
MOBILE AIR QUALITY MONITORING AND WEB-BASED VISUALIZATION

By

Ronald William Hedgecock II

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Electrical Engineering

December, 2009

Nashville, Tennessee

Approved:

Dr. Akos Ledeczi

Dr. Xenofon D. Koutsoukos

ACKNOWLEDGMENTS

This work was made possible by a generous grant from Microsoft, NSF award 0807464,

and the continuing financial support of Vanderbilt University. Also thanks to Dr. Akos

Ledeczi for mentoring and advising me throughout this process.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . ii

LIST OF FIGURES. v

I. INTRODUCTION . 1

II. HARDWARE ARCHITECTURE AND FIRMWARE . 3

Sensor Node Description . 3
Sensor Node Improvements . 4
Firmware . 5

III. SYSTEM ARCHITECTURE . 8

Communications Methods . 9
Sensor Node Communications . 9
Server Communications . 10
Client Communications . 12

Dynamic Calibration . 13

IV. MODEL RECONSTRUCTION . 16

V. WEB-BASED VISUALIZATION . 17

GPS Smoothing . 17
Cumulative Displacement Filter Overview . 17
Filter Implementation . 19

Flash-Based Web Client . 20
Map Functions . 20

Google Maps Overview . 20
Marker Clustering . 22
Sensor Node Selection . 24
Sensor Data . 26
Sensor Node Visibility and History . 28
Realtime Raw Data Graph . 30

Data Retrieval . 30
Additional Applications . 32

VI. FUTURE WORK . 35

VII. RELATED WORK . 37

VIII. CONCLUSIONS . 39

iii

Appendix

A. GPS SMOOTHING FILTER IMPLEMENTATION . 41

BIBLIOGRAPHY . 47

iv

LIST OF FIGURES

Figure Page

1. Sensor Node Prototype . 3

2. Graphical Hardware Architecture . 4

3. APE Information Dissemination . 13

4. Dynamic Calibration Algorithm for Individual Sensors 15

5. GPS Smoothing Results . 18

6. GPS Smoothing Filter Algorithm. 19

7. Flash-Based Web Client . 21

8. Various Sensor Markers and Icons . 23

9. Single Sensor Node Selections . 24

10. Multiple Sensor Node Selection . 25

11. Web Client Sidebar . 27

12. Sample Pollution Overlay . 29

13. Node Path History Overlay . 29

14. Web Client Graph Area . 30

15. Choose History Dialog Box . 31

16. History Player Controls . 31

v

CHAPTER I

INTRODUCTION

In 2007, a collaborative research project was commissioned by Microsoft to design

a system capable of providing real-time air quality information to the general public via its

SensorMap online visualization interface. Work was begun on such a system with the initial

steps toward its implementation being completed by late 2007 [36]. The reason behind the

need for such a system comes from a serious lack of real-time pollution indicators in both

the United States and worldwide. Air pollution is one of the leading causes of respiratory

health problems, and with over 50% of the world’s population now considered urban [20],

it is up to cities to take the initiative to decrease air pollution.

The current method of air pollution monitoring in the United States includes sampling

airborne pollutants on an hourly basis, averaging these pollutant concentrations together

over a 24-hour period, and then publishing this data as a single value known as the day’s

Air Quality Index (AQI) [10]. For people who desire a higher level of resolution regarding air

pollution, the Environmental Protection Agency (EPA), along with several other government

agencies, runs a service called AIRNow which publishes the available hourly pollution data

on a web site in both graphical and downloadable form [1]. It should be noted, however,

that there are only about 5,000 pollution monitoring stations located throughout the entire

country. This minimal number of sensors coupled with a sparse sensing schedule means

that the AIRNow interface still only provides an extremely low-resolution image of air qual-

ity throughout the country. Since pollution is highly location dependent, there is insufficient

data to accurately evaluate air quality within specific neighborhoods or at well-defined pre-

cise locations.

Implementing a mobile air quality monitoring network enables a detailed picture of air

pollution to be constructed based on real-time data from mobile sensors over an entire

populated area. The work carried out under the Microsoft Research Grant enabled us to

demonstrate the feasibility of this approach and even build five car-mounted air pollution

1

sensor prototypes, each with an onboard GPS receiver and three gas sensors measuring

O3, NO2, and CO [36]. The research outlined in this thesis consists of improving upon the

original prototype sensor design, devising a method for actual implementation of a monitor-

ing system consisting of a number of vehicle-mounted sensor nodes, evaluating advanced

data processing algorithms to reconstruct an air pollution model from irregularly sampled

spatiotemporal observations, and creating a set of innovative web-based applications for

visualizing the data in an intuitive and easy-to-use interface while providing several addi-

tional pollution and health-related services to the public.

2

CHAPTER II

HARDWARE ARCHITECTURE AND FIRMWARE

Sensor Node Description

In order to discuss current research and improvements to the system, we must first

introduce the building blocks of the entire mobile monitoring network, namely the vehicle-

mounted sensing devices, which we will call ”sensor nodes” from here on, or simply ”nodes”

for short. Figure 1 shows an actual picture of one of the prototype nodes built in 2007.

Figure 1: Sensor Node Prototype

Each of these nodes is able to collect pollution data corresponding to atmospheric O3,

NO2, and CO levels in an autonomous fashion, as well as store this data offline for later

retrieval or stream the data to a base station in real time. Data is transmitted via either

an integrated Bluetooth module for wireless devices, such as laptops or PDAs, or via a

built-in USB interface for wired connections. The USB interface also provides the means

for powering the device, including charging its integrated Lithium ion battery. Although the

battery life of the device is limited to a few hours, the nodes will be mounted on vehicles

which can provide power while running, so this is not a limiting factor in practical applica-

tions. Furthermore, each node contains a 2-axis MEMS accelerometer to detect whether

the node is in motion and turn off power-hungry components such as GPS, Bluetooth, and

the digital LCD if stopped. Location and time information is provided by an on-board 20-

channel SiRF-III-based GPS module at a sampling rate of 1 Hz. Gas concentration levels

3

are measured by three analog sensors, whose readings, along with the temperature, rel-

ative humidity, a time stamp, and GPS data, are stored in a 16 Mbit serial flash device,

capable of holding up to 6 hours and 50 minutes of data without offloading the informa-

tion. A 2x16 character LCD panel provides immediate visual feedback about the status

of the system, including connected interfaces, GPS lock status, motion detection, sensor

readings, and battery life, and an Intel 8051-based microcontroller controls all aspects of

the system from battery charging to analog/digital conversions and the USB protocol. The

node hardware architecture can be viewed graphically:

Figure 2: Graphical Hardware Architecture

Sensor Node Improvements

The sensor nodes described above worked extremely well for first generation proto-

types; however, they did suffer from some limitations which needed to be accounted for

before wide-scale deployment is possible. The following section outlines the changes and

improvements that were made to the nodes to remedy these shortcomings.

The first problem was discovered while attempting to acquire a GPS lock with the digital

LCD enabled. With the LCD detached from the circuitry, the GPS unit had very little trouble

acquiring a lock; however, once the LCD was enabled, the GPS unit would often lose its

lock, and if a lock had not already been acquired, it would often fail to ever lock onto a

sufficient number of satellites to operate correctly. This seemed to be a problem with the

LCD either producing too much electromagnetic interference between the GPS unit and

4

a satellite, or a problem with signal noise on the power supply grid increasing when the

LCD was turned on. An oscilloscope verified that the board’s +3.3V power grid sagged

and became substantially more noisy when the LCD circuitry (including a charge pump to

increase the LCD supply voltage to +5V) was connected. Since the ENABLE line of the

GPS unit as well as its antenna power relies on a dependable +3.3V source, it was thought

that the noisy signal could be disrupting the unit’s ability to function correctly.

To fix the noisy power supply problem, and additional bypass capacitor was introduced

to the system at the power supply’s point of origin. The system already used a 10µF bypass

capacitor at the source, but the positive terminal of an additional 2.2µF bypass capacitor

(used at the charge pump input servicing the LCD power supply) was shorted via a wire

to this terminal, providing parallel bypass capacitance of 12.2µF. This greatly decreased

the power supply noise and enabled the GPS to retain its satellite lock once the LCD was

connected to the circuitry, but only if it had already acquired a lock prior to enabling the

LCD. If the LCD was turned on prior to the GPS acquiring a lock, there was still a high

likelihood that it never would. Thus, it was decided that the electromagnetic field being

produced by the LCD must be interfering with the GPS unit on the node. To overcome this,

we simply purchased external GPS antennae which could be positioned far enough away

from the LCD to avoid interference. This solved the locking problem in the prototypes, but

in future versions of sensor nodes, GPS solutions will be required which provide better

shielding from radio interference.

Firmware

All of the system components on each node are completely controlled by its Intel 8051-

based microcontroller running firmware written in C using the Small Device C Compiler

(SDCC) tool chain for compilation [7]. The benefit of using this method of compilation as

opposed to a more commercial alternative (such as Keil) is that SDCC is open-source

software, meaning that it is not only cheaper to produce firmware for these devices and

keep them up to date, but also the source code can be released under the GNU Public

5

License [4], allowing researchers and developers to use the code in their own systems and

even help to improve upon this existing code for the betterment of the entire system.

