
Assessing Risk Score Calculation in the Presence of Uncollected Risk Factors

By

Alice Toll

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Biostatistics

January 31, 2019

Nashville, Tennessee

Approved:

Dandan Liu, Ph.D.

Qingxia Chen, Ph.D.



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Framingham Stroke Risk Profile . . . . . . . . . . . . . . . . . . . . . 3
2.2 Using Stroke Risk Scores in the Presence of Uncollected Risk Factors . 4

3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Cox Regression Models for Risk Prediction . . . . . . . . . . . . . . . . 5
3.2 Calculating Risk Scores . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3.1 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3.2 C-Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3.3 IDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.4 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3.5 Differences in Predicted Risk . . . . . . . . . . . . . . . . . . . . 9

4 Simulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Simulation Results for Performance Measures . . . . . . . . . . . . . . 12
4.1.1 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.2 C-Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.3 IDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.4 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.5 Differences in Predicted Risk . . . . . . . . . . . . . . . . . . . . 15

5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1 Study Data for Framingham Stroke Risk Profile . . . . . . . . . . . . . 19

ii



5.2 Performance Measure Comparisons . . . . . . . . . . . . . . . . . . . . 19
5.2.1 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.2 C-Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.3 IDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.4 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.5 Differences in Predicted Risk . . . . . . . . . . . . . . . . . . . . 24

6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

iii



LIST OF TABLES

Table Page
4.1 Correlation matrix of Z. . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Summary of simulation scenarios . . . . . . . . . . . . . . . . . . . . . 11
5.1 Cox proportional hazards model fit . . . . . . . . . . . . . . . . . . . . 19
5.2 Coefficient comparison between true and refit models . . . . . . . . . . 20
5.3 Cox proportional hazards model coefficients . . . . . . . . . . . . . . . 21
5.4 C-Index for models by omitted predictor . . . . . . . . . . . . . . . . . 21
5.5 Application: IDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.6 Calibration in the Large and Slope . . . . . . . . . . . . . . . . . . . . 25
5.7 Application: Calibration by risk group . . . . . . . . . . . . . . . . . . 25

iv



LIST OF FIGURES

Figure Page
4.1 Simulation: Pearson and Spearman correlation . . . . . . . . . . . . . 13
4.2 Simulation: C-index relative difference . . . . . . . . . . . . . . . . . . 14
4.3 Simulation: IDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Simulation: Calibration in the large and calibration slope . . . . . . . 16
4.5 Simulation: Calibration by risk group . . . . . . . . . . . . . . . . . . 17
4.6 Simulation: Differences in predicted risk . . . . . . . . . . . . . . . . . 18
5.1 Application: Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Application: C-Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Application: Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4 Application: Differences in predicted risk . . . . . . . . . . . . . . . . 27

v



LIST OF ABBREVIATIONS

AFib Atrial Fibrillation

AntiHypT Anti-Hypertension Rx

CVD cardiovascular disease

ECG echocardiogram

FHS Framingham Heart Study

FSRP Framingham Stroke Risk Profile

LVH Left Ventricular Hypertrophy

NHLBI National Heart, Lung, and Blood Institute

SBP Systolic Blood Pressure

vi



CHAPTER 1

INTRODUCTION

Risk prediction models developed from clinical studies have been widely used for
individualized risk prediction to aid clinical decision making in the clinical setting
and risk adjustments in clinical studies. It uses selected predictors to estimate the
probability that an individual will develop a disease or experience an event such as a
stroke within a specific period of time. A well-developed risk prediction model could
provide accurate individualized risk prediction when all the requested predictors are
available.

In general, a risk prediction model is developed from a regression model relating
a linear combination of predictors to the outcome of interest. For the ease of utility,
linear combinations of predictors are usually presented as a points system, where
points are assigned for each predictor based on patient profile and the summation of
the points are calculated as a risk score. The risk of event could then be calculated
as a monotonic function of the risk score. A detailed example of such a point system
is provided in Chapter 2 for the Framingham stroke risk profile (FSRP) (Wolf et al.,
1991). Other than individualized risk prediction, risk scores are also commonly used
for risk stratification to facilitate optimal resource allocation. For example, the Model
for End-Stage Liver Disease (MELD) measures disease severity (Kamath et al., 2001).
This risk score is incorporated into deceased donor liver allocation. Liver waitlist
candidates with higher MELD scores are given prioritized access to broader sharing
of organs, thereby increasing their access to transplant. In clinical research, risk
scores are often used for risk adjustment purpose, in which risk scores are used as
adjusting variables. For example, Charlson Comorbidity Index is often included as an
adjusting variable to avoid potential confounding effects when intervention effect on
some clinical outcomes are being evaluated. Adjusting for a single risk score rather
than all relevant risk factors allows for more degrees of freedom while ensuring that
important risk factors that have already been reviewed by the scientific community
are included.

