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CHAPTER I

TRIMETHYLSILYLATED ALLYL COMPLEXES OF NICKEL. THE
STABILIZED BIS(π-ALLYL)NICKEL COMPLEX [η3-1,3-(SiMe3)2C3H3]2Ni

AND ITS MONO(π-ALLYL)NiX (X = Br, I) DERIVATIVES

Introduction

Bis(allyl)nickel, (C3H5)2Ni, was the first homoleptic transition metal allyl

complex to be isolated,1 and it is still the archetypal example of its class. A variety

of both homoleptic and heteroleptic (allyl)nickel complexes have been prepared

and studied in the ensuing 40 years,2-6 and many of them have found uses in

homogeneous catalysis and organic synthesis.7-10 Stoichiometric reactions of

homoleptic (allyl)2Ni complexes with phosphines,5 halogens11 and carbon

dioxide12 have also been examined in detail.4,6-10,13 Such studies have been

conducted despite the low oxidative and thermal stability of many bis(allyl)nickel

complexes (e.g., the parent (C3H5)2Ni is pyrophoric and decomposes above 20 ºC).

Even physical characterization of these (allyl)nickel compounds can be problematic,

and has often relied heavily on solution NMR studies5,14 or theoretical

investigations.15-17 The instability of the compounds has made the use of other

methods, such as photoelectron spectroscopy,18 electrochemistry, and in some cases

even crystallography19 problematic.
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Sterically bulky cyclopentadienyl rings (e.g., C5Me5, C5H3(SiMe3)2) are

frequently used to synthesize compounds of greater diversity and stability than is

possible with Cp alone,20-22 and a similar approach has recently been found

effective with the allyl ligand. In some instances, allyl compounds with ligands

substituted by trimethylsilyl and dimethyl(tert-butyl)silyl23 groups represent new

classes of metal complexes. Among these are the thermally stable, electron-deficient

bis(allyl) compounds [1,3-(SiMe3)2C3H3]2M (M = Cr, 12-e-;24 Fe, 14-e-;25 Co,

15-e-26); they have no monomeric counterparts with unsubstituted ligands. Various

lanthanide containing species have also been isolated that have no analogues

containing the parent allyl anion (e.g., the neutral monomeric tris(allyl) complexes

[1,3-(SiMe3)2C3H3]3Ln(thf) (Ln = Ce, Nd, Tb)27 and the tetrametallic salt

(K(thf)2Sm[1,3-(SiMe3)2C3H3]3)2
28). In other cases, substituted allyl ligands can

provide versions of known compounds that are more robust and easily studied than

the unsubstituted species. This situation occurs, for instance, with the homoleptic

thorium complexes [(SiMe3)nC3H5-n]4Th (n = 1, 2).29 In contrast to (C3H5)4Th,

which decomposes at 0 °C, the trimethylsilylated derivatives are stable up to 90 °C,

and their structural authentications were the first for neutral [RnC3H5-n]4M species.

The chemistry already known for (allyl)nickel complexes suggests that the

study of their derivatives with bulky allyl ligands should be particularly informative.

Previous use of substituted allyl ligands in nickel complexes has been limited to

groups such as methyl (e.g., the crotyl anion), ethyl, or phenyl,30 and some of these
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compounds have been used as catalysts.31-33 Modest improvements in thermal

stability are observed in several cases (for example, (2-MeC3H4)2Ni decomposes at

33 °C, and the heavily substituted bis(1,1´,3,3´-tetraphenylallyl)nickel is stable at

room temperature34). The good solubility in hydrocarbons and the typically high

thermal stability of known complexes containing trimethylsilylated allyl ligands

suggests that nickel species could benefit considerably from their use.

We report here our investigation of the effects of the 1,3-

bis(trimethylsilyl)allyl ligand on the synthesis, structure, and reactions of

bis(allyl)nickel complexes. As part of this research, we investigated the related

heteroleptic nickel complexes (1,3-bis(trimethylsilyl)allyl)NiX (X = Br, I), and

compared their properties with the parent (C3H5)NiX species.35 Reactions of the

homoleptic (1,3-bis(trimethylsilyl)allyl)2Ni with phosphines were also studied. As

this project was a continuation and completion of initial work by Dr. J. Dominic

Smith, any data from his work used in this dissertation will be attributed as such.

Experimental Section

General Considerations. All manipulations were performed with the

rigorous exclusion of air and moisture using high vacuum, Schlenk, or glovebox

techniques. Proton, carbon (13C), and phosphorus (31P) NMR spectra were

obtained on a Bruker DPX–300 spectrometer at 300, 75.5, and 121 MHz,

respectively, and were referenced to the residual proton and 13C resonances of
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C6D6 (δ 7.15 and 128.0) or to external H3PO4 (δ 0.0). NOESY, COSY, and HMQC

NMR spectra were recorded on a Bruker DPX–400 spectrometer and were

similarly referenced. HSQC NMR spectra were recorded on a Bruker Avance 500

instrument. All NMR data were processed using Bruker XWINNMR 3.5 software

on an Octane workstation (Silicon Graphics, Mountain View, CA).

UV-vis and IR spectra, presented in this section, were first reported by Dr. J.

Dominic Smith. UV–vis spectra were obtained on a Cary 50 spectrometer. Infrared

data were obtained on an ATI Mattson–Genesis FT–IR spectrometer either neat or

as KBr pellets prepared as previously described.36 GC–MS data were obtained with

a Hewlett–Packard 5890 Series II gas chromatograph/mass spectrometer with a

5971 Series mass selective detector. Melting points were determined on a

Laboratory Devices Mel–Temp apparatus in sealed capillaries. A Cryocool series

immersion cooler with Cryotrol thermocouple was used for reactions run at –40 ˚C.

Metal analyses were obtained from complexometric titration;37 combustion

analyses were performed by Desert Analytics, Tuscon, AZ.

31P decoupled HSQC experiments. The phase sensitive 1H–13C HSQC

experiments used the following parameters: 1024 data points; a spectral width of

5000 Hz in the acquisition dimension and 1006 Hz in the indirect dimension; an

acquisition time of 102 ms with GARP decoupling of the carbons; and two scans for

each of the 1024 increments. An echo-antiecho acquisition scheme was employed.

Phosphorus decoupling was achieved through an additional 180° hard pulse on the
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phosphorus resonance using a third channel. All other parameters were kept

constant. The data was zero-filled and a square sinebell apodization was applied in

both dimensions.

Materials. 1-(SiMe3)C3H5 and (C6H5COO)2 were purchased from Acros,

(COD)2Ni was obtained from Strem, and NiCl2, NiBr2, NiBr2(dme), NiI2, and

[AgI•PMe3]4 were purchased from Aldrich; all were used as received. 1,3-

(SiMe3)2C3H4 and Li[1,3-(SiMe3)2C3H3] were synthesized according to literature

procedures.38 K[1,3-(SiMe3)2C3H3] was prepared by transmetallation of Li[1,3-

(SiMe3)2C3H3] with potassium t-butoxide in hexanes solution. THF, toluene, and

hexanes were distilled under nitrogen from potassium benzophenone ketyl.39

Ni(PMe3)4 was prepared according to a literature procedure,40 using [AgI•PMe3]4 in

place of neat PMe3. Deuterated solvents were vacuum distilled from Na/K (22/78)

alloy prior to use.

Attempted synthesis of [1,3-(SiMe3)2C3H3]2Ni from NiCl2 and K[1,3-

(SiMe3)2C3H3]. Formation of 1,3,4,6-tetrakis(trimethylsilyl)-1,5-hexadiene. A

125 mL Schlenk flask containing a magnetic stirring bar and fitted with an addition

funnel was charged with NiCl2 (0.288 g; 2.22 mmol) in 10 mL of THF. K[1,3-

(SiMe3)2C3H3] (1.00 g; 4.45 mmol) dissolved in 15 mL of THF was placed in the

addition funnel. The apparatus was cooled to –78 °C using a dry ice/acetone bath.

The THF solution of K[1,3-(SiMe3)2C3H3] was added dropwise with stirring over

the course of 30 min. The solution was allowed to warm to room temperature
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overnight, after which the THF was removed under vacuum. The residue was

extracted with hexanes, and the extract was filtered over a medium porosity glass

frit. Removal of the hexanes under vacuum afforded a dark oil. Under reduced

pressure (10–3 Torr) at 55 °C, a white, waxy solid (mp 44–46 °C) sublimed from the

oil; it was identified as 1,3,4,6-tetrakis(trimethylsilyl)-1,5-hexadiene (0.192 g, 23%

yield). The product could be obtained as colorless crystals from hexanes. Anal.

Calcd for C18H42Si4: C, 58.29; H, 11.41. Found: C, 58.44; H, 11.74. MS (m/e) 370

(M+), 355 (M+ – Me), 297 (M+ – SiMe3), 73 (SiMe3). Principle IR bands (KBr,

cm–1): 2959 (s), 2898 (m), 2390 (w), 1600 (w), 1449 (m), 1250 (s), 1248 (s), 1082 (s),

1028 (s), 850 (s), 803 (s), 734 (w), 687 (m), 402 (m). Two diastereomers were

identified in NMR spectra; their ratios varied somewhat from reaction to reaction,

but the same one was always present in larger amounts. Major product

diastereomer: 1H NMR (300 MHz, C6D6, 298 K): δ 0.14 (s, 36H, SiMe3); 2.01

(mult, 2H, C(3,4)–H); 5.47 (d, 2H, J = 18.3 Hz, C(1,6)–H); 5.90 (mult, 2H, C(2,5)–H).

13C NMR (75 MHz, C6D6, 298 K): δ –1.05 (SiMe3); –0.88 (SiMe3); 39.89 (C(3,4));

127.20 (C(2,5)); 149.38 (C(1,6)). Minor product diastereomer: 1H NMR (300 MHz,

C6D6, 298 K): δ 0.068 (s, 18H, SiMe3); 0.084 (s, 18H, SiMe3); 2.01 (mult, 2H,

C(3,4)–H); 5.60 (d, 2H, J = 18.3 Hz, C(1,6)–H); 6.37 (dd, 2H, J = 18.3 Hz, J = 9.9 Hz,

C(2,5)–H). 13C NMR (75 MHz, C6D6, 298 K): δ –2.16 (SiMe3); –1.05 (SiMe3); 39.50

(C(3,4)); 128.76 (C(2,5)); 146.88 (C(1,6)).
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Attempted synthesis of [1,3-(SiMe3)2C3H3]2Ni (1) from NiBr2. A 125

mL Schlenk flask containing a magnetic stirring bar and fitted with an addition

funnel was charged with NiBr2 (0.500 g; 2.29 mmol) in 10 mL THF. K[1,3-

(SiMe3)2C3H3] (1.027 g; 4.58 mmol) dissolved in 15 mL THF was added to the

addition funnel. The apparatus was cooled to –78 °C using a dry ice/acetone bath.

The THF solution of K[1,3-(SiMe3)2C3H3] was added dropwise with stirring over

the course of 30 min. The solution was allowed to warm to room temperature

overnight. THF was removed under vacuum, and the residue was extracted with

hexanes. The extract was filtered over a medium porosity glass frit, and the hexanes

was removed under vacuum to afford a dark, yellow–brown oil. The oil crystallized

upon standing for a few days and was identified as 1,3,4,6-tetrakis(trimethylsilyl)-

1,5-hexadiene (0.661 g) in 78% yield, by its proton NMR spectrum.

Attempted synthesis of [1,3-(SiMe3)2C3H3]2Ni (1) from NiI2. A 125 mL

Schlenk flask containing a magnetic stirring bar and fitted with an addition funnel

was charged with NiI2 (0.835 g; 2.67 mmol) in 10 mL THF. K[1,3-(SiMe3)2C3H3]

(1.200 g; 5.35 mmol) dissolved in 15 mL THF was added to the addition funnel.

The apparatus was cooled to –78 °C using a dry ice/acetone bath. The THF solution

of K[1,3-(SiMe3)2C3H3] was added dropwise with stirring over the course of 30 min.

The solution was allowed to warm to room temperature overnight. THF was

removed under vacuum, and the residue was extracted with hexanes. The extract

was filtered over a medium porosity glass frit, and the hexanes was removed under
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vacuum to afford a dark oil that crystallized over a few days (0.383 g) in 39% yield.

The oil was identified as 1,3,4,6-tetrakis(trimethylsilyl)-1,5-hexadiene by its proton

NMR spectrum.

Synthesis of [1,3-(SiMe3)2C3H3]2Ni (1). A 125 mL Schlenk flask

containing a magnetic stirring bar and fitted with an addition funnel was charged

with NiBr2•DME (1.002 g; 3.224 mmol) in 10 mL of THF. K[1,3-(SiMe3)2C3H3]

(1.457 g; 6.490 mmol), dissolved in 15 mL of THF, was added to the addition

funnel. The apparatus was cooled to –78 °C using a dry ice/acetone bath. The THF

solution of K[1,3-(SiMe3)2C3H3] was added dropwise with stirring over the course

of 30 min. The solution was allowed to warm to room temperature overnight. THF

was removed under vacuum, and the residue was extracted with hexanes. The

extract was filtered over a medium porosity glass frit, and the hexanes was removed

under vacuum to afford a nearly black oil that appeared dark red when

transilluminated. Over a period of days, orange needles grew (1.00 g, 72% yield),

mp 64–66 °C. The compound sublimes at 0.01 torr and 45 °C. Anal. Calcd for

C18H42NiSi4: C, 50.33; H, 9.85; Ni, 13.7. Found: C, 49.24; H, 9.85; Ni

(complexometric), 13.4. Principle IR bands  (KBr, cm–1): 2959 (s), 2898 (m), 2390

(w), 1600 (w), 1449 (m), 1250 (s), 1248 (s), 1082 (s), 1028 (s), 850 (s), 803 (s), 734 (w),

687 (m), 402 (m). UV–vis (THF): 318 nm (ε = 4100), 330 nm (ε = 2500), 411 nm (ε

= 540). Magnetic susceptibility measurements (toluene–d8) indicate that the

compound is diamagnetic. Two diastereomers (in variable ratio) were identified in
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NMR spectra. Major product diastereomer (1a): 1H NMR (300 MHz, C6D6, 298

K): δ 0.151 ppm (s, 18H, SiMe3); 0.156 (s, 18H, SiMe3); 2.67 (d, J = 16.0 Hz, 2H,

anti C–H); 3.60 (d, J = 10.4 Hz, 2H, syn C–H); 4.96 (dd, J = 16.0 Hz, J = 10.4 Hz,

2H, C(2)–H). 13C NMR (75 MHz, C6D6, 298 K): δ 0.41 ppm (SiMe3); 1.88 (SiMe3);

63.67 (anti C–H); 67.02 (syn C–H); 125.60 (C(2)). Minor product diastereomer (1b):

1H NMR (300 MHz, C6D6, 298 K): δ –0.055 ppm (s, 18H, SiMe3); 0.29 (s, 18H,

SiMe3); 2.07 (d, J = 16.4 Hz, 2H, anti C–H); 3.63 (d, J = 10.0 Hz, 2H, syn C–H);

5.62 (dd, J = 16.4 Hz, J = 10.0 Hz, 2H, C(2)–H). 13C NMR (75 MHz, C6D6, 298 K):

δ 1.06 ppm (SiMe3); 1.27 (SiMe3); 63.14 (anti C–H); 63.49 (syn C–H); 123.79 (C(2)).

Reaction of 1 with PMe3. In a 125 mL Schlenk flask, a solution of 1 (60%

1a) (0.064 g; 0.15 mmol) in hexanes (10 mL) was cooled to –78 °C in a dry

ice/acetone bath. The flask was connected to a glass tube containing [AgI•PMe3]4

(0.190 g; 0.153 mmol). The glass tube was heated with a heat gun; after the PMe3

was released, the initial dark red solution turned yellow–brown. The reaction was

filtered, and the hexanes was removed under vacuum leaving an orange oil that

crystallized and was identified with NMR data as containing staggered [1,3-

(SiMe3)2C3H3]2Ni (>95% 1b). Several crystals obtained from the concentrated

reaction mixtures were examined with X-ray diffraction, and were found to have

unit cells matching only 1 b. The organophosphorus compound

tetramethyltetraphosphane was also detected in the oil. For it, 1H NMR (300 MHz,

C6D6, 298 K): δ 1.15 (s). 13C NMR (75 MHz, C6D6, 298 K): δ 25.1 (apparent
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quintet, J ≈ 10.1 Hz). 1H–13C HSQC {1H,31P} NMR (C6D6, 298 K): δ 25.1 (s). 31P

NMR (121 MHz, C6D6, 298 K): δ –21.6 (s). The same products were detected when

the reaction was repeated with a 1 : 0.25 ratio of 1 and [AgI•PMe3]4  (i.e., a 1 : 1

ratio of 1 to PMe3).

Synthesis of (C3H5)2Ni. A three-neck 250 mL round bottom flask, fitted

with a gas inlet, an addition funnel, and a Schlenk tube containing [AgI•PMe3]4

(2.224 g; 1.79 mmol), was charged with NiBr2 (0.389 g; 1.78 mmol) and diethyl

ether (35 mL). (C3H5)2MgBr (3.56 mL; 3.56 mmol) dispersed in 15 mL Et2O was

added to the addition funnel. The apparatus was cooled to –40 ˚C using a Cryocool

Series immersion cooler. The Et2O solution of (C3H5)2MgBr was added dropwise

over the course of 30 min. The resultant yellow solution was allowed to stir

overnight at –40 ˚C and kept at that temperature until its use.

Reaction of (C3H5)2Ni with 4 PMe3. In a three-neck 250 mL round

bottom flask, fitted with a gas inlet, an addition funnel, and a Schlenk tube

containing [AgI•PMe3]4 (2.224 g; 1.79 mmol), the solution of the as-synthesized

(C3H5)2Ni in diethyl ether (50 mL) was kept cooled to –40 °C using a Cryocool

Series immersion cooler. The glass Schlenk tube was heated with a heat gun; after

the PMe3 was released, the initial yellow solution turned orange-red. The solution

was stirred for one hour, allowed to warm to –25 ˚C, and diethyl ether was then

removed under vacuum. The organophosphorus compound

tetramethyltetraphosphane was detected as a product. 1H NMR (300 MHz, C6D6,
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298 K): δ 1.15 (s). 13C NMR (75 MHz, C6D6, 298 K): δ 25.0 (apparent quintet, J ≈

10.1 Hz). 31P NMR (121 MHz, C6D6, 298 K): δ –21.3 (s).

Synthesis of 1,3-(SiMe3)2C3H3Br. A 500 mL Schlenk flask containing a

magnetic stirring bar and fitted with a reflux condenser was charged with 1,3-

(SiMe3)2C3H4 (7.01 g; 37.6 mmol) and NBS (6.60 g; 37.1 mmol) in 200 mL of

CCl4. The solution turned pale yellow upon mixing. Benzoyl peroxide,

(C6H5COO)2, (0.104 g; 0.429 mmol) was added, and the solution was refluxed

overnight. The resulting dark yellow solution was cooled to room temperature, and

then it was filtered to remove NHS. Removal of CCl4 under vacuum afforded a

dark yellow oil, which upon vacuum distillation (200 mTorr) at 40 °C afforded 1,3-

(SiMe3)2C3H3Br as a colorless liquid (6.98 g) in 70% yield. Anal. Calcd for

C9H21BrSi2: C, 40.74; H, 7.98. Found: C, 40.60; H, 7.76. MS (m/e) 266/264 (M+),

251/249 (M+ – Me), 178/176 (M+ – SiMe3, – Me), 139/137 (HC(Si(Me)H2)Br), 97

(C(C)SiMe3), 73 (SiMe3). Principle IR bands (neat, cm–1): 3059 (m), 2957 (s), 2898

(m), 2484 (w), 2263 (w), 1697 (m), 1604 (m), 1409 (m), 1287 (m), 1250 (s), 1138 (m),

991 (m), 908 (m), 840 (s), 752 (m), 694 (m), 475 (m), 409 (m). 1H NMR (300 MHz,

C6D6, 298 K): δ 0.025 (s, 9H, vinylic SiMe3); 0.044 (s, 9H, SiMe3); 3.65 (d, J = 8.8

Hz, 1H, sp3-C–H); 5.71 (d, J = 18.0 Hz, 1H, anti C–H); 6.26 (dd, J = 18.0 Hz, J = 8.8

Hz, 1H, (C(2)–H). 13C NMR (75 MHz, C6D6, 298 K): δ –3.28 (vinylic SiMe3); –1.29

(SiMe3); 45.83 (sp3-C); 131.13 (anti C–H); 143.78 (C(2)).
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Synthesis of [1,3-(SiMe3)2C3H3]NiBr (2a) from 1,3-(SiMe3)2C3H3Br and

Ni(COD)2. A 125 mL Schlenk flask containing a magnetic stirring bar and fitted

with a septum was charged with Ni(COD)2 (2.00 g; 7.27 mmol) in 30 mL of toluene.

The apparatus was cooled to –78 °C using a dry ice/acetone bath. To the stirred

solution, 1,3-(SiMe3)2C3H3Br (1.99 g; 7.50 mmol) was delivered with a syringe. The

solution was allowed to warm to room temperature overnight and became deep red-

purple upon warming. Toluene was removed under vacuum, and the residue was

extracted with hexanes. The reaction was filtered, and the hexanes was removed

under vacuum to afford a deep purple solid (1.94 g, 82% yield). Purple plates could

be obtained on recrystallization from hexanes. Anal. Calcd for C9H21BrNiSi2: Ni,

18.1. Found: Ni (complexometric), 17.4. Principle IR bands (KBr, cm–1): 2960 (s),

2898 (m), 2358 (w), 2341 (w), 1600 (w), 1260 (s), 1099 (s), 1086 (s), 1019 (s), 850 (s),

801 (s), 693 (m), 424 (m). Magnetic susceptibility measurements (toluene–d8)

indicate the compound is diamagnetic. 1H NMR (300 MHz, C6D6, 298 K): δ 0.22

(s, 18H, SiMe3); 1.93 (d, J = 14.4 Hz, 2H, anti C–H); 5.27 (t, J = 14.4 Hz, 1H,

C(2)–H). 13C NMR (75 MHz, C6D6, 298 K): δ –0.53 (SiMe3); 68.70 (C(1,3)); 114.65

(C(2)).

Synthesis of [1,3-(SiMe3)2C3H3]NiBr (2b) from [1,3-(SiMe3)2C3H3]2Ni

and Br2. A 125 mL Schlenk flask containing a magnetic stirring bar and fitted with

an addition funnel was charged with [1,3-(SiMe3)2C3H3]2Ni (0.302 g; 0.703 mmol)

in 15 mL of benzene. Bromine (0.112 g; 0.701 mmol) and benzene (15 mL) were
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added to the addition funnel. The apparatus was cooled to 0 °C using an ice bath.

The bromine solution was added dropwise with stirring over a period of 30 min,

and the reaction was stirred at room temperature overnight. The mixture was then

filtered, and benzene was removed from the filtrate under vacuum to yield a red-

purple solid (0.21 g, 92%). Two isomers (2:1 ratio) were identified in NMR spectra.

Major product isomer: 1H NMR (300 MHz, C6D6, 298 K): δ 0.067 (s, 9H, SiMe3);

0.13 (s, 9H, SiMe3); 2.00 (d, J = 10.0 Hz, 1H, syn C–H); 5.58 (d, J = 18.4 Hz, 1H,

anti C–H); 6.34 (dd, J = 18.4 Hz, J = 10.0 Hz, 1H, C(2)–H). 13C NMR (75 MHz,

C6D6, 298 K): δ –2.11 (SiMe3); –0.98 (SiMe3); 39.52 (syn C–H); 128.77 (anti C–H);

146.88 (C(2)). Minor product isomer: 1H NMR (300 MHz, C6D6, 298 K): δ 0.023 (s,

9H, SiMe3); 0.044 (s, 9H, SiMe3); 2.96 (d, J = 9 Hz, 1H, syn C–H); 5.46 (d, J = 18.4

Hz, 1H, anti C–H); 6.10 (dd, J = 18.4 Hz, J = 9 Hz, 1H, C(2)–H). 13C NMR (75

MHz, C6D6, 298 K): δ –3.23 (SiMe3); –1.24 (SiMe3); 30.48 (syn C–H); 131.52 (anti

C–H); 145.70 (C(2)).

Attempted synthesis of [1,3-(SiMe3)2C3H3]NiBr from NiBr2(dme) and

K[1,3-(SiMe3)2C3H3]. A three-neck flask containing a magnetic stirring bar and

fitted with a stopper, gas inlet, and addition funnel was charged with NiBr2(dme)

(1.236 g; 4.004 mmol) in 50 mL of THF. K[1,3-(SiMe3)2C3H3] (0.900 g; 4.00 mmol)

was added in 10 mL of THF to the addition funnel. The apparatus was cooled to

–78 °C using a dry ice/acetone bath. The THF solution of K[1,3-(SiMe3)2C3H3] was

added dropwise with stirring over the course of 30 min. The solution was allowed to
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warm to room temperature overnight. THF was removed under vacuum, and the

residue was extracted with hexanes. The extract was filtered over a medium

porosity glass frit, and the hexanes was removed under vacuum to afford a nearly

black solid. The solid was identified as [1,3-(SiMe3)2C3H3]2Ni (1) from its NMR

data and melting point.

Attempted synthesis of [1,3-(SiMe3)2C3H3]NiBr from NiBr2(dme) and

Li[1,3-(SiMe3)2C3H3]. A 125 mL Schlenk flask containing a magnetic stirring bar

and fitted with an addition funnel was charged with NiBr2•DME (0.999 g; 3.24

mmol) in 10 mL toluene. Li[1,3-(SiMe3)2C3H3] (0.624 g; 3.24 mmol) dissolved in 15

mL toluene was added to the addition funnel. The apparatus was cooled to –78 °C

using a dry ice/acetone bath. The toluene solution of Li[1,3-(SiMe3)2C3H3] was

added dropwise with stirring over the course of 30 min. The solution was allowed to

warm to room temperature overnight. The toluene was removed under vacuum,

and the residue was extracted with hexanes. The extract was filtered over a medium

porosity glass frit, and the hexanes was removed under vacuum to afford a nearly

black oil that appeared dark red when transilluminated. The oil crystallized upon

standing for a few days and was identified as [1,3-(SiMe3)2C3H3]2Ni, (0.506 g) in

73% yield, by its mp and NMR spectra.

Synthesis of [1,3-(SiMe3)2C3H3]NiI (3). A 125 mL Erlenmeyer flask

containing a magnetic stirring bar and fitted with a septum was charged with [1,3-

(SiMe3)2C3H3]2Ni (0.335 g; 0.780 mmol) in 20 mL of hexanes. Iodine (0.098 g; 0.78
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mmol) in hexanes (20 mL) was cannulated into the stirred solution at room

temperature. The color of the solution changed from red to dark red–purple with

the addition of the iodine solution. After being stirred overnight, the hexanes was

removed under vacuum to yield a red–purple solid (0.205 g) in 71% yield.

Recrystallization from hexanes afforded dark red blocks. The compound

decomposes at 130 °C, giving off purple vapor (presumably I2). Anal. Calcd for

C9H21INiSi2: C, 29.13; H, 5.70. Found: C, 30.19; H, 5.60. Principle IR bands (KBr,

cm–1): 2956 (s), 2897 (m), 2390 (w), 1600 (w), 1470 (w), 1259 (s), 1250 (s), 1099 (s),

1087 (s), 1021 (s), 854 (s), 808 (s), 742 (w), 693 (m), 420 (m). Two isomers (1.6:1

ratio) were identified in NMR spectra. Isomer 1: 1H NMR (300 MHz, C6D6, 298

K): δ 0.011 (s, 9H, SiMe3); 0.060 (s, 9H, SiMe3); 3.60 (d, J = 10.0 Hz, 1H, syn C–H);

5.57 (d, J = 18.0 Hz, 1H, anti C–H); 6.09 (dd, J = 18.0 Hz, J = 10.0 Hz, 1H,

C(2)–H). 13C NMR (75 MHz, C6D6, 298 K): δ –2.47 (SiMe3); –1.33 (SiMe3); 23.12

(syn C–H); 131.20 (anti C–H); 145.30 (C(2)).

Isomer 2: 1H NMR (300 MHz, C6D6, 298 K): δ 0.078 (s, 9H, SiMe3); 0.13 (s,

9H, SiMe3); 2.01 (d, J = 10.0 Hz, 1H, syn C–H); 5.59 (d, J = 18.0 Hz, 1H, anti C–H);

6.36 (dd, J = 18.0 Hz, J = 10.0 Hz, 1H, C(2)–H). 13C NMR (75 MHz, C6D6, 298 K):

δ –2.14 (SiMe3); –1.02 (SiMe3); 39.51 (syn C–H); 128.77 (anti C–H); 146.88 (C(2)).

General Procedures for X–Ray Crystallography. Data collection and

structure solution were conducted at the X–Ray Crystallographic Laboratory at the

University of Minnesota. All calculations were performed using the current
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SHELXTL41 suite of programs. Suitable crystals were located and attached to the tip

of a glass capillary and mounted on a Siemens SMART Platform CCD

diffractometer for data collection at 173(2) K. A preliminary set of cell constants was

calculated from reflections harvested from three sets of 20 frames. These initial sets

of frames were oriented such that orthogonal wedges of reciprocal space were

surveyed. Data collection of a randomly oriented region of reciprocal space was

carried out using MoKα radiation (graphite monochromator). Final cell constants

were calculated from the xyz centroids of strong reflections from the actual data

collection after integration. Relevant crystal and collection data parameters can be

found in Table 1.
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Table 1. Crystal data and summary of X–ray data collection.

compound [1,3-(SiMe3)2C3H3]2Ni
(eclipsed) (1a)

[1,3-(SiMe3)2C3H3]2Ni
(staggered) (1b)

[1,3-(SiMe3)2C3H3NiBr]2
(2a)

[1,3-(SiMe3)2C3H3NiI]2
(3)

formula C18H42NiSi4 C18H42NiSi4 C18H42Br2Ni2Si4 C18H42I2Ni2Si4
formula weight 429.59 429.59 648.12 742.10
color of cryst orange yellow purple dark red
cryst dimens, mm 0.32 x 0.12 x 0.08 0.29 x 0.21 x 0.14 0.24 x 0.14 x 0.04 0.24 x 0.16 x 0.12

space group C2/c C2/c C2/c C2221

cell dimens

a, Å 16.537(5) 10.969(1) 14.819(7) 16.448(4)

b, Å 12.438(4) 19.144(2) 23.37(1) 19.038(4)
c, Å 12.723(4) 12.491(2) 11.251(5) 19.669(4)
β, deg 90.1555(5) 103.151(2) 130.197(8) 90.000

volume, Å3 2617.0(14) 2554.1(5) 2976(2) 6159(2)

Z 4 4 4 8
calcd density,
Mg/m3

1.090 1.117 1.447 1.601

abs coeff, mm–1 0.924 0.946 4.115 3.387

F(000) 936 936 1328 2944

limits of data 1.60°     <     θ     <     25.06° 2.13°     <     θ     <     27.53° 1.74°     <     θ     <     25.05° 1.94°     <     θ     <     25.05°
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Table 1 continued

compound [1,3-(SiMe3)2C3H3]2Ni
(eclipsed) (1a)

[1,3-(SiMe3)2C3H3]2Ni
(staggered) (1b)

[1,3-(SiMe3)2C3H3NiBr]2
(2a)

[1,3-(SiMe3)2C3H3NiI]2
(3)

index ranges –19     <    h     <     19, –13     <     k
<     14, –15     <     l     <     15

–14     <     h     <     14, –24     <     k     <    
24, –16     <     l     <     16

–17     <     h     <     13, 0     <     k     <     27,
0     <     l     <     13

–19     <     h     <     19, –15     <     k     <    
22, –22     <     l     <     23

total reflcns
collected

8667 11,447 6593 15,491

unique reflcns 2315 (Rint = 0.0311) 2939 (Rint = 0.0519) 2604 (Rint = 0.0727) 5389 (Rint = 0.0597)

transmission
factors

1.000–0.787 0.8789–0.7709 0.8527–0.4384 1.000–0.600

data/restraints/par
am

2315 / 10 / 136 2939 / 1 / 123 2604 / 0 / 131 5389 / 0 / 248

R indices (I >2s(I)) R = 0.0285, Rw =
0.0727

R = 0.0377, Rw =
0.0924

R = 0.0520, Rw = 0.1132 R = 0.0485, Rw =
0.1222

R indices (all data) R = 0.0307, Rw =
0.0738

R = 0.0480, Rw =
0.0971

R = 0.1025, Rw = 0.1286 R = 0.0594, Rw =
0.1274

goodness of fit on
F2

1.033 1.008 1.013 1.027

max/min peak in
final diff map,
e–/Å3

0.463/–0.263 0.710/–0.269 0.769/–0.486 2.046/–0.447

Absolute structure
parameter

0.16(3)
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Computational Details. Geometry optimization calculations were

performed using the GAUSSIAN 03W suite of programs.42 Both the B3LYP

functional, which incorporates Becke’s three–parameter exchange functional43 and

the correlation functional of Lee, Yang, and Parr,44,45 as well as the B3PW91

functional, which employs the 1991 gradient–corrected correlation functional of

Perdew and Wang, were used.46 The DFT-optimized double zeta polarized basis sets

DGDZVP2 and DGDZVP (for Br, I) of Godbout47 were used for geometry

optimizations and energy calculations of the allyl complexes. The standard Pople

basis sets 6-311G(d,p) and 6-311+G(2d,p) were used for other calculations.48

Stationary points were characterized by the calculation of vibrational frequencies,

and unless otherwise noted, all geometries were found to be minima (Nimag = 0).

Results and Discussion

Synthesis of a trimethylsilylated bis(allyl)nickel complex. In a reaction

modeled after that used for preparing the substituted chromium, iron, and cobalt

complexes,24-26 an attempt was made to synthesize a trimethylsilylated

bis(allyl)nickel complex from the reaction of NiCl2 and the substituted potassium

allyl K[1,3-(SiMe3)2C3H3] in THF. On workup of the reaction mixture, however,

the dimerized ligand (1,3,4,6-tetrakis(trimethylsilyl)-1,5-hexadiene) (Figure 1) was

isolated instead (eq 1).
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NiCl2 + 2 K[1,3-(SiMe3)2C3H3] → [(SiMe3)2C3H3]2 + 2 KCl + nickel byproducts (1)

Figure 1. ORTEP of [(SiMe3)2C3H3]2.

Similar attempts to synthesize the bis(allyl)nickel complex from the reaction

of NiBr2 or NiI2 with K[1,3-(SiMe3)2C3H3] also resulted in the formation of the

trimethylsilylated hexadiene. Coupling of allyl ligands on a nickel center is well-

documented,5 and it may be that oxidative coupling of the allyl anion is occurring

at the surface of these relatively insoluble nickel starting materials.

NMR studies indicate that the hexadiene is found in two forms with an

average ratio of 1.7:1, although it ranges from 1.3:1 to 2.5:1. The patterns in the

NMR spectra are consistent with two diastereomers of Ci  (meso) and C 2 (rac)

symmetry (Figure 2). DFT calculations (B3PW91/6-311G(d,p)) indicate that the Ci

dimer is more thermodynamically stable by 3.7 kcal mol–1 (ΔH°; 5.3 kcal mol–1 for
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ΔG°). Steric congestion from the adjacent SiMe3 groups (closest Me…Me´ contact =

3.89 Å) possibly raises the energy of the C2 form. As the diastereomer ratio reflects

kinetic factors during coupling rather than thermodynamic effects (the two forms

are not in equilibrium), it cannot automatically be assumed that the more abundant

form is the one with Ci symmetry. Attempts using NOESY experiments to assign

the resonances to their diastereomeric forms were not conclusive. Although the

compound is crystalline, a single crystal X-ray structure was severely disordered;49

multiple forms appear to be incorporated in the unit cell.

Figure 2. Proposed diastereomeric forms of the trimethylsilylated hexadiene, with
Ci (meso)(left) and C2 (rac)(right) symmetry.

