunohistochemistry. Specifically, high mGlu1 expression was detected 

in the olfactory bulb, CA1 hippocampus, globus pallidus, thalamus and cerebellum 

(Petralia et al., 1997). Expression of mGlu5 was found in the olfactory bulb, olfactory 

tubercle, cerebral cortex, hippocampus, striatum and nucleus accumbens (Shigemoto et 

al., 1993). For mGlu2 and mGlu3, significant staining was found in the cerebral cortex, 

hippocampus, thalamus and caudate-putamen (Petralia et al., 1996). mGlu4 is highly 

enrich in the molecular layer of cerebellum, but is also expressed in globus pallidus 

substantia nigra and moderately in neocortex, hippocampus, striatum and thalamus  



	
   3	
  
	
  

 

 

 

Classification G protein 
coupling 

Receptor 
Subtypes 

Splice 
Variants 

Selective Ligands 

Group I Gq/11 mGlu1 mGlu1a-h,  
mGlu1g393 
mGlu1g620  
Taste mGlu1 

LY367385 (orthosteric agonist) 
Bay 36–7620 (NAM) 
Ro 67–7476 (PAM) 
Ro 67–4853 (PAM) 
VU71 (PAM) 

mGlu5 mGlu5a,b CHPG (orthosteric agonist) 
MPEP (NAM) 
MTEP (NAM) 
CDPPB (PAM) 
CPPHA (PAM) 
VU0365396 (SAM) 

Group II Gi/o mGlu2 mGlu2 LY487379 (PAM) 
BINA (PAM) 

mGlu3 GRM3Δ2  
GRM3Δ4 
GRM3Δ2Δ3  

ML337 (NAM) 

Group III Gi/o mGlu4 mGlu4a,b 
Taste mGlu4 

LSP1-2111 (orthosteric agonist) 
LSP4-2022 (orthosteric agonist) 
PHCCC (PAM) 
VU0155041(PAM) 
VU0364770 (PAM) 
ADX88178 (PAM) 

mGlu6 mGlu6a-c  
mGlu7 mGlu7a-e AMN 082 (allosteric agonist) 

MMPIP (NAM) 
ADX71743 (NAM) 

mGlu8 mGlu8a-c (S)-3,4-DCPG (orthosteric agonist) 
AZ12216052 (PAM) 

 

Table 1.1. Classification, G protein coupling, splice variants and selective ligands for 

mGlu subtypes. 
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(Bradley et al., 1999). mGlu7 is abundantly expressed in striatum, globus pallidus, and 

substantia nigra pars reticulata (Kosinski et al., 1999), whereas mGlu8 is expressed 

primarily in hippocampus and piriform cortex (Ferraguti et al., 2005; Kinoshita et al., 

1996). mGlu receptors also expressed in peripheral tissues and play important roles in 

pathological conditions including congenital stationary night blindness (Mathiesen et al., 

2005; Zeitz et al., 2007) and malignant transformation, such as melanoma (Choi et al., 

2011; Pollock et al., 2003). 

 

Different mGlu subtypes have been suggested to colocalize at various synapses. Previous 

immunohistochemistry and in situ hybridization studies suggest that mGlu2 and mGlu4 are 

co-localized in several brain regions (Bradley et al., 1999; Neki et al., 1996; Ohishi et al., 

1995; Ohishi et al., 1993) and mGlu2 is also functionally expressed at corticostriatal 

synapses (Johnson et al., 2005). 

 

All mGlu subtypes have been discovered to undergo alternative splicing, primarily at the 

C-terminus, and some of the better characterized splice variants are described below. In 

humans, 8 different splice variants of mGlu1 exist, named mGlu1a, 1b, 1c, 1d, 1e, 1g, 1g-393, 1g-620 

and 1h. Two newly identified exons in human GRM1 express a novel splice variant of 

metabotropic glutamate 1 receptor. mGlu1a is the longest variant and the others result 

from differential splice site usage, generating distinct isoforms with differing C-termini 

(reviewed in (Hermans and Challiss, 2001)). The splice variant containing only the VFD 

has been shown to act as a dominant negative, preventing full length mGlu1 isoforms 

from signaling (Beqollari and Kammermeier, 2010).  Also within the group I mGlus, 

mGlu5a and mGlu5b are two splice variants for mGlu5 with similar pharmacological 

profiles (Joly et al., 1995; Minakami et al., 1994). Three splice variants of mGlu3 exist in 

human brain due to exon skipping events: GRM3Δ2 (lacking exon 2), GRM3Δ4 (lacking 

exon 4), and GRM3Δ2Δ3 (lacking exons 2 and 3).  Among the three variants, GRM3Δ4 

is most abundantly expressed and represents an mGlu3 receptor without a seven-

transmembrane domain, which may have unique functions and relate to non-coding 

single nucleotide polymorphisms (SNPs) in patients with cognitive dysfunction (Sartorius 

et al., 2006). As to the group III mGlus, the mGlu4 gene was described as undergoing 
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alternative splicing to generate mGlu4a and mGlu4b (Thomsen et al., 1997); however, this 

result has not been  replicated by other groups (Corti et al., 2002). Three mGlu6 splice 

variants exists in human retina, with mGlu6b lacking 97 nucleotides from exon 6 and 

mGlu6c including 5 nucleotides from intron 5 (Valerio et al., 2001). Both mGlu7 and 

mGlu8 can undergo alternative splicing at the C-terminus, resulting in at least 5 splice 

variants for mGlu7 and 2 variants for mGlu8 (Corti et al., 1998; Schulz et al., 2002). In 

addition, another splice variant, mGlu8c, contains a 74 nucleotide insertion, resulting in a 

frame shift and termination of the polypeptide before the seven transmembrane domains 

(Malherbe et al., 1999). As the C-terminal intracellular domain plays important roles in 

protein-protein interactions and signal transduction, different splice variants may possess 

distinct profiles with regards to receptor activation, receptor modification and receptor 

internalization (Enz, 2012). With the advances in sequencing technology, the diversity of 

mGlu splice variants is increasing rapidly. For example, 7 splice variants have been 

predicted for mGlu4 according to Ensembl genome database, although their existence still 

needs to be validated experimentally. 

 

Several isoforms of mGlus also exist due to alterations at the N-terminus; for example, 

Taste mGlu1 and Taste mGlu4 (Chaudhari et al., 2000), which play roles in detecting the 

taste of umami. These receptor variants, with approximately 50% of the N-terminus 

truncated, are expressed in taste buds. Compared to full-length receptors, these N-

truncated variants lack much of the glutamate binding domain and thus exhibit lower 

potency when activated by glutamate (Chaudhari et al., 2000). 

 

The structure of mGlus 

 

General structural features of mGlus 

 

As members of the Family C 7TMRs, the mGlus are characterized by a large N-

terminal domain, commonly referred to as the Venus Flytrap Domain (VFD). 

Studies of the crystal structures of the mGlu1, 3 and 7 VFDs reveal that each VFD 

contains two lobes, which together form a clam shell-like structure, with the 
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glutamate binding site found between the two lobes (Acher and Bertrand, 2005; 

Kunishima et al., 2000; Muto et al., 2007; Tsuchiya et al., 2002). Besides glutamate, 

the VFDs of some mGlus also bind other endogenous agonists of mGlus, such as 

cinnabarinic acid (Fazio et al., 2012) and L-serine-O-phosphate (Klunk et al., 1991) 

(Hampson et al., 1999), as well as magnesium and calcium, which can modulate 

receptor activity (Francesconi and Duvoisin, 2004; Kubo et al., 1998; Kunishima et 

al., 2000). Both structural (Kunishima et al., 2000; Muto et al., 2007; Tsuchiya et al., 

2002) and biochemical data (Romano et al., 1996) suggest that the VFDs from two 

distinct mGlu receptors sit back to back and dimerize together. Upon ligand binding, 

large conformational changes lead to closure of the two lobes.  Closure of one or 

both VFDs within each mGlu dimer initiates receptor activation (Kniazeff et al., 

2004). 

 

Connecting the VFD and the seven transmembrane spanning domain (7TMD) is the 

cysteine-rich domain (CRD). Based on structural studies with mGlu2, the CRD 

contains 9 cysteine residues; 8 of them form internal disulfide bonds to stabilize the 

structure of this domain. In addition, the ninth cysteine forms a disulfide bond linked 

to the VFD (Muto et al., 2007), such that the CRD senses the conformational 

changes induced by ligand binding and transmits it to the 7TMD. The 7TMD and 

intracellular loops play important roles in receptor-G protein coupling and receptor 

modulation. It has been shown that a single mutation in the 7TMD that disrupts the 

hydrogen-bonding network in TM6 and TM7 induces high constitutive activity of 

mGlu8 (Yanagawa et al., 2013), suggesting that TM6 and TM7 constrain the receptor 

in an inactive conformation and that rearrangement between these two helixes is 

critical for receptor activation. The 7TMD also provides an opportunity to modulate 

receptor activity at a site other than the traditional agonist-binding VFD. All mGlu 

small molecule allosteric modulators discovered to date are believed to bind to 

receptor 7TMDs. Classification, action and therapeutic implications of such 

allosteric modulators will be discussed in the following sections. The intracellular 

loops of mGlus are involved in G protein coupling and receptor phosphorylation. 

Specifically, the second intracellular loop is implicated in G protein coupling 
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specificity of the mGlus (Gomeza et al., 1996; Havlickova et al., 2003; Pin et al., 

1994), which is usually the function of the third intracellular loop for Class A, 

rhodopsin-like receptors.  

 

The C-terminal domain of the mGlus is within close proximity to the inner leaflet of 

the lipid bilayer. Although recent structural studies of the purified intracellular C-

terminal domains from mGlu6, 7 and 8 suggest that the C-termini of unliganded mGlus 

are mediated by linear motifs rather than secondary/tertiary structures (Seebahn et al., 

2011), these intracellular tails of mGlus interact with various intracellular proteins, 

and are subject to alternative splicing (see section 3.1 and 3.2.2), phosphorylation, 

and SUMOylation (reviewed in (Enz, 2012)).  

 

The dimeric complex of mGlus 

 

As mentioned above, mGlus form stable, covalently linked dimers. Data suggesting 

constitutive formation of mGlu homodimers emerged as early as 1996 (Romano et 

al., 1996), and was further supported by data obtained from mGlu VFD/CRD crystal 

structures (Kunishima et al., 2000). Evidence from biochemical studies reveals that 

that one or more cysteine residues on the N-terminal extracellular domain mediate 

the covalent and non-covalent interactions between two mGlu protomers (Ray and 

Hauschild, 2000; Romano et al., 2001). In addition, several studies have shown that 

mGlus do not appear to form higher-order oligomers (Brock et al., 2007; Doumazane 

et al., 2011b), although this is the case for some other Class C 7TMRs, such as the 

GABAB receptor (Comps-Agrar et al., 2012).  

 

The activation machinery of mGlu homodimers has been studied in depth, 

particularly by Jean Philippe Pin’s group, using a quality control system adapted 

from the GABAB receptor to generate mGlu dimers bearing specific mutations 

within one of the protomers. These data suggest that closure of one VFD per dimer is 

sufficient to activate the receptor, although closure of both VFDs is required to 

achieve full activity (Kniazeff et al., 2004). When one or both VFDs are occupied, 
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the 7TM domain of either protomer can be activated through intersubunit 

rearrangement (Brock et al., 2007). These findings are consistent with the hypothesis 

that only a single 7TM domain is turned on upon activation of each homodimeric 

receptor (Goudet et al., 2005; Hlavackova et al., 2005; Hlavackova et al., 2012). 

 

Besides forming homodimers, the VFD of mGlu1 can heterodimerize with full length 

mGlu5 and vice versa (Beqollari and Kammermeier, 2010). In addition, a splice 

variant of mGlu1 that contains only the VFD functions as a dominant negative to 

potently block the signaling of full length mGlu1 or mGlu5 (Beqollari and 

Kammermeier, 2010). Unfortunately, there is a paucity of evidence demonstrating 

the extent to which heterodimers exist in vivo. The discovery of heteromers in native 

systems would dramatically shift our understanding of the functional roles of this 

important family of 7TMRs and would suggest that mGlus exhibit greater diversity 

in signaling and function than has previously been appreciated. In addition, mGlu 

receptor heteromerization could also explain discordant pharmacological findings 

observed in native brain tissue (Ayala et al., 2008; Niswender et al., 2010). 

 

Evidence for full length mGlu heterodimers initially emerged in in vitro expression 

systems (Doumazane et al., 2011a; Kammermeier, 2012). By using a time-resolved 

FRET assay, Doumazane et al. demonstrated that group I mGlus can interact with 

each other, but do not associate with group II and group III mGlu subtypes; in 

contrast, group II and III mGlu receptors can co-assemble within and outside of the 

two groups. In addition, Kammermeier’s study utilizing injected superior cervical 

ganglion cells suggests that heterodimerization may alter the pharmacology of 

mGlus and their modulators. Together, these findings indicate that the functions and 

signaling of mGlus could be much more diverse and complex than previous 

estimated, although the existence and pharmacology of mGlu heterodimers still 

needs to be established using native tissue. However, examples already exist for 

heterodimers of mGlus and Class A 7TMRs in the CNS. Gonzalez-Maeso et al. 

reported that mGlu2 receptors interact with 5-HT2A receptors through transmembrane 

helix domains and form functional complexes in brain cortex (Gonzalez-Maeso et al., 
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2008). Subsequent mutagenesis studies revealed that three residues within 

transmembrane domain 4 of mGlu2 are necessary to form the 5-HT2A-mGlu2 receptor 

heterocomplex (Moreno et al., 2012). Furthermore, hallucinogenic 5-HT2A agonists 

elicit unique responses at 5-HT2A/mGlu2 complexes, which is implicated in the 

pathogenesis of psychosis (Gonzalez-Maeso et al., 2008). However, it should be 

noted that, although the formation of mGlu2/5HT2A heterocomplexes has been 

validated by other groups, (Delille et al., 2012) the unique signal transduction 

pathways mediated by the hetereodimeric complex was not replicated. In addition, it 

was also shown that mGlu2 can interact with 5-HT2B, indicating that complex 

formation is not specific to the 5-HT2A-mGlu2 pair and challenging the biological 

relevance of the 5-HT2A-mGlu2 complex. 

 

Signaling of mGlus  

 

As shown in Figure 1.1, mGlu receptors signal to intracellular machinery through both G 

protein-dependent and independent pathways.  

 

G protein-dependent signaling 

 

Classically, group I mGlus are generally coupled to Gq/11 and activate phospholipase 

Cβ, which hydrolyses phosphotinositides into inositol 1,4,5-trisphosphate (IP3) and 

diacylglycerol, a pathway leading to calcium mobilization and activation of protein 

kinase C (PKC). Other effectors downstream of Gq include phospholipase D, ion 

channels, c-Jun N-terminal kinase (JNK), mitogen-activated protein 

kinase/extracellular receptor kinase (MAPK/ERK), and the mammalian target of 

rapamycin (mTOR) pathway (Li et al., 2007; Page et al., 2006; Sayer, 1998; Servitja 

et al., 1999) (Figure 1.1). In addition, evidence has emerged that group I mGlus can 

also activate Gs and Gi/o and their downstream pathways, and that distinct regions on 

the receptor are responsible for coupling of different G proteins (Francesconi and 

Duvoisin, 1998; McCool et al., 1998). 
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Figure 1.1.  Signaling pathways of mGlu receptors. The group I, II and III mGlu 

receptors induce signal transduction through both G protein-dependent and 

independent pathways, while the signaling profile of heterodimeric mGlu receptor 

remains unexplored. GKAP, guanylate kinase-associated protein; PSD-95, 

postsynaptic density protein 95; NMDAR, N-methyl-D-aspartate receptor; PI3K, 

phosphatidylinositol 3-kinase; PIKE-L, phosphatidylinositol 3-kinase enhancer-long; 

mTOR, mammalian target of rapamycin; ERK, extracellular signal-regulated kinase;  

ASK, apoptosis signal-regulating kinase; JNK, c-Jun N-terminal kinases; PIP2, 

Phosphatidylinositol 4,5-bisphosphate; DAG, diacyl-glycerol; IP3, inositol 1,4,5-

trisphosphate; ER, endoplasmic reticulum; PKC, protein kinase C; AC, adenylate 

cyclase; PKA, protein kinase A. 
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As stated previously, the group II and group III mGlu receptors are coupled to Gi/o 

proteins and negatively regulate the activity of adenylyl cyclase. In addition, many 

ion channels have also been reported to be regulated by Gαi and the liberated Gβγ 

subunit (Guo and Ikeda, 2005; Kammermeier, 2012; Niswender et al., 2008a). Gi/o-

mediated activation of MAPK and phosphatidyl inositol 3-kinase (PI3 kinase) 

pathways, as supported by the inhibitory effect of pertussis toxin (Iacovelli et al., 

2002), add another level of complexity to the G protein-mediated signaling of group 

II and III mGlus. 

 

G protein-independent signaling 

 

While 7TMRs transduce signals through various cellular pathways, their 

responsiveness may also be regulated by receptor desensitization. When a receptor is 

stimulated, activated G protein-coupled receptor kinase (GRK) then initiates a 

combination of events including receptor phosphorylation, arrestin binding, and 

receptor internalization (reviewed in (Krupnick and Benovic, 1998)), providing a 

feedback mechanism that prevents receptor over-stimulation. For mGlus, such 

regulation is more thoroughly studied for group I mGlus than the other two groups. 

For example, internalization of mGlu1 has been shown to depend on GRK4 and β 

arrestin-1 (Dale et al., 2001; Iacovelli et al., 2003). Desensitization of mGlu5, 

however, seems to be dependent on GRK2 activity, suggesting different mGlu 

subtypes are regulated by distinct mechanisms (Sorensen and Conn, 2003).  

 

Besides regulating receptor desensitization, recruited β-arrestins are also well-known 

as scaffolding protein for signaling molecules. Reports have shown that active Src is 

recruited to activated 7TMRs by interaction with β-arrestin, which then results in 

phosphorylation of downstream molecules and consequently activation of the 

MAPK cascade (Luttrell et al., 1999). In addition, arrestins also directly facilitate the 

subcellular localization and activation of two MAPK cascades (the 

RAF→MEK→extracellular signal-regulated kinases (RAF-MEK-ERK) cascade and 
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the apoptosis signal-regulating kinase→MKK→c-Jun N-terminal kinases (ASK-

MKK-JNK cascade)) (Pierce and Lefkowitz, 2001), further expanding the dimension 

and complexity of signal transduction upon GPCR activation. This role of arrestins 

in meditating signal transduction events has been demonstrated for mGlus as well. 

For example, activation of mGlu7 significantly reduces N-methyl D-aspartate 

receptor (NMDAR)-mediated currents in prefrontal cortex pyramidal neurons in a β-

arrestin/ERK signaling pathway-dependent manner (Gu et al., 2012). 

 

In addition, mGlu receptors also demonstrate the ability to activate signaling 

cascades through protein-protein interactions. For instance, the C-terminal domains 

of mGlu1 and mGlu5 interact with Homer proteins, a group of scaffolding proteins 

for multiprotein complexes. Besides interacting with the receptor, Homer proteins 

demonstrate binding ability with inositol-1,4,5-triphosphate (IP3) receptors, 

ryanodine receptors, transient receptor channel-1 and 4 (TRPC1, TRPC4), P/Q-type 

Ca2+ channels, Shank, the phosphoinositide 3-kinase (PI3K)enhancer-long (PIKE-L) 

etc., coupling receptor activation to other signaling components within the cell 

(Bockaert et al., 2004; Fagni et al., 2004; Rong et al., 2003). mGlu5 has been found 

to interact with the NMDA receptor via Homer and other scaffolding proteins and 

potentiate receptor activity (Attucci et al., 2001; Pisani et al., 2001; Tu et al., 1999). 

In addition, it has been shown that disruption of mGlu5–Homer interactions 

selectively blocks mGlu activation of the PI3K-Akt-mTOR pathway (Ronesi and 

Huber, 2008) and contribute to phenotypes of Fmr1 knockout mice, an animal model 

for Fragile X syndrome (Ronesi et al., 2012). Interestingly, Homer proteins include 

long Homer isoforms and short isoforms (Homer1a and Ania), which act as 

endogenous dominant-negatives and disrupt protein complexes containing the long 

Homer variant. The ratio of Homer 1a/long Homer bound to mGlu5 may associate 

with cognitive aging (Menard and Quirion, 2012) and has been shown to be altered 

in Fmr1 knockout mice (Ronesi et al., 2012). In addition, genetic deletion of 

Homer1a rescues several phenotypes in Fmr1 knockout mice, suggesting the 

importance of Homer proteins in the mechanism of Fragile X syndrome and 

potential therapeutic intervention for this disease (Ronesi et al., 2012). Besides the 
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PI3K-Akt-mTOR pathway, Homer also links mGlu5 to PIKE-L, which prevents cell 

apoptosis upon mGlu5 activation (Rong et al., 2003). Interestingly, it has been shown 

that the disruption of Homer-mGlu5 interaction reduces astrocyte apoptosis (Paquet 

et al., 2013), suggesting opposite functions of Homer in regulation of cell apoptosis 

in neurons and astrocytes. Besides the CNS, a point mutation of mGlu1 within the 

Homer binding region that has been discovered in the somatic cells of lung cancer 

patients (Esseltine et al., 2013), indicating important roles of Homer in the periphery.  

 

Another well-studied protein-protein interaction is the mGlu7-protein interacting 

with C kinase 1 (PICK1) interaction. PICK1 was discovered as a peripheral 

membrane protein that interacts with protein kinase Cα (PKCα) (Staudinger et al., 

1995). Besides PICK1, the C-terminus of mGlu7 also interacts with Ca2+-calmodulin, 

G protein βγ subunits to modulate the activity of voltage-gated Ca2+ channel and 

negatively regulate neurotransmitter release (Dev et al., 2001). Interestingly, 

phosphorylation of the receptor by PKC increases receptor binding to PICK1, which 

is required for stable surface expression of mGlu7 (Suh et al., 2013; Suh et al., 2008), 

but, at the same time, inhibits the binding of Gβγ subunits and Ca2+-calmodulin, 

providing a delicate regulatory machinery. Disruption of the mGlu7-PICK1 

interaction has been performed by genetic knock-in of an mGlu7 mutant that does 

not bind PICK1. The resulting animals exhibited significant defects in hippocampus-

dependent spatial working memory and high susceptibility to convulsant drugs 

(Zhang et al., 2008). Additionally, injection of a competing peptide to rodents also 

resulted in behavioral symptoms and EEG discharges that are characteristic of 

absence epilepsy (Bertaso et al., 2008). These data indicate that the mGlu7-PICK1 

interaction is important for regulating mGlu7 signaling and may underlie certain 

disease mechanisms, including cognitive disorders and epilepsy. 
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Allosteric modulation of mGlu 

 

Therapeutic indications of mGlu4 

 

Pharmaceutical manipulation of mGlus represent ideal therapeutic interventions for a 

wide range of neurological and psychiatric, as well as peripheral disorders, but this 

section will primarily focus on the therapeutic indication of mGlu4 for Parkinson’s 

disease (PD). PD is a debilitating neurodegenerative disorder characterized by movement 

symptoms including tremor, rigidity, bradykinesia and postural instability, as well as 

disturbances in sleep, depression and cognition (Jankovic, 2008; Johnson et al., 2009). 

The pathology of PD stems from severe degeneration of dopaminergic neurons in the 

substantia nigra pars compacta (SNc), a brain structure that plays important roles in the 

basal ganglia to control motor function (Surmeier and Sulzer, 2013). Within the basal 

ganglia, dopamine released from SNc neurons delicately controls the balance of output 

between the “direct pathway” and the “indirect pathway”, which oppose each other in 

controlling motor output in the basal ganglia. In PD patients, however, the loss of 

dopaminergic neurons leads to an overall increase of activity in the indirect pathway, 

which ultimately inhibits motor function in PD patients (reviewed in (Johnson et al., 

2009)). Thus, according to this model, a rebalancing of the basal ganglia circuitry is 

predicted to alleviate disease symptoms.  

 

The current gold standard treatment for PD is dopamine replacement therapy using L-

DOPA, the precursor of dopamine. However, long-term treatment with L-DOPA results 

in “wearing-off” of efficacy and development of side effects, such as dyskinesias and  

psychiatric complications (Chen and Swope, 2007). In addition, no treatment is available 

to delay the progression of the disease. The mGlu4 receptor is highly expressed 

presynaptically at the first synapse in the indirect pathway (the GABAergic striatopallidal 

synapse) (Bradley et al., 1999) and receives glutamate input from subthalamic nucleus, 

providing an exciting alternative approach to rebalance the basal ganglia circuitry for PD 

treatment. Administration of the group III mGlu agonists L-AP4 or L-SOP, and recently 
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the more mGlu4-selective agonists LSP1-2111 and LSP4-2022, has been shown to reduce 

GABAergic transmission at the striatopallidal synapse and demonstrate efficacy in 

several rodent PD models, including haloperidol-induced catalepsy and 6-OHDA-

induced motor deficits (Beurrier et al., 2009; Goudet et al., 2012; Macinnes and Duty, 

2008; MacInnes et al., 2004; Matsui and Kita, 2003; Valenti et al., 2003; Wittmann et al., 

2001). Recently, numerous highly selective mGlu4 PAMs have been developed from 

different chemical series and exhibit robust efficacy in preclinical rodent models. 

