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CHAPTER I 

 

INTRODUCTION 

 

Overview  

Diffusion Tensor Imaging (DTI) (1) has become the primary imaging modality for 

non-invasive characterization of the micro structure of living tissues, particularly of 

human white matter. The technique is based on the fact that the self-diffusion of the water 

molecules is sensitive to the microscopic composition, structure, and organization of the 

tissues (2,3). Despite its success in research areas such as neural fiber tractography (4-6) 

and in various clinical applications (7-21), the technique suffers from some fundamental 

limitations (22). One major problem is that the classic tensor model is not able to 

adequately describe non-Gaussian diffusion, and thus not able to provide reliable 

estimations of the underlying tissue properties. New imaging techniques such as High 

Angular Resolution Diffusion Imaging (HARD, or HARDI) (23-27) and new data 

reconstruction methods such as the Fiber ORientation Estimated using Continuous 

Axially Symmetric Tensors (FORECAST) model (28) have been proposed to address the 

problem. Based on the multiple-tensor model and HARD data, FORECAST is able to 

provide a more accurate description of diffusion properties, especially in complex areas 

where the classic tensor model fails. The overall goal of this study is to develop new 
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techniques to improve the FORECAST analysis and obtain more reliable estimations of 

the tissue properties. 

This chapter includes: (a) the basic concept of diffusion and the properties of 

diffusion that are measured and analyzed in this study, (b) the principles of Diffusion 

Tensor Imaging, its applications and limitations, (c) new diffusion MRI techniques 

including the FORECAST model, and (d) a summary of the goals of this study. 

 

Diffusion and its Properties 

The phenomenon of diffusion, also called Brownian motion, refers to the random 

translational motion of water molecules driven by thermal energy. There are two 

important aspects in describing diffusion. In a homogeneous medium where water 

molecules can move freely, the amount of movements is described statistically by the 

Diffusion Coefficient, or diffusivity, D, a scalar measure equal to the mean squared 

molecular displacement per unit time. Diffusivity relies on several intrinsic properties of 

the medium: the mass of the molecules, the temperature, and the viscosity. On the other 

hand, in heterogeneous media, such as a biological sample, the measured diffusivity in an 

imaging voxel is the ensemble average of all the water molecules within the voxel, which 

is usually different from the intrinsic diffusion coefficient measured from a homogeneous 

medium. To distinguish these two concepts, the averaged diffusivity is named the 

Apparent Diffusion Coefficient (ADC). ADC depends not only on the media’s intrinsic 
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properties, but also on the measurement parameters, such as the voxel size. 

In addition to the amount of the displacement, water diffusion has another 

important property, its directionality. If the averaged displacements are identical in all 

directions within a given elapsed time, the diffusion is isotropic. Otherwise, the diffusion 

is anisotropic if the displacements are different along different directions. One example of 

isotropic diffusion occurs in the cerebrospinal fluid in the brain ventricle, where water 

molecules can move freely in any direction within the typical measurement time. In 

tissues like neural fibers, where the cellular architecture is highly organized, water 

encounters fewer barriers (such as membranes or myelin) along the primary axis of the 

fibers than perpendicular to this axis. Therefore, the molecular displacement along the 

fiber orientation is significantly larger than in other directions, showing strong anisotropy 

(29,30). 

The two properties of the water diffusion, the overall diffusivity and its directional 

dependence, can provide useful information about the microscopic structure of the 

biological tissues. Given a proper diffusion time (typically 30~50 ms for human brain 

diffusion MRI), the random walk of the water molecules may reflect the restrictions and 

hindrances by various barriers, such as macromolecules and cellular membranes, 

resulting in different diffusivity properties from the freely diffusing bulk water. The 

microstructure of the samples can thus be inferred based on the measured diffusivity. In 

brain white matter, the degree of diffusion anisotropy is mainly determined by the packed 

and coherent axonal membranes, with some influence from myelin and other intracellular 
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micro structures as well (3). Therefore, diffusion anisotropy provides a unique way to 

non-invasively probe the neural fibers’ structure and topological organization. 

 

Diffusion Tensor Imaging 

Diffusion properties are usually measured with a Pulsed Gradient Spin Echo (PGSE) 

pulse sequence in MRI experiments (31,32), featuring a pair of identical diffusion 

sensitizing gradient pulses applied along a prescribed direction before and after the 180º 

refocusing RF pulse. Due to the first gradient pulse, molecules at different positions will 

precess at different frequencies and thus will accumulate phase angles that depend on the 

molecules’ positions along the gradient direction. The 180º RF pulse and the second 

gradient pulse aim to cancel the position dependent phase angle. The spins that are 

de-phased by the first pulse will re-phase if they remain stationary during the time 

between the two gradients. Otherwise, if the water molecules diffuse to different 

positions, the effect of the first gradient can not be completely reversed by the second one. 

The de-phased spins will thus result in an attenuated signal intensity compared to the 

intensity measured without diffusion weighting:  

DbtreSS )
~

(
0

−=         [1] 

where S and S0 are the signal intensity measured with and without the diffusion 

sensitizing gradients (also known as the diffusion weighted signal and un-weighted 

signal), respectively. b~ is the diffusion weighting matrix describing the strength and 
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timing of the diffusion gradients. With negligible gradient ramp times and gradient cross 

terms, the diffusion sensitivity of the gradients can be represented by the trace of the 

matrix b~ , )~(btr , also known as the diffusion weighting factor, or simply the b factor. 

According to Eq. [1], the diffusion coefficient D can be calculated with as few as two 

measurements, one with the diffusion sensitizing gradients, and the other without the 

gradients. 

For isotropic diffusion, the measured ADCs are identical when the diffusion 

gradients are applied in different directions. For anisotropic diffusion, the greater the 

diffusion along a certain direction, the more attenuated the measured signal will be along 

that direction, i.e., the measured ADC depends on the direction of the applied gradients. 

Therefore, the scalar ADC is not sufficient to fully describe anisotropic diffusion in 3D 

space. In the early 1990s, the tensor model was proposed to better address this problem 

(1). Instead of a scalar ADC, the diffusion tensor, a positive definite, symmetric 

matrix with six independent elements is utilized to characterize anisotropic diffusion. 

To measure the diffusion tensor, at least seven independent measurements are required, 

six diffusion weighted measurements along six non collinear directions, plus one 

un-weighted. If the diffusion gradients are aligned with the sample’s natural symmetry 

axes (also called the principal axes), the resulting tensor is a diagonal matrix, with 

diagonal elements corresponding to the ADCs along these axes. In most of the 

experiments on living samples, the tissues’ principal axes are unknown, it is thus 

impossible to align the diffusion gradients with them. In this case, the eigenvalues of 

33×
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tensor indicate the ADCs along the three principal directions given by the corresponding 

eigenvectors.  

