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CHAPTER 1

INTRODUCTION

Summary

The objective of this research is to perform a qualitative experimental analysis of
two-dimensional, low Reynolds number incompressible flow in a lid-driven cavity.
Although two-dimensional lid-driven cavity flow is not technically achievable in an
experimental system, it can be approximated in three-dimensional space. Typically one
dimension is much larger than the other two; this is the dimension that is considered
infinite, and the dynamics of the system are looked at in an orthogonal two-dimensional
plane. Studying two-dimensional flows under specific experimental conditions allows for
further investigation into the flows’ fundamental properties and is the main reason lid-
driven cavity flow is frequently used to investigate computational and other mathematical
models. Cavity flow is important both technologically and scientifically because it is able
to display most of the intricacies of fluid flow in a geometrically simple environment

[20].

Motivation
Scientists and engineers have been studying lid-driven cavity flows for over
twenty years with continued success and improving accuracy [5]. These successes have
been mainly due to the versatility of achievable flows, ranging from Stokes flow to

higher Reynolds number flows, along with the ability to display many of the complexities



of fluid phenomena; from recirculating flows and corner eddies, to vortices and singular
points [20]. Not only is lid-driven cavity flow important to the scientific world,
specifically in fluids mechanics, but it has significant applications in industry, from
processing foods and polymers [10] to coaters used to produce high-grade paper and
photographic film [20].

In addition to the research and applications mentioned above, another motivation
for this research is the ability this system has to display chaotic mixing [7]. With the
introduction of chaos in the lid-driven cavity comes an efficient mixing scheme with the
only moving parts being the boundaries that encompass the flow; no internally moving or
turning mechanical structures need be present. The knowledge learned from this present
research, in addition to enhancing the preliminary design, provides a starting point for
developing new mixing approaches based on topological techniques (see Chapter II).

It is due to these numerous motivating factors that a variation of lid-driven cavity
flow is considered (Figure 1). Adopting six moveable, discontinuous boundaries, as
opposed to single or double wall-driven cavity flows, makes this research unique because
it enables the display of flows not yet seen or studied before. For the scope of this
experiment, only one of the six moving boundaries was studied, although the program
developed for motor control was designed with the six moving boundary conditions in

mind and can be utilized in the future.



Figure 1. Top view of mixing tank showing the six moving boundaries on
the top and bottom of the figure and the stationary boundaries located
on the left and right of the center test cavity.

Background
Previous studies

Cavity flows, in general, have been a common experimental approach used to
check or improve numerical or theoretical schemes. Weiss and Florsheim [23] were one
of the first to study Stokes flow in rectangular cavities without a moving boundary.
Using two different aspect ratios, they obtained approximate experimental solutions for
flows over cavities and confirmed these results with their theoretical predictions.

Pan and Acrivos [16] were among the first to develop numerical techniques that
predicted solutions for steady flows in rectangular cavities with a moving top wall and
perform experiments for a variety of Reynolds numbers. Improvements to the numerical
techniques have been a continual effort, but with Schreiber and Keller’s work [18], they
improved not only the reliability, but also the efficiency and accuracy. Even more
recently, Bruneau and Saad [5] provide numerical results for both periodic and steady

solutions.



In systems containing two moving boundaries, experiments using lid-driven
cavity flows are useful in obtaining solutions or comparisons of predicted values [20],
[9], [17], [12]. Kuhlmann , Wanschura and Rath [12] focused specifically on the non-
uniqueness of two-dimensional flows, instabilities in two and three-dimensional flows,
along with the formation of cellular structures. Lid-driven cavity flow, with two moving
end-walls and free surface sidewalls, was used to model a roll coating system [9]. In this
roll coating system, Gaskall, Giircan, Savage and Thompson [9] determined that the
analytic solution was easier to solve than with solid side walls. The predicted numerical
streamlines proved to be in agreement with the experimental results.

With the increasing interest in mixing and chaotic advection, the lid-driven cavity
also became a model for stirring devices. Chien, Rising and Ottino [7] studied laminar
chaotic mixing in two-dimensional low Reynolds number cavity flows. Using two
separate qualitative techniques, material line deformation and blob deformations, Chien
et al. [7] study periodic and steady flows in the lid-driven cavity. Single boundary
motion, along with motions in parallel and anti-parallel directions, made up the steady
flow cases. Time periodic experiments were performed on different cases, including
periodic discontinuous boundary operation and periodic flow that incorporates a phase
angle to offset the two boundary velocities. The steady flow cases prove to be an
effective way to display the streamline dynamics of the system. The two time-periodic
cases improved the mixing. Fewer time periods are needed for decent mixing to occur
compared to other studies done in journal bearing flows. Ottino [15] later published

improved results from this experiment using a computer-controlled system.



End wall effects in lid-driven cavity flows were studied by Prasad and
Koseff [16]. By measuring velocities in a square cross section, they were able to quantify
the effects of varying the Reynolds number and the spanwise aspect ratio (SAR). SARs
have a strong effect on the flow in the cavity, and as the Reynolds number changes these
effects are quite different. It is from these studies that Prasad and Koseff [17]
recommend no larger than a 3:1 aspect ratio (see Figure 5 in Chapter 2). If this ratio is
exceeded, Taylor-Goertler like vortices form and the flow becomes three-dimensional.

From an electromagnetic perspective, lid-driven cavity flow was simulated using
a magneto hydrodynamic (MHD) mixer, developed and tested by Bau, Zhong, and Yi [3].
The MHD device applies alternating potential differences across a pair of electrodes,
inducing a current in a conduit filled with an electrolyte solution. = When performed in
the presence of a magnetic field, body forces are induced which causes the fluid inside
the channels to move in complex motions. This motion stretches the material surfaces,
enhancing the overall mixing of the fluid and shows that lid-driven cavity flow is not
restricted to systems involving a physically moving boundary. This research showed
success in using induced currents in magnetic fields for mixing fluids without any

moving parts.

