
SOFT-ERROR MITIGATION AT THE ARCHITECTURE-LEVEL USING BERGER

CODES FOR ERROR DETECTION

By

Edward J. Ossi

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Electrical Engineering

December 2011

Nashville, Tennessee

Approved:

Professor Bharat L. Bhuva

Professor William H. Robinson

ii

ACKNOWLEGEMENTS

 I would like to deeply thank Professor Bharat Bhuva for his work as my academic

and research advisor. I am very grateful to him for his support and guidance that has

helped me throughout graduate school. His suggestions and insights helped me complete

my academic and career objectives.

 I would also like to thank Professor William Robinson for his pivotal role in the

development of my research. His inputs and advice during the architecture research

group meetings were greatly appreciated. I also express my sincere gratitude to Professor

Tim Holman, Professor Art Witulski, Professor Lloyd Massengill, Professor Ronald

Schrimpf, Professor Robert Reed, Professor Robert Weller, and Professor Daniel

Fleetwood for their prescient inputs during group meetings. Their advice during group

meetings and instruction greatly advanced my academic career.

 I could not have accomplished the work that comprises this thesis without the

assistance of Daniel Limbrick. I also have nothing but good feelings about my fellow

students in the Radiation Effects and Reliability Group. Their friendship and support

made Vanderbilt a wonderful place to learn and work.

 Finally, none of this would be possible without the love and encouragement from

my parents, Edward and Kathy Ossi, my sister Elena Ossi, my grandmother Ana Maria

Ossi, or my loving girlfriend Deborah Walden. I am eternally grateful to them for the

support they gave that enabled me to finish this thesis and my graduate school career.

iii

Table of Contents

ACKNOWLEDGEMENTS .. ii

LIST OF TABLES ...v

LIST OF FIGURES ...vi

Chapter

I. INTRODUCTION ...1

II. BACKGROUND ...4

1) Soft Errors ..4

2) Computer Abstraction Levels ..5

3) Types of Soft Errors ...7

4) Architectural Level Fault Metrics ..8

5) Dual /Triple Modular Redundancy ..10

III. CODE WORDS ...11

1.) Error Detection for Execution Units ..11

2.) Berger Codes ..12

IV. CIRCUIT HARDWARE IMPLEMENTATIONS ..15

1) ALU ...15

2) The Berger Check Prediction Calculator ...15

3) Zeroes Counter ...17

V. FAULT TOLERANT ALU IMPLEMENTATIONS19

1) Repeat-As-Needed Implementation ...20

2) Repeat-Always Implementation...21

iv

VI. SIMULATION METHODOLOGY...23

1) RTL Model...23

2) Fault Injection Methodology..23

VII. RESULTS ..27

1) Comparison Methodology ...27

2) Zeroes Counter – Speed and Area ...27

3) Fault Tolerant ALU – Speed and Area ..28

4) Fault Tolerant ALU – Accuracy of Computation31

VIII. CONCLUSION ..37

IX. REFERENCES ..38

Appendix

A. VHDL BEHAVIORAL DESCRIPTION ..40

v

LIST OF TABLES

Table

1. Berger Check Algorithms ...14

2. Truth Table for implementation of the Control Logic16

3. Fault Injection Locations ...25

4. Zeroes Counter Synthesis Results ..28

5. Synthesis Results - Optimized for Area ...29

6. Synthesis Results - Optimized for Speed ...30

vi

LIST OF FIGURES

Figure

1. (a) Charge Generation and Collection at a p-n Junction (b) Resultant

Current Pulse ..5

2. Levels of computer system abstraction ..6

3. Classification of possible outcomes of single event7

4. Latching Window Masking..9

5. BCP Circuit ..16

6. Block diagram of Repeat-As-Needed Implementation20

7. Block diagram of Always-Intervention Implementation22

8. Area-Delay Product When Optimized For Area29

9. Area-Delay Product When Optimized For Speed31

10. Repeat-As-Needed Fault Detected and Corrected32

11. Example of Detected Pulse ..33

12. Example of Undetected Pulse ..33

13. DMR Error Not Detected ...34

14. Repeat-As-Needed Error Not Detected ...34

1

CHAPTER I

I. INTRODUCTION

Soft errors are transient faults caused by energetic particles depositing enough

charge into a circuit node to invert the logic state of a cell, latch, or gate. The errors are

not permanent, but they do create a reliability challenge. Today’s advanced integrated

circuits (ICs) with reduced operating voltages and higher transistor densities exhibit

increased sensitivity to soft errors. As such, soft errors have become a major reliability

problem for military, space, and commercial electronic systems [1]. For older

technologies, hardening against single events (SE) was achieved through process

modifications to reduce the charge collected at a circuit node [2]. As the minimum

feature sizes on ICs reached nanometer dimensions, such approaches became less cost-

effective, and the circuit designs were used to mitigate the effects of single-events from

the circuit [3-5]. Both of these approaches have been adequate to mitigate soft-errors for

older technologies. However, in advanced technologies, these approaches have become

ineffective against single events due to lower nodal capacitances, lower supply voltages,

and close proximity of devices to each other [6]. Lower capacitances and supply voltages

have resulted in very low charge requirements to cause an upset, while close proximity of

devices can cause multiple devices to collect charge due to a single ion hit. These factors

have resulted in a very complex response to single-events for advanced IC designs [7],

necessitating higher, architecture-level approaches to manage the soft errors within a

system.

2

Mitigation of soft errors has in CMOS has traditionally focused on a cells instead

of combinational logic for two reasons. The first is that error detection and correction

schemes, such as parity or error correcting codes (ECC) for memory are well known and

their implementations very well understood. Also, caches and other memory structures

make up a large part of the die area. Memory cells also feature less masking effects than

combinational logic [8]. Strikes on combinational logic have been less investigated at the

architecture level because the input and outputs are less easily mapped to code words.

Also, a strike that causes a single event transient may not be stored as a single event upset

if the transient does not get latched into memory.

This thesis presents several architecture-level error detection and correction

strategies that target the Arithmetic Logic Units (ALU) within a microprocessor. The

ALU was chosen because it is the heart of a microprocessor and the errors that affect it

are unlike those that affect the rest of the microprocessor [9]. The strategies were

developed and tested to determine if they could provide desired error coverage without

the drastic power and area penalty associated with duplication/triplication of circuits.

The proposed approaches seek to eliminate the incorrect data generated by the presence

of the soft errors. The performance penalty for each of the techniques is presented in

terms of cycles per instruction (CPI), clock frequency, power, and area.

This thesis is organized as follows. Chapter II presents a detailed background on

the cause of soft errors and common mitigation strategies found in literature. Chapter III

focuses on the hardware implementations on the ALU and Berger circuitry. Chapter IV

deals with the two error detection and correction strategies. Chapter V states how a

Register-Transfer Level (RTL) model of the circuits were built using VHDL code and

3

simulated. It also discusses how the designs were synthesized using the FreePDK library

for area, speed, and power calculations. Finally, Chapter VI summarizes the results of

this thesis.

4

CHAPTER II.

II. BACKGROUND

1.) SOFT ERRORS

 When an energetic ion strikes bulk silicon (or any other semiconductor material),

it is of no consequence. The particle will impart its energy to bound electrons, excite the

electrons to the conduction band and create a hole, but they will eventually recombine.

However, when the particle strikes a p-n junction, it will generate electron-hole pairs; the

electrons will be swept to the n-region and the holes to the p-region because of the

presence of the electric field at the p-n junction. The path of the ion will also create a

field funnel that will extend the depletion region along the ion track and collect additional

charge. Fig. 1 (a) shows the ion path and the funnel effect, while Fig. 1 (b) shows the

initial current created by the drift process (where charge moves under the influence of an

electric field) and the ‘tail’ created by the funnel and diffusion (where charge moves due

to differences in carrier concentrations). At the microarchitecture level, if the charge

generated by the ion strike is at a critical node, then it will cause that circuit module to

have an incorrect output. This fault may then be latched, resulting in an error caused by a

transient voltage pulse at a circuit node.

5

Figure 1. (a) Charge generation and collection at a p-n junction,

(b) resultant current pulse

2.) COMPUTER ABSTRACTION LEVELS

 Achieving reliability at the architecture level first requires an understanding of

what the architecture level is. Computer systems can be divided into different abstraction

levels, from user interfaces down to atomic physics. These abstraction levels from

highest to lowest are as follows: Application, Middleware, Operating System, Instruction

Set Architecture (ISA), Microarchitecture, Circuits, and Device Physics. Faults present at

each level must be handled or, if that prove too costly, propagated to the next higher

level. For example, when working at the Microarchitecture level, one must deal with

faults that could not be corrected at the Circuits level and unrecoverable errors can ascend

to the ISA level and, if need be, levels above it. Fig. 2 shows the order of connectivity

between these levels.

6

Figure 2. Levels of computer system abstraction [10]

 Applications refer to computer programs that a user uses to perform a task. These

can range from word processors, to graphics programs to media players. Middleware

provides a link between different applications. It allows multiple processes to interact. It

was originally developed to link newer applications with older operating systems. The

operating system manages hardware and provides services that are used by different

applications. The operating system handles input and output and memory allocations.

Microarchitecture is defined as the way an Instruction Set Architecture (ISA) is

implemented in hardware. The ISA defines the instructions, opcodes, data types, and

registers that the processor can use. The ISA does not define the Microarchitecture;

different microarchitectures can implement the same ISA. Microarchitecture can be

represented as the interconnections of registers and execution units, even logic gates.

The circuit level consists of the individual transistors, resistors, capacitors, and inductors

that are connected by wires and allow current to flow. In the case of a microprocessor,

all of these are fabricated on the surface of a thin wafer of semiconductor material.

Device Physics details the way electrons are transferred through the semiconductor

7

material, the material themselves, and the dimensions and distances. This thesis will

focus on the Microarchitecture level, specifically the ALU.

3.) TYPES OF SOFT ERRORS [11]

 There are several outcomes when a single event occurs. A single event will

always cause a fault. A fault only becomes an error when it has been detected. When a

fault causes erroneous output, but is not detected, is termed as silent data corruption

(SDC). This is the dangerous type of fault, since there is no outward indication that

anything is wrong. When an error can be detected but not corrected, it is classified as a

detected unrecoverable error (DUE). These are further classified as true DUE events and

false DUE events. The ability to detect an error without correcting it can lead to false

DUE events because they would not have affected program execution but were flagged as

an error. The outcomes are shown in Fig. 3.