Despite of popular utility of risk prediction modeling in clinical research, its ap-
plication can present a set of challenges when the required risk factors are missing
or uncollected. A predictor might be missing for some but not all participants, as is
often the case when the risk factor is self-reported or requires expensive tested and
was only ordered when deemed necessary. Such missingness can introduce bias into
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the study because the test may only have been ordered if the physician thinks the
patient might have related adverse outcome. Three approaches are generally adopted
to handle such missing risk factors, i.e. treating missingness as absence, complete
case analysis, and imputation.

In the following, three examples on the application of Framingham Risk Score
were provided to illustrate the three approaches. Sara et al. (2016) looked at the util-
ity of the Framingham risk score in predicting secondary cardiovascular outcomes for
a cohort of patients diagnosed with coronary heart disease who had received percuta-
neous coronary intervention, where missing risk factors were assumed to be absent in
the calculation of the risk score. Obviously, this approach will underestimate the risk
for high risk patients and lead to biased evaluation in the utility of the Framingham
Risk Score. Towfighi et al. investigated the Framingham risk score’s ability to predict
MI in patients who had recently experienced a stroke but were not known to have
coronary heart disease (2012). Authors noted that patients with missing Framing-
ham risk factors had higher values/prevalence of the other risk factors than patients
with complete data. For example, they had higher systolic blood pressure (143.9 vs
141.2 mm Hg, p = 0.001) and higher prevalence of diabetes (32% vs 25%, p = 0.07).
However, only patients with complete data were included in the analysis, which po-
tentially lead to biased results since high risk patients may have been excluded due
to missing data. Ankle Brachial Index Collaboration (2008) used the Framingham
risk score to assess the accuracy of the ankle brachial index in predicting cardiovas-
cular disease. Missing risk factors from the Framingham risk score were imputed.
This approach is the most appropriate if the imputation is conducted appropriately.
Another scenario of missing risk factors is uncollected (i.e. systematically missing)
risk factors, where relevant risk factors are not collected for any subjects in the study.
This often occurs when a risk score is used in studies that are different from where it
was originally developed and thus not all risk factors of the risk score are included in
the study protocol In the presence of uncollected risk factors, the above mentioned
complete case analysis and imputation approach cannot be used. Most often, the
first approach treating missingness as absence is adopted, which often lead to biased
assessment on the utility of a risk prediction model.

In this thesis, we will assess the impact of uncollected risk factor on the utility of
risk prediction models. Extensive simulation studies will be conducted to evaluated
characteristics of uncollected risk factors in relation to risk prediction model perfor-
mance. We will then illustrate our findings using the 10-year stroke risk prediction
model developed from Framingham Heart Study (Wolf et al., 1991).
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CHAPTER 2

MOTIVATING EXAMPLE

2.1 Framingham Stroke Risk Profile
The Framingham Heart Study (FHS) is an epidemiologic study funded by National

Heart, Lung, and Blood Institute (NHLBI), which has committed to identifying the
common factors or characteristics that contribute to cardiovascular disease (CVD)
(Dawber and Moore, 1952). The study began in 1948 and recruited an Original Co-
hort of 5,209 respondents of a random sample of 2/3 of the adult population from the
town of Framingham, Massachusetts, who had not yet developed overt symptoms of
cardiovascular disease or suffered a heart attack or stroke. Subjects have continued
to return to the study every two years for a detailed medical history, physical exami-
nation, and laboratory tests. Although the study cohort is primarily Caucasian, and
lacks geographic, socio-economic, and environmental variability, major CVD risk fac-
tors identified in FHS have been shown in other studies to apply almost universally
among racial and ethnic groups with varying patterns of distribution. Since then
three generations of participants have enrolled in the study.

The Framingham Stroke Risk Profile (FSRP) was developed using FHS to pre-
dict the 10-year risk of developing stroke Wolf et al. (1991). The study included
two cohorts of patients aged 55-84 and free of stroke at the time of two examination
cycles. The patients had to be free of stroke during the initial examination, either
examination 9 (1964-1968) or 14 (1975-1978), and followed for 10 years. Patients who
were enrolled in the examination 9 cohort and followed for more than 10 years could
be enrolled in examination 14 cohort again if they were free of stroke at examination
14. However, for the purpose of analysis, such patients were treated as two unique
patients. Cox proportional hazards model was used with time from the initial ex-
amination to stroke event as the primary outcome. Separate models were built for
males and females and variables were included based on stepwise selection methods.
Only significant variables (p-value ≤ 0.05) were included in the final model. The risk
factors identified were age, systolic blood pressure, antihypertensive therapy, diabetes
mellitus, cigarette smoking, cardiovascular disease, atrial fibrillation, and left ventric-
ular hypertrophy (LVH). For females an interaction between systolic blood pressure
and antihypertensive therapy was also included.

FSRP risk score is developed as a linear combination of those risk factors and is
calculated using a point system for convenience use. Points are a scaled version of
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regression coefficients. For binary risk factors, a fixed point will be assigned if the risk
factor is present. For continuous risk factors, different points are assigned depending
on the risk factor’s value. FSRP risk score is the summation of these points and the
corresponding 10-year risk of stroke could be obtained from the probability look-up
table.

