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CHAPTER I  

 

 

 

INTRODUCTION 

 

 

 

Overview 

 Radiofrequency ablation (RFA) has gained widespread acceptance in the 

treatment of liver tumors, particularly those tumors that are unresectable.  Despite the 

increasing clinical usage of RFA, technical challenges remain in achieving complete 

ablation of tumors.  In hepatic applications, RFA produces ablation zones that are limited 

in size both as a result of tissue properties as well as constraints in ablation device design 

and physics.  Because RFA is a focal therapeutic modality, proper placement of the RF 

device is an important goal in producing successful treatment in which the resulting 

ablation extents overlap the detectable tumor as well as a suitably defined margin which 

might contain undetected disease.  Achieving this goal requires planning in a manner that 

takes into account the known physical processes which govern RF ablations.  It also 

depends on the ability to target the device accurately to a desired location.  Both of these 

objectives are linked, however.  Indeed, accurate placement depends on having a 

predefined plan. In turn, a robust plan must account for the limitations in targeting 

accuracy.  Although, these objectives have been explored in the literature as separate 

problems, little has been done to create a treatment planning framework which accounts 

for both the physics of ablation as well as the targeting constraints in device placement. 

This dissertation research studied this problem by applying computational modeling and 

image-guided techniques to RFA.  In Chapter II, a method will be presented to search for 
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needle placement that best satisfies a therapeutic goal given outcomes predicted by finite 

element models of ablations.  The technique will be applied to simulated scenarios 

involving single as well as multiple ablations. In Chapter III, a phantom system will be 

developed to test ablation experiments using a tracked RFA.  A design for the tracked 

device as well as a means of calibrating the tracked device will be described.  The 

positional information from the tracked device will be fed into the model produced in 

Chapter II to quantify the model accuracy in predicting the spatial extents of the ablations 

within the phantom.  Metrics to quantify the model accuracy will be introduced, and the 

effects of potential tracking inaccuracies will be analyzed.  Finally, in Chapter IV, the 

sensitivity of predicted ablations to needle placement inaccuracies will be studied 

theoretically.  A novel technique will be introduced that couples boundary element and 

finite element methods to obtain multiple simulations efficiently for different needle 

placements over a static mesh.  The technique will be coupled to Monte Carlo 

simulations to generate a spatial map of the likelihood of ablation success.  The 

numerical method will then be used to study sensitivity of ablation outcomes near vessels 

to misplacement of the RFA device. 

 

Background and Significance 

 

 

Clinical relevance  

In 2002 the World Health Organization estimated 628,000 new primary liver 

tumor cases globally [1], of which hepatocellular carcinoma (HCC) is the most common 

type.  Worldwide, HCCs rank as the fifth most frequent solid tumor and the fourth most 
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common cause of cancer related mortality annually [2], with predominance especially in 

Asian and African nations [3].  Patients with HCCs, if left untreated, have a 5 year 

survival rate less than 5% [4, 5].  In the United States, HCCs are uncommon, but 

metastatic tumors arising from extrahepatic primary tumors are prevalent.  The liver is a 

common site for metastatic disease from extrahepatic primary tumors, particularly from 

other gastrointestinal tumors, because the liver drains venous blood from all other 

abdominal organs [6].  A major source of these metastases comes from colorectal tumors, 

the second most common tumor type in the US with an estimated 146,000 new cases in 

2004 [7].  An estimated 50% of these patients will develop metastases in the liver, and if 

left untreated, have average survival rates of 6 to 12 months [8].   

In both HCC and metastatic disease to the liver, the current conventional 

treatment with curative intent is surgical resection [9].  Surgery can potentially provide 

curative outcomes for both HCC and hepatic metastases [8, 10], with 5 year survival rates 

between 20-40% [4], especially if a 1 cm negative margin can be achieved [11, 12].  

Nevertheless, only 10-15% of patients with metastatic disease and less than 30% of 

patients with HCC are eligible candidates for surgical resections.  Clinical reasons for 

excluding patients from liver resections include inadequate functional hepatic reserves, 

proximity of tumors to vascular and biliary structures, multifocal lesions, as well as other 

underlying liver diseases [13]. 
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RFA mechanism 

 

Figure I-1: Diagram depicting closed electrical circuit in RFA procedure, reproduced from [14]. 

Radiofrequency ablation (RFA) is currently a widely used treatment modality for 

unresectable hepatic tumors [15].  Among the advantages of RFA over other thermal 

ablative therapeutic modalities are its cost-effectiveness [16] and its low complication 

rates [17, 18].  3 year survival rates have recently been reported at 50-70% for RFA 

treated patients [19].   As shown in Figure I-1, RFA works by inserting electrodes 

directly into a cancerous lesion.  Typically this procedure is performed under image 

guidance such as ultrasound.  Depending on the RFA system, additional metallic tines 

may then be deployed.  A radiofrequency voltage source (typically, 400-500 kHz) is then 

applied to the electrodes relative to large dispersive grounding pads.  Consequently, 

mobile ions in the tissue surrounding the electrodes attempt to travel in the alternating 

directions of the electric field.  It is the movement of these ions by electrical conduction 

that raises the temperature of the surrounding tissue through resistive heating, which in 

turn causes focal thermal damage to the tissue.  In a typical application of RFA, 
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temperatures reach upwards of 100°C in the immediate areas around the active 

electrodes.  Larger volumes of ablation around the electrodes are achieved chiefly by heat 

conduction from the zones surrounding the electrodes [20].  At supra-physiologic 

temperatures (above 45-50°C), tumors undergo coagulative necrosis, which is irreversible 

cellular damage caused by denatured proteins and disrupted cellular membranes.  Cell 

death is considered instantaneous at around 60°C  [4, 21-23].   

 

RFA of large tumors 

A major goal of current ablation research is in achieving larger ablations [24].  

Various commercial RFA systems have been well documented for their capacity to 

produce spherical ablation zones of 3 cm in diameter [25].  Although the underlying 

therapeutic mechanisms among these systems are in principle the same, there are 

differences in needle design and control of power delivery.  Newer electrode and RF 

generator designs can reportedly achieve ablation sizes as large as 5-7 cm in diameter, 

with each RFA procedure lasting approximately 10-15 minutes.  In order to maintain 

sufficient power density within the target tissue, some electrodes are cooled internally 

and designed to infuse saline to maintain tissue conductivity [26].  More recently, 

methods have been explored to achieve larger ablations by simultaneously applying 

power to multiple RFA probes [27]. 

Despite these improvements in RFA system design, there have been limited 

successes in applying RFA towards the treatment of large tumors, typically greater than 3 

cm in diameter given current RFA technology [28-30].  Attempts to treat large tumors, as 

reported in the literature, usually result in high local recurrence rate of the tumor.  RFA 
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achieves optimal results when treating tumors that are smaller than the maximum ablation 

size.  Because, as is done in surgical cases, an additional treatment margin of 0.5-1.0 cm 

around the tumor needs to be treated in order to reduce local recurrence, tumors that are 

comparable in size to the ablation volume usually are not treated adequately.  In a recent 

report in which tumors larger than 5 cm in diameter were treated with ablation zones of 3 

cm in diameter, the success rate was lower than 50% [29].  The other known limitation of 

RFA is the failure to treat tumors that are close to thermal sinks.  In particular, nearby 

vessels as small as 3mm in diameter can produce inadequate treatment [31-33].  This 

effect is described in Figure I-2.  

 

 

Figure I-2:  Incomplete treatment of tumor surrounded by blood vessels.  a) A preoperative CT shows the 

location of the tumor near large hepatic veins.  b) Initial treatment reveals defects in the ablation zone, 

manifesting as irregular borders.  c) Nine months later, a CT study reveals local recurrence as shown by 

arrows.  d)  Ablations were performed to treat recurring tumors.  Image reproduced from [32]. 
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Figure I-3:  a) Wireframe model of an inscribed regular dodecahedron with a sphere placed at the center of 

one of its faces.  b)  Solid model showing 6 overlapping ablation spheres arranged in a regular octahedron, 

with a cutaway depicting the tumor. c)  A cylindrical ablation strategy in which cubes tile the treatment 

volume and ablation spheres are placed circumscribing each cube.  Figures are reproduced from [34, 35]. 

Image guided techniques 

One hypothesized factor contributing to the inadequate treatment of tumors is 

inadequate guidance and monitoring of the RFA procedure.  During RFA, surgeons rely 

heavily on 2D intraoperative ultrasound (IOUS) for guidance and limited treatment 

monitoring [23].  Nevertheless, few studies have been performed to evaluate the accuracy 

of 2D IOUS guidance to position the RFA probe at the center of the tumor.  In one study, 

Scott et al. reported 4.2 ± 1.4 mm and 3.5 ± 1.6 mm discrepancies between the pathologic 

ablation center and the center of a tumor-mimic created in porcine liver [36].  Accurate 

localization becomes important in particular when parts of the tumor are not visible under 

IOUS.  Typically, an initial ablation causes gas bubble formation. The gas produces a 

highly echogenic effect with IOUS, which results in acoustic shadowing of all tissue deep 

to the ablation.  If additional ablations are required, IOUS may no longer be able to detect 

residual tumor.  Other investigators have studied ways to improve localization of the 

RFA probe inside the tumor.  Certain methods attempt to overcome the limitations of 2D 
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visualization inherent to IOUS by adopting 3D imaging modalities [37, 38].  Results 

using 3D imaging retrospectively to evaluate IOUS targeting showed that off-centered 

needle placement could sometimes escape detection with IOUS [39].   

Other methods use preoperative images registered to the physical space of the 

operating field as a means of intraoperative guidance [40, 41].  This technique takes 

advantage of the higher resolution and contrast of MRI or CT images for accurate probe 

placement.  By tracking the location of the RFA needle in physical space, its 

corresponding location in preoperative image space can be determined.  The utility of this 

image-guided method depends, however, on achieving accurate registration of images 

with an organ that has few rigid anatomical landmarks, deforms nonrigidly [42] and may 

move substantially during the operation, whether due to breathing or due to the surgical 

procedure itself [43]. 

 

Planning algorithms for ablation 

A few attempts have been made to devise a treatment planning system for 

ablation therapy.  Butz et al. formulated a nonlinear optimization problem to select the 

optimal ablation zone locations [44].  Ablations zones were modeled as spheres or 

ellipsoids.  Their method involved optimizing an objective function based on weighted 

sums of the ablated volume within the prescribed treatment volume and the ablated 

volume of healthy tissue outside of the treatment volume.  The weights were selected 

based on the sensitivity of healthy critical structures near the tumor.  Villard et al. 

similarly used ellipsoidal ablation zones to cover a given treatment volume by 

maximizing the number of tumor voxels covered [45].  In addition, however, the 
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investigators allowed constraints on allowable trajectories so that the ablation probe does 

not place through critical structures.  Another innovation was to model the heat-sink 

effects of liver vasculature by dynamically deforming the ellipsoidal ablation zones 

depending on their proximity to large vessels [46], and using the deformed shapes in 

optimizing placement.  This deformation was achieved phenomologically, however, 

without relying on any specific model of the underlying physical processes. 

Dodd et al. described a different approach using geometric analysis in order to 

place spherical ablation zones in such a way as to cover a spherical treatment volume 

completely [34].  They were able to demonstrate that spheres placed in specific patterns 

around the treatment volume could cover spherical treatment volumes up to 1.66 times 

the diameter of the ablation zone.  Their results further revealed that for a 66% increase 

in diameter, 14 ablations would be required to be placed in precise locations, illustrating 

the potential logistical limitations of using overlapping spheres.  Other strategies were 

based on using columns of ablations to achieve cylindrical ablation zones.  Multiple 

cylindrical ablations were then used to cover the tumor.  Khajanchee et al. also adopted a 

similar geometric approach using spherical ablation zones and treatment volumes [35].  

Rather than attempt to cover the entire spherical treatment volume, however, this method 

assumed that complete ablation of the surface of the sphere would result in complete 

necrosis of the tumor.  A polyhedron was inscribed into the treatment volume, and 

ablation zones were then placed at the center of each polyhedral face.  Investigators were 

careful to note that the imprecision of current localization made use of these treatment 

plans risky.   
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A common theme in most current planning literature for RFA is the use of 

multiple geometric shapes to cover another simple geometric shape.  Typically, these 

shapes are spheres or ellipsoids.  However, the number of spheres required to ablate a 

large treatment region increases dramatically with size.  This observation is corroborated 

by  theoretical results from the discrete and computational geometry literature on packing 

and covering theory [47-50].  In this theoretical analysis, the primary focus is given to 

deriving theoretical limits to the density of coverage for a given domain and the 

congruent shapes used to cover it, as well as estimating the computational complexity of 

the problem [51].  However, the applicability of these results towards treatment planning 

remains unclear. 

Finally, experimental validations have been conducted to fit in vivo ablation data 

to geometric models [52].  These studies employ geometric primitives (e.g. ellipsoids) to 

fit the radiological or pathological margins of the ablation.  Although this study indicates 

that a simple shape can be used to fit ablation zones, it fails to address whether there is 

predictive value when applied to tumors near other local tissue heterogeneity such as 

blood vessels or when other needle designs are used. 

