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CHAPTER I 

 

INTRODUCTION 

 

History of Hypertension 

 

In 1733, the idea of blood pressure (BP) was first credited to British 

veterinarian Stephen Hales who observed the pulsation of blood when inserting a 

pipe into the artery of a horse.  Hales concluded that pressure must be pushing 

the blood.  While blood pressure was an accepted idea, it was not until 1847 

when the first recording was made using a kymograph by Carl Ludwig.  Many 

years later, Samuel Karl Ritter von Basch invented the sphygmomanometer, 

which was further improved to a mercury filled sphygmomanometer with an 

inflatable cuff in 1896 by Scipione Riva-Rocci.  Massachusetts General Hospital 

was among the first to incorporate its use into routine checkups, courtesy of 

neurosurgeon Harvey Cushing.  Although the risks of high blood pressure were 

acknowledged by insurance companies, it was not until the 1960s that the 

medical community had wide acceptance of these dangers.  Until this time many 

experienced and prominent cardiologists considered high blood pressure to be 

an important compensatory phenomenon that should be left alone. 

 

The greatest danger to a man with high blood pressure lies in its discovery, 

because then some fool is certain to try and reduce it. – J.H. Hay, 1931 



2 
 

Hypertension may be an important compensatory mechanism which should not 

be tampered with, even were it certain that we could control it. 

– Paul Dudley White, 1937 

 

President Franklin Delano Roosevelt suffered and eventually died as a 

result of high blood pressure, and the progression of his disease is an eloquent 

example of the natural history of untreated hypertension (1).  In 1937, 54 year old 

Roosevelt had a BP of 162/98 mm Hg, though received no treatment to reduce 

his hypertension.  Within three years, his blood pressure had risen to 180/88 

mm Hg.  In 1941, his physician prescribed phenobarbital and massages, as his 

blood pressure had risen to 188/105 mm Hg.  Over the next three years, 

President Roosevelt suffered shortness of breath, drowsiness, and lethargy.  At 

the request of Roosevelt’s daughter, cardiologist Howard G. Bruenn examined 

President Roosevelt finding strong evidence of congestive heart failure (CHF) 

including pulmonary edema, an enlarged heart, left ventricular hypertrophy and 

proteinuria.  He treated Roosevelt by reducing his alcohol and cigarette use, 

limiting his activity, administering digitalis and implementing a low salt diet which 

helped to improve his symptoms.  That year Roosevelt’s blood pressure was as 

high as 230/140 mm Hg.  In 1945, his blood pressure had risen to 260/150 and 

on April 12, 1945 while sitting for a portrait President Roosevelt lost 

consciousness.  His blood pressure had risen to > 300/190 mm Hg and he died 

of a cerebral hemorrhage.   
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At this time there were very few options with regards to the treatment of 

hypertension and all had severe side effects.  The low salt diet had been 

suggested as a treatment in 1922 by Allen and Sherrill, though this received very 

little attention in the United States (2).  The Kempner rice diet published in 1944 

was demonstrated to significantly impact BP although this diet had very low 

compliance (3).  Other more radical therapies included inoculation with fever 

producting agents such as typhoid bacilli, or surgical procedures like 

sympathectomy and adrenalectomy (4).  The herb veratrum viride showed great 

promise for lowering blood pressure but had a very narrow therapeutic window.  

Dr. Edward Freis, a leader in antihypertensive treatment, began using the 

antimalarial drug pentaquine as a hypotensive drug (1).    

The 1950s were a time of great struggle with regards to acceptance of the 

dangers and need to treat hypertension in the medical community.  In 1955, 

Perera of Columbia Univerisity published conclusions from a study of 300 

patients suggesting hypertension is relatively benign and the label overused (5).  

Meanwhile, clinical evidence began accumulating demonstrating the benefit of 

lowering blood pressure, and the search for novel therapeutic agents boomed.  

Alternatives to the dangerous surgical procedures were discovered including 

sympathetic nerve blockers (phenoxybenzamine), ganglionic blockers 

(hexamethonium, pentolinium), peripheral adrenergic inhibitors (guanethidine), 

catecholamine reduction (reserpine) and vasodilators (hydralazine).  In 1957, a 

clinical trial began for a major antihypertensive agent still used today, 

chlorothiazide (6).   
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In the 1960s, the Framingham Heart Study showed a correlation between 

blood pressure and heart attacks, congestive heart failure, stroke and kidney 

damage (7).  The first Veterans Administration study showed antihypertensive 

therapy in patients with diastolic BP > 105 mm Hg was able to reduce the 

incidence of stroke, CHF, and kidney damage (8).  Propranolol began its clinical 

use in the early 1960s as the first of the beta blocker family.  The National High 

Blood Pressure Education Program was started as a way of informing the 

medical community and public of the dangers of high blood pressure and 

methods to treat it.  In 1977, the first report of the Joint National Committee on 

Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC) 

was published, setting the standards for blood pressure diagnosis and treatment 

(9).  These standards are updated regularly and JNC 8 is currently in 

development. 

 

Pathophysiology and Consequences of Hypertension 

 

Still today, hypertension is a prevalent disease which causes substantial 

morbidity and mortality in humans, and affects approximately 33 % of adults in 

the United States (10).   Roughly one-third of afflicted individuals are receiving 

treatment for hypertension, though only one-half of treated patients have their 

blood pressure under control.  Thus, prevention and treatment of hypertension is 

an important public health goal.   
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 Hypertension can be classified into several categories based on the 

degree of blood pressure elevation (Table 1.1) ranging from prehypertension 

(systolic 120-139 mm Hg/ diastolic 80-90 mm Hg) to Stage 2 hypertension 

(systolic ≥ 160 mm Hg/ diastolic ≥100 mm Hg) (11).  Alternatively, hypertension 

can be designated either essential or secondary, based on the root cause of the 

high blood pressure.  About 95 % of hypertensive adults have essential 

hypertension, meaning no secondary cause was discovered.  Secondary causes 

of hypertension can include renal, vascular, endocrine, neurogenic and drug or 

toxin induced hypertension.  

Following chronic elevated blood pressure, target end-organ damage to 

the aorta and small arteries, heart, kidneys, and retina can be observed.  Blood 

pressure is the product of cardiac output (stroke volume x heart rate) and 

systemic vascular resistance.  Thus, it is reasonable to conclude that patients 

 

 

Table 1.1  Classification of Hypertension 

 

     Systolic BP (mm Hg) Diastolic BP (mm Hg) 

Normal < 120 < 80 

Prehypertension 120-139 80-90 

Stage 1 140-159 90-99 

Stage 2 ≥ 160 ≥ 100 

For adults 18 years or older, based on recommendation of the JNC VII. 
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with hypertension may have increased cardiac output, increased vascular 

resistance, or both. Early in the course of disease, cardiac output is often 

elevated.  Over time, vascular stiffness and increased systemic vascular 

resistance plays a greater role (12).  This increases the afterload on the left 

ventricle, inducing left ventricular hypertrophy and dysfunction, which is an 

independent risk factor for sudden death and stroke.  Coronary artery disease is 

another cardiac consequence of hypertension.  At higher MAP the heart requires 

more oxygen to constrict, and lipid plaques in the arteries decrease coronary 

oxygen supply.   This combination leads to myocardial ischemia and infarction.  

Congestive heart failure also occurs with chronic pressure overload.  Often 

patients present with diastolic dysfunction, which eventually leads to systolic 

failure and cardiac congestion.  

Renal disease is an additional complication of hypertension.  

Hypertension-induced vascular lesions can also result in ischemia to the 

nephrons, or hyperperfusion of the glomerulus can damage the glomerular 

capillaries themselves.  Patients initially present with microalbuminuria, and 

pathology reveals glomerulosclerosis, which eventually leads to ischemic renal 

tubules.  The risk of end-stage renal disease (ESRD) is greater in hypertensive 

black patients than white patients, even when blood pressure is properly 

regulated.  Hypertension also increases the risk of ESRD in patients with diabetic 

nephropathy. 

Hypertension-induced damage to the vasculature is a common feature 

observed in many complications of the disease.  In addition to coronary artery 
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disease, stroke and renal disease, the damage to the vasculature of the eye or 

aorta can also have serious consequences.  Increased pressure in the aorta can 

cause a weakening of the vessel wall leading to the formation of an aneurysm.  

Most patients with aortic aneurysms are asymptomatic until the aneurysm 

ruptures.  This is a life-threatening event, and only 10-25 % of patients survive.  

The vasculature of the retina of the eye is also uniquely sensitive to damage.  

Chronic elevated pressure can result in narrowing of the arterioles with 

presentation of microaneurysm or macroaneurysm formation.  These 

hypertensive retinopathies can result in loss of vision. 

The regulation of blood pressure is vastly intricate and multifactorial.  

Many risk factors - both environmental and genetic - have been identified to 

increase BP including obesity, insulin resistance, high salt diet, aging, sedentary 

lifestyle, stress, and low potassium and calcium intake (13),(14).  On a whole 

body-level, many more factors can influence blood pressure regulation including 

neurogenic control, vascular reactivity, the renin-angiotensin system, sodium and 

water retention, nitric oxide, adrenal steroids and eicosanoids – including 

prostaglandins (PGs). 

 

Prostaglandins:  Biosynthesis and Catabolism 

 

Prostaglandins are biologically active lipid-derived autacoids generated by 

prostaglandin H synthase, commonly referred to as cyclooxygenase (COX).  The 

COX enzymes are the target of non-steroidal anti-inflammatory drugs (NSAIDs).  
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PGs are part of the family of eicosanoids which includes prostaglandins, 

prostacylins (PGIs), thromboxanes (TXs), and leukotrienes (LTs).  Eicosanoids 

are derived from the 20-carbon essential fatty acids arachidonic acid (AA), 

eicosapentaenoic acid (EPA), or dihomo-gamma-linolenic acid (DGLA).  

Specifically, PGs are derived from AA which is cleaved from the plasma 

membrane by phospholipase A2, the rate limiting step in PG biosynthesis.  COX 

catalyzes the oxidation of AA to PGG2 and reduction to PGH2.  The tissue-specific 

prostaglandin synthase enzymes then convert PGH2 into one of the five principal 

prostanoids – PGD2, PGE2, PGF2α, PGI2 and TXA2 (Figure 1.1). 

 Prostaglandins are ubiquitously produced and act in an autacrine or 

juxtacrine manner.  Their actions can be halted by efficient catabolic pathways.  

When PGE2 is administered intravenously, 95 % of PGE2 is inactivated within the 

first pass through the lungs.  This is achieved by β-oxidation, ω-oxidation by 

cytochrome P-450s, and PG-15-keto-reductase (15).  PGE2 is primarily 

inactivated by the conversion of the C-15 hydroxyl group into a ketone by NAD+ 

dependent 15-hydroxyprostaglandin dehydrogenase (16). 
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Figure 1.1 Biosynthesis of prostaglandins.  This figure illustrates the formation of 

the five principal prostanoids from arachidonic acid. 
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PGE2 Receptors: Pharmacological properties and signaling 

 

PGE2 mediates diverse and at times physiologically opposing effects, as is 

the case with regard to blood pressure regulation (17-19).  This unique feature 

can be explained in part by the existence of four PGE2 receptors, designated the 

E-Prostanoid (EP) receptors EP1 through EP4 which were cloned in the early 

1990s (20-23).  EP1-EP4 are G-protein coupled Family A receptors with seven 

transmembrane domains.  The EP1 and EP3 receptors are unique among PGE2 

receptors in that splice isoforms exist (24-27). The splice isoforms for the EP3 

receptor alter the C-terminal tail and each isoform has been shown to have 

similar binding properties but activate different signal transduction pathways.  

PGE2 binds with highest affinity to the EP3 and EP4 receptors (KD < 1 nM), and 

with lower affinity to the EP1 and EP2 receptors (KD > 10 nM)(28).  Even though 

each EP receptor binds the same endogenous ligand, the amino acid identity 

conserved across receptors is only 28-33 % (29).  Thus, selective compounds for 

the EP subtypes have been highly pursued.    

 

EP1 receptors 

The EP1 receptor was cloned in 1993 from a mouse lung cDNA library 

and later from human erythroleukemia cells (21,30). EP1 was first characterized 

based on its ability to induce smooth muscle constriction.  Signaling by the EP1 

receptor is primarily transduced by increasing intracellular calcium, most likely 

mediated by Gq family G-proteins (31).  However, it was reported that the calcium 
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flux weakly induces phosphoinositide turnover and generation of IP3 and the 

calcium flux is partially dependent on extracellular calcium, suggesting a non-Gq 

dependent pathway may also exist (24).  Additionally, the EP1 receptor has been 

demonstrated to couple to Gi/o –type G proteins, inducing the up-regulation of 

HIF-1α (32).   

An EP1 splice variant has been identified in rats (27).  The rEP1-variant 

mRNA was found to be highly expressed in the rat kidney, in a proportion roughly 

equal to that of rEP1.  This variant lacks the intracellular C-terminal tail of the 

receptor.  It is able to bind ligand similar to rEP1, but unable to transduce signals.  

When co-expressed in CHO-cells with rEP1 or rEP4, rEP1-variant significantly 

suppresses signaling through the rEP1 and rEP4 receptors, suggesting it may be 

physiologically relevant for attenuating the actions of PGE2 (27).  However, no 

splice variants have been identified in other species to date. 

Northern blot analysis of mouse EP1 mRNA demonstrated that the kidney 

has the highest expression of EP1, followed by lung, spleen and skeletal muscle, 

and low expression in the testes (21,30).  More recently, utilizing quantitative 

PCR analysis Regard et al. showed ubiquitous expression of EP1, present in all 

41 tissues tested, suggesting that EP1 is likely expressed in the vasculature (33).  

Unfortunately, due to the lack of well-characterized antibodies for EP receptors 

and the lower affinity of EP1 for PGE2, the only radiolabeled ligand available, 

protein distribution remains unknown. 

Selective agonists and antagonists have been essential for 

characterization of the individual EP receptor subtypes (Table 1.2).  17-phenyl-ω-
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trinor-PGE2 is the frequently utilized agonist with high affinity for mouse EP1 (pKi 

= 7.9) (34,35).  Sulprostone and partial agonist iloprost have the next highest 

affinities for mouse EP1 (pKi ≈ 7.7), but are less selective (34,36).  ONO-DI-004 

is by far the most selective agonist for EP1, but has lower affinity than other 

agonists (pKi = 6.8)(37).  AH6809 was frequently used in the past as an EP1 

antagonist, although its affinity for the mouse EP1 receptor is very poor, and 

much lower than its affinity for EP2.  ONO-8713, ONO-8711 and SC-51322 are 

currently used antagonists for EP1.  ONO-8713 is the most selective antagonist 

with a pKi of 9.5 at the mouse EP1 receptor (38).  ONO-8711 also has high 

affinity (pKi = 8.8) for mouse EP1, although it blocks EP3 receptor with 

reasonable affinity (pKi = 7.2) (39).  SC-51322 is by far the most commonly used 

antagonist due to its commercial availability, however, its pharmacological 

properties have only been reported in humans (pKi = 7.9) and not in mice (28).  

In humans, SC51322 is also reported to block the EP3 receptor (pKi = 6.2). 

 

EP2 receptors 

EP receptors were initially classified based on their function on smooth 

muscle (40).  The EP2 and EP4 receptors induce smooth muscle relaxation.  

Initially, there were two cloned receptor subtypes called EP2 (22,23).  Based on 

pharmacological selectivity, it was later shown that the first cloned EP2 receptor 

was actually EP4; the latter representing EP2. 
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Both EP2 and EP4 receptors couple to Gs-type G proteins which activate 

adenylate cyclase and increase intracellular cAMP ([cAMP]i) (22,23,41,42), 

however EP2 appears to increase [cAMP]i with greater efficacy than EP4 (43).  

Additionally, EP2 has also been demonstrated to couple to arrestin-mediated 

signaling pathways (44-46).  The EP2-beta-arrestin1-p-Src complex plays a 

significant role in the development and progression of skin cancer by activating 

EGFR (46).  Although EP2 has the least abundant mRNA expression of the EP 

receptors,  EP2 mRNA is expressed in the lung, bone marrow and ovary (33,47), 

however its expression is known to be altered in response to stimuli.  Therefore, 

mRNA quantitation in healthy mice may not portray an accurate picture of EP2 

expression in a disease setting. 

The EP2 receptor is classified due to its ability to be activated by the 

agonist butaprost.  In the mouse, butaprost, AH13205 and 11-deoxy-PGE1 all 

have similar affinity for the receptor (pKi = 6.6-7.3), although 11-deoxy-PGE1 also 

binds to the EP3 and EP4 receptors (34).  ONO-AE1-259 has improved potency 

over the previously named agonists (pKi = 8.5) and is highly selective for the EP2 

receptor in mice (37).  However, there is no reported data regarding its selectivity 

or affinity against human receptors.  Until recently, a quality EP2 antagonist did 

not exist.  AH6809 was shown to have moderate affinity for the EP2 receptor 

(mouse pKi = 6.5), however it also blocked the EP1 and DP receptors with high 

affinity in human tissue (28,34,48).  Recently, Pfizer reported development of a 

highly selective, potent EP2 receptor antagonist, PF-04418948 (49-51), which 
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should prove very useful for the study and validation of EP2 as a therapeutic 

target. 