2.2 Using Stroke Risk Scores in the Presence of Uncollected Risk Factors
Application of risk profiles requires information from all risk factors and thus

might be challenging when data collection for some risk factors are not included in the
protocol of a research study. For example, the diagnosis of left ventricular hypertrophy
(LVH) is a risk factor included in the FSRP requires an echocardiogram (ECG) which
is not routinely administered in clinical practice and is usually not conducted in
research studies not directly related to cardiovascular diseases. Calculating FSRP
in such studies usually do not account for LVH which is equivalent to assuming all
patients do not have LVH.

A retrospective analysis that compiled data from the English Longitudinal Study
of Ageing and Health Survey for England did not have access to LVH since neither
data source included an ECG. This study used a modified form of FSRP, omitting
LVH, as an adjusting covariate for modeling cognitive function (Llewellyn et al., 2008).
Such naive approach for treating unknown risk factors as absent might result in bias
when a risk prediction model is externally validated for a different population or a
risk score is used for risk adjustment purposes. The goal of this thesis is to assess the
impact of excluding a risk factor from the risk score calculation.
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CHAPTER 3

METHODS

3.1 Cox Regression Models for Risk Prediction
Risk prediction models are usually developed for binary outcomes or time-to-

event outcomes. For binary outcomes representing prevalence of the event of interest,
logistic regression models are commonly used, which models, the probability of event
occurrence, p, through logit link function using a linear combination of risk factors,
log

(
p̂

1−p̂

)
= βTZ. The risk score is developed from the linear predictor, βTZ. Binary

outcomes were mostly used in risk prediction model development for acute illness
where patients are rarely subject to loss of follow-up.

For chronic diseases that take longer to develop, the occurrence of the event of
interest is often subject to censoring due to loss of follow-up or competing risks of
death. Therefore modelings for time-to-event outcome using survival analysis is more
appropriate. Survival analysis provides an advantage over logistic regression in that it
models the instantaneous risk (i.e., hazard) of the event of interest while accounting
for censoring. The observed outcome for a survival model is a composite of two
random variables, the time to event occurrence denoted as T , and the time to a
censoring event, denoted as C. For the development of FSRP, T , would be the time
to stroke and C would be the time until any of the following: self-withdraw from the
study, move away from the study area, or experience an unrelated death. We assume
that censoring events are independent of the event of interest, conditioning on risk
factors. For each patient, let δ = I (T < C) denote an event indicator, Y = min (T,C)
denote the observed time, and Z denote a p-vector covariate.

We consider Cox proportional hazards model Cox (1972), the most commonly
used model for time-to-event outcomes. Cox regression is a semi-parametric model
with a non-parametric baseline hazard and a parametric model for covariates that is
proportional to the baseline hazard. This model is defined as

λ(t;Z) = λ0(t) exp
(
βTZ

)
(3.1)

where β is the p-vector parameter for Z and λ0(t) is the baseline hazard. This semi-
parametric model, with λ0 un-restricted, puts the focus of the model interpretation
on the parameter estimates, β.
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3.2 Calculating Risk Scores
Risk scores are usually expressed as a linear combination of risk factors, as R =

βTZ. To assess the impact of uncollected risk factors on the utility of the risk score
we considered two approaches to calculate risk scores. Without loss of generality, we
assumed the last risk factor, Zp is not collected. The first approach calculates a risk
score by omitting the uncollected risk factor from the calculation, which is equiva-
lent to assuming the risk factor is absent. This naive approach is commonly adopted
in practice. Let R̃ = β−pZ−p denote this risk score with the subscript −p indicat-
ing omitting the p-th element from the corresponding vector. The second approach
calculates a risk score by refitting the model excluding the uncollected risk factor.
Let R̂ = β̂−pZ−p denote this alternative risk score where β̂−p denotes the parameter
estimates from model refitting and reflects reassigned weights supplementing infor-
mation loss due to the uncollected risk factor. This approach is less commonly used,
but might provide better caliber when the original data used to develop the risk score
is available.

3.3 Performance Measures
In the following we consider several measures to evaluate the performance of these

risk scores calculated in the presence of uncollected risk factors relative to the gold
standard full risk score where all risk factors are available.

3.3.1 Correlation
Measurements of correlation between the naive risk score (R̃ ) or refit risk score

(R̂) and the full risk score(R) are considered. Both Pearson and Spearman correlation
coefficients were evaluated. Pearson correlation evaluates if the correlation with the
full risk score is linear and potentially assess the impact of uncollected risk factors
when risk scores are to be used for risk adjustment. Spearman correlation evaluates
if the correlation is rank based and potentially evaluates risk scores being used for
discrimination purposes.

3.3.2 C-Index
Discrimination is the model’s ability to separate patients into outcome groups

(Harrell et al., 1996). As the most commonly used discrimination measure for survival
outcome, the C-index (Harrell et al., 1982) is the proportion of all pairs of patients

6



for which we could determine the ordering of survival times such that the predictions
are concordant. A C-index value ranges from 0.5, no discrimination, to 1.0, perfect
discrimination. C-index is based on ranks of predicted risks and thus cannot be used
to assess accuracy of individual risk prediction. In the case where two models yields
the same concordant pairs, but one model consistently predicts a larger risk the the
other model, the rank-based C-index would be the same for the two models. This
presents a challenge in comparing the true and refit models, but is less of a concern
for the the true and naive models as we know differences in concordant pairs are
attributable solely to the omitted risk factor.

