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CHAPTER |

INTRODUCTION

History of Autism Spectrum Disorders

Autism spectrum disorders (ASD, OMIM 209850) are complex, heurodevelopmental
disorders characterized by impairments in social communication and the presence of
restricted and repetitive behavioral patterns®®. Autism was first described in 1943 by Dr.
Leo Kanner'%. Dr. Kanner described 11 patients, mostly boys, having a combination of
severe social dysfunction, variable communication deficits, and the presence of
repetitive restrictive behaviors. Interesting observations based on these initial case
studies included the identification of large head size in approximately half of the
subjects. Dr. Kanner also postulated a biological, genetic basis for the disorder.
However, it was not until much later that autism began to be considered a distinct
disorder in psychiatric diagnostic manuals. Since then, prevalence estimates have
steadily been increasing with current estimates in the United States as high as 1 in 88
children®. These estimates vary widely across all sites, by sex (ASD are estimated to be
almost 5 times more common among boys), and by racial/ethnic group.

There are numerous possible explanations for the substantial increase in ASD
prevalence over such a short period of time. One is that the concept of autism has
broadened from what was previously considered a 'strict' diagnosis of autistic disorder,
to include individuals of normal intelligence with adequate language skills (DSM-IV
Asperger Disorder), those not quite meeting diagnostic criteria in all three domains
(DSM-1V Pervasive Developmental Disorders-Not Otherwise Specified), and those who
develop normally for a period of time followed by regression in skills or a series of
regressions in skills (DSM-1V Childhood Disintegrative Disorder)*. It is notable these
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diagnoses are not based on etiology, but on expert observation and assessment of
behavioral and cognitive characteristics. How these clinical domains relate to underlying
dysfunction in specific cognitive domains is essentially unknown.

Even within more unified diagnostic definitions, the severity of clinical presentation is
quite heterogeneous. Some affected individuals also present with various comorbidities
(i.e. epilepsy, mental retardation), endophenotypes (i.e. presence of savant skills,
specific language impairment), and biomarkers (i.e. macrocephaly, hyperserotonemia)®*
76,151,178, 209 ' Thys, autistic disorder appears to be not a single entity but rather a
complex phenotype expressing a continuum of symptom severity and neurocognitive
impairments. This is reflected in the recent change in diagnostic criteria for ASD
between the DSM-IV and the DSM-5. These revisions were motivated by the lack of

empirical data supporting separate disorders within the autism spectrum®?,

Genetics of Autism Spectrum Disorders

ASD was also for a long time not considered to have any underlying genetic basis®.
The first evidence for an inherited genetic component to autism came from twin studies
published in 1977°%% %!, These initial twin studies demonstrated a genetic susceptibility to
the disorder and provided substantial evidence supporting biological origins. To date,
there is overwhelming evidence suggesting strong genetic susceptibility factors
underlying ASD. The sibling recurrence risk is estimated at 45-90 times greater than the
population risk. Current estimates from twin studies indicate 58-60% of monozygotic
twins are concordant for the full syndrome and 50-90% are concordant for related social
or cognitive abnormalities®” *> . There are also a number of syndromes with well-
defined genetic causes associated with ASD. These include, but are not limited to, Rett
syndrome, tuberous sclerosis, neurofibromatosis, and Fragile X Syndrome** #3 104228

The hallmark presentations of these syndromes are more homogeneous profiles of
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characteristic physical features, neurological impairment, and ASD symptoms. However,
only a very small percentage of individuals with ASD (<1%) have an identifiable genetic
etiology known to cause these monogenic disorders®.

The reported prevalence and heritable nature of ASD suggests that genetic variation
present at relatively common frequencies in the overall population contribute to the
genetic etiology underlying these disorders. Numerous studies have evaluated the
involvement of common variation in ASD. Results from these studies implicate a number
of commonly occurring variations, across the genome, each with relatively small effect
sizes'™ 17:106.133.221 "1t is hypothesized that many idiopathic ASD cases, those with no
diagnosed clinical syndrome, are a result of the interactions of multiple common
variants, each with small to moderate effect sizes. ldentifying common variation with any
appreciable influence on ASD risk has proven difficult; however, this is not incredibly
surprising, given the obvious complexity of ASD. Common variation associated and/or
linked to ASD is discussed in greater detail in Chapter Ill.

