DIRECT IONIZATION-INDUCED TRANSIENT FAULT ANALYSIS FOR
COMBINATIONAL LOGIC AND SEQUENTIAL CAPTURE IN DIGITAL INTEGRATED
CIRCUITS FOR LIGHTLY-IONIZING ENVIRONMENTS
By
Dolores A. Black
Dissertation
Submitted to the Faculty of the
Graduate School of Vanderbilt University
In partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY
in
Electrical Engineering
December 2011

Nashville, TN

Approved:

Professor William H. Robinson (Co-Chair) Date
Professor Robert A. Reed (Co-Chair) Date
Professor Gautam Biswas Date
Professor Marcus H. Mendenhall Date

Professor Ronald D. Schrimpf Date

Copyright © 2011 by Dolores A. Black

All Rights Reserved

ii

DEDICATION

To my husband, Jeffrey, with whom all things are possible and without whom none

of this would have been possible

iii

ACKNOWLEDGEMENTS

“We keep moving forward, opening new doors, and doing new things, because we're
curious and curiosity keeps leading us down new paths. You can design and create,
and build the most wonderful place in the world. But it takes people to make the

dream a reality.” - Walt Disney

This work would not have been completed without the support of others.

Therefore, I would like to acknowledge those who made this possible.

To begin with I would like to thank my co-chairs Prof. Robert Reed for his
relentless encouragement and Prof. William Robinson for his unending patience,
and their continued guidance and advice throughout my work. I would like to thank
Prof. Ronald Schrimpf for his support and advice in helping me set boundaries and
always helping me know that they were achievable. I want to thank Prof. Marcus
Mendenhall for his unique and extensive perspective and I appreciate his positive
attitude when at times things seemed impossible. [want to thank Prof. Gautam
Biswas for his time, knowledge and support for this work. [was able to grow
professionally and complete this work because I had an outstanding committee and

to all of you I am eternally grateful.

Many thanks are due to Prof. Al Strauss and the NASA Tennessee Space Grant

Consortium and Prof. Dan Fleetwood who provided continued support for my

iv

education. Also, I would like to thank to NASA/GSFC especially, Ken LaBel, for their

sponsorship of this work.

For their help when I needed it, specific acknowledgment is given to Dr.
Andrew Sternberg, Dr. Kevin Warren and Dr. Brian Sierawski who mentored me in

the use of the different tools and for sharing your knowledge.

[want to send a special thank you to Prof. Robert Weller, Dean George E.
Cook and Dean Kenneth Galloway for your continued encouragement in times when

[needed it.

Nobody has been more important or supportive in this pursuit than the
members of my family. My father and mother who taught me the importance of an
education, my sisters who were there with words of encouragement and finally, my
husband, Jeffrey, for his unending love and support that got me through from the

dark and into the light.

Thanks to you all.

Dolores A. Black

TABLE OF CONTENTS

Page
DEDICATION et sss s s s s s s s s ssessssssssnes iii
ACKNOWLEDGEMENTS ...t sssse s sss s ssessess s s ssessssssssssesssssssssseass v
LIST OF TABLES ...t seaen ix
LIST OF ACRONYMS ...t sssse st ssssens xvil
CHAPTER
[INTRODUCTION ..coueeieeeemeerseessseessesssseesssessssesssessssesssssssssssssessssassssesssessssessssessssessssssssesssssssssssssessssessanens 1
SUMMATrY Of DOCUMENT ..ot ssseesse s sess s s ssssessessssssssssesanes 4
II. BACKGROUND ...oitetteeetemeesssessssessessssessssessssesssesssse s sssssssssessssass st sesssses s s s s ssssssssssssessssessanans 8
Basic MECHANISINS ... sesssssssesssssssesans 8
Previous Approaches to IC Single Event Analysis......ooeeneeneenerseennes 13
Soft-Error Tolerance Analysis and Optimization of Nanometer
CITCUIES [33] corereerrermeesrermersserssesssessseseesseesseessesssessssssse s ssss s sesssssssesssssssesasssnns 16
Soft-Error-Rate-Analysis (SERA) Methodology [34] ..c.ccueemernmrenmerneeenserneens 16
SEAT-LA: A Soft Error Analysis tool for Combinational Logic [35]........... 17
Circuit Reliability Analysis Using Symbolic Techniques [36]c.ccvrrrrennee 17
Modeling and Optimization for Soft-Error Reliability of Sequential
CITCUIES [B7] coeerreerermeesrerseremsseessessessesssesssesssssssessssssse s ssssssesssesssssssesssssssessssssns 18
SUIMNIMATY ottt s s bbb 18
I1. OVERVIEW OF MULTI-SCALE SIMULATION OF SINGLE EVENT TRANSIENTS........... 20
Overview of the Multi-Scale Simulation Approach.......ceonenneesneesseennes 20
IV. CALIBRATION OF MRED TO COMPUTE SET RESPONSEovieenrereeeseeeseeessesseesseenans 32
Charge Collection Simulation using MRED ... 32
Example Geometry of the Nested Sensitive Volumes In MRED 40

vi

MODELING OF SINGLE EVENT TRANSIENTS WITH DUAL

DOUBLE-EXPONENTIAL CURRENT SOURCESovcnerererimeennsinssesnssssesssssssssssssssssssesssssssess 46
BaCKEIOUNM.....coueieeeeceeeer s ss s sess s ssssnssesasssans 46
Limitations of Double-Exponential Current SOUrce.......coemeereeseeserseennes 50
Dual Double-Exponential Current Source Modelcconeerenreneenneseeneesenneens 52
ReSULtS aNd DiSCUSSION ..ueuceierereersisesesssissesessssssessssessssssessessssssessssssssssssesssssssassssens 60
VI MRED2ZSPICE ANALYSIS .. iiressissessenssissssssssssssesssnns 68
Connecting MRED to SPICE for SET analysis......cceenemeeneeeesnessseennes 68

MRED2SPICE - Comparison of Experimental Data for CMOS
Combinational CellS.....reeessessesesse s ssesssssssssasessees 73

VIIL. TRANSIENT FAULT ANALYSIS FOR SEQUENTIAL CAPTURE IN DUAL-

COMPLEMENTARY FLIP-FLOPS ...ttt ssssssssssssss s sssssssssssssssssssssssssssssssssssssssns 82
BACKGROUND ..cotvieneseessessssssissesssssssesses 82
DUAL COMPLEMENTARY DFF (DC-DFF)uvoonnineenesnesnesssssssssssesssessssssennes 83
SINGLE EVENT TRANSIENT CIRCUIT SIMULATIONcooneerreerrreenrecrnreereennne 88
HEAVY ION TESTING OF DUAL-COMPLEMENTARY DFFS......oireinreennn. 97
CLOCK DEPENDENT MECHANISMS.....oovinemesemsinssesssnsesssssssesssessssssssssssssees 101
VIII. SPICE CIRCUIT ANALYSIS FOR LOGICAL AND TIMING SIMULATIONS......ccoeeneerreenne. 104
SET Pulse-Width Characterization for Radiation-Induced Faults........... 104
IX. IC LOGIC SIMULATION FOR SOFT ERROR PREDICTIONovoniunmeermirnmerseesnessesssesssessssssees 117
Basic TeSting APPTIOACH ...t seessesssesssesssesssesssssssesasees 117
Multi-scale simulation for Soft Error Rate Prediction.......cccoueeneeneeneennes 120
X. CONCLUSIONS . etretretsetsessssessesssesssssssssss s sssssss st sssssssssessssssssssssssssssssssssssssassssssssssssssssesssssssnsssees 133
FULUTE WOTK ottt st sssans 136
REFERENCES ...ttt s st st 139

vii

Appendix

mmo oW

MRED INPUT PYTHON SCRIPTcoriiirriinrsiisssisssans 146
4-INVERTER CHAIN BASIC CIRCUIT SPICE NETLIST.....coovvnnrriniresisnsssssesnsssnns 150
PYTHON SCRIPT FOR Itnresh, Iprompty Inoldeesmessesemmmnsssssssssssssns: 151
PYTHON SCRIPT FOR MREDZSPICE ... 157
MREDZLOGIC PYTHON SCRIPT ...riirriinrsiisssisss s ssssssssssssass 163
ALU TESTBENCH CODE ...t sssasses 170

viii

LIST OF TABLES

Table Page

10.

11.

Sensitive volume definitions for MRED Python script including the
(x,y, z) coordinates in mm for the volume center and the length, width,
and depth for the volume, alSO iN MM ..o 42

Charge collection efficiencies listed for each sensitive volume in the INV cell. 44

Sample outputs from the MRED Python script with charge collection
calculations (charge given in fC) ... eesesssesssssssssessesssesssssssssens 45

Simulation Results for INV1, NAND2, NOR2 cells for the Vpp input
[000) 0V P L= o) o LSOO 61

Simulation Results for INV1, NAND2, NOR2 cells for the Vss input
[010) 0V Feq L= o) o LSRN 61

Simulation Results for inverter cells of increasing drive strength for the
VDD INPUL CONFIGUIATION ...couviveereeeeeereerersressesssss s sess s ssssaes 62

Simulation Results for inverter cells of increasing drive strength for the
KV oY o XU UaeL0) o Feq N =1 o) o NP 62

Simulated threshold charges (Qnresn) and hold currents (Ixoiq) for the
combinational cells for comparison to experimental data given different
tESt CONFIGUIATIONS ..ottt es 76

Input Configurations for 2-Input NOR ate.......cuenenmernreneeneessssssessesssesssssssesens 80

Input controls, output signals, and transistor conditions required to change
DC-DFF memory circuit from logic state 1 to logic state 0.cc.ommeereerneersrernnens 87

Input control, output signal, and transistor conditions required to change

ix

12.

13.

14.

15.

16.

DC-DFF memory circuit from logic state 1 to logic state 0. A single event to
the input circuit keeps n1 at 10gic State 1. ... 93

Input control, output signal and transistor conditions required to change
DC-DFF memory circuit from logic state 1 to logic state 0. A single event to
the memory circuit keeps transistor MN13 on, thereby keeping ga closed. 95

Heavy ions, LETs and ion energies used to test DC-DFFS.......nonnneneennens 100

Simulation results for percent susceptible to SETs for logical-masking. 126

SER Error cross-section => (Errors Observed / Faults Generated) x Integral
Cross-Section for LET = 2.1 MeV-CM?2/MEcccrrrrmmemmmrneersmersesssssssesssssssesssesssesssssssesans 128

Methodology for SER Error cross-section of the entire ALU design. The
table would need to be completed for all the cell types. The three cells from
this dissertation are included within the table.........nonnsreeenns 129

LIST OF FIGURES

Figure Page
1. Typical shape of nodal current at @ JUNCHIONccvveeeeeceesreneesseesseereesseesesssesssessesaens 13
2. SEU_Tool operations flow chart[9]eeesessessesssessssssssssssssssssssans 14
3. Multi-scale simulation approach black box block diagram........cooneeneennenienn. 22
4. MRED process basic block diagram.....c.coceeneenneeneseeseesssessesssessesssssssesssssssssnss 24
5. SPICE pre-process basic block diagram........cceenernernnsenseneesssssssseessesssessssenns 25
6. Conversion of Vian to V- after a random number of stages of combinational

10.

11.

12.

13.

14.

000 =)y =) TSRS 26

SPICE process complete block diagramoceeeerneeseensesessessssssesssesssessssssessens 27

(a) Fault within the inner scope masked and not visible to an IC output
(b) Fault propagated outside the inner scope to the outer scope and
visible as a soft error to the output of the IC. [24]....oenenmereeneeseereeeseeseesseennne 28

Generic structure of a testbench and an IC design under verification 29

Multi-scale simulation for generation, propagation and capture of an SET 31

TCAD-generated spatial distribution of the collected charge as a function of
strike location with 8 of 30 sensitive volumes (SV) drawn for the single
node NMOS device at 0.1 pC/mm (top down View). [11].eenmeereerreerseersnesnens 34

Spatial distribution of the collected charge as a function of strike location

for the single node PMOS device at 0.1 pC/mm (top down view). [11]....cccceuu.e 34
Top view of CMOS transistor that is representative of layout.........c.ccoueoreereeennenn. 36
Side view of CMOS transistor from cut along the line X in Figure 13cccccouuu.. 36

xi

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29,

Top view of CMOS transistor with top view of charge-collection volumes........ 38

Side view of CMOS transistor with side view of charge-collection volumes 38

Top view of two CMOS transistors connected in parallel with a shared drain
10 0 o T30 0101 [o I U= 39

Top View of two CMOS transistors connected in parallel with a shared drain
on the outside. Metal lines connecting the shared drain are not shown............. 40

Top view of two CMOS transistors connected is series with an intermediate
(0 7= 1 1 [OOSR 40

Top view of drain area and active area for basic INV cell (PMOSFET on top
and NMOSFET 0N DOTEOIM) ..cuvuuereeeeirssessesssessssessesssesssesssns 42

Ion strike on combinational library cell modeled as double exponential
CUTTENT SOUTCE .uvueucueuririrereesssssssesessss s ssssestssssssssse s s ssssssssessssssssssssessassssssssssssasssssssssssssssssnsessensas 47

Propagation of double-exponential current source to square wave........coccueen. 48

Example of a Double-Exponential Current Pulse (Ipeak = 100 A, ta1 = 10 ps,
td2 =5 PS, T1 = 2 PS, T2 = 10 PS) cerrreerrcerrernersssssesssesssssssesssesssesssssssssssessssssssssssssssssssssssssssssss 50

Example of a voltage transient that overdrives the circuit (i.e., the voltage
drops DEloOW Vs = 0 VOIES) c.uveuieeeeeeeeerseesseessesssessesssesssesssssssssssssssessssssssssssesssesssessssssassssees 51

Example of a voltage transient with a slow leading edgeccoeermeereereerneernnernnens 51

Device-level simulation results showing short burst of high current
followed by a sustained shelf of lower current (after [41])ccnmreereerseernnernnens 53

Example of: (a) short peak, Iprompe(t), (b) sustained, Inoa(t), and (c) dual
double-exponential CUITENT SOUICESoucrveeerrererneesseesessssssesssessessssssssssessssssesssssssssssssssans 54

Baseline 4-inverter Chain SChEMATIC .o eeeeseseee s sesesessssssessssessesssesssesees 57

Flowchart to Identify Itnresn variable for implementation with the dual

xii

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

double-exponential current SOUrce MOodel ... 58

Flowchart to identify Ipromp: and Inoq variables for implementation into the
dual double-exponential current source model.........oneneneneeneeneseeneeseenns 59

Injected current waveforms for circuit configurations with loads listed in
Table 5 to produce ~200 PS SET ... eenesersessessssssesssssssssssssssssssssssssssssssssssesns 63

Resulting SET voltage waveforms for the circuit configurations with loads
listed in Table 5 and for the injected current waveforms shown in
T oD < 3 63

Device-level simulation results showing voltage transients (solid lines) for

various deposited charges (After [41]) . meeeeessessessessesssesssssssssssssssssnns 65
90-nm inverter ring 0SCIlAtOT ... ssrsesaens 66
MRED to SPICE (MRED2SPICE) framework block diagram..........ccccoveeneeuneernreenens 69
Sample test design using INV1s for MRED2SPICE development.......ccoccovenreernenn. 70
MRED2SPICE process flOWChart.oeeereeseeesssssssssesssessssssesssesssessssssessens 72

Output samples of data files for: (a) MRED Q.o source (b) SPICE-generated
SET results, and (c) SPICE latch SET results. The yellow highlighted events
from (a) result in a generated output highlighted in blue in (b), and the

final SET latched errors are in ShOWN iN (C€). coveeeeernernneeseseesseessesssessesssessssessessens 73

Example core circuit for SET characterization test Structure. ... 77

SET cross-section of 1X drive strength for inverter as a function of LET.
MRED2SPICE predictions are drawn with solid lines and SEE data is drawn
With dashed HINES. ... sasnses 78

SET cross-section of 1X drive strength of 2-input NAND gate (1stinput
chained, 2" input tied to Vuq) as a function of LET. MRED2SPICE predictions
are drawn with solid lines and SEE data are drawn with dashed lines............... 78

SET cross-section of 1X drive strength for 2-input NOR gate (15t input
chained, 2" input tied to Vi) as function of LET. MRED2SPICE predictions

xiil

43.

44,

45.

46.

47.

48.

49:.

50.

51.

52.

53.

54.

55.

56.

are drawn with solid lines and SEE data are drawn with dashed lines............... 79

SET cross-section of 1X drive strength NOR2 MRED2SPICE results with

different input chain configurations from Table 9. 81
Block diagram of circuits for single event simulation of DC-D-Latch. 85
Dual-Complementary DFF input circuit showing internal connections.............. 85

Dual-Complementary DFF memory circuit showing internal connections........ 85

Memory Circuit - start state ga/gb holds logic state 1.......nernecnsenseneenn. 86

Results from memory circuit normal operation - circuit will settle to logic
state qa/qb = 0, (1.€., NNO EITOT). .t sses s sssssssssssssans 88

Block diagram of circuits for single event simulation of Dual-Complementary
D-Latch. The current sources for single event modeling are placed in the
iInput and MEMOTY CITCUILS.vveeeceeerrees s s s s sssasesaees 89

Complementary data - no error (b) matches (h), change of logic state 0 to 1,
or logic state 1 to 0; (a) input clock pulse, (b) input state, (c) ion strike,
(d) through (g) internal storage nodes, (h) output data.........ccoeerneneenneereesnesneens 91

Results from input circuit single event - circuit will settle to logic state
ga/gb =1, WhiCh IS QN EITOT ... s s ssssssssssans 93

Complementary input data with error located between 3 ns and 5 ns -
single event 0N INPUL CITCUIL.......ueeerrees s ssssssssssssesssesssssssesssesssessssssasesasees 94

Results from memory circuit single event - circuit will settle to logic state
ga/qgb = 1, WhicCh iS QN EITOT ...t ssessssans 96

Complementary input data with error between 2.5 ns and 4.5 ns - single
event 0N MEMOTY CIFCUIL. .o 96

V-CREST blOCK ia@ram.cocumeeereerersessssssssssessssssesssesssesssssssssssesssessssssssssssssssssssssssssans 98

Upset cross-section versus LET for DC-DFF layouts at two different clock
=10 1D U=) U0 (=P 101

Xiv

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Maximum SET pulse widths versus collected charge for various NAND2
LR 0T R 0] o) 4 L b Lt U0) o 1O 103

Variation of SET pulse-width relative to strike location distance to well
(o10) o U= ot 0 TSP 105

PMOSFET drain ion strike voltage pulses for 0.2 pm?2 and 4 um? n-well

(010) 4 U= Tt w0 [T 0 ST 106
Effect of input state on single event response of NAND gate[60].......cccoccneerrennn. 107
SET propagation in 10-inverter delay chains [51]...mmeeeeesseesseenns 107
MRED to LOGIC depth (MRED2LOGIC) block diagramceemeesseesseesseenne 109

Target design for logic depth SET pulse-width analysis. Logic depths of
3, 7, ANA 10 WEEE USEA. .verieeeiererereiieesesesecsessssesesessssssesesssssssssssessasssssssessasasssssssessasssssssssenen 110

MREDZLOGIC process flOWChArtoeenerneeesessesssssssssssssessssssssesssesssesssssssesnns 112

MRED2LOGIC SET pulse-width output file samples for inverter cell with

logic depth 3, (a) Original MRED input file for Qco, (b) MRED2LOGIC SET
pulse-width output file results with corresponding MRED simulation event
number after being processed through the multi-scale simulation with no

10SS Of INFOIMATION. .ecvueerecereereese et s bbb 113

Bin counts of SET pulse-widths for IBM 90-nm INVx1 for three different
logic depths and particles of 2.1 MeV-CMZ/Mg......cccrerermmermerseessesseesssessesssesssessees 114

Bin counts of SET pulse-widths for IBM 90-nm NAND2x1 for three different
logic depths and particles of 2.1 MeV-CMZ/Mg......ccocorerermermermeesmemsneesssessesssesssessees 114

Bin counts of SET pulse-widths for IBM 90-nm NOR2x1 for three different
logic depths and particles of 2.1 MeV-CMZ/Mg.....cccorerernmermermeessemsneesssessesssesssesssees 115

SET multi-scale simulation MRED to SPICE to ModelSim® for complex
[0 DT e 1 | (O8PPSR 118

Basic block diagram for a testbench with a design under test (DUT)........cc.cc.... 118

XV

71.

72.

73.

74.

Block diagram for injecting faults into the testbench.......cnecnneccniennens 121

MREDZ2LOGIC SET pulse-width distribution for 90-nm INVx1 for LET = 2.1
MeV-cm?/mg (a) Original histogram data distribution (b) Original
histogram data converted as required for fault injection.ocnnmeeireeneeenees 122

Flowchart for ModelSim® simulation to determine soft error rate.................... 124

Sample of the ModelSim® simulation transcript. (1) INVx1 SET pulse-width
distribution file is read, (2) Random seed for cell to strike, (3) ALU

testbench stimuli and monitor are invoked, (4) Random SET pulse-width

strike length, time of strike, and specific cell (5) Erroneous outputs and
expected oUtPULS At tIME Of EITOT ... ssesans 125

XVi

Acronym

ALU

ASIC

AVF

CREME96

DUE

DUT

ECC

EHP

FF

FPGA

IC

IRPP

LET

MRED

MREDZ2LOGIC

LIST OF ACRONYMS

Definition

Arithmetic Logic Unit

Application Specific Integrated Circuit
Architectural Vulnerability Factor
Cosmic Ray Effects on Micro-Electronics Code
Detected Unrecoverable Error

Device Under Test

Error Correction Code

Electron-Hole Pair

Flip-Flop

Field Programmable Gate Array
Integrated Circuit

Integrated Rectangular Parallelpiped
Linear Energy Transfer

Monte Carlo Radiative Energy Deposition

Coupling MRED to SPICE to Logic simulator (ModelSim®) in the

tool flow for modeling

xvii

MRED2SPICE Coupling MRED to SPICE in the tool flow for modeling

NSV Nested Sensitive Volumes
RF Register File

RPP Rectangular Parallelpiped
RTL Register-Transfer-Logic
SDC Silent Data Corruption

SE Single Event

SEE Single Event Effect

SER Soft Error Rate

SET Single Event Transient
SEU Single Event Upset

SKS Single Kernel Simulator
SPICE2LOGIC Coupling SPICE to Logic simulator (ModelSim®) in the tool flow

for modeling

SV Sensitive Volume
TCAD Technology Computer Aided Design
TVF Timing Vulnerability Factor

xviii

CHAPTER

INTRODUCTION

The number of transistors per integrated circuit (IC) has doubled
approximately every two years, as described by Moore’s Law [1]. This growth has
brought progress in the form of increased performance and functionality in devices
ranging from small memory chips to multi-core microprocessors. However, there
are obstacles to maintaining this growth rate. Challenges such as power dissipation,
reliability, component cost, and yield make it difficult for designs to achieve
performance goals [1]. Power reduction, in particular is especially important, and
has been addressed by numerous approaches [2-4]. This dissertation focuses on the
system reliability issues associated with transient faults resulting from selected

ionizing particle events within the IC [5].

Digital integrated circuits fabricated in advanced semiconductor processes
are susceptible to single event effects from lightly ionizing particles, e.g., alpha
particles, protons, and muons [6-8]. Furthermore, these ICs exhibit complex
responses due to interactions with these particles. Simulation of these complex
phenomena, from particle interactions to IC responses, is currently possible only
through use of multiple, disconnected tools; this method may miss possible errors
produced by radiation events and is not efficient. This dissertation describes an

integrated technique to model the impact of a single event transient (SET)

generated within a single cell on IC response. The technique begins with the detailed
simulation of the energy deposition from a variety of radiation events within a
single cell and ends with an aggregated prediction of the IC response to the
ensemble of events within that cell. This multi-scale simulation approach requires
various simulation tools that operate at different levels of abstraction. It integrates
well-defined methods to estimate the collected charge, the circuit level response
(including transient width, propagation and capture), and the higher-level

simulation of the IC response.

This dissertation describes a complete multi-level simulation approach that
accounts for: (1) the generation of transients from the basic physical interaction of a
single ionizing particle with semiconductor material, (2) the coupling of the ionizing
particle to the response of a library cell, and (3) the contribution of that library cell
to the overall response of an integrated circuit. Integrating these simulation
techniques eliminates the over-estimation of the soft error response that occurs by
assuming that every fault included in the error prediction equation [9, 10] is an

error.

The multi-scale simulation technique is demonstrated for SETs generated in
three combinational logic cells: (1) an inverter, (2) a NAND gate, and (3) a NOR gate.
These cells are contained within a specific implementation for an arithmetic logical
unit (ALU). In addition, a dual-complementary D flip-flop was also examined. The
Monte Carlo Radiative Energy Deposition (MRED) tool [11-15] is used to compute
the energy deposition and provide an estimate of the charge generation. The

incident particles are restricted to lightly ionizing particles to reduce the

significance of more complex charge-collection mechanisms that may be produced
by more lightly ionizing particles. A multi-exponential current source is used to
translate the deposited charge to an SET waveform generated on a specific node;
SPICE is used to determine the corresponding voltage pulse on the same logical cell.
Using these tools together allows one to: (1) characterize a single combinational cell
(e.g., inverter, NAND gate, or NOR gate), (2) validate these characterizations to
experimental data, and (3) characterize the SET pulse-width distributions that
result from the deposited charge generated from an MRED simulation. The resulting
SET pulse-widths and cell characterizations are used as an input to a digital circuit
simulator or IC modeling tool for functional simulations to determine the response

of the digital circuit.
The key results from this work are:

1. Using primarily TCAD results to define the inputs, it is shown that MRED
coupled with SPICE can be used to compute the cross section for producing
an SET for three circuits fabricated in a 90-nm bulk CMOS technology. TCAD
results on a 90-nm single transistor are used to define a multi-volume
structure and make a first estimate of the charge collection efficiencies. The
efficiencies are refined by comparing the simulation result to experimental
cross section results using ions with various LETs less than ~10 MeV-
cm?/mg. Only one efficiency is changed for one of the volumes of the NOR, all
others remain identical to those estimated by TCAD. With this single small
refinement, the tool is able to predict the measured SET cross section for an

inverter, a NAND gate, and a NOR gate fabricated in the same technology.

2. Integrating the simulation of energy deposition, charge collection, circuit-
level simulation, and IC-level simulation of SET response eliminates the over-
estimation of the soft error response caused by assuming that every fault
included in the error prediction equation translates to an error. Using the
predicted cross-sections of the inverter, NAND gate, and the NOR gate, a
distribution of transient pulses is generated for each of those basic cells to
enable analysis at the logic level for transient capture. Typically, a worst-case
duration (i.e., pulse width) is used for simulations at the IC level. However, a
Monte Carlo method is used in this dissertation to show the probability of
error based upon incident particles in lightly ionizing environments. Since
complex functions can be synthesized from basic gates, a distribution of
pulse widths from those gates can be used to analyze larger integrated
circuits. This dissertation leaves the analysis of an entire cell library as future
work, but a pathway is established that shows the feasibility of determining

the error rate for an IC.

Summary of Document

The dissertation is composed of nine additional chapters. Chapter 1],
Background, introduces the basic concepts that are the building blocks for the

remainder of the document. In this chapter, some basic concepts in semiconductor

physics and single event response, as well as previous approaches for modeling

single events in semiconductors are presented.

Chapter III, Research Overview, provides a brief description of the specific
tools used to complete this research. The simulation methodology is presented, as

well as a block diagram to illustrate the approach for each step in the tool flow.

Chapter 1V, Calibration of MRED to Compute SET Response, explains the
charge collection processes that occur when lightly ionizing particles pass through
sensitive volumes of the IC. The sensitive volumes are mapped to regions within the
selected library cells to determine charge collection. From this information, a
sampling is obtained of the deposited charge based on a randomization of the strike

location for an ensemble of particles for a specified number of ionizing events.

Chapter V, Modeling Collected Charge in SPICE, provides the building blocks
and background for SET modeling at the circuit level. Characterization of library
combinational cell SPICE netlists is described, using a new current source model
developed through this research. The impact of transistor design characteristics on

SET response is described.

Chapter VI, SPICE Circuit Analysis for Data Comparison, details the process to
characterize combinational cells from a library. The results of the implementation
are reported, i.e.,, how many SETs are generated, how many are latched, and the
error-cross section (cm?/logical cell) vs. LET (MeV-cm?2/mg). The results are
compared to actual experimental data reported by Cannon et al. in 2009 [16]. This

chapter demonstrates that simple TCAD results can be used to define MRED

sensitive volumes and charge collection efficiencies in a way that enables prediction

of SET cross sections.

Chapter VII, Transient Fault Analysis for Sequential Capture in Dual-
Complementary Flip-Flops, addresses the process to capture a transient within a
storage element. Transient faults can only become visible to the system if they are
latched within a storage element. This chapter examines a flip-flop design
constructed from NAND gates. A new clock-dependent upset mechanism due to ion
strikes internal to the dual-complementary flip-flop is discussed in this chapter. The

mechanism prevents the cell from writing new data into the cell.

Chapter VIII, SPICE Circuit Analysis for Logical and Timing Simulations,
explains the required inputs necessary to determine if the SET generated will
propagate through a complex digital IC. The main consideration is determining the
logic depth between registers or memory cells for a target combinational cell. Key
results include the SET pulse-width distribution for the combinational cells

investigated in this dissertation.

Chapter IX, Complex Digital Circuit Analysis Tool (ModelSim®), explains the
use of advanced simulation techniques to combine single kernel simulator (SKS)
technology with a unified debug environment for Verilog (IEEE standard 1364-
2005), VHDL (IEEE standard 1164-2008), and SystemC designs. This chapter
explains the following: (1) the background and basic testing approach, (2) the use of
a testbench to exercise all inputs, (3) the necessary functions required by an

instantiated complex digital design under test, and (4) the resulting outputs for

functional and/or correct outputs. An ALU is the design used for this research.
However, this research further advances the technique by using a fault injection
library [17] that takes into account the pulse-width distributions resulting from
Chapter VIII. The details include the implementation for fault injection and random
SET generation per combinational cell from the library, but are not required for the
user of the tool flow to adjust. Further details on developing a testbench for this
implementation, monitoring the outputs for all SETs generated, and those resulting
in errors are described. Finally, analysis for determining the resulting IC soft error
rate (SER) for each library combinational cell, as well as for the ALU as a system is
discussed. Contributions of the three combinational cells are presented proportional

to their usage within the entire ALU design.

Chapter X, Conclusions, summarizes the major contributions of the research

and discusses potential future work.

CHAPTERII

BACKGROUND

The basic mechanisms for radiation-induced single-event transients are
summarized in this chapter. Also, previous methods to predict the soft errors at the

IC level are discussed.

Basic Mechanisms

Overview of Single-Event Effects

A single event (SE) is the interaction of a single ionizing particle with a
semiconductor device. It is considered to be a localized interaction that does not
depend on the particle flux. During irradiation, an ensemble of SEs is randomly
incident both spatially and temporally. The effects produced by an SE are related to
the circuit or system response to the radiation event. Single-event effects (SEEs) are
often classified as either destructive or non-destructive effects that can lead to
permanent (hard) or temporary (soft) faults, respectively [18]. Soft faults that result
from single radiation induced transients (known as single event transients or SETs)

are the focus of this research.

During an SE, energy is transferred from the particle to bound electrons,
promoting them to the conduction band and leaving a track of electron-hole pairs
(EHPs) in the semiconductor. Linear energy transfer (LET) is defined as the rate of
this energy loss per unit path length, - dE/dx, divided by the density of the target
material, resulting in units of MeV-cm?2/mg. If the charge is generated near a
reversed-biased p-n junction, then the charge can be collected by the junction. The
charge collected by the p-n junction may result in a circuit response to the single ion
event. Charge generation deep in the bulk semiconductor region, however, may

recombine before it is collected by the junction [19].

Overview of Soft Errors

A soft error, e.g., change in logic state, can be produced in a digital IC if a
single ionizing particle passes through a sensitive region of the component. An SE
may deposit charge at or near a sensitive p-n junction, producing a current pulse
due to the junction collecting the excess charge. The transient responses of the
circuit to the current pulse is known as an SET. When an SET from the
combinational logic in a circuit appears on the input of the storage cell during a

sampling time, it may produce an erroneous response on its output.

The research described in this dissertation is focused on the response of an
IC to an SET in a single cell. This includes: (1) the response of the combinational
elements, (2) the capture within a flip-flop (e.g., an SET), and (3) the propagation of
soft errors in a complex digital IC. This study is restricted to environments

dominated by lightly ionizing particles, e.g., protons, muons [7, 20], and alpha

particles in order to focus on the integration of the various simulation tools and
eliminate the complexities associated with mechanisms like multi-node charge

collection that affect more than one cell.

Traditionally, the current resulting from charge collected on a sensitive node
is modeled as a double exponential waveform. Messenger developed a model for the

SE current pulse as a double exponential given by
I(t) = I,(e - ™) (1)

where « is the time constant of charge collection and £ is the time constant for the
dissipation of the collected charge [21]. This type of SE current pulse is shown in
Figure 1 [6, 22, 23]. The double-exponential form of the SE charge collection is the

most common form used in circuit simulations that utilize SPICE.

