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ABSTRACT 

 

 

In addition to the inherent chemical phase shift between different proton species, fat-water 

MRI k-space raw data are corrupted by several sources such as magnetic field 

inhomogeneity; chemical shift phase accumulated during the data readout window and 

trajectory shifts due to non-ideal gradient performance. NMR signal can be modeled within a 

single voxel as the mixture of different type protons with all corrupting factors clearly defined. 

If multiecho data are acquired, the evolving fat-water signal can be described as a linear 

system which can be unmixed. A reversed readout-based method is investigated in this work 

to correct the field inhomogeneity for radial fat-water MRI data. In the Cartesian case, the field 

map can be estimated using an iterative approach when other corrupting factors are precisely 

modeled. In addition, accurate fat-water signal modeling includes the use of a multipeak fat 

spectrum, and precise sampling time information. Multipeak fat spectrum information is 

obtained from nuclear magnetic spectroscopy, and the precise sampling time information is 

based on the employed pulse sequence. On the other hand, fat-water image reconstruction 

from radial trajectory data requires non-uniform Fourier transformation including regridding, 

density correction and interpolation. All these procedures are inserted as a part of radial 

fat-water separation. The artifact caused by imperfect gradients for radial MRI is also 

discussed and corrected in this work. Reconstruction results for both Cartesian and radial 

data with all corrections applied are displayed and compared. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  MRI Basics 

It is widely considered that magnetic resonance imaging (MRI) is one of the most innovative 

imaging techniques available in the 21st century. MRI serves as a major medical imaging 

system alongside other modern imaging modalities such as CT, ultrasound and PET and 

SPECT. MRI is based on the physics phenomenon that an external magnetic field and an 

excitation radio frequency (RF) pulse can trigger the object to emit signal. Major components 

of a MRI system include an external static magnetic field in which the object is placed; a RF 

transmit coil that excites net magnetization into the transverse plane; magnetic gradients 

encoding spatial information along different directions; and RF coils that receive MRI signal.  

When an external static magnetic field is applied, protons in the object start precessing about 

the direction of the magnetic field with a constant frequency. This frequency is called the 

Larmor frequency, which is determined both by the strength of external magnetic field and by 

the gyromagnetic ratio. The gyromagnetic ratio is strictly related to nuclei species, which 

leads to the fact that protons in different nuclei species, such as , , 	or	 , precess 

at different rate even when experiencing the same magnetic field strength. The precessing 

protons will then be deviated by a RF pulse from its equilibrium state. The net magnetization 

will be nutated by the RF pulse into the transverse plane perpendicular to the direction of the 
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external static magnetic field, which is similar to resonance. After the net magnetization is 

lying in the transverse plane, another magnetic field, the magnetic field gradient, is applied to 

differentiate spatial information at one location from the other. The typical spatial gradients 

include slice selective, phase, and frequency encoding (readout) to cover spatial information 

of the object on a 2D plane. A 3D acquisition utilizes a slab selective gradient and a second 

phase encoding gradient.  

MRI systems often do not work as perfectly in reality as they are described in theories. 

Artifacts, usually caused by various reasons such as magnetic and RF field inhomogeneity, 

non-ideal gradient performance, or other physics/physiological limitations, are commonly 

found in MRI images. An artifact can be defined as any feature in an image which 

misrepresents the object in the field of view (FOV). This could be a erroneous bright signal 

outside the object, or lack of signal where there should be something. It could also be a 

reconstructed image with streaks that do not exist in the real object or with misplaced object 

signal appearing at a different location in the reconstructed than it actually is. A large group of 

MR artifacts appear as ‘ghost’ images, where a faint copy of the object appears in the image 

displaced in one direction or another. In general artifacts are critical in MR image 

reconstruction. 

1.2  Chemical Shift Imaging 

In nuclear magnetic resonance (NMR), the chemical shift describes the dependence of 

nuclear magnetic energy levels on the electronic environment in a molecule [1] [2]. 

Microscopically, electrons will start precess when an external magnetic field is induced. The 

precessing particles, according to Lenz’s law, will then generate a new magnetic field 

opposing to the induced one. The new magnetic field has a smaller strength than the original 
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one such that the net magnetic field strength is weakened by a fraction	 . This faction, also 

called shielding constant	 , is specific to molecular structures. Quantitatively, this shielding 

constant can be estimated if shift in PPM between two species along resonance frequency 

axis is known. This phenomenon that frequency is altered by the electron environments is 

recognized as paramagnetic shielding in physics. 

Since the magnetic field strength is changed by the electron environments, the nuclear 

magnetic resonance (NMR) frequency will be different as well. This difference will depend on 

the strength of the static magnetic field	B , used to perform the NMR spectroscopy. The 

greater the value of		B , the greater the frequency difference will be. This relationship could 

make it difficult to compare NMR spectra taken on spectrometers operating at different field 

strengths, so the term chemical shift is reported in part per million (PPM) [3].  

The chemical shift of a nucleus is defined relative to the standard as the difference between 

the resonance frequency of the nucleus and a standard [3].     

 
,

106

ref

ref

f

ff 
                             1.1 

where f is the frequency of the observed species, and reff is the reference frequency. In NMR 

spectroscopy, this standard is often tetramethylsilane, abbreviated TMS. In the body, since 

there is no TMS, water protons are usually considered the reference [3]. 

It should also be noted that artifact in MRI caused by chemical shift occurs either in slice 

selective direction, or along readout direction in which frequency information is encoded. 

Although chemical shift happens in phase encoding direction as well, it does not accumulate. 

This is due to the fact that MRI signal is repeatedly excited to acquire separate phase 
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encodes. Since it is a new excitation and new echo, chemical shift in the phase encoding 

direction does not change from one signal to the next. This implies that chemical shift artifact 

has no impact on signal in the phase encoding direction. 

Because spatial information is coded based on resonance frequency in the frequency 

encoding direction, misregistration arises when chemical shift exist. This means multiple 

chemical species can cause image signal to displace from its original location in spatial 

domain, which can be mathematically explained by the Fourier transform shift theorem. 

Chemical shift is notorious in MRI as one of the main artifacts alongside others such as 

motion, RF inhomogeneity and 0B  inhomogeneity. Figure 1.1 [4] is an example showing the 

artifact caused by fat water chemical shift [4]: 

 

Figure 1.1. An example of artifact caused by chemical shift (cited from [4]).  

In Figure 1.1, the left panel shows that the chemical shift artifact is visible as a small dark or 

bright border at the interfaces of bone, fat and muscle indicated by red arrows. This scan was 

acquired with maximum water fat shift. Right panel shows the same slice as left panel, but 
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scanned with minimum water fat shift. As is indicated by green arrows, the interface borders 

are smaller, but the higher sampling rate that minimizes water fat shift lowers the signal to 

noise ratio [4] [5]. 

In the human body, there mainly are two organic molecule types containing hydrogen: fat and 

water. Fat-water imaging has been demonstrated in many clinical applications such as 

quantification of fat in tissues. Although numerous works have been accomplished in fat water 

separation, it is still considered noticeably more challenging than many image processing 

topics in MRI. Fat water separation can be more complicated when other factors, such as 

difference in sampling time and field inhomogeneity, are introduced. In addition, fat water 

separation from non-Cartesian k-space data increases the difficulty of the reconstruction. 

Especially static field inhomogeneity estimation is a rather challenging topic.  

To understand the cause of artifacts in fat water imaging, an investigation about the chemical 

structure of fat and water is in order. Fat comprises hydrogen atoms linked to carbon such as 

methylene protons in triglycerides , which make up large molecules. The large 

molecules in fat have a slow rate of molecular motion due to inertia of the large molecules. 

They also have a low inherent energy which means they are able to absorb energy efficiently. 

Water comprises hydrogen atoms linked to oxygen		 – . Water consists of small molecules 

with little inertia that have a high rate of molecular motion. Water molecules have a high 

inherent energy which means they are not able to absorb energy efficiently [4]. On the other 

hand, the electron density around each proton is different in fat and water molecules. 

Triglyceride structure provides more diamagnetic shielding for methylene protons than for 

protons in water. This paramagnetic shielding results in a lower precession rate for protons in 

fat.  
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Chemical shift between fat and water causes misregistration along the readout direction. 