EP3 receptors 

The EP3 receptor is known as the “inhibitory” PGE2 receptor and induces 

smooth muscle contraction.  EP3 primarily couples to a Gi-type family G proteins 

and inhibits adenylate cyclase and decreases [cAMP]i (20,41,52).  The EP3 

receptor has been demonstrated to increase intracellular calcium (52,53), and 

also to couple to G12-type G proteins, inducing the activation of RhoA (54).  EP3 

receptors are unique among the EP receptors in that several splice variants have 

been identified: at least 7 variants in humans, 5 in rabbits, 4 in rats, and 3 in mice 

(55-57).  The splice variants of EP3 have been demonstrated to alter constitutive 

activity, agonist-induced desensitization, trafficking, and signal transduction 

(26,58-60).  For example, of the three splice variants found in mice, alpha and 

beta isoforms couple to Gi G-protein, while the gamma isoform can couple to 

both Gi and Gs G-proteins (26). 

EP3 receptor expression is widespread, and it is found in the kidney, 

uterus, pancreas, stomach, thymus, spleen, smooth muscle of the 

gastrointestinal tract, vasculature, and CNS (33,61).  In the brain, EP3 receptor 

mRNA has been observed in the hippocampus, preoptic area, hypothalamus, 

locus coeruleus and raphe nuclei (62). 

Several selective agonists and antagonists exist for the EP3 receptor.  

The most commonly used agonist for EP3 is sulprostone, which has a pKi at 

mouse EP3 of 9.2 (34).  However, sulprostone is not entirely selective for EP3, 
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and has a pKi at mouse EP1 of 7.7.  Therefore interpretation of studies utilizing 

high concentrations must be carefully considered.  Sulprostone has a similar 

affinity for EP3 as M&B 28767 and SC-46275.  GR-63799 and ONO-AE-248 are 

more selective for mouse EP3 and have pKi’s of 8.7 and 8.1 respectively 

(34,37,63).  Multiple antagonists exist for the EP3 receptor as well, although not 

all have been characterized with mouse receptors.  ONO-AE3-240, L-798,106 

and DG041 have the highest affinities for the EP3 receptor and are selective for 

the human EP3 receptor (64-67).  ONO-8711 is also a selective antagonist with a 

pKi of 7.6.  Some of the effects of SC-51322, a commonly used antagonist for 

EP1, may be explained by the blockade of EP3 (pKi = 6.2), especially when high 

concentrations are used (28). 

 

EP4 receptors 

The EP4 receptor is an inducer of smooth muscle relaxation.  Initially, it 

was identified as the EP2 receptor but later determined to be the fourth subtype 

of EP receptors (22).  EP4 mRNA is predominantly localized the uterus, thymus, 

ileum, lung, spleen, adrenal gland, and kidney (33).  EP4 signals through Gs-type 

G protein, which activates adenylate cyclase and increases [cAMP]i.  The EP4 

receptor can also activate PI 3-kinase signaling pathways, leading to activation of 

extracellular signal-regulated kinases 1 and 2 (68).  The activation of PI-3K was 

demonstrated to be pertussis toxin (PTX) sensitive, and therefore mediated by Gi 

G-protein (69). PTX reduced PGE2 stimulated [cAMP]i in cells expressing EP4 

receptors, suggesting EP4-Gi signaling both inhibits adenylate cyclase and 
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activates PI-3K.  EP4 was also demonstrated to couple to arrestin-mediated 

signaling pathways (45,46).  

 EP4 was distinguished from EP2 due to its lack of activation in response 

to butaprost.  The EP4 receptor is preferentially activated by ONO-4819 (pKi = 

9.2) and ONO-AE-329 (pKi = 8.0), whereas these compounds’ affinities for the 

EP2 receptor are 100-1000 times lower (37,63,70).  In humans, 11-deoxy-PGE1 

is selective for EP4, however in mouse and rat 11-deoxy-PGE1 is able to bind 

EP2 and EP3 receptors in addition to EP4 (34,71,72).  In mice, 1-OH-PGE1 is a 

selective agonist but has lower affinity for EP4 (pKi = 6.7) (34).  In addition to 

agonists there are several antagonists available for blockade of the EP4 

receptor.  AH23848 was the most commonly used antagonist, however it has low 

affinity for EP4 (pKi = 5.3), and although selective against mouse receptors, has 

higher affinity for the human TXA2 receptor than human EP4 (28,71,73).  Among 

the newer antagonists, ONO-AE3-208 has the highest affinity for the mouse EP4 

receptor, although it also blocks the EP3 receptor at slightly higher 

concentrations despite being selective for the human EP4 receptor (74).  

Fortunately Merck compound MF-498 has both high affinity and selectivity for the 

EP4 receptor (75,76).  Additionally, GW627368 is selective and has reasonable 

affinity for EP4 (pKi = 7.1) (77).  These EP4 antagonists have proven to be 

particularly useful for the study of EP4 in disease given 95 % of EP4-/- mice die 

as a result of patent ductus arteriosis shortly after birth (78). 
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PGE2 receptors as therapeutic targets 

 

PGE2 mediates a wide range of physiological conditions including 

modulation of salt and water transport in the kidney, maintenance of blood 

pressure, preservation of the gastric mucosa, tumor growth and angiogenesis, 

and modulation of immune responses.  The COX/PGE2 pathway has long been a 

target of therapeutic benefit.  Some of the most commonly used over-the-counter 

medications - NSAIDs - block this pathway by inhibiting the COX enzymes.  

These drugs are very valuable for the treatment of pain, inflammation, and fever; 

however chronic use can cause serious side effects including ulcers and 

gastrointestinal bleeding, hypertension, heart attack or stroke.  In an effort to 

eliminate the side effects, subtype selective inhibition of COX-2, while 

maintaining the function of the “housekeeping” isoform COX-1, was pursued.  

The drugs produced include rofecoxib (Vioxx) and celecoxib (Celebrex).  

Unfortunately, rofecoxib was withdrawn from the market due to an increased risk 

of myocardial infarction and stroke, despite showing efficacy against cancer 

progression and reduced incidence of gastrointestinal bleeding.  These 

unexpected side effects were a result of an imbalance in thromboxane and 

prostacylin action.  Celecoxib has remained on the market and is currently 

prescribed for rheumatoid and osteoarthritis, acute pain and familial 

adenomatous polyposis.   

Attention has since focused on alternate ways to modulate the COX/PGE2 

pathway.  These include targeting the catabolic enzyme for PGE2, prostaglandin 

dehydrogenase, targeting the synthases responsible for production of the PGE2, 
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targeting the transporter which moves the intracellular PGE2 across the plasma 

membrane, or targeting the PGE2 receptors themselves.  Therefore, selective 

agents and knockout mice have been used to investigate the subtype specific 

roles of the EP receptors in health and disease. 

 

EP1 receptors 

Although EP1-/- mice have no gross dysfunctions, they have been used to 

support the role of EP1 in impulse activity, pain, hypertension, urine 

concentration and cancer.  Most notably, the EP1 receptor is actively being 

pursued as a therapeutic for pain.  In two acute pain models, EP1-/- mice have 

been shown to have reduced nociceptive responses (79).  The reduction in pain 

phenocopied the effect observed by treatment with a COX-2 inhibitor, suggesting 

the EP1 receptor is the major mediator of COX/PGE2 pain (79).  PGE2-

dependent mechanical allodynia, or enhanced sensitivity to a stimulus which 

normally does not cause pain, is prevented in EP1-/- mice (80).  Furthermore, 

anti-nociceptive and anti-inflammatory responses have been observed as a result 

of administration of an EP1 antagonist in several studies (67,81-84). 

EP1-/- mice exhibit modestly reduced systolic blood pressure (79).  This 

effect was also observed in a setting of hypertension.  EP1-/- mice have a 

blunted response to acute and chronic angiotensin II-dependent hypertension 

(85).  Additionally, EP1 antagonists significantly reduced hypertension in diabetic 

mice and spontaneously hypertensive rats (85,86).  EP1 antagonists have also 
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been used for the prevention of hypertensive renal damage and diabetic 

nephropathy (87,88).    

In the lung, EP1 receptors constrict the airway of mice and mediate 

surfactant secretion from rat alveolar cells (89,90).  In the stomach, EP1 plays 

both beneficial and harmful roles. EP1 enhances histamine-induced gastric injury 

while also conferring cytoprotection against hemorrhagic lesions and is essential 

for HCO3
- secretion (91-94).  EP1 receptors have also been shown to play a 

critical role in carcinogenesis.  EP1-/- mice have reduced aberrant crypt foci and 

tumor formation in the azoxymathane colon cancer model (39,95).  EP1 

antagonist ONO-8711 was demonstrated to reduced tumor burden in a model of 

breast cancer (96).  Therefore, EP1 antagonists may be of therapeutic 

importance for pain, hypertension, and cancer.   

There are few indications when EP1 agonism would be beneficial.  EP1-/- 

mice exhibit behavioral deficits including impaired social interaction, aggression, 

diminished cliff avoidance and exaggerated acoustic startle response (97).  

Therefore, agonism of EP1 receptors could prove to be useful for control of 

impulsive behavior, although major unwanted side effects would be expected. 

 

EP2 receptors 

EP2 has been demonstrated to be involved in asthma, blood pressure 

homeostasis, uterine contraction, fertility, maintenance of bone, and cancer.  EP2 

is generally considered to have anti-inflammatory roles (98).  EP2-/- mice have 

reduced fertility (17,78,99).  Although female EP2-/- mice are able to become 
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pregnant, there is a reduction in litter size.  This is a result of reduced fertilization 

of the oocyte due to incomplete expansion of the cumulus cells required for 

oocyte maturation (78,99,100).  The EP2 receptor mediates the vasodilator 

responses of PGE2 (101).  During high salt intake, deletion of EP2 results in salt-

sensitive hypertension (17,99).  One mechanism by which EP2 can modulate 

blood pressure is through PGE2-induced renin release.  EP2 and EP4 activate 

renin exocytosis at the juxtaglomerular cell, eventually resulting in 

vasoconstriction of the afferent arteriole (102-104).  EP2 also mediates sodium 

excretion, suggesting that in a high salt setting EP2 stimulates natriuresis and 

maintenance of normal blood pressure (105). 

The EP2 receptor mediates the PGE2 bronchodilator response, 

suggesting agonism of EP2 may be beneficial for the treatment of asthma.  This 

has been demonstrated in both human and mouse (89,106-108).  Agonism of 

EP2 receptors could prove to be more beneficial than commonly used treatments 

which relieve bronchospasm, because EP2 receptors also inhibit lung mast cell 

degranulation (109).  AH13205 was tested clinically with no success, however it 

should be noted that the potency to this EP2 agonist is weak, and there may be 

great benefit from a more potent compound if it becomes available (110). 

The EP2 receptor can positively and negatively contribute to cancer.  In 

skin cancer, overexpression of EP2 enhances chemically induced skin cancer 

and EP2-/- mice are resistant to the cancer (111,112). In intestinal and prostate 

cancers, EP2 receptors contribute to endothelial cell motility and mediate 

angiogenesis (113).  In mammary cancer, EP2 deficiency reduces tumor growth, 



22 
 

angiogenesis, and metastasis, while over expression of EP2 enhances tumor 

burden (114).  This supports a pro-tumor role of EP2.  In contrast, loss of EP2 

receptors in keratinocytes has been suggested as a mechanism for neoplastic 

progression by increasing invasiveness.   Furthermore, EP2 receptors are 

protective in UV-induced carcinogenesis (115,116), supporting an anti-tumor role 

of EP2.  It is essential to appreciate the complexity of the EP2 receptor in cancer 

progression.  Therapeutic manipulation of EP2 for the treatment of cancer would 

require determining whether EP2 is acting in a pro- or anti-tumorigenic fashion 

prior to treatment. 

 

EP3 receptors 

EP3 receptors have been implicated in many physiologic events including 

fever, pain, platelet aggregation, myocardial infarction, bladder hyperactivity, 

cancer, obesity, and Alzheimer’s disease.  Upon gross observation, EP3-/- mice 

appear to be normal (117,118).  However, EP3-/- mice have been shown to have 

an impaired febrile response (118), suggesting EP3 antagonists could be 

effective antipyretic agents.  Analgesic effects are also produced by EP3 

antagonists, or the use of EP3-/- mice, in a model of acute herpetic pain (119).  

EP3 antagonism has been clinically pursued for treatment of thrombotic 

disorders.  PGE2 inhibits platetet aggregation at high dose, but also can 

potentiate other proaggregatory agents (120).  EP3 receptors have been 

demonstrated to mediate this proaggretory effect (64,121-124).  Furthermore, 
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EP3-/- mice have increased bleeding and reduced susceptibility to 

thromboembolism (123).   

With the use of EP3 antagonists, the receptor has been identified as a 

target for treatment of bladder hyperactivity disorders.  Treatment with DG041 

inhibited responses to bladder distension and reduced bladder motility (125).  

Furthermore, EP3-/- mice have been reported to have increased bladder 

capacity, while infusion of an EP3 agonist reduces bladder capacity in wildtype 

mice (126). 

EP3 has also been implicated in metabolic regulation.  EP3-/- mice had 

increased frequency of feeding during the light cycle and became obese on a 

normal fat diet (127).  Increased leptin and insulin levels were also observed with 

the obesity (127).  In a model of subacute neuroinflammation, deletion of EP3 

reduced pro-inflammatory gene expression, cytokine production, oxidative stress, 

and reversed the decline in presynaptic proteins, suggesting a possible role for 

EP3 in Alzheimer’s disease (128,129). 

Similar to the EP2 receptor, in cancer EP3 can have both pro- and anti-

tumorigenic effects.  In human colon cancer EP3 mRNA expression is reduced.  

Agonism of EP3 in a colon cancer cell line reduced cell viability, supporting the 

theory that downregulation of EP3 allows for enhanced colon carcinogenesis 

(130). Overexpression of individual splice variants decreased tumorigenic 

potential in cell lines and reduced tumor burden in vivo (54).  EP3-/- mice also 

exhibited reduced tumor burden and angiogenesis in an implanted tumor model 

(65).  Similar reductions in tumor burden were observed upon treatment with an 
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EP3 antagonist (65).  In contrast, EP3 decreases aromatase activity, suggesting 

a possible inhibitory role in breast cancer (131). 

 

EP4 receptors 

EP4 receptors have been proposed to mediate vasodepression, closure of 

the ductus arteriosus, renin secretion,bone homeostasis and intestinal 

homeostasis.  EP4-/- mice have been demonstrated to have persistent patent 

ductus arteriosus, and most mice die within 3 days of birth due to pulmonary 

congestion and congestive heart failure (132,133).  The ductus arteriosus is the 

fetal shunt between the pulmonary artery and aorta, and its closure at birth is 

essential.  Indomethacin can be given late in pregnancy to induce closure of the 

ductus in wildtype, but not EP4-/- mice (132).   

EP2 and EP4 receptors have also been shown to mediate PGE2 

stimulated renin secretion.  PGE2 is a well established stimulator of renin 

(19,134).  It is also known that PGE2 is produced locally at the macula densa in 

response to relevant concentrations of NaCl (20-40 mM) (135).  Using isolated, 

perfused kidneys for EP1, EP2, EP3 and EP4 knockout mice, it was 

demonstrated that EP4 stimulates renin secretion at low PGE2 concentrations, 

regulating basal activity, while both EP4 and EP2 stimulate renin at higher 

concentrations of PGE2 (102).  However, EP receptors do not appear to mediate 

COX-2 dependent production of renin at the macula densa in low-NaCl settings, 

since no differences in renin secretion were observed between genotypes when 
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loop diuretics, which impair the ability of the macula densa to sense NaCl, were 

administered (102). 

EP4 is the primary PGE2 receptor supporting bone maintenance, and is 

able to mediate both bone formation and bone reabsorption.  EP4-/- mice have 

been shown to have reduced bone mass and an inability to properly repair 

fracture damage (136).  Despite having similarly sized bones, EP4-/- mice had 

reduced structural and apparent material strength in the femur and vertebrae 

compared to wildtype mice (137).  Administration of an EP4 agonist has been 

shown to restore bone mass and strength in ovariectomized or immobilized rats, 

suggesting activation of EP4 could be of great therapeutic benefit for conditions 

with reduced bone mass (70). 

It has been established that treatment with NSAIDs can trigger or worsen 

inflammatory bowel diseases.  This phenomenon is due to reduced activation of 

EP4. In a dextran sodium sulfate–induced colitis, disruption of EP4 and not EP1, 

EP2, EP3, FP, TP or IP resulted in enhanced colitis in wildtype mice (74). 

Administration of an EP4 antagonist to wildtype mice was able to mimic this 

effect, while treatment with an EP4 agonist ameliorated severe colitis (74).  The 

anti-inflammatory EP4 receptor was critical to mucosal barrier function and 

maintenance of epithelial cells, and suggests EP4 agonism may be of therapeutic 

value for treatment of inflammatory bowel diseases such as Crohn disease and 

ulcerative colitis. 
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PGE2 receptors in blood pressure regulation 

 

PGE2 is a major prostanoid contributing to the regulation of blood 

pressure, where it can exert either vasopressor or vasodepressor effects 

depending upon the setting (17-19).  Previous studies have determined that the 

EP1 and EP3 receptors primarily mediate the pressor response, while the EP2 

and EP4 receptors mediate the depressor response (17,85,99,134,138-

140)(Figure 1.2).  