The main job of the code running on the microcontroller is to synchronously coordinate

all of the responsibilities of the sensor node, including polling the gas sensors and com-

municating with base stations over Bluetooth or USB. The entire node runs at a software-

defined frequency of 0.833 Hz, equivalent to 1 clock cycle every 1.2 seconds. At every cy-

cle, the node reads the ambient temperature and relative humidity, polls the gas sensors,

updates the status of the battery, USB, and GPS lock, stores this information into flash

memory, and sends the data over Bluetooth or USB if applicable at the time. A software-

defined watchdog timer is also implemented to ensure that the system does not lock up.

The watchdog timer is reset in software at every clock cycle. Thus, if the system has frozen

for any reason, the timer will not reset and will run out after approximately 10 seconds. At

this time, an interrupt will fire, completely resetting the node (but not overwriting its flash

memory contents), such that normal operation may proceed.

Another important aspect of the firmware is its ability to recognize when the unit is no

longer in motion and turn off power-hungry components. A counter is initially set to 60 and

decremented every clock cycle that the unit is stationary (as indicated by a logic ’0’ from

the MEMS accelerometer). When the counter reaches 0 (after 72 seconds), the unit will

power down the LCD, GPS, and Bluetooth devices to conserve power. Every time the unit

is detected as being in motion, the counter is reset to 60 and all components are once

again turned on.

The most important aspect of the firmware is, of course, its function in assuring that pol-

lution information gets stored correctly in flash memory to be downloaded later as required.

The data that is stored includes a maximum of 82 bytes of GPS data, all of the status in-

formation regarding the unit, as well as the actual atmospheric and pollution conditions,

totaling 98 bytes of data. The flash memory unit is capable of storing 4,096 pages of data

with each page containing 512 bytes [15]. Thus, each page can hold 5 data samples.

This multiplied by 4,095 pages (the first page is reserved for memory content information)

equals 20,475 samples of data that the flash memory can hold before overwriting previ-

ously logged data. That is equivalent to roughly 6 hours and 50 minutes before the node

6

must offload its information to a base station, either via Bluetooth or USB (both of whose

host drivers are also implemented in the firmware).

7

CHAPTER III

SYSTEM ARCHITECTURE

Although the sensor nodes are the physical building blocks of the mobile air quality

monitoring network, there are many other components which are necessary to implement

this architecture on a global system scale. The most notable of these components is the

server which is responsible for the processing, filtering, storing, and reconstructing of all

the information, as well as the clients who are interested in accessing the data. Processes

on the server combine data from individual sensors in similar physical regions into virtual

sensors while adjusting for GPS inaccuracies. In addition to these components, the system

also uses external sources of information to add to its accuracy and robustness, such as

area maps, local weather and traffic information, and data from the 5,000 EPA sensors

deployed across the United States [9].

From a central server point of view, data from sensors on the same node arrive at

the server as part of a ”measurement tuple,” meaning a node samples all of its sensors

simultaneously and generates a single tuple including these measurements, a time stamp,

and the node’s identifier. Data adapters then decompose the tuples into time-ordered

streams for each sensed modality and can remove duplicates or flag suspicious readings.

Currently, measurements are raw values and must be translated into scientific units (e.g.

parts per million for CO concentrations). Each modality is calibrated using a different curve,

and some modalities are calibrated first as they are required as input in the calibration

of other modalities. Most notable are temperature and relative humidity, whose values

greatly affect the measured levels of all gas concentrations using the analog sensors [26].

Some calibration curves are provided from the sensors’ manufacturers while others will be

periodically generated through measurements under controlled conditions in a laboratory.

Next, raw GPS readings are abstracted to a series of <location, duration> pairs, using

an innovative new approach described in Chapter V. After this, the node locations are

embedded on a Google map, and data from all of the sensor platforms are combined

8

into a virtual sensor whose spatial and temporal sampling rate is equal to the sum of the

rates of its constituents. This process is currently used to calibrate the sensors with one

another, but will be used in the future to detect malfunctioning sensors, which can then

be recalibrated using nearby mobile data as well as publicly available static data. The

measurements from all sensors are used to indicate when and where gas concentrations

fluctuate and to what extent these fluctuations occur. Finally, the discrete measurements

from all sensors are used to reconstruct the overall pollution function for a given location

using the process described in the following chapter.

Communications Methods

Since this system constitutes a large-scale wireless sensor network, operates au-

tonomously, and is deeply embedded in the physical environment, the methods by which

its constituent parts communicate with one another is of the utmost importance to the

success of the network’s implementation. This section will discuss such communications

methods as necessary for smooth operation of the mobile pollution monitoring network.

Sensor Node Communications

It should be noted that future versions of the sensor node prototypes will replace the

Bluetooth unit with a GSM modem, enabling units to transmit data over the mobile tele-

phone networks. This will remove the need for any sort of base or docking stations and will

decrease the complexity of the hardware as well as the power consumption of the device.

Keep in mind that the research covered in the rest of this document assumes the presence

of such a modem.

Raw data collected by the system’s mobile sensing platforms are transmitted to the

server network through one of the four following mechanisms:

1. Periodic Upload: Each of the mobile platforms periodically uploads the data it has

collected since the last upload event. This upload period is determined by the plat-

form’s capabilities (i.e. energy and memory resources) and can be dynamically ad-

justed based on application requirements.

9

2. Triggered Push: The system can install trigger conditions to each of the mobile

platforms whereby certain conditions (i.e. measured ozone concentrations exceed a

certain threshold) will trigger the platform to perform an immediate upload. This will

enable real-time alerts of potentially dangerous or hazardous situations.

3. Triggered Pull: The system also has the ability to dynamically pull data from specific

mobile platforms. This may be necessary for example upon some external stimulus

(e.g. a severe weather alert). This will also be used extensively for the web-based

visualization of the data. For example, if a user wants to see the raw data coming

from a specific node in real-time, triggered pulls will be used to ensure that the most

recent and up-to-date information is available.

4. Periodic Status Update: Sensing platforms periodically report their status, including

location, amount of data collected, and sensor status. This information is used to

identify the sensors whose data must be pulled during an extreme event. Data from

external sources (e.g. EPA sensors or traffic conditions) is also collected periodically

or in response to extreme events.

Server Communications

The server in this system actually constitutes a server cloud, whereby the server pro-

cesses as described in this paper do not actually run on one and only one centralized

server, but rather on an interconnected distributed serving system. This increases the sys-

tem’s robustness and fault-tolerance while also decreasing the large bottleneck between

potentially thousands to millions of clients trying to access system resources through only

one server or server bank. The server system is distributed in the sense that each server

array is connected, either directly or indirectly, to every other server array, such that data

can be passed between servers in a manner similar to Internet routing [35].

The server system processes batches of incoming raw measurements as atomic tasks

through a series of phases. The system stores the inputs and outputs of each stage

so that failed steps can be rolled back if necessary. Only data tasks that successfully

complete all phases are stored in each server’s main database. Performing validation

10

and pre-processing avoids the cumbersome and resource intensive process of removing

faulty data from the database. More abstract processing stages, such as context binding,

interpolation, and so on, happen only after all the relevant data are available. Waiting for

complete data sets before processing reduces the cost of sophisticated stages such as

interpolation and improves the overall quality of the generated data.

All processing stages are implemented as user-defined functions and stored proce-

dures, developed in the C programming language. The overall data management system

operates using Microsoft SQL Server 2008, including its OpenGIS implementation. SQL

Server 2008 is a good choice of data management software because it is a production-

level Database Management System that offers high performance through clustering (the

distribution of database information over several servers for redundancy and increased ef-

ficiency) [21]. Likewise, OpenGIS is an important database format component, since it

allows other developers and programmers to access the stored information in a widely-

available, open-source format [28].

Finally, the clustering of data between the servers will occur naturally on the basis

of geographic location. There should be several servers located throughout the country

which primarily service the sensing nodes and clients in their own sphere of influence. For

example, all of the sensing units in Chicago will use their GSM modems to transmit data to

the closest server bank to Chicago. This is extremely easy to do since the on-board GPS

units of each device will be able to pinpoint their positions and choose the address of the

correct server bank from an internal database. Likewise, web clients in the Chicago area

will be routed to the closest server bank when they access the project web site. Finding

a user’s location based on IP address is an extremely well-defined process with many

practical implementations already available, such as MaxMind’s GeoLite City [27]. Thus,

the traffic to and from each of the servers will be balanced according to their geographic

location, lowering access and processing latencies. If, however, a user in Chicago wants

to view the sensing data from another geographic location (New York, for example), the

local server is acting as a cluster of the distributed whole; thus, it can fetch the required

information from the New York server bank (either over the Internet or via dedicated lines)

and store it in its own local cache in case it is needed again or until it expires.

11

Client Communications

The transfer of data between server and clients uses a new open-source platform called

APE, short for ”AJAX Push Engine.” This engine makes use of an epoll-driven HTTP server

written in C to allow data exchange between over 100,000 users per server via a web

browser, without needing to reload and without relying on any external plug-ins other than

Javascript, which comes standard in almost all graphical web browsers [2]. The great

advantage of using APE for the purposes of this system is that it uses push technology

instead of pull to deliver updates to subscribed clients as they appear on the server in

real-time. This not only reduces the massive amount of network traffic required simply

to request information every few seconds, but it also ensures that data is only sent when

something interesting happens (i.e. when the data has changed or been updated, when

new nodes have appeared, when an extreme event has occurred, etc.).