Generating Topological Chaos

Boyland, Aref and Stremler [4] studied topological mixing schemes with physical
stirring rods both theoretically and experimentally. Using three (or more) stirring rods,
two different periodic motions can be created: one that can produce exponential

stretching and deformation of the fluid, known as topological chaos, while a second does



not have these same characteristics (Figure 2). The motivation behind this research is
the goal of generating a fluid motion in a lid-driven cavity that is analogous to the flow

illustrated in Figure 2(f).

Figure 2. Images taken from the research conducted by Boyland, Aref and Stremler [4]
showing the two different protocols created using three stirrers. The first interchange for
both protocol (a,d) and the second interchanges for the scheme that does not produce
topological chaos (b,e) and the schemes that do (c,f).

The research presented within this document was established as an experimental
approach to complement the numerical solutions currently being developed by Chen [6],

which provided a starting point for the experimental velocities and time scales used in



this research. Chen is developing a numerical approach to solving the Navier-Stokes
equation under the assumption of Stokes flow, for an incompressible viscous fluid in

rectangular cavity flow. The geometry and some streamline solutions are shown in

Figure 3.
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Figure 3. This diagram, adopted from Chen’s [6] work, shows both the test section
geometry (a) and sample streamline solutions (b-d). The first interchange (b) is for both
protocols. Using a second interchange (c) in the same direction as (b) gives non-
topological chaos creating scheme; in the opposite direction gives the scheme that
produces topological chaos (d) — a case in which the leftmost rod is a hyperbolic
stagnation point rather than elliptic as in (b).



Governing Equations
Lid-driven cavity flows have been a continued topic of research in the fluid
mechanics community for years due to the simple geometry and well-defined boundary
conditions [19]. Fluid motion inside the cavity is governed by the continuity equation

and the Navier-Stokes equation, defined as the following:

V-V=0, (1)
DV
p o= p(Ver (V-VIV)=-Vp+ uv?V. )

where, p, V, and p represent the dynamic viscosity, velocity, and pressure respectively
and the body forces have been included in the pressure term. Lid-driven cavity flow
assumes two-dimensional, incompressible, viscous fluid flow and drastically simplifies
the full, three-dimensional Navier-Stokes equation. Boundary conditions are dictated by
the employed velocity distribution, whether stationary or moving.

Nondimensionalizing and choosing the appropriate viscous pressure scale that

reduces the pressure coefficient to unity gives:
SkV, +Re(V-VV = -Vp +V?V 3)
where two new dimensionless parameters have been introduced, the Stokes number (Sk)

and the Reynolds number (Re). Both numbers represent ratios with the Stokes number

being the ratio of the local or transient inertia to the viscosity, whereas the Reynolds



number relates the convective inertia to viscosity. Equation 4 is valid for flows where

viscous forces predominate and when Reynolds numbers are small.

The Stokes number reduces to zero since viscous forces in lid-driven cavity flow

dominate over local inertial forces in the system, further reducing Equation 3:
Re(V-VIV =-Vp+V?V, 4)

leaving the governing equation dependent only on the Reynolds number and pressure
terms. The Reynolds number is an important parameter in all viscous flows because it
determines whether the flow conditions are laminar or turbulent, and is defined by the

following relationship:

Re="%, )

where V' is the velocity scale, L is the length scale and v is defined as the kinematic
viscosity or viscous diffusivity [23]. Reynolds number calculations for this research will
be discussed in Chapter 2.

Applying the assumptions of two-dimensional flow (x-y plane), the

streamfunction, W, can be introduced to satisfy continuity:

u(x, ) = % ©)



V(x.y) = —%, ™)

where the streamfunction both simplifies the analysis and has physical significance.
Streamlines are everywhere perpendicular to the velocity and act as boundaries, in the
sense that no mass flow occurs across streamlines.

The vorticity is w and is defined as the curl of velocity:

w=VxV. (8)

For 2-D flows the vorticity is perpendicular to the x-y velocity (in the direction of z) and

can be written as:

v  du

Combining equations (6), (7), and (9), results in the following:
VW =_@. (10)

Under the assumption of Stokes flow (Re <<I) the viscous effects dominate over the

inertial effects further reducing equation (4) to the 2-D biharmonic equation:

Viw -0, (11)

10



It is not a goal of this research to solve the governing equations, but to familiarize
the reader with the governing flow equations and how lid-driven cavity flow simplifies an
otherwise intricate three-dimensional equation. Chen is conducting a numerical analysis
using particle tracking techniques to look at topological chaos in Stokes cavity flow with
six discontinuous moving boundaries [6]. This research uses some preliminary findings
from Chen’s work as a starting point for establishing both periodic time intervals and

wall velocities.

11



CHAPTER 1T

EXPERIMENTAL SYSTEM

Summary

This chapter outlines the design and setup of the experimental lid-driven cavity
system. There are two main parts to the experimental system: the physical mixing device
and the computer control program. The cavity device has been in development for
several years and is a collaboration of effort from previous graduate and undergraduate
students. Prior to the research presented herein, neither the design nor the computer
program was fully operational. Several modifications needed to be implemented to
improve the device and the motor controls. These changes included modifications to the
physical tank, the electrical operating components, and the LabVIEW program. This
chapter discusses the experimental system and also describes how the experimental
design incorporated the constraints of each components and how the device was
calibrated to obtain repeatable results.

The variation of lid-driven cavity flow considered in this research consists of two
parallel walls, split into three separate sections, for a total of six movable boundaries.
Each wall is able to move in positive and negative directions, allowing numerous flows to
be created in the lid-driven cavity (Figure 4). For the scope of this experiment, a
preliminary case was studied in which only one of the six moving boundaries was used.
Parallel walls were designed to always move in opposite directions; therefore only three

motors are needed for the setup and makes for a more simple control program. A

12



LabVIEW virtual instrument was created to control the motors of the mixing device and
was designed in such a way to activate all six moving boundaries, even though only one
wall is being used for the current work. The control program can be utilized in the future
to provide velocity distributions that will produce the topological mixing schemes

presented in Chapter 1.

Figure 4. A close-up, top-down view of the test section showing the
six discontinuous boundaries, two center driving rods, and the
glycerin-filled center cavity.