Soft error calculations depend on the circuit characteristics, specifically the
impact of charge collection, Qcor, for SET pulse-width generation and propagation
through a complex IC. In [6, 11, 12, 19, 22, 23] the authors describe methods to
connect energy deposition processes to SPICE simulation in order to estimate the
shapes of SET pulses. The collected charge is a function of physical conditions like:
(1) the ionizing particle’s energy, species, and trajectory, (2) silicon substrate
structure, (3) doping, and (4) the electric field. In addition, the strike location and
the electrical state of the device will factor into the collected charge. Finally, the IC’s
sensitivity to the collected charge also needs to be considered. This sensitivity

defines the critical charge, Qcri: (also known as the threshold charge, Q:xresn) required

10

to trigger a change in the state of the node [23] and determine if the SET produces

an effect [24].

The impact of soft errors on complex digital ICs depends on the specific
nature of the error. It can cause either silent data corruption (SDC) or a detected
unrecoverable error (DUE) in cases where the error is neither benign or nor
corrected [24]. Soft errors can corrupt data, but when the corrupted data does not
affect any external output from the circuit, the effect is benign and can be excluded
from the SDC category. Corrupted data that has a direct path to a storage cell and
eventually results in a visible error to the circuit output is considered a valid SDC
event. A DUE event is one in which the system detects the soft error but avoids
corruption of the output data. In general, an SDC event is thought to be more
significant or harmful than a DUE event, because it causes loss of data, as opposed to
a DUE that results in unavailability of the circuit. An SDC event potentially

represents a higher-risk for failure than a DUE.

For simple isolated junctions, such as a memory IC like a Dynamic Random
Access Memory (DRAM), a soft error will be induced when: (1) an event occurs at a
sensitive node, and (2) Qcon is greater than Qeresn. On the other hand, if the event
causes Qo to be less than Qeresn, then the circuit is assumed to be error free. DRAMs
are the first devices where soft errors became a noticeable problem, and studies
followed that showed other memory devices were susceptible to soft errors [7, 25-

28].

11

As digital ICs become more complex, the combined soft error effects in
combinational and sequential elements are important for a system level error
analysis. The sequential elements are the final element in the hardware chain that
determines whether or not a fault manifests as an error. Complex digital ICs usually
include a software component; however, this study is limited to effects at the
hardware level. Manufacturing defects, process imperfections, or interactions with
the environment can cause hardware faults. Faults in digital ICs can be classified as
permanent (i.e., remain indefinitely until corrective action is taken), intermittent
(i.e., appear, disappear, and reappear again), or transient (i.e., appear and disappear

in the form of bit flips or gate malfunction from an ion strike) [29].

12

Prompt Collection

A
y

SE Current

Time

Figure 1. Typical shape of nodal current at a junction

Previous Approaches to IC Single Event Analysis

Recent methods to model soft errors have been proposed that incorporate
various masking factors (i.e., electrical, logical, and latch-window) that affect
whether a fault ultimately appears as an error in the IC or not. Once a transient is
captured in a memory element, the effects can be analyzed like a single event upset
(SEU) in a memory element (i.e., an erroneous bit flip). This section reviews several

of the more prevalent methods.

SEU Tool

SEU_Tool was developed to analyze the contribution of combinational logic

in the path to a sequential or memory element [9]. This flow is depicted in Figure 2

13

and shows the steps to predict the transient rate of combinational logic. This tool
uses parameterized closed-form circuit models for transient pulse generation, a
structural VHDL logic-level simulation for pulse attenuation and propagation, a
probabilistic model for transient capture, and a second high-level VHDL logic
simulation for bit-error observability. In addition to circuit modeling calculations,
this method also contains algorithms at various steps to identify the worst-case
contributors to soft errors, which reduces computation time. Given the detail of
modeling capability in this method, its accuracy is largely a function of the quality

and completeness of the parameters used for input [9, 30].

Collected-Charge
Probabilistic Model
Pulse Waveform
Closed form analysis

Transient Transmission
3 dimension Transmission Matrix
D(Clock, initial Node, Latch Mode)

VHDL Simulation

Transmitted Waveform

A
Capture Probability
l’cﬁpture(\‘va\'eform. Felock

Captured
Transient
Rate

Figure 2. SEU_Tool operations flow chart[9]

SEU_Tool has two parts of the soft error assessment. First, the probability is
calculated for each node that causes a soft fault in the circuit system. There is always

a chance that the system might not be affected by the change in state of that single

14

bit. SEU_Tool also considers the observability of the soft error in the system output

[9, 30].

Intel Method

In [31], Seifert et al. emphasized that the SER of modern microprocessors
with large caches or large memory arrays are usually protected with an error
correction code (ECC) and therefore the failure rate of the device is dominated by
the contribution of sequential elements. Equation (2) can be used to estimate chip

level SER for the nodes within the circuit [31]:

all nodes

SE circuit _ ESER;wminal X TVE X AVE (2)

where the nominal SERmminal js the un-derated SER and is independent of the circuit
environment, TVF refers to the timing vulnerability factor, and AVF refers to the
architectural vulnerability factor. The TVF is defined as the fraction of time a storage
element is susceptible to upsets, and AVF is equal to the probability that a fault in
the storage element will be observed at the output [24]. Mukherjee et al. have
developed a methodology that is well understood and accepted for calculating AVF
and TVF, independently [32]. The AVF and TVF will be contributing factors to soft
error analysis, and the methods used to calculate them were considered for this
research. The methodologies and techniques identified in Seifert et al. regarding the
sequential elements were also considered when implementing the multi-scale

simulation approach. This dissertation aimed to include all the factors in a holistic

15

approach to determine the contributions of nodes to the soft error rate. The

approach used the same decomposition to determine AVF and TVF.

Other Notable Techniques for IC Soft Error Analysis

Other tools that are used to calculate impact of soft error are listed below,
along with a short description of their contribution. A detailed description can be
found in the publications noted. The publications are listed chronologically, from

earliest to the most current.

Soft-Error Tolerance Analysis and Optimization of Nanometer Circuits [33]

Dhillon et al. presented tools for the analysis and optimization of soft-error
tolerance of nanometer combinational circuits. The authors asserted the ability of
these tools to calculate accurately the “unreliability” of circuits with less
computational time than that of SPICE [33]. Since the focus of the research
discussed in this dissertation implements a multi-scale simulation approach using
SPICE, the tools identified in this publication are not applicable. However, this multi-

scale simulation approach includes all masking factors demonstrated in the paper.

Soft-Error-Rate-Analysis (SERA) Methodology [34]

This publication by Zhang et al. takes into account various approaches for

circuit and fault simulation and analysis for probability and graph theory [34]. The

16

authors assert they achieve a higher level of magnitude for speed-up over Monte

Carlo-based simulation approaches.

SEAT-LA: A Soft Error Analysis tool for Combinational Logic [35]

Soft Error Analysis Tool - Logic Analyzer tool was developed for a quick and
accurate prediction of SER in combinational circuits with the ability to capture the
three masking effects concurrently [35] is discussed by Rajaraman et al. The
methodology used for the development of this tool used logic cell characterization
and flip-flop characterization similar to the techniques in this dissertation. Their
modeling of the voltage glitch propagation, however, was done purely analytically
by the use of mathematical equations assuming a triangular or trapezoidal pulse,
while this dissertation models an SET as a double exponential voltage and simulates

it as it propagates through the circuit via SPICE.

Circuit Reliability Analysis Using Symbolic Techniques [36]

In [36], Miskov-Zivanov et al., discuss a purely analytical model using binary
decision diagrams (BDD) and algebraic decision diagrams (ADD) for a unified
symbolic analysis for circuit reliability. There are some important differences
between the dissertation research and the publication by Miskov-Zivanov et al.

While both techniques review and take into account all forms of masking, i.e., logical,

17

electrical, and latch-window, this publication treats them as dependent on one
another as they apply to a specific design and feeds into the BDD and ADD decision
trees. For the current work, each element is evaluated for its contribution to the

overall design.

Modeling and Optimization for Soft-Error Reliability of Sequential Circuits [37]

This publication is follow-on work by Miskov-Zivanov et al. that takes into
account the sequential elements not presented in their previous work. Like its
predecessor publication, it is a purely symbolic approach for efficient estimation of
the soft error susceptibility of sequential circuits [37]. Two methods were compared
in this paper, a Markov chain (MC) method and the binary decision and algebraic
decision diagram (BDD/ADD) method mentioned in the previous section. It was
shown that the MC approach could only provide steady-state behavior information,
but the BDD/ADD could be done on both transient and steady-state effects. This
paper, like its predecessor is entirely a symbolic model that is mathematically
intensive using BDD/ADDs, but was verified to a Markov Chain and HSPICE™ circuit

simulation.

Summary

The multi-scale simulation approach described in this dissertation provides

the framework to consider all aspects that contribute to soft errors, including charge

18

deposition, circuit simulation, and IC simulation. Previous methods made crude
assumptions about energy deposition from radiation transport. Integration with
MRED enables improved accuracy in the energy deposition calculations and the
resulting charge collection. Coupling with SPICE enables the statistical distribution
of pulse widths to be considered instead of the fixed pulse width used in previous
methods. Finally, the IC simulation provides the framework to study the

contributions of individual cells based upon their usage within a synthesized design.

19

CHAPTER III

OVERVIEW OF MULTI-SCALE SIMULATION OF SINGLE EVENT TRANSIENTS

This chapter provides an overview of the multi-scale simulation approach
developed during this research. The chapter briefly discusses the connection of
previous soft error prediction methods for storage elements to the research topic of

this thesis (which includes combinational cells).

Overview of the Multi-Scale Simulation Approach

Most research on soft error predictions prior to 1990 was conducted on
static memory elements only [38], static analysis of logic elements, and flip-flops
(FFs). The more recent research, SEU_Tool, presented the effects of clock-dependent
(i.e., dynamic) soft errors in logic elements and FFs [9]. Typically, these soft-error,
static-upset predictions were calculated using tools that were limited to the

assumption that the entire drain area was sensitive [13].

This work expands this concept significantly to include SET-induced soft
errors observed at the complex digital IC output. This requires coupling of three

tools: (1) radiation transport and charge collection estimates (labeled MRED

20

process in Figure 4), (2) circuit level simulation (SPICE process), and (3) high-level
IC simulation (IC Modeling Tool). Decision Point 1 (identified in red in Figure 3),
between the MRED process and the SPICE process indicates whether or not the
charge deposited was large enough to generate a sufficient current pulse. If not, then
this event is assumed to be negligible and the next MRED event is evaluated. These
data are stored in a data array where each specific event from MRED is always
associated to the current source it generates. The key contribution of this work is to
develop and demonstrate a method of predicting SET cross-sections (or the number

of transients per particle fluence) using MRED coupled with SPICE.

A link between SPICE and the IC modeling tool requires that the generated
SET be represented by a compatible form, specifically a digital signal equal to a logic
1 or logic 0, and inherit the pulse duration from the SPICE output. Therefore, the
SETs are converted to equivalent-rail-to-rail voltage signals. Decision Point 2 (Figure
3), indicates whether or not the SET pulse has sufficient duration to be propagated
to the IC modeling tool for further simulation. If not, then the next SET pulse is
evaluated. Each specific soft error can be traced back to a specific event from MRED.
The analysis takes place from the viewpoint of individual library cells. The key
contribution of this work demonstrates the coupling of specific particle strikes to a

latched error.

Once the signals are in the form that ModelSim® uses, the tool analyzes SET
propagation through the combinational logic to memory elements to identify if
errors occur at the outputs of the IC (Figure 3). ModelSim® was used for this

research because of its availability, but similar IC modeling tools could also be used.

21

The integrated simulation approach for soft error analysis encompasses the
spatial (energy deposition to charge generation), timing (current pulse capture) and
logic (pulse propagation) vulnerabilities all in one multi-scale simulation approach.
The remainder of this dissertation refers to the energy-to-charge process as MRED,

circuit-level simulation as SPICE, and IC-level simulation as IC Modeling.

SPICE |Process

SET Pulse +
ault Injection

V >V, SET Pulse

tran "~ 'rr

M~ IO

IC Circuit

ldbl_exp > Viran .
SER

Inputs .
> MRED
Process

IC Modeling
Tool

Figure 3. Multi-scale simulation approach black box block diagram

Overview of Energy Deposition and Charge Collection Processes (MRED)

Researchers at Vanderbilt have developed a tool for predicting soft errors
that uses Monte Carlo radiation transport techniques along with complex sensitive
volumes [14, 15] called MRED (this tool is briefly described below and in more
detail in Chapter IV). Previous research described methods for coupling MRED to
SPICE for prediction SEU for space and terrestrial environments [11, 12]. The MRED
method for SEU prediction is a Monte Carlo numerical integration of a set of general
equations [13]. The power of this approach is that it remains tractable in the
absence of simplifying assumptions, and therefore in principle, it is more precise

and accurate to predict errors [12, 13, 15]. One key advantage of migrating from the

22

typical RPP or Integrated RPP (IRPP) analysis to MRED is the capability to consider
charge collection as opposed to charge generation. Two main capabilities that have
been implemented recently in MRED are composite sensitive volume models and
multiple sensitive volumes. Composite sensitive volume models are used to relate
deposited energy to collected charge [11, 12]. These capabilities enable a more
physical representation of the charge collection process resulting from a single
event. MRED also enables the use of multiple sensitive volumes to model multiple
node charge collection, which cannot be considered in the traditional RPP/IRPP
analysis. (The work described in this dissertation does not consider multi-node
charge collection directly because of the limited ability to model these effects, but if
models were developed, then they could be integrated into the approach described

in this thesis.)

MRED can be used to estimate the collected charge, Qcoi, from an ionizing
radiation event by defining these inputs to MRED: (1) the ionizing particle’s energy,
species, and trajectory, (2) sensitive volume size, locations, and charge collection
efficiency (3) the strike location of the ion within the specified combinational cell,
and (4) the number of events to execute. During a MRED run, the beam is
randomized over strike location. The output of the run is the collected charge
(defined by the energy deposited in the volume and its charge collection efficiency)
for each volume for each event. A basic block diagram of this process is seen in
Figure 4 with: (1) Qcon defined as charge collected, (2) i defined as MRED event

number, (3) j defined as the circuit node number, (4) k defined as the individual

23

sensitive volume, (5) a defined as the sensitive volume efficiency, and (5) Edep

defined as the energy deposited in the individual sensitive volume.

MRED Process

Material
Ion-type
yans Energy -> Charge
MREDEvent V4 > > Qcoll
Energy 1 pC N 7
Angle Qcollu =5 sM VE jukCdep,i, j,k
22.5 MeV &~

Figure 4. MRED process basic block diagram

Overview of Circuit Simulation (SPICE Process)

The MRED process provides the input to the SPICE process where the
conversion from collected charge to the node current model is calculated for each
cell. The output charge for each ion strike event, Qcoi, from MRED is converted to a

current source (levent) (Figure 5).

24

SPICE Pre-Process

Qcoll
Charge -> Current
—> lgbl_exp

Qcoll = Q] +QZ =t}11(t)dt +}12(t)dt

L

Figure 5. SPICE pre-process basic block diagram

After the Ieven: current source models are calculated, then conversion to the
associated transient voltage, Viran, is simulated. The Vian is then passed through a
random number of stages, n, of the corresponding combinational cell (Figure 6)
using a SPICE circuit netlist, and filtered into an equivalent rail-to-rail voltage, V.-
The V.- is now a new model for the SET pulse and is a typical digital transitioning
signal - logic 1 to logic 0 and vice versa. Figure 6 shows Vian as an arbitrary input

voltage for illustration only.

25

e K R
_ N

Combinational Library Cells: Sequential Library Cell:
Generate/Propagate SETs Capture/Generate SETs

Sy

Figure 6. Conversion of Vian to Vr.r after a random number of stages of
combinational library cells

Multiple cases of the SET pulse generation and propagation through the
combinational cells must be considered to determine the V..rsignal. This helps to
determine the number of subsequent cells that are required to convert the Vian
signal into a square pulse and determine the equivalent rail-to-rail voltage transient
(called an SET pulse). The V.., is also simulated and analyzed in SPICE for the
associated full-width, half-maximum rail-to-rail voltage output that produces a
particular SET pulse with a given duration. An ensemble of SETs is generated for an
ensemble of radiation events; each individual SET in this ensemble is traceable back

to an individual radiation event with a specific Qcon (Figure 7).

26

SPICE Process

\% >V

ldhl_exp > Viran tran "~ ‘r-r SET Pulse

Qon 5| Charge->Current »
Qu=0+0.- 1 (0)dts [1(t) | T I_[L

Figure 7. SPICE process complete block diagram

Overview of IC Modeling Tool - ModelSim®

The SPICE analysis converts Qcon to Viran then to Vi so that it can be used
effectively as an input to the IC simulation tool, ModelSim®, using logic 1’s and 0’s.
The benefit of integrating ModelSim® with MRED and SPICE is the ability to have a
multi-scale simulation comprised of radiation transport to circuit-level simulation
to IC-level simulation. An ALU is used as an example circuit. The simulation uses
both combinational elements and storage elements to trace the SET through each

stage of the circuit.

ModelSim® simulates the execution of an operational circuit via a testbench
and determines if the generated SET results in a fault and eventually a soft error.
Soft errors are the manifestation of the faults. That is, not all faults show up as
errors (i.e., some faults are benign), but errors can lead to SDC or DUE. Figure 8
illustrates that a fault within a specific scope may or may not show up as an error to

the outer scope if the fault is masked [24].

27

Inner Scope

Inner Scope

Outer Scope Outer Scope

(a) Error (b)

Figure 8. (a) Fault within the inner scope masked and not visible to an IC
output (b) Fault propagated outside the inner scope to the outer scope and
visible as a soft error to the output of the IC. [24]

If the fault makes it through the first stages of simulation of the combinational
elements and migrates through to a sequential or memory element, then the
resulting error can be verified by monitoring the output through the testbench. This
task is accomplished by running an operational circuit and a functional testbench in

this multi-scale simulation approach.

Verification is a process used to demonstrate the functional correctness of a
design. A block diagram of an IC design using a testbench (Figure 9) shows how the

testbench interacts with the design under verification.

28

Testbench

Imlgh Design under I
Inputs Verification Outputs

YYYY
YYYY

Figure 9. Generic structure of a testbench and an IC design under verification

The term testbench usually refers to the code used to provide a pre-
determined input sequence to a design and then to observe the response. The
testbench is a completely closed system. When using higher-level IC modeling tools,
the testbench is effectively a model of the entire design. The verification challenge is
to determine what input patterns to supply to the design and what output patterns

should be expected from a properly working design [39].

Languages such as VHDL or Verilog are used to implement the testbench
wrappers, fault injection and stimuli for ModelSim®. All input signals are expected
to be logic 1 or logic 0. The SET pulse from the SPICE analysis is an equivalent rail-

to-rail voltage (1 or 0).

The inputs for the design under verification are the SET pulses generated for
the characterized cells. These SET pulses form a distribution of pulse widths to be
used in conjunction with a fault injection library [17], which is described in detail in

Chapter IX. This procedure allows for both randomization of an SET pulse-width and

29

selection of the corresponding combinational library cell to strike. The ALU circuit is
monitored through a comparator in the testbench for a soft error. The circuit is
verified at clock speed so that the resulting error contributions from individual cells
take into account the dynamic operation of the circuit. This process produces a soft
error analysis for each cell that does not differentiate between logical-masked or
timing-masked errors for a full IC circuit, mimicking a true experiment. This process
is the first method to demonstrate soft error contributions from individual cells

with direct traceability to particle strikes from the specified environment.

Benefits of Multi-Scale Simulation Approach

Integrating simulations of energy deposition, charge collection, circuit
response, and IC functionality to compute the overall SET response eliminates over-
estimation of the soft error rate caused when one assumes that every fault included
in the error prediction equation [9, 10] is an error. The multi-scale simulation
approach uses the various tools to identify the different vulnerabilities due to
spatial energy deposition and charge collection, timing of pulse capture, and
propagation of pulse through the logic for complex digital ICs. A more refined soft
error analysis that counts only those necessary electrical, latch-window, or logical-

masked errors can be determined using this process (Figure 10).

30

SPICE|Process
Q
coll T pul SET Pulse + o
Inputs ldbl_exp ->Viran Viran > Vir SET Pulse ault Injection _ [iCCircuit
> MRED IC Modeling | SERB
Process Tool
A
"Generate" SET "Propagate” SET "Capture" SET
Method Method Method

Figure 10. Multi-scale simulation for generation, propagation and capture of
an SET

31

CHAPTER IV

CALIBRATION OF MRED TO COMPUTE SET RESPONSE

This chapter describes preliminary calibration of MRED to simulate the
energy deposition and charge collection processes important for SET prediction in
three logic cells. Calibration of nested sensitive charge-collection volumes for SETs
in logic cells is described. The chapter concludes with an example of how to develop
nested charge-collection volumes for an inverter cell and examples of outputs from
MRED simulations. Chapter VI presents the methods used to refine this initial guess

using experimental data.

Charge Collection Simulation using MRED

Background

Circuits designed in a 90-nm IBM Complementary Metal-Oxide-
Semiconductor (CMOS) process were selected to demonstrate the multi-scale
simulation approach. The methods used to estimate the collected charge from
energy deposited by a radiation event begin with TCAD simulations performed on

the IBM 90-nm bulk transistors [6]. Warren, et. al, used these simulations to support

32

MRED prediction of the single event upset response of radiation-hardened FFs. The
accuracy depends upon adjusting the charge collection efficiency of each volume so
that predictions agree with experimental data. The research in this dissertation uses
the same TCAD results to calibrate SET pulse-widths predicted by coupling MRED to
SPICE against measured data for various combinational library cell elements of an

ALU fabricated in the IMB 90 nm process.

Figure 11 and Figure 12 [11] provide the results of the TCAD simulations for
particles with an LET of approximately 10 MeV-cm?2/mg. Figure 11 shows the
resulting nested sensitive volumes for the 90-nm NMOSFET. At this LET, TCAD
predicts the charge collection efficiency in the active area of the transistor as 100%
(this is the drain/source region above the well). The figure also shows the set of
nested sensitive volumes associated with the well structure. The volume nearest the
drain has an efficiency of 54%. The collected charge drops rapidly as the volumes
get farther from the active region, this is shown by the change in coloring in the
figure going from red to blue. The charge collection efficiency decreases rapidly as
the distance increases from the active area. Figure 12 shows the TCAD results for
PMOSFETSs simulated with the same LET. The efficiency in the active area is 80%.
The charge collection efficiency of the next region in the well is 25%, and it

decreases as the volumes are farther from the active region.

33

Top projection of collected charge from
TCAD simulations at normal incidence

8 of 30 SV Shown

NMOS Gate

Ol

(29"

LET=0.10 pCum!

p-well contact strip

3 =10 =03 () C.3 e i3
x (um)
s=0.41, m = 0.05; Substrate = 0.54
X =30 um; vy, =216 pm;z =198 um

Figure 11. TCAD-generated spatial distribution of the collected charge as a
function of strike location with 8 of 30 sensitive volumes (SV) drawn for the

single node NMOS device at 0.1 pC/mm (top down view). [11]

Q.. as a function of strike
location at normal incidence PMOS Gate
PMOS Drain

B o-well contact strip

v 150f30 SV o0
g Shown

Active Sihcona=0.8

n-well'p-well boundary

LET=0.10 pCpm*!

p-well contact strip

Q -1.% -1.0 -0.3 o0 0s e

Subset of Substrate SV

X (pm) N
s =0.77; m = 0.06; Substrate ;= 0.25
X =2.5 U Yy = 3.07 pm; z,,, = 1.27 pum; Cut-plane @ y =0.8 ym

Figure 12. Spatial distribution of the collected charge as a function of strike
location for the single node PMOS device at 0.1 pC/mm (top down view). [11]

34

Nested Sensitive Volumes from Library Cell Layouts

The bulk of the charge collection for lightly ionizing particle events is due to
charge generated in the active area and nearby in the well. So, the restriction of the
environment to lightly ionizing particles allows decreasing the number of volumes
necessary for simulation over that used in [6]. Four volumes are chosen to represent
the composite sensitive volume: two in the active area and two in the well. Each pair

is nested, but the active volumes are kept distinct from the well volumes.

The dimensions of the charge-collection volumes are determined from the
layouts of the cells. A top view of a transistor, either NMOSFET or PMOSFET, is
shown in Figure 13. The source and drain are shown in blue, and together (along
with the region below the gate) they form the active area of the transistor. The
figure also shows the well that surrounds the transistor. In the figure, the thick lines
at the top and bottom represent the well boundary, while the absence of thick lines
on the left and right represent the fact that the well extends over large distances in
those directions. The well contact is also shown in Figure 13, but its location is not
relevant for lightly ionizing particles. (Note that the size and location of the well
contact is relevant for highly ionizing particles [40].) The side view of the CMOS
transistor is shown in Figure 14. This view is referenced along the cut-line, X, in
Figure 13. The active region is the source and drain regions down to the top of the
well. The active region is surrounded by trench oxide, charge generated in this

region does not contribute to charge collected by the drain.

35

Well

Figure 13. Top view of CMOS transistor that is representative of layout

Gate

Source Drain
Oxide Oxide

Well

Figure 14. Side view of CMOS transistor from cut along the line X in Figure 13

Figure 15 and Figure 16 show the top and side views respectively of the four
charge-collection volumes for the basic transistor, two of which are in the active
region and two that are in the well. The two volumes in the active region are called
drain and src_drain for this discussion. The drain volume is the most efficient charge
collection volume and is defined by the x-y plane in the layout of the drain. This is

drawn on the right of the figures with the darkest blue. The depth of this charge

36

collection volume is equal to the thickness of the trench oxide, which is 0.35 pm for
this process. The src_drain volume consists of the whole opening of the trench oxide
and also extends down to the top of the well. This is drawn on the right of the figures
with the second darkest blue. It is noted that the src_drain volume contains the
drain volume in its entirety. The two well volumes are called well-1 and well-2. The
well-1 volume is formed by starting under the drain volume and extending out in
the positive and negative x directions in the figure by one half of the lateral length of
the drain. These extensions of the positive and negative x direction are consistent
with the TCAD simulations in Warren [11]. The well-1 volume extends in the
positive and negative y-directions by a constant width, since the charge collection is
bound by the well boundaries in that dimension. Well-1 extends 0.3 pum down into
well, and that distance is based upon the TCAD simulations [11]. The well-2 volume
starts with the active area, includes the well-1 volume, and extends out in the
positive and negative x-directions another one-half of the lateral drain length. It
extends a constant amount in the positive and negative y-directions. Finally, it
extends 0.4 pm down into the well and that distance is based upon TCAD
simulations [11]. The well-2 volume is the least efficient in terms of charge

collection.

37

Well

Figure 15. Top view of CMOS transistor with top view of charge-collection
volumes

Gate

Source Drain
Oxide Oxide

Well

.

Figure 16. Side view of CMOS transistor with side view of charge-collection
volumes

There are a couple of variations on the basic CMOS transistor that must be

included in order to build charge-collection volumes for any combinational cell of a

library. Transistor designs can either be connected in series or in parallel. For

parallel connections, there are a couple of ways this can be handled, and these are

depicted in Figure 17 and Figure 18. Figure 17 shows two CMOS transistors in

parallel with a shared drain in the middle. Charge-collection volumes for these

parallel transistors are similar to the basic transistor. Figure 18 shows the common

38

source for the parallel transistors located in the middle and the shared drain on
each side. Though not shown in the figure, metal wires would short the shared drain
regions. An additional drain volume is required for this type of parallel connection.
Two well-1 volumes are also required beneath each shared drain. However, the
extension from each drain in the positive and negative x-directions may revert the
two well-1 volumes back to a single well-1 volume. Figure 19 shows the series
connection of CMOS transistors. With series connections, a new volume must be
introduced for the intermediate drain. The intermediate drain may collect charge
like the drain or the source depending on the bias in the intermediate drain. This
intermediate drain bias will vary depending on input conditions. An additional well-
1 volume must also be included, and its efficiency will likewise depend upon the bias

of the intermediate drain.

Well

Figure 17. Top view of two CMOS transistors connected in parallel with a
shared drain in the middle

39

Well
Figure 18. Top View of two CMOS transistors connected in parallel with a

shared drain on the outside. Metal lines connecting the shared drain are not
shown.

Figure 19. Top view of two CMOS transistors connected is series with an
intermediate drain

Well

Example Geometry of the Nested Sensitive Volumes In MRED

MRED uses a Python script (Appendix A) to define various inputs including:
(1) the radiation environment (particle species, energies, and directions), (2) the

location and size of the sensitive volumes, (3) the number of particles to be

simulated, and (4) a threshold energy (or charge) for recording of events per MRED
run. The application of the charge collection efficiency per sensitive volume can
occur either in the MRED Python script or in the pre-processing Python script for
SPICE; both methods were utilized for this research. One was used for charge
calibration (MRED only), and the other was used for charge conversion (SPICE
only).

Sensitive volumes are defined in Python with a vector pointing to the center
and a three-dimensional size. Figure 20 was extracted from the layout of the basic
inverter cell (INV) in the 90-nm library and will be used to demonstrate how to
obtain the sensitive volume center and size in two-dimensions. The (X, y)
coordinates of each drain are shown on the left (Drain Area), and the (x, y)
coordinates of the active area are shown on the right (Src_Drain Area). All
coordinates are in um. From these coordinates, the four sensitive volumes for each
transistor are determined. For example, the NMOSFET drain is bounded by the
coordinates (0.46, 0.94) and (0.72, 1.22). The sensitive volume center for the
NMOSFET drain in two-dimensions is (0.59, 1.08) and the size in two-dimensions is
(0.26, 0.28). So, the sensitive volume is defined by the center coordinates plus and
minus one half of the x-size in the positive and negative x directions and plus and
minus one half of the y-size in the positive and negative y directions. The sensitive
volume definitions (center and size) for the INV cell are provided in Table 1. This
same process can be applied to all cells in a library. The MRED Python script for the

INV for all these conditions is provided in the APPENDIX A.

41

y (um) y (um)
3.04 DrainArea 3.0 - Src_Drain Area
0.73,2.59 0.73,2.59
2.5- 25 -
2.0 2.0
0.46,1.75 0.11,1.75
1.57 1.5 -
0.72,1.22 0.72,1.22
0.46,0.94 0.12,0.94
0.57 0.5 -
T —>X (um) . —>X (um)
0.5 1.0 0.5 1.0

Figure 20. Top view of drain area and active area for basic INV cell (PMOSFET
on top and NMOSFET on bottom)

Table 1. Sensitive volume definitions for MRED Python script including the
(x,y, z) coordinates in mm for the volume center and the length, width, and
depth for the volume, also in mm

Sensitive Volume Name | Sensitive Volume Center | Sensitive Volume Size
(um) (um)
PMOSFET Drain (0.59, 2.17, 0.175) (0.26, 0.84, 0.35)
PMOSFET Src_Drain (0.42,2.17,0.175) (0.62, 0.84, 0.35)
PMOSFET Well-1 (0.59, 2.17,0.50) (0.52,1.14, 0.30)
PMOSFET Well-2 (0.42,2.17,0.55) (0.88, 1.24, 0.40)
NMOSFET Drain (0.59,1.08, 0.175) (0.26, 0.28, 0.35)
NMOSFET Src_Drain (0.42, 1.08, 0.175) (0.60, 0.28, 0.35)
NMOSFET Well-1 (0.59, 1.08, 0.50) (0.52,0.48,0.30)
NMOSFET Well-2 (0.42,1.08, 0.55) (0.86, 0.58, 0.40)

42

Converting Deposited Energy to Collected Charge

To convert the charge deposited in the nested sensitive volumes to collected
charge, each deposited charge is multiplied by the corresponding efficiency. A best
first guess for the efficiencies were made based on TCAD simulations [11], as listed
in Table 2. This table lists the multiplier used in the Python script to determine the
collected charge in each volume. The table also lists a cumulative efficiency, because
the volumes are nested. For example, the drain volume is completely contained
within the src_drain volume, so any charge deposited in the drain will be found in
both volumes. Therefore, the cumulative charge collection efficiency of the drain is
the sum of the drain and src_drain multipliers.

An iterative process was used to refine the values of the efficiencies by
comparing successive MRED coupled with SPICE predictions to experimental data
on a set of defined circuits (more details on calibration of the multi-scale simulation
approach to experimental data appears in Chapter VI, the interested reader can go
directly to that chapter). Table 2 gives the final efficiencies that provided the best
match (i.e., least squares) of the multi-scale simulation approach to the SET
experimental data. It should be noted that the only item that changed from the start
were the well-1 sensitive volumes. They both increased, but the largest difference

was the final collection efficiency in the PMOSFET well-1 volume.

43

Table 2. Charge collection efficiencies listed for each sensitive volume in the

INV cell
Sensitive Volume Name Beginning Efficiencies Final Efficiencies
Multiplier | Cumulative | Multiplier | Cumulative

PMOSFET Drain 0.60 0.80 0.60 0.80
PMOSFET Src_Drain 0.20 0.20 0.20 0.20
PMOSFET Well-1 0.15 0.25 0.70 0.80
PMOSFET Well-2 0.10 0.10 0.10 0.10
NMOSFET Drain 0.75 1.00 0.75 1.00
NMOSFET Src_Drain 0.25 0.25 0.25 0.25
NMOSFET Well-1 0.44 0.54 0.55 0.65
NMOSFET Well-2 0.10 0.10 0.10 0.10

MRED Python scripts can be tailored to provide a wide range of outputs. A
sample of an output file for the INV cell simulated with particles for an LET equal to
2.2 MeV-cm?/mg is provided in Table 3. This table shows: (1) the MRED event
number, (2) the “weight” or value multiplied to the number of events for each
particle, (3) the charge collected in each of the eight volumes, (4) the total charge
collected in the PMOSFET, and (5) the total charge collected in the NMOSFET. The

actual script ran for 100,000 events.