The client side of APE uses a Javascript framework to hook into its communications

capabilities. In addition to any built-in Javascript methods, the APE Framework allows for

new plug-in modules to be added to extend capability should any new unforeseen needs

arise. In the context of the mobile pollution monitoring network, a single persistent connec-

tion is made over APE to the geographically-closest server whenever a user logs onto the

project web site. At that time, the user is presented with a Google map which will be used

to display sensing nodes and pollution data. The GPS coordinate bounds of the map’s

viewport are communicated to the APE server, where they are used to subscribe the user

to any nodes or pollution information falling within those bounds. Once this connection has

been established, the only data that flows between server and client occurs when a node’s

data has been updated or when the user changes the viewport and must subscribe to a

new set of locations.

Since the APE framework has the ability to use a subscription method for client com-

munications, an update for a single node could result in that update being propagated from

a single server to numerous clients, similar to a data broadcast. The figure on the following

page shows this:

12

Figure 3: APE Information Dissemination

Also, since SQL Server 2008 is being used as the database system to drive APE, users

have the ability to request (query) subsets of the total information available to them. In this

way, a user simply viewing an overall sensor map is able to subscribe exclusively to sensor

node location information without any of the accompanying gas sensor data. This greatly

decreases the amount of traffic being sent over the network. If the user wants to access

the raw data coming from one of the sensors on the map, then our visualization tools allow

the user to select that sensor, thereby subscribing to its total data package. In this way,

the only data that ever traverses the network is the data that the user has an interest in

viewing, making the client-server communication lines as efficient and resource-friendly as

possible.

Dynamic Calibration

A very large area of ongoing research for this network is a viable method of performing

automatic dynamic calibration of the sensor nodes in realtime, such that the nodes do not

have to be brought in to a servicing center to be calibrated on a fixed schedule or upon

detection of any measurement anomalies. Since accurate gas concentration measure-

ments require frequent recalibration and intensive accuracy checks, it is improbable that

the network will initially be able to provide concentration data in terms of an absolute scale

13

(such as ppm). Instead, it will present data as concentrations relative to other concentra-

tion levels in the area. This, in itself, is a very valuable tool, enabling users to determine

what areas in their vicinity contain the highest pollutant levels and what activities they may

be doing to increase air pollution, such as idling their vehicle while waiting to pick up their

children from school. This data also enables applications such as a ”Green Trip Planner”

to be implemented, whereby a user can choose a route from point A to point B based on

the least exposure to toxic pollutants. Likewise, once enough of these nodes are present

on the network, we will be able to compare the data from the mobile sensing devices to

calibrated data from static sensors in the near vicinity, and at that point, provide a better

estimation of the absolute pollutant concentrations in a given area.

The important thing to note about such applications is that they rely on the sensor data

from all of the mobile nodes to be calibrated to each other; that is, to the same external

scale. This ensures that similar gas concentrations will result in multiple sensors producing

the same measured levels. To ensure that this is the case, all sensors will be calibrated

in a laboratory setting before being deployed to ensure that they initially match. Upon

deployment, the gas measurements from each sensor will be periodically compared (in the

server) to the average measurements of the rest of the sensors in their immediate vicinity.

Once a sensor is found to be reporting values outside of some threshold percentage of the

measured values of the rest of the sensors, it will be dynamically recalibrated such that its

output matches that of the rest of the sensors in its region. This ensures that each of the

sensors remain calibrated to one another and to the same scale.

Even though the gas sensors may remain calibrated to one another, this method could

result in the entire system slowing dropping in sensitivity over time, such that the relative

reported gas levels do not mean what they were originally intended to mean. To overcome

this, sensors in the immediate vicinity of calibrated static sensors will automatically recal-

ibrate themselves to the same external scale to which they were initially calibrated using

the correct and accurate measurements from the static sensors. It has also been observed

in laboratory experiments that the electrochemical gas sensors only become less sensi-

tive and less responsive over time, never more sensitive. Thus, we can always assume

that the most responsive sensor in a group (within reason, barring erroneous outliers from

14

malfunctioning sensors) will be the most accurately calibrated, and calibrate the remaining

nearby sensors accordingly. This will ensure that the sensors remain calibrated both to

one another as well as to a common external scale. The following flowchart depicts this

process more clearly:

Sensor

Calibrated in

Lab

Sensor Deployed

In immediate

vicinity of other

sensors?

Recalibrate to

highest valid

sensor reading

in area

In vicinity of

static calibrated

sensor?

Recalibrate to

static source

Readings

similar to others

in immediate

vicinity?

Start

No

Yes

Yes

NoNo

Yes

Figure 4: Dynamic Calibration Algorithm for Individual Sensors

15

CHAPTER IV

MODEL RECONSTRUCTION

The heart of this system comprises the need to reconstruct, process, and analyze

pollution concentrations from data samples that are acquired with respect to both time

and space. Specifically, our goal is to reconstruct a space-time signal f ∈ L2(R3xR)

from our knowledge of the samples {f(xj , tj) : xj ∈ R3, tj ∈ R, j ∈ J}, where J is a

countable index set. This is still an area of the project under intensive research; however,

we have discussed several possibilities with mathematician Akram Aldroubi, and plan to

find a nonlinear signal model that consists of a union of subspaces Vi instead of a single

subspace V [11]. One of the advantages of finding a good nonlinear signal model is that

the reconstructions will be sparse in terms of representations within the model [12, 25,

34]. This means that the reconstructed functions will be linear combinations of only a few

basis or frame functions. Thus, storing or transmitting the reconstructed functions will be

cheap and efficient. Moreover, the model search will implicitly allow us to take into account

complex factors such as terrain and the fact that we are sampling almost exclusively near

the main pollutant source, namely the traffic.

Given a signal model M, our goal is to develop explicit reconstruction schemes. Ob-

viously, real pollution concentration functions do not belong to the model M which is an

approximation. Moreover, the samples are often corrupted by noise; thus, our algorithms

must be robust to measurement noise and stable in terms of perturbations to M. In ad-

dition, we require our algorithms to produce ”good results,” even if there are not enough

samples to determine the function. Thus, the algorithms are required to be localized in

space-time, producing good approximations where enough sample data are available [11].

Although this algorithm is still being developed, the rest of the research presented in the pa-

per is not dependent on its completion, and so it will be viewed in black-box form throughout

the rest of the work.

16

CHAPTER V

WEB-BASED VISUALIZATION

The most visible and integral part of this monitoring network for everyday users is the

web interface used to access the vast quantity of data provided by the system in an intuitive

and easy-to-use fashion. The main purpose of the web interface is to provide access to

the reconstructed pollution signal. At the most basic level, the system is able to calculate a

vector of contour points or a two dimensional array of data points for pollutants in an area at

a specified resolution and time interval, calculate a vector of time instants when pollutants

cross specified thresholds at some location, or return the time series of pollutants at a

specified time resolution and location. On top of this basic set of queries, several web

applications provide useful services to the end user, most notably web-based visualization.

GPS Smoothing

While GPS systems are extremely accurate when used in a situation where the GPS

receiver is moving at a high velocity, this accuracy decreases substantially with a decrease

in receiver speed, due to a lack of velocity information to aid in the modeling and estimation

of GPS receiver position [14]. We have witnessed erroneous location measurements of up

to 200 meters error when the receiver is stationary. Due to this inherent inaccuracy of GPS

receivers, especially when the receiver is stationary, variable GPS coordinate readings will

be generated with highly varying degrees of accuracy. Since a precise estimation of sensor

location is essential in all areas of this system, it is important that these inconsistancies

be handled gracefully, such that the most accurate location estimation possible may be

obtained.

Cumulative Displacement Filter Overview

We have developed a new method of filtering and smoothing recorded GPS coordi-

nates, especially in stationary and low-speed situations, based on a modified use of the

17

Cumulative Displacement Filter [16]. This filter relies on the assumption that the relative

displacement between sets of coordinates are more accurate than the actual coordinates

themselves in low-speed situations. Our modifications take advantage of the knowledge

that GPS accuracy greatly increases with speed, and abrupt changes in location, azimuth,

and speed are unlikely.

In our implementation, a variable-length history of GPS data is stored, such that the

actual (albeit slightly time-delayed) position can be extrapolated from current, previous, and

future measurements when the speed of the device decreases past a certain threshold or

upon detection of obvious outliers. Essentially, the filter works by projecting positions onto

a linear regression built from the normalized sum of displacements from each position

in the history to the next. It should be noted that this filter cannot be used in real time,

but instead requires a delay equal to the size of the filter history. This is acceptable in

this application since data processing is done offline on a server, and the history only

needs to be set to three data points to achieve maximum smoothing results. In addition to

estimating positions at low speeds or with noisy signals, we have also added functionality

to disallow changes in location when the device is thought to be stopped, judging by the

fusion of inputs from the MEMS accelerometer, the speed estimation of the GPS receiver,

and sporadic readings from the GPS unit. This greatly cleans up the signal at events

such as traffic lights, stop signs, or weak GPS signals when the unit reports extremely

inaccurate positions. Figure 5 shows the result (blue) of applying this filter to a noisy GPS

signal (green):

Figure 5: GPS Smoothing Results

18

Filter Implementation

The following flowchart describes the process by which our implementation of the GPS

Smoothing Filter works:

Begin Filtering

without

Extrapolation

Fetch Next GPS

Data Point

Add Node Speed to

Speed History List

More than 10

Seconds of Data in

Speed History?