3.3.3 IDI
As we have discussed, discrimination is a useful metric for evaluating risk pre-

diction. A simple method for evaluating the addition of the risk factor is to build
two models, one with and one without the addition, and evaluate the difference in
the area under the receiver-operating-characteristic (ROC) curve (AUC). However,
this difference can be very small, especially when the new risk factor is a biomarker,
making it difficult to determine if this change in AUC is clinically significant.

Integrated Discrimination Increment (IDI) quantifies the effect on overall discrim-
ination when a new risk factor is added to a risk prediction model (Pencina et al.,
2008). Generally this is utilized when a risk score has already been developed and a
new risk factor is separately been identified as having predictive value to the outcome
of interest. IDI quantifies the improvement of model performance with the addition
of a new risk factor.

IDI calculates the difference between the old and new models’ sensitivity and the
complement of the specificity which are integrated over the entire spectrum of risk
threshold. The sensitivity curve allows us to estimate the mean predicted probability
for patients who develop the event and the complement of the specificity curve allows
us to estimate the mean predicted probability for patients who do not develop the
event. This metric is asymptotically the same as the difference in discrimination
slopes.

In our setting, we have a well-developed risk score, and we want to assess the
overall discrimination decrement when a risk factor is not collected at all. Therefore,
this measure could be used reversely such that the naive method and the refit method
are used as the “old” models and the full model is used as the “new” model.
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3.3.4 Calibration
Calibration describes the extent of bias in a model (Harrell et al., 1996) by its

ability to accurately predict patient risk. A broad metric is calibration in the large,
the difference between mean observed risk and mean predicted risk. This measure is
most valuable when the model is applied to a new dataset, because high agreement is
expected when using the training dataset. The Hosmer-Lemeshow test was a global
test to assess calibration in the large (Hosmer Jr et al., 2013). When the outcome
is continuous, a plot of expected versus observed outcomes can be used. This can
be extended to survival outcomes by plotting mean predicted risks against the ob-
served event rate within pre-defined risk stratified groups, where the predicted risks
is calculated from the model at a pre-specified time-point and the observed event
rate is calculated using Kaplan-Meier estimates at the time-point. This method is a
visual extension of the Hosmer-Lemeshow test and provides a visual description of
the model fit.

Calibration slope is a regression of the observed outcome on predicted risk and
could be visually examined using calibration plots. The plot helps to describe which
populations the model has high bias and may not be very predictive for. For exam-
ple, when a model is fit using a cohort of mostly low risk patients, the model may be
biased for high risk patients. While calibration plots are very helpful for describing a
single model they are not practical for a simulation; we needed a way to summarizes a
calibration plot numerically. Crowson et al. (2016) proposed regression-based meth-
ods to quantify calibration in the large and calibration slope Crowson et al. (2016).
For binary or continuous outcomes these models regress the observed outcomes on
the linear predictors. Extensions to survival data are also provided leveraging Pois-
son regression with appropriately defined off-set. These regression-based calibration
measures are used in simulation studies.

To further understand the goodness of fit, we can assess the calibration by risk
groups. Generally these groups are defined using quantiles of predicted risk, but other
categorizations may be used as appropriate. This model, as described by Crowson
et al. (2016), allows for a separate coefficient, γ1−k for each risk group, and then tests
for the group effect, γ1 = γ2 = · · · = 0. This approach clearly shows for which groups
the model doesn’t not accurately predict.
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3.3.5 Differences in Predicted Risk
After building a Cox model we can estimate risks for individual patients, ρi,

i = 1, . . . , n. For the naive and refit models we denote the risk as ρ̃i and ρ̂i re-
spectively. We looked at three metrics relative to the true model: mean difference,
maximum absolute difference, and mean absolute relative difference. The mean differ-
ence,

∑n

i
(ρ̃i−ρi)
n

, describes, on average how far of a given prediction is. The maximum
absolute difference, max (|ρ̃i − ρi|), will show the largest possible prediction error you
can make when using one of the alternative models. The mean absolute relative dif-

ference,
∑n

i

(
|ρ̃i−ρi|
ρi

)
n

also let’s us see the average error, but relative to the estimate
from the true model.
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CHAPTER 4

SIMULATION ANALYSIS

The simulation analysis was conducted using the Cox model (3.1) with five covari-
atesZ = {Z1, Z2, Z3, Z4, Z5} where Z1 is a continuous variable following standard nor-
mal distribution. Z2, Z3, Z4, and Z5 are binary variables. The frequencies of Z2 and
Z5 varied in the simulation at 5% or 20%. The distributions of Z3 and Z4 were consis-
tent throughout the simulation with 15% frequency. To allow correlation between co-
variates, we first simulated multivariate normal variables Z∗ ∼MVN(0,Σ) with the
correlation matrix Σ specified in Table 4.1. Then we let Z1 = Z∗

1 , Z2 = I(Z∗
2 > z1−α),

Z3 = I(Z∗
3 > z1−0.15), Z4 = I(Z∗

3 > z1−0.15), and Z5 = I(Z∗
5 > z1−α) with α=0.2 or

0.05 and z1−α denoting quantiles from standard normal distribution. Therefore Z2 is
a binary variable with varying degree of correlation with the three covariates, whereas
Z5 is a binary variable completely independent of all other covariates.