A large number of rare, recurrent, and non-recurrent mutations have been identified
that are thought to lead to ASD** %% %2 Most of the identified rare mutations are small
regions of chromosomal structural variation known as copy number variants (CNVSs).
Many of these CNVs have large effect sizes and some appear to be sufficient to cause
ASD. Identified inherited CNVs, like those at 16pl11 and 15q11-13, are transmitted from
apparently unaffected parents, who may display some level of autistic traits, to affected
offspring®’®. However, most identified CNVs are de novo events, arising in the germline.
These de novo CNVs are reported in ~5-10% of ASD probands?®> **® %17 Qverall,
CNVs are linked to a broad variety of clinical features, including severe neurological
symptoms, severe ASD, milder autism-spectrum traits, and behavioral disorders outside
of the autism spectrum®®. Many CNVs found in ASD patients have also been found in
patients specifically with intellectual disability and schizophrenia, but no ASD*" *%2,
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Phenotypic heterogeneity characterizing CNV expressivity makes it difficult to determine
whether an identified CNV is the sole cause of autism, confers vulnerability to the
disease, or represents a chance finding. It is also important to note that many de novo
CNVs associated with ASD, while rare, are also observed in unaffected controls,
suggesting these variations are not necessarily causal or fully penetrant®. Some CNVs
may be acting as complex genetic risk factors, with intermediate effect sizes, variable
penetrance and variable expressivity”°.

The current results from numerous genetic analyses in ASD all indicate an incredible
complexity of underlying genetic mechanisms. However, the known biological functions
for recurrently implicated genes suggest involvement of shared molecular pathways. For
example, numerous genes have been identified that encode proteins important to
synaptic function. These include neurologins and neurexins, specifically NLGN3, NLGN4
and NRXN1°® % |nteractions between neuroligins and neurexins trigger the formation of
functional pre-synaptic boutons*. Also included are post-synaptic scaffolding proteins,
specifically SHANK1, SHANK2, and SHANK3%"-2%3,

Another convergent molecular mechanism in ASD is related to morphogenesis.
Numerous protein-altering mutations and cytogenetic abnormalities have been identified
that affect morphogenetic and growth-regulating genes. These genes include HOXA1,
the first HOX gene to be expressed during embryogenesis which is necessary for the
proper development of the brainstem, cerebellum and several cranial nerves** 3¢ 208,
Another implicated growth-regulating gene is EIF4E, the rate limiting component of
eukaryotic translation initiation that plays a key role in learning and memory***. Finally,
mutations disrupting the tumor suppressor gene, PTEN, have been identified in
numerous patients with ASD. Most subjects with autism carrying PTEN mutations are

characterized by severe to extreme macrocephaly®.



A collection of recent genetic evidence suggests that some ASD cases may result
from abnormal Ca2+ homeostasis during neurodevelopment'*?. Several genetic studies
have identified autism-related genes encoding ion channels, receptors, and Ca2+-
regulated signaling proteins, often times crucial to central nervous system development.
These genes include, CACNALC, CACNA1F, CACNA1H, KCNMA1L, and SCN2A®> 11"
198, 199, 222.

Finally, the most consistently replicated genes harboring common variants related to
ASD are: the SLC6A4 gene encoding the serotonin transporter, the EN2 gene, encoding
the engrailed homeobox 2 protein (implicated in pattern formation during central nervous
system development), the OXTR gene, encoding a G-protein coupled oxytocin receptor,
the CNTNAP2 gene, encoding a neurexin family protein that functions in the nervous
system, the GABRB3 gene, encoding a ligand-gated gamma-aminobutyric acid receptor,
the RELN gene, encoding an extracellular matrix protein important for neuronal
migration during development, the ITGB3 gene, encoding an integrin important in cell
adhesion and signaling, and the MET gene, encoding the Met proto-oncogene involved

in brain development™°.