 

Computational modeling of RFA 

Despite the intuitive appeal of the geometric planning algorithms, they do not 

directly account for the critical physical processes known to affect ablation shapes, such 

as power delivery, thermal diffusion, or the heat sink effects of blood perfusion, 

especially in the presence of nearby vessels greater than 3 mm.  In order to address these 

shortcomings, computational models of the physical processes in ablation are required.  
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Computational models have played an integral part in understanding the limitations of 

RFA treatment in large tumors, especially the roles that electrical and thermal properties 

of the liver have in affecting ablation size [53].  Models of thermal ablation typically 

solve Pennes bioheat equation [54] to obtain the temperature field within a region of 

interest resulting from a local heat source: 

 

 ( )b a RF

T
c k T h T T Q

t
ρ

∂
= ∇ ⋅ ∇ − − +

∂
, (1.1) 

 

 

where QRF (W/cm
2
) is the heat source; T (°C) is the temperature; k (W/cm K) is thermal 

conductivity; ρ (g/cm
3
) is the tissue density; and c (J/g K), is the heat capacity.  The 

convective heat transfer coefficient, hb (W/cm
3
/K) models the rate of perfusion in the 

tissue, as arterial blood enters the tissue at a given temperature, Ta (°C), and is assumed to 

equilibrate immediately with the surrounding tissue.  In RFA, the heat source QRF can be 

computed in two steps.  First the electrostatic potential Φ is obtained by solving 

Laplace’s equation with appropriate boundary conditions: 

 

 - 0σ∇ ⋅ ∇Φ =  (1.2) 

 

 

where σ is the conductivity of the medium.  From a solution of the potential, the heat 

source resulting from ohmic heating can then be estimated as the time-averaged power 

density generated by the resulting current: 
21

2RF
Q σ= ∇Φ .  [55] 
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Published numerical models of RFA vary in complexity.  In a linear model, the 

distribution of electrical RF energy being deposited in a region is independent of the 

temperature distribution [56].  Nonlinear models have been developed, however, that take 

into account observed temperature-dependent effects on both thermal and dielectric 

properties [57-60].  Although not reported specifically for RFA, thermal ablative models 

may also incorporate changes in blood perfusion rate [61].  One common strategy to 

updating temperature-dependent material properties is to employ an Arrhenius model to 

estimate the amount of thermal damage [57], and to update the properties as a function of 

damage over time. 

Even though sophisticated finite element models of RFA have been described, 

little attention has been paid to date towards experimental validation of the models 

specifically for RF energy sources.  Nor has much work been done towards applying the 

models for planning needle placement.  These problems have been explored for other 

thermal ablative modalities, however.  In particular, planning based on finite element 

models have been described for cryosurgical applications [62-64].  Of interest are the 

shared features between cryosurgical planning and RFA planning, notably the need to 

place multiple ablation devices such that an objective function, based on the predicted 

temperature, is maximized within a region of interest.  These investigators studied a 

number of technical issues regarding coupling finite models of ablation with numerical 

optimization methods.  Of interest are their emphases on objective function design and 

development of strategies to reduce the computational burden, often employing 

phenomological methods to fit temperature distributions, and search heuristics to arrange 

and evaluate the device placements. 
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CHAPTER II  

 

 

 

OPTIMIZING NEEDLE PLACEMENT USING FINITE ELEMENT MODELS IN 

RADIOFREQUENCY ABLATION PLANNING 

 

 

 

Abstract 

Conventional radiofrequency ablation (RFA) planning methods for identifying 

suitable needle placements typically use geometric shapes to model ablation outcomes.  

A method is presented for searching needle placements that couples finite element 

models of radiofrequency ablation together with a novel optimization strategy.  The 

method was designed to reduce the need for model solutions per local search step.  The 

optimization strategy was tested against scenarios requiring single and multiple ablations.  

In particular, for a scenario requiring multiple ablations, a domain decomposition strategy 

was described to minimize the complexity of simultaneously searching multiple needle 

placements.  The effects of nearby vasculature on optimal needle placement were also 

studied.  Compared with geometric planning approaches, finite element models could 

potentially deliver needle placement plans that provide more physically meaningful 

predictions of therapeutic outcomes. 

 

Introduction 

Focal thermal ablative techniques have become widely adopted for the treatment 

of solid tumors.  Examples include laser ablation [65], cryoablation [66], high intensity 

ultrasound [67], and radiofrequency ablation [15].  For ablation treatments to be 

successful, the extent of the ablated volume must overlap entirely the detectable tumor 
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volume as well as a suitable margin that contains possible occult disease.  Although the 

physical mechanism of heat generation differs with each modality, the extent of the 

resulting ablation depends for all cases on the placement of the ablation device with 

respect to the targeted treatment volume.  Consequently, controlling the placement of the 

device is a factor in producing successful ablative therapy. 

The focus of this study is on the application of radiofrequency ablation (RFA) in 

treating unresectable tumors of the liver.  RFA works by inserting electrodes directly into 

a cancerous lesion.  Radiofrequency currents (typically, 400-500 kHz) delivered through 

these electrodes produce resistive heating, and the resulting temperature increase causes 

focal thermal damage to the tissue.  In a typical application of RFA, temperatures reach 

upwards of 100°C in the immediate areas around the active electrodes.  Above a critical 

temperature (typically above 50°C), tumors undergo coagulation necrosis, caused by 

irreversible cellular damage in the form of protein denaturation and disruption of cellular 

membranes.  Cell death is considered instantaneous at around 60°C [21].  In the course of 

an RFA treatment, the volume of ablated tissue increases as heat conduction distributes 

higher temperatures further into the tissue.  In typical commercial RFA systems, a 3-5 cm 

spherical ablation zone is expected.  Nevertheless, ablation of large tumors has proven to 

be unreliable [28, 68] with high local recurrence rates.  Although multiple ablation 

strategies to create larger ablations have been employed clinically [69], the investigators 

cited a need for better intraoperative guidance, as well as an appreciation of local 

physiological factors that affect ablation outcome  

Treatment planning of RFA device placement attempts to determine the position 

and orientation of the device relative to the targeted tissue that would maximize the 
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therapeutic outcome as predicted by a model of radiofrequency ablation.  At present, 

models of radiofrequency ablation used in treatment planning have largely relied upon 

geometric assumptions of the final ablation extents, typically spheres or ellipsoids [34, 

44, 69, 70].  The observed size and shape of RF ablations in clinical data show, however, 

significant variability in size and geometry [71], and simulation studies using 

computational models of RFA have demonstrated dependence of ablation extents on a 

number of physical parameters [27, 58].  These variations in ablation extents represent 

phenomena not readily predicted by geometric shapes.  Further compounding this 

problem is the irregular distribution of thermal sinks in the liver, particularly vessels that 

are larger than 3 mm in diameter [32].  These vessels have been shown to remain patent 

during treatment, and their proximity to a treatment region reduces the local ablation 

extents.  Consequently, variability in ablation volume and spatial extent is expected even 

within a single patient as the device is placed in different locations within the target 

organ.  More recently, investigators have attempted to incorporate patient-specific 

anatomical information into planning, as well as propose methods for modifying the 

assumed ablation geometries in the presence of nearby vessels [70].  However, these 

methods are based on phenomenological approximations of the underlying physical 

processes, and thus make use of parameters that are not necessarily physically 

meaningful. 

In this paper, a method is presented which uses finite element models (FEMs) of 

radiofrequency ablation to predict ablation outcomes for the purpose of planning needle 

placement.  Currently existing computational models of RFA are used to evaluate static 

geometries.  The models will be extended to allow evaluations of multiple needle 



 

 

16 

placements via dynamic remeshing.  Then, a strategy will be described to optimize the 

FEM predicted ablation result over the space of allowable needle placements in a manner 

that minimizes the number of FEM evaluations. 

 

Methods 

 

Finite element model 

Model geometries 

The treatment domain and needle geometries used in all simulation experiments 

are shown in Figure II-1.  The needle is modeled after the RITA Starburst XL RFA 

device (Rita Medical Systems, CA) in which the expandable needles have been deployed 

to the manufacturer’s “2 cm” setting.  The positions of the tips of the nine tines were 

measured relative to the tip of the trocar housing the electrodes.  Then, circular arcs are 

used as skeletons to connect the tine tips to the trocar tip.  A circle 0.42 mm in diameter 

is extruded along the skeleton to generate the three dimensional tines.  
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The geometries each have a local coordinate system.  For the needle, the origin is located 

1.5 cm proximally from the tip of the center tine.  The z-axis is defined to be parallel to 

the shaft of the needle, and the y-z plane was arbitrarily chosen to contain one of the nine 

 

 

Figure II-1: (left) Wireframe model of the domain geometry in the global coordinate system. (right) Close up 

of the model to show, starting from top left and going clockwise: a 2.5 cm tumor, a 0.6 cm vessel, and the 

designated entry point for all needle placements,.  The centroids of each of the three objects are placed on the z 

= 5 cm plane. (bottom) The surface model of a commercially used ablation device, along with its local 

coordinate system.  The right most plot shows the  placement relative to other geometries, used in all 

simulation epxeriments 
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tines.  In the treatment domain, the origin is located at the centroid of the outer cylinder 

representing the human torso.  In simulation experiments, the tumor centroid is placed at 

coordinates (-10 cm, 0 cm, 5 cm).  If a tumor is modeled, it is has a 2.5 cm diameter.  In 

simulations involving vessels, a 6 mm cylinder running parallel to the global z-axis is 

placed such that its centroid is at coordinates (-8.6 cm, 0 cm, 5 cm) if no tumor is present, 

or (-8.35 cm, 0 cm, 5 cm) if a 2.5 cm tumor is present. 

The allowable needle placements were constrained to simulate current RFA 

needle placement techniques.  The needle is inserted through a prescribed entry point te 

(illustrated in Figure II-1), with the goal of reaching a destination point after determining 

the correct trajectory.  In all simulations, te is given the coordinates (-10 cm, -5 cm, 5 

cm).  The depth of insertion and the orientation of the needle relative to the entry point 

are then allowed to vary freely, giving only 4 degrees of freedom as all transformations 

applied to the needle are assumed to be rigid about the origin of the needle.  Thus, for any 

point x given in the local coordinates of the needle, the transformation, T , to the global 

coordinates of the domain is defined by: 

 

 ( ) ( )ˆ
eT R d= = − +y x x z t , (2.1) 

 

 

where d is the depth of insertion, ẑ corresponds to the axis of the needle, and R is a 

rotation matrix parameterized by sequential rotations about the x, y, and z-axes of the 

domain (i.e. ( ) ( ) ( )x x y y z z
φ φ φR = R R R ).  To simplify future discussion, a parameter 

vector θ  is defined, whose elements are d and the three Eulerian angles: 

 

 , , ,
x y z

d φ φ φ =  θ . (2.2) 
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In all simulation experiments, θ  = [5.0 cm, 90°, 0°, 0°], resulting in a configuration 

shown in Figure II-1. 

For every new needle position in which the FEM model needs to be evaluated, the 

entire domain is remeshed.  A noncommercial meshing software package, Tetgen [72], 

was incorporated in order to generate volumetric meshes from an input surface mesh 

using constrained Delaunay tetrahedralization.  This software was further modified to 

include routines for repairing intersecting surface meshes that may result, for instance, 

from the needle penetrating other structures such as the outer boundaries of the domain or 

the internal spherical surface representing the treatment region.  Typically, 200 to 250 

thousand tetrahedral elements are generated in discretizing the domain, and 40 to 50 

thousand nodes are required. 

 

Constitutive equations 

Computational models of thermal ablation usually solve Pennes bioheat equation 

to obtain the transient temperature fields as a result of a local heat source: 

 

 ( )b a RF

T
c k T h T T Q

t
ρ

∂
= ∇ ⋅ ∇ + − +

∂
, (2.3) 

 

 

QRF (W/cm
2
) is the heat source; T (°C) is the temperature; k (W/cm K) is thermal 

conductivity; ρ (g/cm
3
) is the tissue density; and c (J/g K), is the heat capacity.  The 

convective heat transfer coefficient, hb (W/cm
3
/K) models the rate of perfusion in the 

tissue, as arterial blood enters the tissue at a given temperature, Ta (°C), and is assumed to 

equilibrate immediately with the surrounding tissue.  The convective coefficient, hb, is 
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defined to be 
b b b b

h c wρ= , where the subscript b indicates properties specific to blood, 

and wb is the perfusion rate (mL/mL/s).  All material coefficients are defined in Table 

II-1.  The heat source, QRF can be approximated by first solving the electrostatic problem 

with appropriate boundary conditions: 

 

 - 0σ∇ ⋅ ∇Φ = , (2.4) 

 

 

where σ (S/cm) is the conductivity of the medium, and Φ(V) is the electrostatic potential.  

Given Φ, the heat source is then estimated as the time-averaged power density generated 

by the resulting current: 
2

0

1

2
set

RF
PQ

P
σ 

 
 

= ∇Φ , where P0 is the input power resulting 

from 1.0 V applied to the needle, and Pset is the desired power setting. In order to solve 

the coupled partial differential equations, most investigators have employed the finite 

element method [53, 56, 73, 74].  FEM models for radiofrequency ablation typically 

solve the electrostatic problem over a single meshed domain that is shared with the 

thermal problem.  As a matter of convenience, a single mesh shared for both equations 

allows the estimated power deposition from the electrostatic equation to be coupled 

directly into the FEM formulation of the thermal problem without additional interpolation 

steps. 

 Boundary conditions are specified as follows.  For the electrostatic problem, the 

outer surface except the bottom face is prescribed an insulative, no flux condition.  A 

constant 1.0 V Dirichlet condition is applied on the conductive electrodes, and ground is 

placed on the bottom face.  The total power Pset was set to 20 W, and the entire ablation 

was run for 10 minutes, after which the power was set to 0 W.  For the thermal problem, 
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the cylindrical outer surface is given an adiabatic, no flux condition, whereas the top and 

bottom faces are preset to 37°C.  If a vessel is modeled, the vessel surface is also 

prescribed a constant temperature of 37°C. 