44

Table 3. Sample outputs from the MRED Python script with charge collection
calculations (charge given in fC)

Event # Weight PMOSFET Volumes NMOSFET Volumes PMOSFET | NMOSFET

Drain Src-Drain | Well-1 Well-2 Drain Src-Drain | Well-1 Well-2 Charge Charge
11 1.00E+00 | 0.0000 0.0000 0.0000 0.0113 0.1543 0.1580 0.1392 7.6224 0.0011 0.9940
50 1.00E+00 0.0478 0.0795 6.3753 8.1480 0.0000 0.0000 0.0000 0.0000 5.3221 0.0000
70 1.00E+00 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 7.1190 0.0000 0.7119
78 1.00E+00 | 0.0000 0.0000 0.0170 0.3299 0.1195 0.1747 0.2118 7.4301 0.0449 0.9928
100 1.00E+00 | 0.0000 0.1580 6.5487 9.5263 0.0000 0.0000 0.0000 0.0154 5.5683 0.0015
124 1.00E+00 | 0.0000 0.0000 0.0000 0.0000 0.0535 0.1129 0.0334 1.3418 0.0000 0.2209
137 1.00E+00 | 0.0000 6.9549 6.0394 7.8156 0.0000 0.0000 0.0000 0.0000 6.4001 0.0000
164 1.00E+00 0.0000 0.0000 0.0000 0.0000 0.3183 0.5146 6.4071 7.6815 0.0000 4.6594
181 1.00E+00 | 6.2057 6.8611 5.9113 9.6009 0.0000 0.0000 0.0000 0.0000 10.1936 0.0000
216 1.00E+00 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0316 0.4386 7.8000 0.0000 1.0291
265 1.00E+00 | 0.1639 0.4690 6.3636 8.2951 0.0000 0.0000 0.0000 0.0594 5.4762 0.0059
275 1.00E+00 | 0.5416 0.0748 0.1334 9.3955 0.0000 0.0000 0.0000 0.0000 1.3729 0.0000
292 1.00E+00 | 0.0000 6.9953 7.0074 8.3963 0.0000 0.1370 0.1059 0.0000 7.1439 0.0925
395 1.00E+00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0297 7.2068 0.0000 0.7370
399 1.00E+00 | 0.0000 0.0000 0.0489 0.0071 6.2529 6.2670 5.5741 9.8968 0.0349 10.3119
401 1.00E+00 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.2383 0.2479 1.0124 0.0000 0.2972
506 1.00E+00 | 0.0000 0.0000 0.0000 0.0000 0.0066 0.0066 0.0000 8.4673 0.0000 0.8533
637 1.00E+00 | 0.0712 5.7400 5.6690 9.6301 0.0000 0.0000 0.0000 0.4330 6.1220 0.0433
685 1.00E+00 | 0.0042 0.0000 0.0358 0.0616 0.0204 0.7004 5.6042 9.6170 0.0337 4.2344
784 1.00E+00 0.1746 0.1600 0.4777 8.2528 0.0000 0.0000 0.0000 0.0000 1.2964 0.0000
875 1.00E+00 | 0.1575 6.7334 5.7045 6.5224 0.0000 0.0000 0.0000 0.0000 6.0866 0.0000
895 1.00E+00 | 0.0000 0.0000 0.0000 10.0163 0.0000 0.0000 0.0000 0.2284 1.0016 0.0228
905 1.00E+00 | 7.9053 0.4718 7.1202 7.1501 0.0000 0.0000 0.0000 0.0000 10.5367 0.0000
928 1.00E+00 | 0.0000 0.0000 0.0303 8.6935 0.1373 0.2104 0.2060 0.0336 0.8906 0.2722
989 1.00E+00 | 1.0810 0.0000 0.3374 7.7787 0.0000 0.0000 0.0000 0.0000 1.6627 0.0000

45

CHAPTERYV

MODELING OF SINGLE EVENT TRANSIENTS WITH DUAL DOUBLE-EXPONENTIAL

CURRENT SOURCES

This chapter describes a simple, yet effective method to model the current
waveform resulting from a charge collection event for digital single event transient
(SET) circuit simulations. The model uses two double-exponential current sources
in parallel, and the results illustrate why a conventional model based on one double-
exponential source is insufficient to model long single event transients. A small set
of logic cells with varying input conditions, drive strength, and output loading are
simulated to extract the parameters for the dual double-exponential current
sources. The parameters are based upon both the node capacitance and the

restoring current (i.e., drive strength) of the logic cell.

Background

If a radiation event traverses close enough to the depletion region of a
sensitive junction, then the non-equilibrium charge distribution can induce a

temporary modulation of the potential along the trajectory of the event. A period of

46

prompt collection typically follows as the potential collapses to the normal state.
Subsequently, motion of carriers by diffusion to the p-n junction dominates the
collection process until all the excess carriers are collected, recombine, or diffuse
away from the junction area. The charge collected from the radiation event
produces a current pulse at the node. The time constants depend strongly on the

type of ion, its energy, and the properties of the specific technology.

After an ion passes through a sensitive volume in a combinational library cell
a voltage SET appears at the cell’s output - modeled as a double-exponential pulse
Figure 21. This voltage waveform is the fundamental component for the MRED to
SPICE integration. After the transient propagates through a few library cells, the

response of the circuit shapes the SET into a square-wave (Figure 25).

>

—

—
Combinational Library Cells: Sequential Library Cell:
Generate/Propagate SETs Capture/Generate SETs

Figure 21. Ion strike on combinational library cell modeled as double
exponential current source

47

Combinational Library Cells: Sequential Library Cell: Capture/
Generate/Propagate SETs Generate SETs

Figure 22. Propagation of double-exponential current source to square wave

In advanced ICs, the circuit response time can be comparable to the
characteristic time for single-event charge collection event; the charge collection
process dynamically interacts with the cell’s circuit response to the event [41, 42].
Correctly modeling the transient shape of the pulse is critical to providing accurate

circuit soft error predictions.

A commonly used analytical model to approximate the induced transient
current waveform is the double-exponential function with a rapid rise time and
gradual fall time (Figure 23) [6, 23, 43]. This waveform is the most common form
used in transistor-level simulations. The equation for this current pulse, I(t), in

SPICE is:

48

HOER Lo | 1-€ 7 g <1<1, (3)

—(r-t42) —(r=ta1)

I 7o_e N

Peak e

where, t47 is the onset of the rise of the current, t4 is the onset of the fall of the
current, Ipeqax is the maximum current to be approached, 7 is the rise time constant,
and 72 is the fall time constant. The total charge delivered by the current pulse, Qrotal,
is the integral over time of I(t):

~(ta2-1a1)

Oroar = Lpear | T +T, + (tdz =1,)_Tle i (4)

If 7; is small compared to the difference in time between the rising and falling edges
of the double-exponential waveform (t4z - taz), then the last term is insignificant, and

the calculation of total charge is simple.

49

100

Current, uA

T T |
0 20 40 60 80 100
Time, ps

Figure 23. Example of a Double-Exponential Current Pulse (Ipeak = 100 pA, ta1 =
10 ps, taz =5 ps,t1 =2 ps,t2 =10 ps)

Limitations of Double-Exponential Current Source

Previous research has shown that SET pulse-widths may be upwards of
hundreds of picoseconds under some conditions [40]. When these long pulses are
modeled with one double-exponential current source, the resulting voltage
transient either overdrives the circuit significantly or has a very slow leading edge,
depending on the selection of parameters. If (tiz — t41) is increased or if Ipeq is
increased, then the current pulse can overdrive the circuit, forward-biasing the
source-body junction(s). This property is shown in Figure 24, where the transient
voltage drops below Vss = 0 volts. This overdrive will result in the simulation over-
predicting the amount of charge needed to produce longer SET pulse-widths. On the
other hand, if (taz - tar) is increased and if Ipeax is decreased to compensate for the
overdrive, then the resulting voltage transient will have a slow leading edge (Figure

25). Neither of these results describes SET pulses accurately [41, 42].

50

0.5

Voltage, V

0.0

0.5

T T T T 1
[200 400 600 800 1000

Time, ps

Figure 24. Example of a voltage transient that overdrives the circuit (i.e., the
voltage drops below Vss = 0 volts)

0.8

0.6

Voltage, V

0.4

0.2

T
0 200 400 600 800 1000
Time, ps

Figure 25. Example of a voltage transient with a slow leading edge

Other researchers have proposed single event models that make use of the
node voltage to control the single event current source to overcome these
limitations, but the implementation in a transistor simulation is no longer simple
[41]. This chapter introduces an extension of the double-exponential current source:
the dual double-exponential current source. The dual double-exponential current

source model is composed of two parallel double-exponential current sources, one

51

for prompt charge collection and one for sustained charge collection. This model can

be used to perform SET simulations.

Dual Double-Exponential Current Source Model

The dual double-exponential current source is based upon single event
device-level simulations, as shown in Figure 26 [41, 42]. There is a short high
current peak, followed by a sustained shelf of lower current. This behavior can be
described by a long double-exponential current source with Ipeqax equal to the shelf
current and a short double-exponential current source to add the extra current for
the short peak. Figure 27 shows an example of the two individual current sources
and the result of their parallel combination for the dual double-exponential current

source model.

52

3-D TCAD Mixed Mode Inverter Simulations
NMOS Drain Current, LET of 1, 5, 10, 20, 30, 40 MeV/mg/cm?

2
~—— TCAD Mixed Mode - LET=1
== TCAD Mixed Mode - LET=5
i +~— TCAD Mixed Mode - LET=10
~— TCAD Mixed Mode - LET=20
15 == TCAD Mixed Mode - LET=30
= »— TCAD Mixed Mode - LET=40
£
‘E 5
o
3
s T
[
8 T | S Plateau - PMOS Drive Current Level
(]
=
Z ;
0.5 Increasing LET
1:75 2 2.25 25 2.75 3

Time (ns)

Figure 26. Device-level simulation results showing short burst of high current
followed by a sustained shelf of lower current (after [41])

53

(a) 200
< _
S 150
€
o 100
j -
5
O 50 —
0 T T T T 1
0 200 400 600 800 1000
Time, ps
(b) 200 —
< _
S 150
1
o 100
j .
5
(&) 50
0 T T T T 1
0 200 400 600 800 1000
Time, ps
(C) 200 —
< _
S 150
1
o 100
S
-
S 50
O
1
0 T T T T 1
0 200 400 600 800 1000
Time, ps

Figure 27. Example of: (a) short peak, Iprompt(t), (b) sustained, Inowa(t), and (c)
dual double-exponential current sources

Both current sources have four parameters that need to be determined: Ipeqx,
(tdz - ta1), 71, and 72. For the short duration current source, Iprompe(t), the three time
parameters are set from device-level single event simulations of a single transistor.
Based on results obtained for a 90-nm technology, these are (tsz - ts1) = 15 ps, 71 = 2
ps, and 12 = 4 ps [44]. For the longer duration current source, Inou(t), 71 = 2 ps and 2
= 10 ps provide a good fit, and (tsz - tsz) is used as a variable that depends on the

amount of deposited charge.

54

The peak values for Ipromp: and Inois are determined through transistor-level
simulations. The first set of simulations determines the peak current in a short-
duration, double-exponential current source that causes the voltage output to
change from one voltage rail to the other. For a basic inverter with its input held
low, we simulated one double-exponential current source with (tiz - ti1) = 15 ps, &
=2 ps, and 72 = 10 ps and determined what Ipeqk value drives the loaded inverter’s
voltage output to switch from Vpp to Vss. This peak value is defined as Irxresn, which
equals the sum of Ipromp: and Inoia. The second set of simulations determines Inoq by
applying the dual double-exponential current sources. We define the Ipromp:(t)
current source with the timing parameters from the previous paragraph and Ipromp: =
IThresh — IHola. We define the Inoa(t) current source with 7; = 2 ps, 72 = 10 ps, and (taz -
ta1) = 500 ps. We identify the Inoq that will result in a transient voltage near the
opposite rail at the end of the 500 ps. The transient voltage does not remain near

the opposite rail for the entire duration of the hold current.

Once the Ipromp: and Inoq values have been extracted for the circuit, the total
charge for the injected current is obtained as the sum of the charge from Iprompe(t)
and the charge from Inoa(t), which are calculated from equation (4). Determining the
current sources from a given charge is a little more complicated, but still
straightforward. For long SETS, Iprompe(t) does not depend on the total charge, so the
charge from Iprompe(t) is independent of the details of the pulse plateau. The charge
associated with Iprompe(t), namely Qpromps, is subtracted from the total charge (Qrotai)

to obtain Quolq, the charge provided by Inoua(t):

55

QHold = QTotal - QPrompt (5)

The second step is to apply equation (4) to Quoud, using (tiz - taz) as a variable that
depends on the total charge. As an example, consider Iprompt = 97 WA, Inoia = 114 uA,
Qrotal = 25 fC, and the timing parameters given in this section. The calculation for

Qprompe using equation (4) without the last term is:

Orpompe = (070 x 10°)2.0 x 1072+ 40 x 107 + 150 x 1072)C= 2.04/C (6)

This means that Quou is 2.04 fC less than 25 fC, or 22.96 fC. Applying equation (4)

again for Quoi gives:
Qo = (1140 x 10°)2.0 x 10" + 40 x 1072 + (1,,-1,))C = 2296fC (7)

Solving equation (7) for (taz - taz) results in 151 ps.

SET Pulse Shape in Combinational Cells

A SPICE deck was created implementing both a baseline 4-inverter chain and
the dual double-exponential current source model. A schematic of the baseline 4-
inverter chain is shown below (Figure 28) and its SPICE netlist is found in

APPENDIX B:

56

vdd vdd vdd vdd

l1p 1y
XP1 ® ® XPZI XP3 | xp4|

v1(

V1=IN=Vdd=0.9V Vss Vss Vss Vss
Vss=0.0V

Figure 28. Baseline 4-inverter chain schematic

Automated scripting is used to determine the important parameters for the
simulations. This process incorporates the implementation of the dual double-
exponential current source model for SET pulses for both the NMOSFETs and
PMOSFETSs in the 90-nm inverter design. The flowchart that searches for Iinresn is
seen in Figure 29. A flow chart for Iprompe and Inoia is seen in Figure 30, and the

Python script can be found in APPENDIX C.

57

Start
Initial "value" for

lthresh

|

Loop to
determine

Ithresh

A

Create/Populat
SPICE Netlist
Increase "value" of Decrease "value"
lthresh of]thresh
Y A A
Invoke/Run SPICE
on Netlist

Ithresh => Voltages
> 0.89V (I1)
<0.01V (12)2

Is Ithresh
‘too high"?

Ithresh => Voltages
>0.91V (11)
<-0.01V (12)?

/ Reportly .. /

Figure 29. Flowchart to Identify Iinresn variable for implementation with the
dual double-exponential current source model

Yes

58

Start
Initial "value" for lhold

Loop to
determlIne

Thold

A

lprompt =Ithresh “Thold

v

Create/Populate
SPICE Netlist

Increase "value' Decrease "value"

Thold Thold
) y

Invoke/Run
SPICE on Netlist

v

Read SPICE
Waveforms

v

Reduce Voltages
to those > 400ps

Is lhold Not

"too low"?

Thold => Voltages
>0.89V (14)

Islho1d
"too high"?

Thold => Voltages
>0.91V (I,)

Yes

<-0.01V (1,)?
No
/ Report Iy ocp /
Thold
Figure 30. Flowchart to identify Ipromp: and Inoia variables for implementation
into the dual double-exponential current source model

59

Results and Discussion

We constructed several library cells for the IBM 90-nm technology and
simulated them to determine Iprompc and Inoid for different input conditions and loads.
The results are given in Tables 1 through 4. The first column of each table gives the
cell name. For the inverter (INV1) cell, the W/L for the PMOSFET was 480 nm / 100
nm, and the NMOSFET was 200 nm / 100 nm. The INV2 cell used transistors with
double-width transistors and the INV4 cell used quadruple-width transistors. The
two-input NAND (NAND2) cell used the same width for the PMOSFETSs and double
the width for the NMOSFETs as the INV1 cell. Likewise, the two-input NOR (NOR2)
cell used double the width for the PMOSFETs and the same width for the NMOSFETs
as the INV1 cell. The second column gives the input condition. For IN or IN1 = Vpp,
the current sources were injected on the PMOSFET drain, and for IN or IN1 = Vss, the
current sources were injected on the NMOSFET drain. The third column lists the
load simulated with the number in parentheses giving the number of loads. The
NAND2 and NOR2 cells were loaded by connecting the output to Input1 of the next
cell. Input2 tied to appropriate rail voltage. The fourth column provides the
estimated node capacitance in fC. This value was calculated from model parameters
and used output drain and load gate capacitance. The fifth and sixth columns
provide the determined Ipromp: and Inoi levels in wA. The sixth column provides the
calculated Qpromp: for the Ipompe(t) current source. Finally, the seventh column gives

an estimate for the total charge, Qrotal, to provide an SET with a 200 ps pulse-width.

60

Example injected currents and resulting SET voltage waveforms are provided in

Figure 31 and Figure 32, respectively.

Table 4. Simulation Results for INV1, NAND2, NOR2 cells for the Vpp input

configuration
Cell lnput Load ~C- lPrompt, Inold, QPrompt, ~QTotal;
Name | Configuration Node, nA nA fC fC
fc, 200 ps
INV1 IN =Vpp INV1 (1) 1.38 97 141 2.0 30.2
INV1 IN =Vpp INV1 (2) 2.20 169 141 3.5 31.7
INV1 IN =Vpp INV1 (4) 3.83 270 140 5.7 33.7
NAND2 IN1 = Vpp, NAND2 (1) | 1.74 157 153 3.3 339
IN2 =Vpp
NOR?2 IN1 = Vpp, NOR2 (1) 2.23 169 141 3.5 31.7
IN2 = Vss

Table 5. Simulation Results for INV1, NAND2, NOR2 cells for the Vss input

configuration
Cell Input Load ~C- lPrompt, Inold, QPrompt, ~QTotal;
Name | Configuration Node, nA nA fC fC
fC, 200 ps
INV1 IN = Vss INV1 (1) 1.38 88 113 1.8 24.4
INV1 IN = Vss INV1 (2) 2.20 173 113 3.6 26.2
INV1 IN = Vss INV1 (4) 3.83 271 113 5.7 28.3
NAND?2 IN1 = Vss, NAND2 (1) | 1.74 131 113 2.8 25.4
IN2 = Vpp
NOR2 IN1 = Vss, NOR2 (1) 2.23 180 110 3.8 25.8
IN2 = Vss

61

Table 6. Simulation Results for inverter cells of increasing drive strength for
the Vpp input configuration

Cell Input Load ~C- Iprompt, | IHold, | QPrompt, | ~QTotal,
Name | Configuration Node, uA uA fC fC
fc, 200 ps
INV1 IN = Vpp INV1 (1) 1.38 97 141 2.0 30.2
INV2 IN = Vpp INV2 (1) 2.59 196 264 4.1 56.9
INV4 IN = Vpp INV4 (1) 4.99 388 512 8.1 110.5

Table 7. Simulation Results for inverter cells of increasing drive strength for
the Vss input configuration

Cell Input Load ~C- Iprompt, | IHold, | QPrompt, | ~QTotal,
Name | Configuration Node, uA uA fC fC
fc, 200 ps
INV1 IN = Vss INV1 (1) 1.38 88 113 1.8 244
INV2 IN = Vss INV2 (1) 2.59 175 225 3.7 48.7
INV4 IN = Vss INV4 (1) 4.99 356 454 7.5 98.3

62

'Inv1 -> Inv1 (1)’

'Inv1 -> Inv1 (2)'

'Inv1 -> Inv1 (4)'
'NAND2 -> NAND2 (1)'
= 'NOR2 -> NOR2 (1)'

300

200

Current, uA

100

| AL B B L AL B B S B B B B B B B B B B B B B B B |

0 100 200 300 400 500
Time, ps

Figure 31. Injected current waveforms for circuit configurations with loads
listed in Table 5 to produce ~200 ps SET

— 'INV1 > INV1 (1)
— 'INV1 -> INV1 (2)
— 'INV1 -> INV1 (4)
—— 'NAND2 -> NAND2 (1)
] —— 'NOR2 -> NOR2 (1)’
0.8+

0.6 —

Voltage, V

0.4

0.2+

0.0 === R < = = === === ==stessessssssesssssossooen

0 100 200 300 400 500
Time, ps

Figure 32. Resulting SET voltage waveforms for the circuit configurations with
loads listed in Table 5 and for the injected current waveforms shown in Figure
31.

IHo1d is a strong function of the restoring current in the circuit (i.e., drive
strength). The INV1, NANDZ, and NOR2 cells have similar restoring currents, and

IHoid is nearly constant in these cells, as seen in Table 4 and Table 5. INV2 has twice

63

the restoring current and INV4 has four times the restoring current. Iy in these
cells generally scales with the increase in restoring current (Table 6 and Table 7).
Ino1a does not depend upon the load, demonstrated by the first three rows in each of
Table 4 and Table 5. On the other hand, Ipromp: is a strong function of the node
capacitance, as the ratio between In.« and the node capacitance remains fairly
constant throughout all tables. For all base cells (INV1, NAND2, NOR2), the charge
that results in a 200 ps SET varies between 24.4 and 28.3 fC for NMOSFET
simulations and 30.2 and 33.9 fC for PMOSFET simulations. As a result, SET pulse-
widths show little variation for different loads and different cell types for logic cells

with similar drive strengths.

Figure 32 shows the resulting voltage waveforms from the simple model
proposed in the paper, and Figure 33 shows similar results from device-level
modeling. A comparison illustrates the potential inaccuracies of this simple model.
The inaccuracies arise from driving the voltage to the opposite voltage rail at the
end of a long SET, where the device-level simulations show a slow drift away from
the opposite voltage rail. All but one of the voltage transients shown in Figure 32
will drive the output voltage slightly below Vss following the initiation of the single
event current sources. These simulation results will produce a slight over prediction
of the amount of charge needed to produce that SET pulse. The other voltage
transient, NOR2 -> NOR2 (1), shows the output voltage going back above Vss and
staying above until the end of the transient. This simulation result will produce a
slight under-prediction of the amount of charge needed to produce that SET pulse.

However, the dual double-exponential current source model will still be more

64

accurate than the one double-exponential current source model. Typically, a
simulation with the one double-exponential current source would extend the SET
pulse-width by holding the peak current level for a longer time. Since much less
current is actually needed to sustain the transient, the one double-exponential
current source model can result in a significant over-prediction of the amount of
charge required to produce a particular SET, or an under-estimation of the resulting

SET pulse-width from a given amount of charge.

(b)
=
]
=
=
(=%
5
o
o]
T 05+
g —— TCAD Mixed Mode - LET=5
- — TCAD Mixed Mode - LET=20
—— TCAD Mixed Mode - LET=40
- « Bias Dependent Model - LET=5
s+ . « Bias Dependent Model - LET=20
« - « Bias Dependent Model - LET=40
(] = | 1 |
1.75 2 225 25 2.75 3

Time (ns)

Figure 33. Device-level simulation results showing voltage transients (solid
lines) for various deposited charges (after [41])

Timing analysis with pulse broadening

In [45-47], the authors investigate SET propagation with a focus on long SET
pulses through large inverter chains that contained several thousand inverters.
They reported little to no pulse-broadening in bulk devices, but, SOI designs

demonstrated a significant pulse-broadening per inverter [46,47].

65

Massengill et al., used a simple level-one generic model to investigate the
theory of pulse-broadening [47]. They identified two critical conditions that need to
be considered for the propagation of SETSs that go from rail-to-rail (called strong
SETs). The conditions for strong SET propagation are: (1) the slowest of the rise or
fall time constant of the originating SET voltage transient is faster than the
characteristic rise/fall time of the combinational cell, and (2) the pulse-width of the
originating SET voltage pulse, measured at the input voltage is greater than the rise
time, 7 plus the fall time, 7. A fast rise and slow fall time results in pulse-

broadening, while a slow rise and fast fall time results in attenuation.

The characteristic rise and fall times, 7-and 1 of the combinational cells are
determined by using a ring oscillator design. This design is a string of 83-inverters
that are daisy-chained to one another. This is shown as 8-INV10s, comprising a

string of 10-inverters followed by 3-INV1s (Figure 34).

Figure 34. 90-nm inverter ring oscillator

The rise and fall times for the 90-nm inverter design are 7- = 23.5 ps and 7=
20.7 ps for approximately a 45-ps SET pulse-width minimum that should propagate
through the 90-nm inverter. Ring oscillator designs are implemented for the 90-nm
NAND gate and NOR gate to determine the rise and fall times of these specific
combinational cells. They result in an approximate minimum pulse width of 76 ps

(i.e., 7= 33.1 ps and 7y = 42.8 ps) that should propagate through the 90-nm NAND

66

gate, and an approximate minimum pulse width of 105 ps (i.e., 7-= 67.1 ps and 7=
38.1 ps) that should propagate through the 90-nm NOR gate. Using these minimum

pulse widths reduces the simulation space.

67

CHAPTER VI

MREDZ2SPICE ANALYSIS

This chapter details the integration of the tools for radiation transport
(MRED) and circuit-level simulation (SPICE). This flow is called MRED2SPICE. The
details are used for the development of the Python scripting for integration and
automation of MRED2SPICE for SET generation and propagation. Descriptions of the
different processes are provided. Results from the MRED2SPICE portion of the

multi-scale simulation approach are compared to experimental data for three cells.

Connecting MRED to SPICE for SET analysis

In [10, 48, 49], the authors suggest that dynamic errors can be the dominant
contributor to the overall system soft error response. In order to predict dynamic
errors, a calibrated model that generates and propagates SETs from particles in a
radiation environment to circuit response is required. Multiple organizations have
developed circuits to characterize SETs. Narasimham et al. [40, 50], Baze et al. [50],

and Cannon et al. [16] use an on-chip asynchronous approach to measure SET pulse

68

widths. We use data from [11] to compare to simulation results from MRED2SPICE

segment of the multi-scale simulation approach.

MRED2SPICE Framework

Figure 35 shows the building blocks of the portion of the multi-scale
simulation that uses MRED and SPICE. The amount of charge associated with each
radiation event generated by MRED resulting in a sufficient charge collection to
produce an SET is passed to the SPICE process for generation and propagation of an
SET. Applying the charge collection efficiencies and converting the charge to
independent current sources is accomplished in the SPICE Python script. SPICE
simulations categorize the effect of the SET on the circuit. The results are compared
to the experimental SET data provided in Cannon et al. [16]. This paper uses the
same 90-nm technology for the library cells, and the comparisons are made for a

lightly ionizing environment.

MRED Process SPICE Process
Material Labl_exp_Event® > Viran, Event®)>Vrr Event(®)
lon- coll_Event(X)
typy o Charge -> Current ldbl_exp_Event®) /'N SET Pulse_Event(x)
MRED, o, (x) / Energy -> Charge - > > \?/
. t .
Ener; J
ol TP P M lemese- froas fion
angie |11 5 ey &1 T Q . U:L
I |
A T
|____°c£°mesh____| I_______jzﬂ‘_‘threﬂ____

"Get" Next Event(x+1) "Get" Next Event(x+1)

Figure 35. MRED to SPICE (MRED2SPICE) framework block diagram.

69

MREDZ2SPICE Python Script Implementation

An MRED output data file that consists of a list of the characteristics of each
radiation event, including the struck node and the charge collected for each nested
sensitive volume, is precomputed for the specific circuit. Each event is then analyzed
to determine if Qo is greater than Qmress. If this is true, then charge is converted to
current for input into SPICE; this current pulse is uniquely identified with the

specific energy deposition computed by MRED.

The current source for SPICE is computed by determining the values for
Iprompt and Iroia from Qcon, and the corresponding pulse-width (t42) resulting from the
excess charge, which is greater than the Qpromp: charge. The initial values for the
SPICE dual double-exponential current sources (Iprompt, IHoid) were taken from [42].
The script creates a circuit netlist and populates the dual current sources with these
values. These circuits were used to evaluate this portion of the multi-scale
simulation: (1) a target chain of 65 inverters (INV1s), or NAND gates (NANDZ2s), or
NOR gates (NOR2s), (2) a guard gate, and (3) an asynchronous latch. This mimics
the designs by Cannon et al. [16], and the inverter version is seen in Figure 36:

Vdd_Inv1

A

XP L 1, n V “
+ d T GD Ggm v, ['
In_Invl | _jﬁ;ﬁtm ; s /)
| on, 1z \ ’
y H CNL[- p 'ﬁr TS TargetChain

Guard Gate

) Asynch Latch
-

In_invi=Vdd_ inv1=0.9V
Vss_ Invl=0.0V
Vss_Invl

Figure 36. Sample test design using INV1s for MRED2SPICE development

70

SPICE is then run on the netlist producing two output data files. The first file
records if an SET is generated from a particular MRED event (identified with an
MRED event number) and the corresponding SET pulse-width. The second file
records if the SET produces an upset at the output of the asynchronous latch. The
output files are in data array fashion, and the first column of the array is the MRED
event number that is parsed in the first step. This script is done in parallel for both
the PMOSFETs and NMOSFETs designed in the combinational cell. Figure 37 shows
a flowchart for the MRED2SPICE Python script, and an example of the Python script
is in APPENDIX D. Examples of the MRED source data file and the SPICE SET latch

results data file are seen side-by-side in Figure 38.

71

Start
with array outputs from
MRED

Loop to determine Q

great enough to
generate SET?

A

Convert Q's to dbl-exp
Current Sources

Y

Create Circult Netlist
wlth Current Sources

!

Invoke /Run SPICE
on Netlist

Output Asynch Latch
(ALATCH) Output
Results

Does ALATCH Output Flip?

X Go to next Event
Record SET Information from MRED Output

and

Count Event

After completion of Last Event
from MRED Output

Report SET Latch
Count

Figure 37. MRED2SPICE process flowchart.