13



Experimental Design

Fluid tank

The stirring device designed for this research consists of a glycerin filled
aluminum tank constructed from aluminum plating (Figure 5). Two sidewalls are overlaid
with acrylic windows, providing a view of the inside of the tank. The six boundary
sections are separated by a center test region of 2.75 inches (Figure 6) and in the cases
studied throughout this experiment, each of the moveable boundaries measure 2.75
inches in width for a total test section length of 8.25 inches. The 3:1 aspect ratio follows
the recommendations of Prasad and Koseff [16] in order to maintain essentially two-
dimensional flow without the development of secondary structures. A depth of
approximately one foot was used based upon the work conducted by Ottino [15] although
the aspect ratios differed. This depth was chosen to allow for two-dimensional
assumptions to still govern the flow.

Two stationary boundaries, made out of half-inch acrylic, enclose the movable
walls in the test region. These acrylic walls correspond to the window on the external
structure of the tank so the center test region is fully visible from the outside of the tank.
A cutout on the top of the tank reveals the inside entire test region and allows access for

dye insertion and photographs to be taken of the test region (Figure 4).

14



.

Figure 5. Side view of glycerin filled tank showing the
structure, acrylic sidewalls, and adjustable sidewalls.
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Figure 6. A schematic of the internal components of the tank (not to scale).

Each moving boundary is constructed from a sheet of neoprene formed into a long belt

and fastened around a set of three rods. These three rods create long, triangular tubes,

15



and the base of each of these triangles forms the moving wall as shown in Figure 7. One
of the three rods is the driving rod, which is mounted in ball bearings and connected to

the motor via a gearing system.

Figure 7. Side view of cavity system looking parallel to the
internal moving boundaries as viewed by the observer.

A second rod, also mounted in bearings, keeps the boundary moving and is attached to
the driving rod via a gear and pulley system, as shown in Figure 11. The third rod acts as
a tensioner, pulling the moving boundary snug against the other two rods and keeping the
wall smooth and straight. The driving rods in opposing wall segments are attached to the
same motor but are assembled such that they rotate in opposite directions. In other

words, opposing boundaries move with the same velocity but in opposite directions.

16



This experimental device has been designed so that it has the ability to create two
different stirring protocols. Figures 8 and 9 show the geometries and velocity
configurations that result in two different mixing protocols, where only one produces
topological chaos. Using the six movable boundaries, periodic points are created and
interchanged in the flow by driving the walls with certain velocities [6]. These periodic
points are interchanged along streamlines in the flow. Once there is successful
experimentation with a single moving split boundary, the next step is to utilize all six

boundaries to study the two stirring protocols.
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Figure 8. The first and second interchanges of the non-topological
chaos producing scheme.
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Figure 9. The first and second interchanges of the stirring scheme that
produces topological chaos after three periods or six interchanges.
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System constraints
Two constraints dictate the attainable system velocities: Reynolds number and
minimum operational motor frequencies. These two quantities are related through the

belt velocities, which are calculated from gearing relationships and gear radii:

v, =2nw,R,, (12)

with, v the velocity measured in meters per second, w the frequency measured in
revolutions per second, and r the radius of the gear measured in meters. The subscript
denotes the gear number.

A side view of the gearing system is shown in Figure 10. Gear 1 is attached to the
motor and planetary gear head, gear 2 and 3 are fastened to the driving rod of one
boundary, and gear 5 attaches the two driving rods of the boundaries. Gears 4 and 6 are
the radii of the rods and the final determining factor of the belt velocity. The thickness of
the neoprene walls was considered negligible in these calculations. Table 1 shows the

radii of all of the gears.
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Figure 10. A side view of the motor gearing system that drives parallel walls
with equal velocities. Each gear is labeled with its identifying number.

Since gears 1 and 2 are attached via the same belt, their linear velocities are equal.
Furthermore, gears 2, 3 and 4 rotate with the same frequency since they all rotate about
the same axis; the same is true for gears 5 and 6. Since the radii of gears 2, 3, and 5 are
all the same, then the linear velocities of gears 3 and 5 are equal. The final belt velocity

comes from the following relationships:

R, (13)

According to the Maxon motor specifications, the minimum operating frequency is 60

revolutions per minute, or 1 revolution per second. This limits the minimum allowable

19



;. Based on this limitation and the values given in Table 1, the minimum achievable

boundary velocity is v4 = 0.0678 m/s.

Table 1. Gear radii dimensions in both inches and mm.

Gear Radius [in] Radius [mm]
R, 1.0625 26.9875
R,=R3=Rs 0.9375 23.813
R4s=Rs 0.375 9.525

The length and velocity scales (L and V, from Equation 2) are two of the
parameters for the Reynolds number calculations that have now been established. The
only parameter unaccounted for is the kinematic viscosity. Glycerin was the chosen fluid
for this experiment because of its high viscosity. The viscosity of glycerin is temperature
dependent and, due to the circumstances presented in the laboratory, the lowest
achievable temperature was 30°C. At 30°C, the kinematic viscosity of 96% glycerin is
equal to 0.000223 m?/s, resulting in a Re ~ 20.

It was a goal of this experimental research to operate with Re << 1 in order to
compare with the mathematical analysis that assumes Stokes flow. However, due to the
operating temperatures and properties of the governing fluid this goal was not achieved.
With an operating Reynolds number of approximately 20, Stokes flow assumptions are
invalid, but the flow is still laminar, and still capable of producing important results and
giving insight for continued research.

Chen [6] determined a velocity ratio of 1:1.9688 was needed to produce

topological chaos in the flow. This velocity relationship is needed to determine the other

20



boundary velocities. Because of the restrictions presented previously, the velocity
obtained above has to be equal to the lower bound in the velocity ratio. ¥}, has a value of
0.0678 m/s and Ve, must be 1.9688 times greater than Vi, giving Vg = 0.1335 m/s.
These values will become important when multiple boundaries are used. If the upper
limit of the velocity is used, which is not applicable in this research, the smallest

achievable Reynolds number would be approximately 40.