Figure 3. Classification of possible outcomes of single event [12]

8

4.) ARCHITECTURE LEVEL FAULT METRICS [13]

 SDC and DUE rates are expressed in Failure-in-Time (FIT). One FIT is one error

in a billion (10
9
) device hours. The sum of SDC and DUE FIT rates gives the soft error

rate (SER) of a chip. Mean-time-to-failure (MTTF) is inversely related to FIT and more

intuitive. MTTF is the mean time between two faults or errors. If your system has an

error every 2 years, then the MTTF would be 2 years.

 A chip’s FIT is determined by summing the FITs of each component. Each

component’s FIT is determined by its raw error rate and its architectural vulnerability

factor (AVF). AVF is the probability that a state change in a component leads to a

visible SDC or DUE. AVF varies based on a device’s function and execution. An upset

in a branch predictor would have an AVF of 0%, while an upset in a program counter

would have an AVF of 100%. The raw error rate is the probability that it will experience

a bit flip through computer simulation.

The error rate is then derated by the cell’s timing vulnerability factor (TVF). TVF

is the time percentage that a given cell is vulnerable to soft errors. For example, a RAM

cell is vulnerable for the entire clock cycle, so its TVF is 100%. Latches are vulnerable

for only 50% of the cycle. This is because the latch is holding data for 50% of the cycle,

and for the other 50%, data is being driven through it [13]. An example of an

architecture-level technique to reduce soft error rate involves flushing the instruction

queue after a level-1 (L1) cache miss. After the flushing, the instruction would not be

residing in memory while the data is retrieved from memory. This action reduces the

TVF by reducing the amount of time the instruction was exposed to potential neutron and

alpha strikes [13].

9

 Combinational logic requires special attention. There are three different scenarios

that can mask a single event from reaching a forward component that will capture the

transient and cause an error. These masking effects are as follows:

• Logical masking occurs when the strike is on a portion of logic that is

disconnected from a latch by the other inputs to later gates.

• Electrical masking occurs when the transient is reduced by passing through

later gates and eventually its effect is negated. This is caused by circuit delays

increasing the rise and fall time of the pulse and gates switching before the

full amplitude of the pulse can be reached.

• Latch window masking occurs when the pulse reaches a latch, but at such a

time that the latch is steady state. For an edge sensitive latch, the transient

must arrive at the latch input during the setup-and-hold time window around

the active clock edge, as shown in Fig. 4. Any transients outside this window

will be masked (or will not cause an error).

Figure 4. Latching Window Masking [13]

10

The error rate of combinational logic is therefore derated by a propagation vulnerability

factor (PVF). PVF is a factor that represents all of the above masking factors.

5.) DUAL / TRIPLE MODULAR REDUNDANCY

Two standard mitigation strategies employed are dual modular redundancy

(DMR) and triple modular redundancy (TMR). DMR identifies all instances of error

when the two outputs do not match. TMR removes any single point of error, since all

portions of the circuit are triplicated and all outputs are majority voted. There is a single

point of failure in both strategies, however, that lies in the circuitry that compares the

answer being computed. Since this circuit is usually very small compared to the original

circuit, the probability of an error in the comparison circuit is very low. Another point of

failure may occur if two copies show exactly identical errors. However, the probability

of two upsets occurring during the same latch window on the same datapath is extremely

low. As a result, these approaches provide excellent error coverage. These two

implementations impose extreme area and power penalty, since doubling or tripling the

combinational logic will typically cause a 2X or 3X increase in area and power. They do;

however, suffer no performance penalty since the redundant copies of the circuit are run

in parallel. DMR also has the limitation that it can only detect errors, and requires other

circuitry to handle recovery after an error is detected.

11

CHAPTER III

III. CODE WORDS

1.) ERROR DETECTION FOR EXECUTION UNITS [13]

 Error correcting codes can be used to detect and/or correct single or multi-bit

upsets. These schemes attach code bits to the data word, creating a code word. The

number of code bits is less than the number of bits in the original data word, creating a

savings compared to full replication. This creates a code space of valid code words.

When the data need to be read, the entire code word is decoded, and the code bits are read

to determine if they belong to the code word space, or set of code words. If they do, then

there was no error. Expanded code words can be used to determine the exact bit that was

in error.

 The number of bits that two code words differ is called the Hamming distance.

Given a code word space, the minimum Hamming distance between two valid code

words determines the number of error bits that a code scheme can detect. This is referred

to as the minimum Hamming distance. For example, X = 00 and Y = 11 differ by two

bits, therefore the Hamming distance between X and Y is 2. The minimum Hamming

distance of a code word space is given by the following three rules.

• The minimum Hamming distance of a code word space must be (α + 1) for

it to detect α or fewer error bits

• The minimum Hamming distance of a code word space must (2 β + 1) for

it to correct β or fewer error bits

12

• The minimum Hamming distance of a code word space must (α + β + 1),

where α ≥ β for it to detect α errors and correct β errors.

These types of codes are useful for memory systems; however, they are not

applicable for arithmetic and ALU operations since the input data words are operated on

by arithmetic and logical functions and result in a new code word. AN codes and

Residue codes can be used for arithmetic operations, and parity prediction can be used for

both arithmetic and logic operations. AN codes are formed by multiplying each data

word N by a constant A. Residue codes use the modulus operation which determines the

remainder of a division. The underlying principle is that (X + Y) mod M is equal to X

mod M + Y Mod M. This is also true for subtraction. Parity prediction circuits compute

the parity of the result and compare it to the parity of the source data words, the result,

and the internal carries of the arithmetic operation. Each of these types of codes still has

vulnerabilities. Parity schemes are vulnerable to errors which flip an even number of bits

and residue codes to errors that result in the same modulo code word.

2.) BERGER CODES

In this thesis, the error detecting code used is the Berger code. Berger was chosen

because it has been shown to be the least redundant systematic code for detecting single

and multi-bit unidirectional errors [14]. Berger code also covers both logic and

arithmetic operations, reducing the amount of code words needed to protect the ALU and

reducing cost. The key to this type of correction scheme is that the data and code words

are sent through asymmetric channels. The code words are then subjected to separate

operations to compare to a code word on the output. This thesis will show that a

13

comparison of the input data words to the output based on Berger prediction is a cost-

effective error correction strategy.

The original Berger code paper was published in 1961. It proposed two encoding

schemes to compute the check symbol, B0 and B1. The check symbol B0 is the number

of 0’s in the data word represented as a binary number. The check symbol B1 represents

the number of 1’s in the data word. The check symbol length k is given by k = log2(n+1),

where n is the number of bits in the original data word [15]. For example, a 32-bit data

word would require a 6-bit Berger check symbol. By comparing the check symbols, B0

or B1, of two data words, all unidirectional errors can be detected. Unidirectional errors

only flip 0’s into 1’s or 1’s into 0’s. If both a 1 and 0 are flipped in the data word, the

error will not be detected. This problem is inherent when using the Berger code as the

primary error detection system.

Berger code words for ALUs are determined as follows. This example will use

addition of two n-bit numbers, X and Y. X = (xn, xn-1, …, x1, x0) and Y= (yn, yn-1, …, y1,

y0) are added to produce the sum S = (sn, sn-1, …, s1, s0) with internal carries C = (cn, cn-1,

…, c1, c0), where xi, yi, si, ci are ϵ{0, 1}. The addition of the i
th

 bit of the two operands can

be described as:

xi + yi, + ci-1 = 2ci + si = (si + ci) + ci (1)

Let N(X) denote the number of 1’s in the binary representation of X. Then, N(xi) = xi

and we have the following Lemma:

N(X) + N(Y) + cin = N(S) + cout + N(C) (2)

Where cin = carry input and cout = carry output. The check symbol in our ALU is in the

B0 encoding, so for an n-bit number X, the check symbol in B0 encoding is Xc = n –

14

N(X) or N(X) = n - Xc. Inserting this into the previous Lemma with some rearranging,

we have

Sc = Xc + Yc – cin + cout – Cc (3)

A similar analysis can be done for subtraction, logical, rotate and shift, and array

multiplication operations. The operations that were implemented in our ALU are

presented below in Table 1.

Table 1. Berger check algorithms

Operation Berger Check Algorithm

ADD Sc = Xc + Yc – Cc – cin + cout

SUB Sc = Xc –Yc – Cc – NOT(cin) + cout + n

AND Sc = Xc + Yc – (X or Y)c

OR Sc = Xc + Yc – (X and Y)c

XOR Sc = Xc + Yc – 2(X and Y)c + n

ROTATE Sc = Xc

LOGIC SHIFT Sc = Xc – cin + cout

ARITHMETIC SHIFT RIGHT Sc = Xc – Xn + cout

ARITHMETIC SHIFT LEFT Sc = Xc + cout

IDENTITY Sc = Xc

To further explain how Berger Code calculates the checksum, the sum of two

actual numbers X and Y, will be shown. Let X=1001 and Y= 1010 with cin=0. The sum

is S=0011 with cout = 1. The internal carry bits are C=1000. The number of zeroes for

each is Sc=2, Xc=2, Yc=2, and Cc=3. The BCP formula for addition is Sc=Xc + Yc – Cc

– cin + cout, or Sc = 2 + 2 – 3 + 1. This is equal to 2, which is also equal to the number of

zeroes in the result of the addition operation [15].

15

CHAPTER IV

IV. CIRCUIT HARDWARE IMPLEMENTATIONS

1.) ALU

The fault tolerant requirement of the system required that the ALU’s arithmetic

and logical operations be partitioned, such that a single error in either the logic or

arithmetic portion of the circuit cannot affect the other. This also allows for any type of

adder sub-circuit to be chosen. For our circuit, a carry look-ahead adder was

implemented by recursively expanding the carry term to each stage. Recursive expansion

allows the carry expression for each individual stage to be implemented in a two-level

AND-OR expression. This reduces the carry signal propagation delay (the limiting factor

in a standard ripple carry adder) to produce a higher-performance addition circuit [15].

2.) THE BERGER CHECK PREDICTION (BCP) CALCULATOR [16]

 The predictive schemes described in Chapter II protect both the logical and

arithmetic data paths of the ALU. The ALU is controlled by four external control

signals, A0, A1, and A2 and a carry_in signal. These signals, along with cin and cout from

the ALU are translated to the BCP control signals through a programmable logic array

(PLA). It decodes these inputs and performs the functions described in Table 2. The

hardware implementation of the BCP is shown in Fig. 5.