In an attempt to avoid the coupling reactions, the more soluble nickel halide

NiBr2(dme) was used as a reagent. Reaction of two equivalents of K[1,3-

(SiMe3)2C3H3] with NiBr2(dme) in THF at –78 ºC affords the bis(allyl)nickel

complex (1) in 72% yield (eq 2):

NiBr2(dme) + 2 K[1,3-(SiMe3)2C3H3]  →  [1,3-(SiMe3)2C3H3]2Ni (1) + 2 KBr↓ (2)

Me3Si SiMe3
H

H SiMe3

Me3Si
SiMe3Me3Si

Me3Si

SiMe3
H

H
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The complex is initially isolated as an oil that crystallizes to an orange solid after

several days at room temperature. It is soluble in a wide range of solvents, from

THF to hexanes, and readily sublimes under vacuum. It melts at 64 ºC and

decomposes only above 100 ºC. In the solid state, finely divided, sublimed 1 will

survive for several hours in the air before noticeable decomposition begins, but

larger, oily crystals can last several days in air. A hexanes solution of 1 can be

layered on top of water, where no change is observed for several hours. The

increase in oxidative and thermal stability compared to the pyrophoric, thermally

sensitive (dec. above 20 °C) parent compound (C3H5)2Ni is striking.1 The

electrochemistry of 1 was briefly investigated with voltammetry and electrolysis in a

nitrogen-filled drybox. In THF containing 0.1 M [N(n-Bu4)][PF6] and

dichloromethane containing 0.05 M [N(n-Bu4)][B(C6F5)4], an irreversible, one-

electron oxidation was observed (0.81 V in THF, 0.92 V in dichloromethane,

potentials vs ferrocene / ferrocenium); cyclic voltametry scan rates of 0.1 V/s to 0.5

V/s (Pt or glassy carbon electrodes) were used. There was no evidence for

electroactive oxidation products.

Like the parent complex (C3H5)2Ni, 1 is diamagnetic, and both 1H and 13C

NMR spectra of the substituted compound display two forms in solution, identified

as eclipsed (cis) (1a) and staggered (trans) (1b). Each form exhibits two resonances

for their trimethylsilyl groups, which is consistent with the syn, anti arrangement of

SiMe3 groups observed in their solid-state structures (below). This SiMe3
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arrangement is different from the syn, syn arrangement found for the potassium

salt.50

The relative amounts of the eclipsed and staggered conformers change with

temperature for both (C3H5)2Ni and 1 , although not in the same way. For

(C3H5)2Ni, the staggered form is always predominant, and a 1:7.8 ratio of eclipsed

to staggered isomers is observed at –75 °C (1H NMR). At higher temperatures more

of the eclipsed form is present, and once room temperature is reached, for example,

the eclipsed to staggered ratio is 1:3.14 Higher temperatures produce even more of

the eclipsed form, but the two conformers remain interconvertible, and the

eclipsed:staggered ratio reverts to 1:3 on cooling to room temperature.51

In contrast, the reaction represented in eq 2 generates a mixture of 1a and

1b in varying proportions, but the eclipsed 1a is in excess (up to a 1a:1b ratio of

approximately 9:1) when the reaction is conducted at –78 °C. Excess 1a is only

observed when the reaction is performed at low temperature; if the reaction to form

1 is conducted at room temperature, 1b is found to be predominant, with a 1a:1b

ratio of 2:3. A sample of 1 in solution will display essentially the same 1a:1b ratio

for weeks if room temperature is maintained, but the proportion of 1b in the sample

irreversibly increases if the temperature is raised. In a variable temperature 1H

NMR experiment, conversion of the eclipsed to staggered form was first noticeable

at 358 K, and essentially complete conversion of 1a to 1b occurred by the time the
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sample was heated to 380 K (approximately 50 minutes total time). Conversion

back to 1a did not occur on cooling.

The steric bulk of the trimethylsilyl substituents on the allyl ligands directs

the formation of the kinetically stabilized eclipsed bis(allyl´)Ni product over the

slightly thermodynamically favored staggered one. The kinetic stabilization of one

form over another one has been seen in other substituted allyl nickel systems. In the

case of the substituted (2-MeC3H4)2Ni, the eclipsed form predominates 2:1 at low

(–75 ˚C) temperatures, but the staggered form is preferred over the eclipsed one by

2.3:1 at room temperature.13

Reactions of 1 with phosphines. The reactivity of 1 was explored with

several phosphines and halogens. As a point of reference, tertiary phosphines PR3

(R = Me, Et, Ph, C6H11) form adducts with (C3H5)2Ni at low temperature, but they

are unstable at room temperature. With one equivalent of PMe3, an air- and

moisture-sensitive 1:1 adduct has been isolated and crystallized at –78 °C (eq 3).5

(C3H5)2Ni  +  PMe3  –78 ˚C   (C3H5)2Ni  +  PMe3 (3)

The X-ray crystal structure reveals eclipsed allyl ligands with a Ni–P distance

of 2.218(1) Å (Figure 3). In solution, coupling is observed between the phosphorus

and hydrogen atoms of the allyl ligands, but the coupling is lost above –40 °C; this

has been taken as an indication that PMe3 dissociation is occurring.
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Figure 3. Solid-state structure of (C3H5)2NiPMe3.

Reaction of 1 (a mixture of 1a and 1b) with four equivalents of PMe3 in

hexanes at room temperature yields two products: the staggered bis(allyl)nickel

complex 1b and an organophosphorus compound characterized with multinuclear

NMR spectroscopy. Similar results were found with either one or eight equivalents

of PMe3. Regardless of the starting 1a:1b ratio, almost no 1a (< 5%) is identifiable

in NMR spectra of the products, and X-ray crystallography was used to confirm that

several crystals obtained from the concentrated reaction mixtures had unit cells

matching only 1b. The organophosphorus compound was not free PMe3, as a

broadened singlet (δ 1.15) in the 1H NMR spectrum and a singlet (δ –21.6) in the

31P NMR spectrum do not match that of PMe3 in C6D6 (for it, we have measured

1H = 0.814 ppm (d, J = 1.6 Hz); 31P NMR = –62.4 ppm; 13C NMR = 16.4 ppm (d,

J = 10.7 Hz)). This was substantiated by the 13C{1H} NMR spectrum, which
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contains an apparent quintet at δ 25.1 (J ≈ 10.1 Hz; cf. δ 16.43 (J = 10.7 Hz) for

PMe3).

A two-dimensional HSQC (heteronuclear single quantum correlation)

experiment correlates the chemical shift of a nucleus (e.g., 1H) with the chemical

shift of a directly bonded nucleus (e.g., 13C). The 1H–13C HSQC52 coupled and

phosphorus-decoupled data collected for the reaction product were used to confirm

that carbon–phosphorus splitting was responsible for the multiplet in the 13C

spectrum. The HSQC experiment {1H,31P} demonstrates that the quintet collapses

to a singlet upon 31P decoupling (Figure 4). Such an A4X spin system restricts the

possible P4-containing products, the most reasonable of which is the cyclic

tetramethyltetraphosphane, (MeP)4. The singlets in the 1H and 31P spectra reflect

the likely D2d symmetry of the compound (Figure 5), as exists in structurally

characterized analogues such as (PhP)453 and [(i-Pr)P]454. Attempts to separate the

product from the accompanying 1b have not been successful. Despite the various

ratios of 1 and PMe3 used, only a single phosphorus-containing species was evident

in the 31P NMR spectrum within the limit of detection. A larger ring such as (MeP)5

has a chemical shift of 17.3 ppm, thus ruling out the possibility of chemical shift

overlap.
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Figure 4. 1H–13C HSQC spectrum {1H} (left) exhibits collapse of 13C quintet upon
31P decoupling {1H,31P} (right).

Figure 5. Calculated D2d structure of (MeP)4.
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Tetramethyltetraphosphane has been described as a product in equilibrium

with molten (MeP)5, which served as the solvent.55 The sole characterization for

(MeP)4 was a singlet in the 31P NMR spectrum at –67.7 ppm, a value recorded at

160 °C; no 1H or 13C NMR data were reported. Although the 31P chemical shift is

reasonable (a variety of cyclotetraphosphanes have 31P NMR chemical shifts in the

range from –50 to –80 ppm56,57), it is not definitive for (RP)4 rings, as evidenced by

the considerably more deshielded values displayed by [(C5Me5)P]4 (–39.0 ppm)58

and {[(SiMe3)2CH]P}4 (–14.6 ppm).59

The energetics of the transformation of PMe3 to (MeP)4 are reasonable. The

decomposition of trimethylphosphines to tetramethyltetraphosphane and ethane is

exothermic by –2.7 kcal mol–1 (ΔH°; –10.3 kcal mol–1 in ΔG°) (B3LYP/DGDZVP2

level) (eq 4).

4 PMe3   →   (MeP)4   +   4 CH3CH3  (4)

With the larger 6-311+G(2d,p) basis set, the energetics are slightly more favored

with ΔH° = –7.9 kcal mol–1 and ΔG° = –16.1 kcal mol–1. For both functional/basis

set combinations, (MeP)4 was optimized under D2d symmetry, and it was a

minimum on the potential energy surface (Nimag = 0).

Initially, a different phosphorus containing species, Ni(PMe3)4, (Figure 6)

was considered as a possible product of the reaction of 1 and PMe3 because of
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similiarites seen in the NMR data of the product of this reaction and Ni(PMe3)4.

However, the product could not be Ni(PMe3)4, for several reasons.

Figure 6. Structure of Ni(PMe3)4.

First of all, the nickel center in Ni(PMe3)4 is zero-valent. A Ni(0) source (e.g.,

bis(cyclooctadiene)nickel), in the presence of the free trimethylphosphine, results in

the formation of tetrakis(trimethylphosphine)nickel(0), Ni(PMe3)4 (eq 5).2

Ni(COD)2  +  4 PMe3  →  Ni(PMe3)4  +  2 COD (5)

A zero-valent nickel source is not directly provided in the nickel allyl case.

Similar to the reaction involving PMe3, bulkier phosphines such as PPh3 and

P(C6H11)3 form adducts with (C3H5)2Ni at low temperature. However, the

phosphines dissociate at low temperatures, and coupling of the allyl ligands occurs

on further warming (at 0 °C with PPh3; at –20 °C with P(C6H11)3),5 leaving zero-

valent (hexadiene)nickel(0) phosphine complexes (eq 6).

Ni
Me3P PMe3

PMe3Me3P
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         (C3H5)2Ni  +  PR3  →  (C3H5)2Ni(PR3)  → (6)

It is also known that trimethylphosphine dissociates from (C3H5)2NiPMe3,

and (C3H5)2Ni decomposes by oxidative coupling of the allyl ligands to hexadiene

above room temperature.5 At this point, a zero-valent nickel source has been

produced in the presence of PMe3, which can conceivably react with PMe3 to form

Ni(PMe3)4 (eq 7). Thus, Ni(PMe3)4 is potentially a thermal decomposition product

of (C3H5)2NiPMe3.

(η3-C3H5)2NiPMe3  
>

Δ
-40 ˚C  (η

3-C3H5)2Ni  +  PMe3  
>Δ

20 ˚C

1,5-hexadiene  +  Ni(PMe3)4 (7)

For the reaction of 1 and PMe3 to have resulted in the formation of

Ni(PMe3)4, 1 would have to be reduced to Ni(0) upon oxidative coupling of the

substituted allyl anions, forming [(SiMe3)2C3H3]2. Experimental NMR data (1H,

13C) have shown that none of the distinctive resonances of [(SiMe3)2C3H3]2 were

present, and more importantly, that resonances corresponding to trans-[1,3-

(SiMe3)2C3H3]2Ni (1b) were detected. In addition, crystals collected from the

reaction filtrate were found to be those of 1b . Furthermore, as previously

mentioned, the reaction of PMe3 with mixtures of 1a and 1b results in conversion of

Ni PR3
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1a  to 1 b with a 1a:1b ratio of 95:5. Obviously, this reaction occurs with no

decomposition of the bis(allyl´)Ni starting material to Ni(0). With no Ni(0) source

present, there is no chemical mechanism for the formation of Ni(PMe3)4, thus

obviating the need to further consider Ni(PMe3)4 as a possible product in this

reaction.

However, the similarities of 13C NMR spectra between Ni(PMe3)4 and

(MeP)4 can be explained in terms of virtual coupling. Virtual coupling has been

used to describe 13C ABX systems that look like false AA´X systems for many

transition metal complexes with two phosphines ligands.60 In these systems (where

A = 31P, A´ = 31P´, and X = 13C), virtual coupling occurs when JAA´ is much larger

than JAX and JAX > JA´X, where JA´X ≈ 0. The result is a 13C resonance that is split

into an apparent triplet by seemingly equivalent 31P nuclei. In other words, two

strongly coupled nuclei form effectively a nuclear triplet or singlet state analogous to

an electronic triple or singlet state with quantum numbers of 1, 0, –1 or 0,

respectively.61

It has been established that virtual coupling arises in the 13C NMR spectrum

of Ni(PMe3)4, resulting in an apparent quintet at 25.2 ppm with JCP ≈ 8.67 Hz.62

With virtual coupling of 13C nuclei to 31P nuclei through the nickel center being

detected in Ni(PMe3)4, it is no surprise that (MeP)4 also exhibits virtual coupling of

13C nuclei to 31P nuclei in its 13C NMR spectrum (apparent quintet at 25.1 ppm

and JCP ≈ 10.1 Hz). Although similarities seem to exist in the 1H, 13C, and 31P
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NMR data for Ni(PMe3)4 and (MeP)4, they are evidently coincidental, as seen in the

13C NMR spectra with respect to virtual coupling.

As definitive proof for the case against the formation of Ni(PMe3)4, a closer

inspection of all possible NMR data is warranted. Along with the differences in

coupling constants, the peak heights of the apparent quintets found in the 13C NMR

data of both Ni(PMe3)4 and (MeP)4 are different (i.e., 1:5.2:9.5:5.2:1 in Ni(PMe3)4

vs 1:3.4:6.5:3.4:1 in (MeP)4).

61Ni is an NMR active nucleus (I = 3/2) although it has low natural

abundance (1.13%). Therefore, 61Ni should split the 31P NMR resonance of

Ni(PMe3)4 into a quartet, and this splitting has been reported.62

Tetrakis(trimethylphosphine)nickel(0) was synthesized following a literature

procedure40 and its 31P and 61Ni NMR spectra were measured for comparison to

those of the reaction product of 1 and PMe3.

In an extended run (276 scans) of the 31P NMR experiment for a

concentrated sample (57 mg) of Ni(PMe3)4, a quartet splitting pattern (J = 285 Hz) is

seen due to splitting by 61Ni (Figure 7). In a more concentrated sample (of the

product of 1 and PMe3; 79 mg), however, 31P NMR data (601 scans) reveal that no

61Ni satellites are present in 31P NMR spectrum (Figure 8). Much like the absence

of coupled allyl dimer in the reaction of 1 and PMe3 indicates that there is no

formation of Ni(0), thereby discrediting the possibility of Ni(PMe3)4 as a product,

the lack of 31P resonance splitting (quartet) of the Pn conaining product (by 61Ni)
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proves that there is no nickel–phosphorus interaction present in this compound;

providing further evidence for the absence of Ni(PMe3)4 as a product of the

reaction of 1 and PMe3.

Figure 7. 31P NMR spectrum of Ni(PMe3)4 exhibiting J31P–61Ni satellites (285 Hz)
after 276 scans at 121 MHz.

J
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Figure 8. 31P NMR spectrum of product of 1 and PMe3 exhibiting no J61Ni–31P
satellites after 601 scans at 121 MHz. The peak at ~18 ppm is an impurity.

As further conformation for the absence of Ni(PMe3)4 as a reaction product,

61Ni NMR experiments were run for the independently synthesized Ni(PMe3)4 and

for the putative (MeP)4. 61Ni (1.13 %) has a nuclear spin of 3/2 with a relative

sensitivity (1H = 1.00) of 3.57x10–3 (c.f. 0.0159 for 13C) and receptivity (13C = 1.00)

of 0.242.63 Its high quadrupolar moment (0.16 x 10–28 m2), coupled with its low

sensitivity and receptivity, renders this nucleus difficult to study with NMR;

however, highly symmetrical structures (e.g., Td or D 4h) can minimize the

quadrupolar effect of the 61Ni nucleus, making NMR experiments feasible.63

Tetracarbonylnickel(0) has been used as a calibration standard for 61Ni NMR, but

due to its toxicity, an absolute resonance frequency of 61Ni in Ni(CO)4 at
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8.936050�MHz (relative to the resonance of protons in Si(CH3)4 at 100 MHz) is

currently employed.62 For these experiments, the probe was tuned to the absolute

frequency of 35.722 Mhz, and no Ni(CO)4 reference was used.

Tetrakis(trimethylphosphine)nickel(0) was prepared following a literature

procedure.40 Although it has been reported that as little as 20 mg of sample will

provide a good 61Ni NMR spectrum,62 a more concentrated sample (57 mg) was

used to lessen the time required for the experiment. A quintet was evident in

spectrum after 16422 scans (Figure 9) although the outer peaks were just barely

distinguishable from the baseline noise; the low resonance frequency leads to severe

ringing effects and thus, rolling baselines. As expected, a J coupling constant value

of 285 Hz was seen in the 61Ni spectrum due to splitting by the four equivalent 31P

nuclei (Figure 10). This multiplet was calibrated to 40 ppm.
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Figure 9. 61Ni NMR spectrum of Ni(PMe3)4 exhibiting a quintet after 16,422 scans at 35.7
MHz. Rolling baseline due to ringing effect.

Figure 10. A closeup view of the quintet in the 61Ni NMR spectrum of Ni(PMe3)4
exhibiting J61Ni–31P coupling (285 Hz) after 16,422 scans at 35.7 MHz.

J
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An NMR sample was prepared from the products of the reaction of 1 and

PMe3. Since two products were expected, the bis(allyl´)Ni complex and (MeP)4, the

concentration of the sample was increased (79 mg) to ensure that a signal for 61Ni

would be detected if Ni(PMe3)4 were actually present. If the sample contained

Ni(PMe3)4, the resultant quintet should be seen at 40 ppm, whereas no signal would

be expected at 40 ppm for [1,3-(SiMe3)2C3H3]2Ni and (MeP)4. No peaks were seen

in the 2000 ppm range that was used in this experiment even after 82,582 scans,

demonstrating that tetrakis(trimethylphosphine)nickel(0) is indeed not a product of

the reaction of [1,3-(SiMe3)2C3H3]2Ni and trimethylphosphine.

It is doubtful that a 61Ni NMR spectrum could be obtained for [1,3-

(SiMe3)2C3H3]2Ni. Only highly symmetrical zerovalent nickel species have had

61Ni NMR spectra recorded. It is not clear what ppm range should be considered,

and more likely, the low symmetry of [1,3-(SiMe3)2C3H3]2Ni may preclude any

investigation due to inverse relationship of a complex’s symmetry and its

quadrupolar coupling.63

In order for (MeP)4 to be the product of the reaction of 1 with PMe3,

multiple steps involving demethylation and P–P formation must be involved. Why

such a transformation should occur with 1 but has not been reported with the

unsubstituted (C3H5)2Ni may be related to the relatively unencumbered

coordination environment of the latter. In the PMe3 adduct of (C3H5)2Ni, the allyl

ligation to the metal is unchanged (η3), as seen in the following reaction (eq 8).
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(η3-C3H5)2Ni  +  PMe3  →  (η3-C3H5)2Ni–PMe3 (8)

This reaction is predicted to be to be exothermic by –4.4 kcal mol–1 (ΔH°) (+6.0

kcal mol–1 for ΔG°) (B3LYP/DGDZVP2 level).

Preliminary computational studies suggest that the addition of

trimethylphosphine to 1a to form a PMe3 adduct of 1a similar to the parent

compound, would not be favorable (ΔH° = +10.3 kcal mol–1; ΔG° = +24.1 kcal

mol–1); the resulting complex is only a transition structure (Nimag = 1) (eq 9).

[1,3-(SiMe3)2C3H3]2Ni (1a)  +   PMe3  →  (η3-allyl´)2Ni–PMe3 (Nimag = 1) (9)

For steric reasons, coordination of PMe3 to 1,3-(SiMe3)2C3H3]2Ni cannot occur to

form a stable complex when both allyls are η3-bound; slippage of an allyl ligand

from η3 to η1 would probably be required for phosphine binding. The η3�  � η1

conversion of one of the allyl ligands may allow more than one phosphine adduct to

bind to the nickel center. Subsequent additions of PMe3 might then occur as the

phosphine begins to demethylate, and P–P bond formation ensues. The final release

of the cyclotetraphosphane would be accompanied by the rearrangement of the

allyl ligands to the thermodynamically preferred staggered form (Figure 11). The
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formation of larger rings may be energetically prohibitive; steric crowding may limit

access of additional PMe3 to the already formed five-membered metallacycle.

Figure 11. Proposed mechanistic cycle for synthesis of (MeP)4.
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The amount of (MeP)4 synthesized depends on the stoichiometry of the

starting materials for the reaction of 1 and PMe3. However, although it is known

that a trimethylphosphine adduct of (C3H5)2Ni forms at low temperature,5 reactions

of (C3H5)2Ni and PMe3 in ratios other than 1:1 have not been reported.

It was hypothesized that there would be no formation of Ni(PMe3)4 as long

as (C3H5)2Ni was not allowed to decompose to zero-valent nickel and hexadiene in

the presence of PMe3. Therefore, the experimental design involved the synthesis of

(C3H5)2Ni in-situ, and the introduction of four equivalents of PMe3, while keeping

the reaction temperature (–40 ˚C) well below the decomposition temperature of

(C3H5)2Ni. Solvent was removed under vacuum at –25 ˚C, and the reaction mixture

was allowed to warm to room temperature because (MeP)4, once formed, is a stable

species, so the subsequent decomposition of (C3H5)2Ni would not affect the product

outcome.

An NMR sample was prepared from the reaction product. The NMR data

collected for the reaction product of (C3H5)2Ni and four equivalents of PMe3 were

almost identical to the organophosphorus product obtained from the reaction of 1

and PMe3 (Table 2). Moreover, both the coupling constant (J ≈ 10.1 Hz) of the

apparent quintet in the 13C spectrum and the peak heights of the quintet

(1:3.6:6.4:3.6:1) are nearly indistinguishable for both reactions (c.f., 1:3.4:6.5:3.4:1

for 1 and PMe3).



41

Table 2. NMR data of organophosphorus compound from reactions of bis(allyl´)Ni
and four equivalents of PMe3 (allyl´ = C3H5–, [1,3-(SiMe3)2C3H3]–).

NMR data of
organophosphorus product

(Reaction of (C3H5)2Ni
and 4 PMe3)

NMR data of
organophosphorus product
(Reaction of 1 and 4 PMe3)

1H NMR (300 MHz,
C6D6, 298 K) δ 1.15 (s) δ 1.15 (s)

13C NMR (75 MHz,
C6D6, 298 K)

δ 25.0 (apparent quintet,
J ≈ 10.1 Hz)

δ 25.1 (apparent quintet,
J ≈ 10.1 Hz)

31P NMR (121 MHz,
C6D6, 298 K) δ –21.3 (s) δ –21.6 (s)

A concentrated NMR sample was used for an extended 31P NMR experiment (1892

scans) of the product of (C3H5)2Ni and four PMe3. Analogous to the results with the

trimethylsilyl-substituted nickel complex, no 61Ni satellites are present in the 31P

NMR spectrum for this sample (Figure 12). Since it has been determined that

31P–61Ni coupling is present in both 31P and 61Ni NMR spectra if coupling is

present at all, it was deemed unnecessary to run a 61Ni NMR experiment.
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Figure 12. 31P NMR spectrum of product of (C3H5)2Ni and PMe3 exhibiting no
J61Ni–31P satellites after 1,892 scans at 121 MHz. The peak at –15 ppm represents an
impurity.

As previously mentioned, the bulkier phosphines PPh3 and P(C6H11)3 form

adducts with (C3H5)2Ni at low temperature, but coupling of the allyl ligands occurs

on warming,5 and (hexadiene)nickel(0) phosphine complexes have been isolated

from the reactions. As seen in the analogous reaction with (C3H5)2Ni and PMe3, the

addition of bulky phosphines to (C3H5)2Ni produces phosphine adducted

complexes; however, the thermodynamic instability of (C3H5)2Ni results in zero-

valent nickel phosphine products when the reaction temperatures rise above the

decomposition temperature of (C3H5)2Ni.
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In contrast, after being stirred with triphenylphosphine in hexanes overnight,

1 is recovered with no change in the 1a:1b ratio, and NMR data (1H, 13C, 31P)

indicate that free triphenylphosphine is in solution. The lack of reactivity likely

indicates that the steric bulk of the trimethylsilyl groups prevents the phosphine

from gaining access to the metal center. In this regard, 1  is like [1,3-

(SiMe3)2C3H3]2M (M = Cr, Fe), neither of which displays reactivity with PPh3.24,25

Synthesis of trimethylsilyl-substituted (allyl)nickel halides. In order to

gain more insight into the similarities and differences between complexes of the

parent allyl C3H5
– and the substituted C3(SiMe3)2H3

–, mono(allyl)nickel bromide

and iodide derivatives were synthesized and characterized.

 (Allyl)nickel bromides are red to red-purple, air- and moisture-sensitive

compounds that can be prepared in several ways. One is by an oxidative addition

reaction between an allyl bromide and a source of Ni(0), such as Ni(CO)4 or

bis(cyclooctadiene)nickel (e.g., eq 10).64

C3H5Br  +  (COD)2Ni  →  (C3H5)NiBr  +  2 COD (10)

The reaction between bis(allyl)nickel and elemental bromine in an aromatic solvent

also generates (allyl)nickel bromide (eq 11).11



44

(C3H5)2Ni + Br2   →  C3H5Br + (C3H5)NiBr (11)

The allyl halide complex is a dimer in aromatic hydrocarbons (i.e., [(C3H5)NiBr]2),

but a Schlenk equilibrium is established if the compound is dissolved in a

coordinating donor solvent such as DMF or HMPA (i.e., eq 12).9

2 (C3H5)NiBr    (C3H5)2Ni  +  NiBr2 (12)

In aromatic solvents, (allyl)nickel bromide does not react with organic halides, but it

does react in polar solvents by a radical chain mechanism that is initiated by heat,

light or reducing agents (e.g., sodium naphthalenide).7,9

The oxidative addition method of (allyl)nickel halide preparation was

investigated with trimethylsilylated ligands by preparing the previously unknown 3-

bromo-1,3-(trimethylsilyl)propene (eq 13).65

C3(SiMe3)2H4  +  NBS  
(C6H5COO)2

CCl4
C3(SiMe3)2H3Br  +  NHS ↓ (13)

The reaction is refluxed under nitrogen for three hours, after which the solution is

filtered, the solvent is removed under vacuum, and the product is vacuum distilled

as a colorless liquid in 70% yield.
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The bis(trimethylsilyl)allyl bromide reacts with (COD)2Ni in toluene to

afford the substituted (allyl)nickel bromide (2a) (eq 14).

C3(SiMe3)2H3Br  +  (COD)2Ni  →  syn, syn-[1,3-(SiMe3)2C3H3]NiBr +  2 COD

(14)

Compound 2a is an air- and moisture-sensitive red-purple solid. Its 1H NMR

spectrum indicates that the trimethylsilyl groups are equivalent, and hence in a syn,

syn arrangement. This is also the arrangement found in the solid state (see below).

The direct reaction of 1 with elemental bromine in benzene at 0 °C can be

used to form 2b (eq 15).

[1,3-(SiMe3)2C3H3]2Ni  +  Br2 0 °C

syn, anti-[1,3-(SiMe3)2C3H3]NiBr  +  C3(SiMe3)2H3Br               (15)

The 1H NMR spectrum of 2b indicates the presence of two diastereomers with

inequivalent trimethylsilyl groups; thus the SiMe3 arrangement is syn, anti for both

conformers. Interestingly, the mono(allyl) derivative has preserved the syn, anti

configuration of the starting material 1.
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An attempted alternative synthetic route for the preparation of the

trimethylsilyl-substituted (allyl)nickel bromide involved the 1:1 reaction of K[1,3-

(SiMe3)2C3H3] with NiBr2(dme) in THF at low temperature (eq 16).

K[1,3-(SiMe3)2C3H3]  +  NiBr2(dme) //

[1,3-(SiMe3)2C3H3]NiBr  +  KBr↓  +  dme    (16)

However, the only organometallic product isolated from the reaction was 1, which

was also the case when the reactions were attempted in toluene with one equivalent

of Li[1,3-(SiMe3)2C3H3]. After its formation, 1 evidently does not react further with

the nickel bromide that is still present in solution; i.e., as in eq 17.

[1,3-(SiMe3)2C3H3]2Ni  +  NiBr2 // 2 [1,3-(SiMe3)2C3H3]NiBr (17)

As is obvious from eq 15, no reaction is observed between 2  and

C3(SiMe3)2H3Br in an aromatic solvent. This is also true when 2  and

C3(SiMe3)2H3Br were mixed in the donor solvent THF. In addition, 2 is stable to

rearrangement in THF; i.e., there is no NMR evidence for the formation of [1,3-

(SiMe3)2C3H3]2Ni.
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Bis(allyl)nickel reacts with I2 in diethyl ether to yield the synthetically useful

(C3H5)NiI (eq 18).11

(C3H5)2Ni  +  I2  →  (C3H5)NiI +  C3H5I (18)

In a parallel fashion, iodine reacts smoothly with 1 in hexanes to yield a red-purple

solid that can be recrystallized from hexanes as dark red blocks (eq 19).

[1,3-(SiMe3)2C3H3]2Ni  +  I2  →

 syn, anti-[1,3-(SiMe3)2C3H3]NiI  +C3(SiMe3)2H3I     (19)

The complex was characterized as [1,3-(SiMe3)2C3H3]NiI (3) with elemental

analysis, NMR spectral data, and X-ray crystallography. The NMR data are

complex, as not only are inequivalent trimethylsilyl groups evident, indicative of a

syn, anti arrangement of trimethylsilyl groups, but two diastereomers are also

present. These sets of resonances correspond to the staggered and eclipsed

conformers found in the solid state (see below). In THF, 3 is stable to rearrangement

in donor solvents, and as with 2 , no reaction is observed between 3  and

C3(SiMe3)2H3Br in THF.
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Crystallographic Results

Solid state structure of 1a. The structure determination of 1a was obtained

from orange crystals grown in hexanes solution over several days. The Ni atom lies

on a crystallographic two-fold axis, so that only half of the molecule is unique. One of

the SiMe3 groups is modeled as disordered over two positions (66:34). An ORTEP view

of the complex is displayed as Figure 13. Selected bond distances and angles for the

structure are listed in Table 3.
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Figure 13. ORTEP of 1a, giving the numbering scheme used in the text.
Displacement ellipsoids are shown at the 50% level.
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Table 3. Observed and calculated structural parameters for bis(π-allyl)nickel complexes.a

                                             (C3H5)2Ni                                     [1,3-(SiH3)2C3H3]2Ni [1,3-(SiMe3)2C3H3]2Ni

Staggered Eclipsed Experimental
(staggered)

Staggered Eclipsed Staggered Experimental
(1b)

Eclipsed Experimental
(1a)

Ni–Cmidb 1.986 1.985 1.980(1) 1.994 1.990 1.994 1.972(2) 1.985 1.944(3)

Ni–Csync 2.028 2.029 2.029 (av) 2.076 2.038 2.105 2.070(2) 2.069 2.037(3)

Ni–Cantid 2.028 2.029 2.029 (av) 2.028 2.054 2.026 2.016(2) 2.050 2.029(3)

Csyn Cmid 1.417 1.416 1.416 (av) 1.419 1.424 1.416 1.404(3) 1.420 1.416(4)

Cmid–Canti 1.417 1.416 1.416 (av) 1.424 1.420 1.425 1.414(3) 1.423 1.418(4)

Csyn
Ni–Canti

74.8 74.7 74.6(1) 74.7 75.0 74.5 74.86(8) 74.6 75.6(1)

Csyn
Cmid–Canti

120.7 120.8 120.5(1) 122.4 122.2 123.3 123.7(2) 122.8 123.1(2)

Angle
between
allyl planes

0.0 59.8 0.0 4.4 56.7 2.9 4.6 47.5 49.1

Displaceme
nt of anti-
substituent

0.57 Å 0.57 Å 0.54 (av) Å 0.96 Å 1.01 Å 1.07 Å 0.97 Å 1.14 Å 1.11 Å

Displaceme
nt of syn-
substituent

0.18 Å 0.18 Å 0.17 (av) Å 0.20 Å 0.32 Å 0.06 Å 0.13 Å 0.21 Å 0.10 Å

Relative
energy (ΔH°)

0.0 +1.5 0.0 +0.6 0.0 +1.5

aB3LYP/DGDZVP2. Relative energy is in ΔH°, kcal mol–1; bCsyn is the carbon adjacent to the syn-substituent (either SiH3 or SiMe3)
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The complex has an eclipsed (cis) (η3-allyl´)2M geometry, with Ni–C bonds

varying from 1.944(3) to 2.037(3) Å. The SiMe3 groups in 1a are arranged in a syn,

anti configuration; the syn Si atoms, Si(2) and Si(2A), are near to the C3 plane (their

0.10 Å displacement is reflected in the nearly linear C1–C2–C3–Si2 torsion angle of

176.5(7)°), whereas the anti Si atoms, Si(1) and Si(1A), are considerably shifted out

of the allyl plane (by 1.11 Å, with a Si1–C1–C2–C3 angle of 47.8(4)°). Complex 1a

is the first structurally authenticated (η3-allyl´)2Ni complex with an eclipsed

conformation, and only the second example reported for any metal. Like the

eclipsed [1,3-(SiMe3)2C3H3]2Fe,25 the C3 planes are sharply canted to each other

(49.1°; cf. 52.7° in the iron complex). As with other first-row trimethylsilyl

substituted bis(allyl)metal complexes ([(SiMe3)nC3H5-n]2Cr (n  = 1–3),24 [1,3-

(SiMe3)2C3H3]2Fe25), there is no evidence for agostic bonding involving H atoms of

the ligand.

Solid state structure of 1b. For comparison to the eclipsed structure, the

solid state structure of 1b, which was first determined by J. Dominic Smith, will be

discussed; the unit cell of crystals that I sent for structural determination matched

the unit cell for the structure described herein. Two polymorphs of 1b with different

spacegroups (P21/c and C2/c) were identified in separate crystallographic studies at

173 K. The unit cell volume is 3% larger for the P21/c polymorph, and the

symmetry of the molecule is approximately C2. In the C2/c polymorph, exact

crystallographic C2 symmetry is imposed on the molecule. It is not certain what
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conditions produce the different forms, as the crystals of both polymorphs were

grown from hexanes at room temperature; it is possible that the rate of growth was

slower in one case. The molecules are closely similar, and only the more symmetric

structure is discussed here. An ORTEP view of the complex is displayed as Figure

14. Selected bond distances and angles for the structure are listed in Table 3.
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Figure 14. ORTEP drawing of 1b, giving the numbering scheme used in the text.
Displacement ellipsoids are shown at the 50% level.
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The complex has a classic staggered (trans) (η3-allyl´)2M geometry, and as

with 1a, the SiMe3 groups are arranged in a syn, anti configuration. The syn Si

atoms, Si1 and Si1′, lie close to the C3 plane (0.13 Å displacement, with a

C1–C2–C3–Si1 torsion angle of 175.2(1)°), whereas the anti Si atoms, Si2 and Si2′,

are substantially displaced out of the allyl plane (by 0.97 Å; the Si2–C1–C2–C3

torsion angle is 42.5(3)°). As is typical with π-bound allyls, the shortest Ni–C

distance (1.972(2) Å) is to the central carbon of the allyl ligand. The carbon bearing

the anti SiMe3 group (C1) is slightly closer to the nickel (2.016(2) Å) than that with

the syn SiMe3 group (C3, at 2.070(2) Å). This lateral displacement (Δ = 0.054 Å) is

somewhat more than that displayed by 1a, for which Δ = 0.008 Å. A space-filling

drawing of 1b suggests the extent to which the metal center is encapsulated by the

bulky allyl ligands (Figure 15).