The diffusion tensor provides three kinds of information about the tissue’s 

properties. First, the trace of the tensor describes the overall diffusivity (mean over all 

directions) within the imaging voxel. This measure is related to properties such as the cell 

density, and the volume ratio of intracellular and extracellular space. Second, diffusion 

anisotropy can be described by various anisotropy indices derived from the tensor. These 

indices describe how much the diffusion profile deviates from isotropy. Useful 

information about the tissue’s microstructure such as degree of myelination of the neural 

fibers can be inferred from these indices. One of the most widely used anisotropy indices 

is Fractional Anisotropy (FA), which can be calculated from the eigenvalues of the tensor, 

ranging from 0 for isotropic diffusion to 1 for anisotropic diffusion. Third, the 

eigenvector associated with the largest eigenvalue of the diffusion tensor is assumed to 

indicate the principal orientation of the underlying structure. Many algorithms have been 

developed to map neural fiber tracts and study the connectivity between different regions 

of the brain based on this information (33,34). 

Due to the ability of DTI to probe the microstructure of tissues non-invasively, it 

has been applied to a wide range of research areas such as the brain development, 

maturation (7), and aging (13), and many clinical applications to disease and injury 

detection, including acute stroke (8,14,15), multiple sclerosis (9,16-18), epilepsy (10,19) 

and brain tumor (12,20,21), and treatment evaluation (35,36) (for a review of the clinical 
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application, see (37)). 

Although the diffusion tensor model works fairly well in identifying fiber 

orientations in some parts of the brain, it fails in other regions. One of the most 

significant limitations of DTI is its inability to describe diffusion where orientation 

heterogeneity occurs within one image voxel (22,38).  

One reason for this problem is the size mismatch between the imaging voxel and 

the underlying structures. The typical neural axon diameter ranges from less than 1 

micron to more than 30 microns in human brain(39), while the typical voxel size in the 

clinical and research environment is on the scale of millimeters. Therefore, it is inevitable 

that some of the voxels contain fibers of heterogeneous diffusion properties. Several 

different situations may occur. First, multiple fiber populations of different orientations 

may show up within one voxel, for example, the so-called fiber crossing, fiber kissing, 

and fiber joining. Second, fiber populations of the same orientation but different intrinsic 

diffusion properties may occur, for example, when one of the fiber bundles is affected by 

some disease. Third, even a single fiber bundle may change its orientation within one 

voxel, which is referred to as fiber bending. Fourth, both intra-axonal and extra-axonal 

spaces with different diffusion properties may share a voxel. All these possibilities 

complicate the interpretation of the diffusion tensor.  The conventional second-order 

tensor model is based on the single Gaussian diffusion assumption, which gives only one 

principal direction of the diffusion displacements, the tensor model is therefore 

insufficient in describing diffusion with multiple preferential directions.  
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This limitation results in two major problems of the tensor model in the areas 

where complicated structures are present. First, the principal eigenvector associated with 

the largest eigenvalue can no longer be assumed to be the dominant diffusion direction, 

which makes fiber tracking based on the tensor model unreliable. Second, the anisotropy 

indices derived from the tensor model may be misinterpreted when two fiber bundles 

with different anisotropy share a voxel (22,40). 

 

High Angular Resolution Diffusion Imaging 

To address DTI’s problems and provide more accurate measurement of diffusion in the 

brain, people developed new imaging techniques, and new data reconstruction methods, 

as well.  

One way to reveal more details of the diffusion process is to obtain measurements 

in more directions and with more levels of diffusion sensitivity (multiple b values). One 

example is Diffusion Spectrum Imaging (DSI) (41), which is based on the Fourier 

relationship between the diffusion propagator function and the measured signal (32). 

Though DSI is model independent and thus capable of resolving multiple intravoxel fiber 

populations, it suffers from two major problems, long image acquisition time and the 

requirement of strong field gradients. Both of these drawbacks limit its clinical 

applications. 
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To accommodate the usual requirements of the clinical environment: short 

imaging time and modest gradient strength, an alternate imaging method termed High 

Angular Resolution Diffusion Imaging was developed (23-27). Taking the middle ground 

between the DTI and DSI, HARD imaging obtains measurements in more than six 

directions with single b value, aiming to achieve a balance between detailed information 

and requirements for long imaging time and strong gradients. 

To extract diffusion properties and reveal tissue structural information from the 

HARD signal, several different reconstruction schemes were developed, including the 

multiple tensor model (23), generalized tensor model (26,42), spherical harmonic 

decomposition of the ADC profile (24,43), spherical harmonics deconvolution (44), 

Persistent Angular Structure (PAS) (27), circular spectrum mapping (45), and Q-Ball 

Imaging (QBI) (46-48). Among them,  QBI is particularly popular due to its simple 

sampling scheme and straightforward, model-independent reconstruction. Instead of 

sampling a 3D Cartesian grid in the Q-space as in the DSI method, this technique samples 

only a spherical shell. This new sampling scheme not only reduces the imaging 

acquisition time, but also lowers the demand on the gradients. Based on the Funk-Radon 

transformation, the fiber Orientation Distribution Function (ODF) along any direction α 

is estimated directly by integration of the diffusion weighted signal measured along 

directions perpendicular to α. Since the reconstruction of ODF takes no priori assumption 

about the distribution of the underlying diffusion process, QBI is able to reveal multiple 

fibers within a voxel.  
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Although these techniques mentioned above are capable of resolving intravoxel 

multiple fibers, none of them provides information about the intrinsic diffusion properties. 

In certain developmental or pathological conditions, the change of intrinsic diffusivity 

(for example, due to change in cell density, or damage to the myelin layers) could result 

in decreased FA values. Decrease of coherence in fiber orientation could also reduce the 

FA. None of these data analysis approaches is able to distinguish the possible causes. 

  

The FORECAST model 

Fiber ORientation Estimated using Continuous Axially Symmetric Tensors is a new 

HARD data reconstruction technique based on a multiple tensor model (28). It assumes 

that within a voxel, different fiber components have same proton density, same relaxation 

properties, and negligible exchange between the components within the given diffusion 

time. The model further assumes that the diffusion tensor for each fiber component is 

axially symmetric, with one larger eigenvalue and the other two equal and smaller. The 

measured signal is the sum of contributions from all the individual tensors. With a further 

assumption of uniform mean and perpendicular diffusivity within each voxel, the 

diffusion weighted signal can be expressed as a convolution of the Fiber Angular 

Distribution (FAD) function and the response function from an ideal single fiber. The 

single fiber response function depends on the b value, the mean and the perpendicular 

diffusivities, and the angle between the diffusion gradient direction and the fiber 
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orientation. By expressing the functions in terms of Spherical Harmonic (SH), the 

convolution relationship between the measured signal and the fiber angular distribution 

becomes a simple algebraic equation in terms of their spherical harmonics coefficients.  

Once the perpendicular diffusivity is estimated from the relation between the signals, the 

b value and the presumed mean diffusivity, the single fiber response function is obtained. 

The fiber angular distribution function can then be recovered. The peaks of the FAD 

function provide information about the underlying fiber components. The orientation of 

each peak estimates the primary orientation of the fiber, and the magnitude of each peak 

is assumed to be proportional to the volume fraction of the corresponding fiber. Details of 

the calculation steps will be discussed in the METHODS section.  

