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INTRODUCTION 

Concurrent administration of "interacting" medications causes patients to 

experience unexpected physiologic effects and alterations in metabolic pathways. Such 

drug-drug interactions occur frequently, and can have expensive and dangerous 

consequences. Unfortunately, existing computerized alerting systems that are designed to 

prevent such hazardous medication errors often fail to impact clinical decision-making. 

One fault stems from the unreliability of knowledge bases providing drug interaction 

content for these alerting systems. Drug-related information in such systems is often 

outdated, clinically insignificant, or even incorrect. By improving the coverage and 

accuracy of the drug-drug interaction information in available databases, it may be 

possible to improve delivery of safe and cost-effective patient care. 

Identifying new drug-drug interaction (DDI) content in the literature, however, is 

an expensive and manually intensive process. The current project investigated the 

feasibility of automating portions of the DDI identification process. This report details 

the first step in this series, and discusses improving the yield from the National Library of 

Medicine’s MEDLINE database, a potential source of drug interaction information. In 

particular, this study evaluated computer-generated Boolean queries as an alternative to 

manually constructed Boolean queries for extracting drug-drug interaction information 

from MEDLINE. 

This research focused on improving the usefulness of a single source of DDI 

content. Later work should explore other DDI information resources and develop tools 
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for extracting interacting drug pairs from text, evaluating the type and severity of the 

interaction, and applying this knowledge to drug database creation and maintenance. 

Thesis Contents 

This report is divided into five chapters describing the different stages of this 

research project. Chapter I presents an overview of the alerting systems designed to 

prevent drug-drug interactions and the reasons these systems often fail. It introduces 

MEDLINE as a possible source of DDI knowledge, describes how MEDLINE’s value 

might be improved through better search techniques, and reviews published methods of 

information retrieval. The design of computer-generated Boolean queries is also 

discussed. 

Chapter II describes the process of developing a machine learning classifier that 

can distinguish between “positive” and “negative” examples of DDI citations in 

MEDLINE. Chapter III confronts the complexities of implementing such a computerized 

model and describes experiments that decomposed the machine learning classifier into a 

traditional Boolean query. The Boolean queries’ performance is presented in Chapter IV. 

Finally, Chapter V summarizes the research and discusses applications and future 

directions for this work. 
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CHAPTER I 

OVERVIEW OF DRUG-DRUG INTERACTION PREVENTION AND DISCOVERY 

Unwanted drug-drug interactions pose a serious threat to patients and present the 

medical field with costly and frequent medication-related illnesses. The first part of this 

chapter presents the impact and severity of adverse drug events and drug-drug 

interactions. The subsequent sections summarize the benefits and the drawbacks of 

computer-based systems designed to reduce the occurrence of DDIs and explain how the 

content of these systems might be improved through effective use of MEDLINE as a 

source of high-quality DDI information. The later sections of this chapter discuss 

techniques of document classification using MEDLINE records and illustrate the use of 

support vector machines as classifiers. The final part of this chapter details the research 

problem investigated here and outlines the process of locating drug-drug interaction 

content in MEDLINE.  

Severity of Adverse Drug Events and Drug-Drug Interactions 

Adverse drug events – defined as patient injuries resulting from drug-related 

medical treatment [1] – are a serious concern of both clinicians and consumers in today’s 

pharmacologically complex healthcare environment. The widespread use of medications 

– 3 billion prescriptions in 2000, almost double the number a decade previously [2] – 

suggests a sizable percentage of the population is at risk for adverse drug events. In the 

United States, adverse drug events (ADEs) have been reported to affect 6% of 
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hospitalized inpatients [3] and up to 26% of adult outpatients in primary care [4]. 

Moreover, ADEs are purported to be responsible for 76,000 fatalities in the United States 

each year, making these medical disasters the sixth leading cause of death among adult 

Americans [5]. 

Although not all ADEs result in injury, serious ADEs produce higher hospital 

admission rates, longer hospital stays, lost worker productivity, and lower patient 

satisfaction [6].  In hospitalized patients alone, such ADEs are associated with a two-fold 

increased risk of death [7]. The most serious ADEs can be life-threatening and cause 

irreversible harm, particularly to the very old and very young: nursing home patients are 

more likely than middle-aged adults to suffer serious injury or death as a result of ADEs, 

and among the general population, one third of patients permanently disabled by ADEs 

are under 10 years old [8-11]. 

The financial burden of ADEs is also significant; the Institute of Medicine’s 

ground-breaking To Err is Human report estimates preventable ADEs affecting inpatients 

cost hospitals $2 billion a year [1]. When extended to include outpatients, the increased 

illness and death associated with ADEs may carry a yearly cost of over $70 billion [12]. 

Most important, approximately 30% of these ADEs are preventable [3, 8, 13, 14]. 

Drug-drug interactions (DDIs) make up a sizable subset of preventable ADEs in 

both the in- and outpatient population [10, 15]. DDIs occur when the physiologic or side 

effects of one drug are altered by the presence of another drug in the body, producing 

changes that are often unwanted and can be harmful [16]. Drug-drug interactions can 

trigger increases in drug toxicity, changes in drug efficacy, and treatment failure. Among 

primary care patients, 58% are concerned about DDIs [17], and drug interactions in this 
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population are an important cause of emergency department visits [18]. Studies estimate 

that as many as 8% of patients experience some DDI during a period of medication use 

[19], and that these interactions are responsible for 2.8% of all hospitalizations in older 

populations [20]. Indeed, the incidence of drug-drug interactions in patients may range 

from 4.7% to 11.1% [21], costing the healthcare system close to 1.3 billion dollars each 

year [22]. 

Preventing Drug-Drug Interactions 

Efforts to increase clinician awareness about drug interactions are hampered by 

the sheer number of new drugs and potentially serious drug combinations. There are 

currently 20,000 FDA approved prescription drugs marketed in the U.S. and the FDA 

approves approximately 340 new and potentially interacting drugs every year [23]. Over 

2,000 DDIs have been reported in the literature, some of which are based on a class of 

medications interacting with a specific ingredient, meaning a single DDI might affect 

hundreds of drug combinations [24]. The pace of discovery means many clinicians are 

unable to keep abreast of the latest pharmaceutical developments, including drug-drug 

interaction updates. A survey of 263 doctors practicing in the Southern California 

Department of Veterans Affairs system found that physicians were unable to identify 

50% of contraindicated drug pairs [25]. On the other hand, doctors often do not 

differentiate between the properties of individual drugs and their corresponding drug 

classes, and therefore may assume certain drugs interact when they do not [26]. Given 

these considerations, 89% of physicians consider drug-drug interactions a risk in 

prescribing [26]. 
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Often the responsibility for checking for DDIs is delegated to pharmacists, who 

already find themselves overwhelmed with prescriptions [27]. Yet many pharmacists may 

not be more informed than the prescribing doctors: half of all pharmacists dispense 

potentially lethal drug combinations without written or verbal warning to the customer 

[28]. 

Improving clinicians’ awareness and monitoring of drug-drug interactions can 

improve delivery of safe and cost-effective patient care [29]. Computerized warning 

systems provide an effective solution: electronic prescribing tools coupled with drug 

alerting systems have been shown to change physicians’ practices [30] and help decrease 

the incidence of DDIs [31]. Similar DDI warning systems can be installed in hospitals, 

clinics, and pharmacies to help protect patients against harmful drug interactions. 

Drug knowledge bases, such as those developed and maintained by “knowledge 

vendors” like Micromedex, Medi-span, and First Databank (FDB), provide the drug 

content for DDI alerting systems. These knowledge bases (KBs) are repositories for 

pharmaceutical knowledge represented in machine-processable form. When integrated 

with applications such as physician order entry systems, electronic prescription writing 

tools, and pharmacy dispensary systems, these drug-drug interaction modules can 

generate electronic alerts for conflicting drug regimens. 

The current process of building DDI knowledge bases incorporates expert 

knowledge and information from the manual review of pharmacy information bulletins 

(e.g. PharmacyOneSource.com), drug company publications, FDA warnings, and the 

newsletters of professional associations like the American Society of Health-System 

Pharmacists [32]. DDI KB developers also review table-of-contents alerts and articles 
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from high-impact journals, though the number of journals they can cover is limited and 

the issues are not always up to date[33, 34]. Citation repositories such as OVID and 

NLM’s MEDLINE are often used as secondary reference sources [32]. Any new drug-

drug interaction information is reviewed by panels of clinical pharmacists, who assemble 

DDI monographs for each interaction. These monographs contain information on the 

offending drug pair, the interaction severity, patient risk factors, and treatment options 

[35]. 

Drawbacks of Drug Interaction Alerting Systems 

Despite great concern over the impact of drug interactions, many knowledge 

bases fail to include important drug interactions and contain outdated, irrelevant, or even 

incorrect information [36]. One evaluation of six computerized DDI screening programs 

reported that only two programs could detect all serious interactions, and even so, the 

information they presented was weak and unhelpful in treating patients [37]. A study of 9 

pharmacy drug systems by Hazlet and colleagues found that DDI software systems were 

unable to detect clinically significant drug interactions one third of the time[38]. A 

similar hospital system failed to provide warnings for 70% of organ transplant-related 

drug interactions deemed dangerous by a panel of experts [39]. When ported to handheld 

devices, most of these drug interaction alerting programs display similarly poor 

performance [40, 41]. 

The problem of establishing “truth” related to DDIs is significant; even the most 

commonly used drug-drug interaction compendia, in both printed and electronic format, 

have been shown to contain serious discrepancies in their listing and severity rating of 
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DDIs [36]. An updated study of four popular DDI knowledge sources revealed that of 

406 major, clinically relevant drug-drug interactions, only 9 were listed in all four 

compendia. Indeed, 72% of these highly important DDIs were listed in only one source 

[42]. These gaps in DDI KB coverage have resulted in pharmacists accidentally 

prescribing dangerous drug combinations even though drug interaction alerting software 

was in place [43]. 

Clinicians insist that excessive clinically insignificant DDI alerts pose an 

additional problem; not only does the annoyance discourage use of the system, the 

“noise” generated by a deluge of alerts leads many physicians to ignore most interaction 

warnings as irrelevant or trivial [25]. This “alert fatigue” is increasingly reported in the 

literature. In a 2003 study by Weingart and colleagues, physicians in five Boston adult 

primary care clinics felt that as little as one third of the alerts they received were 

appropriate to the situation [44]. A more recent study found this number to be as low as 

11% [45]. Despite the usefulness of some drug warnings, the doctors studied in Boston 

overrode 89.4% of their computerized order system’s “high-severity” DDI alerts [44]. 

Two similar studies, one of 42 community pharmacies, the other of orders at a large VA 

hospital, found that both pharmacists and doctors overrode up to 88% of drug interaction 

alerts [46, 47]. 

Other concerns arise when DDI systems treat all members of a drug class the 

same, neglect to include patient risk factors, and offer no drug alternatives or 

recommendations about managing patients with ongoing drug interaction incidents [48, 

49]. Many drug interaction databases are also not updated frequently enough to reflect the 

latest DDI developments [50]. 
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Poor quality DDI information can harm patients, increase expenses, and produce 

medical practitioners who have widely differing opinions on the clinical relevance of 

many drug-drug interactions [45, 46]. Many institutions find that they cannot use DDI 

warning software off-the-shelf without major adjustments. In order to create effective 

tools, large medical centers and commercial pharmacy chains must customize alerting 

thresholds and focus the content of the DDI knowledge bases supporting these systems. 

At one U.S. hospital, a panel of DDI specialists evaluated 56 interactions rated by the 

vendor of the system as “high significance” and were able to reduce this number to 28 

clinically significant interactions [51]. A second hospital was forced to implemented its 

own “safety net” system to catch dangerous interactions missed by commercial software 

[52]. 

Clinicians note that drug information and database vendors need to do a better job 

of ensuring the drug-drug interactions they list are clinically important [53]. These 

vendors’ products often include and generate alerts for every known or suspected DDI, 

possibly motivated by medical and legal concerns [54]. Indeed, one major DDI 

knowledge base lists over 100,000 potential drug interactions for fewer than 20,000 

FDA-approved drugs [23]. The inclusivity of vendor systems has become such a concern 

that the US Pharmacopeia recently introduced a strategy to counteract this expansion. 

This plan, known as the Drug-Drug Interaction Initiative (DDII), aims to address the 

problem of outdated, redundant, and clinically insignificant drug alerts by establishing an 

industry standard for rating drug interactions [53]. 
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Improving Drug-Drug Interaction Knowledge Bases 

As emphasized by the DDII, improving the content of drug-drug interaction 

knowledge bases is the first step to improving the quality of DDI alerts [27]. The 

incomplete and unreliable information in current DDI KBs is in part the result of 

inadequate techniques for collecting, filtering, and maintaining drug interaction 

knowledge. Improved DDI information retrieval techniques may therefore assist in the 

development of more reliable knowledge bases. 

This problem of identifying relevant DDI information, however, is complicated 

by the overwhelming amount of new drug publications. The FDA approves 

approximately 340 new medications each year, each of which generates multiple drug 

company publications, pharmacy alerts, FDA guidelines, and journal articles [23]. 

Indeed, current pharmaceutical research alone results in approximately 300,000 

MEDLINE citations per year that are labeled with MeSH terms from the “Chemicals and 

Drugs” category, and a representative reference publication, Physician’s Desk Reference, 

has grown from 2,787 pages in 1995 to 3,440 pages in 2005. 