Figure 15. Space-filling drawing of 1b; the nickel is the green atom in the center.
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The Ni–C bond lengths in 1b are similar to the Ni–C bond lengths in the

parent (C3H5)2Ni (1.980(1) to 2.031(1) Å),19 as are the interplanar C3 angles (4.6° in

1b, 0.0° in (C3H5)2Ni). The positions of the SiMe3 groups on the ligands mimic the

out-of-plane distortions present in the hydrogen atoms in (C3H5)2Ni (e.g., the

displacements of the anti hydrogens away from the nickel).

Solid state structure of 2a. For comparison to the iodide-bridged structure,

the solid state structure of 1b, which was first determined by J. Dominic Smith, will

be discussed. The complex crystallizes from hexanes as a bromide-bridged dimer.

The molecule lies on a crystallographic two-fold axis; thus, only one half of the

molecule is unique. Whereas Br2 lies on the two-fold axis, Br1 lies slightly off the

axis and was modeled as disordered over it (50:50). An ORTEP view of the

complex is displayed as Figure 16. Selected bond distances and angles for the

structure are listed in Table 4.
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Figure 16. ORTEP drawing of 2a, giving the numbering scheme used in the text.
Displacement ellipsoids are shown at the 50% level.
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Table 4. Selected bond distances (Å) and angles (deg) for 2a.

atoms distance atoms angle

Ni–Br1 2.362(10) Br1–Ni1–Br2 89.6(2)

Ni–Br2 2.365(1) Ni1–Br1–Ni1 90.35(8)

Ni–C1 2.062(7) Ni1–Br2–Ni1 90.32(6)

Ni–C2 1.978(6) C1–C2–C3 120.0(7)

Ni–C3 2.039(6)

C1–C2 1.385(9)

C2–C3 1.457(9)

The Ni–C bond lengths range from 1.978(6) to 2.062(7) Å, which are within

0.08 Å of those in 1b. Although not required to be so by symmetry, the Ni–Br1 and

Ni–Br2 bond lengths are identical within error (2.362(10) and 2.365(1) Å). The

Ni…Ni´ separation is 3.35 Å, too long to represent any significant interaction (cf. the

2.49 Å distance in nickel metal66). The angle between the C3 plane and (NiBr)2

plane is 117.7°. The dimeric structure of 2a joins a family of bridged π-allyl nickel

species (Table 5), but the most directly comparable structure is the dimeric (2-
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carboxyethylallyl)nickel bromide, {[2-(CO2C2H5)C3H4]NiBr}2, which has Ni–C

bond lengths ranging from 1.90(2) to 2.06(2) Å, and Ni–Br bonds of 2.334(5) and

2.378(5) Å.67 Despite the differences in the substitution on the allyl ligands, the

metrics for the listed complexes are quite similar to those in 2 a .
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Table 5. Selected structural data for bridged (π-allyl)nickel dimers (distances in Å).

Compound Ni–X, X´ Ni…Ni´ Ni–C (range)
Allyl
substituents ref.

{[1,3-(SiMe3)2C3H3]NiBr}2 (2) 2.362, 2.365 3.35 1.978–2.062 syn, syn
this
work

{[1,3-(SiMe3)2C3H3]NiI}2 (3a; 3b)
2.513, 2.539; 2.521,
2.528

3.49 1.973–2.049;
1.979–2.041 syn, anti

this
work

{[2-(CO2C2H5)C3H4]NiBr}2 2.334, 2.378 3.24 1.90–2.06 N/A 67

{[2-PhC3H4]Ni(O2CCF3)}2 1.924, 1.924 3.10 1.971–1.980 N/A 68

{[2-(SiMe3)C3H4]Ni(O2CCF3)}2 1.918, 1.929 2.98 1.927–1.991 N/A 68
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Table 5. continued.

{[1-PhC3H4]Ni(O2CCF3)}2 1.876, 1.973 2.93 1.890–2.052 syn 68

{[1-Me-3-(OSiMe3)C3H3]NiCl}2 2.234, 2.263 3.04 1.957–2.043 syn, syn 69

{[C3H5]Ni(OSi(O-t-Bu)3)}2 1.917, 2.049 2.67 1.915–1.920 N/A 70

{[2-MeC3H4]Ni(O2CCF3)}2 1.927, 1.934 3.04 1.973–1.987 N/A 71

{[1,3-Me2C3H3]Ni(CH3)}2 2.044, 2.067 2.37 1.953–2.039 syn, syn 72

{[2-MeC3H4]Ni(O2CC6H4(-o-NPh2) )}2 1.905–1.920 2.95 1.955–1.991 N/A 73

* The average value is listed.
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Unlike the arrangement found in 1a or 1b, the SiMe3 groups in 2a are in a

syn, syn configuration; the Si atoms Si1 and Si2 lie close to the C3 plane (0.13 Å

and 0.10 Å, respectively; the Si1–C1–C2–C3 torsion angle is –175.1(5)°; the

C1–C2–C3–Si2 torsion angle is 176.5(5)°. The syn, syn configuration has been

observed before in other bridged allyl dimers of nickel, such as {(1,3-

Me2C3H3)Ni(µ-Me)}2
72 and {[1-Me-3-(OSiMe3)C3H3]NiCl}2

69 (Table 4). The

arrangement in 2a is the first time it has been observed in a neutral transition metal

complex containing trimethylsilylated allyl ligands, however.

Solid state structure of 3. Like 2a, complex 3 crystallizes as a halide-

bridged dimer with crystallographically imposed symmetry. In the case of 3,

however, there are two independent half-molecules in the asymmetric unit. The

molecule with atom Ni2 (3a) is fully generated by a two-fold axis parallel to the a-

axis and perpendicular to the diamond core; the molecule with atom Ni1 (3b) is

completely generated by a two-fold axis parallel to the b-axis that contains both

bridging iodide atoms. Both structures are similar except for the orientation of the

ligands; structure 3a has an eclipsed orientation while structure 3b has a staggered

orientation. Both are discussed together here. An ORTEP view of 3a is displayed as

Figure 17; 3b is shown in Figure 18. Selected bond distances and angles for the

structures are listed in Table 6.
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Figure 17. ORTEP drawing of 3a, giving the numbering scheme used in the text.
Displacement ellipsoids are shown at the 50% level.
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Figure 18. ORTEP drawing of 3b, giving the numbering scheme used in the text.
Displacement ellipsoids are shown at the 50% level.
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Table 6. Selected bond distances (Å) and angles (deg) for 3a (top table) and 3b
(bottom table).

atoms distance atoms angle

Ni2–I3 2.513(1) I3–Ni2–I3´ 92.61(4)

Ni2–I3´ 2.539(1) Ni2–I1–Ni2´ 87.35(4)

Ni2–C10 2.020(8) C10–C11–C12 120.3(7)

Ni2–C11 1.973(8)

Ni2–C12 2.049(7)

C10–C11 1.422(11)

C11–C12 1.402(11)

atoms distance atoms angle

Ni1–I1 2.528(1) I1–Ni1–I2 92.43(4)

Ni1–I2 2.521(1) Ni1–I1–Ni1´ 87.42(5)

Ni1–C1 2.041(7) Ni1–I2–Ni1´ 87.73(5)

Ni1–C2 1.979(7) C1–C2–C3 119.1(7)

Ni1–C3 2.038(8)

C1–C2 1.436(12)

C2–C3 1.404(11)
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The Ni–C bond lengths in 3a range from 1.973(8) to 2.049(7) Å (1.979(9) to

2.041(7) Å in 3b), which like those in 2a, are similar to those in the bis(allyl)

complexes 1a and 1b. The Ni–I bond lengths are only slightly different in 3a

(2.513(1) and 2.539(1) Å), and are nearly equal in 3b (2.521(1) and 2.528(1) Å). The

Ni…Ni´ separation of 3.49 Å (the same in 3a and 3b) precludes any metal–metal

interaction. This compound represents the first structurally authenticated LNi(µ-

I)2NiL dimer, and there are few other iodide-bridged nickel centers available for

comparison. The nickel-iodide bond distances in 3a/3b are somewhat shorter than

the 2.62 Å (av) distance found in the carbamoyl cluster (µ-OCNEt2)4Ni2(µ-

I)2Ni(NHEt2),74 for example, but weak metal-metal bonding exists between the the

nickel centers in the latter (Ni…Ni´ separation of 2.67 Å), which complicates a

direct comparison.

In contrast to the arrangement found in 2a, the SiMe3 groups in 3a/3b are in

syn, anti relationships. As is typical for such configurations, the syn Si atoms (Si4 in

3a; Si2 in 3b) are close to the C3 plane (0.14 Å and 0.10 Å, respectively), whereas

the anti Si atoms (Si3 in 3a; Si1 in 3b) are considerably displaced from the allyl

plane (1.02 Å and 0.90 Å, respectively); similar values are found in 2a.



66

Computational Results

(C3H5)2Ni. The electronic structure of bis(allyl)nickel has been investigated

repeatedly at various levels of sophistication.15-17,75,76 For ease of comparison with the

substituted derivatives, the staggered and eclipsed forms of (C3H5)2Ni were

reexamined at the B3LYP/DGDZVP2 level of theory under C2 symmetry (nearly

identical results were obtained with the crystallographically observed Ci symmetry).

The agreement of the staggered geometry with the single crystal neutron diffraction

structure19 is quite good; the calculated Ni–C(1,3) and Ni–C2 distances of 2.028 Å

and 1.986 Å can be compared with the average Ni–C(1,3) and Ni–C2 distances

observed at 2.029(1) and 1.980(1) Å, and the calculated C–C–C angle (120.7°) in the

ligand essentially matches the observed angle of 120.5(1)°. The bond distances and

angles in the calculated structure of the eclipsed form (Ni–C(1,3) = 2.029 Å; Ni–C2

= 1.985 Å; C–C–C = 120.8°) are almost the same as in the staggered conformation.

The angle between the C3 planes is markedly different in the two conformations,

however: parallel (0.0°) in the staggered form, 59.8° in the eclipsed. The solid state

structure of (C3H5)2Ni has parallel ligands.

Most calculations have identified the staggered form of (C3H5)Ni as slightly

lower in energy than the eclipsed conformation, and that is found to be the case

with the B3LYP/DGDZVP2 combination (1.5 kcal mol–1 for both ΔH° and ΔG°).

Recently, Casarin found that quasi-relativistic DFT calculations indicated that the

two forms were virtually identical in energy (0.1 kcal mol–1 in favor of the eclipsed
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conformation, although with the use of a triple zeta quality basis set on all atoms

(instead of on nickel only), the preference shifted to 0.13 kcal mol–1 in favor of the

staggered form).17 It should be noted that in solution at room temperature, both

conformers are present in an eclipsed to staggered ratio of 1:3,14 and only the

staggered form has been identified in the solid state.19

As a more realistic model for 1a/1b, the molecule [1,3-(SiH3)2C3H3]2Ni was

optimized using the B3LYP/DGDZVP2 method under C2 symmetry, the highest

possible with syn, anti silyl groups. Some asymmetry is now evident in the binding

of the allyl ligand; in the staggered conformation, the distance from Ni to C1, which

bears the syn SiH3 group, is 2.076 Å, and Si1 is relatively close to the C3 plane (0.20

Å). The corresponding Ni–C3 distance is 2.028 Å, and Si3 is displaced by 0.96 Å

from the allyl plane. The Ni–C2 distance (1.994 Å) is only slightly longer than that

calculated for unsubstituted (C3H5)2Ni, and the calculated C–C–C angle has

widened slightly to 122.4°; the C3 allyl planes now form an angle of 4.4°. These

values closely model features in 1b, including the longer Ni–C(syn-TMS) vs

Ni–C(anti-TMS) distance (2.070(2) and 2.016(2) Å, respectively), the difference in

silyl group displacements (close to the allyl plane for the syn-groups, markedly

displaced for the anti-groups), and the interplanar C3 angle (4.4° in the model; 4.6°

in 1b).

Calculations on the eclipsed version of [1,3-(SiH3)2C3H3]2Ni under C2

symmetry were found to reproduce the structure of 1a to a reasonable degree. The
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similarities include the slightly more symmetrical bonding of the allyl ligand (2.038

Å to the carbon with the anti SiMe3 group and 2.054 Å to the carbon with the syn

SiMe3 group) and the tilting of the C3 ligand planes (calculated at 56.7°;

experimentally found in 1a at 49.1°). It is apparent that the inclusion of SiH3 groups

is sufficient to reproduce the major features of both the staggered and eclipsed

forms of [1,3-(SiMe3)2C3H3]2Ni. The staggered conformer continues to be the more

stable, although by even less than in the case of the unsubstituted complex (0.6 kcal

mol–1 in ΔH°, 1.3 kcal mol–1 in ΔG°).

As an additional check on the possible steric influence of the trimethylsilyl

groups, the structures of [1,3-(SiMe3)2C3H3]2Ni were optimized with the

B3LYP/DGDZVP2 combination using the crystal structures of 1a and 1b as starting

geometries; C2 symmetry was used throughout. As in the SiH3 substituted model,

the calculated values for the trimethylsilyl-substituted models closely match those of

the experimental [1,3-(SiMe3)2C3H3]2Ni structures (see Table 3).

Of particular interest is the C3 interplanar angle calculated for the eclipsed

structure; it has decreased from 56.7° in the SiH3 substituted model to 47.5° with the

inclusion of trimethylsilyl groups. The latter angle is close to the experimentally

found value of 49.1°. This suggests that this structural feature is controlled by steric

interactions among the SiMe3 groups; with a smaller tilt angle, there are no

Me…Me´ contacts of less than 4.0 Å, the sum of the van der Waals’ radii for two

methyl groups.77
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Although it has not been observed in the bis(allyl)nickel structures, the

geometry of staggered [1,3-(SiMe3)2C3H3]2Ni was calculated under C2 symmetry

with both trimethylsilyl substituents in syn , syn arrangements. The optimized

structure was a minimum (Nimag = 0), with Ni–C distances ranging from 1.999 to

2.089 Å. It is distinctly higher in energy than the staggered form with syn, anti

substituents (by 4.1 kcal mol–1 in ΔH°, 3.7 kcal mol–1 in ΔG°).

It is interesting to note that the energetic difference between the eclipsed and

staggered conformers is small and coincidentally matches the value for the

unsubstituted versions (1.5 kcal/mol). The irreversible conversion of eclipsed to

staggered structure at high temperature seems inconsistent with this small energy

difference. There may be important differences between the solution and solid-state

structures or solvent interactions present that are responsible the apparent

discrepancy.

Conclusion

Trimethylsilyl substituents affect the properties of allyl nickel complexes in

ways ranging from subtle to substantial. It is possible to identify several categories of

similarities and differences, as summarized below.

(1) Structure and thermodynamics. The crystal structures of (C3H5)2Ni and 1b

are remarkably similar in the core features of the metal-ligand geometry. The
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nickel–carbon bond lengths are within 0.04 Å of each other, and the angles between

the C3 planes differ by less than 5°, even though DFT calculations suggest that the

potential energy surface for the interplanar angle is nearly flat, and hence easily

perturbable. Although the trimethylsilyl groups cause substantial changes in other

attributes of the complexes, they exert little effect on the framework Ni–C distances.

Consistent with this finding, the DFT calculations on the eclipsed and

staggered conformations of (C3H5)2Ni, [1,3-(SiH3)2C3H3]2Ni,  and

[1,3-(SiMe3)2C3H3]2Ni indicate that successively greater substitution does not

change the relative stability of the two forms (Table 3). The staggered form is always

preferred, but not by more than 1.5 kcal mol–1. The consistency of the preference

energy indicates that the trimethylsilyl groups do not exert a major effect on the

relative thermodynamic stability of the molecules.

(2) Kinetic stability. Probably the most obvious difference between the

properties of (C3H5)2Ni and 1 is the considerably improved oxidative and thermal

stability of the latter. Although (C3H5)2Ni is pyrophoric, 1 can survive in air for

hours (as a powder) to days (as large crystals). Steric shielding of the metal center is

undoubtedly the source of this kinetic stability (see Figure 14).

The enhanced thermal stability of 1 (dec. over 100 °C) may also be a kinetic

phenomenon. The decomposition of (C3H5)2Ni is accompanied by the coupling of

the allyl ligands,5 but a similar process may be more difficult with the sterically

bulky trimethylsilylated analogue.
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The kinetic influence of the substituted allyl ligands is also evident in the

difference in the solution behavior of 1 and (C3H5)2Ni. The eclipsed and staggered

conformations of the latter are in dynamic equilibrium, and the ratio is adjustable

by a variation in the temperature.14 Orbital symmetry arguments indicate that the

interconversion of the two conformations cannot be accomplished by a simple

rotation of the allyl ligands,78 and likely involves a sequence of π–σ–π

rearrangements of the binding modes. In contrast, the eclipsed (1a) and the

staggered (1b) forms of 1 are not in detectable equilibrium. Their relative ratios in

solution are constant until a temperature of 85 °C is reached, at which point

irreversible conversion of 1a to 1b occurs. Although the enthalpic difference between

the two forms is small (~1.5 kcal mol–1), the set of ligand rearrangements that

would be required to convert 1b back to 1a must be more difficult for the bulky

trimethylsilyated ligands than for the parent anion.

(3) Reactions with phosphines and halides. Given the apparent thermodynamic

similarities between  (C3H5)2Ni and 1, their different reactions with nucleophiles,

like their susceptibility to oxidation, probably stem largely from the kinetic

differences arising from the bulky trimethylsilylated ligands. This is apparent in the

reactions of the two compounds with phosphines. All phosphines do not react in the

same way with (C3H5)2Ni, and this is also true with 1. With (C3H5)2Ni, an unstable

adduct is formed with PPh3 (and other bulky phosphines such as (C6H11)3P and

(i-Pr)3P), which decomposes with the formation of a nickel hexadiene complex. The
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lack of any detectable interaction between 1 and PPh3 is probably a direct

consequence of the shielding of the metal center by the bulky allyl groups. With the

smaller PMe3, however, the roles are partially reversed; i.e., (C3H5)2Ni forms a

thermally unstable 18-e– adduct that can be characterized at low temperature, but

which dissociates at room temperature without affecting the nickel complex. In

contrast, on reaction with a mixture of 1a/1b, trimethylphosphine is converted to

tetramethyltetraphosphane, (MeP)4, leaving behind the thermodynamically more

stable staggered 1b. The full mechanism of this transformation must be complex

and is under investigation.

The reaction of 1 with halogens is similar to that of (C3H5)2Ni, in that both

bis(allyl) complexes will lose an allyl ligand when treated with Br2 or I2 to form

(allyl´)NiX species. The extra kinetic stabilization imparted by the bulky allyl

ligands results in some differences, however, such as the resistance to Schlenk

rearrangements in donor solvents.

A subtle effect can be recognized in the derivatives of 1 that does not exist

with (C3H5)2Ni, namely, the variable occurrence of syn, syn and syn, anti ligand

substituents. Syn, syn arrangements are uniformly observed in bis(trimethylsilyl)allyl

complexes of the s- and f-block metals; i.e., in those cases in which a largely ionic

allyl-metal interaction can be presumed.27-29,79,80 Syn, anti conformations have to date

only been observed in d-block transition metal complexes, where they are the rule

for the first row series [1,3-(SiMe3)2C3H3]2M; M = Cr, Fe, Co, Ni). The observation
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of both syn, syn and syn, anti versions of the mono(allyl)nickel species 2 indicates that

the SiMe3 arrangement is a conserved feature of the bis(allyl) starting materials; i.e.,

the syn, anti version of 2  and the 3 were both derived directly from 1, which

contains syn, anti groups. The syn, syn version of 2  was derived from 1,3-

(SiMe3)2C3H4Br, to which the syn and anti distinction does not apply. The fact that

the bis(allyl)metal species are derived from alkali metal salts (Li+, K+) with syn, syn

substituents suggests that this arrangement is not conserved on transfer of the

ligands to transition metal centers.

The chemistry of (C3H5)2Ni and that of the trimethylsilylated derivatives

described here differ in various ways, both in degree and kind. We anticipate that

greater use of such substituted ligands will lead to new and unexpected elaborations

in stoichiometric and catalytic nickel allyl chemistry.
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CHAPTER II

REACTIONS OF [η3-1,3-(SiMe3)2C3H3]2M (M = Fe, Co, Ni) COMPLEXES
WITH SMALL MOLECULES INCLUDING CARBONYL, PHOSPHINES, AND

HALOGENS

Introduction

Wilke prepared the first homoleptic (π-allyl)transition metal complex,

(C3H5)2Ni,1 in 1961, and many other examples of these complexes have been

subsequently synthesized.3 The C3H5– allyl anion is sterically compact, and when

used as the sole ligand in organometallic complexes, results in coordinatively

unsaturated metal centers, and thus highly reactive complexes. These attributes

make (π-allyl) metal complexes useful as reagents in organic and materials

chemistry81-83 and catalysis,84-89 and numerous examples have been synthesized for

these purposes.

Despite their uses in numerous applications, first-row transition metal allyls

have low-energy decomposition pathways, resulting in low thermal stabilities,

regardless of electron count or number of coordinated allyl ligands. This is certainly

the case for the late-transition metals of the first row. For example, bis(allyl)Ni

decomposes at 20 ˚C,1 and although bis(allyl)M (M = Fe, Co) complexes are not

known, tri(allyl)iron and tri(allyl)cobalt are both unstable at low temperatures in

inert atmospheres.3 Although these transition metal allyl complexes are unstable

and subsequently difficult to handle, there has been interest in the study of the

reactions of (allyl)transition metal complexes with small molecules such as σ-donors
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(e.g., phosphines),90,91 π-acceptors (e.g., carbon monoxide),92,93 and oxidizing agents

(e.g., halogens).94,95

The addition of donor ligands provides little improvement to the stability of

homoleptic allyl complexes of first-row transition metals. For example, 18-electron

complexes of the type (C3H5)2Fe(PR3)2 exhibit low stability (dec. ~0 ˚C) even

though the iron(II) center is electronically saturated.96 Carbon monoxide, the

quintessential π-acceptor ligand,97 has been used to synthesize (π-allyl)transition

metal carbonyl complexes98-100 although there are few such complexes described for

bis(allyl) species. Although (C3H5)2Fe(CO)2 has been synthesized and studied via

NMR and infrared spectroscopy,101 it is unstable and must be stored at low

temperature under an inert atmosphere.102 There is only one report of a

bis(allyl´)NiCO species in the literature (it decomposes at –30 ˚C),92 and there are no

reports of bis(allyl)Co(II) carbonyl monomers.

The instability associated with the homoleptic (π-allyl)transition metal

complexes is also found in heteroleptic (π-allyl)transition metal halide complexes. It

has been shown that the parent bis(allyl)Ni reacts with bromine and iodine to form

the heteroleptic (allyl)nickel halide species (eq 20) (see Chapter 1).2

(C3H5)2Ni + X2 (X = Br, I)  →  C3H5X + (C3H5)NiX (20)

In addition to possessing low thermal stability, (C3H5)NiX (X = Br, I) complexes

undergo ligand redistribution in donor solvents (eq 21).9
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2 (C3H5)NiX (X = Br, I)    (C3H5)2Ni  +  NiX2 (21)

In a similar low-temperature reaction, (C3H5)3Co and iodine react to form

(C3H5)2CoI (eq�22). 103 Like the (allyl)nickel halide complexes, this species is

presumed to be dimeric in solution.

(C3H5)3Co + I2  →  C3H5I + (C3H5)2CoI (22)

It has been shown that the addition of sterically bulky substituents to

cyclopentadienyl ligands results in organometallic complexes that are stabilized

relative to their unsubstituted analogs.20,104-106 In a similar effort to increase the

stability of transition metal allyl complexes, sterically bulky substituents have been

added to the allyl carbon backbone. Moderate success has been achieved by simply

adding a methyl group to the allyl ligand for use in the synthesis of iron(II) allyl

complexes.96 For example, the bis(2-MeC3H4)2Fe(PMe3)2107 complex decomposes

at ~20 ˚C (cf., 0 ˚C for the parent analog).96 It is thought that the methyl groups on

the allyl ligands provide kinetic stability to the resultant complex by blocking a

decomposition pathway.

More recently, the much bulkier [1,3-(SiMe3)2C3H3]– ligand38 has been used

to synthesize bis(allyl´)M complexes (M = Cr,24 Fe,25 Co,26 Ni108). These complexes

show marked improvement in stability when compared to their unsubstituted

conformers with metal centers in the +2 oxidation state (i.e., (C3H5)2Cr,84,109

(C3H5)2Ni1). In the cases of Fe(II) and Co(II), the bulky allyl ligands allow the

synthesis and characterization of homoleptic bis(allyl´) species.



77

In this chapter, [1,3-(SiMe3)2C3H3]2M (M = Fe, Co, Ni) complexes will be

studied with respect to reactions with phosphines, carbon monoxide and halogens.

A portion of this research involving the use of Ni(II) metal center has been

described in Chapter 1, but will be noted here for comparative purposes.

Experimental Section

General Considerations. All manipulations were performed with the

rigorous exclusion of air and moisture using high vacuum, Schlenk, or glovebox

techniques. Proton and carbon (13C) NMR spectra were obtained on a Bruker

DPX–300 spectrometer at 300 and 75.5 MHz, respectively, and were referenced to

the residual proton (δ 7.15 ppm) and 13C resonances (δ 128.0 ppm) of C6D6.

COSY, and HMQC NMR spectra were recorded on a Bruker DPX–400

spectrometer and were similarly referenced. All NMR data were processed using

Bruker XWINNMR 3.5 software on an Octane workstation (Silicon Graphics,

Mountain View, CA).

Infrared data were obtained on an ATI Mattson–Genesis FT–IR

spectrometer as KBr pellets prepared as previously described.36 Melting points were

determined on a Laboratory Devices Mel–Temp apparatus in sealed capillaries.

Combustion analyses were performed by Desert Analytics, Tuscon, AZ. Magnetic

susceptibility data were obtained on a Bruker DRX-400 spectrometer using Evans’

method110-112 with a small sample (8-15 mg) placed in a 1.0 mL volumetric flask and

diluted with toluene-d8. After complete mixing, approximately 0.5 mL was

transferred into an NMR tube with a sealed capillary containing toluene-d8. The

NMR tube was capped, and the 1H NMR spectrum was collected.
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Materials. 1-(SiMe3)C3H5 and n-BuLi (2.5 M in hexanes) were purchased

from Acros, and FeCl2, CoCl2, NiBr2(dme), and t-BuOK were purchased from

Aldrich; all were used as received. Carbon monoxide (CP grade) was purchased in

a pressurized cylinder from A–L Compressed Gases and passed through a drying

column (anh. CaSO4) before use. A Schlenk-line adapted needle, which was purged

with CO for several minutes, was used to introduce CO to [1,3-(SiMe3)2C3H3]2M

(M = Fe,Co,Ni) solutions. 1,3-(SiMe3)2C3H4 and Li[1,3-(SiMe3)2C3H3] were

synthesized according to literature procedures.38 K[1,3-(SiMe3)2C3H3] was prepared

by transmetallation of Li[1,3-(SiMe3)2C3H3] with potassium t-butoxide in hexanes

solution. The potassium allyl salt undergoes halide metathesis reactions with

FeCl2,25 CoCl2,26 or NiBr2(dme)108 in THF to produce the corresponding [1,3-

(SiMe3)2C3H3]2M compounds in good yields. The synthetic methods described

here for these compounds are variations of the literature preparations. THF,

toluene, and hexanes were distilled under nitrogen from potassium benzophenone

ketyl.39 Deuterated solvents were vacuum distilled from Na/K (22/78) alloy prior to

use.

Synthesis of [1,3-(SiMe3)2C3H3]2Fe. A 125 mL Schlenk flask containing a

stirring bar was charged with FeCl2 (0.500 g, 3.94 mmol) and 10 mL of THF. The

flask was then fitted with a 25 mL addition funnel containing K[1,3-(SiMe3)2C3H3]

(1.769 g, 7.880 mmol) dissolved in 15 mL of THF. The apparatus was attached to a

Schlenk line and then cooled to –78 °C using a dry ice/acetone bath. The K[1,3-

(SiMe3)2C3H3] solution was added dropwise with stirring over the course of 30 min.

The reaction was allowed to slowly warm to room temperature overnight. The THF

was removed from the reaction mixture under vacuum, and the dark brown residue
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was extracted with small portions (5 mL) of hexanes. The extract was filtered over a

medium porosity glass frit to remove KCl and any unreacted starting material,

leaving a dark red filtrate. The hexanes was removed under vacuum to afford an

orange crystalline solid (1.49 g, 3.48 mmol; 88% yield). Bis(1,3-

bis(trimethylsilyl)allyl)iron is an air- and moisture-sensitive orange solid that is

thermally stable under an inert atmosphere (m.p. 72–75 °C). The compound

sublimes at 48 °C under reduced pressure (10–2 Torr) and is soluble in ethers and

aromatic and aliphatic hydrocarbons. Principle IR bands (KBr, cm–1): 2953 (s),

2896 (s), 2363 (w), 1600 (s), 1430 (s), 1260 (s), 1090 (s), 870 (s), 800 (s), 690 (m), 480

(m). Magnetic susceptibility (toluene–d8): corrµ = 2.9 BM at 303 K and corrµ = 3.0

BM at 203 K, consistent with 2 unpaired electrons.113

Reaction of [1,3-(SiMe3)2C3H3]2Fe and CO. A 125 mL Schlenk flask

containing a stirring bar was charged with [1,3-(SiMe3)2C3H3]2Fe (0.123 g, 0.309

mmol) and 20 mL of hexanes. A needle was submerged in the solution of [1,3-

(SiMe3)2C3H3]2Fe, and CO was briskly added for six minutes. The solution was

then degassed using the freeze-pump-thaw method. The solution was filtered, and

hexanes was removed under reduced pressure leaving a yellow-orange oil (0.130 g;

87% yield) that could be distilled at 35 ˚C (10–2 Torr). Anal. Calcd for

C20H42FeO2Si4: C, 49.76; H, 8.77; Fe, 11.57. Found: C, 50.20; H, 8.74; Fe, 11.32.

Principle IR bands (KBr pellet, cm–1): 2953 (s), 2898 (s), 1986 (s), 1931 (s), 1697 (m),

1606 (w), 1603 (w), 1477 (m), 1415 (m), 1249 (s), 1204 (m), 1101 (m), 1019 (m), 852

(s), 732 (m), 688 (m), 601 (m), 563 (m). 1H NMR (300 MHz, C6D6, 298 K): δ 0.18

ppm (s, 18H, Si(CH3)3); 0.30 (s, 18H, Si(CH3)3); 1.15 (d, J = 13.5 Hz, 2H, anti

C–H); 3.02 (d, J = 13.5 Hz, 2H, syn C–H); 5.29 (dd, J = 13.5 Hz, J = 13.5 Hz, 2H,
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C(2)–H). 13C NMR (75 MHz, C6D6, 298 K): δ –0.22 ppm (Si(CH3)3); –0.016

(Si(CH3)3); 47.20 (syn C–H); 69.30 (anti C–H); 106.85 (C(2)); 216.84 (CO).

Reaction of [1,3-(SiMe3)2C3H3]2Fe and I2. A 125 mL Erlenmeyer flask

containing a stirring bar was charged with [1,3-(SiMe3)2C3H3]2Fe (0.401 g, 0.941

mmol) and 30 mL of hexanes. Iodine (0.239 g, 0.941 mmol) was added, and the

reaction was stirred overnight. Although no immediate change was observed upon

the addition of iodine, the solution eventually turned light yellow with stirring, and

a fine suspension of black precipitate was noted. The solution was decanted, and

hexanes was removed under reduced pressure leaving a yellow liquid that was

identified as 1,3,4,6-tetrakis(trimethylsilyl)-1,5-hexadiene (0.280 g; 80% yield) by its

1H NMR data.

Reaction of [1,3-(SiMe3)2C3H3]2Fe with PMe3. In a 125 mL Schlenk

flask, [1,3-(SiMe3)2C3H3]2Fe (0.250 g; 0.587 mmol) was dissolved in hexanes (10

mL). The flask was connected to a glass tube containing [AgI•PMe3]4 (0.744 g;

0.598 mmol). The iron(II) solution was cooled to –78 °C in a dry ice/acetone bath.

The glass tube was heated with a heat gun; after the PMe3 was released, the orange-

red solution turned darker orange-red. The reaction was filtered, and hexanes was

removed under vacuum leaving an orange oil. The oil could not be identified with

NMR data (1H and 31P), as the sample is paramagnetic, and only rolling baselines

were seen in the spectra.

Reaction of [1,3-(SiMe3)2C3H3]2Fe with P(C6H5)3. In a 125 mL

Erlenmeyer flask, [1,3-(SiMe3)2C3H3]2Fe (0.050 g; 0.12 mmol) was dissolved in 20

mL of hexanes. Triphenylphosphine (0.031 g; 12 mmol) was added to the orange

[1,3-(SiMe3)2C3H3]2Fe solution. The reaction was stirred overnight. No color
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change was noted upon addition. Hexanes was removed under vaccum to afford a

mixture of a white precipitate and an orange oil.

Synthesis of [1,3-(SiMe3)2C3H3]2Co. A 125 mL Schlenk flask containing a

stirring bar was charged with CoCl2 (0.500g, 3.85 mmol) and 10 mL of THF. The

flask was then fitted with a 25 mL addition funnel containing K[1,3-(SiMe3)2C3H3]

(1.725 g, 7.684 mmol) dissolved in 15 mL of THF. The apparatus was attached to a

Schlenk line and then cooled to –78 °C using a dry ice/acetone bath. The K[1,3-

(SiMe3)2C3H3] solution was added dropwise with stirring over the course of 30 min.

The reaction was allowed to slowly warm to room temperature overnight. The THF

was removed from the reaction mixture under vacuum, and the dark red residue

was extracted with small portions (5 mL) of hexanes. The extract was filtered over a

medium porosity glass frit to remove KCl and any unreacted starting material,

leaving a dark red filtrate. The hexanes was removed under vacuum to afford a

nearly black oil that appeared dark red when transilluminated. Over a period of

days, yellow-orange, needle-like crystals grew (1.23 g, 2.86 mmol; 75% yield).

Bis(1,3-bis(trimethylsilyl)allyl)cobalt is an air- and moisture-sensitive yellow-orange

solid that is thermally stable under an inert atmosphere (m.p. 73 °C). The

compound sublimes at 50 ˚C under reduced pressure (10–2 Torr) and is soluble in

ethers and aromatic and aliphatic hydrocarbons. Anal. Calcd. for C18H42CoSi4: C,

50.30; H, 9.84. Found: C, 50.30; H, 9.81. Principle IR bands (KBr): 2955 (s), 2899

(m), 2366 (w), 1698 (w), 1449 (m), 1400 (w), 1248 (s), 1028 (s), 1009 (s), 843 (s), 800

(s), 715 (w), 549 (w), 478 cm–1 (br, w). Magnetic susceptibility (toluene–d8): corrµ =

1.8 BM at 298 K, consistent with one unpaired electron.113
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Reaction of CoCl2 and Li[1,3-(SiMe3)2C3H3]. A 125 mL Schlenk flask

containing a stirring bar was charged with CoCl2 (0.516 g, 3.97 mmol) and 10 mL

of toluene. The flask was then fitted with a 25 mL addition funnel containing Li[1,3-

(SiMe3)2C3H3] (0.740 g, 3.85 mmol) dissolved in 15 mL of toluene. The apparatus

was attached to a Schlenk line and then cooled to –78 °C using a dry ice/acetone

bath. The Li[1,3-(SiMe3)2C3H3] solution was added dropwise with stirring. The

reaction was allowed to slowly warm to room temperature overnight. The toluene

was removed from the reaction mixture under vacuum, and the dark red residue

was extracted with hexanes. The extract was filtered over a medium porosity glass

frit to remove KCl and any unreacted starting material, leaving a dark red filtrate.