Small Molecule Compound Treatment of Autism Spectrum Disorders

There are currently no approved treatments for ASD as a whole, however, treatment
regimens have been developed to address specific symptoms related to ASD. Atypical
antipsychotics have been evaluated and approved for treating aggressive or self-
injurious behavior, severe mood swings, tantrums, and irritability in individuals with ASD.
A commonly prescribed, and well-studied, atypical antipsychotic in ASD is risperidone*®.
The primary action of this molecule is serotonin 5-HT, receptor blockade. It is also a
potent dopamine D, receptor antagonist**’. Selective serotonin reuptake inhibitors
(SSRIs) are also often used for treating repetitive behaviors in ASD, and are known to
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regulate peripheral and central nervous system serotonin levels™°. SSRIs are effective
in treating obsessive compulsive disorder in individuals without a diagnosed ASD®*.
However, current evidence suggests SSRIs, specifically citalopram (or escitalopram)
and fluoxetine, are ineffective in treating restrictive repetitive behaviors in individuals with
ASD'% '*® There has also been a recent push in the medical community to develop
treatments that supplement endogenous molecules, like melatonin and oxytocin, shown
to have dysregulated production in some ASD patients® **’. Unfortunately, there is
insufficient evidence supporting efficacy for most small molecule compounds used to
treat ASD symptoms, and a large body of reported adverse events'® ¢ 1% Fuyrther
functional characterization of implicated genes and biological pathways are important
avenues of research that will hopefully provide results helpful toward more effective

personalized treatment of these psychiatric syndromes.

All of the combined research in ASD highlights the incredible complexity of these
disorders. It is difficult to identify unifying themes and establish reliable genotype-
phenotype relationships. The aim of this project was to overcome issues complicating
identification and characterization of genetic factors involved in ASD. We attempted to
minimize the effects of phenotypic heterogeneity, locus heterogeneity, epistasis and
multiple genes conferring small effects to potentially increase power to detect genetic
factors underlying ASD. To progress toward understanding how these significant genetic
findings contribute to disease process and identify more effective treatments for ASD,
further functional characterization of these associations is necessary. We attempted
functional characterization of ASD-associated variation by screening a strongly
implicated candidate gene for small molecule effects. This project has the opportunity to
broadly impact the biomedical research community by contributing not only to ASD
etiology and genetics, but also neurodevelopmental biology and pharmacogenetics.
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CHAPTER Il

IDENTIFICATION OF GENETICALLY MEANINGFUL PHENOTYPIC SUBGROUPS IN

AUTISM SPECTRUM DISORDERS

Introduction

As discussed in Chapter I, genetic factors have a strong influence on risk for Autism
Spectrum Disorders (ASD)**. However, it has been difficult to identify individual,
common genetic factors that replicate across multiple ASD cohorts, or confer large
effects on risk™. A potential reason is that the wide variability in clinical manifestation
can be explained by underlying genetic heterogeneity®® "* #. Identification of more
phenotypically homogeneous subgroups of ASD may help account for this
heterogeneity, allowing detection of genetic mechanisms conferring larger risk effects for
specific ASD subgroups.

Various attempts have been made to reduce heterogeneity in large-scale genetic
studies of ASD. One approach is to separate individuals who meet Diagnostic and
Statistical Manual-1V (DSM-IV) criteria for strict Autistic Disorder separately from those
meeting only some criteria (i.e. DSM-1V Pervasive Developmental Disorder Not
Otherwise Specified [PDD-NOS] or Asperger Disorder)*? 17123230 whjle this
dichotomous categorization of ASD has advanced our knowledge of potential genetic
risk factors, via detection of multiple statistically associated and/or linked chromosomal
regions, it has still not implicated any genetic variants with large effects™. Further, family
studies suggest that each of the behavioral domains underlying autism, including social
impairment, communication impairment, and repetitive behavior, has separately
inherited genetic risk factors that segregate in families**. Additionally, the change in

criteria between DSM-IV and the new DSM-5 was motivated by the lack of empirical



data supporting separate disorders within the autism spectrum, highlighting the need for
empirical approaches to identifying subphenotypes within ASD®* 192,