 

Table II-1: List of material properties used in RFA simulation.  Values represent the initial properties used 

in the simulations.  As simulations proceed, the temperature-dependent properties change. 

Properties Symbol (units) Value Reference 

Thermal conductivity (human liver) k (W/cm·K) 5.12e-3 [73] 

Density (human liver) ρ (g/mL) 1.06 [73] 

Heat capacity (human liver) c (J/g·K) 3.6 [73] 

Density (blood) ρb (g/mL) 1.0e-3 [73] 

Heat capacity (blood) cb (J/g·K) 4.18 [73] 

Perfusion  wb (mL/mL/s) 6.4e-3 [73] 

Electrical conductivity (human liver) σ (mS/cm) 3.33e-3 [73] 

Activation energy ∆Ea (J) 6.28e5 [75] 

Activation factor A (s
-1

) 3.1e98 [75] 

 

 

 

Finally, a measure of tissue damage accumulated over the course of the ablation is 

computed.  A suitable metric is the Arrhenius damage index, which has been previously 

employed by investigators [53, 75, 76] to predict the resulting thermal damage to the 

tissue.  In this work, a related parameter to the damage index, namely the survival 

fraction is used.  It is given by:  

 

 
( )

( )
( )

,
exp ,

,

t EaA t
t RT t

ω
ω

 ∂ ∆
= − −  ∂  

x
x

x
, (2.5) 
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with the initial condition that ( )0, 1tω =x .  The Arrhenius survival function, ω, can be 

interpreted as the ratio of viable cells to total cells inside a region of space.  Thus, for 

ω = 1, the tissue is considered viable, and when ω << 1 the tissue is considered to have 

undergone coagulation necrosis.  In this work, the threshold used to demarcate the onset 

of coagulation necrosis is 1

0 eω −=  or approximately 37%. 

As suggested previously by other investigators [53, 55], this model implements 

temperature dependent electrical conductivity and perfusion to account for relevant 

property changes observed in clinical ablations.  The electrical conductivity of ionic 

solutions increases at a rate of 2%/°C [77].  On the other hand, perfusion decreases as 

temperature rises because of coagulation of microvasculature.  There is, however, no 

consensus model of how this behavior should be modeled.  In this work, the perfusion is 

scaled linearly by the local Arrhenius survival fraction ( ) ( )0, ,b bh t h tω=x x , in a manner 

similar to that proposed in [75, 78].  Thus, at the start of the simulation, the convective 

term is given in the table above, and tends towards zero as ablation proceeds.  The 

temperature dependence of other parameters has been neglected because their inclusion 

in the model would produce relatively small changes in the final temperature [79].  As the 

mesh is regenerated for each needle placement, routines are implemented to assign 

appropriate material properties to each tetrahedral element.   

In order to solve the system of equations, an external iterative solver package 

(PETSc, [80]) was used.  The transient temperature solution was obtained over 15 

minutes via a fully implicit time-stepping scheme with 15 second intervals.  

Temperature-dependent properties were updated by using the temperature distribution 

from the previous iteration.  A constant power setting was imposed on the electrostatic 
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problem.  At every time step, the electrostatic field was updated with the new 

conductivity properties.  The resulting power density was then scaled so that the total 

power in the domain was 20.0 W.  This setting was predetermined by so that the 

maximum temperature in the domain at the end of ablation, 10 minutes after start of the 

simulation, did not greatly exceed 100 °C.  After 10 minutes of ablation, the applied 

power was set to zero. 

 

Optimization algorithm 

Objective function 

In this study, the objective is to minimize the predicted Arrhenius survival 

fraction, ω, in a weighted sense everywhere in the region of interest (ROI), at the end of 

the simulation: 

 

 
( ) ( ), f

ROI
W t dω= ∫ x x xJ

, (2.6) 

 

 

 

in which the weighting term, W,  is given to be, 

 

 ( )
1,

0,

tumor
W

otherwise

∈
= 


x
x . (2.7) 

 

 

 

The objective function as defined above represents the residual tumor volume that is 

viable after ablation.  MinimizingJ  is tantamount to reducing the chances that local 
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recurrence may occur because of residual tumor cells.  In the simulation experiments, the 

time to observe the Arrhenius was 5 minutes after power shut off, or tf = 15 minutes. 

 

Search method 

In order to search for the needle position that optimizes the given objective 

function, the resulting ablation zone for each needle position needs to be estimated.  A 

straightforward implementation would reevaluate the FEM model for each new needle 

position to recompute the objective function.  Because the FEM model is a 

computationally expensive process, however, a method is required to minimize the 

number of FEM model reevaluations.  In this work, the strategy is to approximate the 

FEM solution as a field that transforms rigidly with the needle.  In this manner, the 

problem can be recast as an image processing problem.  Computationally, the objective 

function (2.6) can be viewed as the correlation of two scalar volumetric images.  The first 

“image,” W, describes the relative importance of a point in the target domain in the 

objective.  The second “image,” ω, represents the likelihood of achieving complete 

ablation at a given position relative to the needle.  Thus, the optimal localization of the 

needle is one that transforms the ω image to be minimally correlated with the W image, 

subject to constraints given in (2.1): 

 

 ( ) ( )( )* arg min δ ; , f
ROI

W t dω= ∫
θ

θ x x θ xT  (2.8) 

 

 

 

where Tδ  is the incremental transformation from the initial transform of the needle, 

( )0θT , as given by 



 

 

25 

  

 ( ) ( ) ( )1

0δ −=θ θ θ�T T T . (2.9) 

 

Implicit in the proposed strategy is the assumption that the ablation shape does 

not change significantly over small perturbations of its orientation and position.  The 

justification comes from the observation that the RF power is deposited chiefly within a 

few millimeters [81] of the conductive electrodes, and in particular near the tips of the 

tines.  Thus, the regions of highest power density tend to vary closely with the position 

and orientation of the needle.  If the domain is homogeneous and the relevant boundary 

conditions sufficiently far away, then the resulting ablation shape would be largely 

invariant with respect to the needle position and orientation.  Nevertheless, in clinically 

relevant applications such as in the liver, there is in fact local material inhomogeneity, 

and thermal and electrical boundary conditions may be nearby.  Thus, spatial variability 

of the ablation with respect to the needle is expected as the needle is relocated during the 

search process.  To correct for deviations from the assumption in the image correlation 

problem, the finite element model is reevaluated periodically to update the image, ω. 

To implement this strategy described above, the following steps are taken.  At iteration, 

m, of the global search loop, the survival distribution, ωm, is obtained by reevaluating the 

FEM problem.  Then, ωm is sampled around the present orientation and position of the 

needle to form a discrete image, ωm   The samples form a 6 cm cubic Cartesian grid of 1 

mm cubic pixels, a size sufficiently large enough to capture the expected ablation extents.  

This “needle” grid is axis-aligned with the local reference frame of the needle and 

centered about the origin of the needle.  Sampling of the tetrahedral mesh at these 

transformed grid points requires multiple point location queries, which are facilitated by 
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construction of a search tree that sorted the tetrahedra of the meshed domain into 

rectangular bins.   

A second set of pixels is used to sample the weighting function, W, defined over 

the region of interest to generate the discrete image Wm.  These pixels from the “domain” 

grid are also sampled on a Cartesian grid of the same size as that of ωm, but are axis-

aligned to the global coordinates, and centered on the region of interest.  The algorithm 

then enters a local search loop, where at each iteration n of the loop a new set of 

placement parameters is determined in an attempt to minimize the discretized form of the 

objective function: 

 

 ( ) ( )( ), ; ,k n k k n ftδ=∑W x ω x θJ T . (2.10) 

 

 

 

When the transformed pixels of the image Wm do not fall on the grid points of the 

transformed image ωm, linear interpolation of the sampled grid is used to obtain 

corresponding values of ωm.   

The optimization method for the image correlation is steepest descent [82].  The 

gradient of the objective function, ∇
θ
J , is readily achieved analytically from (2.10).  

Termination of the optimization is based on gradient magnitude and relative change in 

sequential values of J .  Upon termination of the image correlation, the FEM model is 

reevaluated at the most recent value of θθθθ.  In this manner, multiple rounds of FEM 

evaluation and image correlation minimization are performed until the search converges 

to a solution. 
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Figure II-2: Flowchart of optimization algorithm. 
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Termination criteria 

The global search loop, which includes alternating rounds of image correlation 

minimization and FEM evaluation, is terminated upon reaching the maximum number of 

iterations prescribed.  Experience with the algorithm suggests that typically no more than 

10 global search steps are required.  The search is also stopped if the maximum 

displacement of all tine tips is less than 0.01 cm between subsequent steps.  Finally, in 

order to prevent oscillatory behavior (i.e. sequential steps which produce oscillatory 

objective function values), the search is terminated whenever the current function 

evaluation exceeds the previous function evaluation.  This behavior occurs most often 

when the needle placement is already near a local optimum, at which point numerical 

noise (e.g. from FEM discretization and sampling of the solution) is the major contributor 

to variations in the subsequent function evaluations.  The algorithm is summarized in 

Figure II-2.  All algorithms were implemented in C++ on a Win32 platform using a 3.4 

GHz Pentium 4 processor with 2 Gbytes of RAM.  Runtime for a typical optimization is 

less than 2 hours. 

 

Simulation experiments 

Single ablations 
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In order to test the robustness of the optimization algorithm, the following 

evaluation method was devised.  An ablation was simulated with an initial needle 

placement, and the resulting ablation zone segmented using the ω0 threshold.  All of the 

points in this segmented ablation were designated to be “tumor”.  The initial needle 

placement was then perturbed along each of the four degrees of freedom, as reported in 

 

 

 

Figure II-3: (top row) Ablation outcomes of perturbed needle position.  The solid shape is the region 

corresponding to an ablation from an initially placed needle, whereas the translucent shape is the 

current ablation from a needle perturbed from the initial placement.  Shading of the ablation surface 

depicts unablated (black) and successfully ablated regions(white).  The three figures going from left to 

right depict the result from lateral, superior, and medial views.  (middle row) Recovered ablation result 

after optimization of needle placement.  Figures correspond to same view as in top row.  (bottom row) 

Comparison of perturbed needle position on the left, and recovered needle position on the right.  The 

lightly shaded needle is the original needle placement which created the solid ablation. 
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Table II-2.  For each perturbed needle placement, the optimization algorithm was 

executed to determine if the “tumor” region could be covered, and thus recovering the 

original needle placement.  This test was performed for two geometries, designated case 

1 and 2.  The only difference between the cases is the presence of a 6 mm vessel in the 

latter. 

 

Table II-2: Tabulated results of single ablation experiments. 

 Vessel absent Vessel present 

init
J (cm

3
) 0.43 0.40 

perturbed
J (cm

3
) 4.9 4.2 

opt
J (cm

3
) 0.65 0.36 

( ), , ,
x y z

d φ φ φ∆ , perturbed 

(mm, deg) 
5.0 -9.57 5.73 5.73 5.0 -9.57 -5.73 5.73 

( ), , ,
x y z

d φ φ φ∆ , optimized 

(mm, deg) 
-1.0e-3 0.91 0.86 4.34 3.7e-2 0.10 0.21 8.10 

Mean
tine

x∆ (mm), perturbed 9.1 9.1 

Mean
tine

x∆ (mm), optimized 1.2 0.91 
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The optimization results for both cases were able to recover the original needle 

position to within millimeter accuracy.  The algorithm reported a lower objective 

function,
opt
J , than the perturbed function value, 

perturbed
J , and was comparable to the 

unperturbed initial value, 
init
J  (see Table II-2).  The result for case 1 (without the vessel) 

is shown in Figure II-3, and it is evident that the optimization program was able to 

relocate the needle so that the optimized ablation covered the initial ablated region.  

Despite this improvement, however, the result showed a slight asymmetry in coverage on 

the region surface, where one side is ablated more completely than the other.  In ablation 

 

 

 

Figure II-4: Same arrangement as in Figure II-3 except for the additional presence of a 6 mm vessel. 
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experiments where the optimization method was executed simply on the unperturbed 

needle (results not shown), the optimizer also generated similar asymmetry in the final 

ablation, as is reported here.  This result is likely due to numerical artifacts caused by 

sampling the FEM solution ω onto a Cartesian grid.  Because the survival distribution 

transitions sharply between 0 and 1 in space, the sampling process could cause a 

misrepresentation of the local ablation at the margin.  This problem may be resolved by 

increasing the resolution of the sampling grid, or by postprocessing the sampled image ω, 

such as applying smoothing filters.  Nevertheless, despite this sensitivity to sampling 

error, the results are still reasonable considering that this experiment represents worst 

case scenarios in which the “tumor” is as large as the ablation.  Furthermore it is not a 

consistent error, as comparatively speaking, the scenario for case 2 (with a vessel 

present), shown in Figure II-4, produced better results.  The results also show that 

ablations are fairly insensitive to rotation about the shaft of the device (i.e. φz).  

Consequently, the optimizer is generally unable to recover the original shaft roll. 

 

 

Figure II-5: Results from single ablation of 2.5 cm tumor with a nearby 6 mm vessel.  The surface map 

shows nonablated areas (dark shade) around the periphery of the tumor, particularly near the vessel.   



 

 

33 

Multiple ablations 

While using the same external geometry as in the single ablation experiments 

above, a 2.5 cm spherical treatment instead was placed 1 mm away from a 6 mm vessel.  