The FORECAST model shows several advantages over the QBI method. First, at 

moderate b levels FORECAST can not only better recover multiple fibers within a voxel, 

it is also capable of resolving fiber topology ambiguities such as crossing, kissing, joining, 

bending (49). Second, by estimating both the perpendicular diffusivity and fiber angular 

distribution in each voxel, FORECAST is capable of distinguishing two different causes 

of decreased FA, fiber coherence change or fiber intrinsic diffusivity change. Third, by 

expressing functions in SHs, the FORECAST model is computationally efficient, 

involving only linear matrix calculation, avoiding integration or interpolation.  
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Goals of this study 

The goal of this study is to explore the FORECAST model’s performance, specifically its 

dependence on measurement and reconstruction parameters, and develop new techniques 

to enhance the FORECAST model’s reproducibility, and to find out the optimal way to 

apply the FORECAST analysis to clinical applications. 
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CHAPTER II 

 

METHODS 

 

Monte Carlo simulation was used to test the FORECAST model’s dependence on various 

imaging parameters, such as the b value, SNR, number of the diffusion gradient 

directions, and various analysis parameters. After generating the ideal HARD signal 

using certain imaging parameters, random noise with zero mean and standard deviation 

of S0/SNR was added to the ideal signal (both the diffusion weighted and un-weighted). 

FORECAST analysis was performed using various parameters. Several figures of merit 

were then calculated and compared between each set of imaging and analysis parameters. 

In this chapter, we first present the basic formulas of the FORECAST reconstruction, 

then introduce several methods to improve the FORECAST analysis, outline the 

simulation procedure, and finally explain the figures of merit used for the performance 

evaluation. 

 

Spherical Harmonics 

Before discussing FORECAST model, we first discuss how to approximate functions by 

spherical harmonics. Spherical harmonics ),( ϕθlmY are a set of orthonormal basis 

functions on the unit sphere, satisfying the spherical harmonic differential equation 
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where the non-negative integer l denotes the SH order, and the integer m denotes the 

degree or phase factor (for each l, m ranges from –l to l) (50). A complex function F 

defined on the unit sphere can be expressed as a weighted sum of the harmonics, with a 

different coefficient for each order and degree: 

∑∑
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where  are the SH expansion coefficients satisfying lmf

( ) ( )∫ ∫=
π π

ϕθθϕθϕθ
2

0 0

* sin,, ddFYf lmlm      [4] 

The ),( ϕθlmY  are symmetric about the origin for all even orders l, and asymmetric for 

all odd orders. The high order SHs describe the high angular frequency components of 

the function, the low order SHs correspond to the low frequency components. The zeroth 

order SH, with the shape of a sphere, is able to describe isotropic diffusion; 2nd order SH 

is the minimum requirement for describing single fiber diffusion; 4th order SH is required 

to resolve two fiber populations, and so on. In theory, the higher the order, the higher the 

angular resolution (28). In practical calculations, the infinite sum in Eq. [3] is usually 

truncated to a maximum order L. The choice of the maximum order depends on the 

properties of the function to be estimated. If the function is relatively smooth, a low order 

approximation will be sufficient. Otherwise, high orders will be needed, at the cost of 

increased noise sensitivity and computation time.  

 

 14



 

 15

 

 

Fi
gu

re
 1

.P
lo

ts
 o

f |
|Y

lm
||, 

Re
(Y

lm
), 

an
d 

Im
(Y

lm
) u

p 
to

 4
th

 o
rd

er
Fi

gu
re

 1
.P

lo
ts

 o
f |

|Y
lm

||, 
Re

(Y
lm

), 
an

d 
Im

(Y
lm

) u
p 

to
 4

th
 o

rd
er

 

 

 



 

In this study, the diffusion weighted signals measured in various directions form a 

discrete function on a unit sphere, and thus can be approximated by a truncated series of 

SHs: 

∑∑
= −=

=
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l

l
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lmlmYsS

0

          [5] 

The relation expressed in the form of matrix multiplication is: 

lmsXS rr
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where is a  vector of the diffusion weighted signal, the S
r

1×nDirs lmsr 1×nTerms  SH 

expansion coefficients vector, and X~  the nTermsnDirs × design matrix consisted of 

spherical harmonics  of the nth diffusion direction in the nth row: ),( nnlm
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nDirs is the number of diffusion weighted measurements.  is the total 

number of terms of the SHs through order L, and  is required to 

determine . One way to estimate 

2)1( += LnTerms

nTermsnDirs ≥

lmsr lmsr  is to minimize the squared fitting error, i.e., 

)||~min(||arg 2
lmlm sXSs rrr

⋅−= . The linear least-squares solution is 

SXXXs TT
lm

rr ~)~~( 1−=          [8] 

Once the coefficients are obtained, the function lmsr S
r

can be reconstructed from Eq. [6]. 
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Calculation of fiber angular distributions 

This section describes how to calculate the fiber angular distribution and perpendicular 

diffusivity using the FORECAST model. As mentioned above, the diffusion weighted 

signal measured along direction ),( ϕθ can be expressed as a convolution of the fiber 

angular distribution function )','( ϕθP and the response function from a single ideal fiber: 

( ) ( )∫ ∫ ⊥=
π π

ϕθθαλλϕθϕθ
2

0 00 '''sin,,),~(','),),~(( ddbtrkPSbtrS   [9] 

where  is the b value, S0 is the un-weighted signal, )~(btr ),( ϕθ  are the polar and 

azimuthal angles of the spherical coordinates. The convolution kernel k depends on the b 

value, the mean diffusivity λ , the perpendicular diffusivity ⊥λ (assuming axially 

symmetric diffusion tensor) and the angle α between the diffusion gradient direction 

),( ϕθ  and the fiber orientation )','( ϕθ : 

( ) ( ) ( ) αλλλαλλ
2cos~3~

),,),~(( ⊥⊥ −⋅−⋅−
⊥ ⋅= btrbtr eebtrk      [10] 

If the diffusion weighted signal, the fiber angular distribution function and the 

convolution kernel are all expressed in terms of SHs, then the convolution relationship 

between the signal S and the FAD P (Eq. [9]) becomes a simple algebraic equation in 

terms of their SH coefficients lmsr and lmpr :  

lmllm pcSs ⋅⋅= 0          [11] 

where coefficients cl are defined as: 

l
btr

l Ae
l

c ⊥⋅−

+
≡ λπ )~(

12
4         [12] 

The Al are the lth-order coefficients of the Legendre polynomial expansion of 
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function ( ) 2
||)~( xbtre ⊥−⋅− λλ . The perpendicular diffusivity ⊥λ can be estimated from the relation 

between the signals, the b value and the presumed mean diffusivityλ : 

( ) ( )
( ) ( )
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⎟
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S
S ~

0
~3

~3

2
     [13] 

Once ⊥λ  and are determined from Eq. [13] and [12], respectively, and the SH 

expansion coefficients of the diffusion weighted signal 

lcr

lmsr are obtained through 

least-square estimation according to Eq. [8], lmpr can be determined from Eq. [11], and 

the fiber angular distribution function can then be recovered from the SH relationship 

according to Eq. [6]. Details of the derivations of lcr and ⊥λ  can be found in (28). 