The role of PGs in the regulation of blood pressure is highlighted by the pro-

hypertensive action of non-steroidal anti-inflammatory drugs (NSAIDs) which 

inhibit cyclooxygenase mediated prostanoid production, suggesting that 

prostaglandins have an anti-hypertensive role (141,142).  However, under certain 

conditions NSAIDs can also have hypotensive effects supporting a 

prohypertensive role for PGs (143).  Of note, PGE2 is a well established 

stimulator of renin (19,102,135,144). Experiments in conscious dogs 

demonstrated that intrarenal infusion of PGE2 results in a sustained rise in mean 

arterial pressure, which highly correlates with plasma renin activity (19).  This 

suggests the rise in blood pressure was related to the increased renin activity.  

Futhermore, 20 – 40 mM NaCl concentrations have to shown to induce local 

PGE2 production in the macula densa (135).  Overall, the balance of functionally 

antagonistic prostaglandin action fine-tunes blood pressure homeostasis.   

Isomerization of PGH2 to PGE2 by microsomal PGE synthase (mPGES) 

plays a key role in the maintenance of blood pressure homeostasis by regulating 
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vascular tone, sodium balance and/or renin release (145).  Inhibitors of mPGES 

are currently being pursued for treatment of cancer, pain and inflammation; 

however, unwanted pro-hypertensive effects may result from this strategy.  In 

rodents, deletion of mPGES-1 has been shown to further increase blood 

pressure in several models of hypertension, including deoxycorticosterone-salt 

water-induced hypertension and acute or chronic treatment with angiotensin II 

(146-148).  In humans, where there is a great deal of phenotypic heterogeneity, 

the contribution of PGE2 towards hypertension is more controversial.  In some 

cases, patients with essential hypertension have been shown to have low urinary 

excretion of PGE2; however, in other cases patients have been shown to have 

high urinary PGE2 excretion (149).  This inter-patient variability may result in a 

wide range of untoward side effects for mPGES inhibitors.  In order to gain a 

better understanding of the effects of PGE2 on blood pressure homeostasis, 

attention has been focused on the actions of its receptors using knockout mouse 

models. 
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Figure 1.2 PGE2 receptors in blood pressure regulation.  Upon PGE2-induced 
activation EP2 and EP4 function as vasodepressor receptors and EP3 and EP1 
function as vasopressor receptors 

 

Vasodepressor Receptors 

Upon acute infusion, PGE2 is a vasodepressor in both humans and mice 

(17,138,150). This observation underscores the pro-hypertensive effects of 

blockade of all prostaglandin production and subsequent receptor activation by 

NSAIDs (141,151-154), which is consistent with the loss of a tonic vasodepressor 

PG effect. It has been shown that this depressor effect is primarily due to the 

activation of the EP2 receptor; however, when the EP2 receptor is deleted, the 

loss of the depressor response unmasks a PGE2 pressor response (17). 

Moreover, EP2-/- mice fed a high-salt diet experienced an increase in blood 

pressure consistent with a protective role for EP2 activation in salt-sensitive 

hypertension (17).  Intravenous infusion of the EP2 agonist ONO-AE1-259 into 
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Wistar rats increases retinal arteriolar and venous diameter and substantially 

reduces mean arterial pressure (155).  EP2 and EP4 receptors evoke an 

increase in [cAMP]i through a Gs coupled pathway, a classical mechanism for 

smooth muscle relaxation. Hristovska et al. demonstrated a dose-dependent 

relaxation in response to PGE2 in aortic rings which was lost in tissue from EP4-/- 

mice but remained intact in EP2 -/- tissue.  The EP4 dilator effect was dependent 

upon endothelium-derived nitric oxide production via eNOS (156).  Acute blood 

pressure studies are challenging in EP4 -/- mice because the mice exhibit near 

complete perinatal lethality in inbred strains as a result of persistent patent 

ductus arteriosus (132).  Analysis of studies performed with surviving EP4-/- 

animals on a mixed-strain background may not be straightforward as their 

survival may be dependent on modifier genes.  Nonetheless, deletion of EP4 

resulted in a diminished vasodepressor response to PGE2 (138). In rats, infusion 

of the EP4 selective agonist ONO-AE1-329 significantly reduces blood pressure; 

it does not alter retinal vessel diameter (155).  Taken together is consistent with 

EP4 vasodilator action in a subset of vascular beds. 

 

Vasopressor Receptors 

As described above, the pressor effects of systemic PGE2 infusion are 

only observed in the absence of the predominant depressor receptor EP2 (17).  

In contrast, infusion of EP3 receptor selective agonists such as sulprostone, 

M&B28767 or SC46275 in wildtype mice results in an acute and substantial rise 

in mean arterial pressure (139).  The EP3 mediated pressor effect undergoes 
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desensitization with repeated administration of EP3 agonists. In EP2-/- mice after 

desensitization of EP3 responses, the depressor action of EP4 in response to 

PGE2 infusion is then apparent (139).  Thus, upon systemic infusion of PGE2 in 

mice the depressor action of EP2 predominates, followed by the pressor action of 

EP3, and then the depressor action of EP4.  Importantly, the order of expression 

of EP receptor mRNA does not mirror the phenotypic effects of the EP receptors.  

RNA levels determined by RNAse protection identified expression levels of 

EP3>>EP4>EP1≥EP2 in both renal resistance vessels and the aorta (139).  It is 

unclear whether changes in EP receptor density underlie changes in vascular 

tone in the hypertensive state.  Because messenger RNA levels do not correlate 

with receptor function, and anti-receptor antibodies are of questionable value, 

this remains an important unanswered question. 

In contrast to the depressor effects of systemic administration, when PGE2 

is administered intracerebroventricularly (ICV) a rise in mean arterial pressure 

occurs, accompanied with tachycardia and enhanced renal sympathetic nerve 

activity (157).  These effects were ascribed to the EP3 receptor using ICV 

infusion of subtype selective EP receptor agonists (157).  Taken together, these 

data demonstrate that the centrally mediated pressor actions of PGE2 are EP3-

mediated.   

Although the EP1 receptor does not appear to play a significant role in the 

blood pressure effects of systemically administered PGE2, it has been shown to 

be a significant contributor to hypertension, particularly in cases with enhanced 

renin-angiotensin system activity.  Genetic deletion of the EP1 receptor in mice 
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has been shown to significantly decrease systolic blood pressure, an effect 

amplified when mice are fed a low sodium diet (79).  Importantly, EP1-/- mice 

have blunted pressor responses to both acute and chronic angiotensin II 

administration (85).  In isolated vascular preparations of preglomerular arterioles 

and mesenteric arteries, pre-treatment with SC51322, an EP1/3 antagonist, was 

able to abolish any angiotensin II-mediated vasoconstriction (85).  Furthermore, 

treatment of spontaneously hypertensive rats, a multifactorial model of essential 

hypertension, with SC51322 significantly reduces blood pressure (85), indicating 

the EP1 receptor and/or EP3 receptor may be novel targets for the treatment of 

hypertension.   

 

 

PGE2 and the consequences of hypertension 

Hypertension is an established risk factor for cardiovascular diseases 

including stroke, myocardial infarction, heart failure, arterial aneurysm and is the 

leading cause of chronic kidney failure.  Current anti-hypertensive therapies 

reduce the risk of the related cardiovascular sequelae, though not to baseline risk 

observed in normotensive subjects. There is an unmet need for treatment which 

will reduce blood pressure and maximize target organ protection (158).  In 

considering whether PGE2 and its receptors make viable drug targets for 

hypertension, determination of their ability to reduce end-organ damage will be 

important.  It has been shown that genetic deletion of mPGES-1 in mice results in 

increased blood pressure (146-148).  Despite this, deletion of mPGES-1 has also 
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been shown to protect against aortic aneurysm formation and vascular injury 

(159,160).  Angiotensin II infusion into hyperlipidemic mice produced fewer and 

less severe aneurysms, and reduced oxidative stress on a mPGES-1-/- 

background compared to wildtype mice (160).  However, these results were 

complicated by the observed increase in PGI2 and PGD2 production 

accompanying the reduction in PGE2 (160).  It is yet to be determined whether 

potentially beneficial substrate diversion is a consequence specific to genetic 

mPGES-1 deletion, or would be recapitulated with chronic use of an mPGES 

inhibitor.   

Blockade of individual PGE2 receptors might result in a reduction in end-

organ damage while being less likely to produce unwanted side effects.  In 

addition, GPCRs are demonstrably “druggable” and are one of the most common 

targets of currently developed therapeutic agents.  Antagonism of EP1 receptors 

has been shown to preserve renal function, and reduce tubulointerstitial damage, 

proliferative lesions, fibrotic area and proteinuria in stroke-prone spontaneously 

hypertensive rats (87), as well as cerebrovascular dysfunction induced by 

angiotensin II (161).   In the study performed in stroke-prone hypertensive rats, 

tail cuff blood pressure was modestly reduced two weeks post-treatment with an 

EP1 antagonist, but this reduction was not maintained past five weeks of 

treatment. Nonetheless treatment with the EP1 antagonist provided end-organ 

protection.  In contrast to the deleterious actions of the EP1 receptor, EP2 and 

EP4 receptors have been shown to be cardioprotective; it would seem important 

to maintain function of these receptors.  For example, deletion of the EP4 
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receptor in a mouse model of ischemia reperfusion of the heart significantly 

increased infarct size, while treatment of wildtype mice with an EP4 agonist, 

4819-CD, reduced infarct size (162).  Therefore, EP4 agonists could be useful for 

reducing blood pressure and afford cardioprotective benefits. Selective blockade 

of EP1 and/or EP3 receptors, while EP2 and EP4 signaling remains intact may 

be preferable to the loss of signaling in all four receptors resulting from inhibition 

of PGE2 ligand production. 

PGE2 plays a dynamic role in regulation of blood pressure homeostasis.  

The existence of multiple receptors with diverse signaling abilities allows for 

modulation both positively and negatively.  The development and availability of 

additional highly selective agonists and antagonists for EP receptors is 

fundamental to the advancement of the field.  Unwanted side effects resulting 

from inhibition of the cyclooxygenase enzymes upstream of prostanoid 

production demonstrated the value of selective targeting as proximal to the 

pathophysiological action as possible.   Development of new therapeutics 

targeting specific PGE2 receptors could reduce blood pressure and provide end-

organ protection, while minimizing side effects. 
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Objective 

 

As summarized above, PGE2 and its receptors mediate a wide range of 

physiologic processes.  With regards to blood pressure regulation, PGE2 can act 

in a pro-hypertensive or anti-hypertensive manner.  While it has been 

demonstrated that EP2 and EP4 receptors mediate the vasodepressor actions of 

PGE2 and the EP1 and EP3 receptors mediate the vasopressor actions, the role 

of the EP receptors in modulating downstream end-organ damage in 

incompletely characterized.  Current therapies for cardiovascular and renal 

complications associated with hypertension and diabetes are largely focused on 

reduction of mean arterial pressure.  However, pharmacologic reduction of blood 

pressure in patients with hypertension – even to the same blood pressure as 

normotensive individuals – does not reduce the risk of CVD and renal events to 

an incidence similar to that of normotensive individuals.  This highlights the need 

for development of novel therapeutic agents which will not only lower blood 

pressure but also reduce end-organ damage.  

Drugs which block the renin-angiotensin-aldosterone pathway are 

considered superior to other anti-hypertensive treatments due to their beneficial 

actions directly on the kidney.  Furthermore, PGE2 and the EP1 receptor have 

been demonstrated to mediate at least part of the actions of angiotensin II.  

Therefore, I sought to determine the role of the vasopressor PGE2 receptors in 

the development of hypertensive end-organ damage.  Specifically, I sought to 

address the following questions:  What are the consequences of genetic 
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disruption of EP1 or EP3 receptors in development of Ang II- mediated 

hypertension?  Do EP1 or EP3 receptors contribute to end-organ damage in a 

setting of hypertension of diabetes?  Are beneficial effects on end-organ damage 

dependent of blood pressure reduction?  Does the EP1 receptor contribute to 

Ang II independent hypertension?  This thesis describes studies utilizing EP1 

and EP3 receptor knockout mice which are designed to answer these questions 

and advance our knowledge of the role of EP receptors in settings of disease. 
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CHAPTER II 

 

DISRUPTION OF EP1 ATTENUATES END-ORGAN DAMAGE IN A MOUSE 

MODEL OF HYPERTENSION 

 

Introduction 

 

Hypertension is a major risk factor for cardiovascular diseases (CVD), 

increasing the risk of stroke, myocardial infarction, arterial aneurysms, and heart 

failure.  Approximately 30 % of adults in the US have hypertension and the 

incidence of CVD remains greater in hypertensive patients than normotensive 

patients, highlighting the need for novel therapeutic agents (158).   

PGE2 is a major prostanoid found in the mouse kidney and vasculature 

contributing to the regulation of blood pressure, where it can exert either 

vasopressor or vasodepressor effects (17-19).  Four PGE2 receptors (EP1 

through EP4) mediate these effects with the EP1 and EP3 receptors primarily 

mediating the pressor response of PGE2, while the EP2 and EP4 receptors 

mediate the depressor response (17,85,99,134,138-140). 

Each PGE2 receptor has distinct tissue localization and elicits 

characteristic signal transduction pathways (61).  EP1 couples to Gq-proteins, 

resulting in mobilization of intracellular calcium, and stimulation of 

phosphoinositide turnover activating protein kinase C.  The EP2 and EP4 

receptors couple to Gs-proteins, which increase intracellular cAMP.  The EP3 



37 
 

receptor couples to Gi-proteins, decreasing intracellular cAMP (For reviews, see 

(29,61)).  Receptors couple to alternative signal transduction pathways as well, 

including arrestin-mediated signaling pathways (45,46).  

Systemic infusion of PGE2 results in a vasodepressor response 

(17,138,150), primarily through EP2 activation.  In the absence of EP2, a PGE2 

pressor response is unmasked (17), mediated by the EP3 receptor (139).  

Agonist induced EP3 tachyphylaxis in the background of EP2 -/- mice uncovers a 

depressor action of EP4 (139).  EP1 does not appear to play a significant role in 

the blood pressure effects of systemically administered PGE2, however, it does 

contribute to hypertension.  Genetic disruption of the EP1 receptor in mice has 

been shown to decrease blood pressure, particularly when mice are fed a low 

sodium diet (79).  Furthermore, EP1-/- mice have blunted pressor responses to 

both acute and chronic angiotensin II (Ang II) administration (85).  In isolated 

vessel preparations, pre-treatment with the EP1 selective antagonist SC51322 

reduced Ang II mediated vasoconstriction (85).  Treatment of spontaneously 

hypertensive rats with SC51322 significantly reduces blood pressure (85), 

indicating blockade of the EP1 receptor may be a target for the treatment of 

hypertension. 

EP1 blockade has been shown to positively affect renal function in stroke-

prone spontaneously hypertensive rats (87), as well as cerebrovascular 

dysfunction induced by Ang II (161), implicating the EP1 receptor in hypertension 

and resultant end-organ damage.  This has yet to be investigated in detail and in 
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the context of other organ damage.  Therefore, EP1+/+ and EP1-/- mice were 

studied in a model of severe hypertension. 

 

Experimental Procedures 

 

Animal procedures 

The hypertension model was carried out as described by Kirchhoff and co-

workers (163).  Ten-to-16 week old male C57BL/6J (EP1+/+, Jackson Labs, 

USA) and EP1-/- mice (85) backcrossed at least ten generations onto C57BL/6J 

were uninephrectomized (Nphx) under ketamine/xylazine (100 mg/kg and 15 

mg/kg) anesthesia.  Two weeks later, a subcutaneous 50 mg 

deoxycorticosterone acetate (DOCA) pellet (Innovative Research of America, 

USA) was implanted and drinking water supplemented with 1 % NaCl. After an 

additional week, a subcutaneous osmotic mini-pump was implanted (Alzet model 

1002; Durect Corporation, USA) delivering 1.5 ng angiotensin II (Calbiochem, 

USA) per minute per gram body weight. Mice were followed for two more weeks 

when tissues were collected for histology.   Additional studies eliminating one of 

the three elements from the protocol were performed, while keeping the time 

frame between surgeries consistent. Animals were maintained in an AAALAC 

accredited rodent facility in individually ventilated microisolator cages on a 12:12 

light dark cycle.  All procedures were done in accordance with the policies of the 

Institutional Animal Care and Use Committee at Vanderbilt University. 
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Examination of aortic aneurysm and dissection  

Upon necropsy aortic aneurysms and dissections were observed in both the 

thoracic and abdominal aorta, and severity was scored visually using the 

following scale adapted from Manning et al., 2002 (164).  Type 0: no aneurysm, 

Type 1: dilated aorta with no thrombus, Type 2: remodeled tissue that frequently 

contains thrombus, Type 3: a pronounced bulbous form of type 2, Type 4: 

multiple overlapping aneurysms, or a dissection extending the length of the aorta, 

Type 5: ruptured aorta.  Hematoxylin and eosin (H/E) and Masson’s Trichrome 

stains was used on formalin-fixed, paraffin-embedded aorta sections.  