Particularly, water protons at location wx with gradient strength xG precess at frequency wf :     

                                 ,
2 wxw xGf



                             1.2 

Where, is the value of gyromagnetic ratio. Due to chemical shift effect, fat protons precess 

at a lower frequency wf :	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

,
22 0BxGf wxf 





 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 1.3	

Where, is the chemical shift measured in ppm, and 0B is the strength of the external static 

magnetic field. Therefore, a displacement will be observed in reconstructed image where fat 

signal moves away from its true location. If water is considered the reference frequency, the 

displacement is:                    

,0

x
fw G

B
xxx                               1.4 

The displacement is proportional to the strength of operating frequency. Since fat has 3.5 ppm 

chemical shift downfield from water, it corresponds to approximately 220 Hz at 1.5T and 440 

Hz at 3.0T. For example, in a 3.0T static external magnetic field, if the bandwidth is 1340 

Hz/pixel, and if the pixel size is 1 mm by 1 mm, the chemical shift will cause 0.33mm 

displacement between fat image and water image.  
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1.3 Radial MRI and Its Reconstruction 

Radial MRI is one of the most common non-Cartesian trajectories in MRI system today. It is 

typically composed of a group of equally spaced radial samplings that overlap at the center of 

k-space, as depicted in Figure 1.2. Radial MRI has gained popularity due to several 

advantages: First of all, each spoke of a radial data set contains an equal amount of low and 

high frequencies, which leads to advantageous undersampling properties. Second, the 

Fourier transform of each spoke corresponds to a projection through the object in an angle 

perpendicular to the direction of the projection. This relationship is a direct consequence of 

the Fourier Projection-Slice Theorem and assigns a geometric meaning to each single 

k-space diagonal. It allows for the adoption of reconstruction techniques from transmission 

tomography including consistency criteria, which can be used for artifact correction. Third, 

radial trajectories oversample the central portion of k-space which, though apparently 

inefficient, turns out to be beneficial in certain practical scenarios. Moreover, the central 

oversampling may be exploited for multicontrast MRI and parallel imaging by reconstructing 

multiple low-resolution images from undersampled data sets [6] [7]. 
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Figure 1.2. Trajectory of Radial MRI in k-space. 

MRI data on scanners is recorded in k-space, which is the Fourier transform of the image data. 

A 2D image can be considered a 2D digitized function ),( yxf from a signal processing 

perspective. There are two primary signal domains in MRI: the spatial domain and the spatial 

frequency domain (k-space), which are conjugates of each other via Fourier transform. 

Radial MRI also has image space and k-space. Its image space is represented in Cartesian 

grid, whereas its k-space data are arranged in sinogram format. The sinogram format 

comprises parallel projections across all projection angles lined up next to each other. Each 

parallel projection is defined as the line integral along across the object at a projection angle

 . The ensemble of all projections is known as a sinogram. One of the fundamental 
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principals in radial MRI reconstruction is the Fourier Projection-Slice Theorem, which states 

that the Fourier transform of a parallel projection of an object ),( yxf obtained at angle

	equals a line in a 2D Fourier transform of ),( yxf taken at the same angle [8]. The Fourier 

Projection-Slice Theorem is  illustrated in Figure 1.3 [8]: 

 

Figure 1.3. Illustration of the Fourier Projection-Slice Theorem. 

where   is the projection angle, t  is the position along projections,  is the digital 

frequency, and ),( yx kkF is MR signal in k-space. The Fourier Projection-Slice Theorem can 

be formulated in Equation 1.5 [8]:  	 	 	 	 	 	 	 	 	 	

       ,sin,cos,, sincos2 








    FdxdyeyxfP yxj 	 	 	 	 	 	 	 	 	 	 	 1.5	

where,  sin,cos  yx kk and   sin,cosF is the 2D Fourier transform of

 yxf , . Therefore, the reconstructed image, or the inverse 2D Fourier transform of k-space 

data, can be represented in Equation 1.6 [8]:          
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,,, 2 









 yx
ykxkj

yx dkdkekkFyxf y 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 1.6 

where  yxf , is the digital MRI image, and  yx kkF , is the MR signal collected in k-space 

with coordinates xk and yk . By replacing  cosxk and  sinyk in Equation 1.5, 

Equation 1.5 evolves to Equation 1.7 [8]:             

      ,sin,cos, sincos2 








   ddeFyxf yxj 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 1.7	

Inserting the conclusion in Equation 1.4 into Equation 1.6 to obtain Equation 1.8 [8]:    

      ,,,
2

0

sincos2 







  dePdyxf yxj                   1.8 

Equation 1.7 can be further simplified as following noticing that     ,,  PP  to 

obtain Equation 1.9 [8]:      

    ,,,
0

2 







  dePdyxf j                        1.9 

Here,  ,P  is the Fourier transform of the projection at angle. The inside integral is the 

inverse Fourier transform of the quantity  ,P . In the spatial domain, it represents a 

projection filtered by a function whose frequency domain response is  , and is therefore 

called a “filtered projection” [6].   is often referred to as “Ram-Lak” filter [8]. 
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1.4 Fat Water Separation 

1.4.1 Two-Point and Three-Point Dixon Methods 

The fact that MR signal from human tissue is primarily contributed by protons in water and 

lipids allows us to model the signal from a single voxel as in Equation 1.10 [9]:     

,nf TEj
n fews                            1.10 

where, ns is the signal at n th echo, w is complex water signal component, f is the 

complex fat signal component, f is the off-resonance frequency caused by chemical 

shift and nTE is the n th echo time. Since only two species are under consideration in 

this model, water is regarded as on resonance, whereas fat is off resonance. 

The simplest way to estimate water and lipids signal is to acquire two images at n th echo 

time nTE  where  ,0nf TE mod 2 . Here mod represents modulo operation. This 

process results in a “ 0 image” and a “ image” [10]:       

                             ,1 fws                                  1.11 

,2 fws                                  1.12 

Water and fat signal can then be estimated as in Equation 1.13 and Equation 1.14 [9]:    

 .
2

1
21 ssw                                 1.13         
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    ,
2

1
21 ssf 


                               1.14              

Above is the Two-Point Dixon method, which separates water and fat signal using a 

combination of images from a two-echo acquisition. However, aside from chemical shift effect, 

there are other components that compromise the separation of the water and fat image. For 

example, the underlying static magnetic field inhomogeneity, the *
2T decay of signal and the 

inhomogeneous penetration of the imaging volume by radiofrequency pulses [7]. Among 

these factors, the problem of the static magnetic field inhomogeneity is by far the most 

important. Other factors, such as the estimation and correction for *
2T degrading the 

separation between fat and water, is of secondary concern [9]. In Two-Point Dixon model, the 

signal can be extended if field inhomogeneity is added:    

  1
1

TEjefws                               1.15 

  2
2

TEjefws                               1.16           

where   is the magnetic field inhomogeneity frequency measured in radians per second. 

The estimate of water image in Equation 1.13 then becomes [8]:         

      .11
2

1
1212

21
TETEjTETEj esesw   

                   1.17 

It can be seen that even for a small off-resonance small angle, the water estimate will be 

significantly contaminated by the fat component in the voxel. 

One solution to manage this primary concern caused by magnetic field inhomogeneity is to 
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add an additional measurement to allow the magnetic field inhomogeneity quantity 	to be 

estimated [11]. If one more echo image is acquired, the Two-Point Dixon method will become 

the Three-Point Dixon method which is mathematically formulated in Equation 1.18 through 

Equation 1.20:                            

  1
1

TEjefws                                1.18 

  2
2

TEjefws                                1.19 

  3
3

TEjefws                                1.20 

If the echo time is symmetrically distributed, 13 3 TETE  
 
and 12 2 TETE   , and the 

increment of phase between two consecutive echoes is identical. Thus, the phase increment 

 between echoes can be estimated by from 1s and 3s :      

 ,arg2 3
*
1 ss


                                 1.21 

where, 


is the estimate of ,  arg  denotes the angle between two vectors, and *
1s is the 

complex conjugate of 1s .  

2s can then be phase corrected based on the estimate of the phase accrual due to field 

inhomogeneity, and combined with 1s to obtain the estimate of water and fat signal [9]:              

 
 jessw  212

1
                            1.22 
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jessf  212

1
.                            1.23      

However, a closer investigation of the above conclusion raises another problem. By replacing 

1s and 2s with the summation of water and fat signals in Equation 1.22 and Equation 1.23, one 

will have following representations [9]:            

      .11
2

1 
   jj efeww                    1.24 

      .11
2

1 


  jj efewf                    1.25 

These equations indicates that the estimate of water and fat signal is correct only when  


.  

The Dixon method provides an idea how the fat-water signal in a single voxel is modeled. It 

also explains how distortion occurs in spatial domain or k-space due to phase accrual. Further 

analysis on fat-water separation in Chapter 2 is also an extension from Dixon method. 
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CHAPTER 2 

       

METHODS, MATERIALS AND RESULTS 

 

The novel contribution in this work is that the field inhomogeneity correction for radial MRI raw 

data was investigated. A reversed readout gradient method based method studied in [12] was 

applied to process radial MRI raw data. The numerical integration technique in this work was 

modified to Runge-Kutta-Felhberg 5th order method.  