The first step of simulation is to generate the HARD signal. For a voxel 

containing a single fiber population along )','( ϕθ , the fiber angular distribution ),( ϕθP  

can be expressed as a symmetric delta function: 

( ) ( ) ( ) ( )( ) (( )[ ]''coscos''coscos
2
1, ϕπϕδθπθδϕϕδθθδϕθ +−⋅−−+−⋅−=P )   [14] 

Substituting ),(),( ϕθϕθ PF =  in Eq. [4] yields the lth-order FAD coefficients for an 

ideal single fiber along )','( ϕθ : 

( ) ( ) ( ) ( )( )[ ]','','
2
1',' ** ϕπθπϕθϕθ +−+= lmlmlm YYp      [15] 

for even l. Since the coefficients lcr are determined for given b value, mean diffusivityλ  

and perpendicular diffusivity ⊥λ , the SH coefficients lmsr can be obtained from relation 

[11], and the ideal diffusion weighted signal S can then be reconstructed from the SH 

coefficients using relation [6].  lmsr
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Even-order-fitting of SH 

High order SH approximation is desirable in order to achieve high angular resolution (28) 

so that fibers with small orientation differences within a voxel can be distinguished. 

However, the choice of maximum order is limited by the number of the diffusion 

measurements (note that the number of measurements nDirs should be greater than or 

equal to the number of unknown parameters ), which is in turn limited by the total 

imaging time. Since the signal function, the ideal single fiber response function, and the 

fiber angular distribution function are all symmetric about the origin, the non-zero 

odd-order coefficients producing asymmetric components represent the effect of noise. 

Therefore, we could set all the odd-order SHs coefficients to zero, and solve for only the 

even-order items. By doing so, the number of coefficients to be determined for an L order 

fit reduces from to 

2)1( +L

2)1( +L 2/)2)(1( ++ LL . In the remainder of this paper, this method 

is referred to as even-order-fitting as opposed to the original full-fitting. For a given 

number of measurements nDirs, order L denotes the maximum even integer that satisfies 

the full-fitting condition . If 2)1( +≥ LnDirs 2/)4)(3( ++≥ LLnDirs , we could apply 

the even-order-fitting at higher order )2( +L for higher angular resolution. If the 

condition for the higher order )2( +L  is not met, using even-order-fitting at order L may 

still improve the noise immunity by reducing the unknown parameters and increasing the 

degrees of freedom for the least-squares fitting problem. This hypothesis was tested by 

Monte Carlo simulation. 
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Tikhonov regularization  

One problem of the FORECAST model is that the reconstructed fiber angular distribution 

may contain negative values in some orientations due to the noise. Because the FAD 

gives the estimated volume fraction of fibers at each orientation, a negative FAD value is 

certainly non-physical, and should be minimized. One way to reduce the effect of noise 

and enhance the solution robustness of the least square problem is to impose additional 

constraints on the solution. Substituting Eq. [11] into Eq. [6] yields 

lmlml pApcSXS rrrr
⋅=⋅⋅⋅=

~~
0        [16] 

where lcSXA r
⋅⋅= 0

~~ . Then the least-square problem becomes 

)||~min(||arg 2
lmlm pASp rrr

⋅−=        [17] 

To identify the orientations along which the estimated FAD has negative magnitudes, the 

FAD is estimated in 1002 directions evenly distributed over a sphere (generated by 10th 

order icosahedral tessellation). Let R~  be the constraint matrix that maps lmpr to the 

amplitude of the FAD (only for those orientations along which the estimated FAD has 

negative values) so that lmpR r
⋅~  is the sum of the negative FAD values. The regularized 

should minimize not only the estimation errors, but also the negative FAD values, 

satisfying 

lmpr

)||~||||~min(||arg 222
lmlmlm pRpASp rrrr

⋅+⋅−= ω      [18] 

where ω is a weighting factor for balancing the two terms. The least-squares solution of 

Eq. [18] is 
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SARRAAp TTT
lm

rr ~)~~~~( 12 −+= ω        [19] 

Regularization effects depend on the choice of the weighting factor ω. One way to 

determine the optimal ω is the L-curve method (51). In this study, various values of ω 

were tested on the data simulated using different imaging and analysis parameters, and 

the optimal ω for each condition was determined based on the several figures of merit. 

FADs estimated at different maximum orders may show different negative 

magnitudes along different orientations, leading to different constraint matrices R~  and 

different regularization results. Theoretically speaking, the higher the SH order is, the 

higher the angular frequency components it represents and the more sensitive to noise the 

fitting is. In this study, we tested the regularization algorithm in two different 

configurations. In the first configuration, referred to same-order regularization, the 

regularization term is based on the FAD estimated to the same order as the fitting error 

term, i.e., the highest order L of the SHs in the matrix A~  is same as that in matrix R~ . In 

the second configuration, termed lower-order regularization, the maximum order of the 

SHs in matrix R is (L-2) instead of L. Lower-order regularization has been proposed by 

Tourier et al. (52). 

 

Simulation procedure 

Two groups of intravoxel structures were simulated, a single fiber and two crossing fibers. 

For the single fiber case, three fibers orientated along x, y, and z axes, respectively, were 
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simulated. For the crossing fibers case, two fibers with the same volume fraction both lie 

in the x-y plane, with the crossing angle ranging from 60º to 90º. For fiber #1, 

. Fiber #2 has the same)30,90(),( 11
oo=ϕθ θ , withϕ depending on the crossing angle (see 

figure 2). For each structure, different values of the three imaging parameters were tested 

( ) =1000, 2100, and 3250s/mm2, number of diffusion gradient directions nDirs=32 or 

92, and SNR varied from 10 to 100). For each combination of the given structure and 

imaging parameters, 500 Monte Carlo simulations were performed, for each resulting 

dataset, FORECAST analysis using various parameters were applied, including the fitting 

order (4th order, or 6th order), the fitting method (full-fitting or even-order-fitting), the 

regularization order (same-order or lower-order), and the regularization weighting factor 

(ω ranging from 0.0001 to 1). The mean, standard deviation and other statistics of the 

figures of merit (discussed later) for each configuration were compared.  

~(btr

 

 

Figure 2. Examples of FADs showing the simulated intravoxel fiber structures 
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The simulation procedure is summarized as the following steps: 

1. Set mean diffusivity and perpendicular diffusivity. In this study, they were chosen 

as smm /109.0 23−×=λ , and λλ ×=⊥ 6.0 , respectively, which are typical values 

for human brain white matter. 

2. Set b value (choosing from 1000, 2100, and 3250s/mm2). 

3. Set fitting order (4th order or 6th order). 

4. Set number of diffusion gradients, and generate this number of gradients vectors 

uniformly distributed over a unit sphere. In this study 92 gradient directions given 

by 3rd order icosahedral tessellation of the unit sphere, and 32 directions used by

s design matrix. 

6. determine the ideal fiber(s)’ orientations. 

 

the Philips scanner system (see Appendix A) were tested. 

5. Set fitting method (full-fitting or even-order-fitting), then construct corresponding 

SH

Set the intravoxel architecture, 

7. Calculate the ideal FAD coefficients lmpr  from Eq. [15], then reconstruct the 

ameters of the ideal structure for later 

8. 

ideal diffusion signals and derive par

comparison. Normalize the ideal signals so that the un-weighted signal, S0, has 

value 1. 

Set SNR level (ranging from 10 to 100), add random noise with zero mean and 

standard deviation of 1/SNR to the ideal signals.  

