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CHAPTER I 

 

INTRODUCTION AND BACKGROUND 

 

Introduction 

The need for an effective portable power supply for human-scale robots has 

increasingly become a matter of interest in robotics research. Current prototypes of 

humanoid robots, such as the Honda P3, Honda ASIMO and the Sony QRIO, show 

significant limitations in the capacity of their power sources in between charges (the 

operation time of the humanoid-size Honda P3, for instance, is only 25 minutes). This 

limitation becomes a strong motivation for the development and implementation of a 

more adequate source of power. Moreover, the power density of the actuators coupled to 

the power source needs to be maximized such that, on a systems level evaluation, the 

combined power supply and actuation system is both energy and power dense. Put 

simply, state-of-the-art batteries are too heavy for the amount of energy they store, and 

electric motors are too heavy for the mechanical power they can deliver, in order to 

present a viable combined power supply and actuation system capable of delivering 

human-scale mechanical work in a human-scale self contained robot package, for a useful 

duration of time. The motivation details are discussed more thoroughly in [4]. 

The total energetic merit of an untethered power supply and actuation system is a 

combined measure of 1) source energy density of the energetic substance being carried, 

2) efficiency of conversion to controlled mechanical work, 3) energy converter mass, and 

4) power density of the actuators. With regard to a battery powered electric motor 
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actuated system, the efficiency of conversion from stored electrochemical energy to shaft 

work after a gear head can be high (~50%) with very little converter mass (e.g. PWM 

amplifiers); however, the energy density of batteries is relatively low (about 180 kJ/kg for 

NiMH batteries), and the power density of electrical motors is not very high (on the order 

of 50 W/kg), rendering the overall system heavy in relation to the mechanical work that it 

can output. With regard to the hydrocarbon-pneumatic power supply and actuation 

approach presented here relative to the battery/motor system, the converter mass is high 

and the total conversion efficiency is shown to be low. However, the energy density of 

hydrocarbon fuels, where the oxidizer is obtained from the environment and is therefore 

free of its associated mass penalty, is in the neighborhood of 45 MJ/kg, which is more 

than 200 times greater than the energy density of state of the art electrical batteries. This 

implies that even with poor conversion efficiency (poor but within the same order of 

magnitude), the available energy to the actuator per unit mass of the energy source is still 

at least one order of magnitude greater than the battery/motor system. Additionally, linear 

pneumatic actuators have roughly one order of magnitude greater power density than 

state of the art electrical motors. Therefore, the proposed technology yields an increased 

energetic merit on an overall systems level. 

The free piston compressor (FPC) presented in this work serves the function of 

converting chemically stored energy of a hydrocarbon into pneumatic potential energy of 

compressed air. More specifically, it extracts the energy by producing combustion of a 

stoichiometric mixture of propane and air, and the combustion-driven free piston acts as 

an air pump to produce the compressed air. 
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Previous Work 

The idea of using a free piston combustion-based device as a pump has been around 

since the original free-piston patent by Pescara in 1928 [7]. The automotive industry 

conducted a large amount of research in the 1950’s. Ford Motor Company considered the 

use of a free piston device as a gasifier in 1954 [5]. General Motors presented the 

“Hyprex” engine in 1957 [8]. Such endeavours were aimed at an automotive scale engine 

and were largely unsuccessful. In more recent times, the free piston engine concept has 

been considered for small-scale power generation. Aichlmayr, et. al. [1, 2] have 

considered the use of a free piston device as an electrical power source on the 10 W scale 

meant to compete with batteries. Beachley and Fronczak [3], among others, have 

considered the design of a free-piston hydraulic pump. McGee, et. al. have considered the 

use of a monopropellant-based catalytic reaction as an alternative to combustion, as 

applied to a free piston hydraulic pump [6]. 

 

Contribution 

Even though free piston devices have been studied in the past, none of these previous 

designs explicitly featured what is perhaps the main advantage of a free piston, which is 

its capability to offer a purely inertial load. The main focus of this work is to exploit the 

fact that a free piston can present a purely inertial load to the combustion, and as a result, 

desirable operational characteristics can be obtained, such as high efficiency, low noise, 

and low temperature operation. Additionally, this work aims to demonstrate that a free 

piston compressor stands as a strong candidate for a portable power supply system for 

untethered human-scale pneumatic robots. 
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Overview 

 The work presented here is comprised of four independent manuscripts (Chapter II 

through Chapter V). The first three manuscripts are currently published in conference 

proceedings, and the last one was written for submission to a journal archival . Chapter II 

(Manuscript 1) introduces the FPC design concept and presents an analytical model with 

regard to general design considerations. Figure 1-1 shows a schematic of the generalized 

FPC concept. The model obtained in Chapter II was derived from both a thermodynamic 

and a dynamic analysis, with the main goal of finding a theoretical overall system 

efficiency (with and without heat losses). Another important feature presented in Chapter 

II is the effect of inertial loading in terms of the theoretical efficiency of converting 

chemically stored energy of a hydrocarbon into kinetic energy of the free piston. 

Additionally, other characteristics of the FPC were analyzed, such as: Reinvestment of air 

mass from the air tank for combustion, injection pressure, and efficiency of converting 

kinetic energy of the free piston into potential energy of compressed air. 

 

Intake
check valve

Spark

Exhaust
valve

Fuel valve
Propane or other
self pumping fuel

Air valve

High pressure
air reservoir

pneumatic
power
ports

Engine side Compressor side

Inlet and outlet
check valves

 

Figure 1-1. Schematic of the free piston compressor system. 

 

 Chapter III (Manuscript 2) presents the first hardware prototype of an FPC. This 

design featured a ‘pump on return’ mechanism, as seen in Figure 1-2, where combustion 
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and compression occurred in separate cylinders and on adverse strokes. This chapter 

focuses mainly on the combustion portion of the process, and presents in detail all the 

main features of the free piston engine, such as efficiency, low noise, self-cooling 

mechanism, start on demand, and simplicity. It also addresses important practical issues 

such as air/fuel mixture, injection pressure, inertia, and thermal management. 

Experimental results showed a nearly adiabatic expansion of the combustion gases, and a 

respectable efficiency converting chemically stored energy of propane into kinetic energy 

of the free piston. However, this prototype showed significant limitations in the pumping 

phase. Specifically, these were due mostly to frictional losses and hardware non-

idealities, all which suggested a different configuration altogether. 

 

 

 

 

 

 

 
Figure 1-2: Schematic (left) and picture (right) of 'pump on return' FPC prototype. 

 
 

 
 Chapter IV (Manuscript 3) addresses the limitations presented in Chapter III, and 

presents a new version of an FPC. This new prototype features combustion and pumping 

within the same stroke, and the experimental setup, shown in Figure 1-3, is very similar 

to the generalized schematic shown in Figure 1-1. The use of more adequate hardware 

components minimized inertial resistances such as frictional losses and flow obstructions, 
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and successful pumping was obtained up to 310 kPa. This chapter also presents a more 

effective way of measuring the mass of propane for each combustion cycle, and 

experimentally calculates the overall efficiency of the system. Finally, based on the 

experimentally obtained efficiency, a numerical analysis comparing the FPC to state-of-

the art systems is presented. 

 

 

 

 

 

 

Figure 1-3: Schematic (left) and picture (right) of new version of FPC. 

 

 Lastly, Chapter V (Manuscript 4) was written in the format of an independent journal 

article, and combines the work presented in Chapters II through IV. 
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Abstract

 The design and dynamic characterization of a free piston compressor is presented in 

this paper. The free piston compressor is a proposed device that utilizes combustion to 

compress air into a high-pressure supply tank. The device is configured such that the 

transduction from thermal energy to stored energy, in the form of compressed gas, is 

efficient relative to other small-scale portable power supply systems. This efficiency is 

achieved by matching the dynamic load of the compressor to the ideal adiabatic 

expansion of the hot gas combustion products. It is shown that a load that is dominantly 

inertial provides a nearly ideally matched load for achieving high thermodynamic 

efficiency in a heat engine. The device proposed exploits this fact by converting thermal 

energy first into kinetic energy of the free piston, and then compressing air during a 

separate compressor phase. The proposed technology is intended to provide a compact 

pneumatic power supply source appropriate for human-scale robots. The combined 

factors of a high-energy density fuel, the efficiency of the device, the compactness and 

low weight of the device, and the use of the device to drive lightweight linear pneumatic 

actuators (lightweight as compared with power comparable electric motors) is projected 

to provide at least an order of magnitude greater total system energy density (power 

supply and actuation) than state of the art power supply (batteries) and actuators (electric 

motors) appropriate for human-scale power output. An analytical model of the proposed 

device is developed and simulation results are discussed. 

 

Introduction 

 The idea of using a free piston combustion-based device as a pump has been around 

since the original free-piston patent by Pescara in 1928 [7]. The automotive industry 
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conducted a large amount of research in the 1950’s. Ford Motor Company considered the 

use of a free piston device as a gasifier in 1954 [5]. General Motors presented the 

“Hyprex” engine in 1957 [8]. Such endeavors were aimed at an automotive scale engine 

and were largely unsuccessful. In more recent times, the free piston engine concept has 

been considered for small-scale power generation. Aichlmayr, et. al. [1, 2] have 

considered the use of a free piston device as an electrical power source on the 10 W scale 

meant to compete with batteries. Beachley and Fronczak [3], among others, have 

considered the design of a free-piston hydraulic pump. McGee, et. al. have considered the 

use of a monopropellant-based catalytic reaction as an alternative to combustion, as 

applied to a free piston hydraulic pump [6]. 

 Following from the motivations outlined in [4], the free piston compressor presented 

here is intended as a power supply for a mobile robotic system of human comparable 

power, mass and size. In this paper it is shown that the use of a free piston engine as a 

direct air compressor offers nearly ideal loading characteristics necessary for high 

efficiency, in a simple and small package. Indeed the original patent by Pescara [7] 

intended the free piston engine foremost as a compressor. It is additionally shown that 

such a device can run at low temperatures and with low noise relative to other internal 

combustion devices. 

 An outline of this paper is as follows. Section 2 describes the proposed device and its 

operation. Section 3 presents an idealized thermodynamic analysis of the engine side and 

the compressor side separately. This analysis yields a set of relationships that are useful 

for design specifications regarding, among other things, the selection of a propellant, the 

required mass of combustion gasses, the combustion chamber volume, and the required 

compressor chamber volume, for nominal operation at maximum efficiency. Section 4 
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presents a dynamic model of the system that more accurately models the interaction of 

the engine side and the compressor side, in addition to providing the capability of 

modeling the effects of heat losses, friction, valve losses, and other influences.  

 

The Free Piston Compressor 

 A schematic of the free piston compressor system is shown in Figure 2-1. As shown 

in its original position, the device operates by first opening the air and fuel valves to 

allow the proper mixture and amount of air and fuel into the combustion chamber of the 

engine side. Once the proper air/fuel mixture is inside, the valves close and a spark 

initiates the combustion. Upon combustion, the free piston moves to the right as the 

combustion gases expand, converting the energy of combustion into kinetic energy of the 

free piston. The compressor side of the device is configured such that the piston sees a 

negligible compressive force for a distance greater than required for the combustion 

chamber to both expand down to atmospheric pressure, and allowed to intake fresh cool 

air to cool the exhaust products through the intake check valve. After this point the 

kinetic energy of the free piston is converted into the work required to compress and then 

pump the gasses in the compressor chamber into the high-pressure reservoir. The cycle is 

completed when the light return spring moves the piston to the left pushing out the 

diluted exhaust products of the engine side, and refilling the compressor side with air 

drawn in through an inlet check valve. 

 Besides advantages regarding efficiency, the free piston compressor offers on-

demand start and stop (since there is no compression stroke in the engine side), cool 

operation (given that the combustion products are greatly diluted with air after expanding 
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down below atmospheric pressure), quiet operation (given that there is no exhaust of 

high-pressure gasses), and simple. 
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Figure 2-1: Schematic of the free piston compressor system. 

 

Thermodynamic Model 

 The thermodynamic analysis below reveals a number of design constraints and key 

relationships regarding the dependency of efficiency on certain design variables. 

 

Engine side 

 The engine side of the free piston compressor converts the energy of combustion into 

kinetic energy of the free piston, while the compressor side then converts this kinetic 

energy into stored compressed gas in the high-pressure reservoir. Presenting a purely 

inertial load during the expansion of the combustion products allows the right loading 

characteristics such that the high-pressure combustion products are allowed to fully 

expand down to atmospheric pressure. When this is the case, and assuming an adiabatic 
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process in the combustion chamber, the work done on the inertial load will be equal to 

the following, 
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where 0eP  is the initial combustion pressure, 0eV  and efV  is the initial and final volume of 

the combustion chamber respectively, and eγ  is the ratio of specific heats of the 

combustion gases (products of combustion). Assuming losses associated with friction are 

negligible, the kinetic energy of the piston will be equal to the work done eW , when 

reaching the position associated with the final volume efV . The combustion chamber 

volume required such that the combustion gases are allowed to fully expand down to 

atmospheric pressure under adiabatic conditions can be found as: 

 0

1

0
e

atm

e
ef V

P
P

V
eγ









=  (2) 

 Taking the initial combustion pressure 0eP  as a specifiable quantity (design 

specification), the required mass of the fuel/air mixture can be found using the ideal gas 

law as, 
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where eR  is the average gas constant associated with the combustion products, and AFTT  

is the adiabatic flame temperature. 

 The efficiency of conversion from the energy available in the combustion products to 

kinetic energy of the piston is then given by, 
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where Equations (1-3) have been used, and where e is the mass specific energy of the 

fuel/air mixture computed as the following for the air supported combustion of propane: 

 
mixturefuel/air  kg

J  000,787,2
mixturefuel/air  kg 16.63

fuel kg 1
fuel kg

kJ 46350 =×=e  (5) 

 It is important to note that, for a given fuel, the theoretical adiabatic efficiency of 

conversion to kinetic energy given by Equation (4) is dependent only on the initial 

combustion pressure. This relationship for the combustion of propane is shown in Figure 

2-2. The dependence on only the initial combustion pressure is markedly different from 

the Otto cycle’s efficiency dependence on the compression ratio. In effect, the free piston 

compressor establishes an expansion ratio of 0/ eef VV , given by Equation (2), based on 

the initial combustion pressure. 
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Figure 2-2: The efficiency of converting energy of combustion into kinetic energy of the 

free piston as a function of the initial combustion pressure. 
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 In order to establish the target initial combustion pressure, the free piston compressor 

as proposed requires that both the fuel pressure and pressure of the air reservoir are 

adequate enough to inject the fuel and air mixture into the combustion chamber before 

combustion occurs. This minimum pressure requirement is given by, 

 0e
AFTe

ambreac
inj P

TR
TR

P 







=  (6) 

where reacR  and ambT  is the average gas constant of the reactants and the ambient 

temperature, respectively. 

 

Compressor Side and Reservoir 

 The theoretical operation of the compressor side can be considered as two processes: 

firstly, the adiabatic (or polytropic) compression of a gas, and secondly, the constant 

pressure process of pumping the gas into the high-pressure air reservoir. The work 

required for these two processes will be provided by the kinetic energy of the free piston 

as established by the combustion side. Here it is assumed that the length of the device is 

such that the pressure in the compressor side is negligible until the pressure has reduced 

to atmospheric and the kinetic energy of the free piston has reached its maximum. 

 The work associated with the adiabatic compression process is given by the 

following, 

 ( ) ( )0
1
0

10
1 1 cciatmcci

catm
c VVPVVVPW −−−

−
= −− γγ

γ

γ
 (7) 

where γ  is the ratio of specific heats of air, 0cV  and ciV  is the initial volume of the 

compression chamber where compression begins, and the intermediary volume where 

pumping begins, respectively. The analysis can be extended to include heat losses in the 
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compressor by considering a polytropic process whereby γ  is reduced but remains 

greater than unity. The intermediary volume ciV  is given by, 
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=  (8) 

where sP  is the pressure of the high-pressure reservoir. The volume of this air reservoir is 

assumed to be large enough such that the pressure does not change appreciably over a 

single stroke of the free piston compressor. The work associated with the constant 

pressure process of pumping is given by the following: 

 ( )( )cicfatmsc VVPPW −−=2  (9) 

where cfV  is the final volume of the compressor side (i.e. the dead volume of the cylinder 

not able to be pumped out). 

 For efficient operation of the engine side together with the compressor side, it is 

assumed that all of the kinetic energy stored in the free piston as a consequence of the 

combustion is utilized to perform the required work on the compressor side: 

 21 cce WWW −−=  (10) 

 By using Equation (10), and approximating the dead volume of the compressor side 

as zero, the following relationship between 0cV  and 0eV  is obtained: 
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 Effectively, Equation (11) related the initial volume and pressure of the engine side to 

the volume and pressure to be compressed and pumped in the compressor side. Using 

Equations (1) and (7-11), the efficiency of the compressor can thus be found as: 
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 This analysis assumes that the air pumped into the reservoir is at some temperature, 

higher than the ambient temperature, reached when the volume in the compressor is 

reduced to ciV . Once the air is in the reservoir, and assuming that the reservoir is large, at 

constant pressure, and that the residence time of the air is large, this air will cool to the 

ambient temperature. This heat loss that occurs in the reservoir has an associated 

efficiency since the energy stored reduces from ciatms VPP )( −  to satms VPP )( − , where sV  

is the final volume the pumped air eventually takes on in the reservoir. Therefore the 

efficiency of the initial energy storage to the final is: 
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 According to the ideal gas law, the temperature ciT  can be found in terms of the mass 

pumped cm : 

 
Rm

VPT
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where R is the gas constant of air. The mass pumped can in turn be written as: 
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 Substitution of Equations (14), (15) and (8) into (13) yields the following expression 

for the efficiency of energy storage of the reservoir: 
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γ
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atm
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 The combined efficiency of the compressor converting kinetic energy and the 

reservoir storing pneumatic energy is thus: 

 rescompcomp ηηη '=  (17) 

The overall efficiency of the compressor is shown in Figure 2-3. It is important to 

note that the efficiency is enhanced if heat losses occur in the compressor. This is 

intuitive considering the compressor must fight against the heat during the compression 

phase from 0cV  to ciV . On a design level, this indicates that cooling fins should be placed 

on the compressor side of the device to promote as much heat loss as possible. 

 

 
Figure 2-3: The efficiency of converting kinetic energy of the free piston into stored 

energy in the reservoir as a function of the reservoir pressure. 
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Mass Investment 

 Finally, to complete the cycle, the mass of air utilized from the reservoir to support 

the combustion process must be taken into account. Given that the energy stored in the 

reservoir is equal to satms VPP )( − , and using the ideal gas law for sV , it can be shown 

that the energy stored (relative to atmospheric pressure at ambient temperature) in the 

reservoir is equal to the following: 

 ambc
s

atms RTm
P

PP )(
StoredEnergy 

−
=  (18) 

 Therefore the energy stored is proportional to the mass in the reservoir. The 

investment of air mass needed for the combustion can therefore be expressed as the 

following efficiency, for air supported propane combustion: 
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 Using the ideal gas law, this can be expressed as the following: 

 
AFTecatm
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where the functionally constrained volume ratio 00 / ce VV  is given by Equation (11). The 

efficiency related to the investment of reservoir air mass for the combustion event is 

shown in Figure 2-4, for a reservoir pressure of 653 kPa (80 psig), as a function of the 

initial combustion pressure 0eP . If heat loss occurs in the compressor chamber, the 

efficiency associated with the mass investment is enhanced. 

 

 

 



 20

0 2000 4000 6000 8000 10000 12000 14000
10

20

30

40

50

60

70

80

90

Pe0 (kPA)

E
ffi

ci
en

cy
 (%

)

Mass Investment Efficiency with Ps=80 psig (653 kPa) vs Pe0

Without heat loss in compressor ( γ=1.4) 
With heat loss in compressor ( γ=1.01)

 
Figure 2-4: Efficiency associated with the investment of reservoir air for the combustion 

of propane as a function of the initial combustion pressure (and with Ps = 653 kPa). 
 