Unfortunately, filtering this published material for new drug information remains 

predominantly a manual task, which suggests that the clinical pharmacists responsible for 

maintaining DDI knowledge bases cannot easily review every published article [34]. 

Consequently, both new and revised drug interaction data may be overlooked. 

MEDLINE as a Source of Drug Interaction Information 

The National Library of Medicine’s MEDLINE database is a major repository of 

biomedical literature references from nearly 4800 U.S. and international journals [55] and 
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provides a rich source of high-quality DDI information [56]. In addition, studies in other 

fields suggest that MEDLINE searches may reveal high-quality content that is not found 

by consulting experts or other databases [57]. 

The NLM (National Library of Medicine) provides free access to MEDLINE 

through a search portal at www.ncbi.nlm.nih.gov/pubmed/ (PubMed). PubMed’s web 

interface allows users to run Boolean queries against the MEDLINE database and returns 

an organized set of hyperlinked results. The major search fields used for domain queries 

(in contrast to searching for a particular paper) include title, abstract, and the Medical 

Subject Headings (MeSH) that have been hand-selected by MEDLINE indexers based on 

a paper’s content [58]. Clinicians often search MEDLINE using simple search strategies 

composed of text words and MeSH terms and many are familiar with PubMed-formatted 

Boolean queries [59, 60]. 

Unfortunately, MEDLINE is often overlooked by drug database developers 

because searching the MEDLINE database for DDIs and sorting the results is a manually 

intensive, and therefore expensive, task. Yearly changes in MEDLINE’s MeSH 

vocabulary result in inconsistent indexing, which complicates both document 

identification and query maintenance [61]. In addition to problems with available search 

tools, studies have shown that many naïve end-user searches only retrieve one fourth of 

relevant articles [62] and that even expert searchers capture only a small fraction of the 

relevant literature with their targeted queries [63, 64]. 

These insights have motivated the development of information retrieval 

methodologies for locating relevant documents in large bibliographic databases and text 

corpora. Early methods focused on improving the return of MEDLINE queries by 
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applying search filters for high-quality clinical information [65-67]. These strategies, 

pioneered by Haynes and colleagues, used search terms submitted by experts to design 

Boolean queries for content filtering. These queries were subsequently tested against a 

corpus of hand-labeled citations. Several recent studies have employed the same 

methodology to identify MEDLINE articles about health services research, sleep studies, 

obstetrics, and randomized controlled trials for Cochrane review [68-71]. Word 

frequency analyses and statistical measures have also been used to develop queries that 

identify MEDLINE articles about dental research, stem cells, and diagnosis. [72-74]. 

Similar studies applied these techniques in conjunction with the NLM’s UMLS 

(Unified Medical Language System) Metathesaurus to identify molecular binding 

terminology and key clinical concepts [75-77]. The UMLS maps the terms of its diverse 

source vocabularies to unique concept identifiers (CUIs), clusters equivalent headings, 

and provides inter-concept relationships within and between over 100 biomedical 

vocabularies [78]. Bodenreider’s research on the application of UMLS to condition and 

disease categories suggests that the classifications of the UMLS Metathesaurus are 

representative of a document’s content and that the concept-level relationships in the 

UMLS Metathesaurus might prove useful for document classification [79]. 

Statistical and natural language processing (NLP) techniques for identifying 

relevant MEDLINE information have been particularly popular in bioinformatics, where 

they have been used to discover inhibitory drug-drug interactions, protein-protein 

interactions, and citations with pharmacogenetic knowledge [80-82]. Similar work has 

focused on using natural language processing (NLP) techniques to extract biomedical 

information and ADE reports from other sources of biomedical text [83, 84]. 
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Although old, manually generated queries can still perform admirably over a 

decade later [85], new research suggests that manual and simple statistical information 

retrieval methods can be improved upon by machine learning classification techniques 

[86]. Indeed, computers are capable of learning text patterns that identify specific articles 

and can often continue to classify unseen examples with good performance. Using a 

computer-generated query may be less costly and produce results that are better than, or 

at least comparable to, current expert-guided methods [87, 88]. 

Support Vector Machines for Text Classification 

One of the most successful automated “machine learning” methods is support 

vector machine classification [89]. Support vector machines (SVMs) are one of many 

supervised learning techniques, a subset of machine learning techniques that can be used 

to create output-prediction functions given a set of labeled training data. When used for 

binary classification, SVMs project vectors of variables into a higher feature space and 

identify the maximum-margin hyperplane that separates the positive and negative training 

examples. 

Figure 1 provides a simple example of a linear SVM classifier. In this 2-

dimensional problem, the data are linearly separable, but although there are many lines 

that can definitively separate the circles from the squares, as shown in (a) on the left, only 

one is a maximum-margin plane (i.e. it maximizes the distance between itself and the 

nearest square and circle.) Figure 1 (b) depicts the optimal linear separator (bold line). 

The datapoints in dark red and green are the support vectors, which define the optimal 

margin (shown with dotted lines). 
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Linear Support Vector Machine 

 

 
Optimal 

hyperplane

maximum 

margin

(a) (b)

 

Figure 1: Example of a Linear SVM.  
This example illustrates the most elementary type of SVM classifier: the linear SVM. The red dots and 
green squares represent two classes of data, which the SVM attempts to separate with a line (hyperplane). 
Figure 1(a) depicts four hyperplanes that can separate the two classes of data without error. The optimal 
hyperplane with the maximally separating margin is shown in Figure 1(b). The dark red circles and green 
squares represent the support vectors. These datapoints are closest to the optimal hyperplane and define the 
edge of the margin (blue dotted lines). 

 

Some data are not linearly separable in the given input space, however, as in 

Figure 2(a), below. No straight line can be drawn to separate the red and green 

datapoints. But the data still might be separable using a more advanced function, such as 

the polynomial depicted in Figure 2(b). The SVM classifier applies a kernel function to 

transform the input space into a high-dimensional feature space. Figure 2(b) shows the 

hyperplane drawn by a polynomial kernel of degree 2, projected back into the input 

space. 
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Polynomial Support Vector Machine 

 (a) (b)

Optimal 

hyperplane

 

Figure 2: Example of a Polynomial SVM 

The red circles and green squares in Figure 2(a) represent two classes of data that are not linearly separable. 
A non-linear SVM classifier can separate the data classes using a polynomial function. Figure 2(b) depicts 
the hyperplane identified by the polynomial SVM. When mapped back to the input space, this hyperplane 
appears parabolic. 

Given enough extra dimensions, the SVM classifier can linearly separate the data, 

but the optimal hyperplane it defines may correspond to any number of strangely shaped, 

non-linear surfaces when mapped back to the original input space [89]. 

The SVM model also includes a cost parameter, C, to penalize misclassifications. 

Greater values of C produce stricter, though perhaps less generalizable SVM classifiers, 

since the focus is on avoiding misclassification rather than maximizing the margin [90]. 

Simple SVM models use a constant cost parameter. 

Although SVMs are particularly suited to handling large feature spaces, they can 

suffer from overfitting, particularly when training examples are sparse or the model is 

trained for too many iterations. In this situation, the SVM grows overly complex and 

becomes tailored to random variances in the training data that have no effect on the target 

output. The SVM’s performance on the training data is maintained, but its ability to 

generalize to unseen cases diminishes. 
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Cross-validation and feature selection are two common methods of avoiding 

overfitting [91]. In “train-test-validate” cross-validation, the data are partitioned into 

three, non-overlapping sets, as depicted in Figure 3. The first is the training set, which the 

learning algorithm uses to develop a candidate model. This model is tested on the 

validation set, and tuned until it performs well on both the train and validation sets. 

Since the validation dataset is used in the model generation phase, it is not a good 

set on which to evaluate the model’s ability to generalize to unseen data. In this case the 

training and validation sets are used iteratively in model development and selection, 

while the test set is put aside to evaluate the final model. The best final model, then, is the 

one that produces the lowest error over the test set [89]. 

 

 

 

Figure 3: Partitioning the Study Dataset 
The allocation of data samples to training, validation, and test sets is depicted in Figure 3. The training and 
validation sets (blue) are used to develop and optimize the classifier. The test set (yellow) is set aside and 
used to test the generalizability of the final, optimized model. 

In a commonly-used extension of this method known as k-fold cross-validation, 

the procedure described above is repeated k times, each time using a different portion of 

the training set for validation. The data are partitioned into k disjunct sets and each set is 

used in turn as a validation set, while the remaining data are combined into the test set. 
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This method is particularly effective for preventing the overfitting that can accompany 

small datasets [92]. 

A second method of controlling overfitting, feature selection, aims to reduce the 

size of the dataset by keeping only those dataset variables which have high 

discriminatory power. Only this subset of features is used to train a classifier, which 

improves the speed and, potentially, the performance of the machine learning task [93]. 

Feature selection has also been shown to be a powerful tool for reducing the high 

dimensionality of the feature space, which is especially useful for text categorization 

datasets [94]. Large datasets of text words and phrases often contain many non-

informative words that are only present in a single document. The SVM model is less 

likely to overfit the data once noisy variables are removed, since remaining features are 

associated with the target output. With these precautions, SVMs show excellent 

generalization capability in comparison to other machine learning techniques [95]. 

Overall, SVM models have proven to be more successful at classifying text than 

other machine learning techniques. The pioneering study by Joachims compared SVMs 

with alternative methods of text categorization, including the Rocchio algorithm popular 

in information retrieval, a distance-weighted k-nearest neighbor classifier, the C.45 

decision tree/rule learner, and a Naïve Bayes classifier. On two separate corpora, the 

SVM classifier substantially and consistently outperformed the other four learning 

methods [96]. A recent study by Aphinyanaphongs and colleagues reported the successful 

application of SVM models to MEDLINE citations, identifying high-quality MEDLINE 

articles with greater sensitivity and specificity than Naïve Bayes classifiers or text-

specific boosting [97]. 
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Evaluating SVM Performance 

Results of the SVM model are often presented in terms of the area under the 

receiver operating characteristic (ROC) curve. This curve, shown in red in the three 

figures below, represents the trade-off between the true-positive ratio (TPR) and the 

false-positive ratio (FPR) of a classifier (also sensitivity and 1-specificity). 

The “random classifier” in Figure 4 depicts an ineffective model whose 

classification is no better than chance. For each point along the diagonal line, the true-

positive and false-positive ratios are equal, producing a line with a slope of 1. In contrast, 

the “perfect classifier” captures all the true positives with no mistakes. Its true-positive 

ratio is always one; its false positive ratio is zero; and the resulting area under the curve 

(AUC) is one. 

The center graph in Figure 4 shows how a realistic classifier performs: it is neither 

useless nor perfect. The performance of an SVM model, however, can be measured by 

how close it approximates the perfect classifier. The better performing SVM models will 

produce an AUC closer to 1.0. 
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Figure 4: Sample ROC Curves 
These three figures depict receiver operating characteristic curves (in red) that correspond to different 
classifiers. A random classifier (left) has equal true-positive (sensitivity) and false-positive (1-specificity) 
rates and therefore is a useless classifier. A classifier with good performance (center) has an ROC that 
curves above the x=y diagonal; its true-positive rate is greater than its false-positive rate. Perfect 
classification (right) results in a constant true-positive rate of 1. A classifier’s performance can be 
represented by a measurement of the area under the red line. 

This broadly applicable machine learning technique has already proven successful 

at text classification [98, 99] and identifying MEDLINE references according to their 

quality and usefulness in a clinical setting [97]. Text fragments such as words, word 

roots, and phrases have been used as input features. 

Drawbacks of SVM Models 

However, there are several limitations to using an SVM classifier, despite their 

overall good performance. Although an SVM model is not a true black box classifier, its 

internal architecture is considered to be non-intuitive [100]. This inherent complexity of 

SVM modeling makes it difficult to understand the basis for its results and thereby 

generate justifications for the model’s predictions [101]. 

In addition, classifying text using an SVM model can be a time-intensive process, 

which makes it unsuitable for quickly locating new information in PubMed [102]. A 
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collection of unlabeled, candidate documents must first be assembled locally, and 

depending on the number of citations being categorized, it may take several minutes or 

hours to stem the text words of each citation, sum their occurrences per document, fit the 

results to the classifier’s predetermined word-matrix, and run the classifier. To minimize 

the work involved, the text processing and document classification steps can be serialized 

in an application, though this type of classifier is not yet integrated with PubMed’s query-

based article retrieval. 

Decision Trees and Queries 

While poor transparency and a lack of PubMed integration make direct use of 

SVMs impractical, studies suggest that these models can be used as an intermediary step 

to produce a classifier whose decision-making logic is structured, transparent and 

interpretable. Decision trees are considered to be classification solutions of this type, 

since they can be represented as a series of if-then statements [92]. 

A decision tree, when used for text classification, is a predictive model that tests 

various attributes of a document and uses the results to sort the example into one of 

several predefined classes. A feature of the document is evaluated at each node in the tree 

structure, and the document is sorted down the appropriate path. The leaves of the tree 

represent possible classifications, and the branch leading to each leaf represents the 

conjunction of features that lead to a certain classification [89]. 

Decision trees can be designed to model any discrete output, including the output 

of SVM classifiers. A binary decision tree, however, has only two output classes: positive 

and negative. These decision trees can be used to generate targeted Boolean queries, 
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which can be used in query-based search engines such as the one provided by PubMed 

[103]. 