Previous phenotype-focused studies have emphasized the importance of evaluating
multiple sources of behavioral information when attempting to identify behaviorally
defined subgroups within ASD®* ®” 122213 Myltivariate statistical methods evaluating
multiple sources of behavioral data have been used previously to identify between two
and four defined subgroups within the broader classification of ASDs. Categories used
to distinguish these previously identified subgroups are severe, moderate and mild ASD,
and severe intellectual disabilities®® °7 164 181 187.197.201. 225 ‘The mgst consistent findings
across these different analyses are subgroups defined as either high- or low-functioning
based on the level of symptom severity and some measure of intellectual capability.
When age at exam is controlled for, fewer distinct clusters are identified and functional
level (as indicated in these studies by nonverbal 1Q, Wing Autistic Disorder Interview
Checklist, Peabody Picture Vocabulary Tests, and VABS) stands out as a distinct
identifier of subgroups®” ?**. Despite these data, most studies have not evaluated
whether or not there are specific genetic contributions to these phenotypic subgroups.
One notable exception is a study where subsequent genetic analyses were performed in
subgroups defined by cluster analysis® ', Novel genetic factors were associated with
distinct ASD subgroups, providing further support for phenotypic subgroups being
genetically meaningful®®. However, the cluster analysis used to define subgroups was
limited to a single source of behavioral information, the ADI-R®.

Many previous subgrouping efforts also lacked ascertainment of biomarkers or
comorbidities commonly seen in ASD. As quantitative traits that are associated with ASD
but not required for diagnosis, biochemical or anatomical biomarkers such as elevated
whole blood serotonin levels or enlarged head size may improve our ability to identify
more genetically homogeneous subgroups’® 8122214225 'Eqr example, multiple groups
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have implicated the same chromosomal region, 7935, and candidate gene, CNTNAP2,
by refining phenotype definitions to include specific language impairment (SLI) in ASD,
which parallels findings in isolated SLI® ** 161215223 \yjjth the DSM-5, SLI is removed
from the ASD criteria and may therefore represent a comorbid diagnosis that is seen in a
substantial minority of children with ASD, similar to other comorbid disorders like
epilepsy”®.

We hypothesized that subgrouping cases using multiple sources of behavioral and
biomarker data would create a more genetically meaningful phenotype definition and
increase our power to detect genes influencing risk for ASD. We used novel applications
of multivariate statistics to explore behavioral and clinical information from multiple
sources.

Methods

Integrate Behavioral and Biomarker Data

We included domain scores from the two main diagnostic instruments, the Autism

128

Diagnostic Interview-Revised (ADI-R)™“® and Autism Diagnostic Observation Schedule

(ADOS)™ ", Diagnosis-based studies find the greatest specificity when using both the

118 \We also included scores

ADI-R and ADOS in a multidisciplinary assessment process
from Vineland Adaptive Behavior Scales (VABS)**** for evaluation of intellectual and
adaptive function, an important distinguishing factor in ASD?* **!. Ages at exam for all
three instruments were included. Finally, we included the quantitative biomarker ‘head
circumference’ (HC) as an indicator of either developmental or persistent macrocephaly.
While macrocephaly is seen in the minority of adults with ASD, an increased rate of

head growth during early childhood is noted in many children with ASD®* %3,



Multivariate Analyses

We determined the correlation between phenotype traits in the discovery dataset
using Spearman’s rank correlation coefficients. Since many variables are correlated, and
discriminant analyses are extremely sensitive to variable input, we developed a
weighting scheme (described below) for input variables based on the correlation
structure to ensure that inter-correlated phenotype information did not overly influence
the results.

To understand the underlying phenotypic variability in the discovery dataset we
performed a Principal Components Analysis (PCA)¥’. This analysis identifies the most
important phenotypic traits in the data, simplifies the description of the dataset, and
analyzes the structure of the observations and the input variables?.