Immunohistochemistry was performed for macrophage (CD11b and F4/80, 

Novus Biologicals cat# NB600-1327 and NB600-404), neutrophils 

(myeloperoxidase, Dako cat# A0398), T-cells (CD3, Santa Cruz cat# sc-1127), 

and B-cells (CD45R/B220, BD Pharmigen cat# 553084).  Inflammation, collagen 

organization and all immunohistochemistry sections were scored at the site of the 

lesion in a blinded fashion by a comparative veterinary pathologist. 

 

Fraction water weight determination 

Fractional water weight was determined as previously described (165).  Eight 

EP1+/+ and seven EP1-/- mice were sacrificed 5 days post-Ang II administration, 

their carcasses weighed (wet weight) and incubated at 60°C.  Body weight was 

measured daily until it remained unchanged for 3 days, indicating dry body 

weight.  Fractional water weight was determined using the equation:  Fractional 

water weight = 1 - (dry weight/wet weight).   
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Determination of urinary albumin/creatinine ratios 

Albumin/Creatinine ratios (ACR; expressed as mg albumin/mg creatinine) were 

measured from 20-200 μL volumes of spot urine using Albuwell M ELISA kit, and 

urinary creatinine was measured using the Creatinine Companion (Exocell, 

Philadelphia, USA).   

 

Determination of Blood Urea Nitrogen levels 

To assess the renal function, blood urea nitrogen (BUN) was determined using 

an iSTAT-1 analyzer (Abbott Point of Care Inc., New Jersey, USA).   Whole 

blood was obtained from saphenous vein and immediately assayed utilizing 

Chem8+ cartridges. 

 

Assessment of Renal Histopathology 

Tissues were fixed overnight in 10 % neutral buffered formalin. Kidneys were 

processed routinely, embedded in paraffin, sectioned at 5 microns, stained with 

H/E or Masson’s Trichrome and evaluated by light microscopy. 

 

Quantitative PCR 

Total RNA from kidneys and aortae was isolated using the TRIzol reagent 

followed by RNA cleanup with a Qiagen RNeasy kit.  cDNA was made using the 

high-capacity cDNA archive kit (Applied Biosystems).  Quantitative PCR was 

performed using Applied Biosystems 7900HT Fast Real-time PCR system with 

Taqman gene expression assays for Ngal (Mm01324470_m1), Kim-1 
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(Mm00506686_m1), Cyclooxygenase-2 (COX-2) (Mm00478374_m1), and 18S 

rRNA (4319413E).  Fold difference in mRNA expression is plotted relative to a 

normal EP1+/+ kidney sample. 

 

Echocardiography 

Transthoracic echocardiography was performed on lightly-anesthetized 

(isoflurane) mice using the VisualSonics VEVO2100 system (30 MHz 

transducer).  Left ventricular posterior wall dimensions (LVPW), intraventricular 

septum dimensions (IVS), left ventricular interior diameter (LVID), fractional 

shortening (FS) and ejection fraction (EF) were measured for analysis of cardiac 

structure and function at baseline, prior to uninephrectomy, and five days post-

Ang II administration. 

 

Intracarotid blood pressure measurement 

Intracarotid blood pressure was measured under ketamine (25 mg/kg) and 

inactin (100 mg/kg) anesthesia delivered intraperitoneally.  Mice were placed on 

a thermal pad and a PE-10 catheter was inserted into the left carotid artery.  The 

catheter was connected to a TXD-310 transducer and blood pressure was 

measured using a Digi-Med BPA 400 (Micromed).  Mice were equilibrated 30-60 

minutes until stable values were attained.  Ten minute blood pressure 

measurements were collected and average mean arterial pressure (MAP) is 

plotted. 
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Antihypertensive Treatment 

Blood pressure reduction was achieved by adding hydralazine (200 mg/L) to the 

1 % NaCl drinking water beginning three days prior to angiotensin II mini-pump 

implantation.  Treatment was continued for the duration of the experiment, or a 

total of 17 days. 

 

Statistical Analysis 

Data are means ± SEM, using GraphPad Prism software (GraphPad Software 

Inc., USA). Analysis utilized Student’s t test and Fisher’s exact test. Kaplan Meier 

survival curves were evaluated with the Log-rank (Mantel-COX) test. P < 0.05 

was considered statistically significant for all studies. 

 

Results 

 

EP1-/- mice were protected against Nphx/DOCA-NaCl/Ang II mortality 

We employed a model of severe hypertension to investigate the contribution of 

the EP1 receptor in hypertensive end-organ damage (163).  Unexpected 

mortality was observed following implantation of the Ang II osmotic pump (Figure 

2.1A).  Of 58 EP1+/+ mice, 60 % died within 14 days.  EP1-/- mice were 

significantly protected against mortality; of 35 EP1-/- mice only 24 % died (P = 

0.0044).  Modified protocols omitting one of the three components (Nphx, DOCA-

NaCl, or Ang II) demonstrated all components of the model played an essential 

role in causing mortality (Figure 2.1B, Nphx/DOCA-NaCl/Ang II vs. Nphx/DOCA-
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NaCl, Nphx/Ang II or DOCA-NaCl/Ang II, N = 10 per group, P = 0.011, < 0.005, 

or < 0.005 respectively).  

 

EP1-/- mice had reduced aortic aneurysm rupture, but comparable aortic 

histopathology 

Post-mortem analysis of EP1+/+ and EP1-/- mice in the full model indicated a 

significant portion of the mice died as a result of rupture of the aorta.  Aneurysms 

and dissections were observed in both the thoracic and abdominal aorta.  37 % 

of EP1+/+ and 13 % of EP1-/- mice died due to aortic rupture. Aortic aneurysms 

were present in 67 % of EP1+/+ mice and 40 % of EP1-/- mice.  Aneurysm 

severity was scored at death on a scale of 0-5 (Figure 2.2A).  A reduction in 

aneurysm severity was observed in EP1-/- mice compared to EP1+/+ mice 

(Figure 2.2B, P = 0.049).  H/E staining revealed aneurysms and dissections in 

the wall of the thoracic and abdominal aorta were accompanied by inflammation 

in both EP1+/+ and EP1-/- mice (Figure 2.3A-E, P = 0.3975).  Analysis of aortic 

sections from both thoracic and abdominal lesions of each genotype 

demonstrated macrophage and neutrophils were most abundant, with no 

differences observed between the genotypes in any immune cell component 

(Figure 2.3F).  COX-2 has been shown to play a significant role in aortic 

aneurysm formation and macrophage infiltration (166,167).  COX-2 mRNA was 

elevated in abdominal aortae 2-5 days post Ang II administration, though 

differences between genotypes were not observed (Figure 2.3G, P = 0.774).  

Aortic sections stained with Masson’s Trichrome showed that regardless of 

genotype there was less fibrillar collagen present in vessels that ruptured, and 
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Figure 2.1.  Nphx/DOCA-NaCl/Ang II induced substantial mortality in EP1+/+ 

mice.  A.  Survival of EP1+/+ and EP1-/- mice.  EP1+/+ mice experience a high 

mortality rate after implantation of the Ang II minipump (60 %, N=58) which is 

significantly reduced in EP1-/- mice (25 %, N=35). Kaplan Meier survival curves 

for each genotype are plotted, **P = 0.004.  B.  Survival of EP1+/+ modified 

protocol groups.  Survival curves were plotted indicating reduced mortality in all 

modified protocol groups.  Nphx/DOCA-NaCl/Ang II (data replotted from Figure 

1A) vs. Nphx/DOCA-NaCl, Nphx/Ang II or DOCA-NaCl/Ang II, P = 0.011, <0.005, 

or < 0.005.   
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the amount and organization of collagen surrounding the lesion was not 

significantly different in EP1+/+ and EP1-/- intact aneurysms (Figure 2.4, P = 

0.1925). 

 

Anasarca was observed in EP1+/+ mice 

A subset of EP1+/+ mice appeared to have substantial edema and displayed an 

increase in body weight, peaking approximately five days post-Ang II 

administration (Figure 2.5A).  Average body weight in EP1 +/+ cohort 

subsequently decreased due to mortality in the animals with the largest weight 

gain.  At baseline, EP1+/+ mice weighed more than EP1-/- mice though this 

difference was modest (EP1+/+ 26.6 ± 0.39 grams, EP1-/- 24.9 ± 0.68 grams, P 

= 0.024).  Body weight of EP1-/- mice was unchanged over the course of the 

study.  EP1+/+ mice had a significantly greater fraction water weight as 

compared to EP1-/- mice (Figure 2.5B, P = 0.0138), and aneurysm incidence 

was lower in mice which developed anasarca compared to mice without 

anasarca (33 % vs 76 %).  Anasarca is commonly a result of liver failure, 

nephrotic syndrome or heart failure (168,169).  Plasma alanine transaminase 

(ALT) activity was analyzed as a marker of liver function in Nphx/DOCA-

NaCl/Ang II treated EP1+/+ mice. ALT activity was not elevated above baseline 

values and no correlation with body weight was observed (Figure 2.6).  
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Figure 2.2.  Nphx/DOCA-NaCl/Ang II model induces aortic aneurysm formation.  
A.  Nphx/DOCA-NaCl/Ang II treatment resulted in formation of aneurysms and 
dissections in the thoracic and abdominal aorta.  Aortae were scored visually 
upon necropsy and representative images are shown.  B.  Post-mortem 
examination revealed 18 of 27 EP1+/+ mice and 6 of 15 EP1-/- mice developed 
aneurysms as a result of the Nphx/DOCA-NaCl/Ang II model.  Aneurysm severity 
was significantly reduced in EP1-/- mice compared to EP1+/+ mice. Fisher’s 
exact test, Severity < 3 vs. ≥ 3, P = 0.0344. 

 



47 
 

 
 
 
Figure 2.3.  Aortic inflammation is observed in EP1+/+ and EP1-/- mice.  A-D.  
Hematoxylin and eosin stained aortae (40X and 400X magnification).  A ruptured 
aneurysm in an EP1+/+ mouse (A, C) and a large aneurysm without rupture in an 
EP1-/- mouse (B, D). Vessel necrosis and perivascular inflammatory infiltration of 
macrophages and neutrophils are observed under high magnification (arrows, C 
and D).  L = vessel lumen, * = aneurysm.  E. Overall inflammation was scored 
based on H/E stained aortic sections.  No differences in inflammation were 
observed between EP1+/+ and EP1-/- aortas (P = 0.3975).  F.  
Immunohistochemistry for detection of macrophage, B cells, T cells and 
neutrophils in aortae was performed and scored in a blinded fashion by a 
comparative veterinary pathologist.   No differences in infiltrate were observed (P  
> 0.05).  G.  COX-2 mRNA in the thoracic and abdominal aortae 2-5 days post 
Ang II administration revealed a trend in increased COX-2 expression in the 
abdominal aorta of both EP1+/+ and EP1-/- mice post treatment.  No significant 
differences were observed by treatment or between genotypes (P > 0.05). 
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Figure 2.4.  Aortic fibrosis is observed in EP1+/+ and EP1-/- mice.  A.  
Extracellular matrix deposition was determined using Masson’s Trichrome stain 
(P = 0.1925).  B-E.  Masson’s trichrome stained aortae.  EP1+/+ aorta (B, D) with 
rupture displays less collagen organization.  EP1-/- aorta (C, E) with an intact 
aneurysm shows well developed and organized collagen (arrows) surrounding 
the aneurysm.  L = vessel lumen, * = aneurysm. 
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Figure 2.5. Body weight increases during Nphx/DOCA-NaCl/Ang II treatment in 
EP1+/+ mice.  A. Average body weight of EP1+/+ (N=50) and EP1-/- mice 
(N=22) throughout the duration of the experiment.  Body weight increased in 
EP1+/+ mice, but not EP1-/- mice, following Ang II administration.  Average body 
weight declined at approximately five days post-Ang II due to mortality in the 
subset of mice which gained the most weight (open symbols, EP1-/-; closed 
symbols, EP1+/+).  B.  Fraction water weight 5 days post-angiotensin II 
administration.  The fraction water weight was significantly greater in EP1+/+ 
mice, as compared to EP1-/- mice, P = 0.0138.  
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Figure 2.6.  Plasma alanine transaminase activity and body weight showed no 

correlation in EP1+/+ mice.  ALT activity was not elevated above expected 

baseline values (< 100 mU per mL) and no correlation with body weight was 

observed (R2 = 0.1368). 
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Modest renal injury was induced in EP1+/+ and EP1-/- mice 

The Nphx/DOCA-NaCl/Ang II model was initially developed to induce 

hypertensive renal damage on the C57BL/6 background (163).  To quantify renal 

damage in the EP1+/+ and EP1-/- mice, we monitored urinary albumin excretion, 

blood urea nitrogen, renal histopathology, and biomarkers of acute kidney injury, 

neutrophil gelatinase-associated lipocalin (Ngal) and kidney injury molecule-1 

(Kim-1) mRNA expression (Figure 2.7).  ACR and BUN were elevated but no 

significant differences were observed between genotypes (Figure 2.7A, B). Renal 

histopathology showed modest hypertensive renal damage compared to the 

contralateral kidney removed at time of uninephrectomy (Figure 2.7C).  Dilated 

tubules with moderate glomerulosclerosis and tubulointerstitial fibrosis were 

observed.  Significant increases in Ngal and Kim-1 mRNA expression in the 

kidney of EP1+/+ and EP1-/- mice were observed, though no differences were 

detected between genotypes (Figure 2.7D-E). 

 

 

 

 

 

 

 

 

 



52 
 

 

 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 2.7.  Modest renal damage is observed in EP1+/+ and EP1-/- mice.  A.  
Urinary albumin excretion.  ACR was determined on spot urine collected 
throughout the duration of the experiment.  High albumin levels were detected in 
the urine after the addition of Ang II and no significant differences were observed 
in ACR between the genotypes.  Fisher’s Exact test, P = 0.4559.  B.  Blood urea 
nitrogen levels were modestly increased by the end of the full model as 
compared to baseline in both genotypes (EP1+/+ P = 0.0382, EP1-/- P = 0.0132), 
though no differences were observed in the degree of BUN levels between the 
genotypes (P = 0.5867).  C. Renal histopathology.  Masson’s trichrome stain 
revealed modest hypertensive renal damage observed in both genotypes 
following full model treatment (right panels) and compared to normal kidneys 
removed at time of uninephrectomy (left panels).  Specifically, dilated tubules 
with moderate glomerular sclerosis and tubulointerstitial fibrosis were observed.  
D and E.  Quantification of Ngal and Kim-1 mRNA expression in whole kidneys.  
Expression of clinically used renal injury biomarkers, Ngal and Kim-1, revealed 
significant increases in both genotypes treated with the full model (Ngal: EP1+/+ 
P = 0.0029, EP1-/- P = 0.0008; Kim-1:  EP1+/+ P = 0.007, EP1-/- P = 0.0002), 
though no significant differences between EP1+/+ and EP1-/- mRNA levels were 
observed (Ngal P = 0.8609, Kim-1 P = 0.4931). 
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Cardiac function is reduced in EP1+/+ and EP1-/- mice  

No structural differences in the heart were observed by echocardiography 

between EP1+/+ and EP1-/- mice at baseline.   A modest increase in ejection 

fraction and fractional shortening was observed in EP1-/- mice at baseline.  At 

five days post-Ang II administration, EP1+/+ had increased left ventricular 

posterior wall (LVPWd) and interventricular septum diastolic diameters (IVSd).  

EP1-/- mice had increased IVSd, though no significant change in LVPWd was 

observed.  EP1+/+ and EP1-/- mice displayed increased left ventricular interior 

diameter, though no differences were observed between genotypes.  Cardiac 

function was significantly reduced in both genotypes upon treatment with 

Nphx/DOCA-NaCl/Ang II, as demonstrated by decreased fractional shortening 

and ejection fraction (Table 2.1).  Additionally, heart weights of EP1+/+ and EP1-

/- mice after treatment with Nphx/DOCA-NaCl/Ang II showed no significant 

difference between the genotypes (EP1+/+: 198.9 ± 9.6 grams N = 21, EP1-/-: 

190.0 ± 4.3 grams N = 17, P = 0.461). 
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Hypertension was less severe in EP1-/- mice than EP1+/+ mice 

To determine the effect of disruption of the EP1 receptor on blood pressure in 

Nphx/DOCA-NaCl/Ang II treated animals, intracarotid blood pressure was 

determined in EP1+/+ and EP1-/- mice two days post-Ang II administration 

(Figure 2.8).  MAP was significantly increased compared to untreated animals in 

both EP1+/+ (76.79 +/- 5.33 mm Hg baseline vs. 128.8 +/- 5.08 mm Hg, P = 

0.0004) and EP1-/- mice (74.36 +/- 5.61 mm Hg baseline vs. 102.4 +/- 7.77 mm 

Hg, P = 0.0423).  However, the rise in MAP was significantly lower in EP1-/- 

compared to EP1+/+ mice (P = 0.0295).   