A binary decision tree’s correct and incorrect classifications are used as a means 

of evaluating its performance. Correctly classified documents are true positives (TP) and 

true negatives (TN). Positive documents that have been classified as negatives are false 

negatives (FN) and incorrectly classified negatives are false positives (FP). These values 

are often listed in the 2x2 format shown in Table 1. 

 

Table 1: Sample 2x2 Table 
Binary classification results are most often presented in this classic 2x2 format, in which the classifier’s 
predictions are compared to the documents’ true classes (gold standard). 

 Gold Standard  
Classifier 

Assignment 
True (+) False (-) Total 

True (+) 
True positive 

(TP) 
False positive 

(FP) 
TP + FP 

False (-) 
False negative 

(FN) 
True negative 

(TN) 
FN + TN 

Total TP + FN FP + TN 
N = 

TP+FN+FP+TN 

 

 

Four statistics calculated from these values are often used to describe the 

performance of a classifier: sensitivity, specificity, positive predictive value, and negative 

predictive value. The equations for these statistics are presented in Table 2. 
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Table 2: Calculating Measures of Performance 

Statistic Equation 

Sensitivity TP / (TP + FN) 
Specificity TN / (TN + FP) 
Positive predictive value (PPV) TP / (TP + FP) 
Negative predictive value (NPV) TN / (FN + TN) 

 

 

The performance of Boolean queries can also be measured using these statistics. 

All documents returned by a query are considered positive according to the test; 

documents not returned are considered test-negative. When the numbers of positives and 

negatives in the document set are known, the 2x2 table can be filled in and the 

appropriate measures of performance can be calculated. 

The terms ‘recall’ and ‘precision’ are equivalent to ‘sensitivity’ and ‘positive 

predictive value,’ respectively. Recall/precision is common measure of performance in 

information retrieval tasks. In machine learning, however, the same concepts are more 

frequently called sensitivity and PPV. The researchers have chosen to use the machine 

learning nomenclature in the remainder of this document in order to maintain continuity, 

since SVM performance is reported in these terms. 

Study Overview  

This study explored the application of manual and computer-based information 

retrieval methods to the drug-drug interaction domain. Specifically, the basic hypothesis 

was that text processing and machine learning techniques could identify a set of DDI 

articles more readily than manually created queries, and that the computer-generated 



 21 

SVM models could successfully be decomposed into Boolean queries that rival manually 

generated queries at retrieving drug-drug interaction citations from MEDLINE. 

As previously discussed, drug-drug interactions can seriously endanger patient 

health and are a source of financial concern to both hospitals and consumers. DDI 

alerting programs do a poor job of preventing unwanted interactions, in part because of 

the unreliable knowledge bases that power these systems. Institutions and individuals that 

manage drug-drug interaction databases, however, depend on complete and up-to-date 

information in order to create and maintain effective warning systems. This research had 

as a goal to advance MEDLINE’s value as a source of DDI information in order to 

improve the availability and accessibility of high-quality DDI content, and ultimately 

assist in constructing more complete and relevant drug-drug interaction databases. 
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CHAPTER II 

DEVELOPING A CLASSIFIER 

Introduction 

The literature presented in Chapter I documents the need for more complete, 

reliable drug-drug interaction knowledge bases. The project hypothesized that MEDLINE 

might provide a valuable additional source of drug interaction information for these 

knowledge bases. For this to occur, relevant DDI articles must be identified in an 

effective and efficient manner. Research indicates that automated document classification 

is a potentially useful method for pinpointing textual information in such MEDLINE 

citations. In particular, Support Vector Machines (SVMs) are a machine learning 

technique that has notably good promise for text classification in many domains. The 

project team proposed to investigate whether these computer techniques could be used to 

develop Boolean queries that identify DDI articles in MEDLINE better than manually 

generated Boolean queries. 

The first part of the current study, described in this chapter, evaluated the ability 

of an SVM classifier to identify drug-drug interaction content in a limited corpus of 

MEDLINE citations. The baseline performance level was set by two expert Boolean 

queries, assembled by medical librarians specializing in MEDLINE searches. 

The Methods section presents the study’s definition of DDI information and 

describes how the project assembled a corpus of positive and negative DDI citations from 

MEDLINE, processed these records, and developed a dataset of the stemmed text words 



 23 

and MeSH terms associated with each citation. Two-thirds of this dataset was used to 

train a series of SVM classifiers, which were then compared to the two expert, manually-

generated queries using the remaining third of the data. The sensitivities and specificities 

of these classifiers are presented in the results. 

The final section of Chapter II discusses the limitations associated with the size of 

the dataset, its classification of positives and negatives, and the use of stemmed text 

words and MeSH terms. It also presents the strengths and weaknesses of the SVM 

approach, and touches upon the motivation for the subsequent experiments presented in 

Chapters III and IV. 

Methods 

Defining Drug-Drug Interaction Content 

The overall study objective was to locate MEDLINE citations that provide drug-

drug interaction information potentially worth including in a DDI knowledge base. This 

study defined “drug-drug interaction articles” as referring only to publications that 

contained information about the effects of two drugs on each other’s efficacies and on 

potential adverse effects their concomitant administration might have the patient. In 

particular, this definition also included articles discussing specific DDI risk factors and 

treatments, as well as articles disproving suspected DDIs and those reporting new adverse 

effects of a known interaction. For comprehensiveness, the operational definition also 

included drug updates and review papers (monographs), as well as drug-food and drug-

herb interaction reports. 
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The operational definition of DDI excluded (as irrelevant to the study) 

publications that only discussed the impact of general drug interactions without 

mentioning specific drugs, patient risk factors, or DDI sequelae. These included articles 

about drug-drug interaction patient education, the effect of DDIs on hospital length-of-

stay, the dangers of polypharmacy, drug storage concerns, and the severe financial 

consequences of DDIs. The definition also excluded articles about chemical interactions 

(e.g. pesticides, lab solutions), enzyme/protein-only studies, and computerized drug 

interaction prediction techniques. Other publications that did not meet the study inclusion 

criteria included articles about drug surveillance programs, DDI monitoring and alerting 

programs, and physician decision support systems. Articles about DDIs among veterinary 

drugs not intended for humans (e.g. drug interactions in cat shampoo, equine vaccines) 

were also excluded. 

Constructing a Corpus 

Using the above definition, project investigators first manually reviewed and 

classified a set of 500 MEDLINE citations in order to estimate the prevalence of DDI 

references in MEDLINE. To obtain a rough estimate, the investigators downloaded all 

MEDLINE references from April 2002 and limited these to the set of articles containing a 

MeSH term from the “Drugs and Chemicals” category or the words “drug” or 

“interaction.” The study team speculated that this process would remove a significant 

number of negatives without discarding many positive drug-drug interaction articles. Of 

the remaining articles, 500 were selected at random and manually reviewed for drug 

interaction content. This process produced 5 DDI+ citations, suggesting a 1% prevalence 
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of drug-drug interaction citations. The study team decided to create a test corpus that had 

an enriched prevalence (10%) of DDI articles, in order to boost the positive sample for 

use with the SVM classifier. Therefore, project members manually created a corpus of 

MEDLINE references, with publication dates between 1985 and 2002, inclusive. The 

publication era was restricted to reduce the temporal bias resulting from yearly changes 

in MEDLINE indexing techniques – indexing may have produced significant 

discrepancies in the classification of an article published in 2004 and from a similar one 

published in 1970. 

To generate a sufficient number of positives for the dataset, a reliable and 

recognized source of influential drug-drug interaction articles was necessary. The project 

initially began by composing a list of recently verified drug-drug interactions. However, 

the researchers eventually identified the institution’s computerized physician order entry 

system (CPOE) as a good source of well-maintained and expert-reviewed drug 

interactions. Its drug interaction database has been manually curated by expert hospital 

pharmacists for more than two decades and the database of over 500 significant 

interactions has evolved over time to exclude false-positive warnings [104]. 150 DDIs 

were randomly selected from this list to serve as a collection of expert-validated drug-

drug interactions. 

Next, the research team transformed the list of 150 pairs of interacting 

medications into a set of corresponding MEDLINE references from the pre-defined study 

period. The investigators selected eFacts Online’s Drug Interaction Facts database as a 

reputable and comprehensive source of drug information with high-quality references to 

support each of its drug-drug interaction fact sheets [105]. Each reference in eFacts was 
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listed by author, journal name, publication date, volume number and page numbers – 

providing sufficient information to locate the article in MEDLINE. For each of the 150 

institutional CPOE-derived DDIs, the researchers copied every reference from eFacts that 

fell within the study timeframe and could be located in PubMed. Most eFacts references 

provided a direct link to the corresponding PubMed citation. For eFacts references 

without PubMed links and those with misdirected links, the study team attempted to 

locate PubMed counterparts through manual PubMed searches using author names, dates, 

titles and title fragments, as well as combinations of these fields. This method identified 

exactly 200 DDI citations.  

To balance the dataset with non-DDI articles, the researchers used PubMed’s 

search feature to download the full list of PubMed Unique Identifiers (PMIDs) for every 

publication from 1985 to 2002, inclusive, and then randomly selected 1800 distinct 

PMIDs, and labeled these as negatives. The number of these DDI negative articles chosen 

for each year was selected to reflect the proportion of that year’s articles in the positive 

set. If 10% of the positive articles were from the year 2000, for example, 10% of the 

negatives were selected from the same publication year. Since preliminary experiments 

suggested a 1% prevalence of true DDI articles in MEDLINE, the research team 

reviewed the titles and abstracts of all 1800 randomly selected references in order to 

eliminate any true drug-drug interaction articles that may have been randomly included in 

the set. When a positive DDI article was found, it was removed from the set of negatives 

and replaced with a neighboring negative article from the sampling frame. This process 

removed 16 false negatives. 
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All citations were downloaded in both text and XML format using EFetch, an 

article retrieval tool provided by PubMed [106]. Each file was marked with its unique 

PubMed ID and its drug-drug interaction status (DDI+ or DDI-). The final reference 

dataset was composed of 1800 hand-sorted negatives and 200 expert-reviewed positives, 

producing a corpus of 2000 unique citations with a 10% prevalence of true positive drug-

drug interaction articles. 

The process of selecting DDI+ and DDI- citations for the study corpus is 

summarized in Figure 5.  

 

 

 

Figure 5: Corpus Construction 
This image depicts the major actions performed in the construction of the study dataset. Steps for selecting 
DDI+ articles are shown in green; DDI- selection is in red. The final corpus was composed of 2000 
citations (cylinders shown on right). One tenth of the citations were DDI+ (200 of 2000); the remaining 
nine-tenths were non-DDI documents (1800 of 2000). 
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Evaluating PubMed Using Manually Developed Queries 

The National Library of Medicine (NLM) PubMed interface allows users to run 

complex queries against the MEDLINE database, and presents an organized set of 

hyperlinked results. The major search fields include the title (text words), author, abstract 

(text words), journal name, and publication date of a paper, as well the controlled 

vocabulary Medical Subject Headings (MeSH) chosen by MEDLINE indexers to charac-

terize a paper’s content [107]. 

The first step in the current experiment was a test of PubMed’s ability to extract 

relevant drug-drug interaction articles from MEDLINE. Performance was measured using 

sensitivity (recall) and positive predictive value (precision). These measures are 

particularly appropriate because the value of the query results is dependent on the user’s 

information needs. A DDI database curator looking for every publication mentioning an 

uncommon drug, for example, may desire high sensitivity, producing a set that may 

contain many irrelevant articles, but will not have missed any of the pertinent documents. 

On the other hand, a second user searching for information about a common drug might 

not want to retrieve every relevant reference (since that might be excessive), and would 

therefore prefer a query with high positive predictive value (PPV). 

With these two information needs in mind, the researchers worked with expert li-

brarian MEDLINE searchers from Vanderbilt’s Eskind Biomedical Library to develop 

two baseline manual DDI queries. The first query (Q-Exp1) aimed to return a set with 

high sensitivity; the second query (Q-Exp2) focused on maximizing PPV. The details of 

these two queries are presented in Table 3. 
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Table 3: Two Manually-generated PubMed Queries 
Table 3 lists the full text of the two expert queries used in this study.. Q-Exp1 is designed to return a large 
set of articles that contains every potential DDI+ article (high sensitivity). Q-Exp2 is designed to return a 
more limited set, in which each citation is a true DDI+ citation (high positive predictive value). These 
searches were developed by expert librarian MEDLINE searchers and are intended for use in PubMed’s 
query-based search engine. 

Query Name PubMed Query 

Q-Exp1  
(maximize 
sensitivity) 

("drug interactions"[TIAB] NOT Medline[SB]) OR  
"drug interactions"[MeSH Terms] OR drug interaction[Text Word] 

Q-Exp2 

(maximize 
PPV) 

(("drug interactions"[TIAB] NOT Medline[SB]) OR  
"drug interactions"[MeSH Terms] OR drug interaction[Text Word]) AND 
 ("Toxicity Tests"[MeSH] OR "Adverse Drug Reaction Reporting 
Systems"[MeSH] OR "Drug Hypersensitivity"[MeSH] OR "Drug 
Antagonism"[MeSH] OR "drugs, investigational"[MeSH] OR "Drug 
evaluation"[MeSH] OR "adverse effects"[sh] OR "toxicity"[sh] OR 
"poisoning"[sh] OR "chemically induced"[sh] OR "contraindications"[sh]) 

 

 

These two queries were executed through PubMed’s MEDLINE interface. The set 

of citations returned by each query was intersected with the study dataset of 2000 

references (200 DDI+, 1800 DDI-). This identified the true and false positives returned 

by the PubMed queries, restricted to the study DDI dataset. The project used 2x2 tables 

of test performance (as described in Chapter I) to calculate the sensitivity and specificity 

of the Q-Exp1 and Q-Exp2 search strategies. 