72

MRED_Event # | inv_chain | 11p 12¢ t21 | td22
node # uA uA ps ps
POSTET Viokamas TR 1875 31 0.0000_| 102.0000 | 0.0000_| 561558
as35 62 | 109.0000 | 0.1285 | 50.3410 | 0.0000
MRED_Event# | Weight | 0 iy |srcDrain | Welk1 | Well2 | Drain |SrcDrain | well1 | well2 :;;g ;; gvgﬁg 13;-2% gvgzg :-i;ig
Qean Qean Qear Qean Qean Qean Qeon Qeon = - = -
1875 10DE+00 | 00000 | 0.1850 | 52472 | 83615 | 0.0000 | 00000 | 00000 | 0.0000 SO S Ty
1904 1.00E+00 | 0.0000 | 0.0000 | 0.0000 | 0.0417 | 00978 | 01079 | 01021 | 88361 SS=s 30 | 109.0000 | 15654 | 57.1936 | 0.0000
4535 1.00E+00 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0785 | 08101 | 68771 | 7.7157 B2 = N OO QA
623 1.00E+00 | 6.0134 | 00000 | 49897 | 7.7336 | 0.0000 | 0.0296 | 0.0250 | 0.0490 5043 35 00000 _}102.0000 | 0.0000 | 62.6492
756 1.0OE+00 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 58833 | 59272 | 6.1689 | 89522 £077 24| 109.0000 | 12.8950 | 64.7172 | 00000]
4966 1.00E+00 | 0.2270 | 0.0648 | 0.2095 | 9.7884 | 0.0000 | 00000 | 00000 | 0.0000 BT 2 iy [deeds | Sl | s
4983 1.00E+00 | 0.0212 | 0.0000 | 0.0174 | 0.1973 | 00000 | 7.0849 | 63078 | 86727 g‘;ﬁ :: g'ggg igi'gg g'ggg z;;:g
2988 1.00E+00 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0464 | 0.0628 | 55564 | 9.2894 : - -
5014 TO0E+00 | 8.2375 | 0.1153 | 7.0257 | 7.7887 | 00000 | 00353 | 00608 | 0.0000 8734 64 | 109.0000 | 0.0000 | 53.0188 | 0.0000
5452 10DE+00 | 00779 | 0.0898 | 0.1764 | 14019 | 0.0000 | 00000 | 00000 | 0.1821 8950 1611090000 | 00000 | 57.2020] 0.0000
5516 T.00E+00 | 0.0000 | 0.0000 | 0.0000 | 0.1165 | 00000 | 00222 | 52491 | 7.9893 =] 00000} 102.0000] 0.0000 } 825378
5524 T.00E+00 | 0.0000 | 0.0000 | 0.0000 | 00000 | 65925 | 69424 | 61269 | 8.9883 SER 1 __|[eioa]| iy || ey || (el |
5043 T.0DE+00 | 0.0000 | 0.1890 | 0.1622 | 05179 | 0.0000 | 7.0624 | 55665 | 67590 9277 5011090000 | 05196 | 58.2352 | 0.0000
5052 T.0DE+00 | 0.0000 | 0.0000 | 0.0000 | 8.1387 | 0.0000 | 0.0000 | 0.0000 | 0.0000 2528 oL L0752 0210000] | MO 0N00 W NGAI0742
6077 1.00E+00 0.0997 0.0000 5.7595 7.8788 0.0000 0.0000 0.0000 0.1440 10744 50 109.0000 0.0000 51.4402 0.0000
6111 TO0E+00 | 7.5475 | 7.4970 | 6.7887 | 7.9279 | 00911 | 03795 | 03363 | 0.0000 SE &) OOn0OMFO20000]] M0-0000] E5 708K
182 T.00E+00 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 66349 | 69448 | 59277 | 7.5a60 11966 EJ 00000 1102.0000 1 0.0000 } 57.0487
8712 T.0DE+00 | 00000 | 0.0000 | 00000 | 01377 | 0.0672 | 00672 | 01173 | 9.1634 12135 7 0.2878 1102.0000 | 0.0000 | 74.6729
8734 T0DE+00 | 00000 | 0.0000 | 00117 | 03317 | 00821 | 01574 | 02764 | 19044 TEL AN |§.09 00001 M0.0000MN6716017A] 00000
8854 TO0E+00 | 7.3000 | 0.6752 | 66498 | 6.4645 | 0.0000 | 00000 | 00000 | 00689 SLIE BN ¥ 09,0000 1 MO0 0n00 8572293 18] 00000
8950 T.00E+00 | 0.0068 | 0.0000 | 0.0000 | 7.9782 | 00000 | 00000 | 00000 | 0.0000 Sl At 00O FO2000]] S0:0000 R] M7 1748
8982 T.00E+00 | 00000 | 0.0000 | 0.0000 | 0.0000 | 0.3825 | 0.3930 | 0.4108 | 8.2125 TEel 49 00000 M ELO2(0000 O.000M|BSS15719
5056 TO0E+00 | 6.8046 | 6:8418 | 6.1095 | 9.3567 | 00000 | 00000 | 00000 | 0.0000 LAZ54 & 0.0000 M{ ELOZ(00001 000007212290
9277 1.00E+00 0.0000 0.0000 0.0000 0.0000 7.3942 7.3942 6.2802 9.2182 14780 i1 0.0000 102.0000 0.0000 53.5164
9528 T.00E+00 | 0.0000 | 0.0000 | 0.0000 | 0.2903 | 7.0931 | 7.1100 | 60551 | 92513 15492 a1 00000 _1102.0000] 0.0000 1 63.5164
10744 T.00E+00 | 7.0380 | 7.1387 | 6:6974 | 8.3755 | 00000 | 00000 | 00000 | 0.0000 15625 14| 1090000 | 00000 1 67.6017 | 0.0000
11517 T.00E+00 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 64259 | 65585 | 53139 | 9.0605 15635 4411090000 | 05196 | 66.9162 | 0.0000
11504 TODE+00 | 03631 | 7.5380 | 66779 | 7.8040 | 0.0000 | 00000 | 00000 | 0.0000 LD 44N 10500007 |W0:2196 W] N 56191628 | 0.0000
11966 T.00E+00 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 00353 | 00406 | 00000 | 8.4020 (b)
2085 T.00E+00 | 0.0523 | 0.0000 | 0.0000 | 8.0674 | 00000 | 00000 | 00000 | 0.0000
12135 T.0DE+00 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0542 | 7.4559 | 10286 | 7.7350
12308 TO0E+00 | 7.4474 | 7.8849 | 7.1374 | 8.8020 | 00000 | 00000 | 00000 | 0.0000 MRED_Event # |inv_chain | 11P 12p w21 | td22
12821 TO0E+00 | 66178 | 66190 | 6.1702 | 10.6085 | 00000 | 00000 | 00000 | 0.0000 node#t | uA uA ps ps
13163 T.00E+00 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 7.5313 | 7.5916 | 63502 | 9.8644 75 o 50000 11020000 T 60000 T 561558
13754 T.00E+00 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 65797 | 67149 | 59603 | 7.2022 034 3o Ti00000 | 1553 1 572936 1 00000
14250 T.00E+00 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 7.4243 | 7.4636 | 68120 | 89830 =534 3 50000 11020000 | 6.0000 | 62,6452
14780 T.00E+00 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 65090 | 65090 | 66619 | 87789 ET 5411090000 | 12.5950 | €a.7172 | 00000
15370 T.00E+00 | 8.1871 | 0.0064 | 6.8009 | 8.7218 | 00000 | 00000 | 00000 | 0.0000 w52 = 50000 11020000 T 00000 T €03730
15492 T0DE+00 | 00485 | 0.1560 | 03296 | 102279 | 0.0000 | 0.0341 | 0.0543 | 0.0000 See T Ti050000 T 00000 T 572020 T 0.0000
15558 TODE+00 | 8.6608 | 0.1558 | 7.7485 | 9.2146 | 0.0000 | 0.0000 | 0.0000 | 0.0000 5538 51 10752 | 10200001 00000 1 660743
15625 T0DE+00 | 00670 | 0.0133 | 46458 | 82751 | 0.0306 | 01200 | 01276 | 0.1756 10743 %0 11000000] 00000 | €1.4302 | 00000
5635 T.00E+00 | 0.0820 | 7.2883 | 65348 | 8.4549 | 00000 | 00000 | 00000 | 0.0000 1157 3 50000 11020000 T 00000 T 57,0487
15889 T.00E+00 | 7.9476 | 69781 | 7.0027 | 7.7279 | 00000 | 00000 | 00000 | 0.1403 5308 72 T1050000 T 00000 T &7 6017 T 0.0000
(a) 12821 28| 109.0000 | 0.0000 | 57.2931 | 0.0000
13163 a1 0.0000 102.0000 0.0000 71.7748
13754 a9 0.0000 | 1020000 | 0.0000 | 59.8719
14254 17 0.0000 | 102.0000 | 0.0000 | 72.2250
14780 a1 0.0000_| 102.0000 | 0.0000 | 63,5164
15889 a1 | 105.0000 | 05196 | 669162 | 00000
(c)

Figure 38. Output samples of data files for: (a) MRED Q.on source (b) SPICE-
generated SET results, and (c) SPICE latch SET results. The yellow highlighted
events from (a) result in a generated output highlighted in blue in (b), and the
final SET latched errors are in shown in (c).

MRED2SPICE - Comparison of Experimental Data for CMOS Combinational Cells

MRED Inputs for IBM 90-nm Technology

The MRED nested sensitive volumes used in this study for the 90-nm IBM

technologies are given in Chapter IV. The sensitive volumes are defined identically

for the three specific combinational cells (INVx1, NAND2x1, and NOR2x1) from this

73

library. Experimental data published in Cannon et al. [16] is used for calibration of
the sensitive volumes and their efficiencies. Each PMOSFET and NMOSFET
transistor (or set of transistors in the same active area) contains the following four
sensitive volumes: (1) Drain: cross-section defined by the drain layout, depth of 0.35
um, (2) Src_drain: cross-section defined by the source_drain region, depth of 0.35
um, (3) Well-1: cross-section defined by the drain plus consistent extensions in x
and y, depth of 0.3 um starting at the bottom of the active area, and (4) Well-2:
cross-section defined by the active area plus consistent extensions in x and y, depth

of 0.4 um starting at the bottom of the active area.

The NAND2x1 has two PMOSFETSs in parallel that have a shared drain, so that
is handled as a single drain for charge deposition purposes. The NAND2x1 also has
two NMOSFETs in series, so there is an output drain and an intermediate drain. The
intermediate drain can be included in the sensitive volume depending on the
NAND2x1 input configuration. The same holds for the NOR2x1 though the PMOSFET
and NMOSFET situations are reversed. In total, there were 4 charge collection
efficiencies in each type of transistor (NMOSFET/PMOSFET) for a total of eight
efficiencies to modify for comparison to the single event SET data. This is consistent

with the methodology in Chapter IV.

MREDZ2SPICE Simulation

The charge deposited in each sensitive volume is summed by specific charge
collection efficiencies to determine the total amount of charge collected in each

transistor type. This charge is then used to create independent current sources for

74

simulation in SPICE. For low-level charge injection, two independent current
sources in parallel are applied. DasGupta et al. [42] and Kauppila et al. [41] show
current pulses with a high prompt component and a sustained current shelf. The
prompt component is the charge necessary to raise the node from Vss to Vpp, or vice
versa, and is a factor of the restoring current and the node capacitance. The current
shelf is the current necessary to maintain the voltage at the opposite potential and is
a factor of only the restoring current. Two values, Qsresn (Charge necessary to flip the
node potential) and Ixo (current to hold the voltage at the opposite potential), are
determined with SPICE simulations. The results of these simulations are given in
Table 8. There are three different configurations given for the NAND2x1 and
NOR2x1 circuits: (1) a chain of circuits connecting the output of one cell to the first
input of the following cell with other input tied high or low, (2) a chain of circuits
connecting the output of one cell to the second input of the following cell with the
other input tied high or low, and (3) a chain of circuits connecting the output of one

cell to both inputs of the following cell.

75

Table 8. Simulated threshold charges (Qtnresn) and hold currents (Ixo) for the
combinational cells for comparison to experimental data given different test

configurations
Cell Schematic Chain Configuration Vulnerable Qehresh | Inola
Device (fC) (nA)
Standard Inverter Chain PMOSFET 4.8 121
INVx1
NMOSFET 4.6 118
IN1=“Chain”, IN; = Vyq4 Either PMOSFET 3.3 67
—dj[F Either NMOSFET 4.1 69
L{
IN1 = Vg, IN2 = “Chain” Either PMOSFET 3.4 67
NAND2x1 =
NMOSFET #1 3.4 69
% XN2Z . .
, IN1 = INz = “Chain” Either PMOSFET 4.1 69
Either NMOSFET 5.6 137
(v1) IN7 = “Chain”, IN; = Either PMOSFET 8.8 122
VSS
Either NMOSFET 7.4 113
(v2) IN1 = Vi, IN2 = PMOSFET #2 6.5 121
NOR2x1 “Chain”
Either NMOSFET 6.5 113
(v3) INg = IN; = “Chain” Either PMOSFET 10.7 242
Either NMOSFET 8.8 114

The circuits simulated in SPICE are duplicates of the circuits tested in [16].
These consist of 65 combinational cells followed by delay elements, a guard gate,

and an asynchronous latch. An example of the INVx1 circuit is shown in Figure 39.

76

vdd ln\ 1 Delay Chain

.

Vss_Invl

Figure 39. Example core circuit for SET characterization test structure.

MRED2SPICE randomly selects a node to apply the single event and checks to
determine if the latch has changed states. If so, then it records the event. The
simulation flow allows the MRED2SPICE method to recreate the single event

experiment.

Comparison of MRED2SPICE Model to Experimental Data

Nested sensitive volumes are used to determine the charge collected for the
inverter, NAND gate, and the NOR gate for a variety of ion species and energies.
Figure 40, Figure 41, and Figure 42 compare the MRED2SPICE predictions of SET
cross section to the experimental data presented by Cannon et al. [16]. These data
show that, for the most part, the MRED2SPICE predictions are in closer agreement
with the experimental data at lower LETs than at higher LETs. The lack of
agreement at the highest LETs is most likely do the limited applicability of the
simple double-exponential current source, e.g., it does not contain appropriate
terms to model multi-node charge collection. These figures demonstrate that the
model shows an increase in SET pulse-width vs. LET as well as high variations in the

pulse-width under specific ion test conditions.

77

) 2
Cross-Section cm / Gate

o
a2 O ~N®
by Sy M

a2 o~
il W

Inverter_1X Single Event Transients
MRED to SPICE Mode! comparison to Cannon, et al., Experimental Data

=#¢ INV_0ODelay. MRED2SPICE
=%+ INV_ODelay_Boeing

=&~ INV_1Delay_MRED2SPICE
- @+ INV_1Delay_Boeing

0 2 4 6 8 10
2
LET MeV-cm / mg

Figure 40. SET cross-section of 1X drive strength for inverter as a function of
LET. MRED2SPICE predictions are drawn with solid lines and SEE data is

) 2
Cross-Section cm / Gate

~

a2 o ~N®
iy i Wl o B

| - € - NAND_3Delay_Boeing

a2 O ~N®
riiy M

drawn with dashed lines.

NAND2_1X Single Event Transients
MRED to SPICE Model comparison to Cannon, et al., Experimental Data
~#+ NAND_ODelay_MRED2SPICE

<% - NAND_ODelay_Boeing
=&~ NAND_1Delay_MRED2SPICE

-#- NAND_1Delay_Boeing .. s IO Teeeesr

3] = NAND_2Delay_MRED2SPICE ~ L...oeesiiEET o -

-4 - NAND_2Delay_Boeing e eprTTI g P =
—e— NAND_3Delay_MRED2SPICE =

T T T T T

0 2 4 6 8 10
LET MeV-cmZ/ mg

Figure 41. SET cross-section of 1X drive strength of 2-input NAND gate (15t
input chained, 2 input tied to Vy4) as a function of LET. MRED2SPICE
predictions are drawn with solid lines and SEE data are drawn with dashed

lines.

78

8 NOR2_1X Single Event Transients

10 73
87 MRED to SPICE Model comparison to Cannon, et. al, Experimental Data
6 M)
—+¢ NOR_ODelay_MRED2SPICE e sunas A
4 -48- NOR_ODelay_Boeing e et
—&— NOR_1Delay_MRED2SPICE
o > =% NOR_1Delay_Boeing
] “1 —+— NOR_2Delay_MRED2SPICE
© #- NOR_2Delay_Boeing P
S 107
5l]
o~ 8
£ 67
(&) 4'1
c T
(o] 1
=]
8 2
0
10
n]
a3 10 o
e 6
o
4
2
10 R A A e e e o e T LB 2 e e e e e

LET MeV-cm’/ mg

Figure 42. SET cross-section of 1X drive strength for 2-input NOR gate (1st
input chained, 27 input tied to V) as function of LET. MRED2SPICE
predictions are drawn with solid lines and SEE data are drawn with dashed
lines.

Applications of MRED2SPICE Model

One application for this model is the ability to predict the SET response for a
logic cell and its different input configurations when the gate accepts multiple
inputs. An inverter chain only has one option, while 2-input gates (i.e., IN1, IN2) can
receive one or both inputs from the previous gate. Figure 43 illustrates the three

different configurations listed in Table 9.

79

Table 9. Input Configurations for 2-Input NOR gate

Cell Schematic Chain Configuration Vulnerable Qthresh | Inold
Device (£C) (1A)

NOR2x1 (v1) IN; = “Chain”, IN2 = Vs | Either PMOSFET 8.8 122
Either NMOSFET 7.4 113

(v2) INy = Vg, IN2 = “Chain” | PMOSFET #2 6.5 121

Either NMOSFET 6.5 113

(v3) IN; = IN2 = “Chain” Either PMOSFET 10.7 242

Either NMOSFET 8.8 114

The first chain configuration in Table 9, v1, is designed with IN; receiving its
signal from the logic chain, while IN: is tied to V. Another configuration, v3, is
designed with IN; tied to IN2 and also tied to the logic chain. These two
configurations have the output drain electrically connected to the intermediate
drain. Therefore, these two configurations have the highest drain cross-section. The
last configuration, v2, is designed with IN; tied to Vs while IN; is tied to the logic
chain. This configuration has the intermediate drain electrically connected to the
source, so it has the smallest drain cross-section. The intermediate drain layout is
designed three times as large as the output drain. In Table 9, Q¢resn is the smallest
value for Configuration v2. Therefore, it has the highest cross-section at the lower
LETs. Finally, all of these chains attenuate the SET pulse as it propagates down the
chain with v3 having the largest attenuation. Pulse attenuation gives an apparent
decrease in cross-section and that is why the v3 configuration is lower than the v1

configuration.

80

89 —p4— 'IN1=Chain, IN2=Vss'
@ 'IN1=Vss, IN2=Chain'

4] +— 'IN1=IN2=Chain'

Cross-Section cm /Gate

NOR2

_,//‘77 - B
5
// i
..... W — ‘
4 6 8 10

LET MeV-cm' /mg

Figure 43. SET cross-section of 1X drive strength NOR2 MRED2SPICE results
with different input chain configurations from Table 9.

MRED2SPICE Method Summary

The MRED2SPICE simulations allow analysis of SET experiments on

combinational logic chains when the incident particles produce low levels of charge

deposition. The models can predict the SET response of the combinational logic

given different input configurations. The MRED2SPICE multi-scale simulation can

also predict the SET response of other combinational logic cells in the same

technology.

81

CHAPTER VII

TRANSIENT FAULT ANALYSIS FOR SEQUENTIAL CAPTURE IN

DUAL-COMPLEMENTARY FLIP-FLOPS

The multi-scale simulation approach not only must consider transients
within the combinational logic, but also must evaluate the effects of sequential logic.
This chapter discusses the impact of SETs on a dual-complementary D-type Flip-
Flop (DC-DFF). The internal structure is based upon a standard two-input NAND
function discussed in Chapter V. Circuit-level modeling indicates that the DC-DFF is
resistant to single event transient (SET) capture of errant signals on the data lines
while increasing the operating speed to gigahertz frequencies. However, the
simulations also predict that the DC-DFF is susceptible to internal single events
during data transitions. Heavy ion testing verified the simulations of the internal

single-event mechanism in the DC-DFF design.

BACKGROUND

82

Flip flops are suspectable to two clock-rate-dependent single event upsets
(SEUs). The first mechanism is a circuit response to an SET that propagates to the
data input of the DFF [49, 51]. The SET in this case must arrive during the window of
vulnerability, i.e., the time when the data input must be stable before (i.e., the setup
time) or after (i.e., the hold time) the active clock edge. SETs outside of this window
will not be captured by the DC-DFF and will not show up as an SEU on the output.
The second mechanism is a circuit response to a single event on: (1) the clock input,
(2) internal clock buffering, or (3) other controls such as set, reset, preset, and clear
[50]. Ion strikes affecting the clock can sample data at the wrong time and thus

capture the input data before it settles to the correct value.

DUAL COMPLEMENTARY DFF (DC-DFF)

The DC-DFF is a modification of a 90-nm IBM Dual Interlocked Cell (DICE)
design [52], implemented to increase the speed of its operations due to faster
switching between the complementary logic. It also makes use of its four internal
nodes to transmit data. The internal structure is based upon a standard two-input
NAND function (i.e., NANDZ2), however some input connections are changed to enable

redundancy within the internal nodes.

83

Cell Description

Typical DFFs are designed with one data input, d, and two complementary
outputs, q and nq. A shift register can be constructed from the DC-FFs. The
distinguishing characteristic of the DC-DFF shift register configuration is that the
four storage nodes (qa, gb, nqa, and ngb) are output from one DC-DFF to the four
input ports (da, db, nda, and ndb) of the next DC-DFF (similar to Figure 44). All
connections internal to an individual DC-DFF are also dual complementary. The DC-
DFF is designed as a master-slave DFF and is created by connecting two D-latches in
series. It is called master-slave because the second latch in the series only changes in
response to a change in the first (master) using a non-overlapping clock. Figure 45
shows the input circuit for either the master or slave of the DC-DFF and is followed
by the memory circuit (Figure 46). Both of the figures combined (32 transistors in

all) form a single D-latch and are one-half of the total DC-DFF cell.

84

da

ga

da ga

— db gb db gb [
— nda nga nda nga |—
— ndb ngb ndb ngb —
_ I\ DC-D-Latch DC-DFF

Figure 44. Block diagram of circuits for single event simulation of DC-D-Latch.

| e g e | # rq e L # rq foee L e [oes
H IN2 H IMN4 >—| IMN6 14 M:M
{ IN1 { IN3 { IMNS5 { IMN7
T T T

Figure 45. Dual-Complementary DFF input circuit showing internal
connections.

2333
23’32

o B

I = B umf

| ano | fante | a1z |
| | | |

Figure 46. Dual-Complementary DFF memory circuit showing internal
connections.

Cell Write Operation

The nominal operation of the cell can be understood by examining the

procedure for overwriting the state of the memory portion of the DC-DFF. Assume

85

that the memory circuit in Figure 46 (illustrated by simple switches in Figure 47) is
holding ga and gb high (logic state 1) and nqa and ngb low (logic state 0). In the hold
state, the clock input into the input circuit (Figure 45) is low, driving the internal
connections (nl1, n2, n3, and n4) high or logic state 1; this configuration is
demonstrated with closed switches in Figure 47. This makes the even-numbered
transistors in Figure 46 (MP10/MN10, MP12/MN12, MP14/MN14 and MP16/MN16)
or their equivalent switches in Figure 47 (qa!/qgb, ngb!/nqa, gb!/ga and nqa!/ngb) in
the memory circuit operate in traditional DICE storage operation. The odd-numbered
transistors in Figure 46 (MP9/MN9, MP11/MN11, MP13/MN13 and MP15/MN15)
are otherwise known as the access transistor pairs of the traditional DICE storage,
with their equivalent switches in Figure 47 (nl1!/n3, n2!/n4, n3!/n1 and n4!/n2).
These switches provide the control to determine if the memory circuit should hold

its existing state or sample a new state through the input circuit of the DC-DFF.

Vvdd Vdd Vdd Vvdd

il

qb = 0" gqb="1" nga ="0" qa="1"
nqa qa ngb
n4 n1 n2

nqa!

Figure 47. Memory Circuit - start state qa/qb holds logic state 1.

86

Table 10 and Figure 48 show the input controls, output signals, and the
results of the transistor conditions to overwrite the stored data value. The first row
(Hold) is the condition just before the clock input goes from logic state 0 to logic state
1. The next five rows show the progression of how the transistors change. The red
items in each row are the changes from the previous row. The final row (Stable)
means that the clock could return to low, and the new state will remain in the
memory circuit. The table shows that changing the stored value from logic state 1 to
logic state 0 begins via closing the switches of n1! and n3! (i.e., pulling up the internal
nodes nga and ngb) and conversely opening the switches n1 and n3, thereby
changing the output signals. Similarly, changing the memory state from logic state 0

to logic state 1 is accomplished in reverse.

Table 10. Input controls, output signals, and transistor conditions required to
change DC-DFF memory circuit from logic state 1 to logic state 0.

Input Control| Output Signal

Step [nl|n2|n3|n4|qga|qgb| nqa|ngb
Hold 11|11]1[1[O 0
Change-1|0 | 1[0 |1]1[1] 0 0
Change-2| 0|1 |O|1[1[1]| 1 1
Change-3|0[1|0[1[1]1 1 1
Change-4| 0| 1|0 |1]0 |0 1 1
Stable [0 1[0[1[0]0] 1 1

87

Vdd Vvdd Vdd

Vdd
n1! qa! n2! ngb! / n? q? n4! / nga! /
qb

ngb =*1" ="0" nga ="“1" qa="“0"

gb nqa qa ngb

n3 n4 n1 n2

Figure 48. Results from memory circuit normal operation - circuit will settle to
logic state qa/qb = 0, (i.e., no error).

SINGLE EVENT TRANSIENT CIRCUIT SIMULATION

Cadence Spectre was used to simulate the input and memory circuits (Figure
45 and Figure 46) with various stimuli on the input ports (clk, da, db, nda, and ndb).
The simulation includes a full DC-DFF connected to the output ports, as shown in
Figure 49. This simulation describes the behavior of a shift register. In this model, all
transistors in the input and memory circuits can be simulated with a current source
between the drain and body, which represents a heavy ion strike to the transistor.
The circuit simulation determines: (a) if an SET generated in either the input or
memory circuit would result in an SEU in the following DC-DFF, (b) if an SET on the
clock input resulted in an SEU, or (c) if an SET produced by an ion strike in either the
input or memory circuit could prohibit the propagation of the correct data down a

shift register.

88

Input Memory
Circuit Circuit

—] da n ga da ga |—
— db ng b db b

n3 a ap
— nda il nga nda ngqa }—
— ndb s ngb ndb ngb }—
— DC-DiLatch — DC-DFF

Figure 49: Block diagram of circuits for single event simulation of Dual-
Complementary D-Latch. The current sources for single event modeling are
placed in the input and memory circuits.

A double exponential current source is used to represent an SET in all of the
simulations presented in this chapter. The damping factor for the rise of the current
pulse is 50 ps. The length of the pulse is sufficent to cause errors between clock
edges. The amplitude of the current is 1 mA, so that the effect of the current is
saturated in the circuit level simulation. The tail current damping factoris 500 ps, see

Figure 50.c (I0_sink).

Data Line SET

SETs on the data line were simulated with the input and memory circuits in
static mode. The SET was generated at internal nodes. Simulations were performed
to determine if the SET was latched by the next DC-DFF. Several conditions were
evaluated including: (1) an initial logic state 0 in the DC-DFF with a next logic state 0,
(2) an initial logic state 0 with a next logic state 1, (3) an initial logic state 1 with a
next logic state 0, and (4) an initial logic state 1 with a next logic state 1. The first
condition propagates a constant logic 0 through the shift register, while the last

condition propagates a constant logic 1. The middle two conditions represent

89

alternating logic states that propagate through the shift register. No soft errors were

observed for any of these conditions on the output of the DC-DFF.

An example of the alternating data set of simulations results is shown in
Figure 50. Figure 50.a is the input clock - clk, Figure 50.b is one of four alternating
input data signals - da, Figure 50.d output signal - nqb, Figure 50.e output signal -
gb, Figure 50.f output signal - nqa, Figure 50.g output signal - qa, and Figure 50.h is
the shifted output data signal - shift_qa. This ordering is used in similar figures later

in the chapter.

0 1 2 3 4 H 6 P
®) ns
16 da
= 12 — — — — — — —
S 08
> 04
00 T T 1 T T T T 1
0 1 2 3 4 H 6 mi0°
ns
5 (©
‘© 10 10_sink
88 -
2 04
883
E 00 T T T T T T T 1
0 1 2 3 4 5 8 710°
ns
(d)
20 ngb
5 18
10
> o5
DO, T T T T T T 1
0 1 2 3 4 5 [710°
(e) ns
16 qb
= 12 — — /—‘ — — — —_—
S g] | [[\ [| | |
4| | | \ — | \)
J \ J \ \ J \ \ J
00 T T T T T T 1
0 1 2 3 4 5 6 10"

ns
16+ — nqa
= 129
S o084 |
ggd | (L
00 T T T T T T 1
0 1 2 3 4 5 6 710"
ns

0 1 2 3 4 5 6 710
ns
() : g j ﬂ —— shift_ga
= ~ — — —
CRRTE | |
> 043 l [| | I | I
had T T T T T 1
0 1 2 3 4 5 6 10

90

Figure 50. Complementary data - no error (b) matches (h), change of logic
state 0 to 1, or logic state 1 to 0; (a) input clock pulse, (b) input state, (c) ion
strike, (d) through (g) internal storage nodes, (h) output data.

Clock Line SET

SETs on the clock line were analyzed for this circuit (the clock line was not
hardened to SETSs). Clock-line SET-induced upsets will not occur if the input data
signal is held constant (logic state 1 or 0). However, when alternating logic state from
1 to 0 back to 1 (or vice versa), a clock-line SET occurring at the incorrect time may
change the stored state early or cause failure to sample the logic state correctly. In
general, SETs on the clock lines could show up when the input data value is
alternated, but not when the input is constant. A comparison of bit errors that occur
during switched input versus constant input can determine errors induced on the
clock distribution circuit. If more upsets are observed when using alternating data as
opposed to constant data, then clock-line SETs are contributing to this increased

upset rate.

Internal DC-DFF Single Event

SETs internal to the DC-DFF that prohibit the memory circuit from loading the
proper state were simulated similarly to the SETs on the data lines. The circuit in
Figure 49 was operated in a shift register fashion. As previously stated, there were
no errors observed in the SET on the data line simulations (Figure 50); errors
observed here result from ion strikes in the DC-DFF, causing the DC-DFF input circuit

to be unable to write the correct data into the memory circuit. All four conditions

91

defined above were simulated: a constant input of either logic state 0 or 1 and two
alternating data patterns (1 - 0 and 0 - 1). There were no soft errors for the
constant data condition, therefore the design of the DC-DFF is hardened against SETs

when the data are constant.

There are many sources of soft errors for the alternating data patterns. If
more upsets are observed for alternating data as opposed to constant data, then
internal DC-DFF single events will contribute to this increase in upset sensitivity.
These internal DC-DFF single events represent a new clock dependent mechanism,

and will be discussed in more detail later.

Input Circuit Single Events

In the alternating data case, every single event on every transistor in the input
circuit (Figure 45) could block the change of state in the memory circuit. To illustrate
one of these errors, consider an SET affecting input control nl. A single event on the
transistors driving n1 could prohibit the node from pulling down and remain at logic
state 1. Table 11, Figure 51, and Figure 52 show what occurs in the memory circuit
under this condition. The items highlighted in blue (or bold/italic font) show the
differences from the non-single-event case shown in Table 10. The easiest way to
understand this mechanism is to examine the input controls to the memory circuit.
Only one control signal changes (i.e., n3) on the DC-DFF. DICE-like cells are resistant
to change from perturbations on a single node by design [52]. The net result is one

internal node being in contention (C) and one node floating (F).

92

Contention is defined as a short from power (Vdd) to ground (GND) caused by
both PMOSFETs and NMOSFETSs being turned on at the same time. In this example,
the DC-DFF circuit will return to its original state. Thus, there is no error if the access
transistors are not attempting to change the state, while an error occurs (Figure 52)

if the intent is to change the storage state.

Table 11. Input control, output signal, and transistor conditions required to
change DC-DFF memory circuit from logic state 1 to logic state 0. A single
event to the input circuit keeps n1 at logic state 1.

Input Control| Output Signal
Step lll|ll2 n3 | n4|qa|qb| naq | nqgb
Hod '111{1]1]1]1[o] o
Change-11 1 1]o[1[1][1[0] 0
Change-2! /1 1]of1|1]1]| C|F
Change-3' 711|101 [1|1]| C | F
Change-41 7 1 1] 0]1]7 c|F
Unstable | 7 [1] 0[1] C|F

Vdd Vdd Vdd

Vdd
n1! qa! n.

ngb = “0->F" qb =“1"

2! ngb! n4! nga!

qgb nga

n3 / n4

Figure 51. Results from input circuit single event - circuit will settle to logic
state qa/qb =1, which is an error.

93

ns

710"

@
‘© 10 10_sink
=il
2 04
883
s 00 T T T T T T 1
0 1 2 3 4 5 6 10°
ns
(d)
16 ngb
= 12 -
S 08
> 043
00 T T T T T T 1
) 1 2 3 4 5 6 7x10
© ns
e
16 qb
sal NN
[\ |
> 04 | \ ((| | | | |
00 = T T T T T T 1
) 1 2 3 4 5 6 7210
ns
(U]
18 . — nqa
§ ég Jf—~—4. ’(—A—«l («A—f ./—-—'4\,—‘—‘\ '(—-—1 (
3 _J _J) k \

7x10”

ns
—qa
A A
4 4 6 10°
ns

. ~ ~ . - §hm_qa
1 1 —

)

)

Volt

E

Volt

T T T T T =
10°
ns

Figure 52. Complementary input data with error located between 3 ns and 5
ns - single event on input circuit.

The simulation results show that single events on both PMOSFETs and
NMOSFETs in the input circuit prevent the input data from being written to the DC-
DFF. The simulation results also show that this would only occur in one direction,
either on the data transition from logic state 0 to logic state 1 or from logic state 1 to
logic state 0. This is dependent on the location of the transistor in the input circuit
design. In Figure 52, the input data transition from logic state 0 to logic state 1 at the
time of the single event (at 2.5 ns) is output correctly. However, on the next data
input transition from logic state 1 to logic state 0, the output data is blocked and

therefore, incorrectly output.

94

Memory Circuit Single Events

The mechanism in the memory circuit is not the same as the input circuit. The
constant input conditions do not cause an soft error. For switched data, single events
on the PMOSFETSs in the memory circuit do not cause any soft errors, and single
events on the NMOSFETs in the memory circuit all caused soft errors. Table 12,
Figure 53, and Figure 54 show the simulation results for a single event to an
NMOSFET in the memory circuit, i.e, MN13 (Figure 46). In the example, the
transistor is struck while it is on. When the two input controls, n1 and n3, pull down,
the internal node nqa goes into contention (C). As the transition continues, another
internal node goes into contention (C), ga, and one floats (F), gb. Therefore, only one
storage node is correct. This state leads to a very unstable condition for the cell,
which will recover over time. The recovery mechanism can be complicated when

various nodes are in contention.

Table 12. Input control, output signal and transistor conditions required to
change DC-DFF memory circuit from logic state 1 to logic state 0. A single
event to the memory circuit keeps transistor MN13 on, thereby keeping qa

closed.

Input Control| Output Signal

Step [nl[n2|n3|n4|qa|qb| nqa | ngb
Hold 1({1[1]1]1][]1 0 0
Change-110[1]0[1]1]1[O 0
Change-2| 0|1 [0 [1[1|1]| C 1
Change-3| 0|1 [O0[1[1]|1]| C 1
Change-4| 0|1 |0 |1 |[C|F]| C 1
Unstable [0 [1[0 |1 |C|F| C 1

95

5

Figure 53. Results from memory circuit single event - circuit will settle to logic
state qa/qb = 1, which is an error.