Tank Modifications

A gap exists between the neoprene wall segments due to the diameter of the
bearings installed to hold the driving rods. This poses a problem because once the
boundaries start to move, fluid easily flows out of these gaps. One solution is to use
baffles to restrict the fluid flow out of these gaps, thus decreasing the amount of fluid
escaping the center test region. Four baffles, constructed out of all-thread, span 24 inches
of the fluid depth and attach to the tank sidewalls. They are installed 1/8” from to the gap
midpoint and designed to not interfere with the neoprene walls. The baffles create a
barrier on the exterior side of the test region, decreasing the overall fluid loss. Although
some fluid still escapes, the baffles are considered the best solution, given the design of
the system. Other resolutions would have been costly and difficult to implement without
redesigning the entire system.

Another modification made to the tank design was the addition of a tensioning
system for each of the motor gearing systems. The belts that connect the motor gearing
system have a large amount of slack. This slack allows the belts to slip and as a result the

rods do not turn inside the tank. The tensioning system consists of optical mounting rods

21



that tighten each of the belts enough to allow smooth driving of the gears. Six of these

tensioning systems are installed on the mixing device.

Figure 11. A side view of the motor gearing system in which the tensioning
system and driving rods are labelled.

The two final modifications are minor but worth mentioning. The interior floor of
the tank was painted white to reduce glare from camera flash and provide contrast
between the bottom of the tank and the dye. The preliminary draining mechanism was
impractical; using a bolt screwed to the bottom of the tank, and when unscrewed
completely, would empty the 10 gallons of glycerin. The improvement consisted of a
plumbing fitting that attaches the tank to a six foot long section of flexible tubing with a
ball valve attached to the end. This allows for convenient and variable draining of the

glycerin-filled tank.
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Control Program and Components

The motor control program was created using a LabVIEW virtual instrument.
The user defines the system parameters, namely velocity, acceleration and final position,
on the front panel of the program (Appendix A) and then executes the program to run for
the time dictated by the input parameters (Figure 12). Once these parameters are set, the
program sends a signal to a four-axis National Instruments NI MID-7654 servo motor
(Appendix B). For this experiment, only three of the four axes are used. Before the
servo motor is connected to each of the three Maxon RE40-148877 DC motors the
computer signal is first sent through a choke, an encoder, then to the motors (Appendix
O).

In a previous study, the motors had a tendency to overheat making them
inoperable until they cooled. It was determined that a choke was needed for the three
motors to increase the motor terminal inductance and decrease the current ripple
(Appendix D). A Maxon Tacho HEDL 55 digital encoder was installed on each of the
motors to accurately measure the motor’s position which, in turn affects the output
velocity (Appendix E). The motors attach to a GP 42 C planetary gearhead (Appendix

F). See Figure 13 for the schematic of the entire system.
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Figure 12. LabVIEW front panel diagram showing input parameters: velocity and
target positions, for each of the three motors.
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Figure 13. Overall schematic of the system showing each specific component.
The computer is connected to the motors first through the servo motor,
the choke, then the encoders. Each of the motors has a planetary gear
head that attaches to the top before connecting to the gearing system.

Motor Calibration
In order to produce both accurate and repeatable results, each motor is calibrated
before running any experimental analysis. Because three different motors were used to
drive the boundaries, it is important that for each motor the values entered into the
program provide the accepted velocities at the moving boundaries. The motors are
calibrated by setting a velocity within the LabVIEW program, choosing the number of

revolutions and recording how long it takes to complete these revolutions. These values

25



are then used to set the gain in the motor control program. Performing the calibration for

each of the three motors, accounts for differences between the motor’s output velocities.
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CHAPTER III

EXPERIMENTAL ANALYSIS

Summary
The purpose of this chapter is to outline some of the steps taken throughout the
experimental setup and procedure; specifically identifying some important adjustments to
consider to ensure the system will function properly. If these adjustments are not
performed, it can cause damage to tank components. This chapter also presents the
operating conditions for each of the three separate cases performed in the glycerin-filled

tank, followed by a discussion of the results for each case.

Procedure

Before adding the glycerin to the test cavity, the boundaries should be tightened.
This way only minor adjustments need to be made to the moving belts after the glycerin
is added. By tightening each of the tension rods, the moving boundaries will flatten and
create the rectangular test section. During this adjustment period, it is critical that the
moving wall is adjusted parallel to the tank walls. Otherwise, it will cause the boundary
to creep either up or down the driving rod, creating a slight velocity in the z-direction,
which in turn will create small secondary flows. If the boundary starts creeping up and
down and catches on the mechanical components, it can rip the neoprene sheet. If this
were to happen, the entire system would have to be drained and disassembled to replace

the damaged neoprene belt, which is a very time consuming process.
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The motor control program is then run continuously to ensure the correct motor is
running in the designated direction. If the belts slip, the tension rods are adjusted until the
belts are moving again. Once the belts are moving smoothly, the motors are stopped and
the glycerin is added to the tank. Approximately ten gallons of glycerin was used for the
experimental results presented. The maximum capacity for the tank is around 15 gallons.
After the tank is filled, the LabVIEW program is run again and minor adjustments are
made to the moving boundaries before any runs are started. Once the belt is moving
without slipping or stalling the motors, dye is inserted into the test cavity for the start of
the experiments.

The dye used in the following trials is a mixture of food coloring and glycerin.
This was done to preserve the viscosity of the fluid, such that the dye tracers follow the
fluid flow. Three spots of colored dye were used, one in each tank section, and were

injected just under the top surface of the cavity without disturbing the flow.