Processing the Citation Content 

In contrast to the PubMed queries, the experiments involving automated clas-

sification techniques required preprocessing of titles and abstracts. This study tested two 

separate methods of text preprocessing, producing two different datasets. These datasets 

were named CUI and TERMS. 
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The first dataset (CUI) was generated using a text filtering and abstracting scheme 

provided by the National Library of Medicine’s UMLS-based MetaMap Transfer 

(MMTx) application (ver. AA2003). The MMTx program maps free text into UMLS 

concepts, and can apply this process to the titles and abstracts of MEDLINE citations. 

The study used a Perl script to batch process the MMTx translation of titles and abstracts 

from all 2000 citations in the study dataset. Within this script, each citation was 

processed individually using the “-a” and “-u” flags to limit acronym processing and the 

“-I” flag to force printing of each concept’s (numeric) Concept Unique Identifier, or CUI. 

CUIs associated with complete UMLS mappings were retained, while candidate 

mappings were discarded. A binary (present/absent) vector of CUIs was created to 

represent the text (abstract and title) content of every citation. The set of these binary 

vectors for all 2000 documents constituted the “CUI dataset” that served as input for 

automated classification methods. 

The second dataset (TERMS) was generated by extracting the title and abstract 

text of all 2000 corpus documents, converting text to lowercase, and replacing all 

punctuation with white space. The researchers also removed all stop words defined by 

PubMed [108]; these common words are ignored by PubMed queries and excluded from 

PubMed indexing. The full list of stop words appears in Table 4. 
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Table 4: PubMed Stop Words 
The 132 common words listed below have been removed from the TERMS dataset. These stop words have 
little discriminatory value and have been excluded by PubMed from database searches and indexing. 

PubMed Stop Words 

a  because either  in  most  regarding  their  various 
about  been   enough into  mostly  seem  theirs  very 
again  before   especially  is  must  seen  them  was 
all  being   etc  it  nearly  several  then  we 
almost  between  for  its  neither  should  there  were 
also   both   found  itself  no  show  therefore what 
although  but   from  just  nor  showed  these when 
always   by   further  kg  obtained  shown  they which 
among   can   had  km  of  shows  this while 
an   could  has  made  often  significantly  those with 
and   did  have  mainly  on  since  through within 
another   do  having  make  our  so  thus without 
any   does  here  may  overall  some  to would 
are   done  how  mg  perhaps  such  upon  
as   due  however  might  quite  than  use  
at   during  i  ml  rather  that  used  
be   each  if  mm  really  the  using  

 

 

After removing the stop words, the remaining terms were reduced to their word 

stems using a publicly available Perl implementation of the Porter stemming 

algorithm[109, 110]. This process has been useful for preparing text for machine learning 

tasks [97], and is considered standard for such work. 

Unlike the CUI dataset, TERMS also included the MeSH Headings and 

Subheadings (also known as Descriptor and Qualifier terms) associated with each 

MEDLINE entry. The researchers chose not to split or stem MeSH terms because they 

were multi-word phrases representing information content from the full text of the article. 

The final TERMS dataset was composed of binary present/absent vectors of these 

stemmed text words and MeSH terms for each of the 2000 documents in the corpus. 

The process of preparing the citation text and building the CUI and TERMS 

datasets is summarized in Figure 5.  



 32 

 

Figure 6: Generating the CUI and TERMS Datasets 
The graphic above illustrates the process of converting the 2000 citations in the study dataset (cylinder on 
left) into the CUI and the TERMS datasets (cylinders on right). Steps in the process are outlined in blue; 
the final components of the CUI and TERMS datasets are outlined in yellow. 

 

Classifying the References 

The study team used the LIBSVM implementation of the SVM algorithm and 

conducted experiments using Matlab with a freeware SVM API available on the 

LIBSVM website [111]. The SVM models tested on the CUI and TERMS datasets used 

linear and polynomial kernels (degrees 1-4) with misclassification costs of {0.001, 0.01, 

0.1, 1, 10, 100}. 

The CUI and the TERMS datasets were processed independently using the same 

methods. One third of each dataset was put aside as a test set, and the remaining 66.7% 

was retained as training data, which in turn was divided into 10 mutually exclusive sets 

(“folds”). A 10% prevalence of positives was maintained across all the resulting sets to 
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ensure that results were based on the same underlying class distribution. The study used 

standard 10-fold cross-validation to obtain an unbiased performance estimate. By 

repeatedly using nine folds for training and the remaining fold as a validation set, it is 

possible to prevent gross overfitting of the data. The researchers plotted the ROC curve 

for each model and used the area under the receiver operating curve (AUC) to measure a 

classifier’s performance. The kernel and cost parameters that produced – in a cross-

validated fashion – the best AUC were used to develop a model that was tested on the 

previously identified and untouched test set. 

The researchers also applied feature selection to the CUI and TERMS datasets to 

identify terms with high discriminatory power. HITON is a Markov Blanket induction 

algorithm recently developed by Aliferis and colleagues. Its authors have shown that over 

a range of tasks including text classification, HITON identifies highly discriminatory 

feature sets that are more compact than the sets identified by other state-of-the-art feature 

selection algorithms [112]. Aphinyanaphongs and colleagues have also applied HITON 

to reduce feature sets of text words from MEDLINE citations [103].  

The HITON algorithm identifies the minimal set of variables needed to predict the 

target variable, T, in a Bayesian network. This set of nodes, known as the Markov 

Blanket, consists of T’s parents, its children, and its parents’ children. In particular, this 

project used the HITON-MB algorithm, which seeks the full Markov Blanket, and the 

HITON-PC algorithm, which identifies only the set of parents and children variables in 

the Bayesian network. Both HITON-MB and HITON-PC were applied with and without 

a wrapping step that attempts to further reduce the number of features by assessing the 
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usefulness of subsets of variables [113]. These feature selection techniques were also 

performed 10 times in a cross-validated fashion. 

Results 

The manual review of the study dataset’s 1800 randomly selected “negative” 

citations identified 16 with drug-drug interaction content, suggesting a DDI+ prevalence 

of 0.8% in MEDLINE. Although this value was slightly lower than the 1% derived from 

the study’s initial survey of 500 citations, it was also derived from a randomly selected 

and larger sample (1800 vs. 500 citations). As 0.8% is the more conservative estimate of 

DDI+ prevalence in MEDLINE, it has been used for all future estimates of DDI+ 

prevalence. 

Expert-generated Queries 

The first “expert” query tested on the study dataset of 2000 citations was Q-Exp1. 

It correctly identified 150 of the 200 true DDI articles, and 1,783 of the 1,800 DDI- 

articles. These results are presented in classic 2x2 format in Table 5. 

 

Table 5: 2x2 Table for Q-Exp1 

 True Classification 

 (study dataset) 

 

Q-Exp1  

Classification 
DDI+ DDI- Total 

DDI+ 150 17 167 
DDI- 50 1,783 1,833 

Total 200 1,800 2,000 
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The sensitivity and specificity of this query were calculated using the methods 

described in Chapter I. This process was repeated for Q-Exp2, which identified 76 of the 

200 true DDI articles and 1,798 of 1,800 DDI- citations. The data are presented below in 

Table 6. 

Table 6: 2x2 Table for Q-Exp2 

 True Classification 

 (study dataset) 

 

Q-Exp2 

Classification 
DDI+ DDI- Total 

DDI+ 76 2 78 
DDI- 124 1798 1922 

Total 200 1,800 2,000 

 

The results of both expert-generated PubMed queries are presented in Table 7. 

For each query, the table lists the total number of MEDLINE articles returned, the 

number articles the query labeled as DDI+, the number of those which were truly 

positives, and the query’s sensitivity and specificity.  

 

Table 7: Performance Results for Expert Queries 
The results of both expert queries are compared in this table. Best values for sensitivity and specificity are 
marked in bold. 

PubMed Query 

Returned 

by query 

as DDI+ 

True 

DDI+ 
Sensitivity Specificity 

Q-Exp1  

(maximize 

sensitivity) 

167 150 0.7500 0.9906 

Q-Exp2  

(maximize PPV) 
78 76 0.3800 0.9989 
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Q-Exp1, the “high sensitivity” query, retrieved citations from the study corpus 

with a sensitivity of 0.75 and a specificity of 0.9906. Q-Exp2, the “high PPV” query 

identified drug-drug interaction documents with a much lower sensitivity (0.38), but a 

higher specificity (0.9989). 

Computer Classification Models 

The results of the automated classification experiments are presented for each 

dataset and feature selection method. For each combination, Tables 8 and 9 list the 

number of features in the final model (built from the entire training set) and the AUC per-

formance on both the training and testing sets. The training set’s AUC is averaged across 

all 10 folds of the data. Models with the highest AUC on the test set are highlighted. 

Table 8 displays the results of the CUI dataset. 

 

Table 8: CUI Dataset Results 
Performance of SVM models on the full CUI dataset and CUI subsets determined by four feature selection 
algorithms. The best performing models (highest AUC on test set) are marked in bold. 

Feature Selection 

Method: 
# Features 

AUC 

(train) 

AUC 

(test) 

None 13187 0.9504 0.9795 
HITON-PC 32 0.9050 0.9675 
HITON-PCW 30 0.9116 0.9705 

HITON-MB 152 0.9081 0.9616 
HITON-MBW 149 0.9052 0.9474 

 

 

The SVM classifier using the full set of 13187 CUIs showed the best 

performance, producing an AUC of 0.9795. The model identified by HITON-PCW (Par-
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ents and Children with wrapping) also scored very highly, but was simpler (only 30 

features) and computationally much less costly. The latter model was generated using a 

linear classifier with a misclassification cost of 10. The top 30 discriminatory CUIs (as 

selected by HITON-PCW) are listed in Table 15 in Appendix A. 

While the CUI models were developed from text-to-UMLS mappings, the 

TERMS data included stemmed text words and MeSH terms. The results of experiments 

using the TERMS dataset are presented in Table 9. 

 

Table 9: TERMS Dataset Results 
Performance of SVM models on the full TERMS dataset and TERMS subsets determined by four feature 
selection algorithms. The best performing models (highest AUC on test set) are marked in bold. 

Feature Selection 

Method: 
# Features 

AUC 

(train) 

AUC 

(test) 

None 22586 0.9892 0.9887 
HITON-PC 13 0.9552 0.9893 
HITON-PCW 12 0.9577 0.9860 
HITON-MB 34 0.9633 0.9900 
HITON-MBW 24 0.9668 0.9821 

 

 

The full TERMS dataset included 22586 distinct word stems and MeSH terms. Of 

the four HITON varieties applied to reduce the number of features, HITON-PC (13 

variables) and HITON-MB (34 variables) had the best classification performance. Table 

16 in Appendix A lists the MeSH terms and stemmed text words selected by these two 

methods. The HITON-PC and HITON-MB models were both generated using a linear 

SVM with misclassification cost of 1. 



 38 

Performance of Models vs. Queries 

The AUC performance of the SVM classifiers is graphically displayed in Figure 

6. The single-point performances of the two PubMed queries are annotated. 
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Figure 7: ROC Curves for Best SVM Models 
Receiver operating characteristic (ROC) curves for the best classifiers from the CUI and TERMS dataset as 
well as performance points of both expert-designed PubMed queries. 

 

Across all data points, the best TERMS model showed equal or better 

performance than the best model derived from the CUI dataset. Both models were able to 

match the performance of PubMed Query 2 (marked with an * in the graph above), which 

was the query designed to optimize PPV. The TERMS model outperformed PubMed 

Query 1 (Q-Exp1) as well. 
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Discussion 

Principal Findings 

The research presented in this chapter describes a first approach to developing an 

automated classifier for drug-drug interaction citations from MEDLINE. The project 

identified what DDI content in MEDLINE may be useful for the construction and 

maintenance of drug-drug interaction knowledge bases, assembled a corpus of 2000 

MEDLINE citations, and produced a binary dataset of these documents for developing 

machine learning models. 

The results of the experiments presented in this chapter indicate that SVM 

classifiers, when trained on a dataset of stemmed text words and MeSH terms, have the 

potential to perform as well as manually-generated PubMed queries in identifying articles 

about drug-drug interactions. Of the decision features in the smallest TERMS feature set, 

9 out of 13 were MeSH headings and subheadings. These features were chosen by 

HITON to be highly discriminatory, which supports previous studies of the high 

information content of MeSH terms. 

It is conjectured that the performance of the CUI-trained SVM classifiers resulted 

from the dataset content rather than the learning method, since the CUI dataset did not 

include MeSH terms (which are known to have high discriminatory power.) The 

TERMS-trained SVM classifiers and the manually developed PubMed queries did 

include MeSH content, which may have boosted their performance. Future work may 

explore combining CUI content with MeSH terms. 
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The consistently higher AUCs on the test data relative to the training data of both 

the TERMS and CUI datasets can be attributed to a combination of two factors. First, 

there is variance in the error estimates given a finite sample, and second, the features 

selected by the various HITON variants (PC, PCW, MB, and MBW) are not independent 

because of the similarities in the inductive biases of these variants. 