16

Figure 5. BCP Circuit

Table 2. Truth table for implementation of the Control Logic

PLA Inputs
Function

PLA Outputs

A0 A1 A2 t1 t2 t3 t4 t5 δ

0 0 0 S = X + Y + cin 0 0 1 0 0 cout – cin + 1

0 0 1 S = X – Y - cin 0 0 1 1 1 cout – cin + 2

0 1 0 Rotate Left 0 0 0 0 0 0

0 1 1 Rotate Right 0 0 0 0 0 0

0 0 0 S = X AND Y 1 0 1 0 0 1

0 0 1 S = X OR Y 0 0 1 0 0 1

0 1 0 S = X XOR Y 0 1 1 0 1 1

0 1 1 S = X 0 0 0 0 0 0

The MUX is controlled by signals A0 and t1. When A0 = 0 and t1 = 0, the

internal carries of the ALU are selected and routed the BCP circuit, when A0 = 0 and t1 =

1, X AND Y is routed, and when A0 = 1 and t1 = 1, X OR Y is routed to the BCP. The

data path length for the BCP circuit for the 32-bit ALU is 6 bits.

17

 To verify this circuit is correct, the arithmetic function “S = X + Y + cin” will be

used. The BCP check symbol for this is calculated as “Sc = Xc + Yc – Cc – cin + cout”.

The PLA sets t1-t2 and t4-5 as ‘0’, t3 as ‘1’, and δ as cout – cin + 1. The selection A0 = 1

and t1 = 0 feeds the internal carries to the zeros counter, producing Cc. The x2 operation

is not needed, so t2 is ‘0’. The signal t3 is ‘1’, inverting Cc as it passes through the

NAND gate and allowing Yc to pass through the AND gate. The signal t4 is ‘0’,

allowing Yc to pass through the XOR gate. These are summed in the Modified Carry-

Select Adder (MCSA) and finally signal t5 does not add n. δ is given as cout – cin + 1.

This computes the symbol based on 2’s complement subtraction, Sc = Xc + Yc + (Ccbar

+ 1) + cout – cin. The flow for logical operations is similar, with the MUX selected with X

AND Y or X OR Y for the Cc input datapath.

3.) ZEROES COUNTER [14]

Three implementations of the zeroes counter were constructed in order to

determine the most efficient way to implement these inputs to the BCP. A behavioral

description was designed for the synthesizer to implement as efficiently as possible along

with a simple adder tree. Finally a survey of literature found a suitable third

implementation to test.

 The first implementation was described in VHDL as a 32-stage 1-bit adder tree.

Again, the input word was inverted to sum each 0 as a 1. Each bit of the input word is

summed with every other bit. This seems grossly inefficient, but as a behavioral

descriptionit takes advantage of the Carry-Save Addition transformation capability of the

RTL compiler. This is discussed in a later section.

18

 The second implementation is an adder tree. It consists of 5 stages, where there

are sixteen 2-bit adders, eight 3-bit adders, four 4-bit adders, two 5-bit adders, and one 6-

bit adder. This is designed to reduce the delay of the 32 1-bit add operations. Again,

this design is also meant to take advantage of the CSA transformation optimization. This

transformation is responsible for the advanced layout techniques that would be present in

a modern fabrication of an ALU.

There are many different implementations described in literature proposing

different 1’s and 0’s counters for the B0 and B1 encoding schemes. Some of these

schemes include a symbol generator consisting of half-adder cells, half-adder and full-

adder cells, and as a set of m-out-on-n codes. The most efficient of the designs found is

described as follows. The building block of this scheme is a 4-bit 1’s counter. It is used

by inverting the input data word, thus providing a representation of the number of 0’s by

using a 1’s counter. The four input 1’s counter outputs a 3-bit representation of the

number of 1’s. The input data word is then partitioned into 4-bit slices and the outputs of

these slices are fed to an adder tree [14]. This was the third zeros counter constructed.

19

CHAPTER V

V. FAULT SECURE ALU IMPLEMENTATIONS

At the architecture-level, the principle difficulty is in developing a technique to

eliminate the soft error once it is detected. The approaches to error correction mostly

involve overwrite or recalculation. For overwrite, corrupted bit(s) are identified, and

correct values are overwritten over the incorrect bits. This can be accomplished by using

complicated check codes that require large computation overhead and are costly, but can

automatically correct the data. Another approach for overwrite is to use three copies of

the hardware in parallel and vote on incorrect data. Approaches for recalculation

essentially recalculate the incorrect data assuming that recalculated data will be correct.

Recalculation approaches require very little overhead and can be as robust as overwrite

approaches. For this thesis, the recalculation approach with two different

implementations is investigated. These two implementations differ in their basic

approach to error correction. The first approach only intervenes when an error is detected

and repeats the instruction; the second approach always repeats the instruction without

any additional penalty to the operating frequency. The first approach is expected to be

better suited to an environment where the number of errors expected is very low, while

the second approach will be better for an environment where the number of soft errors

expected is high. Details of both the implementations are given below.

20

1.) REPEAT-AS-NEEDED IMPLEMENTATION

This implementation repeats the instruction during which the soft error occurred.

The block diagram is shown in Fig. 6. The Berger Check Calculator block is responsible

for raising a flag whenever a soft error is detected. Upon detection of the soft error, the

clock to the entire system is suspended for one clock cycle. This results in all registers

holding their values for an additional clock cycle. This effectively repeats the previous

instruction until the Single Event Transient (SET) pulse has dissipated. If the SET pulse

is longer than one clock cycle, then the clock suspension must last as long as the SET

pulse affects the output data.

Figure 6. Block diagram of Repeat-As-Needed Implementation

 The Clock Manager block receives the system clock and provides local clock

signals to the sub-circuit being hardened. For the present case, the sub-circuit is the ALU

and all the associated input and output registers. The Clock Manager holds the clock only

21

when a soft error is detected, resulting in a penalty on performance that is proportional to

the number of soft errors.

2.) REPEAT-ALWAYS IMPLEMENTATION

This implementation exploits temporal redundancy by running every ALU

instruction twice in one clock cycle as shown in Fig. 7. The instruction executes once on

the positive edge and once on the negative edge of the clock. In the first half clock cycle,

the ALU performs the operation concurrently with the Berger Check Calculator and

determines whether the operation executed as intended (absent an error). In the second

half of the clock cycle, the ALU repeats the same operation and stores the result. If an

error occurs in the first half of the clock cycle, the circuit will latch the result from the

second half of the clock cycle. In all other cases, the ALU stores the result from the first

half of the clock cycle. The basic assumption is that the soft error causing transients are

shorter than half the clock period. Recent papers have shown that the number of short

single-event pulses is orders of magnitude higher than that for longer ones for radiation

exposure [17, 18]. For such cases, most of the short errors will be detected and corrected.

However, errors due to SET pulse longer than half a clock cycle may still get through the

system.

22

Figure 7. Block diagram of Always-Intervention Implementation

The overriding circuitry was designed with a multiplexer and a series of registers.

In order to run an instruction twice, two sets of input registers and output registers were

used; one loads on the positive edge and the other loads on negative edge. The

multiplexer determines which output register to use as the ALU output. The detection of

the error is done using the same comparator design as the Repeat-As-Needed

implementation.

23

CHAPTER VI

VI. SIMULATION METHODOLOGY

1.) RTL MODEL

A VHDL register transfer level (RTL) model was created for both designs and

implemented in an Altera DE2 Development and Education Board, which uses a Cyclone

II Field Programmable Gate Array (FPGA). The two BCP ALU designs were synthesized

using Quartus II version 9.1, and the device targeted is EP2C35F672C6 from the Cyclone

II family [19].

2.) FAULT INJECTION METHODOLOGY

 The fault injection methodology was based on [20]. It involves inserting faults

into particular nodes in the system, and then monitoring the output to determine its

behavior in the presence of a fault. This methodology was chosen since it is well suited

for early in the design process, when an RTL model of system is all that has been

designed. This also allows for faults to be injected at sensitive nodes of the design

concurrent with the execution of whatever program or test bench is running. Our

implementation differs from [20] in that we have chosen 32 specific nodes to inject faults

into, and our fault injection block varies temporally, but not spatially within the design.

The faults are injected into the registers that store data or the in-between functional units

(FUs). This does not allow for faults to be injected into individual nodes with the

combinational logic.

24

 The fault injection mask consists of a 32-bit shift register. It is initialized with the

Least Significant Bit (LSB) as 1, with all others 0. After each injection, the value 1

rotates to the left. Each bit in the registers corresponds to a fault injection location.

Faults were injected one at a time into each node for every possible instruction. The

nodes were chosen based on their transparency to the output to attempt to eliminate

logical masking. Logic masking is the failure of an SET to cause an upset because it does

not have a logical path the output. This seeks to provide a worst-case fault injection

profile where the only limitation is a fault not occurring during a sensitive window and

being latched. This latch window masking is described in Chapter II.

 The fault injection locations are given in Table 3 in terms of the VHDL model.

For instance, Inject (31 downto 0) is the fault injection mask shift register. The Location

in Circuit description is broken down Module: Signal Name (Bit). For instance, ALU:

inA(0) is the LSB of data words labeled ‘A’ being fed into the ALU. The full VHDL

code is included in Appendix A.

25

Table 3. Fault injection locations

Inject (31

downto 0)
Location in Circuit

Inject (31

downto 0)
Location in Circuit

0 ALU: inA(0) 16 BCP: bcp_c(5)

1 ALU: inA(31) 17 ALU: result(17)

2 ALU: inB(14) 18 ADDR: carry_gen(18)

3 ALU: inB(6) 19 ADDR: h_sum(19)

4 BCP: inA(28) 20 BCP: opcode(2)

5 BCP: inA(0) 21 PLA: t1

6 BCP: inB(21) 22 PLA: t2

7 BCP: inB(8) 23 PLA: t3

8 ALU: opcode(2) 24 PLA: t4

9 ADDR: carry_in 25 PLA: t5

10 BCP: carry(14) 26 PLA: d(0)

11 ALU: carryout 27 ALU: result(27)

12 ALU: result(12) 28 BCP: mux_sig(28)

13 BCP: carryin 29 ALU: result(29)

14 ALU: alu_c(0) 30 ALU: result(30)

15 BCP: bcp_c(2) 31 ALU: inB(0)

 The terminology will treat an error as a flipped bit in the Device-Under-Test

(DUT). A detected error is one that is caught by the Berger check circuit. A fault is an

error that has escaped detection and affected the system output. To simulate fault

injection in our RTL model, XOR gates were used with the targeted node and fault

injection signature as inputs using the ModelSim gate level simulation tool [19].

The duration of each fault injected was varied using the IEEE.MATH_REAL

Library UNIFORM function to create a pseudorandom pulse width that varied between 0

and 125% of the clock period. The UNIFORM function was also used to randomly vary

the position of the fault pulse with respect to the clock edge. A second ALU was run

simultaneously to determine the functionally correct execution. At the end of each trial,

the results of each instruction were recorded and compared to the original results data.

26

This data was used to quantify the inherent vulnerability of the ALU by determining a

percentage of faults injected to errors recorded. The same procedure was performed on

the BCP ALU designs. A similar fault injection method can be found in [20].