Remove Oldest

Speed from

History

Calculate Average

Speed over History

and Clamp to between

0.8 – 6.0 m/s

Yes

GPS

Coordinates

Valid?

Set Current

Position to be

Equal to Last

Valid Position

NoSet SKIP

Counter

to “2”

Current Speed >

Average Speed?
Extrapolating?

Yes Stop Extrapolating

and Clear Position

History

Yes

Add Node Position

to Position History

No

More than 3

Values in Position

History?

Remove Oldest

Value from

Position History

YesCalculate Linear

Regression of

Positions

No

Estimate Position by

Projecting Current

Position onto Linear

Regression

Speed less than 1.25 m/s or

Average Speed less than 0.8 m/s or

SKIP Counter is set?

No

Set Position to be Last

Valid Position, Decrement

SKIP Counter, Initiate

Stationary Countdown to 5

Yes

Node is

Stationary for >

30 Iterations?

No

Average Current

Position with Last

Valid Position and

Decrement Stationary

Countdown

Yes

Stationary

Countdown

Equals 0?

No

Reset Amount of

Time Node has

been Stationary

to 0
Yes

Set Last Position

Equal to Current

Position

No

Start

No

Yes

Figure 6: GPS Smoothing Filter Algorithm

Initially, a simple low-pass filter was tested to generate the aforementioned results. It

was found, however, that a low-pass filter does not take into account typical GPS-receiver

19

behaviors, such as the possibility of losing GPS satellite locks, having highly erroneous

measurements followed instantaneously by accurate measurements, or even stopping and

then going in the reverse direction. As such, the smoothed results did not accurately reflect

the ground truth, and oftentimes led to tracks that went off of roads and sometimes even

into buildings. Our implementation has been found to give extremely accurate results with

respect to an actual measured ground truth. In fact, the results as shown in Figure 5 so

closely match the actual traversed ground truth for that track that a graphical representation

primarily shows only a single track. The C++ code for this implementation can be found in

Appendix A.

Flash-Based Web Client

Access to the pollution information in our databases occurs mainly via an innovative

new flash-based web client, which enables users to not only access raw sensor data, but

also visualize relative pollution functions in a manner similar to Weather Channel radar

maps [8], interact with the map in an intuitive fashion to retrieve the desired data, use the

data for several practical health-related applications such as a path planner to minimize

exposure from travel source to destination, as well as gather targeted information about

specific nodes or geographic areas over a variable time history. Our implementation of this

client takes great pains to take into account the specific nature of the system to provide the

most efficient, reliable, and robust interface possible. This section describes the various

aspects of the web client, including its capabilities as well as the means by which it carries

out its numerous tasks.

Map Functions

Google Maps Overview

The main and most important aspect of the web-based client is the Google Map used

to display the sensor and pollutant information. The figure on the following page shows the

web client as it appears when you first log onto the project web site:

20

Figure 7: Flash-Based Web Client

All of the information that can be displayed by the client is highly customizable, down to

the type and resolution of map used for displaying the sensors and pollution information.

The user has the option to choose between four different map types [23], each having its

own strengths when used for various applications:

1. Normal: This is the standard, most widely-used type of map. It is what a user typically

sees when they request driving direction information from Google. Likewise, it is the

most useful map type when viewing sensor positions, sensor path history, or when

trying to map a route using the path of least pollution exposure.

2. Satellite: This type of map uses actual satellite imagery. It is useful when viewing

pollution contour maps as it shows actual physical structures and can be used to de-

termine what is causing variations in pollution concentrations in an area (for example,

a paper mill producing elevated CO levels).

21

3. Hybrid: This adds street names and labels to the standard Satellite map and can be

useful for finding your bearings when the Satellite map type is not descriptive enough.

4. Terrain: This type of map uses a ”shades of grey”-based contour map to show the

terrain structure of an area. It can be used in lieu of the Normal map, as its color

sometimes makes it easier to visualize the pollution contour overlays than does the

fairly colorful Normal map type.

In addition to these various maps, the user also has the ability to zoom in or out on the

map to their desired viewing resolution [23].

Marker Clustering

Whenever there is one or more sensor marker located in the current viewing area, the

marker shows up on the map as an icon. The nature of the icon varies depending on sen-

sor type. Sensor types are predefined by the manufacturer or user and are transmitted to

the server system during each of the ”Periodic Status Updates” as described in Chapter III.

As such, each client receives information pertaining to the type of sensor (currently either

”static” or ”mobile”) being polled at the same time it receives the node ID number and loca-

tion. If the sensor is one of our personally-deployed mobile sensors, it will have a different

icon than any of the static sensors used by the EPA. This is useful for deciphering the accu-

racy of the data provided by the given node, and also provides room for further expansion,

such that mobile nodes from several different companies or sources can all be deployed

simultaneously and differentiated based on their icons. It should be noted, however, that

the icons displayed for each sensor type are stored in the web client. Thus, any additional

sensor types will require an upgrade to the code. Since the client is web-based, this only

necessitates updating the flash file hosted on the servers with no additional maintenance

steps required by the end-users. Figure 8 on the next page shows the two different icons

currently in use as well as several ”clustered” markers which will be described next.

Once this system is deployed, it is likely that there will be many sensors located in close

proximity to one another. Showing so many sensor icons at once will cause delays in the

visualization system and will look cluttered, making it difficult to see what is happening at

22

(a) (b) (c)

Figure 8: Various Sensor Markers and Icons

a given location, let alone to select individual sensors out of a bunch. Likewise, when a

user zooms out on a map, the scale of the map increases and the sensors move closer and

closer together. To remedy this problem, we use a marker clustering approach as shown in

parts (b) and (c) of Figure 8. This approach is embodied in a ”Marker Clusterer” component

that analyzes the positions of all the sensor markers in the current viewport, and if the

center of any markers are within 20 pixels of the center of any number of other markers,

they are combined into one ”cluster marker” with the number of sensors contained in the

cluster being displayed. To see the exact nodes that are contained in the cluster, the user

can either move the cursor over the node where a text box will show the cluster contents,

or zoom in such that the markers are sufficiently far apart to be displayed individually. In

fact, all three portions of the above figure show the same five markers using different zoom

levels.

All sensor markers are completely managed by the Marker Clusterer in this system,

including the markers for single sensors. If the clustering algorithm deems the marker to

be sufficiently far away from other markers, it takes care of adding the individual icon to the

map. In addition to adding to the user-friendliness and visual aesthetics of the client, the

marker clustering implementation also provides a better, more efficient way to manage the

potentially vast number of markers present on the entire map. Instead of simply adding a

sensor marker everywhere a physical sensor is located, the Marker Clusterer keeps track

of all of the markers available to be drawn, but only adds the ones to the map that would

currently be visible given the geographic bounds of the viewing region. For example, any

23

sensors located 10 miles to the west of the left boundary of the viewport in Figure 8 are

completely unknown to the Google Maps system. Only when the user moves the viewport

to the left 10 miles will the Marker Clusterer add them to the map (and remove the ones

that are currently being shown). This keeps the Google Maps system from being bogged

down by too much data, and also allows for 1000s of markers within the viewing area to be

displayed with little to no noticeable delay to the user.

Sensor Node Selection

In addition to displaying the various locations of the sensor nodes, it is even more

important to be able to select them such that their data can be retrieved and manipulated.

To aid in this selection process, we have introduced two map modes to the client. The

first mode is the standard Google Maps mode, simply called the ”Move Map Mode.” In this

mode, the user has the ability to click anywhere on the map and drag it to change the

bounds of the viewing area. This is the standard behavior defined by the Google Maps

API [23]. Additionally, we have added the ability for users to click on individual sensors (or

sensor clusters) in this mode to select them. Once selected, the node will remain selected

until it is explicitly clicked again. Thus, the user can select multiple nodes, one at a time,

and move the map around without disturbing the selections. A selected node is displayed

with a blue oval around it.

Figure 9: Single Sensor Node Selections

Selecting a cluster marker effectively selects all of the individual nodes within the clus-

ter. This is achieved via the Marker Clusterer described in the previous subsection. Each

24

clustered marker acts as a container holding the individual markers within it; thus, any ac-

tions that occur on the cluster marker are simply forwarded to each of the single markers it

contains. If a user selects a cluster node and then zooms in on the map until the individual

nodes become visible, all of the nodes that belonged to the initial cluster will be selected.

Likewise, if you select a bunch of individual nodes and then zoom out until these nodes

form a cluster, the cluster will be displayed as selected. Whenever one or more nodes are

selected, a blue box appears at the bottom left corner of the map informing the user how

many sensors are currently selected.

The user may want to use this mode to view the details and data from individual sen-

sors, but selecting individual nodes can become tedious, and there are times when it would

be beneficial to select a range of sensors with one mouse motion. To facilitate this, we in-

troduce another mode called ”Sensor Select Mode.” In this mode, the user can no longer

move the map. Clicking on any point on the map while dragging the mouse creates a blue

box. Any sensors lying within this blue box when the mouse button is depressed will be

selected. Deselection works exactly the same way.

Figure 10: Multiple Sensor Node Selection

The underlying implementation of this selection mode again makes use of the Marker

Clusterer component in a three step process. First, whenever a box is drawn on the map’s

25

viewport, the pixel bounds of the selection are converted to a set of <latitude, longitude>

coordinates using the Google Maps API [23]. The Marker Clusterer is then polled, request-

ing an array containing the locations of all the nodes currently visible within the viewport.