 

Reduction of blood pressure protected against mortality 

Fifteen EP1+/+ and EP1-/- mice treated with Nphx/DOCA-NaCl/Ang II were 

administered the antihypertensive agent hydralazine. Hydralazine treatment 

significantly reduced MAP in EP1+/+ mice (106.1 +/- 5.76 mm Hg vs. 128.8 +/- 

5.08 mm Hg, P = 0.024), and but had no significant effect on EP1-/- mice (Figure 

2.9A, 99.47 +/- 4.82 mm Hg vs. 102.4 +/- 7.77 mm Hg, P = 0.762).  A significant 

decrease in the incidence of mortality was observed in EP1+/+ but not EP1-/- 

mice (Figure 2.9B, P = 0.007 and P = 0.642 respectively).  Hydralazine treatment 

reduced aneurysm incidence and severity in EP1+/+ though this did not achieve 

statistical significance (Figure 2.9C, P > 0.05).  Anasarca was not observed in 

hydralazine treated EP1+/+ (Body weight 5 days post-Ang II: 21.40 +/- 0.65 

grams) as compared to untreated EP1+/+ mice (Body weight 5 days post-Ang II: 

32.28 +/- 1.59 grams, P < 0.0001). 
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Figure 2.8.  Mean Arterial Pressure is increased in EP1+/+, and blunted in 
EP1-/-, mice.  Intracarotid blood pressure was measured in EP1+/+ and EP1-/- 
mice two days post-Ang II administration under ketamine and inactin anesthesia.  
MAP was elevated in both groups compared to baseline (EP1+/+ ##P = 0.0004, 
EP1-/- #P = 0.0423) but was significantly lower in EP1-/- compared to EP1+/+ two 
days post-Ang II (*P = 0.0295). 
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Figure 2.9.  Hydralazine treatment reduced mortality in EP1+/+ but not EP1-/- 
mice. A.  Mean arterial pressure was measured in EP1+/+ and EP1-/- mice 
treated with hydralazine at 2 days after Ang II administration and compared to 
existing data shown in figure 2.7.  EP1+/+ with and without hydralazine, P = 
0.024. EP1-/- with and without hydralazine, P = 0.762.  B.  Mortality observed in 
EP1+/+ mice was significantly reduced by treatment with hydralazine, ***P = 
0.007. No change was observed in EP1-/- mice, P = 0.642.  C.  Aortic aneurysm 
severity.  Aneurysm severity was decreased in EP1+/+ mice treated with 
hydralazine (P > 0.05). 
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Discussion 

 

Disruption of the EP1 receptor affords substantial protection in the 

Nphx/DOCA-NaCl/Ang II evoked hypertension.  The incidence of mortality was 

significantly decreased and appeared to result from reduction in MAP.  Mortality 

was a result of ruptured aortic aneurysm or occurred after developing anasarca.  

The results presented here are consistent with previous studies demonstrating 

the role of EP1 in modulating the rise in MAP in response to Ang II (85), and 

further reveal the protective effect disruption of the EP1 receptor has on end-

organ damage. 

There are several limitations to these studies which deserve mention.  

First, high mortality observed in EP1+/+ mice confounds the analysis of 

measurements taken after implantation of Ang II, such as cardiac and renal 

function, since the analyses are only performed on surviving mice.  Second, 

there was a modest (<10 %), though statistically significant difference in body 

weight observed between EP1+/+ and EP1-/- mice.  Although the dosage of Ang 

II was adjusted by weight, the dosage of the DOCA pellet was not.  However, 

one would predict the genotype receiving the greater dose/weight (EP1-/-) would 

have the worse phenotype, and this is opposite what we observed.  Lastly, 

EP1-/- mice were observed to have lower blood pressure than EP1+/+ mice 

following treatment with the Nphx/DOCA-NaCl/ Ang II model.  This is consistent 

with our previously published data (170) suggesting EP1 mediates part of Ang II-

induced hypertension.  In this model we measured MAP at baseline or after 
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treatment with all three model components; it is possible that EP1 also 

contributes to hypertension induced by Nphx or DOCA-NaCl as well. 

 Current models of aortic aneurysm include a combination of 

hyperlipidemic mice or high fat diet with modulation of the renin-angiotensin-

aldosterone axis, or aberrant production of extracellular matrix components 

(171).  Ang II-induced aortic aneurysms are characterized by accumulation of 

macrophages in the adventia and media, disruption of elastin fibers, expansion of 

the lumen, thrombus formation and disordered extracellular matrix deposition 

(172).  These characteristics were also observed in the Nphx/DOCA-NaCl/Ang II 

model, although no significant differences in macrophage accumulation, matrix 

deposition, or COX-2 mRNA expression were detected between the two 

genotypes.  It should be noted that the aneurysms and dissections observed in 

this model occur after acute severe hypertension and although the pathology 

appears similar to that observed in human disease, the disease genesis may not 

be.  In humans, development of a true aneurysm is a slowly progressing disease 

initiating with local inflammation, disruption of the connective tissue matrix, and is 

often associated with atherosclerosis.  In contrast, development of false 

aneurysm, or dissection as a result of a tear in the intima, can occur more acutely 

by a sudden large rise in blood pressure or direct injury and may be more 

representative of the damage induced by the Nphx/DOCA-NaCl/Ang II model.  

Our data demonstrate that protection observed when EP1 is disrupted is likely 

due to the prevention of a large rise in blood pressure, since treatment with 
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hydralazine phenocopied EP1-/- mice.  This does not eliminate the possibility that 

EP1 receptors might also provide protection directly at the target tissue.   

Data exist suggesting a role for prostaglandins, in particular PGE2, in 

aortic aneurysm formation.  COX-2 initiates the production of prostaglandins, and 

its expression is induced by infusion of angiotensin II in the smooth muscle of the 

aorta surrounding aneurysms (166).  Furthermore, either selective inhibition of 

COX-2 or genetic deletion of COX-2 significantly reduced aortic aneurysm 

formation and macrophage infiltration (166,167).  Deletion of microsomal PGE 

synthase-1, which transforms the product of COX-2 metabolism into PGE2, has 

also been demonstrated to reduce aortic aneurysm formation and oxidative 

stress in LDLR-/- mice with an angiotensin II infusion (160), suggesting PGE2 

plays an important role in development of aneurysms and the EP receptors may 

be viable targets for treatment of aneurysm progression. 

Previous reports of the role of EP1 in renal injury are contradictory.  In 

spontaneously hypertensive rats, treatment with an EP1 antagonist reduced 

proteinuria and tubulointerstitial damage (87), while in anti-GBM nephrotoxic 

serum nephritis genetic deletion of EP1-/- in mice resulted in enhanced 

mesangial expansion and tubular dilation and increased blood urea nitrogen and 

serum creatinine (173).  In our studies, modest hypertensive renal damage was 

observed, although no significant differences in renal function were detected 

between genotypes.  However, our interpretation was confounded by the 

differential mortalities in EP1+/+ and EP1-/- mice, potentially biasing our results.  

Examination of renal histopathology at time points prior to significant mortality 
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failed to detect any severe renal damage or differences between the genotypes.  

This suggests the role of EP1 in renal damage is highly context dependent. 

Anasarca, or extreme generalized edema, can occur in many disease 

settings.  It is commonly a result of liver failure, nephrotic syndrome or heart 

failure (168,169).  In our Nphx/DOCA-NaCl/Ang II model, a subset of EP1+/+ 

mice developed severe anasarca prior to mortality, while EP1-/- mice were 

protected.  The EP1 receptor has previously been shown to be natriuretic (85).  

With this paradigm, one might predict EP1-/- mice would retain more salt and 

water; however in our results we demonstrate that EP1+/+ mice gain excessive 

fluid volume that is not observed in EP1-/- mice.  This contradiction leads us to 

conclude that alterations in kidney function by disruption of EP1 do not play a 

dominant role in development of the observed edema.  Additionally, cardiac 

function was reduced to similar degrees in EP1+/+ and EP1-/- mice.  Edema was 

prevented by treatment with hydralazine, suggesting elevation in blood pressure 

was responsible for development of edema.  We hypothesize that hypertension 

induced by DOCA-NaCl and Ang II results in volume loading and enhanced 

vasoconstriction, which places excessive stress on the vascular wall leading to 

enhanced permeability, resulting in edema and susceptibility to dissections and 

rupture.  Future experiments will be required to identify whether vascular 

permeability differences are observed between EP1+/+ and EP1-/-mice. 

The EP1 receptor plays an important role in the development of 

hypertensive damage.  In the Nphx/DOCA-NaCl/Ang II model, disruption of EP1 

results in increased incidence of survival, lessened aneurysm severity and the 
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absence of anasarca.  This effect is a result of a reduced rise in blood pressure 

observed in EP1-/- mice, and suggests the EP1 receptor may be a viable 

pharmaceutical target for the treatment of hypertension and subsequent organ 

damage.  Furthermore the Nphx/DOCA-NaCl/Ang II model may prove to be a 

useful tool for studying the pathology of aortic aneurysm and dissection formation 

in a setting of acute severe hypertension. 
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CHAPTER III 

 

DISRUPTION OF EP3 IS PROTECTIVE AGAINST MORTALITY IN A MOUSE 

MODEL OF HYPERTENSION 

 

Introduction 

 

There is a strong association between hypertension and progressive renal 

failure, and mitigation of hypertension is a major therapeutic goal for the 

prevention of end-stage renal disease.  A number of pharmacologic agents are 

available for the treatment of hypertension including those that affect the renin-

angiotensin aldosterone system such as angiotensin converting enzyme 

inhibitors, angiotensin receptor blockers and more recently, the introduction of 

renin inhibitors (11,174-178).  Angiotensin II mediates its effects via two GPCRs, 

designated AT1 and AT2, which are distinguished by their pharmacology and the 

signal transduction pathways that they activate (175,176,179). The AT1 receptor 

is the target for the anti-hypertensive receptor antagonist ARBs (180).  AT1 

receptor activation leads to a number of signal transduction pathways including 

increases in intracellular Ca++ and activation of cPLA2 (180-188), a critical 

regulatory step in the formation of PGs.  PGs, which are oxygenated metabolites 

of the essential fatty acid arachidonic acid, are themselves modulators of blood 

pressure and evidence suggests that blockade of one or more prostaglandin 

receptors may be useful for the treatment of hypertension. Recent evidence 
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suggests that at least one PGE2 receptor may play a role in the actions of the 

RAAS on blood pressure (85). 

PGs are potent mediators of a wide range of physiological actions 

including inflammation, modulation of smooth muscle tone and water and ion 

transport in the kidney (98,189). The five primary bio-active prostanoids PGE2, 

PGF2α, PGD2, PGI2, and TXA2, activate a family of specific GPCRs, EP for E-

prostanoid receptors, FP, DP, IP and TP receptors respectively (98).  The EP 

receptors are unique among the PG receptors, in that four receptors, designated 

EP1 through EP4, have been described for PGE2 each encoded by a distinct 

gene. PGE2 has been demonstrated to act as either a pressor or depressor 

depending upon the EP receptor activated (17,19,79,99,157,190-193). Upon 

acute infusion, PGE2 is a vasodepressor in both humans and mice (17,138,150). 

Previous studies with knockout mice have shown that this depressor effect is 

primarily due to the activation of the EP2 receptor (139). When the EP2 receptor 

is deleted, the loss of the depressor response unmasks a PGE2 pressor 

response, suggesting a balance of pressor and depressor receptors activated by 

PGE2. The pressor response is mediated by the EP3 and EP1 receptors 

(85,139). 

Development of models for the study of hypertension and renal damage 

that recapitulate human disease have been challenging, particularly on the 

C57BL/6 background (194,195).  A model of hypertension that causes renal 

damage on the C57BL/6 background has been recently reported (163). This 

model which employs a combination of uninephrectomy, deoxycorticosterone 
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acetate (DOCA), high sodium intake and Ang II, was reported to initiate renal 

damage over a relatively short time course of five weeks.  Using this model, the 

effects of the EP3 receptor on hypertension and renal damage were evaluated.   

 

Experimental Procedures 

 

Materials 

Angiotensin II was purchased from EMD Gibbstown, NJ, and DOCA was 

purchased from Innovative Research of America, Sarasota, FL, USA. Osmotic 

minipumps were purchased from DURECT Corporation, USA. 

 

Induction of Hypertension 

EP3-/- or EP3+/+ mice were uninephrectomized under ketamine/xylazine 

anesthesia two weeks before the start of the study.  At day 0, mice received 

subcutaneous implantation of a 50 mg DOCA pellet and were given ad libitum 

access drinking water containing 1 % NaCl. At day 7, an osmotic mini-pump 

(Alzet model 1002) delivering 1.5 ng/min/gram body weight angiotensin II was 

implanted subcutaneously.  At day 19 or 21, the animals were euthanized. 

Tissues were removed for examination by histological study or snap frozen for 

RNA and protein analysis. Four separate studies were performed with six to eight 

EP3-/- animals in each study and seven or eight EP3+/+ littermates or 

commercially obtained C57BL/6J mice (The Jackson Laboratory, Bar Harbor, 
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ME).  A total of 34 EP3+/+ mice and 27 EP3-/- mice were used.  All experimental 

studies were approved by the IACUC of Vanderbilt University Medical Center. 

 

Measurement of Systolic Blood Pressure 

Systolic BP was determined in conscious mice using a computerized tail-cuff 

system (Visitech systems BP-2000 Blood Pressure Analysis System, Apex NC, 

USA) in the Mouse Metabolic Phenotyping Core at Vanderbilt University Medical 

Center. Mice were trained for four days minimizing physiologically apparent 

stress. Each measurement is the average of at least 10 consecutive readings 

after stabilization of blood pressure. 

 

Intracarotid blood pressure measurement 

Intracarotid blood pressure was measured under ketamine (25 mg/kg) and 

inactin (100 mg/kg) anesthesia delivered intraperitoneally.  Mice were placed on 

a thermal pad and a PE-10 catheter was inserted into the left carotid artery.  The 

catheter was connected to a TXD-310 transducer and blood pressure was 

measured using a Digi-Med BPA 400 (Micromed).  Mice were equilibrated 30-60 

minutes until stable values were attained.  Ten minute blood pressure 

measurements were collected and average mean arterial pressure (MAP) is 

plotted. 
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Determination of Blood Urea Nitrogen levels 

To assess renal function, BUN levels were determined using Infinity Urea liquid 

stable reagent (Thermo scientific, USA). Heparinized blood was obtained from 

saphenous vein and plasma was stored at -80 °C until assayed. 

 

Assessment of Renal Histopathology 

Mice were humanely euthanized and tissues fixed overnight in 10 % neutral 

buffered formalin.  Tissues were then processed routinely, embedded in paraffin, 

sectioned at 5 microns, stained with hematoxylin and eosin and evaluated by 

light microscopy. Kidney injury was scored by a renal pathologist who calculated 

the percent of tubules with cell necrosis, loss of brush border, cast formation, and 

tubular dilation as follows: 0, none; 1, <10 %; 2, 11-25 %; 3, 26-45 %; 4, 46-75 %; 5, 

>76 %.  At least 10 fields (x200) were reviewed for each slide in a blinded fashion. 

 

Statistical Analysis 

Data were analyses using ANOVA or Student’s t test were performed with 

GraphPad Prism software (GraphPad Software Inc., CA, USA) and are shown as 

means ± SEM. Survival curves were evaluated by the Kaplan-Meier method. P < 

0.05 was considered statistically significant for all studies. 
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Results 

 

Uninephrectomy/DOCA-NaCl/Ang II model of Hypertension caused 
significant mortality. 
 
C57BL/6 animals were treated using the recently reported 

uninephrectomy/DOCA-NaCl/Ang II model of hypertension (163).  In contrast to 

the published report, this model resulted in significant mortality after implantation 

of the Ang II minipumps. Deletion of the EP3 receptor was protective; EP3+/+ 

mice having 36 % survival while EP3-/- mice had 53% survival (P =0.037; Fig. 

3.1). 

In the EP3+/+ group, mice displayed severe anasarca, while EP3-/- rarely 

developed anasarca even in the subset of mice that died. This is reflected in the 

change in body weight of mice from the initiation of the study to time of death, or 

the end of the study (Fig. 3.2A).  While EP3+/+ had a marked increase in body 

weight, the EP3-/- mice had no significant change in body weight.  This 

difference in body weight was transient over the course of the study (Fig 3.2B).  

The transient change in body weight observed in the EP3+/+ group was a result 

of higher mortality observed in mice with the greatest increase in body weight 

(Figs. 3.2).  
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Figure 3.1. The uninephrectomy/DOCA-NaCl/Ang II model resulted in significant 
mortality. Significant mortality was observed in both EP3+/+ (solid line), and 
EP3-/- genotypes (broken line). The survival curves of two groups were 
compared using Kaplan-Meier analysis.  Initial EP3+/+, N = 34, EP3-/-, N = 27, P 
= 0.037. 
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Blood pressure was elevated in both genotypes, but less in EP3-/- mice 

The EP3 receptor has vasopressor action, and therefore we hypothesized that 

significant changes in blood pressure between the two groups might underlie the 

decreased mortality in the EP3-/- mice.  Baseline blood pressure was not 

significantly different between genotypes in untreated animals (EP3+/+ 108.8 ± 

1.7 mm Hg, EP3-/- 107.1 ± 1.6 mm Hg P = 0.47, Figure 3.3A). Concurrent 

treatment with DOCA salt water and Ang II for two weeks resulted in elevated 

blood pressure as reported previously in this model.  Although there was a 

dramatic increase in systemic blood pressure over time in both experimental 

groups terminal SBP was not different between the two groups (EP3+/+ 182.6 ± 

5.0 mm Hg, EP3-/- 193.1 ± 4.5 mm Hg P = 0.131; Fig. 3.3B).  However, 

measurement of blood pressure by direct carotid catheterization under 

anesthesia at 2 or 14 days post Ang II revealed a significantly lower MAP in EP3-

/- mice as compared to EP3+/+ mice (EP3+/+ 129.7 ± 2.8 mm Hg, EP3-/-  116.6 

± 5.4 mm Hg, P = 0.0314, Figure 3.3C). 