Two fat-water phantoms, the Marcol 86 Exxon mineral oil phantom and the peanut oil 

phantom, were used in experiments to test separation algorithms. During the experiments, 

the peanut oil phantom behaves more sensitive to the field inhomogeneity than the mineral oil 

phantom. The comparison of the separation results between the two phantoms demonstrated 

the importance of correction both in k-space domain and image domain. 

2.1 Iterative Least-Squares Estimation Method 

As introduced in the previous chapter, the fat water separation is a voxel-wise operation 

based on knowledge of the field inhomogeneity and chemical shift. Field inhomogeneity is 

one of the major MRI artifacts that noticeably impacts the quality, such as tissue interface or 

object geometry, of the final reconstruction. It is caused by 0B inhomogeneity, paramagnetic or 

ferromagnetic implants [13] [14]. In 2004, Scott Reeder proposed an iterative algorithm to 

separate fat and water in a single voxel. This algorithm is called iterative lease-squares 
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estimation method, or simply the IDEAL algorithm. It processes Cartesian k-space data to 

generate estimates of the field inhomogeneity map and fat and water images iteratively. The 

data acquired originally in Reeder’s work was fast spin echo data with echo duration less than 

1ms. The short echo time has advantages including high signal to noise ratio (SNR), less *
2T

effect and favorable contrast behavior [15].  

In the IDEAL method, the signal in a individual voxel is modeled as the summation of the fat 

signal and water signal with the summation biased by the field inhomogeneity as Equation 2.1 

[15]:                          

  ,2

1

2 ti
M

j

tfi
j eets j  








 




                       2.1              

where )(ts  is the signal intensity in a single voxel at time t , M is the number of the 

chemical species, j  is the image for j th species, jf  is the chemical shift compared to 

water and   is the field inhomogeneity. At the n th echo time nt , Equation 2.1 becomes 

[15]:    

  ,2

1

2 nnj ti
M

j

tfi
j eens  








 




                           2.2 

The reconstruction of fat and water image cannot be conducted until the field inhomogeneity 

is corrected. By assuming field inhomogeneity as , the estimated combination of water and 

fat signal can be formulated in Equation 2.3 [15]:    

  ,
1

22 


 
M

j

tfi
j

ti
nn

njn eess  
                        2.3 
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For ;,,1 Nn   Equation 2.3 can be formatted using matrix representation listed below [15]: 

,
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         2.4 

where		 	is the real part of the th species,		 	is the imaginary part of the th species, 

2 Δ 	and	 2 Δ .   

Equation 2.4 can be simply written as: 

AS 


,                                 2.5 

Thus each species, for example water and fat, can be calculated as following:  

  SAAA TT
1

                                  2.6 

On the other hand, Equation 2.3 can further be analyzed using Taylor expansion to produce 

the following [15]: 
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Equation 2.7 and 2.8 can be combined together as matrix multiplication:   
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Equation 2.9 in simple matrix notation is:     

                                  .BYS 


                                2.10 

The critical point in IDEAL algorithm is the update of the field inhomogeneity map:  , which 

is saved in another matrix Y . From Equation 2.9, Y  can be solved in Equation 2.11 [15]:   

  .
1

SBBBY TT


                                2.11   

The IDEAL method starts from a initial guess for field inhomogeneity map, 0 , then it 

iteratively solves for the estimation of the field inhomogeneity map. For a single receive 

channele acquisition, the steps of determining field map are described in [15] as following: 

1. Estimate the signal from each chemical species using Equation 2.6 and an initial guess for 

the field map, 0 . A useful initial guess for 0 is zero (Hz). 



 

19 

 

2. Calculate the error to the field map,  , using Equation 2.11. 

3. Update   0 . 

4. Recalculate S


using Equation 2.5 with the new estimate of  . 

5. Repeat the preceding three steps until   is smaller than tolerance, for example 1Hz. 

6. Spatially filter (smooth) the final field map,  , with a low-pass filter. 

7. Recalculate the final estimate of each chemical species image with Equation 2.6. 

8. Filter the field map to reduce noise performance. 

The previous steps are the original work from Reeder in [15]. It explains the basic procedures 

of how the field map is estimated from single-coil Cartesian data.  

Although the estimate of different species was also described in the original IDEAL method, 

the fat water separation can be improved if the signal is better modeled. This will be 

introduced in next section.  

2.2 Radial Fat Water Imaging Separation 

In order to accurately separate fat and water signal in a single voxel, many factors, such as 

field inhomogeneity, echo time, and chemical shift, need to be known. The original IDEAL 

method concentrated on image domain distortion, but some k-space based distortion was not 

processed. This IDEAL based, but improved, method was introduced by Ethan Brodsky in 

2008 [16], which allows signal separation using the actual acquisition time of each k-space 
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point, rather than lumping all k-space acquisition times together into the single time of echo. 

Compared to [15], [16]primarily corrects distortion occurring in k-space due to chemical shift, 

which manifest as larger errors in non-Cartesian readouts.  

Similar to the signal model in [15], the MR signal in a single voxel is described in Equation 

2.12 [16]:      

    ,)(, 2

1

2 nnm tri
M

m

tfi
mn eertrs  








 



                     2.12 

where,  ntrs , is the signal at r th location, )(rm is the signal from m th at r th location, 

species Field map, mf 	is the chemical shift in ppm for m th species, nt is echo time and 

 r is the field map. Prior to any further processing, the field map needs to be removed from 

the signal [16]: 
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The demodulated signal is inversely Fourier transformed back into k-space. In k-space, echo 

time information is carefully used to refine the signal model as compared to that in original 

IDEAL method. Particularly, instead of using a “bulk echo time” nt , a new term, nk , is 

introduced. The nk ,  is associated with each k-space location and with each echo time. It 

indicates the relative time delay from a single k-space sampling location where the signal is 

being acquired to the center of the current echo time. With this new factor added, the Fourier 

transformed signal becomes [16]: 
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This new term, nk , , describes the acquisition time for each sample point. Rewriting Equation 

2.14 as matrix representation gives following Equation 15 [16]: 
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where nmtfi
mn ec  2

 
and   nkmfi

mn ekd ,2  . Equation 2.15 can also simply be represented 

as [16]: 

   ,kAkS k


                              2.16 

So the signal of each species can be solved by [16]:  

   ,kSAk k

                                2. 17 

where, 
kA represents the Moore-Penrose pseudo inverse of kA , and [16] 

  ,
1 H

kk
H
kk AAAA

                               2.18 

where, H
kA is the Hermitian transpose of kA .  

The final separation results,  rm


, can be obtained by performing an inverse Fourier 
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transform on the k-space estimate  km


.  rm


is free of chemical shift effects [16]. 

2.3 Multipeak Signal Model 

It is commonly seen that more that a fatty tissues, or even fat-water phantom, contains more 

than one type of lipid proton. For example, chemical shift documented between fat and water 

is usually 3.5 ppm, but this is actually an approximation using the primary peak. When 

analyzed with nuclear magnetic resonance spectroscopy, multiple lipid proton peaks are 

detected around 3.5ppm (about 440Hz at 3.0T). Thus the true chemical shift of fatty 

substance will be altered from its primary peak. This fact suggests that prior knowledge from 

nuclear magnetic resonance spectroscopy is helpful for better fat water imaging results.  

From previous discussion, it is can be seen that the chemical shift information for one species 

only appears once as jf in signal model. If there are multiple peaks; they must be combined 

together in some way to achieve more accurate separation. 

A multipeak model was presented in [16], where the spectrum of each species is first 

normalized such that the area under the spectrum curve is unity [16]:  

  ,1




dffam                               2.19 

where  fam is the spectrum for the m th species as a function of frequency. Equation 2.19 

can be plugged into Equation 2.14 to replace the chemical shift frequency with a better 

representation to get the Equation 2.20 [16]: 
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In reality, the multipeak resonance frequency is modeled as a weighted summation of delta 

functions with each centered on one single peak. Suppose the total number of the peaks is mP , 

and the weighting factor of pth peak in m th species is pmr , , then all weighting factors sum to 

unity [16]: 





mP

p
pmr

1
, ,1                                2.21 

The signal in Equation 2.20 can be rewritten as [16]: 
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Equation 2.20 can also be viewed as the summation of Fourier transform of all species. The 

phase factors c and d defined where in continuous are also changed as [16]: 

 




 ,2 dfefac nfti
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                               2.24 

In the discrete case, Equation 2.23 and 2.24 [16] become Equation 2.25 and 2.26 [16], 

respectively  : 
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In both cases, the complex coefficient matrix kA is then calculated as in Equation 2.15, and 

 km


can be unmixed using Equation 2.17. Inverse Fourier transformation finally separates 

spatial images of each species [16]. 

