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CHAPTER I

INTRODUCTION AND PHYSICS MOTIVATION

1.1 Historical Perspective

Humanity’s greatest achievements have always stemmed from our desire to learn more

about the nature of the world around us.a The pinnacle of this drive for knowledge is

physics. While physics was more or less formally established in 1687 with the publication

of Isaac Newton’s Philosophiae Naturalis Principia Mathematica, the origins of physics

can be traced back to the 4th century BCE, when Democritus hypothesized the existence

of atoms (ατoµα, atoma; singular: ατoµoς , atomos). While atoms as we now know them

are not the most fundamental, indivisible units of matter, we do believe in the pursuit of

this reductionist view of nature and, further, that there do exist fundamental, indivisible

units of matter. Ultimately this quest for Democritus’s atoms has given us the Standard

Model of particle physics. With the advent of modern physics, we know now that nature

is much cleverer than we, and every new discovery demonstrates that nature is richer and

more complex that we had previously imagined could be possible.

The Standard Model of particle physics describes all known particles and their interac-

tions, excluding gravity. The Standard Model is, in its mathematical formulation, a quan-

tum field theory. The Standard Model is a marriage of three unique components, each

corresponding to one of the fundamental forces of the universe. Each component can eas-

aThis section is a conglomeration of the historical perspectives offered by [1–4], see also [5–7].
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ily be identified in the Standard Model gauge group, which is SU(3) × SU(2) × U(1).

The first, SU(3), corresponds to the strong interaction; the second, SU(2), corresponds to

the weak interaction; the third, U(1), corresponds to the electromagnetic interaction. It is

this first one, the strong interaction, which concerns us in this thesis. It is worthwhile to

note that attempts to incorporate gravity for a unified field theory of all the known forces

have lead to many and various new ideas about the new physics, much of which may be

accessible at the Large Hadron Collider (LHC) at CERN. The three main branches of this

approach are Loop Quantum Gravity, Warped Geometry, and String Theory.

It is now well known that the correct quantum field theory describing the strong inter-

action is Quantum Chromodynamics (QCD). Quantum Chromodynamics has its origins in

the Quark Model, developed in the 1960s to explain the so-called “particle zoo,” the seem-

ingly innumerable hadron states. As more and more particles were discovered, it seemed

less and less likely that they were all fundamental. This led to many and various ideas

about how to describe these particles not as fundamental, but rather as bound states or ex-

citations of something else. A few early ideas failed, but the Quark Model put forward by

Murray Gell-Mann and George Zweig in 1963 proved to be both descriptive and predic-

tive. Ultimately, a few underlying issues with the Quark Model led to the idea that Quark

Model was not fundamental, but that a deeper symmetry was at work. This was largely

motivated by the ∆++ baryon. The Quark Model correctly predicted its mass, spin, and

internal parity. It required that this particle be composed of three up quarks with spin up

and vanishing orbital angular momentum. However, this was in direct conflict with the

Pauli Exclusion Principle, which precludes any two fermions being in the same state. It

was therefore proposed by Moo-Young Han and Yoichiro Nambu in 1965 that there were
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in fact three triplets of quarks. By 1973, this was understood to be equivalent to each quark

having an extra degree of freedom, color, which had three possible states (red, green, and

blue). The terms “color” and “Quantum Chromodynamics” were put forth by Gell-Mann

at the 16th International Conference on High Energy Physics in 1972.

One of the greatest criticisms of the Quark Model was that quarks were never found in

isolation. At the time, a fundamental particle was believed to be a physical observable, and

so Gell-Mann himself often said that quarks were convenient mathematical constructs and

not actual particles. Richard Feynman disagreed, believing that the diffusion of quark mo-

mentum explained diffractive scattering. James Bjorken derived inelastic scattering struc-

ture functions and a new scaling relation (now known as Bjorken scaling) for deep inelastic

scattering under the assumption that, at arbitrarily small distances (or, equivalently, arbi-

trarily large momenta), the quarks were point-like. His predictions were verified at SLAC

in 1969, the same year in which Gell-Mann was awarded the Nobel Prize in physics for his

work on the Quark Model. For their pioneering work on these experiments, Jerome Fried-

man, Henry Kendall, and Richard Taylor were awarded the 1990 Nobel Prize in Physics.

Bjorken’s idea that at the smallest distances the quarks were point-like and freely moving

motivated the work leading to the discovery of the mathematical formulation of asymp-

totic freedom in 1973, for which Frank Wilczek, David Gross, and H. David Politzer were

awarded the 2004 Nobel Prize in Physics. One of the great injustices in the history of

physics is that despite these and many other pioneering contributions, James Bjorken has

never been awarded a Nobel Prize.

By the mid 1970’s, the mathematical framework being used more or less resembled

the QCD we know today. At that time, it also seemed that QCD might be used to prove
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confinement, which can be thought of as related to but the opposite of asymptotic freedom;

confinement refers to the confinement of quarks within hadrons. Since quarks had been

proven to be real, but still had not been isolated in nature, it was assumed that there was

some physical mechanism that forced them to be unobservable. It was postulated that phys-

ical observables had to be color neutral, and therefore the colored quarks could only exist

within color neutral hadrons and never be found isolated. However, there was no mathe-

matical justification for it, and one was sought. In fact, to this day, confinement has not

been demonstrated analytically. However, with the advent of super computers and lattice

gauge theory (specifically lattice QCD in this case), confinement has been unambiguously

confirmed as a feature of QCD. The analytical solution to this problem is related to the

mathematical proof of the existence of Yang-Mills fields and of the mass-gap, for which

the Clay Mathematics Institute will award a Millennium Prize.

As already stated, QCD is a quantum field theory. More specifically, it is a Yang-Mills

non-Abelian gauge field theory. Chen Ning Yang and Robert Mills first put forward the idea

of non-Abelian gauge theories in 1954. The term non-Abelian comes from the fact that the

mathematical group describing the gauge symmetry is a non-Abelian group. The non-

commutativity of the generators of the gauge symmetry group has the profound physical

consequence that the gauge bosons, the interaction particles that mediate the force, interact

with themselves. Non-Abelian gauge field theories were first successfully quantized by

Ludvig Faddeev in 1967, and were shown to be renormalizable by Gerardus ’t Hooft and

Martinus Veltman in 1971. For their successful formulation of a renormalization scheme

for non-Abelian gauge field theories (known as dimensional regularization), ’t Hooft and

Veltman were awarded the 1999 Nobel Prize in Physics.
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An important aspect of QCD is the coupling constant. While all coupling constants

have been known to run since the invention of the Renormalization Group by Ernst Stueck-

elberg and Andre Peterman in 1953, the running of the QCD coupling constant, αs, is much

more dramatic than in the unified electroweak theory and, moreover, runs inversely to those

of the electroweak interaction. The weak and electromagnetic coupling constants are small

at zero energy and increase with increasing energy, whereas αs is divergent at zero energy

and decreases with increasing energy. This is a crucial aspect of asymptotic freedom and

confinement. It has also been key in the development of methods for calculating physical

observables in QCD. At arbitrarily large energies, the coupling constant is small enough

that perturbative expansions can be used. However, not all interesting physical processes

take place at sufficiently high energies. This necessitated the development of lattice gauge

theory, where space and time are discretized and observables are calculated on a com-

puter using numerical techniques and approximations. Using this method, even physical

phenomena where the coupling constant is large can be studied. Lattice QCD has been

especially important in the understanding of quantum field theories at finite temperature

and density.

Finite temperature field theory (that is, quantum field theory as applied to a statistical

ensemble) was first formulated by Takeo Matsubara in 1955, and by 1957, Murray Gell-

Mann and Keith Brueckner formulated a theory of a QED plasma. Drawing on this work,

John Collins and Malcolm Perry put forward the first theory of a QCD plasma in 1975.

In the same year, Aleksandr Polyakov discovered non-perturbative topological fluctuations

in the QCD vacuum, and later work demonstrated that these fluctuations are responsible

for phase transitions in QCD. In a now famous review by Edward Shuryak in 1980, the
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term “quark gluon plasma” (QGP) was coined to described the QCD plasma and the first

vastly influential prescription for a relativistic nucleus-nucleus collision program to study

this plasma and the associated phase transition was given.

Interestingly, the first heavy ion program predated this prescription by 8 years, even

predating the prediction of a QCD plasma. The heavy ion program at the Bevalac at LBNL

started in 1972 with the goal of understanding the equation of state (EOS) of dense hadronic

matter. However, after the aforementioned theoretical discoveries, it was clear that heavy

ion facilities could be used to study the QGP and the phase transitions of QCD matter. The

Bevalac program continued through to the mid 1980s, passing the torch along to the SIS at

GSI in Darmstadt, Germany. After the early work at the Bevalac and GSI/SIS, the AGS at

BNL and the SPS at CERN began their heavy ion program in the 1990s. In 2000, operations

began at the RHIC at BNL began. While its beam energies are actually lower than those at

CERN/SPS, the center of mass energy per nucleon (
√
sNN ) is greater by more than a factor

of ten, owing to the fact that it is an intersecting storage ring collider and not a fixed target

accelerator. Finally, while the main thrust of the LHC program at CERN is particle physics

(especially topics such as the search for the Higgs boson and supersymmetric particles),

there is additionally a heavy ion program that will run for a few weeks of the year. The

first successful run of the LHC particle physics program began in November of 2009 with

a commissioning run of p+p collisions starting at
√
s = 900 GeV and ramping upwards.

A few months later, in March of 2010, research operations began with p+p collisions at

√
s = 7 TeV. Beginning on 8 November 2010 and ending on 6 December 2010 was the

first heavy ion run of Pb+Pb collisions at
√
sNN = 2.76 TeV.
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1.2 The Evolution of a Heavy Ion Collision

The evolution of a heavy ion collision can be summarized, in brevis, in the following

way: 1) the preconditions, which are various physical properties of the highly Lorentz

contracted nucleus; 2) the impact, which is described by such fundamental parameters as

collision centrality, which is a proxy for the impact parameter; 3) equilibration, during

which the quark-gluon plasma develops; 4) chemical freeze-out, when particle production

via inelastic scattering ceases; and 5) kinetic freeze-out, when all particle interactions cease

and the distribution of particles is in its final state. Figure 1.1 gives a nice, simple pictorial

representation of this evolution.

Figure 1.1: Evolution of a Heavy Ion Collision.
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1.3 Initial Conditions

1.3.1 Preconditions

In any experiment, it is important to have an understanding of the initial conditions

and their affects on the final state. Because the energies involved in ultra-relativistic heavy

ion collisions are several orders of magnitude larger than the binding energies of atomic

nuclei, the details of nuclear structure physics are largely inconsequential, although basic

properties like spatial density distributions are important at any collision energy [6]. The

parton distribution functions in nuclei are modified from those in free nucleons [8]. At high

energy and low longitudinal momentum fraction, gluon saturation occurs [9]. This satu-

ration can be modeled, in certain regimes, with an effective theory called Colored Glass

Condensate [10]. We study d+Au collisions in order to understand these cold nuclear mat-

ter (CNM) effects [11]. Because there is a highly Lorentz contracted nucleus, the physics

of cold nuclear matter is relevant; because there is only one, there are far too few partici-

pants for large scale thermalization and the consequent QGP formation, therefore the CNM

effects can be studied in isolation. The CGC was proposed as a possible mechanism for

the apparent particle suppression in Au+Au collisions [12]. This mechanism would also

produce particle suppression in d+Au collisions, as argued above, but experimental results

indicate that there is no particle suppression in d+Au collisions at mid-rapidity [13].

As long ago as 1974, it was observed by James Cronin and collaborators that in nucleon-

nucleus (typically denoted as p+A) collisions the yield of particles exhibits a modification

relative to the yield of particles in p+p collisions [14]. The ratio of these spectra, nor-

malized to the number of binary nucleon-nucleon collisions that takes place in the p+A
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collision, is sometimes called the Cronin ratio. At very low transverse momentum pT ,

the yield is reduced, and the Cronin ratio is less than one; in the intermediate pT region

(2GeV/c < pT < 6GeV/c) the yield is enhanced and so the ratio is greater than one; and

at sufficiently high pT (pT > 6GeV/c) the yield becomes unmodified and the ratio is equal

to one. The enhancement at intermediate pT is called the Cronin enhancement. It was

not long after the measurement by Cronin et al. that the enhancement was measured with

identified particles, and the enhancement was found to depend on the particle species [15].

Traditional explanations of this effect involve the multiple scattering by soft partons in the

target nucleus of hard partons from the projectile [16]. This naturally explains the deficit at

low pT and enhancement at intermediate pT , but does not account for the particle species

dependence. Relatively recently, in 2004, a very different approach, based on final state

rather than initial state interactions, was put forward [17]. This model naturally explains

the particle species dependence of the Cronin enhancement. This model is based on parton

recombination, which will be discussed in further detail later on.

1.3.2 Impact

Physical parameters such as the impact parameter are collected under the heading of

impact. In heavy ion collisions, the impact parameter is defined in the same way as it is in

classical mechanics, see Figure 1.2. One can define the number of participants, Npart, as

the number of nucleons in the overlap region. The centrality of a collision is defined in such

a way that that each bin, expressed as a percentage of the total inelastic nucleus+nucleus

cross section, has the same probability as every other bin and so the centrality distribu-
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tion is thusly flat by definition. Figure 1.3 show the energy deposited in the zero degree

calorimeters (ZDC) vs the total charge induced in the beam-beam counters (BBC). The de-

tails of the BBC and ZDC will be described in the next chapter. The distribution is divided

into equality probability percentiles. The ZDC measures the energy of spectator neutrons,

of which there are more in peripheral collisions. Conversely, more charged particles are

produced in more central collisions, and therefore the total charge induced in the BBC is

greater. Collisions with vanishing impact parameter, that is where there is total overlap,

are called the “most central;” collisions where the impact parameter is nearly equal to the

nuclear radius, that is where there is almost no overlap, are called the “most peripheral.”

By definition, then, the most central collisions have the largest Npart, and the most periph-

eral have the smallest. By convention, the centrality is 0% for the most central, and 100%

for the most peripheral. The most peripheral collisions produce too low of a signal for the

event to pass the minimum bias trigger requirement, so not all events can be collected. In

PHENIX, for example, only events with centrality 0% through 92% can be recorded for

Au+Au collisions. In d+Au collisions, only 0–88% can be recorded.
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Figure 1.2: Schematic drawing of two colliding nuclei, indicating the definition of impact
parameter in nuclear interactions.

Figure 1.3: Plot of correlation between charge collected in BBC and energy deposited in
ZDC, partitioned into segments of equal probability, defining centrality.

The number of binary collisions, Ncoll, is calculated using the Glauber model [18, 19].

This is an important quantity for the classification of any observable produced in hard pro-

cesses. By hard processes we mean interactions in which there is a large momentum trans-

fer between the constituent partons in the nucleon. In the absence of any nuclear medium
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effects, hard processes would be expected to scale with the total number of individual nu-

cleon+nucleon collisions, since each nucleon+nucleon has its own collection of partons

and thus, in the aggregate, the same probability for a hard scattering. For a comparison of

Npart to Ncoll, see Figure 1.4 and Table 1.1. In the most central Au+Au collisions, Ncoll

exceeds Npart by nearly a factor of three. In peripheral Au+Au and in d+Au collisions they

have similar values and in peripheral d+Au collisions Npart is slightly greater than Ncoll.

This can be understood intuitively as for a single nucleon-nucleon collision Ncoll = 1 and

Npart = 2. For the Run8 d+Au, the uncertainties of Npart have not been evaluated and are

estimated based on Run3 results.

Of particular note are nuclear modification factors, which are quantitative measures

of medium affects on particle production More specifically, RAA is the ratio of yields in

nucleus+nucleus (A+A) collisions to the yields in proton on proton (p+p) collisions, nor-

malized to the number of binary collisions; RdA is the ratio of yields in deuteron+nucleus

(d+A) collisions to the yields in p+p collisions, normalized to the number of binary colli-

sions; and RCP is the ratio of yields in central collisions to the yields in peripheral colli-

sions, scaled by the ratio of the respective numbers of binary collisions, and is defined the

same way for both deuteron+nucleus and nucleus+nucleus collisions. These quantities are

defined as follows:

RAA =
Y ieldA+A

NA+A
coll Y ield

pp
, RdA =

Y ieldd+A

Nd+A
coll Y ield

pp
, RCP =

Y ieldcentral

Y ieldperipheral
Nperipheral
coll

N central
coll

.

(1.1)
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Table 1.1: Average 〈Npart〉 and 〈Ncoll〉 for Various Centralities in Au+Au and d+Au at√
sNN = 200 GeV

Centrality 〈Ncoll〉 〈Npart〉
Au+Au
0-10% 960.2 ± 96.1 325.8 ± 3.8

10-20% 609.5 ± 59.8 236.1 ± 5.5
20-40% 300.8 ± 29.6 141.5 ± 5.8
40-60% 94.2 ± 12.0 61.6 ± 5.1
60-92% 14.8 ± 3.0 14.7 ± 2.9
d+Au
0-20% 15.1 ± 1.0 15.2 ± (0.9)

20-40% 10.2 ± 0.7 10.8 ± (0.6)
0-100% 7.6 ± 0.4 8.4 ± (0.4)
40-60% 6.6 ± 0.4 7.5 ± (0.4)
60-88% 3.1 ± 0.2 4.3 ± (0.2)

p+p ≡ 1 ≡ 2

Figure 1.4: Npart and Ncoll for Au+Au collisions at
√
sNN = 200 GeV as a function of

impact parameter b as determined using the Glauber Model.
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There are two physical pictures for what happens at impact: the Landau picture and

the Bjorken picture. In the Landau picture [20, 21], the two nuclei hit dead on and stop,

known as nuclear stopping. In this picture, the rapidity distribution of net baryons, which

is defined as the difference between the total number of baryon and the total number of

antibaryons, is Gaussian. In the Bjorken picture [22], the two nuclei pass through each

other, exciting the region of vacuum they sweep out in the process. The distribution of

net baryons is zero at mid rapidity with peaks at forward and backward rapidity. Various

heavy ion experiments have shown that the Landau picture dominates particle production

in lower energy collisions, and that the Bjorken picture dominates particle production in

higher energy collisions. In [23] the BRAHMS collaboration summarizes the situation

nicely, concluding that the Bjorken picture dominates at RHIC energies; see Figure 1.5.

In [22] Bjorken gives a prescription for estimating the energy density:

ε =
1

τ0AT

dET
dy

, (1.2)

where τ0 is the characteristic time, usually taken to have a typical value of 1 fm, and AT

is the overlap area, such that the product gives the equilibration volume; and dET/dy is

the rapidity density of the total transverse energy. In fact, Bjorken introduced an erroneous

factor of two in his calculation [4]; here I have written it correctly.

In [24, 25] by the PHENIX collaboration, this method is used to estimate the energy

density in Au+Au collisions at various collision energies. As stated therein, these energy

densities, between 4.5 and 5.5 GeV/fm3, are well above the expected critical energy density

for QGP formation, estimated to be approximately 1 GeV/fm3 [3, 4, 26, 27]. Although
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this is far from a definitive identification of the QGP, it was an important first step in the

qualification and quantification of the hot dense matter produced at RHIC.

The issue of determining the characteristic time should not be trivialized. Historically,

it has simply been assumed to be 1 fm, which was nothing more than an ad-hoc order of

magnitude guess by Bjorken in [22]. One can in fact use somewhat more sophisticated

ideas to make a more physical estimate, as outlined in §2 of the PHENIX White Paper [4].

The shortest time for which the Bjorken formula can be considered valid is the crossing

time, which is the time it takes for the two nuclei to pass through each other. This is simply

the sum of the radii of each nucleus in the center of mass frame, so for symmetric collision

species we have τcrossing = 2r/γ. Table 1.2 shows the crossing times for Au+Au nuclei at

various collision energies.

The shortest time is, of course, not necessarily the correct time. A realistic characteristic

time might be the time required for particle formation. This can be estimated using the

Heisenberg uncertainty principle. Taking from ∆E∆t ≥ 1, one can make the analogy that

〈mT 〉τformation ≥ 1, and so we take τformation = 1/〈mT 〉. This yields a formation time

of about 0.35 fm for the 200 GeV data. Another possibility for the characteristic time is

the thermalization time. This can be taken from hydrodynamics models, which require a

thermalization time between 0.6 and 1.0 fm to adequately reproduce the 200 GeV data on

collective anisotropy [4, 28].

Putting all these ideas together, we get a broad range of possible characteristic times

and thus a broad range of possible energy densities, and each of these is well in excess of

the critical energy density for QGP formation; see Figure 1.6.
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Figure 1.5: dN/dy for net protons [23]. For AGS data,
√
sNN = 4.7 GeV. For SPS data,√

sNN = 17.3 GeV. For RHIC data,
√
sNN = 200 GeV.
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Table 1.2: Crossing Times for Various Collision Energies.