Study Limitations 

It is important to note that the two manually developed “expert” queries were 

created by medical librarians only, and the resulting PubMed search strategies did not 

undergo any testing or validation. Therefore, these strategies do not necessarily 

exemplify the best possible human query, nor do they represent a validated gold standard 

test for this dataset. A true “expert” query would be defined by a panel of clinical 

pharmacists (who were also experienced PubMed searchers), iteratively refined based on 

performance, and validated for similar performances on the study test set and MEDLINE. 

Using these two queries as baseline tests may have caused manual document 

classification to appear less capable than it actually was. 

The SVM classifier, however, could also have been improved through the use of 

more advanced text processing and machine learning techniques. The current experiment 

created a simple binary (present/absent) dataset of stemmed text words and MeSH terms, 

although the literature suggests that text phrases, full sentences, and conceptual 

relationships discovered through natural language processing may provide extra 

discriminators for document classification [114, 115]. A dataset with feature frequencies 

and term weighting, as well as an SVM learner with more advanced kernels, may also 
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have been able to produce a more robust and generalizable SVM model with a higher 

AUC. 

Given that this study represented only an initial test-of-concept for DDI document 

classification in MEDLINE, the researchers speculate that queries designed by medical 

librarians (who are experienced MEDLINE searchers) are sufficiently representative of 

high-quality manually-written queries. Although the queries used in this study may 

perform slightly poorer than queries designed by a panel of clinical pharmacists and other 

“expert” searchers, is unlikely that this disadvantage disproportionately affected the 

comparison of manual and automated techniques, particularly since the SVM classifier 

could have been improved also, by using more advanced text processing and machine 

learning techniques. 

Another set of limitations relates to the selection of positive versus negative 

documents and the creation of the corpus of MEDLINE documents. The 200 DDI 

positives, unlike the 1800 negatives, were not selected randomly from MEDLINE, and 

therefore may not be representative of the full range of MEDLINE DDI+ citations. The 

set of positive DDI citations was identified through Vanderbilt’s proprietary CPOE 

system’s DDI database and eFacts’ drug interaction reference, and thus may correspond 

only to the subset of all relevant DDI articles selected by Vanderbilt pharmacists and 

eFacts curators. Although this study did not commission an expert review of the quality 

of the eFacts positives, eFacts’ Drug Interaction Facts database is considered a reputable 

and comprehensive source of drug information and the related references are likely to 

have those same qualities. For a feasibility study, these references are sufficiently 

representative of the high-quality drug interaction articles that are used in the creation 
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and maintenance of DDI knowledge bases. Extensions to this work, however, should 

explore a broader selection of DDI references. 

There may also be content and labeling differences among articles from different 

years, particularly since the study corpus spans 18 years of MEDLINE (1985-2002) and 

the NLM makes yearly changes in its MeSH indexing strategy [58]. The result could 

cause disparity in the retrieval of older versus more recent articles. To minimize any 

indexing differences between the positive and negative sets, the proportions of DDI+ and 

DDI- for each year were selected to be equal. Furthermore, the NLM strives maintains 

the stability of its MeSH indexing system, so differences in indexing techniques are 

unlikely to significantly affect retrieval of older versus newer articles. 

A further concern is the difference in DDI+ prevalence between the study dataset 

and MEDLINE. The current research used an enriched set of positives (10% DDI+ versus 

0.8% in MEDLINE) to boost the performance of the SVM training algorithms. As a 

result, the SVM classifiers may be skewed towards data with a higher prevalence of drug 

interaction content, and may not maintain their performance when tested on the full 

content of the MEDLINE database. These possibilities are explored further in the 

experiments detailed in Chapter IV. 

Significance of Results 

The research described in this chapter suggests that SVM classifiers can be used 

to identify relevant drug-drug interaction information with equal or better performance 

than PubMed queries developed by human experts alone. The project team believes that 

the limitations described above did not significantly inhibit the overall study objective. 
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This experiment also highlights several strengths of automatic document classification. 

By applying SVM methods to a corpus of their previously reviewed MEDLINE citations, 

DDI KB curators might efficiently create and customize a DDI document locator, though 

such results would still require validation. These models are also easily extendable given 

new sample data on which to train. 

Another advantage of the SVM classification model is the ability to easily tune 

performance based on a user's particular information retrieval needs, adjusting it towards 

either sensitivity (minimizing false negatives) or PPV (minimizing false positives). The 

concept of a precision/recall “slider” may prove useful in document retrieval tasks, 

allowing a user to retrieve either a large, comprehensive set or a small, precise set of 

articles. In settings where multiple methods are used to retrieve information, for example, 

users may prefer tools that deliver a reliably useful set of articles from MEDLINE to 

complement their other strategies. This approach is often cast as a “relevance” measure in 

typical information retrieval tasks, and may be worth investigating further. 

Although PubMed’s query-based interface is not currently configurable for 

automated classifiers like the one developed in this chapter, an off-site tool could 

download and process newly posted MEDLINE content and e-mail users if DDI+ content 

was detected. However, decision trees have proven useful at mapping complex classifiers 

such as SVMs to Boolean queries like those used by PubMed’s search engine [103]. The 

next chapters will explore the application of decision trees and their resulting queries to 

drug-drug interaction article classification and the performance of these methods on the 

full MEDLINE database.  
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The CUI-based methods explored in this chapter also deserve further attention. 

Although CUIs have limited value for the rest of this work because they cannot be 

incorporated into PubMed-formatted Boolean queries, they do provide concept tagging 

for the title and abstract of a citation. These concept tags could provide additional 

information for the classification process if they could be limited to the subset of CUIs 

that make up the MeSH vocabulary. An algorithm developed by Bodenreider claims to 

find the MeSH terms most closely related to a UMLS concept [116]. By mapping CUIs 

back to MeSH, the concept-level knowledge identified by MMTx could be incorporated 

in PubMed queries. This method would take advantage of the high-level information 

available through text-to-CUI mapping, as well as PubMed’s build-in search tools. 
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CHAPTER III 

GENERATING QUERIES FROM SVM MODELS 

Introduction 

The experiments described in Chapter II determined that an SVM classifier has 

the potential to perform better than human-generated Boolean queries for locating drug-

drug interaction citations in a labeled corpus. However, the SVM model requires 

significant text preprocessing and cannot currently be used with PubMed’s query-based 

search interface. Chapter I, however, presented the approaches used by Flake and 

Aphinyanaphongs to develop Boolean queries styled on SVM output, a technique that 

may also be applicable in the DDI domain [103, 117].  

The second part of this study, described in the current chapter, outlines a method 

of generating Boolean queries that mirror the performance of an SVM classifier. The 

project first constructed decision trees whose document classification approximates the 

output of two of the SVM classifiers developed for the TERMS dataset (HITON-MB and 

HITON-PC). The study team selected the tree that most closely represented its SVM 

parent and had the fewest features. Further steps involved decomposing the decision tree 

into a series of usable Boolean queries and testing the performance of these queries on 

the study dataset. 
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Methods 

The second phase of the project employed the HITON-MB and HITON-PC 

classifiers generated from the TERMS dataset described in Chapter II. These two SVM 

models provided the best performance with the fewest number of features. The HITON-

MB SVM classifier (34 features) predicted the DDI status of a document most accurately, 

as suggested by its AUC of 0.9900. The model generated from the HITON-PC variable 

set was the most economical classifier, with only 13 terms, and also the second best 

classifier (AUC = 0.9893).  

Generating Decision Trees 

The study team isolated the 34 variables identified by the HITON-MB feature 

selection algorithm, as well as the vector of predictions (output) produced by the HITON-

MB SVM classifier. These data were used as predictors (34 variables) and response 

values (1 vector) to construct a preliminary unpruned decision tree using the treefit 

decision tree regression algorithm from Matlab’s Statistical Toolbox [118]. Given only 

the training data, the researchers used a 10-fold cross-validation method to evaluate 

alternative pruned trees and estimate the optimal pruning level (treetest). The best 

pruning level was considered to be the one that produced the smallest tree whose cost 

was within one standard error of the minimum cost. The preliminary unpruned tree was 

then pruned to the optimal pruning level, using Matlab’s treeprune, producing a 

sparse version of the decision tree. This process was repeated with the HITON-PC SVM 

classifier (13 features, 1 prediction vector) to generate the decision tree equivalents of 
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both SVM models. The structures of both decision trees are depicted in Figure 9 and 

Figure 11 of Appendix B. 

The study measured the similarity of each decision tree model to its parent SVM 

classifier by comparing the decision tree classifications to the SVM predictions and 

calculating the area under the receiver operating curve (AUC). AUC values closer to 1 

indicated greater similarity between the two classifying methods. Each decision tree was 

used to classify both the training and test data, and appropriate AUCs were computed. 

The simplest decision tree that most closely modeled the classification capabilities of its 

SVM parent was chosen for further experiments. 

Evaluating Performance Thresholds 

The leaf nodes of the selected decision tree have values that are continuous. In a 

further step towards generating Boolean queries, this single continuous-valued tree was 

converted into many binary trees. To produce a binary decision tree, every leaf node with 

a score greater than or equal to the threshold score was assigned a value of TRUE (1), 

signifying a prediction of DDI+. Leaf nodes with values below the threshold score were 

labeled FALSE (0). Each unique leaf node value was used, in turn, as a threshold score in 

this conversion process. 

Each binary decision tree was used to classify the test set, and its performance 

(sensitivity and specificity) was recorded. The research team chose three binary trees 

with different sensitivity-specificity combinations to convert to Boolean queries. 
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Designing Boolean Queries 

Each of the three binary decision trees was converted to a Boolean query by 

stringing together the text elements for every DDI+ (TRUE) path. The terms along a 

single TRUE root-to-leaf path were joined with AND or NOT statements, as appropriate. 

The resulting paths were concatenated using OR statements to produce a Boolean 

matching pattern for DDI+ citations. This process was repeated for each of the three 

binary decision trees, producing three distinct Boolean queries. 

Queries were adapted for PubMed by adding a “[MeSH]” tag for MeSH terms and 

the “[sh]” tag for MeSH subheadings. AND statements directly preceding NOTs were 

dropped and any stemmed text words included in the query had an asterisk (*) appended 

to include word variants.  

Evaluating Query Performance 

In a final step, the researchers tested the performance of all five queries (2 expert-

written, 3 computer-generated) on the study dataset. Each query was executed on the 

MEDLINE database, using the PubMed interface to limit the query to the same 

timeframe as the study dataset (1985-2002.) Articles returned by the query were 

considered DDI+ for that query method; all others were labeled DDI-. The set of citations 

returned by each query was intersected with the 2000 hand-labeled true positive and true 

negative citations to determine the query’s performance on the study dataset.  
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Results 

Performance of Decision Trees vs. SVMs 

The first of the two decision trees, Tree PC, was generated from the HITON-PC 

classifier and involved only 13 features. Tree MB was derived from the HITON-MB 

classifier (34 features). The details of Trees PC and MB are listed in Table 10, along with 

an AUC measure of how closely each tree models the behavior of its SVM parent. 

Decision tree AUCs are listed for both the training and the test data. Illustrations of Tree 

MB and Tree PC are provided in Figure 9 and Figure 11 of Appendix B. 

 

Table 10: Results of Decision Tree Construction 
Table 10 lists the classification performances of Tree PC and Tree MB, the feature selection method of its 
SVM parent, and the size of its resulting feature set. Columns on the right list how well each SVM parent 
classified the test DDI data, and how closely the derived decision tree (DT) modeled its SVM parent on the 
training and test sets, respectively. The best values in each category are marked with bold text. 

 Performance of 

SVM Parent 

DT modeling of SVM 

classifier 

Decision 

Tree 

Feature 

Selection 

Method 

# Features 
AUC 

(test set) 

AUC 

(training set) 

AUC 

(test set) 

Tree PC HITON-PC 13 0.9893 0.9879 0.9768 

Tree MB HITON-MB 34 0.9900 0.9864 0.9766 

 

 

Both Tree PC and Tree MB closely reproduced the output of their parent SVM 

classifiers, with AUCs of 0.9768 and 0.9766 on the testing data, respectively. With such 

similar performance, however, the simplicity of the HITON-PC feature set made Tree PC 

the more appealing choice. 
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Selected Performance Thresholds 

Tree PC produced 48 unique leaf node values (threshold scores), resulting in 48 

binary trees. Each binary decision tree performed differently when classifying the study 

dataset. The research team selected three representative trees, Binary DT-3, Binary DT-4, 

and Binary DT-5, generated from the threshold values -0.9875, 0.4360, and 0.8560, 

respectively. Figures 12 through 14 of Appendix B show these three binary trees 

projected in color onto the Tree PC structure. 

The sensitivity and 1-specificity of all 48 trees are plotted in Figure 7, with 

markers and threshold scores for the three selected trees. 
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Figure 8: Performance of 3 Binary Decision Trees 

The performances of all possible binary decision trees derived from Tree PC are plotted as points in the 
graph above. The three binary trees selected for query conversion are marked with larger points in blue and 
are labeled with their threshold scores and names. 