2.4 Results of Cartesian Fat-Water Separation 

Single channel MRI data, both Cartesian and radial, of a set of phantoms were obtained from 

a 3T Achieva MRI scanner (Philips Healthcare, Best, The Netherlands). One mineral oil 

phantom and one peanut oil phantom were acquired with a one channel TR head coil in 

Cartesian k-space. One mineral oil phantom and one peanut oil phantom were acquired in 

radial k-space. One regular water phantom was acquired for alternating frequency encoding 

correction for radial scan. 

The mineral oil phantom consists of nearly half water and half mineral oil with mineral oil 

having less density than water. The peanut oil phantom is made up by mixing water and 

peanut oil approximately half and half. Peanut oil is also less dense than water.  

2.4.1 Data Collection 

Cartesian k-space data were acquired with a conventional multiple fast field echo (mFFE) 

sequence on a 3T Achieva MR scanner (Philips Healthcare, Best, The Netherlands). Field of 
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view (FOV) was 256 mm×256 mm with 128 phase encode lines and 2 times oversampling 

along the readout direction. Bandwidth (BW) was 1.3403 kHz/pixel, which made readout 

duration 0.7461 ms (millisecond). Images were acquired with time of repetition (TR) 71 ms 

and at 3 echoes with echo times centered at 1.3402 ms, 2.9902 ms and 4.6402 ms, 

respectively. Two dynamics of data were scanned with each dynamic of data consisting of 12 

slices to more easily calculate SNR.  

As explained previously, chemical shift of fat water phantoms was represented using a 

multipeak model which required nuclear magnetic resonance spectroscopy analysis. For the 

white mineral oil (Marcol 86 Exxon), two peaks, located at 420 Hz and 47 1Hz, were observed 

at 3 T. The weighting factors for the two peaks were 0.7482 and 0.2518. For the peanut oil 

phantom, only one distinguished peak is observed at 432 Hz. It should be mentioned that 

multipeak models are neglected for the peanut oil phantom since the amplitude of other peaks 

are too small compared to the major peak. Figure 2.1 illustrates the multipeak model for 

mineral oil with water “on resonance”: 

 

Figure 2.1. Multipeak model at 3 T for the mineral oil phantom. Water is “on resonance”; Fat 
has two peaks located at 420 Hz and 471 Hz with amplitude weighting 0.7482 and 0.2581.  
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2.4.2 Separation Results and Analysis 

The Cartesian k-space data of the mineral oil phantom is displayed in Figure 2.2:  

 

Figure 2.2. Mineral oil Cartesian k-space: Panel (a) through (d) are real part, imaginary part, 
magnitude and phase information for the first echo; Panel (e) through (h) are for second echo; 
Panel (i) through (l) are for the third echo.  

Similarly, the Cartesian k-space data of peanut oil is shown in Figure 2.29:  
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Figure 2.3. Peanut oil Cartesian k-space: Panel (a) through (d) are real part, imaginary part, 
magnitude and phase information for the first echo; Panel (e) through (h) are for second echo; 
Panel (i) through (l) are for the third echo.  

For both phantoms, three echoes of data were collected. 

Figure 2.3 shows the real part, imaginary part, the magnitude and the phase information of 

the mineral oil phantom across all the echo times. Due to *
2T effect, slight signal drops can be 
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observed in the real part of the signal. However, the acquisition readout had a short duration, 

which created negligible *
2T degradation: 

 

Figure 2.4. Mineral oil Cartesian reconstruction: Panel (a) through (d) are real part imaginary 
part, magnitude and phase information for the first echo, Panel (e) through (h) are for the 
second echo; Panel (i) through (l) are for the third echo.  

Similarly, Figure 2.5 shows the real part, the imaginary part, the magnitude and the phase 

information for the peanut oild phantom across all the echo times: 
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(h)(g)(f)(e)

(l)(k)(j)(i)

(d)(c)(b)(a)

 

Figure 2.5. The peanut oil phantom Cartesian reconstruction: Panel (a) through (d) are real 
part imaginary part, magnitude and phase information for the first echo, Panel (e) through (h) 
are for the second echo; Panel (i) through (l) are for the third echo.  

Before processing Cartesian k-space fat-water data, knowledge of field inhomogeneity map is 

needed since it impacts both fat and water signals within any voxel. The field inhomogeneity 

map is estimated using the IDEAL algorithm [15] which iteratively estimates the true value of 

the filed map at each spatial location in the image domain. The algorithm starts with an initial 

guess of the field map, typically zero, and then it explicitly updates the fat-water estimates at 

each iteration based on the new field map information just estimated. The stop criterion in this 

work was set 1 Hz as the change of field map magnitude between two consecutive iterations. 

A mask was created such that the background region is treated excluded. The filed map 

magnitude is measured in the unit of Hertz. The detailed algorithm for field map estimate for 

Cartesian data is explained in [15] and also previously in this work.  Figure 2.6 shows the 

field inhomogeneity of the Cartesian mineral oil phantom data: 
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Figure 2.6. Estimated field inhomogeneity map for Cartesian mineral oil data using IDEAL 
method. 

In Figure 2.6, it can be observed that there is a gap along the interface between water (bottom 

layer) and fat (top layer). Frequency from fat side rises about 50 Hz across the border to the 

water side. On the other hand, the field inhomogeneity map behaves as a spatially slowly 

varying function with dark regions representing low frequency and light regions corresponding 

to high frequency. The range of the field inhomogeneity is about 60 Hz. On the other hand, we 

do not see fat frequency offset (about 440 Hz) in this field inhomogeneity map, which shows 

the acquisition is short enough to avoid phase wrapping problem from occurring.  
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Likewise, Figure 2.7 shows the field inhomogeneity map for the peanut oil phantom solved by 

the IDEAL method:   

 

Figure 2.7. Estimated field inhomogeneity map for Cartesian peanut oil data using IDEAL 
method. 

The estimated field inhomogeneity map for the peanut oil phantom also changes smoothly 

across the FOV. It behaves as a bowl-shaped function with central portion lower than the 

edges. The total range of the field map variation is about 80 Hz.  

Aside from the field inhomogeneity map, another factor considered in this work is the time 

point at which each sample in k-space is acquired. This requires information from two sources: 

first, the center of each echo time; second,	 , , the time delay from the center of the echo 



 

32 

 

time for each k-space sampling location. The centers of echo time for our Cartesian 

experiment are 1.3402 ms, 2.9902 ms and 4.6402 ms, and it is known that the acquisition 

time for each echo is 0.7461 ms. So it is straightforward to conclude that the 	 , 		ranges 

from -0.37305 ms to 0.37305 ms as illustrated in Figure 2.8: 

 

Figure 2.8. nk , map showing sampling time lag, ranging from -0.37305ms to 0.37305ms, 

compared to the center of the k-space. 

It should be pointed out that the mineral oil phantom and the peanut oil phantom share same

nk , map because both were acquired using the same pulse sequence.  

The final reconstruction is formed after field inhomogeneity and chemical shift effects are 

corrected. Figure 2.9 shows the fat-water separation for the Cartesian mineral oil phantom: 
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Figure 2.9. Mineral oil fat-water separation results from a Cartesian acquisition: Panel (a) 
through (d) is water signal, fat signal, summation of fat and water signal, and fat signal 
percentage when there is neither nk , map correction nor field inhomogeneity correction. Panel 

(e) through (h) is water signal, fat signal, summation of fat and water signal, and fat signal 
percentage when there is nk , map correction but no field inhomogeneity correction. Panel (i) 

through (l) is water signal, fat signal, summation of fat and water signal, and fat signal 
percentage when there is no nk , map correction but field inhomogeneity correction. Panel (e) 

through (h) is water signal, fat signal, summation of fat and water signal, and fat signal 
percentage with both nk , map correction but and field inhomogeneity correction. 

It can be observed in Figure 2.9, especially via fat signal percentage (panel (d) through (p) 

from top to bottom), that improvement occurs in fat signal percentage when nk , map 

correction and field inhomogeneity correction are both applied. Panel (p) shows a higher fat 

signal fraction, particularly in the top area of the phantom, than its three equivalents from 
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panel (d) to panel (i) vertically. On the other hand, the chemical shift can be observed in panel 

(c), where a gap exists between fat and water along their interface. This displacement, 

caused by chemical shift artifact, is corrected in panel (g) through panel (o) with panel (o) 

giving the best result when both nk , map and field inhomogeneity artifacts are corrected. 