To define subgroups of phenotypic expression in the broader diagnostically-defined
ASD dataset, we performed agglomerative hierarchical cluster analysis. This clustering
method begins with each individual as a separate cluster and aggregates them back
together using connectivity-based methods to evaluate the input data, effectively
identifying groups of individuals having more similar measures across all input

variables!®,

Dataset Demographics

The discovery dataset consists of individuals from the Autism Genetic Resource
Exchange (AGRE) family-based study’. Individuals not meeting DSM-1V criteria®? for an
Autism Spectrum Disorder diagnosis on both the ADI-R and the ADOS were excluded.
We also excluded individuals with potentially non-idiopathic autism (e.g. known
neurogenetic disorders, known chromosomal abnormalities, prematurity <35 weeks).
The final discovery dataset has 1,261 ASD cases, age at ADI-R 2-21 years old. The
genetic ancestry as determined by the software program Structure'® is 73% European
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American (EA), 17.8% Mexican American, 2.7% African American, and 6.5% unknown
ethnicity due to missing genome-wide data. This dataset is 80% male and 95% of the
cases are from multiplex families.

The dataset we used for replication consists of individuals from the Autism Genome
Project (AGP)%. This dataset is comprised of 2,563 ASD cases who are not present in
the discovery AGRE dataset, meet DSM-IV criteria for a spectrum disorder on both the
ADI-R and ADOS, and were 2-21 years old at the time of ADI-R. The genetic ancestry is
64.6% European American, 3% Mexican American, 2% African American, and 30.4%
unknown ethnicity due to missing genome-wide data. This dataset is 84% male and 54%
of the cases are from multiplex families. The de-identified individual and family IDs for

the final datasets are available in Appendix 1.

Phenotype Data Comparisons

We included social, communication, and restricted repetitive behavior (RRB) domain
scores from both the ADI-R and ADOS. The communication measure for the ADI-R is
divided into verbal and nonverbal scores. Since every person evaluated on the ADI-R
receives a nonverbal score but not a verbal score and verbal and nonverbal
communication scores are strongly correlated (p=0.86), we only incorporated the
nonverbal scores in our analyses. We also included ‘abnormality of development evident
at or before 36 months’ (DevAb) domain scores from the ADI-R. When available, domain
standard scores for socialization, communication, daily living skills and motor skills were
included from the VABS. Ages at exam for all behavioral tests were also incorporated
into analyses. We evaluated head circumference (HC) z-scores taken at one time point.
We generated z-scores for available HC measures by standardizing for age and sex

using a normal population*”

. We excluded any HC measures taken when individuals
were <1 month old. 25%-46% of the VABS and HC data were missing across the
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datasets; however, the methods we used allow for and are robust to missing data (Table

2.1).
Available Phenotypes. Reported are
ercentage breakdowns of
AGRE | AGP P
Dataset | Dataset| API'R | ADOS | VABS | HC trait-specific information in
both datasets.
39.8 454 v v v v
35.7 30.2 v v v
10.5 7.4 v v v
13.9 17.0 v v

Traits included in our analyses represent different types of statistical variables,
making direct comparisons difficult. The ADI-R is an interview given by a trained ASD
specialist to caregivers of children and adults suspected of having an ASD. It probes for
language, social, behavioral and functional abnormalities inconsistent with the
individual’s current developmental stage. The ADI-R interview generates scores in each
of three content areas: communication and language, social interaction, and restricted,
repetitive behaviors. Item scores are measured on a finite ordinal scale. Increased
scores indicate more severe abnormalities reported for the evaluated behaviors'® %8,
Domain scores are calculated for all items assessing the behavioral characteristics
relevant to ASD (social, communication, and restricted repetitive behaviors) and

represent the sum of relevant item scores.
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ADOS is a semi-structured assessment of communication, social interaction and
play, or imaginative use of materials, for individuals suspected of having autism or other
pervasive developmental disorders*?’. Behavioral items relevant to ASD are scored on
finite, ordinal scales, higher scores on these items indicate increased severity for
abnormalities in the evaluated behavior’. Domain scores are calculated as described
above for the ADI-R. ADOS domain scores were modified prior to percentile rank
calculations to be comparable across the four possible modules by reducing raw ordinal
values to that of the module with the smallest scale for each domain. For example, for
ADOS modules 1, 3, and 4 communication is scored on an ordinal scale from 0-6, while
for ADOS module 2 this measure is only scored on a scale from 0-4. Therefore,
communication domain scores from modules 1, 3, and 4 were reduced to a scale of 0-4
to make these scores more comparable to module 2.