(a)
16 — clk
z 12
08
> 04
00
0 1 2 3 4 5 6 710®
ns
(b)
16 da
z 12 — _— —_— — — —_— —
08
> o4
00 T T 1 T T 1 T 1
) 1 2 3 4 s 6 710"
_© ns
E=3 ‘§ 10_sink
@
-9 %‘
13 23
< 00y T T T T T T 1
1 2 3 4 5 6 7x10°
ns
@ 16 ngb
= 12
S 08
> 043
00 T T T T T T T 1
0 1 2 3 4 5 6 7x10”
©® ns
G
16 — qgb
s .2 fﬂ. (S ™ — ' —
> 4 | | | |
gD T ’ I‘ ’ T T I‘ T I. ‘ 1
0 1 2 3 4 5 6 7x10”
ns
()
16 — nqa
= |23r] —] (——]
S 08
> 04
00 T T T T T T T 1
0 1 2 3 4 5 6 7x10”
ns
(@)
16 —qa
12
S o8
> 04
00
0 1 2 3 4 5 6 710"
ns
h
® 16 —— shift_ga
= 123rv—] «—] —— ~— —
S 08
> 04
00 T T T T T T T 1
0 1 2 3 4 5 6 7x10°
ns

Figure 54. Complementary input data with error between 2.5 ns and 4.5 ns -
single event on memory circuit.

96

Simulation of the memory circuit show a difference in the PMOSFET and
NMOSFET single event response. No errors are observed for single events occurring
on PMOSFETs in the memory circuit. However, if a single event occurred on the
NMOSFETS, an error resulted in all the simulations. Changing the value stored in the
DC-DFF begins by pulling up the internal nodes. Errors result because ion strikes to
NMOSFETSs block the pull-up action, while ion strikes to PMOSFETs will not block

that action.

HEAVY ION TESTING OF DUAL-COMPLEMENTARY DFFS

The DC-DFF cells were used to design a shift register string using IBM'’s
CMOSO9SF process. The circuit includes built-in self-test (BIST) to evaluate the DC-
DFF at high frequencies [48, 53]. Two circuit layouts (standard and guard-band) are

evaluated during single event effects testing.

V-CREST Test Chip Design

The shift register string design was based on the Circuit for Radiation Effects
Self Test (CREST) as originally described by Marshall et al. [53]. This original concept
implements built-in self-test (BIST) of SiGe flip-flops (FFs) to measure single event
upset in shift register stings. It enables SEU experiments at high operating speeds,
reduced challenges with test chip input/output pad design and packaging, and

removed requirements for high frequency cabling at the test facilities. It

97

accomplishes these features by integrating the clock and the data pattern from a 127-
bit pseudo-random number generation onto the test chip. It also moves the
error/upset detection circuit onto the test chip. This integration significantly reduces

the switching frequency needed for the test chip input/output.

The original CREST design was expanded to accommodate bulk CMOS FFs;
this will be referred to as V-CREST [48]. A block diagram of V-CREST is shown in
Figure 55. Since the SEU sensitive area of bulk CMOS FFs is smaller than that of
heterojunction bipolar transistor (HBT) SiGe FFs, the shift register chain needed to
include a large number of FFs. The shift registers were implemented using 584 FFs,
which were designed in groups of four, where all four types of shift registers were

powered and clocked together.

* S11SRsx4 —® 1SRx4 [—9® 64SRsx4 —
s : 3

v
v

511SRsx4 9P 1SRx4 [

64SRs x 4
4
> S11SRsx4 9P 1SRx4 [P 64SRsx4

H H $
2 > 511SRsx4 P 1SRx4 [P 64SRsx4 ——
ROEN 7?’
Clock z 3 3 4
CSEL 7 Generator - MASK—7/|
ECLK —

EXPAT —| Generator

Error
2 I | Delay | muxz] [Pelect |
PSEL 7 paut x4
attern Trigger

Delay

Figure 55. V-CREST block diagram.

98

The V-CREST circuit can distinguish between errors caused by SETs in the
clock path versus those in the data path [48, 54]. The clock distribution network uses
its last buffer to drive four FFs. SETs on the clock distribution network would affect
all four FFs, thereby distinguishing SETs in the clock distribution network from other
errors. If all four FF shift registers showed an error, then the error flag is not
triggered. Finally, the clock distribution design includes both the clock and its inverse

so that clock signals are not generated within a FF.

Two different DC-DFF layouts were evaluated, one utilized guard-bands and
the other did not [54, 55]. The transistor placement was the same for both designs.

The size of each layout was also exactly the same.

Heavy lon Test Results

The DC-DFFs were tested at the 88-inch cyclotron at Lawrence Berkeley
National Laboratories. Electrical measurements were made before and after each
exposure to verify the samples were functional and within electrical parameter
limits. The de-lidded test devices were exposed to a range of beam conditions
(energy and species). Test routines exercised various functions of the shift register.
During each exposure the device outputs and supply current were monitored for

erroneous conditions.

The fluence for each test was selected so that atleast 30 errors were observed
for each exposure. In test runs where no errors were observed and the accumulation
of total dose permitted, the minimum fluence was 107 particles/cm?. The ions used in

heavy ion testing of the DC-DFF are summarized in Table 13.

99

The SEU cross-section per bit versus LET is shown in Figure 56. Only one data
point is shown for a constant input (0000) with a 150 MHz operating frequency. The
other data points represent alternating data (1010) either without or with a guard

band (GB).

Table 13. Heavy ions, LETs and ion energies used to test DC-DFFS.

Ion LET (MeV-cm2/mg) Energy (MeV)
Ne 5.76 90
Ar 14.33 180
Cu 30.04 284
Kr 38.25 387
Xe 68.50 612

100

10°
o3
5+
ad $
3
NE P ‘
5
2 10" < ¢
< -
£ k| <&
1 5
7] 54
¢ i
e 34 *
o
- .
10"
3 & 150 MHz - 0000
bl & 18 MHz- 1010
: 150 MHz - 1010
3 @ 150 MHz - 1010-GB

T T T T 1
0 20 40 60 80

LET, MeV-cm’/mg

Figure 56. Upset cross-section versus LET for DC-DFF layouts at two different
clock frequencies.

CLOCK DEPENDENT MECHANISMS

The susceptibility of the input and memory circuits was analyzed by
simulating ion strikes to all circuit nodes. The simulations show the DC-DFF is not
susceptible to data line SETs but is susceptible to clock line SETs and internal DC-DFF
single events. The heavy ion testing of the DC-DFF shows a much higher cross-
section when propagating the alternating input data versus constant input data when
clocked. Therefore, the higher cross-section can only be explained by clock line SETs

and internal DC-DFF single events.

The SEU cross-section, Figure 56, for the guard-band design (150 MHz -
1010-GB) is lower than that for the non-guard-band design (150 MHz - 1010). The
guard band was not applied to the transistors in clock distribution circuitry.

Therefore, for the standard design, the internal DC-DFF single event upsets are the

101

largest contributor to the cross-section. If the clock line SETs were the larger
contributor, then the cross-sections would be approximately equal because the clock
distribution network on the chip was exactly the same. Therefore, internal DC-DFF
single event upsets are clock-dependent and are a significant contributor to the error

cross-section.

The simulation results reveal that all 32 of the NMOSFETs and PMOSFETSs in
the two input circuits and all 16 of the NMOSFETSs in the two memory circuits were
susceptible to this mechanism. Therefore, 48 potential transistors factor into the
upset cross-section for this mechanism. Also, SETs that prevent a state change can be
longer than SETSs that change the state. This factor leads to an increased probability

of occurrence.

NAND?2 logic cells were simulated as the fundamenal building block of the DC-
DFF to determine the generated SET pulse widths as a function of collected charge.
Dasgupta et al. [42] describe SET currents with a prompt and a shelf component, and
that model was implemented with dual double-exponential current sources, one for
the current shelf and one for the prompt component. The shelf level was a function of
the node’s restoring current and was independent of the node’s capacitance, but the
prompt component was dependent upon both the restoring current and the node
capacitance. If the load on a circuit node is increased, then only the prompt current
source will change. When an SET attempts to prevent a state change, it does not have

to overcome the node’s capacitance, so there is no prompt current source.

102

Figure 57 shows simulated SET pulse widths versus collected charge for the
NAND2 circuit. The ON line represents the prevention of a state change and is
independent of loading. The single event simulation of the ON line occurs at the
moment when the state was at the front edge of the transition and produces a linear
relationship of SET delay from collected charge. The OFF lines represent the change
of a state with various loads on the node. In the DC-DFF case, the load on each
NAND?2 is approximately three logic gates (3x). At a collected charge of 10 fC, the ON
SET pulse width is 142 ps, and the OFF with 3x load SET pulse width is 84 ps.
Therefore, legitimate state changes are potentially blocked when the ON node is
struck. The maximum pulse width for the ON case can only occur when the ion strike

is exactly at the time when the state is about to change.

“==ON
120.0 ===0FF_1xload
OFF_2xLoad
80.0 = OFF_3xLoad =
OFf_dxoad -~ -

SET Pulse Width, ps

0.0 20 4.0 6.0 8.0 100 120

Collected Charge, fC

Figure 57. Maximum SET pulse widths versus collected charge for various
NAND2 transistor conditions

103

CHAPTER VIII

SPICE CIRCUIT ANALYSIS FOR LOGICAL AND TIMING SIMULATIONS

This chapter discusses the generation and propagation of SETs within a
complex digital IC. A background discussion motivates the use charge collection at
the cell level to calculate soft errors of the IC. Because a transient must propagate to
a storage element (e.g., a flip-flop or register) for visibility as an error, the logic
depth between registers must be considered. The duration of the transient (i.e., the
SET pulse-width) affects the probability of latching the transient. Instead of using a
fixed SET pulse-width, the analysis is based upon the distribution of pulse widths as

predicted from charge collection from MRED.

SET Pulse-Width Characterization for Radiation-Induced Faults

This section discusses in detail how an SET is generated at the cell level and
some of the factors that contribute to SET pulse-width variability. The tools used to
generate the SET are also described. Next, details regarding the propagation up the
hierarchy of an IC [56] are described, as well as how the SET is further shaped as it

propagates through combinational logic cells. The discussion also includes the role

104

of timing vulnerability in the propagation of an SET and the descriptions of the tools

used.

Background

Simulation results show that SET pulse-width variability is due to various
factors including cell layout and the input state. In [40], Narasimham et al. use an
on-chip asynchronous circuit approach to capture and analyze SET pulses generated
from an inverter chain. The on-chip detection circuitry measures the width of each
SET by determining the number of latches affected by the SET. SET pulse-width
distributions and the SET cross-section of the individual inverters were evaluated.
Simulations show that the distance to the body contact affects the SET pulse-width

(Figure 58).

3D-TCAD simulation

1600

1400

1200

1000

B 90 nm

® 130 nm

SET pulse width (ps)

400

0 1 2 3 4 5
hit location distance from well contact (pm)

Figure 58. Variation of SET pulse-width relative to strike location distance to
well contact[40]
Several research efforts [42, 57, 58] indicate that well contacts, specifically

for the N-well, can significantly affect single event response. In [59], the minimum-

size inverter in the IBM 90-nm cell library was implemented in TCAD, and a 40 MeV-

105

cm?/mg ion strike on the center of the PMOSFET drain is simulated for n-well
contact areas of 0.2 um? (same area for p-well) and 4 um? (2 pm? for p-well). Figure
59 shows an example of the change in the full-width, half-maximum V4q pulse-width
from 1.7 ns to 620 ps when the n-well contact size is increased. (Note that the
location and size of the well contact is not a significant factor for lightly ionizing
particle charge collection. If this research is extended beyond lightly ionizing

particles, then this factor will need to be included in the new model.)

1.2

o
o
N
- -
G—CHEeE

Output voltage (V)
>

T e’ i
Time (ns)

Figure 59. PMOSFET drain ion strike voltage pulses for 0.2 pm? and 4 pm? n-
well contacts.[60]

The input state of a cell can determine which devices will collect charge, or
whether the charge collected will cause the output to toggle. The input state can also
factor into the resistance of the restoring current to terminate the effects of the
single event, which was confirmed in Chapter VI. In [59], the authors show the effect
of input states on SET pulse-width by using TCAD to model LET 40 MeV-cm2/mg ion
events in a NAND gate. The SETs obtained for various input states are shown in
Figure 60. This factor is taken into account in the multi-scale simulation approach
discussed in this dissertation. Figure 43 shows model results from MRED2SPICE

that demonstrate the same effect for a NOR2x1 gate.

106

Output voltage (V)

1.2pe—=
0.8
04
c-oInput: 00| |
=g Input: 01
or - Input: 10|
04F P E

0100 200

Time (ps)

00 400 500 600 700

Figure 60. Effect of input state on single event response of NAND gate[60].

SPICE SET Pulse-Width Characterization

SETs become identical to a typical digital transitioning signal, i.e., logic 0 to

logic 1 and vice versa after traversing a certain number of stages. As an SET

propagates through logic cells, its shape will be altered; Dodd et al. [51] show this

effect for particles with fairly low LETs. Figure 61 shows how pulse shaping changes

the SET into a typical square voltage signal after propagating through a few logic

cells.

Node Voltage (V)

1.6 (Y -
12 |
™~ After
Broadening
08 2 Inverter
o RS FF
4~ Latches SET
I T e e .
-0.4 Struck Node LET =7 MeV-cm™/mg

0 100 200 300
Time (ps)

400

Figure 61. SET propagation in 10-inverter delay chains [51]

107

SPICE and the appropriate SET propagation techniques from Chapter V were
used to develop a simulation solution to quantify an equivalent rail-to-rail voltage
(Vr-r). The simulation results show the minimum number of follow-on cells beyond
the struck cell that continues to shape the SET, and eventually forms a digital logic 1
to logic 0 signal, or vice versa. Logic depth is classified in a digital circuit as the
maximum number of basic combinational gates, e.g. inverter, NAND gate, or NOR
gate, that a signal is required to travel from source memory element to a destination
memory element. The logic depth of combinational cells between storage elements
can affect SET propagation. This is the key element necessary to couple

MRED2SPICE to an IC modeling tool for SER prediction of a complex digital IC.

Logic Depth Consideration

The most aggressive logic depth for practical implementations is less than 10
fanout-4 (F04) gates per cycle to maintain sufficient on-chip performance [61]. The
IBM PowerPC with integrated Sony cells falls into this range [44, 62-64]. The first
XScale® ARM processor had a worse-case logic depth of approximately 27 gates
across the whole chip, and the ALU was identified as the most problematic
component in this processor due to the series shifter [65-67]. The ALU’s critical path
is the adder, which is used for most of the mathematical operations and is
duplicated throughout the design. The adder needs to complete an operation within
a clock cycle to receive inputs from the register file (RF) and the address to the
cache. The only pertinent information is the logic depth for completing the cycle.

The cycle consists of: (1) reading the RF at the active edge of the clock (less than a

108

phase of the clock), (2) multiplexing (less than a phase of the clock), (3) performing
an ALU operation (about a phase), and (4) multiplexing to get the address out to the
cache (less than a phase) to finish out the clock cycle. Therefore, the critical path
involves the ALU operations, which typically is designed with a logic depth of ~ 8
[64, 65]. Based on these results, a logic depth of 10 is the upper bound that will be

used for this analysis.

Logic Depth for SPICE Simulation

The methodology of the MRED2SPICE tool flow and the associated Python
scripts were extended to determine the impact of logic depth on the SET. Three logic
depths were considered to determine if the SET squares up within a typical design: 3
(minimum simulation solution), 7, and 10 (upper bound). The SETs evaluated are
from the original MRED simulation runs specified for the 90-nm IBM inverter, NAND
gate, and NOR gate combinational cells discussed previously in this dissertation. The
block diagram illustrating this process is seen in Figure 62 and the target design

used for the logic depth SET analysis is in Figure 63.

MRED Process SPICE Process
Materta Quont Event® Tdbl_exp_Event™ > Vtran,Lvmn(‘)‘>Vr-r,r:vcm("') sErp th‘for)
_Eve ulse_Event(x
hoed ldbl_exp_Event™) (SET Pulse-Width
MREDg 1 (x) + Energy -> Charge i Charge -> Current -~ o SET Pulse_Event(x) Diﬁll'ib";iitl’: Output

(x)
Angle I pC ¢ YT 0.0=0.+0.= [1(0)dt+ [1(t)ae [Histogram
o, EW,}:”’ i . . | SET Pulse_Event(x)
|
T

L — — Scon<Qnwesh 1 emlwesnn
"Get" Next Event(x+1) "Get" Next Event(x+1)

Figure 62. MRED to LOGIC depth (MRED2LOGIC) block diagram

109

Vdd_Invi

A

1 n i
CEl_ &D D Asynch Latch
Dut Invl

X
+
In_Invl 1
- | 12 12 Mo Tn3 Nv7,1
Cl
XN | IG GD Target Chain

In_invl=Vdd_inv1=0.9V
Vss_Inv1=0.0V In0
Vss_Invl

-

=

Figure 63. Target design for logic depth SET pulse-width analysis. Logic depths
of 3,7, and 10 were used.

Procedure for MRED2LOGIC within the Multi-Scale Simulation

MRED can be linked to the IC-level simulation via the circuit-level simulation
to form the MRED2LOGIC approach. The procedural steps for MRED2LOGIC begin
by using the MRED output data array file listing each MRED event and the charge
collection, Qc.u, for each nested sensitive volume as an input to SPICE. This output
data array file is parsed for Qcon to extract the relevant cases where Qcon is greater
than Qenresn, and the results are stored while maintaining the MRED event number.
Using Qcon, the calculations are completed for Ipromp: and Ixoia and their
corresponding SET pulse-widths. The script then creates a circuit netlist for the 3, 7,
or, 10 logic depth (Figure 63) and populates the dual double-exponential current
sources with these values. SPICE is run on the circuit netlist. The SPICE simulation
strikes a random node within the chosen logic depth and evaluates the results for a
full-width half-maximum crossing of the resulting output rail-to-rail voltage (V).
The results are then recorded into two different files. One records the MRED event
number, the node that was struck, and the resulting SET pulse-width. The second
output file is the histogram of the resulting SET pulse-widths binned into 10-ps

increments. This increment was determined to be the optimal bin width for no loss

110

of data and minimal error in SET pulse-width during development. Using the two
output files forms gives the user the flexibility to make a decision on the preferred
IC modeling tool. The research in this dissertation uses ModelSim®, so the pulse-
width distribution is formatted for this tool. The script is executed in parallel for
both the PMOSFETs and the NMOSFETSs used in the combinational cell. A flowchart
for the MRED2LOGIC Python script is shown in Figure 64, and an example of the

Python script is found in APPENDIX E.

111

Start
with Array Outputs
File from MRED

Y

Initialize Pulse-width
Histogram

Y

Set logic depth

arse MRED Event
Output File

A

I Calculate Qeoll I

I Determine I, o000 &1y o1 I

Create Circuit Netlist with
Current Sources

ISelect Random Node to Strike |

I Invoke/Run SPICE on Netlist I

Extract Full-Width Half-
Maximum Pulse-width

Y

Go to next Event
from MRED output

ecord Pulse-Widt
Info and Bin Even

After completion of Last
Event from MRED output

Output SET
Pulse-width Data
File and
Histogram File

Figure 64. MRED2LOGIC process flowchart

An example of the SET pulse-width output file for a design containing the

IBM 90-nm inverter design and a logic depth of 3 is seen in Figure 65.

112

PMOSFET Volumes NMOSFET Volumes SET
MRED_Event # Weight Drain Src-Drain | Well-1 Well-2 Drain Src-Drain | Well-1 Well-2 MRED_Event # | inv_chain Pulse-Width
Qeon Qo Qeon Qean Qeon Qeon Qo Qo node # (ps)
1875 1.00E+00 [0.0000 0.1850 5.2472 8.3615 0.0000 0.0000 0.0000 0.0000 1875 2 23.1300
1904 1.00E+00 | 0.0000 0.0000 0.0000 0.0417 0.0978 0.1079 0.1021 8.8361 1904 2 31.3800
4535 1.00E+00 [0.0000 0.0000 0.0000 0.0000 0.0785 0.8101 6.8771 7.7157 4535 2 23.2000
4623 1.00E+00 [6.0134 0.0000 4.9897 7.7336 0.0000 0.0296 0.0250 0.0490 4623 2 35.8200
4756 1.00E+00 [0.0000 0.0000 0.0000 0.0000 5.8833 5.9272 6.1689 8.9522 4756 1 67.7000
4966 1.00E+00 | 0.2270 0.0648 0.2095 9.7884 0.0000 0.0000 0.0000 0.0000 4966 3 40.6200
4983 1.00E+00 [0.0212 0.0000 0.0174 0.1973 0.0000 7.0849 6.3078 8.6727 4983 2 35.0400
4988 1.00E+00 [0.0000 0.0000 0.0000 0.0000 0.0464 0.0628 5.5564 9.2894 4988 3 36.9700
5014 1.00E+00 [8.2375 0.1153 7.0257 7.7887 0.0000 0.0353 0.0608 0.0000 5014 3 28.6500
5452 1.00E+00 [0.0779 0.0898 0.1764 1.4019 0.0000 0.0000 0.0000 0.1821 5452 2 27.3900
5516 1.00E+00 | 0.0000 0.0000 0.0000 0.1169 0.0000 0.0222 5.2491 7.9893 5516 3 25.0300
5524 1.00E+00 [0.0000 0.0000 0.0000 0.0000 6.5925 6.9424 6.1269 8.9883 5524 1 27.8500
6043 1.00E+00 [0.0000 0.1890 0.1622 0.5179 0.0000 7.0624 5.5665 6.7590 6043 2 26.0800
6052 1.00E+00 | 0.0000 0.0000 0.0000 8.1387 0.0000 0.0000 0.0000 0.0000 6052 2 33.1400
6077 1.00E+00 [0.0997 0.0000 5.7595 7.8788 0.0000 0.0000 0.0000 0.1440 6077 1 21.2300
6111 1.00E+00 [7.5475 7.4970 6.7887 7.9279 0.0911 0.3795 0.3363 0.0000 6111 2 40.0100
6482 1.00E+00 [0.0000 0.0000 0.0000 0.0000 6.6349 6.9448 5.9277 7.5460 6482 2 21.9800
8712 1.00E+00 [0.0000 0.0000 0.0000 0.1377 0.0672 0.0672 0.1173 9.1634 8712 3 21.9600
8734 1.00E+00 | 0.0000 0.0000 0.0117 0.3317 0.0821 0.1574 0.2764 1.9044 8734 3 62.9900
8854 1.00E+00 [7.3000 0.6752 6.6498 6.4645 0.0000 0.0000 0.0000 0.0689 8854 2 45.0000
8950 1.00E+00 [0.0068 0.0000 0.0000 7.9782 0.0000 0.0000 0.0000 0.0000 8950 2 30.3500
8982 1.00E+00 [0.0000 0.0000 0.0000 0.0000 0.3825 0.3930 0.4108 8.2125 8982 2 46.3800
9056 1.00E+00 | 6.8046 6.8418 6.1095 9.3567 0.0000 0.0000 0.0000 0.0000 9056 2 35.0800
9277 1.00E+00 | 0.0000 0.0000 0.0000 0.0000 7.3942 7.3942 6.2802 9.2182 9277 2 41.6400
9528 1.00E+00 [0.0000 0.0000 0.0000 0.2903 7.0931 7.1100 6.0551 9.2513 9528 3 52.6100
10744 1.00E+00 [7.0380 7.1387 6.6974 8.3755 0.0000 0.0000 0.0000 0.0000 10744 1 73.4600
11517 1.00E+00 | 0.0000 0.0000 0.0000 0.0000 6.4259 6.5585 5.3139 9.0605 11517 2 26.2300
11904 1.00E+00 [0.3631 7.5380 6.6779 7.8040 0.0000 0.0000 0.0000 0.0000 11904 2 60.8500
11966 1.00E+00 [0.0000 0.0000 0.0000 0.0000 0.0353 0.0406 0.0000 8.4020 11966 2 22.3200
12085 1.00E+00 [0.0523 0.0000 0.0000 8.0674 0.0000 0.0000 0.0000 0.0000 12085 3 85.0800
12135 1.00E+00 | 0.0000 0.0000 0.0000 0.0000 0.0542 7.4559 1.0286 7.7350 12135 2 23.4600
12308 1.00E+00 [7.4474 7.8849 7.1374 8.8020 0.0000 0.0000 0.0000 0.0000 12308 2 71.5900
12821 1.00E+00 | 6.6178 6.6190 6.1702 10.6085 0.0000 0.0000 0.0000 0.0000 12821 3 26.0300
13163 1.00E+00 [0.0000 0.0000 0.0000 0.0000 7.5313 7.5916 6.3502 9.8644 13163 1 60.1600
13754 1.00E+00 | 0.0000 0.0000 0.0000 0.0000 6.5797 6.7149 5.9603 7.2922 13754 2 48.4600
14254 1.00E+00 [0.0000 0.0000 0.0000 0.0000 7.4243 7.4636 6.8120 8.9830 14254 1 72.4100
14780 1.00E+00 [0.0000 0.0000 0.0000 0.0000 6.5090 6.5090 6.6619 8.7789 14780 3 28.6600
15370 1.00E+00 [8.1871 0.0064 6.8009 8.7218 0.0000 0.0000 0.0000 0.0000 15370 2 48.3700
15492 1.00E+00 [0.0485 0.1560 0.3296 10.2279 0.0000 0.0341 0.0543 0.0000 15492 2 30.6300
15558 1.00E+00 [8.6608 0.1558 7.7485 9.2146 0.0000 0.0000 0.0000 0.0000 15558 2 50.7500
15625 1.00E+00 [0.0670 0.0133 4.6458 8.2751 0.0306 0.1200 0.1276 0.1756 15625 3 26.0300
15635 1.00E+00 [0.0820 7.2883 6.5348 8.4549 0.0000 0.0000 0.0000 0.0000 15635 2 23.0700
15889 1.00E+00 [7.9476 6.9781 7.0027 7.7279 0.0000 0.0000 0.0000 0.1403 15889 1 59.6700
(a) (b)

Figure 65. MRED2LOGIC SET pulse-width output file samples for inverter cell
with logic depth 3, (a) Original MRED input file for Qcou, (b) MRED2LOGIC SET
pulse-width output file results with corresponding MRED simulation event
number after being processed through the multi-scale simulation with no loss
of information.

MREDZ2LOGIC Histogram Results

The three IBM 90-nm combinational cells were analyzed for SETs at an LET

of 2.1 MeV-cm?2/mg for three logic depths (3, 7, and 10) using the same radiation

environment as Cannon et al. [16] and Atkinson et al. [60]. Examples of the resulting
histogram files are shown for the INVx1 (Figure 66), the NAND2x1 (Figure 67), and
the NOR2x1 (Figure 68).

113

IBM 90-nm INVx1 —»¢ '2LET_LogicDepth10'
| st —@— '2LET_LogicDepth7'
100 [~— '2LET_LogicDepth3'

Count

50 100 150
Pulsewidth, ps

Figure 66. Bin counts of SET pulse-widths for IBM 90-nm INVx1 for three
different logic depths and particles of 2.1 MeV-cm?/mg

80 4 ' '
] 4 = '2LET_LogicDepth10
1BM 90-nm NAND2x1 o BIET Lokbeth?
+— '2LET_LogicDepth3'

Count

50 100 150
Pulsewidth, ps

Figure 67. Bin counts of SET pulse-widths for IBM 90-nm NAND2x1 for three
different logic depths and particles of 2.1 MeV-cm?2/mg

114

IBM 90-nm NOR2Z_x1 = '2LET_LogicDepth10'
—@— '2LET_LogicDepth7'

80 v —+— '2LET_LogicDepth3'

60 - ~—

Count

40

20

50 100 150 200
Pulsewidth, ps

Figure 68. Bin counts of SET pulse-widths for IBM 90-nm NOR2x1 for three
different logic depths and particles of 2.1 MeV-cm?/mg

The simulations included all transients that are generated from the
NMOSFETS and PMOSFETS; the distribution shows the frequency of durations that
have been generated from MRED events. However, the figures indicate that a simple,
fixed pulse-width does not capture the true behavior from SETs generated within
the circuit. A logic depth of 3 produces the largest number of SETs. Shorter pulses
(e.g., less than 50 ps) are not observed as frequently for the INVx1 and the NOR2x1
because the pulses are shorter than the rise time of the circuit [47]. The remainder

of the dissertation will use a logic depth of 3.

Summary

This chapter describes the development of pulse-width distributions for
three library cells. Charge collection from MRED events was translated into SETs for
circuits with logic depths of 3, 7, and 10. The framework includes traceability to

actual particle strikes. The distribution enables the analysis of more complex

115

designs, such as an ALU, by using the individual cells as building blocks. This topic is

described in the next chapter.

116

CHAPTERIX

IC LOGIC SIMULATION FOR SOFT ERROR PREDICTION

This chapter discusses the use of simulation techniques to predict soft errors
that propagate up the hierarchy from a single combinational cell to the full complex
digital circuit. This analysis can be performed at design time. It also gives a brief
discussion of the testbench used to test an example IC (an ALU) and inputs required

to verify this design and ultimately produce a soft error prediction.

Basic Testing Approach

Once an equivalent rail-to-rail voltage pulse width, V.., has been determined,
it can be used in conjunction with an IC simulation tool, such as ModelSim®. The
ModelSim® tool is a unified debug environment for full simulation of an IC that has
been modeled with Verilog, VHDL, or SystemC [68]. The benefit of integrating
ModelSim® with MRED and SPICE is the ability to have a full circuit simulation that
enables the demonstration of SET capture via an operational circuit such as the ALU
(Figure 69). V.- is identical to a typical digital signal - logic 0 to logic 1 and vice
versa. Compatibility with a circuit simulator requires the translation of SETs into

logic 0 or logic 1.

117

SPICE |Process

SET Pulse +

>V SET Pulse iecti IC Circuit
- ault Injection
tran = Tr-r /2\{) ICModeling| _SER

Tool

ldhl_exp > Vtran Vi

M~ IO

Inputs
| MRED
Process

1

Figure 69. SET multi-scale simulation MRED to SPICE to ModelSim® for
complex digital ICs

Functional verification is performed on hardware designs during the design
phase of the digital circuit development process to check its behavior. The
verification environment is composed of a testbench surrounding the Device Under

Test (DUT) (Figure 70) [48, 69-71]. Functional verification is done by comparing

simulated design responses from incoming data (stimuli) against expected values.

Assertions

t 1

gl—> > 5
& [<—{Device Under Test §
5] oun [E
- > » O
E 8
I T T _____‘l
| Testbench Code |
' |
' |
I Output Data
| Stimuli Generator P . |
) Analysis |
| -Constraints _Monitors |
| -:)peralt)lons -Check against reference |
| = nput atterns -Scoreboard |
|
|

Figure 70. Basic block diagram for a testbench with a design under test (DUT)

The testbench may include a behavioral model of the design and test vectors.

These test vectors can be provided as a file of inputs and expected outputs (I/0) if

118

pre-calculated responses are available from an external reference model. The
testbench includes additional constructs, such as stimuli generation, output analysis,
or reporting. DUT responses (or actions) to stimuli are compared with the expected
results to validate the behavior. In terms of languages, modern verification
techniques, such as directed and constrained-random verification, coverage driven
verification, and assertion based verification [72], make use of hardware description
languages like VHDL, Verilog, or SystemVerilog [73]. These languages enable
development of more efficient functional verification environments and facilitate

the reuse of testbench components.

During the verification process, the design must be checked to have correct
functionality in normal operation. It may be a challenge for the designer to simulate
complex designs correctly and to check that the verification process covers all of the
functional features. The challenge is greater when time is short for creating the
verification environment, defining the test cases of interest, and simulating them.
Assertion statements can be used within the verification process to help a designer
know the current status of the testbench, as well as the states of the I/0. Execution
of a test can terminate early if a fault should occur. This methodology was used for

the multi-scale simulation development.

119

Multi-scale simulation for Soft Error Rate Prediction

Testbench Framework

The previous chapters describe the basic testing method used for the IBM 90-

nm combinational cells that have been characterized for SET pulse-widths.

A fault injection library [17], which was developed at the Vanderbilt University
Institute for Space and Defense Electronics, was used with the SET pulse-width
distributions for the INVx1, NAND2x1, and NOR2x1 to enable soft error rate
prediction for those components within the ALU. The library simulates single event
upsets and single event transients in an IC simulation tool based upon a Register-
Transfer Level (RTL) description. RTL is a level of abstraction used in describing the
operation of a synchronous digital circuit. In an RTL representation, a circuit's
behavior is defined in terms of the flow of signals, or the transfer of data between
hardware registers, and the logical operations performed on those signals. The
implementation is intended to be independent of the user’s choice of simulators and
hardware description language. The fault injection library has been tested with
Icarus Verilog, Cadence NC-Verilog, Synopsys VCS, and Mentor ModelSim®. The
version used for the multi-scale simulation only contained the functionality related
to event generation. Using an ALU as the DUT, the testbench defined the effects that
constituted an error in the system as well as the appropriate checking and logging
for fault generation and error detection. A block diagram of this advanced technique

with fault injection is shown in Figure 71.