√
sNN (GeV) Ebeam (GeV) γ τcrossing (fm)

200.00 100.00 106.38 0.13
100.00 50.00 53.19 0.26
62.40 31.20 33.19 0.42
27.40 13.70 14.57 0.96
17.20 8.60 9.15 1.53
12.30 6.15 6.54 2.13
8.80 4.40 4.68 2.98
7.60 3.80 4.04 3.45
6.30 3.15 3.35 4.17
5.00 2.50 2.66 5.25

Figure 1.6: Energy density estimations based on various assumptions, as presented in [4].
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1.4 Thermalization

As discussed previously, there exists a phase boundary between ordinary nuclear matter

and the quark gluon plasma. This phase transition and the properties of the QGP are often

studied theoretically using lattice QCD. Lattice calculations have unequivocally identified

the phase transition, and can also determine the critical temperature, the temperature of the

phase transition, at vanishing baryon chemical potential. The critical temperature, as well

as the energy density and pressure at arbitrary temperature, have been studied extensively,

see e.g. [26, 27]. To extrapolate to non-vanishing baryon chemical potential, models need

to be employed. One of the most successful theoretical models from the earlier days of

heavy ion physics is the thermal model [29]. It is essentially a grand canonical ensemble

applied to a partonic system. A grand canonical ensemble is usually defined as a system

with global conservation of particle number and energy conservation, but no local conser-

vation. Therefore, the system can exchange energy and particles with the surroundings.

One can extend this formalism to include other conserved quantities. For thermal models

dealing with heavy ion collisions, there is the usual conservation of 4-momentum, and the

conservation of particle number is extend to conservation of charge, baryon number, and

strangeness [30]. The approach is simple but powerful, and has been met with great suc-

cess [29, 31, 32]. It very accurately predicts a wide variety of particle abundances (see Fig-

ures 1.7 and 1.8), which demonstrates thermalization. However, this alone is not enough to

determine at which phase of the evolution of the system that thermalization occurs. The two

free parameters in the fits to the data are the chemical freeze-out temperature and baryon

chemical potential, which describe the location of the system at chemical freezeout on the
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QCD phase diagram (see Figures 1.9 and 1.10). Karsch [33] and Braun-Munzinger [34]

provide excellent reviews on lattice results and on the thermal model, respectively.

Figure 1.7: Comparison of particle ratios from theoretical calculations and experimental
measurements [29]. This model assumes full strangess saturation, γs = 1.

Figure 1.8: Comparison of particle ratios from theoretical calculations and experimental
measurements [32]. This model has strangeness saturation as a free parameter, with the
result γs = 1.03± 0.04.
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Figure 1.9: QCD Phase Diagram [35] of temperature T vs. baryon chemical potential µB.
Shown schematically are the various regions of the phase diagram along with the phase
boundaries.

Figure 1.10: QCD Phase Diagram [35] of temperature T vs. baryon chemical potential µB.
Shown as data points are the locations of T and µB as determined from thermal model fits
to data on integrated particle yields.
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A crucial aspect of thermalization is the degree of strangeness equilibration. In a QGP,

the quark masses are reduced to their bare Higgs masses [36]; see Figure 1.11. The Higgs

mass of the strange quark is approximately 150 MeV, on the same order as the critical

temperature. This means that strange quarks would be produced thermally and would equi-

librate in a similar way that the much lighter up and down quarks would. As seen in the

aforementioned references and figures, this is in fact observed, as even multi-strange par-

ticles are produced in thermal abundances. Another insight into this is to look at the K/π

ratios as a function ofNpart, see Figure 1.12. There is a clear rise of theK/π ratio as a func-

tion ofNpart up to aboutNpart = 100, where it mostly levels off. This may be an indication

that as the number of particles in the system increases, strangeness equilibration increases,

until reaching a certain value at which full strangeness equilibration is achieved. To fully

justify the idea strangeness saturation increasing with increasing Npart, one needs to also

consider multi-strange particles [31, 32, 37] Figure 1.13 shows the stragness equilibration

parameter γs as a function of Npart.

Figure 1.11: QCD and Higgs contribution to quark masses [36].
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Figure 1.12: K/π as a function of Npart [38].

Figure 1.13: Strangeness equilibtation parameter γs as a function of Npart [37].
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1.5 Radial and Elliptic Flow

One of the most important aspects of the hot dense medium produced at RHIC is the

fact that it flows. Quite surprisingly, early results indicated that the matter is very well

described by relativistic hydrodynamics with no viscosity. The deep insight provided by

flow measurements stems from the fact that the flow builds up early during the evolution of

the system and self-quenches, and can thusly reveal information about the early stages of

the fireball and various aspects of thermalization. The latter is because the hydrodynamics

models require at least local thermal equilibrium, and so one can conclude that the success

of the hydrodynamics description of the flow data indicate some degree of thermalization

in the medium. Moreover, the flow models are highly dependent on the relevant degrees of

freedom; thusly, flow measurements can provide insight into which types of particles, e.g.

whether they be hadrons or partons, are the ones that are flowing [39, 40].

The essence of relativistic hydrodynamics can be very succinctly summarized with a

few basic equations [21, 22, 28]. The stress energy tensor is defined as

T µν(x) = (ε(x) + p(x))uµ(x)uν(x) + p(x)gµν , (1.3)

where ε is the energy density, p is the pressure, uµ(x) = γ(1, vx, vy, vz) is the four-velocity

and γ = 1/
√

1− v2
x − v2

y − v2
z is the usual Lorentz factor, and gµν is the metric tensor. The

conserved currents are jµi (x) = ni(x)uµ(x), where ni(x) are the number densities of the

conserved quantities (usually charge, baryon number, and strangeness). The conservation

laws

∂µT
µν(x) = 0, ∂µj

µ
i (x) = 0 (1.4)
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define the equations of motion. For k conserved quantities, we have 2+k equations with

3+k unknowns, meaning one more equation is needed to solve for the unknowns. The

missing equation is the equation of state, which relates the the energy density, pressure, and

number density of the conserved quantities. The equation of state cannot be determined a

priori. Usually the equation of state is taken as an input from lattice QCD calculations.

By comparing hydrodynamics calculations to the data, we hope to be able to determine the

equation of state experimentally.

The flow of the matter manifests itself in two distinct ways: radial flow and elliptic flow.

Radial flow is very simply the expansion of the matter in all directions. The data support the

idea that the matter expands through all stages of the fireball evolution with a common flow

velocity for all hadrons. This is ascertained from the scaling relations of transverse mass

spectra [39]. Essentially, the transverse mass spectrum for soft particle production is pro-

portional to the exponential of the transverse mass normalized to an effective temperature,

called the inverse slope parameter:

d2N

mTdmT

∝ e−mT /T , (1.5)

where T is the inverse slope parameter, defined as

T = Tthermal +m〈βT 〉2, (1.6)

where βT is the collective flow velocity in the transverse plane.

Elliptic flow can be understood as stemming from pressure gradients in the matter.
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These pressure gradients exist only in the transverse plane. Elliptic flow is measured using

angular correlations in the transverse plane. When one orients the transverse plane in such

a way that the reaction plane defines the x-axis, the strongest pressure gradients point in

the ± x-direction. One can easily see that the matter below the reaction plane is identical

to the matter above it, and so the x-axis defines a symmetry of the system. Clearly, then,

the function describing the correlation is symmetric about the x-axis, and therefore an

even function. Further, the y-axis is also clearly a symmetry axis, since the matter on

the left side is clearly the same as on the right side, and so the pressure gradients are

necessarily of equal strength on either side. Using these two points, we can conclude that

the Fourier expansion includes only cosine terms (because of the x-axis symmetry) and

only even-numbered coefficients (because of the y-axis symmetry). The former is true at

all rapidities, the latter however is only true at mid-rapidity. At forward and backward

rapidity, there exists also directed flow. This can be understood as a deformation of the

overlap region as the spectator part of the nucleus drags the edge of the overlap region a bit

with it as it passes by. Therefore, the sign of the directed flow is different at forward and

backward rapidity. Which sign is ascribed to which rapidity is of course totally arbitrary,

but the fact that the two regions are opposite is very important. See Figure 1.14 to see how

directed flow changes as a function of rapidity.

It is interesting to note that in the case of asymmetric collisions species, e.g. Cu+Au,

the aforementioned y-axis symmetry is broken and so there are non-zero odd-numbered

coefficients even at mid-rapidity. Additionally, the above discussion holds for a continuous

distribution of matter. However, the discrete nature of the nucleons in the nuclei allows

for statistical fluctuations, which can lead to some surprising results. Recent work, both
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theoretical [41, 42] and experimental [43], has shown that initial state fluctuations lead to

non-negligible third-order coefficients with respect to a randomly distributed (with respect

to the reaction plane) third-order event plane. The addition of non-negligible v3 to a distri-

bution of particles has some significant consequences, forcing a serious reconsideration of

many observed phenomena in heavy ion collisions [41, 42].

One of the most striking results from elliptic flow measurements is the constituent quark

scaling. As seen in Figure 1.15, baryons and mesons of many different types tend to group

together. However, when the axes are rescaled by the number of quarks, all the curves line

up. This is a strong indication that in the stage during which elliptic flow builds up the rele-

vant degrees are partonic since this has been predicted by parton recombination models, see

e.g. [36]. Furthermore, since the hydrodynamics models require thermal equilibrium, and

the success of the thermal model indicates that there is indeed thermalization (although it

doesn’t specifically indicate where), the combination of these results is strongly suggestive

of a system of thermalized quarks and gluons.
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Figure 1.14: Directed flow as a function of rapidity [44].

Figure 1.15: Elliptic flow scaling [45].
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1.6 Hadronization in the QGP

Prior to the many discoveries made in the RHIC era, it was thought that fragmentation

was the only mode of hadronization. It was predicted that all particles would be roughly

equally suppressed [46] (particle suppression occurs because the partons traversing the

medium will lose energy; see the next section for details). However, this in fact is not the

case: while mesons are indeed suppressed at all momenta, Baryons are not suppressed at all

at intermediate momentum, see Figure 1.16. One of the most important discoveries at RHIC

is this so-called “Baryon Anomaly,” which was first observed experimentally in [47] and

studied theoretically in [48]. Since then it has has been studied extensively, see e.g. [38, 49–

52]. It was a strong indication that there was more to hadronization in the QGP that had

been previously postulated. Hwa and Yang [53] put forward the quark recombination model

in an attempt to explain the data. This powerful model was based on the very simple idea

that quarks in the same region of phase space will simply coalesce into a bound state; in

fact this idea is not new [54, 55]. The cartoon in Figure 1.17 displays the basic concept

nicely. Hwa is a vigorous proponent of the model, see e.g. [56]. Others have also made

significant contributions to the recombination model in heavy ion collisions, see also the

work of the Duke [36, 57, 58] and Texas A&M [59, 60] groups.

It is noteworthy that the apparent non-suppression of protons could have in fact been

simply an effect of the mass. Because of the radial flow the particles move with a common

expansion velocity, and protons being the heaviest get the largest momentum boost. This

has been seen in earlier eras, see e.g. [39]. However, as Figure 1.16 shows, even mesons

with a mass as heavy as the proton, e.g. the φ meson shown, are suppressed, which rules
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Figure 1.16: Nuclear Modification for Various Hadrons [51].

out radial flow and supports recombination as an explanation for this effect [51].

1.6.1 A Brief Comparison of Fragmentation and Recombination

Pictorially, the differences are summarized nicely in Figure 1.18. In words, the differ-

ences between the above two modes can be outlined as below:

Fragmentation
1. Inclusive process
2. Slower fall-off (power law)
3. Hadron momentum less than parton momentum
4. Many more mesons than baryons produced

Recombination
1. Exclusive process
2. Faster fall-off (exponential)
3. Hadron momentum greater than parton momentum
4. Roughly equal numbers of mesons and baryons produced

29



Figure 1.17: Recombination Cartoon [61]

Figure 1.18: Cartoon Comparing Recombination and Fragmentation [36].
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Fragmentation is inclusive because any parton can fragment to produce more partons

and ultimately hadrons, whereas recombination requires that they be in a similar region

of phase space. The momentum spectrum predicted by fragmentation has a slower fall

off compared to that of recombination. Fragmentation greatly favors meson production,

because fragmentation is much more likely to produce a quark-antiquark pair than it is to

produce a diquark [4]; recombination favors them roughly equally.

1.6.2 Theoretical Calculations of Momentum Spectra

It is useful to compare the theoretical formulae for the momentum spectra predicted

by these models. They can be written in various equivalent ways, I present them here as

in [36, 57, 58]. For fragmentation, the momentum spectrum is

E
d3Nh

d3p
=

∫
dΣ

P · u
(2π)3

∑
α

∫
dzz−3wα(P/z)Dα→h(z), (1.7)

where Σ is the chemical freeze out hypersurface, P µ is the hadron momentum, uµ is the

collective expansion velocity, w are the quark phase space distributions, α represents the

various parton degrees of freedom, z is the momentum fraction, and D(z) is the fragmen-

tation function. The fragmentation function cannot be calculated analytically, it always

reconstructed using fits to data. For recombination, the momentum spectrum is either

E
d3N (M)

d3p
=

∫
dΣ

P · u
(2π)3

∑
αβ

∫
dxwα(xP )w̄β((1− x)P )|φ(M)

αβ (x)|2, (1.8)
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for mesons, or

E
d3N (B)

d3p
=

∫
dΣ

P · u
(2π)3

∑
αβγ

∫∫
dxdx′wα(xP )wβ(x′P )wγ((1− x− x′)P )|φ(B)

αβγ(x, x
′)|2,

(1.9)

for baryons, where x and x′ are momentum fractions and φ are the hadron wave functions.

For a thermal distribution of partons, the phase space distribution is w(p) = ep·u/T , but at

sufficiently high momentum the phase space distribution is a power law.

1.6.3 Regimes of Applicability for Fragmentation and Recombination

As stated above, recombination has a faster fall-off than fragmentation. Therefore, one

might expect that recombination dominates at lower momentum and that fragmentation

takes over at sufficiently high momentum. Indeed, this seems to be the case. This is seen

quite clearly in Figures 1.19 and 1.21, which show theory curves for the π0 spectrum over-

layed with experimental data from PHENIX; in Figure 1.20, which shows the theory curves

for the unidentified hadron spectrum overlayed with PHENIX data; and in Figure 1.22,

which shows theory curves and PHENIX data for p̄. The Duke group originally argued for

purely thermal recombination together with fragmentation. Hwa and Yang and Greco et al.

have argued for recombination of partons in both similar and dissimilar momentum space

in all momentum ranges. It is clear both of these approaches can reproduce the spectrum.
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Figure 1.19: Recombination prediction for
momentum spectrum of π0 shown with ex-
perimental data from PHENIX [56].

Figure 1.20: Recombination prediction for
momentum spectrum of π0 shown with ex-
perimental data from PHENIX [57].

Figure 1.21: Recombination prediction
for momentum spectrum of unidentified
hadrons with experimental data from
PHENIX [58].

Figure 1.22: Recombination prediction for
momentum spectrum of p̄ shown with exper-
imental data from PHENIX [60].
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1.6.4 Recombination and Elliptic Flow

As mentioned very briefly in the previous section, the scaling of v2 with the number

of constituent quarks is a prediction of the recombination models. This was first observed

theoretically in [62] and experimentally in [63]. The original formulation relied on a sim-

plified version where the partons are thermal and co-moving. However, what happens in a

more general formulation where partons in different momentum space can coalesce into a

a bound state, e.g. in the formulation used by Hwa and collaborators? Additional consider-

ations of the nature of this dynamical quark coalescence suggest that the constituent quark

scaling should eventually break, as the production mechanism transitions from strictly ther-

mal recombination (TT for mesons and TTT for baryons) to thermal+shower recombination

(TS for mesons and TTS and TSS for baryons), and the breaking point of the scaling is ex-

pected to shift as a function of centrality [64]. Very nice recent experimental results [65]

demonstrate this scaling breaking as a function centrality quite clearly.

In fact, even under the most favorable assumptions, this scaling is only approximate

because it ignores higher order terms [62, 66, 67]. Additionally, the inclusion of higher

Fock states also modifies the scaling, although not by an inordinate amount [68].

1.7 Partonic Energy Loss in the QGP

It is a well-known phenomenon that charged particles traveling through electromagnetic

fields lose energy by radiating photons. This process is usually called bremsstrahlung, al-

though in some cases, such as in astrophysics, this term is reserved for the more narrow

definition of the process by which electrons radiate photons in the presence of the electric
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field of ions or nuclei. Such a definition is convenient for distinguishing the astrophysi-

cal sources for various features of photon spectra, but I use the term in its broader sense.

Analogously to the electromagnetic case, color-charged particles will lose energy by radi-

ating gluons when traveling through chromo-electromagnetic fields. In a large system of

deconfined partons, strong chromoelectric and chromomagnetic fields are present on a (rel-

atively) large scale, and so this is a relevant process. Because of the obvious and immediate

analogy with electromagnetism, this process is called gluon bremsstrahlung. The energy

loss of high energy partons as a probe of the medium was first proposed in [69].

1.7.1 Brief Survey of Energy Loss Models

Majumder [70] and Wiedemann [71] give excellent reviews of energy loss schemes.

Additionally Bass and collaborators [72, 73], also give an excellent review of energy loss

approaches, in the context of a systematic comparison using a single set of assumptions

about the bulk properties of the medium to ensure a fair comparison of the physical observ-

ables. Finally, Horowitz and Cole [74] give a brief but very good review while going to in

excellent depth and detail about the underlying assumptions and their associated uncertain-

ties. In this section we give a very brief overview of the various energy loss schemes using

the preceding references as a guide.

Baier et al. [75, 76] put forward the first calculation of parton energy loss that correctly

took into account the rescattering of the parton and of the emitted gluon. Zakharov [77] put

forward an alternative approach, which was later shown to be equivalent. This approach

is now known as the BDMPS or BDMPS-Z approach. Wiedemann [78], along with Sal-
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gado [79] and Armesto [80], extended the work of Baier et al. to account for arbitrary

medium opacity. This arbitrary opacity version of BDMPS-Z is called ASW or sometimes

BDMPS-Z/ASW.

The GLV approach [81, 82], named for the authors Gyulassy, Levai, and Vitev, was de-

veloped from the older Gyulassy-Wang model with the improvement of accounting for the

rescattering of the emitted gluon. Like ASW, GLV accounts for arbitrary opacity. However,

the formalism is quite different and the two approaches are not equivalent (although they

are equivalent at first order in opacity).

The higher twist (HT) approach [83] is based on calculating higher twist corrections

to the total cross sections in deep inelastic scattering (DIS). While generally higher twist

terms are suppressed by the powers of 1/q2, they are enhanced by the medium length and

thus can contribute significantly. The observables calculated in this approach, while derived

in DIS, are readily generalized to the kinematics of the medium.

The method put forward by Arnold, Moore, and Yaffe [84–86], called AMY, is an

approach using finite temperature field theory and is only one that is completely model

independent. In fact, because of this model independence, the regime of validity is greatly

limited and therefore phenomenological applications require significant extrapolations be-

yond the strict limits of validity.

Obviously, gluon radiation is not the only possible source of energy loss. As far back

as 1982, Bjorken anticipated parton energy loss when traversing the medium, but his work

was based on collisional energy loss [87]. Elastic energy loss was reintroduced to examine

its effect on heavy quark energy loss, since radiative energy loss alone is not enough to

explain the observed open heavy flavor suppression as measured by single electron nuclear
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modification factors [88–90]. Note however that the effect of collisional energy loss on

light quarks and gluons is small.

We can attempt to measure energy loss in several different ways: single particle mea-

surements, such as π0 spectra [91–93] and π0 spectra with respect to the reaction plane [94,

95]; and two particle correlation measurements, such as dihadron [96–99] and dihadron

with respect to the reaction plane [100], π0 triggered correlations with hadrons [101], and

photon-hadron correlations [102].

1.7.2 Flavor Dependence of Energy Loss

In QED photons only lose energy through elastic collisions, i.e. Compton scattering.

Because a photon is chargeless, each vertex can have only one photon, and therefore a

photon cannot lose energy through the emission of a photon. This is not the case in QCD.

Because gluons carry color charge, multiple gluons can share a vertex and therefore a

gluon can directly emit a gluon, making it possible for gluons to lose energy through gluon

bremsstrahlung. In fact, gluons not only have color charge but they have more color charge

than quarks by the ratio of Casimirs CA/CF = 9/4. Therefore, not only do gluons lose en-

ergy through gluon emission, they lose more energy than quarks do. This is a fundamental

feature of the theory (see for example [1, 2, 5–7, 103]).

Since gluons are expected to lose more energy than light quarks, particles created from

gluon fragmentation should exhibit a stronger suppression pattern than those created from

quark fragmentation. Therefore, if one could measure the nuclear modification factors of

particles coming from gluons and quarks separately, one should be able to see this effect
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in the data. Heuristically speaking, we may indeed have access to particles coming from

quarks and gluons separately. Determination of fragmentation functions from fits to the

data [104–108] show that at high pT the production of light mesons (like pions) is domi-

nated by quark fragmentation while the production of baryons (like protons) is dominated

by gluon fragmentation. Therefore, the protons should exhibit a stronger suppression pat-

tern than the pions, meaning the RAA or RCP of protons should be lower than that of pions.

Any number of other effects could wash out this effect. For example, the differences

between the fragmentation functions could be smaller than is assumed. Another possible

effect is jet flavor conversions [109, 110], where elastic scattering changes the flavor of

the leading parton of the jet. Depending on the cross section for the particular scatter-

ing process, the color charge effect could be completely washed out by this mechanism.