 
System Efficiency 

 The overall efficiency of the system can be found by multiplying the individual 

efficiencies regarding the conversion of energy released in combustion to kinetic energy 

of the free piston, KEη , the conversion of kinetic energy to energy stored in the reservoir 

at ambient temperature, compη , and the efficiency related to the required investment of 

reservoir air to the combustion event, investη . By multiplying Equations (4), (12), (16) and 

(20), the overall system efficiency is found in closed-form shown in Equation (21). 
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 Figure 2-5 shows the overall system efficiency as a function of the initial combustion 

pressure for a reservoir pressure of 653 kPa (80 psig). It should again be noted that heat 

losses, if present, in the compressor chamber enhance the efficiency. 

 

 
Figure 2-5: The overall system efficiency as a function of the initial combustion pressure 

(and with Ps = 653 kPa). 
 
 
 

Dynamic Model 

 The thermodynamic model of the free piston compressor presented above reveals 

several fundamental dependencies regarding the efficiency and configuration of the 

device. However, the thermodynamic analysis cannot evaluate the effect of several 

influences. The effect of the return spring and the effect of diluting the exhaust gasses 

and therefore lowering the temperature as the engine side intakes air is not included in the 

thermodynamic model above. Other influences capable of being included in a dynamic 
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model can include: the temperature dependence of specific heat, and losses due to check 

valves, friction, and leakage, among others. Most importantly, the thermodynamic model 

cannot accurately model the interaction between the engine side and the compressor side 

(they were modeled separately in Section 3) Lastly, a dynamic model can offer a time-

based evaluation of the system. 

 

Dynamic Model of the Engine Side 

 Immediately following combustion, the pressure and temperature dynamics in the 

combustion side are determined by the following power balance, 

 eeee WQHU DDDD −+=  (22) 

where eUD  is the rate of internal energy stored in the control volume comprising the 

combustion chamber, eHD  is the rate of enthalpy crossing the CV boundary, eQD  is the 

heat flux rate into or out the CV, and eWD  is the work rate. Assuming an ideal gas, the rate 

of internal energy storage is given by the following two relationships, 
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where emD  is the mass flow rate of gas entering (positive values) or exiting (negative 

values) the combustion chamber, vec  and eγ  are the constant-volume heat capacity and 

ratio of specific heats, respectively, of the gas in the combustion chamber, and eP , eV  

and eT  are the pressure, volume, and temperature, respectively, of the combustion 

chamber. The values of vec  and eγ  must in general be found from the appropriately 

weighted average of the temperature dependent values of pc  of the species contained 
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within the chamber. The enthalpy rate of energy entering or exiting the control volume is 

given by, 

 outinoutinpee TcmH //,DD =  (24) 

where outinpc /,  is the constant-pressure heat capacity of the gas entering or exiting the 

combustion chamber, and outinT /  is the temperature of the mass entering or exiting the 

chamber. If it is assumed that the engine side is adiabatic, then 0=eQ� . The work rate is 

given as: 

 eee VPW CC =  (25) 

 The operation of the “engine side” of the device can be considered in three phases: 

the work phase, the intake phase, and the exhaust phase.  

Work Phase 

 During work phase, no mass flow occurs and Equations (21-25) reduce to the 

following relationships regarding the pressure and temperature dynamics inside the 

combustion chamber: 
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 The work phase persists while cvdatme PPP −>  where cvdP  represents the minimum 

pressure difference necessary to open the intake check valve. 

Intake Phase 

 If the device is configured such that the free piston is allowed to travel further than 

the distance corresponding to a volume of efV as given by Equation (2), and if the 
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combustion chamber is fitted with a check valve, the combustion chamber will draw in 

fresh air to cool the combustion products. It is assumed that the check valve selected 

offers little resistance to the otherwise free motion of the free piston. 

 The intake phase is initiated when the pressure in the combustion chamber drops 

below cvdatm PP − whereupon the intake check valve opens to allow ambient temperature 

air to enter the combustion chamber. The pressure and temperature dynamics are 

therefore given by the following relationships, 
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where the mass flow rate through the check valve is given by the following commonly 

accepted mass-flow rate equation: 

 ),( ecvdatmchecke PPPAm −Ψ=D  (30) 

 It is assumed that the check valve opens completely with an orifice area of checkA . The 

area normalized mass-flow rate Ψ  resides in a choked or unchoked flow regime 

according to the following relationship: 
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where fC  is the discharge coefficient of the check-valve, uP  and dP  are the upstream 

and downstream pressures, respectively, inT  is the air temperature, rC  is the pressure 

ratio that divides the flow regimes into unchoked and choked flow, and 1C  and 2C  are 

constants defined as: 
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 It should be noted that in Equations (28-33) it has been approximated that once the 

intake phase begins, the gas in the combustion chamber behaves as air (with regard to 

thermodynamic quantities vc , pc  and γ ). This approximation is justified by the 

relatively large mass of air drawn in compared the small mass of combustion gases that 

exist during the work phase. 

 Regardless of the actual mechanism of mass-flow through the check valve, Equations 

(28) and (29) relate the state variables of interest regarding the operation of the free 

piston compressor. Therefore, for purposes of this paper, Equation (30) may be replaced 

by the following pressure-difference driven linear mass-flow rate approximation:  

 )( ecvdatmchecke PPPkm −−≈D  (34) 

where the coefficient checkk  is set such that the mass-flow rate is of a magnitude similar to 

that given by Equation (30). It should be noted that the check valve should be selected 

with a low minimum pressure to open (the “cracking pressure”) and with a large enough 

flow area so as to generate minimal resistive forces on the piston. 

Exhaust Phase 

 The exhaust phase is initiated when the direction of the piston changes and the return 

spring pushes it toward the original starting position. This phase needs to be detected by 

monitoring the position and/or velocity of the piston such that an actuated valve can be 

opened to allow the mixture of combustion gases and air resulting from the intake phase 

to leave the combustion chamber. The resulting pressure and temperature dynamics 
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inside the combustion chamber during this phase are similar to those given by Equations 

(28) and (29) in the intake phase, 
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where inT  of Equation (28) and (29) has been replaced with eT  in Equation (35) and (36). 

It is again approximated that the behavior of the gasses in the combustion chamber at this 

point is dominated by the thermodynamic characteristics of air. The mass-flow rate 

through the actuated outlet valve is given by: 

 ),( atmeoute PPAm Ψ−=D  (37) 

where outA  is the flow orifice area of the outlet valve and Ψ  is the area normalized mass 

flow given by Equations (31), (32) and (33). Similar to Equation (34), this may be 

approximated by the following linear mass-flow rate equation: 

 )( atmeoute PPkm −−≈D  (38) 

 

Dynamic Model of the Compressor Side 

 The compressor side of the device can be modeled using an energetic approach 

similar to that used to model the engine side. The compressor side undergoes three 

distinct phases: compression, pump, and draw-in.  

Compression Phase 

 During the compression phase, there is no mass-flow and the pressure and 

temperature dynamics are similar to those given by Equations (26) and (27): 
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 Note that cVD  is negative in this phase as the piston moves to the right, as shown in 

Figure 2-1. The compression phase persists while cvdsc PPP +< , where sP  represents the 

pressure in the high-pressure supply reservoir and cvdP  represents the minimum pressure 

difference necessary to open the reservoir check valve. The initial mass of air in the 

compressor chamber 0cm  may be calculated from the ideal gas law, 
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where it is assumed that upon returning to the original position, the pressure in the 

compressor chamber will be equal to )( cvdatm PP −  with a temperature ambT  equal to the 

ambient temperature, and a volume of 0cV . 

Pump Phase 

 The pump phase begins when the pressure becomes large enough to promote mass 

flow through the reservoir check valve: cvdsc PPP +≥ . The resulting pressure, 

temperature and mass-flow dynamics are given by the following: 
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Draw-in Phase 

 The draw-in phase begins after the direction of the free piston reverses and begins to 

head toward the device’s original position under influence of the return spring. Mass-

flow of ambient temperature air into the compressor chamber is promoted when the 

pressure in the chamber is low enough to open the draw-in check valve: cvdatmc PPP −< . 

The resulting pressure and temperature dynamics are given by Equations (42) and (43), 

and the mass-flow is given by the following: 

 )( ccvdatmdrawc PPPkm −−≈D  (45) 

 

Inertial Dynamics of the Free Piston 

 The dynamics in the engine side and the compressor side are related to each other 

through the movement of the free piston. Neglecting friction (although such effects could 

be included here), the dynamics of motion of the free piston are given by, 

 scatmceatme FAPPAPPxM −−−−= )()(DD  (46) 

where M is the mass of the free piston, eA  and cA are the areas on the piston on the 

engine and compressor side respectively, x  is the displacement of the piston assembly as 

denoted in Figure 2-1, and sF  is the return spring force. The volumes of the combustion 

chamber and compressor chamber, and their associated derivatives, are given by the 

following: 

 xAV ee =  (47) 

 )( xlAV ccc −=  (48) 

where cl  is the length of the combustion chamber when 0=x .  
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Dynamic Simulation 

 A dynamic simulation of the system was performed using Simulink. The following 

parameters were used for the simulation: mass of free piston M = 250 g, area of engine 

side 2cm 07.5=eA = 5.07 (a diameter of 1 in.), area of compressor side 2cm 85.2=cA  (a 

diameter of 0.75 in.), initial combustion pressure kPa 35480 =eP  (500 psig), a constant-

force spring with N 09.0=sF , a check valve cracking pressure kPa 3.2=cvdP  (1/3 psi), 

and a reservoir pressure kPa 653=sP (80 psig). 

 A dead space of 2 mm was selected, corresponding to 3
0 cm 013.1=eV . Equation (11) 

resulted in a required compressor volume of 3
0 cm 04.22=cV  with a resulting compressor 

length of 7.73 cm. Figures 2-6 and 2-7 show the pressure and temperature in the engine 

side, respectively, as a function of time. Note that the combustion gasses are allowed to 

expand all the way down to atmospheric pressure whereupon the intake check valve 

opens allowing the mixture to dilute with cool air. The temperature in the combustion 

chamber therefore drops quickly from 2250 K to a final temperature of 387 K (238 oF). 

 Figures 2-8 and 2-9 show the pressure and temperature in the compressor side of the 

device, respectively, as it pumps and returns to the original position. A comparison of the 

dynamic simulation and the thermodynamic model yields comparable overall 

efficiencies. The thermodynamic model estimates an overall system efficiency of 

% 02.10=sysη  while the dynamic simulation estimates an overall system efficiency of 

% 56.9=sysη  based on the total mass of air pumped into the reservoir: 
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Figure 2-6: Pressure in the Engine Side. 
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Figure 2-7: Temperature in the Engine Side.
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Figure 2-8: Pressure in the Compressor Side. 
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Figure 2-9: Temperature in the Compressor Side. 
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 Likewise, the efficiencies of converting the energy of combustion into kinetic energy 

for the two models are comparable. Given that the device is based to a large degree on the 

notion of using an inertia to efficiently convert the energy of combustion, a close 

correlation between the models in part verifies that the coupling between the two sides of 

the device takes advantage of the notion of an inertially dominated load.  The 

thermodynamic model estimates % 2.36=KEη  and the dynamic model estimates 

% 6.34=KEη . The thermodynamic model also estimates the following: % 3.34=compη  

and % 6.80=investη . The differences between the models originate from the interaction of 

the engine side with the compressor side, which for this chosen configuration has a small 

contribution. 

 

Conclusions 

 A thermodynamic model and a dynamic model of a free piston compressor were 

presented. The thermodynamic model yields a key design parameter regarding the ratio 

of the initial combustion chamber volume to the maximum compressor volume necessary 

for maximum efficiency. The thermodynamic model also shows that KEη  is a function 

only of the properties of the fuel and the initial combustion pressure, while KEη  is a 

function only of the reservoir pressure. The thermodynamic model also revealed that heat 

loss occurring in the compressor chamber enhances the efficiency of the device.  

 The dynamic model is able to offer a time-based analysis of the system that includes 

the interaction of the engine side with the compressor side. This interaction is useful in 

designing the piston areas of the engine and combustion side as well as the return spring. 

Additionally, the dynamic model is capable of capturing the effects of losses due to check 

valves, friction and leakage. 
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Thermodynamic Efficiency 
 
 Upon revision of the thermodynamic efficiency presented in this manuscript, a more 

adequate formulation was conceived. Particularly, the pneumatic potential energy of the 

compressed air in the reservoir was originally taken as satms VPP )( −  (page 17), which is 

associated with the constant-pressure process of pumping the air into the reservoir 

(Equation 9). This is incompatible with the requirement that the energy stored in the 

reservoir must equal its capacity to perform adiabatic work in a pneumatic actuator 

(adiabatic if considering worst case scenario, isothermal if considering best case 

scenario). Hence, the stored energy in the air reservoir should be given by, 
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Since the mass of air is the same at 0cV , ciV  and fV , and noting that the pressure and 

temperature at 0cV  are atmP  and ambT , respectively, we can use ideal gas law expressions 

to derive the following relationship: 
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The total efficiency of converting kinetic energy of the free piston into stored potential 

energy of compressed air can be given by, 

 
e

stored
PE W

E
=η   (52) 

Finally, the total thermodynamic efficiency of the system can be found by multiplying the 

individual efficiencies regarding the conversion of energy released in combustion to 

kinetic energy of the free piston, KEη , the conversion of kinetic energy to energy stored 
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in the reservoir at ambient temperature, PEη , and the efficiency related to the required 

investment of reservoir air to the combustion event, investη . By multiplying Equations (4), 

(51) and (19), and substituting Equations (50), (51) and (11), the overall thermodynamic 

system efficiency is found in closed-form as follows: 
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Figure 2-10 shows the overall system efficiency as a function of the initial combustion 

pressure for various reservoir pressure values. 
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Figure 2-10: The overall system efficiency as a function of the initial  

combustion pressure (for various values of Ps). 



 

CHAPTER III 

 

 

MANUSCRIPT 2 

 

 

 

 

DESIGN OF A FREE PISTON PNEUMATIC COMPRESSOR AS A  

MOBILE ROBOT POWER SUPPLY 

 

 

José A. Riofrio and Eric J. Barth 

Department of Mechanical Engineering 

Vanderbilt University 

Nashville, TN 37235 

 

 

 

 

(Accepted by IEEE International Conference on Robotics and Automation (ICRA), 
Barcelona, Spain, April 2005) 



 38

Abstract  

 The design of a free piston compressor (FPC) intended as a pneumatic power 

supply for pneumatically actuated autonomous robots is presented in this paper. The 

FPC is a proposed device that utilizes combustion to compress air into a high-pressure 

supply tank by using the kinetic energy of a free piston. The device is configured such 

that the transduction from thermal energy to stored energy, in the form of compressed 

gas, is efficient relative to other small-scale portable power supply systems. This 

efficiency is achieved by matching the dynamic load of the compressor to the ideal 

adiabatic expansion of the hot gas combustion products.  The device proposed 

exploits this fact by first converting thermal energy into kinetic energy of the free 

piston, and then compressing air during a separate compression phase. The proposed 

technology is intended to provide a compact pneumatic power supply source 

appropriate for human-scale robots. The design and implementation of the FPC is 

shown, and preliminary experimental results are presented and discussed with regard 

to efficiency and energetic characteristics of the device. Most significantly, the device 

is shown to operate nearly adiabatically.  

 

Introduction 

The need for an effective portable power supply for human-scale robots has 

increasingly become a matter of interest in robotics research. Current prototypes of 

humanoid robots, such as the Honda P3, Honda ASIMO and the Sony QRIO, show 

significant limitations in the duration of their power sources in between charges (the 

operation time of the humanoid-size Honda P3, for instance, is only 25 minutes). This 

limitation becomes a strong motivation for the development and implementation of a 

more adequate source of power. Moreover, the power density of the actuators coupled 
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to the power source need to maximized such that, on a systems level evaluation, the 

combined power supply and actuation system is both energy and power dense. Put 

simply, state-of-the-art batteries are too heavy for the amount of energy they store, and 

electric motors are too heavy for the mechanical power they can deliver, in order to 

present a combined power supply and actuation system that can deliver human-scale 

mechanical work in a human-scale self contained robot package. The motivation 

details are discussed more thoroughly in [4]. 

To address this current limitation in small-scale power supply systems appropriate 

for untethered robot actuation, the design of a free piston compressor (FPC) is 

presented in this paper. A schematic of the device is shown in Figure 3-1. The device 

is configured to be compact, efficient, operate with low noise and at a low temperature 

(relative to conventional small-scale engines), capable of on-demand start/stop 

operation without a separate starting mechanism, and provide a power output 

(compressed gas) that can be coupled to power dense pneumatic actuators (relative to 

electromagnetic actuators). 

 The idea of using a free piston combustion-based device as a pump has been 

around since the original free-piston patent by Pescara in 1928 [7]. The automotive 

industry conducted a large amount of research on free-piston engines in the 1950’s. 

Ford Motor Company considered the use of a free piston device as a gasifier in 1954 

[5]. General Motors presented the “Hyprex” engine in 1957 [8]. Such endeavours 

were aimed at an automotive scale engine and were largely unsuccessful. In more 

recent times, the free piston engine concept has been considered for small-scale power 

generation. Aichlmayr, et. al. [1, 2] have considered the use of a free piston device as 

an electrical power source on the 10 W scale meant to compete with batteries. 

Beachley and Fronczak [3], among others, have considered the design of a free-piston 
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hydraulic pump. McGee, et. al. have considered the use of a monopropellant-based 

catalytic reaction as an alternative to combustion, as applied to a free piston hydraulic 

pump [6].  
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Figure 3-1: Schematic of the Free Piston Compressor. 

 

 The FPC presented here is intended as a power supply for a mobile pneumatic 

robotic system of human comparable power, mass and size. It is shown analytically in 

[9] that the use of a free piston engine as a direct air compressor offers nearly ideal 

loading characteristics necessary for high efficiency, in a simple and small package. 

 

The Free Piston Compressor 

 The FPC is an internal combustion engine that uses its mechanical power output to 

pump air into a pressurized reservoir. The main idea is that the pressurized air 

reservoir will serve as a power supply for pneumatic systems, by using its high 
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pressure for pneumatic actuation.  The FPC will automatically turn on and off as 

needed, maintaining the reservoir at the desired actuation supply pressure.  

A typical 4-stroke engine cycle has a power stroke, exhaust stroke, intake stroke 

and compression stroke. A typical 2-stroke engine combines the power and intake 

stroke and combines the exhaust and compression stroke. The FPC shares some 

aspects of both a 4-stroke engine as well as a 2-stroke engine, but also has aspects 

unlike either conventional engine design. 

 Referring to Figure 3-1, the FPC operates by first opening the air and fuel valves 

for the proper durations to allow the proper mixture and amount of air and fuel into 

the combustion chamber of the engine cylinder. Using a self-pumping gaseous fuel 

such as propane, methane, or butane, and utilizing the high- pressure air in the 

reservoir, the injection of air and fuel effectively replaces the functions of the intake 

and compression strokes in a 4-cycle engine. Once the proper air/fuel mixture is 

inside, the valves close and a spark initiates the combustion. Upon combustion, the 

free piston moves to the left as the combustion gases expand, converting the energy of 

combustion into kinetic energy of the free piston. The travel of the free piston is 

configured such that the combustion products are able to fully expand down to 

atmospheric pressure. Once this full expansion has occurred, the kinetic energy stored 

in the free piston allows it to continue its motion to the left such that the pressure in 

the engine cylinder drops below atmospheric pressure. Given this pressure gradient, a 

breathe-in check valve opens and cool air from the outside environment enters the 

combustion cylinder to dilute and cool the combustion gasses. Continuing its motion 

to the left, the free piston subsequently hits and compresses the return springs, which 

will invert its direction of motion without absorbing energy. Upon return, the kinetic 

energy of the free piston is then transformed into the work required to compress and 
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then pump the gasses in the compressor chambers into the high-pressure reservoir. 

Also upon return, an electrically actuated exhaust valve opens to allow the diluted 

combustion gasses to be pushed out of the engine cylinder. 