VABS focuses on social skills and is the measurement of adaptive behaviors,
including the ability to cope with environmental changes, to learn new everyday skills
and to demonstrate independence. This scale also yields composite and domain scores,
however measured on a finite, continuous scale’®®. Increased scores on VABS
measures indicate decreased severity for expression of evaluated traits. VABS data
were ranked inversely to account for the inverse relationship of these severity scores
when compared to the other diagnostic methods used in analyses.

Head circumference z-scores and ages at exams represent continuous variables
measured on an infinite scale. To allow more comparable measures, we chose to
transform variables into Hazen percentile ranks using Stata 11.2%% %,

We determined the correlation structure across all these variables by calculating
pairwise Spearman’s rank correlation coefficients (p) (Stata 11.2) using all available

percentile rank data.
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Iltem-Level & Domain Score Comparisons: ADI-R & ADOS

We chose to use domain scores, as opposed to item-level scores, from all evaluated
behavioral instruments since these scores effectively cover information relevant to
primary phenotype characteristics in ASD, and to minimize the potential for overfitting in
our cluster analyses. Overfitting generally occurs when a model is excessively complex,
such as having too many parameters relative to the number of observations. A model
that has been overfit will generally have poor predictive performance, as it can
exaggerate minor fluctuations in the data®®’. However, item level scores provide
potentially genetically-relevant phenotypic information related to endophenotypes (i.e.
savant skills)® ®. To determine what information relevant to item-level scores were not
covered by domain scores included in our analyses, we calculated percentile ranks for
item-levels score from both instruments and determined the correlation across item

scores and domain scores assessed on the same instrument.

Principal Components Analysis (PCA)

PCA was performed on percentile ranked data using the ‘FactoMineR’ package in
R™®. Variable weights were incorporated into PCA using the correlation structure
observed in the dataset. We chose a threshold for independence at p<0.50. If a variable
was correlated with another variable at p=0.50 those variables were weighted to allow
for only a partial variable contribution to PCA. Social and communication domain scores
from the ADI-R were weighted such that these two scores together contributed one total
variable weight in analysis. ADI-R RRB measures did not meet our threshold for
correlation with any other variable and were therefore independent of other variables
included in analysis. ‘Developmental abnormality evident prior to 36 months’ domain
scores were also given one total variable weight. For the ADOS, we weighted social and
communication domain scores together as one total variable contribution. The ADOS
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RRB domain scores were weighted as an independent contribution. For the VABS, all of
the domain standard scores were weighted as one total variable contribution. It is
notable that the strongest correlations observed for the motor skills domain standard
scores are with the communication domain standard scores at p=0.49, which did not
quite meet our threshold for non-independence. However, the correlations observed by
the VABS developers for the motor skills domain standard scores indicated dependence

on the communication domain standard score (p=0.56-0.61)"%

. As such, we chose to
incorporate only a partial weight for motor skills domain standard scores in our analyses.
Head circumferences were given one total variable weight. Ages at exam for ADI-R,
ADOS and VABS were weighted such that these three variables contributed one total
variable weight. The cumulative number of variables incorporated into PCA using this

weighting scheme equaled eight variables. We allowed up to 20 PCA dimensions to be

retained in the results.

Optimal Clustering Method and Dataset Partitions

Dissimilarity matrices were calculated using the Gower dissimilarity measure from
the ‘FD’ package in R, with variables weighted according to the weighting scheme
described above for PCA™* ¢ Seven different clustering methods were evaluated for
internal validity while partitioning the dissimilarity matrix into anywhere from two to 15
clusters using the ‘clValid’ package in R*. Evaluated clustering methods were kmeans,
agglomerative hierarchical, model-based, partitioning around medoids, divisive
hierarchical, self-organizing tree algorithm, and clustering large applications.