Administration of either PHCCC or VU0155041, two mGlu4 PAMs that bind to distinct 

binding sites on the receptor, reversed parkinsonian behavior in PD animal models, such 

as reserpine-induced akinesia as well as haloperidol-induced catalepsy (Marino et al., 

2003; Niswender et al., 2008b). In another example, VU0364770, a systemically active 

mGlu4 PAM, produced a reversal of forelimb asymmetry induced by unilateral 6-

hydroxydopamine (6-OHDA) lesion of the median forebrain bundle either alone or in 

combination with L-DOPA (Jones et al., 2012). In contrast, Lu AF21934 alone exhibited 

no effect in the akinesia induced by unilateral 6-OHDA lesion of the SNc unless a sub-

threshold dose of L-DOPA was co-administered. Similarly, ADX88178 alone had no 

impact on forelimb akinesia induced by a bilateral 6-OHDA lesion. However, 

coadministration of ADX88178 with a low dose of L-DOPA enabled a robust reversal of 

the forelimb akinesia deficit. The difference between PAMs in 6-OHDA lesion models 

could result from distinctions in the lesion protocols used by the different research groups. 

It is also possible that the discrepancy is mediated by different pharmacological profiles 

of mGlu4 PAMs. Detailed studies of PAMs using the same lesion procedure will be 

required to elucidate the mechanism for these differences.  

 

Besides a symptom-alleviating effect, mGlu4 PAMs also possess other potential benefits, 

such as potential disease-modifying efficacy and a lack of L-DOPA-mediated side effects, 

such as dyskinesia. PHCCC and VU0155041 has been shown to reduce dopaminergic 

cell death (Battaglia et al., 2006; Betts et al., 2012), possibly due to reduced excessive 

excitatory drive onto dopamine neurons, and provide the potential to slow disease 

progression. In addition, LuAF21934, a selective mGlu4 PAM related to the VU0155041 
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series, has been shown to decrease the incidence of L-DOPA-induced dyskinesia 

(Bennouar et al., 2013), further making mGlu4 an attractive target for PD treatment. 

 
 

Mechanism of allosteric modulation 

 

Through years of research, orthosteric ligands useful in determining the physiological 

roles of mGlus have been developed which display group-selectivity. However, as all 

orthosteric ligands bind to the N-terminal VFD of mGlus, which is evolutionarily 

designed to bind glutamate, it is difficult to achieve subtype selectivity since the 

glutamate binding site is highly conserved across all eight subtypes. In addition, brain 

penetration and pharmacokinetics of these orthosteric ligands can be limited by their 

amino acid-like properties. Many of these hurdles have been overcome by targeting 

allosteric binding sites on the receptors. As indicated by the name, allosteric modulators 

bind to a site other than the endogenous agonist binding site, and provide modulatory 

effects on the affinity/efficacy of the orthosteric agonist, termed cooperativity. Indeed, 

the complex structure of mGlus offers a number of possibilities to develop novel 

allosteric modulators. Because of the greater sequence divergence demonstrated at 

allosteric sites, a series of subtype-selective allosteric agonists and positive, negative or 

silent allosteric modulators (PAM, NAM or SAMs) of mGlus have been identified 

through high through-put screening campaigns ((Kinney et al., 2005; Mitsukawa et al., 

2005; Niswender et al., 2008b; Varney et al., 1999) and many others), which have greatly 

advanced studies on mGlu functions and accelerated the development of mGlu reagents 

as disease therapeutics.  

 

The mechanism of action of allosteric modulators is exemplified by the dataset shown in 

Figure 1.2, PAMs potentiate the response to orthosteric agonists by shifting the 

concentration-response curve of an orthosteric agonist to the left (with or without 

increasing the maxium response), indicating that the agonist response is being 

pharmacologically amplified. NAMs are molecules that antagonize the activity of 

agonists in a noncompetitive fashion through negative cooperativity. SAMs are neutral 

allosteric modulators that exhibit no apparent effect on agonist reponses on their own;  
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Figure 1.2. Mechanism of action of allosteric modulators. Instead of binding to the 

glutamate binding site on the N-terminal VFD, mGlu PAMs and NAMs bind to the 

7TMD on the receptor and induce selective modulating effects, which can be blocked by 

SAMs. PAMs potentiate the response to orthosteric agonists by shifting the dose response 

curve of an orthosteric agonist to the left, whereas NAMs progressively antagonize the 

activity of agonists through negative cooperativity in a noncompetitive fashion. 
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however, such compounds can block the binding and subsequent receptor modulation 

induced by PAMs or NAMs.  

 

Besides improved selectivity, PAMs and NAMs also provide some other advantages 

when compared to their orthosteric counterparts. First, the biological effects of PAMs and  

NAMs are dependent on the presence of the endogenous agonist; thus, they have the 

potential to preserve the spatial and temporal aspects of endogenous signaling. As PAMs 

which lack allosteric agonist activity will not constantly activate the receptor, they may 

also reduce the liability of receptor desensitization compared to the direct activation by 

orthosteric, or even allosteric, agonists. Allosteric modulators also bring a further 

advantage in that their modulating effect is saturable, thus providing a larger therapeutic 

window and potentially decreasing the risk of overdose. In addition, these allosteric 

molecules often possess drug-like properties and better pharmacokinetics and brain 

penetration compared to orthosteric ligands, an important feature considering the 

therapeutic indication of mGlus in CNS disorders.  

 

Thusfar, the majority of identified mGlu allosteric modulators bind to the 7TMD region 

of the receptor. Results from mutagenesis studies indicate that the mGlu allosteric 

binding site likely corresponds to the orthosteric binding site in Class A 7TMRs (Chen et 

al., 2008; Gregory et al., 2013; Litschig et al., 1999; Malherbe et al., 2003; Pagano et al., 

2000; Schaffhauser et al., 2003). Interestingly, PAMs can directly activate an N-terminal 

truncated mGlu (El Moustaine et al., 2012; Goudet et al., 2004), suggesting that VFD-

CRD region prevents PAMs from activating the receptor until glutamate is bound. The 

modulating effects induced by allosteric modulators can be quantified using operational 

models of allosterism (Gregory et al., 2012; Leach et al., 2007): 

 

𝑦

= 𝑏𝑎𝑠𝑎𝑙 +
(𝐸! − 𝑏𝑎𝑠𝑎𝑙)(𝜏! 𝐴 𝐾! + 𝛼𝛽 𝐵 + 𝜏! 𝐵 𝐾!)!

𝜏![𝐴](𝐾! + 𝛼𝛽 𝐵 + 𝜏! 𝐵 𝐾!)! + ( 𝐴 𝐾! + 𝐾!𝐾! + 𝐾! 𝐵 + 𝛼 𝐴 𝐵 )! 
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where A and B are the molar concentration of the orthosteric agonist and the allosteric 

modulator, respectively; KA and KB are the equilibrium dissociation constant of the 

orthosteric agonist and the allosteric modulator, respectively; τA and τB quantify the 

efficacy of the orthosteric agonist and the allosteric modulator, respectively. Basal, Em 

and n represent the basal system response, maximal possible system response and the 

transducer function that links occupancy to response. Importantly, these models have 

introduced two parameters, α and β, to describe cooperativity of an allosteric ligand on 

the affinity and efficacy of orthosteric agonist. The operational models of allosterism not 

only allow quantitative estimation of modulator affinity and cooperativity values, which 

can be used to guide compound optimization processes, but can be used to derive reliable 

estimates of modulator affinities when radioligand is not available (Gregory et al., 2012).  

 

Based on molecular pharmacology data, it has been hypothesized that binding of one 

PAM per mGlu dimer is sufficient to potentiate receptor activity (Goudet et al., 2005). In 

contrast, binding of NAMs to both protomers appears to be necessary to inhibit receptor 

activation (Hlavackova et al., 2005).  

 

Allosteric modulators for mGlu2 and mGlu4 

 

As allosteric modulators have been discovered for each individual mGlu subtype, 

selective modulators for mGlu2 and mGlu4 will be discussed here in detail.  

 

BINA, LY487379 (along with CBiPES) and THIIC represent three chemical scaffolds of  

highly selective mGlu2 PAMs that lacks activity at mGlu3 (Fell et al., 2011; Galici et al., 

2006; Johnson et al., 2005). Several NAMs from the dihydrobenzo[1,4]diazepin-2-one 

series, as exemplified by MNI-137, have been reported to antagonized both mGlu2 and 

mGlu3 in a non-competitive fashion (Hemstapat et al., 2007; Woltering et al., 2008a; 

Woltering et al., 2008b). Additionally, a group of mGlu2 SAMs have been identified 

through FRET-based binding assays and slight modification of these SAMs yields three 

mGlu2 NAMs with mGlu3 PAM activity, indicating that identification of SAMs is a 

useful approach to discover novel mGlu allosteric modulators (Schann et al., 2010). 
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Mutagenesis studies have revealed that amino acids that are essential for mGlu2 PAM 

activity are dispensible for NAMs, and the converse has also been reported (Lundstrom et 

al., 2011; Rowe et al., 2008; Schaffhauser et al., 2003). These data suggest that mGlu2 

PAMs and NAMs may bind to different allosteric pockets, although binding studies using 

appropriate allosteric radioligands are required to validate this hypothesis.  

 

Allosteric modulation has also been demonstrated to be a successful approach to 

selectively modulate mGlu4, 7 and 8. An mGlu1 partial antagonist, PHCCC, was the first 

identified PAM for mGlu4 with no activity on 6 of the other mGlu subtypes except for 

mGlu6 (Beqollari and Kammermeier, 2008; Maj et al., 2003; Marino et al., 2003). In the 

in vitro mGlu4 assays in which is has been examined, PHCCC exhibits no agonist activity 

by itself but increases the potency of glutamate at mGlu4 and acts as a proof-of-concept 

compound for targeting mGlu4 as a potential therapeutic strategy for disorders such as 

Parkinson’s disease (Marino et al., 2003). Further optimization of the PHCCC scaffold 

has been challenging (Niswender et al., 2008, Williams et al 2010); however, a high-

throughput screening campaign led to the identification of VU0155041 and VU0080421 

as examples of non-PHCCC scaffold mGlu4 PAMs (Niswender et al., 2008b; Niswender 

et al., 2008c). Recently, many other mGlu4 PAMs, including 4PAM-2, VU0364770, 

ADX88178, LuAF21934 and others (Bennouar et al., 2013; Drolet et al., 2011b; Jones et 

al., 2012; Le Poul et al., 2012), have emerged with significant improvements in potency, 

selectivity and pharmacokinetic profile compared to PHCCC. Particularly, VU0364770, 

ADX88178 and LuAF21934 exhibit high potency with good pharmacokinetic profiles for 

use as tool compounds; each of these ligands shows in vivo efficacy in animal models of 

PD and other disorders. Interestingly, VU0155041 also exhibits allosteric agonist activity 

at mGlu4 when tested in vitro (Niswender et al., 2008b), suggesting an alternative 

mechanism of action compared to PHCCC. Indeed, data obtained from radioligand 

binding assays has demonstrated that VU0155041 binds to a unique allosteric site on 

mGlu4 which is different from the binding site of PHCCC and 4PAM-2 (Drolet et al., 

2011b).   
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Advantages and complications of allosteric modulation 

 

In addition to the improved selectivity, PAMs and NAMs also provide some other 

advantages comparing to orthosteric counterparts. First, the biological effects of PAMs 

and NAMs are dependent on the presence of the endogenous agonist, thus they have the 

potential to preserve the spatial and temporal aspects of endogenous signaling. As PAMs 

themselves will not continuously activate the receptor, they may also reduce the liability 

of receptor desensitization comparing to the direct activation by orthosteric, or even 

allosteric, agonists. Allosteric modulators also bring a further advantage in that their 

modulating effect is saturable, thus providing a larger therapeutic window and potentially 

decreasing the risk of overdose. In addition, these allosteric molecules often possess 

drug-like properties and better permeability at the blood-brain barrier, an important 

feature considering the therapeutic indication of mGlus in CNS disorders.  

 

Despite all the advantages mentioned above, many allosteric modulators are lipophilic, 

which diminishes their solubility, can affect their pharmacokinetic profile, and potentially 

increases off-target binding. The shallow structure-activity relationship among classes of 

allosteric ligands also represents a significant hurdle in the development of allosteric 

modulators. Additionally, because of the substantial activity alteration generated by 

minor structural changes, a number of mGlu allosteric modulator classes are susceptible 

to  subtle “molecular switches” (Wood et al., 2011), by which compounds within a series 

can switch from NAM to PAM, PAM to NAM, or exhibit altered selectivity (Lamb et al., 

2011; Sharma et al., 2009; Sheffler et al., 2012; Zhou et al., 2010).  

 

Allosteric compounds have also complicated our understanding of receptor 

pharmacology. As allosteric modulators potentiate/inhibit the receptor through 

cooperativity with the orthosteric ligand being used, it is not surprising that “probe 

dependence” has been reported in some cases, in that modulators have differential effects 

depending upon the orthosteric ligand that is present (Suratman et al., 2011; Valant et al., 

2012). Although examples still have yet to be discovered for mGlu receptors, caution 
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should be taken to choose the orthosteric ligand for in vitro studies. In addition, similar to 

what has been described with some orthosteric ligands (Urban et al., 2007), many 

allosteric ligands have been found to differentially stimulate multiple signaling cascades 

downstream of a receptor (Kenakin, 2005), a phenomenon often termed “functional 

selectivity” “biased signaling”, or “ligand directed trafficking” (Marlo et al., 2009; Zhang 

et al., 2005). Indeed, 7TMRs may adopt multiple structural conformations, and allosteric 

modulators may stabilize any of them, which can translate into the regulation of some 

signaling pathways but not others.  

 

The first aim of this dissertation is to study the signaling bias of mGlu4 PAMs induced by 

concommitant activation of a Gq-coupled receptor. The second part of this dissertation is 

to study the heterodimerization of mGlu2/4 and the differentially regulated pharmacology 

of allosteric modulators by the formation of mGlu heterodimers. Although these findings 

highly complicate the application of allosteric modulators as disease therapeutics, it is 

conceivable that it could be utilized to enhance the therapeutic outcome or avoid adverse 

effects. 
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CHAPTER II 

 

FUNCTIONAL SELECTIVITY INDUCED BY MGLU4 RECEPTOR 

ALLOSTERIC MODULATORS DURING CONCOMITANT ACTIVATION OF 

Gq COUPLED RECEPTORS 

 

Introduction 

 

Seven Transmembrane Spanning/G-Protein-Coupled Receptors (7TMRs/GPCRs) 

represent the majority of drug targets currently used in clinical practice. Much interest 

has recently been placed on the discovery and characterization of allosteric modulators 

for these receptors due to several potential advantages over traditional orthosteric ligands 

in terms of drug development (reviewed in (Keov et al., 2011)). For example, many 

natural endogenous ligands are peptides or small amino acids which possess limitations 

in pharmacokinetic properties, preventing their development as drug candidates. 

Additionally, the orthosteric agonist binding sites of many 7TMRs are highly conserved 

across family members, making selectivity for a particular receptor within one group 

difficult to achieve. Due to their interaction with the receptor at a site distinct from the 

orthosteric site, allosteric ligands often possess very high receptor selectivity. Allosteric 

modulators also have the ability to provide a more subtle and physiologically-relevant 

approach to increasing or decreasing target activity because receptor regulation will occur 

only in the presence of the endogenous ligand (Bridges and Lindsley, 2008; Conn et al., 

2009). Furthermore, allosteric potentiators, or positive allosteric modulators (PAMs), 

may, in some cases, avoid receptor desensitization and/or down-regulation that can occur 

after chronic administration of an orthosteric agonist (Bridges and Lindsley, 2008; Conn 

et al., 2009). As allosteric modulators function by exerting either positive (PAMs) or 

negative (NAMs) cooperativity with the orthosteric ligand, mechanistically they will 
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exhibit a “ceiling” effect (i.e., maximal receptor occupancy may not translate to maximal 

effect on receptor activation), which may avoid target/mechanism-mediated side effects 

that could arise from accidental overdose. 

 

While allosteric modulators of 7TMRs provide potential advantages/distinctions over 

orthosteric ligands, these compounds also greatly complicate our understanding of 

receptor pharmacology.  In recent years, there has been a growing appreciation of the 

ability of a single 7TMR to simultaneously regulate multiple signaling cascades (Kenakin, 

2005), some of which are G protein-independent, such as β arrestin-regulated pathways. 

This phenomenon, now well established for orthosteric ligands, has been termed 

“functional selectivity”, “biased signaling”, or “ligand directed trafficking” (Keov et al., 

2011; Urban et al., 2007); we will refer to this phenomenon as functional selectivity. 

There are now also clear examples of 7TMR allosteric modulator-mediated functional 

selectivity (Marlo et al., 2009; Mathiesen et al., 2005). While this behavior introduces 

complexity into ligand development, it is anticipated that capitalizing on functionally 

selective effects will provide exciting opportunities to tailor new drug therapy to 

specifically regulate coupling of 7TMRs to beneficial signaling pathways but not others, 

potentially reducing adverse effects. 

 

There are numerous mechanisms by which functionally selective pharmacology can be 

induced by allosteric ligands. For example, 7TMRs have the ability to adopt multiple 

structural conformations, any of which might be stabilized by an allosteric modulator. 

This can translate into the ability of a modulator to preferentially regulate some pathways 

and not others based on the particular conformation they stabilize. Receptor activity is 

also regulated by other cellular proteins, such as G-proteins, arrestins, or scaffolding 

proteins, which also act in an allosteric fashion to affect receptor conformations. In this 

case, compound pharmacology can be altered depending on the context in which a 

receptor is expressed (e.g., (Niswender et al., 2010)), presumably due to the different 

proteins or cellular components interacting with the receptor in various cell types.  
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An alternate possibility that may affect the outcome of functional selectivity would be 

convergent signaling pathways that are activated (or inhibited, or simply absent) in a 

certain temporal or spatial context. It has previously been demonstrated that activation of 

the Gi/o-coupled GABAB receptor, in conjunction with the Gq- coupled metabotropic 

glutamate 1 (mGlu1) receptor, produces a signaling convergence at the level of 

phospholipase C β3 (PLCβ3) to induce potentiated calcium mobilization (Pin et al., 2009; 

Rives et al., 2009). In these studies, this phenomenon was not due to  

heterodimerization/oligomerization of the receptors, was generalizable to other receptor 

pairs, and was demonstrated to exhibit functional relevance in cerebellar Purkinje cells 

and cultured cortical neurons where these two receptors are co-expressed (Rives et al., 

2009). In the current study, we extend these findings to explore potentially functionally 

selective effects induced by this type of signaling convergence. We describe that, as for 

the GABAB and mGlu1 receptor combination, activation of a Gq coupled histamine 

receptor, the H1 receptor, dramatically potentiates the ability of the Gi/o-coupled 

metabotropic glutamate 4 (mGlu4) receptor to induce intracellular calcium mobilization. 

However, histamine does not potentiate the ability of mGlu4 activation to modulate other 

“common” Gi/o-regulated signaling cascades, such as cAMP inhibition. These results 

suggest that H1 co-activation biases mGlu4-mediated signaling events toward certain 

signaling pathways. Furthermore, when small molecule PAMs of mGlu4, are included in 

these assays, the potentiated signaling of mGlu4 is further biased by histamine toward 

calcium-dependent pathways. Our results suggest that convergence of these signaling 

pathways may result in substantial, and potentially unexpected, increases in calcium 

responses downstream of mGlu4 activation, particularly when receptor activity is 

potentiated using positive allosteric modulators. 
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Methods 

 

Cell line establishment and cell culture  

 

Establishment and culture of the human mGlu4 (hmGlu4)/Gqi5/CHO-DHFR(-) has been 

described in (Niswender et al., 2008b). All cell culture reagents were purchased from 

Invitrogen (Carlsbad, CA) unless otherwise noted.  

 

Guinea pig H1 (gp H1)/CHO-K1 cells were obtained by stable transfection of CHO-K1 

cells with guinea pig H1 receptor in pcDNA3.1 vector (a generous gift of Mike Zhu, Ohio 

State University). Single G418-resistant clones were isolated and screened for H1-

mediated calcium mobilization as described below. Monoclonal gpH1/CHO-K1 cells 

were cultured in 90% Dulbecco's modified Eagle's medium (DMEM), 10% dialyzed fetal 

bovine serum (FBS), 100 U/ml penicillin/streptomycin, 20 mM HEPES, 1 mM sodium 

pyruvate, 2 mM L-glutamine, 20 µg/ml proline (Sigma-Aldrich, Inc., St. Louis, MO) and 

400 µg/ml G418 sulfate (Mediatech, Inc., Herndon, VA).  

 

Rat mGlu4/CHO-K1 cells, rat mGlu2/CHO-K1 cells, rat mGlu4/H1/CHO-K1 cells, and rat 

mGlu2/H1/CHO-K1 cells were obtained by stable transfection of either CHO-K1 cells or 

gpH1/CHO-K1 cells with rat mGlu4 or mGlu2 receptor in a pIRESpuro3 vector 

(Invitrogen). Polyclonal cells were cultured in 90% DMEM, 10% dialyzed FBS, 100 

U/ml penicillin/streptomycin, 20 mM HEPES, 1 mM sodium pyruvate, 2 mM L-

glutamine, 20 µg/ml proline (Sigma-Aldrich, Inc., St. Louis, MO), 20 µg/ml puromycin 

(Sigma-Aldrich, Inc., St. Louis, MO) without or with 400 µg/ml G418 sulfate (for H1 

expressing cell lines, Mediatech, Inc., Herndon, VA). 

 

Rat mGlu4/M1/CHO-K1 cells were generated by stable transfection of rat mGlu4/CHO-

K1 cells with rat M1 muscarinic receptor DNA in pcDNA3.1 vector. Polyclonal cells 

were cultured in 90% DMEM, 10% dialyzed FBS, 100 U/ml penicillin/streptomycin, 20 
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mM HEPES, 1 mM sodium pyruvate, 2 mM L-glutamine, 20 µg/ml proline (Sigma-

Aldrich, Inc., St. Louis, MO), 400 µg/ml G418 sulfate (Mediatech, Inc., Herndon, VA) 

and 20 µg/ml puromycin (Sigma-Aldrich, Inc., St. Louis, MO). 

 

 Calcium mobilization assays 

 

For assays performed using the Flexstation (Molecular Devices, Sunnyvale, CA), cells 

were seeded at a density of 60,000 cells/100 µl/well in Costar 96-well tissue culture-

treated plates. For assays performed using the Hamamatsu FDSS 6000 or 7000 

(Hamamatsu, Japan), cells were seeded at 30,000 cells/20 µl/well in Greiner 384-well 

clear-bottomed, tissue culture–treated plates. Cells were incubated in assay medium (90% 

DMEM, 10% dialyzed FBS, 20 mM HEPES and 1 mM sodium pyruvate) overnight at 

37°C/5% CO2 and assayed the following day.  