9. Perform FORECAST analysis on the noisy signal to estimate the FAD, ⊥λ  and 

other parameters of interest. 
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10. Set regularization method (same-order or lower-order) and the weighting factor ω 

(0.0001 to 1), perform regularization, and then recalculate the figures of merit 

based on the regularized lmpr . 

 Using the same parameter settings, repeat steps 8 to 10 for a total of 500 trials. 

 Calculate

11.

12.  the mean, standard deviation or other statistics of the measures for each 

13. r analysis) and repeat steps 2 to 

14.  the ideal data, un-regularized data and regularized 

 

Figures of merit for performance evaluation 

When evaluating an estimated FAD, the following aspects are considered: the number of 

detected fiber bundles, the angular error in estimated fiber bundle orientation, the overall 

shape of the FAD, and the volume fraction of each fiber bundle. In this part, several 

figures of merit used for the performance evaluation are introduced. 

 

The angular deviation of the FAD peaks from the true fiber orientations  

he mean and the standard deviation of this value over all the trials indicate the angular 

accuracy and precision of the FORECAST model. Once the SH coefficients of the FAD 

un-regularized and regularized configuration. 

 Change one of the parameters (fiber, acquisition, o

12, until try out all the options have been run. 

 Compare the results between

data. 

T
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were obtained, FAD could be estimated along a grid of 12800 orientations defined by 80 

different θ  angles ranging from 0º to 90º, and 160 different ϕ  angles ranging from 0º 

to 360º. The distinct peaks of the FAD could be located among these sampled points. In 

the single fiber case, if the estimated FAD contained more than one peak, the peak with 

the largest amplitude was considered to be the estimated fiber orientation. In the 

o-fiber cases where the estimated FAD may have one or multiple peaks, in order to 

calculate the deviation from the set of ideal orientations, it needed to be determined 

which of the estimated fiber(s) corresponded to each of the ideal fibers. This was done by 

enumerating all the possible correspondences, then for each case calculating the sum of 

the angle difference for each corresponding orientation. The correspondence with the 

smallest total angular difference was then chosen. The angular deviation for each fiber 

was summed for comparison.  

 

The Angular Correlation Coefficient (ACC) between the estimated FAD and the ideal 

tw

FAD  

The ACC is a natural similarity measure concerning both the shape and orientation 

between two spherical functions, ranging from -1 (perfect negative correlation) to 1 

(exactly identical). According to our preliminary studies, an ACC value of at least 0.8 is 

desirable for estimation of the FAD. Due to the linear relationship between a spherical 

function and its SH coefficients, the ACC between two FADs can be calculated from the 

correlation coefficient between the two SH coefficient vectors. The mean and standard 
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deviation of the ACC over the 500 trials were compared for each configuration. 

pared. 

Another aspect of this figure of merit is the ability to resolve multiple fibers 

within a voxel. The important question is how small the crossing angle between the 

orientations of two fibers can be in order for them to be resolved by the FORECAST 

model. The answer depends on the fitting order and the SNR of the data. Without the 

effects of noise, the higher the fitting order, the higher the angular resolution. Simulation 

results (see figure 3) show that in the noise-free situation, the minimum crossing angle 

that the FORECAST model is able to resolve is about 55º using 4th order fitting and 40º 

using 6th order fitting. In this study, focus was put on comparing the abilities of revolving 

60º crossing fibers under various configurations. Though analysis on structures of other 

crossing angles was also performed, the results are not shown or discussed in this report. 

 

The probability of correctly estimating the number of fiber bundles 

This figure of merit checks if the estimated FAD indicates any false fiber bundles. If the 

estimated FAD contained more than one peaks, and the magnitude of a certain peak was 

too small relative to the largest one within the same voxel, this peak was considered false, 

produced by either imaging noise or truncation artifact from the SH fitting. Those false 

peaks were ignored. The magnitude ratio threshold was set to 1/5 to best catch the false 

peaks based on our preliminary results. For each configuration, the chance of resolving 

the true number of fiber bundles (the fraction of 500 trials) was recorded and com
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The Volume fraction for fiber #1 in the two-fiber cases where more than one FAD peaks 
were found 

Since the volume fraction for each ideal fiber was set to be same, comparing one of them 

should be sufficient. The mean of the volume fractions for fiber #1 over 500 trials was 

compared for each two-fiber configuration. 

Note that the figure of merit of the number of fiber bundles should be considered 

along with the volume fraction and the angular deviation for the two-fiber structure. 

Since the image noise and truncation artifact may result in false fibers with magnitude 

larger than the threshold, a correct estimate of the number of fibers does not necessarily 

mean a good estimate without a close volume fraction and small angular error.  

 

Human data acquisition and analysis 

In addition to the numerical simulation, we also validated the techniques using in vivo 

human data. HARD data from a normal control was acquired on a Philips 3T scanner 

with informed consent. The dataset contains 559696 ×× isotropic voxels at the spatial 

resolution of 2.5 mm. Diffusion weighting ( 2) was applied along 92 

directions given by the 3rd order icosahedral tessellation (total scan time of 17 minutes).  

FORECAST analysis was performed using mean diffusivity 

)~(btr =1000s/mm

smm /109.0 23−×=λ for the whole dataset and perpendicular diffusivity ⊥λ optimized for 

each voxel. Tikhonov regularization using the optimal parameters determined by 

simulation results (shown in the next chapter) was applied.  In addition to the 
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regularization, another de-noising technique, the anisotropic smoothing developed by 

Ding et al. (53), was tested. By adjusting the smoothing kernel according to the structural 

homogeneity along each measurement direction, this technique is able to smooth within 

fiber bundles while preventing boundary blurring between different bundles (53). In order 

to evaluate the effect of the regularization and the smoothing algorithm, FADs estimated 

with regularization and without regularization, before smoothing and after smoothing 

were compared.
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CHAPTER III 

 

RESULTS 

 

Results of both the numerical simulation and in vivo human data are presented below.  

 

Results of simulations  

Figures 4, 5, and 6 show the effects of the analysis parameters on performance in single 

and two-fiber structures. Figures 7 and 8 show the effects of the imaging parameters on 

performance. Each figure of merit is shown in one subplot. 

 

Effect of the fitting method 

It is obvious in all the subplots of figures 4 and 5 that 4th order full-fitting (green lines) 

and the corresponding 4th order even-order-fitting (blue lines) overlap for most of the ω 

values. The same pattern is observed in each dataset acquired with 92 diffusion directions, 

no matter what b value and regularization method was applied (results not shown). These 

results indicate that with 92 measurements, the performance difference between 4th order 

full-fitting and 4th order even-order-fitting is negligible. However, these two fitting 

methods give different results in 32-direction measurements, as seen in figure 6. 
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Comparing the results without regularization, or with same-order regularization, the 4th 

order even-order-fitting gives lower angular deviation and higher ACC value than the 4th 

order full-fitting. Therefore, the effect of the fitting method interacts with both the 

number of diffusion encoding directions and the regularization methods.  

Figures 4, 5, and 6 also demonstrate that compared with 4th order fitting, the 6th 

order even-order-fit gives worse ACC performance (lower mean and higher standard 

deviation), together with higher minimum angular deviation (i.e., the minimum as a 

tion parameter ω) in both single fiber and two-fiber structures. 