 

EP3+/+ and EP3-/- mice have modest renal damage 

The uninephrectomy/DOCA-NaCl/Ang II model was developed to induce 

hypertensive renal damage on the C57BL/6 background. Histologic analyses 

indicated similar degrees of renal injury in the EP3+/+ and the EP3-/- mice. The 

kidneys were characterized by multifocal, segmental to global glomerular 

microangiopathy and acute renal tubular necrosis with protein casts.  Distinction 

between the EP3+/+ and EP3-/- renal damage was limited to the renal tubules,  
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Figure 3.2.  Body weight increased in EP3+/+ mice but not EP3-/- mice. A. The 
difference in terminal body weight and initial body weight was determined. 
EP3+/+ gained significantly more weight than EP3-/- mice. EP3 +/+, n = 34, 
EP3-/- n= 27 ** P = 0.0032. B. After implantation of the Ang II pump EP3+/+ mice 
increased body weight. Initial EP3+/+, n = 34, EP3-/-, N = 27. 
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Figure 3.3. Both EP3+/+ and EP3-/- animals had significant increases in systolic 
blood pressure (SBP). A. Baseline SBP was measured in untreated EP3+/+ or 
EP3-/- mice by the tail cuff method (EP3+/+, n = 37, EP3-/-, n= 28, P = 0.47). B. 
SBP for the two groups over the course of the hypertension study are shown. 
Data were analyzed by two-way ANOVA (genotype and time). Initial EP3+/+, n = 
34, EP3-/-, n= 27, all surviving mice were analyzed at each time point.  There 
was a statistically significant change in blood pressure over baseline with time in 
each genotype (P < 0.0001). There was no effect of the genotype on SBP over 
time (P = 0.29).  C.  Intracarotid blood pressure was measured at 2 and 14 days 
post Ang II.  MAP was significantly lower in EP3-/- mice as compared to EP3+/+ 
mice (P = 0.0314).  Wildtype data from figure 2.7 are replotted as EP3+/+ MAP. 
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Figure 3.4.  Modest end organ renal damage is observed in EP1+/+ and EP1-/- 
mice. A. H/E staining reveals glomerular microangiopathy and proteinaceous 
casts in the EP3+/+ and B. EP3-/- renal cortex (200x).   Asterisks indicate 
glomeruli with segmental microangiopathies.  Arrows indicate proteinaceous 
tubular casts.  There is a mild decrease in tubular disease in the EP3-/- as 
compared to EP3+/+ kidneys.  C. H/E staining of the corticomedullary junction in 
the EP3+/+ mouse kidney shows acute tubular necrosis and proteinaceous cast 
formation.  In the more severely affected areas, tubular epithelial cells are 
swollen and vacuolated and lose intercellular and basement membrane 
attachments (Arrows).  D. There is a modest decrease in damage seen in the 
EP3-/- mice (200x). Kidney tissue from eight EP3+/+ and ten EP3-/- mice were 
examined. 
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Figure 3.5. Quantitation of renal damage. A. Kidney injury was scored by 
pathologist Kelli Boyd, DVM as described in the Methods section.  At least 10 fields 
(x200) were reviewed for each slide in a blinded fashion.  No difference was seen 
between EP3+/+ and EP3-/-. B. Blood Urea Nitrogen (BUN) was determined as 
described in the Methods section. A significant increase in BUN was observed for 
both genotypes, comparing terminal BUN (n = 11 or 12 in each group) to 
baseline BUN values (n = 6 or 7 in each group, 2 way ANOVA P < 0.0001).  The 
contribution of genotype to the BUN value was not significant.   
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where the tubular injury was slightly decreased in the EP3-/- mice as compared 

to EP3+/+ mice (Fig. 3.4).  Overall renal damage was quantitated as described in 

the methods section, and no significant differences were observed in renal 

histopathological score (Fig 3.5A). Similarly, although both EP3+/+ and EP3-/- 

genotypes exhibited elevated BUN levels when subjected to the Nphx/DOCA-

NaCl/AngII model (P < 0.0001) no statistically significant increase in terminal 

BUN of EP3+/+ as compared to EP3-/- animals was observed (baseline: EP3+/+ 

BUN 20.6 ± 3.8 mg/dL, EP3-/- 28.0 ± 3.5 mg/dL; terminal: EP3+/+ BUN = 53.7 ± 

6.0 mg/dL, EP3-/- 41.8 ± 3.4 mg/dL 2 way ANOVA P > 0.05; Fig. 3.5B). 

 

Discussion 

 

These studies demonstrated that deletion of the EP3 receptor resulted in 

decreased mortality and modestly reduced hypertension in a mouse model of 

severe hypertension.  Although both EP3+/+ and EP3-/- animals displayed 

increased BUN and pathological changes in the kidney, these changes were not 

significantly different between the genotypes. These studies were carried out on 

the C57BL/6 background, which is normally resistant to renal damage. A recent 

report described this model to induce hypertensive end organ damage on the 

C57BL/6 background strain (163).  We were able to induce renal damage in the 

present studies, although we observed substantial differences compared to the 

reported findings.  Most strikingly the EP3+/+ mice developed severe edema and 

mice in both groups experienced significant mortality.  This was surprising as no 
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mortality was reported in the original description of the model, nor was a gain in 

weight reported.  The EP3 receptor opposes the diuretic action of vasopressin in 

the renal cortical collecting duct (196,197).  Loss of EP3 receptor might be 

expected to affect water balance, but in this case it should increase water 

retention in the EP3-/- animals, the opposite of the observed effect of anasarca in 

the EP3+/+ mice.  Previous studies have shown that mice with a disruption of the 

EP3 receptor concentrated urine normally in response to a range of physiologic 

stimuli, again suggesting that renal effects of the loss of the EP3 receptor are not 

playing a critical role in the phenotypic differences observed here (117). 

Using tail cuff measurements, we observed SBP of near 200 mm Hg, 

almost 60 mm Hg higher than observed in the previous report.  No deaths were 

observed in our study until after implantation of the Ang II pump, suggesting that 

the presence of exogenous Ang II is critical to the cause of death.  Deletion of the 

EP3 receptor was associated with increased survival from 36 % in the EP3+/+ 

group to 53 % in the EP3-/- group.  The EP3 receptor has been implicated in the 

pressor effect of PGE2 (139).  It might be anticipated that deletion of this receptor 

would lead to lower blood pressure, and this would underlie its protective effect.  

In the present studies we noted that the EP3-/- mice had modestly reduced 

hypertension compared to EP3+/+ mice.  This suggests the protective effect of 

EP3 may be due to changes in blood pressure.  These results are consistent with 

studies presented in Chapter II.  Futhermore, the degree of hypertension 

correlates with protection against mortality.  Given these results, these studies 
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that blockade of the EP3 and/or EP1 receptor would be protective from 

hypertension and its downstream consequences. 
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CHAPTER IV 

 

CONTRIBUTION OF THE EP1 RECEPTOR IN HYPERTENSIVE RENAL 

DAMAGE 

 

Introduction 

 

Chronic kidney disease (CKD) is a major public health concern.  The 2010 

annual report from the United States Renal Data Systems estimated 

approximately 600,000 patients had end-stage renal disease (ESRD) in 2008, 

which cost the US $39.5 billion/year.    Additionally, the incidence and prevalence 

of CKD continues to rise in the United States creating a need for novel 

therapeutic agents (198). 

Development of new onset kidney disease is strongly associated with 

hypertension, diabetes, smoking and low HDL cholesterol (199).  In men, 

baseline blood pressure ≥ 120/80 mm Hg strongly increased the development of 

ESRD as demonstrated by the Multiple Risk Factor Intervention Trial (200).  

Several other randomized clinical trials have also demonstrated correlations 

between hypertension and CKD (201-208), including the RENAAL (Reduction of 

Endpoints in NIDDM with Angiotension II Antagonist Losartan) trial which showed 

that each 10 mm Hg rise in systolic blood pressure resulted in an increased risk 

of ESRD or death of 11 % (209).  Therefore, the treatment of renal disease is 

very closely tied to the treatment of hypertension.   
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Kidney disease is characterized by changes that involve renal 

inflammation followed by interstitial fibrosis, atrophy of the renal tubules, and 

glomerulosclerosis (210).  Agents that block the renin-angiotensin-aldosterone 

system, such as ARBs, ACEi, and renin inhibitors, are among the most 

commonly used therapeutics for treatment of hypertension and renal damage.  

AT1 receptors mediate the majority of Ang II induced effects.  AT1 is a G protein 

coupled receptor, which canonically couples to Gq G-proteins, but is also known 

to activate multiple second messenger signal transduction pathways including 

extracellular signal-regulated kinases 1 and 2, activation of phospholipases, 

inhibition of adenylate cyclase, and stimulation of tyrosine phosphorylation and 

Akt (211).  Although classically Ang II has been thought to primarly modulate 

blood pressure and renal damage through vasoconstriction and aldosterone-

induced sodium retention, it is now appreciated to also have affects on 

proteinuria, inflammation, proliferation, apoptosis, and fibrosis (212,213), thus the 

benefits of blockade of RAAS often extend beyond that of just blood pressure 

control (178,214-222).  In these studies, the ARBs and ACEi had effects that 

occur in the absence of a blood pressure change or had a greater change than 

observed with a drug which reduced blood pressure comparably.  One such 

example utilized a 5/6th nephrectomy model on male Munich-Wistar rats.  Rats 

were treated with either an ACEi, enalapril, or a triple therapy of reserpine, 

hydralazine and hydrochlorothiazide (RAAS independent).  Both treatments 

normalized blood pressure, although only enalapril was able to reduce the 

development of proteinuria and glomerulosclerosis, suggesting the 
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renoprotective effects of enalapril are independent of blood pressure reduction 

(216). 

As mentioned previously, agonism of AT1 receptors can activate 

phospholipases, which yields products such as prostaglandins.  PGE2 is a known 

modulator of blood pressure and renal disease.  PGE2 can act as either a 

vasopressor or a vasodepressor (17-19,138).  This antagonistic property of PGE2 

can be explained by the existence of four PGE2 receptors, designated EP1 

through EP4, each with distinct tissue localization and characteristic signal 

transduction pathways.  Using pharmacologic agents and genetics, it has been 

demonstrated that the EP1 and EP3 receptors primarily mediate the pressor 

response of PGE2, while the EP2 and EP4 receptors mediate the depressor 

response (17,79,85,99,134,138-140).  Of most interest, the EP1 receptor has 

been shown to mediate Ang II-induced hypertension (85).  EP1-/- mice have 

blunted pressor responses to both acute and chronic Ang II administration (85).  

Furthermore, in isolated vessel preparations pre-treatment with the EP1 selective 

antagonist SC51322 reduced Ang II mediated vasoconstriction (85).   Given that 

EP1 mediates some of the blood pressure and vasoconstrictor effects of Ang II 

and RAAS, it is of great interest whether EP1 contributes to renal fibrosis and 

CKD, possibly in a blood pressure independent manner similar to that of AT1. 

EP1 blockade has been shown to positively affect renal function in a 

rodent model of human malignant hypertension (87).  Stroke-prone 

spontaneously hypertensive rats were treated with vehicle or a selective EP1 

antagonist.  Although no differences were observed in blood pressure, treatment 
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with the EP1 antagonist reduced tubulointerstitial fibrosis, lessened urinary 

protein excretion, and blunted the drop in plasma creatinine levels.  This 

suggests blockade of the EP1 receptor has a positive effect on renal function and 

may be a therapeutically relevant target (87).  Nonetheless, it is imperative to 

continue investigating the contribution of EP1 to renal damage in order to 

demonstrate whether this is model specific and can be observed with both 

pharmacologic as well as genetic manipulation.  Therefore, EP1+/+ and EP1-/- 

mice were studied in a model hypertensive renal damage. 

 

Experimental Procedures 

 

Animal procedures 

Hypertension-induced renal damage was obtained utilizing a previously 

published model involving uninephrectomy and Ang II administration (214), with 

the exception of using the 129S6 background instead of FVB/N.  Twelve week 

old 129S6/SvEvTac (EP1+/+, Taconic, USA) and EP1-/- mice (85) underwent 

unilateral nephrectomy and implantation of a subcutaneous osmotic minipump 

delivering Ang II (1.4 mg/kg/day) for 6 weeks as illustrated in Figure 4.1.  In some 

cases, uninephrectomy was performed in the absence of Ang II administration.   

Blood was collected at baseline and 6 weeks post-treatment for measurement of 

BUN and GFR.  Every two weeks, systolic blood pressure was measured and 

urine collected.  Animals were maintained in an AAALAC accredited rodent 

facility in individually ventilated microisolator cages on a 12:12 light dark cycle.  
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All procedures were done in accordance with the policies of the Institutional 

Animal Care and Use Committee at Vanderbilt University.  

 

  

 

 

 

 

  
 
 
Figure 4.1 Experimental Design of Nphx + Ang II induced renal damage.  EP1+/+ 
and EP1-/- mice underwent uninephrectomy + implantation of an Ang II osmotic 
minipump delivering 1.4 mg/kg/day, uninephrectomy only, or no treatment and 
followed for 6 weeks. 
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Measurement of Systolic Blood Pressure 

Systolic BP was determined in conscious mice using a computerized tail-cuff 

system (Visitech systems BP-2000 Blood Pressure Analysis System, Apex NC, 

USA) in the Mouse Metabolic Phenotyping Core at Vanderbilt University Medical 

Center. Mice were trained for four days minimizing physiologically apparent 

stress. Each measurement is the average of at least 10 consecutive readings 

after stabilization of blood pressure. 

 

Determination of Blood Urea Nitrogen levels 

To assess the renal function, blood urea nitrogen (BUN) was determined using 

an iSTAT-1 analyzer (Abbott Point of Care Inc., New Jersey, USA).   Whole 

blood was obtained from saphenous vein and immediately assayed utilizing 

Chem8+ cartridges. 

 

Determination of urinary albumin/creatinine ratios 

Albumin/Creatinine ratios (ACR; expressed as mg albumin/mg creatinine) were 

measured from 20-200 μL volumes of spot urine using Albuwell M ELISA kit, and 

urinary creatinine was measured using the Creatinine Companion (Exocell, 

Philadelphia, USA).   

 

Glomerular filtration rate determination 

GFR was determined based on plasma FITC–inulin clearance following a single 

bolus injection (223).   Briefly, dialyzed FITC-inulin solution was injected into tail 



87 
 

vein.  Approximately 20 uL of blood was collected via saphenous venesection at 

3, 7, 10, 15, 35, 55 and 75 minutes post injection for measurement of FITC 

concentration.  Plasma samples were buffered to pH 7.4 with 500 mM HEPES 

and fluorescence was determined using 485-nm excitation and read at 538-nm 

emission. Parameters were estimated by two-phase exponential decay nonlinear 

regression of plasma fluorescence data (GraphPad Prism). GFR was calculated 

using the equation GFR = I/(A/α + B/β). 

 

Statistical Analysis 

Data are presented as means ± SEM, using GraphPad Prism software 

(GraphPad Software Inc., USA). Analysis utilized Student’s t test and two-way 

ANOVA. P < 0.05 was considered statistically significant for all studies. 

 

Results 

 

Hypertension was induced by uninephrectomy and Ang II 

We employed a model of hypertension (214) to investigate the contribution of 

EP1 receptors to the pathogenesis of hypertension-induced renal damage.  At 

baseline, SBP in EP1-/- mice was comparable to that of EP1+/+ mice (EP1+/+: 

117.8 ± 2.485 mm Hg, EP1-/-: 114.3 ± 3.853 mm Hg, Figure 4.2A).  Following 

uninephrectomy and Ang II administration, SBP increased in both EP1+/+ and 

EP1-/- mice, though no differences were detected between the two genotypes at 

any time point (Figure 4.2B). 
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Figure 4.2 Hypertension was induced by Nphx + Ang II administration.  A.  
Baseline systolic blood pressure was similar in EP1+/+ and EP1-/- mice (P = 
0.44, N = 17 or 20 mice).  B.  Treatment with the Nphx + Ang II model induced 
comparable hypertension in both EP1+/+ (solid symbols) and EP1-/- (open 
symbols) mice. (P < 0.0001 vs baseline).  No differences were detected between 
EP1+/+ and EP1-/- SBP.   
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Organ weight was increased in EP1+/+ and EP1-/- mice 

Heart and kidney weight were increased in both EP1+/+ and EP1-/- mice after 6 

weeks treatment with Nphx + Ang II.  Kidney weight was modestly increased by 

treatment with Nphx + Ang II in EP1+/+ and EP1-/- mice compared to baseline 

(Figure 4.3A).  Uninephrectomy alone decreased kidney weight in EP1+/+ mice, 

though no difference was observed in EP1-/- mice.  Heart weight was also 

significantly greater in Nphx + Ang II treated animals as compared to Nphx only, 

or untreated animals (Figure 4.3B).  No significant differences in heart weight 

were observed between EP1+/+ and EP1-/- mice, indicative of a similar degree 

of hypertension. 