A total of 16 scenarios were considered with varying frequencies and effect sizes for
Z2 and Z5 (Table 4.2). In addition, for each scenario, we separately considered Z2 and
Z5 being omitted, which results in 32 scenarios overall. We only considered different
scenarios for binary variables because our preliminary literature search did not suggest
omitting continuous risk factors was a common practice. This is especially true when
considering risk factors with wide ranges such as age and systolic blood pressure
because the omission would have such a large impact on the risk score. Patient
survival time, Ti was simulated as the exponentiated linear predictor (with error)
divided by λ. Patient censoring time, Ci was simulated using a uniform distribution.
The observed follow-up time for each patient was recorded as min(Ti, Ci) with and
event indicator Di = I(Ti ≤ Ci). λ was adjusted for each simulation in order to
achieve a 90% censoring rate to approximate the Framingham cohort.

Table 4.1: Correlation matrix of Z∗.

Z1
∗ Z2

∗ Z3
∗ Z4

∗ Z5
∗

Z1
∗ 1.00 0.30 0.20 0.10 0.00

Z2
∗ 0.30 1.00 0.05 0.05 0.00

Z3
∗ 0.20 0.05 1.00 0.00 0.00

Z4
∗ 0.10 0.05 0.00 1.00 0.00

Z5
∗ 0.00 0.00 0.00 0.00 1.00
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Table 4.2: Summary of simulation scenarios with varying weights and frequencies of Z2 and Z5. The
event rates were set to approximate the Framingham Heart Study.

Scenario Z2 Z5 Event Rates
β Frequency β Frequency Mean Median

1 0.8 0.20 0.8 0.20 0.106 0.106
2 0.2 0.20 0.8 0.20 0.103 0.103
3 0.8 0.05 0.8 0.20 0.104 0.104
4 0.2 0.05 0.8 0.20 0.100 0.100
5 0.8 0.20 0.2 0.20 0.103 0.103
6 0.2 0.20 0.2 0.20 0.103 0.102
7 0.8 0.05 0.2 0.20 0.100 0.100
8 0.2 0.05 0.2 0.20 0.102 0.102
9 0.8 0.20 0.8 0.05 0.104 0.104
10 0.2 0.20 0.8 0.05 0.104 0.104
11 0.8 0.05 0.8 0.05 0.101 0.101
12 0.2 0.05 0.8 0.05 0.101 0.100
13 0.8 0.20 0.2 0.05 0.100 0.100
14 0.2 0.20 0.2 0.05 0.106 0.106
15 0.8 0.05 0.2 0.05 0.101 0.100
16 0.2 0.05 0.2 0.05 0.102 0.102
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4.1 Simulation Results for Performance Measures
4.1.1 Correlation

We observed similar results in Pearson and Spearman correlations (Figure 4.1)
of predicted risks using an alternative compared to the true model. With the naive
modeling approach, the omitted risk factor’s frequency has the largest impact. There
is generally minor improvement when other risk factors have high prevalence. The
weight of the omitted risk factor also affects correlation. Correlation is higher when
the omitted risk factor has a small weight. The omitted risk factor’s relationship
with other predictors in the model does not has much impact on the correlation in
the naive model. For the refit model, when the omitted risk factor is independent
of other predictors the model performs slightly better when measured using Spear-
man correlation, but this effect is not seen when using Pearson correlation. In the
Spearman correlation we see larger separation based on risk factor frequency.

4.1.2 C-Index
Similar to correlation, we saw model performance was highly impacted by the

omitted risk factor’s frequency and weight. To assess the overall model performance
we looked at the C-index relative difference from the true model (Figure 4.2). When
the omitted risk factor has a small weight, the frequency of other risk factors in the
dataset is not relevant, but when the risk factor’s weight is large some information can
be gained if the present risk factors have high prevalence. The omitted risk factor’s
correlation with other predictors in the model did not impact the C-index.

4.1.3 IDI
Model performance can also be summarized with IDI (Figure 4.3). The weight of

the omitted risk factor had the largest impact on IDI. When the simulated coefficient
for the omitted risk factor was small there was minimal effect on IDI, but when the
risk factor was large we saw a substantial decrease in IDI. This effect was modified by
the frequency of the omitted risk factor, again showing that omitting a high frequency
risk factor has a detrimental effect on model performance. The IDI also showed the
model performed slightly worse if one of the remaining risk factors in the model had a
large weight. The performance was not effected by the omited risk factor’s correlation
with other variables The refit model often only showed minor improvements, if any,
compared to the naive model.
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Figure 4.1: Mean Pearson (A) and Spearman (B) correlations for each model, where “Dep” denote Z2 and “Indep” denote Z5.
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Figure 4.2: Mean C-index relative difference for each model, where “Dep” denote Z2 and “Indep”
denote Z5.