Effect of regularization 

d 5, with the proper choice of the regularization order and the 

function of the regulariza

Note that the 6th order fitting provides more accurate estimates of the number of fibers 

and fiber volume in the multi-fiber case. 

 

As illustrated in figures 4 an

weighting factor ω, regularization is able to improve FORECAST performance in terms 

of a lower angular deviation, higher ACC value and more accurate estimate of the 

number of fibers. In general, the higher the b value, and/or the higher the SNR, the 

smaller the ω needed. For example, data generated using 92 measurements at 

b=1000s/mm2, SNR=40, and analyzed using 4th order fitting, lower-order regularization 

with ω=0.01 is nearly optimal. 

For the single fiber data (shown in figure 4), lower-order regularization always 
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outperforms the same-order regularization compared at matching imaging configurations, 

though the difference is much smaller for the 4th order fitting than the 6th order fitting. 

Also, the difference becomes smaller as the SNR increases (comparison of different SNR 

data not shown). Similar results are observed for the two-fiber structure analyzed using 

6th ord

ed with high ω.  

he optimal analysis parameters are summarized in table 1. 

er fitting. For 4th order fitting (shown in figure 5), however, in terms of volume 

fraction and number of detected fibers, the two regularization methods make no obvious 

difference with ω less than 0.01. As ω increases, the lower-order regularization yields 

larger error on volume fraction and the estimated number of fibers compared to 

same-order regularization. The lower mean ACC and larger ACC standard deviation also 

indicate that the solution is over-regulariz

T
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Table 1.  Optimal analysis parameters: fitting order, regularization method (S: 
same-order regularization, L: lower-order regularization, and the regularization 
weighting factor ω). 

SNR Measurement 

number 

b value 

(s/mm2) 10 20 30 40 50 60 

1000 4, S, 0.11 4, L, 0.03 4, L, 0.03 4, L, 0.01  or  6, L, 0.03 92 

2100 4, S, 0.11 4, S, 0.05 4, S, 0.03 4, L, 0.03  or  6, L, 0.03 

3250 4, S, 0.03 4, S, 0.03 4, S, 0.03 4, L, 0.01  or  6, L, 0.03 

1000 4, S, 0.09 4, S, 0.03 4, S, 0.03 

2100 4, S, 0.07 4, S, 0.05 4, S, 0.03 

32 

3250 4, S, 0.01 4, S, 0.03 4, S, 0.03 

4, L, 0.01  
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Effect of the number of diffusion directions 

By comparing the solid lines (denoting the 92-direction measurement) to the same-color 

dashed lines (denoting the 32-direction measurement) in each subplot of figure 7 

(single-fiber structure) and figure 8 (two-fiber structure), it is obvious that the 

92-direction measurement almost always yields better results than the 32-direction 

measurement, in terms of the lower angular deviation, higher ACC and more accurate 

estimate of the number of fibers.  

 

Effect of the b value 

As seen in Figures 7 and 8, when analyzed at 4th order, data generated using 

outperforms data generated using lower (1000s/mm2) or higher 

(3250s/mm2) b values, in terms of the lower angular deviation, higher ACC and more 

accurate estimate of the number of fibers.  

 

Effect of SNR 

As shown in figures 7 and 8, the higher the SNR, the lower the angular deviation, the 

higher the ACC and the higher the detection rate of multiple fibers.  

2/2100 mmsb =
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parameters for a single fiber oriented along (90º, 

0º). Each subplot shows one figure of merit vs. SNR at various measurement numbers and b values. 
In each subplot, solid lines denote 92-direction, dashed lines 32-direction measurements. Green, 
blue, and red denote b values of 1000, 2100 and 3250s/mm2, respectively. All the data were 

g the optimal fitting method and regularization method chosen for each 
configuration (Table 1). 

Figure 7.  Performance dependence on imaging 
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Figure 8.  Performance dependence on imaging parameters for two fibers crossing at 60º. Each 
subplot shows one figure of merit vs. SNR at various measurement numbers and b values. In each 
subplot, solid lines denote 92-direction and dashed lines 32-direction measurements. Green, blue, 
and red denote b values of 1000, 2100 and 3250s/mm2, respectively. All the data were processed 
using the optimal fitting method and regularization method chosen for each configuration (Table 1). 
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Results of the human data 

FORECAST analysis was performed on the in vivo dataset acquired. SNR was estimated 

to be about 40 based on the Residual Sum of Squares (RSS). According to the simulation 

results, the optimal analysis parameters were chosen as follows: 6th order 

even-order-fitting and lower-order regularization with 03.0=ω . A Region Of Interest 

(ROI) with voxels containing no fibers, a single-fiber, and multiple fibers was chosen. As 

shown in the top of the figure 9, the ROI includes part of the ventricle (vtc) 

demonstrating isotropic diffusion, several fiber bundles demonstrating single-fiber 

anisotropic diffusion, and regions demonstrating complex diffusion where two or more 

fiber bundles cross. These fiber bundles include the corpus callosum (cc) which mainly 

goes in the left-right direction, the cingulum bundle (cg), the superior fronto-occipital 

fasciculus (sfo), the anterior thalamic radiation (atr) and the superior longitudinal 

fasciculus (slf) which go in the anterior-posterior direction, the corticopontine tract (cpt) 

and the corticospinal tract (cst) which go in the inferior-superior direction. The estimated 

FADs (figures 9 and 11) and the corresponding stick models indicating the FAD peaks 

(figures 10 and 12) are shown to demonstrate the effects of regularization and anisotropic 

smoothing. 

By comparing the FADs estimated with and without regularization, figure 9 

shows clearly that regularization enhances the FORECAST model’s robustness to noise, 

making the results more reliable. Before regularization, the spiky FADs make it hard to 
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distinguish the fiber bundles. After regularization, the effect of noise is significantly 

atomy. 

reduced, and the orientation of each of the major fiber tracts in the ROI is revealed. For 

example, before regularization, the FADs of the sfo tract show some peaks oriented in the 

left-right direction (see the green ellipses in figures 9 and 10), though there is no fiber 

nearby going in that direction, based on the known an To the right (left in the 

image) of the tract is the ventricle without fibers and to the left (right in the image) is the 

inferior-superior oriented cpt/cst tracts (see the purple ellipses in figures 9 and 10). 

Therefore, these small FAD peaks may stem from noise. After regularization, these false 

distributions are minimized, though not completely removed due to truncation artifact. 

Another example of the ability of regularization to minimize false peaks is shown in the 

middle of the cc tract (see the red ellipses in figures 9 and 10). 
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Figure 9.  FADs etimated using the FORECAST analysis of an in vivo dataset, showing the 
effect of regularization. Top: The Region Of Interest (ROI) defined as the yellow box on  an 
axial slice of the non-diffusion-weighted image. Middle: FAD surfaces on top of the FA map 
estimated by the FORECAST model with 6th order even-order-fitting, without anisotropic 
smoothing or regularization. Bottom: FADs on top of the FA map in the same ROI, estimated 
after lower-order regularization (ω=0.03). FADs are color-encoded (red: left-right; green: 
anterior-posterior; blue: inferior-superior). The FA map is gray-scaled. The red, green, and purple 
ellipses show the cc, sfo, and cpt/cst tracts, respectively. 