 

Renal damage was induced by Nphx + Ang II treatment and reduced in  
EP1-/- mice 
 
Blood urea nitrogen was significantly elevated in EP1+/+ and EP1-/- mice with 

Nphx + Ang II (Figure 4.4A).  Interestingly, EP1-/- mice had modestly elevated 

BUN at baseline as compared to EP1+/+ mice.  Over the 6 week treatment 

period, EP1+/+ mice experienced a rise in BUN, even in the absence of Nphx or 

Ang II, while EP1-/- mouse BUN remained consistent unchanged.  The difference 

between genotypes at baseline complicates the interpretation of the data.  

Therefore, change in BUN was determined using paired data from mice treated 

with Nphx + Ang II.  Compared to baseline, six weeks post treatment EP1+/+ 

mice had a rise in BUN of 37 mg/dL, whereas EP1-/- mouse BUN rose only 17 

mg/dL (P = 0.007, Figure 4.4B).  Urinary ACR was measured every other week 

throughout the experiment, and revealed significantly lower urinary protein  
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Figure 4.3 Heart and kidney weight were increased in both EP1+/+ and EP1-/- 
mice after 6 weeks treatment with Nphx + Ang II.  A.  Kidney weight, expressed 
mg/gram body weight, was increased in EP1+/+ and EP1-/- mice compared to 
baseline by treatment with Nphx + Ang II (EP1+/+ P = 0.04, EP1-/- P = 0.001).  
Nphx alone decreased kidney weight in EP1+/+ mice (P = 0.005), though no 
difference was observed in EP1-/- mice.  B.  Heart weight, expressed mg/gram 
body weight, was significantly greater in Nphx + Ang II treated animals as 
compared to Nphx only, or untreated animals (P < 0.01 for both genotypes).  No 
significant differences were observed between EP1+/+ and EP1-/- mice (P > 
0.05).   
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Figure 4.4 BUN was increased by Nphx + Ang II treatment.  A.  Blood urea 
nitrogen was measured prior to start of the model or six weeks after treatment.  
At baseline EP1-/- mice had elevated BUN compared to EP1+/+ mice (*P < 
0.05).  Six weeks later, BUN was elevated over baseline in all treatment groups 
of EP1+/+, and Nphx + Ang II treated EP1-/- mice (## P < 0.004, #### P < 
0.0001).  B.  The change in BUN from baseline to six weeks treatment with Nphx 
+ Ang II revealed EP1-/- mice had an attenuated rise in BUN compared to 
EP1+/+ mice (**P = 0.007) 
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in EP1-/- mice compared to EP1+/+ mice (P < 0.0001, Figure 4.5A).  GFR was 

decreased in EP1+/+ and EP-/- mice treated with Nphx + Ang II, compared to 

untreated 18 week old mice, dropping 60 % in EP1+/+ mice and 40 % in EP1-/- 

mice (Figure 4.5B).  However, aging from 12 to 18 weeks of age resulted in a 

reduction in GFR in EP1-/- mice only. 

 

Discussion 

 

In the present study we examined whether genetic ablation of the EP1 

receptor affords renal protection in a model of hypertensive end-organ damage.  

The uninephrectomy and Ang II model resulted in functional renal damage 

including a rise in BUN, elevated ACR and reduced GFR, while genetic ablation 

of EP1 reduced the rise in BUN and decreased ACR.  These studies suggest the 

EP1 receptor plays an important role in hypertensive renal disease.   

Our results are consistent with Suganami et al., who showed that 

pharmacological blockade of EP1 reduced proteinuria and tubulointerstitial 

damage in stroke prone spontaneously hypertensive rats (87).  However, in anti-

GBM nephrotoxic serum nephritis, which occurs in the absence of elevated blood 

pressure, genetic deletion of EP1-/- in mice resulted in increased mesangial 

expansion, tubular dilation, BUN and serum creatinine (173).  Furthermore, no 

differences were observed in renal damage with genetic ablation of EP1 in the 

Nphx/DOCA-NaCl/Ang II model, although in this case only modest renal damage 

was induced and ablation of EP1 did substantially increase survival and protect 
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Figure 4.5 ACR and GFR following treatment with Nphx + Ang II.  A. Urinary ACR 
was measured every other week throughout the experiment, revealing 
significantly lower urinary protein in EP1-/- mice compared to EP1+/+ mice.  (2 
way ANOVA, ****P < 0.0001, N = 3-12 samples per point).  B.  GFR was 
decreased in EP1+/+ and EP-/- mice treated with Nphx + Ang II, compared to 
untreated 18 week old mice (EP1+/+ P =  0.001, EP1-/- P = 0.028).  Aging from 
12 to 18 weeks of age resulted in a reduction in GFR in EP1-/- mice only (#P = 
0.002). 
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against vascular defects (224).  This suggests the role of EP1 in renal damage is 

highly context dependent. 

Throughout these studies blood pressure was measured by tail cuff 

plethysmography.  Treatment with uninephrectomy and Ang II raised SBP as 

compared to uninephrectomy alone or no treatment.  However, EP1-/- mice had 

a similar degree of hypertension compared to EP1+/+ mice.  This is inconsistent 

with previous reports demonstrating that pharmacological blockade and genetic 

ablation of EP1 reduces blood pressure, modestly at baseline and exaggerated 

in a setting of hypertension, and administration of EP1 agonists results in an 

increase in blood pressure (79,85,224).  It is possible that blood pressure 

differences were not observed in our studies due to the lack of sensitivity of the 

tail cuff technique.  To address this, more accurate blood pressure 

measurements would need to be made utilizing a direct arterial catherization 

either anesthetized or by telemetry. 

 EP1-/- mice had a reduction in the rise in BUN from baseline vs 6 weeks 

post uninephrectomy and Ang II, as compared to EP1+/+ mice.  However, the 

raw values for BUN at 6 weeks post treatment failed to reach significance.  

Change in BUN reached significance because EP1-/- began the study with 

significantly higher BUN as compared to EP1+/+ mice.  Similarly GFR declined 

with age in untreated EP1-/- mice and not EP1+/+ mice although the sample size 

was small in this case.  This effect has not been observed previously, and it 

would be important to determine if this trend holds true in repeated experiments 

or is observed with prolonged treatment by pharmacological blockade in a 
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healthy animal.  This could indicate that treatment with EP1 antagonists would be 

better utilized for slowing the progression of renal damage and not advised for 

use in patients without renal damage. 

 In summary, genetic ablation of the PGE2 receptor EP1 affords protection 

against renal function decline as a result of hypertension.  This protection may be 

independent of blood pressure reduction.  These results suggest the EP1 

receptor may be a viable target for the treatment of renal damage. 
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CHAPTER V 

 

CONTRIBUTION OF THE EP1 RECEPTOR IN DIABETIC RENAL DAMAGE 

 

Introduction 

 

Diabetes is a disease characterized by high circulating blood glucose 

levels.  This can occur as a result of inadequate insulin production, the inability to 

properly respond to insulin, or both.  The prevalence of diabetes increases with 

age.  In 2010, approximately 11.3 % of adults over 20 years of age had diabetes, 

while 26.9 % of adults over 65 years of age were diabetic.  According to the 

CDC, in 2007 diabetes cost the US $174 billion, $116 billion of that composed of 

direct medical costs.  Diabetes is the leading cause of blindness, lower-limb 

amputation, and kidney failure, and also increases the risk of coronary heart 

disease, peripheral vascular disease and stroke (225). 

Diabetic nephropathy (DN) is a progressive disease which results in 

irreversible loss of kidney function.  The initial mechanism of damage occurs due 

to adaptive hyperfiltration which eventually leads to long term damage of the 

nephrons.  In type I diabetes, progression of DN begins within 5 years of onset of 

diabetes with glomerular hyperfiltration, which transitions into the presence of 

glomerular lesions without clinical disease or urinary albumin excretion (226-

228).  These lesions include thickening of the glomerular basement membrane 

and expansion of the mesangial cells.  After about 10-15 years, incipient diabetic 
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nephropathy develops.  The patient now has microalbuminuria along with the 

glomerular lesions.  This is an important stage of DN because therapeutic 

intervention is started with the goal of preventing progression to overt DN.  In 

overt DN there is worsening proteinuria, a drop in glomerular filtration rate and 

eventual progression to ESRD.  The pathology of overt DN usually consists of 

glomerulosclerosis, fibrinoid caps and arteriolar hyalinosis (226-228).   

In 2008, 44 % of all new cases of kidney failure were a result of diabetes.  

It was estimated over 200,000 people with ESRD due to diabetes were on 

chronic dialysis or living with a transplant in 2008, even though the majority of 

diabetic patients with DN die of cardiovascular causes before progression to 

ESRD.  Treatments for DN are aimed at controlling blood glucose and blood 

pressure (11,201,229).  75 % of adults with diabetes have blood pressure ≥ 

130/80 mm Hg.  Treatment with ACEi or ARBs is more effective at reducing the 

decline in renal function than other blood pressure lowering drugs (217,218).  

According to the CDC, they reduce proteinuria, a risk factor for developing kidney 

disease, by 35 %.  The AT1 receptor is the principal receptor mediating 

angiotensin II pressor effects and is the direct target of ARBs.  AT1 receptor 

activation leads to a number of signal transduction pathways including increases 

in [Ca++]i and activation of cPLA2 (180,181,184-187).  cPLA2 is the rate limiting 

step in prostaglandin synthesis, freeing arachidonic acid from the plasma 

membrane.  COX enzymes catalyze the oxidation and reduction of AA into PGH2, 

which is rapidly converted into one of the principal prostanoids by tissue specific 

synthases. COX-2 expression has been shown to be upregulated in the thick 
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ascending limb and macula densa of both type I and type II diabetic rats (230-

233).  Increased COX-2 expression in the macula densa has also been seen in 

human diabetic kidneys (234).  One product of COX-2 produced PGH2 is the 

prostanoid PGE2, which is of particular interest in diabetes.   

PGE2 has been shown to be elevated in the urine of diabetics, suggesting 

they have increased renal PGE2 production (235).  In STZ and Akita diabetes 

models, renal EP1 and EP3 mRNA expression is increased, suggesting these 

receptors may play an important role in the pathogenesis of DN (236).   

In the Leprdb/db model of diabetes, a homozygous mutation of the leptin 

receptor, treatment with antagonist AH6809 reduced SBP and blocked the 

vasoconstriction of PGE2 and 17-phenyl trinor PGE2, which was enhanced by the 

diabetic phenotype (86).  Furthermore, pharmacologic blockade of EP1 was able 

to ameliorate DN in a rat model of STZ induced diabetes (88).  Treatment with 

the EP1 antagonist was able to reduce renal and glomerular hypertrophy, reduce 

mesangial expansion, and suppress proteinuria (88).  Therefore, we sought to 

determine the contribution of EP1 to DN utilizing a genetic disruption of EP1 in 

mice. 

 

Experimental Procedures 

 

Animal procedures 

Diabetes-induced renal damage was obtained utilizing a previously published 

model involving low dose streptozotocin (STZ) treatment on an eNOS-/- 
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background (195).  Eight week old eNOS-/- mice (EP1+/+, eNOS-/- Jackson 

Labs, USA), EP1-/- , eNOS-/- mice, EP1+/+, eNOS+/+ mice and EP1-/-, eNOS-/- 

mice underwent five consecutive daily i.p. doses of STZ (50 mg/kg).  Two weeks 

after STZ treatment blood glucose was measured by saphenous venesection.  

Diabetic mice with blood glucose greater than 300 mg/dL at 10 weeks of age 

were included in the studies.  Blood glucose, blood pressure, urinary albumin 

excretion, and glomerular filtration rate were assessed 20 weeks after the onset 

of diabetes as illustrated in Figure 5.1.  Animals were maintained in an AAALAC 

accredited rodent facility in individually ventilated microisolator cages on a 12:12 

light dark cycle.  All procedures were done in accordance with the policies of the 

Institutional Animal Care and Use Committee at Vanderbilt University.  

 
Intracarotid blood pressure measurement 

Intracarotid blood pressure was measured under ketamine (25 mg/kg) and 

inactin (100 mg/kg) anesthesia delivered intraperitoneally.  Mice were placed on 

a thermal pad and a PE-10 catheter was inserted into the left carotid artery.  The 

catheter was connected to a TXD-310 transducer and blood pressure was 

measured using a Digi-Med BPA 400  (Micromed).  Mice were equilibrated 30-60 

minutes until stable values were attained.  Ten minute blood pressure 

measurements were collected and average mean arterial pressure (MAP) is 

plotted. 
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Determination of urinary albumin/creatinine ratios 

Albumin/Creatinine ratios (ACR; expressed as mg albumin/mg creatinine) were 

measured from 20-200 μL volumes of spot urine using Albuwell M ELISA kit, and 

urinary creatinine was measured using the Creatinine Companion (Exocell, 

Philadelphia, USA).   

 

 

 

 

 

 
 
Figure 5.1 Induction of diabetes in mice. Eight week old EP1+/+, eNOS-/- mice, 
EP1-/- , eNOS-/- mice, EP1+/+, eNOS+/+ mice and EP1-/-, eNOS+/+ mice 
underwent five consecutive daily i.p.doses of STZ (50 mg/kg).  Diabetic mice with 
blood glucose greater than 300 mg/dL at 10 weeks of age were included in the 
studies.  Blood glucose, blood pressure, urinary albumin excretion, and 
glomerular filtration rate were assessed 20 weeks after the onset of diabetes. 
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Glomerular filtration rate determination 

GFR was determined based on plasma FITC–inulin clearance following a single 

bolus injection (223).   Briefly, dialyzed FITC-inulin solution was injected into tail 

vein.  Approximately 20 µL of blood was collected via saphenous venesection at 

3, 7, 10, 15, 35, 55 and 75 minutes post injection for measurement of FITC 

concentration.  Plasma samples were buffered to pH 7.4 with 500 mM HEPES 

and fluorescence was determined using 485-nm excitation and read at 538-nm 

emission. Parameters were estimated by two-phase exponential decay nonlinear 

regression of plasma fluorescence data (GraphPad Prism). GFR was calculated 

using the equation GFR = I/(A/α + B/β). 

 

Statistical Analysis 

Data are means ± SEM, using GraphPad Prism software (GraphPad Software 

Inc., USA). Analysis utilized Student’s t test. P < 0.05 was considered statistically 

significant for all studies. 

 

Results 

 

Diabetes was induced by low dose STZ treatment 

Diabetic nephropathy was induced in EP1+/+, eNOS-/- mice, EP1-/-, eNOS-/- 

mice, EP1+/+, eNOS+/+ mice and EP1-/-, eNOS+/+ mice by five consecutive 

daily administrations of low dose STZ.  Two weeks after STZ treatment, blood 

glucose was measured and diabetic mice with blood glucose greater than 300 
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mg/dL at 10 weeks of age were included in the studies.  Four and 20 weeks after 

onset of diabetes, blood glucose was measured.  In all genotypes blood glucose 

increased over time, and no differences were observed between the four 

genotypes (Figure 5.2). 

 

 

 

 

 

 
 
Figure 5.2 Diabetes was induced in all genotypes with low dose STZ treatment. 
Blood glucose was measured at onset of diabetes, four weeks diabetic and 
twenty weeks diabetic.  Blood glucose increased with time in all groups, and no 
differences were observed between genotypes (EP1+/+, eNOS+/+ N = 5; EP1-/-, 
eNOS+/+ N = 7; EP1+/+, eNOS-/- N = 3; EP1-/-, eNOS-/- N = 10). 
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MAP was altered by genetic disruption of eNOS and not EP1 

Anesthetized intracarotid blood pressure was measured at 20 weeks post onset 

of diabetes.  No significant differences were observed between any of the 

genotypes (Figure 5.3A).  Genetic deletion of eNOS has been well characterized 

to modestly increase MAP. When MAP was stratified based on eNOS genotype, 

regardless of the status of the EP1 gene, a significant increase in MAP was 

observed (P = 0.027, Figure 5.3B).  

 

Urinary albumin excretion was reduced by genetic ablation of EP1 

Low dose STZ has been demonstrated to induce diabetic nephropathy in 

C57BL/6 mice when eNOS has been deleted (195).  In our study, we also 

observed increased protein excretion in EP1+/+, eNOS-/- mice as compared to 

EP1+/+, eNOS+/+ mice (P = 0.009).  Deletion of the EP1 receptor on the 

background of eNOS-/- reduced urinary protein to a level similar to that observed 

in eNOS+/+ mice (EP1+/+, eNOS-/- vs. EP1-/-, eNOS-/- P = 0.028, Figure 5.4). 
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Figure 5.3 MAP was increased by genetic deletion of eNOS, but no change was 
observed due to EP1 gene disruption.  A.  Average MAP at 20 weeks diabetic.  
Anesthetized intracarotid blood pressure demonstrated no significant differences 
observed between any genotype (EP1+/+, eNOS+/+ vs. EP1-/-, eNOS+/+ P = 
0.294; EP1+/+, eNOS-/- vs. EP1-/-, eNOS-/- P = 0.536; EP1+/+, eNOS+/+ vs. 
EP1+/+,eNOS-/- P = 0.090; EP1-/-, eNOS+/+ vs. EP1-/-, eNOS-/- P = 0.263 by   
t-test).  B.  MAP stratified based on eNOS genotype.  MAP, regardless of EP1 
gene status, was significantly increased with eNOS genetic ablation (P = 0.027). 
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Figure 5.4 Albuminuria was significantly reduced by genetic disruption of EP1 in 
DN.  Urinary albumin excretion was measured at 20 weeks post diabetes.  
Genetic deletion of eNOS significantly increased ACR on the background of 
EP1+/+ (P = 0.009), while no statistically significant increase was observed on 
the EP1-/- background (P = 0.054).  Deletion of EP1reduced ACR on the 
eNOS-/- background (P = 0.028). 
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GFR was reduced by deletion of eNOS in the presence, but not absence of 
EP1 
 
Hyperfiltration is often observed in diabetes.  In our study, we observed GFR of 

approximately 40 µL/min/gram body weight in EP1+/+, eNOS+/+ mice (Figure 

5.5).  Genetic deletion of eNOS significantly reduced GFR to approximately 15 

µL/min/gram (P = 0.0001), indicating compromised renal function.  Genetic 

deletion of EP1 on the eNOS-/- background had no statistically significant effect, 

but trended toward a slightly higher GFR (20 µL/min/gram, P = 0.051).  However, 

genetic deletion of EP1 on the eNOS+/+ background significantly reduced GFR 

(P = 0.011).  No significant reduction in GFR was observed between EP1-/-, 

eNOS+/+ and EP1-/-,eNOS-/- mice (P = 0.301). 