Regardless, this effect should not at all be considered any kind of constraint on the funda-

mentals of QCD. The ratio CA/CF = 9/4 is fundamental to SU(3), which is already well

established as the correct gauge group for strong interactions.
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CHAPTER II

EXPERIMENTAL APPARATUS

2.1 The Relativistic Heavy Ion Collider

The Relativistic Heavy Ion Collider is an intersecting storage ring collider, and the first

of such a type to collide nuclei. The principle advantage of such an accelerator is that for

a given beam energy, the center of mass energy is much higher than that for a fixed target

accelerator. In an ISR collider, two beams are collided head on. Conversely, in a fixed

target accelerator, a single beam is directed onto a stationary target. The advantage of an

ISR in terms of
√
s is striking. At CERN/SPS, Ebeam = 158 GeV/u, but

√
sNN = 17.6 GeV.

On the other hand, at BNL/RHIC Ebeam = 100 GeV/u, but
√
sNN = 200 GeV.

The RHIC complex can be seen in Figure 2.1. At RHIC [111], the ions are first created

in a pulsed sputter ion source, with a charge state Q = -1. They are then electrostatically

accelerated in the Tandem Van de Graaff accelerator, passing through stripping foils and

leaving the Tandem with an energy of 1 MeV/u and charge state Q = +32. They next go into

the Booster synchrotron, where they are accelerated to 95 MeV/u and then passed through

another stripping foil taking them to the charge state Q = +77. The next and penultimate

step in their journey is the Alternating Gradient Synchrotron, where they are accelerated to

8.86 GeV/u and then passed through one last stripping foil, bringing them to the Q = +79

state, i.e. the bare nucleus. Finally, they are transferred to RHIC where they are accelerated

from 8.86 GeV/u to 100 GeV/u in under two minutes.
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When RHIC began operations in 2000, there were four experiments. The two large

ones, PHENIX (see [112]) and STAR (see [113]); and the two small ones, PHOBOS

(see [114]) and BRAHMS (see [115]). At the conclusion the fifth period of RHIC op-

erations in the summer of 2005 (known as Run5), PHOBOS and BRAHMS had completed

their physics goals and were consequently decommissioned. Presently, PHENIX and STAR

are still active and are intended to continue their physics programs well into the future. For

a complete list of RHIC beam energies and species, see Table 2.1.
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Figure 2.1: The RHIC Complex [111]
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Table 2.1: RHIC Collision Species and Energies.

RHIC Run Number Operational Period Collision Species
√
sNN

01 2000 Au+Au 130 GeV
Au+Au 56.0 GeV

02 2001-2002 Au+Au 200 GeV
Au+Au 19.6 GeV
p+p 200 GeV

03 2002-2003 d+Au 200 GeV
p+p 200 GeV

04 2003-2004 Au+Au 200 GeV
Au+Au 62.4 GeV

05 2004-2005 Cu+Cu 200 GeV
Cu+Cu 62.4 GeV
Cu+Cu 22.5 GeV
p+p 200 GeV

06 2006 p+p 200 GeV
p+p 62.4 GeV

07 2007 Au+Au 200 GeV
08 2007-2008 d+Au 200 GeV

p+p 200 GeV
Au+Au 9.2 GeV

09 2008-2009 p+p 500 GeV
p+p 200 GeV

10 2010 Au+Au 200 GeV
Au+Au 62.4 GeV
Au+Au 39.0 GeV
Au+Au 7.7 GeV
Au+Au 5.0 GeV
Au+Au 11.5 GeV

11 2011 p+p 500 GeV
Au+Au 19.6 GeV
Au+Au 200 GeV
Au+Au 27.0 GeV

12 2012 p+p 510 GeV
p+p 200 GeV
U+U 192 GeV
Cu+Au 200 GeV
Au+Au 5.0 GeV
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2.2 The Pioneering High Energy Nuclear Interaction Experiment

The PHENIX collaboration over 500 members from 68 institutions around the world.

The PHENIX spectrometer [112] consists of global event characterization detectors [116];

two central arms [117–119], covering the central rapidity region; and two muon arms [120],

covering forward and backward rapidity. Although PHENIX distinctly lacks both full az-

imuthal and full rapidity coverage, it has by far the most various and sophisticated detector

subsystems of all the RHIC experiments. It also has one of the fastest data acquisition

systems [121] in the world.

The PHENIX coordinate system (see Figure 2.2) defines the z-coordinate pointing ex-

actly along the beam pipe, roughly northward. The xy-plane is the plane normal to the

beam pipe with the y-coordinate pointing straight up and the x-coordinate pointing parallel

to the ground in a roughly westward direction. The azimuthal angle φ is the angle with

respect to the x-coordinate in the xy-plane and the zenith angle θ is the angle with respect

to the z-coordinate. The origin of the coordinate system is defined as being exactly at the

center of the central arms on the z-axis and exactly at the center of the beam pipe along the

xy-plane.
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Figure 2.2: The PHENIX coordinate system.
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2.3 Magnet System

The PHENIX magnet system [122] has three main components, muon magnets north

and south, and the central magnet. The muon magnets each have a tapered piston at their

center through which the beam pipe passes. Each magnet has two coils at the back of the

piston. The north magnet has two coils with 51 turns each an an operational current of

2941 A. The south magnet has two coils, the outer having 57 turns and the inner having

114 turns, with an operation current of 2300 A. The central magnet rests at the very center

of PHENIX with the beam pipe running right through it, and the central arms on each side

of it. It is 7.900 m tall, 4.840 m long, and weighs roughly 421 metric tons. It is comprised

of two sets of matched coils centered, both azimuthally and longitudinally, at the origin of

the PHENIX coordinate system. The first pair of coils has an average radius of 0.657 m at

a distance of 0.600 m from the origin, and the second pair has an average radius of 1.732 m

at a distance of 1.000 m from the origin. The inner coils have 120 turns and an operational

current of 2442 A, and the outer coils have 144 turns and an operational current of 1719 A.

The current in each central magnet coil pair can be run in either direction (forward and

reverse) and the pairs can be run together (++ and −−), opposed (+− and −+), and with

the interior coil off (+0 and −0). When run together, the maximum achieved field strength

is 0.90 T at R = 0 and the field integral is 1.15 T-m. When run with the interior coil off,

the maximum achieved field strength is 0.50 T at R = 0 and the field integral is 0.78 T-m.

When run opposed, the maximum achieved field strength is 0.35 T at R = 1.0 m and the

field integral is 0.43 T-m. All three configurations have the same field strengths at distances

of 1 m and greater from the origin. Figure 2.3 shows the field lines in the magnet system for
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the combined configuration in the left panel and reversed configuration in the right panel.

Figure 2.3: Magnetic field lines in the PHENIX Magnet system. Left panel shows com-
bined (++) configuration, right panel shows reversed (+−) configuration.
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2.4 Global Detectors

The main event characterization detectors are the Beam-Beam Counters and the Zero-

Degree Calorimeters. These two detectors were once used in concert to measure the cen-

trality and the event vertex, although more recently those two quantities have been mea-

sured using the BBC alone. The BBC are also used to determine the reaction plane and the

initial time for the event (collision). This start time t0 is used as the start time for time-of-

flight measurements, with the time measured in the time-of-flight detector as the stop time.

Since the publication of [116], one detector subsystem (the Multiplicity Vertex Detector or

MVD) has been decommissioned and two other have been added: the aptly named Reac-

tion Plane detector (RXNP), which is used to determine the reaction plane; and the Forward

Calorimeters, which can be used to determine the centrality in d+Au collisions.

2.4.1 Beam-Beam Counters

The Beam-Beam Counters [116, 123] are small, simple, and highly effective. The

BBC are two separate units, one at the North side of PHENIX, and one at the South side

(forward and backward rapidity, respectively), the beam pipe passing through the center

of each. They cover full azimuth and a pseudorapidity range of 3.0 < |η| < 3.9 and are

located 1.44 m from the interaction point, mounted on the far side of the central magnet

frame. Each BBC is an array of 64 identical hexagonal detector elements. Each element is a

simple Cherenkova radiation counter. The radiator and photomultiplier tube are constructed

aCherenkov is sometimes written as Čerenkov. Pavel Alekseevich Cherenkov was Russian, therefore his
name is most properly written in the Cyrillic alphabet Pavel Alekseeviq Qerenkov. Since transliteration
from one writing system to another is somewhat arbitrary, I prefer to use the standard transliteration of “Ch”.
Use of the monograph “Č” is a result of the influence of Western-Slavic languages that are written in the Latin
alphabet. If you’re still reading this, send me an email with subject “Cherenkov” and I’ll buy you a beer.
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as a single piece. A hexagonally shaped fused quartz crystal, 3 cm thick and inscribing a 1”

circle, serves as both the radiator and the window for the PMT. The PMT has a 1” diameter

tube and has a 15 stage fine-mesh dynode and is designed to be capable of operating in

high magnetic fields, which is a necessary feature because the field strength can be as high

as 0.3 T in the region around the BBC.

2.4 (a) 2.4 (b) 2.4 (c)

Figure 2.4: (a) Photograph of a BBC assembly. (b) Photograph of an individual BBC
detector element. (c) Schematic drawing of a BBC, indicating the layout of the individual
elements.

2.4.2 Zero-Degree Calorimeters

Like the BBC, the Zero-Degree Calorimeters [124] are small, simple, and highly effec-

tive. Like the BBC, the ZDC are two separate units, one to the North and one to the South.

Unlike the BBC however, the ZDC are not in the experiment hall of PHENIX but rather are

much further out, in the beam tunnel, a full 18 m from the interaction point, and cover a

zenith angle of± 0.23◦, compared to the 2.4-5.7◦ covered by the BBC. They are behind the

dipole magnets that steer the beams into the interaction region. The charged remnants (pro-

tons) from a collision will be swept into the beam pipe along with the beam itself, while the
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neutral remnants (neutrons) will continue along a straight path, which is where the ZDC

is placed. Since the purpose is to measure the neutron remnants, the ZDC is a hadronic

calorimeter. It is a relatively simple design with 3 longitudinal segments and no transverse

segmentation. Each segment has a 5 mm (2λI) thick tungsten absorber and poly(methyl

methacrylate) optical fiber bundle sampler with a 12 stage general purpose PMT. The ZDC

is a parallelepiped, with the cross section along the beam line being roughly square and the

face and back swept at 45◦ so that the incidence angle with respect to the fibers is roughly

equal to the Cherenkov angle.

Figure 2.5: Top: view of the ZDC layout from above. Bottom: view of the ZDC layout
from the back.
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2.5 Central Arm Spectrometers

The central arms have both excellent particle tracking and particle identification. Each

arm covers 90◦ in azimuth and -0.35 < η < 0.35 in pseudorapidity. The Drift Chamber

(DC) determines the momentum by measuring the particle deflection in the central mag-

netic field. Married to the DC is the first layer of Pad Chambers (PC1), which measures the

position upon exit of the drift chamber. The other main tracking detector is the third layer of

Pad Chambers (PC3). Unique to the west arm is the second layer of Pad Chambers (PC2).

Particle identification is performed with various subsystems for various types of particles.

The Electromagnetic Calorimeter (EMC or EMCal) is used principally for photons, and

also electrons. The Ring Imaging Cherenkov detector (RICH) is use for identification of

electrons. There are two time-of-flight detectors, one in each arm; the primary purpose for

these subsystems is the identification of charged hadrons. The time of flight west (TOFW),

which began operation in PHENIX during Run7, was a major contribution from the group

at Vanderbilt University. The time of flight east (TOF or TOFE) has been in PHENIX since

its inception. See Figure 2.6 for a schematic drawing of the Run12 (present day) configura-

tion of PHENIX. In the succeeding sections, I will discuss the relevant detector subsystems

in greater detail.
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Figure 2.6: Schematic of the PHENIX spectrometer.
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2.5.1 Drift Chambers

The drift chambers [117, 125] are a controlled drift geometry type drift chamber. In ad-

dition to the cathode and anode wires, there are potential wires, gate wires, and back wires.

The potential wires decouple adjacent anode wires, the gate wires limit the drift length,

and the back wires prevent charge from passing a certain region. The anode wires serve as

the sense wires and are isolated at the middle so they can be read out on both sides. Each

DC has a titanium frame that defines the fiducial volume azimuthally and longitudinally,

and mylar windows define the fiducial volume radially. The frame has a single 2” diameter

carboplastic support strut at the azimuthal center. The DC are cylindrically shaped, 2.5 m

in length along the beam pipe, and have an inner radius of 2.02 m and an outer radius of

2.46 m. The active area covers 90◦ in azimuth for each arm (east and west) and 1.8 m

along the beam pipe (-0.35 < η < 0.35 in pseudorapidity). Each DC has 20 identical seg-

ments in azimuth, called keystones, each 4.5◦ and having a central support strut made of

100 micron-thick kapton at z = 0 to isolate the sense wires. There are six series of wire

modules in the DC: X1, U1, V1, X2, U2, V2. The X wires are strung parallel to the beam

pipe and are used to measure position in the xy-plane. The U/V wires are strung at small

angles with respect to the beam pipe and measure the position on the z-axis. The angles are

5.376◦, 5.512◦, 5.900◦, 6.040◦ for U1, V1, U2, V2, respectively, and are chosen to match

the z-coordinate resolution of the pad chambers.

The X wire nets each contain 12 wires and the U/V wire nets contain 4 wires. The nets

are mounted in aluminum cages, which are bolted to the frame. There are 8 nets per cage,

and 1 cage for each wire series. Each keystone contains 3 cages, one for each wire series,
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and has a total of 160 sense wires. There are 20 keystones for each arm, meaning 3200

sense wires per arm and 6400 sense wires total. There are readouts on either end of the

sense wires for a total of 12,800 readouts. This number is reduced to 12,544 due to the fact

that U/V wires can’t be mounted at the azimuthal extremes as well as the presence of the

central support struts.
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2.7 (a) 2.7 (b)

2.7 (c)

Figure 2.7: (a) Schematic of one arm of the drift chamber. (b) Wire position within one
sector and inside the anode plane. (c) Top view of the stereo wire orientation.
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2.5.2 Pad Chambers

The pad chambers [117, 126] are multi-wire proportional chambers. While early de-

signs intended there to be 3 layers in each arm, the final design has 3 layers in west arm

and 2 layers in the east arm. The first layer of pad chambers, PC1, are mated directly to the

DC and are at a radius of 2.49 m; the second layer of pad chambers, PC2, is at a radius of

4.19 m; and the third layer of pad chambers, PC3, are at a radius of 4.89 m. Each layer has

an active volume covering 90◦ in azimuth for each arm and lengths of 1.8 m for PC1, 3.2 m

for PC2, and 3.6 m for PC3, covering -0.35 < η < 0.35 in pseudorapidity. Each layer is

segmented into 8 individual chambers. In PC1, there are 8 azimuthal segments, while in

PC2 and PC3, there are 4 azimuthal segments and 2 z-direction segments. The PC1 has no

structural frame while the PC2 and PC3 have a fiberglass structure surrounding the cham-

bers. Each individual chamber consists of single plane of anode and field wires surrounded

on either side by solid cathode planes, which define the gas volume. Each cathode plane is

segmented into an array of pixels, and the basic readout element is a “pad” of 9 pixels.
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Figure 2.8: Schematic of a Pad Chamber.
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2.5.3 Time-of-Flight West

The TOFW [127] is a time-of-flight detector based on multi-gap resistive plate chamber

(MRPC) technology. It is composed of four boxes, two in sector W1 and two in sector W2.

In each sector, one box is on the north side and one box is on the south side. Each box con-

tains two rows (top and bottom) and two layers (front and back) of MRPCs, for a total of 4

separate HV busses, each powering 8 MRPCs for a total of 32 MRPCs per box (128 MRPCs

in all). At the heart of each MRPC are 7 glass plates with 6 gaps with a thickness of 230

microns. On either side of the glass are two HV electrodes, one held at positive voltage, and

one at negative voltage. Standard operation is± 7 kV for a total operating voltage of 14 kV.

During the commissioning run in 2007 (Run7), the gas mixture was 95% R134a (1,1,1,2-

Tetrafluoroethane, CF3CFH2) and 5% isobutane(2-Methylpropane, CH3CHCH3CH3). In

the 2008 operational period (Run8) the gas mixture was changed to 95% R134a, 4.5%

isobutane, and 0.5% sulfur hexafluoride (SF6). Starting in the operational period in 2011

(Run11), The gas mixture was changed to 92% R134a, 5% isobutane, and 3% SF6.

Each MRPC has 4 copper strips on either side, front and back. Each strip is 37 cm

× 2.8 cm. Each strip on one side is wired to its partner on the opposite side, so the 8

strips function as 4 strips. Each strip pair has a readout on each end, top and bottom. This

gives a total of 8 readouts per chamber, 1024 readouts in all. The ionization caused by a fast

particle traversing the gas is imaged in the strip. The on-board Front End Electronics (FEE)

process the signal pulse height and time and convert the pulse current into voltage. The

FEEs also provide impedance matching and amplification for the signal. After processing

in the FEE, the signal is transmitted via 25 ft. of cable to the Front End Modules (FEM).
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The FEMs split the signal for simultaneous processing of time (TVC) and pulse height

(QVC) measurements and perform the analog to digital conversions, giving time as a TDC

value and pulse height as an ADC value.
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Figure 2.9: Schematic of an MRPC from the TOFW.
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CHAPTER III

METHODS AND DETAILS OF THE ANALYSIS

3.1 Data Selection

3.1.1 Run Selection

A total of 933 runs were produced for the Run7 data set, Au+Au collisions at
√
sNN =

200 GeV. Of these, a range of 865-871 are available on the Analysis Train, which is the

internal PHENIX collaboration framework for accessing the full data sets. Exactly how

many runs are available at any given time is dependent on specific conditions when the

train is running. For this analysis, we base our run list off of the list of 869 runs that were

available for Analysis Train 160. There are several ways to go about determining a good run

list. In this analysis, we consider two different ways and compare the results. One approach

is to use the data from the train and analyze certain basic quantities. We looked at the ratio

of charged tracks as well as the mean per-event multiplicity as a function of runnumber.

The charge ratio analysis yields 27 problematic runs and the multiplicity analysis yields 28

problematic runs. There are 18 runs of overlap in these two analyses for a total of 38 bad

runs. The results of this approach can be seen in Figure 3.1. The second approach is to

examine the online monitoring plots and determine which runs exhibit unfavorable detector

performance. Using this method, 32 runs were found to be problematic for the TOFW. For

the drift chamber, 324 runs were found to have issues. Because this number is much larger

than can be regarded as reasonable, the criteria must be stricter than merely having found
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a problem. In one case, 113 runs were found to have dead X2 high voltage in keystone

number 10 on the North and South sides, but to have no other problems; these runs were

kept. In another case, 96 runs were found to indicate too many dead channels and/or too

low of a hit rate, but indicated no other problems; these runs were kept. Of the 324 runs,

115 remain to be excluded. Of course, not all of the runs in the online monitoring are in

the actual Taxi160 run list. Of the 32 runs found to be bad for the TOFW, 17 are found in

the run list, and of the 115 runs found to be bad for the DC, 94 are found in the run list. Of

these, a mere 2 runs overlap, for a total of 109 runs to be excluded. Quite surprisingly, we

find that in spite of all our efforts towards making a good runs list, the spectra are virtually

identical regardless of which run-by-run QA is applied or even whether any is applied at

all. We performed a very similar analysis for the Run8 d+Au data with essentially identical

results. In the final analysis, the only runs that are excluded are the small set of runs in Run7

where the magnetic field was briefly operated with the coils together instead of opposed.

Figure 3.1: Run-by-run Quality Assurance. Left panel: charged track ratio as a function of
run index. Right panel: mean multiplicity per-event as a function of run index.
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3.1.2 Event Selection

For both the Run7 Au+Au and Run8 d+Au we select events that pass the minimum

bias (MB) trigger, which is defined as a coincidence in both the North and South BBCs,

meaning at least one PMT fired (produced one or more photoelectrons) in each BBC. In

Au+Au collisions, this trigger measures 92% of the total inelastic cross section; in d+Au

collisions, it measures 88% of the total inelastic cross section. We have an additional

requirement that the collision vertex is within |zvertex| < 30 cm of the nominal origin of the

coordinate system. Collisions beyond this range are too far off-center for reliable analysis

and are therefore excluded from the analysis. This is generally the standard event vertex

cut in PHENIX, except in a few special cases where a tighter vertex cut is needed.

In both Run7 Au+Au and Run8 d+Au the centrality is determined by the BBC per-

centile method. In Au+Au, the centrality is measured by taking the sum of the charge in

the north BBC and in the south BBC and dividing the charge distribution into equally prob-

able percentiles. In d+Au, the charge distribution in only the south BBC, the Au-going side,

is used and again divided into equally probable percentiles. Glauber Monte Carlo simula-

tions are done to determine the number of binary nucleon-nucleon collisions Ncoll and the

number of participating nucleons Npart. The Run7 Au+Au Glauber results are presented in

AN768 [128] and the Run8 d+Au Glauber results are presented in AN900 [129]. A table

of the Glauber values relevant for this analysis is given in Table 1.1.
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3.1.3 Track Selection

The detector subsystems we use are the drift chamber (DC), the first layer of the pad

chambers (PC1), and the third layer of the pad chambers (PC3) for momentum recon-

struction and tracking; and the time of flight detector in the west arm (TOFW) for particle

identification.

Charged track reconstruction in the DC is based on a combinatorial Hough transform,

which gives the angle α in the main bend plane (r−φ) and thus pT ; that is, α ∝ 1/pT . The

PC1 is used to determine the hit position in the longitudinal (z) direction and thus pz/pT .