 

 
Figure 10.  Stick model of the FAD peaks corresponding to the results shown in figure 9. Top: 
ROI defined as the yellow box on an axial slice of the non-diffusion-weighted image, same as 
that in figure 9. Middle: stick models on top of the FA map, estimated by FORECAST with 6th 
order even-order-fitting, without anisotropic smoothing or regularization. Bottom: stick model on 
top of the FA map in the same ROI, estimated after lower-order regularization (ω=0.03). 
Orientations of the sticks are color-encoded (red: left-right; green: anterior-posterior; blue: 
inferior-superior), the lengths of the sticks are proportional to the volume fraction of the 
estimated fibers. The FA map is gray-scaled. The red, green, and purple ellipses show the cc, sfo, 
and cpt/cst tracts, respectively. 
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Figures 11 and 12 illustrate the effect of anisotropic smoothing. Taking the 

example of the sfo tract (see the green ellipses in figures 11 and 12), it is obvious that 

after smoothing, the principal orientation of each voxel along the tract becomes slightly 

more coherent than before smoothing. 
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Figure 11.  FADs etimated using the FORECAST analysis of the in vivo dataset, showing the 
effect of anisotropic smoothing. Top: ROI defined as the yellow box on an axial slice of the 
non-diffusion-weighted image, same as that in figure 9. Middle and bottom: FAD surfaces on top 
of the FA maps, estimated before and after anisotropic smoothing, respectively. They are both 
analyzed with 6th order even-order-fitting, and lower-order regularization with ω=0.03. FADs are 
color-encoded (red: left-right; green: anterior-posterior; blue: inferior-superior). The FA map is 
gray-scaled. The green ellipse shows the sfo tract. 
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Figure 12.  Stick model of the FAD peaks corresponding to the results shown in figure 11. Top: 
ROI defined as the yellow box on top of an axial slice of the non-diffusion-weighted image, same 
as that in figure 9. Middle and bottom: the stick model on top of the FA maps, estimated before 
and after anisotropic smoothing, respectively. They are both analyzed with 6th order 
even-order-fitting, and lower-order regularization with ω=0.03. Orientations of the sticks are 
color-encoded (red: left-right; green: anterior-posterior; blue: inferior-superior), the lengths of the 
sticks are proportional to the volume fraction of the estimated fibers. The FA map is gray-scaled. 
The green ellipse shows the sfo tract. 



 

The results after regularization and smoothing also demonstrate that in regions 

where fiber bundles with different orientations cross, the FORECAST model is able to 

distinguish the fiber components (shown in figure 13). For example, in the voxels 

containing both cc fibers and cg fibers, the estimated FADs show clearly two peaks 

oriented in the left-right and anterior-posterior directions, respectively, indicating the 

orientation of the two fiber bundles (see the blue rectangle in figure 13). In the area 

where the cc, cpt/cst, and atr tracts meet, the FADs exhibit three distinct peaks each 

giving the principal orientation of these tracts (see the orange rectangle in figure 

13).
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Figure 13. FADs etimated using the FORECAST analysis of the in vivo dataset, showing 
multiple-fiber crossing. Top left: ROI defined as the yellow box on an axial slice of the 
non-diffusion-weighted image, same as that in figure 9. Bottom: FAD surfaces on top of the FA 
maps. The magnified blue and orange rectangle demonstrates the two-way and three-way fiber 
crossing, respectively. Data were analyzed with anisotropic smoothing, 6th order 
even-order-fitting and lower-order regularization with ω=0.03. FADs are color-encoded (red: 
left-right; green: anterior-posterior; blue: inferior-superior). The FA map is gray-scaled.  



 

CHAPTER IV 

 

DISCUSSION 

 

Discussion on the results 

The simulation results indicate that the 4th order FORECAST analysis is able to provide 

reliable estimates of fiber orientation, at least for no more than two fibers in a voxel, and 

in the b value and SNR ranges tested. In theory, high order SHs contain high spatial 

frequency components of the approximated functions. Therefore, the higher the fitting 

order, the narrower the angular point spread function, and the higher the angular 

resolution. On the other hand, the HARD measurement is sensitive to noise. The higher 

order the fitting, the more sensitive will be the results to high frequency noise. The 

simulation results demonstrate that at the low b value of 1000s/mm2, 6th order fitting 

produces higher angular deviation and lower ACC than 4th order fitting without 

regularization, though the differences become smaller as b value and SNR increase. The 

higher fitting order does not bring the expected benefits of higher angular accuracy 

probably because of its higher sensitivity to noise. To overcome the effect of noise and 

achieve satisfactory results with the 6th order fitting, higher b value and/or higher SNR is 

required. With data acquired at low b value and low SNR, one way to improve the 

estimation is Tikhonov regularization. The simulation results demonstrate that 
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regularization is able to lower the angular error and increase the ACC (this effect is 

rominent at low b value and low SNR). For example, for the 60º-crossing-fiber structure 

acquired using 92 diffusion direction  and SNR=40, 6th order fitting with 

proper regularization is able to reach an angular error of 14º compared to 26º by the 4th 

order fitting without regularization and 25º with proper regularization (as shown in figure 

5).  

As mentioned in the METHODS section, even-order-fitting is expected to be 

more accurate because it reduces the number of parameters needed to solve in the 

over-determined fitting problem. However, the simulation results demonstrate that with 

92 diffusion measurements the 4  order full-fitting gives roughly the same results as the 

4  order even-order-fitting. One possible reason is that the degrees of freedom for 

full-fitting (92-25=67) are large enough to overcome the benefit from the relatively small 

increase of the degrees of freedom (25-15=10) from the even-order-fitting. In the 

32-measurement case, however, the benefit of the even-order-fitting is significant since 

the increase of the degrees of freedom is large (from 7 to 17) relative to the small number 

of measurements.  

The key problem associated with regularization is the choice of the weighting 

factor ω. The optimal value of ω depends not only on the regularization method, but also 

on the imaging parameters such as the b value, number of diffusion measurements and 

SNR, and on the fitting method, as well. Also, choosing the optimal ω is a trade off 

between all the figures of merit. For example, for two fibers crossing at 60º simulated 

p

s, b=1000s/mm2

th

th
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using 92 measurements, b=1000s/mm2, SNR=60, 6th order fitting with proper 

regularization gives lower angular error than the 4th order fitting (9º vs. 16º), higher 

success rate of resolving two fibers (1 vs. 0.998), but a lower ACC value (0.85 vs. 0.93) 

(complete comparison not shown). 

As shown in figures 7 and 8, when data are analyzed through 4th order, 

measurements at  produce lower angular deviation and higher ACC 

than a

2/2100 mmsb =

t b values of 1000s/mm2 or 3250s/mm2. This result can be explained by the 

relationship between the coefficients lcr and the b value, and the relationship between the 

theoretical variance of lmpr and lcr . According to Eq. [12], lcr depends on b value, ⊥λ and 

the fitting order. Using the 4th order fitting |cl| reaches its maximum at 

2/2100 mmsb = for the value of ⊥λ used in this study. The theoretical variance of lmpr is 

proportional to 1/|cl| (see Appendix B for detailed derivation). Therefore, for a 

given ⊥λ and 4th order fitting, b=2100s/mm2 gives the smallest variance of lmpr , which 

produces the most reliable FAD estimate. 