Finally, each of these node locations is checked to see if it lies within the selection bounds

as defined by the user. If so, a selection event is processed for that node exactly as if the

user had simply clicked on the node’s icon. This process repeats itself for all nodes in the

viewport, mimicking the results if each of the selected nodes had been clicked individually.

As in the ”Move Map Mode,” sensors can also be selected with simple mouse clicks. If the

user wishes to move the map again, simply clicking the ”Move Map Mode” button returns

all normal functionality without disturbing the state of the selected markers.

Sensor Data

Data from the entire viewing area and each of the selected sensors is visible in the

sidebar on the right side of the client. This is the most important part of the client for

viewing and manipulating data and statistics. Please turn to the next page to see a figure

depicting the sidebar area of the web client.

Each of the sub-panels in the sidebar is collapsible and expandable such that the user

only has to view the data that is interesting or relevant. The top-most panel is used to

download raw sensor data from the selected sensors. All that is required to use this func-

tion is a selection of some number of sensors on the map, the sensing modalities for which

the user would like data, and the starting and ending times and dates of data to retrieve.

A database request query is sent to a server over the persistent APE connection, asking

for data from the selected nodes (using their node ID numbers) with additional filter pa-

rameters being the start and end dates specified. The data is returned in the form of a

SQL query response. A dialog box will appear requesting a path to store information on

the computer locally, and the returned sensor data will be written by the client to separate

XML files for each selected node, with the XML fields of each file being:

26

Figure 11: Web Client Sidebar

<data>
<datum date =”05/19/2009” t ime =”14 :59 :37” l a t =”36.145760”

lng =”−86.802587” temp =”17.33” humid i ty =”56.73” O3=”698”
NO2=”396” CO=”618” speed =”0 .40” azimuth =”21.96” />

<datum>Etcetera f o r a l l data i n s p e c i f i e d t ime range />
</data>

This listing shows data for all three modalities, but the actual downloaded file will only

include the requested data.

The next sub-panel is dependent upon the current viewing area, not the selected sen-

sors. It displays the statistical time series data over the past two hours for the entire

viewing area. The user selects which statistic and which modalities they are interested in,

and a SQL query is sent over the APE connection, requesting sensor information over the

past two hours, filtered by the geographic bounds of the current viewport. The requested

27

statistic is calculated from the returned data, and the graph displays the information, up-

dating itself automatically whenever the viewport changes. So that the data is kept fresh,

but unnecessary network traffic is not generated, the graph keeps a cache of its currently

displayed data and updates every 30 minutes.

The third sub-panel shows the current statistical information for all sensing modalities

for the range of selected sensors. This includes the mean, median, variance, and standard

deviation for each pollutant. This is an extremely informational yet resource-economical

function since it only requires the most recent sensor data from each of the selected nodes,

and this can be obtained via a series of triggered pulls.

Finally, the last sub-panel shows the current raw data being reported by each of the

selected sensors. Whenever a user selects a sensor, it is added to this list, and the raw

O3, NO2, and CO levels are displayed in the table. Likewise, when a user deselects a

sensor, it is removed from this list. It should be noted that all of these sidebar sub-panels

are updated dynamically in realtime as new data arrives. Thus, the user can be assured

that any of the data or statistics being shown represent the most current data available to

the system.

Sensor Node Visibility and History

The actual map area is able to show a variety of overlays depending on the interests of

the user. By default, all sensor node locations in the current viewport are displayed upon

loading of the web client; however, other overlays require manual instantiation. All available

overlays are able to be toggled on or off via their respective buttons on the top bar of the

client. Currently, two other overlays are also available: a contour pollution overlay and a

node path history overlay.

The contour pollution overlay is a visualization of the pollution function over a given

area which, when fully implemented, will look very similar to a Weather Channel radar map

[8]. The figure on the following page shows an example of this.

The redder areas of the overlay depict areas of higher pollution concentrations, while

greener areas indicate less air pollution. When viewing this type of overlay, only one modal-

ity can be shown at a time. This is due to the colorful, contour nature of the overlay, making

28

Figure 12: Sample Pollution Overlay

it impossible to differentiate between multiple overlays when shown simultaneously. These

pollution maps will be generated by each individual web client using sparse data from the

servers to feed our model reconstruction function, once it has been finalized.

The node path history overlay provides a way to visualize where a particular sensor

has traveled over the past two hours. It can be used to show history information for all

sensors in the viewport or only for selected sensors. In either case, the precise locations

of the chosen sensors will be shown for the past two hours as different color line traces

on the map. This history data is loaded via a simple SQL query to the web server for the

locations of the indicated sensors over the past two hours. The resulting coordinates are

fed directly into a ”Polyline” interface in the Google Maps API to produce the desired tracks.

The following figure shows an example of such history tracks:

Figure 13: Node Path History Overlay

29

Realtime Raw Data Graph

Finally, the very bottom area of the web client displays a graph which is used to show

the raw data for selected sensors in graphical form. The user selects a desired sensing

modality, and the past two hours of history for each of the selected sensors will appear

on the graph. As time progresses and newer information becomes available, the graph

continually updates itself, scrolling to the left such that there are always two hours of data

showing with the right-most data point being the most current for each of the selected

sensors.

Figure 14: Web Client Graph Area

It is clear that each of the individual components of the web client reuses information

from other areas, manipulating the data as necessary for the specified functionality. A

great strength of this client is its ability to send requests for large amounts of data one

time, then visualize the data in numerous ways from graphical to historical to statistical,

while still remaining responsive and efficient. This is a primary goal of such a visualization

framework, to present the available data in a variety of useful formats without overwhelming

either the user, the system, or the resources required for such data-heavy processing and

manipulation.

Data Retrieval

The greatest power and flexibility of this web client comes from the fact that all of the

above functions can be used not only for current, realtime data, but also for a 7-day span of

the most recent history or any user-defined span of times and dates in the past. As such, a

user or analyst could look at and experience data from 2 years ago as if it were happening

right now in real time.

The way this functionality works is similar to a video player. The user can select which

30

mode of operation they would like to use, indicating a desire to visualize data for the ”Cur-

rent Time,” ”Past Seven Days,” or ”Specific Times.” Upon selection of ”Specific Times,” a

dialog box appears prompting the user for the dates and times they would like to see:

Figure 15: Choose History Dialog Box

The user is limited to viewing previous history in maximum chunks of seven days to

prohibit overwhelming the system with too much data (since these types of operations are

extremely resource-intensive). Whenever the user selects any mode other than ”Current

Time,” a set of player controls appear at the bottom of the map, shown here:

Figure 16: History Player Controls

These controls work just like any other standard video player controls. The labels at

the bottom left and right of the timeline show the start and end times and dates, and the

label above the tracking bead shows the current time and date being displayed by the web

client. Pressing the play button causes the tracking bead to move to the right, playing the

history in real time. If the user wants to see the history played in an accelerated fashion,

they can press the ”faster” button to increase playback speed an unlimited number of times.

Conversely, if they want to slow the play speed back to normal, they can press the ”slower”

button as many times as they like until the play speed has returned to realtime. It should

31

be noted that playback cannot occur at speeds slower than the original realtime. If the user

wants to directly skip ahead to some time, they can drag the bead forward or backward to

reach the desired time and playback will resume from there. Finally, to stop playback, the

”stop” button can be pressed. Pressing play after stopping playback causes the player to

continue showing the history from the time when the stop button was pressed.

The way that the player works is by making the web client think that the current time is

something other than it is. If, for example, the user plays a self-defined history and drags

the tracking bead to ”Nov. 3, 2009 at 11:28:38AM,” then the entire web-client system thinks

it is operating at that specified date and time, and carries out its normal functionality under

that assumption. As such, playback is just as efficient as realtime streaming of the data

since it does not rely on any changes to the underlying code. The only thing that happens

differently from realtime streaming is that all of the sensor locations for the nodes in the

viewport over the entire history are loaded so that the user can skip around to different

times on the timeline without having to wait for data to buffer. Actual pollution concentration

data is still streamed in realtime like usual because the latency required for this is minimal,

such that it can be done without creating lags or delays in system playback.

Whenever the viewing area is changed by the user, the history data reloads based on

the new bounds and playback continues; thus, the amount of memory resources required

is minimized by only storing the data currently visible in the viewport (exactly the same

way that the Marker Clusterer only displays markers currently in the viewport). All client

functionality is retained in any of these modes, including sensor node path histories and

sidebar functions such as raw sensor data and current pollution statistics.

Additional Applications

In addition to the raw data, statistical, and visualization functionality of the web client

described previously, the client also provides several innovative new applications for use

by the general public and the health-conscious. The framework for these applications has

been created, but their final implementation depends on the pollution model reconstruction

32

algorithm which has yet to be finalized. Thus, while the applications described in this sec-

tion have been implemented, they assume the presence of such reconstruction techniques,

and are not yet functional.