120

—)< Analyze simulation results)(—
after fault injection

Device Under Test
(DUT)

Interface
ERTIREIN |

Testbench Code

| |
| |

|
I Constraints Assertions |
l \———Fault |
| Tasks . . Events
| Injection |
| |
| |
| |

I

(Functions) Gtatement§ (Processes) (Lists)

Define Number
of
Mutation

Figure 71. Block diagram for injecting faults into the testbench

Soft Error Rate Simulation Process

The fault injection library implements a randomization of the SETs. The
testbench performs several mutations to strike a different combinational cell with
each invocation. The module provides a $pseudoRandom(MAX) function that returns
an integer from 0 to MAX. Unless, pseudoRandomSeed (SEED) has previously been
given a random seed as a parameter, the $pseudoRandom number stream is different
for each process. Next, a random SET pulse-width is generated from the SET pulse-
width distribution file produced from the MRED2LOGIC process in CHAPTER VIII.
The fault injection library required that the input SET distribution file be converted
to a raw count divided by the irradiation fluence multiplied by the bin-width (i.e.,

fluence x bin-width). This conversion makes the cross-section calculation for soft

121

error rate prediction traceable from the originating MRED simulations, since the
distributions are now in (cm?/ps) vs. (bin-width in ps). An example of the

originating SET pulse-width distribution and the converted distribution is shown in

Figure 72.
100 /‘""*—», IBM 90-nm INVx1 —4+— 2LET_LogicDepth3
/ MRED2LOGIC Original Histogram Data
80 /
60 / \
€
3
© \
40 \
; —
204
0- T T T T T T T T —
(@) 20 40 60 80 100

Pulsewidth, ps

60x10"'% o IBM 90-nm INVx1

—4 2LET_LogicDepth3
"MRED2LOGIC Histogram Data/(fluence*bin-width)"

cm /ps

o 20 40 60 80 100
(b) Pulsewidth, ps

Figure 72. MRED2LOGIC SET pulse-width distribution for 90-nm INVx1 for LET
= 2.1 MeV-cm?/mg (a) Original histogram data distribution (b) Original
histogram data converted as required for fault injection.

A random SET is selected based upon the distribution. Next, the netlist (e.g.,
an ALU for this dissertation) is parsed to identify the usage of each library cell (e.g.,
INVx1, NAND2x1, and NOR2x1 for this dissertation). At the end of the simulation,

the calculated results include the integral cross-sections for: (1) each of the

individual cells within the ALU and (2) the total instantiated cell count for the ALU.

122

The testbench chooses a random cell in the ALU for fault injection and strikes it with
arandom SET pulse-width within the distribution associated with the cell. Then, the
testbench runs all test vectors for all functions specified by the ALU. In this case, the
ALU has a datapath width of 8 bits and uses three control bits; the total number of
test vectors is 131,075. The testbench monitors the outputs for errors. If an error
occurs, then the testbench: (1) stops the simulation, (2) reports all the erroneous
outputs, (3) reports the expected outputs, (4) reports the SET pulse-width, and (5)
reports the time the error occurred. If no error occurs, then another mutation is
invoked to continue the simulation. A flowchart for this process is shown in Figure
73. Once all the mutations are complete, then the probability of a soft error for the
DUT can be calculated by dividing the number of errors recorded by the number of
simulation mutations (i.e., the number of SETs generated). An example of the

testbench code is found in APPENDIX F.

123

Start
with Array Outputs
File from MRED2LOGIC

Read and Evaluate Pulse-
width Histogram Data

Read Desngn Under
Test (DUT) Netlist
For All
Combinational Cells
Characterized in
Dlstrlbutlon

Set Number of
Mutations for
Simulation in ModelSim

Select "Random" Ce

A

from DUT to "Strike"

Generate a "Random"
SET Pulse-Width for
Strlke

lnvoke/Run Testbench in
ModelSim on DUT

Did SET Produce an
Error on Output

Stop Simulation and
Record
(1) Outputs
(Erroneous & Expected)
(2) SET Pulse-width
(3) Time error occured

Last Mutation?

Yes

/ End /
Simulation

Figure 73. Flowchart for ModelSim® simulation to determine soft error rate

Python scripting was used to produce the queue of simulation mutations. The

transcript for each simulation was stored into an output file for analysis when all

simulations were complete. An example of the transcript window shows the steps

from the flowchart as they are executed via the testbench (Figure 74).

124

start of new simulation# Loading /usrflocal/RTL/libsingleEvent/libsingleEvent.1.1.1.x86_64.so

Loading work.tb_set_test_structure_8bit_core(fast)

Loading work.set_test_structure_8bit_core(fast

}# Loading work.nor2_1xb(fast

J# Loading work.nand2_1xb(fast)

Loading work.inv_1xb(fast)

Reading pulse width spectrum file "inv1_Id3.out"

(1) # Reading differential spectrum ['module": 'inv_1x', 'integral': 2.58592e-09]

MT19937Running job pid=32581

Running job pid=32581

(2) # Initializing single event random seed to 2764402527

Building single event data structures...

Done building single event data structures.

(3) # Single event transient called ['module': 'alu_tb', 'integral': '1.49984e-07")

(4) # Generated single event transient ['realtime’: 2.9488e-05, 'pulseWidth': 5.3e-11, 'location":
'tb_set_test_structure_8bit_core. set test re_8bit_core.n793', 'oldValue': 1, 'newValue": 0, 'weight': 1

(5)# ERROR 0001011000000000, 0000000000000000

Break in Module tb_set test structure_8bit_core at ./tb_test2.v line 147# Stopped at ./tb_test2.v line 147

etr

Figure 74. Sample of the ModelSim® simulation transcript. (1) INVx1 SET
pulse-width distribution file is read, (2) Random seed for cell to strike, (3)
ALU testbench stimuli and monitor are invoked, (4) Random SET pulse-width
strike length, time of strike, and specific cell (5) Erroneous outputs and
expected outputs at time of error.

Soft Error Rate Predictions for Individual Library Cells

Multiple ModelSim® simulations were executed using the flow identified in
the previous section. The logical-masking error rate was examined by using errors
that lasted the full clock width. This method enabled comparison to previous work
[59, 60] to verify the accuracy. However, the previous method used by Black et al.
[59] used multiple tools: (1) CREME96 [74] (Cosmic Ray Effects on Micro-
Electronics Code) for calculations of both incident and shielded cosmic heavy ion
fluxes, (2) Technology-Computer Aided Design (TCAD) for process and design
simulation of the PMOSFETs and NMOSFETs, (3) SPICE for timing and SET pulse-

width evaluation, and finally (4) ModelSim® for circuit level (ALU) error probability

125

prediction. This approach required separate tools and analyses, which required over

a year for the evaluation and the final results, mainly due to TCAD simulations that

remained incomplete when the report was submitted.

The results for the multi-scale simulation for the IBM 90-nm INVx1,

NAND2x1, and NOR2x1 agreed with the simulation results from Black et al. [59] and

Atkinson et al. [60]. Table 14 reports the results, including: (1) the simulation

method, (2) the combinational cell simulated with the number of instantiations for

the ALU design, and lastly (3) the number of mutations required to simulate for the

reported results.

Table 14. Simulation results for percent susceptible to SETs for logical-

masking.
Simulation INVx1 NAND2x1 NOR2x1 Simulation
Method (cell count =58) | (cell count=114) | (cell count =51) Mutations
Susceptibility Susceptibility Susceptibility
Black et al. [59] 9 % 14.3% 8.3% Cell Countx 131075
MRED2LOGIC 10% 14.3% 8.5% 3000 per cell

The multi-scale simulation required 12,000 total mutations to simulate

(3000 for each combinational cell, 3000 for all three cells evaluated together, or

Multi), while Black et al. took 29,229,725 [(58 + 114 + 51) x 131075] mutations in

ModelSim®. The MRED2LOGIC multi-scale simulation with fault injection achieved

comparable logical-masking results in a greatly reduced amount of simulation and

computing time.

126

However, the goal of the multi-scale simulation approach is to provide a
means to achieve a soft error analysis for a complex digital IC not limited to logical-
masking only. Therefore, additional simulations were run at the circuit’s operating
frequency with SETs from the distribution applied randomly during the clock
period. This takes into account timing-masking because the pulse-widths vary in
length and may or may not appear during the window of vulnerability. This
approach mimics IC radiation testing. The logical-masking percentages for
susceptibility are the upper bound for the SER for each combinational cell evaluated

during simulation.

For the ALU, the multi-scale simulation SER cross-sections per cell (i.e.,
INVx1, NAND2x1, and NOR2x1) were calculated via fault injection as the testbench
computed the integral cross-sections per cell (e.g., the total contribution to the cross
section for all INVx1 cells in the ALU design). The verification process parsed the
ALU design for the number of instantiations of each cell (i.e., cell count). It then: (1)
calculates the integral cross-section per cell as well as for the total contribution of
all instances of that cell for the ALU, (2) applies a randomly selected SET during the
cycle time, and then (3) determines if a generated fault results in an output error.
Given this process, the SER is then a calculation of the number of errors observed
divided by the number of faults generated (simulation mutations) multiplied by the

total contribution integral cross-section (6).

_T (Cell Cross— Section)

SER = .
- ’ (6)

Total Errors Observed
Total Faults Generated) |

127

These results do not distinguish between logical-masked or timing-masked errors,
similar to the results obtained during a radiation test. The data were computed in 3
days, a fraction of the simulation and computing time (approximately 3 months)
reported by Black et al. The results for the INVx1, NAND2x1, and NOR2x1, and all
three cells combined (i.e., Multi) are presented in Table 15. A full analysis of the ALU
SER would require that all cells from the library are characterized for the full space

environment.

Table 15. SER Error cross-section => (Errors Observed / Faults Generated) x
Integral Cross-Section for LET = 2.1 MeV-cm?/mg

Cell Errors Faults Integral Cross- SER cross-
Observed Generated Section section
(cm?2) (cm?)

INVx1 107 3000 1.50x 107 5.35x10°

NAND2x1 128 3000 3.37x107 14.40x 109

NOR2x1 89 3000 9.91x108 294 x10°

Multi 114 3000 5.87x107 2.23x108
(All 3)

The sum of the individual SER cross-sections for the ALU is 2.27 x 108 cm?2.

Comparing that result to the Multi (All 3) cross-section, 2.23 x 10-8 cm? shows a

difference of 3.99 x 10-1° cm?, which is less than 1 percent error. The multi-scale

simulation produces results for either: (1) an individual cell’s contribution to SER

cross-section, or (2) the overall SER cross-section for the full IC. To obtain the SER

128

for an entire IC, the same procedure would need to be performed for all the library
cells within the ALU design (see Table 16). This method provides a cross-layer
solution to identify vulnerabilities using (1) fundamental device physics, (2) cell
library design, and (3) transient capture. Previous methods were unable to connect
transients within the circuit to specific ionizing events. Also, a single method for
sensitive volumes is applied for each library cell to reduce the overhead of TCAD

simulations.

Table 16. Methodology for SER Error cross-section of the entire ALU design.
The table would need to be completed for all the cell types. The three cells
from this dissertation are included within the table.

. 4 Individual | Integral ProbSaEbili ty .
Library Cell Cross- Cross- Running
Instances . . Cross-
Type in Design Secstlon2 Sef;tlon2 section Total
(10-8cm?) | (108 cm?) (10 cm2)
add_1x1x 22
add_2x2x 9
add_6x6x 1
addh_1x1x 2
addh_3x3x 1
and2_1x 17
and2_3x 6
and2_4x 4
and3_1x 3
ao21_1x 1
ao21_3x 2
aoai2l11_1x 7
aoi21_1x 45
aoi21_2x 11
ao0i21_3x 5
ao0i21_8x 1
aoi21 bl _1x 6
aoi21_b1_2x 1
aoi21 b2 _1x 8
aoi21_b2_2x 1
aoi22_1x 5
a0i22_3x 1

129

buf_10x 6
buf_16x 2
buf 1x 2
buf_3x 3
buf_8x 1
delay1_4x 1
inv_1x 58 0.30 15.0 0.54 0.54
inv_2x 35
inv_30x 1
inv_3x 17
inv_4x 3
inv_6x 1
nand2_1x 114 0.30 33.7 1.44 1.98
nand2_2x 43
nand2_3x 6
nand2_4x 4
nand2_5x 4
nand2_6x 1
nand2_8x 1
nand2b0_1x 27
nand2b0_2x 1
nand2b0_4x 14
nand3_1x 3
nand3_2x 1
nand3b0_1x 47
nand3b0_2x 3
nand4_1x 1
nor2_1x 51 0.19 991 0.29 2.26
nor2_2x 1
nor2_3x 6
nor2b0_1x 5
nor2b0_4x 1
nor3_1x 1
nor3b0_1x 1
nor4_1x 1
oa2l_1x 2
0ai21_1x 50
o0ai2l_2x 2
o0ai21_3x 3
oai2l_4x 8
0ai2l1_6x 2
0ai211_1x 1
0ai21b0b1_1x 4
0ai21b0b1_4x 1

130

0ai21b1_1x 21
0ai21b2_2x 1
0ai21b2_4x 2
0ai22_1x 36
0ai22_4x 3
0ai22b0b1_1x 1
0ai22b1_1x 14
0aoi211_1x 1
or2_1x 10
or2_2x 1
scandice_cpqg_1x 15
scandice_cpg_2x 8
scandice_cpqg_4x 12
xnor2_1x 42
xnor2_3x 1
xnor3_1x 7
xnor3_2x 2
xor2_1x 14
xor3_1x 1
Summary

The addition of ModelSim® into the multi-scale simulation approach showed
the link between MRED2SPICE and MRED2LOGIC for cell characterization. It takes
the process from cell level characterization up a level of abstraction to IC circuit

level analysis.

MRED2SPICE and MRED2LOGIC processes achieved a good match to existing
experimental data. The SET pulse-width distribution was used to analyze an ALU.
Within this design, the SER cross section was predicted for individual library cells.
For different IC designs, fault injection can be performed without having to redo the
analysis with MRED or SPICE if the full cell library has been characterized

previously. The only change would be the IC design itself. Once a full library is

131

characterized, then fault injection provides a full system SER prediction for the

design under test.

132

CHAPTER X

CONCLUSIONS

The key result of this research is a multi-scale simulation approach for
modeling SETs in ICs. It represents an end-to-end process from detailed simulation
of energy deposition by each radiation event within a semiconductor to a one-to-one
mapping of how these events produce a fault at the IC level. The process begins with
energy deposition within a set of transistors, proceeds up the hierarchy to single
event transient effects on a combinational cell, and then up one more level of
abstraction to a single event error on a digital IC where the effect of the SET is
observed and counted as an error. The process can be run in steps, as demonstrated
throughout this dissertation, or executed end-to-end. The multi-scale approach
allows for an ensemble of radiation events to be simulated so that the aggregated

affect from a complex radiation environment can be computed.

This work demonstrates that using TCAD results to define the inputs, MRED
coupled with SPICE can be used to compute the cross section for producing an SET
for three circuits fabricated in a 90-nm bulk CMOS technology. The TCAD results
obtained from a single transistor were used to define a multi-volume structure in
order to make a first estimate of the charge collection efficiencies of these volumes.
Then the efficiencies were refined by comparing the simulation result to

experimental cross section results using ions with various LETs less than ~10 MeV-

133

cm2/mg. Only one efficiency was changed for one of the volumes, all others
remained identical to that estimated by TCAD. With this single small refinement, the
tool was able to predict the measured SET cross section for an inverter, a NAND
gate, and a NOR gate fabricated in the same technology. Characterization of basic

library cells would enable the virtual irradiation of more complex logic designs.

A multi-scale simulation approach for SET response is demonstrated that
eliminates or significantly reduces the over-estimation of the soft error response
caused by assuming that every fault included in the error prediction equation
translates to an error. Using the predicted cross-sections of the inverter, NAND gate,
and the NOR gate, a distribution of transient pulses was generated for each of those
basic cells to enable analysis at the logic level for transient capture. Typically, a
worst-case duration (i.e., pulse width) is used for simulations at the IC level.
However, a Monte Carlo method has been used in this dissertation to show the
probability of error based upon incident particles in lightly ionizing environments.
Since all digital functions can be synthesized from basic gates, a distribution of pulse
widths from those gates can be used to analyze larger integrated circuits. This
dissertation leaves the analysis of an entire cell library as future work, but a
pathway is established that shows the feasibility of determining the error rate for an

IC.

The multi-scale approach improved the efficiency of computing the effects
from SETs over other techniques. Previous digital IC predictions of single-event
vulnerability used TCAD simulations of all library cells to obtain a small subset of

SET responses [75]. The multi-scale approach applied a number of the TCAD

134

simulations on NMOSFETs and PMOSFETs to define the sensitive volume (SV) sizes.
With a few iterations the MRED2SPICE charge collection efficiencies were able to
replicate the experimental SET data presented by Cannon et al. [17]. With just a
relatively small number of TCAD simulations and the MRED2SPICE iterations, a full
set of SET responses for an entire library can be predicted. This dissertation
describes the process for selected library cells. This method has the impact of both
improving computation efficiency and model accuracy at the same time. Another
computational efficiency improvement is seen with simulating smaller pieces of the
digital IC in SPICE and then simulating the whole IC in ModelSim®. SPICE is an ideal
tool to model the propagation of an analog transient signal in circuits [59], but once
it becomes a digital transient signal, ModelSim® is an effective tool for

computational efficiency.

The multi-scale simulation enables flexibility with respect to the design to be
analyzed. For example, the ALU had been fully analyzed for logical-masking for all
input conditions and all combinational logic cells in the design [59, 60]. Only logical-
masking analysis for the ALU could be accomplished because each ALU operation
was implemented in a single clock cycle. The outputs were solely a function of the
ALU inputs and not a function of the previous state of the ALU. If the ALU was
pipelined to improve its operating frequency, then it is not clear how this full
logical-masking analysis could be performed in Black et al. Also, if any redundancy
were added to the ALU, it would further complicate the analysis. There were no
provisions in the testbench from Black et al. to handle this situation. The multi-scale

simulation, however, applied Monte Carlo fault injection and demonstrated

135

equivalency to the results seen in Black et al. [59]. With a Monte Carlo approach,
redundancy and pipelining does not impact the complexity of the testing for the

ALU, therefore it is robust for simulating these types of designs.

Another technical contribution of this research is the addition of a dual
double-exponential current source for SET generation in SPICE. Other research has
shown the limitations of the double-exponential current source [11], but this
research developed a simple way to overcome these limitations that had reasonable
accuracy. Three important parameters for a circuit being affected by a double-
exponential current were described: (1) threshold charge, (2) prompt current, and
(3) hold current. Simulation approaches were also described to determine these

parameters were also described.

An additional technical contribution is the notion of V... IC modeling tools
only accept digital signals as inputs. This research examined how to transition
between SPICE (used to model the generation and propagation of voltage
transients) and the IC modeling tool. V.- provides an equivalent rail-to-rail pulse for
this transition to preserve the important information from the voltage transient

signal, Virans, with respect to SET fault capture.

Future Work

For this dissertation, lightly ionizing particles were simulated in SPICE via a

dual double-exponential current source. To expand beyond lightly ionizing particles

136

and include all particles, better models must be developed. First, the quantity and
size of the SVs implemented in MRED would grow. Second, research would have to
be conducted on how to handle overlapping SVs or much larger SVs. Warren
implemented overlapping SVs because his research was not limited to lightly
ionizing particles or single small combinational cells. These large SVs would
significantly extend beyond the boundary of a single small combinational cell, and
would be affected by the SVs of the adjacent logic cells, for example for an ASIC or
field programmable gate array. So, it would be a difficult task to construct SVs and

their charge collection efficiencies without specific knowledge of the adjacent cells.

If the environment were to be expanded beyond the lightly ionizing particle
environment, then more complex charge collection mechanisms and an increase in
the number and shape of SVs would have to be modeled. Research involving the
effects of well modulation is ongoing. To keep step with this research, these effects

would need to be studied and modeled if they are to be added into the tool flow.

The next natural step leads to multiple node charge collection. In the current
version of the multi-scale simulation, all charge collected at any transistor results in
a current source being implemented in SPICE, so multiple node charge collection is
handled in the individual cell. But, it is not considered for adjacent cells, and
additional research will be needed to thoroughly and efficiently implement multiple

cell charge collection.

Finally, logic synthesis from a cell library is typically used for modern IC

design and implementation. In this dissertation, several library cells of the ALU were

137

analyzed to determine their contribution to the full SER of the design. These cells
were characterized for particles of normal incidence. An extension of this work
would enable the SER prediction for an entire IC when the entire cell library is fully
characterized for omnidirectional particle strikes. With a full profile of the incident
particles, the framework would predict the distribution of transient pulses observed
within circuits synthesized from the cell library. The appropriate testbench would

observe the dynamic behavior of the IC to predict the SER.

138

10.

11.

REFERENCES

Moore, G.E., Cramming More Components Onto Integrated Circuits.
Proceedings of the IEEE, 1998. 86(1): p. 82-85.

Benini, L., Bogliolo, A. and De Micheli, G., A survey of design techniques for
system-level dynamic power management. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 2000. 8(3): p. 299-316.

Shin, Y., Seomun, J., Choi, K.-M. and Sakurai, T., Power gating: Circuits, design
methodologies, and best practice for standard-cell VLSI designs. ACM Trans.
Des. Autom. Electron. Syst., 2010. 15(4): p. 1-37.

Venkatachalam, V. and Franz, M., Power reduction techniques for
microprocessor systems. ACM Comput. Surv., 2005. 37(3): p. 195-237.

Moshovos, A. and Sohi, G.S., Microarchitectural innovations: boosting
microprocessor performance beyond semiconductor technology scaling.
Proceedings of the IEEE, 2001. 89(11): p. 1560-1575.

Baumann, R.C,, Soft errors in advanced semiconductor devices-part I: the three
radiation sources. Device and Materials Reliability, IEEE Transactions on,
2001.1(1): p. 17-22.

Sierawski, B.D., Mendenhall, M.H., Reed, R.A., Clemens, M.A., Weller, RA,,
Schrimpf, R.D., Blackmore, E.W.,, Trinczek, M., Hitti, B., Pellish,].A. and
Baumann, R.C., Muon-induced single event upsets in deep-submicron
technology. Nuclear Science, IEEE Transactions on, 2010. 57(6).

Sierawski, B.D., Pellish,].A., Reed, R.A., Schrimpf, R.D., Warren, K.M., Weller,
R.A., Mendenhall, M.H., Black,].D., Tipton, A.D., Xapsos, M.A., Baumann, R.C,,
Xiaowei, D., Campola, M.],, Friendlich, M.R., Kim, H.S., Phan, A.M. and Seidleck,
C.M., Impact of Low-Energy Proton Induced Upsets on Test Methods and Rate
Predictions. Nuclear Science, IEEE Transactions on, 2009. 56(6): p. 3085-
3092.

Massengill, L.W., Baranski, A.E., Van Nort, D.O., Meng,]. and Bhuva, B.L.,
Analysis of single-event effects in combinational logic-simulation of the
AM2901 bitslice processor. Nuclear Science, IEEE Transactions on, 2000.
47(6): p. 2609-2615.

Benedetto,].M., Eaton, P.H., Mavis, D.G., Gadlage, M. and Turflinger, T.,
Variation of digital SET pulse widths and the implications for single event
hardening of advanced CMOS processes. Nuclear Science, IEEE Transactions
on, 2005. 52(6): p. 2114-2119.

Warren, K.M., Sensitive Volume Models For Single Event Upset Analysis and
Rate Prediction for Space, Atmospheric, and Terrestrial Radiation

139

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Environments, in Electrical Engineering. 2010, Vanderbilt University:
Nashville, TN.

Warren, K.M.,, Sternberg, A.L., Black,].D., Weller, R.A., Reed, R.A., Mendenhall,
M.H., Schrimpf, R.D. and Massengill, L.W., Heavy Ion Testing and Single Event
Upset Rate Prediction Considerations for a DICE Flip-Flop. Nuclear Science,
IEEE Transactions on, 2009. 56(6): p. 3130-3137.

Weller, R.A,, Reed, R.A., Warren, K.M., Mendenhall, M.H., Sierawski, B.D.,
Schrimpf, R.D. and Massengill, L.W., General Framework for Single Event
Effects Rate Prediction in Microelectronics. Nuclear Science, IEEE Transactions
on, 2009.56(6): p. 3098-3108.

Tipton, A.D., Pellish, J.A., Reed, R.A., Schrimpf, R.D., Weller, R.A., Mendenhall,
M.H., Sierawski, B., Sutton, A.K,, Diestelhorst, R.M., Espinel, G., Cressler,].D.,
Marshall, P.W. and Vizkelethy, G., Multiple-Bit Upset in 130 nm CMOS
Technology. Nuclear Science, IEEE Transactions on, 2006. 53(6): p. 3259-
3264.

Weller, R.A., Schrimpf, R.D., Reed, R.A., Mendenhall, M.H., Warren, K.M.,
Sierawski, B.D. and Massengill, L.W., Monte Carlo Simulation of Single Event
Effects. RADECS 2009 Short Course, 2009.

Cannon, E.H. and Cabanas-Holmen, M., Heavy Ion and High Energy Proton-
Induced Single Event Transients in 90 nm Inverter, NAND and NOR Gates.
Nuclear Science, IEEE Transactions on, 2009. 56(6): p. 3511-3518.

Sierawski, B., libsingleEvent Library Module. 2010, Vanderbilt University,
Institute for Space and Defence Electronics: Nashville, TN. p. 1-43.

Dodd, P.E. and Massengill, L.W., Basic mechanisms and modeling of single-
event upset in digital microelectronics. Nuclear Science, IEEE Transactions on,
2003.50(3): p. 583-602.

Black,].D., Reed, R.A.,, Hafer, C., Peterson, E., Benedetto, J. and Wilkinson, J.,
Soft Errors: From the Ground Up. NSREC Short Course, 2008.

Poivey, C., Barth, J.A.,, Reed, R, Stassinopoulos, E.G., LaBel, K.A. and Xapsos, M.
Implications of advanced microelectronics technologies for heavy ion single
event effect (SEE) testing. in Radiation and Its Effects on Components and
Systems, 2001. 6th European Conference on. 2001.

Messenger, G.C., Collection of Charge on Junction Nodes from Ion Tracks.
Nuclear Science, IEEE Transactions on, 1982. 29(6): p. 2024-2031.

Baumann, R., Soft errors in advanced computer systems. Design & Test of
Computers, IEEE, 2005. 22(3): p. 258-266.

Baumann, R.C., Radiation-induced soft errors in advanced semiconductor
technologies. Device and Materials Reliability, IEEE Transactions on, 2005.
5(3): p. 305-316.

140

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Mukherjee, S., Architecture Design for Soft Errors. 2008, Burlington, MA:
Morgan Kaufmann.

Dicello, J.F., McCabe, C.W., Doss,].D. and Paciotti, M., The Relative Efficiency of
Soft-Error Induction in 4K Static RAMS by Muons and Pions. Nuclear Science,
IEEE Transactions on, 1983. 30(6): p. 4613-4615.

May, T.C. and Woods, M.H., Alpha-particle-induced soft errors in dynamic
memories. Electron Devices, IEEE Transactions on, 1979. 26(1): p. 2-9.

Rodbell, K.P., Heidel, D.F., Tang, H.H.K., Gordon, M.S., Oldiges, P. and Murray,
C.E., Low-Energy Proton-Induced Single-Event-Upsets in 65 nm Node, Silicon-
on-Insulator, Latches and Memory Cells. Nuclear Science, IEEE Transactions

on, 2007. 54(6): p. 2474-2479.

Binder, D., Smith, E.C. and Holman, A.B., Satellite Anomalies from Galactic
Cosmic Rays. Nuclear Science, IEEE Transactions on, 1975. 22(6): p. 2675-
2680.

Constantinescu, C. Impact of deep submicron technology on dependability of
VLSI circuits. in Dependable Systems and Networks, 2002. DSN 2002.
Proceedings. International Conference on. 2002.

Reed, R.A,, Xapsos, M., Santini, G., Law, M., Black,].D. and Holman, T., Modeling
the Space Radiation Environment and Effects on Microelectronic Devices and
Circuits. IEEE Short Course, 2006.

Seifert, N. and Tam, N., Timing vulnerability factors of sequentials. Device and
Materials Reliability, IEEE Transactions on, 2004. 4(3): p. 516-522.

Mukherjee, S.S., Weaver, C., Emer,]., Reinhardt, S.K. and Austin, T. A
systematic methodology to compute the architectural vulnerability factors for
a high-performance microprocessor. in Microarchitecture, 2003. MICRO-36.
Proceedings. 36th Annual IEEE/ACM International Symposium on. 2003.

Dhillon, Y.S., Diril, A.U. and Chatterjee, A. Soft-error tolerance analysis and
optimization of nanometer circuits. in Design, Automation and Test in Europe,
2005. Proceedings. 2005.

Ming, Z. and Shanbhag, N.R,, Soft-Error-Rate-Analysis (SERA) Methodology.
Computer-Aided Design of Integrated Circuits and Systems, I[EEE
Transactions on, 2006. 25(10): p. 2140-2155.

Rajaraman, R., Kim,].S., Vijaykrishnan, N., Xie, Y. and Irwin, M.]. SEAT-LA: a
soft error analysis tool for combinational logic. in VLSI Design, 2006. Held
jointly with 5th International Conference on Embedded Systems and Design.,
19th International Conference on. 2006.

Natasa, M.-Z. and Diana, M., Circuit Reliability Analysis Using Symbolic
Techniques. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 2006. 25(12): p. 2638-2649.

141

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Miskov-Zivanov, N. and Marculescu, D., Modeling and Optimization for Soft-
Error Reliability of Sequential Circuits. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 2008. 27(5): p. 803-816.

Petersen, E.L., Pickel,].C., Adams,].H., Jr. and Smith, E.C., Rate prediction for
single event effects-a critique. Nuclear Science, IEEE Transactions on, 1992.
39(6): p. 1577-1599.

Bergeron,]., Writing Testbenches - Functional Verification of HDL Models.
2002, Norwell, MA: Kluwer Academic Publishers.

Narasimham, B., Bhuva, B.L., Schrimpf, R.D., Massengill, L.W., Gadlage, M.].,
Amusan, 0.A., Holman, W.T., Witulski, A.F., Robinson, W.H., Black,].D.,
Benedetto,].M. and Eaton, P.H., Characterization of Digital Single Event
Transient Pulse-Widths in 130-nm and 90-nm CMOS Technologies. Nuclear
Science, IEEE Transactions on, 2007. 54(6): p. 2506-2511.

Kauppila,].S., Sternberg, A.L., Alles, M.L., Francis, A.M., Holmes, ., Amusan,
0.A. and Massengill, L.W., A Bias-Dependent Single-Event Compact Model
Implemented Into BSIM4 and a 90 nm CMOS Process Design Kit. Nuclear
Science, IEEE Transactions on, 2009. 56(6): p. 3152-3157.

DasGupta, S., Witulski, A.F., Bhuva, B.L., Alles, M.L., Reed, R.A., Amusan, 0.A,,
Ahlbin,]J.R., Schrimpf, R.D. and Massengill, L.W., Effect of Well and Substrate
Potential Modulation on Single Event Pulse Shape in Deep Submicron CMOS.
Nuclear Science, IEEE Transactions on, 2007. 54(6): p. 2407-2412.

Fan, W. and Agrawal, V.D. Single Event Upset: An Embedded Tutorial. in VLSI
Design, 2008. VLSID 2008. 21st International Conference on. 2008.

Bose, P. Tutorial: Power-aware, reliable microprocessor design. in VLSI Design,
2005. 18th International Conference on. 2005.

Cavrois, V.F., Pouget, V., McMorrow, D., Schwank,].R,, Fel, N., Essely, F., Flores,
R.S,, Paillet, P., Gaillardin, M., Kobayashi, D., Melinger,].S., Duhamel, O., Dodd,
P.E. and Shaneyfelt, M.R., Investigation of the Propagation Induced Pulse
Broadening (PIPB) Effect on Single Event Transients in SOI and Bulk Inverter
Chains. Nuclear Science, IEEE Transactions on, 2008. 55(6): p. 2842-2853.

Gouker, P., Brandt, J.,, Wyatt, P., Tyrrell, B, Soares, A., Knecht, |, Keast, C.,
McMorrow, D., Narasimham, B., Gadlage, M. and Bhuva, B., Generation and
Propagation of Single Event Transients in 0.18-um Fully Depleted SOI. Nuclear
Science, IEEE Transactions on, 2008. 55(6): p. 2854-2860.

Massengill, L.W. and Tuinenga, P.W., Single-Event Transient Pulse Propagation
in Digital CMOS. Nuclear Science, IEEE Transactions on, 2008. 55(6): p. 2861-
2871.

Ahlbin,]J.R,, Black,].D., Massengill, L.W., Amusan, 0.A., Balasubramanian, A.,
Casey, M.C,, Black, D.A., McCurdy, M.W.,, Reed, R.A. and Bhuva, B.L., C-CREST
Technique for Combinational Logic SET Testing. Nuclear Science, IEEE
Transactions on, 2008. 55(6): p. 3347-3351.

142

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Benedetto, ., Eaton, P., Avery, K., Mavis, D., Gadlage, M., Turflinger, T., Dodd,
P.E. and Vizkelethyd, G., Heavy ion-induced digital single-event transients in
deep submicron Processes. Nuclear Science, IEEE Transactions on, 2004.
51(6): p. 3480-3485.

Baze, M.P., Wert,]., Clement,].W., Hubert, M.G., Witulski, A., Amusan, O.A,,
Massengill, L. and McMorrow, D., Propagating SET Characterization
Technique for Digital CMOS Libraries. Nuclear Science, IEEE Transactions on,
2006.53(6): p. 3472-3478.

Dodd, P.E., Shaneyfelt, M.R,, Felix,].A. and Schwank, J.R., Production and
propagation of single-event transients in high-speed digital logic ICs. Nuclear
Science, IEEE Transactions on, 2004. 51(6): p. 3278-3284.