The hexanes was removed under vacuum to afford a dark red oil. Over a period of

days, yellow-orange, needle-like crystals grew. The unit cell of the crystals matched

that of bis(1,3-bis(trimethylsilyl)allyl)cobalt.

Reaction of [1,3-(SiMe3)2C3H3]2Co and CO. A 125 mL Schlenk flask

containing a stirring bar was charged with [1,3-(SiMe3)2C3H3]2Co (0.140g, 0.326

mmol) and 20 mL of hexanes. A needle was submerged in the solution of [1,3-

(SiMe3)2C3H3]2Co, and CO was briskly added for six minutes. The solution was

then degassed using the freeze-pump-thaw method. The solution was filtered, and

hexanes was removed under reduced pressure leaving an orange oil that distilled at

28 ˚C (10–2 Torr). Colorless crystals grew over a period of days and were

structurally determined to be 1,3,4,6-tetrakis(trimethylsilyl)-1,5-hexadiene,

[(SiMe3)2C3H3]2. Two other products were detected in NMR spectra. Principle IR

bands (KBr pellet, cm–1): 2954 (s), 2898 (m), 2360 (w), 2344 (w), 2053 (s), 1984 (s,

br), 1697 (w), 1599 (m), 1492 (w), 1444 (w), 1247 (s), 994 (m), 838 (s, br), 742 (m),
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689 (m), 559 (m), 517 (m). 1H NMR (300 MHz, C6D6, 298 K): Product 1: δ 0.002

ppm (s, 9H, Si(CH3)3); 0.082 (s, 9H, Si(CH3)3); 2.30 (d, J = 12.9 Hz, 1H, anti C–H);

3.10 (d, J = 8.7 Hz, 1H, syn C–H); 4.89 (dd, J = 12.9 Hz, J = 8.7 Hz, 1H, C(2)–H).

13C NMR (75 MHz, C6D6, 298 K): δ –1.27 ppm (Si(CH3)3); 0.55 (Si(CH3)3); 63.48

(anti C–H); 67.92 (syn C–H); 96.06 (C(2)); 204.51 (CO). Product 2: δ 0.10 ppm (s,

18H, Si(CH3)3); 1.97 (d, J = 12.3 Hz, 2H, C(1,3)–H); 4.70 (t, J = 12.3 Hz, 1H,

C(2)–H). 13C NMR (75 MHz, C6D6, 298 K): δ –1.13 ppm (Si(CH3)3); 67.30 (C(1,3));

94.20 (C(2)); 204.51 (CO).

Reaction of [1,3-(SiMe3)2C3H3]2Co and I2. A 125 mL Erlenmeyer flask

containing a stirring bar was charged with [1,3-(SiMe3)2C3H3]2Co (0.415 g, 0.966

mmol) and 30 mL of hexanes. Iodine (0.247 g, 0.973 mmol) was added and the

reaction was stirred overnight. Although no immediate change was observed upon

the addition of iodine, the solution eventually turned light yellow with stirring, and

a fine suspension of black precipitate was noted. The solution was decanted, and

hexanes was removed under reduced pressure leaving a yellow liquid that was

identified as 1,3,4,6-tetrakis(trimethylsilyl)-1,5-hexadiene (0.270 g; 76 % yield) by its

1H NMR data.

Reaction of [1,3-(SiMe3)2C3H3]2Co with PMe3. In a 125 mL Schlenk

flask, [1,3-(SiMe3)2C3H3]2Co (0.250 g; 0.586 mmol) was dissolved in hexanes (10

mL). The flask was connected to a glass tube containing [AgI•PMe3]4 (0.728 g;

0.586 mmol). The cobalt(II) solution was cooled to –78 °C in a dry ice/acetone bath.

The glass tube was heated with a heat gun; after the PMe3 was released, the solution

changed in color from a dark orange solution to a dark-red solution. The reaction
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was filtered, and hexanes was removed under vacuum leaving a red oil. The oil

could not be identified with NMR data (1H and 31P), as the sample is paramagnetic,

and only rolling baselines were seen in the spectra.

Reaction of [1,3-(SiMe3)2C3H3]2Co with P(C6H5)3. In a 125 mL

Erlenmeyer flask, [1,3-(SiMe3)2C3H3]2Co (0.054 g; 0.13 mmol) was dissolved in 20

mL of hexanes. Triphenylphosphine (0.033 g; 13 mmol) was added to the orange

[1,3-(SiMe3)2C3H3]2Co solution. The reaction was stirred overnight. No color

change was noted upon addition. Hexanes was removed under vaccum to afford a

mixture of a white precipitate and an orange oil. Orange crystals grew from the oil

and were crystallographically characterized as [1,3-(SiMe3)2C3H3]2Co.

Reaction of [1,3-(SiMe3)2C3H3]2Ni and CO. A 125 mL Schlenk flask

containing a stirring bar was charged with [1,3-(SiMe3)2C3H3]2Ni (0.147g, 0.342

mmol) and 20 mL of hexanes. A needle was submerged in the solution of [1,3-

(SiMe3)2C3H3]2Ni, and CO was briskly added for six minutes. The solution was

then degassed using freeze-pump-thaw method. The solution was filtered, and

hexanes was removed under reduced pressure leaving a red-orange oil (0.144 g;

92% yield) that distilled at 46 ˚C (10–2 Torr). Principle IR bands (KBr pellet, cm–1):

2955 (s), 2898 (m), 2005 (m), 1655 (m), 1619 (s), 1597 (s), 1404 (m), 1341 (m), 1247

(s), 1210 (m), 1099 (s), 1020 (s), 945 (m), 908 (m), 840 (s, br), 753 (m), 690 (m), 637

(m). 1H NMR (300 MHz, C6D6, 298 K): δ 0.09 ppm (s, 18H, Si(CH3)3); 0.099 (s,

18H, Si(CH3)3); 3.19 (d, J = 9.6 Hz, 2H, syn C–H); 5.49 (d, J = 18.9 Hz, 2H, anti

C–H); 6.70 (dd, J = 18.9 Hz, J = 9.6 Hz, 2H, C(2)–H). 13C NMR (75 MHz, C6D6,

298 K): δ –2.50 ppm (Si(CH3)3); –1.00 (Si(CH3)3); 61.10 (syn C–H); 128.62 (anti

C–H); 143.01 (C(2)); 204.14 (CO).
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Computational Details. Geometry optimization calculations were

performed using the GAUSSIAN 03W suite of programs.42 Both the B3LYP

functional, which incorporates Becke’s three–parameter exchange functional43 and

the correlation functional of Lee, Yang, and Parr,44,45 as well as the PW91PW91

functional, which employs the 1991 gradient–corrected functional of Perdew and

Wang for both correlation and exchange,46 were used. The DFT-optimized double

zeta polarized basis set DGDZVP2 of Godbout47 was used for geometry

optimizations and energy calculations of the bis(allyl) complexes. The standard

Pople basis set 6-31+G(d,p) was used for other calculations.48 Stationary points were

characterized by the calculation of vibrational frequencies, and unless otherwise

noted, all geometries were found to be minima (Nimag = 0).

Use of the PW91PW91 functional in conjunction with the 6-31 + G(d,p)

basis set has been shown to predict C–O stretching frequencies of molecules with

good accuracy although the predicted values are generally lower than experimental

ones by 15–25�cm –1. This functional/basis set combination was used to calculate

ν(CO) for several complexes in this study. Table 7 compares experimental C–O

stretching frequencies with calculated ones using PW91PW91/6-31 + G(d,p):
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Table 7. Experimental vs. calculated ν(CO) values.

Compound Experimental ν(CO) (cm–1) Calculated ν(CO) (cm–1)

CO 2143 2124

Fe(CO)5 2013, 2034 2007, 2024

Co2(CO)8 2048, 2076 (terminal) 2036, 2061 (terminal)

Ni(CO)4 2057 2041

Results and Discussion

Reactions of [1,3-(SiMe3)2C3H3]2M (M = Fe, Co, Ni) and CO

The trimethylsilyl-substituted bis(allyl´)iron complex, [1,3-(SiMe3)2C3H3]2Fe,

is the first homoleptic (π-allyl)iron(II) complex to be reported.25 There have been

some mention of carbonyl and phosphine adducts of bis(allyl)iron,96,114 but no

donor-free sample has ever been obtained. In contrast to the unstable (C3H5)2FeL2

species, the thermodynamically stable [1,3-(SiMe3)2C3H3]2Fe has a melting point

range of 72–75 ˚C and can even be sublimed (48 ˚C/10–2 Torr). This 14-electron

complex is paramagnetic, with µeff = 2.9–3.0 BM (210–303 K) and S = 1.113

As carbon monoxide was added to the orange solution of [1,3-

(SiMe3)2C3H3]2Fe, the solution immediately turned dark red. After a few seconds,

the solution color quickly progressed from red to yellow. Removal of solvent results

in a yellow oil characterized by elemental analysis as [1,3-(SiMe3)2C3H3]2Fe(CO)2.

The oil does not crystallize upon standing for weeks at room temperature or low

temperature (one week, –40 ˚C). Although the product oil is stable under a nitrogen
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atmosphere, it quickly decomposes in air. Some decomposition is noted in hexanes

overnight; a small amount of black precipitate is seen.

In contrast to the 14-electron [1,3-(SiMe3)2C3H3]2Fe, the reaction product of

[1,3-(SiMe3)2C3H3]2Fe and carbon monoxide is diamagnetic. Several facts can be

determined from NMR spectroscopy of the product. First of all, there is none of the

coupled allyl dimer in the NMR spectra of this reaction product. It has been shown

that (allyl´)metal complexes may undergo decomposition by way of oxidative

addition of the allyl´ ligands with reduction of the metal centers.115,116 The absence of

1,3,4,6-tetrakis(trimethylsilyl)-1,5-hexadiene in the NMR spectra not only proves

that this product is thermally stable, but also that the bis(allyl´)iron carbonyl product

contains iron in the +2 oxidation state. Two carbonyls must be bound to the iron(II)

metal center in order for the resulting complex to be diamagnetic (eq 23).

[1,3-(SiMe3)2C3H3]2Fe  + CO(xs)   →   [1,3-(SiMe3)2C3H3]2Fe(CO)2        (23)

Only one set of resonances is seen in the proton NMR spectrum for [1,3-

(SiMe3)2C3H3]2Fe(CO)2, which means that there is only one orientation of the allyl

ligands (i.e., eclipsed or staggered). The proton NMR spectral pattern (s, s, d, d, dd)

is indicative of a syn, anti arrangement of trimethylsilyl groups on the allyl ligands,

as observed in the crystallographically characterized [1,3-(SiMe3)2C3H3]2Fe.25 The

retention of the syn, anti arrangement of trimethylsilyl moieties is not unusual for

reactions of bis(allyl´)metal complexes of first row transition metals. For example,

reactions of [1,3-(SiMe3)2C3H3]2Ni with halogens and phosphines result in syn, anti

allyl products.108
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Because there is no parent iron allyl complex that can be used as a reference,

a comparison of the NMR data in relation to [1,3-(SiMe3)2C3H3]2Ni and K[1,3-

(SiMe3)2C3H3] was necessary in order to identify the syn and anti protons and

carbons in the NMR spectra of [1,3-(SiMe3)2C3H3]2Fe(CO)2. In K[1,3-

(SiMe3)2C3H3], the trimethylsilyl substituents are in syn, syn orientations, resulting

in a singlet, doublet, triplet pattern in the proton NMR spectrum. The J coupling

constant for the doublet and triplet is 16 Hz in THF-d8. The protons on the terminal

allyl carbons are anti with respect to the central proton (Figure 19). The value of the

J coupling constant is an important marker for identifying the anti protons in

complexes containing syn, anti allyl ligands.

Figure 19. Diagram of [1,3-(SiMe3)2C3H3]K depicting anti protons relative to
C(2)–H.

In the case of [1,3-(SiMe3)2C3H3]2Ni (Figure 20), the allyl ligands have syn,

anti trimethylsilyl substituents (see Chapter 1), and the resulting proton NMR

spectral pattern is similar to that of [1,3-(SiMe3)2C3H3]2Fe(CO)2 (i.e., s, s, d, d, dd).

The terminal allyl protons are syn and anti in correlation to the central proton with

the upfield doublet exhibiting the larger J coupling constant at 16 Hz (cf., 10 Hz for

SiMe3Me3Si

H

HH
K

(anti) (anti)
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downfield doublet). The larger coupling constant corresponds to the anti proton of

the allyl ligand. The difference in chemical shifts of the syn and anti protons are

reflected in the 13C NMR spectrum for [1,3-(SiMe3)2C3H3]2Ni, with the anti

proton-bearing allyl carbon positioned upfield from its syn counterpart (correlated

using HMQC NMR data).

Figure 20. Schematic of [1,3-(SiMe3)2C3H3]2Ni (staggered form shown) depicting
syn and anti trimethylsilyl substituents.

The J coupling contstants for the two doublets in the proton NMR spectrum

of [1,3-(SiMe3)2C3H3]2Fe(CO)2 are both 14 Hz, so the syn and anti protons could

not be discerned on the basis of the magnitudes of the J values. As this sample is a

CO adduct, it may not necessarily mimic the NMR shift trend seen in the

bis(allyl´)Ni case (i.e., the upfield anti proton chemical shift positioning relative to

the syn proton shift), and it indeed does not (vide infra).

Although it may be assumed that the upfield doublet corresponds to the anti

protons of the allyl ligands in [1,3-(SiMe3)2C3H3]2Fe(CO)2, the carbon resonance

associated with this upfield proton doublet is downfield from the carbon resonance
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that is coupled to the downfield syn proton resonance. It is not readily understood

why the chemical shifts of the protons and the carbons to which they are attached

are conversely positioned relative to each other. There is only one peak in the 13C

NMR spectrum for CO (216.84 ppm). Therefore, the two carbonyls in [1,3-

(SiMe3)2C3H3]2Fe(CO)2 are equivalent on the NMR timescale.

The FT-IR data for the product of [1,3-(SiMe3)2C3H3]2Fe and CO is

consistent with [1,3-(SiMe3)2C3H3]2Fe(CO)2. There are two CO stretching peaks

present at 1931 cm–1 and 1986 cm–1 (Figure 21). Given that the two carbonyls are

equivalent according to the 13C NMR data, the two carbonyl peaks in the FT-IR

spectrum correspond to asymmetric and symmetric stretching frequencies. These

values fall within the limits accepted as terminal carbonyls on transition metals

(2150–1850 cm–1) (c.f. 1850–1720 cm–1, doubly bridging; 1720–1600 cm–1, triply

bridging).97
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Figure 21. FT-IR spectrum of [1,3-(SiMe3)2C3H3]2Fe(CO)2 with CO stretching
frequencies (1931 cm–1 and 1986 cm–1).

When discussing the possible allyl bonding motif  in

[1,3-(SiMe3)2C3H3]2Fe(CO)2, it is important to note that [1,3-(SiMe3)2C3H3]2Fe has

been structurally characterized as an eclipsed structure, as this conformation may

affect the structure in the resulting carbonyl adduct. Consequently, [1,3-

(SiMe3)2C3H3]2Fe is one of only two known eclipsed bis(allyl´) transition metal

species (cf. eclipsed [1,3-(SiMe3)2C3H3]2Ni).108 Whereas the nickel analog has both

eclipsed and staggered structures (see Chapter 1), the iron complex has no known

staggered conformer. However, this does not necessarily mean that a staggered [1,3-

(SiMe3)2C3H3]2Fe cannot form; it may just mean that crystals of this conformation

have not been isolated and structurally characterized. DFT calculations

(B3LYP/DGDZVP2) were run on a staggered confomation for comparison to the

known eclipsed one (Figure 22).
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Figure 22. Calculated structures of both staggered (left) and eclipsed (right)
[1,3-(SiMe3)2C3H3]2Fe.

The eclipsed conformer is only slightly preferred over the staggered one by

1.1 kcal/mol in ΔG˚ (2.3 kcal/mol in ΔH˚). The calculated eclipsed structure (based

on the starting geometry of the crystal structure) has Fe–C bonds ranging

2.026–2.118 Å, and an allyl plane angle of 49.6˚. These values are close to those

reported for the crystal structure (Fe–C = 1.998(2)–2.084(2) Å; allyl plane angle =

52.7˚).25 The calculated staggered [1,3-(SiMe3)2C3H3]2Fe structure has slightly

longer Fe–C bonds ranging 2.058–2.152 Å, and an allyl plane angle of 6.2˚. This

calculated allyl plane angle fits a trend of decreasing values for the experimental

allyl plane angles in staggered [1,3-(SiMe3)2C3H3]2M (M = Co,Ni) complexes (cf.

5.5˚ for Co;26 4.6˚ for Ni).108

Because either allyl conformation (eclipsed or staggered) may be plausible

for a bis(allyl´)Fe complex based on DFT calculations, both eclipsed and staggered

(C3H5)2Fe(CO)2 complexes (Figure 23) were studied using DFT (PW91PW91/6-
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31+G(d,p)). The DFT calculation of eclipsed (C3H5)2Fe(CO)2 shows that it has zero

imaginary frequencies, indicating the structure is at least a local minimum on the

potential energy surface.117 The calculated CO stretching frequencies of 1958 cm–1

(asymmetric) and 1999 cm–1 (symmetric) are within the range of terminal CO

values (2150–1850 cm–1).97 These calculated values are close to the experimental

CO stetching frequencies (1965, 2020 cm–1) reported for (C3H5)2Fe(CO)2.

Figure 23. Calculated structures of eclipsed (left) and staggered (right)
(C3H5)2Fe(CO)2.

The calculated Fe–C(allyl) bond lengths range from 2.055–2.177 Å, and the

Fe–CO bond length is 1.763 Å (cf. Fe–CO bond length in Fe(CO)5 is 1.82 Å (av)).118

The Fe–C bond lengths are slightly longer than those reported for [1,3-

(SiMe3)2C3H3]2Fe due to the extra steric crowding around the iron(II) center. The

allyl bending angle is 7.9˚, however the allyl ligands have rotated by 64.5˚ relative to

each other. The two CO ligands are also twisted relative to the allyl plane by 31.0˚.

All of this rearrangement serves to maximize ligand–iron bonding while minimizing

unfavorable intramolecular contacts.
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Since the calculated eclipsed structure was somewhat twisted from its initial

geometry, a more symmetrical eclipsed structure (Cs symmetry) was also

computationally studied (Figure 24). Unlike the twisted eclipsed monomer, this

structure had one imaginary frequency (–101 cm–1), identifying it as a transition

state structure. As expected, this structure has two CO stretching frequencies (1952

cm–1, asymmetric; 1997 cm–1, symmetric) in the terminal CO stretching range. The

Fe–C(allyl) bond lengths (2.047–2.135 Å) and the Fe–CO bond length (1.761 Å) are

shorter than those of the twisted eclipsed structure, but the angle between the allyl

planes (25.5˚) is larger. The Cs-symmetric eclipsed structure is higher in energy than

the C1-symmetric structure by 10.7 kcal/mol in ΔG ˚ (by 9.6 kcal/mol in ΔH˚),

consistent with it representing a transition state geometry.

Figure 24. Calculated structure of eclipsed (C3H5)2Fe(CO)2 (Cs symm; Nimag = 1).

The calculated staggered (C3H5)2Fe(CO)2 also has one imaginary frequency

(–95 cm–1), meaning that this structure also represents a transition state. The two

CO stretching frequencies, 1950 cm–1 (asymmetric) and 1999 cm–1 (symmetric), in
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this structure are nearly identical with those of the twisted eclipsed form. The

Fe–C(allyl) bond lengths (2.026–2.140 Å) are shorter than those of the twisted

eclipsed structure, but the Fe–CO bond length (1.775 Å) is slightly longer; the angle

between the allyl planes is 65.7˚. The calculated staggered conformer is higher in

energy the the twisted eclipsed one by 10.3 kcal/mol in ΔG˚ (by 9.4 kcal/mol in

ΔH� ˚). Interestingly, the calculated staggered structure and the Cs-symmetric eclipsed

structure are nearly identical in energies.

Based on NMR data, FT-IR data, and the fact that the proposed

staggered (C3H5)2Fe(CO)2 conformer was calculated to be a transition state

structure, the proposed structure for [1,3-(SiMe3)2C3H3]2Fe(CO)2 is one of eclipsed

allyl ligands with syn, anti SiMe3 groups (Figure 25). The carbonyls are attached to

the iron(II) metal center at the ‘open face’ of the complex; the ‘open face’

orientation of carbonyls, positioned distal in relation to carbon 2, allows the allyl

ligands to bend in a way that reduces steric congestion around the metal center

while accepting CO adduction.
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Figure 25. Calculated structure of [1,3-(SiMe3)2C3H3]2Fe(CO)2.

A DFT calculation (PW91PW91/6-31+G(d,p) of the eclipsed

[1,3-(SiMe3)2C3H3]2Fe(CO)2 shows that it, like the calculated parent analog, has

zero imaginary frequencies, indicating the structure is at least a local minimum on

the potential energy surface. The calculated CO stretching frequencies of 1939 cm–1

(asymmetric) and 1977 cm–1 (symmetric) are somewhat lower than those calculated

for the parent structure, but still within the range of terminal CO values. The lower

values for the CO stretching frequencies point to increased electron donation from

the allyl ligands to the iron center in the substituted case, which results in better π-

donation to the CO ligands. These values are close to the experimental values of the

CO stretching frequencies (1931, 1987 cm–1) for [1,3-(SiMe3)2C3H3]2Fe(CO)2.
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The calculated Fe–C(allyl) bond length lengths (2.069–2.260 Å) are slightly

longer than those calculated for the parent, and this serves to relieve steric crowding

between the allyls. These values are also longer than those seen in the solid state-

structure of [1,3-(SiMe3)2C3H3]2Fe25 (Fe–C(allyl) = 1.998(2)–2.084(2) Å), because of

the more coordinatively saturated metal center in the carbonyl adduct. The

calculated Fe–CO bond length is shortened to 1.756 Å, which is close to the values

reported for (C3H5)Fe(CO)3Br (av Fe–CO = 1.79 Å).119 Again, this shortening may

be ascribed to increased π -donation from the iron center in

[1,3-(SiMe3)2C3H3]2Fe(CO)2 relative to (C3H5)Fe(CO)3Br. The allyl bending angle

(25.0˚) is larger than that seen for the calculated parent structure, but smaller than

that of [1,3-(SiMe3)2C3H3]2Fe (52.7˚); however, the allyl ligands have rotated by

52.6˚ relative to each other, and the two CO ligands are twisted relative to the allyl

plane by 26.0˚. Both of these values are smaller for the trimethylsilyl-substituted

allyl complex than for the parent allyl complex. These differences are consequences

of the difference in ligand size and steric hindrance among the complexes.

There have been no reports for the synthesis of a homoleptic (C3H5)2Co

complex, although the tris(allyl) species, (C3H5)3Co, is known.120 Tris(allyl)cobalt is

an 18-electron complex that is thermodymically unstable, decomposing at –40�˚C.

Even though (C3H5)3Co is not robust, it has found use in dehydrogenation

reactions3 and polymerization reactions of alkenes89,121 and butadienes.122,123 The

bulky [1,3-(SiMe3)2C3H3]2Co was first discovered by the Hanusa group. The

addition of one or two equivalents of K[1,3-(SiMe3)2C3H3] to CoI2 results in its

formation; this tendency to form bis(allyl)species regardless of reaction

stoichiometry has also been seen using other metal halides.124 This 15-electron
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species (µeff = 1.8 BM (298 K); S = 1/2) was found to be stable at room

temperature,26 has a melting point of 73 ˚C, and can be sublimed (50 ˚C, 10–2 Torr).

In contrast to the high catalytic activity of (C3H5)3Co, [1,3-(SiMe3)2C3H3]2Co

shows low catalytic behavior for polymerization reactions (e.g., norbornene

polymerization).87

As carbon monoxide was added to the orange solution of [1,3-

(SiMe3)2C3H3]2Co, the solution immediately turned dark red and then progressed

from red to orange after several seconds. Removal of solvent results in an orange

oil, from which colorless crystals grew over several days at room temperature.

These crystals were crystallographically determined to be 1,3,4,6-

tetrakis(trimethylsilyl)-1,5-hexadiene. As observed in the case of

[1,3-(SiMe3)2C3H3]2Fe(CO)2, the cobalt product is stable under a nitrogen

atmosphere al though i t  quickly decomposes in air .  Like

[1,3-(SiMe3)2C3H3]2Fe(CO)2, some decomposition is noted in solution overnight, as

a small amount of black precipitate is present.

The reaction product is diamagnetic, and the NMR data of this reaction

product is informative. In contrast to the reaction of [1,3-(SiMe3)2C3H3]2Fe and CO

(see eq 23), the formation of the coupled allyl dimer 1,3,4,6-tetrakis(trimethylsilyl)-

1,5-hexadiene is noted in addition to the cobalt allyl species in the proton and 13C

NMR spectra (approx. 1:1 ratio). The presence of coupled allyl dimer signifies that

an oxidation state change has occurred on the cobalt metal center. The cobalt

center has been reduced to Co(I) as the allyl ligands oxidatively couple. Since the

cobalt product is diamagnetic, three carbonyls must to be present on the metal

center (eq�24).
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[1,3-(SiMe3)2C3H3]2Co  +  CO(xs)   →   [1,3-(SiMe3)2C3H3]Co(CO)3  +  

1/2 [(SiMe3)2C3H3]2    (24)

The mechanism of cobalt(II) reduction to cobalt(I) is presumed to be

intermolecular, as an intramolecular mechanism would result in the formation of

cobalt(0), and there is no evidence for its formation.

There is precedent for the oxidative coupling of allyl ligands in the presence

of carbon monoxide in the literature.1,2 Although an excess of donor ligand can

result in insertion reactions, coupling of the allyl fragments along with metal

reduction is usually observed (e.g., (C3H5)2Ni, 92 (C3H5)3Co)116 (eqs�25 and 26).

(C3H5)2Ni  +  4L   →   hexadiene  +  NiL4 (25)

(C3H5)3Co  +  3L   →   hexadiene  +  (C3H5)CoL3 (26)

Although (C3H5)Co(CO)3 is reported to be a stable oil at room temperature,

tris(allyl)cobalt is stable only at low temperature (< –50 ˚C).116 In the case of

[1,3-(SiMe3)2C3H3]2Co, the reduction of Co(II) is incomplete, resulting in an

(allyl)cobalt(I) carbonyl complex (see eq 24).

Interestingly, there are two different cobalt(I) allyl species present that can be

identified from the NMR data. One of the species has the typical proton NMR

spectral pattern associated with trimethylsilyl groups in syn and anti positions on the

allyl ligands (i.e., s, s, d, d, dd). The two sets of doublets at 2.30 ppm and 3.10 ppm

have J �coupling constants of 12.9 and 8.7 Hz, respectively. As observed in the
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proton NMR spectrum of [1,3-(SiMe3)2C3H3]2Ni, the upfield doublet resonance,

with its larger J value, is considered to reflect the anti proton position, while the

downfield one is associated with the syn protons. The corresponding carbons

coupled to the syn and anti protons in the Co(I) species also follow this trend in the

13C NMR spectrum.

The other cobalt(I) allyl species present has an NMR spectral pattern  typical

of allyl ligands with trimethylsilyl substituents in syn, syn positions (i.e., s, d, t). The

J coupling constant of 12.3 Hz, for the doublet and triplet resonances is smaller than

that either for K[1,3-(SiMe3)2C3H3] (15.6 Hz) or for the anti proton J value for [1,3-

(SiMe3)2C3H3]2Ni (16 Hz), but is similar to the anti proton J value for the syn, anti

cobalt(I) allyl species. The ratio of the syn, syn species to the syn, anti species in the

proton NMR spectra is variable from sample to sample, with the syn, syn one being

the major product (note that the syn form is also the major one in

(crotyl)Co(CO)3).116 It is not readily understood what factors affect the formation of

one form over the other. DFT calculations have been run in order to better

understand the energetic differences of the two systems (see below).

The 13C NMR spectrum shows one broad peak at 204.51 ppm that

corresponds to coordinated CO. The fact that there is one broad peak indicates that

the CO ligands are in fast exchange, and the CO environments of the two cobalt(I)

allyl species are nearly equivalent.

The FT-IR data for this sample exhibits carbonyl peaks at 1984 and 2053

cm–1 (Figure 26). The carbonyl resonances are not symmetrical in shape, as the

peak at 1984 cm–1 is much broader than the sharp peak at 2053 cm–1. The broad
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CO peak may be the result of two closely spaced peaks that are unresolved in the

FT-IR spectrum of [1,3-(SiMe3)2C3H3]Co(CO)3.

Figure 26. FT-IR spectrum of [1,3-(SiMe3)2C3H3]Co(CO)3 with CO stretching
frequencies (1984 cm–1 and 2053 cm–1). CO stretching peaks are expanded for
clarity.

DFT calculations (PW91PW91/6-31+G(d,p)) were performed on both the

syn, syn and syn, anti [1,3-(SiMe3)2C3H3]Co(CO)3 proposed structures; in the case

of the syn, syn conformer, a Cs-symmetric structure and one with no symmetry (C1)

were compared. The syn, syn trimethylsilyl-substituted allyl cobalt(I) tricarbonyl

bearing a mirror plane is a transition state structure (Nimag = 1) and is slightly higher

in energy than the one with C1 symmetry (Figure 27) by 2.0 kcal/mol in ΔG ˚



102

although it is 0.47 kcal/mol lower in ΔH˚. However, the three calculated CO

stretching frequencies for these two structures are identical at 1979 (asymmetric),

1987 (asymmetric), and 2038 cm–1 (symmetric). These calculated values are close to

the experimental CO stretching frequencies in [1,3-(SiMe3)2C3H3]Co(CO)3 (1984

cm–1 and 2053 cm–1), taking into account that the two asymmetric stretching

frequencies may be overlapping to produce the observed broad peak at 1984 cm–1.

Figure 27. Calculated structures of syn, syn [1,3-(SiMe3)2C3H3]Co(CO)3 (left, Cs;
right� C1).

In comparison, the experimental C–O stretching frequencies for

(C3H5)Co(CO)3 are 1998 cm–1 (asymmetric) and 2065 cm-1 (symmetric).125 These

frequencies are larger than those of the trimethylsilyl-substituted analog because less

 π-donation to the π* orbital of CO occurs in (C3H5)Co(CO)3, resulting in stronger

C–O bonds and larger ν(CO) values. A DFT calculation (PW91PW91/6-31+G(d,p))

of (C3H5)Co(CO)3 predicts the C–O stretching frequencies of 1996 cm–1
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(asymmetric), 1998 cm–1 (asymmetric), and 2053 cm–1 (symmetric). This example

also shows that three calculated ν(CO) values can be obtained for two experimental

ν(CO) values.

The Co–C(allyl) bond lengths range from 2.026–2.164 Å in the Cs structure

and 2.028–2.181 Å in the C1 structure; both ranges are longer than that of the solid-

state structure of [1,3-(SiMe3)2C3H3]Co (cf. 1.996(3)–2.096(3) Å).26 The Co–CO

bond lengths are also nearly identical in both calculated structures (1.766–1.806 Å

in the Cs structure; 1.762–1.802 Å in the C1 structure). These values are typical for

Co(I)–CO bond lengths, as seen in (CO)3Co[(CH2)2CCH2]2, for which Co–CO

bond lengths range from 1.69(1) Å to 1.815(2) Å100 (cf. the terminal Co–CO bond

length range for Co2(CO)8 is 1.815(2)–1.836(2) Å).126 The Co–CO bond length

difference in (allyl)cobalt carbonyl complexes is proposed to be a consequence of π-

bonding between the metal center and allyl ligand.127,128

The calculated syn, anti [1,3-(SiMe3)2C3H3]Co(CO)3 structure (Figure 28) is

higher in energy than the lowest energy syn, syn structure (C1) by 1.79 kcal/mol in

ΔG˚ and 0.25 kcal/mol in ΔH˚. These values make the syn, anti structure nearly

equienergetic with the syn, syn structure of Cs symmetry. The syn, anti [1,3-

(SiMe3)2C3H3]Co(CO)3 has three C–O stretching frequencies at 1978 cm–1

(asymmetric), 1985 cm–1 (asymmetric), and 2038 cm-1 (symmetric) (Table 8). The

fact that all syn, anti calculated structures have nearly exactly the same C–O

stretching frequencies is not surprising considering the steric bulk of the allyl ligands

are the same for all the structures. The Co–C(allyl) bond length range in the syn,

anti structure is 2.027–2.149 Å and the Co–CO bond lengths are 1.763–1.800 Å,

making them only slightly shorter than those calculated for the syn, syn structures.
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Figure 28. Calculated structure of syn, anti [1,3-(SiMe3)2C3H3]Co(CO)3.

Table 8. Calculated thermodynamic values and ν (CO) for
[1,3-(SiMe3)2C3H3]Co(CO)3 conformers.

[1,3-(SiMe3)2C3H3]Co(CO)3 ΔH˚ (kcal/mol) ΔG˚ (kcal/mol) calc. ν(CO) (cm–1)

syn, syn confomer (C1) 0.00 0.0 1979,1987,2038

syn, syn confomer* (Cs) –0.5 2.0 1979,1987,2038

syn, anti confomer (C1) 0.2 1.8 1978,1985,2038

* Nimag = 1

The diamagnetic starting material [1,3-(SiMe3)2C3H3]2Ni is described in

Chapter 1 and will not be discussed here. As carbon monoxide was added to the

dark red solution of [1,3-(SiMe3)2C3H3]2Ni, the solution lightened in color to

yellow-brown. Removal of solvent results in a brown oil that solidifies over a period

of days. The nickel product is stable under a nitrogen atmosphere although it
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decomposes in air. Unlike the iron and cobalt carbonyl species, no decomposition is

noted for the nickel carbonyl product in solution overnight.

The product is diamagnetic with a set of resonances that are indicative of

trimethylsilyl substituents on the allyl ligands in syn, anti positions (i.e., s, s, d, d,

dd). Only one set of resonances is seen in the NMR data, which means that there is

only one isomer present. The absence of any coupled allyl dimer peaks in the NMR

data points to the retention of the Ni(II) oxidation state and the stability of this

complex.

In the proton NMR spectrum, the two sets of doublets at 3.19 ppm and 5.49

ppm have J coupling constants of 9.6 Hz and 18.9 Hz, respectively. Since the proton

resonance for the allyl framework’s anti proton of [1,3-(SiMe3)2C3H3]2Ni has been

associated with a larger J value than the one of its syn proton, the proton resonance

at 5.49 is assigned to the anti proton in [1,3-(SiMe3)2C3H3]2NiCO. Interestingly,

this peak position is downfield from the resonance for the syn proton in this sample,

making the relative positions of the peaks opposite of what is reported for [1,3-

(SiMe3)2C3H3]2Ni.108

The 13C NMR peaks that are coupled to the corresponding proton peaks

also follow the trend of upfield syn and downfield anti positions for the

bis(allyl´)nickel carbonyl product. There is one peak in the 13C NMR spectrum that

corresponds to CO. Although one CO peak in the 13C NMR spectra signified

equivalent CO adducts in the cases of the iron and cobalt allyl complexes, one peak

represents one CO in the case of the nickel complex; [1,3-(SiMe3)2C3H3]2Ni is a

16-electron species, and the addition of two or more CO ligands would be

electronically unfavorable.
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The FT-IR data for [1,3-(SiMe3)2C3H3]2NiCO contains one CO stretching

frequency at 2005 cm–1 (Figure 29). This value is within the range of terminal CO

ligands. The fact that there is only one CO stretch further corroborates the

conclusion that only one CO is present on the Ni(II) metal center.

Figure 29. FT-IR spectrum of [1,3-(SiMe3)2C3H3]2NiCO with CO stretching
frequency (2005 cm–1).