27

CHAPTER VII.

VII. RESULTS

1.) COMPARISON METHODOLOGY

 The effectiveness of a Repeat-As-Needed BCP ALU fault-tolerant processor was

compared against DMR and TMR implementations based on the impact of each design

on data arrival time, which sets the maximum clock frequency, and synthesized area.

The effectiveness of the two BCP implementations was then compared based on the

percentage of detected errors and undetected errors. The data arrival time and area

required were determined using the Cadence RTL compiler, which synthesized the

VHDL source code to standard cells from the OSU/NCSU FreePDK 45nm logic cell

library [21]. The detailed functional simulations were done using the Modelsim gate

level simulation tool on the design synthesized for a Cyclone II EP2C35F672C6 FPGA

Board.

2.) ZEROES COUNTER – SPEED AND AREA

Three implementations of the zeroes counter were constructed in order to

determine the most efficient way to implement these inputs to the BCP. The first

implementation partitions the input data word into 4-bit slices, and the outputs of these

slices are fed to an adder tree. The second was a behavioral description written in VHDL

as a 32-stage 1-bit adder tree. The third implementation is an adder tree. It consists of 5

stages, where there are sixteen 2-bit adders, eight 3-bit adders, four 4-bit adders, two 5-bit

adders, and one 6-bit adder.

28

Table 4. Zeroes counter synthesis results

Speed

Optimized

Area

Optimized

Literature [14]
cell area (µm

2
) 1009 853

data arrival time (ps) 679 985

Behavioral
cell area (µm

2
) 825 604

data arrival time (ps) 724 898

Adder Tree
cell area (µm

2
) 863 618

data arrival time (ps) 858 952

 The results for the zeroes counter confirmed what was in the literature when the

synthesis was optimized for speed. The data arrival time of 679 ps was 6% and 26%

faster than the behavioral or adder tree implementations, respectively. However, when

optimized for area, the behavioral circuit had a smaller footprint and was 5% faster than

that which was described in literature. This is most likely due to the more generic VHDL

code, which allowed increased optimization during synthesis. Since the 4-bit slices to

adder tree method was indeed faster, and only 5% slower when optimized for area, it was

used as the zeroes counter when comparing Repeat-As-Needed and Repeat-Always

configurations.

3.) FAULT-TOLERANT ALU - SPEED AND AREA

The synthesis results for the unhardened ALU, and Dual Modular Redundancy

(DMR), Triple Modular Redundancy (TMR), Repeat-As-Needed, and Repeat-Always

schemes are shown in Tables 5 and 6. The unhardened ALU featured input and output

registers, but no detection or correction measures. The size of just the ALU itself was

found to be 1760 µm
2
. The DMR implementation used a simple comparator to determine

if an error occurred, TMR used three ALUs and a voting logic block to provide error

29

detection and correction. Each implementation was synthesized twice, once optimized

for speed and again for area.

The results when optimized for area are presented in Table 5. It is immediately

noticeable that adding redundancy results in a near doubling of the area. The Repeat-As-

Needed implementation does have the smallest increase; however, the increases in data-

arrival time were quite significant at 22% over DMR. The area-delay product is used as

the metric for comparing the different area and speed optimized implementations. Fig. 8

presents the Area-Delay Product of each implementation, normalized to the unhardened

ALU. When taking area and speed into account, the two Berger implementations are

outperformed by DMR and TMR. The Repeat-Always is significantly worse.

Table 5. Optimized For Area

 cell area (µm
2
) data arrival time (ps)

Unhardened ALU 2592 3673

DMR 4718 4213

TMR 6404 3893

Repeat As Needed 4705 5153

Repeat Always 5985 5634

30

Figure 8. Area-Delay Product When Optimized For Area

The results when optimized for area are presented in Table 6. The area trends

follow the previous synthesis. Adding redundancy again results in a near doubling of the

area. It is noticeable about synthesizing for speed, the drastic increase in speed for the

Repeat-Always and Repeat-As-Needed circuits compared to the area-optimized versions.

Fig. 9 presents the Area-Delay Product of each implementation, normalized to the

unhardened ALU. When again taking area and speed into account, the two Berger

implementations are significantly outperformed by DMR and TMR. The Repeat-Always

is again significantly worse.

Table 6. Optimized For Speed

cell area (µm
2
) data arrival time (ps)

Unhardened ALU 3276 748

DMR 6271 906

TMR 8750 804

Repeat As Needed 6325 1636

Repeat Always 7756 2018

31

Figure 9. Area-Delay Product When Optimized For Speed

4.) FAULT-TOLERANT ALU – ACCURACY OF COMPUTATION

 The total number of instructions run for the fault injection simulation was 10,404.

The percentage of injected faults to errors for the unhardened ALU was 19 %. These

faults occurred when a fault was injected during the sensitive window, the set-up-and-

hold time of a latch. Faults that occurred in this window also caused the majority of

instruction to be repeated in the Repeat-As-Needed implementation. This is shown in Fig.

10. There were still 4.3 % of faults that were not detected. A fault injected into the

Repeat-Always circuit resulted in an error 63.7 % of the time. The execution time for the

Repeat-As-Needed case increased by 63.4 % because of the number of additional cycles

required to address the faults. The execution time for the unhardened ALU and Repeat-

Always circuit were unaffected.

Figure 10. Repeat

Analysis of the fault injection results revealed a couple vulnerabilities of the BCP

ALU and DMR ALUs. The fun

through asynchronous channels. This is so

as an error in the other channel

identified, but the different delay

where an error can be latched before it is detected. The vulnerability window is

described as follows. When an error is injected close to a rising edge,

during which a fault is present on the output latch, but the sin

through the zeros counter. This

the window is smaller, since the comparator for the DMR is faster than the zeros counter.

The normal operation of the clock and the

fault condition is shown in Fig.

32

. Repeat-As-Needed Error Detected and Corrected

injection results revealed a couple vulnerabilities of the BCP

. The fundamental theorem of Berger code is that data

rough asynchronous channels. This is so that an error in one channel does not manifest

channel. This allows for the data to be compared and an error

identified, but the different delay times of the two channels create a vulnerabi

where an error can be latched before it is detected. The vulnerability window is

hen an error is injected close to a rising edge, there is a time

is present on the output latch, but the single event has not

This fault is also present in a DMR implementation, although

the window is smaller, since the comparator for the DMR is faster than the zeros counter.

The normal operation of the clock and the fault condition are shown in Fig. 11

Fig. 12.

Fault Flagged

Result Stays

Error Not Observed

injection results revealed a couple vulnerabilities of the BCP

is that data are sent

that an error in one channel does not manifest

. This allows for the data to be compared and an error

a vulnerability window

where an error can be latched before it is detected. The vulnerability window is

there is a time

has not propagated

is also present in a DMR implementation, although

the window is smaller, since the comparator for the DMR is faster than the zeros counter.

Fig. 11, and the

33

Figure 11. Example of Detected Pulse

Figure 12. Example of Undetected Pulse

Repeating the fault injection simulation with a DMR ALU resulted in an error rate

of 2.6 %. This type of error is shown in Fig. 13. The corresponding error with the

Repeat-As-Needed Implementation is shown in Fig. 14.

Figure 14

Fault

34

Figure 13. DMR Fault Not Detected

14. Repeat-As-Needed Fault Not Detected

Fault Injected

Fault Flagged

Error Latched

Fault Flagged
Too Late

Result Incorrect

Error

Latched

Flagged

Result Incorrect

Error Observed

35

Other results from the fault injection simulation show that the Repeat-Always

implementation is vulnerable to SETs longer than half a clock cycle, since errors can be

present on both halves of the clock cycle. Given this sensitivity, this implementation is

not advised for environments where the maximum SET pulse width is greater than the

clock period. This would allow the SET to strike without causing an error on both the

positive and negative edge of the clock.

Both implementations provide the capability of soft error detection and

correction. The vulnerability of the Repeat-As-Needed implementation is limited only by

the inherent flaws in BCP circuits. The repeating of instructions eliminated the latching

of soft errors, but at the cost of a performance penalty. In addition to this, there is an

increased complexity in handling the instruction repetition. The repeating of the clock

period would require external synchronization with the other components of the circuit.

There would also have to be a watchdog timer to turn off the BCP circuit in the event of a

static fault, otherwise the system would enter into an infinite stuck state.

The Repeat-Always implementation provides its single event protection at a

reduced external complexity, but at a high performance penalty. While it does provide

approximately a ten-fold decrease in single event sensitivity, the increase in logic

elements and the associated area and power increases are likely prohibitive and a Repeat-

As-Needed method is the better implementation. Neither of them; however, compare to

DMR or TMR in terms of area, by extension power, and speed.

The delay increases for the Repeat-As-Needed is because the BCP requires the

carry inputs from the ALU in order to complete arithmetic operations. There is also a

36

delay before it can compute the check symbol from the ALU result. This is the delay of

the zeros counter that computes the check symbol from the ALU. The clock frequency in

the Repeat-Always case is decreased because the result for the first half of the clock cycle

is latched at the falling edge. This requires the clock frequencies to be decreased since

the result must be computed in half the clock cycle.

37

CHAPTER VII

VII. CONCLUSIONS

The theoretical ALU with Berger check prediction from [15] can detect all

unidirectional errors in both logic and arithmetic operations. The result as tested here was

that it could detect 95.7% of errors. The Berger check system was used as a proof-of-

concept to present two architectural methods which provide single event upset detection

and correction by analyzing and correcting the data as it passes between the latches and

through the combinational logic. The first approach only intervened when an error was

detected and repeated the instruction. The second approach always repeated the

instruction on the falling clock edge and corrected the error without additional penalty to

the circuit performance. The Repeat-As-Needed scheme corrected all injected faults, but

at a performance penalty of (2 + N) cycles per error. The Repeat-Always method

corrected 97.2% of the faults, but suffered a reduction in performance due to a slowing of

the clock. When compared to TMR, the Repeat-as-Needed method required less logical

elements, but the Repeat-Always case required more elements due its latching of the

result on both clock edges. Both implementations show an effective means to detect and

recover from radiation-induced soft errors; however the area cost and speed penalties of

these implementations are too severe for practical use.

38

CHAPTER VIII.

VIII. REFERENCES

[1] M. Santarini, "Cosmic radiation comes to ASIC and SOC design," EDN, 2005.

[2] S. W. Fu, et al., "Alpha-particle-induced charge collection measurements and the

effectiveness of a novel p-well protection barrier on VLSI memories," IEEE

Trans. Electron Devices, vol. 32, pp. 49 – 54, 1985.