Figure 4.3: Mean IDI for each model, where “Dep” denote Z2 and “Indep” denote Z5.
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4.1.4 Calibration
Calibration in the large should be 0 for a perfect model. All of the models per-

formed relatively well, but performed best when the omitted risk factor had a large
weight or low frequency (Figure 4.4A). Calibration slope should be 1 for a perfect
model. We see a stark difference between the naive model and the refit model as
measured by the calibration slope (Figure 4.4B). Similar to calibration in the large,
the naive model performs best when the omitted risk factor has a large effect size or
low frequency. The coefficients correlation do not appear to have very much of an
effect. The calibration slope for the refit model indicates a perfect fit, but this is an
artifact of using the same data to build the model and calibrate.

For calibration by risk group, the cohort was divided into 5 equally sized groups
based on their linear predictor, with risk increasing from Group #1 to Group #5
(Figure 4.5). Groups #2 - #5 have negative coefficients, whereas Group #1 has
substantially large positive coefficients. A well fit model would have equal coefficients
for each risk group. This shows us that the naive model severely overestimates risk
for inherently low-risk patients and underestimates for high-risk patients. This effect
is exaggerated when the omitted risk factor has a high frequency. For most scenarios
the model also performs worse when the omitted risk factor has a small weight.

4.1.5 Differences in Predicted Risk
The mean difference between the alternative and true model shows a similar pat-

tern as we have seen in many of our results and informs us about the population
dynamics (Figure 4.6.A). Simple arithmetic explains why the magnitude of the mean
difference is related to the omitted risk factor’s frequency and weight in the naive
model. In the refit model we see the mean difference is 0 because the sum of the risk
for the refit and true models is the same. For the average patient the refit model
incorrectly estimates risk to a larger extent than the naive model. However, the max-
imum absolute difference shows that the naive model has the greatest opportunity to
incorrectly estimate risk (Figure 4.6B). This metric shows the worst-case scenario for
incorrectly estimating risk.

The absolute relative risk provides more insight as it does not allow the over- and
under-estimation of individual risk in the refit model to cancel out (Figure 4.6C).
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Figure 4.4: Calibration in the Large (A) and Calibration Slope (B)
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Figure 4.5: Calibration by Risk Group: Mean coefficient for Group #1 (A), Group #2 (B), Group #3 (C), Group #4 (D), and Group #5 (E)
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Figure 4.6: Differences in predicted risk between alternative and true models: Mean difference (A), Maximum absolute difference (B), and Mean
Absolute Relative Difference (C)
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CHAPTER 5

APPLICATION

5.1 Study Data for Framingham Stroke Risk Profile
Using the original data from the Framingham Study we built Cox proportional

hazard regression models using all of the risk factors in attempt to replicate the work
by Wolf et al. (1991). We built both naive and refit models to understand the influence
of a single missing covariate.

Patients eligible for the study were members of the Framingham Study during
examinations 9 or 14 cycles. Additionally patients must have been between 55 and
84 years old and free of stroke at baseline. Patients were followed up for 10 years. If
a patient met the age requirements and was free of stroke at the time of both exam
9 and exam 14 the patient could appear in the dataset twice.

The original dataset published by Wolf et al. (1991) included 5734 patients (2372
men, 3362 women) and 472 stroke events over 10 years of followup. Our dataset
contains 4918 patients (2064 men, 2854 women) and 342 stroke events. We suspect
differences in the datasets are due to patients withdrawing consent after the paper
had been published. For illustration purposes we limited our application to focus
only on the model built for male patients. Model details are provided in Tables 5.1
and 5.3 below.

Table 5.1: Cox proportional hazards model fit

Model Tests Discrimination
Indexes

Obs 1992 LR χ2 69.82 R2 0.052
Events 145 d.f. 8 Dxy 0.382
Center 6.0601 Pr(> χ2) 0.0000 g 0.720

Score χ2 79.27 gr 2.053
Pr(> χ2) 0.0000

5.2 Performance Measure Comparisons
We assumed risk factors are uncollected one at a time and compared the naive

approach and the refit approach using aforementioned performance measures. Re-
gression coefficients obtained in the refit approach under each case of uncollected risk
factor were provided in Table 5.2
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Table 5.2: Coefficient comparison between true and refit models

Risk Factor Wolf et. al True Model Refit Model for Removed Covariate
Age SBP AntiHypT Diabetes Cigs CVD AFib LVH