 51 

A table of all of Tree PC’s 48 threshold values and their related sensitivities and 

specificities, which includes all unmarked points in Figure 7, can be found in Table 17 of 

Appendix A.  

Table 11, shown below, lists the three selected binary decision trees, the threshold 

values that generated them, and their performances on the training dataset (1334 

examples). These three decision trees represent different sensitivity-specificity 

combinations, as evidenced by the graph above: balanced sensitivity/specificity, high 

sensitivity with low specificity, and very high sensitivity with very low specificity.  

 

Table 11: Selected Binary Decision Trees and Performance Scores 

Tree Threshold Value Sensitivity Specificity 

Binary DT-3 -0.9875 0.9104 0.9208 
Binary DT-4 0.4360 0.6866 0.9983 
Binary DT-5 0.8560 0.5448 0.9992 

 

 

Binary DT-3 was generated by polarizing scores on each side of the -0.9875 

threshold. This tree showed a balanced performance on the study test set, with a 

sensitivity of 0.9104 and a specificity of 0.9208. Binary DT-4 and Binary DT-5 were 

generated from the higher threshold scores of 0.4360 and 0.8560, respectively. These two 

trees classified the citations from the study dataset with higher specificity, but lower 

sensitivity.The pruned versions of these three binary decision trees are shown in Figure 

15 (a) through (c) of Appendix B. 
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Three Computer-generated Queries 

Each of the three decision trees was successfully decomposed into a PubMed-

formatted Boolean query.  

 

Table 12: All Computer-generated Queries 
All three computer-generated queries developed as part of this research are listed in Table 12. These search 
strategies are intended for use in PubMed’s query-based search engine. 

Query Name Query Detail 

Q-Comp3 
(computer-generated 
query from  
Binary DT-3) 

"drug interactions"[MeSH] OR ("humans"[MeSH] AND 
"pharmacokinetics"[MeSH] NOT "drug interactions"[MeSH]) OR 
("humans"[MeSH] AND "drug synergism"[MeSH] NOT 
"pharmacokinetics"[MeSH] NOT "drug interactions"[MeSH]) OR 
("humans"[MeSH] AND "adverse effects"[sh] AND receiv* NOT "drug 
synergism"[MeSH] NOT "pharmacokinetics"[MeSH] NOT "drug 
interactions"[MeSH]) OR ("humans"[MeSH] AND "adverse effects"[sh] 
AND interact* NOT "drug synergism"[MeSH] NOT 
"pharmacokinetics"[MeSH] NOT "drug interactions"[MeSH] NOT receiv*) 
OR ("humans"[MeSH] AND "adverse effects"[sh] NOT interact* NOT cell* 
NOT "drug synergism"[MeSH] NOT "pharmacokinetics"[MeSH] NOT 
"drug interactions"[MeSH] NOT receiv*) OR ("humans"[MeSH] AND 
"pharmacology"[MeSH] NOT cell* NOT "adverse effects"[sh] NOT "drug 
synergism"[MeSH] NOT "pharmacokinetics"[MeSH] NOT "drug 
interactions"[MeSH]) OR ("humans"[MeSH] AND receiv* NOT cell* NOT 
"pharmacology"[MeSH] NOT "drug synergism"[MeSH] NOT 
"pharmacokinetics"[MeSH] NOT "drug interactions"[MeSH] NOT "adverse 
effects"[sh]) OR ("pharmacology"[MeSH] AND interact* NOT cell* NOT 
"humans"[MeSH] NOT "drug interactions"[MeSH]) OR (interact* AND 
"drug synergism"[MeSH] NOT "pharmacology"[MeSH] NOT cell* NOT 
"humans"[MeSH] NOT "drug interactions"[MeSH]) 
 

Q-Comp4 
(computer-generated 
query from  
Binary DT-4) 

("drug interactions"[MeSH] AND "pharmacokinetics"[MeSH]) OR ("drug 
interactions"[MeSH] AND interact* NOT "pharmacokinetics"[MeSH]) OR 
("drug interactions"[MeSH] AND receiv* NOT interact* NOT 
"pharmacokinetics"[MeSH]) OR ("drug interactions"[MeSH] AND 
"humans"[MeSH] NOT receiv* NOT interact* NOT 
"pharmacokinetics"[MeSH]) 
 

Q-Comp5 
(computer-generated 
query from  
Binary DT-5) 

 ("drug interactions"[MeSH] AND "pharmacokinetics"[MeSH]) OR ("drug 
interactions"[MeSH] AND interact* AND "pharmacology"[MeSH] NOT 
"pharmacokinetics"[MeSH]) OR ("drug interactions"[MeSH] AND interact* 
AND "adverse effects"[sh] NOT "pharmacology"[MeSH] NOT 
"pharmacokinetics"[MeSH]) OR ("drug interactions"[MeSH] AND receiv* 
NOT interact* NOT "pharmacokinetics"[MeSH]) OR ("drug 
interactions"[MeSH] AND "humans"[MeSH] AND "pharmacology"[MeSH] 
NOT receiv* NOT interact* NOT "pharmacokinetics"[MeSH]) 
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Binary DT-3 produced Q-Comp3, the first of the computer-generated queries. The TRUE 

branches of decision tree Binary DT-4 were concatenated to produce Q-Comp4, a second 

computer-generated query. Binary DT-5 produced Q-Comp5. All three queries are 

detailed in Table 12. 

All three queries could be reduced in length and complexity using first order 

logic, but they have been retained as disjunctions of conjunctions to illustrate how they 

were derived from decision trees. The PubMed query engine ably handles either format. 

Performance of Expert and Computer-generated Queries on Study Dataset 

All 5 study queries were tested on the study dataset of 2000 citations (200 DDI+, 

1800 DDI-) and the results are presented in Table 13. Citations returned by a query were 

considered positive (DDI+); all others were labeled as negatives (DDI-). Table 13 lists 

the size of each query’s return set, how many of those citations were true versus false 

positives, and the calculated sensitivity and specificity of each query. Q-Exp1 and Q-

Exp2 refer to the two expert-written queries described in Chapter II. Q-Comp3, Q-

Comp4, and Q-Comp5 are the names of the three computer-generated queries listed 

above. 
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Table 13: Results of 5 Queries on the Study Dataset of 2000 Citations 
This table shows how accurately the study’s two expert queries (Q-ExpN) and three computer queries (Q-
CompN) classified the 200 DDI+ and 1800 DDI- citations. The better classifiers have true positive values 
close to 200 and false positives values close to 0. Sensitivities and specificities closer to 1 indicate better 
performance. 

 

Size of the 

query’s 

return set 

(TP + FP) 

True 

Positives 

(out of 200) 

False 

Positives 
Sensitivity Specificity 

Q-Exp1 167 150 17 0.750 0.991 
Q-Exp2 78 76 2 0.380 0.999 

Q-Comp3 345 185 160 0.925 0.911 
Q-Comp4 158 149 8 0.745 0.996 
Q-Comp5 91 88 3 0.440 0.998 

 

 

Expert query 1 (Q-Exp1) detected 150 of the 200 true positives in the study 

dataset, and had a specificity of 0.991. Q-Exp1 is a very broad, comprehensive query, so 

it is of note that a computerized query (Q-Comp4) was able to achieve a higher 

sensitivity. On the other hand, Q-Exp2 showed the poorest sensitivity (0.380) of any 

query, but paired this with the highest specificity (0.999).  

Q-Comp3 detected the most DDI+ citations of any query, with a high sensitivity 

of 0.925. It also returned the highest number of false positives, leading to a lower 

specificity of 0.911. Computer query 4 (Q-Comp4) correctly classified 149 of 200 true 

positives, only one citation fewer than Q-Exp1. The query’s specificity, however, was 

significantly higher (0.996), since it detected fewer than half the false positives. The 

query Q-Comp5 produced the second smallest return set, the second lowest sensitivity 

(0.440) and the second highest specificity (0.998), with only a single false positive more 

than Q-Exp2. 
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The computer-generated query Q-Comp4 and the expert query Q-Exp1 showed 

comparable abilities for detecting DDI+ articles in the study dataset. Q-Exp1 identified 

an additional positive but statistically insignificant citation (150 DDI+ vs. 149 for Q-

Comp4, x² = 0.00658, p = 0.01). However, Q-Comp4 identified 9 fewer false positives 

than Q-Exp1, a difference which did prove to be statistically significant at p = 0.01 (x² = 

9.07157). Q-Exp2 and Q-Comp5 present a similar case.  

Discussion 

Principal Findings 

The results of these experiments suggest that one can derive Boolean queries that 

accurately model the performance of SVM classifiers, and that these queries can perform 

at least as well as manually developed queries when identifying drug-drug interaction 

articles in a study dataset. Each manually-generated query’s performance was well-

matched and possibly exceeded by that of a computer-generated query, suggesting that it 

is possible to achieve acceptably functioning queries using computer-assisted methods 

rather than human effort alone. 

The slight differences in the sensitivities and specificities of the computer-

generated queries when compared to decision tree’s classification performances are likely 

due to differences in the makeup of the dataset used; the former method was tested only 

on the training data, while the latter evaluation took place on the full set of 2000 citations. 

Within the training set, both procedures identified the same set of articles. 
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Study Limitations 

The switch from SVM classifier to Boolean query represents a probable decrease 

in performance, since the decision tree lacks the flexibility of an SVM model. In addition, 

the SVM classifier is easily tuned for high sensitivity or high positive predictive value, 

whereas the query represents static performance. The experiment described in this 

chapter, however, represents a necessary step if SVM-based classification is to be 

integrated into existing search engines. The process of converting machine learning 

classifiers to simple queries aims to increase the practicality and usability of classifiers, 

and leverage the power of these computer-based methods for locating relevant content in 

MEDLINE. 

A further concern is the difference in DDI+ prevalence between the study dataset 

and MEDLINE. This study used an enriched set of positives (10% DDI+ versus 0.8% in 

MEDLINE) to boost the performance of the SVM training algorithms. As a result, the 

SVM classifiers may be skewed towards data with a higher prevalence of drug interaction 

content, and may not maintain their performance when tested on the full content of the 

MEDLINE database. These possibilities are explored further in the experiments detailed 

in Chapter IV. 

Significance of Results 

This series of experiments supports previous research on the successful translation 

of SVM models to Boolean queries, and applies this method to the specific area of drug-

drug interaction information in MEDLINE. This research emphasizes that when choosing 
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a query threshold for a decision tree, one must allow for slight changes in performance 

when the resulting model is applied to unseen examples from the same population.  

The three queries developed in these experiments have performed at least as well 

as the two expert-written queries described in Chapter II. One might expect that 

computer-generated queries have the potential to outperform manually generated queries, 

if correct threshold values can be identified and appropriate queries generated. It is likely 

that decision trees generated from larger feature sets – unlike Tree PC’s small set of 13 

features – will offer more unique leaf values (threshold scores), allowing them to 

generate more Boolean queries of different performance potential. 
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CHAPTER IV 

COMPARING MANUALLY-GENERATED QUERIES WITH COMPUTER-
GENERATED QUERIES IN MEDLINE 

Introduction 

The experiments of the previous chapter have determined that computer-

generated Boolean queries have the potential to perform better than manually created 

queries at identifying drug-drug interaction citations. This study used a corpus of “posi-

tive” and “negative” DDI citations to generate datasets composed of MeSH terms, CUI-

tagged title and abstract text, and stemmed text words. The research team modeled the 

patterns in the data using an SVM classifier, mapped this classifier to a decision tree, and 

decomposed the tree into three PubMed-formatted Boolean queries. These three 

computer-generated queries were compared to two queries developed by Vanderbilt 

University’s library staff.  

In the experiments of Chapter III, the computer-generated queries displayed 

excellent performance given a 10% prevalence of DDI+ citations in the study dataset. 

Unfortunately, this performance may not carry over to MEDLINE, where only an 

estimated 0.8% of content is related to drug-drug interactions.  

The final experiments of this study evaluated the performance of all five queries 

on a full year of MEDLINE citations to determine their actual classification capabilities. 

The details of all five queries are assembled for review in Table 18 of Appendix A. 
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Methods 

All five expert- and computer-generated queries were executed on the MEDLINE 

database, using PubMed’s query interface. The return set was limited to articles published 

in 2003, a year purposely chosen to be outside the timeframe of the study dataset (which 

spanned 1985 to 2002). 400 articles were randomly selected from each query’s 

MEDLINE 2003 return set and manually classified by one reviewer according to their 

drug-drug interaction applicability, per the definitions of Chapter II. 

The researchers calculated the positive predictive value of each query and the 

95% confidence interval associated with each query’s return set. Each query’s sensitivity, 

specificity, NPV, and PPV were computed and these numbers were used to evaluate each 

query’s performance.  

Results 

At the time of this study, MEDLINE had indexed 579,884 citations from 2003. 

This value and Chapter II’s estimate of the prevalence of DDI+ articles in MEDLINE 

(0.8%) were used to determine approximate sensitivities, specificities, and negative 

predictive values for the five queries.  

Table 14 lists the number of MEDLINE articles published in 2003 that each query 

returned as positive, the number of true and false positives found in the survey of 400 

randomly selected query citations, and the resulting positive predictive value (PPV). 