DFT calculations (PW91PW91/6-31+G(d,p)) on an eclipsed and staggered

(C3H5)2NiCO were run to see how favorable the eclipsed allyl bonding motif is

over the staggered one for a bis(allyl´)Ni carbonyl complex. The eclipsed bonding

motif of (C3H5)2NiCO has been seen in the structurally characterized

(C3H5)2NiPMe3 complex (Figure 30),5 so this motif is expected for a carbonyl

adduct. For the (C3H5)2NiPMe3 complex, the eclipsed allyl ligands exhibit a
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bending angle of 3.6˚ and a Ni–C bonding range of 1.998(5)–2.092(5) Å (cf. the allyl

bending angle of 49.1˚ and Ni–C bonding range of 1.994(3)–2.037(3) Å is seen in

the eclipsed [1,3-(SiMe3)2C3H3]2Ni).108

Figure 30. Eclipsed allyl bonding motif seen in the calculated structure
(C3H5)2NiCO (left) and the crystal structure of (C3H5)2NiPMe3 (right).

The DFT calculation of eclipsed (C3H5)2NiCO shows that the eclipsed

structure has zero imaginary frequencies, indicating the structure is at least a local

minimum on the potential energy surface.117 The calculated C–O stretching

frequency of 2002 cm–1 is within the normal range of terminal CO values

(2150–1850 cm–1).97 The calculated Ni–C(allyl) distances range from 2.012–2.091 Å,

the Ni–CO bond length is 1.790 Å, and the allyl bending angle is 7.9˚.

The Ni–C(allyl) bond lengths and allyl bending angle are close to those of

the trimethylphosphine adduct of bis(allyl)nickel. The reduction in the allyl bending

angles observed in the calculation of the CO-adducted complex (and observed in

the structurally authenticated (C3H5)2NiPMe3) versus that calculated for the parent
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eclipsed bis(allyl)nickel (59.8˚)108 may be a consequence of orbital mixing. As the

square planar bis(allyl)nickel becomes a square pyramidal donor adduct complex,

the allyl ligands may shift to improve the bonding with the nickel metal center, thus

altering the angle of the allyl planes.

Like the DFT calculation of the eclipsed (C3H5)2NiCO, the DFT calculation

of the staggered conformer (Figure 31) also results in a structure with no imaginary

frequencies, indicating the structure is an energy minimum. The calculated CO

stretching frequency of 1995 cm–1 is lower than that calculated for the eclipsed

structure, but is still within the range of terminal CO values. The Ni–C(allyl) bond

range for the calculated staggered structure is 1.986–2.108 Å, which is similar to that

of the solid-state structure of (C3H5)2Ni (1.980(1)–2.031(1) Å).19 The Ni–CO bond

length is 1.813 Å, and the angle of the allyl planes is 54.4˚. The eclipsed form is

slightly more stable than the staggered one by 3.5 kcal/mol in ΔG˚ (by 4.0 kcal/mol

in ΔH˚).

Figure 31. Calculated structure of staggered (C3H5)2NiCO.

A DFT calculation (PW91PW91/6-31+G(d,p)) was run on the eclipsed [1,3-

(SiMe3)2C3H3]2NiCO (Figure 32). The calculated CO stretching frequency of 1980
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cm–1, like its calculated parent analog, is within the range of terminal CO values,

albeit lower in value due to better π-donation in the substituted species. This

calculated value is close to the experimental C–O stretching frequency measured

for [1,3-(SiMe3)2C3H3]2NiCO (2002 cm–1). The only other bis(allyl´)NiCO complex

reported in the literature displays C–O stretching frequency of 2000 cm–1.92

Figure 32. Calculated structure of eclipsed [1,3-(SiMe3)2C3H3]2NiCO.

The calculated Ni–C(allyl) bonding range (2.026–2.176 Å) and the allyl

bending angle (12.2˚) are somewhat larger than those calculated for the parent

species; this increase in values reflects the increased steric strain imparted by the

trimethylsilyl-substituted allyl ligands. The calculated bond lengths are also longer

than those of the solid-state structure of [1,3-(SiMe3)2C3H3]2Ni (1.944(3)–2.037(3)

Å), although the calculated allyl bending angle (12.2˚) is smaller (cf. 49.1˚ in [1,3-
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(SiMe3)2C3H3]2Ni (exp.)).108 However, the Ni–CO bond length is 1.785 Å for this

species, which is nearly identical with that of the calculated parent structure and

shorter than that of Ni(CO)4 (1.84 Å).118

The Ni–CO bond is shorter in [1,3-(SiMe3)2C3H3]2NiCO because of the

increased π-donation to the CO ligands from the metal center in this complex.

Since π-donation from the metal center to CO puts electron density into a π* CO

orbital,118 the C–O bond itself is weakened in [1,3-(SiMe3)2C3H3]2NiCO relative to

Ni(CO)4, as seen in the ν(CO) values (i.e., 2002 cm–1 and 2057 cm–1, respectively).

A DFT calculation (PW91PW91/6-31+G(d,p)) was also run on the staggered

[1,3-(SiMe3)2C3H3]2NiCO (Figure 33). This calculated structure has one imaginary

frequency (–21 cm–1) and is higher in energy than the eclipsed one by 11 kcal/mol

in ΔG˚ and 10 kcal/mol in ΔH˚. The calculated staggered form has one CO

stretching frequency at 1980 cm–1 ; this value is identical to the one of the eclipsed

form. The Ni–C(allyl) bond lengths are 1.998–2.231 Å and the Ni–CO bond length

is 1.817 Å, making them only slightly longer than those calculated for the eclipsed

structure.
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Figure 33. Calculated structure of the staggered [1,3-(SiMe3)2C3H3]2NiCO.

Based on NMR data, FT-IR data, and calculations, the proposed structure of

[1,3-(SiMe3)2C3H3]2NiCO is the eclipsed form (see Figure 32), where the CO

ligand is bound on the ‘open face’ side, as seen in the previous donor-adduct

examples. The ‘open face’ binding of CO may be a result of reduced steric strain

imparted by the allyl ligands adopting an eclipsed geometry with the CO ligand

bound to the metal center distal to the apices of the allyl ligand.

Reactions of [1,3-(SiMe3)2C3H3]2M (M = Fe, Co, Ni) and I2

Halogen addition6 (eq 27) has been proven to be a good way to synthesize

heteroleptic (π-allyl)nickel species.

(C3H5)2Ni + X2  (X = I, Br) →  C3H5X + (C3H5)NiX (27)
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These reaction products are purportedly dimers in solution; in agreement with this,

the reaction of [1,3-(SiMe3)2C3H3]2Ni with iodine (or bromine) leads to the

formation of the structurally characterized [[1,3-(SiMe3)2C3H3]NiX]2 (X = I, Br)108

(see Chapter 1). It was thought that similar reactions with [1,3-(SiMe3)2C3H3]2M (M

= Fe, Co) would also lead to heteroleptic complexes. However, the addition of I2 to

either the bis(allyl´)iron(II) or bis(allyl´)cobalt(II) (eq 28) results in the formation of

the coupled allyl dimer, 1,3,4,6-tetrakis(trimethylsilyl)-1,5-hexadiene and insoluble

black precipitates, presumably FeI2 and CoI2, respectively.

[1,3-(SiMe3)2C3H3]2M (M = Fe, Co)  +  I2  →  [1,3-(SiMe3)2C3H3]2  + MI2    (28)

The synthesis of the trimethylsilylated coupled allyl dimer has also been

observed in the reaction of electrophiles such as iodine with [1,3-

(SiMe3)2C3H3]2Ca.124 Since there is no report of the addition of iodine to (C3H5)3Fe

in the literature (and (C3H5)2Fe itself has never been synthesized), there are no

examples for comparison to the reaction of [1,3-(SiMe3)2C3H3]2Fe and iodine.

However, it is not clear why the addition of iodine induces the bis(allyl´)cobalt(II)

species to undergo oxidative allyl coupling because it has been reported that the

addition of iodine to (C3H5)3Co forms (C3H5)2CoI (eq 29).129
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(29)

 

The bis(allyl)cobalt halide products can also be obtained by addition of HX

(X = Cl, Br, I) to tris(allyl)cobalt.103 These Co(III) complexes, which would be 16-

electron monomers, would have 18-electron counts if dimeric; their low solubility

has been cited in support of dimeric structures. Even though (C3H5)3Co and

(C3H5)2CoI are stable at low temperatures, they are thermally unstable with respect

to metal reduction and oxidative allyl coupling.

It is possible that the low electron counts of the iron(II) and cobalt(II) centers

are responsible for the formation of decomposition products in the reactions of the

bis(allyl´)metal and iodine. Although [1,3-(SiMe3)2C3H3]2Fe is a 14-electron

complex and [1,3-(SiMe3)2C3H3]2Co is a 15-electron complex, reactions with

iodine would form 12-electron and 13-electron species, respectively. These

monomers could conceivably dimerize, but it may be thermodymically preferred to

simply remove the allyl ligand (via oxidative coupling) and form the stable metal

halides. It is not known whether the oxidative coupling is intermolecular (upon

formation of an (allyl)metal halide intermediate) or intramolecular, but no

1,3-(SiMe3)2C3H3I is observed spectroscopically in the NMR data, suggesting that

the mechanism is more likely an intramolecular one.

ICo Co

3

+  I2 +  C3H5I
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Reactions of [1,3-(SiMe3)2C3H3]2M (M = Fe, Co, Ni) and phosphines

It was noted above that no reaction occurred upon the addition of

triphenylphosphine to [1,3-(SiMe3)2C3H3]2Ni; the products were spectroscopically

determined to be a mixture of starting materials by comparison of NMR spectra

(see chapter 1). It was proposed that the steric bulk of the allyl ligands, which

imparts great thermodymic stability to the bis(allyl´)nickel complex, is also

responsible for its lack of reactivity with respect to triphenylphoshine. In brief, the

phosphine is too bulky itself to get close enough to the nickel center to bind as a

donor.

Since the atomic radii of four-coordinate iron(II), cobalt(II), and nickel(II) are

similar,130 it was thought that no reaction would occur with the iron(II) or cobalt(II)

analogs of [1,3-(SiMe3)2C3H3]2Ni and triphenylphosphine. The reactions were run

under the same conditions as the nickel experiment. No color changes were seen

upon addition of triphenylphosphine, and mixtures of white crystalline solid and

colored oils were collected. The paramagnetism of the iron(II) and cobalt(II) starting

materials prevented successful use of NMR spectroscopy in identifying reaction

products. Based on results of the diamagnetic Ni(II) study and the similar white

crystalline products found in the three attempts, however, it was concluded that no

reactions occurred between triphenylphosphine and the [1,3-(SiMe3)2C3H3]2M

complexes of iron(II), cobalt(II), and nickel(II).

In Chapter 1, the reaction of [1,3-(SiMe3)2C3H3]2Ni and trimethylphosphine

was described. Instead of forming a phosphine adduct, as observed in the case of

(C3H5)2Ni and PMe3 (eq 30),5 a P–P coupling reaction occurs, resulting in (MeP)4

(eq�31). 108
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(C3H5)2Ni  +  PMe3  –78 ˚C   (C3H5)2Ni⋅PMe3 (30)

[1,3-(SiMe3)2C3H3]2Ni  +  4 PMe3 → [1,3-(SiMe3)2C3H3]2Ni  +  (MeP)4  (31)

It was not known whether this reaction is unique to [1,3-(SiMe3)2C3H3]2Ni,

so similar reactions were studied using the iron(II) and cobalt(II) bis(allyl) analogs.

In both cases, the addition of trimethylphosphine to solutions of the bis(allyl)

complexes caused irreversible color changes in the reactions. An orange-red oil was

collected from the reaction involving [1,3-(SiMe3)2C3H3]2Fe, whereas a red oil was

collected from the reaction involving [1,3-(SiMe3)2C3H3]2Co. Over a period of

days, crystals grew from the cobalt(II) product. These crystals had the same unit cell

as that of staggered [1,3-(SiMe3)2C3H3]2Co itself. This fact alone does not help in

determining if a P–P bond coupling reaction similar to the one in the Ni(II) case

occurred, because the staggered form is both the preferred and structurally-

observed form of [1,3-(SiMe3)2C3H3]2Co, and the starting material may have

already been in that conformation. No crystals grew from the oil of the iron(II)

sample.

NMR spectroscopy cannot be used to identify the reaction products for

either reaction, meaning that there is at least one paramagnetic component in the

reaction product of each sample. The cobalt(II) species is the paramagnetic

component in the case of [1,3-(SiMe3)2C3H3]2Co and PMe3, as seen by the crystal

structure determination. If [1,3-(SiMe3)2C3H3]Co(PMe3)3 were synthesized, it

would be a diamagnetic species that could be dectected in an NMR experiment. In

the case of [1,3-(SiMe3)2C3H3]2Fe and PMe3, the paramagnetic component is most



116

likely the iron(II) starting material, but this fact has not been crystallographically

substantiated; it is at least known that no phosphorus bis(adduct) is formed with

[1,3-(SiMe3)2C3H3]2Fe because a diadduct species with η3-allyls would be an 18-

electron species and thus diamagnetic.

It is interesting to note that an (η3-allyl´)2Fe(PMe3)2 species has been

reported,91,96 but it was synthesized via an allyl Grignard reaction from the iron(II)

precursor FeCl2(PMe3)2. It has also been reported that an (allyl)cobalt(I) phosphines

species, (C3H5)Co(PMe3)3,131 can be made from Co(PMe3)3Cl and alkali metal allyl

salt.

Conclusion

This work has shown that robust bis(allyl´)transition metal complexes can be

used to form stabilized CO adducts. [1,3-(SiMe3)2C3H3]2Fe and

[1,3�(SiMe 3)2C3H3]2Ni accept carbon monoxide as a donor ligand to form the 18-

electron carbonyl adducts [1,3 � (SiMe 3)2C3H3]2Fe(CO)2 and [1 ,3 -

(SiMe3)2C3H3]2NiCO, respectively. The addition of CO to [1,3-(SiMe3)2C3H3]2Co

results in the one-electron reduction of Co(II) to Co(I), forming the 18-electron [1,3-

(SiMe3)2C3H3]Co(CO)3, along with the formation of the oxidatively coupled

1,3,4,6-tetrakis(trimethylsilyl)-1,5-hexadiene.

The use of the sterically enhanced allyl ligand [1,3-(SiMe3)2C3H3]– instead of

C3H5– offers two distinct advantages in the formation of allyl transition metal

carbonyl complexes: the ease of synthesis and the stability of the resulting

complexes. Since the trimethylsilyl-substituted bis(allyl)M (M = Fe,Co,Ni)

complexes are thermally stable, the synthesis of corresponding carbonyl adducts
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involves the direct addition of carbon monoxide to (allyl)metal solutions at room

temperature (eq 32).

[1,3-(SiMe3)2C3H3]2M (M = Fe,Co,Ni)  + CO(xs)  →  [1,3-(SiMe3)2C3H3]xM(CO)y

(32)

As previously stated, there are no known homoleptic bis(allyl)iron or

bis(allyl)cobalt species. Although (C3H5)2Fe(CO)2102 and (C3H5)Co(CO)3132 have

been synthesized, they are not generally formed by simple addition of CO to

(allyl)metal complexes and prove to be more difficult to make than the

trimethylsilyl-subsituted allyl analogs. The synthesis of (C3H5)2Fe(CO)2 is not

straightforward. Allyl iodide can be oxidatively added to Fe(CO)5 to form

(allyl)Fe(CO)3 iodide (eq 33), which can be further treated with sodium metal to

produce an (allyl)irontricarbonyl sodium salt (eq 34); addition of allyl bromide to

this salt yields (C3H5)2Fe(CO)2 (eq 35), which is thermally unstable.102

Fe(CO)5  +  C3H5I  →  (C3H5)Fe(CO)3I (33)

 (C3H5)Fe(CO)3I  +  2 Na  →  Na[(C3H5)Fe(CO)3] (34)

Na[(C3H5)Fe(CO)3]  + C3H5Br  →  (C3H5)2Fe(CO)2 (35)

The synthesis of (C3H5)Co(CO)3 can be achieved by more than one method,

but it usually involves the synthesis of a cobalt carbonyl starting material, followed



118

by subsequent reactions to isolate the desired (allyl)cobalt carbonyl product. As in

the case with an allyl carbonyl iron, the synthesis of an (allyl)cobalt tricarbonyl

makes use of a metal carbonyl starting material. A phase transfer reagent, which

promotes the generation of [Co(CO)4]– from Co2(CO)8, can be used in conjunction

with allyl bromide and dicobalt octacarbonyl to form the desired (C3H5)Co(CO)3

(eq 36).133

C3H5Br  +  Co2(CO)8  Et3BzN
+Cl–

NaOH   (C3H5)Co(CO)3 (36)

The product must be isolated from unreacted starting materials by distillation.

Carbon monoxide can also be added to tris(allyl)cobalt116 (see eq 26), but the

difficulty in isolating and handling (C3H5)3Co renders this method tedious.

Besides the difficulty in synthesis, stability of the (allyl)transition metal

carbonyl complexes is also an issue for the unsubstituted analogs. Although

(C3H5)2Fe(CO)2 has a reported melting point of 57 ˚C, it can only be stored at low

temperature under inert atmosphere or it decomposes.102 This low thermal stabilty is

in contrast to [1,3�(SiMe 3)2C3H3]2Fe(CO)2, which is stable at room temperature

indefinitely. This difference is even more evident in the case of nickel.

The addition of CO to (C3H5)2Ni results in the oxidative coupling of the allyl

ligands and the formation of Ni(CO)4 (eq 37).2

(C3H5)2Ni  +  4 CO   →   hexadiene  +  Ni(CO)4 (37)
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Not only is [1,3-(SiMe3)2C3H3]2Ni not degraded by an excess of carbon monoxide,

the resulting carbonyl product [1,3-(SiMe3)2C3H3]2NiCO is stable at room

temperature. To date, the only reported homoleptic (allyl)Ni(II) carbonyl complex

is an ansa-bridged species, that is proposed to exist as in intermediate at –78 ˚C;

upon warming, a carbonyl insertion reaction occurs (eq 38).92

   (38)

It has also been shown that DFT calculations using the PW91PW91

functional and 6-31+G(d,p) basis set can be used to compute C–O stretching

frequencies with considerable accuracy, although the calculated values tend to be

lower than experimental ones by ~20 cm–1. With an average error of 1%, this

method/basis set is a good choice for predicting molecular structures of (allyl)metal

carbonyl complexes.

The steric bulk of the trimethylsilylated allyl ligands influences the reactivity of the

bis(allyl´) complexes with small molecules. Although the addition of iodine to

[1,3-(SiMe3)2C3H3]2Ni results in the synthesis of an iodide-bridged Ni(II) species

(see Chapter One), similar reactions with [1,3-(SiMe3)2C3H3]2Fe and [1,3-

(SiMe3)2C3H3]2Co do not follow the same route. Instead, the iodine addition

induces the formation of metal iodides, accompanied by the oxidative coupling of

the allyl ligands (see eq 28). The bis(allyl) complexes of Fe(II) and Co(II), like that

CO
–78 ˚CNi

H2C
Ni

H2C
CO

CO
–30 ˚C

H2C
H2C

H2C

O
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of Ni(II), do not react with the bulky trimethylphosphine because of the steric

hindrance of the species involved. It has not been established from this research

whether [1,3-(SiMe3)2C3H3]2Fe or [1,3-(SiMe3)2C3H3]2Co reacts with

trimethylphosphine to form adduct species or follows the reaction pathway of [1,3-

(SiMe3)2C3H3]2Ni, forming tetramethyltetraphosphane by a P–P coupling

mechanism.
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CHAPTER III

SYNTHESIS, CHARACTERIZATION, AND POLYMERIZATION STUDIES
OF TRIMETHYLSILYL-SUBSTITUTED s-BLOCK ALLYL COMPLEXES

Introduction

There has been much interest in s-block organometallic chemistry in the last

century.134,135 The range of organometallic alkali metal complexes is broad, and

many have long been used in chemical transformations;136 reactions involving

lithium compounds are the most prevalent. Organomagnesium compounds have

been investigated as Grignard reagents since the early 1900s. Much of the interest in

heavy alkaline-earth chemistry has been in the development of cyclopentadienyl

derivatives.104,105,137 Non-cyclopentadienyl organometallic complexes of heavy

alkaline-earth metals138 have been synthesized with π-delocalized ligands including

fluorenyl,139 indenyl,140 and pentadienyl.141

The smallest π-delocalized ligand used in organometallic complexes is the

allyl anion, C3H5–.142,143 Metal allyl complexes have been highly sought as reagents

in organic reactions involving C–C bond formation.144-146 Although many transition

metal allyl complexes have been developed for their catalytic utility, s-block allyls

have received little attention. Group�1 allyl complexes of lithium (and to some

extent sodium and potassium) have been used primarily as ligand transfer agents.

Recently, heterometallic lanthanide/alkali metal catalysts have been shown

to be useful as polymerization catalysts.28,87,149,150 Interestingly, the potassium allyl

species polymerized methyl methacrylate more effectively when used as the sole

catalyst rather than as part of a mixed metal species.151 Even though the potential
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uses of alkali metal allyl complexes are evident, most research has been confined to

allyllithium complexes.79,152-156 Detailed analysis of this type of Group 1 complex is

lacking for the heavy alkali metal congeners. There are only two reports of

structurally characterized potassium allyls,28,151 and none reported for Rb and Cs

allyls. Rubidium and cesium allyls have only been characterized in solution and

have not been probed for their synthetic value.

Several Group 2 organometallic complexes have also shown catalytic

activity,157-159 but very few alkaline-earth allyls have been reported, much less

studied for chemical reactivity. Some allylbarium compounds have been used in

allylation reactions;160,161 however, the barium complexes were synthesized in-situ

and not characterized. There is only one structurally authenticated heavy alkaline-

earth allyl complex.80 Allyl complexes of the heavy alkaline-earth metals have not

been pursued because they were thought to provide no advantage over Grignard

reagents.147,148

Because the C3H5– anion is sterically compact, homoleptic organometallic

complexes made with this ligand are often coordinatively unsaturated, and thus are

highly reactive complexes. In first-row transition metal allyls, this unsaturation

results in low thermal stabilities due to low-energy decomposition pathways of the

complexes. The use of bulky substituents such as trimethylsilyl groups on the allyl

ligand has allowed the synthesis and characterization of thermally stable, electron-

deficient bis(allyl) compounds of Cr,25 Fe,25 Co,26 and Ni.108

Due to the increased ionicity present in s-block organometallic complexes,

the thermal stability of Group 1 and Group 2 allyls is not an issue, but the increased

ionicity coupled with the use of sterically small ligands can make isolation of soluble
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compounds difficult. Kinetic instability of organometallic s-block complexes can

also be an issue, as steric effect, metal size, ligand basicity, and solubility equilibria

all play a role in determining the isolability and reactivity of complexes.162 The

addition of steric bulk to cyclopentadienyl ligands has permitted the isolation of

stabilized Group 2 metallocenes.106,163 Steric stabilization was employed to

synthesize organocalcium complexes using pentadienyl141 and allyl ligands,80 which

were structurally authenticated. In this chapter, the synthesis and characterization of

Group 1 and Group 2 complexes using the trimethylsilyl-substituted allyl ligand

[1,3-(SiMe3)2C3H3]– will be discussed along with their potential use as

polymerization catalysts of methyl methacrylate.

Experimental Section

General Considerations. All manipulations were performed with the

rigorous exclusion of air and moisture using high vacuum, Schlenk, or glovebox

techniques. Proton, and carbon (13C) NMR spectra were obtained on a Bruker

DPX–300 spectrometer at 300 and 75.5 MHz, respectively, and were referenced to

the residual proton and 13C resonances of C6D6 (d 7.15 and 128.0). All NMR data

were processed using Bruker XWINNMR 3.5 software on an Octane workstation

(Silicon Graphics, Mountain View, CA).

GC–MS data were obtained with a Hewlett–Packard 5890 Series II gas

chromatograph/mass spectrometer with a 5971 Series mass selective detector.

Melting points were determined on a Laboratory Devices Mel–Temp apparatus in

sealed capillaries. Metal and combustion analyses were performed by Desert

Analytics, Tuscon, AZ. Low C and H analyses are common for highly air-sensitive
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organoalkaline-earth complexes, and may be due to incomplete combustion.80,164,165

Polymerization Reaction Considerations. Methylmethacrylate (4.00 mL,

37.4 mmol) was added via syringe to catalytic (allyl)metal solutions in toluene (~10

mL) at 0 ˚C. Polymerization reations were allowed to run the 30 seconds and then

quenched with methanol. The precipitates were filtered and dried, prior to analysis.

PMMA samples were studied at ambient temperatures unless otherwise noted. The

tacticity of PMMA samples were determined by integration of the methyl regions in

1H NMR spectra of the polymers.166

Materials. 1-(SiMe3)C3H5 and n-BuLi (2.5 M in hexanes) were purchased

from Acros; potassium, rubidium, and cesium metals were obtained from Strem,

and SrI2, BaI2, and t-BuOK were purchased from Aldrich; all were used as

received. 1,3-(SiMe3)2C3H4 and Li[1,3-(SiMe3)2C3H3] were synthesized according

to literature procedures.38 K[1,3-(SiMe3)2C3H3] was prepared by transmetallation of

Li[1,3-(SiMe3)2C3H3] with potassium t-butoxide in hexanes solution. THF, toluene,

and hexanes were distilled under nitrogen from potassium benzophenone ketyl.39

Deuterated solvents were vacuum distilled from Na/K (22/78) alloy prior to use.

Purification of methyl methcrylate involved stirring over CaH2, followed by

vacuum distillation and degassing using the freeze-pump-thaw method.

Synthesis of {[1,3-(SiMe3)2C3H3]Cs(thf)}∞. A 250 mL Erlenmeyer flask

was fitted with a Schlenk adapter and a glass magnetic stir bar and charged with

cesium metal (1.058 g; 7.960 mmol) and 50 mL of THF. A 125 mL Erlenmeyer

flask was fitted with a septum and charged with 1,3-(SiMe3)2C3H4 (1.435 g; 7.699

mmol) and 40 mL of THF. The Schlenk-adapted flask was attached to a N2 line,

and both flasks were cooled to –78 ˚C using a dry ice/acetone bath. The
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1,3-(SiMe3)2C3H4 solution was slowly cannulated into the flask containing cesium.

The reaction was allowed to warm to room temperature overnight. The pale yellow

solution was warmed to 40 ˚C for two hours. The solution was decanted from

unreacted cesium, and THF was removed under vacuum, leaving an orange solid

(0.913 g; 30% yield), mp 124–125 ˚C. Recrystallization from THF afforded colorless

blocks. Anal. Acceptable elemental analysis could not be obtained for a solvated

sample. A sample was heated under vacuum and analyzed as the base free product.

Calcd for: C9H21CsSi2: C, 33.96; H, 6.65. Found: C, 34.58; H, 6.58. 1H NMR (300

MHz, THF-d8, 298 K): δ –0.069 ppm (s, 18H, Si(CH3)3); 1.77 (mult, 4H, THF(β-

CH2)); 2.63 (d, J = 15.6 Hz, 2H, C(1,3)–H); 3.62 (mult, 4H, THF(α-CH2)); 6.32 (t, J =

15.6 Hz, 1H, C(2)–H). 13C NMR (75 MHz, THF-d8, 298 K): δ 2.34 ppm (Si(CH3)3);

25.30 (THF(β-CH2)); 67.37 (THF(α-CH2)); 74.24 (C(1,3)); 154.99 (C(2)).

Synthesis of {[1,3-(SiMe3)2C3H3]Rb(thf)}∞. A 125 mL Erlenmeyer flask

was fitted with a Schlenk adapter and a glass magnetic stir bar and charged with

rubidium metal (0.300 g; 3.51 mmol) and 30 mL of THF. A 125 mL Erlenmeyer

flask was fitted with a septum and charged with 1,3-(SiMe3)2C3H4 (0.645 g; 3.46

mmol) and 10 mL of THF. The Schlenk-adapted flask was attached to a N2 line,

and both flasks were cooled to 0 ˚C using an ice bath. The 1,3-(SiMe3)2C3H4

solution was slowly cannulated into the flask containing rubidium. The reaction was

allowed to warm to room temperature overnight. The yellow solution was warmed

to 50 ˚C for two hours. The solution was decanted from unreacted rubidium, and

THF was removed under vacuum, leaving a yellow oil (0.120 g; 10% yield) from

which micro-crystals grew that were unsuitable for X-ray crystallography. Anal.
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Calcd for C13H29RbOSi2: C, 45.52; H, 8.52; Rb, 24.92. Found: C, 46.67; H, 8.13;

Rb, 24.92. 1H NMR (300 MHz, THF-d8, 298 K): δ –0.122 ppm (s, 18H, Si(CH3)3);

1.78 (mult, 4H, THF(β-CH2)); 2.70 (d, J = 15.3 Hz, 2H, C(1,3)–H); 3.62 (mult, 4H,

THF(α-CH2)); 6.52 (t, J = 15.3 Hz, 1H, C(2)–H). 13C NMR (75 MHz, THF-d8, 298

K): δ 2.44 ppm (Si(CH3)3); 25.31 (THF(β-CH2)); 67.40 (THF(α-CH2)); 70.31

(C(1,3)); 155.54 (C(2)).

Synthesis of {[1,3-(SiMe3)2C3H3]5Ba2K(thf)}∞. A 125 mL Schlenk flask

containing a magnetic stirring bar and fitted with an addition funnel was charged

with BaI2 (0.847 g; 2.24 mmol) in 20 mL of THF. K[1,3-(SiMe3)2C3H3] (1.010 g;

4.499 mmol), dissolved in 15 mL of THF, was added to the addition funnel. The

apparatus was cooled to –78 °C using a dry ice/acetone bath. The THF solution of

K[1,3-(SiMe3)2C3H3] was added dropwise with stirring over the course of 30 min.

The solution was allowed to warm to room temperature overnight. THF was

removed under vacuum, and the residue was extracted with hexanes. The extract

was filtered over a medium porosity glass frit, and the hexanes was removed under

vacuum to afford a yellow powder (1.091 g; 92% yield; mp 190 °C (dec.)).

Rescrystallization from hexanes resulted in the growth of yellow blocks over a

period of days. Anal. Calcd for C49H113Ba2KOSi10: C, 44.82; H, 8.67; Ba, 20.92.

Found: C, 45.03; H, 9.01; Ba 20.70. 1H NMR (300 MHz, THF-d8, 298 K): δ –0.026

ppm (s, 36H, Si(CH3)3); 1.78 (mult, 4H, THF(β-CH2)); 2.59 (d, J = 15.9 Hz, 4H,

C(1,3)–H); 3.61 (mult, 4H, THF(α-CH2)); 6.53 (t, J = 15.9 Hz, 2H, C(2)–H). 1H NMR

(300 MHz, C6D6, 298 K): δ 0.30 ppm (s, 36H, Si(CH3)3); 1.34 (mult, 4H, THF(β-

CH2)); 2.86 (d, J = 16.0 Hz, 4H, C(1,3)–H); 3.48 (mult, 4H, THF(α-CH2)); 6.80 (t, J =
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16.0 Hz, 2H, C(2)–H). 13C NMR (75 MHz, C6D6, 298 K): δ 1.86 ppm (Si(CH3)3);

25.33 (THF(β-CH2)); 68.76 (THF(α-CH2)); 83.69 (C(1,3)); 156.10 (C(2)).

Synthesis of {[1,3-(SiMe3)2C3H3]5Ba2Li(thf)}∞.  A 125 mL Schlenk flask

containing a magnetic stirring bar and fitted with an addition funnel was charged

with BaI2 (0.128 g; 0.327 mmol) in 20 mL of toluene. Li[1,3-(SiMe3)2C3H3] (0.130

g; 0.676 mmol), dissolved in 15 mL of toluene, was added to the addition funnel.

The apparatus was cooled to –78 °C using a dry ice/acetone bath. The toluene

solution of Li[1,3-(SiMe3)2C3H3] was added dropwise with stirring over the course

of 30 min. The solution was allowed to warm to room temperature overnight.

Toluene was removed under vacuum, and the residue was extracted with hexanes.

The extract was filtered over a medium porosity glass frit, and the hexanes was

removed under vacuum, leaving very little product. The precipitate was dissolved in

THF and stirred overnight. THF was removed under vaccum, and the residue was

reconstituted in hexanes. The reaction was filtered, and hexanes was removed from

the filtrate to afford to afford an orange-red oil. 1H NMR (300 MHz, C6D6, 298 K):

δ 0.37 ppm (s, 36H, Si(CH3)3); 1.31 (mult, 4H, THF(β-CH2)); 3.14 (d, J = 16.0 Hz,

4H, C(1,3)–H); 3.51 (mult, 4H, THF(α-CH2)); 7.00 (t, J = 16.0 Hz, 2H, C(2)–H). 13C

NMR (75 MHz, C6D6, 298 K): δ 2.04 ppm (Si(CH3)3); 25.34 (THF(β-CH2)); 68.87

(THF(α-CH2)); 85.53 (C(1,3)); 155.06 (C(2)).

Reaction of { [1 ,3 - (SiMe3)2C3H3]5Ba2K(thf)}∞ a n d  I2.

{[1,3-(SiMe3)2C3H3]5Ba2K(thf)}∞ (0.040 g, 0.030 mmol) was dissolved in THF (40

mL) in a 125 mL Erlenmeyer flask. Iodine (0.016 g, 0.061 mmol) was added to the

[1,3-(SiMe3)2C3H3]5Ba2K(thf) solution with stirring. Upon addition of iodine, the
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solution turned purple and then quickly changed to colorless. THF was removed

under vacuum, the residue was reconstituted in hexanes, and the reaction was

filtered. Hexanes was removed from the decantate, leaving a yellow oil that was

characterized by its 1H NMR spectrum as 1,3,4,6-tetrakis(trimethylsilyl)-1,5-

hexadiene, [(SiMe3)2C3H3]2.

Synthesis of [1,3-(SiMe3)2C3H3]2Sr(thf)2. A 125 mL Schlenk flask

containing a magnetic stirring bar and fitted with an addition funnel was charged

with SrI2 (0.775 g; 2.27 mmol) in 10 mL of THF. K[1,3-(SiMe3)2C3H3] (1.017 g;

4.530 mmol), dissolved in 15 mL of THF, was added to the addition funnel. The

apparatus was cooled to –78 °C using a dry ice/acetone bath. The THF solution of

K[1,3-(SiMe3)2C3H3] was added dropwise with stirring over the course of 30 min.

The solution was allowed to warm to room temperature overnight. THF was

removed under vacuum, and the residue was extracted with hexanes. The extract

was filtered over a medium porosity glass frit, and the hexanes was removed from

the pale yellow filtrate under vacuum to afford a pale yellow powder (0.828 g, 61%

yield), mp 128–129 °C. Rescrystallization from hexanes resulted in the growth of

transparent blocks over a period of days. Anal. Calcd for C26H58O2SrSi4: C, 51.81;

H, 9.70; Sr, 14.54. Found: C, 49.71; H, 8.46; Sr 14.21. 1H NMR (300 MHz, THF-

d8, 298 K): δ –0.032 ppm (s, 36H, Si(CH3)3); 1.77 (mult, 8H, THF(β-CH2)); 2.83 (d,

J = 16.0 Hz, 4H, C(1,3)–H); 3.62 (mult, 8H, THF(α-CH2)); 6.75 (t, J = 16.0 Hz, 2H,

C(2)–H). 1H NMR (300 MHz, C6D6, 298 K): δ –0.30 ppm (s, 36H, Si(CH3)3); 1.30

(mult, 8H, THF(β-CH2)) 3.19 (d, J = 16.0 Hz, 4H, C(1,3)–H); 3.49 (mult, 8H, THF(α-

CH2)); 7.13 (t, J = 16.0 Hz, 2H, C(2)–H). 13C NMR (75 MHz, C6D6, 298 K): δ 2.12
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ppm (Si(CH3)3); 25.22 (THF(β-CH2)); 69.11 (THF(α-CH2)); 78.40 (C(1,3)); 158.88

(C(2)).