 

Features 

The design and operation of the FPC addresses significant features of critical 

importance in IC engine design: 

Efficiency 

 The efficiency of converting thermal energy into mechanical work through the 

expansion of a gas in a heat engine is related to the initial pressure of the gas as well 

as the amount of PV work that is delivered outside the cycle. The central feature of the 

FPC is that it presents an inertial load, due to the fact that the free piston is absent of 

any connecting rod, during the expansion of the combustion gasses. An inertial load is 

ideal for completely extracting work done by a pressurized gas since the pressure of 

the gas can decrease to atmospheric pressure while still still storing the work done as 

kinetic energy of the inertia. In the FPC as designed, the energy released at 

combustion is converted into kinetic energy of the free piston before the end of its 

stroke, leading to no high-pressure exhaust gasses. This avoids the wasteful exhaust of 

high pressure gasses typical found in an Otto cycle running at high load and thus 

increases the total efficiency of the system (Figure 3-2). The kinetic energy stored by 

the free piston will then subsequently provide the total work required to compress and 

pump air into a high-pressure reservoir. As configured, the FPC does not immediately 

reinvest mechanical work to promote the next cycle as does a conventional engine. 

Although a compression “stroke” is not explicitly present, it should be pointed out 

that the FPC does reinvest a portion of the work used to pump gas into the reservoir 
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since it does use the air from the reservoir during the injection of air and fuel. 

Therefore the portion of the curve in Figure 3-2 under the compression “stroke” of a 

4-stroke engine, represents the energy stored in the reservoir from the mass pumped 

into the reservoir minus the mass of air used in the next injection cycle. 

 

 

Figure 3-2: P-V diagram of FPC cycle superimposed on a P-V diagram of the Otto 
cycle. The shaded region to the right represents the additional work extracted in the 

FPC cycle that is not extracted in the Otto cycle. 
 
 

Simplicity and Compactness 

 The FPC was built with standard cylinders, valves, and electronic components. It 

does not require any high-power electric signals, or electric calibration of any kind. 

General maintenance required is minimum to none, since no lubrication or cooling 

fluids need to be added. The fuel, propane as used here, is conventional, low cost and 

readily available.  

 The FPC can be easily downscaled to the size of a shoebox (plus the propane tank) 

while outputting an average power in the neighborhood of 200-500 W of pneumatic 



 44

power, which would be very appropriate as a portable power supply for human-scale 

mobile robots. 

Cooling Mechanism 

 Overheating is a general concern in the design of any internal combustion device. 

By exploiting the inertial loading concept, the FPC allows for cool air to be drawn 

into the combustion chamber, via a check valve, before the end of the combustion 

stroke. This will rapidly cool the inside of the chamber, thus avoiding both the exhaust 

of hot gasses to the atmosphere and any significant transfer of heat to other hardware 

components through convection. 

Start on Demand 

 Since the intake valves and spark plug are electrically actuated, and the free piston 

rods are not rigidly attached to any sort of crankshaft, the FPC does not require the 

implementation of a starter. This allows the engine to start on demand, without the 

need for a separate starting cycle. The start-on-demand feature highlights the 

compatibility between the FPC and a pneumatic robotic system, since they can be tied 

together by implementing a simple on/off control loop to regulate the pressure in the 

high-pressure pneumatic supply reservoir. The FPC would receive a signal and start 

operating as soon as the actuation pressure drops, and likewise turn off once reaching 

the desired pressure. 

Low Noise 

 Due to the fact that the combustion pressure drops to atmospheric before the 

exhaust cycle, there are no high-pressure exhaust gasses, and therefore no exhaust 

noise. Other mechanical noises will be minimal, especially since the FPC will be 

enclosed in its respective device. Noises related to asymmetric loads and vibrations 

are addressed ahead. 
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Cost 

 All the components needed to build the FPC are standard and easy to find. The 

FPC shown in this paper can be built for under $1000. Additionally, since the FPC 

requires no maintenance, subsequent expenses will be limited to the replacement of 

the $2 bottle of propane. 

Emissions 

 The breathe-in mechanism of the FPC will contribute to the dilution of harmful 

combustion products. These could be unburned hydrocarbons (HC), carbon monoxide 

(CO), and oxides of nitrogen (NOx). However, the dilution of these gases does not 

address the real issue of emissions reduction. If emission regulations were to apply to 

an eventually commercial version of an FPC, the implementation of a small catalytic 

converter would be feasible. 

 

Design 

Figure 3-3 shows a picture of the current FPC prototype, and Figure 3-4 shows an 

exploded view of all the main hardware components of the FPC. The setup of the FPC 

consists of one 6-inch stroke combustion cylinder and two 4-inch compressor 

cylinders. These cylinders are the tie-rod type, and have a 1¼-inch bore. The cylinders 

are arranged side-to-side, with the combustion cylinder in the middle (to avoid 

asymmetric loads) and 2 inches behind, such that the 3 piston rods line up at their 

ends. A connecting plate is fixed at the end of the piston rods, ensuring that the rod 

ends remain in-line at all times. Opposing the cylinders are two end plates, each with 

2 rods press fit unto them. These rods serve as guides to the 4 return springs, which 

will act upon the connecting plate after the power stroke, thus initiating the pump-on-

return mechanism. Two neodymium-iron-boron magnets lock the ferrous connecting  
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Figure 3-3: Picture of Free Piston Compressor. 

 

 

 

Figure 3-4: Exploded view of FPC hardware. 
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plate in place while the combustion cylinder is injected with a high-pressure air-fuel 

mixture, before combustion. The end caps of the tie-rod cylinders were ported 

appropriately to implement all necessary hardware. The combustor end cap needed 

ports for air/fuel mixture, exhaust, air breathe-in, pressure sensor, and spark plug; 

while the compressor end caps needed ports for breathing in and pumping out. The 

fuel in use is a bottle of COLEMAN propane, available at most convenience stores 

for very low price. Finally, the spark plug is an NGK ME-8, normally used for model 

aircraft. 

Several problems had to be overcome through different stages of the design 

process. It is mentioned in [9] that the injection pressure of the air/fuel mixture needs 

to be adequate enough to achieve the target initial combustion pressure. This 

minimum injection pressure requirement is given by,  

 0e
AFTe

ambreac
inj P

TR
TR

P 







=  (1) 

where reacR  and eR are the average gas constants of the reactants and combustion 

products, respectively; ambT  and AFTT  are the ambient temperature and adiabatic flame 

temperature, respectively; and 0eP  is the initial combustion pressure needed such that 

the FPC extracts enough work to pump all the air drawn into the compressor cylinders 

into the high-pressure reservoir. In order to obtain the appropriate injection pressure 

that corresponds to such an initial combustion pressure, the free piston needs to be 

locked in its initial position during injection. A sufficiently stiff spring could serve 

this purpose, but would offer so much resistance upon the combustion stroke that the 

desired inertial loading would not be easily obtained. To overcome this, two 

neodymium-iron-boron magnets were installed to hold the connecting plate at its 
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starting position before combustion. The gap between the magnets and the connecting 

plate is adjustable by the turn of a screw, such that their bonding magnetic force can 

be set just slightly higher than the force exerted on the free piston by the injection 

pressure. Since magnetic force is conservative, whatever amount of work done to 

overcome it will be retrieved at the end of the piston’s pump stroke. Additionally, this 

magnetic force acts over such a small portion of the total stroke length that its effect 

against the inertial loading is negligible. 

 Another issue of considerable effect is the quality of the air/fuel mixture. Ideally, 

this mixture should match the stoichiometric mass ratio for combustion, namely 15.67 

for air and propane. For complete combustion, it is also imperative that the mixture is 

uniform. This type of mixing is not instantaneous, and occurs by diffusion and any 

flow mixing present. By injecting the air and propane into the chamber through 

separate ports, it would take an uncertain amount of time for the two substances to 

uniformly mix, thus affecting the cycle rate of the system and making it less reliable. 

As a solution, a premix chamber was implemented, in order to give the air and fuel 

more mixing time an addition to enhancing the active mixing. The stoichiometric ratio 

is approximated by treating both air and propane as ideal gasses, and calculating the 

amount of mass of each entering the chamber based on pressure changes. 

 It is also important that the combustion and compression chambers are sealed 

properly, to avoid any unwanted leakage or blow-by that could reduce the total 

efficiency of the system. However, there is always a trade off between good sealing 

and friction between the piston and the cylinder wall. On top of that, temperature 

ratings play an important factor as well, though not so much in our case thanks to the 

cooling mechanism of the FPC. Proper sealing through the ports and through the 

valves are also a matter of consideration, as well as pressure ratings in the valves. The 
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cylinders in use have two lubricated rubber piston seals each, which, in addition to 

their end cap sealing, added up to a significant amount of friction, large enough to 

prevent us from exploiting the inertial loading effect. Since the only chambers that 

need proper sealing are the ones to the right, the left end caps were removed, as well 

as the left piston rings in all three cylinders (Figure 3-5). This greatly reduced the total 

amount of friction, and our PV curve in the combustion chamber began to exhibit the 

desired behaviour, as shown in Figure 3-6.  

 

 

Figure 3-5: Removal of left piston seals and end caps. 

 

 For the compression (or pumping) cycle, the return springs are placed far enough 

to the left so that the piston fully loads up with kinetic energy just before coming into 

contact with them. The springs need to be stiff enough to be able to store all of the 

piston’s energy before fully compressing. Additionally, the breathe-in check valve in 

the combustion side needs to be sufficiently light (crack pressure selected as 1/3 PSI = 
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2.3 kPa) and large enough to allow for the appropriate breathe-in air flow without 

presenting any significant restriction. Due the springs’ efficient energy storage 

capacity, the piston will effectively fully regain its kinetic energy, which will become 

the work needed for the compression stroke. As the compression stroke reaches 

completion, the magnets will return the work done against them (back in the 

combustion stroke), and snap the plate back to its initial position while contributing 

work to the highest-pressure portion of pumping. 

 

 
Figure 3-6: P-V curve in the combustion chamber. The solid line shows the 

experimentally measured P-V curve, and the dashed line shows the ideal adiabatic P-
V curve. 

 

 As far as thermal management goes, it is desired to minimize energy losses 

through heat in the combustion chamber, and approach an adiabatic expansion of the 

hot gasses. Conversely, as shown in [9], heat losses are desired in the compression 

chambers to maximize the overall compressor efficiency. This should be intuitive 
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considering the compressors must fight against the heat during the compression phase. 

On a design level, this suggests that the walls of the compressor chambers should be 

of a high index of heat transfer (such as aluminum), and that cooling fins should be 

added to promote as much heat loss as possible. 

 The current FPC prototype is capable of operating at 2 Hz. Its cycle-rate is limited 

by the rate of flow through the valves and by the valves’ opening times. Standard 

available valves offer a trade off between precision and flow capacity. Also, higher 

flow valves take longer times to open and close. The cycle rate of the FPC could be 

increased by implementing higher flow valves, but at the risk of losing air/fuel 

mixture consistency, and thus total efficiency. 

 

Additional Design Considerations 

 The possibility of making the combustion chamber out of glass is currently being 

considered. Borosilicate glass has a very low coefficient of heat transfer, which would 

be ideal for a close match to an adiabatic expansion of the hot gasses in the 

combustion chamber. A thick enough piece of borosilicate glass tubing is capable of 

withstanding the peak pressures of the FPC, and can be obtained at low cost. 

Additionally, a glass combustion chamber would allow for the spark to be seen, which 

would make it very easy to achieve the stoichiometric air/fuel ratio by adjusting the 

mixture based on the color of the flame. Finally, with a piston made out of graphite or 

ground glass, the energy losses through friction would be greatly reduced, without 

sacrificing any significant sealing properties.  

 Another design consideration suitable for a commercial version of an FPC is to 

make it symmetrically dual sided (i.e. two ‘back-to-back’ FPCs). By doing so, the 

power-to-mass ratio would increase, since both FPCs would share combustion and 
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compressor chambers, and their respective valves. Additionally, the dual sidedness 

would reduce the vibration level and the physical noise associated with it. 

 

Experimental Evaluation and Results 

 Experimental data was taken with the injection of 2.03×10-6 kilograms of fuel and 

35.5×10-6 kilograms of air, in a dead volume of 11.11×10-6 cubic meters. The mass of 

air and fuel was estimated by observing the pressure in the cylinder during injection 

and assuming ideal gas behavior. The average combustion pressure peaked at 901 

kPa, yielding a maximum speed of 2.9 meters per second of the 1.66 kilogram free 

piston (7.0 Joules of kinetic energy). The total efficiency of converting stored 

chemical energy of propane into kinetic energy of the free piston is given by, 
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kJ 46350

kJ 0.007
6

=×
××

=
−

KEη  (2) 

An adiabatic thermodynamic analysis [9] indicates that this efficiency is given 
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where 249.1=eγ  is the average ratio of specific heats of the combustion products, 

and other variables were previously defined. Equation (3) yields a predicted efficiency 

of 20%. The difference between the predicted and measure transduction efficiency 

from the lower heating value of the fuel to kinetic energy can most likely be attributed 

to three unaccounted losses in the thermodynamic analysis. First, the air to fuel mass 

ratio achieved experimentally was 17.4 (lean) whereas the stoichiometric ratio is 

15.67. Second, the thermodynamic analysis does not account for frictional losses. This 
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friction was measured to be about 13 N. This   loss, if found to be significant, would 

serve to further motivate a design change of the cylinder walls to precision glass and 

the piston to either graphite or precision ground glass to reduce friction. Third, the 

thermodynamic analysis assumed adiabatic conditions. However, an evaluation of the 

experimentally obtained P-V curve, shown in Figure 3-6, indicates that the 

experimental prototype device exhibits nearly adiabatic behavior of constant=ePV γ . 

In fact, the experimentally obtained curve becomes flat at atmospheric pressure as 

hoped and indicates that the device is capable of both fully expanding the combustion 

products as well as being able to intake cool air from the environment to dilute the 

exhaust products. In light of the comparison of the experimentally obtained P-V curve 

as compared with the adiabatic P-V curve, heat loss appears to be minimal. It should 

be noted that the curve shown is from the device firing the first time when the device 

is cold and when heat losses would be at a maximum. 

 Figures 3-7, 3-8 and 3-9 show the pressure in the combustion chamber, the 

position of the free piston, and its velocity as a function of time. Notice in Figure 3-7 

that the injection pressure right before ignition is about 267 kPa and requires that the 

magnetic holding force is sufficient to prevent motion of the free piston. Figure 3-7 

also shows that the combustion pressure quickly rises to about 900 kPa after the spark 

occurs at 0 msec (spark not shown in Figure). The shape of the pressure profile after 

the peak pressure indicates that the combustion gasses were able to fully expand down 

to atmospheric pressure (101 kPa). 
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Figure 3-7: Pressure in the combustion chamber. 
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Figure 3-8: Position of the free piston. 
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Figure 3-9: Velocity of the free piston. 

 

Figures 3-8 and 3-9 show the displacement and velocity respectively of the free 

piston. The free piston begins to accelerate smoothly immediately following the rise in 

combustion pressure, indicating that the magnetic holding force was properly set. The 

velocity shows that the peak velocity occurs before the combustion pressure has 

dropped to atmospheric pressure, indicating that the beginning of the return springs 

were not place far enough along the stroke. This as well can contribute to a lower 

conversion efficiency as it represents a departure from the assumptions of the 

thermodynamic analysis. It does however indicate that a design change in the device 

needs to be made with respect to its length. 

 

Conclusions 

 
 The design and construction of a Free Piston Compressor (FPC) was presented. 

Experimental results showed a respectable efficiency that demonstrates promise of 
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such a device as a small scale power supply for untethered pneumatically actuated 

robots. The combined factors of a high-energy density fuel, the efficiency of the 

device, the compactness and low weight of the device, and the use of the device to 

drive lightweight linear pneumatic actuators (lightweight as compared with power 

comparable electric motors) is projected to provide at least an order of magnitude 

greater total system energy density (power supply and actuation) than state of the art 

power supply (batteries) and actuators (electric motors) appropriate for human-scale 

power output. 

 Preliminary experimental results regarding the transduction of thermal energy into 

kinetic energy of the free piston demonstrate that the device is capable of fully 

expanding the combustion products down to atmospheric pressure as designed and 

demonstrates the merits of presenting a purely inertial load in a combustion process. 

Such dynamic loading serves to increase efficiency, allows the device to operate with 

low noise due to not having a high pressure exhaust “pop”, and allows the combustion 

products to be diluted with cool external air to contribute toward a low operating 

temperature compared to more conventional internal combustion engines. Most 

significantly, the device is shown to operate nearly adiabatically. Experimental results 

also demonstrated that the device is capable of start on demand, making it well suited 

to a pressure regulation control loop in a portable pneumatic power supply system. 

 

Acknowledgements 
 

This work was supported through the Vanderbilt Discovery Grant program and 

gifts in kind from Festo Corporation. 

 

 



 57

References 

[1]  Aichlmayr, H. T., Kittelson, D. B., and Zachariah, M. R., “Miniature free-piston 
homogenous charge compression ignition engine-compressor concept – Part I: 
performance estimation and design considerations unique to small dimensions,” 
Chemical Engineering Science, 57, pp. 4161-4171, 2002. 

 
[2] Aichlmayr, H. T., Kittelson, D. B., and Zachariah, M. R., “Miniature free-piston 

homogenous charge compression ignition engine-compressor concept – Part II: 
modeling HCCI combustion in small scales with detailed homogeneous gas 
phase chemical kinetics,” Chemical Engineering Science, 57, pp. 4173-4186, 
2002. 

 
[3] Beachley, N. H. and Fronczak, F. J., “Design of a Free-Piston Engine-Pump,” 

SAE Technical Paper Series, 921740, pp. 1-8, 1992. 
 
[4] Goldfarb, M., Barth, E. J., Gogola, M. A., Wehrmeyer, J. A., “Design and 

Energetic Characterization of a Liquid-Propellant-Powered Actuator for Self-
Powered Robots”. IEEE/ASME Transactions on Mechatronics, vol. 8, no. 2, pp. 
254-262, June 2003. 

 
[5] Klotsch, P., “Ford Free-Piston Engine Development,” SAE Technical Paper 

Series, 590045, vol. 67, pp. 373-378, 1959. 
 
[6] McGee, T. G., Raade, J. W., and Kazerooni, H., “Monopropellant-Driven Free 

Piston Hydraulic Pump for Mobile Robotic Systems,” ASME Journal of 
Dynamic Systems, Measurement, and Control, vol. 126, pp. 75-81, March 2004. 

 
[7] Pescara, R. P., “Motor Compressor Apparatus,” U.S. Patent No. 1,657,641, Jan. 

31, 1928. 
 
[8] Underwood, A. F., “The GMR 4-4 ‘Hyprex’ Engine: A Concept of the Free-

Piston Engine for Automotive Use,” SAE Technical Paper Series, 570032, vol. 
65, pp. 377-391, 1957. 

 
[9] Barth, E. J., and Riofrio, J., “Dynamic Characteristics of a Free Piston 

Compressor,” 2004 ASME International Mechanical Engineering Congress and 
Exposition (IMECE), IMECE2004-59594, November 13-19, 2004, Anaheim, 
CA. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER III 
 

MANUSCRIPT 2 
 

ADDENDUM 



 59

Notes on Efficiency 

The total efficiency of converting stored chemical energy of propane into kinetic 

energy of the free piston, as shown in Equation (2), was estimated by observing the 

pressure in the cylinder during injection and assuming ideal gas behavior. It was also 

assumed that the temperature in the chamber remained constant at ambient temperature. 

A better way to determine the mass of air and fuel used for combustion was devised in 

Manuscripts 3 and 4 (Chapters IV and V, respectively). 
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Abstract 

 The ongoing design evolution of a free piston compressor (FPC) is presented in this 

paper.  The FPC is a proposed device that utilizes combustion of a hydrocarbon fuel to 

compress air into a high-pressure supply tank. This device is designed to extract 

chemically stored energy from the fuel and convert it to potential energy of compressed 

air, while achieving high conversion efficiency relative to other small-scale portable 

power supply systems.  The chemically stored energy of the hydrocarbon fuel is first 

converted into kinetic energy of the free piston by the end of the combustion phase. 

Subsequently, the moving piston acts as a pump and air compressor during a compression 

phase. The proposed technology is intended to provide a compact and efficient pneumatic 

power supply source appropriate for human-scale robots. The design and implementation 

of this version of the FPC is shown, and experimental results relating all phases 

(combustion, expansion and pumping) are discussed. The total efficiency of the system is 

experimentally measured and compared to its theoretical prediction. 