The first additional application available to users in this web-based client is a ”Green

Trip Planner.” This application provides users with the ability to plan a driving route between

two points based on the path of least exposure to pollutants. It has been designed to be

extremely flexible, allowing users to compromise between pollution exposure and travel

time for a happy medium. When the user clicks the ”Green Trip Planner” button, they

are prompted to enter a starting address, ending address, and the pollutants they want to

avoid. At that point, the planner will make use of the current pollution model to define areas

to avoid between the two locations, leaving available only those areas with acceptable

pollutant levels. It then uses the Google Maps’ built-in ”driving directions” function to find a

path from origin to destination though only those acceptable areas [24]. The directions are

then displayed to the user along with a track on the map. If the user decides that the route

is too long or inconvenient, they can click at various places on the map to add locations

they explicitly want to drive through (for example, an interstate between two points). After

selecting these points, the planner will then amend the directions to include the new points

while retaining routes through as many of the pollution-safe zones as possible. The user

can go through any number of iterations of this process until they are satisfied with the

results, at which point, they will be given the option to print the directions or save them to

a file.

The second additional application is a ”Past Exposure Estimation” application, which

enables users to estimate past exposure to one or more pollutants given only a timed GPS

track as an input. The GPS input comes in the form of a GPX (GPS eXchange) formatted

file, which is a device-independent data format used by GPS devices to store information

[5]. The estimator application will read in the contents of this file and map each of the GPS

coordinates to a location in the pollution function for the given time. The output will be an

XML file, whose contents are defined by the user and can contain pollution concentration

information for each GPS coordinate, a list of times when the user experienced pollution

33

levels over a self-defined threshold level, or average concentration levels over specified

time ranges.

Finally, our server databases have hooks programmed into them to allow other users

and developers to access our data at a very low-level for use in their own applications and

extensions.

34

CHAPTER VI

FUTURE WORK

As mentioned earlier, Bluetooth and USB are only useful communications methods if

the sensors return to a base station. Mandating that every vehicle return to one or more

stations where data can be downloaded is impractical. Moreover, we want the sensor

data to stream in realtime, providing continuous up-to-date information to be used by our

web client. As such, we will replace the Bluetooth unit with a GSM modem, enabling

the units to transmit data over the mobile telephone networks [19]. It should be noted

that this may increase system cost, since GSM solutions usually require purchasing a

data plan with a cellular provider; however, relying on the availability of free WiFi access

points is significantly less robust. Also, GSM coverage is excellent in most countries, and

since there are already integrated GSM/GPS solutions, this modification will simplify the

hardware [37, 29].

A key design decision for future prototypes will be the selection of gas sensors. Current

gas sensors from e2v [3] have high sensitivity, but temperature dependance makes them

difficult to use in this application. Also, they lose calibration very quickly when power-cycled

over and over (as opposed to continuously running). Although we have devised ways to

calibrate our prototypes based on experimental data and external pollution information, we

are searching for sensors for the next prototype that are less temperature-dependent and

whose outputs vary less from sensor to sensor, making dynamic calibration more manage-

able amongst a large number of nodes. Many other factors must also be considered, such

as price, accuracy, and power consumption, and sensor lifespan should be maximized to

cut down on future costs and alleviate the necessity of constant maintenance.

Fortunately, this is quite a dynamic area with many new products being produced, all of

which provide variations on standard semiconductor gas sensing technology. In addition,

we have found emerging technologies which show promising results in the realm of infrared

gas sensors [32, 33], as well as a newly-released product from the VTT Technical Research

35

Centre of Finland [6] that makes use of a MEMS-based photo-acoustic gas sensor. We

also plan to add CO2 and SO2 sensing capabilities to the system.

Additional health risks arise from the presence of particulate matter (PM) in the air

which can accumulate in the respiratory system. Particles less than 10 micrometers in

diameter (PM10) and fine particles less than 2.5 micrometers (PM2.5) are among the most

harmful pollutants [30]. Unfortunately, even the cheapest PM sensors cost thousands

of dollars. Instead of integrating one into our sensor nodes, we will provide an external

interface for pluggable PM sensors. This way, some of the deployed nodes can use this

capability, but we can keep the cost of the system down.

Currently, the main research challenge is designing an efficient implementation to re-

construct a pollution function from sparse and irregularly-sampled sensor measurements

in a 4-dimensional database table. Such a reconstruction algorithm is essential to creating

contour-like pollution maps as well for applications which need this sort of information to

provide higher-level services (such as green trip planning and past exposure estimation).

36

CHAPTER VII

RELATED WORK

Pollution awareness has increased substantially over recent years, motivating several

projects that use mobile platforms to collect air quality measurements [22, 31, 13, 17]. One

of the primary differences between these earlier works and ours is that the earlier mobile

sensors were not networked, but rather relied on the manual download of measurements

[22, 31]. The PEIR project from UCLA uses cell phones to collect air quality data from users

participating in the system. Our system places air pollution sensors on vehicles. This

decision allows us to use not only more accurate sensors, but also sensors to measure

a wider spectrum of air quality parameters such as particulate matter, without having to

worry about power consumption or other resource constraints that make cell phone based

approaches impractical. Additionally, our system is better-suited for pollution estimation

since vehicles spend most of their time outdoors covering a wide geographic area when in

use. Cell phones tend to stay in a person’s pocket who is usually located indoors where

pollution levels may deviate greatly from outdoor levels.

The Common Sense project from Intel Research works similarly to the system in our

project [13]. It uses air pollution sensors mounted on vehicles, delivering measurements

via GSM text messages. Likewise, a conglomeration of universities in the United King-

dom are working together on a platform that is most similar to ours, creating a pollution

sensing network using a variety of mobile sensing platforms including ”smart-dust,” mo-

bile motes, static sensors, and cell phones [18]. The system outlined in this document,

however, takes the approach to a higher level. We are not only developing algorithms for

the reconstruction of air pollution information from irregular and sparse measurements, but

also devising methods of visualization such as contour maps as opposed to simple discrete

observations. In addition, our system implements practical applications which provide typ-

ical system users with valuable and accessible data that promises to impact everyday life,

not only the needs of air pollution specialists or experts. Furthermore, we will be using the

37

cellular network as a mode of data transmission decoupled from the use of an actual cell

phone, since this method is almost always available and offers consistent service in both

the United States and other foreign countries, as well as developing countries.

38

CHAPTER VIII

CONCLUSIONS

The overarching goal of this project is to dramatically increase the resolution of air

pollution information and maximize its impact on public life. Our pollution monitoring system

operates deeply embedded in the physical environment. Irregular spatiotemporal samples

are used to reconstruct an overall pollution model affected by emission sources, weather,

terrain, traffic patterns, and other factors. We have designed mobile nodes to sense three

known air pollutants, O3, NO2, and CO, as well as ambient environmental conditions and

communicate this data to a central server for the purpose of providing continuous realtime

data feeds over a web interface.

The system provides an intuitive method of data retrieval using web-based visualiza-

tion with a number of novel applications making use of the high-resolution data. Users

have the ability to not only download raw sensor data from any number of mobile sensing

devices, but also to stream pollution information in real time, visualize this data in easy-to-

understand contour-like pollution maps, and gather statistical information about pollutants

over a specified spatiotemporal region. In addition to being able to do this with current re-

altime data, users can also access historical pollution information using the same interface

in a manner similar to a standard video player, allowing researchers to perform historical

analyses using our data.

The highest level of access to our pollution information comprises two novel applica-

tions, one of which can be used to estimate an individual’s past exposure to a pollutant

using only a single timed GPS track, and another which provides a route planning service

to minimize a person’s exposure to a given set of pollutants. Although some aspects of

this project are still in research and development, we have outlined a solid framework for

implementing a mobile air pollution monitoring network with concrete applications in the

real world. It is now up to the public to utilize the resources we have provided to not only

benefit their own personal level of health, but also to increase overall awareness of the

39

societal impact of air pollution, so that together, we can work to promote a cleaner, safer

environment.

40

CHAPTER A

GPS SMOOTHING FILTER IMPLEMENTATION

CDF.h:

1 / / Based on ” Cumulat ive Displacement F i l t e r ” by J u l i e n Cayzac .
2 / / Released under a Creat ive Commons 2.5 A t t r i b u t i o n l i cense .
3
4 # i fndef CUMULATIVE DISPLACEMENT FILTER H
5 #define CUMULATIVE DISPLACEMENT FILTER H
6
7 #include <cs t r i n g>
8 #include < l i s t >
9

10 struct P o s i t i o n S t r u c t
11 {
12 / / Const ruc tors
13 P o s i t i o n S t r u c t () : l ong i t ude (0 . 0) , l a t i t u d e (0 . 0) , azimuth (0 . 0) ,
14 speed (0 . 0) , timestamp (0) {}
15 P o s i t i o n S t r u c t (const P o s i t i o n S t r u c t &o) : l ong i t ude (o . l ong i t ude) ,
16 l a t i t u d e (o . l a t i t u d e) , azimuth (o . azimuth) , speed (o . speed) ,
17 timestamp (o . timestamp)
18 {
19 memcpy(date , o . date , sizeof (date)) ;
20 memcpy(time , o . t ime , sizeof (t ime)) ;
21 memcpy(temperature , o . temperature , sizeof (temperature)) ;
22 memcpy(humidi ty , o . humidi ty , sizeof (humid i ty)) ;
23 memcpy(O3, o .O3, sizeof (O3)) ;
24 memcpy(NO2, o .NO2, sizeof (NO2)) ;
25 memcpy(CO, o .CO, sizeof (CO)) ;
26 }
27
28 / / Member v a r i a b l e s
29 double l ong i tude , l a t i t u d e , azimuth , speed ;
30 unsigned i n t t imestamp ;
31 char date [2 0] , t ime [2 0] , temperature [1 5] , humid i ty [2 0] ;
32 char O3[1 2] , NO2[1 2] , CO[1 2] ;
33 } ;
34
35 class Cumula t i veDisp lacementF i l te r
36 {
37 public :
38
39 / / Const ruc tor
40 Cumula t i veDisp lacementF i l te r (unsigned i n t h i s t o r y S i z e) ;
41
42 void rese t (void) ;
43 void f i l t e r (P o s i t i o n S t r u c t &pos) ;