Table 14 also presents the estimated sensitivity, specificity, and negative predictive value 

(NPV), which have been calculated by assuming a 0.8% prevalence of DDI+ articles in 
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MEDLINE. This approximate value was derived from the survey of citations described in 

Chapter II. 

 

Table 14: Performance of All Queries on MEDLINE 2003 
This table shows how effectively the study’s two expert queries (Q-ExpN) and three computer queries (Q-
CompN) identified DDI+ articles among all MEDLINE articles published in 2003. True positive values 
close to 400 and false positive values close to 0 are desirable. Better classification is indicated by 
sensitivity, specificity, PPV and NPV values closer to 1. The highest sensitivities and positive predictive 
values for each category (expert, computer) are marked in bold. 

 MEDLINE 

articles 

returned 

True 

Positives 

in 400  

False 

Positives 

in 400  
PPV 

NPV 
(estimated) 

Sensitivity 
(estimated) 

Specificity 
(estimated) 

Q-Exp1 4,411 224 176 0.56  (± 0.05) >0.99 0.53 >0.99 

Q-Exp2 1,581 218 182 0.54  (± 0.04) >0.99 0.19 >0.99 

Q-Comp3 61,398 46 354 0.12  (± 0.05) 1.0* 0.90 1.0* 

Q-Comp4 3,768 211 189 0.53 (± 0.05) >0.99 0.43 >0.99 

Q-Comp5 1,370 255 145 0.64 (± 0.04) >0.99 0.19 >0.99 

 

 

Given the return size of Q-Comp3 (61,398 citations) and its PPV (0.12), 

calculations suggest this computer-generated query retrieved more true DDI+ citations 

than actually exist in 2003 MEDLINE, as estimated by the 0.8% prevalence measure. 

Performance estimates for which these numbers presented mathematical complications 

have been marked with an asterisk (*). Although it is unlikely Q-Comp3’s true specificity 

and NPV are 1.0, suggesting perfect exclusion of negatives, the query’s performance in 

these categories appears likely to approach these values, outstripping the other queries. 

The query’s estimated return of true DDI+ citations, rather than the 0.8% prevalence of 

DDI+, was used to set a conservative lower bound on sensitivity (0.90).   
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The PPVs for the two expert queries Q-Exp1 and Q-Exp2 were similar to each 

other, with values of 0.56 and 0.54, respectively. The queries’ sensitivities reflected the 

size of their return sets, however, with an estimated sensitivity of 0.53 for Q-Exp1 and 

0.19 for Q-Exp2.  

Q-Comp3, as discussed above, posted a high sensitivity, but an extremely low 

positive predictive value (0.12), suggesting that only 1/10 of this query’s return set would 

offer useful DDI information. A middle-of-the-road query in terms of performance, Q-

Comp4 fell behind Q-Exp2 with a slightly lower PPV (0.53 vs. 0.56) and sensitivity (0.43 

vs. 0.53). On the other hand, Q-Comp5 matched Q-Exp2 for sensitivity (0.19), but posted 

the highest PPV of any query (0.64), outstripping Q-Exp2’s PPV of 0.54. 

Discussion 

Principal Findings 

As discussed in Chapter II, the value of a query’s results is dependent on the 

user’s information needs. Therefore, “good performance” can be a measure of high 

sensitivity (recall), high PPV (precision), or a combination of the two values. This 

experiment showed that when performance is measured by sensitivity, the expert-

generated queries may be the more efficient choice. However when performance is 

measured by PPV, computer-generated queries can rival human queries: on the 

MEDLINE 2003 dataset, Q-Comp5 presented the highest PPV of any query. There is 

some overlap, however, among the 95% confidence intervals of all four of these queries, 
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so it is not possible to distinguish whether the computer-generated or traditional queries 

performed significantly better overall. 

The reported values of negative predictive value, sensitivity, and specificity are 

only estimates. The uncertainty in these values combines the possible variation in PPV as 

well as the unknown error in the current study’s estimate of DDI+ prevalence in 

MEDLINE. The computer-generated query Q-Comp3, however posted a much higher 

sensitivity (0.90, estimated) than any of the other four queries. Although this high 

sensitivity was also paired with the lowest PPV, Q-Comp3 might be the best choice for a 

user looking to capture all possible DDI+ articles, with no concern for false positives.  

It is interesting to note that many citations containing valuable DDI+ content do 

not include the text phrase “drug interaction” and are not tagged with the MeSH term 

“Drug Interactions.” Q-Exp1 was a very broadly stated query based on these 

assumptions, and yet its sensitivity was only 0.53 on the MEDLINE 2003 set, suggesting 

it retrieved barely over half the relevant DDI+ articles. While MeSH terms can clearly be 

used to locate DDI information (9 of the 13 highly discriminatory features identified by 

HITON-PC were MeSH terms), the necessary MeSH terms are not always clearly related 

to the target content. Of the MeSH terms identified by HITON-PC, for example, 

“Hematoma, Subdural” is not intuitively connected to drug interactions. This study 

attempted to find alternate methods of identifying significant articles, but improvements 

in title and abstract formulation and MeSH indexing also might assist in the identification 

of relevant information. 
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Study Limitations 

The applicability of these study results is limited, as the study did not manually 

review the full return set of each query and the process was completed with only a single 

reviewer. A survey of 400 randomly selected articles was sufficient to determine with 

95% confidence the prevalence of DDI+ articles within 5%. The resulting overlap in 

confidence intervals, however, leaves it impossible to definitively state which query had 

the best performance, as determined by PPV and sensitivity. It is clear that for queries 

QExp1, Q-Exp2, Q-Comp4, and Q-Comp5, these differences are small, since all four 

queries registered PPVs in the 0.55-0.65 range. This suggests that computer-generated 

queries and expert queries can produce return sets with similar true-positive rates. Indeed, 

it is possible that a user’s search experience may not be affected by small variances in 

PPV. 

Significance of Results 

Although MEDLINE undergoes yearly indexing changes, it is unlikely that 

citations retrieved from 2003 were significantly different those in the training set (1985-

2002). Nevertheless, all five queries posted poorer overall performances on MEDLINE 

than on the study dataset, which reinforces the assumption that the study dataset, with its 

enriched set of positives, was not entirely representative of raw MEDLINE content. The 

experiments described in this chapter, therefore, comprise a necessary validation step, 

since SVM models are known to be sensitive to prevalence and the SVM-based 

classifiers developed in Chapters II and III used a dataset with a higher percentage of 

DDI+ citations than MEDLINE. Testing these queries on PubMed ensures that this 
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method of developing an SVM classifier and decomposing it into a series of Boolean 

queries is, despite a decrease in performance, still compatible with MEDLINE. 

The results of this experiment confirmed that in the drug-drug interaction domain, 

computer-generated queries can rival manually created queries for precision (PPV), and 

may outperform these queries when performance is measured by recall (sensitivity).  
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CHAPTER V 

SYNOPSIS AND CONCLUSIONS 

Summary 

This study developed and evaluated a novel approach to locating drug-drug 

interaction MEDLINE content, using computer-generated queries in place of traditional 

expert PubMed queries. This report described the method in three stages: Chapter II 

presented the construction of an SVM classifier using a dataset of 2000 MEDLINE 

citations; Chapter III discussed decomposing this classifier into a series of Boolean 

queries; and Chapter IV tested these queries on one full year of MEDLINE citations. 

The SVM classifier described in Chapter II proved to be an effective tool for 

identifying MEDLINE citations with drug-drug interaction content, particularly when the 

model was trained on a dataset of stemmed text words and MeSH terms. When matched 

for specificity, the SVM model consistently surpassed the two expert queries in 

sensitivity, returning a greater number of DDI+ articles from the study dataset. 

Chapter III described the process of converting an SVM model to a decision tree, 

and presented two decision tree classifiers that closely resembled their SVM antecedents. 

These decision trees were easily broken down into Boolean queries. When compared to 

the two queries produced by biomedical librarians, the computer-generated queries 

demonstrated equal or better sensitivities and specificities on the study dataset of 2000 

articles. Although the SVM model was a more accurate classifier, these queries did not 
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require document pre-processing and could be executed quickly using PubMed’s search 

interface. 

In Chapter IV, the current study explored the application of these search strategies 

to a full year of MEDLINE citations. Both computer-generated and expert queries 

displayed a significant drop in performance when tested on the MEDLINE database 

versus the study dataset, which was not surprising given MEDLINE’s low prevalence of 

DDI+ citations. Nevertheless, the results of this experiment indicated that computer-

generated queries can rival human queries when used to identify drug-drug interaction 

content in MEDLINE. In addition, these computer-based queries may prove to be better 

at accommodating users’ varied information retrieval needs.  

A noteworthy strength of the approach taken in this work is that a single SVM 

model can be used to generate multiple Boolean queries whose performance is 

predictable. Manually-generated queries, by contrast, must be constructed individually 

and tested on a sample dataset in order to evaluate their performance. In Chapter II, the 

flexibility of the SVM model was described as a sensitivity-specificity “slider,” which 

would allow users to specify a particular classification performance level by choosing a 

point along the ROC curve. Converting the SVM classifier to a decision tree resulted in 

the discretization of the values along the ROC curve, producing a series of “threshold 

scores.” Although these scores represent a more limited selection of potential sensitivity-

specificity combinations than the “slider” model, they can be used in conjunction with a 

decision tree to produce many Boolean queries of varying sensitivity and positive 

predictive value. This technique offers the user a broader range of performance choices 

than a single expert-designed query. 
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Study Limitations 

It is crucial to consider the various limitations of the current work, especially in 

its design and selection of queries, and its methods of dataset construction. These factors 

affect the study’s external validity. 

“Expert” Queries 

This study compared only five queries for locating DDI+ articles. Testing a 

greater number of both human and automated queries would allow a more thorough 

analysis of each approach and the quality of information it provides. Similarly, the two 

“expert” queries came from a single group – Vanderbilt’s biomedical librarians – and do 

not represent the full potential of human query-writing capabilities. Moreover, the 

librarians did not refine the queries over time on varying MEDLINE content.  

On the other hand, the machine learning models used to generate the computer-

based classifiers were comparably straightforward; the study did not investigate the 

discriminatory power of more advanced SVM algorithms, nor were the corpus-derived 

datasets refined using advanced text processing methods. Neither the hand-written nor the 

decision tree-derived queries were tuned to optimize performance, despite studies that 

have shown that query expansion may, in some instances, improve the performance of 

MEDLINE searches [119, 120]. 

It was not, however, the intent of the study to conduct a rigorous analysis of 

human versus computer-aided query design. The research comprised an initial effort 

designed to explore the feasibility of a new method of query design in the drug-drug 

interaction domain. Results indicate that machine learning techniques can be used to 
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produce queries that compare to those developed by experienced MEDLINE searchers, 

and that DDI information retrieval methods have potential for further improvement. 

Study Dataset 

A clear avenue of improvement lies in developing a larger, more representative 

datasets with additional features. Although the study dataset of 2000 citations was 

sufficiently diverse to serve as a training corpus for a feasibility study, it was not 

adequately representative of MEDLINE to be considered a solid gold standard. The 

research team chose an enriched set of positives (10% DDI+ versus 1% in MEDLINE) to 

boost the performance of the training algorithms. As a result, the study’s SVM models 

may have been skewed towards data with a higher prevalence of drug interaction content, 

and the resulting computer-generated queries may have had built-in assumptions about 

DDI+ prevalence. 

The study used only stemmed text words and MeSH terms from MEDLINE titles 

and abstracts as input features for the TERMS-based SVM classifier. These features may 

have been insufficient for optimal text classification. A 2002 study by Ding and 

colleagues suggests that word fragments alone are too small of a segment of text for 

optimal classification; adding phrases might yield better precision [114]. Word frequency 

counts and weighting schemes have been used successfully in other studies that applied 

SVM classifiers, and similar techniques might improve upon the results presented 

here[121]. 

Furthermore, this research assumed that all DDI+ articles can be located by the 

information in their titles, abstracts, and MeSH terms. It is possible, however, that the full 
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range of content in an article is not evident from its MEDLINE citation alone. If this is 

the case, analysis of the full text of articles would be necessary to correctly identify many 

articles with valuable drug-drug interaction content. Although this is a highly relevant 

question in terms of complete DDI+ retrieval from MEDLINE, it would not have affected 

the current study results. Since the gold standard was established by a manual review of 

titles and abstracts rather than full-text documents, any DDI+ documents whose drug-

drug interaction content was not apparent in the title or abstract would have been missed 

by the study’s manual reviewers as well as the machine learning classifiers. Nevertheless, 

it would be preferable to use the full text of each article, but for most journals this content 

is not yet freely available. 

MEDLINE 

A more noteworthy assumption is that PubMed queries have the potential to 

identify every article in MEDLINE. A study by Balas and colleagues explored simple 

PubMed searches as a means of identifying information about health care quality 

improvement. Their results suggest that PubMed queries are flawed as a method of 

information retrieval, and that searches using MeSH terms and text words result in only 

moderate recall and precision [122]. However, work by Backus and colleagues has 

indicated that the “Drugs and Chemicals” category is one of the largest, but least often 

searched MeSH term sets, suggesting there is room for improvement in drug-related 

queries that use headings from this branch of the MeSH vocabulary [123]. Regardless, 

the PubMed search tool is a quick and publicly available means of searching the 

MEDLINE database, which is why this study has explored its use. 
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A particular limitation of using MEDLINE as a source of drug-drug interaction 

content stems from the delay between the publication of a relevant article and its indexing 

in the MEDLINE database. Most DDI knowledge bases are only updated once every 2-4 

months, however, which leaves plenty of time for high-quality articles to enter the 

MEDLINE database [124]. Nevertheless, DDI KB developers in need of timely drug 

interaction information might find MEDLINE insufficient for their information retrieval 

needs. In order to obtain both high-quality and up-to-the-minute DDI information, it may 

be necessary to consult a variety of content sources. 