Age 0.050 0.044 0.046 0.045 0.044 0.040 0.047 0.044 0.044
SBP 0.014 0.021 0.021 0.022 0.021 0.021 0.021 0.021 0.022
Anti-Hypertensive Rx 0.326 0.321 0.348 0.522 0.328 0.284 0.330 0.325 0.332
Diabetes 0.338 0.139 0.141 0.210 0.162 0.103 0.176 0.138 0.145
Cigarettes 0.515 0.408 0.320 0.419 0.384 0.401 0.420 0.404 0.408
CVD 0.520 0.328 0.427 0.322 0.335 0.337 0.342 0.340 0.350
AFib 0.606 0.212 0.340 0.211 0.242 0.209 0.160 0.316 0.191
LVH 0.842 0.473 0.506 0.844 0.491 0.476 0.473 0.514 0.469
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Table 5.3: Cox proportional hazards model coefficients

Coefficient S.E. Wald Z Pr(> |Z|)
Age 0.0439 0.0120 3.66 0.0003
Systolic Blood Pressure (SBP) 0.0208 0.0040 5.22 < 0.0001
Anti-Hypertensive Rx 0.3212 0.1913 1.68 0.0931
Diabetes 0.1390 0.2349 0.59 0.5540
Cigarettes 0.4085 0.1772 2.31 0.0211
CVD 0.3280 0.1835 1.79 0.0739
Atrial Fibrillation (AFib) 0.2121 0.4252 0.50 0.6179
Left Ventricular Hypertrophy (LVH) 0.4733 0.2849 1.66 0.0967

5.2.1 Correlation
Risk factors with higher frequencies (anti-hypertensive medication, CVD, cigarette

smoking) show lower Pearson and Spearman correlations (Figure 5.1). There is not
much improvement with the refit model.

5.2.2 C-Index
In general the C-indexes for the naive and refit models were very similar. Com-

pared to the true model, discrimination was most harmed when an continuous pre-
dictor was omitted (Figure 5.2). Cigarette smoking was the categorical risk factor
which caused the largest impact to C-index when removed from the model.

Table 5.4: C-Index for models by omitted predictor. C-Index for fake and refit models when each
predictor is omitted. Full model C-Index = 0.6912

Naive Refit
Age 0.6787 0.6793
Systolic Blood Pressure (SBP) 0.6588 0.6636
Anti-Hypertensive Rx 0.6874 0.6871
Diabetes 0.6903 0.6903
Cigarettes 0.6808 0.6808
CVD 0.6841 0.6845
Atrial Fibrillation (AFib) 0.6902 0.6901
Left Ventricular Hypertrophy (LVH) 0.6880 0.6878
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Figure 5.1: Pearson and Spearman correlation with true model
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Figure 5.2: C-index relative difference from true model when each risk factor is removed

5.2.3 IDI
Changes in IDI were very small and do not provide meaningful information in this

example.

5.2.4 Calibration
Calibration in the large is very close to 0 for the refit models (Figure 5.3A). This

is due to using the same data the model was built on for testing. We may see different
results if we separated the cohort into training and testing datasets. For calibration
slope we see the refit model coefficients very close to one due to using the same data
for training and testing (Figure 5.3B). In the naive model we see a largest impact
from one of our continuous risk factors, systolic blood pressure. For categorical risk
factors, we see the largest impact in the naive model when left ventricular hypertrophy
is omitted. When separating the cohort into risk groups, we see differences in the
coefficients for each omitted risk factor across risk groups (Table 5.7). This tells us
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Table 5.5: Comparison of IDI of True Model to Naive and Refit Models when each predictor is
omitted

IDI IDI D1 (Cases) IDI D0 (Controls)
Naive Refit Naive Refit Naive Refit

Age −0.040 −0.009 −0.106 −0.008 −0.066 0.000
SBP −0.041 −0.018 −0.107 −0.017 −0.066 0.001
Anti-Hypertension Rx −0.006 −0.002 −0.011 −0.002 −0.005 0.000
Diabetes −0.001 0.000 −0.003 0.000 −0.001 0.000
Cigarettes −0.005 −0.002 −0.013 −0.002 −0.008 0.000
CVD −0.006 −0.002 −0.012 −0.001 −0.006 0.000
Atrial Fibrillation 0.000 0.000 −0.001 0.000 −0.001 0.000
LVH −0.006 −0.002 −0.008 −0.002 −0.002 0.000

that the model does not accurately estimate risk across risk groups by underestimating
high risk patients.

5.2.5 Differences in Predicted Risk
The average difference in a patients estimated individual risk when comparing the

naive or refit models to the true models can be seen in Figure 5.4A. The difference
is not only influenced by the risk factor’s weight, but also by the frequency of the
risk factor in the original dataset. Cigarette smoking, CVD, and antihypertensive
medication were fairly common in the Framingham dataset, so we see ignoring those
risk factors would be more detrimental to the population risk estimates than LVH
even though LVH has the largest coefficient. The refit model shows almost no loss of
information when estimating patient risk for the population.