We require the longitudinal position to be 3 cm < |z| < 70 cm, where the lower bound cuts

out the vertical support strut and the upper bound cuts out the edges on either side. Only

tracks with valid information in both the DC and PC1 are used in this analysis. Specifically,

we use tracks with DC/PC1 quality either 31 or 63. Table 3.1 shows the bit information of

a track and what the different bits mean.

Table 3.1: DC track quality bit information

Bit position Numerical value Meaning
0 1 X1 used
1 2 X2 used
2 4 UV found
3 8 UV unique
4 16 PC1 found
5 32 PC1 unique

Since the z-coordinate information is based on the PC1 and then matched to the DC,

the lowest possible sequence is 100010. The sequence is used to determine the numerical
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value of the track quality: 100010→ 1× 1 + 0× 2 + 0× 4 + 0× 8 + 1× 16 + 0× 32 = 17.

The best case scenario is the highest possible sequence: 111111→ 1× 1 + 1× 2 + 1× 4 +

1×8+1×16+1×32 = 63. The second best case scenario is not in fact the second highest

numbered sequence, but rather a found/ambiguous PC1 hit with a best choice of UV hit and

both X wires firing: 111110→ 1× 1 + 1× 2 + 1× 4 + 1× 8 + 1× 16 + 0× 32 = 31.

A summary of the different possible DC track qualities can be seen in table 3.2 (sorted

by z-coordinate information) and table 3.3 (sorted by momentum information).

Table 3.2: DC track quality summary, by z-coordinate information

Quality PC1 found PC1 unique UV found UV unique
17,18,19 1 0 0 0
21,22,23 1 0 1 0
29,30,31 1 0 1 1
49,50,51 1 1 1 0
61,62,63 1 1 1 1

Table 3.3: DC track quality summary, by momentum information

Quality X1 used X2 used
17,21,29,49,61 1 0
18,22,30,50,62 0 1
19,23,31,51,63 1 1

Tracks in DC/PC1 are projected to the outer detectors, such as PC3 and TOFW, and

matched with hits in those detectors with the minimum distance between the projection and

the hit position. The distribution of differences between hits and projections which is called
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the track matching residual distiribution (residual for short) is approximately Gaussian,

with an additional underlying background caused by random associations. Only tracks with

a difference of less than two standard deviations in both the azimuthal and longitudinal

directions in both the PC3 and the TOFW are selected, so as to minimize background

contamination. For analysis, these track matching residual distributions are normalized

in such a way that the standard deviation of the distribution is one and the mean is zero.

These normalized residual distributions are often called the “sigmalized residuals” in the

PHENIX jargon. The analysis variable for a particular residual has the name of the detector

and the coordinate variable. For example, the residual distribution in the z direction in

the TOFW is called tofwdz and the sigmalized residual is tofwsdz. In the same way,

the TOFW φ residual is tofwdphi and the sigmalized residual is tofwsdphi. The PC3

variables are pc3dz, pc3dphi, pc3sdz, and pc3sdphi. In this analysis we require the track

matching residuals to be less than two standard deviations from the mean in both the φ and

z directions in both the PC3 and the TOFW, so as to minimize background contamination.

In the Run7 Au+Au data, for pT > 5.0 GeV/c we require an additional cut to further

reduce background. This cut is ecore/pT > 0.2, where ecore is the core energy in the

electromagnet calorimiter (EMCal). This cut removes low momentum particles that are

falsely reconstructed as high pT tracks. For the Run8 d+Au data, we only measure up to

pT = 5.0 GeV/c and therefore this cut is not applied.

Finally, we have additional cuts for the TOFW. We require the ADC value to be 60

< qtofw < 600, and we also remove poorly performing strips. Most of these (32) are from

a dead HV buss, and a few others (9) have weak signals.

The analysis cuts and their values are presented in table 3.4.
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Table 3.4: Analysis Cuts

Cut Value
Trigger Minimum Bias
Event Vertex |zvertex| < 30 cm
Track Quality DC quality number 63 or 31
DC Zed 3 cm < |zDC| < 70 cm
Fiducial Cuts

DC 2D cuts in αDC–φDC space
PC1 2D cuts in zPC1–φPC1 space
PC3 2D cuts in zPC3–φPC3 space

Track Matching
PC3 2σ cuts on both z and φ residuals
TOFW 2σ cuts on both z and φ residuals

EMCal cut ecore/pT > 0.2 (for pT > 5.0 GeV/c)
TOFW specific

Strip ID 1 dead HV buss (32 strips) and 9 additional poorly performing strips
ADC 60 < qtofw < 600

PID 2σ on m2 with 2σ veto on other particle types
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3.1.4 Particle Identification

The TOFW uses multi-gap resistive plate chamber technology to achieve an intrinsic

timing resolution of σt ≈ 75 ps, enabling excellent particle identification (PID) capabilities.

Using the TOFW, charged pions and kaons can be identified separately up to a transverse

momentum of pT ≈ 2.8 GeV/c, and charged kaons and protons separated up to pT ≈ 4

GeV/c using the traditional method of a m2 window cut of two standard deviations from

the mean as a function of pT . Using more advanced PID methods, higher pT can be reached.

In this analysis, we use asymmetric cuts, where in addition to requiring a 2σ m2 cut, we

further require the exclusion of the 2σ m2 region of the other particles. Figure 3.2 illustrates

the effect of this cut clearly. The left panel shows a 2-d scatter plot of the m2 vs charge

×pT distribution with the PID functions superimposed, and the right plot shows the same

with all the PID cuts applied. In principle, this PID method allows charged pions and

protons to be identified up to infinite momentum. In practice, this allows pion and proton

identification up to 5-6 GeV/c, beyond which things like background contamination and

the uncertainty in the m2 distributions are too large for reliable PID and yield extraction.

The PID of kaons is limited by the merge of the pion and proton m2 distributions, which

happens between 3.5 and 4 GeV/c.

The procedure to determine the PID functions for each particle is the same for Run7 and

Run8 (and in principle any Run). However, there can be differences in the functions across

Runs due to differences in BBC timing performance. For example, the lower multiplicity

in d+Au collisions results in poorer timing resolution, thereby making the timing resolution

and, consequentially the m2 resolution, worse in the TOFW.

67



Figure 3.2: Two dimensional scatter plot of the m2 distribution as a function of charge
×pT , with the PID functions superimposed. Left panel: full distribution. Right panel:
distribution with PID cuts applied. Run7 Au+Au data shown, Run8 d+Au data very similar.

To determine the PID functions for each particle, a 2-d histogram is filled with the m2

as measured in the tofw as a function of pT . Then, each peak is fit independently with a

Gaussian distribution. In the case of the pion and kaon, the peaks begin to merge at pT ≈

2.5 GeV/c, so a double Gaussian is employed to reduce the uncertainty of the individual

fits. Figures 3.3 and 3.4 show examples of the 1-d fits in Run7, and Figures 3.5 and 3.6

show the same examples in Run8. Next, the mean and standard deviation of each particle

as a function of pT are fitted with a function of the form

f(x) = p0 + p1/x+ p2/x
2 + p3e

√
x + p4

√
x (3.1)

and the parameters from the fit are used to define the final PID function for each particle.

Figures 3.7–3.12 show the functional fits in Run7, and Figures 3.7–3.12 show them in

Run8.
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Figure 3.3: 1-d m2 distribution of pions and
kaons for 2.5 GeV/c < pT < 2.6 GeV/c,
Run7 data set.

Figure 3.4: 1-d m2 distribution of protons
for 3.0 GeV/c < pT < 3.1 GeV/c, Run7 data
set.

Figure 3.5: 1-d m2 distribution of pions and
kaons for 2.5 GeV/c < pT < 2.6 GeV/c,
Run8 data set.

Figure 3.6: 1-d m2 distribution of protons
for 3.0 GeV/c < pT < 3.1 GeV/c, Run8 data
set.
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Figure 3.7: The mean of the m2 distribution
for π± as a function of pT , Run7.

Figure 3.8: The standard deviation of them2

distribution for π± as a function of pT , Run7.

Figure 3.9: The mean of the m2 distribution
for K± as a function of pT , Run7.

Figure 3.10: The standard deviation of the
m2 distribution for K± as a function of pT ,
Run7.

Figure 3.11: The mean of them2 distribution
for p and p̄ as a function of pT , Run7.

Figure 3.12: The standard deviation of the
m2 distribution for p and p̄ as a function of
pT , Run7.
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Figure 3.13: The mean of them2 distribution
for π± as a function of pT , Run8.

Figure 3.14: The standard deviation of the
m2 distribution for π± as a function of pT ,
Run8.

Figure 3.15: The mean of them2 distribution
for K± as a function of pT , Run8.

Figure 3.16: The standard deviation of the
m2 distribution for K± as a function of pT ,
Run8.

Figure 3.17: The mean of them2 distribution
for p and p̄ as a function of pT , Run8.

Figure 3.18: The standard deviation of the
m2 distribution for p and p̄ as a function of
pT , Run8.
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Now we compare the functional fit the analytic parametrization used in previous anal-

yses (AN187 [130] for PPG015 [50] and PPG026 [38], AN231 [131] for PPG030 [132],

and AN776 [133] for PPG101 [134]). The standard deviation of the m2 distribution can be

parametrized by the angular resolution σα of the DC, the multiple scattering term σms, and

the timing resolution σt:

σ2
m2 =

σ2
α

K2
1

(
4m4p2

)
+
σ2
ms

K2
1

(
4m4

(
1 +

m2

p2

))
+
σ2
t c

2

L2

(
4p2
(
m2 + p2

))
, (3.2)

where K1 is the field integral (104 mrad GeV for the ++ and −− field configurations as

in Run8, 75 mrad GeV for the +− and −+ field configurations as in Run7) and L is the

distance from the collision vertex to the TOFW (495 cm).

Figure 3.19: The 2σ PID functions based on the functional and analytical forms for all
particles as a function of pT . Left panel Run7, right panel Run8.

As can be seen, with the two types of PID functions show nearly identical behavior.

The parameters in equation 3.2 were determined from a simultaneous fit performed for the

TOFW NIM paper. In this analysis we adjust the timing resolution to be slightly wider
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to match it to the known performance from the timing recalibration, and compare to the

parameters from the fit to estimate the systematic uncertainty. The “Alternate” set of pa-

rameters is an additional set for the evaluation of systematic uncertainties.

Table 3.5: PID function parameters

Run7
Parameter From Fit Expected Alternate
σα 0.896 mrad 0.9 mrad 1.0 mrad
σms 0.992 mrad GeV 1.0 mrad GeV 1.0 mrad GeV
σt 74 ps 84 ps 80 ps

Run8
Parameter From Fit Expected Alternate
σα 1.5 mrad 1.0 mrad 1.0 mrad
σms 1.0 mrad GeV 1.0 mrad GeV 1.0 mrad GeV
σt 100 ps 90 ps 95 ps
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3.2 Corrections to the Raw Data

3.2.1 Correction Factors From Single Particle Monte Carlo Simulations

Most of the corrections that need to be made to raw measurements, such as those of

geometrical acceptance and track reconstruction efficiency, can be evaluated using single

particle Monte Carlo (SPMC) simulations. These simulations are also be used to correct

for the various tracking cuts used. The basic steps of the simulation chain are:

1. Single particle Monte Carlo event generation (Exodus)
2. Evaluation of material interactions and secondary particle generation (PISA)
3. Track reconstruction from PISA hits in detector volumes (pisaToDST)
4. Analysis of simulated tracks
5. Calculation of correction factors

The correction factors are determined by comparing the Exodus input to the final out-

put of the analyzed simulated tracks. The efficiency can be determined by the following

relation:

dNoutput/dpT
dNinput/dpT

= εacceptanceεefficiencyεcuts; (3.3)

the correction factor is merely the inverse of this quantity:

FC(pT ) =
dNoutput/dpT
dNinput/dpT

. (3.4)

The corrected spectrum then is simply

dNcorrected

dpT
=
dNraw

dpT
FC(pT ). (3.5)

The parameters we use to run Exodus are summarized in Table 3.6.
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Table 3.6: Exodus input parameters

Parameter Value
Event type single particle
pT distribution flat
pT range 0.0 GeV/c < pT < 10.0 GeV/c
rapidity range -0.6 < y < 0.6
z-vertex range -30 cm < z < 30 cm
azimuth range −π/2 < φ < π/2
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3.2.1.1 Plots of the SPMC correction factors for Run7

Here we plot both charges of pions in each magnetic field together, and additionally

represent the correction factors both with the asymmetric m2 cut used in the analysis as

well as a symmetric only m2 cut to represent the overall efficiency.

Figure 3.20: The correction factors of π in
the +− field as a function of pT .

Figure 3.21: The correction factors with
symmetric m2 cut only of π in the +− field
as a function of pT .

Figure 3.22: The correction factors of π in
the −+ field as a function of pT .

Figure 3.23: The correction factors with
symmetric m2 cut only of π in the −+ field
as a function of pT .
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Here we plot both charges of pions for each DC alpha value field together, which high-

lights the uniformity of the acceptance when mixing fields in order to sample the same

fiducial region of the DC. As before, we include the correction factors both with the asym-

metric m2 cut used in the analysis as well as a symmetric only m2 cut to represent the

overall efficiency.

Figure 3.24: The correction factors of π with
α < 0 as a function of pT .

Figure 3.25: The correction factors with
symmetric m2 cut only of π with α < 0 as a
function of pT .

Figure 3.26: The correction factors of π with
α > 0 as a function of pT .

Figure 3.27: The correction factors with
symmetric m2 cut only of π with α > 0 as a
function of pT .
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In the proceeding 4 pages, we reiterate the above process for kaons on the next two

pages protons for the two pages following that.

Figure 3.28: The correction factors of K in
the +− field as a function of pT .

Figure 3.29: The correction factors with
symmetric m2 cut only of K in the +− field
as a function of pT .

Figure 3.30: The correction factors of K in
the −+ field as a function of pT .

Figure 3.31: The correction factors with
symmetric m2 cut only of K in the −+ field
as a function of pT .
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Figure 3.32: The correction factors of K
with α < 0 as a function of pT .

Figure 3.33: The correction factors with
symmetric m2 cut only of K with α < 0
as a function of pT .

Figure 3.34: The correction factors of K
with α > 0 as a function of pT .

Figure 3.35: The correction factors with
symmetric m2 cut only of K with α > 0
as a function of pT .
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Figure 3.36: The correction factors of p and
p̄ in the +− field as a function of pT .

Figure 3.37: The correction factors with
symmetric m2 cut only of p and p̄ in the +−
field as a function of pT .

Figure 3.38: The correction factors of p and
p̄ in the −+ field as a function of pT .

Figure 3.39: The correction factors with
symmetric m2 cut only of p and p̄ in the −+
field as a function of pT .
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Figure 3.40: The correction factors of p and
p̄ with α < 0 as a function of pT .

Figure 3.41: The correction factors with
symmetricm2 cut only of p and p̄with α < 0
as a function of pT .

Figure 3.42: The correction factors of p and
p̄ with α > 0 as a function of pT .

Figure 3.43: The correction factors with
symmetricm2 cut only of p and p̄with α > 0
as a function of pT .
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3.2.1.2 Plots of the SPMC correction factors for Run8

Here we reiterate the previous section for the Run8 corrections.

Figure 3.44: The correction factors of π in
the ++ field as a function of pT .

Figure 3.45: The correction factors with
symmetric m2 cut only of π in the ++ field
as a function of pT .

Figure 3.46: The correction factors of π in
the −− field as a function of pT .

Figure 3.47: The correction factors with
symmetric m2 cut only of π in the −− field
as a function of pT .
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Here again we plot both charges of pions for each DC alpha value field together.

Figure 3.48: The correction factors of π with
α < 0 as a function of pT .

Figure 3.49: The correction factors with
symmetric m2 cut only of π with α < 0 as a
function of pT .

Figure 3.50: The correction factors of π with
α > 0 as a function of pT .

Figure 3.51: The correction factors with
symmetric m2 cut only of π with α > 0 as a
function of pT .
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In the proceeding 4 pages, we reiterate the above process for kaons on the next two

pages protons for the two pages following that.

Figure 3.52: The correction factors of K in
the ++ field as a function of pT .

Figure 3.53: The correction factors with
symmetric m2 cut only of K in the ++ field
as a function of pT .

Figure 3.54: The correction factors of K in
the −− field as a function of pT .

Figure 3.55: The correction factors with
symmetric m2 cut only of K in the −− field
as a function of pT .
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Figure 3.56: The correction factors of K
with α < 0 as a function of pT .

Figure 3.57: The correction factors with
symmetric m2 cut only of K with α < 0
as a function of pT .

Figure 3.58: The correction factors of K
with α > 0 as a function of pT .

Figure 3.59: The correction factors with
symmetric m2 cut only of K with α > 0
as a function of pT .
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Figure 3.60: The correction factors of p and
p̄ in the ++ field as a function of pT .

Figure 3.61: The correction factors with
symmetric m2 cut only of p and p̄ in the ++
field as a function of pT .

Figure 3.62: The correction factors of p and
p̄ in the −− field as a function of pT .

Figure 3.63: The correction factors with
symmetric m2 cut only of p and p̄ in the −−
field as a function of pT .
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Figure 3.64: The correction factors of p and
p̄ with α < 0 as a function of pT .

Figure 3.65: The correction factors with
symmetricm2 cut only of p and p̄with α < 0
as a function of pT .

Figure 3.66: The correction factors of p and
p̄ with α > 0 as a function of pT .

Figure 3.67: The correction factors with
symmetricm2 cut only of p and p̄with α > 0
as a function of pT .
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3.2.2 Comparisons Between Simulated and Real Data

To ensure an accurate evaluation of the efficiencies, especially those of the tracking

cuts, it is necessary to verify that the simulation software is working as expected, and to

accommodate any unexpected behavior.

We find that the DC acceptance is poorly described in the simulations. Even small

differences in DC acceptance can cause significant differences in the evaluation of the pT

dependence of the acceptance and cut efficiencies, so a detailed DC fiducial cut is need.

We find that the PC acceptance is reasonably well-described in the simulations but there

is room for improvement. These are pT -independent and contribute only to the overall

normalization. Additionally, the TOFW dead strip map is not in the simulations, so a strip

cut is applied to both real and simulated tracks. This too is pT -independent and contributes

only to the overall normalization. Fortunately, we find the TOFW timing performance is

extremely well described in the simulated data, which is very beneficial for the evaluation

of asymmetric PID cuts.

Since the final subsection of the preceding section was about the PID functions in the

real data, we begin our treatment of simulated and real comparisons with the PID functions

for the sake of continuity. This is also the most important comparison for this analysis. The

PID functions for simulated data are determined in the exact same manner as for real data.
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3.2.2.1 PID functions in simulated and real data in Run7

Figure 3.68: The mean of them2 distribution
for π as a function of pT , Run7.

Figure 3.69: The standard deviation of the
m2 distribution for π as a function of pT ,
Run7.

Figure 3.70: The mean of them2 distribution
for K as a function of pT , Run7.

Figure 3.71: The standard deviation of the
m2 distribution for K as a function of pT ,
Run7.
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Figure 3.72: The mean of them2 distribution
for p as a function of pT , Run7.

Figure 3.73: The standard deviation of the
m2 distribution for p as a function of pT ,
Run7.

3.2.2.2 PID functions in simulated and real data in Run8

In order to match the real data, the ttofw variable (representing the time-of-flight,

which is the difference between the time measured in the TOFW and the start time deter-

mined by the BBC) in the simulated data is smeared with a Gaussian distribution using

gRandom and then the m2 is recalculated with the adjusted timing variable. To address the

apparent discrepancy in the momentum resolution, the standard deviations of the m2 dis-

tributions in the simulated data are additionally widened by a small constant multiplicative

factor for the heavier particles (5% for kaons and 10% for protons).
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Figure 3.74: The mean of them2 distribution
for π as a function of pT , Run8.

Figure 3.75: The standard deviation of the
m2 distribution for π as a function of pT ,
Run8.

Figure 3.76: The mean of them2 distribution
for K as a function of pT , Run8.

Figure 3.77: The standard deviation of the
m2 distribution for K as a function of pT ,
Run8.

Figure 3.78: The mean of them2 distribution
for p as a function of pT , Run8.

Figure 3.79: The standard deviation of the
m2 distribution for p as a function of pT ,
Run8.
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3.2.2.3 Drift chamber fiducial maps for Run7

These plots show the DC fiducial map for negative DC zed in the +− field.

Figure 3.80: DC alpha vs DC phi, negative
DC zed, +− field. Real data, no fiducial cut
applied.

Figure 3.81: DC alpha vs DC phi, negative
DC zed, +− field. Simulated data, no fidu-
cial cut applied.

Figure 3.82: DC alpha vs DC phi, negative
DC zed, +− field. Real data, fiducial cut
applied.

Figure 3.83: DC alpha vs DC phi, negative
DC zed, +− field. Simulated data, fiducial
cut applied.

92



These plots show the DC fiducial map for positive DC zed in the +− field.

Figure 3.84: DC alpha vs DC phi, positive
DC zed, +− field. Real data, no fiducial cut
applied.

Figure 3.85: DC alpha vs DC phi, positive
DC zed, +− field. Simulated data, no fidu-
cial cut applied.

Figure 3.86: DC alpha vs DC phi, positive
DC zed, +− field. Real data, fiducial cut
applied.

Figure 3.87: DC alpha vs DC phi, positive
DC zed, +− field. Simulated data, fiducial
cut applied.
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These plots show the DC fiducial map for negative DC zed in the −+ field.

Figure 3.88: DC alpha vs DC phi, negative
DC zed, −+ field. Real data, no fiducial cut
applied.

