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ABSTRACT 

 

Indium Arsenide (InAs) channel High Electron Mobility Transistors (HEMTs) with 

Aluminium Antimonide (AlSb) barriers are an exciting option for low power RF 

applications due to excellent quantum well confinement and very high low-field electron 

mobility. The fundamental degradation trends and mechanisms for the device are yet to 

be adequately understood. In this thesis, a detailed analysis of DC and RF degradation 

under hot carrier stress is presented. 

Based on electrical stress performed on devices with varied starting characteristics, we 

show that some devices are severely degradation prone in operating conditions where the 

electric field in the Indium Arsenide channel and the impact ionization rate are 

simultaneously high. Annealing results, coupled with device simulations and Density 

Functional Theory (DFT) calculations, show trends consistent with an oxygen-induced 

metastable defect in AlSb dominating the device degradation. Some physically abundant 

impurities like Carbon and Tellurium are shown to be unlikely candidates for producing 

the observed degradation. 

When stressed with hot carriers or under high impact ionization conditions, the majority 

of the devices show negligible change in DC characteristics, but appreciable degradation 

in peak fT. Short access region lengths exacerbate the degradation, which can be traced to 

a reduction in peak RF gm, resulting either from reduced hole mobility or a stress-induced 

increase in thermodynamic relaxation time of electrons in the channel. Increase in 

parasitic capacitances after stress is shown to have a secondary contribution to the 

degradation in devices with long access regions. For devices with short access regions – a 
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post-stress increase in gate to source parasitic capacitance (Cgs) significantly adds to 

degradation caused by reduction in peak RF gm. 
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