 

Discussion 

 

In the present study we examined whether genetic disruption of EP1 

protected eNOS-/- mice from STZ induced diabetic nephropathy.  We 

demonstrated EP1-/-, eNOS-/- mice have a significant reduction in proteinuria as 

compared to EP1+/+, eNOS-/- control mice.  No significant difference in blood 

pressure was conferred by disruption of EP1 in this model.  Our data are 

consistent a previous report that showed treatment of STZ induced diabetes in 

Wistar rats with EP1 antagonist ONO-8713 reduced renal hypertrophy and 

suppressed proteinuria (88), suggesting the EP1 receptor contributes to renal 

decline in the setting of diabetes. 
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Figure 5.5 GFR was significantly reduced by deletion of eNOS in the presence, 
but not absence of EP1 receptor expression.  GFR was measured at 20 weeks 
post diabetes.  High GFR was observed in EP1+/+, eNOS+/+ mice, and was 
significantly reduced by deletion of eNOS (P = 0.0001) and deletion of EP1-/- (P 
= 0.011).  Deletion of eNOS on the background of EP1-/- had no significant effect 
(P = 0.301).  No statistically significant difference was observed between EP1+/+, 
eNOS-/- and EP1-/-, eNOS-/- mice (P = 0.051). 
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In our studies we were unable to detect a reduction in blood pressure due 

to disruption of EP1 suggesting suppression of proteinuria occurred by a 

mechanism other than blood pressure regulation.  However, this may be a result 

of small sample size (3-4 mice per group).  Deletion of eNOS conferred an 

average rise in BP of 10 mm Hg, and it may be expected that EP1 disruption 

reduce BP to an intermediate level.  Such small changes would require larger 

sample sizes to measure with statistical significance.  Rutkai et al demonstrated 

that BP and diabetes enhanced vasoconstriction could be reduced in the db/db 

diabetic model by treatment with AH6809 (86).  The authors attribute the results 

to blockade of EP1 receptors although this particular antagonist is not very 

selective.  In Xenopus oocytes expressing human EP1 receptors, AH6809 is able 

to inhibit calcium accumulation (21); in CHO cells stably expressing mouse 

prostanoid receptors AH6809 failed to compete 3H-PGE2 for mouse EP1 (30 % 

displacement at 10 µM), while demonstrating a Ki of 350 nM at mouse EP2 (34).  

It would be interesting whether their results could be reproduced with a more 

selective antagonist such as ONO-8713. 

Another interesting finding uncovered in this study was lower GFR 

observed in EP1-/-, eNOS+/+ mice as compared to EP1+/+,eNOS+/+.  C57BL/6J 

eNOS+/+ mice are resistant to development of diabetic nephropathy, while 

deletion of eNOS renders the strain susceptible (195,237).  We predicted GFR 

would be elevated in both genotypes to a similar degree due to hyperfiltration.  It 

may be possible that EP1-/- mice do not hyperfilter to the same extent as EP1+/+ 

mice.  Alternatively it is possible that EP1 plays an important role in an age 
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dependent reduction in GFR.  At the time GFR was measured, the mice were > 6 

months old.  This hypothesis is consistent with results shown in Chapter IV, 

Figure 4.5B.  EP1-/- 129S6 mice, which were aged from 12 to 18 weeks without 

uninephrectomy or Ang II, displayed a significant reduction in GFR while no 

reduction was observed in EP1+/+ mice.  It would be interesting to determine if 

this trend holds true in repeated experiments or is observed with prolonged 

treatment by pharmacological blockade in a healthy animal.  Use of control 

animals, receiving no STZ, would be of importance in future experiment to 

eliminate hyperfiltration as a confounding variable. 

In summary, our data demonstrate a detrimental role of EP1 in diabetes-

induced proteinuria. This protection may be independent of blood pressure 

reduction.  In addition, it would be of great interest to determine differences renal 

morphology as well.  These results suggest the EP1 receptor may be a viable 

target for the treatment of diabetic renal damage. 
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CHAPTER VI 

 

SUMMARY AND FUTURE DIRECTIONS 

 

Summary 

 

Hypertension is a prevalent disease affecting one in three adults in the 

United States.  It is estimated that 27.5 % of the adult population is either not 

receiving therapy for their hypertension or is unable to control their blood 

pressure with the current therapies, making treatment of hypertension an 

important public health goal. 

PGE2, a biologically active lipid-derived autacoid, contributes to the 

regulation of blood pressure and is able to exert vasopressor or vasodepressor 

effects depending upon the setting (17-19).  EP1 does not appear to play a 

significant role in the blood pressure effects of systemically administered PGE2, 

however, it does contribute to hypertension.  EP1-/- mice have blunted pressor 

responses to both acute and chronic Ang II administration (85).  In isolated 

vessel preparations, pre-treatment with the EP1/EP3 antagonist SC51322 

reduced Ang II mediated vasoconstriction (85).  Treatment of spontaneously 

hypertensive rats with SC51322 significantly reduces blood pressure (85), 

indicating blockade of the EP1/EP3 receptors may be a target for the treatment 

of hypertension.   
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EP1 blockade has been shown to positively affect renal function in stroke-

prone spontaneously hypertensive rats (87), as well as cerebrovascular 

dysfunction induced by Ang II (161), implicating the EP1 receptor in hypertension 

and resultant end-organ damage.  No data exists regarding the contribution of 

the EP3 receptor to hypertensive end-organ damage. 

Three-quarters of diabetic patients have blood pressure ≥ 130 mm Hg, 

and diabetes is the leading cause of chronic kidney failure.  In STZ and Akita 

diabetes models, renal EP1 and EP3 mRNA expression is increased, suggesting 

these receptors may play an important role in the pathogenesis of DN (236).  

Pharmacologic blockade of EP1 was able to ameliorate DN in a rat model of STZ 

induced diabetes (88).  Treatment with the EP1 antagonist was able to reduce 

renal and glomerular hypertrophy, reduce mesangial expansion, and suppress 

proteinuria (88).  However, little advance has been made on the role of EP1 in 

hypertensive and diabetic renal damage, as these studies were published about 

10 years ago, nor have the effects been reproduced with a genetic approach or 

another antagonist.  Therefore, we sought to determine the contribution of EP1 

and/or EP3 receptors to hypertensive end-organ damage and DN using a genetic 

approach in mice. 

Using the Nphx/DOCA-NaCl/Ang II model of hypertension, we have 

demonstrated that disruption of EP1 or EP3 can afford substantial protection 

from end-organ damage and reduce incidence of mortality (Chapter II and 

Chapter III).  The beneficial effects of EP1 disruption, and likely EP3 disruption, 

appeared to be a result of reduction in MAP, since treatment with the 
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antihypertensive agent hydralazine was able to phenocopy the effect observed in 

EP1-/- mice.  Mortality in the Nphx/DOCA-NaCl/Ang II model occurred primarily 

as a result of aortic aneurysm rupture, or after development of anasarca.  We 

hypothesize that hypertension induced by DOCA-NaCl and Ang II results in 

volume loading and enhanced vasoconstriction, which places excessive stress 

on the vascular wall leading to enhanced permeability, resulting in edema and 

susceptibility to dissections and rupture.  While we have shown that protection 

against end-organ damage is likely a result of reduced blood pressure, this does 

not eliminate the possibility that EP1 receptors might also provide protection 

directly at the target tissue, especially given the acute, severe nature of damage 

in this model.   

Previous reports of the role of EP1 in renal injury are contradictory.  In 

spontaneously hypertensive rats, treatment with an EP1 antagonist reduced 

proteinuria and tubulointerstitial damage (87), while in anti-GBM nephrotoxic 

serum nephritis genetic deletion of EP1-/- in mice resulted in enhanced 

mesangial expansion and tubular dilation and increased blood urea nitrogen and 

serum creatinine (173).  In our studies with the Nphx/DOCA-NaCl/Ang II model, 

modest hypertensive renal damage was observed, although no significant 

differences in renal function were detected between genotypes.  However, our 

interpretation was confounded by the differential mortalities in EP1+/+ and EP1-/- 

mice, potentially biasing our results.  Examination of renal histopathology at time 

points prior to significant mortality failed to detect any severe renal damage or 
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differences between the genotypes, suggesting the role of EP1 in renal damage 

is highly context dependent.   

Due to the high mortality and lack of severe renal damage observed in the 

Nphx/DOCA-NaCl/Ang II model, we pursued the use of another model involving 

uninephrectomy and Ang II on a 129S6 background (Chapter IV).  This genetic 

background is more susceptible to development of renal damage, and it therefore 

requires less manipulation to achieve more renal damage.  The uninephrectomy 

and Ang II model resulted in functional renal damage including a rise in BUN, 

elevated ACR and reduced GFR.  Genetic ablation of EP1 reduced the rise in 

BUN and ACR while no change in hypertension was observed. This suggests the 

EP1 receptor plays an important role in hypertensive renal disease independent 

of blood pressure reduction. However, throughout these studies blood pressure 

was measured by tail cuff plethysmography.  It is possible that blood pressure 

differences were not observed in our studies due to the lack of sensitivity of the 

tail cuff technique.   

Lastly, we examined whether genetic disruption of EP1 protected eNOS-/- 

mice from STZ induced diabetic nephropathy (Chapter V).  We demonstrated 

EP1-/-, eNOS-/- mice have a significant reduction in proteinuria as compared to 

EP1+/+, eNOS-/- control mice.  No significant difference in blood pressure was 

conferred by disruption of EP1 in this model.  Our data are consistent a previous 

report that showed treatment of STZ induced diabetes in Wistar rats with EP1 

antagonist ONO-8713 reduced renal hypertrophy and suppressed proteinuria 

(88), suggesting the EP1 receptor contributes to renal decline in the setting of 
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diabetes.  Again, we were unable to detect a reduction in blood pressure due to 

disruption of EP1 suggesting suppression of proteinuria occurred by a 

mechanism other than blood pressure regulation.  Although blood pressure was 

measured using a direct intracarotid catheter, the lack of a difference may be a 

result of small sample size (3-4 mice per group).   

Another interesting finding uncovered in these studies points to a potential 

role of the EP1 receptor in age-dependent renal decline.  In the diabetic renal 

model (Chapter V), lower GFR was observed in EP1-/-, eNOS+/+ mice as 

compared to EP1+/+, eNOS+/+.  At the time GFR was measured, the mice were 

> 6 months old.  Furthermore, in the hypertensive renal model (Chapter IV), 

EP1-/- mice began the study with significantly higher BUN as compared to 

EP1+/+ mice.  Similarly GFR declined with age in untreated EP1-/- mice and not 

EP1+/+ mice.  This effect has not been observed previously, and it would be 

important to determine if this trend holds true in repeated experiments or is 

observed with prolonged treatment by pharmacological blockade in a healthy 

animal.  This could indicate that treatment with EP1 antagonists would be better 

utilized for slowing the progression of renal damage and not advised for use in 

patients without renal damage. 

In summary, our data demonstrate a detrimental role of EP1 in 

hypertensive and diabetic end-organ damage.  Further characterization of EP1 in 

these diseases will be essential as the EP1 receptor may be a viable 

pharmaceutical target for the treatment of hypertension and subsequent organ 

damage.  
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Future directions 

  

The data presented in this thesis advances our knowledge of the role of 

EP1 and EP3 receptors in hypertension and subsequent sequalae.  Several new 

questions have emerged as a result including:  Does the EP1 receptor mediate 

the BP- independent actions of Ang II?  What is the therapeutic relevance of EP1 

blockade?  What is the contribution of EP1 in vascular permeability?  Which EP 

receptors contribute to aortic aneurysm formation? What is the mechanism of 

EP1/Angiotensin II hypertension?  Future experiments should be designed to 

address these issues. 

Drugs which block the renin-angiotensin-aldosterone pathway are 

considered superior to other anti-hypertensive treatments due to their beneficial 

actions directly on the kidney which occur independent of blood pressure 

reduction.  Additionally, PGE2 and the EP1 receptor have been demonstrated to 

mediate at least part of the actions of angiotensin II.  It would be of great interest 

to determine whether genetic disruption of EP1also confers similar protection in 

the kidney.   Preliminary studies presented in this thesis (Chapters IV and V) 

suggest this may be the case.  Disruption of EP receptors suppressed increases 

in proteinuria and BUN or prevented reductions in GFR, while no significant 

differences in blood pressure were detected.  However, throughout these studies 

blood pressure was measured by tail cuff plethysmography or contained small 

sample sizes of direct intracarotid measurements.  It is possible that blood 

pressure differences were not observed in our studies due to the lack of 
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sensitivity or low power.  To address this, future experiments should include 

more accurate blood pressure measurements using a direct arterial catherization, 

in either anesthetized mice or by telemetry.  Additionally, the therapeutic 

relevance of EP1 blockade should be more thoroughly characterized.  One major 

limitation associated with the use of genetic disruption verses pharmacologic 

blockade is the chronic disruption of receptor action.  Lack of receptor action 

throughout development or in the absence of disease may result in 

compensatory changes which may not be observed with use of pharmacologic 

agents.   Therefore, determining whether similar results can be obtained by 

treatment with an EP1 antagonist would be essential for verifying the therapeutic 

benefit of EP1 blockade.  Furthermore, it would be of interest to determine 

whether there is additional benefit from dual EP1/EP3 blockade compared with 

EP1 or EP3 blockade only.  The mechanism by which EP1 and EP3 mediate 

hypertension in unknown, however it is well understood that the EP1 and EP3 

can mediate distinct signal transduction pathways.  It is conceivable that 

blockade of EP1 and EP3 may have an additive effect and provide enhanced 

protection. 

For the uninephrectomy/ DOCA-NaCl/Ang II model, we hypothesized that 

hypertension resulted in enhanced vascular permeability, causing edema and 

susceptibility to dissections and rupture (Chapter II).  This hypothesis was based 

on eliminating the most common causes of edema.  Furthermore both 

aneurysms and edema were reduced via treatment with hydralazine, supporting 

hypertension as the major mitigating factor for development of these pathologies.  
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Future experiments will be required to identify whether vascular permeability 

differences are observed between EP1+/+ and EP1-/- mice.  In this model, 

vascular permeability could be examined using Evans Blue dye or dextran-

rhodamine permeability.  If differences were observed in vivo, the molecular 

mechanism could be identified using transwell vascular permeability assays, with 

cells isolated from EP1+/+ and EP1-/- mice or heterologously expressing EP1. 

It has been previously shown that either selective inhibition of COX-2 or 

genetic deletion of COX-2 significantly reduced aortic aneurysm formation and 

macrophage infiltration (166,167).  Furthermore, deletion of microsomal PGE 

synthase-1 has also been demonstrated to reduce aortic aneurysm formation 

and oxidative stress in LDLR-/- mice with an angiotensin II infusion (160), 

suggesting PGE2 plays an important role in development of aneurysms and the 

EP receptors may be viable targets for treatment of aneurysm progression.  It 

would be of interest to investigate the contribution of EP1 in vascular damage, 

utilizing models which are independent of increased blood pressure, such as wire 

injury. 

Lastly, it is imperative that we identify the mechanism by which EP1 and 

EP3 mediate Ang II-induced hypertension.  It has been demonstrated that Ang II-

induced vasoconstriction can be blocked by treatment with EP1/EP3 antaogonist 

SC-51322.  EP1 receptors in the sub-fornical organ of the brain also play a 

critical role in slow pressor Ang II hypertension (238).  Ang II/EP1 signaling in the 

subfornical organ is dependent of COX activity, suggesting that Ang II results in 

local production of PGE2, which then activates EP1 (238).  It would be interesting 
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to determine whether a similar mechanism/interaction is observed in other target 

tissues such as the kidney.  Furthermore, the mechanism of EP3 action in Ang II-

mediated hypertension is still unknown but may have an important contribution in 

Ang II-induced vasoconstriction.  Future experiment designed to address these 

remaining questions would increase our overall understanding of EP receptors in 

blood pressure regulation, and may also uncover new therapeutic targets for the 

treatment of hypertension and end-organ damage. 
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