Results

Three separate runs were conducted for this research. For all of the runs, the
operating motor was set to operate at 1 rps, corresponding to a linear belt velocity of
+0.0678 m/s, depending on the case. The moving belt is located in the bottom left-hand
corner for all of the images in all of the runs. The time period adopted for the runs was
equal to, or a multiple of, the calculated dimensionless period from Chen’s work, 7.186.
This is a dimensionless value that corresponds to the dimensionless velocity value
calculated to be 1.9866. To convert Chen’s dimensionless variables into experimental

values, the product of his two dimensionless variable need to be set equal to a
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nondimensionalized version of the experimental variables. This was done using the

relationship:

1.9688'7.186=%‘T, (14)

where V' is the high-speed belt velocity, Vyign in m/s, D is the characteristic length in
meters, and 7 is the period in seconds. Solving for 7, yields a value of 7.402 seconds.
Since only the lower velocity was employed during these studies, the operating Reynolds
number is approximately 21. Images are taken after each segment using a digital

camera.

Case I

Figure 14 shows the initial location of the three glycerin dots. Three colors were
used to make it easier to keep track of the fluid motion. The lower left boundary is
driven to the right, as indicated by the arrow, for a period of 7.4 seconds, and the
resulting dye distribution is shown in Figure 15. Since there is only one moving
boundary on the left side of the tank, the fluid motion on the right hand is minimal. This
means there should not be a lot of movement in the green dye spot. After one period the
two left hand spots do move to the left, while the green dot on the right has shifted a
minimal amount.

During this case, the moving belt slipped before the completion of the one time
period. The belt tension was adjusted before running another period in the same direction

as the first, and further slipping did not occur.
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Figure 14. Initial positions of glycerin tracer spots before any boundary
motion occurs. For readers viewing these images in grayscale, the
dots are arranged as blue (left), red (center), and green (right).

Figure 15. Image showing fluid movement after one time period of the
lower left boundary moving to the left, as indicated by the arrow.
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After the second period, the fluid motion becomes more apparent as shown in
Figure 16. The red fluid has moved further left, to the opposite side of the blue dot. The
blue dot and red dot seem to be concentric, tracing out similar paths at a similar distance
during the entire period. This is to be expected since the flow is laminar. Similar to the
prediction, the green dot migrates only slightly to the left due to the motion of only one
boundary. Fluid is escaping due to the wall motion where the moving boundary meets up
with the non-moving wall. Because fluid is escaping the test cavity while the depth of
the glycerin remains unchanged, it can be concluded that fluid is also entering the test
cavity through the other gaps at the same rate it is leaving. Baffles were implemented to
decrease the amount of fluid exchanged between the test cavity and the ambient fluid, but

these baffles did not eliminate the fluid flux.

Figure 16. Movement of fluid after two time periods, but after some
slipping occurred during the first period.
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After a third time period, for a total run time of 22.2 seconds, with the belt
moving still in the same direction, the red fluid tracer has disappeared while the blue dye
is still present (Figure 17). The red dye escaped through the wall gap while the blue-dyed
fluid continued tracing out a streamline arriving almost back at its original starting
position. Because the red dye was pulled out of the center test region after the second
period shows there is a fair amount of fluid being pulled from the center section. Again,
the green dye is being stretched slightly to the left, which is probably a result of the

induced velocity from the moving boundary and the loss of fluid through the boundary

gap.

Figure 17. The last segment of Case I executed for third and final time period.
Notice the red dye has disappeared and the blue dye has traced almost
360 degrees back to its original starting position.
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Case II

A second case was run with the same belt velocity as in the first case but with a
period twice as long, 14.8 seconds. Figure 18 displays the originating locations of each
of the three dots. Note that the original location of the blue and red dots has been
interchanged relative to case I (Figure 14). This was done because the red dot has better

contrast with the tank bottom, and the center dot eventually escapes through the boundary

gap.

Figure 18. Initial starting locations for the second case. Note that the original
locations for the blue and red dots have been interchanged, red (left),
blue (center) and the green dye location remains unchanged.

After two time periods, the results are similar to those presented in the first case;
although this time with more clarity and less error (Figure 19). Here, the red dot moves

from the center of the test region and travels on a path that is almost concentric to that

33



traced by the blue fluid particles. This is expected, since streamlines do not intersect in
steady flow. The original starting location of the red dot also migrated down and to the
right (from the perspective captured in the photograph). This is due to the fluid loss out
of the gap between the moving and stationary boundary. As expected, there is very slight

movement in the green dot.

Figure 19. Boundary motion for the duration of two consecutive
time periods.

The second segment for case two is the same as the first, consisting of another
two time periods of continuous operation with the same wall velocity. Due to the longer
duration in time, more motion is seen in the fluid (Figure 20). First, the blue dye has
completely disappeared, as with the red dye in the first case. This is because the blue dye
travels along the boundary of the wall and is contained within the fluid that is forced out

between the wall gaps. Although very slight, there is a small movement in the green
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fluid, even less than what was seen in case I (Figure 16). The difference can be attributed
to a difference in the original locations of the dots, as they may have differed slightly for
each case. A change in initial position would result in the fluid particles following a
different streamline and tracing out a different trajectory. This presents a point to
consider in the in future research. If multiple runs are used for a particular test case,
identical volumes of dye should be used in the same locations, guaranteeing the tracer
particles follow the same streamlines for each run. If operating conditions differ, this

technique will allow for direct comparison of the fluid motion between cases.

Figure 20. Results after operating tank for a total of four time periods
with the arrow indicating the boundary motion.

One might expect to see the red dye continue around in a single trajectory, due the
single boundary motion. However, this is not the case since fluid is being exchanged

between the test section and the ambient outer fluid. If operation were to continue, it
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appears that the particles may continue to circle inward, rather than follow a single closed
trajectory.

Running for yet another sequence, at the same velocity and for twice the
calculated period, the results begin to differ from the prediction that the particles would
continue circling inward (Figure 21). There is still no presence of the blue dye, meaning
the entire dot escaped through the break in the boundaries. The fluid once again
continues to circulate around the previous half-circle-like trajectory, ending just above
the gap between the two walls. During this period the results of the fluid escaping
through the gap becomes apparent. The red lines that were present in the last sequence
begin to escape through this crack, distorting the trajectory previously traced. This gap
seems to be causing a fair amount of non-ideal motion. During this time frame, the green
dot has been deformed a significant amount compared with previous sequences. Slight
shifts in the fluid’s position towards the section where velocity effects are greatest
explain this sudden stretching in the fluid.