Figure 3.89: DC alpha vs DC phi, negative
DC zed, −+ field. Simulated data, no fidu-
cial cut applied.

Figure 3.90: DC alpha vs DC phi, negative
DC zed, −+ field. Real data, fiducial cut
applied.

Figure 3.91: DC alpha vs DC phi, negative
DC zed, −+ field. Simulated data, fiducial
cut applied.
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These plots show the DC fiducial map for positive DC zed in the −+ field.

Figure 3.92: DC alpha vs DC phi, positive
DC zed, −+ field. Real data, no fiducial cut
applied.

Figure 3.93: DC alpha vs DC phi, positive
DC zed, −+ field. Simulated data, no fidu-
cial cut applied.

Figure 3.94: DC alpha vs DC phi, positive
DC zed, −+ field. Real data, fiducial cut
applied.

Figure 3.95: DC alpha vs DC phi, positive
DC zed, −+ field. Simulated data, fiducial
cut applied.
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3.2.2.4 Drift chamber fiducial maps for Run8

These plots show the DC fiducial map for negative DC zed in the ++ field.

Figure 3.96: DC alpha vs DC phi, negative
DC zed, ++ field. Real data, no fiducial cut
applied.

Figure 3.97: DC alpha vs DC phi, negative
DC zed, ++ field. Simulated data, no fidu-
cial cut applied.

Figure 3.98: DC alpha vs DC phi, negative
DC zed, ++ field. Real data, fiducial cut
applied.

Figure 3.99: DC alpha vs DC phi, negative
DC zed, ++ field. Simulated data, fiducial
cut applied.
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These plots show the DC fiducial map for positive DC zed in the ++ field.

Figure 3.100: DC alpha vs DC phi, positive
DC zed, ++ field. Real data, no fiducial cut
applied.

Figure 3.101: DC alpha vs DC phi, positive
DC zed, ++ field. Simulated data, no fidu-
cial cut applied.

Figure 3.102: DC alpha vs DC phi, positive
DC zed, ++ field. Real data, fiducial cut
applied.

Figure 3.103: DC alpha vs DC phi, positive
DC zed, ++ field. Simulated data, fiducial
cut applied.
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These plots show the DC fiducial map for negative DC zed in the −− field.

Figure 3.104: DC alpha vs DC phi, negative
DC zed, −− field. Real data, no fiducial cut
applied.

Figure 3.105: DC alpha vs DC phi, negative
DC zed, −− field. Simulated data, no fidu-
cial cut applied.

Figure 3.106: DC alpha vs DC phi, negative
DC zed, −− field. Real data, fiducial cut
applied.

Figure 3.107: DC alpha vs DC phi, negative
DC zed, −− field. Simulated data, fiducial
cut applied.
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These plots show the DC fiducial map for positive DC zed in the −− field.

Figure 3.108: DC alpha vs DC phi, positive
DC zed, −− field. Real data, no fiducial cut
applied.

Figure 3.109: DC alpha vs DC phi, positive
DC zed, −− field. Simulated data, no fidu-
cial cut applied.

Figure 3.110: DC alpha vs DC phi, positive
DC zed, −− field. Real data, fiducial cut
applied.

Figure 3.111: DC alpha vs DC phi, positive
DC zed, −− field. Simulated data, fiducial
cut applied.
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3.2.2.5 Drift chamber 1-d phi distributions in Run7

In this section we show the 1-d DC phi distributions. We use the narrowest pT bins

possible to get the closest possible match between the simulated and DC alpha distribu-

tions. Even so, there are some slight observable shifts in phi coordinates between real and

simulated data. We show each possible combination of charge, field, TOFW sector, and

DC side (North and South). Only a single pT bin, zed selection, and field configuration are

shown, for a total of four figures. This is for brevity, as the various possible combinations

yield 832, 960, or more figures depending on the pT range.
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Here we show the 1-d DC phi distributions for 0.5 GeV/c < pT < 0.6 GeV/c, positive

zed, +− field, sector W1.

Figure 3.112: DC phi, positive DC zed, pos-
itive charge, +− field. Real and sim data, no
fiducial cut applied.

Figure 3.113: DC phi, positive DC zed, neg-
ative charge, +− field. Real and sim data,
no fiducial cut applied.

Figure 3.114: DC phi, positive DC zed, pos-
itive charge, +− field. Real and sim data,
fiducial cut applied.

Figure 3.115: DC phi, positive DC zed, neg-
ative charge, +− field. Real and sim data,
fiducial cut applied.
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3.2.2.6 Drift chamber 1-d phi distributions in Run8

In this section we show the 1-d DC phi distributions for a few selected pT bins. We use

the narrowest pT bins possible to get the closest possible match between the simulated and

DC alpha distributions. Even so, there are some slight observable shifts in phi coordinates

between real and simulated data. We show each possible combination of charge, field,

TOFW sector, and DC side (North and South). Only a single pT bin, zed selection, and

field configuration are shown, for a total of four figures. This is for brevity, as the various

possible combinations yield 832, 960, or more figures depending on the pT range.
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Here we show the 1-d DC phi distributions for 0.5 GeV/c < pT < 0.6 GeV/c, negative

zed, ++ field, sector W1.

Figure 3.116: DC phi, positive DC zed, pos-
itive charge, ++ field. Real and sim data, no
fiducial cut applied.

Figure 3.117: DC phi, positive DC zed, neg-
ative charge, ++ field. Real and sim data,
no fiducial cut applied.

Figure 3.118: DC phi, positive DC zed, pos-
itive charge, ++ field. Real and sim data,
fiducial cut applied.

Figure 3.119: DC phi, positive DC zed, neg-
ative charge, ++ field. Real and sim data,
fiducial cut applied.
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3.2.2.7 Particle yield ratios as a test of the DC fiducial cuts

Positive and negative charges occupy different regions of the DC parameter space (the

alpha-phi plane), and their respective regions are reversed when the magnetic field is re-

versed. Therefore, the ratio of the corrected spectrum of a certain particle in one field to

the corrected spectrum of the same particle in the other field should be identically one if

the the acceptance is made uniform by the application of the DC fiducial cuts. The next set

of plots shows the ratio of each particle.

Generally speaking, we find that the acceptance is worse for positive alpha than for

negative alpha. For consistency, we present the ratios as negative alpha over positive alpha;

that is, (− in +−)/(− in −+) and (+ in −+)/(+ in +−).

Figure 3.120 shows these ratios for Run7 Au+Au. As can be seen, the ratios generally

show good agreement with unity, indicating uniform acceptance. However, the lowest few

pT points for the kaons and protons show a ratio somewhat divergent from unity, indicating

a possible mass dependence of the non-uniformity in the acceptance, likely due to the

multiple scattering in the drift chamber.

Now we use the same ratios to examine the acceptance in Run8. As with Run7, we find

that the acceptance is worse for positive alpha than for negative alpha. We also observe

some additional degradation of the fiducial acceptance when comparing to Run7. For con-

sistency, we present the ratios as negative alpha over positive alpha; that is, (− in ++)/(−

in −−) and (+ in −−)/(+ in ++).

Figure 3.121 shows these ratios for Run8 d+Au. As can be seen, the ratios generally

show good agreement with unity, indicating uniform acceptance. At the very highest pT
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3.120 (a) 3.120 (b)

3.120 (c)

Figure 3.120: (a) Ratio of corrected π± in one field to the other. (b) Ratio of corrected K±

in one field to the other. (c) Ratio of corrected p and p̄ in one field to the other.
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3.121 (a) 3.121 (b)

3.121 (c)

Figure 3.121: (a) Ratio of corrected π± in one field to the other. (b) Ratio of corrected K±

in one field to the other. (c) Ratio of corrected p and p̄ in one field to the other.
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points the pions show some disagreement although these are likely due to statistical fluc-

tuations, as the −− field data set is much smaller than the ++ data set. Additionally, the

lowest pT point for the kaons and the lowest two pT points for the protons show a ratio

divergent from unity, indicating a possible mass dependence of the non-uniformity in the

acceptance, likely due to the multiple scattering in the drift chamber. Because the multiple

scattering also makes PID difficult in this pT region, these points are excluded from the

final results anyway.
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3.2.2.8 Pad chamber fiducial maps for Run7

These plots show the PC1 fiducial map. Note that the momentum distribution is different

in real data and simulated data, and therefore the tracks appear more spread out on the left

than the right. This is because there are many low pT with large bending angle in the DC

and therefore the PC1 phi coordinate has a wider distribution. The only concern with these

figures is to examine the dead areas.

Figure 3.122: PC1 phi vs PC1 zed. Real
data, no fiducial cut applied, Run7.

Figure 3.123: PC1 phi vs PC1 zed. Simu-
lated data, no fiducial cut applied, Run7.

Figure 3.124: PC1 phi vs PC1 zed. Real
data, fiducial cut applied, Run7.

Figure 3.125: PC1 phi vs PC1 zed. Simu-
lated data, fiducial cut applied, Run7.
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These plots show the PC3 fiducial map.

Figure 3.126: PC3 phi vs PC3 zed. Real
data, no fiducial cut applied, Run7.

Figure 3.127: PC3 phi vs PC3 zed. Simu-
lated data, no fiducial cut applied, Run7.

Figure 3.128: PC3 phi vs PC3 zed. Real
data, fiducial cut applied, Run7.

Figure 3.129: PC3 phi vs PC3 zed. Simu-
lated data, fiducial cut applied, Run7.
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3.2.2.9 Pad chamber fiducial maps for Run8

These plots show the PC1 fiducial map. As with the Run7 case, the PC1 phi distribution is

wider for the real data. The only concern here is to examine the dead areas.

Figure 3.130: PC1 phi vs PC1 zed. Real
data, no fiducial cut applied, Run8.

Figure 3.131: PC1 phi vs PC1 zed. Simu-
lated data, no fiducial cut applied, Run8.

Figure 3.132: PC1 phi vs PC1 zed. Real
data, fiducial cut applied, Run8.

Figure 3.133: PC1 phi vs PC1 zed. Simu-
lated data, fiducial cut applied, Run8.
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These plots show the PC3 fiducial map.

Figure 3.134: PC3 phi vs PC3 zed. Real
data, no fiducial cut applied, Run8.

Figure 3.135: PC3 phi vs PC3 zed. Simu-
lated data, no fiducial cut applied, Run8.

Figure 3.136: PC3 phi vs PC3 zed. Real
data, fiducial cut applied, Run8.

Figure 3.137: PC3 phi vs PC3 zed. Simu-
lated data, fiducial cut applied, Run8.
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3.2.2.10 Track matching residuals in simulations

The TOFW sigmalized residuals aren’t outputted by PISA into the simDSTs, so it’s

necessary to use the dimensional residuals to calculate the sigmalized residuals. The PC3

sigmalized residuals, on the other hand, are outputted by PISA. However, they were an-

alyzed and found not to be correct, so we calculate the sigmalized residuals for the PC3

using the same method as for the TOFW. Since the tracks in real data are dominated by

pions, we use the track matching parameters fitted to the pions for all particles in simula-

tion. We fill a 2-d histogram of each individual residual, separated by charge and field, as a

function of pT . We fit each pT bin with a Gaussian distribution to determine the mean and

standard deviation. We then fit those data points, both mean and sigma, with a function of

the form

f(x) = p0 + p1/x+ p2/x
2 + p3/

√
x, (3.6)

and use the parameters from the fit to define a function in the simulation analysis code

that calculates the sigmalized residuals from the raw ones. While all four charge and field

combinations are analyzed independently in each run, only π+ in the +− field is shown for

Run7 and only π+ in the ++ field is shown for Run8, and only a single residual is selected.

This is only for brevity, showing 16 figures instead of 256.
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Mean of tofwdz for π+ in the +− field

Figure 3.138: Mean of tofwdz for π+ in the
+− field, sector W1

Figure 3.139: Mean of tofwsdz for π+ in the
+− field, sector W1

Figure 3.140: Mean of tofwdz for π+ in the
+− field, sector W2

Figure 3.141: Mean of tofwsdz for π+ in the
+− field, sector W2
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Sigma of tofwdz for π+ in the +− field

Figure 3.142: Sigma of tofwdz for π+ in the
+− field, sector W1

Figure 3.143: Sigma of tofwsdz for π+ in the
+− field, sector W1

Figure 3.144: Sigma of tofwdz for π+ in the
+− field, sector W2

Figure 3.145: Sigma of tofwsdz for π+ in the
+− field, sector W2
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Mean of pc3dphi for π+ in the ++ field

Figure 3.146: Mean of pc3dphi for π+ in the
++ field, sector W1

Figure 3.147: Mean of pc3sdphi for π+ in
the ++ field, sector W1

Figure 3.148: Mean of pc3dphi for π+ in the
++ field, sector W2

Figure 3.149: Mean of pc3sdphi for π+ in
the ++ field, sector W2

115



Sigma of pc3dphi for π+ in the ++ field

Figure 3.150: Sigma of pc3dphi for π+ in
the ++ field, sector W1

Figure 3.151: Sigma of pc3sdphi for π+ in
the ++ field, sector W1

Figure 3.152: Sigma of pc3dphi for π+ in
the ++ field, sector W2

Figure 3.153: Sigma of pc3sdphi for π+ in
the ++ field, sector W2
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As can be seen from the preceding figures, the tuned means are consistent with zero.

The standard deviations are consistent with unity at intermediate and high pT but require

a small amount of retuning at low pT . The retuning is not shown but brings the standard

deviations to within a few percent of unity. The uncertainty from this small deviation is

extremely small, since a variation of 10% on the standard deviation would result in variation

of roughly 1% of the confidence level for an integral over 2 standard deviations. To be

specific, the confidence level for 2.0 standard deviations is 95.45%; the confidence level

for 1.9 standard deviations is 94.26%; and the confidence level for 2.1 standard deviations

is 96.43%. Therefore, if the standard deviation of our sigmalized residual is off by 10%,

our yield is only affected by about 1%. If the standard deviation of our sigmalized residual

is off by a few percent, the effect on our yield is negligible.
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3.2.3 Detector Occupancy Correction

The high multiplicity of particle production in central heavy ion interactions creates

a phenomenon called detector occupancy, a state in which the final state particle density

exceeds the detector segmentation. This excess, of course, leads to a loss in reconstruction

efficiency, and it must be modeled using simulations with precisely known conditions to

be corrected properly. The embedding procedure consists of taking a single MC track and

merging it with, or embedding it in, a real event. One can then reconstruct the embedded

event and compute the probability of recovering the embedded track; this probability is the

embedding efficiency.

The TOFW embedding algorithm has been tested extensively and matches expectations

for efficiencies. The results are consistent for different charges and magnetic field con-

figurations, which is expected and has been seen in previous embedding studies, such as

those done for the Run2 spectra. Additionally, the embedding efficiency slightly decreases

with increasing particle mass but is consistent within errors, which also matches previous

results.

Occupancy corrections are only needed for the Run7 Au+Au data. In d+Au collisions

the event multiplicity is much, much lower, and no correction is needed.
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3.154 (a) 3.154 (b)

3.154 (c)

Figure 3.154: Embedding efficiencies for (a) pions, (b) kaons, (c) protons.
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(a)

Cent Eff Err
0-10% 0.548893 0.00880221
10-20% 0.662735 0.00953364
20-30% 0.757962 0.0104718
30-40% 0.827697 0.011157
40-50% 0.88489 0.0117064
50-60% 0.929192 0.0121206
60-70% 0.956425 0.0124386
70-80% 0.974488 0.0124835
80-92% 0.982327 0.0126812

(b)

Cent Eff Err
0-10% 0.544422 0.00927691
10-20% 0.659825 0.0100399
20-30% 0.758137 0.0111331
30-40% 0.830143 0.0119109
40-50% 0.881734 0.0124252
50-60% 0.926603 0.0128705
60-70% 0.956888 0.0133055
70-80% 0.975305 0.013201
80-92% 0.982729 0.0133438

(c)

Cent Eff Err
0-10% 0.542065 0.0126423
10-20% 0.653215 0.0137354
20-30% 0.751339 0.0150791
30-40% 0.81413 0.0161309
40-50% 0.882178 0.0170243
50-60% 0.924843 0.0175984
60-70% 0.949757 0.0179427
70-80% 0.968341 0.0181093
80-92% 0.972655 0.0182228

Table 3.7: Embedding efficiencies for (a) pions, (b) kaons, (c) protons
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3.2.4 TOFW Efficiency and ADC Cut Correction

The functionality of the TOFW is highly dependent on the high voltage between the

electrodes of each MRPC. Because GEANT cannot simulate high electric fields in ma-

terials, neither the efficiency nor the ADC distribution in the TOFW can be adequately

described by the simulations. Therefore, it is necessary to study these parameters using

the real data. To estimate the ADC cut, we fill a 1-d histogram with the ADC value and

take the ratio of the value integrated from 60 to 600 to the value integrated from 0 to 1000,

including overflow but not underflow. To estimate the efficiency, we simply take the ratio

of the number of tracks measured in the TOFW to the number of tracks passing through

the TOFW. To estimate the number of tracks passing through the TOFW, we use a coin-

cidence measurement of a hit in both the PC3 and PC2 with 3σ spatial track matching in

each and hit locations overlapping with the TOFW fiducial volume. For the TOFW tracks,

we further require the 4σ spatial track matching in the TOFW. As both a sanity check and

a quick way to evaluate the systematics, we can compare the product of these two values

to the efficiency measurement with the additional requirement of the standard ADC cut on

the TOFW tracks. We find these two methods are quite consistent.

Table 3.8: TOFW efficiency and ADC cut estimates from in situ studies

Quantity Value
Efficiency 90.9%
ADC cut 87.6%
Product 79.6%
Simultaneous 79.9%
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3.2.5 Weak Decay Feeddown Correction

In order to ensure a fair comparison to other results, it is necessary correct the proton

data for feeddown from hyperon decays. Due to the different acceptance for TOFE and

TOFW, as well as effects caused by different magnetic field configurations (i.e. the field

configuration was +0 and −0 for Run2 and Run3 while +− and −+ for Run7 and ++

and −− for Run8), the non-feeddown-corrected spectra will not have the same shape. To

estimate the feeddown fraction, we analyzed 20 million simulated Λ events and determined

the fraction of protons from the decay that fall into our PID cut window. To accurately

account for the pT shift, we fill the histograms with the reconstructed track pT and with a

weight of the form

W (ptrack
T ) = pT e

(mT−m0)/T , (3.7)

where all quantities on the R.H.S. are those of the parent Λ, so that the weight of a given

track pT is determined using the parent pT as taken from the GEANT information in the

TTree. This form is chosen to give the most accurate representation possible of what the

actual input Λ spectrum would be. This fraction is then corrected for the branching ratio

and the Λ/p ratio, which is taken to be 0.89 with mT scaling [38, 130]. For the feeddown

to antiprotons, we use the same data points but scale by the p̄/p and Λ̄/Λ ratios. In both

Au+Au and d+Au the p̄/p ratio is taken to be 0.74 and the Λ̄/Λ ratio is taken to be 0.8 in

Au+Au and 0.845 in d+Au, as prescribed in [135].
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Figure 3.155: Feeddown fraction for Run7
acceptance

Figure 3.156: Feeddown fraction for Run2
acceptance

Figure 3.157: Feeddown fraction for Run8
acceptance

Figure 3.158: Feeddown fraction for Run3
acceptance
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3.3 Systematic Uncertainty Estimations

To estimate the systematic uncertainty introduced by various cuts, one varies the cuts

and examines the effect of the variations. The absolute value of the deviation of the ratio

from unity is the percent difference between the two cuts, which can be used to assess the

systematic uncertainty. In our case we are examining various quantities as a function of pT ,

so we evaulate the uncertainty as a function of pT as well.

In addition to analysis cuts, there are additional corrections applied to the data. The un-

certainty introduced with these corrections can be evaluated in a variety of ways, depending

on the method used to obtain the correction.

There are three basic types of systematic uncertainties: point-to-point uncorrelated;

point-to-point correlated, which can change the shape of the spectrum in a smooth way as

a function of pT ; and global or normalization, which can only move each point up or down

by the same amount. In the PHENIX jargon, these are referred to as Type A, Type B, and

Type C systematic uncertainties, respectively.

Because of the nature of analysis cuts, in that they affect the raw spectrum as a function

of pT , the systematic uncertainty associated with these is dominantly Type B. The same is

true for any pT dependent corrections. In this analysis, the only pT dependendent correction

is the weak-decay feeddown correction applied to the protons. In fact, these types of cuts

and corrections can contribute to all three types of systematic uncertainties, although the

effects on Type A and Type C uncertainties are both small and difficult to extract.

The pT independent corrections, which are the various normalization correction terms,

have Type C uncertainty only. It is conceivable for such a correction to have no associated
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uncertainty. For example, we normalize to the number of events. The number of events for

each magnetic field configuration in Run7 is in fact very slightly below the machine capac-

ity of a 32 bit integer, which is 2,147,483,647 (compare to 2,136,153,235 events in the +−

field and 2,132,453,794 in the −+ field). The number of events for each magnetic field

configuration in Run8 (1,378,825,610 for ++ and 469,047,088 for−−) is comfortably be-

low the machine limit of 2,147,483,647 for a 32-bit integer. Moreover, the 9-10 significant

figures in these numbers far exceeds the precision of the physical quantities being mea-

sured. Therefore the event number normalization is not considered to contribute systematic

uncertainty. The same is true of the event normalization in the analysis of the simulations,

which is likewise accurately countable to what is effectively arbritrary precision.