 

Fluo-4/acetoxymethyl ester (Invitrogen) was dissolved as a 2.3 mM stock in DMSO and 

mixed in a 1:1 ratio with 10% (w/v) Pluronic acid F-127 and diluted in assay buffer 

(Hanks' balanced salt solution, 20 mM HEPES, and 2.5 mM probenecid; Sigma-Aldrich) 

to a final concentration of 2 µM. Cells were dye-loaded for 45 min at 37°C; dye was then 

removed and replaced by appropriate volume of assay buffer. For single-add experiments, 

a series of different concentrations of glutamate or histamine were diluted into assay 

buffer as 2× stock. For histamine fold-shift and potency experiments, histamine was 

diluted as 2× stock and added at the first add. After 150 sec, the appropriate volume of a 

5× glutamate stock was added in a second addition. For experiments using antagonists or 

PAMs, compounds were added at a 2× final concentration in the first addition followed 

by the desired concentration of agonist in the second addition. 
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Total RNA isolation, reverse transcription and polymerase chain reaction (RT–

PCR)  

 

CHO-K1 cells, mGlu4/CHO-DHFR(-) cells, mGlu4/Gqi5/CHO-DHFR(-) cells, and 

mGlu4/HEK/GIRK cells were seeded in 10 cm cell culture dishes one day before the 

experiment. On the second day, cells were harvested and total mRNA from each cell line 

was extracted using an RNeasy Mini Kit (Qiagen, Valencia, CA). Total RNA was 

quantified by Nanodrop and 0.5 ug was reversely transcribed into cDNA by iScript 

cDNA Synthesis Kit (Bio-Rad, Philadelphia PA) according to the manufacturer’s 

protocol. Reactions were carried out both in the presence and in the absence of reverse 

transcriptase (as negative controls). One tenth of each yielded cDNA sample was used to 

perform polymerase chain reaction (PCR) using primers for histamine H2, H3 and H4 

receptors. The primers were designed to match the conserved sequence for human, rat 

and mouse histamine receptors:  

H2 Forward: AGCTTTGGCCAGGTCTTCTGCA 

H2 Reverse: GGCTGCCAGTGTCACGGTGG 

H3 Forward: GCTGTGGCTGGTGGTAGACT  

H3 Reverse: AGGAGCTTGGTGAAGGCTCTGCGG 

H4 Forward: TGATAGGCAATGCTGTGGTC 

H4 Reverse: GCCAGTGACCTGGCTAGCTTCCT 

 

Water was used as a negative control for PCR reactions for H2-H4 receptors. 1 ng of rat 

brain cDNA was used as the positive control for H2 and H3 receptor and pcDNA3.1-H4 

plasmid was used as positive controls for H4 receptor. The amplification protocol for H2 

and H3 was 95 °C for 2 min, 30 cycles of 95 °C for 30 s, 58 °C for 30 s, and 72 °C for 1.5 

min. For H4, the annealing temperature was set at 52°C. The final extension step was at 

72 °C for 5 min. The PCR products were then electrophoresed on a 1% agarose gel 

containing ethidium bromide in parallel with 1 Kb Plus DNA Ladder (Invitrogen). 
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Phosphoinositide hydrolysis assays 

 

mGlu2/H1/CHO-K1 cells were plated in 24-well plates at a density of 100,000 

cells/well/0.5 mL in growth medium two days before the assay. On the following day, 

growth media was removed and replace with 0.5 ml/well assay media containing 0.5 

µCi/ml [3H]-inositol. Cell plates were incubated at 37°C/5% CO2 overnight and assayed 

on the third day. For stimulation of phosphoinositide hydrolysis, the [3H]-inositol-

containing assay medium was first aspirated from wells and replaced with 200 µl of assay 

buffer (HBSS supplemented with 20 mM HEPES and 30 mM LiCl). Cells were then 

treated with 250 µl of assay buffer or histamine (2×, 1 µM final concentration, diluted in 

assay buffer) and 50 µl of serial dilutions of glutamate (10×, diluted in assay buffer). 

After drug addition, the assay plates were incubated at 37°C/5% CO2 for 1 h, and then 1 

ml of stop solution (10 mM formic acid) was added into each well to terminate the 

reaction. Cells were incubated in stop solution for 1 h at room temperature then the cell 

extracts were transferred to anion exchange columns (AG 1-X8 Resin, 100-200 mesh, 

formate form; Bio-Rad Laboratories, Hercules, CA) for separation of [3H]inositol-

containing compounds. After loading of cell extracts, each column was washed 

sequentially with 9 ml of water, 9 ml of 5 mM inositol, and 9 ml of water. Finally, the 

[3H]inositol-containing compounds that bound to columns were eluted with 9 ml of PI 

Eluent (200mM ammonium formate and 100 mM formic acid) into scintillation vials and 

measured by liquid scintillation counting. Baseline response was removed from both 

histamine-treated and control group respectively and data were fit with GraphPad Prism 

(La Jolla, CA) to a 4-parameter logistic equation.  

 

Adenylate cyclase assays 

 

Adenylate cyclase assays were performed according to the methods described in (Sheffler 

and Conn, 2008; Watts and Neve, 1996). Cells were plated at 60,000 cells/well in Assay 

Media in 96 well plates 24 h prior to assay. The next day, media was removed from the 

cells and replaced with 100 µL of serum free DMEM containing 20 mM HEPES. After 1 
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h incubation at 37 °C, the media was replaced with 50 µL 37 °C stimulation buffer 

(DMEM, 15 mM HEPES, pH 7.4, 0.025% ascorbic acid). After a 10 min incubation at 

room temperature, the stimulation buffer was removed and the cells were placed on ice. 

For dose response curves of glutamate in rat mGlu4/CHO-K1 cells and rat 

mGlu4/H1/CHO-K1 cells, 20 µL of the phosphodiesterase inhibitor 3-isobutyl-1-

methylxanthine (IBMX) (4×, 500 µM final concentration, diluted in stimulation buffer) 

was first added to all wells to prevent cAMP breakdown. 20 µL of stimulation buffer was 

then added, followed by 20 µL of forskolin (4×, 10 µM final concentration, diluted in 

stimulation buffer) or DMSO-matched vehicle control. Finally, serial dilutions of 

glutamate (20 µL, 4×, diluted in stimulation buffer) were added to the wells. For 

histamine fold-shift experiments in mGlu4/Gqi5/CHO-DHFR(-) cell line, cells were 

treated with 20 µL IBMX (4×, 500 µM final concentration, diluted in stimulation Buffer), 

20 µL stimulation buffer or histamine (4×, 10 µM final concentration, diluted in 

stimulation buffer), 20 µL of forskolin (4×, 20 µM final concentration) or vehicle and 20 

µL of serial dilutions of glutamate. For histamine fold-shift experiments in 

mGlu4/H1/CHO-K1 cells, serial dilutions of mGlu4 PAMs were diluted as 4× stock in 

stimulation buffer containing 4 µM glutamate (1 µM final concentration). Cells were 

treated with 20 µL IBMX (4×, 500 µM final concentration, diluted in timulation Buffer), 

20 µL of forskolin (4×, 20 µM final concentration) or vehicle, 20 µL stimulation buffer or 

histamine (4×, 300 nM final concentration, diluted in stimulation buffer) and 20 µL of 

serial dilutions of mGlu4 PAMs. 

 

After 20 min incubation in water bath at 37 °C, drugs were then removed from the wells 

and the reaction was terminated by addition of 40 µL ice-cold 3% trichloroacetic acid 

(TCA). Cell lysates were chilled at 4 °C for at least 2 h. Accumulated cAMP was 

quantified using a competitive binding assay adapted from (Nordstedt and Fredholm, 

1990) with minor modifications. Briefly, TCA extracts (15 µL) from assay plates were 

added to a deep well 96 well plate (Axygen Scientific) in triplicates. [3H]-cAMP 

(PerkinElmer) (1 nM final concentration) was diluted in cAMP Assay Buffer (100 mM 

Tris–HCl, pH 7.4, 100 mM NaCl, 5 mM EDTA) and added to each well (25 µL/well). 

Lastly, 500 µL of cAMP-binding proteins (approximately 100 µg of crude extract from 
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bovine adrenal cortex) was added to each well. The deep-well plates were incubated on 

ice for 2 h and harvested with a Brandel cell harvester (Gaithersburg, MD) onto 

Whatman GF/B filters. Radioactivity bound to filters was quantified by liquid 

scintillation counting using a PerkinElmer Top Count. The concentration of cAMP in 

each well was calculated according to a cAMP standard curve ranging from 0.01 to 

1000 pM. 

 

Positive allosteric modulators of mGlu4 

 

Glutamate, histamine and N-Phenyl-7-(hydroxyimino)cyclopropa 

[b]chromen-1a-carboxamide (PHCCC) were purchased from Tocris Biosciences 

(Ellisville, Missouri). Acetylcholine was purchased from Sigma-Aldrich Incorporated (St. 

Louis, MO). cis-2-[[(3,5-Dichlorophenyl)amino]carbonyl]cyclohexanecarboxylic acid 

(VU0155041), N-(4-(N-(2-chlorophenyl)sulfamoyl)phenyl)picolinamide (4PAM-2), and 

5-methyl-N-(4-methylpyrimidin-2-yl)-4-(1H-pyrazol-4-yl)thiazol-2-amine (ADX88178) 

were synthesized in-house according to methods in (Celanire et al., 2011; Engers et al., 

2010; Niswender et al., 2008b; Reynolds, 2008). 

 

Astrocyte culture 

 

Rat cortical astrocytes were prepared using neocortices from 2-4 day old Sprague Dawley 

rats. Neocortics from pups were dissected and dissociated in DMEM by trituration and 

the cells were centrifuged and resuspended in growth media (DMEM supplemented with 

10 % FBS, 1 mM sodium pyruvate, 2 mM L-glutamine and antibiotics) in poly-D-lysine-

coated tissue culture dishes. Cells were maintained at 37 °C in an atmosphere of 95 % air/ 

5 % CO2 until ready for assay.  

 

Phosphoinositide hydrolysis assays using hippocampal slices 

Hippocampal slices were prepared according to the procedures described in (Ayala et al., 

2009). Following tissue recovery, the tissue was combined, washed with warm Krebs   
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buffer (108 mM NaCl, 4.7 mM KCl, 1.2 mM MgSO4, 1.2 mM KH2PO4, 2.5 mM   CaCl2, 

25 mM NaHCO3 and 10 mM glucose), and 25 ml of gravity packed slices were incubated 

with 175 ml Krebs buffer containing 0.5 mCi  [3H]myo-inositol in 37ºC water bath for 45 

min. 10 mM LiCl was added to slices and incubated for an additional 15 min. Histamine 

and/or L-AP4 were then added, followed by 15 min incubation. Carbachol was used as 

positive control and Krebs buffer was used as negative control. The reaction was 

terminated and phosphoinositide was extracted, purified and quantified using liquid 

scintillation counting as previously described in (Ayala et al., 2009). 

 

Results 

 

Activation of histamine H1 receptor biases the signaling of mGlu4 toward calcium 

mobilization  

 

We have long been interested in the identification and characterization of small molecule 

positive allosteric modulators (PAMs) of mGlu4 for the symptomatic and disease 

modifying treatment of Parkinson’s disease. To characterize compounds, we employ a 

cell line in which the normally Gi/o-coupled mGlu4 is co-expressed with the chimeric G 

protein Gqi5 to permit induction of a calcium response downstream of mGlu4 activation, a 

technique that is commonly employed in high throughput screening campaigns for 

various 7TMRs as it is an easy and cost-effective method to measure compound activity. 

In addition to identifying small molecule allosteric modulators, we had designed parallel 

studies to explore the impact of endogenous neurotransmitters and ligands on the 

modulation of mGlu4 function. In the course of these studies, we discovered that 

application of the autacoid histamine to mGlu4-expressing cells, prior to application of a 

concentration of glutamate designed to induce a 20% maximal response, resulted in a 

strong potentiation of the calcium mobilization signal normally induced by glutamate in 

mGlu4/Gqi5-expressing cells. In these studies, the potentiation effect of histamine highly 

resembled the effects of synthetic PAMs of mGlu4, such as the prototype PAM N-Phenyl-
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7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC), with one important 

difference. While both histamine and PHCCC were able to potentiate the effects of an 

EC20 concentration of glutamate (Figure 2.1A and B, “Glutamate Add”), unlike PHCCC, 

histamine induced a weak response when added alone to mGlu4/Gqi5 cells (Figure 2.1B, 

“Compound Add”). In our experience using this mGlu4/Gqi5 assay, response of compound 

alone is not common. In Figures 2.1C and D, concentration-response curves are shown 

for the compound response in the absence and presence of an EC20 concentration of 

glutamate.  The control PAM PHCCC was inactive when added alone but exhibited a 

potency of 5.1±0.3 µM when potentiating the response to a low concentration of 

glutamate. In contrast, histamine generated a concentration-dependent response alone 

with a potency of 8.3±1.4 µM; in addition, histamine also potentiated the EC20 glutamate 

response (EC50=1.2±0.1 µM).  

 

Small molecule PAMs of mGlu4 have been shown to potentiate multiple responses 

downstream of mGlu4 activation (Jones et al., 2011; Niswender et al., 2008b). Therefore, 

if histamine directly binds to the mGlu4 protein and acts as a prototypical mGlu4 PAM, it 

would be expected to modulate additional, Gi/o-dependent pathways downstream of 

mGlu4 activation, such as cAMP inhibition. In contrast to our studies with calcium 

mobilization (Figure 2.1B, 2.1D and 2.2A), histamine did not potentiate the ability of 

mGlu4 activation to inhibit cAMP levels (Figure 2.2B). These results suggested that 

histamine induced biased signaling downstream of mGlu4 activation. It also indicated that 

the mechanism of histamine’s potentiation might differ from previously identified small 

molecule PAMs. 

 

While our previous results did not rule out the possibility that histamine directly 

interacted with mGlu4, the distinct signaling profile induced by histamine suggested that 

the mechanism of histamine’s potentiation might be due to activity at a site distinct from 

mGlu4, such as a histamine receptor. To determine if low levels of endogenous histamine 

receptors were involved in mediating the potentiation response, we performed RT-PCR 

experiments from our mGlu4-expressing cells and determined that they expressed low  
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Figure 2.1. Histamine differs from the small molecule mGlu4 PAM, PHCCC, in its 

potentiation effect. A and B, fluorescence traces of PHCCC and histamine in calcium 

mobilization assays measured in CHO-DHFR(-) cells co-expressing mGlu4 and the 

chimeric G protein Gqi5 in cells. PHCCC (A, ranging from 100 nM to 30 µM) or 

histamine (B, ranging from 100 nM to 100 µM) was added in the “Compound Add”, 

while an EC20 concentration of glutamate (2.5 µM final) was added after 150 sec in the 

“Glutamate Add”. C and D, Compound activity alone (Agonist Response) and PAM 

activity (PAM Response) in the presence of an EC20 concentration of glutamate (2.5 µM 

final) from traces represented in A and B are shown for PHCCC and histamine, 

respectively. For both responses, the increase in fluorescence units is normalized to the 

maximum response elicited by 1 mM glutamate in this cell line. PHCCC elicited no 

agonist response and possessed a potency of 5.1±0.3 µM for the PAM response. The 

potency of histamine for the PAM response was 1.2±0.4 µM and for the agonist response 

was and 8.3±1.4 µM. Data shown were performed in triplicate; Mean ± SEM.  
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Figure 2.2. Histamine potentiates calcium responses downstream of mGlu4 without 

impacting glutamate-dependent cAMP inhibition. A, Glutamate-induced calcium 

mobilization was measured in the presence of vehicle control (■) or 100 µM histamine 

(□). The responses are normalized to maximum effect of glutamate in the same cell line. 

Potencies in the absence or presence of 100 µM histamine were 5.1±0.9 µM vs. 2.0±0.3 

µM (*p=0.029; unpaired t-test). Maximal responses in the absence or presence of 100 

µM histamine were: 100.0±1.0% vs. 179.1±20.0% (*p=0.017; unpaired t-test). B, 

Glutamate-dependent intracellular cAMP concentration was quantified in the absence (■) 

or presence (□) of 100 µM histamine using a competitive binding assay as described in 

2.5. Adenylate cyclase assays. Data were normalized to the 20 µM forskolin-induced 

response. Potencies in the absence or presence of 100 µM histamine were 4.1±0.3µM vs. 

4.3±0.8µM (p=0.76; unpaired t-test). Maximal inhibition values in the absence or 

presence of 100 µM histamine were: 88.1±8.3% vs. 83.9±2.3% (p=0.65; unpaired t-test). 

Data shown were performed in triplicate; Mean ± SEM. Statistical analysis was 

performed using GraphPad Prism (La Jolla, CA). 
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levels of H1 histamine receptor mRNA (Figure 2.3A). PCR with primers against H2, H3 

and H4 receptor did not yield any specific bands to support the existence of other 

histamine receptors (Figure 2.4). To address the potential contribution of functional 

activity of Gq-coupled H1 receptors, we co-applied the H1 receptor antagonist 

mepyramine and 100 µM histamine to mGlu4-expressing cells in the first addition and  

then added an EC20 concentration of glutamate in the second addition. These studies 

revealed that mepyramine blocked the response induced by histamine application alone to 

a baseline level (Figure 2.3B), consistent with full blockade of H1. While mepyramine 

was also able to block the response induced by the glutamate EC20 addition, the blockade 

saturated at the level of the EC20 glutamate response (Figure 2.3B).  

 

These findings suggested that the potentiation effect was likely mediated by low levels of 

endogenous H1 protein present in our mGlu4 cell line. However, they did not completely 

rule out the possibility of direct histamine binding to mGlu4, since mepyramine might 

have exerted its effect by displacing binding of histamine from the mGlu4 receptor. 

Additionally, our original cell line contained the chimeric G protein Gqi5 to induce mGlu4-

mediated calcium mobilization, which would not be reflective of mGlu4 signaling in 

native tissues. In order to test the hypothesis that the potentiation effect was definitively 

mediated by H1 activity versus direct histamine interaction with mGlu4 and occurred in 

presence of native cellular G proteins, we screened a panel of cell lines to identify a line 

that did not express H1 mRNA. We found that CHO-K1 cells, in contrast to the CHO-

DHFR(-) cell background used for the initial screening, did not express H1 mRNA 

(Figure 2.3A). By utilizing the CHO-K1 cells as the parental cell line, we generated two 

new cell lines that contained either the mGlu4 receptor alone, or mGlu4 co-expressed with 

the H1 receptor; neither of these cell lines contained Gqi5. As shown in Figure 2.5A, 

mGlu4 was functional and coupled to glutamate-induced cAMP inhibition in cells 

expressing either mGlu4 alone or the mGlu4+H1 combination. We then performed studies 

in which we attempted to potentiate glutamate-induced calcium mobilization using 

increasing concentrations of histamine in cells without (Figure 2.5B) and with (Figure  
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Figure 2.3. The histamine H1 receptor may be involved in the potentiation effect of 

histamine. A, mRNA expression of histamine H1 receptor in different cell lines. mRNA 

was extracted from CHO-K1 cell line and mGlu4/Gqi5/CHO-DHFR(-) cell line and RT-

PCR was performed as described under Materials and Methods. “+RT” indicates 

presence of reverse transcriptase during the reaction of reverse transcription, whereas “–

RT” represents absence of reverse transcriptase as negative controls. Predicted size of the 

PCR product for the H1 receptor was 423 bp, as shown with arrow. B, Mepyramine 

abolishes the agonist response and potentiation effect of histamine. Increasing 

concentrations of mepyramine were added to mGlu4/Gqi5/CHO-DHFR(-) cells with 100 

µM histamine prior to addition of an EC20 concentration of glutamate (2.5 µM glutamate 

final). Calcium mobilization induced by the histamine addition and the subsequent 

glutamate addition was measured as described. Potencies of mepyramine in the histamine 

add or the glutamate add were: 1.55±0.5 µM vs. 393±154 nM (p=0.10; unpaired t-test). 

Data shown were performed in triplicate; Mean ± SEM. Statistical analysis was 

performed using GraphPad Prism (La Jolla, CA). 
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Figure 2.4. mRNA expression of histamine H2, H3 and H4 receptor (A-C 

respectively) in different cell lines. mRNA was extracted from different cell lines as 

labeled and RT-PCR was performed as described under Supplemental Methods. “+RT” 

indicates presence of reverse transcriptase during the reaction of reverse transcription, 

whereas “–RT” represents absence of reverse transcriptase as negative controls. Predicted 

size of PCR products for H2, H3 and H4 were 462 bp, 957 bp and 834 bp, respectively, as 

shown with arrows. 
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Figure 2.5. The histamine H1 receptor is required for the potentiation effect of 

histamine. A, Glutamate exhibits potencies of 1.0±0.03 µM and 2.3±0.1 µM, 

respectively, in adenylate cyclase assays in mGlu4/CHO-K1 cells and mGlu4/H1/CHO-K1 

cells (*p=0.0048, unpaired t-test). Intracellular cAMP concentration was measured as 

described in 2.5. Adenylate cyclase assays and responses were normalized to the 10 µM 

forskolin response in each cell line, respectively. B, The effect of 1 µM (▲), 10 µM (▼) 

and 100 µM (◆) histamine on glutamate-induced calcium mobilization in mGlu4/CHO-

K1 cells is shown. Maximal responses of vehicle, 1 µM, 10 µM or 100 µM histamine-

treated cells were 3391±1033, 3254± 841, 3067± 527 and 3214± 643 relative 

fluorescence units, respectively (p=0.99; One-way ANOVA). C, The effect of 30 nM (▲), 

100 nM (▼) and 300 nM (◆) histamine in potentiating calcium responses mediated by 

glutamate in mGluR4/H1/CHO-K1 cells is shown. Maximal responses in vehicle, 30 nM, 

100 nM or 300 nM histamine-treated cells were 1548±230, 3390±636, 10099±819, 

21261±1356 relative fluorescence units, respectively (*p<0.0001; One-way ANOVA). 

Data shown were performed in triplicate; Mean ± SEM. Statistical analysis was 

performed using GraphPad Prism (La Jolla, CA). 
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2.5C) H1. These results clearly showed that the potentiation required the presence of H1 

receptors. 

 

Concomitant activation of Gq coupled receptors pathway-selectively potentiate the 

calcium signaling of Gi-coupled receptors  

 

According to our findings, the potentiated calcium response that we observed was 

mediated by concomitant activation of the Gq-coupled H1 receptor and Gi/o-coupled 

mGlu4 receptor. We speculated that, if this potentiation was due to a signaling 

convergence, the phenomenon would extend to other Gq and Gi/o coupled receptor pairs. 

To test this hypothesis, we co-expressed mGlu4 with the muscarinic acetylcholine M1 

receptor, another Gq-coupled receptor which is also extensively expressed in the CNS. 

We observed that activation of the M1 receptor via acetylcholine in this mGlu4-co-

expressing cell line induced similar glutamate-dependent calcium mobilization compared 

to cells co-expressing H1 and mGlu4 (Figure 2.6A). We also hypothesized that such 

signaling crosstalk might be generalizable to other Gi/o-coupled mGlu receptors. As 

carried out for mGlu4, we constructed two mGlu2 cell lines in a CHO-K1 background, 

one of which expressed mGlu2 alone and the other in combination with H1 receptor. As 

shown in Figure 2.5B, cells expressing mGlu2 alone did not respond to histamine; in 

contrast, cells co-expressing H1 and mGlu2 exhibited robust potentiation of calcium 

responses after co-application of histamine and glutamate (Figure 2.6C). As shown 

previously (Rives et al., 2009), signaling of Gi/o and Gq receptors converges on the PLCβ 

pathway. To determine if this was also the mechanism of potentiated calcium responses 

for the receptors examined here, phosphoinositide hydrolysis assays were performed in 

cells co-expressing mGlu2 and H1 receptors. Consistent with our observations in calcium 

mobilization assays, histamine dramatically potentiated mGlu2-induced phosphoinositide 

hydrolysis (Figure 2.6D). 
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Functionally selective effects of mGlu4 positive allosteric modulators induced by co-

activation of H1 and mGlu4  

 

We are very interested in the development of small molecule positive allosteric 

modulators of mGlu4 and were particularly intrigued with our initial studies (Figure 2.2) 

that suggested that histamine may induce functionally selective activation of signaling 

pathways downstream of mGlu4. Furthermore, we hypothesized that co-application of 

histamine with mGlu4 PAMs could further selectively potentiate calcium responses 

compared to signaling induced by other Gi/o-dependent pathways. To evaluate this 

hypothesis, we used our generated mGlu4/H1/CHO-K1 cell line which does not express 

Gqi5. For these studies, we chose PAMs from four distinct chemical scaffolds (Celanire et 

al., 2011; Niswender et al., 2008b; Reynolds, 2008) (Figure 2.7). These compounds were 

chosen based on differential in vitro potency and efficacy at mGlu4; additionally, 

VU0155041 displays allosteric agonist activity in some assays (Niswender et al., 2008b) 

and has been proposed to bind to a different site on the mGlu4 receptor compared to 

PHCCC and 4PAM-2 (Drolet et al., 2011a). In these experiments, we added increasing 

concentrations of each PAM either alone or in combination with histamine in the first 

addition. As shown in Figure 2.8, addition of each PAM alone (white traces, 

“Compound/Histamine Add”) resulted in no calcium mobilization, even after glutamate 

addition (“Glutamate Add”). Addition of 300 nM histamine alone induced a relatively 

strong calcium response (dark gray traces); no potentiation of glutamate (second addition) 

was observed in this case due to the low concentration of glutamate added in these 

experiments. In contrast, addition of histamine + PHCCC, 4PAM-2, or ADX88178 

(Figure 2.8A, B, and C) resulted in a prolonged calcium transient after the first addition 

and a very strong potentiation of the glutamate addition. Consistent with its potential to 

display allosteric agonist activity in some assays, VU0155041 behaved differently from 

the other PAMs, and substantial potentiation was observed in the first addition when this 

compound was added with histamine (Figure 2.8D); in contrast, no further potentiation 

was observed during the glutamate addition. In Figure 2.9, the concentration-response 

curves for these compounds, plus and minus 100 nM and 300 nM histamine, are plotted  
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Figure 2.6. Phospholipase C pathway potentiation extends to additional Gq and Gi/o 

pairs. A, Acetylcholine (Ach) potentiates calcium responses induced by mGlu4 activation 

in mGlu4/M1/CHO-K1 cells. 3 nM Ach (□) or vehicle (■) control was added to cells in 

the first add, while increasing concentrations of glutamate were applied 150 sec later in 

the second add and calcium mobilization was measured. Maximal responses in the 

absence or presence of 3 nM Ach were: 2889±878 vs. 6175±280 relative fluorescence 

units (*p=0.024; unpaired t-test). Data shown were performed in triplicate; Mean ± SEM. 