41

44
45 private :
46
47 / / D isa l low use of t h i s cons t ruc to r
48 Cumula t i veDisp lacementF i l te r (void){}
49
50 std : : l i s t <Po s i t i on S t r uc t> m Speeds ;
51 std : : l i s t <Po s i t i on S t r uc t> m History ;
52 unsigned i n t mui h i s to ryS ize ;
53 bool mb ext rapo la t ing ;
54 bool mb la s tPo s i t i onAva i l ab l e ;
55 unsigned i n t mui sk ipNext ;
56 P o s i t i o n S t r u c t m l as tP o s i t i o n ;
57 bool mb sta t ionary ;
58 i n t mi s ta t ionaryCount ;
59 i n t mi stat ionaryCountdown ;
60 } ;
61
62 #endif / / # de f ine CUMULATIVE DISPLACEMENT FILTER H

CDF.cpp:

1 #include <cmath>
2 #include ”CDF. h ”
3
4 #define PI 3.14159265358979323846
5
6 / / Helper convers ion f u n c t i o n s
7 s t a t i c const double degreeArcLength = 111226.29991434248924368723;
8 s t a t i c const double degreeArcLengthRec = 0.00000899067936962857;
9 void convertWGS84ToSI (double dLongitude , double dLat i tude ,

10 double &dCoordX , double &dCoordY)
11 {
12 i f (abs (dLa t i t ude) > 85.0)
13 dLa t i tude = ((dLa t i t ude < 0 .0) ? −85.0 : 8 5 . 0) ;
14
15 dCoordY = dLa t i tude ∗ degreeArcLength ;
16 dCoordX = dLongitude ∗ degreeArcLength ∗
17 cos (dLa t i t ude ∗ 0.01745329251994329576);
18 }
19 void convertSIToWGS84 (double dCoordX , double dCoordY ,
20 double &dLongitude , double &dLa t i t ude)
21 {
22 dLa t i tude = dCoordY ∗ degreeArcLengthRec ;
23 dLongitude = (dCoordX ∗ degreeArcLengthRec) /
24 cos (dLa t i t ude ∗ 0.01745329251994329576);
25 }
26
27 / / Const ruc tor
28 Cumula t i veDisp lacementF i l te r : :
29 Cumula t i veDisp lacementF i l te r (unsigned i n t h i s t o r y S i z e) :
30 mu i h i s to ryS ize (h i s t o r y S i z e) , mb ex t rapo la t ing (true) ,

42

31 m b las tPos i t i o nAva i l ab l e (fa lse) , mui sk ipNext (0) ,
32 mb sta t ionary (fa lse) , m i s ta t ionaryCount (0)
33 {}
34
35 / / Resets f i l t e r h i s t o r y
36 void Cumula t i veDisp lacementF i l te r : : rese t ()
37 {
38 m History . c l ea r () ;
39 }
40
41 / / Performs ac tua l f i l t e r i n g
42 void Cumula t i veDisp lacementF i l te r : : f i l t e r (P o s i t i o n S t r u c t &pos)
43 {
44 / / Remove extraneous speeds longer than 10 seconds ago
45 P o s i t i o n S t r u c t saved (pos) ;
46 m Speeds . push back (pos) ;
47 while (((long) pos . timestamp −
48 (long) (∗m Speeds . begin ()) . t imestamp) > 10000)
49 m Speeds . pop f ron t () ;
50
51 / / GPS Lock l o s t , assume l a s t known p o s i t i o n and sk ip the next
52 / / 2 v a l i d GPS p o s i t i o n s to ensure accurate l o c a t i o n es t ima t ion
53 i f ((pos . l a t i t u d e == 0 .0) | | (pos . l ong i t ude == 0 . 0))
54 {
55 pos . l a t i t u d e = m l as tP o s i t i o n . l a t i t u d e ;
56 pos . l ong i t ude = m l as tP o s i t i o n . l ong i t ude ;
57 pos . speed = m l as tP o s i t i o n . speed ;
58 pos . azimuth = m l as tP o s i t i o n . azimuth ;
59 mui sk ipNext = 2 ;
60 }
61
62 / / Ca lcu la te average speed
63 double avg speed = 0.0 f ;
64 std : : l i s t <Po s i t i on S t r uc t > : : i t e r a t o r d i t = m Speeds . begin () ;
65 while (d i t != m Speeds . end ())
66 avg speed += (∗ (d i t + +)) . speed ;
67 avg speed /= (double) m Speeds . s ize () ;
68
69 / / Clamp speed between 0.8 and 6.0 m/ s
70 i f (avg speed > 6 .0)
71 avg speed = 6 . 0 ;
72 else i f (avg speed < 0 .8)
73 avg speed = 0 . 8 ;
74
75 / / Stop e x t r a p o l a t i n g i f moving s u f f i c i e n t l y f a s t
76 i f (pos . speed >= avg speed)
77 {
78 i f (mb ex t rapo la t ing)
79 m History . c l ea r () ;
80 mb ex t rapo la t ing = fa lse ;
81 m History . push back (pos) ;
82
83 i f (m History . s ize () > mui h i s to ryS ize)
84 m History . pop f ron t () ;

43

85 }
86 else i f (! m History . empty ()) / / I f h i s t o r y i s not empty
87 {
88 / / Get l i n e a r regress ion o f p o s i t i o n s
89 double sx = 0.0 , mx = 0.0 , sy = 0.0 , my = 0 . 0 ;
90 std : : l i s t <Po s i t i on S t r uc t > : : i t e r a t o r i t = m History . begin () ;
91 long de l taT = (long) ((∗ i t) . t imestamp) ;
92 while (i t != m History . end ())
93 {
94 P o s i t i o n S t r u c t &pos i = ∗ i t ;
95 ++ i t ;
96 de l taT = (long) pos . timestamp − de l taT ;
97 double azimuth = 90.0 − pos i . azimuth ;
98 i f (azimuth >= 360.0)
99 azimuth −= 270.0 ;

100 i f (azimuth > 180.0)
101 azimuth = 360.0 − azimuth ;
102 azimuth ∗= 0.01745329251994329576;
103 double m u l t i p l i e r = pos i . speed ∗ (double) de l taT ∗ 0.001;
104 sx += cos (azimuth) ∗ m u l t i p l i e r ;
105 sy += s in (azimuth) ∗ m u l t i p l i e r ;
106 double ax , ay ;
107 convertWGS84ToSI (pos i . long i tude , pos i . l a t i t u d e , ax , ay) ;
108 mx += ax ;
109 my += ay ;
110 }
111
112 / / Normalize suppor t ing vec to r [sx , sy]
113 double i l e n = sx∗sx + sy∗sy ;
114 i f (i l e n >= 0.00001)
115 {
116 i l e n = 1.0 / s q r t (i l e n) ;
117 sx ∗= i l e n ;
118 sy ∗= i l e n ;
119
120 / / [mx, my] are the p o s i t i o n ’ s sums . Convert to
121 / / average p o s i t i o n
122 double i coun t = 1.0 / (double) m History . s ize () ;
123 mx ∗= icoun t ;
124 my ∗= icoun t ;
125
126 / / Pos i t i on i n l i n e a r regress ion ’ s l o c a l system
127 / / ([mx, my] , [sx , sy] , [−sy , sx])
128 double x , y , posx , posy ;
129 convertWGS84ToSI (pos . long i tude , pos . l a t i t u d e , posx , posy) ;
130 x = posx − mx;
131 y = posy − my;
132 double dot = x∗sx + y∗sy ;
133 mb ex t rapo la t ing = true ;
134
135 / / Bu i l d new p o s i t i o n
136 x = mx + (dot ∗ sx) ;
137 y = my + (dot ∗ sy) ;
138 double lon , l a t ;