[3] M. P. Baze et al., "SEU hardening techniques for retargetable sub-micron digital

libraries," 2002 Single Event Effects Symp., Manhattan Beach, CA, 2002.

[4] D. R. Alexander et al., "Design issues for radiation tolerant microcircuits in

space," IEEE NSREC Short Course, 1996.

[5] G. Anelli et al., "Radiation tolerant VLSI circuits in standard deep submicron

CMOS technologies for the LHC experiments: practical design aspects," IEEE

Trans. on Nuclear Science, vol. 46, pp. 1690 - 1696, 1999.

[6] O. A. Amusan et al., “Charge collection and charge sharing in a 130 nm CMOS

technology," IEEE Trans. on Nuclear Science, vol. 53, pp. 3253 - 3258, 2006.

[7] R. C. Baumann, "Radiation-induced soft errors in advanced semiconductor

technologies," IEEE Trans. on Device and Materials Reliability, vol. 5, pp. 305 -

316, 2005.

[8] P. Shivakumar et al., “Modeling the Effect of Technology Trends on the Soft

Error Rate of Combinational Logic,” Proc. Int. Conf. Dependable Sys. and

Networks, pp 389 – 398, 2002.

[9] J.C. Lo et al., “Concurrent Error Detection In Arithmetic and Logical Operations

Using Berger Codes,” Proc. 9th Symp. Comput. Arithmetic, pp. 233 - 240, 1989.

[10] W. Robinson et al., “Soft Error Considerations for Multicore Microprocessor

 Design,” IEEE Int. Conf. on Integrated Circuit Design and Technology, pp.

 1 - 4, 2007

[11] S. S. Mukherjee et al., "The Soft Error Problem: An Architectural Perspective,"

Proc. 11th Int. Symp. High-Performance Comput. Architecture, pp. 243 – 247,

2005.

[12] C.T. Weaver et al., “Reducing the soft-error rate of a high-performance

 microprocessor,” IEEE Micro, vol. 24, no 6, pp. 30 – 37, 2004

[13] S. Mukherjee, Architecture Design For Soft Errors. Burlington, MA. Morgan

 Kaufman, 2008.

[14] D.A. Pierce Jr. and P.K. Lala, “Modular Implementation of Efficient Self-

Checking Checkers for the Berger Code,” J. of Electronic Testing: Theory and

Applicat., pp. 279 - 294, 1996.

[15] J.C. Lo et al., “An SFS Berger check prediction ALU and its application to self-

checking processor designs,” IEEE Trans. Computer-Aided Design of Integrated

Circuits and Systems, vol. 11, no. 4, pp.525 – 540, 1992.

39

[16] S.S. Gorshe and B. Bose, “A self-checking ALU design with efficient codes,”

Proc. 14
th
 VLSI Test Symp., pp.157 – 161, 1996.

[17] B.L. Narasimham et al., "Characterization of digital single event transient pulse-

widths in 130-nm and 90-nm CMOS technologies," IEEE Trans. on Nuclear

Science, vol. 54, pp. 2506 - 2511, 2007.

[18] B. Narasimham et al., "The effect of negative feedback on single event transient

propagation in digital circuits," IEEE Trans. on Nuclear Science, vol. 53, pp.

3285 - 3290, 2006.

[19] http://www.altera.com.

[20] F. Lima et al., “On the use of VHDL simulation and emulation to derive error

rates,” 6th European Conf. Radiation and Its Effects on Components and Syst.,

pp. 253 – 260, 2001.

[21] J.E. Stine et al., “FreePDK: An Open-Source Variation-Aware Design Kit,” IEEE

Int. Conf. Microelectronic Sys. Educ., pp. 173 – 174, 2007.

40

APPENDIX A

REPEAT-AS-NEEDED AND REPEAT-ALWAYS VHDL BEHAVIORAL

DESCRIPTION

 This appendix presents the VHDL behavioral description of the fault tolerant

ALU as used in the Repeat-As-Needed and Repeat-Always circuits. The Repeat-As-

Needed implementation’s top level design entity is given first, followed by its ALU and

Berger Calculator subcircuits. The Repeat-Always top level design is then shown. Its

subcircuits are identical to the Repeat-As-Needed scheme and are not included.

imp_one (Repeat-As-Needed Top Level Design Entity)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;

ENTITY imp_one IS
PORT(
 clk: IN STD_LOGIC;
 carry_in: IN STD_LOGIC;
 inject: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 in_A: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 in_B: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 opcode: IN STD_LOGIC_VECTOR(2 DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
 carry_out: OUT STD_LOGIC;
 alu_c_out: OUT STD_LOGIC_VECTOR(5 DOWNTO 0);
 bcp_c_out: OUT STD_LOGIC_VECTOR(5 DOWNTO 0);
 error_out: OUT STD_LOGIC
);

END imp_one;

ARCHITECTURE rtl OF imp_one IS

SIGNAL carry_out_stage2: STD_LOGIC;
SIGNAL carry_out_alu: STD_LOGIC;
SIGNAL result_out_alu: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL carry: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL bcp_c: STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL alu_c: STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL in_A_stage2: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL in_B_stage2: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL opcode_stage2: STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL result_stage2: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL carry_in_stage2: STD_LOGIC;
SIGNAL mux_sel: STD_LOGIC;
SIGNAL alu_bcp_sel: STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL error: STD_LOGIC;

41

SIGNAL eff_clk: STD_LOGIC;
SIGNAL in_latch: STD_LOGIC;
SIGNAL out_latch: STD_LOGIC;
SIGNAL preop: STD_LOGIC_VECTOR(2 DOWNTO 0);

COMPONENT sc_alu IS
PORT(
 carry_in: IN STD_LOGIC;
 in_A: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 in_B: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 opcode: IN STD_LOGIC_VECTOR(2 DOWNTO 0);
 inject: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
 carry_out: OUT STD_LOGIC;
 eff_clk_out: OUT STD_LOGIC;
 alu_c_out: OUT STD_LOGIC_VECTOR(5 DOWNTO 0);
 bcp_c_out: OUT STD_LOGIC_VECTOR(5 DOWNTO 0);
 error_out: OUT STD_LOGIC
);
END COMPONENT sc_alu;

BEGIN

 SCALU1: sc_alu
 PORT MAP(
 --into SC_ALU
 in_A => in_A_stage2,
 in_B => in_B_stage2,
 opcode => opcode_stage2,
 carry_in => carry_in_stage2,
 inject => inject,
 --out of SC_ALU
 result => result_out_alu,
 carry_out => carry_out_alu,
 error_out => error,
 alu_c_out => alu_c_out,
 bcp_c_out => bcp_c_out
);

 error_out <= error;

 PROCESS(clk, in_A, in_B, opcode)
 BEGIN
 IF(RISING_EDGE(clk)) THEN
 in_A_stage2 <= in_A;
 in_B_stage2 <= in_B;
 carry_in_stage2 <= carry_in;
 opcode_stage2 <= opcode;
 result <= result_out_alu;
 carry_out <= carry_out_alu;
 END IF;
 END PROCESS;

END rtl;

sc_alu

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;

ENTITY sc_alu IS
PORT(
 clk: IN STD_LOGIC;
 carry_in: IN STD_LOGIC;
 inject: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 in_A: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 in_B: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 opcode: IN STD_LOGIC_VECTOR(2 DOWNTO 0);

42

 result: OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
 carry_out: OUT STD_LOGIC;
 alu_c_out: OUT STD_LOGIC_VECTOR(5 DOWNTO 0);
 bcp_c_out: OUT STD_LOGIC_VECTOR(5 DOWNTO 0);
 eff_clk_out: OUT STD_LOGIC;
 error_out: OUT STD_LOGIC
);

END sc_alu;

ARCHITECTURE rtl OF sc_alu IS

--SIGNAL carry_in: STD_LOGIC;
SIGNAL carry_out_stage2: STD_LOGIC;
SIGNAL carry_out_alu: STD_LOGIC;
SIGNAL result_out_alu: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL carry: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL bcp_c: STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL alu_c: STD_LOGIC_VECTOR(5 DOWNTO 0);

SIGNAL in_A_alu: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL in_A_bcp: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL in_B_alu: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL in_B_bcp: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL result_stage2: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL mux_sel: STD_LOGIC;
SIGNAL alu_bcp_sel: STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL opcode_stage2: STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL error: STD_LOGIC;
SIGNAL eff_clk: STD_LOGIC;
SIGNAL in_latch: STD_LOGIC;
SIGNAL out_latch: STD_LOGIC;
SIGNAL test: STD_LOGIC_VECTOR(2 DOWNTO 0);

COMPONENT alu IS
PORT(
 in_A: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 in_B: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 opcode: IN STD_LOGIC_VECTOR(2 DOWNTO 0);
 carry_in: IN STD_LOGIC;
 inject: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
 carry_out: OUT STD_LOGIC;
 carry: OUT STD_LOGIC_VECTOR(31 DOWNTO 0)
);
END COMPONENT alu;

COMPONENT bcp IS
PORT(
 in_A: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 in_B: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 in_C: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 inject: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 carry_in: IN STD_LOGIC;
 carry_out: IN STD_LOGIC;
 opcode: IN STD_LOGIC_VECTOR(2 DOWNTO 0);
 zA_out: OUT STD_LOGIC_VECTOR (5 DOWNTO 0);
 zB_out: OUT STD_LOGIC_VECTOR (5 DOWNTO 0);
 zC_out: OUT STD_LOGIC_VECTOR (5 DOWNTO 0);
 result_c: OUT STD_LOGIC_VECTOR(5 DOWNTO 0)
);
END COMPONENT bcp;

component zero32
 port(in_A: in std_logic_vector(31 DOWNTO 0);
 z_A: out std_logic_vector(5 DOWNTO 0));
end component;

BEGIN

 ALU1: alu
 PORT MAP(

43

 --into ALU
 in_A => (in_A_alu(31) XOR inject(1)) & in_A_alu(30 DOWNTO 1) &
(in_A_alu(0) XOR inject(0)),
 in_B => in_B_alu(31 DOWNTO 15) & (in_B_alu(14) XOR inject(2)) &
in_B_alu(13 DOWNTO 7) & (in_B_alu(6) XOR inject(3)) & in_B_alu(5 DOWNTO 0),
 opcode => opcode_stage2(2) & (opcode_stage2(1) XOR inject(8)) &
opcode_stage2(0),
 carry_in => carry_in,
 inject => inject,
 --out of ALU
 result => result_out_alu,
 carry_out => carry_out_alu,
 carry => carry
);