B and C, histamine potentiates the calcium response of mGlu2 in the presence of the 

histamine H1 receptor in mGlu2/H1/CHO-K1 cells. In mGlu2/CHO-K1 cells, maximal 

responses in the absence or presence of 100 µM histamine were: 2072±23.7 vs. 

2122±272 relative fluorescence units (p=0.86; unpaired t-test). In mGlu2/H1/CHO-K1 

cells, maximal responses in the absence or presence of 1 µM histamine were: 2796±285 

vs. 8223±1128 relative fluorescence units (*p=0.010; unpaired t-test). Data shown were 

performed in triplicate; Mean ± SEM. D, Histamine potentiates mGlu2 responses in 

mGlu2/CHO-K1
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phosphoinositide hydrolysis assays in mGlu2/H1/CHO-K1 cells. Cells were treated with 

increasing concentrations of glutamate in the presence of 1 µM histamine (□) or vehicle 

control (■). After 1h incubation at 37℃, accumulated inositol phosphates were measured 

according to description in 2.4. Phosphoinositide hydrolysis assays. Maximal responses 

in the absence or presence of 1 µM histamine were: 6.9±1.8 vs. 68.7±5.8 cpm 

(*p=0.0005; unpaired t-test). Data from triplicate experiments are shown (Mean ± SEM) 

with relative baseline responses subtracted from each group. All Statistical analysis was 

performed using GraphPad Prism (La Jolla, CA).  

 

 
 

Figure 2.7. Chemical structures of mGlu4 PAMs used in these studies: PHCCC, 

4PAM-2, ADX88178 and VU0155041. 

PHCCC

VU0155041ADX88178

4PAM-­‐2
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Figure 2.8. Histamine dramatically potentiates the effect of PAMs on mGlu4-

mediated calcium mobilization in cells co-expressing mGlu4 and H1 receptors. Traces 

of calcium transients showing the effects of mGlu4 PAMs, histamine or the combination 

of both in potentiating the response of an EC20 concentration of glutamate (1 µM 

glutamate final) are shown. In these traces, a 10 µM concentration of each mGlu4 PAM 

(PHCCC, 4PAM-2, ADX88178 or VU0155041, in A-D respectively; (◊)), 300nM 

histamine (♦) or combination of both (♦) were applied in the first add 

(“Compound/Histamine Add”). After 150 sec, 1 µM glutamate (concentration determined 

based on cAMP experiments shown in Figure 5A) was applied in the second add 

(“Glutamate Add”). Calcium responses were measured as the fluorescence ratio, which 

involves dividing all fluorescence data for each point in the kinetic trace by the 

fluorescence value obtained in the first baseline sample read, which corrects for 

differences in dye loading and cell plating. 
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Figure 2.9. Histamine dose-dependently potentiates the efficacy of PAMs on mGlu4-

mediated calcium mobilization in cells co-expressing mGlu4 and H1 receptors. 

Results of traces in Figure 7 were plotted in concentration-response curve format. 

Increasing concentrations of the mGlu4 PAMs PHCCC, 4PAM-2, ADX88178 or 

VU0155041 (A-D, respectively) were applied either alone (■) or together with 100 nM 

(▲) or 300 nM (●) histamine in the first add. After 150 sec, a 1 µM glutamate 

concentration was applied in the second add. Calcium responses were measured as the 

fluorescence ratio, which involves dividing all fluorescence data for each point in the 

kinetic trace by the fluorescence value obtained in the first baseline sample read, which 

corrects for differences in dye loading and cell plating. Data were further normalized by 

taking the maximum calcium response minus the minimum response measured 3 seconds 

prior to either the first or second addition. For PHCCC (A), 4PAM-2 (B), and ADX88178 

(C) responses, the effect on the second addition (“Glutamate Add”) window is shown. 

For VU0155041 (D), the effect on the first addition (“Compound Add”) is shown. 
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Potencies for the different conditions were: PHCCC alone, no fit, PHCCC+100 nM 

histamine, 8.2±5.1 µM, PHCCC+300 nM histamine, 7.6±1.4 µM; 4PAM-2 alone, no fit, 

4PAM-2+100 nM histamine, 54.2±29.0 nM, 4PAM-2+300 nM histamine, 40.8±10.0 nM; 

ADX88178 alone, no fit, ADX88178+100 nM histamine, 37.2±15.1 nM, 

ADX88178+300 nM histamine, 30.0±5.2 nM; VU0155041 alone, no fit, 

VU0155041+100 nM histamine, 9.5±3.9 µM, VU0155041+300 nM histamine, 6.5±1.6 

µM. Maximal responses in the absence or presence of 100 nM or 300 nM histamine 

were: for PHCCC, 0.016±0.003, 0.089±0.010, 0.259±0.018 (*p<0.0001; One-way 

ANOVA); for 4PAM-2, 0.017±0.002, 0.212±0.013, 0.460±0.022 (*p<0.0001; One-way 

ANOVA); for ADX88178, 0.016±0.002, 0.197±0.003, 0.438±0.020 (*p<0.0001; One-

way ANOVA); and for VU0155041, 0.018±0.003, 0.221±0.032, 0.864±0.043 

(*p<0.0001; One-way ANOVA). Data shown were performed in triplicate; Mean ± SEM. 

Statistical analysis was performed using GraphPad Prism (La Jolla, CA). 
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Figure 2.10. In contrast to effects on calcium mobilization, histamine has no effect 

on the activity of mGlu4 PAMs in adenylate cyclase assays in cells expressing both 

mGlu4 and H1 receptors. Increasing concentration of mGlu4 PAMs (PHCCC, 4PAM-2, 

ADX88178 or VU0155041, A-D, respectively) were co-diluted with 1 µM glutamate and 

incubated with mGlu4/H1/CHO-K1 cells either alone or together with 300 nM histamine. 

Intracellular cAMP concentration was measured as described and then normalized to 

either 20 µM forskolin response or 20 µM forskolin+300nM histamine, respectively. 

Potencies in the absence or presence of 300 nM histamine were: PHCCC, 2.5±0.6 µM vs. 

1.8±0.4 µM (p=0.40; unpaired t-test); 4PAM-2, 55.5±12.6 nM v.s 66.1±8.6 nM (p=0.53; 

unpaired t-test); ADX88178, 11.7±2.0 nM vs. 16.0±4.3 nM (p=0.42; unpaired t-test); and 

VU0155041, 287.3±23.1 nM vs. 360.0±38.8 nM (p=0.18; unpaired t-test). Maximal 

inhibition values in the absence or presence of 300 nM histamine were: PHCCC, 

85.3±3.4% vs. 82.0±2.7% (p=0.49; unpaired t-test); 4PAM-2, 89.0±1.2 nM vs. 

89.4±0.6% (p=0.77; unpaired t-test); ADX88178, 90.4±1.5% vs. 91.1±0.6% (p=0.70; 
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unpaired t-test); and VU0155041, 89.5±0.4% vs. 90.0±0.1% (p=0.85; unpaired t-test). 

Data shown were performed in triplicate; Mean ± SEM. Statistical analysis was 

performed using GraphPad Prism (La Jolla, CA). 
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for the PAM (Figure 2.9A, B, and C) and agonist (Figure 2.9D) windows of the 

experiments shown in Figure 2.8; the responses to histamine in this assay are clearly 

concentration-dependent and the potencies of the PAMs obtained are consistent with the 

potencies observed in other assays (Celanire et al., 2011; Engers et al., 2010; Niswender 

et al., 2008b).  

 

In parallel experiments designed to test the potential for functional selectivity, we 

assessed the ability of histamine to affect cAMP inhibition responses induced by these 

PAMs in these same cells. For these studies, we performed concentration-response curves 

of these compounds, in the presence of an EC20 concentration of glutamate, with or 

without 300 nM histamine. Again, in contrast to calcium mobilization assays and as can 

be seen in Figure 2.10, histamine did not affect the cAMP responses to any of the PAMs 

tested. These results further suggest that co-activation/potentiation of the histamine H1 

receptor and mGlu4 results in functionally selective effects, resulting in unexpected 

calcium mobilization induced by mGlu4 PAMs. 

 

Exploration of H1-mGlu4 signaling crosstalk in native tissues 

 

Based on these interesting findings, we sought to explore the signaling crosstalk between 

H1 and mGlu4 using native tissues that coexpress the two receptors. It has been reported 

that the histamine H1 receptor is functionally expressed in astrocytes (Lipnik-Stangelj and 

Carman-Krzan, 2004a, b). mGlu4 levels have been reported to be very low in astrocytic 

cultures relative to mGlu5 (Peavy and Conn, 1998, J Neurochem, 71(2):603-612 and 

Besong et al., 2002, J Neurosci, 2213, 5403-5411). However, a low level of mGlu4 was 

detected in astrocytes by Besong et al, which was shown to be mediated astrocytic 

cytokine release (Besong et al., 2002). Therefore, primary rat cortical astrocyte cultures 

were prepared according to the method described in Besong et al (see Method for details) 

and evaluated in calcium assays. Consistent with previous studies, we performed 

immunoblot studies which revealed expression of mGlu4 monomers in astrocytes, but not 

mGlu4 dimers, the functional format of the receptor (Figure 2.11A). When tested in 
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calcium assays, we did not observe effects of mGlu4 activation on calcium mobilization 

or crosstalk between H1 and mGlu4 receptors, although histamine was able to induce 

profound calcium responses in these astrocytes (Figure 2.11B). We further explored the 

possibility of signaling crosstalk in hippocampal slices, where both receptors are 

expressed. 100 µM carbachol (Cch), a muscarinic agonist as a positive control, induced 

significant hydrolysis of phosphoinositide (Figure 2.11C). While 100 µM histamine 

triggered modest responses when added alone, this effect was not potentiated by co-

addition of 1 mM L-AP4 (Figure 2.11C), supporting an absence of signaling crosstalk in 

this brain region.  

 

Discussion 

 

In this chapter, we have explored the ability of convergent signaling to induce 

functionally selective effects downstream of allosteric modulation. These studies 

capitalized on initial reports, such as those of Rives et al. (Rives et al., 2009), showing 

that convergent signaling downstream of the Gi/o-coupled GABAB and Gq-coupled mGlu1 

receptors could result in potentiated calcium signaling. The effects reported in Rives et al. 

were apparent in transfected cells as well as in neurons, indicating that this potentiation 

can be observed in native tissues. We observed a similar interaction between mGlu4 and 

H1 histamine receptors in terms of calcium mobilization. In previous studies (Rives et al., 

2009), the mechanism for potentiation was a convergence of signaling via Gq G proteins 

and the Gβγ subunits of the Gi/o G protein at the level of PLCβ3. To explore the 

generalizability of this phenomenon for different mGlus, in addition to our mGlu4 and H1 

cells lines, we generated cells expressing mGlu4 and the Gq coupled M1 muscarinic 

receptor as well as cells co-expressing mGlu2 and H1. As shown in Figure 2.6, activation 

of the M1 receptor via acetylcholine in mGlu4-co-expressing cells induced similar 

glutamate-dependent calcium mobilization compared to cells co-expressing H1 and 

mGlu4. As shown for mGlu4, CHO-K1 cells expressing mGlu2 alone did not respond to  
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Figure 2.11. Interaction of H1 receptor and mGlu4 was not detected in rat cortical 

astrocytes or hippocampal slices. A. expression of mGlu4 in rat cortical astrocytes were 

determined using Western blotting. Lanes from left to right: mGlu4/HEK/GIRK (positive 

control); HEK/GIRK (negative control); astrocytes from batch 1, day 6 after in vitro 

culture; astrocytes from batch 2, day 5 after in vitro culture. B. Agonist-induced 

responses were measured using calcium mobilization assay as described above. Vehicle 

or 100 nM, 1 µM, 3 µM and 10 µM histamine was added in the first add and serial 

dilutions of L-AP4 were added in the second add. Serial dilutions of histamine were used 

as positive control. C. Agonist-induced phosphoinositide hydrolysis was measured as 

described and the measured scintillation values were normalized to vehicle response (as 

0%), with 100 µM carbachol response as 100%.  
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histamine; in contrast, cells co-expressing H1 and mGlu2 exhibited robust potentiation of 

calcium responses when histamine and glutamate were co-applied. Finally, consistent  

with signaling that converges on the PLCβ pathway by co-activated Gi/o and Gq receptors 

(Rives et al., 2009), histamine dramatically potentiated mGlu2-induced phosphoinositide 

hydrolysis, suggesting that the potentiation mechanism we are observing here is similar. 

Since PLCβ can be activated by both Gαq and Gβγ subunit from the Gi G-protein, we 

propose that occupation of both might have a synergistic effect on IP3 production, 

inducing potentiated calcium mobilization. Indeed, mutagenesis studies of the PLCβ2 

protein have shown that distinct binding sites may exist for Gαq and Gβγ on the enzyme 

(Lee et al., 1993).  

 

The present studies extend previous observations by showing that the potentiation effect 

induced by Gq and Gi/o convergent activation is signaling pathway specific and does not 

extend to other Gi/o-mediated signaling events, such as cAMP inhibition. These findings 

suggest that this cascade convergence effectively results in functional selectivity at a 

signaling level. During the course of our development of mGlu4 PAMs, we have been 

interested in potential signaling bias or functionally selective effects induced by these 

compounds, particularly ligands belonging to different chemical scaffolds. In the assays 

we have examined, the majority of mGlu4 PAMs will potentiate multiple signaling 

pathways downstream of mGlu4 activation, including calcium mobilization induced using 

the chimeric G protein Gqi5 and GIRK channel activation (Jones et al., 2011; Niswender 

et al., 2008b), in addition to potentiation of cAMP inhibition as shown in this chapter. 

Our studies here show that the signal bias induced by histamine can be greatly potentiated 

in the presence of small molecule PAMs, with PAMs and histamine inducing dramatic 

potentiation of calcium responses versus other Gi/o-dependent responses. More 

importantly, our studies now show that PAMs with no ability to potentiate glutamate-

dependent calcium mobilization alone in the absence of chimeric G proteins (Figure 2.8, 

white traces) can induce substantial calcium signaling when the H1 receptor, and 

presumably other Gq coupled receptors, are co-activated (Figure 2.8,black traces). 

 



	
   54	
  
	
  

This unmasking of a substantial calcium response could be highly important in the 

physiological effects induced by PAMs in vivo. While the H1 receptor and mGlu4 do 

exhibit different expression patterns in neurons (for example, mGlu4 is predominantly 

presynaptic and H1 predominantly postsynaptic), which may account for the absence of 

crosstalk in hippocampal slices (Figure 2.11C), there are locations where their expression 

may overlap, such as dendritic cells of the immune system (Fallarino et al., 2010; 

Vanbervliet et al., 2011). Additionally, the observations that signaling convergence can 

extend to other receptor pairs suggests that it is highly likely that there are locations in 

which Gq and Gi/o receptors may co-localize. In particular, mGlu2 is expressed in many 

postsynaptic neurons (Neki et al., 1996; Petralia et al., 1996) and mGlu2 PAMs are 

currently being developed for schizophrenia treatment, suggesting that a similar 

phenomenon may also impact mGlu2 PAM signaling in postsynaptic neurons.    

 

Another interesting point of speculation is that the strategy outlined here might provide a 

viable mechanism to potentiate the signaling of an intractable target. For example, there 

is substantial evidence indicating that activation of H1 in neurons may have beneficial 

effects in terms of attention and wakefulness (reviewed in (Thakkar, 2011)). Due to the 

substantial expression of H1 in various immune system cells, however, it would be 

difficult to pursue direct H1 agonists or PAMs as drugs for attention without inducing 

substantial adverse effects. Exploiting the activity of a convergent signaling partner, 

however, might be an alternate mechanism by which to increase signaling of a Gq 

coupled 7TMR that is difficult to modulate directly. While mGlu4 expression in dendritic 

cells of the immune system may preclude it as a strategy to potentiate H1 signaling, 

restricted postsynaptic neuronal expression of other Gi/o-coupled receptors that are not 

expressed in immune cells could be an interesting strategy to explore. 

 

In conclusion, we have shown that co-activation of mGlu4 and the H1 histamine receptor 

induces strong potentiation of calcium mobilization but not traditional Gi/o signaling 

pathways, indicating functional selectivity in signal transduction. These functionally 

selective effects are observed in the absence of chimeric or promiscuous G proteins and 

are synergistically potentiated in the presence of small molecule PAMs. Finally, these 
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studies reveal that signaling events induced by PAMs may be “unmasked” in the 

presence of convergent signaling by Gq coupled receptors, which may lead to complex 

and unexpected pharmacology. The concept of functional selectivity may be the next 

frontier in the translation of novel therapeutics into patient populations, and it is 

anticipated that further exploration of compound pharmacology will certainly aid in the 

understanding of therapeutic efficacy and adverse effects. 
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CHAPTER III 

 

HETERODIMERISATION OF MGLU2/4 DIFFERENTIALLY REGULATE 

EFFECT OF ALLOSTERIC MODULATORS 

 

Introducton 

 

The metabotropic glutamate (mGlu) receptors are members of the Family C Seven 

Transmembrane Spanning/G Protein Coupled Receptors (7TMRs/GPCRs) and are 

activated by the major excitatory neurotransmitter, glutamate. In their simplest context, 

Group I mGlus (mGlu1 and mGlu5) primarily modulate postsynaptic neuronal activity, 

whereas the Group II mGlus (mGlu2 and mGlu3) are found in both presynaptic and 

postsynaptic locations, and the Group III receptors  (mGlu4, 6, 7, and 8) are predominantly 

expressed presynaptically, where they act as auto- and heteroreceptors to regulate  

neurotransmitter release (reviewed in (Niswender and Conn, 2010)).  The eight mGlu 

receptor subtypes have been historically thought to function as homodimers (Kunishima 

et al., 2000; Romano et al., 1996). However, recent in vitro studies suggest that mGlu 

receptors can also form heterodimers (Doumazane et al., 2011a; Kammermeier, 2012) 

with group I mGlus interacting with each other but not associating with other subtypes, 

and members of group II and III receptors co-assembling in vitro. 

 

Among the group III mGlu receptors, mGlu4 plays an important role in the basal ganglia, 

a primary site of pathology in movement disorders such as Parkinson’s disease (PD). 
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Activation of mGlu4 reduces transmission at synapses that project from the striatum to 

the globus pallidus (striatopallidal synapses) as well as synapses between the subthalamic 

nucleus and the substantia nigra pars compacta (STN-SNc synapses (Marino et al., 2003; 

Valenti et al., 2005; Valenti et al., 2003)), two synapses that are overactive in PD. At 

each of these synapses, the response to the general group III mGlu agonist L-AP4 is 

potentiated by PHCCC (Marino et al., 2003; Valenti et al., 2005), a positive allosteric 

modulator (PAM) that is selective for mGlu4.  In contrast to findings at the striatopallidal 

and STN-SNc synapses, we now report the surprising observation that PHCCC is without 

effect in regulating mGlu4-modulated transmission at corticostriatal synapses. 

 

Previous immunohistochemistry and in situ hybridization studies suggest that mGlu2 and 

mGlu4 are co-localized in several brain regions (Bradley et al., 1999; Neki et al., 1996; 

Ohishi et al., 1995; Ohishi et al., 1993) and mGlu2 is also functionally expressed at 

corticostriatal synapses (Johnson et al., 2005).  We tested the hypothesis that 

heterodimers of mGlu2/4 may display a unique profile in response to selective mGlu4 

PAMs and that these mGlu subtypes would form hetero-complexes in the striatum. 

Through evaluation of mGlu4 PAMs from different chemical scaffolds, we show here that 

hetero-interactions between mGlu2 and mGlu4 differentially impact responses to 

individual mGlu receptor PAMs and an mGlu2 negative allosteric modulator (NAM). 

Furthermore, co-immunoprecipitation studies suggest that mGlu2 and mGlu4 receptors 

form hetero-complexes in the striatum and the unique pharmacological profile of effects 

of selected mGlu4 receptor PAMs, as well as an mGlu2 NAM, is recapitulated at the 

corticostriatal synapse. These studies directly impact our understanding of mGlu 
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receptors and regulation by allosteric modulators in the basal ganglia and provide critical 

insights into potential functions and pharmacological properties of mGlu receptors that 

are co-expressed in multiple other regions and cell populations. 

 

Methods 

 

Cell line establishment and cell culture  

 

Cell culture reagents were purchased from Life Technologies (Carlsbad, CA) unless 

otherwise noted. Rat mGlu2 or rat mGlu4 were cloned into the pIRESpuro3 vector, 

transfected into HEK/GIRK cells and selected with puromycin. Polyclonal rat 

mGlu2/HEK/GIRK and rat mGlu4/HEK/GIRK cells were cultured in growth media as 

previously described in (Niswender et al., 2008a), supplemented with Non-Essential 

Amino Acids. Rat mGlu4 was also subcloned into the pIREShyg3 vector and the resulting 

plasmid was transfected into rat mGlu2/HEK/GIRK cells; cells were then selected with 

200 µg/mL hygromycin B. Polyclonal cells were cultured in growth media supplemented 

with 100 µg/ml hygromycin B.  

 

Western blot analysis 

 

Cells were scraped into lysis buffer (50 mM Tris·HCl, pH 7.5, 150mM NaCl, 0.5% 

Nonidet P40 and 0.5% Deoxycholate) containing protease inhibitor cocktail (Roche, 

Indianapolis, IN) and incubated on ice for 20-30 min. The supernatant was separated 

from cell debris by centrifugation at 16,000×g for 10 min at 4°C. Protein concentrations 
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in cell lysates were quantified by Bio-Rad Protein Assay (Bio-Rad, Hercules, CA) or 

Bradford protein assay (Bio-Rad) and aliquots of lysate were heated in SDS sample 

buffer (containing 10% SDS and 9.3% DTT) at 65°C for 5 min. Samples were loaded to 

SDS–polyacrylamide gel for electrophoresis and transferred to nitrocellulose membranes 

(Bio-Rad). After transfer, membranes were blocked in TBST (25mM Tris, 150mM NaCl 

and 0.05% Tween-20) containing 5% non-fat milk at room temperature for 1 h. mGlu2 

antibodies (Advanced Targeting Systems, San Diego, CA, cat # AB-N32) and mGlu4a 

antibodies (Upstate, Billerica, MA, cat # 06-765) were diluted in blocking solution and 

incubated with the membranes at 4°C overnight. Membranes were then washed with 

TBST and incubated with horseradish peroxidase-conjugated goat anti-mouse IgG 

secondary antibody (Santa Cruz, Santa Cruz, CA, cat # sc-2060, 1:7,500 diluted in 

blocking buffer (Jackson ImmunoResearch, West Grove, PA, cat # 115-035-166, 

1:10,000 diluted in blocking buffer) for mGlu2 or horseradish peroxidase-conjugated goat 

anti-rabbit IgG secondary antibody (Santa Cruz, Santa Cruz, CA, cat # sc-2004, 1:7,500 

diluted in blocking buffer or Jackson ImmunoResearch, West Grove, PA, cat # 111-035-

144, 1:10,000 diluted in blocking buffer) for mGlu4 at room temperature for 1 h. 

Membranes were washed again with TBST and an enhanced chemiluminescent assay 

(Thermo Scientific, Waltham, MA, cat # 32106 or 34075) was performed to detect 

immunoreactive proteins. 

 

Co-immunoprecipitation 

 

In cell line experiments, mGlu2/HEK/GIRK, mGlu4/HEK/GIRK and mGlu2/4/HEK/GIRK 

cells were lysed with IP lysis buffer (50 mM Tris·HCl, pH 7.5, 150mM NaCl, 2mM 
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EDTA, 1% Nonidet P40 with Complete Mini protease inhibitor cocktail (Roche, Basel, 

Switzerland, cat # 04693159001)) for IP experiments using the mGlu4 antibody; buffer 

was supplemented with 0.5% sodium deoxycholate for experiments using the mGlu2 

antibody.  Cell lysates were passed through G27 needles and incubated on ice for 30 min. 

The supernatant was centrifuged and pre-cleared with protein A/G beads (Santa Cruz, sc-

2003) at 4°C for 2-3 h. mGlu2- (Advanced Targeting Systems, San Diego, CA, cat # AB-

N32) or mGlu4 (Upstate, Billerica, MA, cat # 06-765) antibodies were bound to protein 

A/G beads by rotating at 4°C for 2-3 h. Pre-cleared cell lysates were then added to 

antibody-bound protein A/G beads or to beads without antibody as a negative control. 

After overnight rotation at 4°C, the beads were washed 3 times with washing buffer (IP 

lysis buffer without EDTA or protease inhibitors) and pelleted by low-speed 

centrifugation. SDS sample buffer was added to elute bound proteins. Samples were 

heated at 65°C for 5 min and subjected to SDS-PAGE and western blot analysis.  