In contrast to the mean difference, the maximum absolute difference shows how far
off an individual estimate could be (Figure 5.4B). For an individual’s estimate, both
the naive and refit models are inaccurate. Here we are concerned with an individual
patient’s estimate, so the frequency of the risk factor in the sample is irrelevant. The
risk factor with the largest weight will have the greatest impact. In the Framingham
dataset, assuming LVH is negative when it is unknown will result in underestimating
a patient’s risk by 15% (Figure 5.4C).
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Table 5.6: Calibration in the Large (true model: -0.00002) and Slope (true model: -0.00002, 0.99998)

Fit 1 (Calibration in the Large) Fit 2 (Calibration Slope)
Naive Refit Naive γ1 Refit γ1 Naive γ2 Refit γ2

Age −2.200e− 05 −2.157e− 05 0.09906966 −1.565e− 05 1.03902598 0.99998314
SBP −1.785e− 05 −1.829e− 05 0.48371965 −1.383e− 05 1.17991291 0.99998382
AntiHypT −2.292e− 05 −2.315e− 05 −0.01322052 −1.619e− 05 1.03910522 0.99998343
Diabetes −2.498e− 05 −2.503e− 05 −0.00288077 −1.575e− 05 1.00688833 0.99997867
Cigs −2.397e− 05 −2.374e− 05 0.00911311 −1.473e− 05 0.96942879 0.99997774
CVD −2.534e− 05 −2.518e− 05 −0.01010989 −1.608e− 05 1.03114294 0.99997825
AFib −2.468e− 05 −2.472e− 05 −0.00202497 −1.549e− 05 1.00467937 0.99997886
LVH −2.548e− 05 −2.601e− 05 −0.01717795 −1.243e− 05 1.04534289 0.99996823

Table 5.7: Crowson calibration by risk group: For the true model, the coefficients are -0.1998, 0.1351, -0.1391, 0.1947, -0.0720.

Group #1 Group #2 Group #3 Group #4 Group #5
Naive Refit Naive Refit Naive Refit Naive Refit Naive Refit

Age 0.0429 0.1461 −0.6348 −0.4109 0.0885 −0.0617 0.1203 0.1543 0.0344 0.0028
SBP −0.2004 0.0122 −0.1611 −0.3211 −0.0845 −0.1052 −0.0120 0.1691 0.1591 0.0299
AntiHypT −0.2652 −0.3426 −0.1533 0.0031 0.2238 0.1311 −0.0563 0.0432 0.0198 −0.0234
Diabetes −0.2102 −0.2030 0.0675 0.0180 −0.1423 −0.0423 0.1908 0.1917 −0.0462 −0.0689
Cigs −0.6306 −0.6790 0.3887 0.3667 0.0064 −0.0527 0.0489 0.1096 −0.0704 −0.0692
CVD −0.8492 −0.6282 0.0886 0.1143 0.2163 0.1580 0.0971 0.1004 −0.0673 −0.0710
AFib −0.3234 −0.3172 0.1310 0.1881 −0.0458 −0.1398 0.1620 0.1655 −0.0657 −0.0535
LVH −0.3542 −0.3099 0.0984 0.2400 −0.1183 −0.1997 0.1766 0.2082 −0.0349 −0.0824
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Figure 5.3: Calibration in the Large and Calibration Slope
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Figure 5.4: Differences in predicted risk between alternative and true models: Mean difference (A), Maximum absolute difference (B), and Mean
Absolute Relative Difference (C)
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CHAPTER 6

DISCUSSION

In this thesis we investigated alternative models for risk prediction for use when a
risk factor is uncollected in the dataset. We considered two models: (1) use the same
coefficients as the published model but omit the uncollected risk factor’s component
from the linear predictor; (2) refit the model without the risk factor effectively reas-
signing coefficients in the absence of the uncollected risk factor. To understand how
these alternative model effect predictive ability and model performance we looked
at them in terms of correlation, discrimination (C-index and IDI), calibration, and
predicted risk. A simulation analysis examined how the uncollected risk factor’s fre-
quency, weight, and dependence with other risk factors affected the metrics. An
application analysis using the Framingham Heart Study confirmed many of the sim-
ulation conclusions.

In general, our simulation analysis showed that the frequency of the uncollected
risk factor had the largest impact on the overall performance of a revised risk score,
followed by the weight of the uncollected risk factor in the original risk score. The
uncollected risk factor’s correlation with other risk factors in the model held little
significance. These findings hold true regardless of whether the risk scores are being
used as an adjusting variable, overall performance, or individual risk prediction.

When considering the global model performance, refitting the model in the absence
of the uncollected risk factor allows us to retain the most information. However, if
the model is to be used for individual risk prediction, refit models can have larger
differences in predicted risk for patients. While on the average patient prediction is
improved, the impact to a single patient may be very large.

Refitting the model provides an additional hurdle to the researchers. They must
either have access to the original data, or have a secondary dataset separate from
their analysis that includes all of the risk factors and outcomes needed for the model.
Rather than refitting the model without the risk factor, although not studied as
part of this thesis, an improved approach would be to identify an alternative risk
factor that can be used as a “surrogate” measure. Such a measure would need to
be correlated with the omitted risk factor and provide a similar level of information.
There should be clinical knowledge to support such a substitution. For example,
heavy alcohol consumption could be a surrogate for cigarette smoking because both
are types of addiction. Although they target different organ systems, both are known
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to have harmful health effects.
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