Comparing the above two cases shows differing results due to a number of
reasons. In the first run, the belts continually slipped during the first sequence of the run,
resulting in an unsteady wall boundary velocity. Secondly, the initial locations and
amount of each of the three dots differed slightly from the first to the second trials in
comparing Figures 14 and 18. Differing amounts of tracer dye in somewhat different
configurations will cause the dye to follow different streamlines in the flow which

display slightly different behavior.
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Figure 21. Results after operating tank for a total of six time periods in
forward direction as indicated by the arrow.

Case 111

For the third and final case tested, a different protocol is adopted. The purpose of
this case was not only to test the second phase of the computer program, which changes
the direction of the moving walls, but also to see if the flow is reversible. Starting from
the initial conditions shown in Figure 22, the same boundary was moved to the right for
the duration of one single period (Figure 23). The velocity was then reversed for one
period to see if the dye spot ended up in the same location (Figure 24). After the
boundary is run once in the reverse direction the experiment is run two times in a forward
velocity configuration. This allows for comparison of the fluid motion for different

starting locations, since the fluid did not return back to the original condition.
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Figure 22. Initial locations of dye spots for the third and final case.

Figure 23. Positions of dyed glycerin after one time period of
forward boundary motion.
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Figure 24. Image after flow in Figure 23 is reversed and to determine
reversibility effects should be compared with Figure 22.

If the flow were completely reversible the spots in Figure 24 should exactly match
their originating spots from Figure 22. However, this only occurs in Stokes flow, which
unfortunately is not the case in the left side of the tank due to the higher operating
Reynolds number. Moving to the right, the velocities are much less since there are no
moving boundaries in these regions. This is seen from the small movements in the blue
and green dots. These smaller velocities result in a smaller Reynolds number closer to
the Stokes flow assumption and thus should be reversible.

Proceeding from the final locations in Figure 24, the tank is run twice with a
forward velocity with images taken after each period (Figures 25 and 26). After this
period there is a slight motion of the blue spot towards the right, while very little motion
in the green dyed fluid. The red fluid starts its half circle trace in a counter clockwise

direction.
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After the second period, there is little change in the blue and green spots. The
blue moves further to the right, opposite of what we had seen before, while the green spot
looks larger than in the previous photos. Since the dyed fluid is made from a mix of
water-based food coloring and glycerin, this is likely due to diffusion. Although
originating in a different location, the red dye still traces a similar trajectory to those
shown in the previous two cases. Figure 25 is the best depiction of the particle motion

before a significant amount of fluid escapes the center region.

Figure 25. Dye positions after the flow is reversed for one full period. The original
starting locations are shown in Figure 23.
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Figure 26. Position of dye tracers after two periods of forward boundary
motion where the initial positions are shown in Figure 24.
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CHAPTER 1V

CONCLUSION

The objective of this study was to develop and test a device that produces lid-
driven cavity flow capable of generating topological chaos. Chapter 2 discussed the
physical tank and computer control program that were designed with the overall objective
in mind. The simple case of one moving boundary was the focus of these experimental
tests. Chapter 3 provided and discussed three successful cases for a preliminary study
using one moving boundary.

The experiments conducted in this research have given insight into a different
approach using a lid-driven cavity flow system. Using a qualitative approach, the
displacements of fluid particles were tracked providing information on fluid flow for the
motion of a single discontinuous boundary. Although this research did not generate
topological chaos in a lid-driven cavity, there are many significant conclusions that can
be drawn from this work. First consider the geometry, consisting of a test region with six
discontinuous boundaries. Although only the motion of one boundary was defined in the
cases presented in this paper, it was designed with the ability to move six discontinuous
walls simultaneously. Secondly, these motions are the first example of lid-driven cavity
flow that uses the concept of creating stirrers with periodic points in the flow. Under
certain velocity distributions this geometry creates two separate stirring protocols,

yielding entirely different outcomes. The LabVIEW program developed for this research
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can be modified to accommodate for experiments using the new geometry. With only
two moving boundaries and minor program modifications the new design will be able to
create topological chaos.

Much thought was given to troubleshooting potential problems before the cases
were conducted. Even with the improvements made to the system the design was unable
to yield completely accurate results. The biggest problem stemmed from the gaps
between the adjacent boundaries. Because of the design of the system and the physical
components used to build the system, these gaps could not be minimized. Steps were
taken to try to reduce the amount of fluid that moves between these walls, but as seen
above in the results, these steps were insufficient to prevent the motion of glycerin out of
the center test region. The fluid flux complicated the flows dynamics and weighed
heavily in the outcome of the experiments, in the sense that the streamlines hypothesized
were not found.

In order to eliminate these problems a different, more simplistic geometry has
been proposed that should produce the same stirring protocols to be created [6]. Rather
than six moving boundaries, this new geometry consists of a different aspect ratio with
only two moving boundaries. A few recommendations can be made for the design and
fabrication of this new system, based on some of the concerns identified in this research.
First, because the test fluid acts as a lubricant between the moving walls and the driving
rods, it is suggested that the system have one of the following: either use teeth that allow
the rods and neoprene to fit snugly together, or gnurl the rods and use a gritty material on
the inside surface of the neoprene. This way, when the rods drive the boundaries they are

guaranteed not to slip and provide instantaneous motion once the motors begin moving.
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Secondly, bearings should be used on both the top and bottom ends of each rod,
with sealed bearings being used for ends that are submerged in glycerin. This will
prevent the bearings from corroding while providing a smooth transition in the belt
velocities and decreasing the amount of torque required to initialize motion in the motors.

Another suggestion in the design of the new system is to establish a different way
to tighten the belts to the moving rods. In the current configuration, the tension rods were
located on the inside of the tank with the adjustments located on the exterior of the tank.
This was a problem because the neoprene boundaries had a tendency to creep up and
down the rods if the tension rods were not adjusted symmetrically. These adjustment
mechanisms occasionally caught the moving walls, stalling or even ripping the moving
walls. One suggestion would be to make these mounts flush with the bottom of the tank.
If the adjusters are flush and the boundary moves down towards them they will only skim
the bottom of the tank and minimize the chance of ripping the neoprene. The top
tensioning system does not have to be the same as the bottom, just as long as it provides
the same amount of adjustment capability as the bottom.