44

139 convertSIToWGS84 (x , y , lon , l a t) ;
140 pos . l ong i t ude = lon ;
141 pos . l a t i t u d e = l a t ;
142
143 / / Bu i l d new azimuth from l i n e a r regress ion suppor t ing
144 / / vec to r [sx , sy]
145 double azimuth = 90.0 − (((sy < 0 .0) ? −acos (sx) :
146 acos (sx)) / 0.01745329251994329576);
147 i f (azimuth < 0 .0)
148 azimuth += 360.0 ;
149 pos . azimuth = azimuth ;
150 }
151 }
152
153 / / Low motion (GPS speed i r r e l e v a n t)
154 i f (mb las tPos i t i o nAva i l ab l e)
155 {
156 double ax , ay , dx , dy ;
157 convertWGS84ToSI (pos . long i tude , pos . l a t i t u d e , ax , ay) ;
158 dx = ax ;
159 dy = ay ;
160 convertWGS84ToSI (m l as tP o s i t i o n . long i tude ,
161 m l as tP o s i t i o n . l a t i t u d e , ax , ay) ;
162 dx −= ax ;
163 dy −= ay ;
164 dx = dx∗dx + dy∗dy ;
165
166 / / I f t h i s p o s i t i o n has bare ly moved from l a s t v a l i d pos i t i on ,
167 / / or i s t h i s speed i s less than 1.25 m/ s , or i f the average
168 / / speed over the l a s t 10 seconds i s less than 0.8 m/ s , or i f
169 / / we are s t i l l sk ipp ing v a l i d po in t s due to the loss o f the
170 / / GPS lock , se t cu r ren t p o s i t i o n to be l a s t known p o s i t i o n
171 i f ((dx < 200.0) | | (pos . speed < 1.25) | |
172 (avg speed <= 0 .8) | | (mui sk ipNext != 0))
173 {
174 ++mi s ta t ionaryCount ;
175 mi stat ionaryCountdown = 5;
176 unsigned i n t t imestamp = pos . timestamp ;
177 double speed = pos . speed ;
178 char date [2 0] , t ime [2 0] , temperature [1 5] , humid i ty [2 0] ;
179 char O3[1 2] , NO2[1 2] , CO[1 2] ;
180 memcpy(date , pos . date , sizeof (date)) ;
181 memcpy(time , pos . t ime , sizeof (t ime)) ;
182 memcpy(temperature , pos . temperature , sizeof (temperature)) ;
183 memcpy(humidi ty , pos . humidi ty , sizeof (humid i ty)) ;
184 memcpy(O3, pos .O3, sizeof (O3)) ;
185 memcpy(NO2, pos .NO2, sizeof (NO2)) ;
186 memcpy(CO, pos .CO, sizeof (CO)) ;
187
188 pos = m l as tP o s i t i o n ;
189 pos . timestamp = timestamp ;
190 pos . speed = speed ;
191 memcpy(pos . date , date , sizeof (date)) ;
192 memcpy(pos . t ime , t ime , sizeof (t ime)) ;

45

193 memcpy(pos . temperature , temperature , sizeof (temperature)) ;
194 memcpy(pos . humidi ty , humidi ty , sizeof (humid i ty)) ;
195 memcpy(pos .O3, O3, sizeof (O3)) ;
196 memcpy(pos .NO2, NO2, sizeof (NO2)) ;
197 memcpy(pos .CO, CO, sizeof (CO)) ;
198
199 i f (mui sk ipNext != 0)
200 −−mui sk ipNext ;
201 }
202 / / I f node has been s t a t i o n a r y f o r 30 or more i t e r a t i o n s and i s
203 / / now moving , average prev ious p o s i t i o n w i th new p o s i t i o n s to
204 / / account f o r missing coord ina tes i f GPS lock was l o s t
205 else i f (m i s ta t ionaryCount >= 30)
206 {
207 pos . azimuth = (pos . azimuth + m l as tP o s i t i o n . azimuth) / 2 . 0 ;
208 pos . l a t i t u d e = (pos . l a t i t u d e + m l as tP o s i t i o n . l a t i t u d e) /
209 2 . 0 ;
210 pos . l ong i t ude = (pos . l ong i t ude + m l as tP o s i t i o n . l ong i t ude)
211 / 2 . 0 ;
212 pos . speed = (pos . speed + m l as tP o s i t i o n . speed) / 2 . 0 ;
213 −−mi stat ionaryCountdown ;
214 }
215
216 / / Node has been i n motion f o r l a s t 5 i t e r a t i o n s , resume
217 / / normal opera t ion
218 i f (mi stat ionaryCountdown == 0)
219 mi s ta t ionaryCount = 0 ;
220 }
221
222 m l as tP o s i t i o n = pos ;
223 mb la s tPos i t i o nAva i l ab l e = true ;
224 }

46

BIBLIOGRAPHY

[1] AIRNow: Quality of air means quality of life. Available at http://airnow.gov/, 2009.

[2] APE: AJAX Push Engine. Available at http://www.ape-project.org/, 2009.

[3] e2v Gas Sensors. Available at http://www.e2v.com/products-and-services/
sensors/gas-sensors/, 2009.

[4] The GNU General Public License. Version 3, Available at http://www.gnu.org/
licenses/gpl.html, 29 June 2007.

[5] GPX: the GPS Exchange Format. Available at http://www.topografix.com/GPX/1/
1/, 2007.

[6] Miniaturised photoacoustic gas sensor. Available at http://fp7minigas.openinno.
fi:8080/bin/view/Main/, 2009.

[7] SDCC: Small Device C Compiler. Available at http://sdcc.sourceforge.net/,
2009.

[8] The Weather Channel, Interactive Map. Available at http://www.weather.com/
weather/map/interactive/, 1995-2009.

[9] Environmental Protection Agency. Air pollution data sources. Available at http://
www.epa.gov/air/airpolldata.html, May 2009.

[10] Environmental Protection Agency. Air Quality Index (AQI) - A guide to air quality and
your health. Available at http://www.airnow.gov/index.cfm?action=aqibasics.
aqi, 2009.

[11] Akram Aldroubi. Personal Communication with Akram Aldroubi, 2009.

[12] Akram Aldroubi, Carlos Cabrelli, and Ursula Molter. Optimal non-linear models for
sparsity and sampling. Journal of Fourier Analysis and Applications, 14:793–812,
2008.

[13] P. M. Aoki, R. J. Honicky, A. Mainwaring, C. Myers, E. Paulos, S. Subramanian, and
A. Woodruff. Common sense: Mobile environmental sensing platforms to support
community action and citizen science (demonstration). In Adjunct Proceedings, Ubi-
comp 2008, September 2008.

[14] Dale Arden. MEMS/GPS Kalman Filter. Defense Research and Development
Canada. May 2007.

[15] Atmel. AT45DB161D 16-megabit DataFlash Technical Sheet, 2007.

[16] J. Cayzac. The cumulative displacement filter. Available at http://julien.cayzac.
name/code/gps/, 2006.

[17] UCLA CENS. Personal environmental impact report. Available at http://peir.cens.
ucla.edu/, 2009.

47

[18] Imperial College, University of Cambridge, University of Leeds, University
of Southampton, and Newcastle University. Message project: Mobile environmen-
tal sensing system across grid environments. Available at http://bioinf.ncl.ac.
uk/message/, 2008.

[19] Internation Engineering Consortium. Global System for Mobile Communication
(GSM) White Paper. Available at http://www.iec.org/online/tutorials/gsm/
index.asp, 2007.

[20] United Nations Population Division. World urbanization prospects: The 2007 revision
population database, Sep 2009. Available at http://esa.un.org/unup/index.asp.

[21] Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu. A database interface for cluster-
ing in large spatial databases. In Proceedings of 1st International Conference on
Knowledge Discovery and Data Mining, 1995.

[22] M. Ghanem, Y. Guo, J. Hassard, M. Osmond, and Richards. M. Sensor grids for
air pollution monitoring. In Proceedings of the 3rd UK e-Science All Hands Meeting,
2004.

[23] Google. Google Maps API for Flash. Available at http://code.google.com/apis/
maps/documentation/flash/, 2009.

[24] Google. Google Maps API for Flash: Directions. Available at http://code.google.
com/apis/maps/documentation/flash/reference.html#Directions, 2009.

[25] R. Gribonval and M. Nielsen. Sparse representations in unions of bases. In IEEE
Transactions on Information Theory, volume 49, pages 3320–3325, Dec 2003.

[26] Shigeki Hirobayashi, Haruhiko Kimura, and Takashi Oyabu. Dynamic model to esti-
mate the dependence of gas sensor characteristics on temperature and humidity in
environment. Sensors and Actuators B: Chemical, 60(1):78–82, Nov 1999.

[27] MaxMind. Geolite city. Available at http://www.maxmind.com/app/geolitecity,
2009.

[28] Inc. Open Geospatial Consortium. Opengis standards. Available at http://www.
opengeospatial.org/standards, 2009.

[29] Advanced Wireless Planet. GSM/GPS Module. Available at http://www.gsm-modem.
de/trizium.html, 2009.

[30] C.A. Pope, 3rd, M.J. Thun, M.M. Namboodiri, D.W. Dockery, J.S. Evans, F.E. Speizer,
and C.W. Heath, Jr. Particulate air pollution as a predictor of mortality in a prospective
study of U.S. adults. American Journal of Respiratory and Critical Care Medicine,
151(3):669–674, Mar 1995.

[31] Paul Rudman, Steve North, and Matthew Chalmers. In Proceedings of the UK-UbiNet
workshop on eScience and ubicomp, 2005.

[32] SensorChip. CO2 Gas Sensor. Available at http://photonics.icxt.com/uploads/
files/Datasheets/SensorChipCO2-ds.pdf, 2009.

48

[33] Siemens. Gas sensor research. Available at http://w1.siemens.com/innovation/
en/publikationen/publications_pof/pof_fall_2004/sensors_articles/gas_
sensors.htm, 2004.

[34] J.A Tropp. Greed is good: Algorithmic results for sparse approximation. In IEEE
Transactions on Information Theory, volume 50, pages 2231–2242, Oct 2004.

[35] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break in
the clouds: Toward a cloud definition. ACM SIGCOMM Computer Communication
Review, 39(1), Jan.

[36] Peter Volgyesi, Andras Nadas, Xenofon D. Koutsoukos, and Akos Ledeczi. Air quality
monitoring with sensormap. IPSN, pages 529–530, 2008.

[37] GSM World. GSM Coverage Maps. Available at http://www.gsmworld.com/
roaming/gsminfo/index.shtml, 2009.

49