R e a c t i o n  o f  [1,3-(SiMe3)2C3H3]2Sr(thf)2.  and I2.  [1 ,3 -

(SiMe3)2C3H3]2Sr(thf)2 (0.040 g, 0.066 mmol) was dissolved in THF (40 mL) in a

125 mL Erlenmeyer flask. Iodine (0.017 g, 0.066 mmol) was added to the [1,3-

(SiMe3)2C3H3]2Sr(thf)2 solution with stirring. Upon addition of iodine, the solution

turned purple and then quickly changed to colorless. THF was removed under

vacuum, the residue was reconstituted in hexanes, and the reaction was filtered.

Hexanes was removed from the decantate, leaving a yellow oil that was

characterized by its 1H NMR spectrum as 1,3,4,6-tetrakis(trimethylsilyl)-1,5-

hexadiene, [(SiMe3)2C3H3]2.

Reaction of K[1,3-(SiMe3)2C3H3] and CaI2: Synthesis of

[1,3-(SiMe3)2C3H3]2Ca(thf)2 (1:1). A 125 mL Schlenk flask containing a magnetic

stirring bar and fitted with an addition funnel was charged with CaI2 (0.498 g; 1.69

mmol) in 15 mL of THF. K[1,3-(SiMe3)2C3H3] (0.381 g; 1.70 mmol), dissolved in

15 mL of THF, was added to the addition funnel. The apparatus was cooled to –78

°C using a dry ice/acetone bath. The THF solution of K[1,3-(SiMe3)2C3H3] was

added dropwise with stirring over the course of 30 min. The solution was allowed to

warm to room temperature overnight. THF was removed under vacuum, and the

residue was extracted with hexanes. The extract was filtered over a medium

porosity glass frit, and the hexanes was removed from the pale yellow filtrate under

vacuum to afford a off-white powder (0.778 g, 85% yield). The product was

characterized as [1,3-(SiMe3)2C3H3]2Ca(thf)2 by its 1H NMR data. As this
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compound has previously been synthesized,80 no attempts to crystallize or obtain

elemental analyses were made. 1H NMR (300 MHz, THF-d8, 298 K): δ –0.016 ppm

(s, 36H, Si(CH3)3); 1.78 (mult, 8H, THF(β-CH2)); 3.02 (d, J  = 16.0 Hz, 4H,

C(1,3)–H); 3.62 (mult, 8H, THF(α-CH2)); 6.90 (t, J = 16.0 Hz, 2H, C(2)–H). 13C

NMR (75 MHz, THF-d8, 298 K): δ 1.86 ppm (Si(CH3)3); 25.30 (THF(β-CH2));

67.40 (THF(α-CH2)); 76.55 (C(1,3)); 161.26 (C(2)).

Reaction of [1,3-(SiMe3)2C3H3]2Ca(thf)2.  and I2.  [1 ,3 -

(SiMe3)2C3H3]2Ca(thf)2 (0.161 g, 0.299 mmol) was dissolved in THF (40 mL) in a

125 mL Erlenmeyer flask. Iodine (0.074 g, 0.29 mmol) was added to the Ca2+

solution with stirring. Upon addition of iodine, the solution turned purple and then

quickly changed to colorless. THF was removed under vacuum, the residue was

reconstituted in hexanes, and the reaction was filtered. Hexanes was removed from

the decantate, leaving a yellow oil that was characterized by its 1H NMR spectrum

as 1,3,4,6-tetrakis(trimethylsilyl)-1,5-hexadiene, [(SiMe3)2C3H3]2.

Results and Discussion

Group 1 allyl complexes.

Although the trimethylsilyl-substituted allyl ligand, [1,3-(SiMe3)2C3H3]– has

been used to synthesize a variety of d-block25,26,88,108 and f-block28,167-169 complexes,

few alkali metal derivatives have been studied. Li[1,3-(SiMe3)2C3H3](TMEDA) was

reported in 1990.38 The usual bonding motif for allyllithium complexes is

polymeric,170,171 but the steric bulk of the ligands in Li[1,3-(SiMe3)2C3H3](TMEDA)
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provides a monomeric structure (Figure 34).79 The trimethylsilyl groups are

arranged in a syn, syn conformation on the allyl carbon backbone.

Figure 34. Solid-state structure of Li[1,3-(SiMe3)2C3H3](TMEDA), a monomeric

complex.

Recently, the structure of {K[1,3-(SiMe3)2C3H3](DME)}∞ (Figure 35) was

determined to be polymeric with the potassium ions forming a zigzag chain.151 The

trimethylsilyl arrangement is also syn, syn in this polymer. To date, no alkali metal

allyl complexes have been structurally characterized for cesium and rubidium, so

there is uncertainty about the coordination number of these metal centers.
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Figure 35. Solid-state structure of {K[1,3-(SiMe3)2C3H3](DME)}∞, showing
potassium centers in zigzag chain.

Group 1 allyl complexes of cesium and rubidium were synthesized using the

bulky 1,3-trimethylsilyl substituted propene in hopes of obtaining crystallographic

data of the resulting complexes and determining the environment of these alkali

metals in the complexes. Whereas  deprotonation reactions run in toluene are used

to synthesize the allyllithium species with [1,3-(SiMe3)2C3H3]– (eq 39), the alkali

metal allyl complexes of rubidium and cesium were synthesized by direct addition

of the trimethylsilyl-substituted propene hydrocarbon to the alkali metal in THF

(eq�40).

[1,3-(SiMe3)2C3H4]  +  n-BuLi  →  Li[1,3-(SiMe3)2C3H3]  +  butane (39)
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[1,3-(SiMe3)2C3H4] + M (M = Rb, Cs)  →  M[1,3-(SiMe3)2C3H3](thf)x + H2 (40)

Although allyl reactions were run at low temperature (–78 ˚C) during the addition of

the propene hydrocarbon to discourage ligand coupling, it was determined that

warming the reactions above the melting points of the alkali metals (i.e., 28 ˚C for

Cs; 39 ˚C for Rb) improved the modest yields without formation of the coupled allyl

dimer [1,3-(SiMe3)2C3H3]2.

Proton NMR spectra of the Cs and Rb allyl products have singlet, doublet,

triplet patterns that are typical for π–bound allyls with syn, syn trimethylsilyl

arrangements. Peak integrations were measured, and in both cases, the THF peaks

were calculated to represent only one THF per metal atom. The elemental analysis

of the allylrubidium species corroborates that there is one THF per Rb+ center, but

the allylcesium species consistently showed low carbon and hydrogen values. This

fact probably reflects the lability of THF on the cesium center.

X-ray data were collected on crystals of {[1,3-(SiMe3)2C3H3]Cs(thf)}∞ and

indicate a linear chain strucure with one THF molecule (disordered) per cesium

atom, making it a formally five-coordinate complex (Figure 36); the trimethylsilyl

substituents were found in a syn, syn conformation. This is the first structurally

authenticated allylcesium. This structure has only one allyl per cesium and is linear

(180˚). Both {K[1,3-(SiMe3)2C3H3](DME)}∞ and the THF analog of the

trimethylsilyl-substituted allylpotassium, {K[1,3-(SiMe3)2C3H3](THF)3/2}∞,172 have

zigzag chain structures; the THF-coordinated potassium structure has alternating

potassium metal centers, which coordinate one and two THF molecules (Figure 37).
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Figure 36. ORTEP of {[1,3-(SiMe3)2C3H3]Cs(thf)}∞ showing a linear polymeric
structure and disordered THF ligands.
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Figure 37. Solid-state structure of {K[1,3-(SiMe3)2C3H3](THF)3/2}∞ with a zigzag
polymeric structure.

The Cs–C(allyl) bond length range in {[1,3-(SiMe3)2C3H3]Cs(thf)}∞ is

3.331(6)–3.509(7) Å, and the Cs–O bond length is 3.060(16)�Å. The cesium

environment seems very unsaturated (Figure 38), but a closer look at the

environment of the Cs+ center (Figure 39) reveals several close contacts between

the cesium center and hydrogen atoms on adjacent trimethylsilyl groups. There are

three hydrogens on adjacent trimethylsilyl moieties that are within 3.21–3.38 Å of

the cesium center (cf. Cs–H = 3.19 Å in CsH).173 These values can be reasonably

considered to represent energetically important contact distances in this complex.
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Figure 38. View of {[1,3-(SiMe3)2C3H3]Cs(thf)}∞ repeating unit.

Figure 39. Close H–Cs contacts of {[1,3-(SiMe3)2C3H3]Cs(thf)}∞.
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The true coordination number of Cs+ in this complex is uncertain. As this

complex is ionic in nature, the sum of the cation (adjusted for CN) and anion radii

should equal the observed metal–ligand distances.174 The ionic radius for five-

coordinate Cs+ is calculated as 1.60 Å.174,175 Subtraction of this value from the

average Cs–C(allyl) distance of 3.431 Å gives an allyl thickness (radius) value of 1.83

Å. This value is longer than the allyl thickness values calculated for the six-

coordinate {K[1,3-(SiMe3)2C3H3](DME)}∞ (r (allyl) = 1.67 Å), the six-coordinate

Ca[1,3-(SiMe3)2C3H3](thf)2 (r (allyl) = 1.65 Å), and the six-coordinate Sr[1,3-

(SiMe3)2C3H3](thf)2 (r(allyl) = 1.62 Å) (see below).

 However, the coordination number of Cs+ in {[1,3-(SiMe3)2C3H3]Cs(thf)}∞

is eight if all three close-contact hydrogens are considered to be energetically

important to the structure. The ionic radius of an eight-coordinate Cs+ is 1.78 Å.

Subtraction of this value from the average Cs–C(allyl) distance of 3.431 Å results in

an allyl thickness value of 1.65 Å. This value falls within accepted limits for allyl

complexes, lending credence to the fact that the close contacts present in {[1,3-

(SiMe3)2C3H3]Cs(thf)}∞ are not just artifacts of crystal packing.

The Cs–C(allyl) distances in {[1,3-(SiMe3)2C3H3]Cs(thf)}∞ are similar to

Cs–C(Cp) distaces found in the six-coordinate ([(C6H5)4P]+[Cs2(C5H5)3]–)176

(Cs–C(Cp) = 3.3295–3.386 Å), adjusting the values for the difference in coordination

number of the two complexes. Likewise, the Cs–O distance in this allylcesium

species is also within the expected range for cesium–THF bonding.177-179 The allyl

ligand C–C bonds are delocalized (1.380(10)–1.389(10) Å), as predicted for

allylcesium by computation.180 The allyl carbons form an angle of 131.2(7)˚, which is
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only slightly larger than the angle predicted for free [1,3-(SiMe3)2C3H3]– (130.3˚)80

and equivalent to that found in {K[1,3-(SiMe3)2C3H3](THF)3/2}∞ (130.6(3)˚). The

terminal hydrogens and trimethylsilyl groups are bent out of the allyl plane by 2.9˚

and 4.3˚ for hydrogen and 2.9˚ and 4.3˚ for SiMe3, repectively. This behavior has

been documented in other allyl complexes.25,169

Although suitable crystals for X-ray crystallography were not obtained for

the allylrubidium species, it is expected to be a polymer like the potassium and

cesium counterparts. The elemental analysis indicates one THF molecule per

rubidium atom. This thf/metal ratio is the same as that seen for the allylcesium

analog; it is reasonable to propose a similar structure for the allylrubidium species.

Group 2 allyl complexes

Metathesis reactions are generally employed to make organometallic

complexes of Group 2 metals, and this method was used to synthesize the heavy

alkaline-earth allyl complex [1,3-(SiMe3)2C3H3]2Ca(thf)2, which was reported in

1999 (Figure 40).80 It is a monomeric bis(allyl)calcium species with two THF

molecules coordinated to the Ca2+ center and trimethylsilyl groups in a syn, syn

conformation. This complex is soluble in both ethers and hydrocarbon solvents.

This Group 2 allyl complex is the only reported complex to be structurally

authenticated. Interestingly, the addition of one equivalent of K[1,3-(SiMe3)2C3H3]

to one equivalent of CaI2 also forms the bis(allyl)calcium. This tendency to form a

homoleptic calcium hydrocarbyl species is not seen in cyclopentadienyl calcium

chemistry using 1:1 ratios although it has been reported in transition metal allyl

chemistry (see Chapters 1 and 2).
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Figure 40. Solid-state structure of [1,3-(SiMe3)2C3H3]2Ca(thf)2, a monomeric
species; one THF ligand displays disorder.

There is no mention of an allylstrontium species in the literature; a few

allylbarium compounds have been synthesized for use in reactions, but not

separately characterized.160,161 It was expected that the trimethylsilyl-substituted

allylbarium and allylstrontium species could be synthesized using two equivalents of

K[1,3-(SiMe3)2C3H3] and one equivalent of strontium iodide or barium iodide,

respectively (eq 41).

2 K[1,3-(SiMe3)2C3H3] + MI2 (M = Sr, Ba) → [1,3-(SiMe3)2C3H3]2M(thf)x + 2 KI↓

(41)
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Work-up of the reactions resulted in air-sensitive powders in good yields. Like the

calcium confomer, these complexes are soluble in both ethers and hydrocarbon

solvents. Proton NMR data of the allylbarium species show the characteristic

singlet, doublet, triplet pattern of syn, syn trimethylsilyl arrangements on the allyl

ligand. Curiously, integration of the NMR peaks results in the calculation of only

THF peak per two allyl ligands. Based on this data, it was originally assumed that

the structure of this allylbarium species is polymeric in form with one terminal and

two shared allyl ligands on the barium center and one coordinated THF molecule

per Ba2+ (Figure 41). The bridging and terminal allyl ligands must undergo fast

exchange on the NMR timescale. Although the initially proposed allylbarium

structure in Figure 41 was plausible, elemental analysis of the product indicated that

this proposed structure did not reflect the true nature of the complex in the solid

state.

Figure 41. Initially proposed structure of the allylbarium species based on NMR
data.
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A crystal structure determination performed on this allylbarium species

showed the solid state structure to be one of a heterometallic barium/potassium allyl

polymeric chain (Figure 42). The repeating unit of this polymer contains one K+

and two Ba2+ cations. Each barium center is coordinated by one terminal and two

bridging allyl ligands; the potassium metal center is coordinated by two bridging

allyl ligands and one THF molecule. Elemental analysis data corroborate the crystal

structure determination.
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Figure 42. ORTEP of {[1,3-(SiMe3)2C3H3]5Ba2K(thf)}∞.
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The heterometallic nature of this complex is not surprising, considering that

the radii of six-coordinate K+ (1.38 Å) and six-coordinate Ba2+ (1.35 Å) are

similar.130 Interestingly, the space group of {[1,3-(SiMe3)2C3H3]5Ba2K(thf)}∞ is

chiral (P212121).181 The bridging allyl ligands in this helical Ba2/K polymer rotate

clockwise, making the polymer chiral (i.e., {P-[1,3-(SiMe3)2C3H3]5Ba2K(THF)}∞)

(Figure 43). Presumably, crystals of the other isomer, {N-[1,3-

(SiMe3)2C3H3]5Ba2K(THF)}∞, were formed, but not structurally characterized. The

chirality imparted to this polymer by the orientation of the bridging allyl ligands is

most likely a result of steric influence; it is possible that an ordered rotation of the

bridging allyl ligands (clockwise or counterclockwise) results in reduced the steric

hindrance among the polymeric chains. The crystal structure of

{[1,3-(SiMe3)2C3H3]5Ba2K(thf)}∞ represents the first known heterometallic Ba/K

organometallic complex to be crystallographically characterized and the first chiral

polymeric structure of barium.
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Figure 43. Solid-state structure of {P-[1,3-(SiMe3)2C3H3]5Ba2K(THF)}∞, showing
the clockwise rotation of bridging allyl ligands down the unit cell. Trimethylsilyl
groups, terminal allyl ligands, and THF molecules are omitted for clarity. Inset
shows close-up of allyl rotation.
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Obviously, K[1,3-(SiMe3)2C3H3] and BaI2 are not reacting in a 2:1 ratio in

THF to form {[1,3-(SiMe3)2C3H3]5Ba2K(thf)}∞. The true ratio of the allylpotassium

and BaI2 for the balanced equation is 5:2, respectively (eq 42).

5 K[1,3-(SiMe3)2C3H3]  +  2 BaI2  →  {[1,3-(SiMe3)2C3H3]5Ba2K(thf)}∞  +  4 KI

(42)

Because of the discrepancy between the initially proposed structure and the

experimentally determined structure, the NMR data for {[1,3-

(SiMe3)2C3H3]5Ba2K(thf)}∞ was re-evaluated. Since there is only one set of

resonances corresponding to allyl protons, all allyl ligands must be equivalent at

room temperature, indicating fast exchange of any terminal and/or bridging allyls.

In THF-d8, the proton resonances on the allyl backbone for this sample (δ 2.59 (d);

6.53 (t)) are slightly upfield relative to those of K[1,3-(SiMe3)2C3H3] (δ 2.75 (d); 6.60

(t)).182 This difference supports the hypothesis that allyl interacts with both

potassium and barium metal centers in solution. Methyl methacrylate

polymerization data also confirm that there is not free K[1,3-(SiMe3)2C3H3] in

solution and some sort of interaction with Ba2+ must occur, as the turn-over-

frequency is lower than that of the allylpotassium complex (see below).

The Ba–C(terminal allyl) bond lengths (2.876(4)–2.969(4) Å) are slightly shorter

than both the Ba–C(bridging allyl) values (2.998(3)–3.141(4) Å) and those of

K–C(bridging allyl) (2.980(4)–3.157(4) Å). However, the small range in M–C bond

lengths show the allyl C–C bonds are delocalized. The allyl carbons form angles

within the range of 128.7(3)˚–131.0(4)˚, which are similar to those seen in other
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organometallic allyl complexes.80,151,172 The K–O(THF) bond length (2.681(4) Å) is

slightly longer than that seen for the five-coordinate K+ in {K[1,3-

(SiMe3)2C3H3](THF)3/2}∞ (2.657 Å).

The K–C bond range is typical for π-bound organometallic ligands. For

example, bond distances of 2.98–3.10 Å and 2.93–3.10 Å are observed in {K[1,3-

(SiMe3)2C3H3](DME)}∞151 and {K[1,3-(SiMe3)2C3H3](THF)3/2}∞,172 respectively.

The K–C bond range found in potassium cyclopentadienides are similar (cf.

2.93–3.10 Å in [K(C5(SiMe3)3H2)]∞183 and 2.99–3.10 Å in [K(C5(SiMe3)H4)]∞).184

The Ba–C bonding distances in {[1,3-(SiMe3)2C3H3]5Ba2K(thf)}∞ (terminal = 2.918

Å (av); bridging = 3.046 Å (av)) is similar to those found in other π-bound

organometallic complexes of barium. For example, average Ba–C distances of

2.94(1) Å and 2.99(2)�Å are found for (C5(C3H7)4H)2Ba36 and (C5Me5)2Ba.185 Even

in the more sterically crowded (1,2,4-(SiMe3)3C5H2)2Ba, the average Ba–C distance

is 3.01(2)�Å. 106

There is a wide range of trimethylsilyl torsion angles in this polymeric

complex. The Ba–K bridging allyl ligands exhibit the largest torsion range between

the two trimethylsilyl moieties at 1.73˚–9.61˚. The trimethylsilyl torsion angle range

on the Ba–Ba bridging allyls are smaller at 1.71˚–5.82˚, and the terminal allyl TMS

torsion ranges on Ba1 and Ba2 are similar at 1.36˚–5.69˚ and 3.01˚–6.38˚,

respectively. These TMS torsion values are larger than those of {[1,3-

(SiMe3)2C3H3]Cs(thf)}∞, but still within expected parameters.25,80,169

The closeness of K+ and Ba2+ in size is likely responsible for the formation

of the heterometallic {[1,3-(SiMe3)2C3H3]5Ba2K(thf)}∞ in preference to a



147

homometallic allylbarium species. The use of an allyllithium starting material may

lead to a homometallic allylbarium species because of the large size difference in

Ba2+ (1.35�Å) and Li+ (0.76 Å). In a test of this hypothesis, a reaction was run with

the trimethylsilyl-substituted allyllithium and BaI2 in 2:1 ratio (eq 43).

2 Li[1,3-(SiMe3)2C3H3]  +  BaI2  →   (allyl)barium product  +  2 LiI (43)

The NMR data for the product of this reaction was similar to that of {[1,3-

(SiMe3)2C3H3]5Ba2K(thf)}∞. Proton NMR data of this allylbarium species (δ 0.37

(s); 3.14 (d); 7.00 (t)) has the characteristic singlet, doublet, triplet pattern of syn, syn

trimethylsilyl arrangements on the allyl ligand, and the one set of resonances

indicates equivalent allyl ligands due to fast exchange. The proton resonances

however are shifted downfield with respect to those of {[1,3-

(SiMe3)2C3H3]5Ba2K(thf)}∞ (δ –0.026 (s); 2.59 (d); 6.53�(t)). This downfield shift

could be a result of less electron density in the allyl environment in this species

relative to the Ba2/K polymer.

It cannot be determined from the NMR data whether this product is homo-

or heterometallic in nature, but like the Ba2/K polymer, there is only one THF

molecule per two allyl molecules. It is likely that the structure of this (allyl)barium

species is isostructural with {[1,3-(SiMe3)2C3H3]5Ba2K(thf)}∞, with an expected 5:2

reaction ratio (eq 44).

5 Li[1,3-(SiMe3)2C3H3]  +  2 BaI2  →   {[1,3-(SiMe3)2C3H3]5Ba2Li(thf)}∞  +  4 LiI

(44)
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The reaction of two equivalents of K[1,3-(SiMe3)2C3H3] with SrI2 is more

straightforward. Like the previously mentioned (allyl)calcium and (allyl)barium

species, the proton NMR spectrum of the (allyl)strontium species exhibits the

singlet, doublet, triplet pattern that is associated with a syn, syn trimethylsilyl

configuration on the allyl ligands. Integration of the proton peak resonances shows

that two THF molecules are present on the Sr2+ metal center, which is corroborated

by elemental analysis data.

X-ray analysis data collected on crystals of this sample show that

[1,3-(SiMe3)2C3H3]2Sr(thf)2 is isostructural with [1,3-(SiMe3)2C3H3]2Ca(thf)2

(Figure�44). Like its calcium congener, this allylstrontium complex crystallizes in a

tetragonal space group (P42/n), and only half of this molecule is unique. The

Sr–C(allyl) bond distance range is 2.797(3)–2.805(3) Å, which is similar to other six-

coordinate Sr–C distances for organometallic Sr2+ complexes. For example, the

Sr–C(Cp) bond distance range in (1,2,4-(SiMe3)3C5H2)2Sr is 2.773(4)–2.850(4) Å.106

The S r – C(Cp) bond lengths in seven-coordinate complexes such as

(C5(C3H7)4H)2Sr(thf)186 (2.785(3)–2.889(3) Å) and (1,2,4-(Me3C)3C5H2)2Sr(thf)187

(2.841(3)–2.902(3) Å) are slightly longer than the Sr–C(allyl) values, but that is

expected since the cyclopentadienyl ligands are more sterically crowded than the

allyl ligand and the radii of six- and seven-coordinate Sr2+ differs, both of which

results in longer Sr–C distances.



149

Figure 44. ORTEP of [1,3-(SiMe3)2C3H3]2Sr(thf)2, a monomeric species.



150

The average Sr–O(THF) distance of 2.514(10) is typical for THF-coordinated

organostrontium complexes.140,162,164,187 The angle between the allyl planes for

[1,3-(SiMe3)2C3H3]2Sr(thf)2 (115 .1 ˚ )  i s  equiva lent  to  that  o f

[1,3-(SiMe3)2C3H3]2Ca(thf)2 (115.5˚).80 Even though the average bond length in the

allylstrontium species (2.801(5) Å) is longer than that of the allylcalcium analog

(cf.�av. Ca–C(allyl) = 2.654(5) Å), the allyl plane angle is most likely determined by

the steric bulk of the trimethylsilyl substituents.

The C–C–C angle within the allyl carbon ligand (129.4(3)˚) is within the

range seen in other organometallic allyl complexes,80,151,172 and the narrow

C–C(allyl) bond range of 1.398(5)–1.406(5) Å is a function of the delocalization of

the bonds. The terminal hydrogens on the allyl carbon backbone are displaced

from the allyl plane by 10.2˚ for C1–C2–C3–H3 and 2.4˚ for C3–C2–C1–H1. The

difference in these values is not readily understood, as the torsion values for

[1,3-(SiMe3)2C3H3]2Ca(thf)2 are nearly equal (cf. 16.9˚ and 16.2˚). It is thought that

this type of bending promotes rehybridization of the allyl carbon atoms to improve

metal–ligand bonding.80

In an attempt to synthesize heteroleptic (allyl)alkaline-earth complexes,

iodine was added to the homoleptic [1,3-(SiMe3)2C3H3]2M(thf)2 (M = Ca, Sr) in a

1:1 ratio and to the polymeric {[1,3-(SiMe3)2C3H3]5Ba2K(thf)}∞ in a 2:1 ratio.

Instead of isolating (allyl)alkaline-earth iodides, work-up of the reactions yielded the

coupled allyl dimer [1,3-(SiMe3)2C3H3]2, as characterized by proton NMR

spectroscopy. The formation of [1,3-(SiMe3)2C3H3]2 upon addition of iodine has

also been noted for [1,3-(SiMe3)2C3H3]2M (M�= Fe, Co) (see Chapter 2).
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Initial polymerization studies

A common monomer used in determining the activity of potential

polymerization catalysts is methyl methacrylate. It has been shown that

heterometallic trimethylsilyl-substituted allyl complexes of lanthanide/alkali metals

can be used to polymerize methyl methacrylate.28,87,149,150 Furthermore,

K[1,3-(SiMe3)2C3H3] polymerizes methyl methacrylate more effectively when used

as the sole catalyst rather than as part of a mixed metal species.151 In an effort to

determine if other s-block allyl complexes exhibit this catalytic activity, methyl

methacrylate polymerization reactions were run with the as-synthesized allylcesium,

allyl strontium, and Ba2/K allyl polymer species. Initial studies have shown all three

species to be active as catalysts for methyl methacrylate polymerization, with a

conversion percent range of 72–94% and a TOF range of 18,600–21,100 hr–1. The

polymer produced by the allylcesium catalyst was atactic, whereas the polymer

produced by the allylstrontium catalyst was slightly isotactic (71%). The Ba2/K

catalyst produced polymer that was less isotactic than in the allylstrontium case, but

more so than in the case of the allylcesium (i.e., 61%). These complexes appear to

have similar conversions to that of K[1,3-(SiMe3)2C3H3] (83%) for the

polymerization of methyl methacrylate; however, the allylpotassium species has a

much higher TOF (104,000 hr–1). More studies need to be run before thorough

comparisons to known methyl methacrylate polymerization catalysts can be made.
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Conclusion

The bulky trimethylsilylated allyl [1,3-(SiMe3)2C3H3]– can be used to

synthesize s-block allyl complexes of Cs+, Rb+, Sr2+, and Ba2+. Whereas

[1,3-(SiMe3)2C3H3]2Sr(thf)2 is a monomeric species isostructural with its Ca2+

analog, {[1,3-(SiMe3)2C3H3]Cs(thf)}∞ is a linear chain polymer. The metathesis

reaction of the allylpotassium and BaI2 results in the formation of the chiral

heterometallic polymer {[1,3-(SiMe3)2C3H3]5Ba2K(thf)}∞. These allyl complexes

have been shown to be active polymerization catalysts of methyl methacrylate.
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CHAPTER IV

ISOMERIZATION AND THERMAL DECOUPLING OF GROUP 2
AZULENIDES

Introduction

Inter-annular bridges between cyclopentadienyl ligands of metallocenes

result in the formation of ansa-metallocenes. The incorporation of a bridging moiety

can change the geometry of the complex, thus altering its electronic behavior188 and

affecting its reactivity.189 These geometry-restricted species have found much use as

stereospecific catalysts.190,191 For example, ansa-metallocenes of the group IV

transition metals are known polymerization catalysts for isotactic

polypropylene.192,193 Stereoselectivity and regioselectivity of the catalyst can be

influenced by the sterics of the ligands.194-196

The reductive coupling of fulvenes with metals is a facile procedure for

synthesizing ansa-metallocenes.197-199 s-Block examples have been sought as ligand

transfer agents to produce chiral transition metal catalysts197,200 and have usually been

made in situ. The first ansa-calcocene was reported by Edelmann in 1993; it was made by

the addition of 6,6-dimethylfulvene to activated calcium granules (eq 45).201

                (45)2 Ca˚ Ca(thf)n2
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One problem with this synthesis is the formation of the unbridged isopropyl-

substituted metallocene. In addition, there appears to be little selectivity for the rac

over the meso ansa-calcocene isomer when bulky substituents are present on the

cyclopentadienyl ring.202 In contrast, polycyclic fulvenes in which the double bond

of the fulvene is part of an annulated ring system consistently afford rac ansa-

metallocenes in high selectivity.202 For example, ansa-acenaphthylenide complexes

have been synthesized with several metal centers including Sm, Yb, and Ca.203 204

Azulene, an isomer of naphthalene (C10H8), (Figure 45) and its derivatives

are used as anti-inflammatory, anti-allergy, and anti-irritation agents.205,206 These

non-alternant hydrocarbons are natural products and can be found in chamomile

oil. Although azulene is expensive as a reagent, the azulene derivative 1,4-dimethyl-

7-isopropyl-azulene (guaiazulene) is a natural product of the guaiac tree and is a

much cheaper reagent for study than azulene. The structure of azulene accounts for

many of its interesting properties such as its dipole moment, its intense blue color,

and its reactivity at the five-membered ring.207 Much research has been conducted

on the electronic properties of azulenes.205,208-210

Figure 45. Structures of azulene (left) and naphthalene (right).

Azulenes, because of their polycyclic aromatic structures, can be viewed as

substituted fulvenes (Figure�46). Therefore, ansa-bridged biazulenide complexes can

be synthesized using azulenes as ligands, as reductive coupling occurs between two
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azulenyl ligands in the presence of activated metals.211 212 Several transition metal

biaiazulenide and biguaiazulenide complexes have been synthesized and studied.

Figure 46. Structures of fulvene (left), azulene (center), and guaiazulene (right),
highlighting the fulvene backbone in each.

For example, bis-(azulenyl)iron(II)213 was first reported by Fisher in 1964. It

was later structurally determined that the two azulenyl ligands were coupled in the

complex.211,212 Other metal centers have been used to form similar complexes

including Ti,214 Zr,215 Hf,194 and Yb.216 Curiously, no Group 2 biazulenides have

been studied in detail. At the start of this research, only (biguaiazulenyl)magnesium

was reported in the literature, and it was synthesized in situ for use as a

transmetallation agent; it was not fully characterized 214

The synthesis and study of s-block biazulenide complexes may prove

valuable in ways other than for use as ligand transfer agents. In addition to their

potential catalytic uses, if the reductive coupling of the ligands could be reversed,

these complexes could provide new sources of zero-valent metals.134 In this

research, a series of s -block biazulenyl complexes were synthesized and

characterized. (Biguaiazulenyl)calcium(thf)2 was used as a model for this group of
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compounds in thermal decoupling reactions and will be the only complex described

here. DFT calculations were run to help understand the energetics of the decoupling

process. As this research was being conducted, the crystal structure of

(biguaiazulenyl)calcium(thf)2 was reported,202,216 which allowed direct comparisons

of calculated and experimental geometries.

Experimental Section

General Considerations. All manipulations were performed with the

rigorous exclusion of air and moisture using high vacuum, Schlenk, or glovebox

techniques. Proton and carbon (13C) NMR spectra were obtained on a Bruker

DPX–300 spectrometer at 300 and 75.5 MHz, respectively, and were referenced to

the residual proton and 13C resonances of C6D6 (δ 7.15 and 128.0). HMQC NMR

spectra were recorded on a Bruker DPX–400 spectrometer and were similarly

referenced. All NMR data were processed using Bruker XWINNMR 3.5 software

on an Octane workstation (Silicon Graphics, Mountain View, CA).

Melting points were determined on a Laboratory Devices Mel–Temp

apparatus in sealed capillaries. Metal and combustion analyses were performed by

Desert Analytics, Tuscon, AZ. Themogravimetric analyses were performed on a TA

Instruments Hi-Res TGA 2950 Thermogravimetric Analyzer. The analyzer was

enclosed in a glove-bag that was purged with nitrogen (2h). The scans were

collected under a flow of N2 while heating from 25 ˚C to 600 ˚C at a rate of 10

˚C/min, unless otherwise noted.

Materials. Azulene and guaiazulene were purchased from Acros, potassium

metal was purchased from Strem, and MgBr2, CaI2, and SrI2 were purchased from
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Aldrich; all were used as received. THF, toluene, and hexanes were distilled under

nitrogen from potassium benzophenone ketyl.39 Deuterated solvents were vacuum

distilled from Na/K (22/78) alloy prior to use.

Synthesis of reduced Group 2 metals. Zero-valent Group 2 (Reike) metals

were obtained by literature procedure. 217,218 Alkaline earth di-iodides were reduced

in the presence of potassium metal in THF at reflux temperatures or for longer

periods of time at 25 ˚C. Excess metal halide was used to ensure complete oxidation

of potassium metal. The reduced alkaline-earth metal suspensions were black, and

the activated metals were used in situ in subsequent reactions.

Reaction of potassium and guaiazulene. Guaiazulene (1.503 g, 7.579

mmol) was dissolved in THF (40 mL) in a 125 Erlenmeyer flask. Potassium metal

(0.996 g, 25.5 mmol) was added to the guaiazulene solution, and the reaction was

stirred overnight. The reaction was filtered to remove any unreacted potassium

metal. THF was removed from the filtrate, leaving a brown solid (2.04 g).

Reaction of potassium and azulene. Azulene (0.138 g, 1.08 mmol) was

dissolved in THF (40 mL) in a 125 Erlenmeyer flask. Potassium metal (0.090 g, 2.3

mmol) was added to the azulene solution, and the reaction was stirred overnight.

The reaction was filtered to remove any unreacted potassium metal. THF was

removed from the filtrate, leaving a brown solid (0.18 g; 35% yield). Although NMR

data confirm one THF molecule per potassium metal center, elemental analysis data

show one-half THF molecule per potassium. Anal. Calcd for C24H24K2O: C, 70.88;

H, 5.95; K,�19.22. Found: C, 72.03; H, 5.92; K 19.22.

Reaction of activated magnesium and guaiazulene: synthesis of

(diguaiazulenide)bis(tetrahydrofuran)magnesium. Guaiazulene (5.00g, 25.2
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mmol) was added to a suspension of activated magnesium (0.457 g, 18.8 mmol) in

THF (40 mL) in a 125 Erlenmeyer flask. The reaction was stirred overnight and

then filtered. THF was removed under vacuum from the filtrate, leaving a

precipitate and unreacted guaiazulene. Small portions of hexanes were used to rinse

the guaiazulene from the gray-green precipitate (2.495 g; 35% yield). Partial loss of

THF was noted in elemental analysis data. Anal. Calcd for C34H44MgO: Mg, 4.93.

Found: Mg 5.38.

Reaction of activated calcium and guaiazulene: synthesis of

(diguaiazulenide)bis(tetrahydrofuran)calcium. Guaiazulene (1.599 g, 8.022

mmol) was added to a suspension of activated calcium (0.1608 g, 4.011 mmol) in

THF (40 mL) in a 125 Erlenmeyer flask. The reaction was stirred overnight and

then filtered. THF was removed under vacuum from the filtrate, leaving a

precipitate and unreacted guaiazulene. Small portions of hexanes were used to rinse

the guaiazulene from the off-white precipitate (0.688�g; 40% yield). Anal. Calcd for

C38H52CaO2: C, 78.57; H, 9.02; Ca, 6.90. Found: C, 78.22; H, 9.36; Ca 6.85.