The rest of normalization corrections, such as the trigger efficiency and corrections for

the TOFW efficiency and ADC distributions, do have associated uncertainty.

What about the Type A uncertainties? While in principle these are quite different from

statistical uncertainties, in practice they have an indistinguishable effect and are therefore

very difficult to determine using standard methods.

In previous studies of charged hadron yields (see AN187 [130] for PPG026 [38] and

AN231 [131] for PPG030 [132]), the type of the sytematic uncertainties was not dis-

cussed. In that sense, our type determination is without precedent. The same is true of

AN776 [133], although PPG101 [134] briefly mentions the uncertainty type: there, the un-

certainties are described as Type B for the feeddown and PID uncertainties, and Type C

for the others. However, the Type B and C uncertainties are summed in quadrature and

presented as a single value. While the PID and feeddown corrections obviously have the

strongest pT dependence, the other analysis cuts do also affect the pT shape. Therefore in
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this study we describe all analysis cut correction uncertainties (as well as the feeddown) as

Type B, and we quote the Type C uncertainties separately.

3.3.1 Executive Summary of Cuts and Corrections

The cuts and corrections are presented with the types of systematic uncertainties they

present are given in Table 3.9.

Table 3.9: Uncertainties from Cuts and Corrections

Cut or Correction Global Point-to-point corr Point-to-point uncorr
Trigger Yes No No
Event Vertex Yes No No
Detector Efficiencies Yes No No
Detector Occupancy Yes No No
Analysis cuts Small Yes Small
Weak decay feed-down for p Small Yes Small
TOFW specific
Strip ID Yes No No
Efficiency Yes No No
ADC Yes No No
PID Small Yes Small
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3.3.2 Systematic Uncertainty Estimates for Run7

3.3.2.1 DC fiducial cuts

Because of the severity of the drift chamber fiducial cuts, one needs to exercise great

caution when assessing the associated systematic uncertainty. First we examine the effect

of tightening the cuts by 5 mrad on each side of the active areas.

Figure 3.159: Relative uncertainty in DC
fiducial cuts for π+

Figure 3.160: Relative uncertainty in DC
fiducial cuts for π−

Figure 3.161: Relative uncertainty in DC
fiducial cuts for K+

Figure 3.162: Relative uncertainty in DC
fiducial cuts for K−
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Figure 3.163: Relative uncertainty in DC
fiducial cuts for p

Figure 3.164: Relative uncertainty in DC
fiducial cuts for p̄

One clearly sees the apparent uncertainty is extremely small, despite a drastic increase

in the severity of the cut. We see what appears to be a 2% uncertainty for all particles at all

pT . Next, as an additional check, we examine the affect of not making any fiducial cut at

all while noting that the exact effect is reduced roughly by a factor of two owing to the fact

that the active areas are reversed for each charge when the magnetic field is in the reverse

configuration, which is true for approximately 50% of the data.

Figure 3.165: Relative uncertainty (maxi-
mal) in DC fiducial cuts for π+

Figure 3.166: Relative uncertainty (maxi-
mal) in DC fiducial cuts for π−
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Figure 3.167: Relative uncertainty (maxi-
mal) in DC fiducial cuts for K+

Figure 3.168: Relative uncertainty (maxi-
mal) in DC fiducial cuts for K−

Figure 3.169: Relative uncertainty (maxi-
mal) in DC fiducial cuts for p

Figure 3.170: Relative uncertainty (maxi-
mal) in DC fiducial cuts for p̄

Here we see the very significant effects of the cut, which makes the small uncertainty all

the more remarkable. In the interest of caution we assign a 5% uncertainty for all particles

at all pT .
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3.3.2.2 DC Zed cut

To estimate the uncertainty introduced by the DC zed cut, we compared our 3 cm <

|zDC | < 70 cm cut used in the analysis to a 3 cm < |zDC | < 40 cm.

Figure 3.171: Relative uncertainty in DC
Zed cut for π+

Figure 3.172: Relative uncertainty in DC
Zed cut for π−

Figure 3.173: Relative uncertainty in DC
Zed cut for K+

Figure 3.174: Relative uncertainty in DC
Zed cut for K−
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Figure 3.175: Relative uncertainty in DC
Zed cut for p

Figure 3.176: Relative uncertainty in DC
Zed cut for p̄

The uncertainty associated with the DC zed cut appears to be fairly small and largely

indepent of particles species. While in unidentified charged hadron analyses a very tight

DC zed cut has been found to significantly reduce background, that does not appear to be

the case here. The systematic uncertainty for this cut is rolled into the DC fiducial cut, to

which it is strongly related.
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3.3.2.3 Track Matching cuts

To estimate the uncertainty introduced by the track matching cuts, we compared our 2σ

cuts used in the analysis to 1.5σ cuts.

First we look at the PC3 track matching.

Figure 3.177: Relative uncertainty in PC3
track matching cut for π+

Figure 3.178: Relative uncertainty in PC3
track matching cut for π−

Figure 3.179: Relative uncertainty in PC3
track matching cut for K+

Figure 3.180: Relative uncertainty in PC3
track matching cut for K−
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Figure 3.181: Relative uncertainty in PC3
track matching cut for p

Figure 3.182: Relative uncertainty in PC3
track matching cut for p̄

The uncertainty associated with the PC3 track matching appears to be quite small for

all particles at all pT . The uncertainty is assessed to be 2% for all particle species at all pT .

Now we look at the TOFW track matching.

Figure 3.183: Relative uncertainty in TFW
track matching cut for π+

Figure 3.184: Relative uncertainty in TFW
track matching cut for π−
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Figure 3.185: Relative uncertainty in TFW
track matching cut for K+

Figure 3.186: Relative uncertainty in TFW
track matching cut for K−

Figure 3.187: Relative uncertainty in TFW
track matching cut for p

Figure 3.188: Relative uncertainty in TFW
track matching cut for p̄

The uncertainty associated with the TOFW track matching is somewhat more pro-

nounced. The uncertainty is assessed to be 5% for all particles at all pT .
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3.3.2.4 PC fiducial cuts

To estimate the uncertainty associated with the PC1 and PC3 fiducial cuts, we examine

the effect of tightening the cuts by 5 mrad in the φ-direction and 2 cm in the z-direction.

First we look at PC1.

Figure 3.189: Relative uncertainty in PC1
fiducial cut for π+

Figure 3.190: Relative uncertainty in PC1
fiducial cut for π−

Figure 3.191: Relative uncertainty in PC1
fiducial cut for K+

Figure 3.192: Relative uncertainty in PC1
fiducial cut for K−
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Figure 3.193: Relative uncertainty in PC1
fiducial cut for p

Figure 3.194: Relative uncertainty in PC1
fiducial cut for p̄

Now we look at PC3.

Figure 3.195: Relative uncertainty in PC3
fiducial cut for π+

Figure 3.196: Relative uncertainty in PC3
fiducial cut for π−
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Figure 3.197: Relative uncertainty in PC3
fiducial cut for K+

Figure 3.198: Relative uncertainty in PC3
fiducial cut for K−

Figure 3.199: Relative uncertainty in PC3
fiducial cut for p

Figure 3.200: Relative uncertainty in PC3
fiducial cut for p̄

For both PC1 and PC3 we find the systematic uncertainty associated with the fiducial

cuts is not only completely independent of particle species, it is almost completely negligi-

ble altogether. It is assessed to be 1% for each cut.
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3.3.2.5 PID functions, part I

To estimate the systematic uncertainty associated with the PID functions, first we vary

the parameters of the analytical parametrization as discussed in the section on the PID

functions.

First we look at the set of parameters from the fit.

Figure 3.201: Relative uncertainty in PID
cut for π+

Figure 3.202: Relative uncertainty in PID
cut for π−

Figure 3.203: Relative uncertainty in PID
cut for K+

Figure 3.204: Relative uncertainty in PID
cut for K−
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Figure 3.205: Relative uncertainty in PID
cut for p

Figure 3.206: Relative uncertainty in PID
cut for p̄

Now we look at the alternate set of parameters.

Figure 3.207: Relative uncertainty in PID
cut for π+

Figure 3.208: Relative uncertainty in PID
cut for π−
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Figure 3.209: Relative uncertainty in PID
cut for K+

Figure 3.210: Relative uncertainty in PID
cut for K−

Figure 3.211: Relative uncertainty in PID
cut for p

Figure 3.212: Relative uncertainty in PID
cut for p̄

For both sets of parameters we find reasonable consistency with the default set. For

the moment we do not assess any uncertainty in the PID function based on the parameters,

instead we alter the cut itself and examine the effects of doing so in the next section.
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3.3.2.6 PID functions, part II

To estimate the systematic uncertainty associated with the PID functions, we tighten

the cut in one of two ways. First, we change the window from 2 to 1.5 sigma but leave the

veto alone at 2 sigma. Second, we leave the window alone at 2 sigma but change the veto

from 2 to 2.5 sigma.

First the change in window.

Figure 3.213: Relative uncertainty in PID
cut for π+

Figure 3.214: Relative uncertainty in PID
cut for π−

Figure 3.215: Relative uncertainty in PID
cut for K+

Figure 3.216: Relative uncertainty in PID
cut for K−

141



Figure 3.217: Relative uncertainty in PID
cut for p

Figure 3.218: Relative uncertainty in PID
cut for p̄

For the change in PID window we find some mass dependent effects, with the protons

exhibiting more apparent uncertainty than the kaons and pions. Additionally, the uncer-

tainty in the window appears to be higher at high pT above the PID crossover point. The

uncertainty above the crossover point is likely influenced by the veto, indicating these two

effects may be difficult to disentangle.

We assess a 2% uncertainty for pions for 0–3 GeV/c, a 5% uncertainty for kaons at all

pT , and a 5% uncertainty for protons at 0–3 GeV/c. The PID uncertainty for pions and

protons at high pT will be considered when examining the change in veto.

Next the change in veto.
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Figure 3.219: Relative uncertainty in PID
cut for π+

Figure 3.220: Relative uncertainty in PID
cut for π−

Figure 3.221: Relative uncertainty in PID
cut for K+

Figure 3.222: Relative uncertainty in PID
cut for K−
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Figure 3.223: Relative uncertainty in PID
cut for p

Figure 3.224: Relative uncertainty in PID
cut for p̄

In this comparision, we find absolutely no deviations below the pid crossover bands,

which is to be expected. We also find significant deviatons above these points. We assess

the uncertainty to be 5% for all particles.

Taking into consideration now both the window and veto together, we can assess final

PID uncertainties. For pions the uncertainty is assessed to be 2% for 0–3 GeV/c and 5%

for 3–6 GeV/c. For kaons the uncertainty is assessed to be 7%. For protons the uncertainty

is assessed to be 5% for 0–3 GeV/c and 7% for 3–6 GeV/c.
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3.3.2.7 EP cut

To estimate the systematic uncertainty associated with the ecore/pT > X cut, we vary

the cut from X = 0.2 to 0.15 in one case and 0.25 in the other case.

First we look at X = 0.15.

Figure 3.225: Relative uncertainty in EP cut
for π+

Figure 3.226: Relative uncertainty in EP cut
for π−

Figure 3.227: Relative uncertainty in EP cut
for p

Figure 3.228: Relative uncertainty in EP cut
for p̄

In this comparison we see large differences, which could be due to a variety of factors,
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including the uncertainty of the EMCal response in GEANT.

Next we look at X = 0.25.

Figure 3.229: Relative uncertainty in EP cut
for π+

Figure 3.230: Relative uncertainty in EP cut
for π−

Figure 3.231: Relative uncertainty in EP cut
for p

Figure 3.232: Relative uncertainty in EP cut
for p̄

Again we see fairly large differences. In the interest of caution we assess a 10% uncer-

tainty for all pT > 5.0 GeV/c for pions and protons. The cut is not applied to kaons for the

final analysis and therefore no uncertainty is assessed.
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3.3.3 Systematic Uncertainty Estimates for Run8

3.3.3.1 DC fiducial cuts

Because of the severity of the drift chamber fiducial cuts, one needs to exercise great

caution when assessing the associated systematic uncertainty. First we examine the effect

of tightening the cuts by 5 mrad on each side of the active areas.

Figure 3.233: Relative uncertainty in DC
fiducial cuts for π+

Figure 3.234: Relative uncertainty in DC
fiducial cuts for π−

Figure 3.235: Relative uncertainty in DC
fiducial cuts for K+

Figure 3.236: Relative uncertainty in DC
fiducial cuts for K−
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Figure 3.237: Relative uncertainty in DC
fiducial cuts for p

Figure 3.238: Relative uncertainty in DC
fiducial cuts for p̄

One clearly sees the apparent uncertainty is extremely small. There is no apparent pT

dependence but there is a systematic offset. Discretion suggests that, given the severity of

the DC fiducial cuts, this may be an understatement of the uncertainty. Next we examine

the affect of not making any fiducial cut at all. For the Run8dAu, roughly 75% of the

data is in the ++ magnetic field configuration with the remaining 25% being in the −−

configuration. This results in a small but non-negligible reduction in the appearance of the

lack of DC fiducial cuts in the succeeding figures.

Here we see very significant deviations, which are of course systematic effects, not

systematic uncertainties. However, we can definitely now see that there is some significant

pT dependence to the correction. In addition to the aforementioned 2% global systematic

uncertainty, we assign a 5% systematic uncertainty for all species at all pT .

148



Figure 3.239: Relative uncertainty (maxi-
mal) in DC fiducial cuts for π+

Figure 3.240: Relative uncertainty (maxi-
mal) in DC fiducial cuts for π−

Figure 3.241: Relative uncertainty (maxi-
mal) in DC fiducial cuts for K+

Figure 3.242: Relative uncertainty (maxi-
mal) in DC fiducial cuts for K−

Figure 3.243: Relative uncertainty (maxi-
mal) in DC fiducial cuts for p

Figure 3.244: Relative uncertainty (maxi-
mal) in DC fiducial cuts for p̄
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3.3.3.2 DC Zed cut

To estimate the uncertainty introduced by the DC zed cut, we compared our 70 cm cut

used in the analysis to a 40 cm cut.

Figure 3.245: Relative uncertainty in DC
Zed cut for π+

Figure 3.246: Relative uncertainty in DC
Zed cut for π−

Figure 3.247: Relative uncertainty in DC
Zed cut for K+

Figure 3.248: Relative uncertainty in DC
Zed cut for K−
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Figure 3.249: Relative uncertainty in DC
Zed cut for p

Figure 3.250: Relative uncertainty in DC
Zed cut for p̄

The uncertainty associated with the DC zed cut appears to be fairly small and largely

indepent of particles species. At lower pT the uncertainty is almost vanishing while at

higher pT there are some small but appreciable deviations. While in unidentified charged

hadron analyses a very tight DC zed has been found to significantly reduce background,

that does not appear to be the case here. The systematic uncertainty for this cut is rolled

into the DC fiducial cut, to which it is strongly related.
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3.3.3.3 Track Matching cuts

To estimate the uncertainty introduced by the track matching cuts, we compared our 2σ

cuts used in the analysis to 1.5σ cuts.

First we look at the PC3 track matching.

Figure 3.251: Relative uncertainty in PC3
track matching cut for π+

Figure 3.252: Relative uncertainty in PC3
track matching cut for π−

Figure 3.253: Relative uncertainty in PC3
track matching cut for K+

Figure 3.254: Relative uncertainty in PC3
track matching cut for K−
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Figure 3.255: Relative uncertainty in PC3
track matching cut for p

Figure 3.256: Relative uncertainty in PC3
track matching cut for p̄

For pions and kaons, we see some fairly significant deviations at low pT while this trend

is absent for the protons. We additionally see a slight increase in the uncertainty at high pT

for all particle species where the background isolation effect of the track matching cuts are

increasingly significant. We assign a 5% systematic uncertainty for all particle species at

all pT .

Now we look at the TOFW track matching.

Figure 3.257: Relative uncertainty in TFW
track matching cut for π+

Figure 3.258: Relative uncertainty in TFW
track matching cut for π−
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Figure 3.259: Relative uncertainty in TFW
track matching cut for K+

Figure 3.260: Relative uncertainty in TFW
track matching cut for K−

Figure 3.261: Relative uncertainty in TFW
track matching cut for p

Figure 3.262: Relative uncertainty in TFW
track matching cut for p̄

There appears to be significant less systematic variation for the TOFW matching. We

assign a 2% systematic uncertainty for all particle types for all pT .
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We will now look at a the comparisons with 2.5σ cut instead of a 1.5σ cut.

Figure 3.263: Relative uncertainty in PC3
track matching cut for π+

Figure 3.264: Relative uncertainty in PC3
track matching cut for π−

Figure 3.265: Relative uncertainty in PC3
track matching cut for K+

Figure 3.266: Relative uncertainty in PC3
track matching cut for K−
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Figure 3.267: Relative uncertainty in PC3
track matching cut for p

Figure 3.268: Relative uncertainty in PC3
track matching cut for p̄

Now we look at the TOFW track matching.

Figure 3.269: Relative uncertainty in TFW
track matching cut for π+

Figure 3.270: Relative uncertainty in TFW
track matching cut for π−
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Figure 3.271: Relative uncertainty in TFW
track matching cut for K+

Figure 3.272: Relative uncertainty in TFW
track matching cut for K−

Figure 3.273: Relative uncertainty in TFW
track matching cut for p

Figure 3.274: Relative uncertainty in TFW
track matching cut for p̄

Clearly the systematic variation with respect to the looser cut is somewhat diminised.

A tighter cut is much more sensitive so small variations in the mean and standard deviation

of the tracking variables than is a looser one. We note that the previous precedent (AN187,

AN231) has been to look at looser track matching cuts and not wider ones. If we followed

this path we could reduce the uncertainty associated with these cuts; however, we leave our

assessments as they are.
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3.3.3.4 PC fiducial cuts

To estimate the uncertainty associated with the PC1 and PC3 fiducial cuts, we examine

the effect of tightening the cuts by 5 mrad in the φ-direction and 2 cm in the z-direction.

First we look at PC1.

Figure 3.275: Relative uncertainty in PC1
fiducial cut for π+

Figure 3.276: Relative uncertainty in PC1
fiducial cut for π−

Figure 3.277: Relative uncertainty in PC1
fiducial cut for K+

Figure 3.278: Relative uncertainty in PC1
fiducial cut for K−
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Figure 3.279: Relative uncertainty in PC1
fiducial cut for p

Figure 3.280: Relative uncertainty in PC1
fiducial cut for p̄

Now we look at PC3.

Figure 3.281: Relative uncertainty in PC3
fiducial cut for π+

Figure 3.282: Relative uncertainty in PC3
fiducial cut for π−
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Figure 3.283: Relative uncertainty in PC3
fiducial cut for K+

Figure 3.284: Relative uncertainty in PC3
fiducial cut for K−

Figure 3.285: Relative uncertainty in PC3
fiducial cut for p

Figure 3.286: Relative uncertainty in PC3
fiducial cut for p̄

For both PC1 and PC3 we find the systematic uncertainty associated with the fiducial

cuts is not only completely independent of particle species, it is almost completely negligi-

ble altogether. It is assessed to be 1% for each cut.
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3.3.3.5 PID functions, part I

To estimate the systematic uncertainty associated with the PID functions, first we vary

the parameters of the analytical parametrization as discussed in the section on the PID

functions.

First we look at the best fit set of parameters.

Figure 3.287: Relative uncertainty in PID
cut for π+

Figure 3.288: Relative uncertainty in PID
cut for π−

Figure 3.289: Relative uncertainty in PID
cut for K+

Figure 3.290: Relative uncertainty in PID
cut for K−
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Figure 3.291: Relative uncertainty in PID
cut for p

Figure 3.292: Relative uncertainty in PID
cut for p̄

We see increasing difference with particle mass, reflecting the significant difference in

the angular resolution (and therefore the momentum uncertainty).

Now we look at the alternate set of parameters.

Figure 3.293: Relative uncertainty in PID
cut for π+

Figure 3.294: Relative uncertainty in PID
cut for π−
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Figure 3.295: Relative uncertainty in PID
cut for K+

Figure 3.296: Relative uncertainty in PID
cut for K−

Figure 3.297: Relative uncertainty in PID
cut for p

Figure 3.298: Relative uncertainty in PID
cut for p̄

For the alternate set of parameters, the differences are quite small for all particles

species.
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3.3.3.6 PID functions, part II

To estimate the systematic uncertainty associated with the PID functions, we tighten

the cut in one of two ways. First, we change the window from 2 to 1.5 sigma but leave the

veto alone at 2 sigma. Second, we leave the window alone at 2 sigma but change the veto

from 2 to 2.5 sigma.

First the change in window.

Figure 3.299: Relative uncertainty in PID
cut for π+

Figure 3.300: Relative uncertainty in PID
cut for π−

Figure 3.301: Relative uncertainty in PID
cut for K+

Figure 3.302: Relative uncertainty in PID
cut for K−
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Figure 3.303: Relative uncertainty in PID
cut for p

Figure 3.304: Relative uncertainty in PID
cut for p̄

Here again we see increasing differences with increasing particle mass, reflecting the

effect of the momentum uncertainty.

Next the change in veto.