The last suggestion is to build the top cover out of a piece of clear acrylic and
construct it as simply as possible using the smallest number of parts. This will allow the
entire inside of the tank to be viewed from above. Once the current tank design is closed
and ready to run, the only visible section is the 8.75 inch cut-out in the top (Figure 4) and
the side viewing walls (Figures 6 and 7). However, if the entire top were to be
constructed out of a clear, durable material, it would increase visibility and provide more

light for photographing the center test cavity.
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APPENDIX B
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maxon DC motor

APPENDIX C
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APPENDIX D

maxon motor

maxon motor control Choke Module
Order number 137303
Technical Documentation June 1999 Edition

Choke Module

The choks module contains 3 linear storage chokes. Thus it is particularly suitable for the combination with
threa-phased EC mators. With DG motors, the chokes are used in serigs or parallel connaction. The storage
choka increases the motor terminal inductance = smaller currant ripple in PWRM-[P ulse width madulation) operation.

Technical Data per Linear Storage Choke

Elecirical data
= Mominal DC current .= 5 A
Inductance at I, L= 250 uH
= DC current resistor R. = 50 mi
=  Mazx. current rippla Al = 0z 0
= Max. frequency f= 100 kHz
Temperature range Operation =25 ... 70°C
Humidity range 20 ... 75 % non condensating
Mechanical data
+ Weight: 25049
= Dimensions: Length 30 mm
Width 70 mm
Height 489 mm
= Mounting plate: for 4 screws M3
Distance between threads 80 x 54 mm
Connections
» PCB-clamps 3 poles
pitch 5 mm
suitable for cable profile
multiple-stranded wirs 0.14 - 2.5 mm’
single wire 0.14 - 4.0 mm*
Dimenslon Drawing =~ | .

Dimensions in [mm)]

00d] o
BTl

The latest edition of this operating instruections may be downloaded from the internet as a PDF-file under
hittp: S maxonmobor. com, catagory «Sarvicer, subdirectory «Downloads», ordar number 137303,

maxon mobor ag  Bronigsirasse 220 PO Box 263 CH-E072 Sachsan Tel: 041686 16 00 Fax.: 041686 16 B0 wanaomaxenmolor.com
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APPENDIX E

Digital Encoder HEDL 55__ with Line Driver RS 422

Cranna |

X 1l
i - Ussgn
H | — Channsl A [=]
u K=
= | u..:b o
! 3
Chamne B ﬂ
Ligom =4
f . [T g

- Ak nu g e wkdth e AN o

I 5o program
Starcard program
Spacial program jon raquest)

St charreber mm 3 4 [

= Modar Pags  + Gaarhesd Page  + Brake Page Crywrall length [mm] F @ see; + Gearbead
F 20, &0 W B 1118
F Z2e0, S0W a4 GPEZ B.0-50Mm 204 -
F =00, bW =] 1474
F Z0, Ba W Ba GP G2 B0-50Mm 200 L]
Fmay I8 1141210 =13
HBmay I8 M4-120GP 25 0.5 - 20Mm 133 L]
A-max 26 114-120 G5 30 0.07 - 0.2 Km. 184 [ ]
Aqmax 26 114-120 6P 32 0,76 - 60 Km 188187 -
Fmay I8 114120 GP 32 0.4 - 20 Mm 139 -
HBmay I8 14120 G5 38 0.1 - D6 Mm 200 L]
Aqmax 32 TZa2d B2
HBomay 37 12224 GP 32 .75 - BEONm 196128 -
Fmay 33 12224 G5 38 01 - 065 Mm 200 -
EC J2. 80w 15F oA
EC a2 80 W 157 GF a2 076 - 60 Nm T8RS L
EC 40, 120W 158 B8.4
EC 40, 120W 158 GP &2 3.0 15 MNm 201 L]
EC 40, 120 W 158 GP 52 4.0-MMNm 202 L]
| Tochnical Data __________________|Pin Allacation for moter RETS | Connection Example |
Eupply vokaga SVWa10% P — = T
DOutput signal PO— ElA 5”%%;?55;33? Tyns SOUNIAL BGH-GLLAZP | Lo Do ag-l—_—_—_—g Racoernces i

Counts par b

Mo of channels ERSELECTE= PLETT) (not ot 1000 CFT)

Prass ahll & (nomnal) ]
Lo slate width & mir. 45°n
Eignal risa fima

Ihypical af Gy = 25 pF, Ay = 2.7 ko, 265C) Tl ra
Signal sll tire

[typical ak G, = 25 pF, A, = 2.7 KLk 25°C) 40 e
I pulsa widgth [nominaly Odon S0ra
Cparating lemp=ralure rangs 0. +70C
Wormant of insrtis ol code whessl = {16 gord
Mai. pooslamion 250 100 rad 57
Dt curmnl per chanssl min, <1 mé, mae, 20 mé
Wise, opemraling fregquancy 100 ke

April 2003 scklion | sutjec lo change

R e Rl

3 mn connac]|

Facanrem ahlu p

Type SOURA LA 3GM-DR2-125
(Malal, sirsi ghi wsl

maxos Al Ko 2675 538) ar
BG-VE1EE Iplasta. 80" angle:
maxos Al Ko 2675 539
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APPENDIX F