Optimal planning using a single ablation resulted in ablated regions on the periphery of  

the spherical tumor, as shown in Figure II-5.  In order to plan multiple ablations, the 

treatment region was first decomposed into three equal sections as depicted in Figure 

II-6.  Needle placement was optimized independently for each section, and the resulting 

ablations were combined by multiplying the individual survival distributions (or 

equivalently, adding the logarithm of the survival distributions).  Compared to the 

original single ablation, the results are markedly improved in which the predicted residual 

tumor volume is orders of magnitude smaller than for the single ablation case.  As listed 

in Table II-3, the combined ablations create an ablation that is nearly twice that of the 

tumor volume, and a 56% increase over the volume of the single ablation. 

Table II-3: Multiple ablation results. The target volume refers to the volume of either the tumor section 

or the entire tumor.  The last column describes the mean tine shift from the optimized single ablation 

placement. 

 

Target 

Volume 

(cm
3
) 

Ablation 

Volume 

(cm
3
) 

0J  

(cm
3
) 

opt
J  

(cm
3
) 

mean 

tine
x∆  

(mm) 

Ablation 1 3.1 10.5 .27 6.4e-6 5.9 

Ablation 2 3.1 12.1 .30 8.4e-4 3.8 

Ablation 3 3.1 11.8 .40 1.8e-4 4.2 

Combined 9.2 18.6 .97 2.5e-4 -- 

Single 9.2 11.9 .97 2.3e-1 -- 
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It should be noted that only three ablations were required to generate a larger 

ablation zone.  In planning with geometric spheres, investigators have noted that 

theoretically at least four ablation spheres are necessary to achieve an ablation of a 

spherical tumor that is larger than each ablation sphere [35].  The present result is 

possible because the predicted ablation geometry is shaped like a teardrop.  Compared 

with a sphere, the teardrop shape is elongated along the axis of the RFA device and thus 

 

 

 

Figure II-6: (top row) Schematic of decomposed tumor domains in order to facilitate multiple ablation.  

Ablation of each wedge is planned independently of the other.  (middle row) Results of ablation planning 

for wedges that correspond, going from right to left, to Ablations 1 to 3, as labeled above.  (bottom row) 

Combined ablations shown in lateral and medial views.  The right most figure shows the optimized needle 

placements. 
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is capable of covering wedge-shaped sections as used in this experiment.  Another 

interesting observation is the net change in needle placement to achieve the simulated 

outcome.  In geometric planning that uses spheres as ablation models, the plan would 

expect to place the probes symmetrically within a spherical tumor.  In the results 

described above, however, the arrangement of probes is asymmetric, with the probe 

ablating the section closest to the vessel being displaced furthest from the optimized 

single ablation placement.  The increase in displacement is needed to ablate the tumor 

margin closest to the 6 mm vessel, so that more power can be deposited near the vessel 

wall.   

 

Discussion 

In this paper, a method has been described to automate searches of optimal needle 

placement for radiofrequency ablation.  This technique potentially enhances the ability of 

clinicians to design patient-specific plans by using not only patient anatomy but also 

relevant parameters that are physically meaningful and predictive.  The method builds off 

of the theoretical observation that over small perturbations to needle parameters, the 

ablation shape varies slowly.  Thus, an efficient search method can be developed by 

assuming that the ablation shape transforms rigidly with the RFA device.  To account for 

real world scenarios in which thermal and electrical boundary conditions affect ablation 

shape locally, the search routine is updated periodically by reevaluating the RFA model 

to obtain a more accurate representation of the ablation shape.  In this manner, the RFA 

model continues to inform the search process, but the number of model evaluations is 
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minimized.  The results presented suggest that the method is capable of optimizing needle 

placement.   

A feature of the proposed optimization method is that it is independent of the 

specific FEM model used to predict the ablation outcome.  Indeed, improvements can be 

made to the model to include, for instance, a more detailed analysis of local blood flow 

[83] to account for the heat sink effect of vasculature.  Other commercial RFA probes 

may also be incorporated into the proposed search framework, along with the specific 

power control methods used in the design, since the method does not presume any a 

priori shape to the ablation.  This search strategy could itself be integrated into larger 

search problems that include additional surgically relevant problems.  For instance, in the 

method described, the entry point was fixed in the optimization scheme.  Nevertheless, 

the entry point may also be incorporated into the planning problem, in order to identify, 

for instance, the best trajectory to avoid critical organs or intervening vasculature.  In 

particular, this work could potentially enhance the planning framework previously 

presented by these investigators [70].  Another manner of incorporating this work into 

existing literature is in the use of multiple ablation planning strategies [34, 35].  Planned 

placements using, for instance, geometric shapes may be further refined using this 

framework by decomposing the tumor domain in a manner proposed in this work.  

Because FEM models may be able to predict physical phenomena that are not actually 

captured by geometric shapes, this framework can potentially be used to generate more 

efficient and accurate plans. 
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Conclusions 

A novel algorithm for planning optimal placement of a radiofrequency ablation 

needle was described.  The planning method coupled FEM models, rather than geometric 

shapes, with an efficient search strategy to determine a needle placement that improved 

therapeutic outcome over a given initial placement.  Simulation experiments 

demonstrated the feasibility of the approach in worst case scenarios when the tumor was 

comparable in shape to the ablation zone, and in cases where multiple ablations were 

required. 
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CHAPTER III  

 

 

 

CHARACTERIZATION OF TRACKED RADIOFREQUENCY ABLATION IN 

PHANTOM 

 

 

 

Abstract 

Accurate placement of the device used to perform radiofrequency ablation (RFA) 

is necessary for successful therapy of solid tumors.  In this work, a phantom system based 

on an agarose-albumin mixture was developed for evaluating optically tracked 

radiofrequency ablation.  Calibration of the tracked probe allowed positions of distal 

features of the device, notably the tips of the needle electrodes, to be determined to 

within 1.4 ± 0.6 mm of uncertainty.  Images acquired from ablation experiments 

performed using the tracked probe were compared to finite element models of RFA that 

used positional data of the RFA device obtained during ablation.  The model was able to 

predict 90% of pixels classified as being ablated.  Discrepancies between model 

predictions and observations were attributed to needle tracking inaccuracy as well as 

model parameter selection.  Results suggest the feasibility of using tracked RFA as well 

as finite element modeling to deliver targeted ablations with predictable outcomes. 

 

Introduction 

 Radiofrequency ablation (RFA) is currently a widely used treatment modality for 

unresectable hepatic tumors [15].  RFA produces focal therapy by delivering electrical 

energy directly into a cancerous lesion via needle electrodes.  Because active heating is 

limited spatially to within a few millimeters of the RFA needle [81], the therapeutic 
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efficacy of RFA depends on proper placement of the needle so that the final ablation 

extents would cover the tumor along with a suitable margin.  At present, needle 

placement is performed using intraoperative image guidance, typically with 2D 

ultrasound [23].  It has been recognized, however, that guidance with 2D ultrasound can 

be inaccurate [36, 38].  Investigators have described various strategies of improving 

needle localization intraoperatively including the use of optically-based and 

electromagnetic[84] tracking systems to determine the location of the device relative to 

the targeted lesion.  Various intraoperative imaging methods have also been reported 

including CT [37], and 3D ultrasound [39].   

Although guidance provides a means of delivering the needle device to an 

intended destination, it depends on having a preplanned needle placement which achieves 

the desired therapeutic goal.  Consequently, the success of therapy depends also on 

planning with a predictive model of RF ablations.  Presently, geometric shapes using 

spheres and ellipses have been employed to model ablations [34].  Geometric models 

provide a method for rapid planning of optimal trajectories, subject to constraints placed 

by the anatomy of the patient[70].  Nevertheless, geometric shapes are not sensitive to the 

actual physical parameters that govern ablations.  More sophisticated models have been 

studied that attempt to solve constitutive equations describing thermal ablations [53, 73].  

Use of these models to develop treatment plans, however, has not been explored, 

especially with respect to planning placement of the RFA device.   

This paper will study the problem of coupling positional information of a tracked 

RFA device with a computational model that predicts therapeutic outcome from physical 

principles that govern RFA.  The goal is to characterize the spatial extents of actual 
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ablations performed with tracked RFA in comparison to model predictions using the 

positional data from the tracking.  To achieve this goal, several pieces of technology, 

which until now investigators have studied independently, will be integrated together.  

First a tracked RFA device will be constructed and characterized for use in locating the 

functional components of the device within the coordinate frame of the treatment region.  

Then a phantom system will be developed to help visualize the ablation outcomes 

performed using the tracked RFA needle.  Finally, the phantom system will be imaged, 

and the ablation extents will be compared with finite element models of RFA solved 

using the measured needle positions as inputs.   

 

Materials and Methods 

 

Tracked RFA 

Needle holder design 

The ablation device used in this study was a RITA Starburst XL model 

radiofrequency ablation probe (RITA Medical Systems, CA).  In order to track the device 

in space, a rigid needle holder was constructed.  The needle holder served two primary 

functions. First, the holder reduced the bending of the RFA needle shaft so that during 

placement the needle shaft could be assumed to lie on a straight line.  Second, the holder 

provided a surface for infrared emitting diodes (IREDs) to be attached rigidly at places 

close to the distal tip of the device where the electrodes are deployed.  By localizing 

IREDS in space using an optical tracking system (Optotrak 3020, Northern Digital, Inc.), 
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real time information about the location of the needle holder, and thus the needle itself, 

were determined. 

 

Needle holder calibration 

The calibration of the needle’s physical location relative to the IREDs on the 

needle holder was achieved in two steps.  In the first step, the needle axis was determined 

with respect to the IREDs on the holder.  As shown in Figure III-1, the needle holder was 

constructed with a planar base so that it could be translated freely on top of a flat surface.  

Needle holes of the same diameter as the needle were drilled perpendicular to this base.  

A similar sized pivot hole was then drilled through an acrylic block on top of which the 

calibration experiments would be performed.  While spinning the needle holder around 

the shaft of a needle that had been inserted through both the needle holder and the pivot 

hole, multiple measurements of the IRED positions were acquired.  An average axis of 

rotation was calculated and this axis was used to define the local coordinate system of the 

                    

Figure III-1:  (left) Pictures of the needle holder designed to track the RFA device.  (right) Optical 

tracking camera similar to the one used to localize the IREDs on the needle holder (image from 

http://www.ndigital.com).  Image dimensions are not to scale. 
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needle holder.  In particular, the axis of rotation was presumed to align with the shaft of 

the needle, and was set to the z-axis. 

The second step in the calibration involved determining a fixed origin on the 

needle axis.  In order to proceed, an arbitrary origin was initially selected along the 

calibrated needle axis.  Using Optotrak, the transformed position of this origin was 

tracked as the needle holder was translated about the 

acrylic platform.  Then, a second previously 

calibrated and tracked stylus instrument was used to 

measure the same surface by sweeping the tip of the 

instrument over the surface.  Because both surfaces 

were measured in the reference frame of Optotrak, the 

distance between the two planar set of points was 

used to offset the initial point of origin along the 

needle axis. 

 

Tine coregistration 

A CT image of the RFA device while attached 

to the needle holder was acquired with the tines 

deployed at the manufacturer’s “2 cm” setting.  The locations of the 9 tine tips on the 

device were manually segmented and their positions in the image were recorded.  Four 

Acustar fiducial markers [85]attached to the needle holder (see Figure III-1 and Figure 

III-2) were also segmented, and their centroids were coregistered with Optotrak 

measurements of the corresponding points.  The coregistration step provided a means of 

Figure III-2:  Rendering of 

segmented CT image of RFA 

device attached to the needle 

holder, showing the deployed tines.  

The floating objects are the Acustar 

markers, while the H-shaped object 

near the top of the image is the 

frame that houses the IREDs. 
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transforming objects in the space defined by the Acustar markers to the space defined by 

the IREDs.   

 

Needle tracking experiment 

To characterize the ability of the needle holder apparatus to track the tip of a 

needle, experiments were performed using a hollow bore, 16 gauge needle (Popper and 

Sons, NY) as a proxy for the RFA device.  The needle was attached to the tracked needle 

holder and inserted into various locations within a rigid PVC box.  On the surface of the 

box were placed four Acustar fiducial markers.  The box was filled with a 3% gelatin 

solution (275 Bloom, Type A, Vyse Gelatin Co., IL) to provide a solid medium into 

which the needle is inserted.  With each needle placement, the position of the needle 

holder as measured by Optotrak was recorded, and then about 1 mL of a barium sulfate 

suspension (Lafayette Pharmaceuticals, IN) was injected into the gelatin.  The barium 

provided a record of where the needle was placed in the box when imaged by CT.  A total 

of 86 needle placements were recorded.  The average distance from the needle tip to the 

origin of the needle holder was 9 cm. 

In order to locate the needle tip within the CT image of the gelatin, a series of 

rigid transformations were computed to convert measurements in Optotrak coordinate 

system to the local coordinate system of the PVC box: 

 

 
needle PVC needle holder holder opto opto PVC

T T T T→ → → →=  (3.1) 

 

The transformation 
needle holder

T →  was determined in the previous section; 
holder opto

T →  was 

reported by the Optotrak system after each needle insertion into the gelatin phantom; and 
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opto PVC
T →  was constructed by coregistering the physical locations and the CT 

segmentations of the Acustar markers, in the same manner as described in the tine 

coregistration step above. 

 

Figure III-3: (left) Rendering of barium tracks imaged in CT.  An acustar marker is shown on the left. 

(right) Schematic showing between needle tip location predicted by Optotrak measurements, and the needle 

track segmented in the CT image. 