 

For co-immunoprecipitation assays in rat or mouse brain samples, Sprague Dawley rats 

of mixed gender (Charles River, Wilmington, MA) and ICR(CD-1) or male mice (Harlan, 

Indianapolis, IN) 22-30 days old were anesthetized under isoflurane anesthesia, 

decapitated, and brains were rapidly removed and cut into 0.5-1 mm coronal slices using 

a brain matrix or a vibratome (Leica, Buffalo Grove, IL). Slices were transferred to a 

chilled metal surface and dorsal striatum and medial prefrontal cortex (prelimbic and 

infralimbic regions) were dissected using a scalpel blade and immediately frozen on dry 

ice. Samples were homogenized in buffer containing  (in mM): 50 Tris HCl, pH 7.4, 50 

NaCl, 10 EGTA, 5 EDTA, 2 NaF, 1 Na3VO4, 1 PMSF supplemented with 1× Complete 
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Mini protease inhibitor cocktail, phosphatase inhibitor cocktails 2 and 3 (Sigma-Aldrich, 

St. Louis, MO). Homogenized samples were centrifuged at 16,100×g for 15 min at 4 °C 

and pelleted membranes were stored at -80°C. Membrane pellets were resuspended in IP 

lysis buffer (same as IP lysis buffer for IP mGlu4 in cell lines, supplemented with 1mM 

PMSF) and nutated at 4°C for 1 h. Supernatant was prepared by centrifugation at 

16,100×g for 15 min and pre-cleared by protein A/G beads at 4°C for 2-3 h. mGlu4 

antibodies or normal rabbit IgG (Millipore, Billerica, MA, cat# 12-370) were bound to 

protein A/G beads by rotating at 4°C for 2-3 h. Pre-cleared cell lysates were then added 

to mGlu4 antibody bound protein A/G beads or rabbit IgG-coupled beads as a negative 

control. After overnight rotation at 4°C, the beads were washed and samples were eluted 

and analyzed as described above.  

 

Thallium flux assays 

Thallium flux assays were performed according to methods described in (Niswender et 

al., 2008b) with minor modifications. For dye loading, media was exchanged with Assay 

Buffer (Hanks Balanced Salt Solution (HBSS) containing 20mM HEPES, pH 7.4) using 

an ELX405 microplate washer (BioTek), leaving 20 µL/well, followed by addition of 20 

µL/well 2× FluoZin-2 AM (330 nM final) indicator dye (Life Technologies, prepared as a 

DMSO stock and mixed in a 1:1 ratio with pluronic acid F-127) in Assay Buffer. After a 

1 h incubation at room temperature, dye was exchanged with Assay Buffer, leaving 20 

µL/well. Thallium flux was measured at room temperature using a Functional Drug 

Screening System 7000 (FDSS 7000, Hamamatsu). Baseline readings were taken (2 

images at 1 Hz; excitation, 470 ± 20 nm; emission, 540 ± 30 nm), and test compounds 
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(2×) were added in a 20 µL volume and incubated for 140s before the addition of 10 µL 

of Thallium Buffer with or without agonist (5×). Data were collected for an additional 2.5 

min and analyzed using Excel (Microsoft Corp, Redmond, WA) as previously described 

(Niswender et al., 2008b), and the concentration-response curves were fitted to a four-

parameter logistic equation to determine potency estimates using GraphPad Prism: 

𝑦 = 𝑏𝑜𝑡𝑡𝑜𝑚 +
𝑡𝑜𝑝 − 𝑏𝑜𝑡𝑡𝑜𝑚

1+ 10 !"#$%!"!! !"##$#%&' 

where A is the molar concentration of the compound; bottom and top  denote the lower 

and upper plateaus of the concentration-response curve; HillSlope is the Hill coefficient 

that describes the steepness of the curve; and EC50 is the molar concentration of 

compound required to generate a response halfway between the top and bottom. 

 

Operational modeling of allosterism 

 

Shifts of agonist concentration-response curves by allosteric modulators were globally 

fitted to an operational model of allosterism (Leach et al., 2007): 

𝑦 = 𝑏𝑎𝑠𝑎𝑙 + (!!!!"#"$)(!! ! !!!!" ! !!! ! !!)!

!![!](!!!!! ! !!! ! !!)!!( ! !!!!!!!!!! ! !! ! ! )!
  

where A is the molar concentration of the orthosteric agonist; B is the molar concentration 

of the allosteric modulator; KA is the equilibrium dissociation constant of the orthosteric 

agonist, and KB is the equilibrium dissociation constant of allosteric modulator. Affinity 

modulation is governed by the cooperativity factor α, and efficacy modulation is 

governed by β. The parameters τA and τB relate to the ability of orthosteric agonist and 

allosteric ligands, respectively, to directly activate the receptor. Basal, Em and n represent 
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the basal system response, maximal possible system response and the transducer function 

that links occupancy to response.  

 

Alternatively, a simplified version of this model was applied to estimate a composite 

cooperativity parameter (αβ) for PAMs (Leach et al., 2007): 

𝑦 = 𝑏𝑎𝑠𝑎𝑙 + (!!!!"#"$)(!! ! !!!!" ! !!! ! !!)!

!![!](!!!!" ! !!! ! !!)!!(!! !!! ! )!
     

where all parameters are as described above.  

 

For the simulation of mGlu4 PAM effects, the logKA of L-AP4 for mGlu4 was set to -

6.759 according to literature values (Monastyrskaia et al., 1999), and was assumed to be 

unaltered at mGlu2/4 heterocomplexes.  For PHCCC and 4PAM-2, logτB was set to -100 

due to the lack of allosteric agonist activity but was allowed to float for compounds 

exhibiting allosteric agonism (VU0155041, Lu-AF29134). For the simulation of MNI-

137, the logKA of DCG-IV for mGlu2 was set to -6.959 according to literature values 

(Schweitzer et al., 2000), and was assumed to be unaltered at mGlu2/4 heterocomplexes; 

logτB was set to -100. 

 

Transient transfections 

 

Two days before the assay, combinations of pIRES-hyg3-rat mGlu2, pIRES-hyg3-rat 

mGlu4, and pIRES-hyg3-rat mGlu7 were co-transfected with ratios of 0 µg:1 µg, 0.1 µg:1 

µg, 0.2 µg:1 µg, 0.5 µg:1µg or 1 µg:1µg of DNA into HEK/GIRK cells using Fugene 6 

(Promega, Fitchburg, WI) according to the manufacturer’s protocol. After 24 hours, cells 
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were trypsinized and plated in 384-well poly D-lysine-coated plates using assay media. 

Plates were then tested the next day using the thallium flux assay as described above.  

 

Whole-cell patch-clamp recordings 

 

Whole-cell patch-clamp recordings were performed using coronal slices prepared from 

15- to 19-day-old Sprague-Dawley rats of mixed gender (Charles River, Wilmington, 

MA). Animals were anesthetized with isoflurane and brains were removed and 

submerged into ice-cold cutting solution (in mM: 220 sucrose, 2.5 KCl, 1.25 NaH2PO4, 

26.2 NaHCO3, 10 D-glucose, 0.5 CaCl2, 8 MgCl2).  Coronal slices containing the 

striatum were cut at 300 µm using a vibratome (Leica VT 1200S) or a compresstome 

(Precisionary Instruments, Greenville, NC).  Slices were transferred to a holding chamber 

containing ACSF (in mM: 126 NaCl, 2.5 KCl, 1.2 NaH2PO4, 25 NaHCO3, 11 D-glucose, 

2.4 CaCl2, 1.2 MgCl2) supplemented with 5 µM glutathione, for slice viability, for 25 min 

at 32°C. All buffers were continuously bubbled with 95% O2/5% CO2. Subsequently, 

slices were maintained at room temperature for at least 30 minutes in ACSF, then 

transferred to a submersion recording chamber where they were perfused with room 

temperature ACSF at a rate of 2 ml/min. Neurons were visualized with a 40× water 

immersion lens with Hoffman modulation contrast optics coupled with an Olympus 

BX50WI upright microscope (Olympus, Lake Success, NY). Borosilicate glass patch 

electrodes were pulled using a Flaming/Brown micropipette puller (Sutter Instruments, 

CA) and had a resistance of 4-6 MΩ when filled with an intracellular solution containing 

(in mM: 123 potassium gluconate, 7 KCl, 0.025 CaCl2, 1 MgCl2, 10 HEPES, 0.1 EGTA, 

2 magnesium-ATP, 0.2 sodium-GTP; pH adjusted to 7.3 with 1 N KOH; 295 mOsm).  
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Whole-cell recordings were made from medium spiny neurons which were visually 

identified and then confirmed by determining the current-voltage relationship of positive 

or negative current injections; a MultiClamp 700B amplifier (Molecular Devices, 

Sunnyvale, CA) was used for current-clamp recordings. Data were digitized with a 

DigiData 1331 system (Molecular Devices, Sunnyvale, CA) and acquired using 

pClamp10.2 (Molecular Devices, Sunnyvale, CA). EPSPs were evoked in medium spiny 

neurons by placing a bipolar electrode in the white matter between the cortex and 

striatum. After formation of a whole-cell configuration, membrane potential was recorded 

and current was injected to maintain resting membrane potential at -75 mV and changes 

in membrane potential were recorded. Compounds were diluted in ACSF and bath 

applied as noted. Data were analyzed using Clampfit 10.2 (Molecular Devices, Sunnyvale, 

CA).  

 

Drugs 

 

Glutamate, DCG-IV, CBiPES and LY487379 was purchased from Tocris Biosciences 

(Ellisville, Missouri). L-AP4, LY379268 and N-Phenyl-7-

(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC) were purchased from 

Abcam Biochemicals (Cambridge, UK).  cis-2-[[(3,5-

Dichlorophenyl)amino]carbonyl]cyclohexanecarboxylic acid (VU0155041), N-(4-(N-(2-

chlorophenyl)sulfamoyl)phenyl)picolinamide (4PAM-2), (1S,2R)-N1-(3,4-

dichlorophenyl)cyclohexane-1,2-dicarboxamide (Lu AF21934) and biphenylindanone A 
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(BINA) were synthesized in-house. Synthesis of VU0155041, BINA, and MNI-137 was 

performed according to methods in the following references: (Galici et al., 2006; 

Hemstapat et al., 2007; Niswender et al., 2008b).  

 

Synthesis of 4PAM-2 and Lu AF21934 was performed according to methods described 

below: 

 

General. All NMR spectra were recorded on a 400 MHz AMX Bruker NMR 

spectrometer.  1H chemical shifts are reported in δ values in ppm downfield with the 

deuterated solvent as the internal standard.  Data are reported as follows: chemical shift, 

multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), 

integration, coupling constant (Hz). Low resolution mass spectra were obtained on an 

Agilent 1200 series 6130 mass spectrometer with electrospray ionization.  High 

resolution mass spectra were recorded on a Waters Q-TOF API-US plus Acquity system 

with electrospray ionization.  Analytical thin layer chromatography was performed on 

EM Reagent 0.25 mm silica gel 60-F plates.  Analytical HPLC was performed on an 

Agilent 1200 series with UV detection at 214 nm and 254 nm along with ELSD detection.  

LC/MS: Restek-C18, 3.2x30mm, 2 min gradient, 

10%[0.05%TFA/CH3CN]:90%[0.05%TFA/H2O] to 100%[0.1%TFA/CH3CN] or 

Phenomenex-C18, 2.1 X 30 mm, 1 min gradient, 

7%[0.1%TFA/CH3CN]:93%[0.1%TFA/H2O] to 95%[0.1%TFA/CH3CN].   Preparative 

purification was performed on a custom HP1100 purification system with collection 

triggered by mass detection.  Solvents for extraction, washing and chromatography were 
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HPLC grade.   All reagents were purchased from Aldrich Chemical Co. and were used 

without purification.    

4PAM-2 (N-(4-(N-(2-chlorophenyl)sulfamoyl)phenyl)picolinamide): 

 

To a solution of 2-chloroaniline (0.95 mL, 9.02 mmol, 1.0 eq) in pyridine (5 mL) and 

DCM (5 mL) at 0°C was added 4-nitrobenzenesulfonylchloride (2.0g, 9.02 mmol, 1.0eq).  

After 15 min, the cold bath was removed.  After an additional 24 h at rt, the rxn was 

added to 1N HCl (aq) (50 mL) and DCM (50 mL).  The organic layer was separated, 

washed with 1N HCl (aq) (20 mL), H2O (2 x 20 mL), brine (20 mL) and dried (MgSO4).  

The mixture was filtered and concentrated to afford 1 (2.73g, 97%).  The residue was 

carried through without further purification. 

Rf  0.85 (50% EtOAc/hexanes); 

LCMS: Rt=1.403 min, M+H=313.0; >98% @ 215 and 254 nm 

1H NMR (400 MHz, CDCl3): δ 8.27 (d, J = 9.0 Hz, 2H), 7.92 (d, J = 9.0 Hz, 2H), 7.70 

(dd, J = 8.1, 1.4 Hz, 1H), 7.32-7.26 (m, 2H), 7.13 (ddd, J = 8.8, 8.8, 1.5 Hz, 1H), 7.01 (br 

s, 1H) 
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To a solution of 1 (2.73g, 8.73 mmol, 1.0eq) in EtOAc (40 mL) was added 5% Pd/C 

(~150 mg).  The rxn atmosphere was evacuated and purged with H2 balloon (1 atm).  The 

rxn was followed by TLC.  After 4h, the rxn mixture was filtered through Celite and 

concentrated to provide a white solid (2.45g, 99%). 

Rf  0.50 (50% EtOAc/hexanes); 

1H NMR (400 MHz, CDCl3): δ 7.64 (dd, J = 8.2, 1.4 Hz, 1H), 7.54 (d, J = 8.7 Hz, 2H), 

7.24-7.19 (m, 2H), 7.01 (ddd, J = 7.8, 7.8, 1.5 Hz, 1H), 6.91 (br s, 1H), 6.58 (d, J = 8.8 

Hz, 2H), 4.11 (br s, 2H) 

 

To a solution of 2 (2.45g, 8.66 mmol, 1.0eq) in DMF (16 mL) and Hunig’s Base (3.64 

mL, 25.98 mmol, 3.0eq) at 0°C was added picolinoyl chloride hydrochloride (1.70g, 9.53 

mmol, 1.1eq).  After 15 min, the ice bath was removed.  After an additional 24h at rt, the 

rxn was added to EtOAc:H2O (1:1, 100 mL).  The organic layer was separated and 

washed with H2O (2 x 50 mL), brine (50 mL), dried (MgSO4) and concentrated. The 

residue was purified by reverse phase liquid column chromatography (40-80% 
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acetonitrile: H2O with 0.1% trifluoroacetic acid).  The collected fractions were added to 

EtOAc:NaHCO3(aq) (1:1, 100 mL).  The organic layer was separated and washed with 

H2O (50 mL), brine (50 mL), dried (MgSO4), filtered and concentrated to afford a white 

solid.  The white solid was dissolved in DCM (25 mL) and 4N HCl in dioxane (5 mL) 

was added.  After 5 min, the solvent was removed to yield 4PAM-2 as an HCl salt (1.06 

g, 32% yield). 

LCMS: Rt=1.455 min, M+H=387.8; >98% @ 215 and 254 nm 

1H NMR (400 MHz, d-DMSO): δ 11.01 (s, 1H), 9.92 (s, 1H), 8.77 (d, J = 4.2 Hz, 1H), 

8.18 (d, J = 7.6 Hz, 1H), 8.10 (d, J = 8.7 Hz, 2H), 8.09-8.08 (m, 1H), 7.73-7.71 (m, 1H), 

7.71 (d, J = 8.8 Hz, 2H), 7.41 (dd, J = 7.8, 1.2 Hz, 1H), 7.32-7.26 (m, 2H), 7.23-7.19 (m, 

1H); 

HRMS, calc’d for C18H14N3O3NaSCl (M+Na+), 410.0342; found 410.0339. 

Lu AF21934 (N1-(3,4-dichlorophenyl)cyclohexane-1,2-dicarboxamide): 

 

 

Into a 50 mL round bottom flask, containing a magnetic stir bar, was weighed 1.3751 

mmol (212 mg) of cyclohexyldicarboxylic anhydride (predominantly cis) followed by 6 

mL chloroform. To this solution was added 0.9167 mmol (148.5 mg) of 3,4-

dichloroaniline. After being fitted with a reflux column the reaction mixture was heated 

in an oil bath to reflux at 70°C for 2 h, with magnetic stirring. Over this time a white 
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solid crashed out of the reaction mixture. After cooling the reaction to ambient 

temperature, the solid was isolated via vacuum filtration and washed with cold 

chloroform to obtain 434.8 mg of the desired product, 3 (78.4% yield) as a crystalline 

white powder.  

LCMS: Rt= 0.741 min, M+H=315.7; >98% @ 215 and 254 nm; 

HRMS calcd for C14H15Cl2NO3[M+H]: 315.0667 found 315.0668;  

1H NMR (400 MHz, methyl sulfoxide-d6 calibrated to 2.54) δ10.02 (s, 1H), 7.99 (d, J = 

2.39 Hz, 1H), 7.53 (d, J = 8.79 Hz, 1H), 7.46 (dd, J = 8.87, 2.43 Hz, 1H),  2.92 (q, J = 

4.78 Hz, 1H), 2.64-2.60 (m, 1H), 2.12-2.03 (m, 1H), 1.99-1.94 (m, 1H), 1.76-1.61 (m, 

3H), 1.41-1.29 (m, 3H).  

 

To a 4 mL vial were weighed 0.3115 mmol (98.5 mg) compound 3, 0.9345 mmol (98.5 

mg) ammonium chloride, 0.3738 mmol (71.5 mg) 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide, and 0.3115 mmol (42.1 mg) hydroxybenzotriazole, 

followed by 3 mL of 9:1 dimethylformamide:diisopropylethylamine. The reaction vial 

was rotated at room temperature overnight. The reaction was diluted with ethyl acetate 

(~5 mL) and washed with brine. The organic phase was separated and dried over sodium 

sulfate. Solvent was removed under reduced pressure and the crude product was purified 

via flash column chromatography. Product-containing fractions were combined and the 
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solvents removed under reduced pressure to obtain 31 mg of the desired product, Lu 

AF21934 (31.5% yield) as an off-white powder.  

LCMS: 0.690 min, M+H=314.7; >98% @ 215 and 254 nm; 

HRMS calcd for C14H16Cl2N2O2[M+H]: 316.0507 found 316.0507;  

1H NMR (400 MHz, methyl sulfoxide-d6 calibrated to 2.54): δ9.92 (s, 1H), 8.01 (d, J = 

2.27 Hz, 1H), 7.51 (d, J = 8.91 Hz, 1H), 7.44 (dd, J = 8.88, 2.42, 1H), 7.06 (s, 1H), 6.72 

(s, 1H), 2.80 (q, J = 4.83 Hz, 1H), 2.50-2.46 (m, 1H), 2.15-1.98 (m, 1H), 1.70-1.48 (m, 

1H), 1.39-1.23 (m, 1H). 

 

Animal studies 

 

Animals were maintained in accordance with the guidelines of the American Association 

for the Accreditation of Laboratory Animal Care under a 12 hour light/dark cycle (lights 

on 06:00 to 18:00) with free access to food and water. All experiments were approved by 

Vanderbilt University’s Institutional Animal Care and Use Committee, and conformed to 

guidelines established by the National Research Council Guide for the Care and Use of 

Laboratory Animals. All efforts were made to minimize animal suffering and the number 

of animals used. 

 

Statistical analysis 
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All data shown represent Mean±SEM value for at least three replicates. Statistical 

significance between groups was determined using unpaired Student’s t tests or ANOVA 

(with Dunnett’s or Bonferroni’s post-test) as specified in each Figure Legend. 

 

Results 

 

mGlu4 interacts with mGlu2 to form heterocomplexes both in vitro and in brain 

tissue 

 

PHCCC is the first described mGlu4 positive allosteric modulator (PAM) (Maj et al., 

2003; Marino et al., 2003) and has been used to probe the activity of mGlu4 at various 

synapses in the basal ganglia and other brain regions (Jones et al., 2008; Marino et al., 

2003; Valenti et al., 2005). The efficacy of PHCCC at striatopallidal and STN-SNc 

synapses is consistent with its symptomatic and disease modifying effects in PD animal 

models (Battaglia et al., 2006; Marino et al., 2003). In addition to striatopallidal and 

STN-SNc synapses, immunohistochemistry studies reveal that mGlu4 is expressed at 

corticostriatal synapses, which represent the primary input to the basal ganglia from the 

motor cortex (Corti et al., 2002).  Consistent with expression studies, Bennouar et al. 

recently reported that the mGlu4 PAM Lu AF21934 reduces corticostriatal transmission 

(Bennouar et al., 2012). To further understand the role of mGlu4 in regulation of basal 

ganglia function, we evaluated the ability of PHCCC to reduce corticostriatal 

transmission. In agreement with previous results (Pisani et al., 1997), 100 µM L-AP4, a 

group III selective mGlu receptor agonist, reduced evoked excitatory postsynaptic 

potentials (eEPSPs) measured in striatal medium spiny neurons following stimulation in 
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the corpus callosum (42.8 ± 5.8% of baseline; Figure 3.1A).  To determine if PHCCC 

could potentiate the response to L-AP4, a concentration of L-AP4 that resulted in a small 

reduction in the eEPSP amplitude was identified.  500 nM L-AP4 resulted in reduction in 

the eEPSP amplitude that was at the threshold for detection (90.5 ± 6.2% of baseline; 

Figure 3.1B).  Surprisingly, PHCCC did not potentiate the response to L-AP4 at this 

synapse; 30 µM PHCCC, followed by the co-addition of 30 µM PHCCC + 500 nM L-

AP4, resulted in no change in eEPSP amplitude (90.1 ± 7.1% of baseline; Figure 3.1C) 

relative to 500 nM L-AP4 alone. 

 

The lack of effect of PHCCC was surprising and contrasts with the ability of this 

compound to potentiate mGlu4 activity at other synapses (Jones et al., 2008; Marino et al., 

2003; Valenti et al., 2005). In addition, this finding does not align with the ability of the 

structurally distinct mGlu4–selective PAM Lu AF21934 to potentiate mGlu4 agonist 

effects at corticostriatal synapses (Bennouar et al., 2012). Interestingly, both the group II 

mGlu agonist LY379268 (Picconi et al., 2002) and the mGlu2 PAM cyPPTS (Johnson et 

al., 2005) inhibit excitatory transmission at corticostriatal synapses via a presynaptic 

mechanism of action, suggesting that mGlu2 receptors are also expressed on 

corticostriatal terminals. Recent studies including time-resolved FRET and co-expression 

studies have shown that mGlu2 and mGlu4 form heterodimers in vitro (Doumazane et al., 

2011a; Kammermeier, 2012) and we hypothesized that mGlu4-containing heteromers may 

be expressed on corticostriatal terminals and may not display the same response to 

PHCCC as that observed with mGlu4 homomers. 
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To test this hypothesis, an mGlu2/4 cell line was constructed by transfecting rat mGlu4 

into rat mGlu2/HEK cells stably expressing G Protein Inwardly Rectifying Potassium 

(GIRK) channels, which allows assessment of receptor activity using a GIRK-mediated 

thallium flux assay (Niswender et al., 2008a). We established that the resulting mGlu2/4 

cell line expressed similar amounts of both mGlu2 and mGlu4 protein compared to the 

parental cell lines expressing either receptor alone (Figure 3.2). We then assessed the 

physical interaction between mGlu2 and mGlu4 using co-immunoprecipitation techniques. 

mGlu4 antibodies immunoprecipitated mGlu4 protein (~240 kDa in dimeric form) from 

the cell lysate of the mGlu4 and mGlu2/4 cell lines (Figure 3.3B). A band of 

approximately 100 kDa was present in all of the immunoprecipitation (IP) samples and 

obscured specific identification of monomeric receptor protein; this band was present in 

IP samples without any cell lysate (data not shown), suggesting that it resulted from the 

antibody itself. In cells co-expressing mGlu2 and mGlu4, mGlu2 proteins were co-

precipitated along with mGlu4 by mGlu4 antibody-coupled beads (Figure 3.3D; ~100 kDa 

and ~240 kDa for monomeric and dimeric forms, respectively). In contrast, precipitation 

using the protein A/G beads alone did not yield any specific bands. Additionally, 

precipitated mGlu2 was not detected in IPs from the control mGlu2 or mGlu4 cell line. To 

eliminate the possibility that mGlu2 and mGlu4 proteins nonspecifically aggregated after 

the cells were lysed, we mixed the cell lysates from the mGlu2-expressing cell line and 

the mGlu4-expressing cell line and subjected the mixed sample to co-IP. The absence of 

precipitated mGlu2 in this mixed sample indicated that mGlu2/4 complexes were formed 

before, but not during or after, the lysis process. We further confirmed the physical 

interaction between mGlu2 and mGlu4 by swapping the bait and prey in additional co-IP 	
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Figure 3.1. The mGlu4 PAM PHCCC fails to potentiate L-AP4-induced decreases in 

evoked EPSPs at corticostriatal synapses. EPSPs were recorded in medium spiny 

neurons following stimulation of the white matter between the cortex and striatum with a 

bipolar electrode.  All compounds were bath applied. Data are normalized to the average 

baseline EPSP amplitude. Insets are sample traces from an individual, representative 

experiment (black – averaged traces from minute prior to L-AP4 application; gray – 

averaged traces from last minute of L-AP4 application). Slices were treated with 100 µM 

L-AP4 (A), 500 nM L-AP4 (B) or 30 µM PHCCC followed by co-application of 30 µM 

PHCCC and 500 nM L-AP4 (C). Solid and dashed lines represent time of compound 

additions. Values represent mean ± SEM (n=5).  
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Figure 3.2. Similar expression levels of mGlu2 and mGlu4 in various cell lines. 15 µg 

of cell lysates from mGlu2, mGlu2/4 and mGlu4 cell lines were prepared as described. 