 BCP1: bcp
 PORT MAP(
 --into BCP
 in_A => in_A_bcp(31 DOWNTO 29) & (in_A_bcp(28) XOR inject(4)) &
in_A_bcp(27 DOWNTO 1) & (in_A_bcp(0) XOR inject(5)),
 in_B => in_B_bcp(31 DOWNTO 22) & (in_B_bcp(21) XOR inject(6)) &
in_B_bcp(20 DOWNTO 9) & (in_B_bcp(8) XOR inject(7)) & in_B_bcp(7 DOWNTO 0),
 in_C => carry(31 DOWNTO 15) & (carry(14) XOR inject(10)) &
carry(13 DOWNTO 0),
 inject => inject,
 carry_out => carry_out_alu XOR inject(11),
 carry_in => carry_in XOR inject(13),
 opcode => (opcode_stage2(2) XOR inject(20)) & opcode_stage2(1
DOWNTO 0),
 --out of BCP
 result_c => bcp_c
);

 stage1: zero32 port map(result_out_alu, alu_c);

PROCESS(in_A, in_B, opcode, alu_c, bcp_c)
begin
 in_A_alu <= in_A;
 in_B_alu <= in_B;

 in_A_bcp <= in_A;
 in_B_bcp <= in_B;

 opcode_stage2 <= opcode;
 result <= result_out_alu;
 carry_out <= carry_out_alu;
 alu_c_out <= alu_c;
 bcp_c_out <= bcp_c;
 IF ((alu_c(5 DOWNTO 1)& (alu_c(0) XOR inject(14))) =
((bcp_c(5) XOR inject(16)) & bcp_c(4 DOWNTO 3)& (bcp_c(2) XOR inject(15))&
bcp_c(1 DOWNTO 0))) THEN
 error <= '0';
 ELSE
 error <= '1';
 END IF;
 error_out <= error;

 END PROCESS;

END rtl;

alu

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_unsigned.all;

ENTITY alu IS
PORT(
 in_A: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 in_B: IN STD_LOGIC_VECTOR(31 DOWNTO 0);

44

 carry_in: IN STD_LOGIC;
 opcode: IN STD_LOGIC_VECTOR(2 DOWNTO 0);
 inject: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
 carry_out: OUT STD_LOGIC;
 carry: OUT STD_LOGIC_VECTOR(31 DOWNTO 0)
);
END alu;

ARCHITECTURE structure OF alu IS
SIGNAL sum: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL in_B_addr: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL all_ones: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL carry_in_addr: STD_LOGIC;
SIGNAL carry_addr: STD_LOGIC_VECTOR(31 DOWNTO 0):= (others => '1') ;
SIGNAL carry_out_addr: STD_LOGIC;

COMPONENT c_l_addr IS
PORT(
 x_in : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 y_in : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 carry_in : IN STD_LOGIC;
 inject : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 sum : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
 carry : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
 carry_out : OUT STD_LOGIC
);
END COMPONENT c_l_addr;
BEGIN

 ADDR1: c_l_addr
 PORT MAP(
 --into ADDR1
 x_in => in_A,
 y_in => in_B_addr,
 carry_in => carry_in_addr XOR inject(9),
 inject => inject,
 --out of ADDR1
 sum => sum,
 carry_out => carry_out_addr,
 carry => carry_addr
);

PROCESS(opcode, in_A, in_B, carry_in, sum, carry_addr, carry_out_addr)
 BEGIN
 in_B_addr <= in_B;
 carry_in_addr <= carry_in;

 IF opcode = "000" THEN -- S = A + B + carry_in
 result <= sum;
 carry <= carry_addr;
 carry_out <= carry_out_addr;
 ELSIF opcode = "001" THEN -- S = A - B - carry_in
 in_B_addr <= NOT(in_B);
 carry_in_addr <= NOT(carry_in);
 result <= sum;
 carry <= carry_addr;
 carry_out <= carry_out_addr;
 ELSIF opcode = "010" THEN -- Rotate Left (xn-1,....x0,xn)
 result <= in_A(30 DOWNTO 0) & in_A(31);
 carry_out <= '0';
 carry <= (others => '0');
 ELSIF opcode = "011" THEN -- Rotate Right (x0,xn,....x1)
 result <= in_A(0)&in_A(31 DOWNTO 1);
 carry_out <= '0';
 carry <= (others => '0');
 ELSIF opcode = "100" THEN -- S = A AND B
 result <= in_A and in_B;
 carry_out <= '0';
 carry <= (others => '0');

45

 ELSIF opcode = "101" THEN -- S = A XOR B
 result <=in_A xor in_B;
 carry_out <= '0';
 carry <= (others => '0');
 ELSIF opcode = "110" THEN -- S = A OR B
 result <=in_A or in_B;
 carry_out <= '0';
 carry <= (others => '0');
 ELSIF opcode = "111" THEN -- S = A
 result <=in_A;
 carry_out <= '0';
 carry <= (others => '0');
 ELSE
 result <= (others => '0');
 carry_out <= '0';
 carry <= (others => '0');
 END IF;
 END PROCESS;
END structure;

c_l_addr

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY c_l_addr IS
 PORT
 (
 x_in : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 y_in : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 carry_in : IN STD_LOGIC;
 sum : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
 carry : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
 carry_out : OUT STD_LOGIC
);
END c_l_addr;

ARCHITECTURE behavioral OF c_l_addr IS

SIGNAL h_sum : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL carry_generate : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL carry_propagate : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL carry_in_internal : STD_LOGIC_VECTOR(31 DOWNTO 1);

BEGIN
 h_sum <= x_in XOR y_in;
 carry_generate <= x_in AND y_in;
 carry_propagate <= x_in OR y_in;
 PROCESS (carry_generate,carry_propagate,carry_in_internal)
 BEGIN
 carry_in_internal(1) <= carry_generate(0) OR (carry_propagate(0) AND
carry_in);
 inst: FOR i IN 1 TO 30 LOOP
 carry_in_internal(i+1) <= carry_generate(i) OR
(carry_propagate(i) AND carry_in_internal(i));
 END LOOP;
 carry_out <= carry_generate(31) OR (carry_propagate(31) AND
carry_in_internal(31));
 END PROCESS;

 sum(0) <= h_sum(0) XOR carry_in;
 sum(31 DOWNTO 1) <= h_sum(31 DOWNTO 1) XOR carry_in_internal(31 DOWNTO 1);
 carry <= (carry_generate(31) OR (carry_propagate(31) AND
carry_in_internal(31))) & carry_in_internal(31 DOWNTO 1);
END behavioral;

bcp.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_unsigned.all;

46

ENTITY bcp IS
PORT(
 in_A: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 in_B: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 in_C: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 carry_in: IN STD_LOGIC;
 carry_out: IN STD_LOGIC;
 inject: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 opcode: IN STD_LOGIC_VECTOR(2 DOWNTO 0);
 result_c: OUT STD_LOGIC_VECTOR(5 DOWNTO 0);
 zA_out: OUT STD_LOGIC_VECTOR (5 DOWNTO 0);
 zB_out: OUT STD_LOGIC_VECTOR (5 DOWNTO 0);
 zC_out: OUT STD_LOGIC_VECTOR (5 DOWNTO 0)
);
END bcp;

ARCHITECTURE structure OF bcp IS
SIGNAL t: STD_LOGIC_VECTOR(5 DOWNTO 1);
SIGNAL d: STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL and_sig: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL or_sig: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL mux_sig: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL mux_sel: STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL z_A: STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL z_B: STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL z_C: STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL mult_C: STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL nand_C: STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL xor_B: STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL and_B: STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL mcsa_result: STD_LOGIC_VECTOR(5 DOWNTO 0);

COMPONENT pla IS
PORT(
 carry_in: IN STD_LOGIC;
 carry_out: IN STD_LOGIC;
 opcode: IN STD_LOGIC_VECTOR(2 DOWNTO 0);
 inject: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 t_out: OUT STD_LOGIC_VECTOR(5 DOWNTO 1);
 d_out: OUT STD_LOGIC_VECTOR(1 DOWNTO 0)
);
END COMPONENT pla;

COMPONENT mcsa IS
PORT(
 x_c: IN STD_LOGIC_VECTOR(5 DOWNTO 0);
 y_c: IN STD_LOGIC_VECTOR(5 DOWNTO 0);
 c_c: IN STD_LOGIC_VECTOR(5 DOWNTO 0);
 d: IN STD_LOGIC_VECTOR(1 DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR(5 DOWNTO 0)
);
END COMPONENT mcsa;

component zero32
 port(in_A: in std_logic_vector(31 DOWNTO 0);
 z_A: out std_logic_vector(5 DOWNTO 0));
end component;

BEGIN
 PLA1: pla PORT MAP (
 carry_in => carry_in,
 carry_out => carry_out,
 opcode => opcode,
 inject => inject,
 t_out => t,
 d_out => d
);

 MCSA1: mcsa PORT MAP (
 x_c => z_A,
 y_c => xor_B(5 DOWNTO 1) & (xor_B(0) XOR inject(31)),
 c_c => (nand_C(5) XOR inject(29)) & nand_C(4 DOWNTO 0),

47

 d => d,
 result => mcsa_result
);

 --path for C input
 PROCESS(opcode, in_A, in_B, t, mult_C, nand_C)
 BEGIN
 and_sig <= in_A AND in_B;
 or_sig <= in_A OR in_B;
 mux_sel <= opcode(2) & t(1);
 nand_C <= NOT ((t(3)&t(3)&t(3)&t(3)&t(3)&t(3)) AND mult_C);
 zC_out <= nand_C;
 END PROCESS;

 --MUX to select operand
 WITH mux_sel SELECT
 mux_sig <= in_C(31 DOWNTO 20) & (in_C(19) XOR inject(19)) &
in_C(18 DOWNTO 0) WHEN "00",
 or_sig(31 DOWNTO 19) & (or_sig(18) XOR
inject(18)) & or_sig(17 DOWNTO 0) WHEN "01",
 and_sig(31 DOWNTO 18) & (and_sig(17) XOR
inject(17)) & and_sig(16 DOWNTO 0) WHEN "10",
 or_sig WHEN "11";

 --zeros counter for input A, B, C
 stageA: zero32 port map(in_A, z_A);
 stageB: zero32 port map(in_B, z_B);
 stageC: zero32 port map(mux_sig, z_C);

 --multiply by 2
 WITH t(2) SELECT
 mult_C <= z_C WHEN '0',
 z_C(4 DOWNTO 0)&"0" WHEN '1';

 --path for B input
 PROCESS(and_B, z_B, t, xor_B, inject)
 BEGIN
 --and_B <= z_B AND (t(3)&t(3)&t(3)&t(3)&t(3)&t(3));
 and_B <= (z_B(5 DOWNTO 3) & (z_B(2) XOR inject(30)) & z_B(1 DOWNTO
0)) AND (t(3)&t(3)&t(3)&t(3)&t(3)&t(3));
 xor_B <= and_B XOR (t(4)&t(4)&t(4)&t(4)&t(4)&t(4));
 zB_out <= xor_B;
 END PROCESS;