Proton and carbon signals in the NMR data are labeled according to Figure 47. 1H

NMR (300 MHz, THF-d8, 298 K): δ 0.89 (d, J = 6.7 Hz, 6H, CH(CH3)2); 1.03, (d, J

= 6.7 Hz, 6H, CH(CH3)2); 1.75 (m, 8H, THF); 2.00 (s, 6H, H(1/16)); 2.17 (s, 6H,

H(12/27)); 2.55 (hept, J = 6.7 Hz, 2H, H(13/28); 3.62 (m, 8H, THF); 4.16 (s, 2H,

H(7/22); 5.57 (d, J = 6.6 Hz, 2H, H(9/24)); 5.61 (d, J = 3.2 Hz, 2H, H(3/18)); 5.67

(d, J = 3.2 Hz, 2H, H(4/19)); 5.73 (d, J = 6.6 Hz, 2H, H(10/25)). 13C NMR (75 MHz,

C6D6, 298 K): δ 12.61 (C(1/16)); 24.34 (C(12/27); 21.71, 24.54 (C(14/15/29/30));

25.30 (THF); 38.00 (C(13/28)); 44.89 (C(7/22)); 67.70 (THF); 102.91 (C(4/19));
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110.30 (C(3/18)); 111.75 (C(8/23)); 117.40 (C(9/24)); 117.91 (C(10/25)); 123.76

(C(11/26)); 134.85 (C(6/21)); 149.81 (C(5/20)).

Figure 47 . Labelled solid-state structure of (diguaiazulenide)bis(tetra-

hydrofuran)calcium.

Reaction of activated calcium and azulene: synthesis of (diazulen-

ide)bis(tetrahydrofuran)calcium. Azulene (0.472g, 3.68 mmol) was added to a

suspension of activated calcium (0.0724 g, 1.81 mmol) in THF (40 mL) in a 125

Erlenmeyer flask. The reaction was stirred overnight and then filtered. THF was

removed under vacuum from the filtrate, leaving a precipitate and unreacted

azulene. Small portions of hexanes were used to rinse the azulene from the off-white

precipitate (0.241 g; 30% yield). Partial loss of THF was noted in elemental analysis

data. Anal. Calcd for C24H24CaO: C, 78.22; H, 6.56; Ca, 10.87. Found: C, 77.39;

H, 6.51; Ca 10.37. 1H NMR (300 MHz, THF-d8, 298 K): δ 1.77 (m, 8H, THF); 3.60

(m, 8H, THF); 4.05 (s, 2H); 5.24 (dd, 2H); 5.67 (dd, 2H); 5.73 (dd, 2H); 5.81 (mult,

6H); 6.74 (d, 2H).  13C NMR (75 MHz, C6D6, 298 K): δ 25.45 (THF); 46.35; 67.69

(THF); 105.19; 107.52; 110.00; 119.27; 122.33; 125.59; 126.78; 130.09; 132.58.
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Computational Details. Geometry optimization calculations were

performed using the GAUSSIAN 03W suite of programs.42 The B3LYP functional,

which incorporates Becke’s three–parameter exchange functional43 and the

correlation functional of Lee, Yang, and Parr,44,45 was used.46 The DFT-optimized

triple zeta polarized basis set (TZV) (Ahlrichs) with 5d diffuse functions was used for

the Ca2+ metal center219 and the standard Pople basis set 6-31G(d,p) was used for

the other elements for geometry optimizations and energy calculations.48 Stationary

points were characterized by the calculation of vibrational frequencies, and unless

otherwise noted, all geometries were found to be minima (Nimag�=�0).

Results and Disscussion

The use of finely divided metal powders in organic synthesis has received

much study over the years since their original discovery by Rieke.220-223 Activated

alkaline-earth metals used for this research were prepared following the method of

reduction of metal halides with alkali metal.217,224 Excess calcium iodide was used to

ensure that no potassium was present in the resulting calcium metal suspension.

Guaiazulene was added to the suspension, and the reaction was allowed to stir

overnight prior to workup. The product, collected as a precipitate, was washed with

hexanes to remove unreacted guaiazulene. The other reactions described in the

experimental section were similarly conducted.

The reaction of activated calcium and guaiazulene yields two isomer

products: (8,8´-biguaizulenide)calcium(thf)2 and (8,6´-biguaizulenide)calcium(thf)2,

as detected by their different solubilities in THF and DME (Figure 48). For this

research, a (8,8´-biguaizulenide)calcium(thf)2 sample was used for thermal
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decoupling studies. The (8,8´-biguaizulenide)calcium(thf)2 isomer has been

structurally authenticated by another group.202,216 As such, NMR data from this

research will not be discussed because it confirms the interpretation by Shapiro

et�al.

Figure 48. Calculated structures of rac-8,8´-isomer (left) and meso-8,6´-isomer (right)
of (biguaizulenide)calcium(thf)2.

The 8,8´-isomer has a rac-structure, where the two guaiazulenyl ligands are

bound with methyl groups pointing in opposite directions, but the 8,6´-isomer has a

meso-structure, where the two guaiazulenyl ligands are bound with methyl groups

pointing in the same direction. Of the two isomers, the 8,8´-isomer is the

thermodynamically favored one; as seen in a solution thermolysis study (Figure 49),

the 8,6´-isomer converts to the 8,8´-isomer in solution at ~95�˚C (1 day).202 For the

meso-structure to convert to a rac-structure, the C–C bridge must be broken and

reformed.
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Figure 49. Conversion of meso-8,6´-isomer (left) to rac-8,8´-isomer (right) at 95 ˚C.

DFT calculations were employed to better understand the energetics of this

reaction. The thermodynamic change associated with the conversion of meso-(8,6´-

biguaizulenide)calcium(thf)2 to rac-(8,8´-biguaiazulenide)calcium(thf)2 was

investigated using B3LYP and two different basis sets, TZV (Ahlrichs) + 5d (on Ca)

and 6-31G(d) on (C, H, O). The Alhrichs TZV basis set puts highly contracted d

functions on the calcium center to more accurately approximate the bending seen in

calcocene complexes. Equilibrium geometries were calculated for both the meso-

(8,6´-biguaizulenide)calcium(thf)2 and r a c-(8,8´-biguaiazulenide)calcium(thf)2 for

comparison of their ΔG˚ and ΔH˚ values.

As a measure of the accuracy of the DFT calculations, calculated structural

parameters of the rac-8,8´-isomer were compared with experimental ones of the

structurally authenticated rac -8,8´-isomer. In the calculated rac - (8 ,8 ´ -

biguaiazulenide)Ca(thf)2 structure, the Ca–C(ring) bond length range is 2.680–2.717

Å (Ca–centroid = 2.405 Å) and the bridging C–C bond is 1.595 Å. These values are

close to those reported for the crystal structure of the rac-8,8´-isomer (c.f. Ca–C(ring)

= 2.668(3)–2.758(3), Ca–centroid = 2.412(9) Å, and C–C(bridging) = 1.577(4)�Å). 202

Other parameters such as centroid–Ca–centroid angle, O–Ca–O angle, and the

95 ˚C
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angle between Cp planes are similar in both the calculated and experimental rac-

8,8´-isomer structures (122.24˚ (calc) / 120.2˚ (exp), 80.49˚ (calc) / 84.30(9)˚ (exp),

and 58.0˚ (calc) / 59.3˚ (exp), respectively).

The meso-8,6´-isomer is higher in energy than the rac-8,8´-isomer by 6.9

kcal/mole in ΔG˚ and 6.7 kcal/mole in ΔH˚. This fact is reflected in the differences

in their structures. The meso-8,6´-isomer, with its two guaiazulenyl ligands bound in

the same orientation, has a larger centroid–Ca–centroid angle (134.10˚), but a

smaller angle between Cp planes (44.62˚) than those of the rac-8,8´-isomer. These

parameters show that the two Cp moieties are more centered over the calcium in

the 8,6´-isomer than in the 8,8´-isomer, where the calcium center displays greater

displacement from a metallocene-like arrangement. As a result, the Ca–C(ring)

bonding range (2.642–2.849 Å) in the 8,6´-isomer is larger to compensate for the

steric strain of the complex, and both the Ca–centroid (2.440 Å (av)) and the

bridging C–C bond (1.604 Å) are longer in the 8,6´-isomer. The elongated bridging

C–C bond (c.f. C–C ≈ 1.52 Å in ethano-bridged ansa-calcocenes)189,201 accounts for

the ease with which it is broken during thermolysis.

In an effort to gauge the steric role of the methyl and isopropyl moieties in

the thermodynamic values of the thermolyic conversion, DFT calculations were run

on the unsubstituted (4,6´-biazulenide)calcium(thf)2 and  ( 4 , 4 ´ -

biazulenide)calcium(thf)2 (Figure 50). This hypothetical reaction follows the same

trend as the substituted case does in that the symmetrically-bridged species (4,4´-

isomer) is thermodynamically more stable than the asymmetrically-bridged species

(4,6´-isomer); (4,6´-biazulenide)calcium(thf)2 is higher in energy than (4,4´-

biazulenide)calcium(thf)2 by 3.1 kcal/mole in ΔG˚ and 4.1 kcal/mole in ΔH˚.
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The difference in energetics of the two isomers mimics that of the two

biguaiazulenide species. As such, the same structural trends are also present in this

system.

Figure 50. Calculated structures of 4,4´-isomer (left) and 4,6´-isomer (right) of
(biaizulenide)calcium(thf)2.

The 4,6´-isomer has a larger centroid–Ca–centroid angle (137.48˚), but a

smaller angle between Cp planes (43.15˚) than those of the 4,4´-isomer (122.54˚ and

58.67˚, respectively). Similar to the biguaiazulenide case, the Ca–C(ring) bonding

range (2.631–2.850 Å) is larger in the 4,6´-isomer than in the 4,4´-isomer

(2.646–2.743 Å), and both the Ca–centroid (2.451 Å (av)) and the bridging C–C

bond (1.602 Å) are slightly longer in the 4,6´-isomer than in the 4,4´-isomer (2.409 Å

and 1.591 Å, respectively). The methyl and isopropyl moieties do not seem to affect

the structures of this type of ansa-calcocenes, as seen in the similarities of the

structural parameters between 4,6´-biazulenide species and its 6,8´-biguaiazulenide

analog and 4,4´-biazulenide species and its 8,8´-biguaiazulenide analog.
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Cleavage of the C–C bridging bond also occurs for

(biguaizulenide)calcium(thf)2 in the solid state. As a sample was heated in a sealed

capillary to ~234 ˚C, the off-white sample took on a greenish hue and free

guaiazulene was released and collected near the top of the capillary; the

decomposition product residue was discerned to have a metallic appearance

(Figure�51). A similar behavior was also seen for (biazulenide)calcium(thf)2 when a

sample is heated to ~220 ˚C.

Figure 51. Sample of (biguaizulenide)calcium(thf)2 before heating (left), release of
guaiazulene after heating (234 ˚C) (center), and product residue (metallic
appearance) obtained after heating treatment (right).

In order to obtain guaiazulene as a decomposition product upon heating a

sample of (biguaizulenide)calcium(thf)2 in the solid state, scission of the bridging

C–C bond must occur. Conversion of the 8,6´-isomer to the 8,8´-isomer in solution

has already attributed the to this bond breakage.202 In the solid state, the disruption

of the bridging C–C bond in the complex is a result of oxidative decoupling of the

guaiazulene ligands; as a result,the calcium metal center must be reduced to account

for the loss of two electrons from the [biaguaiazulenide]2– ligand.
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DFT methods were used to model the thermal decomposition of (4,4´-

biazulenide)calcium(thf)2. The smaller biazulenide complex was used for this

computational study because the extra bulk of the guaiazulenyl ligands was more

computationally expensive and similar outcomes are expected for the two analogs

based on the earlier DFT results. Like the previous DFT study, this system was

investigated using B3LYP and two different basis sets, TZV (Ahlrichs) + 5d (on Ca)

and 6-31G(d) on (C, H, O). The thermal decomposition of the (4,4´-biazulenide)

species to calcium metal and azulene was described via a mechanism that involved

scission of the bridging bond and the formation of a slipped metallocene-like

intermediate (Figure 52).

Figure 52. Proposed decomposition of (4,4´-biazulenide)calcium(thf)2 via
metallocene-like intermediate.

DFT calculations showed that the proposed decomposition mechanism is

plausible. The metallocene-like intermediate is higher in energy than the 4,4´-isomer

by 19 kcal/mole in ΔG˚. The energetic sum of the decomposition products, two

molecules of azulene and a zero-valent calcium center, is in turn lower in value than

the intermediate by 13 kcal/mole in ΔG ˚. The metallocene-like intermediate is

+

Ca
Ca

Ca
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bound η3 to one azulenide and η4 to the other one. The Ca–C(η3-ring) bond lengths

(2.596–2.722 Å) are slightly longer than the Ca–C(η4-ring) values (2.448–2.681 Å).

These values are actually somewhat shorter than those calculated for (4,4´-

biazulenide)calcium(thf)2 and the Ca–C(η5-ring) values found in (8,8´-

biguaiazulenide)calcium(thf)2.

When comparing this intermediate species (with its shorter Ca–C bonds) to

the calculated (and experimental) C–C bridged species, it is understandable that the

C–C bridge reforms in the case of the solution thermolysis of (8,6´-

biguaiazulenide)calcium(thf)2 to (8,8´-biguaiazulenide)calcium(thf)2. Calculations

have shown increased electron density at the carbon position 4, 6, and 8 on the

back of the azulenyl ring system.205,208,209 However, the extra energy supplied by

heating a sample in the solid state to decomposition, could result in a separation of

ligands and metal center, as electron transfer occurs to the metal center.

Thermogravimetric analysis was used to determine the identity of the

decomposition products of (8,8´-biguaiazulenide)calcium(thf)2 upon heating under

nitrogen. The thermogravimetric analyzer and sealed samples were enclosed in a

glove-bag that was purged with nitrogen for ~2 hours. The atmosphere was tested

for the presence of oxygen with a 1M solution of diethylzinc in hexanes; the was no

detectable formation of zinc oxide upon opening the vial of diethylzinc in the glove-

bag.

The sample decomposed upon heating as the weight loss was measured. A

plot of sample weight (mg) vs temperature (˚C) was constructed (Figure 53) and a

derivative of that plot was calculated to determine the percentage weight loss over

time. The rate of heating is important in the decomposition product formation.
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Whereas a heating rate of 5 ˚C/min resulted in a decomposition product

corresponding to about 30% of initial weight, a heating rate of 10–20 ˚C/min

resulted in a 10% of initial weight product. The following table provides the

theoretical percent weight change data in comparison with the experimental percent

weight change data of a heated sample (20 ˚C/min) of (8,8´-

biguaiazulenide)calcium(thf)2 (Table 9).

Figure 53. Plot of weight loss (mg) vs. temperature (˚C), indicating loss of
guaiazulene and tetrahydrofuran.

Table 9. Theoretical percent weight change vs. experimental percent weight
change for (8,8´-biguaiazulenide)calcium(thf)2.

Theoretical % Wt Change Experimental % Wt Change

Guaiazulene (loss of two): –68% Guaiazulene: –67%

Tetrahydrofuran (loss of two): –25% Tetrahydrofuran: –18%

Calcium residue (Ca: 7%; CaO: 10%) Calcium residue: 10%
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The thermogravimetric data point to the formation of calcium oxide and not

metallic calcium as a decomposition product of (8,8´-biguaiazulenide)calcium(thf)2.

Since the glove-bag atmosphere was tested for the presence of oxygen before and

after the heat cycle, the logical oxygen source is tetrahydrofuran. This hypothesis is

also substantiated by the experimental loss of THF at 18%, corresponding to only

partial loss of two THF molecules per complex. Because the rate of heating affected

the formation of the decomposition product, it is still possible that metallic calcium

was formed in the capillary tube during initial heating experiments; it is likely that

tetrahydrofuran may be removed intact under certain conditions. Other calcium

products (including metallic calcium) may be obtained from varying the Lewis bases

on the calcium center or removing them entirely from the biguaiazulenide complex.

Conclusion

The differences in both the orientation of the guaiazulenyl ligands and

position of the C–C bridge in the structures of m e s o - ( 8 , 6 ´ -

biguaizulenide)calcium(thf)2 and rac-(8,8´-biguaiazulenide)calcium(thf)2 affect the

relative stabilities of the complexes. In contrast to the rac-8,8´-isomer with

guaiazulenyl ligands facing in opposite directions, the meso-8,6´-isomer, with its two

guaiazulenyl ligands oriented in the same direction, experiences greater strain on

the bridging C–C bond, which explains the conversion of the meso-8,6´-isomer and

r a c -8,8´-isomer in solution at 95 ˚C. In the solid state, (8,8´-

biguaiazulenide)bis(tetrahydrofuran)calcium thermally decouples to yield free

guaiazulene and calcium oxide. Substitution or removal of the adducted base may
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alter the identity of the decomposition product residue. The thermal isomerization

in solution and the decomposition in the solid state can be interpreted via the

intermediacy of a metallocene-like species with slipped rings, as studied

computationally with DFT methods.
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CHAPTER V

THE CASE OF BULKY BERYLLOCENES: ATTEMPTED SYNTHESIS OF
[1,2,4-(SiMe3)3C5H2]2Be

Introduction

There has been much interest in the development of cyclopentadienyl

derivatives of alkaline-earth metals over the last two decades.104,105,137,225 A

characteristic feature of nearly all base-free metallocenes of the heavy alkaline-earth

(Ca, Sr, Ba) and lanthanide (Sm, Eu, Yb) elements is a distinctly “bent” geometry,

with ring centroid–metal–ring centroid angles as small as 131°.104,105,185,226-230 For

example, bis[1,2,4-tris(trimethylsilyl)cyclopentadienyl] complexes [1,2,4-

(SiMe3)3C5H2]2Ae ((Cp3Si)2Ae; Ae = Ca, Sr, Ba) have been isolated and

structurally characterized as bent metallocenes.106 The non-linear structures of

decamethylmetallocenes are found in both the solid state and the gas phase.231,232

The origin of nonlinear structures in Group 2 metallocenes is not easily explained

on steric or electrostatic grounds alone. One analysis of the bending phenomenon

found that a strongly linear correlation existed between metal–ring distances and

the ring–metal–ring bending angles in decamethylmetallocenes of the alkaline-

earth, lanthanide, and p-block elements;230 larger metals (with longer M–C

distances) were associated with greater bending angles.

In contrast, almost all crystallographically characterized magnesocenes,

i n c l u d i n g  C p2Mg,233 ( C5Me5)2Mg,234 [ ( t - B u ) C5H4]2Mg,235

[(CHCH3Ph)C5H4]2Mg,236 and (Me4C5H)2Mg237 have parallel rings. As Mg2+ is

considerably smaller than the heavier alkaline-earth metals (i.e., rMg2+ = 0.72 Å;
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rCa2+ = 1.00 Å){Shannon, 1976 #88}, this observation fits the above-mentioned

metal–ring distances vs. ring–metal–ring bending angles trend. The slight tilting of

the rings observed in (Cp3Si)2Mg (7.8°) has been ascribed to the large amount of

steric encumbrance around the Mg2+ center generated by the two Cp3Si rings.238

Although numerous half-sandwich complexes are known for beryllium,239

very few beryllocene complexes have been reported.240-242 The hapticity of the

cyclopentadienyl rings in (C5H5)2Be has been disputed since it was first synthesized

by Fischer and Hoffmann in 1959.243 However, X-ray studies244-246and theoretical

calculations247,248 have lent support to an η 5/η1 slip-sandwich structure for

beryllocene (Figure 54). The cyclopentadienyl rings undergo rearrangements via

1,5-sigmatropic shifts, which change the (η5-C5H5)Be+ point of attachment to the

η1-ring, and molecular inversions, which interchange the η5- and η1-rings.249

Figure 54. Diagram of (C5H5)2Be, showing η5/η1 bonding of Cp rings.

Recently, several substituted beryllocenes have been structurally

characterized.249 As expected for this type of organometallic species, these

complexes are air- and moisture-sensitive. The octamethylated (C5Me4H)2Be is

prepared from a facile reaction of BeCl2 and K(C5Me4H) in ether (eq 46).

Be
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2 K(C5Me4H)   +  BeCl2  
Et2O  (C5Me4H)2Be +  2 KCl↓ (46)

This complex, like the parent beryllocene, exhibits η5/η1 cyclopentadienyl

bonding, and the Cp rings are fluxional in solution. The bulkier permethylated

beryllocene was synthesized under more forcing conditions (refluxing in

toluene/ether for 3 days). The solid-state structure of (C5Me5)2Be shows both

cyclopentadienyl ligands bound in an η5 manner and in parallel fashion, like

(C5Me5)2Mg.234 However, (C5Me5)2Be reacts with CNC6H3Me2 to form a half-

sandwich complex.250 This reaction is thought to occur via insertion into a Be–C(σ)

bond, thus suggesting that an η5/η1 cyclopentadienyl arrangement exists for

(C5Me5)2Be in solution.

The steric pressure on a beryllocene with the bulkier Cp3Si rings might be

even greater, and could conceivably prevent the formation of the complex through

the operation of “steric oversaturation.”251 This principle was also thought to be the

reason that a permethylated beryllocene could not be synthesized due to ligand

bulk. The synthesis of (C5Me5)2Be242 in 2000 demonstrated that steric

oversaturation may not always apply.  In this chapter, an attempt to synthesize a

substituted beryllocene using the bulky [1,2,4-tris(trimethylsilyl)cyclopentadienyl]–

ligand is discussed along with DFT calculations that support the possibility of

forming such a bulky complex.
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Experimental Section

General Remarks: All manipulations were performed with the rigorous

exclusion of air and moisture using high vacuum, Schlenk, or drybox techniques.

Anhydrous beryllium chloride (Strem Chemicals) was used as received. K[1,2,4-

(SiMe3)3C5H2] was prepared as previously described.162 Solvents for reactions were

distilled under nitrogen from sodium or potassium benzophenone ketyl. NMR

solvents were vacuum distilled from Na/K (22/78) alloy and stored over 4A

molecular sieves. Proton and carbon (13C) NMR spectra were obtained on a Bruker

NR-300 spectrometer at 300 and 75.5 MHz, respectively, and were referenced to

the residual resonances of C6D6 (δ 7.15 and 128.0) or [D8]THF (δ 3.58 and 67.4).

Attempted Syntheses of [1,2,4-(SiMe3)3C5H2]2Be: BeCl2 (0.031 g, 0.39

mmol) and K[1,2,4-C5H2(SiMe3)3] (0.252 g, 0.79 mmol) were added to a flask under

nitrogen at room temperature. Diethyl ether (20 mL) was added to the flask, and the

reaction mixture was stirred for 3 days at room temperature, evaporated to dryness

under vacuum, and the residue extracted with hexanes. 1H NMR analysis of the

extract indicated that only starting materials were present. The reaction was

repeated in a 1:1 diethylether/toluene mixture, and refluxed under nitrogen for 3

days. A black residue was left at the completion of the reaction, and no metallocene

was isolated on workup of the reaction mixture.

Computational Details. Calculations on (Cp3Si)2Be were performed using

the Gaussian 03W suite of programs.42 A full geometry optimization using even the

relatively modest 6-31G(d,p) basis set would have involved a computationally

expensive set of 839 basis functions. An ONIOM calculation252 was performed

instead, using the 6-31G(d,p) basis set on Be, the ten carbon atoms of the
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cyclopentadienyl rings, and the directly attached atoms (hydrogen or silicon). The

semi-empirical PM3 method was used for the 18 methyl groups. The B3PW91

functional, which incorporates Becke’s three-parameter exchange functional46 with

the 1991 gradient-corrected correlation functional of Perdew and Wang,253 was

used; this hybrid functional has previously been shown to provide realistic

geometries for organometallic species.254,255 Frequency calculations were used to

establish that all optimized geometries were local minima (Nimag = 0).

Results and Discussion

The bis[(tris(trimethylsilyl)cyclopentadienyl]alkaline-earth metallocenes,

(Cp3Si)2Ae (Ae = Ca, Sr, Ba), can be isolated from the 2:1 reaction of K[Cp3Si] and

AeI2 in ether (eq�47). 106

2 K[Cp3Si]  +  AeI2  
Et2O   (Cp3Si)2Ae  +  2 KI↓ (47)

(Ae = Ca, Sr, Ba)

The complexes are thermally stable and begin to sublime at temperatures

ranging from 125 to 140 °C at between 10–5 to 10–7 torr. These complexes must be

formed in ether, since in the presence of even small amounts of THF, the

mono(ring) complexes (Cp3Si)AeI(thf)n are isolated as the exclusive products.162

Once formed, however, the complexes can be recrystallized as base-free

metallocenes from THF solution. The hexakis(trimethylsilyl)metallocenes visibly

decompose upon exposure to air after only a few seconds, turning from white to
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dark brown. In contrast, enhanced air-stability has been reported for both the octa-

and decaisopropylated alkaline-earth metallocenes.36,256 The magnesium compound

(Cp3Si)2Mg was reported some time ago by Jutzi and coworkers.238 Of the

remaining Group 2 elements, only the radium and beryllium analogues remain

unknown.

We attempted to synthesize (Cp3Si)2Be with a method similar to that used to

prepare (Me4C5H)2Be and (C5Me5)2Be;242 viz., the reaction of BeCl2 and K[Cp3Si]

in diethyl ether (3 days at room temperature) or in a 1:1 diethyl ether/toluene

mixture at reflux for 3 days. The reaction at room temperature yielded only starting

materials; refluxing the reaction produced a black residue from which no

metallocene was isolated. Although we were not successful in isolating a beryllocene

containing two Cp3Si rings, combination DFT/semiempirical (ONIOM) calculations

were performed on several possible conformations of (Cp3Si)2Be, including η1/η1,

η1/η5, and η5/η5, to try to establish the steric feasibility of such a structure.

The η1/η1 geometry shown in Figure 55 (a) was used as a starting geometry

in optimization. The unsubstituted position on the rings was chosen as the site of

ligation, both to minimize steric interactions between the rings and from the fact

that in (η5-C5Me4H)(η1-C5Me4H)Be, the beryllium is attached to the un-substituted

carbon atom in the η1-bonded ring. Nevertheless, during optimization one ring

rotated relative to the other, and the structure collapsed to an η1/η5 geometry

(Figure 55 (b)). The beryllium is now attached to a carbon bearing a trimethylsilyl

group; the Be–C(η1) distance is 1.781 Å (cf. 1.827 Å in Cp2Be246), and Si3 is bent

out of the C5 plane by 1.03 Å (32.8°).
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Figure 55. Calculated structures of [1,2,4-(SiMe3)3C5H2]2Be with η1/η1 Cp ligands
(a) and η1/η5 Cp ligands (b). During optimization (a) converted to (b).

Such a rearrangement can be rationalized on electronic grounds, as silicon

atoms help stabilize negative charges on adjacent atoms; the bending distortion also

serves to increase the negative charge on the carbon atom.257 The Be–C(η5) bonds

are in the narrow range from 1.901 Å to 1.934 Å, and average 1.923 Å, nearly

matching the the average Be–C (η5-Cp) bond length in the parent molecule (1.93

Å246). The structure is a local minimum on the potential energy surface (PES) (no

imaginary frequencies), but a similar η1/η5 structure can be obtained that is

formally related to the first by a ring rotation (Figure 56 (c)). The latter geometry is

also a minimum on the PES, and has nearly identical geometric parameters (Be–

C(η1) = 1.780 Å; Be– C(η5) = 1.921 Å (av)). Structure (b) is 1.9 kcal mol–1 higher in

enthalpy (ΔH°) than (c), a difference that is not meaningful at this level of theory.

The height of the energy barrier that might separate the two forms, however, is not

known.
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Figure 56. Another calculated η1/η5 configuration of [1,2,4-(SiMe3)3C5H2]2Be (c)
with Be bound to a substituted carbon position.

The stability of an η5/η5 configuration was evaluated by starting from an

eclipsed conformation similar to that in [1,2,4-(SiMe3)3C5H2]2Ca.106 The sandwich

geometry was retained during optimization (Figure 57 (d)); a frequency calculation

indicated that it was a local minimum (Nimag = 0). The angle between the ring

planes is 6.9°, and the metallocene is somewhat slipped, with Be–C bonds ranging

from 2.04 Å to 2.14 Å; the latter distance is slightly longer than the maximum

distance observed in (C5Me5)2Be (2.11 Å), which is already long compared to the

Be–C bond length in the parent molecule.246 Even so, there are no intermolecular

methyl…methyl´ contacts closer than 3.64 Å; the closest analogous contact in

(C5Me5)2Be is at 3.63 Å. The η5/η5 structure is 3.3 kcal mol–1 higher in enthalpy

(ΔH°) than (c); the height of the energy barrier that separates the η1/η5 and η5/η5

forms is not known.
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Figure 57. Proposed η5/η5 [1,2,4-(SiMe3)3C5H2]2Be structure based on Ca2+

analog.

Conclusion

Under the same reaction conditions used for the synthesis of permethylated

beryllocene,241,258 the corresponding [1,2,4-(SiMe3)3C5H2]2Be compound was not

formed. However, ONIOM calculations suggest that the trimethylsilyl-substituted

beryllocene would be sterically feasible. In any case, the failure of the reactions

designed to produce [1,2,4-(SiMe3)3C5H2]2Be is probably best ascribed to kinetic

difficulties, rather than to fundamental steric limitations on the geometry of the

beryllocene. The inability to isolate certain sterically-enhanced complexes may

indeed be a consequence of kinetics in many cases and not sterics, as suggested by

the principle of steric oversaturation.
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APPENDIX A:

OTHER X-RAY STRUCTURAL DETERMINATIONS
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Figure 58. ORTEP of {[1-(SiMe3)-3-µ-(OSiMe2)C3H5]Ca(thf)2}2.
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Figure 59. ORTEP of [2,6-(C3H7)2C6H3O]SrI(thf)3, showing disordered THF ligands.
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Figure 60. PLUTO of Li–O pseudo-hexagonal prism.



184

Figure 61. Solid-state structure of [(C3H7)4C5H]CaI(thf)2.
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Figure 62. ORTEP of {[2,6-(C3H7)2C6H3O]Li(thf)}3, showing disordered THF
ligands.
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APPENDIX B:

CRYSTAL DATA AND ATOMIC FRACTIONAL COORDINATES FOR

X-RAY STRUCTURAL DETERMINATIONS



187

Table 10. Crystal data and structure refinement for cis-[1,3-(SiMe3)2C3H3]2Ni.

________________________________________________________________________
Identification code 04148
Empirical formula C18 H42 Ni Si4
Formula weight 429.59
Temperature 173(2) K
Wavelength 0.71073 Å
Crystal system Monoclinic
Space group C2/c
Unit cell dimensions a = 16.537(5) Å α = 90°

b = 12.438(4) Å β = 90.155(5)°
c = 12.723(4) Å γ = 90°

Volume 2617.0(14) Å3

Z 4
Density (calculated) 1.090 Mg/m3

Absorption coefficient 0.924 mm-1

F(000) 936
Crystal color, morphology orange, needle
Crystal size 0.32 x 0.12 x 0.08 mm3

Theta range for data collection 1.60 to 25.06°
Index ranges -19 ≤ h ≤ 19, -13 ≤ k ≤ 14, -15 ≤ l ≤ 15
Reflections collected 8667
Independent reflections 2315 [R(int) = 0.0311]
Observed reflections 2208
Completeness to theta = 25.06° 99.7%
Absorption correction Multi-scan
Max. and min. transmission 1.000000 and 0.786877
Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 2315 / 10 / 136
Goodness-of-fit on F2 1.033
Final R indices [I >2sigma(I)] R1 = 0.0285, wR2 = 0.0727
R indices (all data) R1 = 0.0307, wR2 = 0.0738
Largest diff. peak and hole 0.463 and -0.263 e Å-3
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Table 11. Atomic coordinates (x 104) and equivalent isotropic displacement
parameters (Å2x�10 3�) for cis-[1,3-(SiMe3)2C3H3]2Ni. Ueq is defined as one third of
the trace of the orthogonalized Uij tensor.

________________________________________________________________________
x y z                     Ueq

________________________________________________________________________
Ni1 5000 1161(1) 2500 28(1)
Si1 4924(1) 2703(1) 418(1) 38(1)
C4 5275(3) 2636(3) -978(3) 68(1)
C5 5655(2) 3586(2) 1125(3) 56(1)
C6 3901(2) 3341(3) 471(3) 63(1)
C1 4887(2) 1282(2) 916(2) 34(1)
C2 4225(2) 770(2) 1414(2) 36(1)
C3 3785(2) 1246(2) 2247(2) 33(1)
Si2 2949(10) 472(13) 2916(13) 37(1)
C7 1977(13) 830(30) 2290(30) 58(2)
C8 2914(12) 817(16) 4343(13) 57(2)
C9 3110(12) -1018(12) 2756(18) 70(3)
C3' 3785(2) 1246(2) 2247(2) 33(1)
Si2' 2987(5) 546(7) 3023(7) 37(1)
C7' 2028(7) 628(13) 2265(13) 58(2)
C8' 2785(6) 1228(10) 4317(6) 57(2)
C9' 3292(6) -881(7) 3246(11) 70(3)
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Table 12. Crystal data and structure refinement for {[1,3-(SiMe3)2C3H3]NiI}2.

________________________________________________________________________
Identification code 03197
Empirical formula C18 H42 I2 Ni2 Si4
Formula weight 742.10
Temperature 173(2) K
Wavelength 0.71073 Å
Crystal system Orthorhombic
Space group C2221

Unit cell dimensions a = 16.448(4) Å α = 90°
b = 19.038(4) Å β = 90°
c = 19.669(4) Å γ = 90°

Volume 6159(2) Å3

Z 8
Density (calculated) 1.601 Mg/m3

Absorption coefficient 3.387 mm-1

F(000) 2944
Crystal color, morphology dark red, block
Crystal size 0.24 x 0.16 x 0.12 mm3

Theta range for data collection 1.94 to 25.05°
Index ranges -19 ≤ h ≤ 19, -15 ≤ k ≤ 22, -22 ≤ l ≤ 23
Reflections collected 15491
Independent reflections 5389 [R(int) = 0.0597]
Observed reflections 4470
Completeness to theta = 25.05° 99.4%
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 1.000000 and 0.599781
Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 5389 / 0 / 248
Goodness-of-fit on F2 1.027
Final R indices [I >2sigma(I)] R1 = 0.0485, wR2 = 0.1222
R indices (all data) R1 = 0.0594, wR2 = 0.1274
Absolute structure parameter 0.16(3)
Largest diff. peak and hole 2.046 and -0.447 e Å-3
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Table 13. Atomic coordinates (x 104) and equivalent isotropic displacement
parameters (Å2x�10 3�) for {[1,3-(SiMe3)2C3H3]NiI}2. Ueq is defined as one third of
the trace of the orthogonalized Uij tensor.

________________________________________________________________________
x y z                     Ueq

________________________________________________________________________
Ni1 10185(1) 2297(1) 8375(1) 35(1)
I1 10000 1337(1) 7500 52(1)
I2 10000 3252(1) 7500 55(1)
Si1 9045(2) 1539(1) 9416(1) 44(1)
Si2 10893(1) 3764(1) 9276(1) 40(1)
C1 10141(5) 1646(4) 9198(4) 37(2)
C2 10645(5) 2253(4) 9303(3) 33(2)
C3 10310(5) 2924(4) 9208(4) 34(2)
C4 8324(6) 2154(6) 8976(6) 64(3)
C5 8930(8) 1706(8) 10347(6) 88(4)
C6 8769(7) 623(5) 9178(6) 69(3)
C7 11273(6) 3810(6) 10179(5) 64(3)
C8 10185(6) 4487(5) 9085(5) 60(3)
C9 11779(6) 3792(6) 8692(5) 62(3)
Ni2 7714(1) 4872(1) 9122(1) 38(1)
I3 7686(1) 4049(1) 10121(1) 54(1)
Si3 6441(1) 3958(1) 8310(1) 39(1)
Si4 8257(2) 6166(1) 7931(1) 41(1)
C10 7564(5) 4110(4) 8418(4) 40(2)
C11 7998(5) 4699(4) 8162(4) 38(2)
C12 7661(6) 5374(4) 8202(4) 40(2)
C13 6246(6) 3069(6) 8637(6) 69(3)
C14 5768(6) 4585(5) 8777(6) 64(3)
C15 6212(6) 4002(7) 7393(5) 67(3)
C16 8385(7) 6038(6) 7009(5) 64(3)
C17 7619(7) 6951(5) 8093(5) 63(3)
C18 9258(6) 6248(6) 8357(6) 68(3)
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Table 14. Crystal data and structure refinement for {[1,3-(SiMe3)2C3H3]Cs(thf)}∞.