 

Segmenting the barium tracks proceeded with the following thresholding scheme.  

For each barium track, pixel values greater than 1300 Hounsfield units were identified.  

Using the Optotrak measurement as a guide, the search was constrained to a trajectory-

aligned cylindrical neighborhood around the needle tip location.  The cylinder was set to 

be 3 mm in diameter.  All other pixels were discarded.  The needle trajectory was then 

corrected by pivoting about the measured origin of the needle holder until the average 

weighted distance from each pixel to the trajectory was minimized.  The distance was 

δ 

Barium 

needle 

track 

Predicted 

needle 

track 
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weighted by the pixel intensities so that the trajectory would preferentially fit the higher 

intensity pixels produced by the concentrated barium suspension. Finally, a tip location 

was selected by searching the most distal pixel within a 1 mm diameter of the trajectory.   

 

Phantom experiments 

Ablations 

Ablations were performed in a rectangular acrylic box (4 in. x 3 in. x 4.5 in.), 

designed with needle holes on the top surface (see Figure III-4).  The needle holes were 

placed along the midline of the box.  These holes served both as physical markers to 

collocalize with the model in subsequent analysis, and needle guides for controlled 

placement.  This coregistration produced a transformation that mapped the coordinates 

from the Optotrak to the local coordinates of the phantom: 
opto phantom

T −> .   
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Figure III-4: (top left)Photograph of the phantom housing along with the needle holder and the RFA 

device in a setup representative of the ablation experiments.  (top right) A close up of the phantom housing 

showing the needle holes, the slice guides used to aid in cutting the phantom, and the location of the 

grounding pad.  (bottom left)Schematic showing inner dimensions of the phantom housing and itslocal 

coordinate systems.  The phantom material is filled from the bottom up to an approximate height of 6.5cm. 

(bottom right)Top-down view of the phantom housing.  The dark circles represent the needle holes.  The 

dark lines show the location of the slice planes.  From top to bottom, these planes are y = 5, 0, -7, and -9 

mm.  

 

The box was filled with approximately 600 ml of a tissue-mimicking agarose-albumin gel 

adapted from[86].  The gel was composed of agarose (1% w/v) mixed in with liquid egg 

white (Country Creek Farms, AR).  According to the manufacturer, a 450 mL product 

y 

x 
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contained roughly 50 g of proteins, of which albumin is presumably a large component.  

In making these gels, the agarose solution was prepared initially at a higher concentration 

and cooled to approximately 50 °C.  The egg white solution was warmed to 

approximately 45 °C, before mixing in the agarose.  This step prevented the albumin 

from being prematurely denatured by the warmer agarose solution, but also allowed the 

agarose solution to remain above its gelling temperature.  The entire solution was then 

refrigerated for at least 6 hours. 

Two ablations were performed each with constant power settings at 20 W for 10 

minute using a RITA 500 RF generator and the RITA ablation device.  Temperature 

measurements of the tines were manually recorded at approximately 15 second intervals.  

The first ablation (designated “Case 1”, in the remainder of this document) was 

performed with an initial background temperature of 23°C and an impedance of 26 Ω, as 

reported by the RITA RF generator.  The device was placed through the second needle 

hold to the left of the center needle hole, as shown in Figure III-4.  The second ablation 

(“Case 2”) was performed at 27°C, also with an impedance of 26 Ω.  This ablation was 

performed in the same phantom as in Case 1, but occurred after 1 hour of cooling time to 

allow the phantom material to return to baseline temperatures.  The device was placed 

obliquely into the ablation to approximately the same depth as the first ablation. 

 

Photogrammetry 

After ablations were performed, the agarose-albumin block was sectioned 

manually with parallel cuts located at the planes shown in Figure III-4.  These sections 

were then photographed digitally into images of 1280x960 resolution.  The resulting 
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images were rescaled so that the width of the imaged phantom corresponds to the inner 

diameter of the phantom housing.  Finally, the images were realigned so that the edges of 

the phantom in each image match. 

 

Computational Model 

A finite element model was developed for the phantom system in order to 

determine if the ablation results could be predicted by computational modeling.  In 

particular, the model would be used to test if the the ablation extents align in space with 

images of the ablation outcome. 

 

 

Figure III-5: (left)The surface model of a commercially used ablation device, along with its local 

coordinate system.  (middle)A close up of the tine arrangement from the bottom.  (right)A surface mesh of 

the phantom geometry with a needle penetrating the phantom surface.   

 

Model geometries 

Shown in Figure III-5 is the surface mesh of the domain geometry and the needle 

model.  The model was constructed to mimic the dimensions of the acrylic box. 
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Excluding the RFA device, two material domains were used: one representing the acrylic 

box, and the other the phantom material.  The top surface of the phantom material was set 

so that the total volume would be 600 mL. 

The needle geometry was then placed according to the orientation and position 

provided by Optotrak.  To achieve this goal required the coregistraton of the needle 

geometry to the CT image of the physical device.  First the shaft of the needle was 

aligned with the segmented shaft of the CT.  Then, the tines of the needle geometry were 

coregistered with the tine measurements obtained earlier, producing the transformation 

RFA holder
T → .  It should be noted that in the last step, the registration was constrained only to 

rotation about the shaft as well as translation along the shaft.  As in (3.1), the total 

transformation from the local coordinates of the RFA device to the coordinates of the 

phantom is then given by a series of transformations: 

 

 
RFA phantom RFA holder holder opto opto phantom

T T T T→ → → →=  (3.2) 

 

A mesh was then generated using a freely available meshing software package, Tetgen 

[72].  Special modifications were made to this software to allow repair of intersecting 

surfaces caused, in particular, by the insertion of the needle geometry through the surface 

of the phantom material. 

 

Constitutive equations 

Computational models of thermal ablation start with a thermal diffusion model: 

 

 
RF

T
c k T Q

t
ρ

∂
= ∇ ⋅ ∇ +

∂
, (3.3) 
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where QRF (W/cm
3
) is the heat source due to RF currents, and T (°C) is the temperature.  

All other material coefficients are defined in Table III-1.  The heat source, QRF can be 

approximated by first solving the electrostatic problem with appropriate boundary 

conditions: 

 

 - 0σ∇ ⋅ ∇Φ = , (3.4) 

 

 

where σ (S/cm) is the conductivity of the medium, and Φ(V) is the electrostatic potential.  

Given Φ, the heat source is then estimated as the time-averaged power density generated 

by the resulting current: 
2

0

1

2
set

RF
PQ

P
ησ 

 
 

= ∇Φ , where P0 is the input power resulting 

from 1.0 V being applied to the needle, and Pset is the actual power setting, which is 20.0 

W.  The parameter η represents a phenomenological term that is used to account for 

unknown power losses due to inaccurate parameter selection and potential discrepancy in 

the power level reported by the RF generator.  This parameter was titrated using 1% 

increments starting from 100%, until the temperature distributions matched the predicted 

ablation in a control experiment.  This value has been set to 90% for all simulations. 

Boundary conditions are specified as follows.  For the electrostatic problem, the 

outer surface except the bottom face is prescribed an insulative, no flux condition.  A 

constant 1.0 volt Dirichlet condition is applied on the conductive electrodes, and ground 

is placed on the bottom face.  The total power Pset was set to 20 W, and the entire ablation 

was run for 10 minutes, after which the power was set to 0 W.   
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Table III-1: List of material properties used in RFA simulation.  Values represent the initial properties 

used in the simulations.  As simulations proceed, the temperature-dependent properties change. 

Properties Symbol (units) Value 

Thermal diffusivity (phantom) k (W/cm·K) 5.72e-3 

Density (phantom) ρ (g/mL) 1.03 

Heat capacity (phantom) c (J/g·K) 3.94 

Electrical conductivity (phantom) σ (mS/cm) 4.4 

Activation energy ∆Ea (J) 3.846e5 

Activation factor A (s
-1

) 3.75e57 

Thermal diffusivity (acrylic) k (W/cm·K) 1.7e-3 

Density (acrylic) ρ (g/mL) 1.19 

Heat capacity (acrylic) c (J/g·K) 1.4 

Electrical conductivity (acrylic) σ (mS/cm) 1e-14 

 

 

 

Finally, a measure of accumulated protein denaturation over the course of the 

ablation is computed.  A suitable metric is the Arrhenius damage index, which has been 

previously employed by investigators to model optical changes in albumin upon heating 

[86].  It is given by:  

 

 
( )

( )
( )

,
exp ,

,

t EaA t
t RT t

ω
ω

 ∂ ∆
= − −  ∂  

x
x

x
, (3.5) 

 

with the initial condition that ( )0, 1tω =x .  The Arrhenius survival function, ω, can be 

interpreted as the ratio of undenatured proteins to total proteins within a given region of 

space.  Thus in the case of the phantom, ω = 1 corresponds to albumin in its native state, 

whereas ω << 1 indicates the albumin is denatured.  In this work, the threshold used to 

demarcate the denatured coagulum was set to 1

0 eω −=  or approximately 37%. 
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Material properties 

As suggested previously by other investigators [53, 55], this model implemented 

temperature dependent electrical conductivity.  In particular, the electrical conductivity of 

ionic solutions, notably that of the phantom material, increases at a rate of 2%/°C [77].  

The temperature dependence of other parameters were not modeled because their 

inclusion in the model would produce relatively small changes in the final temperature 

[79].  As the mesh was regenerated for each needle placement, routines are implemented 

to assign appropriate material properties to each tetrahedral element.   

A method for estimating the thermal properties was proposed in [86] based on the 

estimated water content of the material by mass, and adopted in this study.  The water 

content of the phantom was estimated based on the protein content (albumin) and agarose 

(56 g) as compared to the total mass of the gel (600 g), resulting in a ratio of 93%.  The 

electrical conductivity of the phantom was estimated to be 4.4 mS/cm at 23 °C based 

upon the impedance reported by the generator, and using the assumption that the material 

was homogeneous.  Finally, the Arrhenius parameters were those used in [86]. 

 

Iterative solver 

In order to solve the coupled equations, the finite element method (FEM) [53, 56, 

73, 74] was used to discretize the problem spatially.  An external iterative solver package 

(PETSc, [80]) was used to obtain the solution of the resulting systems of equations using 

an iterative scheme.  The transient temperature solution was computed over 15 minutes 

via a fully implicit time-stepping scheme, at intervals of 15 seconds.  Temperature-

dependent properties were updated by using the temperature distribution from the 
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previous iteration.  A constant power setting was imposed on the electrostatic problem by 

scaling the total power in the domain to 20.0 W at every time step.  After 10 minutes of 

ablation, the applied power was set to zero.  All algorithms were implemented in C++ on 

a Win32 platform using a Pentium 3.4 GHz processor with 2 GB of RAM.  For further 

details on the implementation, please see Chapter II. 

 

Model accuracy 

In order to evaluate the accuracy of the model two parameters were developed 

based on the pixels from the imaging studies of the phantom results.  The sensitivity, S, 

measures the ratio of the number of ablated pixels which coincide with the model, Noverlap, 

to the total number of segmented pixels, Nobserved: S = Noverlap / Nobserved.  The positive 

predictive value, P, measures the ratio of the overlap of ablated pixels with the model to 

the total number of pixels inside the model, Npredicted: P = Noverlap / Npredicted.  As an 

illustration, a large sphere that covers the entire region of interest would result in a S 

value of 1, but at the cost of a low P.  At the other extreme, a model that predicts a tiny 

spherical ablation in the middle of the observed ablation pixels would have a high P but a 

low S.  It is desirable to have high S and P values because it implies the model would be 

able to predict the observed ablation results with high probability without the model’s 

being overly permissive in predicting ablated pixels. 

In anticipation of needle tracking inaccuracies, a method was used to test whether 

the model accuracy would improve only by changing the position of the needle, while 

other model parameters remained the same.  Using an image processing technique 

previously described (see Chapter II), the RFA needle was repositioned from the 
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measured placement with the objective of overlapping more of the observed pixels.  In 

addition, the model results were compared to spherical geometries commonly used in the 

ablation literature to model ablations. 

 

Results 

 

Needle tracking experiments 

 

Figure III-6: Histogram of the distance between needle tip location predicted by Optotrak and as observed 

in CT imaging. 

 

The average needle placement error was 1.4 ± 0.6 mm, and the figure above 

shows the calculated error distributions.  This result is comparable to a previous study 

using a similar barium track technique for evaluating needle tip tracking in gene therapy 

application [87].  One source of uncertainty in this experiment is the distribution of 

barium within the needle track.  Because gelatin tends to crack upon applied stress, the 

barium tracks may have extended further than the true needle tip position.  Indeed, if the 

needle length is considered fixed, then expected tip location as projected from the tracked 
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origin of the needle holder is consistently shorter than the tip location estimated from the 

CT image.  On average, this biased extension along the needle is approximately 0.8mm. 

 

Phantom experiments 

 

Figure III-7:  Ablation outcome for the slice at y = 0mm. 