Figure 3.305: Relative uncertainty in PID
cut for π+

Figure 3.306: Relative uncertainty in PID
cut for π−

In this comparision, we find no deviations below the pid crossover bands, which is to

be expected.
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Figure 3.307: Relative uncertainty in PID
cut for K+

Figure 3.308: Relative uncertainty in PID
cut for K−

Figure 3.309: Relative uncertainty in PID
cut for p

Figure 3.310: Relative uncertainty in PID
cut for p̄

Taking both the window and veto comparisons into account, we assess the following

uncertainties. For the pions we assign a systematic uncertainty of 2% for 0–3 GeV/c and

5% for 3–5 GeV/c. For the kaons we assign a systematic uncertainty of 10% for all pT . For

protons we assign a systematic uncertainty of 5% for 0–3 GeV/c and 7% for 3–5 GeV/c.
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3.3.4 Summary of Uncertainties from Cuts

Table 3.10: Summary of systematic uncertainties from analysis cuts for Run7.

Cut π+ π− K+ K− p p̄
DC Fiducial 5% 5% 5% 5% 5% 5%
PC3 Matching 2% 2% 2% 2% 2% 2%
TOFW Matching 5% 5% 5% 5% 5% 5%
PC1 Fiducial 1% 1% 1% 1% 1% 1%
PC3 Fiducial 1% 1% 1% 1% 1% 1%
Subtotal 8% 8% 8% 8% 8% 8%
PID 2,5% 2,5% 7% 7% 5,7% 5,7%
EP Cut 10% 10% - - 10% 10%
Total, pT < 3 GeV/c 8% 8% 11% 11% 8% 8%
Total, pT > 3 GeV/c 9% 9% 11% 11% 9% 9%
Total, pT > 5 GeV/c 14% 14% - - 14% 14%

Table 3.11: Summary of systematic uncertainties from analysis cuts for Run8.

Cut π+ π− K+ K− p p̄
DC Fiducial 5% 5% 5% 5% 5% 5%
PC3 Matching 5% 5% 5% 5% 5% 5%
TOFW Matching 2% 2% 2% 2% 2% 2%
PC1 Fiducial 1% 1% 1% 1% 1% 1%
PC3 Fiducial 1% 1% 1% 1% 1% 1%
Subtotal 8% 8% 8% 8% 8% 8%
PID 2,5% 2,5% 10% 10% 5,7% 5,7%
Total, pT < 3 GeV/c 8% 8% 13% 13% 9% 9%
Total, pT > 3 GeV/c 9% 9% 13% 13% 11% 11%
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3.3.5 Weak Decay Feeddown Uncertainties

There is a significant amount of uncertainty associated with the feeddown correction,

owing primarily to uncertainty in the actual value of the inclusive Lambda spectrum, which

has not been measured in Au+Au collisions at
√
sNN = 200 GeV. Small changes in the

input spectrum can have significant effects on the reconstructred spectrum. The feeddown

itself significantly affects the shape of the proton and antiproton spectra at low pT while

having an additional small effect on the normalization at all pT . The uncertainty on the

feeddown fraction itself is 25%. For Run7 this results in an uncertainty of 9% at low pT

that continually decreases to an uncertainty of about 3% at high pT . Quite similarly for the

Run8, the uncertainty various continuously from about 11% at low pT and 3% for high pT .
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3.3.6 Global Systematic Uncertainties

The occupancy correction for the Au+Au data does not affect the shape of the pT spec-

tra; it only affects the overall normalization, and it does this in a centrality dependent way.

The most central collisions have the largest correction and the most peripheral collisions

have the smallest correction, and the uncertainties vary accordingly.

The uncertainty is estimated to be 20% of the overall correction. For example, in the

most central collisions, the embedding efficiency is roughly 50%, therefore the associated

uncertainty is 10%. In the most peripheral collisions, the embedding efficiency is about

97% and the associated uncertainty is 0.5%

Table 3.12: Centrality dependent global uncertainties for Run7 Au+Au

Cent Correction Uncertainty.
0-10% 0.542 9.2%
10-20% 0.653 6.9%
20-30% 0.751 5.0%
30-40% 0.814 3.7%
40-50% 0.882 2.4%
50-60% 0.925 1.5%
60-70% 0.950 1.0%
70-80% 0.968 0.6%
80-92% 0.973 0.5%

While there is no embedding correction needed for d+Au collisions, there do exist

small but measurable centrality dependent effects. There exists a trigger bias where tracks

belonging to a certain qualitative class of centrality fall into a different numerical class than

the one to which they should belong. This effect causes there to be more tracks in central

collisions and fewer in peripheral collisions than there should be. The bias factors and the
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associated uncertainties for Run8 d+Au were determined in AN900 [129]. These numbers

are not too different from the Run3 d+Au numbers, which can be found in e.g. [132].

Table 3.13: Global Uncertainty with Centrality Bias Correction

Cent Correction Uncertainty
0-20% 0.94 1.1%
20-40% 1.00 0.6%
0-100% 0.89 0.1%
40-60% 1.03 1.6%
60-88% 1.03 5.3%
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CHAPTER IV

RESULTS AND DISCUSSION

4.1 Brief Recapitulation of the Analysis

The observant reader will recognize that the preceding chapter is quite long. In this

section we very briefly summarize the salient features of the analysis as a refresher prior to

moving on to the results and discussion.

The identified charged hadron analysis makes use of both sectors of the Time-of-flight

detector in the west arm (TOFW). The Au+Au data are from the 2007 data set and the d+Au

data are from the 2008 data set. Event selection utilizes the standard minimum bias trigger

of one or more phototubes fired in both the north and south beam-beam counters (BBC),

and further a vertex cut of |z| < 30 cm is required. Track selection starts with tracks in the

drift chamber (DC) and first layer of the pad chambers (PC1), and only the highest quality

selected tracks with quality 63 or 31 are selected, meaning both X1 and X2 layers of the

DC have fired and there is z-coordinate information in both DC and PC1 (63) or at least

PC1 alone (31). This selection ensures the best possible momentum resolution as well as

the narrowest possible residual distributions in the outer detectors. Tracks are required to

have a residual of 2 standard deviations or better in both the third layer of the pad chambers

(PC3) and the TOFW. This tight track association cut helps minimize background. In

d+Au collisions, the event multiplicity is low enough that the track association cuts are

enough to properly handle the backgrounds. At high pT in Au+Au, however, an additional
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cut is needed. The electromagnetic calorimeter is also used further isolate background.

Tracks are required to have a core energy of at least 20% of the momentum of the track.

This eliminates low pT particles that are falsely reconstructed as high pT tracks, such as

conversion electrons. Particles are identified using the time-of-flight from the TOFW, the

momentum from the DC, and the path length from the tracking algorithm to reconstruct the

mass squared of the particle. At low pT , where the mass squared distributions are relatively

narrow, tracks are required to have a mass squared value of 2 standard deviations or less

within the mean for each particle type. The mean is selected to be the centroid of the

distribution; however, the difference between the mean and the PDG value is negligible.

At higher pT , the mass squared distributions of the particles begin to overlap, so additional

cuts need to be made to prevent significant PID contamination. In addition to the 2 standard

deviation cut, an additional 2 standard deviation veto on the other particles’ distributions

is also applied. For example, a pion is defined as being within 2 standard deviations of the

pion mass squared and also outside of 2 standard deviations of the kaon and proton mass

squared. Assuming Gaussian distributions, this procedure limits PID contamination to 3%

or less.

4.2 Results and Discussion

4.2.1 Invariant Yield as a Function of Transverse Momentum pT

The foundation of the identified charged hadron analysis is the invariant yield as a

function of transverse momentum pT in different centrality classes for each particle species.

For the Au+Au, the centrality classes are 0–10% (the most central), 10–20%, 20–40%, 40–
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60%, and 60–92% (the most peripheral). For the d+Au, the centrality classes are 0–20%

(the most central), 20–40%, 0–88% (Minimum Bias), 40–60%, and 60–88% (the most

peripheral). From these quantities, all other observables are derived, such as particle ratios,

nuclear modification factors, etc. Shown in Figure 4.1 are the invariant yields of charged

pions (left panel), kaons (middle panel), and protons and antiprotons (right panel). They

are plotted in order of the number of binary collisions Ncoll as determined in the Glauber

model, except for the most peripheral Au+Au (14.8) and most central d+Au (15.1), which

are reversed for the sake of keeping the collision species together. We note however that the

difference between theNcoll values is smaller than the systematic uncertainty in the Glauber

calculation. Additionally, the difference in the Ncoll values is also very small compared to

the average, (15.1− 14.8)/1
2
(15.1 + 14.8) ≈ 2.0%.
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Figure 4.1: Invariant yield of charged pions as a function of pT in Au+Au collisions and
d+Au collisions. The yields are scaled by the arbitrary factors indicated in the legend
for the sake of legibility. They are plotted in order of Ncoll, except for the most periph-
eral Au+Au and most central d+Au, which are reversed for the sake of keeping collisions
species grouped together.
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4.2.2 Particle Ratios as a Function of Transverse Momentum

One of the simpler classes of derived quantities is the so-called homogeneous ratio,

where one takes the ratio of charges of a single particle species. In the present analysis those

ratios are π−/π+, K−/K+, and p̄/p, which are plotted as a function of pT in Figures 4.2,

respectively. In each plot, the Au+Au data are on the left and the d+Au data are on the

right. Drawn as a visual aid are thin black lines with value 1.0 for the pions, 0.93 for the

kaons, and 0.73 for the protons; these values are picked from the reported pT integrated

values from [38]. Remarkably, all the ratios are essentially independent of both pT and

centrality. Based on simple arguments about isospin conservation and the basics of the

parton distribution functions and fragmentation functions, one would expect each of these

ratios to vary as a function of pT as discussed in [136]. That these ratios show no apparent

pT dependence in heavy ion collisions at mid-rapidity, as they do in p+p collisions at mid-

rapidity [134, 137], may indicate that while in elementary nucleon-nucleon collisions very

high pT produced hadrons are likely to have a valence quark from the initial reactants, this

is not necessarily the case in nucleus-nucleus collisions or even perhaps nucleon-nucleus

collisions (assuming d+Au is not materially different from p+Au).

175



Figure 4.2: Ratio of invariant yield of π−/π+ (top), K−/K+ (middle), and p̄/p (bottom)
as a function of pT in Au+Au collisions (left panels) and d+Au collisions (right panels) in
each centrality bin. Thin lines are drawn as a visual aid.
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Shown in Figures 4.3 and 4.4 are the kaon to pion ratios as a function of pT (K+/π+

on the left, K−/π− on the right) in Au+Au collisions and d+Au collisions, respectively.

The ratios in Au+Au collisions show a small increase with increasing centrality. The en-

hancement of the integratedK/π ratio in more central collisions is attributed to strangeness

equilibration in various thermal models [31, 32]. This is reflected in the differential ratio,

although the differential ratio may include additional information about the differences in

the fragmentation functions and/or the phase space distribution functions used in the recom-

bination models. As discussed in a previous PHENIX publication [138], the strangeness

enhancement present in the hot and dense nuclear medium has an effect on certain recom-

bination models [139]. Specifically, the thermal component of thermal+shower recombi-

nation is dominant to higher pT for strange hadrons (like kaons) than it is for non-strange

hadrons (like pions). Therefore, the ratio will not only show an enhancement, but will

show a larger enhancement at intermediate pT relative to lower pT where the strange par-

ticles have a larger thermal component than the non-strange particles. At sufficiently high

pT where the shower component begins to dominate for both strange and non-strange par-

ticles, this ratio is expected turn over and begin to lower again. However, this turnover

point is beyond the pT reach available for kaons in this study. The K/π ratios in d+Au

collisions are essentially identical for all centrality classes, indicating that the mechanism

for strangeness production in d+Au collisions is the same for all centrality classes.
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Figure 4.3: Ratio of invariant yield of positive kaons to positive pions (left panel) and
negative kaons to negative pions (right panel) as a function of pT in Au+Au collisions in
each centrality bin.

Figure 4.4: Ratio of invariant yield of positive kaons to positive pions (left panel) and
negative kaons to negative pions (right panel) as a function of pT in d+Au collisions in
each centrality bin.
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Shown in Figures 4.5 and 4.6 are the proton to pion ratios as a function of pT (p/π+

on the left, p̄/π− on the right) in Au+Au collisions and d+Au collisions, respectively. The

ratios in central Au+Au collisions show a strong enhancement over the values in p+p colli-

sions, which is widely attributed to the parton recombination mechanism of hadronization,

which gives rise to significant enhancement of baryon yields relative to meson yields in

heavy ion collisions. The p/π ratios in the other centralities in Au+Au show a clear and

consistent trend with decreasing enhancement as the collisions become more peripheral. In

d+Au collisions, on the other hand, the enhancement is much smaller in central collisions

relative to peripheral, but it is still significant. The p/π ratio in the most central d+Au

collisions appears consistent with the ratio in the most peripheral Au+Au collisions. Addi-

tionally, the p/π ratio is enhanced over p+p collisions in each d+Au centrality class except

for the most peripheral.
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Figure 4.5: Ratio of invariant yield of protons to positive pions (left panel) and antiprotons
to negative pions (right panel) as a function of pT in Au+Au collisions in each centrality
bin.

Figure 4.6: Ratio of invariant yield of protons to positive pions (left panel) and antiprotons
to negative pions (right panel) as a function of pT in d+Au collisions in each centrality bin.

180



4.2.3 Nuclear Modification Factors as a Function of Transverse Momentum

To measure the modification of the spectrum of produced particles in heavy ion colli-

sions relative to the spectrum in p+p collisions, nuclear modification factors are employed.

The nuclear modification factor RAA is defined as the yield in Au+Au collisions divided by

the yield in p+p collisions, normalized by the number of binary nucleon+nucleon collisions

Ncoll as determined from the Glauber model. The nuclear modification factor RCP is de-

fined as the yield in central Au+Au collisions divided by the yield in peripheral Au+Au col-

lisions, normalized to the respective number of binary nucleon+nucleon collisions. These

can be expressed mathematically as:

RAA =
Y ieldAu+Au

NAu+Au
coll Y ieldp+p

, (4.1)

RCP =
Y ieldcentral

Y ieldperipheral
Nperipheral
coll

N central
coll

. (4.2)

Figure 4.7 shows RCP for 0-10%/40-60% (left panel) and 0-10%/60-92% (right panel)

as a function of pT for charge averaged pions, kaons, and protons from the present study,

neutral pions from [93], and the φ meson from [138]. One observes a modest rise in the

low to intermediate pT region but an overall significant suppression for both pions and

kaons. Also observed is a slightly larger value for kaons in both cases compared to pions,

indicating the additional role of strangeness enhancement in the particle production mech-

anism. The observed enhancement of kaons relative to pions appears to be lower for the

0-10%/40-60% as compared to the 0-10%/60-92%, suggesting a centrality dependence of

the strangeness enhancement, which is consistent with the K/π ratios shown above. Fig-
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ure 4.8 shows RAA as a function of pT in different centrality classes for charge averaged

pions, kaons, and protons, as well as again the π0 and φ. For all pions and the charged

kaons, decreasing suppression with decreasing centrality is observed. This has been previ-

ously reported in analyses of the neutral pion RAA [91, 93].

TheRCP and centralRAA both show significant baryon enhancement relative to mesons

in the intermediate pT region, 2–3 GeV/c. This is further evidence, along with the large

proton to pion ratio, of the dominance of parton recombination as the dominant mode of

hadronization in this region. For pT above 3 GeV/c the enhancement starts to diminish

and at the highest pT points are similar for baryons and mesons. Observe however that the

central RAA falls off much more quickly than the RCP , suggesting that the recombination

dynamics may play a significant role even in the peripheral collisions where collective

effects should be relatively small. The protonRAA shows a very similar pattern with respect

to centrality as the pion RAA, in that the shape is very similar but that the overall level of

the points keeps rising as the collisions become more peripheral. However, while this

trend continues with the most peripheral bin for pions, the situation is quite different for

the protons. The shape of the most peripheral RAA curve for protons is much flatter. It

starts at the highest level at low pT , preserving the trend seen in the pions. However, the

value increases much more slowly with pT , crossing the other centralities around 1.5 GeV/c

and having a maximum value very similar to the most central bin. Additionally, above

3.0 GeV/c it falls off much more slowly than the other centralities and ends up at the same

level as the next most peripheral bin (40–60%) at the highest pT points.

As with Au+Au collisions, nuclear modification factors are employed with d+Au colli-
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Figure 4.7: RCP for 0-10%/40-60% (left panel) and 0-10%/60-92% (right panel) as a func-
tion of pT for charge averaged pions, kaons, and protons, π0 [93], and φ [138]. A thin
black line is drawn at unity indicating non-modification as a visual aid. The shaded boxes
indicate the associated uncertainty on Ncoll from the Glauber model.

Figure 4.8: Nuclear modification factor RAA as a function of pT in different centrality
classes of charge averaged pions, kaons, and protons, π0 [93], and φ [138]. A thin black
line is drawn at unity indicating non-modification as a visual aid.
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sions as well. Instead of RAA, RdA is used instead and is defined as

RdA =
Y ieldd+Au

Nd+Au
coll Y ieldp+p

; (4.3)

the quantity RCP is defined in exactly the same way as before.

Figure 4.9 shows RdA as a function of pT in different centrality classes for charged

averaged pions particles. We use previously published PHENIX data on identified hadron

in p+p collisions [134] to calculate theRdA. A small Cronin enhancement above 1.0 GeV/c

is observed in all centrality classes except for the most peripheral where no modification is

observed. This is consistent with previous measurements of neutral pions [13, 140].

The most central RdA show a small Cronin enhancement for pions and a much stronger

Cronin enhancement for protons, reaching a value of roughly a factor of 2 enhancement at

intermediate pT . The most peripheral the RdA is similar for all particles, with each particle

showing essentially no modification above 1.0 GeV/c. There is a small but still noticeable

centrality dependence in the proton RdA, with the most central showing the greatest en-

hancement and the enhancement decreasing as the collisions become more peripheral, in

contrast the completely negligible differences in the other centralities for the pions. This

pattern is in fact very similar to the small but significant centrality dependence of the p/π

ratio, and these two observables can be taken to be driven by the same mechanism. Also

apparent in the RdA is that the enhancement for protons begins to fall off at 3.0 GeV/c and

steadily drops with increasing pT , appearing nearly unmodified at the highest pT points.
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Figure 4.9: Nuclear modification factor RdA as a function of pT in different centrality
classes of charge averaged pions, kaons, and protons, π0 [140], and φ [138]. A thin black
line is drawn at unity indicating non-modification as a visual aid.
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4.2.4 Comparison of Peripheral Au+Au to Central d+Au

Given the remarkable similarities between peripheral Au+Au and central d+Au, it is

tempting to compare the two directly.

Figure 4.10 shows the K/π ratio and Figure 4.11 shows the p/π ratio in peripheral

Au+Au and central d+Au plotted together. In both cases the ratios are completely con-

sistent with each other between the different collision species, suggesting that the particle

production mechanisms in peripheral Au+Au and central d+Au are quite similar. More-

over, the previous plots showing the essentially negligible centrality dependence of particle

ratios in d+Au suggests that the particle production in peripheral Au+Au is comparable to

to the particle production in all d+Au collisions, regardless of centrality.

Figure 4.10: Ratio of K+/π+ and K−/π− as a function of pT in peripheral Au+Au and
central d+Au plotted together.
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Figure 4.11: Ratio of p/π+ and p̄/π− as a function of pT in peripheral Au+Au and central
d+Au plotted together.

Figure 4.12 shows the ratio of the spectra in peripheral Au+Au to central d+Au, scaled

by the ratio of the respective Ncoll values, for pions, kaons, and protons. We note that the

Ncoll values for peripheral Au+Au (14.8) and central d+Au (15.1) are within 2% of each

other and therefore consistent within the associated uncertainty from the Glauber model.

The ratios are essentially identical for positive and negative charges. Moreover, the ratios

tend to same value of roughly 0.7 for each particle species at and above 3 GeV/c. Below

this pT value, the ratio steadily increases with decreasing pT . Moreover, there is an apparent

ordering, with the protons exhibiting the largest ratio at the lowest pT points, followed by

the the kaons and then the pions. The ratios for kaons and pions are consistent within the
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uncertainties while the ratio of the protons appears to be systematically above. This may

be a manifestation of a baryon vs. meson effect. The apparent universal scaling above 2.5–

3 GeV/c suggests a common particle production mechanism between peripheral Au+Au

and central d+Au. It has already been discussed that particle production in central d+Au

exhibits a Cronin enhancement while the particle production in peripheral Au+Au exhibits

a small amount of suppression, hence it is not surprising this ratio is less than unity.

Figure 4.12: Ratio of invariant yield of particles in peripheral Au+Au collisions to central
d+Au collisions as a function of pT .
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CHAPTER V

SUMMARY AND PERSPECTIVE

5.1 Infinite Time and Infinite Money

Some years ago, in the summer of 2007, I was at Brookhaven National Lab working

with my good friend and then-production manager Carla Vale. One Tuesday afternoon (it

was 22 May), we were already in the counting house so we decided to attend the PHENIX

focus seminar for that day. The speaker was the inimitably energetic Peter Steinberg, who

was, at the time, a collaborator in the already decommissioned PHOBOS, PHENIX, and

ATLAS at the LHC. His talk was about the heavy ion program in the ATLAS collaboration.

It was quite clear during his presentation that the very large and highly sophisticated

ATLAS was very well suited to most (though not quite all) measurements of interest for

heavy ion physics. During the post-talk discussion, Carla said something that has stuck

with me to this day: “this looks like the kind of detector you would build with infinite time

and infinite money.” Peter casually responded that she was in fact completely correct, as

the LHC project had been in planning since the mid-1980s and that the total cost of ATLAS

alone was approximately 1 billion CHF (1.1 billion USD).