  

Introduction 
 

The need for an effective portable power supply for untethered human-scale 

robots has increasingly become a matter of interest in robotics research. Current 

prototypes of humanoid robots, such as the Honda P3, Honda ASIMO and the Sony 

QRIO, show significant limitations in the duration of their power sources in between 

charges (the operation time of the Honda P3, for instance, is only 25 minutes). This 

becomes a strong motivation for the implementation of a more adequate source of power. 

The motivation details are discussed more thoroughly in [1]. 
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This paper presents the design of a free piston compressor (FPC) as a power supply 

for pneumatically actuated systems. The FPC serves the function of converting 

chemically stored energy of a hydrocarbon fuel into pneumatic potential energy of 

compressed air. More specifically, it extracts the energy by producing combustion of a 

stoichiometric mixture of propane and air, and the combustion-driven free piston acts as 

an air pump to produce the compressed air. The FPC, coupled with pneumatic actuators, 

is intended as an alternative to electrical batteries coupled with electrical motors. The 

main objective of this idea is to exploit the high mass specific energy density of 

hydrocarbon fuels and the high mass specific power density of linear pneumatic 

actuators, in order to provide at least an order of magnitude greater combined energy and 

power density (power supply and actuation) than state of the art electrical power supply 

and actuation systems. 

Given their inherent penalization for carrying their own mass, the total energetic 

merit of an untethered power supply and actuation system is a combined measure of the 

source energy density of the energetic substance being carried, the efficiency of 

conversion to controlled mechanical work, the energy converter mass, and the power 

density of the actuators. With regard to a battery powered electric motor actuated system, 

the efficiency of conversion from stored electrochemical energy to shaft work after a gear 

head can be high (~ 50% to 80%) with very little converter mass (e.g. PWM amplifiers); 

however, the energy density of batteries is relatively low (about 180 kJ/kg for NiMH 

batteries), and the power density of electrical motors is not very high (on the order of 50 

W/kg) rendering them heavy in relation to the mechanical work that they can output. 

With regard to the hydrocarbon-based pneumatic power supply and actuation approach 
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presented here, the converter mass is high relative to a battery/motor system, and the total 

conversion efficiency is shown in [2] to be low in relative terms. However, the energy 

density of hydrocarbon fuels is in the neighborhood of 45 MJ/kg (where the oxidizer is 

obtained from the environment and therefore has no associated mass penalty), which is 

more than 200 times greater than the energy density of conventional electrical batteries. 

This implies that even with poor conversion efficiency (< 10%), and with only mild 

expectations of miniaturizing the energy converter, the available energy to the actuator 

per unit mass of the energy source (mass of fuel plus mass of energy converter) is still at 

least one order of magnitude greater than the battery/motor system. Additionally, linear 

pneumatic actuators have roughly one order of magnitude greater power density than 

traditional electrical motors. Therefore, the proposed technology offers the potential of 

greatly increased energetic characteristics over state-of-the-art electrical power supply 

and actuation systems. 

The idea of using a free piston combustion-based device as a pump has been around 

since the original free-piston patent by Pescara in 1928 [3]. The automotive industry 

conducted a large amount of research in the 1950s. Ford Motor Company considered the 

use of a free piston device as a gasifier in 1954 [4]. General Motors presented the 

“Hyprex” engine in 1957 [5]. Such endeavours were aimed at an automotive scale engine 

and were largely unsuccessful. In more recent times, the free piston engine concept has 

been considered for small-scale power generation. Aichlmayr, et. al. [6, 7] have 

considered the use of a free piston device as an electrical power source on the 10 W scale 

meant to compete with batteries. Beachley and Fronczak [8], among others, have 

considered the design of a free-piston hydraulic pump. McGee, et. al. have considered the 
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use of a monopropellant-based catalytic reaction as an alternative to combustion, as 

applied to a free piston hydraulic pump [9]. 

The FPC presented here is intended as a power supply for a mobile pneumatic robotic 

system of human comparable power, mass and size. It is shown analytically in [2] that the 

use of a free piston engine as a direct air compressor offers nearly ideal loading 

characteristics necessary for high efficiency (relative to similar scale combustion based 

devices), in a simple and small package. 

A first design of the FPC was presented in [10]. In this previous design, particular 

emphasis was placed into the combustion portion of the device, and it outlined the main 

features of the FPC concept and design considerations of that particular prototype. The 

main features should be re-stated here, since they constitute the essence of the FPC idea: 

Inertial Loading – The free piston is not rigidly attached to a crankshaft or any timing 

linkage alike, so it offers purely inertial loading to the expanding combustion gases. This 

allows the free piston to load up with kinetic energy resulting from the work done by the 

ideal adiabatic expansion [10] of the combustion gases. The combustion gases are 

allowed to expand until they reach atmospheric pressure, all while still contributing to the 

inertial loading. This full expansion contributes to a higher efficiency than if full 

expansion were not allowed, as is the case with most small-scale IC engines. As an 

additional consequence, the FPC has a quiet exhaust, since no high-pressure gases will be 

exhausted into the atmosphere. 

Breathe-in Mechanism – When the combustion gases reach atmospheric pressure, the 

free piston will still be traveling (with maximum kinetic energy), and thus will induce a 

drop of pressure in the combustion chamber as the motion continues.  This pressure drop 
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will cause an intake check valve to open and allow fresh atmospheric air to enter the 

chamber. This fresh air will both cool down and dilute the combustion products. The 

breathe-in mechanism ensures a low temperature operation of the device. 

Start on Demand – Since the intake valves and spark plug are electrically actuated, and 

since high-pressure injection of air and fuel eliminate the need for a conventional intake 

and compression stroke, the FPC does not require the implementation of a starter.  This 

allows the engine to start on demand, without the need for a separate starting cycle. This 

feature highlights the compatibility between the FPC and a pneumatic robotic system, 

since they can be tied together by implementing a simple control loop to maintain a 

particular pressure in a supply reservoir. The FPC would receive a signal and start 

operating as soon as the actuation pressure supply drops, and likewise turn off once 

reaching the desired pressure. 

The features outlined above, among others, are discussed more in detail in [10], and 

become the platform for the work presented in this paper. What follows is an introduction 

of the new FPC prototype and some new design considerations, a comprehensive analysis 

of the design evolution, analysis of new experimental data showing combustion and 

pumping, and a calculation of the total efficiency of the system. 

 

New Version of FPC 

 The previous prototype of the FPC [10] consisted of one combustion cylinder and two 

pumping cylinders. The three cylinders were aligned in parallel, with the combustion 

cylinder in the center. The pistons were rigidly attached to each other, and their main 

functions (combustion and pumping) occurred at the right of the pistons. The combustion 
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would drive the piston assembly to the left, and a set of springs reversed the motion back 

to the right, thus initiating the pumping phase. Figure 4-1 shows a schematic of this 

previous prototype.   
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Figure 4-1: Schematic of Old Version of FPC. 

 

 The most appealing aspect of this configuration was that combustion and pumping 

occurred on separate strokes, so the inertial loading during combustion was not resisted 

by the compressed air. While this prototype provided some useful and insightful data, it 

also showed some limitations. These were mostly due to energy losses associated with 

collisions with the springs, the non-ideality of the springs in storing and returning energy, 

and the high friction in the cylinders. The rigid linking of the pistons also provided a very 

slight misalignment, which accounted for even greater friction.  Additionally, the exhaust 

valve, breathe-in check valve, and inlet and outlet check valves were offering severe flow 
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restrictions, which suggested the use of a smaller cylinder bore, or alternatively, larger 

valves. 

 Figure 4-2 shows a schematic of the new version of the FPC. This prototype 

highlights combustion and pumping within the same stroke. The device consists of two 

cylinders in-line and opposing one another. Both cylinders have a combustion side (back 

of the piston) and a pumping side (rod side of the piston). 
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Figure 4-2: Schematic of New Version of FPC. 

 

 The device is completely symmetrical, so its starting position can be on either side.  

Assuming the piston’s initial position is at the left, the piston is held in place by the 

magnets while injecting a mixture of pressurized air and propane into the combustion 

chamber. Once the proper amount of mixture has entered the chamber, the air and 

propane valves close and a sparkplug initiates combustion. The piston will then travel to 

the right while serving four functions: (1) pump fresh air into the air reservoir; (2) 
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exhaust the diluted combustion products from previous combustion out of the right 

cylinder’s combustion chamber; (3) breathe in fresh air into the right cylinder’s pumping 

chamber; and (4) breathe in fresh air into the combustion chamber after the pressure has 

dropped below atmospheric, thus cooling down and diluting the combustion products. At 

the end of the stroke the piston will be held in place by the magnets on the right side, and 

the cycle can occur on the opposite side in the same fashion (from right to left). The work 

required to break the magnetic holding force after combustion is retrieved at the end of 

pumping. The force-distance profile of the magnets also allows dominantly inertial 

loading presented to the combustion pressure after a very short distance after break-away 

has occurred. 

 

Design 

 Figure 4-3 shows a picture of the new FPC prototype. Most of the hardware was 

inherited from the first prototype (valves, magnets, sensors, spark plugs). The cylinders 

were replaced with two 4-inch stroke, ¾-inch bore BIMBA standard air cylinders, and 

ported appropriately. Figure 4-4 shows a close-up of the new cylinder configuration, with 

the piston fully retracted (and the opposite piston disconnected).  

 By examining Figure 4-3, it should be noted that the hardware implementation of this 

prototype mainly differs from the generalized schematic (Figure 4-2) in that the piston 

rods are connected to each other through a moving mass, which is needed for inertial 

loading purposes. Another important difference to note is that the moving mass carries 

the magnets (2 on each side), which snap onto the ferrous plates at the end of each stroke. 

Figure 4-4 shows the magnets pressed against the ferrous plate. 
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Figure 4-3: Picture of New FPC 
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 This new configuration addresses some of the limitations found in the previous 

version of the FPC. The cylinder rods were connected to the moving mass with small 

pieces of plastic tubing in order to avoid a purely rigid connection, which would yield 

friction due to misalignments. Added to that, the cylinders chosen are much smoother 

than the previous ones, so the frictional losses in this system are reduced. The lack of 

return springs makes the system quieter and a bit more energy efficient. Also, with these 

cylinders’ bore, flow restrictions through valves are no longer contributing noticeable 

energetic losses. 

 Since the main objective of this paper is to show the total efficiency of the system 

from stored chemical energy of propane to stored pneumatic potential energy of 

compressed air, it is imperative to be as precise as is reasonably possible with all 

measurements. The most difficult, yet one of the most important measurements to 

determine is the mass of propane used for combustion. Knowing this mass and the energy 

density of propane, the total amount of initial energy can be determined and compared to 

the potential energy of compressed air in the reservoir. This potential energy is equal to 

satms VPP )( − , where sP  and sV  are the pressure and volume in the reservoir, and atmP  is 

atmospheric pressure.  

 

Measuring the Mass of Propane 

 As shown in Figure 4-3, the air/fuel mixture enters the chamber by controlled opening 

and closing of the air, fuel and mixture valves. The air and fuel valves are timed such that 

a stoichiometric mixture exists within a common mixing line at the exit of both valves. 

This mixture is then admitted to one of the two combustion chambers via a three-way 
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mixture valve. The air and fuel valves are Parker Series-9 valves, and operate as two-

way on/off valves. The nominal response time of these valves is 12 ms, while their 

commanded opening times for this application will range between 8-12 ms for propane 

and 50-80 ms for air. A mass flow meter could not be used to determine the mass of 

propane flowing because these are small pulses, and not steady flows. Also, since the 

propane valve operates at opening times close to the valve response time, the small pulse 

flow dynamics would not be similar to the steady flow dynamics. The mass was instead 

calculated by injecting propane into an inverted graduated cylinder on a beaker with 

water, and observing the water displacement in the cylinder for various durations of the 

commanded opening pulse sent to the fuel valve. This was done for 8, 9, and 10 ms 

pulses, and each one was performed several times to obtain an average. The standard 

deviation of measured displaced water for each pulse duration was very close to the 

readability of the scale. The same was done for the air, in order to find stoichiometric 

values based on air and fuel valve opening times. It should be noted that this match of 

opening times yields accurate stoichiometric mixtures only if flowing into atmospheric 

pressure. 

 For precise data acquisition purposes, the engine was run only in single fire shots. 

Before each fire, the exhaust port and mixture valve was opened, and the fuel and air 

valves opened for specific durations previously determined to yield a stoichiometric 

mixture. This was done several times such that the entire mixing line would contain a 

precise air-fuel ratio. The exhaust port was then closed and some of the stoichiometric 

air/fuel mixture remaining in the mixture line was pushed into the combustion chamber, 

by opening the mixture valve, until reaching the desired injection pressure. This 
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pressurized mixture can be taken as an ideal gas, so the mass in the chamber can be 

calculated as 
RT
PVm = , where P and V are the pressure and volume in the chamber, T is 

the temperature of the mixture (approx. room temperature), and R is the gas constant of 

the stoichiometric propane/air mixture. Then, with knowledge of a stoichiometric mass 

ratio, the mass of propane subject to combustion can be determined. 

 

Adjusting Mixture while Pumping 

 Ideally, every firing should be strong enough for the piston to just barely make it to 

the other side. If combustion is stronger than it needs to be, the piston will carry extra 

energy that will not be used for pumping, but dissipated in colliding with the other side. 

This is quite wasteful and brings down the total efficiency of the system. Conversely, if 

the combustion is weak and the piston carries less kinetic energy than needed to pump a 

full stroke, it will not make it to the other side, and some energy would need to be re-

invested (by utilizing the air injection valve and energy stored in the reservoir) to push 

the piston to the other side (note that the area of the rod side being less that the piston 

side will allow this to occur when both sides are ultimately presented with the reservoir 

pressure). Precisely controlling the strength of the combustion for continuous operation 

would require more sophisticated equipment and is beyond the scope of this paper. 

However, full compression of the air reservoir is achieved here with discrete increases of 

valve opening times as needed. It should be noted that due to the low resolution of the 

valves at these extremely low mass flows, the combustion pressure increase between any 

two valve-opening times is relatively large. Figure 4-5 shows the average amounts of 
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propane mass and combustion pressures yielded by all three sets of valve timings used for 

this experiment. 

 

 

Figure 4-5: Fuel Masses and Combustion Pressures 

 

 For data gathering, the FPC is fired first with the lowest set of valve opening times. 

After a certain number of firings, the pressure in the air reservoir will reach a certain 

threshold, at which point the combustion pressure will not be adequate for the free piston 

to complete the stroke, and the injection is re-adjusted to the next set of opening times. It 

should be intuitive that the first few shots after a threshold are the least efficient, while 

the last few shots before a threshold are the most efficient. 
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Experimental Results and Evaluation 

 Experimentation consisted of a series of single fire shots. Combustion took place in a 

6.4 mL volume, with a moving mass of 1.82 kg. Three different opening times of the fuel 

valve were used for combustion (8, 9, and 10 ms), depending on the combustion pressure 

desired. The data shown in Figures 4-6 through 4-13 are taken from two single shots of 

the device. The first set (Figures 4-6 through 4-9) show a less than ideal shot and the 

second set (Figures 4-10 through 4-13) show a more ideal shot. This variation is a result 

of the lack of adequate valve opening resolution resulting from the hardware used with 

this experimental setup. Figures 4-6, 4-7, 4-8, and 4-9 show combustion pressure, air 

reservoir pressure, position of the piston and velocity of the piston, respectively. These 

were taken from a typical firing at a low pumping pressure and exhibit the inadequacy of 

resolution of the air and fuel valves – note the collision with the opposing side apparent 

from the sharp decrease in velocity shown in Figure 4-9. The spark occurs at 0.4 seconds. 

Figure 4-6 also shows the injection pressure in the combustion chamber before ignition. 

 Despite the inefficient operation shown for Figures 4-6, 4-7, 4-8 and 4-9, it should be 

noted that these plots still exhibit the main features of the PFC outlined in [10], such as 

the inertial loading (nearly adiabatic expansion in Figure 4-6) and the breathe-in 

mechanism (combustion pressure decreases to atmospheric pressure before the end of the 

stroke). Also, the frequency for continuous operation can be maximized by reducing the 

time between signals. With basic knowledge of the injection, combustion and expansion 

timings, the duration of each stroke can be reduced to just under 0.4 seconds. This yields 

a total operational frequency of 2.5 strokes per second.  
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Figure 4-6: Pressure in the Combustion Chamber. 
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Figure 4-7: Pressure in the Air Reservoir.
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Figure 4-8: Position of the Free Piston. 
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Figure 4-9: Velocity of the Free Piston. 
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Through single fire shots, the air reservoir was successfully compressed from 

atmospheric pressure up to 310 kPa. It took 52 strokes to achieve this pressure, which can 

be achieved in 20 seconds of continuous operation (based on the previously described 

operational frequency). This compression pressure is limited by the ratio of stroke 

volume (engine displacement) over dead volume in the rod (compressing) side of the 

chosen cylinders. This dead volume was quite large (about 4.1 mL), and is a nonideality 

(as noted in [2]) that should be reduced in future design considerations. This nonideality 

presents the main drawback in this version of the FPC. 

 The total energetic merit of this system is represented by the efficiency of conversion 

from chemically stored energy in propane to pneumatic potential energy of compressed 

air. As shown analytically in [2], this efficiency also increases for larger combustion 

pressures. Experimentally, this efficiency was calculated for a single fire shot in which 

the piston just barely made it to the other side – the ideal case which could conceivably 

be achieved for every stroke given adequate valve resolution. Figures 4-10, 4-11, 4-12, 

and 4-13 show the respective pressures, displacement and velocity for this particular shot. 

By looking at the position and velocity in Figures 4-12 and 4-13, it can be observed that 

the piston “barely made it” to the other side, with a little help from the magnetic force. 

This shot used 1.42×10-6 kg of propane and resulted in an increase of the pressure in the 

air reservoir (a volume of 1.866×10-4 m3) from 222.75 kPa to 235 kPa, yielding a 

pneumatic potential energy increase of 2.29 Joules. The total efficiency of this shot is 

calculated as, 

 
%47.3100

fuel kg 10*42.1
fuel kg

kJ 46350
kJ 0.002286

6
=×

×
=

−
totalη

  (1) 
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Figure 4-10: Pressure in the Combustion Chamber. 

 
 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
220

222

224

226

228

230

232

234

236

238

Time (sec)

P
re

ss
ur

e 
in

 A
ir 

R
es

er
vo

ir 
(k

P
a)

 
Figure 4-11: Pressure in the Air Reservoir. 
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Figure 4-12: Position of the Free Piston 
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Figure 4-13: Velocity of the Free Piston. 
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Based on a simple thermodynamic analysis presented in [2], the total efficiency of the 

system with these parameters is calculated to be 7.62%. However, this calculation 

assumes zero dead volume in the compressing side of the cylinder, no heat losses in the 

combustor side and high heat losses in the compressor side. The issue of excess dead 

volume in the compressor side present in this experimental prototype would be difficult 

to fully address with standard pneumatic equipment (such as those used here), and would 

require custom made parts in order to reduce the minimum rod-side volume. As also 

shown in [2], the efficiency of the device increases with increased combustion pressure 

(up to 20% efficiency). With these points in mind, the experimental efficiency met 

reasonable expectations, while leaving room for improvement in future designs. 

 

Conclusions 

 The design of a new version of a Free Piston Compressor was presented. This device 

is a small-scale internal combustion engine capable of pumping air into a high-pressure 

air reservoir, with satisfactory efficiency. The proposed technology is intended to be 

coupled with a pneumatic untethered robotic system, and aims to provide an order of 

magnitude greater energetic merit than state of the art power supply and actuation 

systems (electrical batteries coupled with DC motors).  

 The experimental prototype FPC exhibited predicted desirable design features such 

as: reliable and consistent firing, inertial loading and nearly adiabatic expansion of 

combustion gases, combustion pressures that decrease to atmospheric pressure before the 

end of the stroke thereby employing the breathe-in mechanism for cooling and low noise, 

and a predicted frequency of continuous operation of 2.5 strokes per second. It was 
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shown that further design work regarding the resolution of the air and fuel valves is 

needed to secure decent efficiencies across different reservoir pressures, and further work 

regarding the dead volume in the rod-side of the piston is needed to increase efficiency. 