Performance of fat-water separation is measured by observing the average fat signal fraction 

for each fat pixel. The fat signal fraction is listed in Table 2.1: 

Table 2.1. Fat signal percentage with different corrections for the Cartesian mineral oil 
phantom. 

corrections w/o nk , ; w/o w/ nk , ; w/o  w/o nk , ; w/  w/ nk , ; w/  

Fat Signal Percentage 88.44% 89.00% 89.69% 90.35% 

From Table 2.1, it can be seen that field inhomogeneity correction is a more dominant factor in 

fat-water signal reconstruction than nk ,
 
map correction. The fat signal fraction increases 

from 88.44% to 89.00% suggests that nk ,
 
correction might have limited effect in 

reconstruction process especially when readout duration is short. On the other hand, the fat 

signal fraction improves from 88.44% to 89.69% due to field inhomogeneity correction. 

However, when both field inhomogeneity correction and nk ,
 
correction are applied, the fat 

signal percentage increases from 84.55% to 90.35%, which is the best result compared to 

either correction individually.  

Figure 2.10 shows chemical shift correction seen as 1D profile. It shows the comparison 

between uncorrected and corrected data. Adjustments include both the nk , map correction 

and the field inhomogeneity correction: 
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Figure 2.10. A gap caused by chemical shift between fat and water in the mineral oil phantom 
depicted by blue dotted curve is corrected in red curve in which both the field inhomogeneity 
and the chemical shift are corrected. 

Figure 2.11 shows the final fat-water separation for the Cartesian peanut oil data: 
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Figure 2.11. Peanut oil fat-water separation results from a Cartesian acquisition: Panel (a) 
through (d) is water signal, fat signal, summation of fat and water signal, and fat signal 
percentage when there is neither nk , map correction nor field inhomogeneity correction. Panel 

(e) through (h) is water signal, fat signal, summation of fat and water signal, and fat signal 
percentage when there is nk , map correction but no field inhomogeneity correction. Panel (i) 

through (l) is water signal, fat signal, summation of fat and water signal, and fat signal 
percentage when there is no nk , map correction but field inhomogeneity correction. Panel (e) 

through (h) is water signal, fat signal, summation of fat and water signal, and fat signal 
percentage with both nk , map correction but and field inhomogeneity correction. 

Compared to the fat-water separation the results of the mineral oil phantom, the peanut oil 

phantom substantiate the robustness of the separation technique. For example, it is clear to 

see the enhancement of fat signal fraction in the mineral oil phantom when one compares 
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panel (d) with panel (p). The improvement in fat signal percentage with different corrections is 

listed in Table 2.2: 

Table 2.2. Fat signal percentage with different corrections for the Cartesian peanut oil 
phantom. 

corrections w/o nk , ; w/o w/ nk , ; w/o  w/o nk , ; w/  w/ nk , ; w/  

Fat Signal Percentage 79.17% 79.14% 84.36% 84.53% 

Table 2.2 also confirms that field inhomogeneity correction has more significant impact on the 

quality of fat-water separation. Although fat signal percentage decreases a small portion 

when only nk ,  map correction is applied, the fat signal percentage has its maximum value 

when both field inhomogeneity and nk ,  map correction are performed. It should also be 

emphasized that the gap between fat and water in panel (c) also disappears in panel (o) due 

to nk ,  map correction.   

This example also shows the importance of using two phantoms instead of one. Compared to 

the mineral oil phantom, the peanut oil phantom is more sensitive to the underlying field 

inhomogeneity, which makes the field inhomogeneity correction contributes more 

improvement in signal reconstruction than the mineral phantom. 

Likewise, the gap along the fat water interface is mitigated in Figure 2.12: 
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Figure 2.12. A gap caused by chemical shift between fat and water in the peanut oil phantom 
depicted by blue dotted curve is corrected in red curve in which both the field inhomogeneity 
and the chemical shift are corrected. 

In Figure 2.11, the blue curve shows the profile of the reconstructed fat-water image for 

peanut oil phantom along its midline vertically. It can be seen that after correction for field 

inhomogeneity and chemical shift, the gap rises significantly in the red curve compared to that 

in blue curve.  

The results show that the IDEAL method is a feasible way to correct image degradation 

caused by the field inhomogeneity, but the method proposed by Brodsky in 2008 [16] 

extended IDEAL fat-water signal separation by adding 		 , 		 map correction. Further 

processing, which corrects data corruption associated with the time point at which one 
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location is sampled, is performed in k-space. Experimental results show that the IDEAL 

method combined with Brodsky’s method [16] is an effective procedure to perform Cartesian 

fat-water data separation. 

2.5 Results of Radial Fat-Water Separation 

Single channel MRI data, both Cartesian and radial, of a set of phantoms were acquired on a 

3T Achieva scanner (Philips Healthcare, Best, The Netherlands). The same phantoms, one 

mineral oil phantom and one peanut oil phantom, were used for both the Cartesian and the 

radial trajectories.  

2.5.1 Data Collection 

Radial k-space data were acquired using a radial sampling scheme of 201 projections equally 

spaced over 180° on a 3T Achieva MRI scanner (Philips Healthcare, Best, The Netherlands). 

Data were acquired with alternating frequency encode (readout) direction as illustrated in 

Figure 2.12. The same phantoms, mineral oil phantom and peanut phantom, were scanned 

as previously discussed. Field of view (FOV) was 256 mm×256 mm with 256 readout 

samplings evenly distributed symmetrically about DC ( 0,0  yx kk ) along each projection. 

Bandwidth (BW) in readout direction is 1.3403 kHz/pixel, which in turn made readout duration 

0.7461 ms. Data were acquired with time of repetition (TR) equal to 75 ms and at 3 echo 

times centered at 1.3402 ms, 2.9902 ms and 4.6402 ms, respectively. Two dynamics of data 

were scanned, to calculate SNR, with each dynamic consisting of 12 slices. In addition to the 

fat-water phantoms, a Philips picture imaging quality test (PIQT) phantom was also used to 

evaluate the correction.  
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2.5.2 Alternating Frequency Encoding Correction 

As mentioned previously, the radial MRI data were sampled with readout direction changing in 

an alternating pattern. A primary challenge associated with this sampling strategy is the 

imperfect alignment of each sampled diagonal with the center of k-space. Gradient 

imperfections and timing delay errors cause the sampled trajectory to shift from the intended 

trajectory [17]. The shift changes as the readout direction is rotated. The opposite readout 

direction causes the shift to be in opposite directions as also illustrated in Figure 2.13: 

 

Figure 2.13. Left part of the figure shows the radial sampling trajectory. On the right is an 
exaggerated explanation of the red window. The center of each readout line, the bold black 
dot, is shifted away from the center of the k-space by xk . 

Prior to image reconstruction, the alternating readout direction artifact needs to be corrected. 

In particular, the artifact is caused by the shift occurring in k-space, so the correction aims at 

removing the undesired shift in k-space such that all projections are exactly lined up at the 

center of the k-space. 

According to the Fourier Shift theorem, translation in one domain corresponds to a linear 

phase shift in the other domain. In this case, the shift artifact exists in k-space, so it is 

equivalent to perform complex multiplication in the spatial domain. This suggests the artifact 
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of k-space center misplacement can be compensated by phase correction in the spatial 

domain. The shift to be corrected is illustrated in Figure 2.12 depicted as xk , and it is 

assumed that the alternating shift artifact happens symmetrically around the center of the 

k-space.  

In this work, directly solving for xk is not straightforward since the location of the center of the 

k-space is unknown. Instead, xk2 was estimated rather than solving xk directly, To do that, 

a projection acquired with opposite readout gradient is needed. As described previously, over 

200 projections are evenly sampled across		180° (201 for the fat-water phantoms, and 256 

for the PIQT phantom), so it is reasonable to make following approximation: For the th 

readout in radial k-space, its reversed gradient approximation can be estimated by averaging 

its two nearest neighbors. We assume that readout lines sampled with reversed readout 

gradient should have same amount of shift from the center of the k-space, and the amount of 

shift about the center of the k-space is symmetrical. The total shift between the original 

projection and its reversed should be xk2 .This is illustrated in Figure 2.14: 

 

Figure 2.14. The shift between n th projection and its reversed readout approximation is

xk2
 



 

42 

 

The phase change in the spatial domain caused by the misalignment shift		2∆ 		in k-space 

along a single projection can be written as following: 

      xkxj
x exsFkkS  222                        2.27              

where F is the Fourier transform operator, and  kS is the Fourier transform of  xs . 