Identification code 04168
Empirical formula C13 H29 Cs O Si2
Formula weight 390.45
Temperature 173(2) K
Wavelength 0.71073 Å
Crystal system Monoclinic
Space group P21/n
Unit cell dimensions a = 6.4496(8) Å α = 90°

b = 10.1112(13) Å β = 90.587(2)°
c = 30.041(4) Å γ = 90°

Volume 1959.0(4) Å3

Z 4
Density (calculated) 1.324 Mg/m3

Absorption coefficient 2.001 mm-1

F(000) 792
Crystal color, morphology colorless, block
Crystal size 0.28 x 0.24 x 0.14 mm3

Theta range for data collection 2.13 to 25.03°
Index ranges -7 ≤ h ≤ 7, -11 ≤ k ≤ 12, -35 ≤ l ≤ 35
Reflections collected 18362
Independent reflections 3461 [R(int) = 0.0367]
Observed reflections 3053
Completeness to theta = 25.03° 99.9%
Absorption correction Multi-scan
Max. and min. transmission 1.000000 and 0.867632
Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3461 / 46 / 176
Goodness-of-fit on F2 1.043
Final R indices [I >2sigma(I)] R1 = 0.0574, wR2 = 0.1161
R indices (all data) R1 = 0.0672, wR2 = 0.1198
Largest diff. peak and hole 1.318 and -2.483 e Å-3
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Table 15. Atomic coordinates (x 104) and equivalent isotropic displacement
parameters (Å2x�10 3�) for {[1,3-(SiMe3)2C3H3]Cs(thf)}∞. Ueq is defined as one third
of the trace of the orthogonalized Uij tensor.

________________________________________________________________________

x y z                     Ueq

________________________________________________________________________
Cs1 4121(1) 2053(1) 3350(1) 41(1)
Si1 9095(3) 3718(3) 4164(1) 43(1)
Si2 8948(3) 2217(2) 2315(1) 35(1)
C1 9162(11) 2517(8) 3715(3) 40(2)
C2 9155(10) 2725(7) 3258(2) 33(2)
C3 9123(11) 1845(8) 2907(2) 38(2)
C4 6405(13) 4082(11) 4367(3) 62(3)
C5 10250(15) 5356(10) 3993(3) 65(3)
C6 10553(15) 3059(12) 4662(3) 70(3)
C7 10336(13) 3793(8) 2172(3) 48(2)
C8 6200(12) 2472(9) 2107(3) 50(2)
C9 10034(13) 794(8) 1981(3) 45(2)
O1 4310(110) -120(120) 3990(30) 112(5)
C10 5760(80) -250(60) 4350(20) 91(5)
C11 4960(90) -1270(70) 4630(20) 122(7)
C12 2890(90) -1230(80) 4570(20) 133(8)
C13 2480(80) -780(110) 4130(30) 145(7)
O1' 4510(30) -30(30) 4084(8) 112(5)
C10' 6410(20) -701(17) 4177(7) 91(5)
C11' 5890(30) -1954(18) 4344(8) 122(7)
C12' 3930(30) -1920(20) 4478(9) 133(8)
C13' 2900(30) -870(30) 4243(10) 145(7)
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Table 16. Crystal data and structure refinement for {[1,3-
(SiMe3)2C3H3]5Ba2K(thf)}∞.

________________________________________________________________________
Identification code 04357
Empirical formula C49 H113 Ba2 K O Si10
Formula weight 1313.07
Temperature 173(2) K
Wavelength 0.71073 Å
Crystal system Orthorhombic
Space group P212121

Unit cell dimensions a = 11.4705(14) Å α = 90°
b = 21.891(3) Å β = 90°
c = 30.387(4) Å γ = 90°

Volume 7630.2(16) Å3

Z 4
Density (calculated) 1.143 Mg/m3

Absorption coefficient 1.264 mm-1

F(000) 2744
Crystal color, morphology yellow, block
Crystal size 0.45 x 0.32 x 0.26 mm3

Theta range for data collection 1.63 to 27.51°
Index ranges -14 ≤ h ≤ 14, -28 ≤ k ≤ 28, -39 ≤ l ≤ 39
Reflections collected 91768
Independent reflections 17485 [R(int) = 0.0464]
Observed reflections 15246
Completeness to theta = 27.51° 99.8%
Absorption correction Multi-scan
Max. and min. transmission 0.7346 and 0.6000
Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 17485 / 40 / 610
Goodness-of-fit on F2 1.031
Final R indices [I >2sigma(I)] R1 = 0.0349, wR2 = 0.0819
R indices (all data) R1 = 0.0450, wR2 = 0.0882
Absolute structure parameter -0.005(10)
Largest diff. peak and hole 0.841 and -0.305 e Å-3
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Table 17. Atomic coordinates (x 104) and equivalent isotropic displacement
parameters (Å2x�10 3�) for {[1,3-(SiMe3)2C3H3]5Ba2K(thf)}∞. Ueq is defined as one
third of the trace of the orthogonalized Uij tensor.

________________________________________________________________________
x y z                     Ueq

________________________________________________________________________
Ba1 2577(1) 3798(1) 3100(1) 41(1)
Ba2 3034(1) 4075(1) 1308(1) 45(1)
K1 2346(1) 4841(1) 4708(1) 63(1)
C1 3641(3) 4410(2) 2256(1) 39(1)
C2 2424(3) 4464(2) 2225(1) 39(1)
C3 1598(3) 4007(2) 2164(1) 42(1)
Si1 4635(1) 5045(1) 2388(1) 42(1)
C4 4093(4) 5776(2) 2144(2) 59(1)
C5 4717(5) 5135(2) 2996(2) 63(1)
C6 6143(4) 4887(2) 2185(2) 74(2)
Si2 2(1) 4103(1) 2141(1) 55(1)
C7 -704(6) 3778(3) 2646(2) 99(2)
C8 -388(4) 4932(3) 2133(2) 81(2)
C9 -555(5) 3693(4) 1645(2) 112(3)
C10 1736(3) 4787(2) 3730(1) 43(1)
C11 1340(3) 4240(2) 3914(1) 41(1)
C12 1944(4) 3736(2) 4070(1) 44(1)
Si3 841(1) 5457(1) 3608(1) 52(1)
C13 1351(5) 5857(3) 3101(2) 84(2)
C14 -719(5) 5246(3) 3561(2) 77(2)
C15 932(6) 6031(3) 4068(2) 96(2)
Si4 1245(1) 3070(1) 4324(1) 55(1)
C16 100(7) 2781(3) 3951(3) 131(3)
C17 2327(6) 2451(2) 4420(2) 87(2)
C18 580(8) 3259(3) 4860(2) 118(3)
C19 3026(4) 2563(2) 2787(1) 53(1)
C20 3865(3) 2640(2) 3109(2) 50(1)
C21 4701(4) 3104(2) 3155(2) 59(1)
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Table 17 Continued.

________________________________________________________________________
x y z                    Ueq

________________________________________________________________________
C21' 4701(4) 3104(2) 3155(2) 59(1)
C21" 4701(4) 3104(2) 3155(2) 59(1)
Si5 2059(1) 1901(1) 2733(1) 58(1)
C23 501(6) 2125(3) 2644(3) 103(2)
C24 2465(6) 1424(2) 2248(2) 85(2)
Si6 5820(9) 3141(7) 3598(3) 65(1)
C25 6640(30) 3872(8) 3511(10) 104(4)
C26 5330(20) 3050(14) 4172(5) 97(3)
C27 6919(19) 2528(9) 3474(9) 84(3)
Si6' 5701(7) 3086(7) 3640(2) 65(1)
C25' 6971(19) 3543(11) 3435(9) 104(4)
C26' 6130(20) 2306(8) 3808(8) 97(3)
C27' 5210(20) 3508(11) 4147(6) 84(3)
Si6" 6056(3) 3008(2) 3473(2) 65(1)
C25" 6764(12) 3765(5) 3585(5) 104(4)
C26" 5688(11) 2596(6) 3985(4) 97(3)
C27" 7203(9) 2558(5) 3173(4) 84(3)
C28 4100(3) 4740(2) 538(1) 41(1)
C29 3185(3) 5114(2) 672(1) 40(1)
C30 1987(4) 5010(2) 675(1) 42(1)
Si7 5644(1) 4950(1) 540(1) 45(1)
C31 5859(4) 5682(2) 842(2) 65(1)
C32 6527(5) 4326(3) 797(2) 88(2)
C33 6203(5) 5041(3) -35(2) 87(2)
Si8 918(1) 5615(1) 788(1) 52(1)
C34 850(6) 6177(3) 322(2) 92(2)
C35 1341(4) 6054(2) 1291(2) 75(1)
C36 -583(4) 5287(3) 845(2) 88(2)
C37 4032(4) 2848(2) 1483(1) 57(1)
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Table 17. Continued.

________________________________________________________________________
x y z                     Ueq

________________________________________________________________________
C38 3473(4) 2799(2) 1081(2) 56(1)
C39 2305(5) 2896(2) 981(2) 67(1)
Si9 5559(1) 2640(1) 1604(1) 56(1)
C40 5623(6) 1935(3) 1938(2) 94(2)
C41 6427(6) 2536(3) 1091(2) 90(2)
C42 6284(4) 3240(3) 1943(2) 75(1)
Si10 1665(2) 2781(1) 438(1) 75(1)
C43 159(7) 3112(4) 433(3) 131(3)
C44 2573(8) 3168(3) 15(2) 107(2)
C45 1530(7) 1970(3) 267(2) 100(2)
O1 4381(3) 5318(2) 4443(2) 86(1)
C46 4421(8) 5867(4) 4183(4) 148(3)
C47 5644(6) 6047(4) 4136(3) 133(2)
C48 6258(6) 5504(4) 4228(3) 133(2)
C49 5501(8) 5137(4) 4499(4) 148(3)
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Table 18. Crystal data and structure refinement for [1,3-(SiMe3)2C3H3]2Sr(thf)2.

Identification code 04227
Empirical formula C26 H58 O2 Si4 Sr
Formula weight 602.70
Temperature 173(2) K
Wavelength 0.71073 Å
Crystal system Tetragonal
Space group P42/n
Unit cell dimensions a = 14.9010(8) Å α = 90°

b = 14.9010(8) Å β = 90°
c = 16.825(2) Å γ = 90°

Volume 3735.7(5) Å3

Z 4
Density (calculated) 1.072 Mg/m3

Absorption coefficient 1.589 mm-1

F(000) 1296
Crystal color, morphology colorless, block
Crystal size 0.36 x 0.28 x 0.16 mm3

Theta range for data collection 1.83 to 25.03°
Index ranges -17 ≤ h ≤ 17, -17 ≤ k ≤ 17, -20 ≤ l ≤ 20
Reflections collected 36801
Independent reflections 3303 [R(int) = 0.0574]
Observed reflections 2380
Completeness to theta = 25.03° 100.0%
Absorption correction Multi-scan
Max. and min. transmission 0.7851 and 0.5985
Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3303 / 45 / 185
Goodness-of-fit on F2 1.031
Final R indices [I >2sigma(I)] R1 = 0.0419, wR2 = 0.1067
R indices (all data) R1 = 0.0660, wR2 = 0.1243
Largest diff. peak and hole 0.451 and -0.276 e Å-3
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Table 19. Atomic coordinates (x 104) and equivalent isotropic displacement
parameters (Å2x�10 3�) for [1,3-(SiMe3)2C3H3]2Sr(thf)2. Ueq is defined as one third of
the trace of the orthogonalized Uij tensor.

________________________________________________________________________
x y z                     Ueq

________________________________________________________________________
Sr1 7500 2500 801(1) 51(1)
C1 7800(2) 1145(2) 1923(2) 58(1)
C2 8621(2) 1240(2) 1531(2) 56(1)
C3 9164(2) 2006(2) 1445(2) 58(1)
Si1 7160(1) 105(1) 2035(1) 62(1)
C4 7600(20) -750(20) 1307(15) 123(5)
C5 5958(9) 282(16) 1838(17) 109(4)
C6 7304(16) -370(17) 3049(9) 99(3)
Si1' 7160(1) 105(1) 2035(1) 62(1)
C4' 7202(13) -599(13) 1135(8) 123(5)
C5' 5992(6) 369(9) 2358(11) 109(4)
C6' 7618(9) -622(10) 2870(7) 99(3)
Si2 10306(1) 1997(1) 1055(1) 64(1)
C7 10394(4) 1226(4) 200(4) 121(2)
C8 10692(3) 3128(3) 755(4) 109(2)
C9 11135(3) 1614(4) 1826(3) 110(2)
O1 7202(11) 1585(11) -420(7) 73(3)
C10 6394(9) 1583(9) -864(8) 99(3)
C11 6320(20) 670(30) -1220(30) 118(5)
C12 7200(20) 290(30) -1170(30) 148(10)
C13 7791(14) 1020(30) -860(20) 126(8)
O1' 7051(11) 1391(11) -261(8) 73(3)
C10' 6239(9) 1066(10) -592(8) 99(3)
C11' 6460(20) 620(30) -1360(20) 118(5)
C12' 7400(20) 440(30) -1330(30) 148(10)
C13' 7765(14) 910(30) -620(20) 126(8)
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Table 20. Crystal data and structure refinement for {[1-(SiMe3)-3-µ-
(OSiMe2)C3H5]Ca(thf)2}2.

________________________________________________________________________
Identification code 03036
Empirical formula C32 H68 Ca2 O6 Si4
Formula weight 741.38
Temperature 173(2) K
Wavelength 0.71073 Å
Crystal system Monoclinic
Space group P21/n
Unit cell dimensions a = 10.405(2) Å α = 90°

b = 17.476(4) Å β = 97.777(4)°
c = 12.022(2) Å γ = 90°

Volume 2165.9(8) Å3

Z 2
Density (calculated) 1.137 Mg/m3

Absorption coefficient 0.409 mm-1

F(000) 808
Crystal color, morphology colorless, needle
Crystal size 0.43 x 0.24 x 0.16 mm3

Theta range for data collection 2.07 to 25.06°.
Index ranges -11 ≤ h ≤ 12, -20 ≤ k ≤ 20, -14 ≤ l ≤ 12
Reflections collected 12148
Independent reflections 3834 [R(int) = 0.0386]
Observed reflections 3090
Completeness to theta = 25.06° 99.7%
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 1.000000 and 0.908318
Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3834 / 27 / 229
Goodness-of-fit on F2 1.008
Final R indices [I >2sigma(I)] R1 = 0.0401, wR2 = 0.0999
R indices (all data) R1 = 0.0539, wR2 = 0.1097
Largest diff. peak and hole 0.503 and -0.272 e Å-3
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Table 21. Atomic coordinates (x 104) and equivalent isotropic displacement
parameters (Å2x�10 3�) for {[1-(SiMe3)-3-µ-(OSiMe2)C3H5]Ca(thf)2}2. Ueq is defined
as one third of the trace of the orthogonalized Uij tensor.

________________________________________________________________________
x y z                         Ueq

________________________________________________________________________
Ca1 9285(1) 865(1) 4594(1) 27(1)
O1 10221(2) -199(1) 3846(1) 30(1)
C1 9851(3) 1110(1) 2459(2) 34(1)
C2 10436(2) 1703(1) 3112(2) 32(1)
C3 11320(2) 1655(1) 4104(2) 32(1)
Si1 10377(1) 98(1) 2588(1) 31(1)
C4 9371(3) -489(2) 1493(2) 52(1)
C5 12101(3) 3(2) 2334(2) 47(1)
Si2 12149(1) 2433(1) 4916(1) 35(1)
C6 13922(3) 2460(2) 4793(3) 60(1)
C7 12058(3) 2327(2) 6459(2) 51(1)
C8 11431(3) 3381(2) 4457(3) 62(1)
O2 8209(2) 1952(1) 5284(2) 45(1)
C9 8048(3) 2098(2) 6432(2) 53(1)
C10 8254(3) 2944(2) 6582(2) 51(1)
C11 7695(3) 3265(2) 5473(2) 53(1)
C12 7753(3) 2619(2) 4647(2) 52(1)
O3 7121(4) 434(3) 3945(5) 42(1)
C13 6131(5) 860(3) 3189(5) 67(2)
C14 5762(6) 335(4) 2237(5) 76(2)
C15 5861(6) -439(3) 2798(6) 81(2)
C16 6822(5) -352(3) 3801(4) 65(1)
O3' 7096(9) 619(9) 3807(11) 42(1)
C13' 6540(11) 510(6) 2668(10) 67(2)
C14' 5640(13) -145(8) 2657(11) 76(2)
C15' 5427(10) -243(6) 3875(10) 81(2)
C16' 6219(10) 345(6) 4520(8) 65(1)
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Table 22. Crystal data and structure refinement for Li–O pseudo-hexagonal prism.

________________________________________________________________________
Identification code 03006
Empirical formula C36 H90 Li6 O12 Si6
Formula weight 925.26
Temperature 173(2) K
Wavelength 0.71073 Å
Crystal system Monoclinic
Space group P21/n
Unit cell dimensions a = 12.736(3) Å α = 90°

b = 20.161(5) Å β = 118.065(4)°
c = 13.338(4) Å γ = 90°

Volume 3022(1) Å3

Z 2
Density (calculated) 1.017 Mg/m3

Absorption coefficient 0.181 mm-1

F(000) 1008
Crystal color, morphology colorless, block
Crystal size 0.39 x 0.38 x 0.29 mm3

Theta range for data collection 1.82 to 25.11°.
Index ranges -14 ≤ h ≤ 15, -23 ≤ k ≤ 23, -15 ≤ l ≤ 15
Reflections collected 19315
Independent reflections 5326 [R(int) = 0.0453]
Observed reflections 3063
Completeness to theta = 25.11° 99.2%
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 1.000000 and 0.759633
Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 5326 / 0 / 299
Goodness-of-fit on F2 1.012
Final R indices [I >2sigma(I)] R1 = 0.1192, wR2 = 0.2806
R indices (all data) R1 = 0.1704, wR2 = 0.3187
Largest diff. peak and hole 1.370 and -0.438 e Å-3
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Table 23. Atomic coordinates (x 104) and equivalent isotropic displacement
parameters (Å2x�10 3�) for Li–O pseudo-hexagonal prism. Ueq is defined as one
third of the trace of the orthogonalized Uij tensor.

________________________________________________________________________
x y z                    Ueq

________________________________________________________________________

Si1 -2727(2) -164(1) 2300(2) 81(1)
Si2 -1695(2) 1044(1) 6071(2) 67(1)
Si3 520(2) 1533(1) 3783(2) 86(1)
Si1' -3144(19) 30(12) 4430(20) 96(7)
Si2' -1120(20) 466(12) 1976(18) 93(7)
Si3' 90(20) 1769(11) 5500(20) 100(8)
Li1 24(11) 249(6) 3471(9) 78(3)
Li2 -1788(9) -234(6) 4563(10) 81(3)
Li3 205(10) 871(5) 5667(13) 83(4)
O1 -1362(4) -187(2) 3200(4) 89(2)
O2 -3363(4) -335(2) 3112(4) 82(1)
O3 -1253(4) 398(2) 5697(4) 77(1)
O4 -565(4) 1565(2) 6378(4) 70(1)
O5 718(4) 982(2) 4702(4) 92(2)
O6 214(5) 1065(2) 2618(4) 87(1)
C1 -3180(8) 698(5) 1690(8) 127(3)
C2 -3143(9) -779(5) 1138(7) 133(4)
C3 -4546(7) -504(5) 2891(8) 98(2)
C4 -4491(10) -468(8) 4066(11) 181(6)
C5 -5412(9) -41(7) 2095(12) 182(6)
C6 -4804(10) -1208(6) 2517(13) 182(6)
C7 -3080(7) 1398(5) 4896(9) 127(3)
C8 -1937(9) 891(5) 7301(8) 119(3)
C9 -232(9) 2188(4) 6971(9) 116(3)
C10 894(9) 2398(5) 6870(10) 149(4)
C11 183(14) 2046(7) 8243(10) 208(8)
C12 -1187(12) 2671(5) 6507(16) 224(9)
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Table 23. Continued.

________________________________________________________________________
x y z                    Ueq

________________________________________________________________________

C13 -774(9) 2092(4) 3480(9) 128(3)
C14 1832(10) 2048(6) 4145(11) 159(5)
C15 192(10) 1191(5) 1566(9) 114(3)
C16 -609(11) 608(7) 781(8) 169(6)
C17 -378(15) 1837(6) 1057(10) 203(7)
C18 1376(12) 1092(6) 1621(11) 164(5)
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Table 24. Crystal data and structure refinement for [2,6-(C3H7)2C6H3O]SrI(thf)3.

________________________________________________________________________
Identification code 03122
Empirical formula C48 H82 I2 O8 Sr2
Formula weight 1216.18
Temperature 173(2) K
Wavelength 0.71073 Å
Crystal system Monoclinic
Space group P21/c
Unit cell dimensions a = 14.676(7) Å α = 90°

b = 10.824(5) Å β = 99.421(6)°
c = 17.816(8) Å γ = 90°

Volume 2792(2) Å3

Z 2
Density (calculated) 1.447 Mg/m3

Absorption coefficient 3.060 mm-1

F(000) 1232
Crystal color, morphology colorless, block
Crystal size 0.30 x 0.24 x 0.22 mm3

Theta range for data collection 1.41 to 25.13°
Index ranges -17 ≤ h ≤ 17, 0 ≤ k ≤ 12, 0 ≤ l ≤ 21
Reflections collected 45758
Independent reflections 4930 [R(int) = 0.0712]
Observed reflections 4038
Completeness to theta = 25.13° 98.7%
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 1.000000 and 0.603866
Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 4930 / 52 / 302
Goodness-of-fit on F2 1.024
Final R indices [I >2sigma(I)] R1 = 0.0445, wR2 = 0.1102
R indices (all data) R1 = 0.0576, wR2 = 0.1181
Largest diff. peak and hole 1.618 and -0.852 e Å-3
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Table 25. Atomic coordinates (x 104) and equivalent isotropic displacement
parameters (Å2x�10 3�) for [2,6-(C3H7)2C6H3O]SrI(thf)3. Ueq is defined as one third
of the trace of the orthogonalized Uij tensor.

________________________________________________________________________
x y z                     Ueq

________________________________________________________________________
Sr1 1486(1) 882(1) 9617(1) 27(1)
I1 -264(1) 1723(1) 10540(1) 39(1)
O1 2668(2) 706(3) 8943(2) 31(1)
C1 3220(3) 623(4) 8432(3) 28(1)
C2 3546(3) -544(4) 8223(3) 30(1)
C3 4102(3) -605(5) 7670(3) 35(1)
C4 4338(4) 432(5) 7296(3) 38(1)
C5 4037(3) 1588(5) 7510(3) 35(1)
C6 3494(3) 1707(4) 8074(3) 32(1)
C7 3258(4) -1678(4) 8620(3) 37(1)
C8 4024(5) -2664(6) 8772(4) 62(2)
C9 2364(5) -2225(6) 8181(4) 62(2)
C10 3212(4) 2955(4) 8351(3) 36(1)
C11 3098(4) 3969(5) 7741(4) 50(2)
C12 3893(4) 3362(5) 9041(3) 49(2)
O2 2682(2) 28(4) 10690(2) 44(1)
C13 2663(14) -1180(20) 11020(30) 54(3)
C14 3656(12) -1574(16) 11253(11) 55(3)
C15 4180(30) -800(50) 10770(60) 61(3)
C16 3632(11) 390(30) 10700(60) 45(2)
O2' 2682(2) 28(4) 10690(2) 44(1)
C13' 2706(14) -1140(20) 11080(20) 54(3)
C14' 3537(10) -1807(12) 10865(10) 55(3)
C15' 4190(20) -790(40) 10720(50) 61(3)
C16' 3641(10) 390(30) 10730(50) 45(2)
O3 1922(3) 3077(3) 10033(2) 40(1)
C17 1621(11) 4223(11) 9645(8) 40(4)
C18 2030(13) 5261(10) 10122(9) 78(4)
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Table 25. Continued.

________________________________________________________________________
x y z                      Ueq

________________________________________________________________________
C19 2110(20) 4713(18) 10938(11) 75(9)
C20 2300(30) 3391(19) 10821(12) 54(7)
O3' 1922(3) 3077(3) 10033(2) 40(1)
C17' 1348(12) 4091(13) 9701(9) 40(4)
C18' 1409(13) 5020(13) 10303(11) 78(4)
C19' 2380(20) 4820(20) 10786(15) 75(9)
C20' 2480(30) 3470(20) 10747(16) 54(7)
O4 559(3) 1516(4) 8342(2) 47(1)
C21 871(5) 1396(7) 7619(3) 60(2)
C22 246(5) 442(7) 7198(4) 73(2)
C23 -598(5) 423(7) 7568(5) 77(2)
C24 -432(4) 1389(8) 8163(4) 72(2)
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Table 26. Crystal data and structure refinement for [(C3H7)4C5H]CaI(thf)2.

________________________________________________________________________
Identification code 01259
Empirical formula C25 H45 Ca I O2
Formula weight 544.59
Temperature 173(2) K
Wavelength 0.71073 Å
Crystal system Triclinic
Space group P-1
Unit cell dimensions a = 8.983(1) Å α = 87.130(3)°

b = 9.783(2) Å β = 75.649(3)°
c = 17.179(3) Å γ = 68.540(3)°

Volume 1359.7(4) Å3

Z 2
Density (calculated) 1.330 Mg/m3

Absorption coefficient 1.383 mm-1

F(000) 568
Crystal color, morphology red-brown, block
Crystal size 0.21 x 0.20 x 0.16 mm3

Theta range for data collection 2.24 to 25.06°.
Index ranges -10 ≤ h ≤ 10, -11 ≤ k ≤ 11, -20 ≤  l ≤ 12
Reflections collected 8205
Independent reflections 4754 [R(int) = 0.0390]
Observed reflections 3295
Completeness to theta = 25.06° 98.6%
Absorption correction Multiscans
Max. and min. transmission 1.000000 and 0.769755
Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 4754 / 0 / 270
Goodness-of-fit on F2 0.994
Final R indices [I >2sigma(I)] R1 = 0.0492, wR2 = 0.1059
R indices (all data) R1 = 0.0765, wR2 = 0.1134
Largest diff. peak and hole 1.104 and -1.197 e Å-3
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Table 27. Atomic coordinates (x 104) and equivalent isotropic displacement
parameters (Å2x�10 3�) for [(C3H7)4C5H]CaI(thf)2. Ueq is defined as one third of the
trace of the orthogonalized Uij tensor.

________________________________________________________________________
x y z                   Ueq

________________________________________________________________________
Ca1 11931(1) 10232(1) 2735(1) 30(1)
I1 8788(1) 9679(1) 3447(1) 47(1)
C1 13550(6) 12064(5) 2508(3) 31(1)
C2 11906(6) 12974(5) 2873(3) 30(1)
C3 10935(6) 13063(5) 2312(3) 28(1)
C4 12013(6) 12199(5) 1608(3) 29(1)
C5 13643(6) 11590(5) 1730(3) 27(1)
C6 11358(6) 13698(6) 3709(3) 38(1)
C7 12656(8) 14205(7) 3893(4) 52(2)
C8 10910(8) 12705(7) 4368(4) 52(2)
C9 9155(6) 14078(5) 2383(3) 38(1)
C10 9057(7) 15678(6) 2247(4) 50(2)
C11 7892(7) 14017(6) 3140(4) 50(2)
C12 11603(6) 11954(5) 827(3) 33(1)
C13 10333(7) 11209(6) 938(4) 42(1)
C14 11091(7) 13357(6) 359(4) 48(2)
C15 15220(6) 10751(5) 1114(3) 31(1)
C16 16654(6) 9911(6) 1484(4) 45(2)
C17 15722(7) 11807(6) 500(4) 50(2)
O1 13092(4) 8000(4) 1911(2) 44(1)
C18 12181(8) 7110(7) 1771(5) 70(2)
C19 13409(8) 5728(7) 1374(5) 73(2)
C20 14955(9) 5557(7) 1557(5) 72(2)
C21 14788(8) 7114(7) 1753(5) 61(2)
O2 13367(4) 8909(4) 3665(2) 38(1)
C22 12677(7) 8124(7) 4301(4) 53(2)
C23 14090(7) 7152(6) 4634(4) 50(2)
C24 15182(8) 8051(7) 4510(4) 55(2)
C25 14913(7) 8885(7) 3804(4) 52(2)
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Table 28. Crystal data and structure refinement for {[2,6-(C3H7)2C6H3O]Li(thf)}3.

________________________________________________________________________
Identification code 00237
Empirical formula C48 H75 Li3 O6
Formula weight 768.90
Temperature 293(2) K
Wavelength 0.71073 Å
Crystal system Monoclinic
Space group P21/n
Unit cell dimensions a = 13.294(2) Å α = 90°

b = 16.149(2) Å β = 90.079(2)°
c = 22.392(3) Å γ = 90°

Volume 4807(1) Å3

Z 4
Density (calculated) 1.062 Mg/m3

Absorption coefficient 0.067 mm-1

F(000) 1680
Crystal color, morphology colorless, block
Crystal size 0.24 x 0.17 x 0.12 mm3

Theta range for data collection 1.55 to 23.84°.
Index ranges -15 ≤ h ≤ 13, -18 ≤ k ≤ 15, -25 ≤ l ≤ 25
Reflections collected 22629
Independent reflections 7381 [R(int) = 0.0308]
Completeness to theta = 23.84° 99.7%
Absorption correction SADABS, R. Blessling, 1995
Max. and min. transmission 1.000000 and 0.884002
Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 7381 / 222 / 572
Goodness-of-fit on F2 1.076
Final R indices [I >2sigma(I)] R1 = 0.0602, wR2 = 0.1776
R indices (all data) R1 = 0.0947, wR2 = 0.1993
Largest diff. peak and hole 0.385 and -0.331 e Å-3
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Table 29. Atomic coordinates (x 104) and equivalent isotropic displacement
parameters (Å2x�10 3�) for {[2,6-(C3H7)2C6H3O]Li(thf)}3. Ueq is defined as one third
of the trace of the orthogonalized Uij tensor.

________________________________________________________________________
x y                    z                        Ueq

________________________________________________________________________

 Li(1) 8553(3) 2207(3) 5507(2) 60(1)
Li(2) 6324(3) 2354(3) 5180(2) 62(1)
Li(3) 6838(3) 1869(3) 6452(2) 60(1)
O(1) 7642(1) 2538(1) 4958(1) 56(1)
O(2) 5829(1) 2030(1) 5901(1) 52(1)
O(3) 8165(1) 1894(1) 6258(1) 52(1)
C(1) 7828(2) 3045(2) 4492(1) 54(1)
C(2) 7914(2) 2707(2) 3911(1) 56(1)
C(3) 8078(2) 3249(2) 3437(1) 72(1)
C(4) 8169(2) 4088(2) 3522(2) 86(1)
C(5) 8099(2) 4410(2) 4087(2) 84(1)
C(6) 7931(2) 3900(2) 4582(1) 68(1)
C(7) 7818(2) 1787(2) 3824(1) 63(1)
C(8) 8801(3) 1339(2) 3959(2) 100(1)
C(9) 7426(4) 1530(3) 3215(2) 122(2)
C(10) 7831(3) 4262(2) 5207(2) 94(1)
C(11) 8756(4) 4670(4) 5443(3) 164(2)
C(12) 6938(4) 4800(4) 5280(2) 159(2)
C(13) 4902(2) 2038(2) 6133(1) 54(1)
C(14) 4355(2) 1298(2) 6192(1) 70(1)
C(15) 3423(2) 1323(3) 6478(2) 96(1)
C(16) 3023(3) 2029(4) 6685(2) 110(2)
C(17) 3528(3) 2764(3) 6604(1) 95(1)
C(18) 4468(2) 2792(2) 6330(1) 71(1)
C(19) 5030(3) 3590(2) 6245(2) 94(1)
C(20) 5736(5) 3784(3) 6763(3) 171(3)
C(21) 4369(5) 4342(3) 6134(4) 195(3)
C(22) 4782(3) 492(2) 5962(2) 87(1)
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Table 29. Continued.

________________________________________________________________________
x y                    z                        Ueq

________________________________________________________________________
C(23) 4021(3) 12(3) 5578(2) 114(1)
C(24) 5192(4) -46(3) 6473(2) 134(2)
C(25) 8922(2) 1615(2) 6599(1) 46(1)
C(26) 9573(2) 2172(2) 6891(1) 48(1)
C(27) 10345(2) 1856(2) 7244(1) 56(1)
C(28) 10493(2) 1015(2) 7308(1) 63(1)
C(29) 9865(2) 471(2) 7017(1) 59(1)
C(30) 9074(2) 749(2) 6664(1) 51(1)
C(31) 9417(2) 3098(2) 6815(1) 59(1)
C(32) 10387(3) 3604(2) 6814(2) 86(1)
C(33) 8680(3) 3436(2) 7270(2) 100(1)
C(34) 8367(2) 161(2) 6340(1) 64(1)
C(35) 8656(3) 70(2) 5683(1) 85(1)
C(36) 8279(3) -693(2) 6630(2) 85(1)
O(4) 9992(18) 2250(30) 5300(20) 71(1)
C(37) 10395(10) 2795(18) 4859(13) 112(4)
C(38) 11471(5) 2936(5) 5080(4) 82(1)
C(39) 11736(18) 2043(14) 5201(13) 79(2)
C(40) 10810(30) 1764(17) 5544(14) 67(3)
O(4') 9969(18) 2230(30) 5330(20) 71(1)
C(37') 10377(10) 2891(17) 4988(13) 112(4)
C(38') 11354(5) 2525(5) 4730(3) 82(1)
C(39') 11726(18) 2082(14) 5280(12) 79(2)
C(40') 10760(30) 1661(17) 5487(14) 67(3)
O(5) 5310(20) 2740(20) 4641(13) 69(5)
C(41) 4300(20) 2457(17) 4681(10) 84(4)
C(42) 3975(13) 2414(16) 4032(11) 90(4)
C(43) 4428(14) 3182(16) 3779(10) 86(3)
C(44) 5309(8) 3364(8) 4190(6) 83(3)
O(5') 5343(19) 2580(20) 4564(13) 69(5)
C(41') 4350(20) 2264(17) 4619(10) 84(4)



212

Table 29. Continued.

________________________________________________________________________
x y                    z                        Ueq

________________________________________________________________________
C(42') 3757(13) 2579(16) 4086(12) 90(4)
C(43') 4362(13) 3303(16) 3882(11) 86(3)
C(44') 5424(8) 3001(8) 4009(6) 83(3)
O(6) 6469(11) 1513(10) 7260(5) 67(3)
C(45) 7247(11) 1484(17) 7746(7) 96(6)
C(46) 6769(9) 1453(7) 8278(5) 93(3)
C(47) 5829(6) 1815(6) 8223(3) 89(2)
C(48) 5632(12) 1909(18) 7618(6) 113(7)
O(6') 6544(11) 1787(10) 7312(5) 67(3)
C(45') 7177(11) 1182(16) 7658(7) 96(6)
C(46') 6745(9) 1015(7) 8196(5) 93(3)
C(47') 5717(6) 1215(6) 8145(3) 89(2)
C(48') 5538(11) 1571(18) 7598(6) 113(7)
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