Needle coregistration 

The registration error in 
RFA holder

T →  used to map the tine tips of the physical needle 

to the needle geometry used in FEM modeling was 0.88 mm.  This result reflects 

discrepancies between the symmetric arrangement of the tines used in modeling 

compared with the actual asymmetries in the physical device.  Ideally, the geometry 

should match that of the physical device since electrical power is concentrated in the tine 

tips, and thus, accurate localization of the tine tips could potentially produce more 

accurate modeling.  Nevertheless this result is reasonable given the inherent difficulty in 

localizing flexible mechanical systems such as the tines in the RFA device. 
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Temperature traces 

 

Figure III-8: Temperature traces from (left) case 1 and (right) case 2.  The marked points are the recorded 

temperatures provided by the RFA system.  The solid lines represent the model predictions 

 

 The RITA RF system contains thermocouples embedded in the outer tines, and 

during the ablation experiments, these measurements were recorded manually.  The tines 

have been labeled to match the scheme used by RITA, in which tine 1 is the center tine, 

and tines 2 through 5 are the outermost tines, corresponding to the tines placed on the 

cardinal axes shown in Figure III-5.  As graphed in Figure III-8, the temperature 

measurements agreed with the model predictions well.  At higher temperatures, however, 

there is some deviation with the model, particularly visible in the plot for case 1.  This 

discrepancy is likely the result of additional dynamics, such as vaporization of water, or 

the desiccation of the phantom resulting in decreased power delivery locally.  The FEM 

model does not currently include these dynamics.  In both placements tine 1 is closest to 

ground, and hence is the path of least resistance for the RF current.  Thus, more power is 

preferentially deposited there.  Also of note is that even though the remaining 4 tines are 

arranged symmetrically about the axis of the device, there is some difference between the 

temperature distributions.  This difference is most noticeable in case 2, in which the tines 
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are placed at different distances from ground because of the oblique angle of insertion.  

The most straightforward explanation of these differences in local temperature is that 

they are the results of boundary effects. 

 

Image analysis 

The imaged ablation outcomes were segmented using a thresholding scheme.  The 

processed image corresponding to the slice plane y = 0 mm, as displayed in Figure III-7, 

is updated in Figure III-9.  The measured needle placements were generally in the right 

vicinity of the corresponding ablation for each case.  Furthermore the modeled ablations 

agreed with the imaged ablations.  The next sections provide quantification of this 

agreement. 

 

 

  

Figure III-9: Ablations at slice y=0 mm for (left pair) case 1 and (right pair) case 2.  The dark mask 

represents the segmented pixels corresponding to the ablated albumin.  The surfaces provide a three 

dimensional context of the overall ablation shapes.  The intersection of the surface with the plane is given 

by the black outline. 
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Model accuracy 

The results presented in the table demonstrate that with the raw measurements of 

needle position, the model is capable of predicting at least 90% of the pixels that had 

been classified as being ablated.  In achieving this result, however, the model predicted 

roughly 17-19% more pixels (i.e. from calculating the ratio of S to P) as ablated than than 

were classified as being ablated.  The overestimation of the ablation extents is likely a 

result of inaccurate model parameters.  On the other hand, the differences in S values 

between the two cases may be perhaps better explained by inaccurate needle tracking. 

 

Table III-2: Table of parameters characterizing model accuracy.  The bottom row lists the maximum 

displacement of a tine in the repositioning process. 

 Case 1 Case 2 

 Original Repos’d Original Repos’d 

SFEM 91.6% 99.1% 99.4% 99.9% 

PFEM 77.9% 82.6% 83.7% 81.8% 

Ssphere -- 81.5% -- 71.3% 

Psphere -- 100% -- 100% 

Max tine shift 1.4 mm 1.7 mm 

 

 

 

Needle repositioning 

Table III-2 lists the results from repositioning the needle in model simulations in 

an attempt to increase model overlap with observed pixels.  In both cases, the S values 

increased, an expected result since the goal was to increase the numerator of S.  In 

particular, with case 1, the data suggests that the needle tracking error was a major 

contributor to the reported inaccuracies as both S and P increased while the ratio of S to P 

slightly increased from 18% to 19%, suggesting that the modeled ablation could capture 

more pixels simply by reposition rather than by increasing its size.  In case 2, however, 
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there was a marginal increase in S while P decreased.  This result indicated that the 

algorithm positioned the needle in a manner that produced a larger ablation in order to 

overlap more ablated pixels.  Nevertheless the decrease in P was marginal, and the fact 

that both cases had roughly the same value of P suggests that some shared parameters 

used in modeling the ablations were likely affecting the overestimation of the ablation 

size.  These parameters may include discrepancies between true and simulated material 

properties, or the incorrect choice of threshold, ω0.  This latter prospect is further 

explored below.  It is of note that if the repositioned needle represents the true location of 

the physical device, then the amount of displacement of the tines is comparable to the 

error reported in the needle tracking experiment above. 

 

 

Figure III-10: The diagram shows, in the coordinate system of the phantom, the largest spheres that fit 

the ablated pixels, with the corresponding FEM prediction overlaid.  (left) Case 1. (right) Case 2 
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Comparison with sphere fits 

The results obtained with the repositioned FEM models were compared with 

spherical ablation geometries.  Each of the corrected ablation zones was fit with the 

largest sphere that was entirely contained within the observed pixels.  The results are 

shown in Figure III-10.  As can be seen, the sphere fits the fatter portion of the teardrop-

shaped ablation, but fails to account for the narrower portion near the shaft of the device.  

This observation is further illustrated in Figure III-11, in which the model accuracy was 

quantified using the S and P values described earlier.  For the repositioned FEM model, 

these curves were created by varying the treshold Arrhenius survival fraction.  For the 

sphere model, they were generated by varying the radius of the fitted spheres.  In general, 

in order to achieve an S value that is greater than 90%, the graphs show that the FEM 

model were able to do so at a higher P than using the sphere model.  In other words, if 

both model were fitted to capture 90% of the observed ablated pixels, the sphere model 

would cover more nonablated pixels than the FEM model.  Although these results may 

seem to favor FEM only slightly, it is worth mentioning that these phantoms do not 

include the effects of vasculature.  In those circumstances, FEM model may outperform 

spherical models more significantly because geometric models do not account for heat 

sink effects.  It remains to be seen if methods proposed in [10], may enhance predictivity 

of geometric models. 
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Figure III-11: Receiver operator characteristics of sensitivity, S, and positive predictive value, P, values 

using sphere and FEM ablation models for each of the two ablation results.  The curve was generated for 

the FEM model by varying the contour threshold, whereas for the sphere model, the sphere radius was 

varied. 

 

Conclusions 

In this paper, evidence was presented to support the use of tracked RFA device in 

producing ablations whose spatial extents are predictable by computational modeling.  

Needle placement experiments demonstrated the ability of the optical tracking system to 

localize functional features of the device, particularly the electrodes, in space.  Ablations 

were performed inside a phantom system with the tracked device, and the positional data 

of the device were used in computational models of the ablation.  Results from the 

simulations demonstrated the feasibility of the models in predicting at least 90% of the 

ablated pixels in images of the phantom.  
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CHAPTER IV  

 

 

 

SENSITIVITY ANALYSIS OF NEEDLE PLACEMENT IN RADIOFREQUENCY 

ABLATION PLANNING USING A BEM-FEM APPROACH 

 

 

 

Abstract 

A computational method is presented for optimizing needle placement in 

radiofrequency ablation treatment planning.  The parameterized search is guided by an 

objective function that depends on transient, finite element solutions of coupled thermal 

and potential equations for each needle placement.  A framework is introduced for 

solving the electrostatic equation by using boundary elements to model the needle as 

discrete current sources embedded within a finite element mesh.  This method permits 

finite element solutions for multiple needle placements without remeshing.  We 

demonstrate that the method produces a search space amenable to gradient-based 

optimization techniques.  The method is then used to analyze the sensitivity of the 

optimized needle placement to random perturbations in its position by means of Monte 

Carlo simulations.  The results of the sensitivity analysis demonstrate that localization 

errors decrease the effective ablation extent inside the treatment region.  Information 

from this analysis may be incorporated into clinical planning strategies. 

 

Introduction 

 Radiofrequency ablation (RFA) is used increasingly as a thermal ablative 

modality for treating unresectable liver tumors.  Needle electrodes deployed inside the 

tumor generate RF currents that result in the thermal destruction of malignant tissue with 
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minimal side-effects.  Nevertheless, success of RFA has been limited when treating 

tumors that are larger than 3 cm in diameter [28].  Computational models have become 

integral in understanding the roles that thermal and electrical characteristics of the liver 

[53] play in RFA treatment.  In addition, computational models that predict proper 

placement of the RFA needle have become the focus of significant research, particularly 

with regards to application of image-guided techniques [34]. In treatment planning of 

RFA, an important goal is the identification of suitable needle placements within the 

treatment region such that the therapeutic outcomes, as predicted by a model of RFA, are 

maximized.  Another goal is to take into account possible misplacement of the needle 

during implementation of the plan.  These localization errors in targeting a predetermined 

location within an organ are caused in large part by mechanical deformation of the organ 

[88], organ motion due to respiration [84], as well as intrinsic tracking errors in the 

surgical navigation system [43].   

Currently, models of RFA used in needle placement or trajectory planning 

typically assume that the resulting spatial extents are geometrically spheroid or ellipsoid.  

The goal in geometric planning is to arrange copies of these fixed shapes so that together 

they would cover a tumor along with a 1 cm margin [46].  It has been recognized, 

however, that geometric models of ablation may not be sufficiently predictive in 

situations where thermal sinks, produced by large blood vessels that remain patent during 

ablation, are close to the treatment area [31].  On the other hand, computational models, 

solved in particular by finite element methods (FEMs), are capable of producing 

predictive results based on physical laws that govern ablation [53, 55, 73].  Nevertheless, 
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little has been reported on how to incorporate FEM based solutions into treatment 

planning. 

An obstacle to using FEM models for treatment planning is that significant 

computational effort may be required to evaluate ablation outcomes from different needle 

placements.  One such burden is in preprocessing the model geometries in order to 

discretize the problem into a manageable system of equations.  In a straightforward 

implementation, a mesh would have to be regenerated for each new needle placement 

before the model can be solved.  Mesh generation, however, is indirectly a 

computationally expensive process, especially in meshes containing geometrical features 

that vary significantly in characteristic length scales.  In particular, with respect to RFA 

modeling, the diameter of the tines of the probe is typically much smaller than other 

objects, and thus requires much refinement during mesh generation.  This refinement 

causes solvers of the FEM models to expend disproportionate computational effort on 

solving variables in a relatively small region of space compared to the treatment volume.  

Another source of computational burden lies in the postprocessing steps that are required 

to compare solutions from different needle placements.  Depending on the meshing 

technique, meshes may differ significantly from even slight perturbations to needle 

orientation and position.  Thus, in order to compare results from remeshed solutions, 

additional interpolation steps need to be taken, for instance, by sampling irregularly 

spaced FEM solutions onto a regular Cartesian grid. 

For these reasons, a method will be presented in this paper that eliminates the 

need for remeshing and allows solutions of linear FEM models for varying needle 

positions to be solved efficiently.  The method uses a current-source representation of the 
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needle electrodes as opposed to a constant voltage representation.  The novelty in the 

approach is that the current source may be coupled into FEM with a fixed mesh by means 

of direct integration.  The current source distribution is solved using the boundary 

element method, which discretizes the electrostatic problem into a smaller, albeit more 

dense, system of equations than FEMs.  After describing the method, it will be coupled 

with an optimization routine to search various needle placements in a given domain.  

Then, the method will be integrated into a Monte Carlo simulation to study the sensitivity 

of the optimized placement to perturbations to its position in order to model effects of 

needle localization inaccuracies encountered in real world RFA applications. 

 

Methods 

Computational models of thermal ablation usually begin with Pennes bioheat 

equation to solve for the thermal distribution as a result of a local heat source: 

 

 ( )b a RF

T
c k T h T T Q

t
ρ

∂
= ∇ ⋅ ∇ − − +

∂
, (4.1) 

 

where QRF is the heat source due to the radiofrequency current, T is the temperature, and 

explanations of other coefficients may be found in [73].  In radiofrequency ablation, QRF 

can be approximated by first solving the electrostatic problem with appropriate boundary 

conditions: 

 

 - 0σ∇ ⋅ ∇Φ =  (4.2) 
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where σ is the conductivity of the medium, and Φ is the electrical potential.  Given Φ, the 

heat source is then estimated as the time-averaged power density generated by the 

resulting current: 
2

1
2RFQ σ= ∇Φ . In order to solve the coupled equations, most 

investigators have employed the finite element method (FEM).  FEM models for 

radiofrequency ablation typically solve the electrostatic problem over a single meshed 

domain, Ω, that is shared with the thermal problem.  As a matter of convenience, a single 

mesh shared for both equations allows the estimated power deposition from the 

electrostatic equation to be input directly into the FEM formulation of the thermal 

problem without additional interpolation steps.   

 

Current source representation 

The technique developed to minimize remeshing exploits a well-known duality in 

electrostatics and circuit analysis regarding voltage sources and current sources.  

Specifically, for a voltage distribution that results from applying a constant voltage 

source to the needle (i.e. a Dirichlet boundary condition), there is an equivalent current 

source distribution (i.e. a Neumann boundary condition) that will generate the same 

voltage distribution in the domain.  The advantage of this equivalence is that a current 

source can be handled in FEM techniques independently of the mesh.  The disadvantage 

is that the magnitude of the equivalent current source that would result in the correct 

voltage distribution is unknown.  In order to provide an approximation to the current 

source strength, another technique – the boundary element method (BEM) – is utilized.  

In order to simplify the development of the method, the following additional conditions 

are imposed.  The constitutive models described in equations (1) and (2) will be linear 
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with spatially homogeneous properties and solved in 2D domains.  In the electrostatic 

problem, the ablation needle itself is represented as a 1D shell (i.e. a linear curve) within 

the domain, Ω, while the inactive portions of the needle such as the shaft of the needle 

are not modeled.  In the electrostatic problem this latter approximation is acceptable, 

since the nonconductive needle shaft does not affect the current magnitude significantly.  