Inverse Fourier transformation of each projection in k-space produces spatial projections 

arranged as a sinogram. For each single projection in sinogram space, the oppositely shifted 

projection is approximated using the average of the nearest neighbors. The complex 

exponential terms  xkxie 22 can then be computed by taking the ratio of the original projection 

line to its approximation with opposite shift. The phase terms,  xkx 22 , are therefore 

straightforward to calculate as follows. It can be seen that the phase terms behave as a linear 

function of position in the spatial domain along the projection, and xk2 is the slope of the 

linear function. A matrix representation describing the relation between the positions and 

parameters is shown in Equation 2.28: 
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                          2.28 

where, ny is the phase at n th position nx , nx is th position along projection direction, m

andb are the slope and intercept, respectively, and n is the noise. A simplified format can be 

written as: 

.EXAY                                2.29 



 

43 

 

The estimate of		 , based on least square criterion, is   

  ,
1

WYXWXXA TT 



                           2.30 

where  is the first element of , and W is a diagonal matrix that treats anything less than 

10% of the signal peak as noise 

In this application, only the slope information is related to		∆ , and there is no further use of 

intercept information. Figure 2.15 shows the linear estimate of the phase difference in the 

spatial domain: 

 

Figure 2.15. The linear fitting for phase difference between a spatial domain projection and its 
reversed approximation. 
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Figure 2.15 shows an example of linear fitting for one single projection. The blue circles 

indicate the phase difference as a function of position. The black solid the line is the fit based 

on the least square approach described above.  

The linear fitting solves the slope and intercept, and only the slope information is needed for

kx estimate. After kx correction for k-space shift artifact also takes place in spatial domain. 

Each projection with kx displacement in k-space is multiplied by a phase corrector  xkxje 2 . 

The corrected radial k-space of the PIQT phantom is shown in Figure 2.16: 
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Figure 2.16. Comparison between original (panel (a)) and corrected (panel (b)) radial 
k-space of PIQT phantom. Zoom-in of the highlighted area is displayed in panel (c) and panel 
(d). 

Panel (a) shows the radial k-space data without any correction. The highlighted area is shown 

in panel (c) where a sawtooth pattern is clearly displayed around direct DC ( 0rk ) area. 

Panel (b) shows corrected radial k-space data with apparent improvement, for example better 

smoothness, around DC area. The zoom-in of highlighted area in panel (b) is shown as panel 

(d). Figure 2.17 shows the sinogram of original and corrected k-space: 
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Figure 2.17. Comparison between sinogram from original k-space data on the left and 
sinogram from corrected k-space data on the right.  

Unlike the noticeable difference in k-space, there is nearly no change visible in the sinogram 

as shown in Figure 2.17. This is because only phase correction is applied to sinogram, which 

means only “phasors” are multiplied with sinogram data.  

Reconstruction is completed using NUFFT [18] toolbox developed by Fessler. Results are 

compared between the original k-space data and the corrected k-space data. Signal to noise 

ratio (SNR) is also calculated by taking the ratio of the signal within the orange highlight 

against the noise from green highlight. The illustration is shown in Figure 2.18 below: 
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Figure 2.18. Improvement is observable within red circle with white spot inside removed. 

The SNR in left panel is increased from 58.2 to 58.5 in right panel. Similarly, SNR defined as 

signal from the yellow ROI to noise from the green ROI improves from 0.55 to 0.60. This is 

shown in Figure 2.19: 

 

Figure 2.19. SNR improvements in fat-water phantom after k-space misalignment correction. 

2.5.3 Separation Results and Analysis 

Like Cartesian results that are shown in previous section, separation results for radial MRI 

fat-water data are also displayed with k-space data, reconstructed image,		 , 		map, field 



 

48 

 

inhomogeneity map, as well as fat signal fraction. Figure 2.20 shows the radial k-space data 

of mineral oil phantom: 

 

Figure 2.20. The mineral oil phantom radial k-space: Panel (a) through (d) are real part, 
imaginary part, magnitude and phase information for the first echo; Panel (e) through (h) are 
for second echo; Panel (i) through (l) are for the third echo.  

It should be mentioned that the magnitude displayed in Figure 2.20 is based on a log scale. 

Figure 2.21 below displays the image reconstruction results of radial mineral oil data: 
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Figure 2.21. The mineral oil phantom radial reconstruction: Panel (a) through (d) are real part 
imaginary , magnitude and phase information for the first echo, Panel (e) through (h) are for 
the second echo; Panel (i) through (l) are for the third echo.  

Figure 2.22 and 2.23 show the results for the peanut oil phantom. The radial k-space data are 

displayed in Figure 2.22, and the reconstructed image data are demonstrated in Figure 2.23.  
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Figure 2.22. The peanut oil radial k-space: Panel (a) through (d) are real part, imaginary part, 
magnitude and phase information for the first echo; Panel (e) through (h) are for second echo; 
Panel (i) through (l) are for the third echo.  
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Figure 2.23. The peanut oil phantom radial reconstruction: Panel (a) through (d) are real part 
imaginary , magnitude and phase information for the first echo, Panel (e) through (h) are for 
the second echo; Panel (i) through (l) are for the third echo.  

kn, map is shown in Figure 2.24: 

 

Figure 2.24. nk , map for radial sampling scheme. 

Both the mineral oil phantom and the peanut oil phantom share the same radial sampling 
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scheme, which is illustrated in Figure 2.24. The nk , map is arranged in the same as raw 

k-space data. Each column is associated with a single projection in k-space.  

The estimated field inhomogeneity map is similar to that estimated for the Cartesian 

acquisition, which is expected because the underlying field map nearly remains consistent. 

Therefore, the field map is very similar as Cartesian reconstruction. Because estimating field 

map for radial data is formidable, this work used the field map from the Cartesian estimate for 

radial data. For the mineral oil phantom, the filed map is displayed in Figure 2.25: 

 

Figure 2.25. Estimated field inhomogeneity map for the mineral oil phantom. 
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For the peanut oil phantom the field map is shown in Figure 2.26: 

 

Figure 2.26. Estimated field inhomogeneity map for the peanut oil phantom. 

Figure 2.27 shows separation results of mineral oil phantom. The fat signal fraction is an 

indicator of how effective the corrections are:  
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Figure 2.27. The Mineral oil fat-water separation results from a radial acquisition: Panel (a) 
through (d) is water signal, fat signal, summation of fat and water signal, and fat signal 
percentage when there is neither nk , map correction nor field inhomogeneity correction. Panel 

(e) through (h) is water signal, fat signal, summation of fat and water signal, and fat signal 
percentage when there is nk , map correction but no field inhomogeneity correction. Panel (i) 

through (l) is water signal, fat signal, summation of fat and water signal, and fat signal 
percentage when there is no nk , map correction but field inhomogeneity correction. Panel (e) 

through (h) is water signal, fat signal, summation of fat and water signal, and fat signal 
percentage with both nk , map correction but and field inhomogeneity correction. 

Similar features can be observed for radial data separation.  Panel (d) through (p) vertically 

demonstrate clear improvement in fat signal fraction as a precise separation indicator. Fat 

signal percentage becomes more realistic when nk , map correction and field inhomogeneity 

correction are both involved in correction procedure. Panel (p) shows the best fat signal 
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percentage level amongst all. The fat signal fraction improvement increase more significantly 

when field map is applied than when nk , map is applied. On the other hand, the chemical 

shift correction in radial case does not have as much improvement as in Cartesian case. The 

quantitative improvement due to each correction is listed in Table 2.3: 

Table 2.3. Fat signal percentage with different corrections for the Cartesian mineral oil 
phantom. 

corrections w/o nk , ; w/o w/ nk , ; w/o  w/o nk , ; w/  w/ nk , ; w/  

Fat Signal Percentage 91.60% 92.96% 91.66% 93.02% 

It can be seen from Table 2.3 that each individual correction contributes to signal 

reconstruction quality. Although signal strength increases less when only field inhomogeneity 

correction is applied than when only nk ,
 
correction is applied, there is no significant 

difference in signal strength improvement. The fat signal percentage improves to it maximum 

value when both field inhomogeneity correction and nk ,  correction are performed.  

A 1D projection of the signal shows no significant improvement in chemical shift correction 

comparing panel (c) and panel (o): 
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Figure 2.28. 1D projection profile of normalized signal strength of the mineral oil phantom 
along the center cut across the interface of the fat and water of the object.  

Similarly, the separation result of peanut oil is shown in Figure 2.29: 
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Figure 2.29. Peanut oil fat-water separation results from a radial acquisition: Panel (a) 
through (d) is water signal, fat signal, summation of fat and water signal, and fat signal 
percentage when there is neither nk , map correction nor field inhomogeneity correction. Panel 

(e) through (h) is water signal, fat signal, summation of fat and water signal, and fat signal 
percentage when there is nk , map correction but no field inhomogeneity correction. Panel (i) 

through (l) is water signal, fat signal, summation of fat and water signal, and fat signal 
percentage when there is no nk , map correction but field inhomogeneity correction. Panel (e) 

through (h) is water signal, fat signal, summation of fat and water signal, and fat signal 
percentage with both nk , map correction but and field inhomogeneity correction. 