The fact that the 92-direction acquisition outperforms the 32-direction acquisition 

confirms the hypothesis that the more measurements acquired, the higher the achievable 

angular resolution will be as a matter of practice. Since the acquisition time for HARD 

imaging is proportional to the number of diffusion directions, the time for one 

92-direction scan roughly allows for three 32-direction scans. According to theory, the 

SNR of the averaged three 32-direction datasets should be about 1.7 times that of the one 

92-direction data without averaging, i.e., the results from the 92-direction data at SNR 
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level of 20 should be comparable to the results from the 32-direction data at SNR level of 

34. Our simulation results at b=1000s/mm2 and SNR below 30 show close agreement 

with this theoretical prediction in terms of the angular deviation and ACC measures, as 

presented in figures 7 and 8. However, as the SNR increases, 92-direction measurement 

perform

ncreases from 

 t ua

 

Discussion on the methods 

A novel measure for performance evaluations, the ACC, was employed in this study. In 

earlier studies, figures of merit include angular error (23,44,54), volume fraction (44), the 

fiber crossing detection rate (54), root mean square error (55) and absolute error (56) 

between the noise-free diffusion profile and estimated diffusion profile, and the 

consistency fraction (a combination of the angular error and the fiber number estimation) 

(57). The ACC describes the similarity of the overall shape and orientation between two 

FADs. This measure contains more information about the FAD than any of the 

aforementioned measures alone. Therefore, performance evaluation based primarily on 

s better than the imaging-time-matched 32-direction measurements. Furthermore, 

as the b value i 1000s/mm2 to 3250s/mm2, the advantage of the 

92-measurement over the 32-measurement becomes more obvious, probably because the 

benefit of high diffusion sensitivity overrides the effect of the increased SNR. Another 

possible explanation is the non-linear relationships between he SNR and the eval tion 

figures of merit. 
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ACC is more simple and reliable than using other figures of merit. 

One factor affecting the conclusions of this study is the possible violation of the 

assumptions of the FORECAST model. The FORECAST model assumes that fibers are 

cylindrically symmetric and within each voxel all fiber components share same 

perpendicular diffusivity, which is not always true. Studies suggest that in some regions, 

the diffusion profile of a coherent fiber bundle may be oblate instead of cylindrical (38). 

An asymmetric fiber angular distribution within a voxel could also produce unequal 

perpendicular diffusivity. Violation of the identical perpendicular diffusivity assumption 

affects more the volume fraction than the fiber orientation estimation (28). In the 

two-fiber simulation of this study, in order to make the analysis simple, the perpendicular 

diffusivities and the volume fractions of the two fibers were set to be the same. Further 

investigation needs to be done in the future to explore how to make the estimation more 

reliable when these assumptions are violated. 

Another factor affecting the conclusions of this study is the usage of the ACC 

relative to the ideal FAD as a performance measure. The ideal FAD may contain some 

small peaks around the origin which are considered artifacts due to truncation. As a result, 

an estimated FAD without false peaks may have a lower ACC score than a less perfect 

FAD with false peaks similar to the ideal one, which will certainly affect the accuracy of 

the performance evaluation. To address this problem, the estimate of the number of fibers 

and the total angular deviation within a voxel are considered in addition to the ACC 

value. 
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 Finally, the weighting of each figure of merit for overall performance evaluation 

is arbitrary, resulting in approximately optimal ω. In order to minimize the effects of the 

individual analyzer and to reduce the processing time, future work is needed to develop 

an automatic algorithm for the choice of the optimal ω.
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CHAPTER V 

 

CONCLUSIONS 

 

Using Monte Carlo simulations, this study examined the performance of the FORECAST 

model in terms of estimating intravoxel fiber structure using various imaging and analysis 

parameters. Based on the results of the simulation, the optimal imaging and processing 

parameters for conducting the FORECAST analysis can be determined, and the accuracy 

of the model can be estimated. 

This study also shows a feasible method of even-order-fitting instead of the 

original full-fitting, to increase the fitting order and thus improve the angular resolution 

of the FORECAST model. The effect of this method on overall performance depends on 

the number of the diffusion measurements and the regularization method. 

Another contribution of this study is the improvement of the FORECAST model 

by including Tikhonov regularization based on minimizing the non-physical negative 

FAD values. Both numerical simulation and in vivo human data analysis verified the 

improvements. The anisotropic smoothing algorithm also improves the angular accuracy 

of the fiber orientation estimation as demonstrated in the in vivo human data.  

With the techniques listed above, the FORECAST model becomes more robust to 

noise. More reliable estimates of the fiber orientation and fiber coherence will be useful 
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in studies aimed at fiber tractography and white matter disease detection.
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APPENDIX A 

 

THIRTY-TWO DIFFUSION DIRECTIONS 

  

Table 2. List of the Cartesian coordinates of the 32 unit vectors 
uniformly distributed over a sphere used by the Philips scanner 
system. 

x y z x y z 
1 0 0 0.7771 0.4707 -0.4178 
0 1 0 0.9242 -0.1036 -0.3677 
0 0 1 0.4685 -0.7674 -0.4378 

-0.0424 -0.1146 -0.9925 0.8817 -0.1893 -0.4322 
0.1749 -0.2005 -0.9639 0.6904 0.7062 -0.1569 
0.2323 -0.1626 -0.959 0.2391 0.7571 -0.608 
0.3675 0.0261 -0.9296 -0.0578 0.9837 0.1703 
0.1902 0.3744 -0.9076 -0.5368 0.8361 -0.1135 

-0.1168 0.8334 -0.5402 -0.9918 -0.1207 -0.0423 
-0.2005 0.2527 -0.9466 -0.9968 0.0709 -0.0379 
-0.4958 0.1345 -0.858 -0.8724 0.4781 -0.1014 
-0.0141 -0.6281 -0.778 -0.2487 0.9335 0.2581 
-0.7445 -0.1477 -0.6511 0.1183 0.9919 -0.0471 
-0.7609 0.3204 -0.5643 0.3376 0.8415 0.4218 
-0.1809 0.9247 -0.3351 0.5286 0.8409 0.1163 
-0.6796 -0.4224 -0.5997 0.9969 0.055 -0.0571 
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APPENDIX B 

 

lmp  THEORE  OF

According to Eq. [11], 

TICAL PREDICTION OF THE VARIANCE
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According to Eq. [6], the variance of is lms

( ) 1~'~22
−

= kkss XX
lm

σσ        [22] 

where is the variance of the diffusion-weighted signal, 2
sσ ( ) 1~'~ −

kkXX is the kth element on 
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( ) 1~'~ −

XX , 12 +++= mllkthe diagonal of the matrix . Assuming the variance of the 

diffusion-weighted signal equals the variance of the non-diffusion weighted signal 

, Eq. [22] becomes 

2
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Inserting Eq. [23] into Eq. [21], we have 
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Figure 14. Coefficients lc vs. )~(btr . Subplot in top left shows lc  for even orders from 0 to 10. 

The other subplots show lc for orders 4, 6 and 8.  
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