 A measured efficiency of 3.47% was achieved in converting stored chemical energy 

into stored pneumatic potential energy with a datum at atmospheric pressure: 

satms VPP )( − . In comparing this power supply system with state-of-the-art rechargeable 

batteries, an energy density of 180 kJ/kg for NiMH batteries and a conversion efficiency 

of 50% for an electromagnetic motor and mated gearhead would yield 90 kJ of delivered 

controlled mechanical work per kilogram of source energetic material. For the FPC under 

consideration, an energy density of 46350 kJ/kg for propane, a measured conversion 

efficiency of 3.47% from stored chemical to pneumatic energy, a 75% efficiency 

associated with the computed mass reinvestment from the air reservoir for the next 

combustion event (see [2]), and an assumed conversion efficiency of 30% from stored 

pneumatic energy to delivered controlled mechanical work of an associated pneumatic 

actuator, would yield 365 kJ of controlled work per kilogram of source energetic 

material. This increase, coupled with the equally important high power density of 

pneumatic actuators over electromagnetic motors (approximately 450 W/kg versus 50 

W/kg), should contribute to a power supply and actuation system more appropriate for 

untethered human scale and power comparable robots and actuated devices. It is expected 

that design changes to the next generation of this device will result in further 

improvements. 
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Pneumatic Stored Energy 

 The revised thermodynamic efficiency presented in the Addendum of Manuscript 1 

(Chapter II) showed a more adequate representation of the pneumatic stored energy in the 

air reservoir: 
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sfs
stored P

PVP
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In calculating the stored energy resulted from one stroke, a change in pressure of 12.25 

kPa was measured in the 1.866×10-4 m3 air reservoir. Applying Equation (2), this energy 

is computed as 2.48 Joules. 

 

Mass of Propane used for Combustion 

 While presenting a effective way to ensuring a stoichiometric air/fuel mixture, this 

manuscript overestimated the total mass of fuel used for combustion, since the fuel 

injection was assumed an isothermal process instead of an adiabatic process. To account 

for this adiabatic compression, we can consider the following relationship: 

 mixmix
einjlineatm VPVP γγ
0=  (3) 

where atmP  is the atmospheric pressure, lineV  is the partial volume of the mixture before 

entering the combustion chamber, injP  is the injection pressure, 0eV  is the dead volume in 

the combustion chamber, and mixγ  is the ratio of specific heats of the air/fuel mixture. 

Additionally, by conservation of mass, and assuming an ideal gas, we have: 

 
injmix

einj

ambmix

lineatm
inj TR

VP
TR
VPm 0==  (4) 



 85

where injm  and mixR  are the mass and average gas constant of the fuel mixture, 

respectively, and ambT  is the ambient temperature and injT  is the injection temperature, 

previously unaccounted for. Combining Equations (3) and (4), the injected mass of fuel 

can be calculated as: 

 
mix

atm

inj

ambmix

atm
inj P

P
TR

P
m

γ
1









=  (5) 

The mass of propane used for efficiency calculations, then, is 9.93×10-7 kg. The 

efficiency of conversion from chemically stored energy in propane to pneumatic potential 

energy of compressed air can be re-calculated as: 

 %10.5100
fuel kg 10*05.1

fuel kg
kJ 46350

kJ 0.00248
6

=×
×

=
−

totalη  (6) 

 A more detailed energetic evaluation, including the efficiency obtained from air mass 

re-investment, is presented in Manuscript 4 (Chapter V). 
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Abstract 
 

The design and dynamic characterization of a free piston compressor (FPC) is 

presented in this paper. The FPC is a proposed device that utilizes combustion of a 

hydrocarbon fuel to compress air into a high-pressure supply tank, thus serving as a 

portable pneumatic power supply. The device is configured such that the transduction 

from thermal energy to stored energy, in the form of compressed gas, is efficient relative 

to other small-scale portable power supply systems. This efficiency is achieved by 

matching the dynamic load of the compressor to the ideal adiabatic expansion of the hot 

gas combustion products. It is shown that a load that is dominantly inertial provides a 

nearly ideally matched load for achieving high thermodynamic efficiency in a heat 

engine. The device proposed exploits this fact by converting thermal energy first into 

kinetic energy of the free piston, and then compressing air during a separate compressor 

phase. The proposed technology is intended to provide a compact pneumatic power 

supply source appropriate for human-scale robots.  An analytical model of the proposed 

device is developed, and an FPC prototype is designed and built and its yielded 

experimental results are compared with theoretical. 

 

Introduction 

The need for an effective portable power supply for human-scale robots has 

increasingly become a matter of interest in robotics research. Current prototypes of 

humanoid robots, such as the Honda P3, Honda ASIMO and the Sony QRIO, show 

significant limitations in the capacity of their power sources in between charges (the 

operation time of the humanoid-size Honda P3, for instance, is only 25 minutes). This 
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limitation becomes a strong motivation for the development and implementation of a 

more adequate source of power. Moreover, the power density of the actuators coupled to 

the power source needs to be maximized such that, on a systems level evaluation, the 

combined power supply and actuation system is both energy and power dense. Put 

simply, state-of-the-art batteries are too heavy for the amount of energy they store, and 

electric motors are too heavy for the mechanical power they can deliver, in order to 

present a viable combined power supply and actuation system that capable of delivering 

human-scale mechanical work in a human-scale self contained robot package, for a useful 

duration of time. The motivation details are discussed more thoroughly in [7]. 

The total energetic merit of an untethered power supply and actuation system is a 

combined measure of 1) the source energy density of the energetic substance being 

carried, 2) the efficiency of conversion to controlled mechanical work, 3) the energy 

converter mass, and 4) the power density of the actuators. With regard to a battery 

powered electric motor actuated system, the efficiency of conversion from stored 

electrochemical energy to shaft work after a gear head can be high (~50%) with very little 

converter mass (e.g. PWM amplifiers); however, the energy density of batteries is 

relatively low (about 180 kJ/kg for NiMH batteries), and the power density of electrical 

motors is not very high (on the order of 50 W/kg), rendering the overall system heavy in 

relation to the mechanical work that it can output. With regard to the hydrocarbon-

pneumatic power supply and actuation approach presented here relative to the 

battery/motor system, the converter mass is high and the total conversion efficiency is 

shown to be low. However, the energy density of hydrocarbon fuels, where the oxidizer 

is obtained from the environment and is therefore free of its associated mass penalty, is in 
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the neighborhood of 45 MJ/kg, which is more than 200 times greater than the energy 

density of state of the art electrical batteries. This implies that even with poor conversion 

efficiency (poor but within the same order of magnitude), the available energy to the 

actuator per unit mass of the energy source is still at least one order of magnitude greater 

than the battery/motor system. Additionally, linear pneumatic actuators have roughly one 

order of magnitude greater power density than state of the art electrical motors. 

Therefore, the combined factors of a high-energy density fuel, the efficiency of the 

device, the compactness and low weight of the device, and the use of the device to drive 

lightweight linear pneumatic actuators (lightweight as compared with power comparable 

electric motors) is projected to provide at least an order of magnitude greater total system 

energy density (power supply and actuation) than state of the art power supply (batteries) 

and actuators (electric motors) appropriate for human-scale power output. 

The FPC presented in this paper serves the function of converting chemically stored 

energy of a hydrocarbon into pneumatic potential energy of compressed air. More 

specifically, it extracts the energy by producing combustion of a stoichiometric mixture 

of propane and air, and the combustion-driven free piston acts as an air pump to produce 

the compressed air.  

The idea of using a free piston combustion-based device as a pump has been around 

since the original free-piston patent by Pescara in 1928 [11]. Junkers developed a free 

piston compressor that became widely used by German submarines through World War 2 

[10]. The automotive industry conducted a large amount of research in the 1950’s. Ford 

Motor Company considered the use of a free piston device as a gasifier in 1954 [8]. 

General Motors presented the “Hyprex” engine in 1957 [14]. Such endeavors were aimed 
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at an automotive scale engine and were largely unsuccessful. In more recent times, the 

free piston engine concept has been considered for small-scale power generation. 

Aichlmayr, et. al. [1, 2] have considered the use of a free piston device as an electrical 

power source on the 10 W scale meant to compete with batteries. Beachley and Fronczak 

[5], among others, have considered the design of a free-piston hydraulic pump. McGee, 

et. al. have considered the use of a monopropellant-based catalytic reaction as an 

alternative to combustion, as applied to a free piston hydraulic pump [9]. 

Even though free piston devices have been studied in the past, none of these previous 

designs explicitly featured what is perhaps the main advantage of a free piston, which is 

its capability to offer a purely inertial load. The main focus of this work is to exploit the 

fact that a free piston can present a purely inertial load to the combustion, and as a result, 

desirable operational characteristics can be obtained, such as high efficiency, low noise, 

and low temperature operation. Additionally, this work aims to demonstrate that a free 

piston compressor stands as a strong candidate for a portable power supply system for 

untethered human-scale pneumatic robots. 

An outline of this paper is as follows. Section 2 describes the proposed device and its 

operation, and outlines its main features. Section 3 presents parts of the model and a 

simulation of the generalized system, and its yielded theoretical predictions. Section 4 

presents the design and implementation of a bench-top laboratory prototype FPC, and its 

main design features. Section 5 shows all relevant experimental data along with their 

respective analysis and evaluation, and compares experimentally obtained data with 

theoretical predictions. Finally, section 6 presents the main conclusions and a discussion 

of the FPC’s capability to compete with state-of-the-art power supply technology. 
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Figure 5-1: Schematic of the free piston compressor system 

 

The Free Piston Compressor 

A generalized schematic of the free piston compressor system is shown in Figure 5-1. 

In the position shown, the device operates by first opening the air and fuel valves to allow 

the proper mixture and amount of air and fuel into the combustion chamber of the engine 

side. Once the proper air/fuel mixture is inside, the valves close and a spark initiates the 

combustion. Upon combustion, the free piston moves to the right as the combustion gases 

expand, converting the energy of combustion into kinetic energy of the free piston. The 

compressor side of the device is configured such that the piston sees a negligible 

compressive force for a distance greater than required for the combustion gasses to both 

expand down to atmospheric pressure, and allow the intake of fresh cool air to cool the 

exhaust products through the intake check valve. After this point the kinetic energy of the 

free piston is converted into the work required to compress and then pump the gasses in 

the compressor chamber into the high-pressure reservoir. The cycle is completed when 
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the light return spring moves the piston to the left pushing out the diluted exhaust 

products of the engine side, and refilling the compressor side with air drawn in through 

an inlet check valve. 

 Besides advantages regarding efficiency related to inertial loading, the free piston 

compressor offers on-demand start and stop (since there is no compression stroke in the 

engine side), cool operation (given that the combustion products are greatly diluted with 

air after expanding down below atmospheric pressure), quiet operation (given that there 

is no exhaust of high-pressure gasses), and simplicity. These characteristics are achieved 

due to the following main features of the FPC: 

Inertial Loading – The free piston is not rigidly attached to a crankshaft or any timing 

linkage alike, so it offers purely inertial loading to the expanding combustion gasses. This 

allows the free piston to store as kinetic energy the work done by the ideal adiabatic 

expansion of the combustion gasses. The combustion gasses are allowed to expand until 

they reach atmospheric pressure, all while still contributing to the inertial loading. This 

full expansion contributes to a higher efficiency than if full expansion were not allowed 

as is the case with most small-scale IC engines (Figure 5-2). Typical  IC engines (large-

scale or small-scale) are required to provide a high immediate output power profile in 

their design specifications, so they are concerned only with extracting the higher-power 

portion of the combustion curve, while wastefully exhausting the rest. The FPC, on the 

other hand, is independent from the main device’s (e.g. robot) output power, since its 

function is only to store potential energy, and therefore it can extract the lower-power 

portion of the P-V curve as well. As an additional consequence, the FPC has a quiet 

exhaust, since no high-pressure gasses will be exhausted into the atmosphere. 
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Figure 5-2: P-V diagram of FPC cycle superimposed on a P-V diagram of the Otto cycle. 
The shaded region to the right represents the additional work extracted in the FPC cycle 

that is not extracted in the Otto cycle. 
 

 

Breathe-in Mechanism – When the combustion gasses reach atmospheric pressure, the 

free piston will still be traveling (with maximum kinetic energy), and thus will induce a 

drop of pressure in the combustion chamber as the motion continues.  This pressure drop 

will cause an intake check valve to open and allow fresh atmospheric air to enter the 

chamber. This fresh air will both cool down and dilute the combustion products. 

Therefore, the breathe-in mechanism ensures a low temperature operation of the device, 

as well as reduced concentration of emission products. 

Start on Demand – Since the intake valves and spark plug are electrically actuated, and 

since high-pressure injection of air and fuel eliminate the need for a conventional intake 

and compression stroke, the FPC does not require the implementation of a starter.  This 

allows the engine to start on demand, without the need for a separate starting cycle. This 

feature highlights the compatibility between the FPC and a pneumatic power supply for a 



 94

robotic system, since they can be tied together by implementing a simple control loop to 

maintain a particular pressure in the supply reservoir. The FPC would receive a signal 

and start operating as soon as the actuation pressure supply drops, and likewise turn off 

once reaching the desired pressure. 

 

Theoretical Predictions 

Both the thermodynamic and dynamic characteristics of the system were modeled 

prior to hardware design. From a thermodynamic analysis, the energetic characteristics of 

the FPC are modeled separately by the engine side (combustion) and the pump side 

(compression and pumping).  

 

Engine Side 

The engine side converts the energy of combustion into kinetic energy of the free 

piston, while the compressor side then converts this kinetic energy into stored 

compressed gas in the high-pressure reservoir. Presenting a purely inertial load during the 

expansion of the combustion products allows the right loading characteristics such that 

the high-pressure combustion products are allowed to fully expand down to atmospheric 

pressure. When this is the case, and assuming an adiabatic process in the combustion 

chamber immediately following combustion, the work done on the inertial load will be 

equal to the following, 
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where 0eP  is the initial combustion pressure, 0eV  and efV  are the initial and final volume 

of the combustion chamber respectively, eγ  is the ratio of specific heats of the 

combustion gases (products of combustion), and atmP  is the atmospheric pressure. 

Assuming losses associated with friction are negligible, the kinetic energy of the piston 

will be equal to the work done eW , when reaching the position associated with the final 

volume efV . It is shown in [4] that the efficiency of conversion from stored chemical 

energy of the fuel to kinetic energy of the free piston is given by, 
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where 0em  is the mass of the fuel/air mixture used for combustion, eR  is the average gas 

constant of the combustion products, AFTT  is the adiabatic flame temperature of 

combustion, and e is the mass specific energy of the fuel/air mixture computed as the 

following for the air supported combustion of propane: 

     
mixturefuel/air  kg

J  000,787,2
mixturefuel/air  kg 16.63

fuel kg 1
fuel kg

kJ 46350 =×=e  (3) 

 
Compressor Side and Reservoir 
 
 The compressor side of the FPC holds two separate processes: firstly, the 

adiabatic (or polytropic) compression of air, and secondly, the constant pressure process 

of pumping the air into the high-pressure reservoir. As shown in [4], the work associated 

with the adiabatic compression process and the constant pressure pumping process are 

given by the following, 
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 ( )( )cicfatmsc VVPPW −−=2  (4b) 

where γ  is the ratio of specific heats of air, and 0cV  and ciV  are the initial volume of the 

compression chamber where compression begins, and the intermediary volume where 

pumping begins, respectively. cfV  is the final volume of the compressor side (i.e. the 

dead volume of the cylinder not able to be pumped out), and is approximated as zero. At 

the intermediary volume ciV , the air is at a temperature ciT  and is being pumped at the 

constant pressure sP , which is the pressure in the air reservoir. Once the air is in the 

reservoir, and assuming that the reservoir is large, at constant pressure, and that the 

residence time of the air is large, this air will cool to the ambient temperature, ambT , and 

undertake its final partial volume, fV . At this point, the compressed air will take its final 

form as stored pneumatic potential energy, which, if considered to be its capacity to 

perform adiabatic work (i.e. in a pneumatic actuator), is given by, 
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Since the mass of air is the same at 0cV , ciV  and fV , and noting that the pressure and 

temperature at 0cV  are atmP  and ambT , respectively, we can use ideal gas law expressions 

to derive the following relationship: 
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Finally, the efficiency of converting the kinetic energy of the free piston into stored 

pneumatic potential energy of compressed air is given by, 
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Mass Investment 
 
 To complete the cycle, the mass of air utilized from the reservoir to support the 

combustion process must be taken into account. Since the energy stored is proportional to 

the mass in the reservoir, the investment of air mass needed for the combustion, as shown 

in [4], can be expressed as the following efficiency: 
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where the functionally constrained volume ratio of initial combustion chamber volume to 

initial compressor chamber volume, 00 / ce VV , is shown in [4] to be: 
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System Efficiency 
 
 The overall efficiency of the system can be found by multiplying the individual 

efficiencies regarding the conversion of energy released in combustion to kinetic energy 

of the free piston, KEη , the conversion of kinetic energy to energy stored in the reservoir 

at ambient temperature, PEη , and the efficiency related to the required investment of 

reservoir air to the combustion event, investη . By multiplying Equations (2), (7) and (8), 
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and substituting Equations (5), (6) and (9), the overall system efficiency is found in 

closed-form as follows: 
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Figure 5-3 shows the overall system efficiency as a function of the initial combustion 

pressure for various reservoir pressure values.  
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Figure 5-3: The overall system efficiency as a function of the initial  

combustion pressure (for various values of Ps). 
 

 

As pointed out earlier, the overall efficiency of the FPC is small relative to a battery 

powered electric motor actuated system. However, it can be seen from Figure 5-3 that 

this efficiency, while smaller than that in the electrical domain, is adequate enough to 
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provide at least an order of magnitude greater total system energy density by exploiting 

the high energy density of a hydrocarbon fuel. 

While a thermodynamic model was developed to model the total system efficiency, a 

dynamic model was likewise obtained in order to characterize the time-based behavior of 

the system. 

 
Dynamic Model of the Engine Side 
 

Immediately following combustion, the pressure and temperature dynamics in the 

combustion side are determined by the following power balance: 

 eeee WQHU DDDD −+=  (11) 

where eUD  is the rate of internal energy stored in the control volume comprising the 

combustion chamber, eHD  is the rate of enthalpy crossing the CV boundary, eQD  is the heat 

flux rate into or out the CV, and eWD  is the work rate. Assuming an ideal gas, the rate of 

internal energy storage is given by the following two relationships, 

 )(
1

1
eeee

e
eveeeveee VPVPTcmTcmU DDDDD +

−
=+=

γ
 (12) 

where emD  is the mass flow rate of gas entering (positive values) or exiting (negative 

values) the combustion chamber, vec  and eγ  are the constant-volume heat capacity and 

ratio of specific heats, respectively, of the gas in the combustion chamber, and eP , eV  and 

eT  are the pressure, volume, and temperature, respectively, of the combustion chamber. 

The values of vec  and eγ  must in general be found from the appropriately weighted 
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average of the temperature dependent values of pc  of the species contained within the 

chamber. The enthalpy rate of energy entering or exiting the control volume is given by, 

 outinoutinpee TcmH //,DD =  (13) 

where outinpc /,  is the constant-pressure heat capacity of the gas entering or exiting the 

combustion chamber, and outinT /  is the temperature of the mass entering or exiting the 

chamber. If it is assumed that the engine side is adiabatic, then 0=eQC . The work rate is 

given as: 

 eee VPW CC =  (14) 

The operation of the “engine side” of the device can be considered in three phases: 

the work phase (described below), and the intake and exhaust phases (described 

thoroughly in [4]).  

During the work phase, no mass flow occurs and Equations (1-6) reduce to the 

following relationships regarding the pressure and temperature dynamics inside the 

combustion chamber: 
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The work phase persists while cvdatme PPP −>  where cvdP  represents the minimum 

pressure difference necessary to open the intake check valve. 
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The dynamics in the engine side and the compressor side are related to each other 

through the movement of the free piston. Neglecting viscous and Coulomb friction, the 

dynamics of motion of the free piston are given by, 

 scatmceatme FAPPAPPxM −−−−= )()(DD  (17) 

where M is the mass of the free piston, eA  and cA are the areas on the piston on the 

engine and compressor side respectively, x  is the displacement of the piston assembly as 

denoted in Figure 5-1, and sF  is the return spring force. The volumes of the combustion 

chamber and compressor chamber, and their associated derivatives, are given by the 

following: 

 xAV ee =  (18) 

 )( xlAV ccc −=  (19) 

where cl  is the length of the compressor chamber when 0=x .  