 

Study Implications and Future Work 

Although neither manual nor computer-aided queries were optimized, the current 

study represented a successful test-of-concept for quasi-automated DDI document 

classification in MEDLINE. The computer-generated queries designed in this study are 

comparable to traditional, expert-designed queries and may be easier and less expensive 

to maintain.  

In addition, the approach suggests that it might be straightforward for drug 

database curators to develop computer-generated queries given the selection of drug-drug 

interaction articles they have already identified. By collecting the related citations from 

MEDLINE, they are guaranteed a set of useful drug interaction positives for their training 

and test sets.  

More extensive and applied experiments will be required, however, before anyone 

can generate a practical classifier for identifying drug-drug interaction articles in 
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MEDLINE. Future studies should involve a larger training set that is more representative 

of MEDLINE content as well as additional examples of expert and computer-generated 

queries. True “expert” queries must be used to accurately evaluate the performance of 

traditional search strategies.  

Likewise, different SVM techniques and modified datasets with word frequencies, 

weights, and semantic content could be used to produce a computer-generated classifier 

with higher sensitivity and PPV. In particular, probabilistic SVMs, which output 

probabilities of class assignment rather than target values, might be used to adjust for the 

change in DDI+ prevalence between the study dataset and MEDLINE [125, 126]. An 

immediate extension to the current work would train such a probabilistic SVM on the 

TERMS dataset and use it to generate a new set of queries that could be compared to the 

expert and computer-generated queries developed in the current study. A further 

experiment should investigate sources of false positives and false negatives, and test how 

the classifiers may be tuned to avoid misclassification while preserving generalizability. 

Furthermore, a more helpful information retrieval system might rank citations 

according to their probability of containing DDI+ information, rather than offering the 

stark yes-or-no judgments of binary classifiers. Indeed, this approach might be more 

compatible with users’ differing information needs, allowing them to peruse as few or as 

many documents as they desire and thereby creating a personal “viewing set” with either 

high sensitivity or high PPV. Such practical applications of the techniques presented in 

this report could be refined from ongoing feedback from real-world use by experts 

engaged in DDI identification. 
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Subsequent work should also take into account that MEDLINE is only one 

potential source of drug-drug interaction information. It may be the case that the type of 

information in other DDI sources (e.g. drug company publications, FDA warnings, 

pharmaceutical bulletins) is more useful in constructing DDI knowledge bases. Future 

work should investigate alternative drug knowledge sources and explore mining them for 

DDI content. 

Conclusion 

The work presented here represents a feasibility test for quasi-automated drug-

drug interaction reference identification. The study results, obtained through a series of 

experiments, show that support vector machine classification can be used to produce 

Boolean queries that target DDI citations, and that these queries perform well on the 

MEDLINE database when compared to human experts. By enhancing MEDLINE’s value 

as a source of drug-drug interaction information, the project team hopes to improve the 

accessibility of high-quality DDI content and encourage a more fact-based approach to 

the development of drug-drug interaction knowledge bases and alerting systems.  
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APPENDIX A 

SUPPLEMENTARY TABLES 

Table 15: Top 30 Discriminatory CUIs Selected by HITON-PCW 

CUI Name  CUI 

Administration C0001554 

Arrhythmia C0003811 

Carbamazepine C0006949 

Containing C0332256 

Cyclosporine C0010592 

DEBILITATION C0742985 

Dipyrone C0012586 

Direct type of relationship C0439851 

Drug Interactions C0687133 

Drug Kinetics C0007634 

Ergotism, NOS C0595996 

Erythromycin C0014806 

Flecainide C0016229 

Fluoxetine C0016365 

Flurbiprofen C0016377 

Mazes C0870866 

Nicotinic Acids C0028049 

physiological aspects C0031843 

Prolonged QT interval C0151878 

Protein measurement C0202202 

Reception C0544683 

Rhabdomyolysis C0035410 

Risperidone C0073393 

Stimulation - action C0441691 

Techniques C0449851 

Terfenadine C0085173 

Theophylline C0039771 

Topical Ointment C0991554 

Tramadol C0040610 

Warfarin C0043031 
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Table 16: Features from the TERMS Dataset Selected by HITON-PC and HITON-MB  
Features in bold were selected by both HITON-PC and HITON-MB. All other stemmed text words and 
MeSH terms were selected by HITON-MB only. The last row lists the total number of features selected by 
each method. 

 Feature Selection 

Method 

Stemmed text words and MeSH terms 
HITON 

PC 

HITON 

MB 

bind   x 
cell x x 

dietari   x 
dimer   x 

dose x x 
drug   x 

given   x 
group   x 

human   x 
induc   x 

interact x x 
MeSH: administration & dosage x x 

MeSH: adverse effects x x 
MeSH: Animals   x 

MeSH: antagonists & inhibitors   x 
MeSH: Drug Interactions x x 

MeSH: Drug Synergism x x 
MeSH: drug therapy   x 

MeSH: Drug Therapy, Combination   x 
MeSH: etiology   x 

MeSH: Hematoma, Subdural x x 
MeSH: Human x x 

MeSH: Infant, Newborn   x 
MeSH: metabolism   x 

MeSH: Pharmacokinetics x x 
MeSH: Pharmacology x x 

MeSH: Receptors, Retinoic Acid   x 
MeSH: Renal Dialysis   x 

MeSH: Theophylline x x 
MeSH: therapeutic use   x 

MeSH: therapy   x 
MeSH: Tritium   x 

receiv x x 
undertook   x 

 Number of features 13 34 
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Table 17: All Threshold Values of Tree PC and Related Sensitivities and Specificities 

Threshold values in bold were used to generated the binary decision trees DT-3, DT-4, and DT-5. Grayed-
out threshold values produce decision trees that are dominated by other selections on the list. 

Threshold Value Sensitivity Specificity 

-2.2271 1 < 0.3033 
-1.8222 1 < 0.3033 
-1.8199 1 < 0.3033 

-1.8195 1 < 0.3033 
-1.8123 1 < 0.3033 
-1.7983 1 < 0.3033 

-1.4112 1 < 0.3033 
-1.4111 1 < 0.3033 
-1.4110 1 0.3033 

-1.4100 0.9851 0.7658 
-1.4051 0.9851 0.7658 
-1.3967 0.9851 0.7942 

-1.3801 0.9627 0.8458 
-1.3595 0.9627 0.8525 
-1.3202 0.9627 0.8525 

-1.1605 0.9627 0.8542 
-1.0006 0.9627 0.8558 
-0.9996 0.9627 0.8692 

-0.9875 0.9104 0.9208 

-0.9846 0.9104 0.9208 
-0.9821 0.8806 0.9633 

-0.9541 0.8806 0.9633 
-0.9156 0.8806 0.9758 
-0.7188 0.8806 0.9808 

-0.6340 0.8657 0.9842 
-0.6179 0.8657 0.9842 
-0.5882 0.8433 0.9842 

-0.5625 0.8433 0.9875 
-0.5417 0.8284 0.9917 
-0.4521 0.8134 0.9917 

-0.3044 0.7910 0.9933 
0.0172 0.7537 0.9967 
0.0531 0.7537 0.9967 

0.3819 0.6866 0.9983 
0.4360 0.6866 0.9983 
0.5876 0.6194 0.9983 

0.8071 0.5448 0.9992 
0.856 0.5448 0.9992 

1.0149 0.3582 1 

1.0570 < 0.3582 1 
1.1004 < 0.3582 1 
1.3323 < 0.3582 1 

1.3577 < 0.3582 1 
1.4609 < 0.3582 1 
1.6919 < 0.3582 1 

1.7867 < 0.3582 1 
2.6466 < 0.3582 1 
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Table 18: All 5 Study Queries (Q-Exp and Q-Comp) 

This table lists all 5 queries used in this study. Q-Exp1 and Q-Exp2 are queries developed by librarians 
with extensive MEDLINE search experience. Q-Comp3, Q-Comp4, and Q-Comp5 are the computer-
generated queries developed as part of this research.  Chapters II and III describe the performance of these 
queries on the study dataset of 2000 citations. Chapter IV describes the performance of all five queries on a 
full year of MEDLINE publications. 

Query Name Query Detail 

Query 1, Expert 
(Q-Exp1) 

("drug interactions"[TIAB] NOT Medline[SB]) OR  
"drug interactions"[MeSH] OR drug interaction[Text Word] 
 

Query 2, Expert 

(Q-Exp2) 
"drug interactions"[MeSH] OR drug interactions[Text Word] AND 
("Toxicity Tests"[MeSH] OR "Adverse Drug Reaction Reporting 
Systems"[MeSH] OR "Drug Hypersensitivity"[MeSH] OR "Drug 
Antagonism"[MeSH] OR "drugs, investigational"[MeSH] OR "Drug 
evaluation"[MeSH] OR "adverse effects"[sh] OR "toxicity"[sh] OR 
"poisoning"[Subheading] OR "chemically induced"[sh] OR 
"contraindications"[sh]) 
 

Query 3, Computer 
(Q-Comp3) 

"drug interactions"[MeSH] OR ("humans"[MeSH] AND 
"pharmacokinetics"[MeSH] NOT "drug interactions"[MeSH]) OR 
("humans"[MeSH] AND "drug synergism"[MeSH] NOT 
"pharmacokinetics"[MeSH] NOT "drug interactions"[MeSH]) OR 
("humans"[MeSH] AND "adverse effects"[sh] AND receiv* NOT "drug 
synergism"[MeSH] NOT "pharmacokinetics"[MeSH] NOT "drug 
interactions"[MeSH]) OR ("humans"[MeSH] AND "adverse effects"[sh] 
AND interact* NOT "drug synergism"[MeSH] NOT 
"pharmacokinetics"[MeSH] NOT "drug interactions"[MeSH] NOT receiv*) 
OR ("humans"[MeSH] AND "adverse effects"[sh] NOT interact* NOT cell* 
NOT "drug synergism"[MeSH] NOT "pharmacokinetics"[MeSH] NOT 
"drug interactions"[MeSH] NOT receiv*) OR ("humans"[MeSH] AND 
"pharmacology"[MeSH] NOT cell* NOT "adverse effects"[sh] NOT "drug 
synergism"[MeSH] NOT "pharmacokinetics"[MeSH] NOT "drug 
interactions"[MeSH]) OR ("humans"[MeSH] AND receiv* NOT cell* NOT 
"pharmacology"[MeSH] NOT "drug synergism"[MeSH] NOT 
"pharmacokinetics"[MeSH] NOT "drug interactions"[MeSH] NOT "adverse 
effects"[sh]) OR ("pharmacology"[MeSH] AND interact* NOT cell* NOT 
"humans"[MeSH] NOT "drug interactions"[MeSH]) OR (interact* AND 
"drug synergism"[MeSH] NOT "pharmacology"[MeSH] NOT cell* NOT 
"humans"[MeSH] NOT "drug interactions"[MeSH]) 
 

Query 4, Computer 
(Q-Comp4)  

("drug interactions"[MeSH] AND "pharmacokinetics"[MeSH]) OR ("drug 
interactions"[MeSH] AND interact* NOT "pharmacokinetics"[MeSH]) OR 
("drug interactions"[MeSH] AND receiv* NOT interact* NOT 
"pharmacokinetics"[MeSH]) OR ("drug interactions"[MeSH] AND 
"humans"[MeSH] NOT receiv* NOT interact* NOT 
"pharmacokinetics"[MeSH]) 
 

Query 5, Computer 
(Q-Comp5) 

 ("drug interactions"[MeSH] AND "pharmacokinetics"[MeSH]) OR ("drug 
interactions"[MeSH] AND interact* AND "pharmacology"[MeSH] NOT 
"pharmacokinetics"[MeSH]) OR ("drug interactions"[MeSH] AND interact* 
AND "adverse effects"[sh] NOT "pharmacology"[MeSH] NOT 
"pharmacokinetics"[MeSH]) OR ("drug interactions"[MeSH] AND receiv* 
NOT interact* NOT "pharmacokinetics"[MeSH]) OR ("drug 
interactions"[MeSH] AND "humans"[MeSH] AND "pharmacology"[MeSH] 
NOT receiv* NOT interact* NOT "pharmacokinetics"[MeSH]) 
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Figure 10: Tree MB Insert 
Figure 10 fills in the area marked by a gray box in Figure 9’s depiction of Tree MB. The top-most AE node 
in Figure 10 is the left child of the DS node preceding the gray box in Figure 9. 
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Figure 15: Pruned Versions of Binary DT-3, DT-4, and DT-5 
Figures (a) through (c) are pruned, binary versions of the decision trees in Figures 9-11. Nodes (circled) 
represent present/absent tests for stemmed text words and MeSH terms. The left branch symbolizes the 
term is absent in the document, the right branch indicates the term is present in the text. Leaf nodes assign 
DDI+ or DDI- classifications to documents.  
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