Planetary Gearhead GP 42 C 42 mm, 3- 15 Nm
Caramic Varsion
[ TechnicalData

deta 3 Planwtary Gearhesd strsght teath
i GRS Ouipui shaf slainlass oo
Haaring at sutput biall baaring
i Fadial play, 12 mm from fange prefoadad T
Axal play prefoaded
2 Max, parmissible axial lnpd 180 N g,‘
| . Max, parmissible force for press T 00 M
Recommended input spesd « B0 rpm c
| Facommanded iempanaiure rangs 20 ... +100°C o
: i Humbar of slagas 1 2 3 4 + 4
! Max. panr. radial load,
L 12 mm froen Sanga 120M 150M 150N 150N g
la
Mmiz - -
B ok program
) standard program:
Spacial program {on raguest)
L]
1 Anduction p L 12:1 431 F1:1 WA T a1 s |
2 Aaduction absolula -y ay a1 ELT a7y, 545
3 Mass inarta gem? 15 15 15 14
Grder Number | 203116 [EENELE 208 | 2onan |
1 Roduction 15:1 53:1 353 :1 &7E
2 Anduction absoluln LU L 2Ny 676
3 Mass inarta gem? 5 15 15 5 9.4 ad
| Ordes Mursber | (203117 | 203122 | 20a1e7 |WFERFRMN 203136 | 203141 |
1 Reduction &1 121 230:1 3941 TS 1
2 Raeduction absoiula iy, 125 [ iy, -
3 Mazs inarka gemt 8.4 15 14 15 18 14
| Order Number | FTFRRI 203123 | #oizs [WETEREESMFTEIECE @oiii: |
1 Anduction 2111 T 156 -1 3871 aal 1 %6 - 1
2 Anduction absoluln 21 Wik 156 uy, a1 Ed
3 Mass inarta gem? 14 15 a1 15 14 ad
| Onder Numsber | IECEOEN 2061zt | z [ 203138 |
1 Roduction 26 &1 285 488 :1
2 Anduction absoluln 26 Wy I, b
3 Mazs marka gem? 8.1 a4 15 B4
4 Mumber of slages 1 2 3 ] 4 4 4
S M. condinudss omue &t gaar culpul P 3.0 7.5 15 is 15 15 15
& Inlermilently parmissibls forque Al gear oulpmn Py 4.5 110 258 25 2258 228 258
¥ M. sffcency e 40 o1 2 72 84 L] &4
& Waignt a 260 360 &80 4E0 B0 560 580
3 Awmags bacalszh no lead [k oA (-] o [ 0.5 (-]
10 Gearhead longth L1 mm A% 8.4 L-F] %] #4.4 (DR ] B
el length o veralllength
= Mcdar Page = Tache / Encoder Pags  + Brake Page  Owerall length [mmi = Mo kgl + graressd kg + facho ' sncoder | brakes] + maembly o
RE 35, 50W BO 111s 126.4 1409 1403 155.4 155.4 155.4
RE 35,90W BO MR Encodar 23 iz23 137.8 152.3 1523 166.8 166.8 166.8
WE 25, 50'W A Dagital Encoder HED:_ 54 216200 1325 A 161.8 113 1.4 1754 1764
RE J6. 50w 80 DT 22 2 1300 144.5 1680 1530 1738 1706 1748
RE 35, 50W BO Erain 40 248 1480 162.5 177.0 1770 191.5 191.5 191.5
FRE 36, T0W Bl 11zz 126.7 1412 1412 155.7 185.7 15857
WE 36, T0W @ KA Encoder 213 Lot 1341 1626 1526 LT 1671 1671
RE 36, TOW 81 Digital Encoder HED: 55 216218 13z T 1622 L ¥ 1T 176.7 1767
FE 36, TOW 81 [y 224 1303 f44.8 158.3 1533 i73.8 173.8 1738
FE 40, 150 W 82 126 126.8 1410 1414 134.5 168.8 1868
FIE a0, 150 W 82 MR Encrdur 213 154 LI 1524 1524 1885 166,49 166 B
FE 40, 150'W B2 Digital Encodar HED:_ 55 216/Z218 1327 147.2 161.7 181.7 176.2 176.2 1762
FE 40, 150W 82 Erain 40 248 1481 162.6 1771 1771 1916 191.6 191.6
FE 40, 150 W 82 Digital Encoder HED_ 85 216218 Brafe 40 248 1852 1T 1842 18 =47 200.7 2087
WiE a0, 150 W a2 Dagital Encoder HEDL 5140 220 1851 RLIY 1851 1351 208 2085 2006
FE 40, 150'W B2 Erain 25 249 =81 1TE 185.1 1851 1546 199.6 19806
FE 40, 150W 82 Cégital Encodar HEDL 3880 220 Erain 25 249 1TeE 19,1 205.6 2058 e v 2201 2201
EC a0, 120 W 158 1Mig 124.8 1400 1400 154.8 184.8 1548
EC 40, 120W 158 Cigital Encodar HED_55__ 217/269 1254 143.9 158.4 1584 172.9 172.9 1729
EC 40, 120'W 158 Fasoler 28 228 137e 166.6 1888 1811 1811 181.1
EC a0, 120 W 198 Brsiam 40 24y T4 1.8 18 1853 18530 1853
EC 45, 150'W 150 sz 8.2 1z 196.7 188.7 1867
EC 45, 150W 150 Cigital Encodar HEDL 3880 220 1ET.E 196.8 1358 Z11.3 211.3 211.3
EC 45, 150'W 153 Cigital Encodar HEDL 5880 220 Erain 25 249 1Tee 1.1 205.8 2058 =204 2201 22041
EC 45, 150°W 150 Fiesoiver 21 228 1522 L1 A 812 1812 15457 UL 1857
EC 45, 150'W 150 Birafan 28 248 1556 1749 1886 1886 201 2001 2001
EC 45, Z20W 1E0 1850 198.5 214.0 2140 8.5 228.5 228.5
EC 45, 250 W 180 Dagital Encoder HEDL 5180 220 Faeel 3 2189 2206 Frek 4.0 24d.1 2441
EC ab, 250 W 180 Dagital Encoder HEDL 5140 220 Brsian 28 244 2084 225 2ina 2384 .Y 252.4 2hz.g
EC 45, Z50'W 10 Fasoler 28 228 1850 1985 2140 2140 85 228.5 228.5
EC 45, Z20W 1E0 Erain 25 249 1524 20E.9 221.4 ZZ14 B9 235.9 235.9
il 2003 sckbon | sutiect lo changs mazan gear 201
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