 --output
 WITH t(5) SELECT
 result_c <= mcsa_result WHEN '0',
 mcsa_result + "100000" WHEN '1'; -- PLUS N

END structure;

pla

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_unsigned.all;

ENTITY pla IS
PORT(
 carry_in: IN STD_LOGIC;
 carry_out: IN STD_LOGIC;
 opcode: IN STD_LOGIC_VECTOR(2 DOWNTO 0);
 inject: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 t_out: OUT STD_LOGIC_VECTOR(5 DOWNTO 1);
 d_out: OUT STD_LOGIC_VECTOR(1 DOWNTO 0)
);
END pla;

ARCHITECTURE structure OF pla IS
SIGNAL c_in, c_out, d: STD_LOGIC_VECTOR (1 DOWNTO 0);
SIGNAL t : STD_LOGIC_VECTOR (5 DOWNTO 1);

48

BEGIN

 PROCESS(opcode, carry_in, carry_out, c_in, c_out)
 BEGIN
 t <= "00000";
 d <= "00";
 c_in <= "0" & carry_in;
 c_out <= "0" & carry_out;

 CASE(opcode) IS
 WHEN "000" => -- X+Y+cin
 t <= "00100";
 d <= c_out - c_in + 1;
 WHEN "001" => -- X-Y-1-cin
 t <= "11100";
 d <= c_out - ("0" & NOT(carry_in)) + 2;
 WHEN "010" => -- Rotate Left (xn-1,....x0,xn)
 t <= "00000";
 d <= "01";
 WHEN "011" => -- Rotate Right (x0,xn,....x1)
 t <= "00000";
 d <= "01";
 WHEN "100" => --AND
 t <= "00101";
 d <= "01";
 WHEN "101" => -- XOR
 t <= "10110";
 d <= "01";
 WHEN "110" => --OR
 t <= "00100";
 d <= "01";
 WHEN "111" => --Identity
 t <= "00000";
 d <= "01";
 WHEN OTHERS =>
 t <= "00000";
 d <= "00";
 END CASE;
 t_out <= (t(5) XOR inject(25)) & (t(4) XOR inject(24)) & (t(3) XOR
inject(23)) & (t(2) XOR inject(22)) & (t(1) XOR inject(21));
 --t_out <= "00000";
 d_out <= d(1) & (d(0) XOR inject(27));
 END PROCESS;
END structure;

mcsa

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_unsigned.all;

ENTITY mcsa IS
PORT(
 x_c: IN STD_LOGIC_VECTOR(5 DOWNTO 0);
 y_c: IN STD_LOGIC_VECTOR(5 DOWNTO 0);
 c_c: IN STD_LOGIC_VECTOR(5 DOWNTO 0);
 d: IN STD_LOGIC_VECTOR(1 DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR(5 DOWNTO 0)
);
END mcsa;

ARCHITECTURE structure OF mcsa IS

SIGNAL partial_sum: STD_LOGIC_VECTOR (5 DOWNTO 0);
SIGNAL shift_carry: STD_LOGIC_VECTOR (5 DOWNTO 0);
SIGNAL ps_sc_sum: STD_LOGIC_VECTOR (6 DOWNTO 0);
SIGNAL ps: STD_LOGIC_VECTOR (6 DOWNTO 0);
SIGNAL sc: STD_LOGIC_VECTOR (6 DOWNTO 0);

BEGIN

49

 PROCESS(x_c, y_c, c_c, d, partial_sum, shift_carry, ps, sc, ps_sc_sum)
 BEGIN

 partial_sum <= x_c XOR y_c XOR c_c;
 shift_carry <= (x_c AND y_c) OR (x_c AND c_c) OR (y_c AND
c_c);
 ps <= "0" & partial_sum;
 sc <= shift_carry & "0";
 ps_sc_sum <= ps + sc + ("0000" & d);
 result <= ps_sc_sum(5 DOWNTO 0);

 END PROCESS;
END structure;

zero32

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_unsigned.all;

ENTITY zero32 IS
PORT(in_A: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 --in_C: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 z_A: OUT STD_LOGIC_VECTOR(5 DOWNTO 0)
 --z_C: OUT STD_LOGIC_VECTOR(5 DOWNTO 0)
);
END zero32;

ARCHITECTURE structure OF zero32 IS

component zerocount
 port(in1: in std_logic_vector(3 DOWNTO 0);
 out1: out std_logic_vector(2 DOWNTO 0));
end component;

signal z_Aa, z_Ab, z_Ac, z_Ad, z_Ae, z_Af, z_Ag, z_Ah: std_logic_vector(2
DOWNTO 0);
signal z_Ai, z_Aj, z_Ak, z_Al: std_logic_vector(3 DOWNTO 0);
signal z_Am, z_An: std_logic_vector(4 DOWNTO 0);
--signal Cbar: std_logic_vector(31 downto 0);
--signal ia, ib, ic, id, ie, iff, ig, ih, ii, ij, ik, il, im, inn, io, ip:
std_logic_vector(1 DOWNTO 0);
--signal iq, ir, iss, it, iu, iv, iw, ix: std_logic_vector(2 DOWNTO 0);
--signal iy, iz, iaa, ibb: std_logic_vector(3 DOWNTO 0);
--signal icc, idd: std_logic_vector(4 DOWNTO 0);

BEGIN
--individual 4 bit 0's counters
 stage1: zerocount port map(in_A(31 DOWNTO 28), z_Aa);
 stage2: zerocount port map(in_A(27 DOWNTO 24), z_Ab);
 stage3: zerocount port map(in_A(23 DOWNTO 20), z_Ac);
 stage4: zerocount port map(in_A(19 DOWNTO 16), z_Ad);
 stage5: zerocount port map(in_A(15 DOWNTO 12), z_Ae);
 stage6: zerocount port map(in_A(11 DOWNTO 8), z_Af);
 stage7: zerocount port map(in_A(7 DOWNTO 4), z_Ag);
 stage8: zerocount port map(in_A(3 DOWNTO 0), z_Ah);

--add results of 4 bit 0's counters stage1
 z_Ai <= ("0"&z_Aa) + ("0"&z_Ab);
 z_Aj <= ("0"&z_Ac) + ("0"&z_Ad);
 z_Ak <= ("0"&z_Ae) + ("0"&z_Af);
 z_Al <= ("0"&z_Ag) + ("0"&z_Ah);
--add results of 4 bit 0's counters stage2
 z_Am <= ("0"&z_Ai) + ("0"&z_Aj);
 z_An <= ("0"&z_Ak) + ("0"&z_Al);
--add results of 4 bit 0's counters stage3
 Z_A <= ("0"&z_Am) + ("0"&z_An);

----32 stage 1 bit adders

50

-- z_B <= NOT("00000" & in_B(0)) + NOT("00000" & in_B(1)) +
NOT("00000" & in_B(2)) + NOT("00000" & in_B(3)) +
-- NOT("00000" & in_B(4)) + NOT("00000" & in_B(5)) +
NOT("00000" & in_B(6)) + NOT("00000" & in_B(7)) +
-- NOT("00000" & in_B(8)) + NOT("00000" & in_B(9)) +
NOT("00000" & in_B(10)) + NOT("00000" & in_B(11)) +
-- NOT("00000" & in_B(12)) + NOT("00000" & in_B(13)) +
NOT("00000" & in_B(14)) + NOT("00000" & in_B(15)) +
-- NOT("00000" & in_B(16)) + NOT("00000" & in_B(17)) +
NOT("00000" & in_B(18)) + NOT("00000" & in_B(19)) +
-- NOT("00000" & in_B(20)) + NOT("00000" & in_B(21)) +
NOT("00000" & in_B(22)) + NOT("00000" & in_B(23)) +
-- NOT("00000" & in_B(24)) + NOT("00000" & in_B(25)) +
NOT("00000" & in_B(26)) + NOT("00000" & in_B(27)) +
-- NOT("00000" & in_B(28)) + NOT("00000" & in_B(29)) +
NOT("00000" & in_B(30)) + NOT("00000" & in_B(31));
--
----cascaded in_C stage 1
-- Cbar <= NOT(in_C);
-- ia <= ("0" & Cbar(0))+("0" & Cbar(1));
-- ib <= ("0" & Cbar(2))+("0" & Cbar(3));
-- ic <= ("0" & Cbar(4))+("0" & Cbar(5));
-- id <= ("0" & Cbar(6))+("0" & Cbar(7));
-- ie <= ("0" & Cbar(8))+("0" & Cbar(9));
-- iff <= ("0" & Cbar(10))+("0" & Cbar(11));
-- ig <= ("0" & Cbar(12))+("0" & Cbar(13));
-- ih <= ("0" & Cbar(14))+("0" & Cbar(15));
-- ii <= ("0" & Cbar(16))+("0" & Cbar(17));
-- ij <= ("0" & Cbar(18))+("0" & Cbar(19));
-- ik <= ("0" & Cbar(20))+("0" & Cbar(21));
-- il <= ("0" & Cbar(22))+("0" & Cbar(23));
-- im <= ("0" & Cbar(24))+("0" & Cbar(25));
-- inn <= ("0" & Cbar(26))+("0" & Cbar(27));
-- io <= ("0" & Cbar(28))+("0" & Cbar(29));
-- ip <= ("0" & Cbar(30))+("0" & Cbar(31));
--
----cascaded in_C stage 2
-- iq <= ("0" & ia) + ("0" & ib);
-- ir <= ("0" & ic) + ("0" & id);
-- iss <= ("0" & ie) + ("0" & iff);
-- it <= ("0" & ig) + ("0" & ih);
-- iu <= ("0" & ii) + ("0" & ij);
-- iv <= ("0" & ik) + ("0" & il);
-- iw <= ("0" & im) + ("0" & inn);
-- ix <= ("0" & io) + ("0" & ip);
--
----cascaded in_C stage 3
-- iy <= ("0" & iq) + ("0" & ir);
-- iz <= ("0" & iss) + ("0" & it);
-- iaa <= ("0" & iu) + ("0" & iv);
-- ibb <= ("0" & iw) + ("0" & ix);
--
----cascaded in_C stage 4
-- icc <= ("0" & iy) + ("0" & iz);
-- idd <= ("0" & iaa) + ("0" & ibb);
--
----cascaded in_C stage 5
-- z_C <= ("0" & icc) + ("0" & idd);

END structure;

zerocount

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;

ENTITY zerocount IS
PORT(
 in1: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

51

 out1: OUT STD_LOGIC_VECTOR(2 DOWNTO 0)
);