Receptor expression was analyzed by western blots using anti-mGlu2 (panel A, 1:1000 

dilution) and anti-mGlu4 (panel B; 1:1000 dilution) antibodies. 
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experiments. When mGlu2 was used as the bait, mGlu4 proteins were also co-

immunoprecipitated by mGlu2 antibodies only in the cell line that expressed both 

receptors (Figure 3.3H). These data support the hypothesis that mGlu2 specifically 	
  

interacts in some manner with mGlu4 in vitro and can be co-immunoprecipitated with 

antibodies recognizing the native receptor proteins. 

 

After optimizing conditions for co-immunoprecipitation of mGlu2 and mGlu4 in cell lines, 

we tested the hypothesis that these receptors interact in brain tissue.  Both mGlu2 and 

mGlu4 are expressed in dorsal striatum and medial prefrontal cortex of Sprague-	
  	
  

Dawley rats, as indicated by the immuno-reactive monomeric and dimeric bands in tissue 

lysates (Figure 3.4, input). While both mGlu4 antibodies and a rabbit IgG control 

generated antibody bands at around 100 kDa, mGlu4 antibodies were able to precipitate 

dimeric mGlu4 from the dorsal striatum and medial prefrontal cortex (~240 kDa in 

dimeric form; Figure 3.4A and B). Conversely, immunoprecipitation using rabbit IgG did 

not yield any mGlu4-specific bands. In addition, when detected using mGlu2-specific 

antibodies, we found that mGlu2 proteins were co-immunoprecipitated by mGlu4 

antibodies in both monomeric and dimeric forms (~100 kDa and 240 kDa respectively), 

but not by rabbit IgG (Figure 3.4C and D). Similar results were also obtained in mouse 

dorsal striatum and medial prefrontal cortex (Figure 4E-H). Taken together, these data 

present the first evidence consistent with the existence of mGlu heteromers in vivo and 

suggest that mGlu2/4 heteromers may participate in the regulation of CNS function.  

 



	
   78	
  
	
  

mGlu2/4 heteromer differentially regulate the effect of mGlu4 allosteric modulators  

 

To further test the hypothesis that the lack of efficacy of PHCCC at the corticostriatal 

synapse was due to expression of mGlu4-containing heteromers, the pharmacology of 

mGlu2/4 receptors was extensively characterized using the thallium flux assay (Niswender 

et al., 2008a). In these studies, the initial slopes (starting 5 seconds after thallium addition 

and then measured over a 10 second time span) of inward flux of thallium are calculated 

and plotted as agonist-induced concentration-response curves (samples traces of thallium 

flux assays are shown in Figure 3.5A-C and represent the data used to generate the L-

AP4 curves in panel 3.5F). Glutamate, the orthosteric agonist for both mGlu2 and mGlu4, 

exhibited a pEC50 value of 6.22±0.03 in the mGlu2/4 cell line. This potency was similar to 

the pEC50 of glutamate at mGlu2 (6.08±0.03) compared to that of mGlu4 (4.79±0.03) 

(Figure 3.5D, Table 3.1). To further characterize each of the subtypes in the 

heterocomplex, more selective agonists were utilized for mGlu2 (LY379268) or mGlu4 

(L-AP4) (Figure 5E and F). In the mGlu2/4 cell line, the mGlu2 agonist LY379268 elicited 

a full agonist response with a slightly reduced potency comparing to cells expressing 

mGlu2 alone (Figure 3.5E, Table 3.1). Likewise, L-AP4, the mGlu4 selective agonist, 

induced an agonist response with similar potency in cells expressing mGlu2/4 and mGlu4 

alone. Unlike LY379268, L-AP4 was only able to elicit about 70% of the maximum 

response generated by glutamate in mGlu2/4 cells. Additionally, we observed a significant 

decrease in the Hill slope of the curve fits for both LY379268 and L-AP4 in mGlu2/4-co-

expressing cells (Table 3.1), indicating an interaction between the two proteins and 

supporting the hypothesis that the mGlu2/4 complex possesses distinct pharmacological 

properties.  
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We then investigated whether mGlu2 and mGlu4 agonist sites interact with each other in 

mGlu2/4-expressing cells. A serial dilution of L-AP4 was applied either alone or in the 

presence of 0.5 nM or 1 nM LY379268. In the mGlu4 cell line, neither concentration of 

LY379268 produced any effect on L-AP4 responses compared to buffer control (Figure 3. 

6A). When assessed in the mGlu2/4 cell line, LY379268 dose-dependently shifted the L-

AP4 dose response curve to the left (Figure 3.6B), suggesting a potentiating effect by co-

activation of the mGlu2 subunit. In support of an interaction between subunits, 0.1, 10 

and 100 nM L-AP4 dramatically potentiate the responses induced by LY379268 as well 

(Figure 3.6C and D).  

 

After assessing the activity of orthosteric agonists in cells expressing either receptor 

alone or expressing the combination, we moved to an analysis of potential effects on the 

pharmacology of allosteric modulators for mGlu4 and mGlu2 (structures shown in Figure 

3.7). Advantages if focusing our studies on mGlu2 and mGlu4 are that 1) these receptors 

are co-expressed in many brain regions, and 2) there are a number of orthosteric and 

allosteric ligands that differentiate between mGlu2 and mGlu4, allowing us to generate a 

tool set of ligands appropriate for native tissue studies. 10 µM PHCCC induced a 

4.7±0.02 fold leftward shift of the L-AP4 response in cells expressing mGlu4 alone  
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Figure 3.3. mGlu2 and mGlu4 are co-immunoprecipitated from Human Embryonic 

Kidney (HEK) cells. mGlu4 antibodies (A-D) or mGlu2 antibodies (E-H) were used for 

co-immunoprecipitation. Cell lysates from mGlu2/4, mGlu2, and mGlu4 cell lines, together 

with lysates from mGlu2 cells and mGlu4 cells that were mixed after lysis, were subjected 

to co-IP experiments. Cell lysates from mGlu2/4 cells were also precipitated by protein 

A/G beads without antibody as a negative control (A/G control). Precipitated proteins 

from different samples were analyzed by western blots. Cell lysates before co-IP 

experiments were loaded as indication of IP input (left side panels). Molecular sizes of 

mGlu2 or mGlu4 (~100 kDa and ~240 kDa for monomeric and dimeric forms, 

respectively) are indicated with arrows.  
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Figure 3.4. mGlu4 antibodies co-immunoprecipitate mGlu2 protein from rodent 

dorsal striatum and medial prefrontal cortex. Dorsal striatum and medial prefrontal 

cortex extracts from rat (A-D) or mouse (E-H) samples were prepared as described and 

tissue lysates were precipitated using anti-mGlu4 antibody (IP-mGlu4) or rabbit IgG (IgG 

Control). The precipitated proteins were analyzed via western blots and tissue lysates 

before IP experiments were loaded as IP input. Molecular sizes of mGlu2 or mGlu4 (~100 

kDa and ~240 kDa for monomeric and dimeric forms, respectively) are indicated with 

arrows. 
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Figure 3.5. Orthosteric agonist responses are distinct in mGlu2, mGlu4 or mGlu2/4-

expressing cell lines. A-C, sample traces of L-AP4 responses in mGlu2, mGlu4 and 

mGlu2/4 cells with concentrations ranging from 0.1 nM to 10 µM. The initial slopes of the 

raw traces were used to generate concentration response curves shown in F.  D-F, serial 

dilutions of glutamate (D), the group II agonist LY379268 (E) and the group III agonist 

L-AP4 (F) were applied to HEK/GIRK/mGlu2 (■), HEK/GIRK/mGlu4 (▲) and 

HEK/GIRK/mGlu2/4 (●) cell lines and GIRK-mediated thallium flux was measured 

according to protocols described above. Reponses were normalized to the maximal 

response induced by 1 mM glutamate in each individual cell line, and pEC50 values for 

concentration- response curves are shown in Table 1. All values represent mean ± SEM 

(n≥3). 
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Table 3.1. Potencies and efficacies of orthosteric agonists in various cell lines. Data 

represent the Mean±SEM of at least three experiments performed in duplicate.  
ap=0.0034 for mGlu2 versus mGlu2/4 lines; bp=0.0161 for mGlu2 versus mGlu2/4 lines; 
cp=0.0049 for mGlu2 versus mGlu2/4 lines; dp<0.0001 for mGlu2 versus mGlu2/4 lines; 
ep<0.0001 for mGlu4 versus mGlu2/4 lines; fp<0.0001 for mGlu4 versus mGlu2/4 lines. 

Unpaired Student’s T test (n≥3, two-tailed). 

 

 

 

 

 

 

 

  

 mGlu2 mGlu4 mGlu2/4 
 pEC50 % Glu Max Hill Slope pEC50 % Glu Max Hill Slope pEC50 % Glu Max Hill Slope 

Glutamate 6.08±0.03 101.0±0.8 1.88±0.08 4.79±0.03 99.1±0.5 1.50±0.03 6.22±0.03a 101.4±0.6 2.01±0.04 
LY379268 8.32±0.02 108.3±0.9 1.73±0.05 >5.0 N/A N/A 8.04±0.10b 101.9±0.9c 1.10±0.10d 
L-AP4  N/A N/A N/A 6.60±0.03 100.9±1.1 1.42±0.03 6.64±0.05 72.8±2.0e 0.91±0.02f 
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 Figure 3.6. Orthosteric agonist of mGlu2 and mGlu4 potentiates effect of each other 

in mGlu2/4-expressing cell line. Buffer control (■), 0.5 nM (●) or 1 nM LY379268 (□) 

were added 140 s before addition of serial dilutions of L-AP4. GIRK channel-mediated 

thallium flux was measured as described in HEK/GIRK/mGlu2, HEK/GIRK/mGlu4 or 

HEK/GIRK/mGlu2/4 cell line and was normalized to the maximal response induced by 1 

mM glutamate. A and B, L-AP4 dose response curves were plotted in the absence or 

presence of LY379268 in mGlu4 or mGlu2/4 cells. C and D, the responses induced by 0, 

0.5 or 1 nM LY379268 were plotted in the absence or presence of L-AP4 in mGlu2 or 

mGlu2/4 cells. Basal responses induced by 0.1, 10 or 100 nM L-AP4 alone were deducted. 
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(Figure 3.8A). In contrast, PHCCC only induced a negligible shift of the L-AP4 response 

in the mGlu2/4 cell line (1.7±0.04 fold, Figure 3.8B). When assessed using glutamate, 10 

µM PHCCC shifted the concentration-response curve to the left by 3.5±0.53 fold in 

mGlu4 cells (Figure 3.8C) but did not potentiate the glutamate response in cells 

expressing both mGlu2 and mGlu4 (1.0±0.04 fold; Figure 3.8D). This loss of efficacy in 

the mGlu2/4 cell line is consistent with a previous report (Kammermeier, 2012) and aligns 

with the lack of significant potentiation of the L-AP4 response we observed with PHCCC 

at corticostriatal synapses (Figure 3.1C). The inability to potentiate mGlu2/4 heteromers 

was not limited to PHCCC alone. 4PAM-2 is a selective and efficacious PAM of mGlu4 

which binds to the same allosteric site as PHCCC (Drolet et al., 2011c). In cells 

expressing mGlu4 alone, 10 µM 4PAM-2 shifted concentration-response curves of L-AP4 

and glutamate by 18.8±2.6 and 15.2±3.1 fold, respectively (Table 3.2). When mGlu2 was 

co-expressed, however, 4-PAM2 only weakly potentiated the L-AP4 response (2.7±0.2 

fold) and was completely ineffective at shifting the glutamate concentration-response 

curve (1.0±0.02 fold; Table 3.2).  

VU0155041 is another mGlu4 PAM derived from a different chemical scaffold compared 

to PHCCC or 4PAM-2. Consistent with our previous report (Niswender et al., 2008b), 

VU0155041 (10 µM) shifted the L-AP4 and glutamate concentration-response curves to 

the left by 3.9±0.3 and 4.0±0.3 fold, respectively, in cells expressing mGlu4 alone 

(Figures 3.8E and G). Interestingly, VU0155041 also induced leftward shifts in the 

agonist concentration response curves in the mGlu2/4 cell line, shifting the L-AP4 

response substantially (9.7±1.0 fold shift), retaining its efficacy in shifting the glutamate 

response (3.5±0.3 fold shift) (Figure 3.7F and H), and, surprisingly, even showing 
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significant potentiation of the LY379268 response (4.2±0.12 fold, Table 3.2). As 

VU0155041 is predicted to bind only to the mGlu4 protein and LY379268 should only 

activate mGlu2, this finding suggests that there is transactivation between the subunits 

within the heteromer. We noted a slight decrease in the maximal response induced by the 

VU0155041/glutamate combination (Figure 3.8H); this was not present when L-AP4 was 

used as the agonist (Figure 3.8) or when mGlu4 was expressed alone (Figure 3.8G). There 

are several possibilities that may explain this phenomenon. For example, there could be 

differences in receptor desensitization induced by the allosteric agonist activity of 

VU0155041 (Niswender et al., 2008b). When the endogenous agonist activity of 

VU0155041 was assessed in the absence of orthosteric agonist, the potency of 

VU0155041 was similar in cells expressing mGlu4 versus those containing mGlu2/4 as 

was the maximal level of potentiation (pEC50 value, mGlu4, -5.38±0.17, and mGlu2/4 cells, 

5.25±0.10 (p=0.5719); maximal response,  mGlu4, 40.5±4.8% of glutamate maximal 

response, and mGlu2/4 cells, 38.9±6.3% of glutamate maximal response  (p=0.8459)), 

suggesting differential desensitization is not the cause of this discrepancy. It is possible 

that the use of glutamate in these experiments may contribute to this change in maximal 

response as glutamate will activate both mGlu2 and mGlu4. The decrease in the maximal 

response occurs at glutamate concentrations that would activate both mGlu2 and mGlu4, 

suggesting that there could be unique responses elicited when both the mGlu2 and mGlu4 

orthosteric sites are occupied. The use of L-AP4, however, would not carry such a caveat, 

and the maximal responses in Figure 3.7F are similar with or without VU0155041. The 

enhanced ability of VU0155041 to potentiate L-AP4 responses was not due to non-  
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Figure 3.7. Structures of allosteric ligands used in these studies. 

mGlu4 PAMs mGlu2 PAMs

CBiPES LY487379

BINA

mGlu2 NAM

MNI-137

PHCCC

VU0155041

4PAM-2

Lu AF21934



	
   90	
  
	
  

 
 
 

 

A B

C D

mGlu4 cells mGlu2/4 cells
PHCCC

L-AP4

-12 -11 -10 -9 -8 -7 -6 -5 -4

0

20

40

60

80

100

120

Log [L-AP4], M

P
er

ce
nt

 m
ax

gl
ut

am
at

e 
re

sp
on

se

Glutamate

-10 -9 -8 -7 -6 -5 -4 -3 -2

0

20

40

60

80

100

120

Log [Glutamate], M

P
er

ce
nt

 M
ax

G
lu

ta
m

at
e 

R
es

po
ns

e

L-AP4

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2

0
20
40
60
80

100
120
140

DMSO
10 µM
PHCCC

Log [L-AP4], M

P
er

ce
nt

 M
ax

G
lu

ta
m

at
e 

R
es

po
ns

e

Glutamate

-10 -9 -8 -7 -6 -5 -4 -3 -2

0
20
40
60
80

100
120
140

Log [Glutamate], M

P
er

ce
nt

 M
ax

G
lu

ta
m

at
e 

R
es

po
ns

e

E F

G H

mGlu4 cells mGlu2/4 cells

VU0155041

L-AP4

-12 -11 -10 -9 -8 -7 -6 -5 -4

0

20

40

60

80

100

120

Log [L-AP4], M

P
er

ce
nt

 M
ax

G
lu

ta
m

at
e 

R
es

po
ns

e

Glutamate

-10 -9 -8 -7 -6 -5 -4 -3 -2

0

20

40

60

80

100

120

Log [Glutamate], M

P
er

ce
nt

 M
ax

G
lu

ta
m

at
e 

R
es

po
ns

e

L-AP4

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2

0
20
40
60
80

100
120
140

DMSO
10 uM
VU0155041

Log [L-AP4], M

P
er

ce
nt

 M
ax

G
lu

ta
m

at
e 

R
es

po
ns

e

Glutamate

-10 -9 -8 -7 -6 -5 -4 -3 -2

0
20
40
60
80

100
120
140

Log [Glutamate], M

P
er

ce
nt

 M
ax

G
lu

ta
m

at
e 

R
es

po
ns

e



	
   91	
  
	
  

 

Figure 3.8. The efficacies of PHCCC and VU0155041 are differentially regulated by 

mGlu2/4 co-expression. A-H, 10 µM compound (■) or DMSO (●) were added 140 s 

before addition of serial dilutions of L-AP4 or glutamate. GIRK channel-mediated 

thallium flux was measured as described in HEK/GIRK/mGlu4 (left panels) and 

HEK/GIRK/mGlu2/4 (right panels) cell lines. Reponses were normalized to the maximal 

response induced by 1 mM glutamate in each individual cell line. pEC50 values for dose 

response curves in panels A-D without or with PHCCC were: A, 6.61±0.11 vs. 7.28±0.11 

(p=0.0115); B, 6.63±0.06 vs. 6.85±0.05 (p=0.0557); C, 4.77±0.05 vs. 5.27±0.10 

(p=0.0017); D, 6.11±0.05 vs. 6.09±0.06 (p=0.8383). pEC50 values for dose response 

curves in panel E-H without or with VU0155041 were: E, 6.61±0.11 vs. 7.21±0.08 

(p=0.0113); F, 6.63±0.06 vs. 7.61±0.07 (p=0.0004); G, 4.77±0.05 vs. 5.36±0.04 

(p<0.0001); H, 6.11±0.05 vs. 6.64±0.02 (p<0.0001). All values represent mean ± SEM 

(n≥3).  
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Table 3.2. The ability of mGlu4 PAMs to left-shift agonist concentration-response 

curves is distinct for different groups of PAMs. Data represent the Mean�SEM of at 

least three experiments performed in duplicate.  ap=0.0009 for mGlu4 versus mGlu2/4 

lines; bp<0.0001 for mGlu4 versus mGlu2/4 lines; cp=0.0003 for mGlu4 versus mGlu2/4 

lines; dp=0.0034 for mGlu4 versus mGlu2/4 lines; ep<0.0001 for mGlu2 versus mGlu2/4 

lines; fp=0.0054 for mGlu4 versus mGlu2/4 lines; gp=0.0175 for mGlu4 versus mGlu2/4 

lines; hp<0.0001 for mGlu2 versus mGlu2/4 lines; ip=0.0021 for mGlu4 versus mGlu2/4 

lines. Unpaired student’s t-test (n≥3, two-tailed). Note the ability of VU0155041 to shift 

responses of the mGlu2 agonist, LY379268. 

 

 

 

 
  

 mGlu2 mGlu4 mGlu2/4 
 Glutamate LY379268 Glutamate L-AP4 Glutamate LY379268 L-AP4 

10 µM PHCCC 0.9±0.03 1.0±0.04 3.5±0.53 4.7±0.02 1.0±0.04a 0.8±0.07 1.7±0.04b 
10 µM 4PAM-2 0.9±0.03 0.9±0.05 15.2±3.10 18.8±2.58 1.0±0.02c 0.9±0.07 2.7±0.21d 
10 µM VU0155041 0.9±0.02 0.9±0.02 4.0±0.26 3.9±0.29 3.5±0.30 4.1±0.12e 9.7±1.00f 
10 µM  Lu AF21934 1.0±0.03 1.0±0.02 3.4±0.14 3.9±0.08 2.7±0.17g  1.7±0.10h 8.2±0.96i 
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selective activity of VU0155041 on mGlu2 receptors (Table 3.2, (Niswender et al., 

2008b)). These results reveal that VU0155041 can be used as a chemical probe to 

potentiate responses to activation of mGlu2/4 heterodimers.  

The marked distinction between VU0155041 and PHCCC led us to speculate that 

the divergence in effect between the two PAMs may arise from their different chemical 

structures or binding sites; PHCCC and 4-PAM2 have been reported to bind to the same 

site on mGlu4 while VU0155041 appears to bind to a distinct site on the mGlu4 protein 

((Drolet et al., 2011c), assessed using a racemic mixture of VU0155041 regioisomers). 

Consistent with this hypothesis, the VU0155041-related compound, Lu AF21934, also 

exhibited an enhanced ability to potentiate L-AP4 responses (3.9±0.1 fold for mGlu4 cells 

alone and 8.2±1.0 fold for mGlu2/4 cells) and retained the ability to potentiate glutamate  

responses (3.4±0.1 fold, mGlu4 cells; 2.7±0.2 fold, mGlu2/4 cells, Table 3.2) in cells co-

expressing both receptors. 

 

To gain further insight into the mechanism of the pharmacological changes, the ability of 

increasing amounts of compound to induce progressive leftward shifts in agonist 

concentration-response curves was measured using each individual mGlu4 PAM and the 

operational model of allosterism was applied to compare the affinity (log KB) and 

cooperativity (log αβ-a combined parameter that represents the effects of a modulator on 

affinity (α) as well as effects on efficacy (β)) of  PAMs in cells expressing mGlu4 alone 

vs. mGlu2/4. As shown in Table 3.3, the estimated affinity of PHCCC was similar in 

mGlu2/4 cells compared to cells expressing mGlu4 alone. However, the positive 

cooperativity of PHCCC decreased significantly, from 0.57 ± 0.03 in the mGlu4 cell line 
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to 0.12 ± 0.02 in mGlu2/4 cell line (p=0.0017). Similar to PHCCC, 4PAM-2 also 

demonstrated a significant decrease in positive cooperativity in mGlu2/4 cells (log αβ: 

1.29±0.04 in mGlu4 vs. 0.82±0.02 in mGlu2/4 cells, p=0.0006); again, the affinity of the 

compound was not significantly different in the cell line expressing both receptors (Table 

3.3). In contrast, VU0155041 and Lu AF21934 exhibited significant changes in affinity 

(Log KB -5.27±0.01 vs. -4.78±0.13 for VU0155041, p=0.0188 and -5.88±0.04 vs. -

5.26±0.09 for Lu AF21934, p=0.0042) as well as increases in positive cooperativity (log 

αβ 0.95 ± 0.05 vs. 1.83 ± 0.27 for VU0155041, p=0.0334 and 0.66 ± 0.03 versus 1.7 ± 

0.11 for Lu AF21934, p=0.0008) in mGlu2/4 expressing cells compared to cells 

expressing mGlu4 alone. These data suggest the altered pharmacology of mGlu4 PAMs is 

due to differential changes in their positive cooperativity. 

 

The lack of efficacy of PHCCC and 4PAM-2 suggests that the mGlu2/4 cell line in which 

we performed our studies contains few or no mGlu4 homomers, indicating that mGlu2/4 

interactions may be dominant and actually preferred. To further probe the interactions 

between the receptors, we transiently transfected either increasing amounts of mGlu2 

alone, increasing amounts of mGlu2 in the presence of a constant amount of mGlu4, or 

increasing amounts of mGlu2 in the presence of another group III mGlu, mGlu7. mGlu7 

was chosen as Kammermeir  previously reported that mGlu2 and mGlu7 do not appear to 

interact in the same fashion as mGlu2 and mGlu4, suggesting that there is some specificity 

to the interaction (Kammermeier, 2012). In these studies, we observed gradual increases 

in the maximal LY379268 response when mGlu2 was expressed alone in increasing 

amounts (data not shown); at the concentrations used here, we saw no significant 
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differences in the potency (Figure 3.9A) or Hill slope (Figure 3.9B) of the LY379268 

response when mGlu2 was assessed in the absence of other mGlus. In the presence of 

mGlu7, responses appeared similar to those in which mGlu2 alone was expressed, with no 

differences in LY379268 potency or Hill slope (Figure 3.9A and B). In the presence of 

mGlu4, however, the potency of LY379268 was progressively shifted to the left when 

mGlu2 levels were increased; additionally, the Hill slope of the curve fit also 

progressively increased, indicating alterations in cooperativity between the subunits. 

These differences suggest that the mGlu2/4 combination appears to be distinct from that of 

mGlu2/7, indicating some specificity in this interaction and confirming previous work by 

Kammermeier. 