Calin, T., Nicolaidis, M. and Velazco, R., Upset hardened memory design for
submicron CMOS technology. Nuclear Science, IEEE Transactions on, 1996.
43(6): p. 2874-2878.

Marshall, P., Carts, M., Currie, S., Reed, R., Randall, B, Fritz, K., Kennedy, K,
Berg, M., Krithivasan, R,, Siedleck, C., Ladbury, R., Marshall, C., Cressler,].,
Guofu, N., LaBel, K. and Gilbert, B., Autonomous bit error rate testing at multi-
gbit/s rates implemented in a 5AM SiGe circuit for radiation effects self test
(CREST). Nuclear Science, IEEE Transactions on, 2005. 52(6): p. 2446-2454.

Black,].D., Sternberg, A.L., Alles, M.L., Witulski, A.F., Bhuva, B.L., Massengill,
L.W., Benedetto,].M., Baze, M.P., Wert,].L. and Hubert, M.G., HBD layout
isolation techniques for multiple node charge collection mitigation. Nuclear
Science, IEEE Transactions on, 2005. 52(6): p. 2536-2541.

Narasimham, B., Bhuva, B.L., Schrimpf, R.D., Massengill, L.W., Gadlage, M.].,
Holman, T.W., Witulski, A.F., Robinson, W.H., Black,].D., Benedetto,].M. and
Eaton, P.H., Effects of Guard Bands and Well Contacts in Mitigating Long SETs
in Advanced CMOS Processes. Nuclear Science, IEEE Transactions on, 2008.
55(3): p. 1708-1713.

Robinson, W.H., Alles, M.L., Bapty, T.A., Bhuva, B.L., Black,].D., Bonds, A.B,,
Massengill, L.W., Neema, S.K., Schrimpf, R.D. and Scott,].M. Soft Error
Considerations for Multicore Microprocessor Design. in Integrated Circuit
Design and Technology, 2007. ICICDT '07. IEEE International Conference on.
2007.

Amusan, 0.A., Massengill, L.W., Bhuva, B.L., DasGupta, S., Witulski, A.F. and
Ahlbin, J.R., Design Techniques to Reduce SET Pulse Widths in Deep-Submicron
Combinational Logic. Nuclear Science, IEEE Transactions on, 2007. 54(6): p.
2060-2064.

Olson, B.D., Amusan, O.A., Dasgupta, S., Massengill, L.W., Witulski, A.F., Bhuva,
B.L., Alles, M.L., Warren, K.M. and Ball, D.R., Analysis of Parasitic PNP Bipolar
Transistor Mitigation Using Well Contacts in 130 nm and 90 nm CMOS
Technology. Nuclear Science, IEEE Transactions on, 2007. 54(4): p. 894-897.

143

59.

60.

61.

62.

63.

64.

65.

66.
67.
68.

69.

70.

71.

Black,].D., Massengill, L., Bhuva, B., Holman, W.T. and Warren, K.M., Final
Report to Boeing Phantom Works. 2008, Institute for Space and Defense
Electronics,Vanderbilt University: Nashville, TN.

Atkinson, N.M., Witulski, A.F., Holman, W.T., Bhuva, B.L., Black,].D. and
Massengill, L.W., Single Event Characterization of a 90 nm Bulk CMOS Digital
Cell Library. Proceedings of the Government Microcircuit Applications &
Critical Technology Conference, 2010.

Hrishikesh, M.S., Jouppi, N.P., Farkas, K.I., Burger, D., Keckler, S.W. and
Shivakumar, P. The optimal logic depth per pipeline stage is 6 to 8 FO4 inverter
delays. in Computer Architecture, 2002. Proceedings. 29th Annual
International Symposium on. 2002.

The PowerPC 440 Core, A high-performance, superscalar processor core for
embedded applicaitons. 1999, IBM Microelectronics Division: Research
Triangle Park, NC. p. 1-18.

Hartstein, A. and Puzak, T.R. The optimum pipeline depth for a microprocessor.
in Computer Architecture, 2002. Proceedings. 29th Annual International
Symposium on. 2002.

Zyuban, V., Brooks, D., Viji, S., Gschwind, M., Pradip, B., Strenski, P.N. and
Emma, P.G., Integrated analysis of power and performance for pipelined
microprocessors. Computers, IEEE Transactions on, 2004. 53(8): p. 1004-
1016.

Clark, L., Professor of Electrical Engineering, Arizona State University,
Technical Discussions with D.A. Black, 2011: Nashville.

XScale Microarchitecture Technical Datasheet. 2000, Intel Corporation.

Intel XScale Core Developer's Manual. 2004, Intel Corporation.

ModelSim - Advanced Simulation and Debugging. [cited 2010; 10.0d:[High
Performance and Capacity Mixed HDL Simulation]. Available from:
http://model.com/.

Amusan, 0.A., Massengill, L.W., Baze, M.P., Bhuva, B.L., Witulski, A.F., Black,
J.D., Balasubramanian, A., Casey, M.C,, Black, D.A., Ahlbin, J.R., Reed, R.A. and
McCurdy, M.W. Mitigation techniques for single event induced charge sharing
in a 90 nm bulk CMOS process. in Reliability Physics Symposium, 2008. IRPS
2008. IEEE International. 2008.

Amusan, 0.A., Massengill, L.W., Baze, M.P., Bhuva, B.L., Witulski, A.F., Black,
J.D., Balasubramanian, A., Casey, M.C,, Black, D.A., Ahlbin, J.R., Reed, R.A. and
McCurdy, M.W., Mitigation Techniques for Single-Event-Induced Charge
Sharing in a 90-nm Bulk CMOS Process. Device and Materials Reliability, IEEE
Transactions on, 2009. 9(2): p. 311-317.

Black,].D., Ball, D.R., Robinson, W.H., Fleetwood, D.M., Schrimpf, R.D., Reed,
R.A,, Black, D.A., Warren, K.M,, Tipton, A.D., Dodd, P.E., Haddad, N.F., Xapsos,

144

72.

73.
74.

75.

M.A., Kim, H.S. and Friendlich, M., Characterizing SRAM Single Event Upset in
Terms of Single and Multiple Node Charge Collection. Nuclear Science, IEEE
Transactions on, 2008. 55(6): p. 2943-2947.

Benjamin, M., Geist, D., Hartman, A., Wolfsthal, Y., Mas, G. and Smeets, R. A
study in coverage-driven test generation. in Design Automation Conference,
1999. Proceedings. 36th. 1999.

SystemVerilog 3.1, Accellera's Extensions to Verilog. 2003, Accellera.

Tylka, AJ., Adams,].H., Jr., Boberg, P.R., Brownstein, B., Dietrich, W.F.,
Flueckiger, E.O., Petersen, E.L., Shea, M.A., Smart, D.F. and Smith, E.C,,
CREMED96: A Revision of the Cosmic Ray Effects on Micro-Electronics Code.
Nuclear Science, IEEE Transactions on, 1997. 44(6): p. 2150-2160.

Boulghassoul, Y., Rowe,].D. and Massengill, L.W., Applicability of circuit
macromodeling to analog single-event transient analysis. Nuclear Science,
IEEE Transactions on, 2003. 50(6): p. 2119-2125.

145

APPENDIX A

MRED INPUT PYTHON SCRIPT

HAHAHAHH R R AR R R R R R
Dolores Black 5/08/2011

INV1 MRED single layer, 5 nested sensitive volumes,

per transistor -Boeing data 2.2 LET

HAHAHAHH R R AR R R R R R

from PyG4Core import G4Colour as G4Color
import sys, os, base64, cPickle

H

Set up variable to use for output array to be used

for analysis of charge to current for SET

FDEL = Output File Delimeter

FNAME = Output File Name

MAXBUFFER = Max length of results between rights (don't swamp file system)

3o o H

FDEL =", # Output File Delimeter
FNAME ='q0_q9boeinginvnsv2LET.out' # Output File Name
MAXBUFFER = 50 # Max length of results between rights (don't swamp file system)

Set this to "False" if you don't want to deal with mred's viewer and just want the text output
#1 just put this switch in because the dx viewer is a little clunky. You can play around with it

and try to fade-out the various parts and see if you can see some events and the sv. I could

do it just to verify that things were going, but it's not that informative. The viewers

are usually just good to make sure your SV placement isn't crazy

doViewer = False

Turn on the basic materials (silicon, tungsten, sio2, etc.)
Mred has to know what materials it is going to need. This can be as rich as we want it but it's better
to be a minimalist because it has to build a lot of tables re physics.

mred.materials.enableBasicElectronicMaterials()

#Select electronic stopping power physics model

#Electronic stopping is the basic energy loss due to electronic stopping. Nuclear physics (reactions, etc.) are

#not taken into account. You do not need to worry about nuclear physics yet. It's not more complicated, per se, just
#takes longer to run. If you need nukes, then we can turn them on

mred.physics.addModule('StandardScreened")
mred.physics.module_dict['Decay'].SetIncludeRadioactiveDecay(False)

#Establish what kind of device we need (basic RPP layer, TCAD, etc.)
Create an instance of a RPP device
d = mred.setDevice('rpp')

#Build a list of layers with x,y,z dimensions. These stack in the list as shown top to bottom (physically)
d.setLayers([

#((5.0*um, 5.*um, 1.*um), 'tungsten’),

#((5.*um, 5.*um, 5.*um), 'Si02"),

((5-*um, 5.um, 5.*um), 'silicon’,'sd1")])

#Embed the device in a silicon wafer - the silicon should contain the silicon layer above
This basically fills in all possible voids left by the setLayers command with silicon
d.wafer_material = 'silicon’

146

#Register the device
d.register()

Initialize the simulator
mred.init()

Define sensitive volume inside sensitive detector

svList = [] # create a new empty list (array)
sd1 = mred.sd_vector[0] #get the zeroth entry of the table contained in mred
sd1.coincidence_order=1 #1 will turn on min_valid_energy filter, otherwise, the events all go to singleEventCallback

Let's add four sensitive volumes (these are physically separate, but you can move them around and nest them too)
PMOS transistor SVs

sv=sdl.addSensitiveVolume("rpp")

sv.size=(0.26"um,0.84*um,0.35*um)

sv.center=(0.59*um,2.17*um,0.175*um)

sv.min_valid_total_energy = 1*keV # This is the trigger point, set it low, but high enough to drop zeros and the stray d ray
svList.append(sv)

sv=sdl.addSensitiveVolume("rpp")
sv.size=(0.26"um,0.84*um,0.35*um)
sv.center=(0.42*um,2.17*um,0.175*um)
sv.min_valid_total_energy = 1*keV
svList.append(sv)

sv=sdl.addSensitiveVolume("rpp")
sv.size=(0.52*um,1.14*um,0.30*um)
sv.center=(0.42%*um,2.17*um,0.175*um)
sv.min_valid_total_energy = 1*keV
svList.append(sv)

sv=sdl.addSensitiveVolume("rpp")
sv.size=(0.88%um,1.24*um,0.40*um)
sv.center=(0.59*um,2.17*um,0.55*um)
sv.min_valid_total_energy = 1*keV
svList.append(sv)

Let's add four sensitive volumes (these are physically separate, but you can move them around and nest them too)
NMOS transistor SVs

sv=sdl.addSensitiveVolume("rpp")

sv.size=(0.26"um,0.28%um,0.35*um)

sv.center=(0.59*um,1.08%um,0.175*um)

sv.min_valid_total_energy = 1*keV # This is the trigger point, set it low, but high enough to drop zeros and the stray d ray
svList.append(sv)

sv=sdl.addSensitiveVolume("rpp")
sv.size=(0.62%um,0.28%*um,0.35*um)
sv.center=(0.42*um,1.08%um,0.175*um)
sv.min_valid_total_energy = 1*keV
svList.append(sv)

sv=sdl.addSensitiveVolume("rpp")
sv.size=(0.52*um,0.48%*um,0.30*um)
sv.center=(0.42*um,1.08%um,0.175*um)
sv.min_valid_total_energy = 1*keV
svList.append(sv)

sv=sdl.addSensitiveVolume("rpp")
sv.size=(0.88"um,0.58%*um,0.40*um)
sv.center=(0.59*um,1.08*um,0.55*um)
sv.min_valid_total_energy = 1*keV
svList.append(sv)

Set up the gun
H

#

147

Loops to set-up, evaluate and populate output buffer array
H

#

OutputBuffer = []

Method to dump results buffer to file
def clearBuffer(out_buff):
global FNAME,FDEL
f=open(FNAME,'a")
for buff in out_bulff:
f.write("%d%s%.3e%s" % (buff[0],FDEL,buff[1],FDEL))
for iin range(len(buff[2])):
f.write("%.4f%s" % (buff[2][i], FDEL))
fwrite("%.4f\n" % buff[2][-1])
f.close()

def singleEventCallback(evt):
global svList,doViewer,OutputBuffer, MAXBUFFER
Compact notation

Qs = [svList[i].total_energy/0.0225 for i in range(len(svList))]

Or, the long way

#Qs =[]
#for i in range(len(svList)):
Qs.append(svList[i].total_energy/22.5)

if max(Qs) < 1.0: return # if there's nothing more than 0.1 fC, return)

eventNumber = mred.runMgr.GetEventCount()-1
weight = mred.evtAct.ComputeEventWeight(evt)
variance = weight**2

print "Event #%d:" % (eventNumber),
foriin range(len(svList)):
print "Q%d=%.4f(fC)" % (i,Qsl[i]),
print "Statistical Weight=%.3e" % (weight)
OutputBuffer.append([eventNumber,weight,Qs])
if len(OutputBuffer) > MAXBUFFER:
clearBuffer(OutputBuffer)
OutputBuffer = []
sys.stdout.flush()

if doViewer:
mred.dx.displayMredEvent(evt)

set Particle takes atomic number and atomic mass

mred.gun.setParticle('ion’, 8, 18) #0xygen, 2.2 LET
mred.gun.energy=183*MeV

#Spatial sampling "directionalFlux" is like a broadbeam experiment. Randomizes over a plane in the direction
of the gun direction vector.

mred.gun.random_spatial_sampling = "directionalFlux"

mred.gun.random_use_device_radius=True

mred.gun.direction=vector3d(0,0,-1)

There is no need to do this in our case, at least not right now
Accumlate histograms

#mred.accumulate_histograms = True
#mred.hdf5.file_path=("/home/blackdal/hdf5_output")

#mred.hdf5.file_name="stack_Random40MeV10Runs.hdf5"
#mred.hdf5.write_output_files=True

148

#mred.hdf5.include_energies=False
#mred.hdf5.include_tracks=False
#mred.hdf5.include_hits=False
#mred.hdf5.include_histograms=True

Visualize with Open DX

#mred.dx.captureGeometry([mred.detCon.GetPhysicalWorld()]+sd1.g4PV())
Get sensitive volume's visual attributes
if doViewer:

dVis = d.g4PV().GetLogicalVolume().GetVisAttributes()

dVis.SetColor(G4Color(0,0,1,1))

mred.dx.captureGeometry([mred.detCon.GetPhysicalWorld(), d.g4PV()],
opacity_multiplier=1,custom_color_map=('silicon’ : G4Color(0,1,0,.5),))

Now, let's run mred for x ions using singleEventCallback as our interrupt
interrupts will be invoked based on the condition that the defined amount of min_valid_energy for each sv
is deposited in that sv. In other words, at least one has to be triggered

mred.runSingleEventMode(1000000,function=singleEventCallback)

if len(OutputBuffer) > 0:
clearBuffer(OutputBuffer)

Note that the 'statistical weight' is always one in this case. That is because there is no fancy nuclear event biasing
Since you are not yet looking at nukes.

The true statistical weight for each event is actually not 1, but it is pi*r"*2 (see my dissertation appendix).
Note that the units work out for the weight as area (e.g., cross section in cm”2 or um”2, you get to figure it all out)
you can get this value from mred directly:

eventWeightFactor = 1.0 /mred.gun.fluence_unit
print eventWeightFactor

So, each event from singleEventCallback says it has a weight of "1" but in reality is has a weight of eventWeightFactor.
The reason we don't propagate it f

or each event and just get it after the fact is that it is a constant. It is a function of the geometry of the simulation

so it doesn't change. It's just a matter of convenience, or inconvenience, to have to get it to do a cross section calculation

A total cross section is then eventWeightFactor*sum(weights of events from singleEventCallback that meet your
criteria)/(Number of total events run)

1f you think about this calculation, it is pretty intuitive. If every event you run is a valid event, then the
total cross section is the eventWeightFactor, which is just the total surface area of the plane from

which the particles are fired. If half of the plane is sensitive and half isn't, then you'll

have half of your events be counted relative to the total number run and your cross section

will be 1/2 of the eventWeightFactor. You're just using Monte-Carlo estimation methods to estimate
that area here, and that's it

149

APPENDIX B

4-INVERTER CHAIN BASIC CIRCUIT SPICE NETLIST

* Test circuit for Python

.subckt INV1 in_inv1 out_inv1 vdd_inv1 vss_inv1

XPINV1 vdd_inv1 in_inv1 out_inv1 vdd_inv1 pfet w=840n 1=80n ad=218f pd=2.2u
XNINV1 out_inv1 in_inv1 vss_inv1 vss_inv1 nfet w=280n 1=80n ad=73f pd=1.1u
.ends INV1

[1P nrl nl exp (Ou 109.0u 100p 2p 115p 4p)
I1H nrl n1 exp (Ou 121.0u 100p 2p 500p 10p)

XP1 vdd in n1 vdd pfet w=840n 1=80n ad=218f pd=2.2u
XN1 n1 in vss vss nfet w=280n 1=80n ad=73f pd=1.1u
XINV1 n1 n2 vdd vss INV1

XINV2 n2 n3 vdd vss INV1

XINV3 n3 out vdd vss INV1

XINV4 out n4 vdd vss INV1

V1vdd 00.9

V2in 00.9

V3vss00.0

.tran 1ps 1ns

.printfile tran v(n1) v(n2) v(n3) v(out) file=alltransientl1.out
.printfile tran v(n1) v(out) file=transientl1.out

150

APPENDIX C

PYTHON SCRIPT FOR Ithresh, Iprompt, Ihold

#
Filename: findthreshandholdcurrents_invl_il.py
Version: vl

Description: Python Code for determining

Threshold/Prompt/Hold Currents

#
Author: Dolores Black, Vanderbilt University
History:

DAB 4-25-2011 -- First Version

#
Naming Conventions:
#
#
Full Description:

B

Python script to search for the threshold current (total current needed)
to drive to the rail. This script also determines the prompt and hold
currents (IP + IH) = Ithresh.

Boeing INV1 I1 current determination

I1 is charge collection on the output of the PMOSFET drain. Threshold
current is defined as the prompt current needed to drive the transient
voltage to the rail, but may not be necessarily the minimum to propagate
a transient signal. Hold current is defined as the current needed to
maintain the voltage at the rail once it's at the rail.

#
#
#
#
#
#
#
#
#
#
#
#
#

#
import os is a command that allows the running of command line functions
in Python

#
import os

#
Set default/initial values to search for the threshold voltage

- foundthresh => loop variable

0 = threshold not found

1 = threshold found or too many tries "executed"

- ithresh =>11 current (uA) for the exponential current source in ELDO
#-iincre => Incremental current (uA) or step-size for the search

#
foundthresh = 0
ithresh =100.0
iincre = 100.0

#
Main (While) loop for searching for the threshold current
#

while (foundthresh < 1):

#
Sanity check, to print values through the loop
#

print ithresh

#
First create a file -circuittest.cir- in tmp directory to -write to-

151

Itisreferred to as -eldodeck-
#

eldodeck = open('tmp/circuittest.cir’, 'w')

#
The following lines in -eldodeck- populate the lines -circuittest.cir- file
'and " are interchangeable.

If'is needed in the line, then use " to enclose the statement, vice verse
\n performs a carriage return

#
First create/write the subcircuit
#

eldodeck = open('tmp/circuittest.cir’, 'w')

eldodeck.write('* Test circuit for Python\n\n'")

eldodeck.write(".lib '/usr/local/isde/PDK/IBM_PDK/cmos9sf/relIBM /HSPICE /models/./skew.file' stats\n")
eldodeck.write(".inc '/usr/local/isde/PDK/IBM_PDK/cmos9sf/rellBM/HSPICE /models/./fixed_corner'\n")
eldodeck.write(".inc '/usr/local/isde/PDK/IBM_PDK/cmos9sf/rellBM/HSPICE /models/./hspice.param'\n")
eldodeck.write(".inc '/usr/local/isde/PDK/IBM_PDK/cmos9sf/rellBM/HSPICE /models/./nfet.inc'\n")
eldodeck.write(".inc '/usr/local/isde/PDK/IBM_PDK/cmos9sf/rellBM/HSPICE /models/./pfet.inc’\n\n\n")
eldodeck.write(".subckt INV1 in_inv1 out_inv1 vdd_inv1 vss_inv1\n")

eldodeck.write("XPINV1 vdd_inv1 in_inv1 out_inv1 vdd_inv1 pfet w=840n 1=80n ad=218f pd=2.2u\n")
eldodeck.write("XNINV1 out_inv1 in_inv1 vss_inv1 vss_inv1 nfet w=280n 1=80n ad=73f pd=1.1u\n")
eldodeck.write(".ends INV1\n\n\n")

#
Create the string to write the current source using the ithresh variable
#

cl="I1P vdd n1 exp (Ou ' + str(ithresh) + 'u 100p 2p 115p 4p)\n\n'

#
Finish creating/writing the remainder of the netlist
#

eldodeck.write(cl)

eldodeck.write("XP1 vdd in n1 vdd pfet w=840n 1=80n ad=218f pd=2.2u\n")
eldodeck.write("XN1 n1 in vss vss nfet w=280n 1=80n ad=73f pd=1.1u\n")
eldodeck.write("XINV1 n1 n2 vdd vss INV1\n")

eldodeck.write("XINV2 n2 n3 vdd vss INV1\n")

eldodeck.write("XINV3 n3 out vdd vss INV1\n")

eldodeck.write("XINV4 out n4 vdd vss INV1\n\n\n")

eldodeck.write("V1 vdd 0 0.9\n")

eldodeck.write("V2 in 0 0.9\n")

eldodeck.write("V3 vss 0 0.0\n")

eldodeck.write(".tran 1ps 1ns\n")

eldodeck.write(".printfile tran v(n1) file=transient.out\n")

#

Close the file when done, as required by Python

B oo mmmmmmmmmmmmmmmmmmmmnmmmommnemmnmmnaas
eldodeck.close()

#
Run/Invoke circuittest.cir netlist in Eldo, use same OS command
#

os.system('eldo -compat -i tmp/circuittest.cir")

#
Open the newly created output file -transient.out- from resulting simulation
in /tmp directory

Using variables:

eldoresult - pointer for transient.out file

erlines - Read all the lines of -transient.out-int an array of strings

erlines(1) is the first line, erlines(2) is the second and so on

Dynamically assigned the array based upon the length of the file
Close the file

#

eldoresult = open('tmp/transient.out’, 'r')
erlines = eldoresult.readlines()
eldoresult.close()

152

#
Determine if the threshold current guess is too low or too high
Begin by assuming the guess is too low and NOT too high

#
Variables:
toolow => default =1 (too low)
toohigh=> default =0 (Not too high)
#
toolow =1
toohigh = 0
#
Loop through each line in the result file
find ('#") - Ignores any line with a '#' (comments, not results)
strip() - Remove carriage returns /n from the output lines
split() - Split the line by a space between 2 numbers into
stringsa &b
float() - Convert b into a real number and call it volts
#

for line in erlines:
if line.find('#")<0:
line=line.strip()
a,b=line.split(" ")

volts=float(b)

Determine the range for the threshold
If voltage exceeds 0.89 volts, then ithresh is NOT too low
If voltage exceeds 0.91 volts, then it is too high

HH o H HH

if volts > 0.89:
print volts
toolow =0

End if

if volts > 0.91:
print volts
toohigh =1

End if

End if
#End for

Once all the voltages in the output file are evaluated
Determine whether or not ithresh was too low or high
If too low, add iincre to ithresh and reloop
If too high, reduce ithresh by iincre and cut iincre by factor of 10
then add the new iincre to ithresh =>
It is assumed that the previous ithresh was too low
If the result is neither too low or too high, exit loop

HHoH o o W OH H HH

if toolow > 0:
ithresh = ithresh + iincre
End if
elif toohigh > 0:
ithresh = ithresh - iincre
iincre = iincre / 10.0
ithresh = ithresh + iincre
End elif
else:
foundthresh = 1
End else
print toolow, toohigh, foundthresh

#
End Main (While) loop
#

#
Print to screen final ithresh value

153

#

print ithresh

#
#
#
#
#
#
#

Begin searching for prompt/hold currents
Variables:
foundhold => loop variable
trials => Number of attempts to loop to determine ithresh/ihold
ihold => Evaluated Hold current variable

foundhold = 0
trials = 0

HH o o H H H H H R

Determine/Guess if the threshold current is greater than 110u set
ihold default = 100u
iincre default = 100u
Otherwise set
ihold =10u
iincre = 10u

if ithresh > 110:

#

ihold = 100
iincre = 100
End if

else:

#

#
#
#

ihold = 10
iincre = 10
End else

2nd Main (While) loop for searching for the prompt/hold currents

while (foundhold < 1):

#
#
#

H* o H H

#

Sanity check, to print hold current values through the loop

print ihold

Start counter for number of trials to determine if a prompt/hold current
can be determined

trials = trials + 1

The following lines in -eldodeck- populate the lines -circuittest.cir- file

#
#
#

H* o H

"and " are interchangeable.
If ' is needed in the line, then use " to enclose the statement, vice verse
\n performs a carriage return

First create/write the subcircuit

eldodeck = open('tmp/circuittestl1.cir’, 'w')

eldodeck.write('* Test circuit for Python\n\n'")

eldodeck.write(".lib '/usr/local/isde/PDK/IBM_PDK/cmos9sf/relIBM /HSPICE /models/./skew.file' stats\n")
eldodeck.write(".inc '/usr/local/isde/PDK/IBM_PDK/cmos9sf/rellBM/HSPICE /models/./fixed_corner'\n")
eldodeck.write(".inc '/usr/local/isde/PDK/IBM_PDK/cmos9sf/rellBM/HSPICE /models/./hspice.param'\n")
eldodeck.write(".inc '/usr/local/isde/PDK/IBM_PDK/cmos9sf/rellBM/HSPICE /models/./nfet.inc'\n")
eldodeck.write(".inc '/usr/local/isde/PDK/IBM_PDK/cmos9sf/rellBM/HSPICE /models/./pfet.inc’\n\n\n")
eldodeck.write(".subckt INV1 in_inv1 out_inv1 vdd_inv1 vss_inv1\n")

eldodeck.write("XPINV1 vdd_inv1 in_inv1 out_inv1 vdd_inv1 pfet w=840n 1=80n ad=218f pd=2.2u\n")
eldodeck.write("XNINV1 out_inv1 in_inv1 vss_inv1 vss_inv1 nfet w=280n 1=80n ad=73f pd=1.1u\n")
eldodeck.write(".ends INV1\n\n\n")

154

Create the string to write the prompt current source using
(ithresh-ihold) variable's quantity
#

cl1 ="I11P vdd n1 exp (Ou "' + str(ithresh-ihold) + "u 100p 2p 115p 4p)\n’
eldodeck.write(cl1)

Create the string to write the hold current source using
ihold variable's quantity

H* o H

cl2 ='11H vdd n1 exp (Ou ' + str(ihold) + 'u 100p 2p 500p 10p)\n\n'
eldodeck.write(cl2)

#
Finish creating/writing the remainder of the netlist
#

eldodeck.write("XP1 vdd in n1 vdd pfet w=840n 1=80n ad=218f pd=2.2u\n")
eldodeck.write("XN1 n1 in vss vss nfet w=280n 1=80n ad=73f pd=1.1u\n")
eldodeck.write("XINV1 n1 n2 vdd vss INV1\n")

eldodeck.write("XINV2 n2 n3 vdd vss INV1\n")

eldodeck.write("XINV3 n3 out vdd vss INV1\n")

eldodeck.write("XINV4 out n4 vdd vss INV1\n\n\n")

eldodeck.write("V1 vdd 0 0.9\n")

eldodeck.write("V2 in 0 0.9\n")

eldodeck.write("V3 vss 0 0.0\n")

eldodeck.write(".tran 1ps 1ns\n")

eldodeck.write(".printfile tran v(n1) v(n2) v(n3) v(out) file=alltransientI1.out\n")
eldodeck.write(".printfile tran v(n1) v(out) file=transientl1.out\n")

#
Close the file when done, as required by Python
#

eldodeck.close()

#
Run circuittest.cir netlist in Eldo, use same OS command
#

os.system('eldo -compat -i tmp/circuittestl1.cir")

#
Open the newly created output file -transientl1.out- from resulting simulation
in /tmp directory

Using variables:

eldoresult - pointer for transientl1.out file

erlines - Read all the lines of -transientl1.out-int an array of strings

erlines(1) is the first line, erlines(2) is the second and so on

Dynamically assigned the array based upon the length of the file
Close the file

#

eldoresult = open('tmp/transientll.out’, 'r')
erlines = eldoresult.readlines()
eldoresult.close()

#
Determine if the threshold current guess is too low or too high
Begin by assuming the guess is too low and NOT too high

#
Variables:
toolow => default =1 (too low)
toohigh=> default =0 (Not too high)
#
toolow =1
toohigh = 0
#
Loop through each line in the result file
find ('#") - Ignores any line with a '#' (comments, not results)
strip() - Remove carriage returns /n from the output lines
split() - Split the line by a space between 2 numbers into

155

strings a, b & c (three outputs to plot)
float() - Convert b into a real number and call it volts
#

for line in erlines:
if line.find('#")<0:
line=line.strip()
a,b,c=line.split(' ")
time=float(a)
volts=float(b)

If voltage exceeds 0.89 volts, then ithresh is NOT too low
If voltage exceeds 0.91 volts, then it is too high

HH o H HH

if time > 0.0000000004:
if volts > 0.89:
print volts
toolow =0
End if
if volts > 0.91:
print volts
toohigh =1
End if
End if
End if
End for

Once all the voltages in the output file are evaluated
Determine whether or not ihold was too low or high
If too low, add iincre to ihold and reloop
If too high, reduce ihold by iincre and cut iincre by factor of 10
then add the new iincre to ihold
It is assumed that the previous ihold was too low
If the result is neither too low or too high, exit loop when trials exceeds
a count of 25

HoH o H O O O o HH

if toolow > 0:
ihold = ihold + iincre
End if
elif toohigh > 0:
ihold = ihold - iincre
iincre = iincre / 10.0
ihold = ihold + iincre
End elif
else:
foundhold = 1
End else
if trials > 25:
foundhold = 1
End if
print toolow, toohigh, foundhold

#
End 2nd Main (While) loop for prompt/hold current determination
#

#
Print to screen final ithresh, ihold values
#
print ithresh, ihold

156

Determine the range for the threshold after simulation has settled (400ps)

APPENDIX D

PYTHON SCRIPT FOR MRED2SPICE

#
Filename: mredtospice_invlset.py

Version: vl

Description: Python Code for determining Threshold/Prompt/Hold Currents

Create/Simulate a SPICE netlist

#

Author: Dolores Black, Vanderbilt University
History:

DAB 4-30-2011 -- First Version

DAB 5-08-2011 ~~ Modify for script to add analysis for charge
efficiencies in the q1/q2 analysis "loops”

DAB 5-09-2011 ** Modified for second "guess" at SV's (4 N/PMOS)

DAB 5-10-2011 " Modified efficiencies of Substrate, too much charge

Naming Conventions:

Full Description:

Python script to:
1. Parse MRED charge collection (q1-g6, etc) output results
file given the ions, sensitive volumes, etc.

2. Extract the relevant data
Only operate on charge greater than the threshold necessary
to cause enough current to cause the voltage to cross the
circuit/cell's rail

3. Determine the IxP/H values resulting from charge converted
to current that exceeds the threshold
a. Calculate/Determine the pulse-width (td2) resulting from

excess charge greater than the minimum ihold current

4. Create a circuit netlist using IxP/H, td2 given the default dbl-
exp taul, tau2 and td1 (2ps, 4ps(prompt)/10ps(hold), 100ps

5. Execute Spice on netlist
a. Output resulting pulse-widths and/or upset (output of latch)

Boeing INV1 MRED results Parser determination

Q1 is charge collection on the output of the PMOSFET drain. Threshold
current is defined as the prompt current needed to drive the transient
voltage to the rail, but may not be necessarily the minimum to propagate
a transient signal. Hold current is defined as the current needed to
maintain the voltage at the rail once it's at the rail.

Q2 is charge collection on the output of the NMOSFET drain. Threshold
current is defined as the prompt current needed to drive the transient
voltage to the rail, but may not be necessarily the minimum to propagate
a transient signal. Hold current is defined as the current needed to
maintain the voltage at the rail once it's at the rail.