A dynamic simulation of the system was performed using Simulink. The 

following parameters were used for the simulation: mass of free piston M = 250 g, area of 

engine side 2cm 07.5=eA = 5.07 (a diameter of 1 in.), area of compressor side 

2cm 85.2=cA  (a diameter of 0.75 in.), initial combustion pressure kPa 35480 =eP  (500 

psig), a constant-force spring with N 09.0=sF , a check valve cracking pressure 

kPa 3.2=cvdP  (1/3 psi), and a reservoir pressure kPa 653=sP (80 psig). The portion of 

the simulation relating the work phase in the combustion chamber with the inertial 

dynamics of the free piston is sufficient to model the post-combustion pressure profile 

(Figure 5-4). This profile shows that the combustion gasses are allowed to adiabatically 
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expand all the way down to atmospheric pressure, whereupon the intake check valve 

opens allowing the mixture to dilute with cool air. This full expansion is essential for the 

inertial loading characteristic of the FPC, and as it can be seen, it occurs within a very 

short duration of time, indicating a rapid transduction from stored chemical to kinetic 

energy. This rapid transduction helps mitigate the effect of heat loss through the 

combustion chamber wall and also enhances efficiency. 
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Figure 5-4: Pressure drop in engine side right after combustion. 

 

Design and Implementation 

A bench-top prototype of the FPC was built using off-the-shelf pneumatic equipment. 

This prototype is slightly different than the generalized schematic shown in Figure 5-1, 

and the main differences are results of evaluating design choices from an intermediary 
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prototype (not shown). The prototype design evolution is presented in detail in [12] and 

[13]. Figure 5-5 shows a schematic of the current version of the FPC. This device 

consists of two cylinders in-line and opposing one another. Both cylinders have a 

combustion side (back of the piston) and a pumping side (rod side of the piston). 
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Figure 5-5: Schematic of hardware version of FPC. 

 

The device is completely symmetrical, so its starting position can be on either side.  

The piston is held in place by two magnets while injecting a mixture of pressurized air 

and propane into the combustion chamber. Once the proper amount of mixture has 

entered the chamber, the air and propane valves close and a sparkplug initiates 

combustion. The piston will then travel to the other side while serving four functions: (1) 

pump fresh air into the air reservoir; (2) exhaust the diluted combustion products from 

previous combustion out of the opposing cylinder’s combustion chamber; (3) breathe in 

fresh air into the opposing cylinder’s pumping chamber; and (4) breathe in fresh air into 
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the combustion chamber after the pressure has dropped below atmospheric, thus cooling 

down and diluting the combustion products. At the end of the stroke the piston will be 

held in place by the opposing magnets, and the cycle can occur on the opposite side in the 

same fashion. The work required to break away the magnetic holding force after 

combustion is retrieved at the end of pumping. The force-distance profile of the magnets 

also allows dominantly inertial loading presented to the combustion pressure after a very 

short distance after break-away has occurred. 

Figure 5-6 shows a picture of the current FPC prototype, and Figure 5-7 shows a close 

up of one of the cylinders. The setup of the FPC consists of two 4-inch stroke, ¾-inch 

bore BIMBA� standard air cylinders, ported appropriately for all necessary flow. The 

two piston rods are connected to a moving mass with small pieces of plastic tubing in 

order to avoid a purely rigid connection, which would yield increased friction due to 

misalignments. The moving mass carries two neodymium-iron-boron magnets on each 

side, which serve the purpose of holding the free piston in its starting position in order to 

overcome the injection pressure before combustion (section 4.1). These magnets snap 

onto ferrous plates at the end of each stroke, as can be observed in Figures 6 and 7. As 

stated earlier, the work invested in breaking away this magnetic force right after 

combustion will be regained at the end of the stroke, when the magnets from the opposite 

side pull the moving mass into place. Note that this pulling magnetic force will aid the 

free piston to make it to the other side and snap into place for a new injection phase. For 

all fluid flow purposes, standard check valves, 2-way on/off valves and 4-way valves 

were used where needed. The fuel in use is a bottle of COLEMAN� propane, available at 
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most convenience stores at low cost. Finally, the spark plugs are NGK ME-8, normally 

used for model aircraft. 

 
 

 
 

Figure 5-6: Picture of FPC Prototype. 

 

 
 

Figure 5-7: Close-up Picture of Cylinder 
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Injection Pressure 

In order to obtain desirable combustion characteristics, it is mentioned in [4] that the 

injection pressure of the air/fuel mixture needs to be adequate enough to achieve the 

target initial combustion pressure. This minimum injection pressure requirement is given 

by,  

 0e
AFTe

injreac
inj P

TR
TR

P 







=  (20) 

 
where reacR  and eR are the average gas constants of the reactants and combustion 

products, respectively; injT  and AFTT  are the temperature immediately preceding 

combustion and adiabatic flame temperature, respectively; and 0eP  is the initial 

combustion pressure needed such that the FPC extracts enough work to pump all the air 

drawn into the compressor cylinders into the high-pressure reservoir. In order to obtain 

the appropriate injection pressure that corresponds to such an initial combustion pressure, 

the free piston needs to be locked in its initial position during injection. A sufficiently 

stiff spring could serve this purpose, but would offer so much resistance upon the 

combustion stroke that the desired inertial loading would be spoiled. To overcome this, 

the four neodymium-iron-boron magnets were installed to hold the free piston in its 

starting position before combustion. The magnetic gap is adjustable by the turn of a 

screw, such that the bonding magnetic force can be set just slightly higher than the force 

exerted on the free piston by the injection pressure. Additionally, this magnetic force acts 

over such a small portion of the total stroke length that its effect against the inertial 

loading is negligible once the motion of the piston begins. This implementation of 
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magnets replaces what in a conventional IC engine would be both the intake and 

compression strokes. 

 

Mixture Quality 

Additionally to injection pressure, proper combustion requires good air/fuel mixture 

quality. Ideally, this mixture should match the stoichiometric mass ratio for combustion, 

namely 15.67 for air and propane. For complete combustion, it is also imperative that the 

mixture is uniform. This type of mixing is not instantaneous, and occurs by diffusion and 

any flow mixing present. By injecting the air and propane into the chamber through 

separate ports, it would take an unacceptable amount of time for the two substances to 

uniformly mix, thus affecting the cycle rate of the system and making it less reliable. As a 

solution, the air and propane were first injected into a common flow stream, which 

enforced a turbulent enough flow such that the mixture was sufficiently uniform upon 

reaching the combustion chamber. 

Since one of the main objectives of this paper is to show the total efficiency of the 

system from stored chemical energy of propane to stored pneumatic potential energy of 

compressed air, it is imperative to be as precise as is reasonably possible with all 

measurements. The most difficult, yet one of the most important measurements to 

determine, is the mass of propane used for combustion. Knowing this mass and the 

energy density of propane, the total amount of initial energy can be determined and 

compared to the potential energy of compressed air in the reservoir. 
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Measuring the Mass of Propane 

As shown in Figure 5-6, the air/fuel mixture enters the chamber by controlled opening 

and closing of the air, fuel and mixture valves. The air and fuel valves are timed such that 

a stoichiometric mixture exists within a common mixing line at the exit of both valves. 

This mixture is then admitted to one of the two combustion chambers via a three-way 

mixture valve. The air and fuel valves are Parker� Series-9 valves, and operate as two-

way on/off valves. The nominal response time of these valves is 12 ms, while their 

commanded opening times for this application will range between 8-12 ms for propane 

and 50-80 ms for air. A mass flow meter could not be used to determine the mass of 

propane flowing because these are small pulses, and not steady flows. Also, since the 

propane valve operates at opening times close to the valve response time, the small pulse 

flow dynamics would not be similar to the steady flow dynamics. The mass was instead 

calculated by injecting propane into an inverted graduated cylinder of a beaker with 

water, and observing the water displacement in the cylinder for various durations of the 

commanded opening pulse sent to the fuel valve. This was done for 8, 9, and 10 ms 

pulses, and each one was performed several times to obtain an average. The standard 

deviation of measured displaced water for each pulse duration was very close to the 

readability of the scale. The same was done for the air, in order to find stoichiometric 

values based on air and fuel valve opening times. It should be noted that this match of 

opening times yields accurate stoichiometric mixtures only if flowing into atmospheric 

pressure. A method to obey this restriction during operation is discussed below. 

For precise data acquisition purposes, the engine was run only in single fire shots. 

Before each fire, the exhaust port and mixture valve was opened, and the fuel and air 
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valves opened for specific durations previously determined to yield a stoichiometric 

mixture. This was done several times such that the entire mixing line would contain a 

precise air-fuel ratio. The exhaust port was then closed and some of the stoichiometric 

air/fuel mixture remaining in the mixture line was pushed into the combustion chamber, 

by opening the mixture valve, until reaching the desired injection pressure. It was ensured 

that the mixing line was long enough such that only a portion of the line was required for 

injection, and thus maintaining a proper mixture. The fuel injection process can be 

considered an adiabatic compression; thus, we can consider the following relationship: 

 mixmix
einjlineatm VPVP γγ
0=  (21) 

where lineV  is the partial volume of the mixture before entering the combustion chamber, 

and mixγ  is the ratio of specific heats of the air/fuel mixture. 

Additionally, by conservation of mass, and assuming an ideal gas, we have: 

 
injmix

einj

ambmix

lineatm
e TR

VP
TR
VPm 0

0 ==   (22) 

where 0em  and mixR  are the mass and average gas constant of the fuel mixture, 

respectively, and injT  is the injection temperature (immediately preceding combustion). 

Combining Equations (21) and (22), the injected mass of fuel can be calculated as: 
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Adjusting Mixture while Pumping 

Ideally, every firing should be strong enough for the piston to just barely make it to 

the other side. If combustion is stronger than it needs to be, the piston will carry extra 
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energy that will not be used for pumping, but dissipated in colliding with the opposite 

side. This is quite wasteful and brings down the total efficiency of the system. 

Conversely, if the combustion is weak and the piston carries less kinetic energy than 

needed to pump a full stroke, it will not make it to the other side, and some energy would 

need to be re-invested (by utilizing the air injection valve and energy stored in the 

reservoir) to push the piston to the other side (note that the area of the rod side being less 

that the piston side will allow this to occur when both sides are ultimately presented with 

the reservoir pressure). Precisely controlling the strength of the combustion for 

continuous operation would require more sophisticated equipment and is beyond the 

scope of this paper. However, full compression of the air reservoir is achieved here with 

discrete increases of valve opening times as needed. It should be noted that due to the low 

resolution of the valves at these extremely low mass flows, the combustion pressure 

increase between any two valve-opening times is relatively large. Figure 5-8 shows the 

average amounts of propane mass and combustion pressures yielded by all three sets of 

valve timings used for this experiment. 

 

 
 

Figure 5-8: Fuel Masses and Combustion Pressures 
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For data gathering, the FPC is fired first with the lowest set of valve opening times. 

After a certain number of firings, the pressure in the air reservoir will reach a certain 

threshold, at which point the combustion pressure will not be adequate for the free piston 

to complete the stroke, and the injection is re-adjusted to the next set of opening pulse-

times. It should be intuitive that the first few shots after a threshold are the least efficient, 

while the last few shots before a threshold are the most efficient. 

 

Experimental Results and Evaluation 

Experimentation consisted of a series of single fire shots. Combustion took place in a 

6.4 mL volume, with a moving mass of 1.82 kg. Three different opening times of the fuel 

valve were used for combustion (8, 9, and 10 ms), depending on the combustion pressure 

desired. The data shown in Figures 5-9 through 5-17 are taken from two single shots of 

the device. The first set (Figures 5-9 through 5-13) show a less than ideal shot and the 

second set (Figures 5-14 through 5-17) show a more ideal shot. This variation is a result 

of the lack of adequate valve opening resolution resulting from the hardware used with 

this experimental setup. Figures 5-9, 5-10, 5-11, and 5-12 show combustion pressure, air 

reservoir pressure, position of the piston and velocity of the piston, respectively. These 

were taken from a typical firing at a low pumping pressure and exhibit the inadequacy of 

resolution of the air and fuel valves – note the collision with the opposing side apparent 

from the sharp decrease in velocity shown in Figure 5-12. The spark occurs at 0.4 

seconds. Figure 5-9 also shows the injection pressure in the combustion chamber before 

ignition. 

 



 112

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
50

100

150

200

250

300

350

400

450

500

550

600

Time (sec)

C
om

bu
st

io
n 

P
re

ss
ur

e 
(k

P
a)

 
Figure 5-9: Pressure in the combustion chamber. Fuel injection occurs 

between 0.1 and 0.2 second; spark ignites at 0.4 seconds. 
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Figure 5-10: Pressure in the Air Reservoir. 
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Figure 5-11: Position of the Free Piston.  Sharp corner at the top indicates 

abrupt collision of piston with magnets (loss of energy). 
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Figure 5-12: Velocity of the Free Piston. Vertical line at the right indicates 

wasted kinetic energy. 
 
 

Despite the inefficient operation shown for Figures 5-9, 5-10, 5-11 and 5-12, it should 

be noted that these plots still exhibit the main features of the FPC, such as the inertial 

loading (full expansion of combustion gasses in Figure 5-9) and the breathe-in 

mechanism (combustion pressure decreases to atmospheric pressure before the end of the 

stroke). Also, the frequency for continuous operation can be maximized by reducing the 

time between signals. With basic knowledge of the injection, combustion and expansion 

timings, the duration of each stroke can be reduced to just under 0.4 seconds. This yields 

a total operational frequency of 2.5 strokes per second. 

An evaluation of the experimentally obtained P-V curve, shown in Figure 5-13, 

compares the experimental prototype device with the theoretically adiabatic behavior of 

constant=ePV γ . It can be seen that the experimentally obtained curve becomes flat at 

atmospheric pressure as hoped and indicates that the device is capable of both fully 

expanding the combustion products as well as being able to intake cool air from the 

environment to dilute the exhaust products. In light of the comparison of the 

experimentally obtained P-V curve as compared with the adiabatic P-V curve, heat loss 
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appears to be non-negligible but manageable. It should be noted that the curve shown is 

from the device firing the first time when the device is cold and when heat losses would 

be at a maximum. Heat losses can be further reduced by choosing a different material for 

the combustion chamber walls (currently aluminum) and increasing the combustion dead 

volume (which would increase the ratio of volume to surface area). 
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Figure 5-13: P-V curve in the combustion chamber. The solid line shows the 
experimentally measured P-V curve, and the dashed line shows the ideal 

adiabatic P-V curve. 
 
 
 

Through single fire shots, the 187-mL air reservoir was successfully compressed from 

atmospheric pressure up to 310 kPa. It took 52 strokes to reach this pressure, which can 

be achieved in 20 seconds of continuous operation (based on the previously described 

operational frequency). This compression pressure is limited by the ratio of stroke 

volume (engine displacement) over dead volume in the rod (compressing) side of the 

chosen cylinders. This dead volume was quite large (about 4.1 mL), and is a nonideality 

(as noted in [4]) that should be reduced in future design considerations. This nonideality 

presents the main drawback in this version of the FPC. 
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The total energetic merit of this system is represented by the efficiency of conversion 

from chemically stored energy in propane to pneumatic potential energy of compressed 

air. As shown analytically in [4], and outlined in Figure 5-3, this efficiency also increases 

for larger combustion pressures. Experimentally, this efficiency was calculated for a 

single fire shot in which the piston just barely made it to the other side – the ideal case 

which could conceivably be achieved for every stroke given adequate valve resolution. 

Figures 5-14, 5-15, 5-16, and 5-17 show the respective pressures, displacement and 

velocity for this particular shot. By looking at the position and velocity in Figures 5-16 

and 5-17, it can be observed that the piston “barely made it” to the other side, with a little 

help from the magnetic force.  

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

100

200

300

400

500

600

700

800

Time (sec)

C
om

bu
st

io
n 

P
re

ss
ur

e 
(k

P
a)

 
Figure 5-14: Pressure in the Combustion Chamber for efficient firing. 
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Figure 5-15: Pressure in the Air Reservoir 
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Figure 5-16: Position of the Free Piston. Smooth curve at the top indicates 

 that piston 'barely made it' to the other side 
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Figure 5-17: Velocity of the Free Piston. Spike at the bottom left shows 

the piston snapping into the magnets, hence an efficient firing. 
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This shot used 1.05×10-6 kg of propane and resulted in an increase of the pressure in 

the air reservoir (a volume of 1.866×10-4 m3) from 222.75 kPa to 235 kPa. Using 

equation (5), the pneumatic potential energy increase is calculated as 2.48 Joules. The 

total efficiency of conversion from chemically stored energy of the fuel to stored 

pneumatic energy of the compressed air, is calculated as, 

 %10.5100
fuel kg 10*05.1

fuel kg
kJ 46350

kJ 0.00248337
6

=×
×

=
−

totalη  (24) 

 
Additionally, to calculate the overall system efficiency, we need to take into account the 

efficiency associated with the air re-investment; that is, the air from the reservoir that is 

utilized for the subsequent combustion cycle. Using Equation (8), this efficiency can be 

calculated as, 

 %39100
1069.2

10*645.11069.2
5

55

=×
×
−×= −

−−

investη  (25) 

Hence, the overall system efficiency of this shot becomes, 

%99.1== investtotalsys ηηη  

Based on a simple thermodynamic analysis presented in [4], the total theoretical 

efficiency of the system with these parameters is calculated to be 5.19%. However, this 

calculation assumes zero dead volume in the compressing side of the cylinder, no heat 

losses in the combustor side and high heat losses in the compressor side. The issues of 

excess dead volume in the compressor side and combustor heat losses present in this 

experimental prototype would be difficult to fully address with standard pneumatic 

equipment (such as those used here), and would require custom made parts in order to 

reduce the minimum rod-side volume, increase the combustor volume (without 



 118

sacrificing stroke length), and use a better insulating material for the combustor walls. As 

also shown in [4], the efficiency of the device increases with increased combustion 

pressure (up to 20% efficiency). With these points in mind, the experimental efficiency 

obtained experimentally met reasonable expectations, while leaving room for 

improvement in future designs.  

 

Conclusions 

The design, characterization and experimental operation a Free Piston Compressor 

(FPC) were presented. The FPC is a small-scale internal combustion engine capable of 

pumping air into a high-pressure air reservoir, and is intended to serve as a pneumatic 

power supply system. The proposed technology is intended to be coupled with an 

untethered pneumatic robotic system, and aims to provide an order of magnitude greater 

energetic merit than state of the art power supply and actuation systems (electrical 

batteries coupled with DC motors).  

Experimental results demonstrate that the device is capable of fully expanding the 

combustion products down to atmospheric pressure as designed and demonstrate the 

merits of presenting a purely inertial load in a combustion process. Such dynamic loading 

serves to increase efficiency, allows the device to operate with low noise due to not 

having a high pressure exhaust “pop”, and allows the combustion products to be diluted 

with cool external air to contribute toward a low operating temperature compared to more 

conventional internal combustion engines. Experimental results also demonstrate that the 

device is capable of start on demand, making it well suited to a pressure regulation 

control loop in a portable pneumatic power supply system. Finally, it was shown that 
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further design work regarding the resolution of the air and fuel valves is needed to secure 

decent efficiencies across different reservoir pressures, and further work regarding the 

dead volumes in both sides of the piston is needed to increase efficiency. 