The needle is assumed to be a perfect conductor, and thus Dirichlet boundary conditions 

for the potential problem are prescribed on the needle.  In the thermal problem, the needle 

itself is assumed not to have a material effect on the temperature distribution beyond 

acting as a heat source.   

To help illustrate the methods, the prototype problem shown in Figure IV-1 is 

used.  The geometry of the prototype problem is a rectangular domain measuring 20 cm x 

30 cm.  For the thermal problem, the prescribed boundary condition for all edges of the 

rectangle is T = 37°C.  For the potential problem, the edges are insulated (i.e. 0n∇Φ ⋅ =
�

), 

except for the rightmost edge which is grounded at Φ = 0.  The region of interest (ROI) is 

a circle with a diameter of 4 cm containing the needle.  The needle is prescribed the 

boundary condition 0Φ = Φ , which is set so as to produce a predetermined power level.  

The blood vessel is given the fixed boundary condition T = 37°C. 

As mentioned above, to eliminate FEM remeshing during optimization searches, 

BEM is employed to solve an equivalent potential problem, the solution of which is a 

current source distribution that can be readily coupled with a static mesh FEM.  The 

equivalent problem is described by Poisson’s equation: 

 

 B jσ−∇ ⋅ ∇Φ =  (4.3) 
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where j is a surface current source model that is only active on the boundary of the 

needle1.  For 2D problems, j is thus represented by a line source of infinitesimal width.  

Though the spatial distribution of j along the surface of the needle is initially unknown, 

the voltage distribution is constrained by the same Dirichlet boundary conditions as in the 

original Laplace’s model.  

 

Ω

Needle

Blood Vessel

Needle

Origin

 

Figure IV-1: (left) The geometry of the prototype problem;  (middle) the region of interest (ROI);  (right)  

closeup of the ROI shows the needle source elements embedded in the triangular mesh. 

 

BEM uses the following integral formulation of Poisson’s equation: 

 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

ˆ, ,

,

BEM BEM
c G q G ds

G j d

∂Ω

Ω

Φ = − Φ ∇ ⋅ +

Ω

∫

∫

y

y

x x x y y y x y n

x y y
, (4.4) 

 

where ( , )G x y is the Green’s function for potential fields in free space, q is the normal flux 

at a boundary, and ΦB
 is the potential.  For 2D potential problems, 

( ) 1
2

, logG π= − −x y x y .  The coefficient term, ( )c x , is defined to be ½ if x is on a 

boundary, and 1 if x is inside the domain and located on a current source.  

                                                 

 

 
1  In the BEM literature, this equivalence, wherein boundary conditions are treated as sources embedded in the domain, 

is known as an indirect formulation.   
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In order to solve this integral equation, the current source and the boundary are 

divided geometrically into Ns and Nb elements, respectively.  The resulting discretized 

integral equation for each element produces a system of
b s

N N+  equations, which can be 

written in matrix notation: BHΦ = Gq + Bj .  Using the collocation method [89], the entry 

in row i and column k of the matrices G and B is the result of evaluating the surface 

integral of ( , )G x y along element k at the collocation point on element i.  On the other 

hand, the entries of the matrix H represent contributions from the boundary integral of 

( ) ˆ,G∇ ⋅x y n  along element k to the i
th

 element. All integrals are evaluated analytically.  

As written in (4.4), the vectors ΦΦΦΦB
, q, and j represent the boundary voltages, boundary 

fluxes, and source currents at the collocation points of the boundary elements.  It should 

be noted that the vectors contain both unknowns and knowns.  In particular, wherever an 

element is prescribed a Neumann condition, the corresponding component of ΦΦΦΦB
 needs to 

be solved.  Similarly, if a Dirichlet condition is prescribed, then the corresponding 

component of q needs to be solved.  All elements of j are unknown, and it is the object of 

this method to determine their values.  To proceed then, the unknowns are first collected 

onto the left hand side.  The resulting system of equations, which appears in the 

form Pα = b , is solved.  The solved variables are then resorted into the original vectors 

ΦΦΦΦB
, q, and j to obtain the desired solutions.  For further details on implementing BEM, 

the following text is recommended [89].  A representative BEM solution is shown in 

Figure IV-2. 
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Figure IV-2:  (left) The graph depicts a representative current distribution along the needle solved using 

BEM with Φ0 = 163 V and σ = 1.48 mS/cm.  The resulting power density is shown for each element of the 

mesh (right). 

 

Power Density Estimation 

Once the boundary element problem is solved, an estimate for the current source 

model is obtained.  In order to estimate the power density, the current source model is 

used with FEM to estimate the potential everywhere else in the domain.  The standard 

Galerkin formulation of Poisson’s equation in FEM analysis is: 

 

 ( )F F

i i id n ds j dσ ϕ ϕ σ ϕ
Ω ∂Ω Ω

∇Φ ⋅∇ Ω − ∇Φ ⋅ = Ω∫ ∫ ∫
�

 (4.5) 

 

where
1

eN
F F

k k

k

ϕ
=

Φ = Φ∑ , and kϕ is chosen to be a piecewise linear basis function.  The right 

hand side of equation (4.5) is coupled to the BEM solution via the current source, j, 

which is composed of piecewise constant line elements.  In order to evaluate this domain 

integral, it is therefore necessary to identify which elements in the FEM mesh contain a 

line element representing the current source.  Two steps are required.  First, point-in-

triangle queries are used to identify which finite elements contain the endpoints of a 
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boundary element.  Then, the segments are partitioned amongst the finite elements by 

solving for the points of intersection between the boundary element and the edges of the 

finite element.  Both computational geometry problems have been well studied [90].  As 

can be seen in Figure IV-1, relatively few triangular elements of the FEM mesh contain 

line elements of the BEM mesh, and thus, efficient data structures can be used to speed 

the search for triangle-line intersections.  After the line sources are partitioned among the 

triangle elements of the FEM mesh, the source integrals in (4.5) can be evaluated via 

Gaussian quadrature, resulting in the following system of equations, written in matrix 

form: 
E E

F
Κ Φ = f .  After the nodal values are solved, the power density for the i

th
 

element is estimated by 
2

1
2

F

i i
Q σ= ∇Φ , which is constant within the element for 

piecewise linear basis functions. 

In order to model RFA with a constant-power setting, the voltage applied to the 

needle, Φ0, was scaled so that the total power deposited in Ω was equal to a prescribed 

level.  Although other power delivery schedules like constant temperature settings are 

used in clinical applications, they are more difficult to simulate because of proprietary 

control logic designed by the manufacturers of the RFA system [91].  Nevertheless, 

adapting this method to time-varying power schedules should be straightforward.  A 

typical solution of the power deposition is shown in  

Figure IV-2.  Given the power deposition, transient solutions to the thermal 

problem can be obtained via the FEM formulation of the thermal problem:  
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which can be rewritten in matrix notation as 
T T T

t∂ ∂ = +M T K T f .  Because the FEM 

mesh needs to be generated only once and the models are linear and coupled only via the 

heat source, the FEM matrices KE, KT and MT need only be computed and stored once.  

Thus, for each step in an optimization search, only the vectors fE and fT need be updated.   

 

Needle placement optimization 

The Arrhenius survival function is a commonly used index for evaluating thermal 

ablation.  The index is the solution to a first order differential equation with a 

temperature-dependent rate constant:  

 

 
( )

( )
( ),

,
exp

,

a
t

t E
A

t RT t

ω
ω=

 ∂ ∆
−   ∂  

− x
x

x
, (4.7) 

 

 

with initial condition, ( ), 1
0

tω =x .  The variable ω  can be loosely interpreted in the 

context of thermal ablation to mean the ratio of viable cells to all cells.  Other parameters 

in the equation are explained in [53].   After ablation, a smaller value of ω everywhere 

within the tumor would indicate a higher likelihood of ablation success.  Thus, a suitable 

objective function can be defined by spatially integrating ω, evaluated at some fixed time 

tf after the beginning of ablation, over the region of interest (i.e. the tumor):  
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 ( ), f

ROI

t dω= Ω∫ xJ . (4.8) 

 

For each time step in solving the transient temperature distribution, ω is updated at each 

node of the finite element mesh.  The same basis functions used in solving the FEM 

problems are applied to interpolate the nodal values of ω.  Finally, quadrature can be 

performed over each element of the mesh that belongs in the ROI.   

Because the transient temperature distribution is a function of the heat source, the 

objective function in (4.8) is implicitly a function of the position of the 2D needle.  

Consequently, the objective function can be parameterized by three degrees of freedom 

describing a rigid transformation of the needle: the x and y positions, and a rotation φ  

about the origin of the needle.  If θθθθ is defined to be the vector of these three degrees of 

freedom, then the optimization problem searches for θθθθ that minimizes ( )θJ .  The search 

method employed is an unconstrained steepest descent algorithm [82].  The gradient of 

the objective function is estimated using a finite difference scheme with a step size of 

10
-4

.  In order to seed the search, the needle origin is arbitrarily placed inside the ROI so 

long as the entire needle lies inside the ROI.  The search terminates if the relative change 

in θ  or ( )θJ  between iterations were less than 10
-3

 or 10
-4

, respectively.   

 

Sensitivity analysis 

In order to study the sensitivity of the optimized needle placements, the x and y 

coordinates of θθθθ are perturbed according to a Gaussian distribution, 
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[ ] ( ), ; , , ,
opt opt x y

prb G x y x y s s=θ .  The following two distributions are then computed.  

One is the expected Arrhenius survival distribution in the region of interest at the end of 

ablation: 

 

 ( ) ( ); [ ]prb dω ω= ∫x x θ θ θ . (4.9) 

 

The second is the frequency of obtaining an Arrhenius survival fraction below a 

threshold, ω0: 

 

 ( ) ( ) [ ];S S prb d= ∫x x θ θ θ , (4.10) 

 

where ( )S x  is defined to 1 wherever ( ) 0ω ω≤x , and 0 otherwise.  In this study, the 

tissue is considered successfully ablated at below ω0 = 0.01.  Level sets of S  thus 

represent regions in space for which ablations can be achieved at those confidence levels 

over all trial implementations of the plan.  For instance, if placement is perfectly 

accurate, then the 100% level set would coincide with the predicted ablation.  Integration 

for both distributions is performed using a Monte Carlo scheme, in which perturbations 

are drawn from a Gaussian random number generator. 

 

Simulation Experiments  

 

BEM-FEM validation 

In order to test the validity of the BEM-FEM approach described above, a model 

geometry with an analytic solution to the electrostatic equation was used.  The embedded 
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needle was given a 1.0 V Dirichlet boundary condition, whereas the entire boundary of 

the exterior domain was grounded.  The power distribution calculated by solving the 

electrostatic FEM using the BEM computed current distribution was compared with 

analytic solutions.  

 

 

Figure IV-3: BEM-FEM model validation using a geometry with two concentric circles.  (top) 

Temperature difference from modeling with BEM-FEM computed power distribution versus analytic 

power distribution (°°°°C), shown for the entire domain.  (bottom left) The difference in BEM-FEM computed 

power distribution and analytic power distribution.  (bottom right) Analytic power distribution, shown 

around the circular needle. 
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The results are shown in Figure IV-3.  As seen in the figure, the error distribution 

of the BEM-FEM solution is dependent on the level of mesh discretization.  In particular,  

a)   

b)    

Case 1:  a) A plot of ( )
10

log ω x  for the initial placement and a contour plot of ( )
10

log ω x ; b) similar 

plots for the optimized needle placement. 

 

a)   

b)    

Case 2:  a) A plot of ( )
10

log ω x  for the initial placement and a contour plot of ( )
10

log ω x ; b) similar 

plots for the optimized needle placement. 

 

Figure IV-4:  Simulation results comparing initial and optimized needle placements for two domains. 
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elements that contain the BEM current sources have higher errors.  This error likely 

reflects the use of a linear basis function in the finite element solution.  In order to 

compare the effects of this error on temperature distribution, an ablation simulation was 

performed.  As described above, a constant power ablation was performed for 10  

minutes, and a temperature distribution was obtained at 10 minutes both for the power 

computed with BEM-FEM and with the analytic solution.  The difference in temperature 

distribution is shown in Figure IV-3.  The maximum reported temperature rise at the 

center of the domain was 32 °C. 

 

Optimization results 

Values for the constitutive properties used in our model are listed in [53], with the 

exception that perfusion is not modeled (i.e. hb = 0).  For the BEM problem, the boundary 

and current source were discretized into Nb = 200 and Ns = 360 segments, respectively.  

For the FEM problem, the ROI contained 1504 triangles out of 2623 used in the entire 

domain.  At each step of the optimization, the total power deposited in the domain was 

fixed at 15 W/cm for 10 minutes.  The Arrhenius survival fraction was then evaluated 6 

minutes (i.e. tf = 16 min.) after the power is shut off.  All algorithms were implemented 

using Matlab (MathWorks, Inc.) on a 3.4 GHz Pentium 4 platform with 2 GB RAM.  

Optimization was attempted for two cases using the prototype model, one modeling the 

effects of a nearby vessel and one without.  Computation times for all cases ranged 

between 10-15 minutes.   
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Table IV-1:  Changes in needle positions and objective function between initial and optimized results. 