 

 To further demonstrate that the altered pharmacology of mGlu4 PAMs was due to 

mGlu2/4 interaction, we tested the activity of mGlu4 PAMs after transient transfection of 

increasing amounts of mGlu2 in the presence of a constant amount of mGlu4. In these 

experiments, a 30 µM concentration of each PAM was used. In cells transfected with just 

mGlu4, 30 µM of PHCCC induced 7.2±1.5 and 8.5±0.3 fold leftward shifts of the 

glutamate or L-AP4 concentration-response curves, respectively. However, in cells co-

transfected with 0.1, 0.2 and 0.5 µg mGlu2 DNA, the shift of the L-AP4 response 

progressively decreased to 5.8±1.2, 3.5±0.6 and 3.4±0.2 fold, and in cells transfected 

with equal amounts of mGlu2 and mGlu4, the shift was only 1.9±0.5 fold (Figure 3.9C 

and Table 3.4). In addition, the shift of the glutamate response, even with only 0.1 µg of 

mGlu2 DNA present (10% of the amount of mGlu4) drastically decreased to only 1.3±0.1 

fold (Figure 3.8D), suggesting a quite dramatic and dominant effect induced by the 
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presence of mGlu2. As with the responses observed with PHCCC, 4PAM-2 demonstrated 

similar efficacy changes in transiently transfected cells, which is consistent with our 

findings in the stable cell lines and the observation that these two PAMs bind to the same 

allosteric pocket. Interestingly, the potentiation induced by VU0155041 and Lu AF21934 

remained similar as the amount of mGlu2 increased, further supporting the observation 

that distinct classes of mGlu4 PAMs are differentially regulated by mGlu2/4 interactions. It 

should be noted that, in these experiments, the similarity in potencies and Hill slopes of 

LY379268 in mGlu2/4-expressing cells when the mGlu2:4 ratio is 1:1, compared to cells 

expressing mGlu2 alone, suggest that mGlu2 homomers may exist along with mGlu2/4 

heteromers in these experiments. In contrast, our data also suggest that mGlu2/4 

heteromers are the dominant entity for mGlu4 in these experiments. This interpretation is 

supported by the lack of potentiation induced by PHCCC and 4PAM-2 when glutamate is 

used as the agonist and the ratio of mGlu2 to mGlu4 is 1:10, suggesting that co-expression 

of even small amounts of mGlu2 dramatically regulates activity of mGlu4. 

 

Co-addition of mGlu2 PAM and mGlu4 PAM does not result in further potentiation  

We were also intrigued to investigate the cooperatvity of mGlu2 PAM and mGlu4 PAM 

and examined if co-addition of these compounds led to further potentiation in mGlu2/4 

cells compared to the effect induced by single PAM.  1 µM BINA, an mGlu2 PAM, was 

applied either alone or in combination with mGlu4 PAM VU0155041 (Figure 3.10A).  1 

µM BINA, when added alone, induced allosteric agonist activity as can be seen by the 

elevated baseline of the dose response curve, and produced a 2.9±0.8 fold shift of the 

glutamate response. Consistent with previous data, 10 µM VU0155041 was able to shift  
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 Log KB  Log αβ 

 mGlu4 cells mGlu2/4 cells mGlu4 cells mGlu2/4 cells 

PHCCC −5.46 ± 0.23 −5.47 ± 0.09 0.94 ± 0.06 0.51 ± 0.01a 

4PAM-2 −6.32 ± 0.04 −6.44 ±0.06 1.29 ± 0.04 0.82 ± 0.02b 

VU0155041 −5.27 ± 0.01  −4.78 ± 0.13c 0.95 ± 0.05 1.83 ± 0.27d 

Lu AF21934 −5.88 ± 0.04 −5.26 ± 0.09e 0.66 ± 0.03 1.70 ± 0.11f 

 

Table 3.3. Analysis of mGlu4 PAMs using the operational model of allosterism 

reveals differential alterations in affinity or cooperativity for distinct groups of 

PAMs. Data were generated by progressive fold shift experiments using increasing 

concentrations of four mGlu4 PAMs (ranging from 0 to 30 µM) prior to application of a 

full concentration-response range of L-AP4 (ranging from 0.1 nM to 10 µM). The logKA 

of L-AP4 for mGlu4 was set to -6.759 according to literature values (Monastyrskaia et al., 

1999).  For PHCCC and 4PAM-2, logτB was set to -100 due to the lack of allosteric 

agonist activity but was allowed to float for compounds exhibiting allosteric agonism 

(VU0155041, Lu AF29134). Data represent the Mean±SEM of at least three experiments 

performed in duplicate.  ap=0.0017 between mGlu4 cells and mGlu2/4 cells; bp= 0.0006 

between mGlu4 cells and mGlu2/4 cells; cp=0.0188 between mGlu4 cells and mGlu2/4 cells; 
dp=0.0334 between mGlu4 cells and mGlu2/4 cells; ep=0.0042 between mGlu4 cells and 

mGlu2/4 cells; fp=0.0008 between mGlu4 cells and mGlu2/4 cells. Unpaired student’s t-test 

(n≥3, two-tailed). 
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  Glutamate CRC L-AP4 CRC 

DNA  
(mGlu4+mGlu2, µg) 1+0 1+0.1 1+0.2 1+0.5 1+1 1+0 1+0.1 1+0.2 1+0.5 1+1 
PHCCC 7.2±1.5 1.3±0.1∗∗∗ 1.7±0.1∗∗∗ 1.3±0.01∗∗∗ 1.2±0.1∗∗∗ 8.5±0.3 5.8±1.2∗ 3.5±0.6∗∗ 3.4±0.2∗∗∗ 1.9±0.5∗∗∗ 

4-PAM2 10.0±1.1 1.5±0.1∗∗∗ 1.6±0.2∗∗∗ 1.3±0.04∗∗∗ 1.3±0.1∗∗∗ 14.7±2.6 9.6±3.2 5.2±0.2∗ 4.8±1.2∗ 2.4±0.5∗∗ 

VU0155041 4.4±0.8 4.8±0.4 5.3±0.9 4.9±0.1 4.1±0.3 6.3±2.1 8.8±3.8 3.7±0.7 7.6±0.5 3.9±0.6 

Lu AF21934 3.7±0.9 4.6±0.5 5.3±0.7 4.4±0.4 3.9±0.1 2.6±0.4 3.6±1.2 3.5±0.8 4.2±0.4 2.1±1.0 

 

Table 3.4. Differential leftward fold shifts of glutamate or L-AP4 concentration-

response curves are induced by different PAMs after transient expression of 

increasing amounts of mGlu2 (0, 0.1, 0.2, 0.5 or 1 µg) with a constant amount (1 µg) 

of mGlu4.  Data represent the Mean ± SEM of three independent experiments 

performed in duplicate. Data were analyzed using one way ANOVA and Dunnett’s 

Multiple Comparison Test comparing to cells transfected with mGlu4 alone: *p<0.05, 
**p<0.01, ***p<0.001. 



	
   99	
  
	
  

 
 

Figure 3.9. Co-expression of varying amounts of mGlu2 and mGlu4 regulates 

responses to both orthosteric and allosteric ligands. HEK/GIRK cells were transfected 

with 0, 0.1, 0.2, 0.5 or 1 µg mGlu2 DNA in the absence or presence of co-transfection of 

1 µg of vector control, 1 µg mGlu7, or 1 µg mGlu4. A and B. Potencies and Hill slope of 

the LY379268 response were determined; responses were unaffected by empty vector or 

mGlu7 but dramatically altered in the presence of mGlu4. C and D. The fold shifts 

induced by 30 µM of PHCCC, 4PAM-2, VU0155041 or Lu AF21934 are summarized for 

L-AP4 (C) and glutamate (D) using bar graphs. Values represent mean ± SEM (n=3). 

Statistics were performed using 1way ANOVA, Bonferroni’s Multiple Comparison Test 

was used for A and B and Dunnett’s Multiple Comparison Test was used for C and D. * 

denotes p < 0.05; ** denotes p<0.01 and *** denotes p<0.001. 
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 Figure 3.10. Co-addtion of mGlu2 PAM and mGlu4 PAM does not result in further 

potentiation. A-C, DMSO control (■), 1 µM BINA (▼), 10 µM mGlu4 PAM (●, 

VU0155041, PHCCC or 4PAM-2) or BINA plus mGlu4 PAM (□) were added 140 s 

before addition of serial dilutions of glutamate. GIRK channel-mediated thallium flux 

was measured as described in HEK/GIRK/mGlu2/4 cell line and was normalized to the 

maximal response induced by 1 mM glutamate. pEC50 values for dose response curves of 

DMSO and 1 µM BINA were 6.10±0.05 and 6.48±0.16, respectively.  pEC50 values for 

dose response curves of mGlu4 PAM and BINA plus mGlu4 PAM in panels A-C were: A, 

6.64±0.02 vs. 6.79±0.05; B, 6.09±0.06 vs. 6.44±0.15; C, 6.12±0.05 vs. 6.60±0.14. All 

values represent mean ± SEM (n≥3).  
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glutamate dose response curve to the left by 3.5±0.3 fold. When added together, the 

induced fold shift was 5.0±0.3 fold, considerably lower than the expected value if the 

mGlu2 PAM and mGlu4 PAM exhibited an additive or cooperative effect. As shown in 

Table 3.2, PHCCC or 4PAM-2 was not able to shift glutamate responses when added 

alone in mGlu2/4 cells (Figure 3.10 B and C). The effect of these two mGlu4 PAMs were 

then assessed to determine if their efficacies could be modified in the presence of BINA. 

Co-addition of BINA resulted in a fold shift value that is not significantly higher than 

BINA alone (2.61±0.81 for PHCCC and 3.37±0.96 for 4PAM-2), suggesting no 

cooperative effect between mGlu2 and mGlu4 PAM sites. 

 

Allosteric modulators of mGlu2 are also differentially regulated upon formation of 

mGlu2/4 heteromer  

 

We also sought to investigate the influence of mGlu2/4 interaction on mGlu2 allosteric 

modulators. CBiPES and LY487379 are two PAMs from the pyridylmethylsulfonamide 

series that selectively potentiate mGlu2 (Johnson et al., 2003; Johnson et al., 2005), 

whereas BINA was identified from a different chemical scaffold (Galici et al., 2006). We 

took advantage of these structurally distinct compounds and compared their efficacy in 

cells expressing mGlu2 alone versus cells co-expressing mGlu2 and mGlu4. As shown in 

Table 3.5, none of the mGlu2 PAMs potentiated responses to the mGlu4 agonist L-AP4 in 

either mGlu4 or mGlu2/4-expressing cells. 1 µM BINA induced a 6.7 ±0.6 fold leftward 

shift of the glutamate concentration-response curve in mGlu2 cells (Figure 3.11A). 

However, this number significantly decreased, to 3.0 ± 0.5 fold, in cells expressing both 
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mGlu2 and mGlu4 (Figure 3.11B). Likewise, the fold shift of the LY379628 response 

significantly decreased from 4.0 ±1.1 fold in mGlu2 cells to 1.7 ± 0.2 fold in mGlu2/4 cells 

(Figure 3.11C, D). In contrast, the ability of the mGlu2 PAMs LY487379 and CBiPES to 

potentiate either glutamate or LY379268 responses was not significantly altered (Figure 

3.11E-L), suggesting that distinct mGlu2 PAMs also possess different pharmacological 

profiles when mGlu2 is expressed alone relative to when mGlu2 and mGlu4 are co-

expressed.   

 

In contrast to what was observed with VU0155041/Lu AF21934 and their ability to 

potentiate LY379268 responses, we did not see potentiation of L-AP4 responses with any 

of the mGlu2 PAMs.  Each of the mGlu2 PAMs used here exhibits similar potentiation of 

mGlu2 responses compared to the responses of VU0155041 and Lu AF21934 at mGlu4 

(3-6 fold), suggesting that our assay system should be sensitive enough to detect 

potentiation of an mGlu4 agonist response. However, in contrast to responses to mGlu4 

agonists, we would note that there is possibly some masking of potentiation due to 

expression of mGlu2 homodimers in our cells. Each of the mGlu2 PAMs used here shows 

some degree of allosteric agonist activity, which may complicate measurement of the 

signal when L-AP4 is used as the orthosteric agonist. In contrast to mGlu4, where we 

hypothesize most of the receptors are in heteromeric form, this may result in a loss of 

sensitivity. Additionally, these compounds could be engaging distinct sites on each 

receptor that translate to distinct abilities to induce potentiation. Our data actually are 

most consistent with the hypothesis that the two halves of the heteromer may not function 

symmetrically or may differentially interact with signaling components, such as G-
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proteins. If correct, this might suggest that one half of the dimer may be more sensitive to 

potentiation (or antagonism). While this remains to be determined experimentally for 

mGlu2/4 heteromers and will require an assay system in which absolutely no mGlu2 

homomers are present, it could eventually contribute to signaling differences induced 

downstream of heteromic receptors when specific modulators are used.   

 

Unlike PHCCC, all mGlu2 PAMs evaluated had some activity at both mGlu2 and mGlu2/4, 

suggesting that either these cells express some level of homomeric mGlu2 or that the 

effect on potentiation is not as dramatic as that observed with the mGlu4 PAMs examined 

thusfar; regardless, the ability of these PAMs to each retain some degree of potentiation 

indicates that these compounds may not be useful as selective probes for differentiating 

homomeric versus heteromeric receptors in native systems. 

 

In addition to the evaluation of the efficacy of mGlu2 PAMs, we also assessed the 

efficacy of MNI-137, a selective group II mGlu NAM, on mGlu2 versus mGlu2/4 

responses (Figure  3.12). For these studies, we chose to use the group II agonist DCG-IV, 

as LY379268 will weakly activate mGlu4 at the higher concentrations needed to assess 

whether any potential interaction was competitive or noncompetitive in nature. In cells 

expressing mGlu2 alone, increasing concentrations of MNI-137 non-competitively 

antagonized activation of mGlu2 by DCG-IV, completely abolishing the response (Figure 

3.10A). Consistent with its previously reported selectivity profile (Hemstapat et al., 2007), 

MNI-137 showed no significant effect in blocking L-AP4 responses in cells expressing 

mGlu4 alone (Figure 3.10B). In mGlu2/4 cells, MNI-137 was still able to  
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Table 3.5. The efficacy of mGlu2 PAMs to left-shift agonist concentration-response 

curves differs between classes of PAMs. Data represent the Mean ± SEM of three 

independent experiments performed in duplicate. ap=0.0003 for mGlu2 versus mGlu2/4 

lines; bp=0.0466 for mGlu2 versus mGlu2/4 lines. Unpaired student’s t-test (n≥3, two-

tailed). 

  

 mGlu2 mGlu4 mGlu2/4 
 Glutamate LY379268 Glutamate L-AP4 Glutamate LY379268 L-AP4 

1 µM BINA 6.7±0.6 4.0±1.0 0.9±0.03 0.9±0.1 3.0±0.5a 1.7±0.2b 1.2±0.2 
1 µM LY487379 3.2±0.2 2.1±0.3 0.9±0.02 1.0±0.1 2.7±0.3 2.1±0.3 1.0±0.05 
1 µM CBiPES 6.2±0.3 3.0±0.02 0.8±0.1 0.9±0.04 5.1±0.3 2.8±0.7 0.9±0.2 
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Figure 3.11. The efficacies of mGlu2 PAMs are also differentially regulated by 

mGlu2/4 co-expression. 1 µM compound (■) or DMSO (●) were added 140 s before 

addition of serial dilutions of glutamate or LY379268. GIRK channel-mediated thallium 

flux was measured as described in HEK/GIRK/mGlu2 (left panels) and 

HEK/GIRK/mGlu2/4 (right panels) cell lines. Reponses were normalized to the maximal 

response induced by 1 mM glutamate in each individual cell line. pEC50 values for 

concentration response curves in panels A-D without or with BINA were: A, 6.01±0.03 

vs. 6.81±0.05 (p<0.0001); B, 6.18±0.04 vs. 6.59±0.10 (p<0.0001); C, 8.25±0.02 vs. 

8.79±0.10 (p<0.0001); D, 8.02±0.09 vs. 8.22±0.13 (p=0.0058). pEC50 values for dose 

response curves in panel E-H without or with LY487379 were: E, 5.96±0.01 vs. 

6.47±0.03 (p<0.0001); F, 6.27±0.01 vs. 6.69±0.05 (p<0.0001); G, 8.20±0.02 vs. 

8.52±0.05 (p=0.0003); H, 8.15±0.03 vs. 8.45±0.05 (p=0.0009). pEC50 values for dose 

response curves in panel I-L without or with CBiPES were: I, 5.97±0.01 vs. 6.76±0.02 

(p<0.0001); J, 6.25±0.01 vs. 6.96±0.03 (p<0.0001); K, 8.20±0.01 vs. 8.68±0.01 

(p<0.0001); L, 8.13±0.05 vs. 8.54±0.08 (p=0.0132). All values represent mean ± SEM 

(n≥3) and statistics were performed using unpaired t test. 
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Figure 3.12. MNI-137 exhibits reduced efficacy when mGlu4 and mGlu2 are co-

expressed and non-competitively antagonizes mGlu4-mediated responses in mGlu2/4-

expressing cells. A and B, the effect of MNI-137 on DCG-IV responses were tested in 

the mGlu2 or mGlu2/4 cell line. C and D, the effect of MNI-137 on L-AP4 responses was 

tested in mGlu4 or mGlu2/4 cell line. DMSO (●) or 100 nM, 300 nM, 1 µM or 10 µM 

MNI-137 were added 140 s before addition of serial dilutions of LY379268 or L-AP4. 

GIRK channel-mediated thallium flux was measured as described and responses were 

normalized to the maximal response induced by 1 mM glutamate in each individual cell 

line. All values represent mean ± SEM (n=3).  
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antagonize DCG-IV responses in a non-competitive manner (Figure 3.12C). Analysis 

using the operational model of allosterism suggested that the affinity of MNI-137 was 

slightly higher in mGlu2/4 cells. In addition, MNI-137 demonstrates increased 

cooperativity for affinity modulation but decreased cooperativity for efficacy modulation 

at mGlu2/4 (Table 3.6), evidenced by an inability to completely abolish the response to 

DCG-IV. Surprisingly, MNI-137 was also able to noncompetitively block activation of 

the mGlu4 subunit induced by stimulation with L-AP4, further supporting a structural and 

functional inter-subunit interaction within the mGlu2/4 complex and suggesting that MNI-

137 binding to mGlu2 can negatively modulate the function of mGlu4. Since MNI-137 

does not block responses to L-AP4 unless mGlu2 is co-expressed with mGlu4, this NAM 

provides an excellent tool to evaluate responses to L-AP4 that may be mediated by 

mGlu2/4 in native systems.  

 

mGlu2 and 4 allosteric modulators exhibit unique pharmacological effect at the 

corticostriatal synapse  

 

The unique pharmacology of VU0155041 and MNI-137 on mGlu2/4-elicited responses 

suggests that these compounds provide a pair of tool compounds that can be utilized to 

provide evidence for the existence of mGlu2/4 heteromers in native systems. Therefore, 

the effect of these two compounds were tested at the corticostriatal synapses by Meredith 

Noetzel and Kari Johnson in our laboratory. Treatment of slices with 10 µM VU0155041, 

followed by the co-addition of 10 µM VU0155041 and 500 nM L-AP4, resulted in a 

robust decrease in the eEPSP amplitude (51.3 ± 4.0% of baseline; Figure 3.13) relative to 

that observed with 500 nM L-AP4 alone (90.5 ± 6.2 % of baseline; Figure 3.1). These 

results, together with the lack of efficacy of PHCCC at the corticostriatal synapse, 

suggest that, in a native system, the potentiation of the L-AP4 responses by mGlu4 PAMs 

mimics the differential responses observed in cells co-expressing mGlu2 and mGlu4.  
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Parameters mGlu2 mGlu2/4 
Log KB −6.82±0.04 −7.18±0.03a 
Log α −0.47±0.05 −0.74±0.05b 
Log β −100 −0.69±0.04 

 

Table 3.6. MNI-137 exhibits enhanced affinity but decreased efficacy in modulating 

DCV-IV responses in mGlu2/4 cells compared to cells expressing mGlu2 alone. Data 

were analyzed using the operational model of allosterism as described in the Materials 

and Methods. The logKA of DCG-IV for mGlu2 was set to -6.959 according to literature 

values; logτB was set to -100. Data represent the Mean ± SEM of three independent 

experiments performed in duplicate. ap=0.0028 between mGlu2 cells and mGlu2/4 cells; 
bp=0.0206 between mGlu2 cells and mGlu2/4 cells. Unpaired student’s t-test (n≥3, two-

tailed). 

 

  



	
   110	
  
	
  

Furthermore, these results suggest that homomeric mGlu4 receptors, which would be 

predicted to respond to PHCCC, are expressed at extremely low abundance, if at all, in 

these synaptic terminals.  

  

If mGlu2/4 heteromeric receptors play a dominant role in regulating transmission at 

corticostriatal synapses, we would also predict that the mGlu2 and mGlu2/4 NAM MNI-

137 would inhibit the effect of L-AP4 at this synapse.  Treatment of slices with L-AP4 

(100 µM) robustly inhibited the amplitude of electrically evoked EPSPs in striatal MSNs 

(62.3 ± 4.8% of baseline, Figure 3.14A). Bath application of MNI-137 (10 µM) for 10 

min produced a small increase in EPSP amplitude (112.7 ± 3.5% of baseline, Figure 

3.14B). Following pretreatment with MNI-137, 10 min bath application of L-AP4, in 

combination with MNI-137, returned EPSP amplitudes to baseline values (100.1 ± 3.4%  

of baseline, Figure 3.14B) and produced significantly less inhibition of EPSP amplitude 

compared with L-AP4 alone. The average inhibition of EPSP amplitude for L-AP4 alone 

was 37.1 ± 5.8%, whereas the L-AP4-induced inhibition of EPSP amplitude following 

MNI-137 treatment was only 12.5 ± 2.7% (P<0.05, unpaired t test, Figure 3.14C). These 

results indicate that an mGlu2 NAM can regulate the responses of an mGlu4 agonist at 

corticostriatal synapses, providing additional evidence for mGlu2/4 heteromer expression 

in vivo. 
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Figure 3.13. In contrast to PHCCC, VU0155041 potentiates the L-AP4-induced 

decrease in evoked EPSPs at the corticostriatal synapse. EPSPs were recorded in 

medium spiny neurons following stimulation of the white matter between the cortex and 

striatum with a bipolar electrode.  All compounds were bath applied. Data are normalized 

to the average baseline EPSP amplitude. Insets are sample traces from an individual 

experiment (black – averaged traces from minute prior to L-AP4 application; gray – 

averaged traces from last minute of L-AP4 application). Slices were treated with 10 µM 

VU0155041 followed by co-application of 10 µM VU0155041 and 500 nM L-AP4. Two 

slices exhibited responses when VU0155041 was applied alone. Solid and dashed lines 

represent time of compound additions (A). Bar graphs summarizing the normalized peak 

EPSP response measured during the last two minutes of compound addition (B). Values 

represent mean ± SEM (n=5). * denotes p < 0.05 when compared to 500 nM L-AP4 using 

Dunnett’s Multiple Comparison Test.  
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Figure 3.14. MNI-137 blocks L-AP4-induced inhibition of corticostriatal 

transmission. EPSPs were recorded in medium spiny neurons following stimulation of 

the white matter between the cortex and striatum with a bipolar electrode. Data are 

normalized to the average baseline EPSP amplitude. Insets represent sample traces from a 

representative experiment (black – averaged traces from minute prior to L-AP4 

application; gray – averaged traces from last minute of L-AP4 application). Slices were 

treated with 100 µM L-AP4 alone (A) or following a 10 minute pretreatment with 10 µM 

MNI-137 (B). (C) Bar graph representation of the inhibition of corticostriatal 

transmission by L-AP4 in the absence (control) and presence of MNI-137. The difference 

between EPSP amplitudes during the minute prior to L-AP4 application and the last 

minute of L-AP4 application were calculated for each cell, and the average difference for 

each treatment group is shown in the bar graph. Data represent mean ± SEM (n=5-7). * 

denotes P < 0.05, unpaired t test. 
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Discussion 

 

As recombinant cell lines are used to identify and characterize allosteric reagents, it is 

important to recognize potential discrepancies between in vitro and in vivo properties of 

these novel compounds.  For example, MMPIP, an allosteric antagonist of mGlu7, 

inhibits mGlu7 activity in recombinant cell lines (Mitsukawa et al., 2005; Niswender et al., 

2010; Suzuki et al., 2007) ; however, when applied to brain slices, it fails to inhibit 

mGlu7-mediated L-AP4 responses at SC-CA1 synapses (Niswender et al., 2010). We 

show here that PHCCC fails to potentiate mGlu4 at corticostriatal synapses, despite its 

well-established efficacy in vitro and at other synapses. These data suggest that the 

activity of allosteric compounds may be context-specific and could be dramatically 

altered by the in vivo environment, such as differential expression of signaling pathway 

components or variations in receptor assembly.  