 A measured efficiency of 5.10% was achieved in converting stored chemical energy 

of propane into stored pneumatic potential energy. In comparing this power supply 

system with state of the art rechargeable batteries, an energy density of 180 kJ/kg for 

NiMH batteries and a conversion efficiency of 50% for an electromagnetic motor and 

mated gearhead would yield 90 kJ of delivered controlled mechanical work per kilogram 

of source energetic material. For the FPC under consideration, an energy density of 

46350 kJ/kg for propane, a measured conversion efficiency of 5.10% from stored 

chemical to pneumatic energy, a 39% efficiency associated with the computed mass 

reinvestment from the air reservoir for the next combustion event, and an assumed 

conversion efficiency of 30% from stored pneumatic energy to delivered controlled 

mechanical work of an associated pneumatic actuator, would yield 277 kJ of controlled 

work per kilogram of source energetic material. This increase, coupled with the equally 

important high power density of pneumatic actuators over electromagnetic motors 

(approximately 450 W/kg versus 50 W/kg), should contribute to a power supply and 

actuation system more appropriate for untethered human scale and power comparable 

robots and actuated devices. Table 5-1 below shows an energetic comparison between 

conventional rechargeable batteries and the FPC system. It should be noted that the 

theoretical conversion efficiency (5.2%) corresponds only to the specific parameters from 

the experimental data (combustion pressure and pressure in the air reservoir, namely), 
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and can significantly increase as shown in Figure 5-3.  It is also expected that design 

changes to the next generation of this device will result in further improvements. 

 

Table 5-1: Energetic Comparison Between FPC system, at the particular  
experimental values of combustion and air reservoir pressures used, and  

state of the art rechargeable batteries. 

 
 
 
 
 

System Source Energy 
Density (kJ/kg)

Conversion
 Efficiency

Actuation Efficiency (Stored to 
Delivered Mechanical Work)

Controlled Delivered 
Mechanical Work (kJ/kg)

Batteries 180 100% (PWM) 50% (Gearhead & Friction) 90

FPC (Theory) 46350 5.20% 30% (Pneumatic Actuator) 725 (8 times batteries)

FPC (Experimental) 46350 2.0% 30% (Pneumatic Actuator) 277 (3 times batteries)
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Figure A-1: Block diagram of FPC simulation used in Manuscript 1. 
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Figure A-2: Contents of sub-block "Breathe in/out." (Manuscript 1) 
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Figure A-3: Contents of sub-block "Cp, Cv, R, Gamma Calculations." (Manuscript 1) 
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Figure A-4: Contents of sub-block "Engine Parameters." (Manuscript 1) 
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Figure A-5: Contents of sub-block "Inertial Dynamics Parameters." (Manuscript 1) 
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Figure A-6: Contents of sub-block "Pump / Breathe in." (Manuscript 1) 
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Figure A-8: Block diagram of 'Pump-On-Return' simulation used in Manuscript 2. 
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Figure A-9: Contents of sub-block "Breathe in / Pump." (Manuscript 2) 
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Figure A-10: Contents of sub-block "Temperature Dynamics." (Manuscript 2) 
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Figure A-11: Contents of sub-block "Pressure Dynamics." (Manuscript 2) 
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Figure A-13: Block diagram of Real Time Workshop implementation for Manuscript 2. 
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Figure A-14: Block diagram of Real Time Workshop implementation for Manuscript 3. 
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Matlab function used to evaluate SIMULINK diagram shown in Figure A-1 (used to 
generate simulation data for Manuscript 1): 

 
%% full_device_init
%% Eric J. Barth
%% 5/03/04

%% general/device
%M=5/2.2; % mass of pistons, linkages, bearings (kg)
M=1.8175; % mass of pistons, linkages, bearings (kg)
cv_air=716.5; % in (m^2)/(sec^2.K), Van Wylen and Sonntag
R_air=287.1; % Van Wylen and Sonntag
cp_air=1003.5; % Van Wylen and Sonntag
cp_in=cp_air;
gamma=1.4; % Van Wylen and Sonntag
T_room=22+273;

R_reactants=282.1794; % R_univ/MW_ave_reactants
R_prod=293.56; % R_univ/MW_ave_products
gamma_prod=1.2682; % obtained from temperature dependent equations for
mid temp
spec_energy_propane=46300; % in kJ/(kg propane) (lower heating value)
spec_energy_mix=2787.13; % in kJ/(kg mix)
%l= 5 * 2.54/100; % length (in to m)
%Av=(3/1000)^2; % valve area
Av=1e-6; % valve coefficient (linear mass flow approx)
H_cond_e=0; % 1/R linear heat transfer conductance ENGINE SIDE
H_cond_c=0.0; % 1/R linear heat transfer conductance COMPRESSOR SIDE

%% pistons
A=pi*( 0.75/2*2.54/100)^2; % Area of power piston (in to m^2) ENGINE
Al=pi*( 0.75/2*2.54/100)^2; % Area of power piston (in to m^2)
COMPRESSOR
%A=pi*( 1.5 /100)^2; % Area of power piston (in to m^2) ENGINE
%Al=pi*( 1.25 /100)^2; % Area of power piston (in to m^2) COMPRESSOR
%P_init=(500+14.7)*101325/14.7; % initial combustion pressure at
x=x_deadvol (Pa)
P_init=585000; %(Pa)
V_dot0=0;
T_ADT=1977+273; % temperature of combustion (K)
P_inj=R_reactants*T_room/R_prod/T_ADT *P_init;
k=0 /12/2.54*100*4.46; % spring constant (lbs/ft to N/m)
%Fs=0.01*2*4.46; % spring pre-compression (lbs to N) (or constant force
spring if k=0)
Fs=0;

%% pump piston (loads)
P_atm=14.7*101325/14.7; % atmosphereic pressure (Pa)
P_cvd=1/3*101325/14.7; % check valve (both) pressure drop (Pa)

%% Shortcut Values
g=gamma_prod; R=R_prod; P0=P_init; e=spec_energy_mix*1000;
%Ps=(80+14.7)*101325/14.7; %Reservior pressure
Ps=228000;
g_a=1.4; % air in compresor side
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g_a2=1.01; % for nearly isothermal conditions in the compressor (_alt
calculations)

% auto analysis
x_dead=2/1000; % 1 mm -> (m)
V0=A*x_dead; % this is Ve0 -> use formula to find required Vc0
Ve0overVc=( P_atm* ((g_a/(1-g_a))*(1-(P_atm/Ps)^((1-g_a)/g_a)) ) ) / (
P0*( g/(1-g)*(P_atm/P0)^((g-1)/g) - 1/(1-g) + (P_atm/P0) ) );
Vc0=V0/Ve0overVc; % this will utilize all the ke and just barely run
into stop
yl=(A*Vc0+Al*V0)/(Al*A); %% see simulation
l=x_dead+Vc0/Al;
Vmax=A/l;
disp('**********************************')
disp('Device Specs:')
disp(['Length (in) = ' num2str(l/2.54*100)]);
disp(['Engine Diameter (in) = ' num2str(sqrt(A/pi)*2/2.54*100)]);
disp(['Compressor Diameter (in) = ' num2str(sqrt(Al/pi)*2/2.54*100)]);

%m_mix=P_inj*V0/R_reactants/(22+273); % mass of gasses in power piston
(propane + air) (kg)
m_mix=P_init*V0/R_prod/T_ADT; % mass of gasses in power piston (propane
+ air) (kg)
m_air=m_mix*15.63/16.63;
m_c0=P_atm*Vc0/R_air/T_room;

sim('full_device_const2');

disp(['Injection pressure (psig) = ' num2str(P_inj*14.7/101325-14.7)]);
disp(['Combustion pressure (psig) = ' num2str(P_init*14.7/101325-
14.7)]);
disp(['x_dead (in) = ' num2str(x_dead/2.54*100)]);
disp(' ');

disp('Simulation Results:')
T_final_F=min(T_power_piston_F(:,2));

v_max=max(v(:,2));
KE=0.5*M*v_max^2;
KE_eff=KE/(spec_energy_mix*1000*m_mix)*100;
disp(['T_final = ' num2str(T_final_F) ' deg F']);
disp(['KE Efficiency (U to KE) = ' num2str(KE_eff) ' %']);

m_c=max(m_pumped(:,2));
E_stored=(Ps-P_atm)/Ps*(m_c-15.63/16.63*m_mix)*R_air*T_room;
sys_eff_sim=(E_stored)/(spec_energy_mix*1000*m_mix)*100;
disp(['Total System Efficiency = ' num2str(sys_eff_sim) ' %']);

%%%% PLOTS
close all

plot(P_power_piston(:,1),P_power_piston(:,2)/1000,'k',[0 1.5e-
2],[101.325 101.325],'k:');
xlabel('Time (sec)');
ylabel('Pe (kPA)');
title('Pressure in Engine Side');
axis([0 1.5e-2 0 3600])
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figure
plot(T_power_piston(:,1),T_power_piston(:,2),'k',[0 0.015],[295
295],'k:');
xlabel('Time (sec)');
ylabel('Te (K)');
title('Temperature in Engine Side');
axis([0 0.015 200 2400])

figure
plot(P_pump_piston(:,1),P_pump_piston(:,2)/1000,'k',[0 0.15],[101.325
101.325],'k:');
xlabel('Time (sec)');
ylabel('Pc (kPA)');
title('Pressure in Compressor Side');
axis([0 0.15 0 750])

figure
plot(T_pump_piston(:,1),T_pump_piston(:,2),'k',[0 0.15],[295
295],'k:');
xlabel('Time (sec)');
ylabel('Tc (K)');
title('Temperature in Compressor Side');
axis([0 0.15 250 550])

figure
plot(m_pumped(:,1),m_pumped(:,2)*1000,'k');
xlabel('Time (sec)');
ylabel('mc (g)');
title('Mass Pumped into Reservoir');
axis([0 0.02 -0.005 3e-2])

%% expansion ratio
ind=find(P_power_piston(:,2)<=101325);
Vf=V_power_piston(ind(1),2);

%% work done (theory vs. integrated sim)
work=(P_init*V0^1.2682)/(1-1.2682)*(Vf^(1-1.2682)-V0^(1-1.2682)) -
P_atm*(Vf-V0);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp(' ');
disp('Thermodynamic Analysis:')

%% KE eff
eff_e=R*T_ADT*( ( g*P0^(1/g)*P_atm^((g-1)/g) - P0)/(1-g) +
P_atm)/(e*P0);
disp(['KE Efficiency (formula) = ' num2str(eff_e*100) ' %']);

%disp(['Expansion ratio (Vf/V0) = ' num2str(Vf/V0)]);

if 0,
%% PLOT ke efficiency versus Pe0;
Pmax=(2000+14.7)*101325/14.7;
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P=P_atm:(Pmax-P_atm)/40:Pmax;
P0_plot=P;
eff_ke_plot=R*T_ADT*( ( g*P.^(1/g)*P_atm^((g-1)/g) - P)/(1-g) +
P_atm)./(e.*P);
close all
%plot(P*14.7/101325-14.7,100*eff_ke_plot,'k');
%xlabel('Pe0 (psig)');
plot(P/1000,100*eff_ke_plot,'k');
xlabel('Pe0 (kPA)');
ylabel('Efficiency (%)');
title('Engine KE Efficiency vs Pe0');
axis([0 14000 0 50]);
grid
end

% Compressor efficiency
eff_comp=(1-g_a)/g_a*( (P_atm/Ps)^((1-g_a)/g_a) - (P_atm/Ps)^(1/g_a) )/
( 1-(P_atm/Ps)^((1-g_a)/g_a) );
eff_comp_alt=(1-g_a2)/g_a2*( (P_atm/Ps)^((1-g_a2)/g_a2) -
(P_atm/Ps)^(1/g_a2) )/ ( 1-(P_atm/Ps)^((1-g_a2)/g_a2) );
disp(['Compressor Efficiency (formula) = ' num2str(eff_comp*100) '
%']);
%disp(['Total Device Efficiency (formula) = ' num2str(eff_tot*100) '
%']);

%% reservoir heat loss efficiency
eff_res= P_atm^((g_a-1)/g_a)*Ps^((1-g_a)/g_a);
eff_res_alt= P_atm^((g_a2-1)/g_a2)*Ps^((1-g_a2)/g_a2);
disp(['Reservoir Heat Loss Efficiency (formula) = '
num2str(eff_res*100) ' %']);
disp(['Compressor and Heat loss Combined Efficiency (formula) = '
num2str(eff_comp*eff_res*100) ' %']);
disp(['Compressor (alt) and Heat loss Combined Efficiency (formula) = '
num2str(eff_comp_alt*eff_res_alt*100) ' %']);

if 0,
%% PLOT combined compressor and reservoir efficiency with and without
heat loss in compressor vs. Ps
figure
Pmax=(200+14.7)*101325/14.7;
Psp=P_atm+1:(Pmax-P_atm)/40:Pmax;
eff_comp_plot=(1-g_a)/g_a*( (P_atm./Psp).^((1-g_a)/g_a) -
(P_atm./Psp).^(1/g_a) ) ./ ( 1-(P_atm./Psp).^((1-g_a)/g_a) );
eff_res_plot= P_atm^((g_a-1)/g_a).*Psp.^((1-g_a)/g_a);
eff_comp_plot_alt=(1-g_a2)/g_a2*( (P_atm./Psp).^((1-g_a2)/g_a2) -
(P_atm./Psp).^(1/g_a2) ) ./ ( 1-(P_atm./Psp).^((1-g_a2)/g_a2) );
eff_res_plot_alt = P_atm^((g_a2-1)/g_a2).*Psp.^((1-g_a2)/g_a2);
%plot(Psp*14.7/101325-14.7,100*eff_comp_plot.*eff_res_plot,'k.-
',Psp*14.7/101325-14.7,100*eff_comp_plot_alt.*eff_res_plot_alt,'k');
%xlabel('Ps (psig)');
plot(Psp/1000,100*eff_comp_plot.*eff_res_plot,'k.-
',Psp/1000,100*eff_comp_plot_alt.*eff_res_plot_alt,'k');
xlabel('Ps (kPA)');
ylabel('Compressor Efficiency (%)');
legend('Without heat loss in compressor ( \gamma=1.4) ','With heat loss
in compressor ( \gamma=1.01)');
title('Compressor Efficiency vs Ps');
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grid
end

%% mass investment efficiency
Ve0overVc=( P_atm* ((g_a/(1-g_a))*(1-(P_atm/Ps)^((1-g_a)/g_a)) ) ) / (
P0*( g/(1-g)*(P_atm/P0)^((g-1)/g) - 1/(1-g) + (P_atm/P0) ) );
eff_invest= 1 -
15.63/16.63*P0/P_atm*Ve0overVc*R_air*T_room/R_prod/T_ADT ;
Ve0overVc_alt=( P_atm* ((g_a2/(1-g_a2))*(1-(P_atm/Ps)^((1-g_a2)/g_a2))
) ) / ( P0*( g/(1-g)*(P_atm/P0)^((g-1)/g) - 1/(1-g) + (P_atm/P0) ) );
eff_invest_alt= 1 -
15.63/16.63*P0/P_atm*Ve0overVc_alt*R_air*T_room/R_prod/T_ADT ;
disp(['Mass investment Efficiency (formula) = ' num2str(eff_invest*100)
' %']);
disp(['Mass investment (alt) Efficiency (formula) = '
num2str(eff_invest_alt*100) ' %']);

if 0,
%% PLOT mass investment (at Ps=80 psig)
Pmax=(2000+14.7)*101325/14.7;
P0p=Ps/2:(Pmax-P_atm)/40:Pmax;
Ve0overVc_plot=( P_atm* ((g_a/(1-g_a))*(1-(P_atm/Ps)^((1-g_a)/g_a)) )
) ./ ( P0p.*( g/(1-g).*(P_atm./P0p).^((g-1)/g) - 1/(1-g) + (P_atm./P0p)
) );
eff_invest_plot= 1 -
15.63/16.63.*P0p/P_atm.*Ve0overVc_plot*R_air*T_room/R_prod/T_ADT ;
Ve0overVc_alt_plot=( P_atm* ((g_a2/(1-g_a2))*(1-(P_atm/Ps)^((1-
g_a2)/g_a2)) ) ) ./ ( P0p.*( g/(1-g).*(P_atm./P0p).^((g-1)/g) - 1/(1-
g) + (P_atm./P0p) ) );
eff_invest_alt_plot= 1 -
15.63/16.63.*P0p/P_atm.*Ve0overVc_alt_plot*R_air*T_room/R_prod/T_ADT ;
figure
%plot(P0p*14.7/101325-14.7,100*eff_invest_plot,'k.-',P0p*14.7/101325-
14.7,100*eff_invest_alt_plot,'k');
%xlabel('Pe0 (psig)');
plot(P0p/1000,100*eff_invest_plot,'k.-
',P0p/1000,100*eff_invest_alt_plot,'k');
xlabel('Pe0 (kPA)');
ylabel('Efficiency (%)');
legend('Without heat loss in compressor ( \gamma=1.4) ','With heat loss
in compressor ( \gamma=1.01)');
title('Mass Investment Efficiency with Ps=80 psig (653 kPa) vs Pe0');
grid
end

%% Total System Efficiency
eff_tot_sys=(1/e)*(1-P_atm/Ps)*( ( ( g/(1-g)*(P_atm/P0)^((g-1)/g) -
1/(1-g) + (P_atm/P0) )/( (g_a/(1-g_a))*(1-(P_atm/Ps)^((1-g_a)/g_a)) )
)*R_prod*T_ADT - 15.63/16.63*R_air*T_room );

disp(['Total System Efficiency (formula) = ' num2str(eff_tot_sys*100) '
%']);

disp(['Total System Efficiency (individual mult together) = '
num2str(eff_e*eff_comp*eff_res*eff_invest*100) ' %']);
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disp(['Total System Efficiency (individual mult together alt calc) = '
num2str(eff_e*eff_comp_alt*eff_res_alt*eff_invest_alt*100) ' %']);

disp(' ')

if 0,
%% overall efficiency surface plot (Psp,P0p,eff_comp_plot*eff_ke_plot)
figure
Pmax1=(2000+14.7)*101325/14.7;
P0p=P_atm:(Pmax1-P_atm)/40:Pmax1;
Pmax2=(200+14.7)*101325/14.7;
Psp=P_atm:(Pmax2-P_atm)/40:Pmax2;

% in surf terminology x(j)=P0p(j), y(i)=Psp(i), Z(i,j)=eff_sys;
Z=zeros(length(Psp),length(P0p));
for i=1:length(Psp),

for j=1:length(P0p),
Z(i,j)=(1/e)*(1-P_atm/Psp(i))*( ( ( g/(1-g)*(P_atm/P0p(j))^((g-

1)/g) - 1/(1-g) + (P_atm/P0p(j)) )/( (g_a/(1-g_a))*(1-
(P_atm/Psp(i))^((1-g_a)/g_a)) ) )*R_prod*T_ADT -
15.63/16.63*R_air*T_room );

end
end
mesh(P0p*14.7/101325-14.7,Psp*14.7/101325-14.7,Z);
%colorbar
xlabel('P0');
ylabel('Ps');
zlabel('Total System Efficiency');
end

if 0,
%%% PLOT overall system efficiency at Ps=80 psig
%% shows both cases: heat losses and no heat losses in compressor
%% equations of state cannot show effect of heat losses in engine side
(gamma=1 is isothermal -> heat input as expands!)
%% uses Ps defined above

eff_comp_plot2=(1-g_a)/g_a*( (P_atm/Ps)^((1-g_a)/g_a) -
(P_atm/Ps)^(1/g_a) )/ ( 1-(P_atm/Ps)^((1-g_a)/g_a) );
eff_comp_alt_plot2=(1-g_a2)/g_a2*( (P_atm/Ps)^((1-g_a2)/g_a2) -
(P_atm/Ps)^(1/g_a2) )/ ( 1-(P_atm/Ps)^((1-g_a2)/g_a2) );

eff_res_plot2= P_atm^((g_a-1)/g_a)*Ps^((1-g_a)/g_a);
eff_res_alt_plot2= P_atm^((g_a2-1)/g_a2)*Ps^((1-g_a2)/g_a2);