END zerocount;

ARCHITECTURE rtl OF zerocount IS

SIGNAL ia, ib, ic, id, ie, iff, ig, ih, ij, ik, il, im, inn, ip, iq, ir:
STD_LOGIC;
SIGNAL inbar: STD_LOGIC_VECTOR(3 DOWNTO 0);

BEGIN
 inbar <= NOT(in1);
 out1(2) <= inbar(3) AND inbar(2) AND inbar(1) AND inbar(0);

 ia <= inbar(0) OR inbar(1) OR inbar(2);
 ib <= inbar(0) OR inbar(2) OR inbar(3);
 ic <= inbar(0) OR inbar(1) OR inbar(3);
 id <= inbar(1) OR inbar(2) OR inbar(3);
 ie <= NOT(inbar(0) AND inbar(1) AND inbar(2) AND inbar(3));

 iff <= NOT(inbar(0)) AND inbar(1) AND NOT(inbar(2)) AND NOT(inbar(3));
 ig <= NOT(inbar(0)) AND NOT(inbar(1)) AND NOT(inbar(2)) AND inbar(3);
 ih <= NOT(inbar(0)) AND NOT(inbar(1)) AND inbar(2) AND NOT(inbar(3));
 ij <= inbar(0) AND NOT(inbar(1)) AND NOT(inbar(2)) AND NOT(inbar(3));
 ik <= inbar(0) AND inbar(1) AND NOT(inbar(2)) AND inbar(3);
 il <= NOT(inbar(0)) AND inbar(1) AND inbar(2) AND inbar(3);
 im <= inbar(0) AND NOT(inbar(1)) AND inbar(2) AND inbar(3);
 inn <= inbar(0) AND inbar(1) AND inbar(2) AND NOT(inbar(3));

 ip <= ia AND ib AND ic;
 iq <= iff OR ig OR ih OR ij;
 ir <= ik OR il OR im OR inn;

 out1(1) <= ip AND id AND ie;
 out1(0) <= iq OR ir;

END rtl;

sc_alu (Repeat-As-Needed Top Level Design Entity)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;

ENTITY sc_alu IS
PORT(
 clk: IN STD_LOGIC;
 carry_in: IN STD_LOGIC;
 in_A: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 in_B: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 opcode: IN STD_LOGIC_VECTOR(2 DOWNTO 0);
 inject: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
 carry_out: OUT STD_LOGIC;
 alu_c_out: OUT STD_LOGIC_VECTOR (5 DOWNTO 0);
 bcp_c_out: OUT STD_LOGIC_VECTOR (5 DOWNTO 0);
 error_out: OUT STD_LOGIC
);

END sc_alu;

ARCHITECTURE rtl OF sc_alu IS

SIGNAL carry: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL bcp_c: STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL alu_c: STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL carry_out_stage2: STD_LOGIC;
SIGNAL in_A_stage2p: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL in_B_stage2p: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL opcode_stage2p: STD_LOGIC_VECTOR(2 DOWNTO 0);

52

SIGNAL carry_in_stage2p: STD_LOGIC;
SIGNAL carry_out_stage3p: STD_LOGIC;
SIGNAL result_stage2p: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL in_A_stage2n: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL in_B_stage2n: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL carry_in_stage2n: STD_LOGIC;
SIGNAL carry_out_stage3n: STD_LOGIC;
SIGNAL opcode_stage2n: STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL result_stage2n: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL result_stage3p: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL result_stage3n: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL in_A_stage2: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL in_B_stage2: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL opcode_stage2: STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL result_stage2: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL carry_in_stage2: STD_LOGIC;
SIGNAL in_A_stage2_in: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL in_B_stage2_in: STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL mux_sel: STD_LOGIC;
SIGNAL mux_sel_latch: STD_LOGIC;

COMPONENT alu IS
PORT(
 in_A: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 in_B: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 opcode: IN STD_LOGIC_VECTOR(2 DOWNTO 0);
 carry_in: IN STD_LOGIC;
 inject: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
 carry_out: OUT STD_LOGIC;
 carry: OUT STD_LOGIC_VECTOR(31 DOWNTO 0)
);
END COMPONENT alu;

COMPONENT bcp IS
PORT(
 in_A: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 in_B: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 in_C: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 inject: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 carry_in: IN STD_LOGIC;
 carry_out: IN STD_LOGIC;
 opcode: IN STD_LOGIC_VECTOR(2 DOWNTO 0);
 zA_out: OUT STD_LOGIC_VECTOR (5 DOWNTO 0);
 zB_out: OUT STD_LOGIC_VECTOR (5 DOWNTO 0);
 zC_out: OUT STD_LOGIC_VECTOR (5 DOWNTO 0);
 result_c: OUT STD_LOGIC_VECTOR(5 DOWNTO 0)
);
END COMPONENT bcp;

BEGIN

 ALU1: alu
 PORT MAP(
 --into ALU
 in_A => (in_A_stage2(31) XOR inject(1)) & in_A_stage2(30 DOWNTO 1)
& (in_A_stage2(0) XOR inject(0)),
 in_B => in_B_stage2(31 DOWNTO 15) & (in_B_stage2(14) XOR
inject(2)) & in_B_stage2(13 DOWNTO 7) & (in_B_stage2(6) XOR inject(3)) &
in_B_stage2(5 DOWNTO 1) & (in_B_stage2(0) XOR inject(31)),
 opcode => opcode_stage2(2) & (opcode_stage2(1) XOR inject(8)) &
opcode_stage2(0),
 carry_in => carry_in_stage2,
 inject => inject,
 --out of ALU
 result => result_stage2,
 carry_out => carry_out_stage2,
 carry => carry
);

 BCP1: bcp

53

 PORT MAP(
 --into BCP
 in_A => in_B_stage2(31 DOWNTO 29) & (in_B_stage2(28) XOR
inject(4)) & in_B_stage2(27 DOWNTO 1) & (in_B_stage2(0) XOR inject(5)),
 in_B => in_B_stage2(31 DOWNTO 22) & (in_B_stage2(21) XOR
inject(6)) & in_B_stage2(20 DOWNTO 9) & (in_B_stage2(8) XOR inject(7)) &
in_B_stage2(7 DOWNTO 0),
 in_C => carry(31 DOWNTO 15) & (carry(14) XOR inject(10)) &
carry(13 DOWNTO 0),
 inject => inject,
 carry_out => carry_out_stage2 XOR inject(11),
 carry_in => carry_in_stage2 XOR inject(13),
 opcode => (opcode_stage2(2) XOR inject(20)) & opcode_stage2(1
DOWNTO 0),
 --out of BCP
 result_c => bcp_c
);

 --positive edge of clock
 PROCESS(clk, in_A, in_B, opcode)
 BEGIN
 IF(RISING_EDGE(clk)) THEN
 in_A_stage2p <= in_A;
 in_B_stage2p <= in_B;
 carry_in_stage2p <= carry_in;
 opcode_stage2p <= opcode;
 if (mux_sel_latch = '1') then
 result <= result_stage3p;
 carry_out <= carry_out_stage3p;
 else
 result <= result_stage3n;
 carry_out <= carry_out_stage3n;
 end if;

 END IF;
 END PROCESS;

 --negative edge of clock
 PROCESS(clk, in_A, in_B, opcode)
 BEGIN
 IF(FALLING_EDGE(clk)) THEN
 in_A_stage2n <= in_A;
 in_B_stage2n <= in_B;
 carry_in_stage2n <= carry_in;
 opcode_stage2n <= opcode;
 mux_sel_latch <= mux_sel;

 END IF;
 END PROCESS;

 alu_c_out <=alu_c;
 bcp_c_out <=bcp_c;

 mux_sel <= '1' WHEN ((alu_c(5 DOWNTO 1)& (alu_c(0) XOR inject(14))) =
((bcp_c(5) XOR inject(16)) & bcp_c(4 DOWNTO 3)& (bcp_c(2) XOR inject(15))&
bcp_c(1 DOWNTO 0))) AND (clk = '1') ELSE '0';
 error_out <= mux_sel;

 result_stage3p <= result_stage2 WHEN clk='1';
 carry_out_stage3p <= carry_out_stage2 WHEN clk='1';

 result_stage3n <= result_stage2 WHEN clk='0';
 carry_out_stage3n <= carry_out_stage2 WHEN clk='0';

 WITH clk SELECT
 in_A_stage2 <= in_A_stage2p WHEN '1',
 in_A_stage2n WHEN OTHERS;

 WITH clk SELECT
 in_B_stage2 <= in_B_stage2p WHEN '1',
 in_B_stage2n WHEN OTHERS;

54

 WITH clk SELECT
 opcode_stage2 <= opcode_stage2p WHEN '1',
 opcode_stage2n WHEN OTHERS;

 WITH clk SELECT
 carry_in_stage2 <= carry_in_stage2p WHEN '1',
 carry_in_stage2n WHEN OTHERS;

 --zeros counter

 alu_c <= ("00000"&NOT(result_stage2(0))) +
("00000"&NOT(result_stage2(1))) + ("00000"&NOT(result_stage2(2)))+
("00000"&NOT(result_stage2(3)))+
 ("00000"&NOT(result_stage2(4))) +
("00000"&NOT(result_stage2(5)))+ ("00000"&NOT(result_stage2(6)))+
("00000"&NOT(result_stage2(7)))+
 ("00000"&NOT(result_stage2(8))) +
("00000"&NOT(result_stage2(9)))+ ("00000"&NOT(result_stage2(10)))+
("00000"&NOT(result_stage2(11)))+
 ("00000"&NOT(result_stage2(12) XOR inject(12))) +
("00000"&NOT(result_stage2(13)))+ ("00000"&NOT(result_stage2(14)))+
("00000"&NOT(result_stage2(15)))+
 ("00000"&NOT(result_stage2(16))) +
("00000"&NOT(result_stage2(17) XOR inject(17)))+
("00000"&NOT(result_stage2(18)))+ ("00000"&NOT(result_stage2(19)))+
 ("00000"&NOT(result_stage2(20))) +
("00000"&NOT(result_stage2(21)))+ ("00000"&NOT(result_stage2(22)))+
("00000"&NOT(result_stage2(23)))+
 ("00000"&NOT(result_stage2(24))) +
("00000"&NOT(result_stage2(25)))+ ("00000"&NOT(result_stage2(26)))+
("00000"&NOT(result_stage2(27) XOR inject(27)))+
 ("00000"&NOT(result_stage2(28))) +
("00000"&NOT(result_stage2(29) XOR inject(29)))+ ("00000"&NOT(result_stage2(30)
XOR inject(30)))+ ("00000"&NOT(result_stage2(31)));
END rtl;