 

By performing co-IP experiments in dorsal striatum and medial prefrontal cortex from 

both rat and mouse, our data demonstrate mGlu2/4 interaction in native tissue. The 

detection of mGlu2/4 heteromers in dorsal striatum is consistent with electrophysiology 

data that both mGlu2 and mGlu4 act presynaptically to reduce excitatory transmission at 

corticostriatal synapses (Bennouar et al., 2012; Johnson et al., 2005), although mGlu2 and 

mGlu4 may colocalize on other axon terminals in the striatum as well. Similarly, our 

medial prefrontal cortex samples contain many axon terminals where mGlu2 and mGlu4 

might colocalize. While we cannot conclude the precise localization of mGlu2/4 

heteromers in this region, physiological evidence suggests that presynaptic expression of 
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mGlu2 and mGlu4 at thalamocortical synapses (Benneyworth et al., 2007; Marek et al., 

2000; Zhang and Marek, 2007) is also a potential source of the mGlu2/4 heterocomplexes.   

 

We have observed altered efficacies of mGlu4 PAMs in cells co-expressing mGlu2 and 

mGlu4 (Figure 3.8 and Table 3.2). These data are consistent with Kammermeier’s finding 

in in vitro cultured neurons co-injected with mGlu2 and mGlu4 cDNA (Kammermeier, 

2012). We have also shown that effects of mGlu2 allosteric modulators can also be 

significantly altered. Modeling of mGlu4 PAM interactions using the operational model 

of allosterism suggests that binding to two distinct allosteric pockets results in differential 

pharmacological profile changes with regards to affinity and cooperativity. This suggests 

that these allosteric binding pockets may encounter differential conformation changes 

upon heterointeraction of the two receptor subunits, although more detailed structural 

studies are needed.  

 

In our experiments, mGlu2 and mGlu4 were co-transfected without being forced to form 

an interaction. Advantages of this approach are that it avoids tagging of the receptors, 

which may affect pharmacology, and that it more closely mimics the receptor assembly in 

an in vivo environment where mGlu homomers and heteromers may co-exist. At the 

receptor levels expressed in our stable cell lines, the pharmacology of orthosteric agonists, 

such as LY379268 and L-AP4, was not dramatically altered in the mGlu2/4 line (Figure 

3.5). However, although both agonists elicited a response alone, the Hill slopes of the 

concentration-response curves were significantly decreased compared to cells expressing 

a single mGlu subtype, suggesting an interaction between the subunits. We did observe 
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differences in the ability of LY379268 and L-AP4 to achieve maximal responses 

(LY379268 was a full agonist while L-AP4 only achieved a 70% maximal response), 

which could result from the presence of mGlu2 homodimers under these experimental 

conditions. In contrast, our data appear to be consistent with little to no expression of 

mGlu4 homodimers in our mGlu2/4 cell line. For example, the fact that PHCCC and 

4PAM-2 exhibit significantly decreased/no efficacy in potentiating L-AP4 responses 

suggests that most mGlu4 subunits in mGlu2/4 cell line appear to be in a complexed form. 

While we cannot definitively conclude that the receptors are forming strict heterodimers 

(as opposed to oligomers) in our system, the work of Doumazane et al. suggests that 

mGlu2 and mGlu4 appear to form heterodimers, rather than higher order oligomers, in 

vitro (Doumazane et al., 2011a). 

 

To overcome the caveat of mGlu2 homodimers in the stable cell line, we performed 

transient transfection experiments with a constant amount of mGlu4 or mGlu7 and 

variable amounts of mGlu2. Results from these studies suggest that expression of mGlu4 

specifically results in changes in the potency and cooperativity of an mGlu2 orthosteric 

agonist, and that alterations in mGlu4 PAM pharmacology are dependent on the amount 

of mGlu2 co-expression. Quite strikingly, 1/10 of the amount of mGlu2 compared to 

mGlu4 resulted in a nearly complete loss of potentiation of the glutamate response by 

PHCCC and 4PAM-2, suggesting that the heterointeractions may be dominant. 

 

We would note that, when mGlu2 and mGlu4 were co-transfected in similar amounts, the 

potency and Hill slope of the LY379268 response was the same as when mGlu2 is 
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expressed alone. The lack of effect of PHCCC and 4-PAM2, along with the similarities in 

Hill slope and potency once the amount of mGlu2 equals that of mGlu4, suggests that the 

interpretation that there are homomeric pools of mGlu2 and heteromeric mGlu2/4 under 

these conditions are most consistent with the current data. These data also recapitulate 

Kammermeier’s finding that mGlu2 homodimers existed when mGlu2 and mGlu4 were 

transfected with a 1:1 ratio but not a 1:3 ratio (Kammermeier, 2012). 

 

 

It has previously been shown that heterodimerization/hetero-interactions of receptors can 

substantially alter the effect of pharmacological reagents. For example, Gonzalez-Maeso 

et al. reported that 5-HT2A receptors interact with mGlu2 and form functional complexes 

in cerebral cortex (Gonzalez-Maeso et al., 2008). In the presence of this 5-HT2A/mGlu2 

complex, hallucinogenic 5-HT2A agonists triggered unique cellular responses, which may 

contribute to the pathogenesis of psychosis. The combination of unique orthosteric and 

allosteric ligands for mGlu2 and mGlu4 now allows us to pharmacologically interrogate 

the functional expression of mGlu4-containing heteromers at synapses in the CNS. For 

example, we found that VU0155041 potentiated L-AP4 responses at corticostriatal 

synapses, whereas PHCCC, which binds to a distinct allosteric site, showed no effect 

(Figure 3.1 and 3.13). In addition, the mGlu2 NAM MNI-137 was able to block L-AP4 

induced responses at the corticostriatal synapse, recapitulating the pharmacological 

profile of this compound in the mGlu2/4 cell line. 
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Although the results reported here cannot be seen as definitive evidence of mGlu2/4 

heterodimer formation in the CNS and could be explained by other potential mechanisms, 

such as involvement of other partner proteins, multiple lines of evidence are consistent 

with functional existence of predominantly mGlu2/4 heteromers at corticostriatal 

synapses: 1) time-resolved FRET studies by Doumazane et al. indicate that mGlu2 and 

mGlu4 form strict heterodimers when expressed in the same cells, 2) our co-

immunoprecipitation data using rodent striatal tissue demonstrate some type of physical 

interaction between mGlu2 and mGlu4 in this brain region, and 3) pharmacological 

properties at corticostriatal synapses recapitulate the results seen in the mGlu2/4 

recombinant cell line. Regardless of the mechanism, these studies provide compelling 

evidence that the function of mGlu receptors can be context-dependent and that mGlu4 

may display fundamentally distinct responses to selective allosteric modulators at 

different synapses upon coexpression of other mGlu receptor subtypes. 
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CHAPTER IV 

 

GENERAL DISCUSSION AND FUTURE DIRECTION 

 

Functional selectivity and therapeutic implications of mGlu allosteric modulators 

 

Seven transmembrane receptors (7TMRs) are intrinsic plasma membrane proteins that 

function as information transducers to pass stimuli from binding of natural ligands to 

activation of cytosolic signaling cascades. The fundamental mechanism of these actions 

is conformational changes of the receptors. Receptor proteins are dynamic molecules that 

are “breathing” and keep changing conformations, which are stabilized by natural ligands 

and synthetic orthosteric/allosteric reagents. Traditionally, these conformations are 

classified into “fully on”, “partially on” or “off” conformations using criteria of G protein 

activation.  

 

In addition to G proteins, however, numerous cytosolic proteins interact with various 

domains on the 7TMRs and constitute a part in the whole “breathing system”.  These 

proteins include arrestins and 7TMR interacting proteins, many of which are PDZ 

domain proteins. β-arrestin is able to recruit signaling molecules and induce long-lasting 

activation of ERK. Some examples of PDZ domain proteins include Na+/H+ exchange 

regulator factor 1 and PICK1. As each receptor conformation possesses a specific energy 

map, the affinities to signaling molecules also varies. It has recently been shown by 

bioluminescence resonance energy transfer that G protein and non-G protein pathways 
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are directly correlated with unique receptor conformations (Galandrin et al., 2008). 

Therefore, a ligand may not elicit responses in all signaling pathways and theoretically, 

no two ligands would produce the same receptor behavior in terms of signaling and 

receptor regulation. And such phenomenon is termed “functional selectivity” (Gesty-

Palmer and Luttrell, 2011).  

 

Even naturally occurring ligands may exhibit functionally selective effect. CCL19 and 

CCL20 represent the first examples, which induce different receptor desensitization 

profile on CCR7 receptor (Kohout et al., 2004). Other examples of orthosteric ligands 

stem from serotonin (5-HT) receptors. Orthosteric ligands at the 5-HT2A and 5-HT2C 

receptors have revealed different rank orders of agonists to stimulate phospholipase C 

versus phospholipase A2 pathways (Berg et al., 1998). In addition, there are now 

examples of ligands with inverse agonist properties in certain pathways but clear agonist 

activity in others (De Deurwaerdere et al., 2004). It has been observed as well, that 

compounds classified as “antagonists” can induce desensitization, internalization, and 

downregulation of receptors, a property that might be considered “agonistic” in nature 

(discussed in (Urban et al., 2007)).  

 

These observations deviate from “linear efficacy” and has breached the traditional view 

of signal propagation via the receptors. To better quantify such biased effects, useful 

measurements have been proposed to describe agonist effects. The term activity ratio, 

calculated using Max/EC50, serves to characterize the ability of a certain agonist to 

activate a given signaling pathway (Ehlert, 2005). When two pathways are compared, the 
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relative activity ratios can thus be used to determine preference of one pathway over the 

other as a measurement of signaling bias.  

 

As the search for more selective and “drug-like” 7TMR ligands has grown, the 

development of allosteric ligands has emerged. As these compounds bind to alternate 

sites on a 7TMR compared to the endogenous ligand, it might be expected that they could 

as well place the receptor in a unique structural conformation that might not be achieved, 

or at least favored, in their absence and result in preferential regulation of certain 

pathways in the presence of an allosteric ligand. For example, the mGlu5 PAM N-{4-

chloro-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl) methyl]phenyl}-2-

hydroxybenzamide (CPPHA), which binds to an alternate site on the mGlu5 receptor 

versus other PAMs (O'Brien et al., 2004), exhibits differential effects on calcium 

mobilization and ERK1/2 phosphorylation downstream of mGlu5 activation in cultured 

cortical astrocytes (Zhang et al., 2005). This is in contrast to the PAM 3,3′-

difluorobenzaldazine (DFB), which potentiates both responses similarly. Additionally, 

the study in Chapter II has introduced a second mechanism of functional selectivity 

where mGlu4 PAMs usually do not induce biased signaling yet can exhibit functional 

selective effects upon co-activation of a Gq coupled receptor. This indicates that the 

pharmacodynamics of compounds could be far more complicated in native environment 

and the substantial calcium response induced by mGlu4 PAMs could be of importance in 

the physiological and pathological conditions.  
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Functional selectivity could be used for rational design of drugs to maximize their 

therapeutic effects. In a case where functional selectivity may have therapeutic relevance, 

activation of the GPR109 receptor by nicotinic acid is effective is beneficial for 

dyslipidemia by lowering triglycerides and elevating high-density lipoprotein. However, 

serious side effects were observed in patients including cutaneous flushing (Pike, 2005). 

It has been shown that activation of the receptor by nicotinic acid activates the Gi 

signaling pathway, as well as phospholipase A2 activation followed by recruitment of β-

arrestins.  Studies using β-arrestin1 knockout mice revealed reduced dermal side effects 

while maintaining beneficial efficacies. In addition, MK-0354, a biased ligand that is 

devoid of β-arrestin recruitment, decreases serum levels of free fatty acids without 

inducing cutaneous flushing, and may represent an improved option for the treatment of 

dyslipidemia (Lai et al., 2008; Walters et al., 2009).  

 

β-arrestin signaling, however, can also be associated with additional therapeutic effects. 

For example, the β-adrenergic receptor blocker carvedilol acts as an inverse agonist in 

cAMP pathways but as an agonist in stimulating β-arrestin-mediated ERK 

phosphorylation (Wisler et al., 2007); this compound clinically shows advantages over 

other β-blockers in the treatment of heart failure. Another example comes from 

parathyroid hormone (PTH) receptor. Intermittent Activation of PTH receptor increases 

bone mass by stimulating osteoblasts. However, bone resorption can also occur through 

the coupling of osteoblasts to osteoclasts, which is not desired for the treatment of 

osteoporosis. Studies using β-arrestin2 knockout mice suggest that β-arrestin pathway 

limits PTH-induced osteoclastogenesis and contributes to increased bone mass (Ferrari et 
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al., 2005). Indeed, a biased agonist, D-Trp(12),Tyr(34))-PTH(7-34) (also named PTH-

betaarr), activates β-arrestin but not classic G protein signaling and induces bone 

formation without bone resorption, offering improved therapy for osteoporosis (Gesty-

Palmer et al., 2009). 

 

As to the biased signaling described in Chapter II, calcium is involved in various cellular 

functions including enzyme activation, signal-transduction, and electrophysiological 

responses. In the central nervous system, intracellular calcium mobilization is vital for 

neurotransmitter release and synaptic plasticity, including long-term potentiation and 

long-term depression. It is well studied that massive calcium mobilization mediated by 

7TMR cross-talk can have significant physiological implications. For example, mGlu1-

mediated calcium mobilization in Purkinje neurons is enhanced by concomitant 

activation of GABAB receptor (Kamikubo et al., 2007). Induction of such a calcium 

signal is suggested to act as a co-incidence detector for parallel- and climbing-fiber inputs, 

and is required for long-term depression at parallel-fiber–Purkinje cell synapses (Hirono 

et al., 2001; Wang et al., 2000). Similarly, potentiated calcium release by cross-talk 

between group I and group II mGluRs is shown to be critical for LTD in the perirhinal 

cortex under resting-membrane potentials (Cho et al., 2000). Therefore, signaling bias 

induced by mGlu4 PAMs could be utilized to treat disease conditions where calcium 

signaling of a Gq coupled receptor is desired in mGlu4-coexpressing cells but not in other 

tissues. On the other hand, however, an inappropriate intracellular calcium surge could 

induce apoptosis via activation of calpain (Camins et al., 2009). Therefore, caution may 
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need to be taken when mGlu4 PAMs are used in combination with other Gq receptor 

agonists.  

 

As more allosteric modulators are pursued in the hopes of achieving highly selective drug 

leads with good pharmacokinetic properties, further complexity induced by signal bias 

will continue to develop. While functional selectivity clearly complicates the use of 

compounds as general tools for probing receptor function and the progression of drugs 

with these properties through clinical development, there is great promise in this 

approach to eventually tailor drug therapy to a particular pathway or subset of signaling 

cascades to enhance therapeutic efficacy and/or reduce side effects. 

 

 

Receptor assembly-selective modulators of mGlu 

 

As mentioned above, allosterism of the receptor by ligands/modulators and interacting 

cytosolic proteins is essential for the signal transduction from environment into the cells. 

In addition to the guest allosterism and cytosolic allostery induced by these factors, 

receptor dimerization/oligomerization, as well as the lipid environment, comprise 

important components for the lateral allostery of 7TMRs (Kenakin and Miller, 2010).   

 

Although oligomerization of family A 7TMRs is a topic of extensive debate, family B 

7TMRs have recently been shown to form stable homodimers with the interacting 

interface at TM4 (Harikumar et al., 2008; Harikumar et al., 2007). In addition, family C 
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7TMRs (including mGlus) have shown compelling evidence for 

dimerization/oligomerization via both covalent and non-covalent bonds (Ray and 

Hauschild, 2000; Romano et al., 2001). 

  

As it is common to consider small molecules as receptor modulators, large receptor 

protomers may also induce conformational change to other protomers. It is thus important 

to realize two-way transmission by which receptor assembly can alter the behavior of 

small molecule modulators as well. This effect has been well established in cell line 

settings. Using the angiotensin receptor as an example, the agonist angiotensin II exhibits 

significantly increased efficacy when the receptor form a heterocomplex with bradykinin-

2 receptor (AbdAlla et al., 2000). Receptor dimerization may also affect intracellular 

signaling pathways. The G protein coupling of dopamine D2 receptor switches from Gi/o 

to Gq/11 when dimerized with dopamine D1 receptor (Rashid et al., 2007). In addition, 

SKF83959, a compound with no effect on either D1 or D2 monomer, activates the D1/D2 

heterodimer toward Gq/11 (Rashid et al., 2007). 

  

As dimerization/oligomerization of receptors clearly complicated the use of 

pharmaceutical reagents in in vivo settings. While selective compounds for receptor 

heterodimers help to avoid off-target effects, reagents that target all receptor assemblies 

may produce superior pharmaceutical efficacy. The results decribed in Chapter III also 

shed light on targeting distinct mGlu receptor assembly for drug development purposes. 

Taking PD as an example, highly selective mGlu4 PAMs have been developed from 

different chemical series and exhibit robust efficacy in preclinical rodent models. 
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Interestingly, both PHCCC and VU0155041 have been shown to reverse reserpine-

induced akinesia in rodents, suggesting that the anti-parkinsonian effects induced by 

mGlu4 PAMs may not be dependent on their activity at corticostriatal synapses and the 

assembly of mGlu2/4 heterodimer. However, corticostriatal synapses have been shown to 

be overactive in dopamine-depleted animals, which contributes to the loss of spines of 

striatal medium spiny neurons in PD (Garcia et al., 2010). The work of Picconi et al. 

demonstrates that dysregulated plasticity at these synapses, such as long-term depression 

and depotentiation, may underlie the mechanism of L-DOPA-induced dyskinesia (Picconi 

et al., 2011; Picconi et al., 2003). Therefore, mGlu4 PAMs that potentiate mGlu2/4 

heteromers may potentially provide additional therapeutic benefits, such as restoring 

morphology of striatal neurons and reversing L-DOPA-induced dyskinesias. In contrast, 

PAMs with selectivity for homodimers over heteromers might be beneficial for targeting 

mGlu4 activation in regions predominantly expressing mGlu4 alone if activation of 

heteromers proves to engender side effects. Additionally, selective mGlu2/4 modulators 

without mGlu2 or mGlu4 activity might also be of interest to achieve selective modulatory 

effect without affecting receptor homomers expressed in other regions.  

 

Although the signaling pathway of mGlu2/4 heterodimers does not deviate from the Gi/o 

coupling of each individual subtype, whether hetero-assembly lead to biased signal is of 

interest to explore. The effect of heterodimerization on other signaling cascades, 

especially arrestin binding, receptor desensitization, and internalization is worth further 

examination. Additionally, binding of modulators to one protomer on the heterodimers 

may also affect the pharmacology of allosteric sites on the other protomer. Detailed 



	
   126	
  
	
  

studies using binding assays and functional assays are required to answer this question. 

Beside receptor dimerization, the effects of other interacting proteins and lipid bilayer 

composition on mGlu allosteric modulators are also largely unknown.  

 

In addition to mGlu2/4, other combinations of mGlu subtypes are co-localized in the CNS 

as well. For instance, mGlu4 and mGlu8 are co-expressed at the lateral olfactory tract-

piriform cortex synapse and suppress synaptic transmission (Jones et al., 2008). mGlu1 

and mGlu5 are co-expressed in several  neuronal populations including CA1 hippocampal 

pyramidal cells, striatal cholinergic interneurons, STN glutamatergic neurons and SNr 

GABAergic neurons (reviewed in (Valenti et al., 2002)). In addition, both mGlu7 and 

mGlu8 receptors modulate the Schaffer collateral-CA1 synapse in neonatal rats (Ayala et 

al., 2008). Although the assembly of other mGlu heteromers has yet to be determined in 

vivo, previous studies showing aberrant activity of mGlu-selective compounds may 

eventually be explained by heteromer-specific pharmacology (Ayala et al., 2008; 

Niswender et al., 2010). As characterization of other combinations of mGlu heteromers 

are underway, localizing mGlu homomers and heteromers will help elucidate the 

complexity of mGlu receptor signaling and function and eventually contribute to rational 

development of therapeutic reagents that target specific tissues through selective 

modulation of individual receptor assemblies. 
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mGlu2/4 heteromer as a biomarker for Parkinson’s Disease 

 

As defined by the National Institutes of Health, a biomarker is a parameter that is 

objectively measured and evaluated as an indicator of normal biological processes, 

pathogenic processes, or pharmacologic responses to a therapeutic intervention (Group, 

2001). Biomarkers for PD are of critical importance for patient treatment, since 

neuroprotective therapy starting at an advanced stage (after motor symptoms develop) is 

usually unsuccessful in progressive neurodegenerative diseases when compared to early 

stages.  

 

An ideal biomarker for PD should be able to facilitate PD treatment in the following 

aspects: 1) Aid in the early diagnosis of PD, preferably in a premotor period; 2) 

Accurately reflect disease progression; 3) Aid in therapeutic assignment of patients; and 4) 

Aid in accessing therapeutic efficacy of an intervention.  

 

Since its first description, the diagnosis of PD has been made based on motor deficits and 

associated non-motor symptoms. Recently, however, a number of biomarkers have been 

developed to aid in the diagnosis of PD, which can be further divided into pathological 

biomarkers, biochemical biomarkers, genetic biomarkers, electrophysiological 

biomarkers and imaging biomarkers. A recent study discovered that α-synuclein and 

Lewy bodies exist in the gut biopsies of PD patients that were obtained several years 

before the onset of motor symptoms (Shannon et al., 2012), serving as a potential 

pathological biomarker for early PD detection. Schmid et al. has shown that biochemical 
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profiling of the post-translational modification of α-synuclein in the cerebrospinal fluid or 

blood plasma might be a more relevant biomarker than total α-synuclein level (Schmid et 

al., 2013). Altered levels of brain-derived neurotrophic factor (BDNF) have been reported 

in the circulation (serum or plasma) of patients with PD. However, BDNF might not 

serve as a specific biomarker since decreased levels of this neurotrophic factor were also 

observed in other neurodegenerative disorders, including Alzheimer’s disease and 

Huntington’s disease, as well as mood disorders (major depression and bipolar disorder) 

(Teixeira et al., 2010). Mutations in five genes, such as α-synuclein, Parkin, PTEN-

induced kinase 1 (PINK1), DJ-1 and Leucine-rich repeat kinase 2 (LRRK2)] have been 

shown to lead to PD (Klein and Lohmann-Hedrich, 2007). However, these cases only 

account for 2–3% of all PD patients (Klein and Lohmann-Hedrich, 2007), and, even in 

these patients, age and environmental exposures greatly affect disease progression. 

Electrophysiologically, Hohlefeld et al. reported long-range temporal correlation of 

oscillation activities in subthalamic nucleus of PD patients, which can be modulated by 

levodopa treatment (Hohlefeld et al., 2012). However, the surgical procedures needed to 

measure neuronal activity in patients limited the usage of this parameter as a biomarker. 

In contrast, non-invasive imaging approaches have demonstrated great potential as a 

biomarker for PD diagnosis and treatment. For example, imaging of the dopamine 

transporter (DAT) with Single Photon Emission Computer Tomography (SPECT) is a 

main diagnostic imaging procedure for the assessment of patients with parkinsonism 

(Varrone and Halldin, 2012).  
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Although with caveats, these existing biomarkers have brought valuable advances in PD 

diagnosis and the drug development process, including early proof-of-concept studies and 

dosing regimen determination. As PD is much more complicated than a single-cause 

disease, it is equally important to assign patients to suitable therapeutic interventions, and 

ideally, as quickly as possible to prevent further neurodegeneration. Unfortunately, no 

such biomarker has yet been developed. mGlu4 PAMs have been validated as potential 

therapeutic agents for PD with one possible mechanism being reduction of excessive 

GABA release at striatopallidal synapses (Marino et al., 2003; Valenti et al., 2003), 

thereby rebalancing basal ganglia circuitry. In addition, activation of mGlu4 inhibits 

glutamate release onto substantia nigra dopamine neurons (Valenti et al., 2005), which 

has been proposed to protect against excitotoxicity. However, our study described in 

Chapter III reveals that the efficacy of mGlu4 PAMs are differentially regulated by 

formation of mGlu2/4 heterodimers, with PHCCC losing efficacy and VU0155041 

retaining efficacy at the corticostriatal synapse. In addition, transient transfection 

experiment using cell lines suggests that the regulatory effect is dependent on the 

expression level of mGlu2. Due to the heterogeneity within PD population, it is 

conceivable that mGlu2 expression levels in the basal ganglia circuitry could vary among 

PD patients and may suggest that mGlu4 PAMs that are ideal for some patients may not 

benefit others with high mGlu2 expression colocalized with mGlu4. Therefore, with help 

from future development of selective and powerful imaging reagents for mGlu2 and 

mGlu4, the expression pattern of mGlu2 and mGlu4 within the basal represent an attractive 

biomarker in PD clinical trials and future clinical practice.   
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