FoH o o o o o o o 3 3 o o o o o o o o o o o o o o o oH H H o o oH oH H HH

#
import os is a command that allows the running of command line functions

in Python

import random is a command that allows for the import of random numbers to
be used for the placement of the dbl-exp SET current sources in circuit

#

157

import os
import random
latchent =0

latchsetresult = open('latchresults9LET_v10.out', 'w")
latchsetresult.write("MRED# node # 1P 12P td21 td22\n")

#
Open the MRED output results file, read it and close it
in python

#
mredresult = open(‘mredresults/q0_q9boeinginvnsv9LET.out', 'r')
mredlines = mredresult.readlines()

mredresult.close()

#
Main For loop to parse output file and calculate resulting charges and
convert to associated currents and the pulse-width variable td2

Variables:

line =>loop variable

event,c-h,

i-k => column in the output file to be read

ql => charge collection output on PMOSFET from MRED
qlthresh converted from ilthresh

determined from cell characterization

q2 => charge collection output on NMOSFET from MRED
q2prompt converted from i2prompt

determined from cell characterization

qlh/q2h => q(MRED result) - qprompt (pre-characterized)
q1(2)prompt = 2.29fc/2.14fc converted from iprompt
determined from cell characterization

td21 => SET pulse-width variable for PMOSFET

td22 => SET pulse-width variable for NMOSFET

runsim => If true (1) then create Spice netlist to run, otherwise
go to next Q value for evaluation

#

for line in mredlines:
line=line.strip()
event,b,c,d,e f,gh,ijk=line.split(’,")

ilp=0.0
ilh=0.0
td21=0.0
i2p=0.0
i2h=0.0
td22 = 0.0

ql=float(c)*0.6 + float(d)*0.2 + float(e)*0.70 + float(f)*0.10
q2=float(g)*0.75 + float(h)*0.25 + float(i)*0.55 + float(j)*0.10
runsim=0

#
Start with PMOSFET pre-characterized for:

Qthresh =4.8fc

I1prompt =109.0 uA

I1hold =121.0uA

taul+tau2 = 12.0 ps

td2-td1 =115ps-100ps = 15ps

Qlprompt ~ I1prompt*(21)/1000.0

td21 =>time width for the SET pulse for PMOSFET
runsim =1, then create netlist for Spice simulation

HH o o H H H H H R

ifql > 4.8:
ilp=109.0
ilh=121.0
qlh=(ql-2.29)
td21 =q1h/i1h *1000.0 - 12.0
runsim = 1

H* H*

Next NMOSFET determinations:

158

#
#
#

HoH o H O O H o HH

HH o H HH

H o3 o H H o o H H

If Q2 is not < Q2prompt then
resulting currents will only be a single dbl-exp prompt current

ifq2 > 2.14:
i2p=102.0
i2h=118.0
td22 =(q2 - 2.14) / 118.0 *1000.0 - 12.0
End if
else:
i2p=q2 /27 *1000.0
td22 =0.0
End else
printql, q2,ilp, td21, i2p, td22
End if

Start with NMOSFET pre-characterized for:

Qthresh =4.6 fc

[2prompt =102.0 uA

I2hold =118.0uA

taul+tau2 = 12.0 ps

td2-td1 =115ps-100ps = 15ps

Q2prompt ~ I1prompt*(21)/1000.0

td22 =>time width for the SET pulse for NMOSFET
runsim =1, then create netlist for Spice simulation

elif q2 > 4.6:
i2p=102.0
i2h=118.0
q2h=(q2 - 2.14)
td22 = q2h /i2h *1000.0 - 12.0
runsim = 1

Next PMOSFET determinations:
If Q1 is not < Q1prompt then
resulting currents will only be a single dbl-exp prompt current

ifql > 2.29:
ilp=109.0
ilh=121.0
td21=(ql1-2.29) /121.0 *1000.0 - 12.0
End if
else:
ilp=ql/27*1000.0
td21=0.0
End else
printql, q2,ilp, td21, i2p, td22
End elif

Next Create Boeing INV1 netlist:
If runsim is true then
populate a cricruittest netlist such that:
Create INV1 Subcircuit (that will create a chain of 65 + 1 INV1's
Create a GuardGate subcircuit to add a delay to allow for the
distiguishability of longer SETs
Create an Asynchronous Latch to determine if the SET reaches a
memory element and would be captured

if runsim == 1:
eldodeck = open('tmp/circuittest.cir’, 'w')
eldodeck.write('* Test circuit for Python\n\n')
eldodeck.write(".lib '/usr/local/isde/PDK/IBM_PDK/cmos9sf/rellBM /HSPICE /models/./skew.file' stats\n")
eldodeck.write(".inc '/usr/local/isde/PDK/IBM_PDK/cmos9sf/rellBM/HSPICE /models/./fixed_corner'\n")
eldodeck.write(".inc '/usr/local/isde/PDK/IBM_PDK/cmos9sf/rellBM/HSPICE /models/./hspice.param'\n")
eldodeck.write(".inc '/usr/local/isde/PDK/IBM_PDK/cmos9sf/relIBM/HSPICE /models/./nfet.inc'\n")
eldodeck.write(".inc '/usr/local/isde/PDK/IBM_PDK/cmos9sf/rellBM/HSPICE /models/./pfet.inc'\n\n\n")
eldodeck.write(".subckt INV1 in_inv1 out_inv1 vdd_inv1 vss_inv1\n")
eldodeck.write("XPINV1 vdd_inv1 in_inv1 out_inv1 vdd_inv1 pfet w=840n 1=80n ad=218f pd=2.2u\n")

159

H o o o H H H o R

H* o o H HH

H* o H H

eldodeck.write("XNINV1 out_inv1 in_inv1 vss_inv] vss_inv1 nfet w=280n 1=80n ad=73f pd=1.1u\n")
eldodeck.write(".ends INV1\n\n\n")

eldodeck.write(".subckt NAND2 in1_nand2 in2_nand2 out_nand2 vdd_nand2 vss_nand2\n")
eldodeck.write("XPNAND21 vdd_nand2 in1_nand2 out_nand2 vdd_nand2 pfet w=490n 1=80n ad=79f pd=0.8u\n")
eldodeck.write("XPNAND22 vdd_nand2 in2_nand2 out_nand2 vdd_nand2 pfet w=490n 1=80n ad=79f pd=0.8u\n")
eldodeck.write("XNNAND21 out_nand2 in2_nand2 n10 vss_nand2 nfet w=280n 1=80n ad=104f pd=1.3u\n")
eldodeck.write("XNNAND22 n10 in1_nand2 vss_nand2 vss_nand2 nfet w=280n 1=80n ad=73f pd=1.1u\n")
eldodeck.write(".ends NAND2\n\n\n")

eldodeck.write(".subckt NOR2 in1 in2 out vdd vss\n")

eldodeck.write("XP1 vdd in1 n10 vdd pfet w=1740n 1=80n ad=922f pd=7.3u\n")

eldodeck.write("XP2 n10 in2 out vdd pfet w=1740n 1=80n ad=278f pd=2.4u\n")

eldodeck.write("XN1 out in2 vss vss nfet w=280n 1=80n ad=70f pd=0.8u\n")

eldodeck.write("XN2 out in1 vss vss nfet w=280n 1=80n ad=70f pd=0.8u\n")

eldodeck.write(".ends NOR2\n\n\n")

eldodeck.write(".subckt GGATE in1_gg in2_gg out_gg vdd_gg vss_gg\n")

eldodeck.write("XPGG1 vdd_gg in2_gg nggl vdd_gg pfet w=1730n 1=80n ad=751f pd=7.2u\n")
eldodeck.write("XPGG2 nggl in1_gg out_gg vdd_gg pfet w=1730n 1=80n ad=313f pd=2.5u\n")
eldodeck.write("XNGG1 ngg2 in1_gg out_gg vss_gg nfet w=480n 1=80n ad=197f pd=1.8u\n")
eldodeck.write("XNGG2 vss_gg in2_gg ngg2 vss_gg nfet w=480n 1=80n ad=134f pd=1.5u\n")
eldodeck.write(".ends GGATE\n\n\n")

eldodeck.write(".subckt ALATCH in1_al in2_al q_al vdd_al vss_al\n")

eldodeck.write("X1 in1_al nall q_al vdd_al vss_al NAND2\n")

eldodeck.write("X2 g_al in2_al nall vdd_al vss_al NAND2\n")

eldodeck.write(".ends ALATCH\n\n\n")

Next add a counter:
Variables:

cnt=> Counter for number of INV1's to populate for INV1 chain

Add counter number to string for correct netlist creation
Add a Guard Gate Latch to add a delay to distinguish Long SETs
Add an Asynchronous Latch to determine if the SET reaches a
memory element and would be captured

Add Voltage sources, V1(vdd), V2(Input to chain), V3(vss) and a Reset (V4)

cnt=0
while (cnt < 65):
xl ="XINV' + str(cnt) + 'n' + str(ent) + 'n' + str(ent+1) + ' vdd vss INV1\n'
eldodeck.write(x1)
cnt=cnt+ 1
End While
eldodeck.write("XINV_Last1 n65 n66 vdd vss INV1\n")
eldodeck.write("XINV_Last2 n65 n67 vdd vss INV1\n")
eldodeck.write("XGG1 n66 n67 n68 vdd vss GGATE\n")
eldodeck.write("XAL n68 reset out vdd vss ALATCH\n")
eldodeck.write("V1 vdd 0 0.9\n")
eldodeck.write("V2 n0 0 0.0\n")
eldodeck.write("V3 vss 0 0.0\n")
eldodeck.write("V4 reset 0 pulse(0 0.9 25p 10p 10p 1m 2m)\n")

Next add SET dbl-exp Current Sources at random inputs to the INV1 chain:
Variables:
node => random node where to instantiate dbl-exp current sources
setcurrsrc => string to write the appropriate current source

node = random.randint(1,65)
setcurrsrc = "[1P vdd n" + str(node) + " exp(Ou " + str(ilp) + "u 100p 2p 115p 4p)\n"
eldodeck.write(setcurrsrc)

If the pulse-width for I1P is greater than 0 then
add a hold current source I1H

iftd21 > 0.0:
setcurrsrc = "[1H vdd n" + str(node) + " exp(Ou " + str(ilh) + "u 100p 2p " + str(td21+100.0) + "p 10p)\n"
eldodeck.write(setcurrsrc)

End if

setcurrsrc = "I2P n" + str(node) + " vss exp(Ou " + str(i2p) + "u 100p 2p 115p 4p)\n"

160

eldodeck.write(setcurrsrc)

If the pulse-width for I2P is greater than 0 then
add a hold current source 12H

H* o H H

iftd22 > 0.0:
setcurrsrc = "I2ZH n" + str(node) + " vss exp(Ou " + str(i2h) + "u 100p 2p " + str(td22+100.0) + "p 10p)\n"
eldodeck.write(setcurrsrc)

End if

Simulate for 3ns in 1ps steps
Write results to output file

H* o H H

eldodeck.write(".tran 1ps 3ns\n")

eldodeck.write(".printfile tran v(n1) v(out) file=transient.out\n")

printsrc = ".printfile tran v(n1) v(n" + str(node) + ") v(n65) v(n66) v(n67) v(n68) v(out) file=nodetransient.out\n"
eldodeck.write(printsrc)

eldodeck.close()
#
Run/Invoke circuittest.cir netlist in Eldo, use same OS command
! os.system('eldo -compat -mgls_async -noconf -i tmp/circuittest.cir")
#

Open the newly created output file -transient.out- from resulting simulation
in /tmp directory

Using variables:

eldoresult - pointer for transient.out file

erlines - Read all the lines of -transient.out-int an array of strings

erlines(1) is the first line, erlines(2) is the second and so on

Dynamically assigned the array based upon the length of the file
Close the file

#

eldoresult = open('tmp/transient.out’, 'r')
erlines = eldoresult.readlines()
eldoresult.close()

#
Determine if the transient was latched/observed at the output of the

Asynchronous Latch
#
Variables:
latchyes => default = 0 (not latched)
latchent => default = 0 Counter for number of SETs latched
#
latchyes = 0
#
Loop through each line in the result file
find ('#") - Ignores any line with a '#' (comments, not results)
strip() - Remove carriage returns \n from the output lines
split() - Split the line by a space between 3 numbers into
stringsa, b & ¢
float() - Convert c into a real number and call it volts
-

for line in erlines:
if line.find('#")<0:
line=line.strip()
a,b,c =line.split(")
volts=float(c)

Determine if the output voltage of the latch ever exceeds 0.8V
If voltage exceeds 0.8 volts, then SET is latched

H* o H H

if volts > 0.8:

161

print volts

latchyes = 1
End if
End if
#End for
#
Count the number of SETs that were latched
Output results to file "latchresults.out
#
if latchyes ==1:
latchent = latchent + 1
nodeinfo = event +" "+ str(node) + " " + str(ilp) + " " + str(i2p) + " " + str(td21) + " " + str(td22) + "\n"
latchsetresult.write(nodeinfo)
End if
print latchyes
#End if
#
End Main (For) loop
#
print latchent

latchsetresult.close()

162

APPENDIX E

MRED2LOGIC PYTHON SCRIPT

#
Filename: mredtospicetologic_invlset.py

Version: vl

Description: Python Code for determining Threshold/Prompt/Hold Currents

Create/Simulate a SPICE netlist

#

Author: Dolores Black, Vanderbilt University
History:

DAB 4-30-2011 -- First Version

DAB 5-08-2011 ~~ Modify for script to add analysis for charge
efficiencies in the q1/q2 analysis "loops”

DAB 5-09-2011 ** Modified for second "guess" at SV's (4 N/PMOS)

DAB 5-10-2011 "~ Modified efficiencies of Substrate, too much charge

DAB 6-3-2011 && Modified to report pulsewidths of SET & logic depth

DAB 6-6-2011 -* Modified to report an output file for the Histograms
of the pulsewidths starting a 5ps and up.

Naming Conventions:

Full Description:

Python script to:
1. Parse MRED charge collection (q1-g6, etc) output results
file given the ions, sensitive volumes, etc.

2. Extract the relevant data
Only operate on charge greater than the threshold necessary
to cause enough current to cause the voltage to cross the
circuit/cell's rail

3. Determine the IxP/H values resulting from charge converted
to current that exceeds the threshold
a. Calculate/Determine the pulse-width (td2) resulting from

excess charge greater than the minimum ihold current

4. Create a circuit netlist using IxP/H, td2 given the default dbl-
exp taul, tau2 and td1 (2ps, 4ps(prompt)/10ps(hold), 100ps

5. Execute Spice on netlist
a. Output resulting pulse-widths and/or upset (output of latch)

Boeing INV1 MRED results Parser determination

Q1 is charge collection on the output of the PMOSFET drain. Threshold
current is defined as the prompt current needed to drive the transient
voltage to the rail, but may not be necessarily the minimum to propagate
a transient signal. Hold current is defined as the current needed to
maintain the voltage at the rail once it's at the rail.

Q2 is charge collection on the output of the NMOSFET drain. Threshold
current is defined as the prompt current needed to drive the transient
voltage to the rail, but may not be necessarily the minimum to propagate
a transient signal. Hold current is defined as the current needed to
maintain the voltage at the rail once it's at the rail.

HoH o F o o o H o o 3 o o o o o o o o o 3 3 o o o o o o o o o o o o o o oo HH

#
import os is a command that allows the running of command line functions

in Python

import random is a command that allows for the import of random numbers to
be used for the placement of the dbl-exp SET current sources in circuit

#

163

import os
import random

#
Initialize a pwhist array of dimension 100. The line below expands a 1x2 array
toa 1x100 array. pwhist[0] will be defined as number of pulses below 10 ps.
pwhist[1] will be pulses between 10 and 20 ps...

#

pwhist = [0, 0] * 50

#
Changed the file name to reflect the pulsewidth output added at the "end".
#
latchsetresult = open('latchresults2LETpw_v1_3.out’, 'w')
latchsetresult.write("MRED# node# pw\n")

#
Open the MRED output results file, read it and close it
in Python

#
mredresult = open(‘mredresults/q0_q9boeinginvnsv2LET.out', 'r')
mredlines = mredresult.readlines()

mredresult.close()

#

Main For loop to parse output file and calculate resulting charges and

convert to associated currents and the pulse-width variable td2

Variables:

line =>loop variable

event,c-h,

i-k => column in the output file to be read

ql => charge collection output on PMOSFET from MRED

qlthresh converted from ilthresh
determined from cell characterization

q2 => charge collection output on NMOSFET from MRED

gq2prompt converted from i2prompt
determined from cell characterization

qlh/q2h => q(MRED result) - qprompt (pre-characterized)
q1(2)prompt = 2.29fc/2.14fc converted from iprompt
determined from cell characterization

td21 => SET pulse-width variable for PMOSFET

td22 => SET pulse-width variable for NMOSFET

runsim => If true (1) then create Spice netlist to run, otherwise
go to next Q value for evaluation

HoH o o o O O oH H oo W oH H H R

for line in mredlines:
line=line.strip()
event,b,c,d,e f,gh,ijk=line.split(’,")

ilp=0.0
ilh=0.0
td21=0.0
i2p=0.0
i2h=0.0
td22 = 0.0

ql=float(c)*0.6 + float(d)*0.2 + float(e)*0.70 + float(f)*0.10
q2=float(g)*0.75 + float(h)*0.25 + float(i)*0.55 + float(j)*0.10
runsim=0

#
Start with PMOSFET pre-characterized for:

Qthresh =4.8fc

I1prompt =109.0 uA

I1hold =121.0uA

taul+tau2 = 12.0 ps

td2-td1 =115ps-100ps = 15ps

Qlprompt ~ I1prompt*(21)/1000.0

td21 =>time width for the SET pulse for PMOSFET
runsim =1, then create netlist for Spice simulation

HH o o H W H HHH

164

H* o H H

HoH o oH oH H o o HH

H* o o H H

HH o o H H O HHHH

ifql > 4.8:
ilp=109.0
ilh=121.0
qlh=(ql-2.29)
td21 =q1h/i1h *1000.0 - 12.0
runsim = 1

Next NMOSFET determinations:
If Q2 is not < Q2prompt then
resulting currents will only be a single dbl-exp prompt current

ifq2 > 2.14:
i2p=102.0
i2h=118.0
td22 =(q2-2.14) /118.0 * 1000.0 - 12.0
End if
else:
i2p=q2 /27 *1000.0
td22 = 0.0
End else
printql, q2,ilp, td21, i2p, td22
End if

Start with NMOSFET pre-characterized for:

Qthresh =4.6fc

[2prompt =102.0 uA

I2hold =118.0uA

taul+tau2 = 12.0 ps

td2-td1 =115ps-100ps = 15ps

Q2prompt ~ I1prompt*(21)/1000.0

td22 =>time width for the SET pulse for NMOSFET
runsim =1, then create netlist for Spice simulation

elif q2 > 4.6:
i2p=102.0
i2h=118.0
q2h=(q2 - 2.14)
td22 = q2h /i2h *1000.0 - 12.0
runsim = 1

Next PMOSFET determinations:
If Q1 is not < Q1prompt then
resulting currents will only be a single dbl-exp prompt current

ifql > 2.29:
ilp=109.0
ilh=121.0
td21=(ql-2.29) /121.0 *1000.0 - 12.0
End if
else:
ilp=ql/27*1000.0
td21=0.0
End else
printql, q2,ilp, td21, i2p, td22
End elif

Next Create Boeing INV1 netlist:
If runsim is true then
populate a cricruittest netlist such that:
Create INV1 Subcircuit (that will create a chain of 65 + 1 INV1's
Create a GuardGate subcircuit to add a delay to allow for the
distiguishability of longer SETs
Create an Asynchronous Latch to determine if the SET reaches a
memory element and would be captured

if runsim == 1:

165

eldodeck = open('tmp/circuittest.cir’, 'w')

eldodeck.write('* Test circuit for Python\n\n')

eldodeck.write(".lib '/usr/local/isde/PDK/IBM_PDK/cmos9sf/relIBM /HSPICE /models/./skew.file' stats\n")
eldodeck.write(".inc '/usr/local/isde/PDK/IBM_PDK/cmos9sf/rellBM/HSPICE /models/./fixed_corner'\n")
eldodeck.write(".inc '/usr/local/isde/PDK/IBM_PDK/cmos9sf/rellBM/HSPICE /models/./hspice.param'\n")
eldodeck.write(".inc '/usr/local/isde/PDK/IBM_PDK/cmos9sf/rellBM/HSPICE /models/./nfet.inc'\n")
eldodeck.write(".inc '/usr/local/isde/PDK/IBM_PDK/cmos9sf/rellBM/HSPICE /models/./pfet.inc'\n\n\n")
eldodeck.write(".subckt INV1 in_inv1 out_inv1 vdd_inv1 vss_inv1\n")

eldodeck.write("XPINV1 vdd_inv1 in_inv1 out_inv1 vdd_inv1 pfet w=840n 1=80n ad=218f pd=2.2u\n")
eldodeck.write("XNINV1 out_inv1 in_inv1 vss_inv] vss_inv1 nfet w=280n 1=80n ad=73f pd=1.1u\n")
eldodeck.write(".ends INV1\n\n\n")

eldodeck.write(".subckt NAND2 in1_nand2 in2_nand2 out_nand2 vdd_nand2 vss_nand2\n")
eldodeck.write("XPNAND21 vdd_nand2 in1_nand2 out_nand2 vdd_nand2 pfet w=490n 1=80n ad=79f pd=0.8u\n")
eldodeck.write("XPNAND22 vdd_nand2 in2_nand2 out_nand2 vdd_nand2 pfet w=490n 1=80n ad=79f pd=0.8u\n")
eldodeck.write("XNNAND21 out_nand2 in2_nand2 n10 vss_nand2 nfet w=280n 1=80n ad=104f pd=1.3u\n")
eldodeck.write("XNNAND22 n10 in1_nand2 vss_nand2 vss_nand2 nfet w=280n 1=80n ad=73f pd=1.1u\n")
eldodeck.write(".ends NAND2\n\n\n")

eldodeck.write(".subckt NOR2 in1 in2 out vdd vss\n")

eldodeck.write("XP1 vdd in1 n10 vdd pfet w=1740n 1=80n ad=922f pd=7.3u\n")

eldodeck.write("XP2 n10 in2 out vdd pfet w=1740n 1=80n ad=278f pd=2.4u\n")

eldodeck.write("XN1 out in2 vss vss nfet w=280n 1=80n ad=70f pd=0.8u\n")

eldodeck.write("XN2 out in1 vss vss nfet w=280n 1=80n ad=70f pd=0.8u\n")

eldodeck.write(".ends NOR2\n\n\n")

eldodeck.write(".subckt GGATE in1_gg in2_gg out_gg vdd_gg vss_gg\n")

eldodeck.write("XPGG1 vdd_gg in2_gg nggl vdd_gg pfet w=1730n 1=80n ad=751f pd=7.2u\n")
eldodeck.write("XPGG2 nggl in1_gg out_gg vdd_gg pfet w=1730n 1=80n ad=313f pd=2.5u\n")
eldodeck.write("XNGG1 ngg2 in1_gg out_gg vss_gg nfet w=480n 1=80n ad=197f pd=1.8u\n")
eldodeck.write("XNGG2 vss_gg in2_gg ngg2 vss_gg nfet w=480n 1=80n ad=134f pd=1.5u\n")
eldodeck.write(".ends GGATE\n\n\n")

eldodeck.write(".subckt ALATCH in1_al in2_al q_al vdd_al vss_al\n")

eldodeck.write("X1 in1_al nall q_al vdd_al vss_al NAND2\n")

eldodeck.write("X2 g_al in2_al nall vdd_al vss_al NAND2\n")

eldodeck.write(".ends ALATCH\n\n\n")

Next add a counter:
Variables:

cnt=> Counter for number of INV1's to populate for INV1 chain

Add counter number to string for correct netlist creation
Add a Guard Gate Latch to add a delay to distinguish Long SETs
Add an Asynchronous Latch to determine if the SET reaches a
memory element and would be captured

Add Voltage sources, V1(vdd), V2(Input to chain), V3(vss) and a Reset (V4)

HH o o H W H H HH

cnt=0
while (cnt < 65):
xl ="XINV' + str(cnt) + 'n' + str(ent) + 'n' + str(ent+1) + ' vdd vss INV1\n'
eldodeck.write(x1)
cnt=cnt+ 1
End While
#
The only modification I made to the circuit is to delete the ggate and the load
inverters, but the chain drive two inverters at the end which then go into the
latch. The pulsewidth is currently measured at the last part of the chain, which
is also the input to the latch. The latch state does not matter.

#
eldodeck.write("XINV_Last1 n65 n66 vdd vss INV1\n")
eldodeck.write("XINV_Last2 n65 n67 vdd vss INV1\n")
eldodeck.write("XGG1 n66 n67 n68 vdd vss GGATE\n")
#
eldodeck.write("XAL n65 vss out vdd vss ALATCH\n")
eldodeck.write("V1 vdd 0 0.9\n")
eldodeck.write("V2 n0 0 0.0\n")
eldodeck.write("V3 vss 0 0.0\n")
#
No longer need a reset for the latch
#
eldodeck.write("V4 reset 0 pulse(0 0.9 25p 10p 10p 1m 2m)\n")
#

166

H o o H HH

#

Next add SET dbl-exp Current Sources at random inputs to the INV1 chain:
Variables:
node => random node where to instantiate dbl-exp current sources
setcurrsrc => string to write the appropriate current source

You can leave the circuit as is above and just change the depth by choosing
the node in this next statement. If depth is 10, then the range is (56, 65)

and it will only inject the pulse in the last 10 cells in the chain. It

writes some extra circuits now, but that won't slow it down much at all.

This just keeps node 65 at the measurement node.

#

H* o H

H* H H H

H* o H H

#

node = random.randint(63,65)
setcurrsrc = "[1P vdd n" + str(node) + " exp(Ou " + str(ilp) + "u 100p 2p 115p 4p)\n"
eldodeck.write(setcurrsrc)

If the pulse-width for I1P is greater than 0 then
add a hold current source I1H

iftd21 > 0.0:
setcurrsrc = "[1H vdd n" + str(node) + " exp(Ou " + str(ilh) + "u 100p 2p " + str(td21+100.0) + "p 10p)\n"
eldodeck.write(setcurrsrc)
End if
setcurrsrc = "I2P n" + str(node) + " vss exp(Ou " + str(i2p) + "u 100p 2p 115p 4p)\n"
eldodeck.write(setcurrsrc)

If the pulse-width for I2P is greater than 0 then
add a hold current source 12H

iftd22 > 0.0:
setcurrsrc = "I2ZH n" + str(node) + " vss exp(Ou " + str(i2h) + "u 100p 2p " + str(td22+100.0) + "p 10p)\n"
eldodeck.write(setcurrsrc)

End if

Simulate for 3ns in 1ps steps
Write results to output file

eldodeck.write(".tran 1ps 3ns\n")

You do not need these files written anymore, but you could still output
them if you want.

HH o H HH

#

eldodeck.write(".printfile tran v(n1) v(out) file=transient.out\n")
printsrc = ".printfile tran v(n1) v(n" + str(node) + ") v(n65) v(n66) v(n67) v(n68) v(out) file=nodetransient.out\n"
eldodeck.write(printsrc)

eldodeck.write(".extract tran label=crossmid-1 tcross(v(n65), vth=0.45, occur=1)\n")
eldodeck.write(".extract tran label=crossmid-2 tcross(v(n65), vth=0.45, occur=2)\n")
eldodeck.close()

Run/Invoke circuittest.cir netlist in Eldo, use same OS command

#

#

os.system('eldo -compat -mgls_async -noconf -i tmp/circuittest.cir")

Open the newly created output file -circuittest.chi- from resulting simulation

#

in /tmp directory

Using variables:

B

#
#
#

eldoresult - pointer for circuittest.chi file

erlines - Read all the lines of -circuittest.chi-into an array of strings
erlines(1) is the first line, erlines(2) is the second and so on
Dynamically assigned the array based upon the length of the file

167

Close the file

#
eldoresult = open('tmp/circuittest.chi’, 'r')
erlines = eldoresult.readlines()
eldoresult.close()

#

Determine the pulsewidth at the input to the
Asynchronous Latch

B3

Variables:
pulsewidth => Full width, half max voltage signal
#

Loop through each line in the result file
find ('cross’) - Find the lines with the pulsewidth extraction
find ("-1 =") - Only choose the lines with the actual data
strip() - Remove carriage returns \n from the output lines
split() - Split the line by a space between 2 numbers into
stringsa &b
float() - Convert b into a real number and call it time

HH o o H oH H H H R

pulsewidth = 0.0
start = 0.0
for line in erlines:
if line.find('crossmid') >= 0:
ifline.find("-1 =") >= 0:
line = line.strip()
a,b = line.split('=")
start = float(b)
End if
if line.find('-2 =") >= 0:
line = line.strip()
a,b = line.split('=")
pulsewidth = float(b) - start
End if
End if
#End for

Check to see if the output SET pulsewidth is > 0, then

Output results to file "latchresults~LETpw_v1.out

Multiply the pulsewidth by 1E11 and then convert that number to an
integer to determine the histogram index. This will make each bin
of the histogram equal to 10 ps, the first being 0-10 ps, then
second being 10-20 ps, and the last to be 990-1000 ps.

Increment the count of pulses in the histogram bin

HH o o o oH H H H R

if pulsewidth > 0.0:
nodeinfo = event +" "+ str(node) +
latchsetresult.write(nodeinfo)
histindex = int(pulsewidth * 100000000000)
pwhist[histindex] = pwhist[histindex] + 1
#End if
#End if

nn non

+ str(pulsewidth) + "\n"

#
End Main (For) loop
#
latchsetresult.close()

#

Write histogram results to a separate file. Loop through each element in the

histogram array and output the count in each bin and then a carriage return.

Close the file and the end of the writing

#

pwhistresult = open('pwhist2LET_v1_3.out’, 'w")

for n in range(0, 100):
pwhistresult.write(str(pwhist[n]))

168

pwhistresult.write("\n")
#End for
pwhistresult.close()

169

APPENDIX F

ALU TESTBENCH CODE

/1

// Module: tb_set_test_structure_8bit_core
/1

// Description: test bench of the 8bit_core
/1

// Author: DL

/1
// Last created: 4/24/2008

// SET signal added to testbench 04/01/09

// Modified by DAB, 5/2011

/1
// Added BS, fault injection library

module th_set_test_structure_8bit_core;
parameter PERIOD = 10;
parameter BUS_WIDTH = 8;
real se_delay;
real end_delay;
real range_end;
real se_len;
reg [BUS_WIDTH-1:0] a_in, b_in, a_in_1, b_in_1, a_in_2, b_in_2;
reg [2:0] func_in, func_in_1, func_in_2;
reg reset_in, clk_in;

wire [BUS_WIDTH*2-1:0] y_out;

reg [BUS_WIDTH*2-1:0] compare;
set_test_structure_8bit_core set_test_structure_8bit_core(
.a_in(a_in),

.b_in(b_in),

func_in(func_in),

reset_in(reset_in),

.clk_in(clk_in),

.y_out(y_out)

);

initial begin
clk_in = 1'b0;
reset_in = 1'b0;
#(PERIOD);
#(PERIOD);
reset_in = 1'b1;
end

initial begin
forever #(PERIOD/2) clk_in = ~clk_in;
end

170

//SET Loop
initial begin

$singleEventInit();
// $pseudoRandomSeed(seed);
// $display ("SET SEED TO %d",seed);

se_delay=($pseudoRandom(range_end*10*1000)/1000.0);
end_delay=se_delay+10.0;
#se_delay begin

$singleEventTransient(tb_set_test_structure_8bit_core.set_test_structure_8bit_core,se_len*1000.0);
$display("UPSET %16d, %16d, %16d, %16d, %16d, %16d, %16f", $time,
$stime,$realtime,func_in,a_in,b_in,se_len);
end
#end_delay $stop;
end

always @* begin
case (func_in_2)

//nothing
3'b000:
begin
compare <= 16'd0;
end
//add
3'b001:
begin
compare <= a_in_2 + b_in_2;
end
//sub
3'b010:
begin
compare <= a_in_2 - b_in_2;
end
//multi
3'b011:
begin
compare <= a_in_2 * b_in_2;
end
//div
3'b100:
begin
compare <= a_in_2 / b_in_2;
end
//comp
3'b101:
begin
if(a_in_2 > b_in_2) begin
compare <= 16'd2;
end else if (a_in_2 < b_in_2) begin
compare <= 16'd1;
end else if (a_in_2 == b_in_2) begin
compare <= 16'd0;
end else begin
compare <= 16'd3;
end
end
//a

171

3'b110:

begin
compare <= a_in_2;
end
//b
3'b111:
begin

compare <= b_in_2;
end
endcase
end

//this basically delay the inputs for 2 cycle, and the compare to the output of the core
//it first loops through b, from 127 to 0, then a, from 0 to 127
//then it goes from func from 0 to 7
// if there is a mis compare, it will print out the error
always @ (negedge clk_in) begin
for(func_in = 0; func_in < 8; func_in = func_in + 1) begin
for(a_in = 0; a_in < 127; a_in = a_in + 1) begin
for(b_in = 127; b_in != 0; b_in = b_in -1) begin
a_in_1 <= a_in;
a_in_2 <=a_in_1;
b_in_1 <= b_in;
b_in_2 <=b_in_1;
func_in_1 <= func_in;
func_in_2 <= func_in_1;
//$display("TIME %16d, %16d, %16d, %16d, %16d, %16d",
$time, $stime,$realtime,func_in,a_in,b_in);
if (y_out != compare) begin
$display("ERROR %16b, %16b, %16d, %16d, %16d,
%16d, %16d, %16f", y_out, compare,func_in,a_in,b_in, y_out, compare,se_len);
$stop;
end
#(PERIOD);
end
end
end
$finish;
end

endmodule;

172