In Figure 2.29, more significant improvement occurs with the peanut oil than mineral oil. This 

particularly is noticeable from panel (d) through panel (p) as last column of the diagram. This 

also suggests that the peanut oil phantom experienced a more serious field inhomogeneity 

compared to the mineral oil phantom. The quantified fat signal percentage with each 

correction is listed in Table 2.4: 
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Table 2.4. Fat signal percentage with different corrections for the Cartesian peanut oil 
phantom. 

corrections w/o nk , ; w/o w/ nk , ; w/o  w/o nk , ; w/  w/ nk , ; w/  

Fat Signal Percentage 82.44% 82.55% 88.18% 88.29% 

Table 2.4 shows clear signal strength increase as more corrections are included. Like results 

from Cartesian separation, the nk ,
 
correction does not significantly improve fat signal 

percentage compared to field inhomogeneity correction. However, when both nk ,
 
correction 

and field inhomogeneity correction are performed, the fat signal percentage increases from 

82.44% to 88.29%. This is displayed from panel (d) through panel (p) in Figure 2.29 

The chemical shift in panel (c) is corrected in panel (o) in Figure 2.29, which is more 

distinguished in a 1D projection shown in Figure 2.30: 
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Figure 2.30. 1D projection profile of normalized signal strength of the peanut oil phantom 
along the center cut across the interface of the fat and water of the object. 

The peanut oil phantom shows more improvement in chemical shift correction than mineral oil 

phantom. There is almost no gap after field inhomogeneity correction and , 		map 

correction for the red curve in Figure 2.30. 

2.5.4 Reversed Readout Gradient Correction of Field Inhomogeneity 

In the previous sections, reconstruction results were shown for the fat-water phantoms 

acquired with radial trajectory. Prior knowledge of field map is calculated based on a separate 

Cartesian acquisition. However, the radial k-space data should itself contain information 

about the field inhomogeneity.  
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It was proposed by Chang in 1992 [12] that field inhomogeneity artifacts can be corrected 

along frequency encode direction if the readout gradient is reversed. When field 

inhomogeneity  zyxB ,,0 is present at some location  zyx ,,  in image space, the 

intra-slice image distortion that occurs along frequency encode direction in image space is 

shown in Equation 2.31 [12]: 

 
xG

xB
xx 0

1


                               2.31 

where x  is the true location of a signal in spatial domain, and 1x  is the distorted location due 

to inhomogeneity. When a reversed readout gradient is applied along the same frequency 

encode line, the new position becomes [12]:	

	

      
 

,0
2

xG

xB
xx





                             2.32 

where		 		is the ratio of amplitude between the reversed readout gradient and the original. 

On the other hand, the signal intensity at position 		and 		can be calculated as [12]:  

   
dx

dx
xixi 1

11                                2.33 

   
dx

dx
xixi 2

22                                2.34 

where,  11 xi and  22 xi are image intensities at distorted location 1x and 2x , and  xi is the 
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image intensity at undistorted location x . The distortion in image space caused by field 

inhomogeneity is illustrated in Figure 2.31 [12]: 

 

Figure 2.31. Image distortion caused by field inhomogeneity with xG as readout gradient: (a) 

Static field 0B superimposed with a disturbance  xBe ; (b) Field inhomogeneity causes image 

distortion x defined as the displacement from its original location 0x to 1x ; (c) If the readout 

gradient is reversed, the distortion, as indicated as x , for 0x will occur at 2x .  

In Figure 2.31, when xG is reversed to xG , the displacement of the true signal changes the 

location from 1x  to 2x . This suggests that along the frequency encode direction the true 

signal location should be somewhere between the signals with positive and reversed readout 

gradient.  

Equation 2.25 through Equation 2.27 establish a relationship between the true image signal 

and the displaced signals caused by field inhomogeneity. This suggests that the true signal, 

or the undistorted image, can be estimated based on the information collected using readout 
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gradients reversed with respect to each other. Especially, when		 1, the true location of 

the undistorted signal,		 , can be estimated as [12]:  

,
2

21 xx
x


                                   2.35 

and the true signal intensity		 	at location  can be estimated as [12]:  

     
    ,

2

2211

2211

xixi

xixi
xi


                               2.36 

Equation 2.35 concludes that as long as		 		and		 		are known, the true location		  can be 

estimated. In addition, it should be pointed out that every	 	is paired with a particular		 , 

although there is no straightforward information regarding how they are paired with each other. 

However, conclusion in Equation 2.36 can be solved from Equation 2.33 and Equation 2.34 

by applying the chain rule [12]:  

 
  ,22

11

1

2

xi

xi

dx

dx
                               2.37 

Equation 2.37 is an ordinary differential equation (ODE) which can be solved with boundary 

conditions.  

The Runge-Kutta-Fehlberg 5th order (RKF45) method [19] with adaptive step size was 

chosen as the numerical integration technique. The numerical method solves the position 

pairing from the original k-space data and from the average of its neighbours. For each 

projection pair, the original and the reversed, the integration method is applied to estimate the 

true location and intensity for each spatial domain projection sample. Figure 2.32 shows the 
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estimate of unbiased signal using RKF45 method: 

 

Figure 2.32. Estimate of unbiased signal (black curve, corrected) based on original signal 
(blue curve, original) and the reversed (red curve, reversed) using RKF45 method. Zoom-in 
window shows that the corrected signal is situated between the original and the reversed. 

In our experiment, as illustrated in Figure 2.12, the radial readout lines are acquired in 

alternating directions. Since 201 readout lines are sampled, it is sufficiently precise to 

simulate the revered gradient approximation of a single readout line by averaging its closest 

neighboring pair, as illustrated in Figure 2.13. The two 1D data vectors, original k-space and 

its reversed readout approximation, were then both 1D Fourier transformed into the spatial 

domain (sinogram space).  

In Figure 2.32, the “original” blue curve indicates one single projection in the original sinogram 

degraded by field inhomogeneity; the “reversed” red curve represents the same projection 

experiencing a reversed readout gradient; the “corrected” black curve is the estimated 
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trajectory of the unbiased projection with field inhomogeneity removed. A zoom-in window 

clearly shows the displacement, for blue and red curves from the black curve. The reversed 

readout gradient causes the blue curve and the red curve to locate on different sides of the 

black curve. It is also noticeable that the corrected curve lies almost exactly in the middle of 

original blue curve and reversed red curve, which is supported by Equation 2.35 and Equation 

2.36.  

Since the frequency encoding direction in radial MRI is the same as that for one single spatial 

projection according to the Fourier Projection-Slice Theorem, the field inhomogeneity 

correction of this approach is essentially operating in sinogram space. Figure 2.33 displays 

the improvement of a sinogram after RKF45 based correction is applied: 

 

Figure 2.33. Comparison between sinogram before (top) and after (bottom) RKF45 correction 
is performed. 
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It is easily observed in Figure 2.33 that the corrected sinogram is smoother than the original 

because the zigzag pattern in the original sinogram (top) is significantly reduced in the 

corrected one (bottom).  

After applying the correction to each projection and obtaining a corrected sinogram, the final 

image is reconstructed using NUFFT [18]. The numerical integration needs boundary 

conditions, which is implemented by thresholding to exclude the background region in each 

projection. Estimation of the final corrected projection samples was achieved using spline 

interpolation [20]. The method proposed in [12] did not account for complex numbers, so 

phase was estimated by averaging the real and the imaginary parts for the original data and 

its reversed readout approximation. The reconstruction results of a PIQT phantom is shown in 

Figure 2.34: 

 

Figure 2.34. Comparison between original and corrected reconstruction for PIQT phantom. 

Improvement is evident around the holes highlighted with white rectangles. Sharper features 

can be observed in the corrected image compared to the original image. This shows RKF 5th 

order integration with spline interpolation can improve the image reconstruction quality, which 
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was originally corrupted by the field inhomogeneity  

2.6 Discussion 

Fat-water separation has many pitfalls that require attention. Artifacts arise from many 

sources such as k-space sampling scheme, field inhomogeneity or chemical shift. In general, 

MRI image reconstruction consists of three major phases: preprocessing, reconstruction and 

post processing. A typical example of preprocessing in this work is the correction of artifact 

caused by alternating readout direction in this work. The raw radial k-space data are acquired 

with alternating readout direction, which causes k-space frequency encode lines to be 

misaligned with the center of the k-space. It should be mentioned alternating scan scheme 

was employed because there will be significant smearing of signal intensity across the FOV in 

the lipid image acquired with the radial technique if the standard scan direction is used [21]. 