It is all too tempting for a scientist to wonder what one might do without the arbitrary

constraints imposed by academic calendars and fickle politicians. I will now very briefly

explore this possibility. First I will discuss what kind of detector I would build for the

measurements presented in this thesis, then I will discuss its integration into a more general

189



purpose design.

5.1.1 Geometrical Acceptance

What PHENIX most obviously lacks is acceptance. In the analysis presented in this

thesis, the main detector subsystem used has an azimuthal coverage of 22◦ in azimuth and

a total of 0.7 units of pseudorapidity. The coverage of the general purpose detectors at the

LHC [141], ATLAS [142] and CMS [143] (the latter of which both the HEP and RHI groups

at Vanderbilt are members) have full azimuthal coverage and central component coverage

of at about 5 units of pseudorapidity as well forward component coverage of at about 4

more units of pseudorapidity. But even ignoring the forward coverage for the moment, the

factor of roughly 16 increase in azimuthal coverage and factor of roughly 7 increase in

pseudorapidity acceptance gives a factor of more than 100 increased acceptance.

Therefore, step 1 is to build a detector with TOF coverage in full azimuth and 5 units

of pseudorapidity. Obviously, all other things being equal, a larger detector means larger

event sizes and therefore slower event recording rates. The event recording rate bottle-

neck(s) maybe the things like network bandwith or hard disk write speeds. During recent

operational periods in PHENIX, the main minimum bias trigger, BBCLL1 (BBC local level

1) has measured rates of up to 15 kHz. Since this is larger than what can be written to disk,

it is necessary to use a prescale. A prescale is simply a numerical factor by which the num-

ber of raw triggers is reduced to the number of live triggers, i.e. the number are recorded.

If we wish only to record MB events, we set the BBCLL1 prescale to 0.333. If we have ad-

ditional triggers we’d also like to record, such as a trigger for a rare process, we reduce the
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prescale further to accomodate that. Given that we have infinite time in addition to infinite

money, we can simply run our accelerator 10 times longer to achieve the same recorded

integrated luminosity to recover the factor of 100 if we wish. On the other hand, we could

also develop a trigger for high pT charged tracks. We could then record a mix of MB trig-

gered data and high pT triggered data. The MB triggered data will have adequate statistics

for low pT particles where the yield is high, and the triggered data will select only the very

rare events that have the high pT hadrons.

The analysis presented in this thesis is primarily not limited by statistics. However, a

simple rule of thumb is that for every 1 GeV/c in pT , the yield is reduced by an order of

magnitude. Obviously one can actually look at the observed spectrum and determine the

exact amounts, but for our present purposes this approximation is adequate. If we seek to

extend our pT reach by a factor of 2 from 6 GeV/c to 12 GeV/c, we need 106 as many MB

events to preserve the same statisitical significance for the highest pT bin. In fact, this is as

strong an argument for using a special high pT trigger as any. Let’s suppose at the moment

we trigger on charged tracks with pT > 6 GeV/c. If N MB events gives adequate statistical

significance at 6 GeV/c, It makes much more sense to record an additional N triggered

events, rather than N × 106 MB events. This is especially when N is large; in the present

case, N is of order 107 (since the analysis in this thesis makes use of 109 events and we are

suggesting a detector with a factor 102 greater acceptance), and recording 1013 MB events

is simply not practicable.

Of course, increased statistical precision is certainly not the only advantage of better

coverage. Looking at particle production differentially with respect to pseudorapidity (or,

even better, rapidity) is a potentially very interesting measurement, in A+A collisions and
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especially in d+A or p+A collisions.

5.1.2 Timing Resolution

Ignoring the issue of background for the moment, the main limitation on PID by TOF

is the timing resolution. The TOFW used in this analysis has excellent intrinsic timing

resolution of 75 ps for a total in situ resolution of 84 ps when run in conjunction with the

BBC for the start time measurement. Although this is very good and is well ahead of the

original design specification of 100 ps, recent developments [144, 145] in TOF technology

have shown a TOF with as low as 10 ps timing resolution. If this technology were used

for both the start time measurement and the track flight time measurement, total in situ

resolution of order 14 ps could be achieved.

As can be seen in Figure 5.1, the configuration used in this analysis has 4σ π/K sepa-

ration up to about 2.5 GeV/c and K/p separation up to about 4.0 GeV/c, and the kaon band

crosses the pion centroid at about 3.2 GeV/c and the it crosses the proton centroid at about

6.0 GeV/c.

What happens if we change the in situ timing resolution from 84 ps to 14 ps, all other

things being equal? We end up with something like what we see in Figure 5.2. This

configuration has 4σ π/K separation up to about 5.5 GeV/c and K/p separation up to

about 8.0 GeV/c, and the kaon band crosses the pion centroid at about 7.7 GeV/c and the it

crosses the proton centroid at about 13.0 GeV/c.

This is a very impressive change, and we haven’t even played with any other parameters

yet.
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Figure 5.1: PID bands representing 2σ for
pions, kaons, and protons with the standard
parameter set.

Figure 5.2: PID bands representing 2σ for
pions, kaons, and protons with σt = 14 ps .

5.1.3 Momentum Determination and Tracking

In fact the momentum resolution does not so strongly affect the m2 distributions, see

Figure 5.3 for a compliment to Figure 5.1 and Figure 5.2 for a compliment to Figure 5.4.

It does however very strongly affect how high in pT the measurements can be regarded as

meaningful. With the uncertainty in the momentum determination at high pT being roughly

1% ×pT , the uncertainty reaches 100% at 100 GeV/c. But CMS and ALICE have already

shown results with unidentified hadrons going to up 100 GeV/c in pT .

Even at 20 GeV/c with a 20% uncertainty, the minimum reasonable binwidth would

be 8 GeV/c (4 GeV/c on either side of the bin width). Clearly, then, a factor of, say,

8 improvement in the momentum uncertainty is an extremely useful feature in terms of

obtaining a reasonably differential measurement. This would allow us to have a 1 GeV/c

bin width, which is not so unreasonable; in fact a 2 GeV/c bin width is presently used in

the PHENIX π0 analyses in this momentum range.

The momentum resolution can be improved even using the existing DC technology.
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Figure 5.3: PID bands representing 2σ for
pions, kaons, and protons with perfect mo-
mentum determination.

Figure 5.4: PID bands representing 2σ for
pions, kaons, and protons with σt = 14 ps
and perfect momentum determination.

The DC has a spatial resolution of roughly 150 µm in the r − φ plane, which translates to

an angular resolution of order 1 mrad.

Assuming a physically larger detector can be constructed with the same spatial reso-

lution, the angular resolution can reduced linearly with an increase in distance from the

vertex to the detector, as long as adequate uniformity of the magnetic field can be main-

tained. Problematically an increase in distance will adversely affect the low pT . However,

this problem can easily be solved by a silicon pixel and strip detector that lies very close to

the vertex. In fact we will discuss using a vertex tracker for the momentum reconstruction

shortly, but first we continue our order of magnitude problem.

The momentum resolution can be further improved by increasing the strength of the

magnetic field. The track bending can be approximately represented as α ≈ K1/pT , where

K1 is the field integral term. Since we’ve already doubled the distance to the DC, we’ve also

already doubled the field integral (assuming perfectly uniform field strength, which is not

the case in PHENIX, but which can be the case for our ideal detector and which will serve
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us well enough for the purposes at hand). In the previous section I showed results using

the Run7 reversed coil configuration, which has a field integral of 75 mrad GeV/c. In the

normal configuration, the field integral is a much larger 104 mrad GeV/c. This is achieved

with a roughly uniform axial field with a maximum field strength of 0.9 T. A uniform

field with a much higher strength is an entirely reasonable proposition. In fact CMS has

a maximum field strength of approximately 4 T with excellent uniformity. Doubling the

field to 1.8 T, well below currently achievable field strengths, will give an overall increase

in the field integral by a factor of 4. Too high a field can cause significant problems with

low pT tracking, but CMS can reconstruct tracks with a pT as low as 0.3 GeV/c with good

efficiencies and reasonable fake rates using only the three inner most layers of their silicon

vertex detector (the three pixel layers). In fact, the first implementation of this tracking

method for heavy ion data in CMS was done by current Vanderbilt University graduate

student Eric Appelt.

To recapitulate, simply by doubling the distance and the magnetic field, we gain the

factor of 8 improvement in momentum resolution we sought. We could further increase

the field strength if so desired. However, let us now explore a better possibility: the afore-

mentioned silicon vertex tracker. CMS employs an inner tracking system with 3 layers of

pixels followed by 10 layers of strips. Using this configuration, CMS achieves remarkable

momentum resolution of no worse than 3% at 100 GeV/c. This can be seen in Figure 5.5.

Contrast this with the momentum resolution achieved by the DC configuration used in

PHENIX seen in Figure 5.6.
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Figure 5.5: Momentum uncertainty for CMS inner tracking system, as reported in [143].

Figure 5.6: Momentum uncertainty for PHENIX DC.
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There are many other advantages. For example, one can determine the location of the

vertex of the track with excellent precision. Therefore, one can easily reduce or perhaps

eliminate the background almost entirely by requiring a tight vertex cut. This alone gives

the additional advantage of removing the weak-decay feeddown from the baryons without

making any assumptions about the hyperon spectra, thereby reducing the systematic un-

certainty. In addition, the hyperons themselves are also very interesting to study, and they

can be identified through secondary vertex reconstruction, which can also be employed to

identify certain strange mesons. For example, the baryon vs. meson dynamics could be

studied using the Λ baryon and the K0
S meson in addition to protons and pions.

5.1.4 Other methods of PID

Of course, PID by TOF is not the only means of identifying particles. Both STAR at

RHIC and ALICE at the LHC do PID by TOF at low to interemediate pT but rely on PID

by the relativistic rise of dE/dx in a time projection chamber (TPC) to do PID at high

pT . A time projection chamber is a large gas volume used to construct three dimenstional

tracks. The tracks are essentially continuously imaged as the TPC collects a large number

of samples (typically 100 samples per meter of gas). The curvature of the track gives the

momentum and the ionization of the gas gives the dE/dx [146].

Figure 5.7 shows dE/dx as a function of momentum for all tracks, with the different

particle species labeled [147]. As can be seen, the dE/dx for various particles starts at

a local maximum, decreases to a global minimum, and then slow starts to rise again as

pT increases. This final rise is called the relativistic rise. For pT > 3.0 GeV/c or so,
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Figure 5.7: The distribution of dE/dx for all particles in a TPC [147].

all three hadrons π/K/p are in the relativistic rise and have essentially the same slope.

In this region, the the dE/dx centroids are close together and thus the distributions have

considerable overlap. Therefore, PID extraction requires a statistical separation based on a

simultaneous fit of multiple Gaussian distribution functions which is shown in Figure 5.8.

Figure 5.8: Several 1-dimensional projections of the dE/dx distribution for all particles in
a TPC [147].
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5.1.5 What might we learn?

The idea of course is to get pions, kaons, and protons identified the highest pT possible

so as to examine the flavor dynamics, as discussed at the end of Chapter 1. We show

some results on high pT identified particles from STAR [137, 148] and ALICE [147] in

Figures 5.9, 5.10, and 5.11.

Figure 5.9: Nuclear modification factor RCP for pions and protons measured by
STAR [148].

It is interesting to note that in 2006 STAR published protons independently, but in

2012 they published only kaons and protons together (not fully separated). The ALICE

data follow the same method as the latter STAR paper. The ALICE results are prelminary

only and none have been published so far. The STAR data from 2006 suggest that the

modification of protons and pions is very similar, meaning the color charge effects might

be completely washed out. However, we must note that the systematic uncertainties are

large. The ALICE data however show a similar trend, which is especially compelling given

their additional measurement of Λ and K0
S as shown in Figure 5.11. While we obviously
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Figure 5.10: Nuclear modification factor
RAA of π± and K± + p as measured by AL-
ICE [147] shown with similar measurements
done by STAR [137].

Figure 5.11: Nuclear modification factor
RAA various identified hadrons as measured
by ALICE [147].

can’t definitively conclude that baryons and mesons have the same modification, it does

seem clear that if flavor dependent effects are present at all, they must be fairly small.

While jet flavor conversions [110] do offer a natural and intuitive explanation for how the

color charge effect would be washed out, more observables specific to the model need to

be calculated and measured to make any definitive statements about it.

5.2 Summary

In summary we have presented identified charged hadron spectra and ratios as a func-

tion of pT and centrality for Au+Au and d+Au collisions at
√
sNN = 200 GeV. We find that

the homogeneous ratios are largely independent of pT , centrality, and collisions species.

We find that the kaon to pion ratios exhibit a pT dependent enhancement as a function of

centrality in Au+Au collisions, and this ratio is centrality independent in d+Au collisions

and consistent with peripheral Au+Au collisions. We further find that the kaon nuclear

200



modification factors in Au+Au exhibit a suppression pattern that is not quite as strong as

that of the pions, while in d+Au they exhibit essentially the same Cronin enhancement. For

protons, we find a significant and strongly centrality dependent enhancement in Au+Au

collisions. In d+Au collisions, there is a weak centrality dependence, and the most central

d+Au is consistent with the most peripheral Au+Au. We further find that the nuclear mod-

ification factors in Au+Au for protons show no apparent suppression and in fact a slight

enhancement at intermediate pT , while this enhancement disappears at higher pT with the

nuclear modification factor of protons approaching that of pions at the highest pT available.

The nuclear modification factors of protons in d+Au exhibit a strong Cronin enhancement,

much stronger than that of either the pion or kaon. Finally, in addition to many similarities

between peripheral Au+Au and central d+Au observed in the particle ratios, we find that

the direct ratio of of the spectra in peripheral Au+Au and central d+Au is independent of

particle species and pT above a certain threshold (2.5–3.0 GeV/c).

5.3 Final Thoughts

It has been a long journey to this point. For you, reader, but especially for me. This has

been a long 200-some-odd pages for you but an infinitely longer 7 years for me. Regardless,

it was in graduate school that I met my wife, and that alone has made the entire experience

worth doing. Would I do it again? I would.
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APPENDIX A

ABBREVIATIONS

• AGS - Alternating Gradient Synchrotron

• BNL - Brookhaven National Laboratory

• CERN - Organisation européene pour la recherche nucléaire (French: European Or-
ganization for Nuclear Research)

• GSI - Gesellschaft für Schwerionenforschung (German: Institute for Heavy Ion Re-
search)

• ISR - Intersecting Storage Ring

• LBNL - Lawrence Berkeley National Laboratory

• LHC - Large Hadron Collider

• QCD - Quantum Chromodynamics

• QED - Quantum Electrodynamics

• QGP - Quark Gluon Plasma

• RHIC - Relativistic Heavy Ion Collider

• SIS - Schwerionensynchrotron (German: Heavy Ion Synchrotron)

• SLAC - Stanford Linear Accelerator Center

• SPS - Super Proton Synchrotron
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APPENDIX B

UNITS

It is quite common, especially in high energy physics, to adopt a system of units that

naturally lends itself to the field of study. In this dissertation, as is customary in high en-

ergy physics, I use the so-called “natural units” in which ~ = c = 1. Because high energy

nuclear physics is frequently interested in thermodynamics, the Boltzmann constant, kB, is

also taken to be unity. In this system, temperature, mass, momentum, and energy all have

the same units, reported in decadal multiples of eV, usually MeV and GeV. In addition,

time and length have the same units, usually reported in fm or cm. Lastly, mass and length

are inversely proportional to each other, and the following relation gives a convenient rela-

tionship between the two: ~c = 197.3 MeV fm.
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APPENDIX C

COORDINATE SYSTEMS AND KINEMATIC VARIABLES

The natural symmetry of most high energy experiments is cylindrical. The beam pipe

defines the z-axis, and the plane normal to the z-axis is the transverse (xy) plane. The

definitions of the x- and y-axes are with y pointing up and x pointing to a side, and the

directions are usually chosen in keeping with a right-handed coordinate system. Lorentz

boosts are restricted to be along the z-axis, the boost parameter is usually called y. This

restriction gives the rapidity a fairly simple definition:

y =
1

2
ln
E + pz
E − pz

. (C.1)

Sometimes, when the mass of the particle is not known (i.e. only the charge and momentum

of the track have been determined), pseudo-rapidity is used instead, which can be defined

as

η =
1

2
ln
p+ pz
p− pz

. (C.2)

This definition illustrates the connection to rapidity; however, it belies its simplicity and

hence the reason for its common use. It can also be defined as η = − ln(tan(θ/2)), which

demonstrates its immediate connection to a direct observable, the angle of emission with

respect to the z-axis (the zenith angle). However, rapidity is preferred by theoretical calcu-

lations and so is a better variable to use when possible (i.e. when particle identification is

204



available).

Instead of total momentum, transverse momentum, pT , is usually used; since boosts

are restricted to the z-axis, this is a Lorentz invariant (by construction). Indeed, by this

construction, all transverse quantities are Lorentz invariant. Another useful variable is the

transverse mass, which could also be called the transverse energy; it is defined as

mT =
√
p2
T +m2. (C.3)

Clearly, the transverse kinetic energy is simply KET = mT −m.
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APPENDIX D

A SKIRMISH WITH QCD

In order to get a glimpse at the depth and richness of QCD, let us take a brief look

at the Lagrangian. In this section, I borrow heavily from graduate level survey texts on

QFT [149, 150], as well as more specialized texts on QCD [1, 2]. I do not present any

original work, I merely catalog the various important ideas and results in a systematic way.

Quarks are fermions with an extra degree of freedom called color. This can be motivated

by examining the wave function of the ∆++ baryon:

|∆++〉 = |u, ↑〉 ⊗ |u, ↑〉 ⊗ |u, ↑〉 (D.1)

or, as a shorthand,

|∆++〉 = |u, ↑;u, ↑;u, ↑〉. (D.2)

Clearly, this is not allowed by the Pauli Exclusion Principle. Therefore, there must be some

hidden degree of freedom or internal symmetry at work. To properly anti-symmetrize this

wavefunction, we can make a shrewd use of the Levi-Civita tensor:

|∆++〉 =
3∑

i,j,k=1

εijk|u, i, ↑;u, j, ↑;u, k, ↑〉. (D.3)

We interpret this extra degree of freedom as color. With this in mind, we can write a quark
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spinor as a triplet of spinors, one for each color:

ψ =


ψr

ψg

ψb

 . (D.4)

Let us now examine quantum field theoretic formulation of the celebrated Dirac equa-

tion, which describes a free fermion:

i/∂ψ −mψ = 0. (D.5)

The Dirac conjugate of this equation, which describes a free anti-fermion, is

i/∂ψ̄ +mψ̄ = 0. (D.6)

These equations are in fact simply the Euler-Lagrange equations of the Dirac Lagrangian,

L = ψ̄(i/∂ −m)ψ. (D.7)

Since the color degree of freedom is hidden, an arbitrary phase rotation between the

three components of the color triplet should leave the Lagrangian invariant. To mix the

components of a column vector with three components, one needs a 3×3 matrix. We make

the following transformation: ψ → ψ′ = V ψ and ψ̄ → ψ̄′ = ψ̄V †. Clearly, this leaves

the Dirac Lagrangian invariant if V is unitary. We also make the further restriction that the
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determinant is unity, and so V ∈ SU(3).

Let us now consider the case where we promote the global phase rotation to a local

one, i.e. V → V (x). This process of promoting a global transformation to a local one is

called gauging, and the invariance of the Lagrangian under these symmetries is called gauge

invariance. To ensure invariance of the Lagrangian, new fields have to be introduced, and

these are called the gauge fields; these fields are always vector fields and so the quantized

states are always vector particles, and thus are called the gauge bosons. Here, since there are

eight generators of SU(3), we have eight gluons. Since the new term introduced contains

both the fermion fields and the gauge fields, it is called the interaction term. This means we

can interpret the gauge fields as the fields which mediate the interaction. On the quantum

level, we have quarks interacting by exchanging gluons. Unfortunately, the mathematical

formulation of all of this is much too complex to treat here, so I’ll just give the results.

The gauge covariant derivative is constructed in such a way that it leaves the Dirac La-

grangian invariant under the minimal substitution ∂µ → Dµ. The gauge covariant derivative

is:

Dµ = ∂µ + igAaµta. (D.8)

The free gauge field strength tensor can be determined by the commutator of the gauge

covariant derivative with itself:

[Dµ, Dν ] = −igF a
µνta, (D.9)
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so the definition of the gluon field strength tensor is

F a
µν = ∂µA

a
ν − ∂νAaµ + Ca

bcA
b
µA

c
ν . (D.10)

The first two terms look just like the field strength tensor for the free photon field, but

the third term here is truly remarkable. As a consequence of the non-commutativity of the

generators, there is a coupling between two gluon fields. This means that, unlike the photon

of QED, the gluons of QCD can interact with each other. Since this is a consequence of

the fact that the gauge symmetry is described by a non-Abelian group, QCD is called a

non-Abelian gauge field theory.

If we put this all together, we can write the QCD Lagrangian in a very terse way:

LQCD = −1

4
F a
µνF

µν
a + ψ̄(i /D −m)ψ. (D.11)

We can also write it in a more revealing manner:

LQCD = −1

4
F a
µνF

µν
a + ψ̄(i/∂ −m)ψ − gψ̄ /Aataψ, (D.12)

where the first term is the free gauge field term, the second term is the free fermion field

term, and the last term is the interaction term.
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