Case ∆x (cm) ∆y (cm) ∆θ (deg) J0 Jopt 
Ablation 

Area (cm
2
) 

-vessel -1.16 0.08 -4.6 4.2e-2 6.2e-6 20.98 

+vessel -1.24 0.16 15.3 5.1e-2 5.6e-4 18.88 

 

 

The Arrhenius survival distributions for the no-vessel and vessel cases (Case 1 

and 2, respectively) are shown in Figure IV-4.  Changes in the optimization parameters 

and objective functions are tabulated in Table IV-1.  A comparison of the two cases 

shows that optimal placements depend on the presence of nearby thermal sinks.  In 

particular, with a nearby vessel, the optimal needle placement is deflected towards the 

vessel so that the tips of the tines, where the most amount of power is deposited, come 

closer to the vessel.  Despite this adjustment, however, some parts of the ROI around the 

vessel remain relatively undertreated (i.e. ω > 0.01).  Indeed, the value of Jopt is higher 

than in the no-vessel case.  Such a result could be potentially informative in an actual 

clinical scenario by prompting the need for a change in treatment strategy or additional 

monitoring of this region after ablation. 
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Finally, an observation of the four simulations reveals that the ablation zone is typically 

not centered about the centroid of the needle.  Indeed, the needle is typically placed to the 

left of the vertical midline of the ROI, and the ablation zone extends preferentially 

towards ground, located on the right-hand side of the domain.  These results suggest the 

potential importance of the placement of the grounding pad in addition to the placement 

of the needle in optimizing therapy. 

 

 

 

 

Figure IV-5: Results of Monte Carlo simulation in studying sensitivity of previously optimized needle 

placements to 5 mm Gaussian error in needle position.  (left column)  Thin solid lines represent level 

sets of S  depicted, from outer to inner contour, at 50%, 75%, 90%, and 99% confidence in achieving 

successful ablation.  (right column)  Thin solid line represents the mean ablation ω at the threshold 

level ω0.  Results are shown for cases with no vessel (top row), and a vessel (bottom row).  In all 

diagrams, the dashed line represents the original predicted ablation given by the threshold level ω0.  The 

thick circular geometries represent the tumor boundary and the vessel, and the optimized needle 

placement is depicted. 
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Sensitivity Analysis 

In a series of Monte Carlo simulations for each of the vessel and no-vessel cases, 

the Gaussian localization model was set with standard deviation parameters
x y

s s s= = , in 

which s was varied from 1.0mm to 5.0mm in increments of 1.0mm.  Thus, 5 simulations 

were performed for each domain, and each simulation took approximately 1-2 hours to 

perform on the platform described above.   Figure IV-5 shows the distributions of ω and 

S  for the case of σ = 5.0 mm.  As shown in both domains, the mean ablation extents are 

smaller than that of the initial predicted ablation, and the level sets of S at the highest 

confidence levels fail to overlap the tumor significantly.  An interesting observation in 

the case of the domain with a vessel is that the closest distance from the level sets of S  

to the initial predicted ablation zone is smaller near the vessel than elsewhere.  This result 

indicates that although the vessel deforms the ablation zone, its effect is spatially limited.  

Indeed, if the vessel were not there, it is likely that sufficient power is still being 

deposited near the vessel location to generate an ablation that would overlap that region.  

A possible explanation is that in all perturbations to the position, the needle tips, where 

most power is deposited, are oriented close to the vessels.  If perturbations to orientation 

are included, the efficiency of ablating near the vessel may decrease.  In Figure IV-6, the 

trends over all error levels are plotted.  A notable pattern in the trends is that the rate of 

decrease in expected ablation areas and tumor coverage is largely the same in both 

domains, despite the different geometries of the final ablation zone.  This pattern may be 

coincidental with only perturbing the position of the needle, but not its orientation.  As a 

result, the net effect is approximately the same as convolving the initial predicted survival 
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distribution with the Gaussian kernel used in the Monte Carlo simulation, which would 

smear the distribution out symmetrically in a manner that reduces the ablation margin.   

In general the results show that as the perturbations increase in magnitude, less of 

the tumor can be expected to be ablated with high confidence.  These results thus provide 

motivation for improving surgical navigation as an indirect means of achieving 

effectively greater ablation sizes by making a higher percentage of the predicted ablation 

zone more likely to be achieved per needle placement.  These results also indicate that the 

planning process may benefit from incorporating measures of placement sensitivity into 

the objective function (e.g. local gradient information).  Currently, the objective function 

decreases in value dramatically as soon as the entire region of interest is within the ω0 

level set.  Thus, the optimization routine terminates even if the margins of the tumor are 

close to the ω0 level set.  In a sense, the termination is premature because even though the 

local gradient magnitude has decreased below tolerance, further optimization is still 

possible.  For instance, in the case of the domain with no vessel, the roughly circular 

contours shown in Figure IV-5 are not concentric with the tumor.  An optimization 

 

Figure IV-6: (left) Areas of expected ablation outcome ω  and its overlap with the tumor, normalized 

by the initial predicted ablation area and the tumor area, respectively.  (middle) Areas of overlap 

between level sets of S and the tumor, normalized by the tumor area.  (right) Areas of level sets of S , 

normalized by the initial predicted ablation area.  In all plots, the solid line refers to the case with a 

vessel, and the dashed line to the case without. 
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method informed by sensitivity analysis may further reposition the needle, or may 

indicate additional ablations to be performed. 

 

Conclusions 

We have described a computational framework to optimize needle placement and 

demonstrated its feasibility in simulations.  The method aims to minimize remeshing as a 

means to reducing computational burden in order to evaluate model simulations for 

multiple needle placements.  This efficiency is achieved by incorporating a current source 

representation of the RFA needle, the distribution of which is solved by BEM.  This 

current source representation can be integrated into FEMs in a mesh-independent manner.  

In addition, we have adopted the framework to study the sensitivity of planning to 

localization errors.  The results show that uncertainties in needle placement effectively 

reduce the expected ablation extents.   
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CHAPTER V  

 

 

 

CONCLUDING REMARKS 

 

 

 

Summary of Research 

 The goal of this research was to develop and evaluate a framework to plan the 

placement of radiofrequency ablation device. In Chapter II, a method was created to 

search for the device placement that would maximize the therapeutic goal according to an 

Arrhenius survival distribution.  This work improved on conventional planning 

techniques, which rely on geometric assumption about the final ablation outcome, by 

coupling the search with finite element models of ablations.  Because the finite element 

models were based on constitutive equations describing the physical processes governing 

RFA, this approach had the potential advantage of using physically meaningful and 

relevant parameters to predict ablation outcomes.  Nevertheless, compared to using 

geometries such as spheres or ellipsoids, models based on FEM solutions were more 

computationally intensive.  Thus, a novel scheme was developed based on the assumption 

that over small perturbations to the device orientation and position, the overall shape of 

the ablation would transform rigidly with respect to the device.  Reducing the problem in 

this manner allowed the use of image processing techniques to maximize the overlap of 

the ablation extents with the designated treatment region.  Then, to relax the artificial 

constraint that the ablation shape is invariant with respect to position in order to account 

for actual changes in ablation shape that occur because of thermal and electrical boundary 

conditions, the ablation was periodically updated by resolving the entire system at the last 
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searched device position and orientation.  This method was evaluated both for single 

ablations and multiple ablations.  In single ablation scenarios, the method was tested 

using perturbation analysis that were intended to represent worst scenarios in which the 

treatment region was as large as the ablation itself.  Results suggested that the search was 

insensitive to roll about the axis of the needle, but was otherwise capable of determining 

a needle placement that covered the treatment region.  In the multiple ablation scenario, a 

strategy was developed to reduce the complexity of the problem by decomposing the 

region into separate regions, and planning for each subdomain individually.  The 

combined ablation was capable of ablating more completely than the single ablation.  In 

addition, this result was achieved with fewer ablations than theoretically possible in 

geometric planning approaches. 

 Chapter III described the development of a phantom system used to test the 

accuracy of the model presented in Chapter II, as well as to evaluate the ability of an 

optically tracked radiofrequency ablation device to predict the extents of the ablation 

spatially.  An agarose-albumin gel phantom was constructed which provided a rigid 

setting for ablation experiments to be conducted.  In order to track the ablation device, a 

needle holder was built around the shaft of the needle in a manner that would not 

interfere with the deployed electrodes.  Then, a series of calibration steps were described 

that mapped the location of these electrodes into the coordinate system of the phantom.  

Comparison between the modeled ablation and the imaged ablation showed that the 

model correctly predicted at least 90% of the pixels corresponding to coagulated albumin.  

This accuracy was achieved with the model labeling 20% more pixels ablated than were 

actually ablated.  To determine if these pixel misclassifications could be explained by 
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positional inaccuracy of the needle alone, methods from Chapter II were employed to 

reposition the needle to maximize the overlap between needle and ablation.  The resulting 

prediction accuracy improved to cover at least 99% of the imaged ablation, and the result 

was achieved with only a nominal increase in the ablation size.  This outcome hinted that 

the model was itself accurate, and that the model discrepancies were a result of device 

tracking errors. Analysis of the contours of the Arrhenius distribution showed that the 

contours tended to agree well with the morphology of the imaged ablation.  Further it 

suggested that the model overprediction may be a result of incorrect threshold choice.  

Comparison of the FEM model with spherical models also suggested that the FEM 

models tended to account for a higher percentage of the imaged ablation pixels than 

spheres over a range of threshold choices and sphere sizes. 

 Inaccurate placement of the needle, like those observed in Chapter III, motivated 

the development of the techniques in Chapter IV.  In this work, the goal was to study how 

uncertainties in needle placement affect the reliability of an ablation produced from a 

treatment plan produced in Chapter II.  In particular, the aim was to determine the subset 

of the predicted ablation region that would be expected at a prescribed confidence level.  

To achieve this goal, a Monte Carlo scheme was used to evaluate the models for multiple 

perturbations to an optimal needle placement.  As noted in Chapter II, however, the 

complexity of FEM models precluded the possibility of using this approach.  Thus, a 

reduced model based on FEM-BEM approach was implemented.  This method allowed 

the needle to be represented as a current source which could be directly integrated into a 

static FEM mesh.  Consequently, the preprocessing steps such as mesh generation and 

matrix assembly involved in FEM methods need only be done once.  The result from 
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coupling the FEM-BEM model to a Monte Carlo integration scheme was a probability 

distribution in space representing the percentage of Monte Carlo trials that achieved 

successful ablation at any given point in the treatment area.  As uncertainty increased, the 

region of the originally predicted ablation area that could be confidently ablated 90% of 

the time (i.e. over all trials) decreased by as much as 40%.  In comparing these 

probability maps from domains with and without a nearby vessel it was shown that 

regions near the vessel were potentially less sensitive to positional uncertainties than 

other regions of the treatment volume.  This result suggested that depositing enough 

electrical power near the vessel was potentially a means of producing ablations that were 

robust to uncertainties in placement.  In general, the sensitivity analysis also indicated 

that multiple ablation approaches may be required even when a single planned ablation is 

predicted to overlap the treatment completely. 

 

Future work 

 

Model improvements 

Models can be improved to handle more physical phenomena.  Of particular interest is 

further research into modeling the effects of vessels over the relevant clinical ranges, 

namely those that are greater than 3 mm in diameter.  Because the tissue near the vessels 

is mostly likely to be ablated marginally, a more accurate analysis of the heat transfer in 

that region could generate a better understanding of the ablation efficacy.  Additional 

high-temperature dynamics, such as water boiling and tissue desiccation may also need to 

be incorporated.  Model improvements may also be achieved by enhancing the 
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performance of any individual computational component of the framework.  In particular, 

the most computationally intensive step in FEM analysis remains the time-stepping 

scheme used in producing the transient temperature distribution.  Methods to solve the 

nonlinear time-dependent differential equation more efficiently may make tractable the 

coupling FEM of analysis to Monte Carlo analysis. 

 

Multiple ablations 

As indicated in this dissertation, planning multiple ablations is a complex problem and 

merits further study.  The proposed strategy of decomposing the region of interest into 

subdomains reduces the problem complexity to planning for single ablations.  In doing 

so, however, it is assumed that past ablations have no effect on subsequent ablations.  

There are potential problems with this approach.  First, irreversible changes occur during 

the course of an ablation.  Notably, perfusion in the ablated region remains suppressed 

because local microvasculature is destroyed.  Other permanent changes have been 

observed in the literature include an altered baseline thermal and electrical conductivity.  

Furthermore, in clinical applications, it is unlikely that the surgeon waits long enough for 

the local temperatures to return to body temperature, as is currently assumed in the 

proposed methods.  Having a higher initial temperature distribution means that 

subsequent ablations are likely to reach boiling temperatures more readily, a scenario in 

which the presented models become less predictive as additional dynamics come into 

play.  It may be important to incorporate these phenomena into the model in order to 

quantify the potential synergistic (or detrimental) effects of cumulative ablations. 
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In vivo validation 

Ultimately, this research should proceed into the operating room.  Before then, 

however, a number of studies may be required to evaluate the effects of perfusion on 

planning.  Although a phantom system such as the one described in this research is 

desirable, little is presently known on how to construct a perfused phantom mimicking 

organic models.  Consequently, in vivo animal studies are likely to be the best model 

system.  In these models, however, device placement becomes less well controlled, 

particularly because of difficulties in coregistering the target organ with the space of the 

tracking system. Research into navigation in soft-tissue organs such as the liver may help 

further inform the planning process.  In particular, sensitivity analysis to placement error 

may be better constrained to model the mechanics involved in targeting a deformable 

organ with poor anatomical landmarks to be used for coregistration.  Retrospective 

analysis may be a first step towards in vivo validation, where the needle is tracked during 

use, and then a model is executed based on the positional data to compare with post-

ablation imaging analysis.
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