Although reconstruction without shift correction yields acceptable image quality, results 

presented here show that improvements can still be made when phase correction is 

performed in the spatial domain. It should also be noticed that the feasibility of using Fourier 

shift theorem in this case is because same phase multiplication is imposed on all sampling 

positions along a projection in image space. Whereas in readout reversed gradient correction 

for radial MRI data, the displacement varies as location in image space changes. For image 

reconstruction, data sampled with radial trajectory are in general more difficult to process than 

those sampled with Cartesian trajectory, since more procedures, such as regridding, density 

correction and interpolation, are involved. Using the IDEAL method [15] to separate fat and 

water for in vitro phantoms is rather straightforward, but conducting same work for radial data 

is not as easy as for Cartesian data. One of the most challenging parts for radial data 

separation is how to accurately estimate the field inhomogeneity directly from raw data. In 

specific, the radial data are acquired based on line integral, or the summation of density along 
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a line, of the object. This makes it difficult to correct the field inhomogeneity corruption of the 

raw data. The reversed gradient method provides a way of correcting field inhomogeneity for 

radial data, but the pairing procedure is extremely sensitive to noise. Data need to be 

carefully processed. Extra steps, such as low-pass filtering before numerical integration and 

spline interpolation after numerical integration, are used to increase the robustness of the 

algorithm, although some resolution in spatial domain could be sacrificed. In addition, 

although the reversed gradient method has shown encouraging results for radial MRI raw 

data correction, using it to retrieve precise field map is still under investigation. Although some 

experiments have been conducted in this work, reliable field map estimation still relies on the 

IDEAL method.  

In conclusion, the IDEAL method provides a reliable way to estimate field map for data 

sampled with Cartesian trajectory. Radial fat-water data correction needs accurate field map 

information to produce acceptable reconstruction results. Many detailed issues, such as 

direct estimation of field map for radial MRI data, are still open and are worthy of further work. 

On the other hand, non-Cartesian fat-water separation is a broad topic with which there is 

many directions to extend. It can be combined with other topics, some of which will be 

introduced in next chapter,  
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CHAPTER 3 

 

FUTURE WORK 

 

3.1 Future Work 

Although Cartesian fat-water separation is an essential part of this work, radial MRI is the 

focus, especially with respect to future applications. Possible future work that will be benefit 

for clinical applications includes: 1 auto-calibrated parallel imaging; 2, sliding window helical 

spiral using golden angle radial acquisition with a continuous moving table. 

In 2010 [22], Lin proposed an offline method, GRAPPA operator for wider radial bands 

(GROWL), for the reconstruction of undersampled radial MRI data. This GRAPPA [23] based 

method expands undersampled radial data to cover entire k-space using only the fully 

sampled central portion of the k-space (Nyquist circle) to estimate the GROWL operator. The 

expansion using the GROWL operator occurs to each radial line making them wider radial 

bands. Although the edges of k-space violate the Nyquist sampling criterion, the fully sampled 

signal inside the smaller Nyquist circle (Figure 3.1a) is sufficiently informative to calibrate the 

GROWL operator. The data after self-calibration will become fully sampled across the entire 

k-space. The basic principle of GROWL is depicted in Figure 3.1 [22]: 
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Figure 3.1. The basic idea of GROWL. a: undersampled radial k-space data with its central 
portion (Nyquist circle, highlighted in gray) inside which the Nyquist criterion is satisfied. b: 
each single projection is expanded by the GRAPPA relative shift operators to form a wider 
band, and the Nyquist circle is thus enlarged. c: for each single projection, calibration is first 
performed based on the information inside the Nyquist circle(the gray region), then GRAPPA 
relative shift operators mapping source (gray) points to target (white) points [22]. 

The optimal weights that solves for expanding source signal to targeting positions are 

determined by Tikhonov regularization in Equation 3.1 [24] [25]: 

 ,minarg
222

wwStw ACSACSopt                      3.1 

where, 		is the optimal weights, 
2  is the 		norm, the subscript ACS indicates that 

both target and source data points are collected in the ACS region, 		is the targeting 

signal (white circles in Figure 3.1c), 		is the source signal,  is the weight vector for the 

GRAPPA relative shift operator, and 	is the Tikhonov factor [22]. The solution to Equation 

3.1 is described in Equation 3.2 [22]: 
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where		 , 		and		 		are the left singular vectors, right singular vectors, and singular values 

of S ( source signal ), respectively, generated by singular value decomposition, with singular 

vectors and singular values indexed by  [22]. 

It is also mentioned in [22] that the acceleration factor achievable with the GROWL 

reconstruction depends on the number of coil elements and noise levels in the data. Results 

in [22] show that 256×256 images with acceptable qualities can be reconstructed with 32 

radial views, using a commercial eight-channel head coil and a low SNR condition. It is also 

pointed out in [22] that combination of different image processing techniques, such as 

GROWL and radial GRAPPA, or GROWL and PARS [26] (parallel imaging with augmented 

radius in k-space), is possible to achieve larger acceleration factors. 

Another possible potential direction, as mentioned previously, focuses on sliding window 

helical spiral using gold ratio spaced acquisition. Although there have been many advanced 

reconstruction techniques created, some fundamental problems, such as sampling strategies, 

are still worth investigating.  

In radial MRI, the dominant sampling structure is to sample the k-space with equally spaced 

readout lines, which can be traced back to Lauterbur’s seminal paper in 1973 [27]. However, 

today many novel appliances for radial MRI have been developed in dynamic applications 

that require a high temporal resolution while tolerating an increased artifact level in return. As 

discussed in previous section, azimuthally undersampled radial data may therefore 

considerably increase the image acquisition rate without sacrifice significant information [28]. 

In addition, MRI data reconstruction acquired with a moving table along axial direction is 
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raising interests due to its potential for fast and subject-friendly scans. Sliding window 

reconstruction techniques already described in the literature can increase the image update 

rate or can balance spatial and temporal resolutions.  

In 2007, a golden ratio based radial MRI sampling strategy was described in [28]. Instead of 

using evenly spaced readout lines, the k-space is sampled with readout lines rotating with 

fixed angular increment of		111.25°, which is the ratio of		180°		to golden ratio (1.618). The 

comparison between golden ratio sampling and traditional uniform sampling is shown in 

Figure 3.2 [28]:  

 

Figure 3.2. (a) Uniformly sampled radial data. P is the number of projections. k-space is 
either unevenly or excessively sampled unless P is equal to 10. (b) Golden ratio sampled 
radial data. P is the number of projections. Projections are evenly distributed regardless the 
value of P [28]. 

With this sampling scheme, the readout lines are almost evenly spaced across k-space for 

any arbitrary number of consecutive projection angles, especially when the number of the 

projections is equal to Fibonacci numbers. 
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For the uniform sampling strategy, the sampling trajectory either does not cover the entire 

k-space or oversamples the same line multiple times when number of the projections is too 

small or too large. This never occurs with the golden ratio sampling technique since the 

projections tend to evenly distribute across k-space, and they never overlap with each other.  

It is also shown in [28] that in terms of SNR and residual error of the magnetization transfer 

function, the Golden Ratio based method and uniform sampling strategy have very similar 

performance.  

The sampling scheme for radial MRI based on golden ratio projection angle spacing makes it 

possible to acquire and reconstruct data for an arbitrary length of time. In an arbitrarily long 

sampling window, projections are nearly evenly distributed across k-space. It is also possible 

that the k-space data may be undersampled. These approaches create the opportunity for 

undersampled radial MRI fat-water data acquired with a continuously moving table. This 

helical-spiral-like trajectory will eventually leads to faster and more efficient MR imaging 

technique. 

One of its advantages is that its reconstruction will keep the majority of the image information 

even if some of the radial lines are skipped. This means decent reconstructions are possible 

for undersampled radial MRI data. On the other hand, instead of typical backfolding artifacts 

in Cartesian data, radial MRI reconstruction often just generates artifacts as streaks [6]. 

These merits of radial MRI make it specifically useful in dynamic applications where the total 

sampling duration is critical. 

Nyquist sampling theorem requires the sampling frequency is no less than two times the 

maximum band width of the sampled signal. In radial MRI, this is satisfied if the distance or 

the azimuthal gap between two consecutive samples in azimuthal direction does not exceed 
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the sample distance in readout (or radial) direction [28]. However, fully sampled radial MRI 

data need density correction for its reconstruction due to the oversampled central portion of 

the k-space. Filters such as Ram-Lak are often used to weight down the central part of the 

radial k-space. Thus, even though radial k-space data are undersampled, the central portion 

of the k-space is still possible meet the Nyquist criterion. On the other hand the combination 

of a moving bed with a SENSE [29] (multi-channel) coil at isocenter through which the table 

moves. A radial acquisition would allow for auto-calibrated multi channel reconstruction in 

such a case.  

In conclusion, this work started with Cartesian fat-water separation, and investigated fully 

sampled radial MRI data acquired with single channel. It studied various topics regarding data 

correction such as field inhomogeneity correction and non-perfect alternating scan correction 

for radial MRI. Future work is to successfully process chemical shift imaging for data acquired 

with multi-channel, with undersampled radial trajectory, and with a continuously moving table.  
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