Pmax=(2000+14.7)*101325/14.7;
P0p=P_atm+1:(Pmax-P_atm)/40:Pmax;
eff_ke_plot2=R*T_ADT*( ( g*P0p.^(1/g)*P_atm^((g-1)/g) - P0p)/(1-g) +
P_atm)./(e.*P0p);
Ve0overVc_plot2=( P_atm* ((g_a/(1-g_a))*(1-(P_atm/Ps)^((1-g_a)/g_a)) )
) ./ ( P0p.*( g/(1-g).*(P_atm./P0p).^((g-1)/g) - 1/(1-g) + (P_atm./P0p)
) );
eff_invest_plot2= 1 -
15.63/16.63.*P0p/P_atm.*Ve0overVc_plot2*R_air*T_room/R_prod/T_ADT ;
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Ve0overVc_alt_plot2=( P_atm* ((g_a2/(1-g_a2))*(1-(P_atm/Ps)^((1-
g_a2)/g_a2)) ) ) ./ ( P0p.*( g/(1-g).*(P_atm./P0p).^((g-1)/g) - 1/(1-
g) + (P_atm./P0p) ) );
eff_invest_alt_plot2= 1 -
15.63/16.63.*P0p/P_atm.*Ve0overVc_alt_plot2*R_air*T_room/R_prod/T_ADT ;
figure
%plot(P0p*14.7/101325-
14.7,100*eff_ke_plot2.*eff_comp_plot2.*eff_res_plot2.*eff_invest_plot2,
'k.-',P0p*14.7/101325-
14.7,100*eff_ke_plot2.*eff_comp_alt_plot2.*eff_res_alt_plot2.*eff_inves
t_alt_plot2,'k');
%xlabel('P0 (psig)');
plot(P0p/1000,100*eff_ke_plot2.*eff_comp_plot2.*eff_res_plot2.*eff_inve
st_plot2,'k.-
',P0p/1000,100*eff_ke_plot2.*eff_comp_alt_plot2.*eff_res_alt_plot2.*eff
_invest_alt_plot2,'k');
xlabel('Pe0 (kPA)');
ylabel('Efficiency (%)');
legend('Without heat loss in compressor ( \gamma=1.4) ','With heat loss
in compressor ( \gamma=1.01)');
title('Total System Efficiency with Ps=80 psig (653 kPa) vs Pe0');
grid
end

% garbage

%% entire efficiency (engine*pump) & compressor efficiency

%num=( ( g*P0^(1/g)*P_atm^((g-1)/g) - P0)/(1-g) + P_atm); % needs
gamma=g
%den1=P_atm/(1-g_a)* ( 1-(P_atm/Ps)^((1-g_a)/g_a) ) + P_atm* (
(P_atm/Ps)^(1/g_a)-1 ); % needs gamma_air=g_a
%den2=(Ps^((g_a-1)/g_a)*P_atm^(1/g_a)-Ps^(-1/g_a)*P_atm^((g_a+1)/g_a));
% needs gamma_air=g_a
%Vc0overV0=num/(den1+den2);
%Vc0=(Vc0overV0)*V0; % compressor area (max vol) - will be a large mult
of V0!!
%eff_comp= (Vc0/V0) * (Ps^((g_a-1)/g_a)*P_atm^(1/g_a)-Ps^(-
1/g_a)*P_atm^((g_a+1)/g_a)) / ( ( g*P0^(1/g)*P_atm^((g-1)/g) - P0)/(1-
g) + P_atm);
%eff_comp1= Vc0overV0 * (Ps^((g_a-1)/g_a)*P_atm^(1/g_a)-Ps^(-
1/g_a)*P_atm^((g_a+1)/g_a)) / ( ( g*P0^(1/g)*P_atm^((g-1)/g) - P0)/(1-
g) + P_atm);
% disp(['Compressor Efficiency (formula1) = ' num2str(eff_comp*100) '
%']);

%eff_tot=(R*T_ADT/e) * (Vc0/V0) * (Ps^((g_a-1)/g_a)*P_atm^(1/g_a)-Ps^(-
1/g_a)*P_atm^((g_a+1)/g_a))/P0;

disp(['Combustion chamber intial volume Ve0 = ' num2str(V0*100^3) '
cm^3']);
disp(['Required compressor volume Vc0 = ' num2str(V0/Ve0overVc*100^3) '
cm^3']);
disp(['Combustion chamber final volume Vef (down to Patm) = '
num2str(((P_init*V0^g/P_atm)^(1/g))*100^3) ' cm^3']);
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Matlab function used to evaluate SIMULINK diagram shown in Figure A-8 (used to 
generate simulation data for Manuscript 2): 
 
%% Eric J. Barth
%% 8/10/04

%% general/device
M=2/2.2; % mass of pistons, linkages, bearings (kg)
cv_air=717.75; % in (m^2)/(sec^2.K)
R_air=287.1;
cp_air=cv_air+R_air;
gamma=1.4;
cv_mix=656.75; % mix=air+propane stoichiometric
R_mix=262.7;
cp_mix=cv_mix+R_mix;
P_atm=14.7*101000/14.7; % atmosphereic pressure (Pa)
spec_energy_propane=46300; % in kJ/(kg propane) (lower heating value)
spec_energy_mix=2787.13; % in kJ/(kg mix)
l=4*2.54/100; % length (m)
%Av=(3/1000)^2; % valve area
Av=1e-5; % valve coefficient (linear mass flow approx)
H_cond=0*1; % 1/R linear heat transfer conductance

%% power piston
A=pi*( 1.25 /2*2.54/100)^2; % Area of power piston (in to m^2)
P_init=(650+14.7)*101000/14.7; % initial combustion pressure at
x=x_deadvol (Pa)
Vmax=A*l;
V_dot0=0;
T_ADT=1900+273; % temperature of combustion (K)
P_inj=P_init*(22+273)/T_ADT;
Fs=2*P_inj*A; % hold against injection pressure (or constant force
spring if k=0)
k= 700 /12/2.54*100*4.46; % spring constant (lbs/ft to N/m) - starts at
Vfc
x_dead=0.149*2.54/100; % dead space giving volume of initial combustion
(m)
V0=A*x_dead;
x_mag=1/1000; % magnetic gap (m)
k_mag=Fs*x_mag^2; % required constant to provide Fs at x_mag
Vfc=(P_init*(V0^gamma)/P_atm)^(1/gamma); % volume where combustion
pressure gets down to atmospheric pressure
m_mix=P_inj*(x_dead*A)/R_mix/(22+273); % mass of gasses in power piston
(propane + air) (kg)
m_air=m_mix*15.63/16.63;

%% pump piston (loads)
Al=pi*( 1.25 /2*2.54/100)^2; % Area of pump piston (m^2)
y_dead=0.01*2.54/100; % for dead volume of pump (in to m)
Vl0=Al*y_dead;
Vlmax=Al*l;
Vl_holes=1*Vlmax; % where side holes are on pump piston
P_comp=(80+14.7)*101000/14.7; % compressor tank pressure (Pa)
P_cvd=1/3*101000/14.7; % check valve (both) pressure drop (Pa)
m_gas_pump=(P_atm-P_cvd)*Vl0/287.1/(22+273); % mass of gasses in pump
piston (air) (kg)
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T_room=22+273;
T_pump_init=22+273;

% auto analysis
sim('folded_fpc_mag');
go=0;
while go,

%disp(x_dead/2.54*100);
V0=A*x_dead;
m_mix=P_inj*(x_dead*A)/R_mix/(22+273); % mass of gasses in power

piston (propane + air) (kg)
m_air=m_mix*15.63/16.63;
sim('folded_fpc_mag');
x_max=max(x(:,2));
if ((l-x_max)<=l/100)*((l-x_max)>l/1000),

go=0;
elseif x_max<l,

x_dead=(1+(l-x_max)/l)*x_dead;
else

x_dead=0.5*x_dead;
end

end

disp(['Injection pressure (psig) = ' num2str(P_inj*14.7/101000-14.7)]);
disp(['x_dead (in) = ' num2str(x_dead/2.54*100)]);
dum=length(m_pumped(:,2));
mp=m_pumped(dum,2);
% pot energy stored in res after all coming to room temp:
energy_in_res=(mp-m_air)*R_air*T_room; % also accounts for mass of air
needed for combustion
T_final_F=min(T_power_piston_F(:,2));

%t_final_index=length(P_power_piston(:,1));
%dum=find(P_pump_piston(:,2)>=(P_comp+P_cvd-0.01*101000/14.7));
%if (isempty(dum)),
% disp('Piston did not pump');
%else
% dum=find(P_power_piston(:,2)==P_power_piston(t_final_index,2));
% t_index=dum(1);
% x_open=x(t_index,2);
% T_open=T_power_piston(t_index,2);
% T_final=(x_open-x_dead)*(T_open)/(l-x_dead)+(l-
x_open)*(22+273)/(l-x_dead);
% T_final_F=(T_final-273)*9/5-32;
% dum=find(P_pump_piston(:,2)>=(P_comp+P_cvd-0.01*101000/14.7));
% t_index2=dum(1);
% x_start_pump=x(t_index2,2);
% y_pump=max(x(:,2))-x(t_index2,2);
% y_pump_in=y_pump*100/2.54;
% T_high=T_power_piston(1,2);
% T_low=T_open;
% eff=(T_high-T_low)/T_high*100;
% %adiabatic_energy_stored=energy_stored(t_final_index,2);
%
%tot_adia_eff=adiabatic_energy_stored/(spec_energy_mix*1000*m_mix)*100;
% % isothermal_energy_stored=y_pump*Al*P_comp; % wrong
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% % tot_iso_eff=isothermal_energy_stored/(13000*1000*m_gas)*100; %
wrong
% dum=find(x(:,2)<=x_dead);
% dum2=find(dum>50);
%% t_cycle=x(dum(dum2(1)),1);
% % res stored energy after heat loss down to room temp (see p.49)
% V1=Al*(yl-x_dead);
% m1=(P_atm-P_cvd)*V1/R_air/T_room;
% T2=(P_comp+P_cvd)*Al*(yl-x_start_pump)/m1/R_air;
% V2=Al*(yl-max(x(:,2)));
% m2=(P_comp+P_cvd)*V2/R_air/T2;
% V_res=(m1-m2-m_air)*R_air*T_room/P_comp; % also accounts for mass
of air needed for combustion
% energy_in_res=P_comp*V_res;
res_iso_eff=energy_in_res/(spec_energy_mix*1000*m_mix)*100;
disp(['T_final = ' num2str(T_final_F) ' deg F']);
disp(['Total Efficiency (inside res cool) = ' num2str(res_iso_eff) '
%']);
% disp(['Specific Work of engine = '
num2str(spec_energy_propane*eff/100) ' kJ/kg']);
disp(['Total Specific Work (once inside res) = '
num2str(spec_energy_propane*res_iso_eff/100) ' kJ/kg']);
dum=find(x(:,2)<=x_dead);
dum2=find(dum>50);
if ~isempty(dum2),

t_cycle=x(dum(dum2(1)),1);
disp(['Device cycle time = ' num2str(t_cycle) ' sec']);
disp(['Device power output (res) = ' num2str(energy_in_res/t_cycle)

' Watts']);
disp(['Device frequency = ' num2str(1/t_cycle) ' Hz']);
disp(' ')

end

 



 
 
 
 
 
 
 
 
 
 
 

APPENDIX C 
 

ADDITIONAL EXPERIMENTAL DATA FROM  
MANUSCRIPT 2 ('Pump-on-Return' Version of FPC) 
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Figure C-1: Combustion Pressure with 95 ms air valve opening time, 13 ms fuel  

valve opening time, and 50 PSIG air supply. (run090804_v2.mat) 
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Figure C-2: Position of free piston with 95 ms air valve opening time, 13 ms fuel  

valve opening time, and 50 PSIG air supply. (run090804_v2.mat) 
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Figure C-3: Up-close view of combustion sample, from Figure C-1. (run090804_v2.mat) 
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Figure C-4: Up-close view of position profile, from Figure C-2. (run090804_v2.mat) 

 
 



 148

 

0 2 4 6 8 10 12 14 16 18 20

0

50

100

Time (s)

C
om

bu
st

io
n 

P
re

ss
ur

e 
(P

S
IG

)

 
Figure C-5: Combustion Pressure with 100 ms air valve opening time, 13 ms fuel  

valve opening time, and 50 PSIG air supply. (run090804_v3.mat) 
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Figure C-6: Position of free piston with 100 ms air valve opening time, 13 ms fuel  

valve opening time, and 50 PSIG air supply. (run090804_v3.mat) 
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Figure C-7: Up-close view of combustion sample, from Figure C-5. (run090804_v3.mat) 
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Figure C-8: Up-close view of position profile, from Figure C-6. (run090804_v3.mat) 
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Figure C-9: Combustion Pressure with 110 ms air valve opening time, 14 ms fuel valve 
opening time, and 50 PSIG air supply. (run091004_v1.mat) (Peaks due to noisy spark) 
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Figure C-10: Position of free piston with 110 ms air valve opening time, 14 ms fuel  

valve opening time, and 50 PSIG air supply. (run091004_v1.mat) 
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Figure C-11: Up-close view of combustion sample, from Figure C-9. 

(run091004_v1.mat) 
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Figure C-12: Up-close view of position profile, from Figure C-10. (run091004_v1.mat) 
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Figure C-13: Combustion Pressure with 50 ms air valve opening time, 11 ms fuel valve 

opening time, and 78 PSIG air supply. (run111104_v1.mat) 
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Figure C-14: Position of free piston with 50 ms air valve opening time, 11 ms fuel  

valve opening time, and 78 PSIG air supply. (run111104_v1.mat) 
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Figure C-15: Up-close view of combustion sample, from Figure C-13. 

(run111104_v1.mat) 
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Figure C-16: Up-close view of position profile, from Figure C-10. (run111104_v1.mat) 
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Figure C-17: Combustion Pressure with 45 ms air valve opening time, 9 ms fuel valve 

opening time, and 78 PSIG air supply. (run111104_v3.mat) 
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Figure C-18: Position of free piston with 45 ms air valve opening time, 9 ms fuel  

valve opening time, and 78 PSIG air supply. (run111104_v3.mat) 
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Figure C-19: Up-close view of combustion sample, from Figure C-17. 
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Figure C-20: Up-close view of position profile, from Figure C-18. (run111104_v3.mat) 

 



 
 
 
 
 
 
 
 
 
 
 

APPENDIX D 
 

ADDITIONAL EXPERIMENTAL DATA FROM  
MANUSCRIPT 3 (Final Version of FPC) 
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Figure D-1: Combustion Pressure with 70 ms air valve opening time, 13 ms fuel valve 

opening time, and 78 PSIG air supply. (032305_78psig_supply.mat) 
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Figure D-2: Pumping Pressure with 70 ms air valve opening time, 13 ms fuel valve 

opening time, and 78 PSIG air supply. (032305_78psig_supply.mat) 
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Figure D-3: Position of Free Piston with 70 ms air valve opening time, 13 ms fuel valve 

opening time, and 78 PSIG air supply. (032305_78psig_supply.mat) 
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Figure D-4: Velocity of Free Piston with 70 ms air valve opening time, 13 ms fuel valve 

opening time, and 78 PSIG air supply. (032305_78psig_supply.mat) 
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Figure D-5: Combustion Pressure with 45 ms air valve opening time, 13 ms fuel valve 

opening time, and 78 PSIG air supply. (032405_78psig_supply.mat) 
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Figure D-6: Pumping Pressure with 45 ms air valve opening time, 13 ms fuel valve 

opening time, and 78 PSIG air supply. (032405_78psig_supply.mat) 
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Figure D-7: Position of Free Piston with 45 ms air valve opening time, 13 ms fuel valve 

opening time, and 78 PSIG air supply. (032405_78psig_supply.mat) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

50

100

Time (s)

V
el

oc
ity

 (c
m

/s
)

 
Figure D-8: Velocity of Free Piston with 45 ms air valve opening time, 13 ms fuel valve 

opening time, and 78 PSIG air supply. (032405_78psig_supply.mat) 
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Figure D-9: Combustion Pressure with 59 ms air valve opening time, 9 ms fuel valve 

opening time, and 78 PSIG air supply. (052305_08.mat) 
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Figure D-10: Pumping Pressure with 59 ms air valve opening time, 9 ms fuel valve 

opening time, and 78 PSIG air supply. (052305_08.mat) 
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Figure D-11: Position of Free Piston with 59 ms air valve opening time, 9 ms fuel valve 

opening time, and 78 PSIG air supply. (052305_08.mat) 
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Figure D-12: Velocity of Free Piston with 59 ms air valve opening time, 9 ms fuel valve 

opening time, and 78 PSIG air supply. (052305_08.mat) 
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Figure D-13: Combustion Pressure with 53 ms air valve opening time, 8 ms fuel valve 

opening time, and 78 PSIG air supply. (052405_04.mat) 
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Figure D-14: Pumping Pressure with 53 ms air valve opening time, 8 ms fuel valve 

opening time, and 78 PSIG air supply. (052405_04.mat) 
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Figure D-15: Position of Free Piston with 53 ms air valve opening time, 8 ms fuel valve 

opening time, and 78 PSIG air supply. (052405_04.mat) 
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Figure D-16: Velocity of Free Piston with 53 ms air valve opening time, 8 ms fuel valve 

opening time, and 78 PSIG air supply. (052405_04.mat) 
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Figure D-17: Combustion Pressure with 53 ms air valve opening time, 8 ms fuel valve 

opening time, and 78 PSIG air supply. (052405_07.mat) 
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Figure D-18: Pumping Pressure with 53 ms air valve opening time, 8 ms fuel valve 

opening time, and 78 PSIG air supply. (052405_07.mat) 
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Figure D-19: Position of Free Piston with 53 ms air valve opening time, 8 ms fuel valve 

opening time, and 78 PSIG air supply. (052405_07.mat) 
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Figure D-20: Velocity of Free Piston with 53 ms air valve opening time, 8 ms fuel valve 

opening time, and 78 PSIG air supply. (052405_07.mat) 



 158

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

Time (s)

P
re

ss
ur

e 
(P

S
IA

)

 
Figure D-21: Combustion Pressure with 59 ms air valve opening time, 9 ms fuel valve 

opening time, and 78 PSIG air supply. (052405_08.mat) 
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Figure D-22: Pumping Pressure with 59 ms air valve opening time, 9 ms fuel valve 

opening time, and 78 PSIG air supply. (052405_08.mat) 
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Figure D-23: Position of Free Piston with 59 ms air valve opening time, 9 ms fuel valve 

opening time, and 78 PSIG air supply. (052405_08.mat) 
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Figure D-24: Velocity of Free Piston with 59 ms air valve opening time, 9 ms fuel valve 

opening time, and 78 PSIG air supply. (052405_08.mat) 



 159

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

Time (s)

P
re

ss
ur

e 
(P

S
IA

)

 
Figure D-25: Combustion Pressure with 59 ms air valve opening time, 9 ms fuel valve 

opening time, and 78 PSIG air supply. (052405_14.mat) 
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Figure D-26: Pumping Pressure with 59 ms air valve opening time, 9 ms fuel valve 

opening time, and 78 PSIG air supply. (052405_14.mat) 
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Figure D-27: Position of Free Piston with 59 ms air valve opening time, 9 ms fuel valve 

opening time, and 78 PSIG air supply. (052405_14.mat) 
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Figure D-28: Velocity of Free Piston with 59 ms air valve opening time, 9 ms fuel valve 

opening time, and 78 PSIG air supply. (052405_14.mat) 
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Figure D-29: Combustion Pressure with 67 ms air valve opening time, 10 ms fuel valve 

opening time, and 78 PSIG air supply. (052405_15.mat) 
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Figure D-30: Pumping Pressure with 67 ms air valve opening time, 10 ms fuel valve 

opening time, and 78 PSIG air supply. (052405_15.mat) 
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Figure D-31: Position of Free Piston with 67 ms air valve opening time, 10 ms fuel valve 

opening time, and 78 PSIG air supply. (052405_15.mat) 
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Figure D-32: Velocity of Free Piston with 67 ms air valve opening time, 10 ms fuel valve 

opening time, and 78 PSIG air supply. (052405_15.mat) 
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Figure D-33: Combustion Pressure with 67 ms air valve opening time, 10 ms fuel valve 

opening time, and 78 PSIG air supply. (052405_30.mat) 
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Figure D-34: Pumping Pressure with 67 ms air valve opening time, 10 ms fuel valve 

opening time, and 78 PSIG air supply. (052405_30.mat) 
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Figure D-35: Position of Free Piston with 67 ms air valve opening time, 10 ms fuel valve 

opening time, and 78 PSIG air supply. (052405_30.mat) 
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Figure D-36: Velocity of Free Piston with 67 ms air valve opening time, 10 ms fuel valve 

opening time, and 78 PSIG air supply. (052405_30.mat) 