To evaluate cluster validity, clValid calculates the Connectivity (an indication of the
degree of connectedness of the clusters), Dunn index (a ratio of the smallest distance
between observations not in the same cluster to the largest intra-cluster distance) and
Silhouette Width (the overall average of the average distance between each observation
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and others in the same cluster compared to different clusters). To evaluate cluster
stability, clValid calculates the Average Proportion of Non-overlap (average proportion of
observations not placed in the same cluster when variables are removed), Average
Distance (average distance between observations placed in the same cluster when
variables are removed), Average Distance between Means (average distance between
cluster centers for observations placed in the same cluster when variables are removed)
and Figure of Merit (average intra-cluster variance of the removed variable, where the
clustering is based on the remaining variables)®. Sensitivity analysis was performed by
removing one variable, reapplying weights to account for the missing variable,
calculating a Gower dissimilarity matrix, clustering the data and calculating the above

mentioned stability scores. This was done for each variable.

Clustering and Cluster Validation

Dissimilarity matrices were calculated as described above and variables were
weighted according to the weighting scheme described above for PCA™® *° The final
agglomerative hierarchical clustering was performed on the Gower dissimilarity matrix
using the ‘cluster’ package in R**. The agglomerative coefficient was calculated for the
final clustering of the data. This represents a measure of all the individual dissimilarities
calculated across the dataset and is an indication of the clustering structure identified'®.
This coefficient is measured on a scale from zero to one, zero indicating no clustering
structure and one indicating complete structure.

Validity of the final clusters was determined by permuting phenotype data across
individuals, clustering the permuted data and calculating the Adjusted Hubert-Arabie
Rand index (AHARI) to compare clustering of the real data to the permuted data®. This
was done for 1,000 data permutations and the AHARIs were averaged. The

permutations were accomplished by writing a function in R and the AHARI statistic was
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calculated using a command from the ‘mclust’ package®. Sensitivity analyses were
performed using the ‘clValid’ package in R, with slight modifications; weights were
reapplied to account for variables removed and a Gower dissimilarity matrix was
calculated prior to clustering®. Kruskal-Wallis tests were performed in STATA 11.2 on
untransformed scores to determine the distributional variation of scores between main

clusters and across subclusters.

Genetic Contribution to Cluster Assignment

Intra-cluster family structure was evaluated by calculating the odds of individuals
being assigned to the same cluster given a familial relationship. We generated a 2X2
contingency table and calculated an odds ratio via the chi-square statistic. ‘Case’ status
was defined as a full sibling relationship and ‘exposure’ was defined as assignment to
the same phenotype cluster. Each individual was manually scored for the number of full
sibling relationships in the dataset. Since there are substantially more unrelated
individuals than related in the datasets, we randomly sampled groups of unrelated
individuals representing the same number of available familial relationships. We
calculated an odds ratio for related ‘cases’ and each randomly sampled unrelated
‘control’ group. This was done 10 times. The reported odds ratios represent the range for
these calculations. We estimated genetic relationships using Single Nucleotide
Polymorphism (SNP) markers previously genotyped in our datasets. Markers were
pruned using genotyped founders based on linkage disequilibrium. We set an r
threshold of 0.16, within a 500 SNP window, sliding 5 SNPs at a time. We subsequently
created a pedigree file of cases in our cluster dataset. Wright's F-statistic (Fst) was then
calculated using PLATO’’. We grouped individuals into subpopulations based on cluster

assignment. For each genetic marker, the correlation between individuals drawn from
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the subpopulation relative to the total population was determined. We then took the

average Fst calculated across the informative autosomal markers.

Results

Discovery Dataset (AGRE)
Correlation Among Variables

The correlation structure indicates diverse relationships among phenotype variables
in the AGRE dataset (Fig. 2.1; Table 2.2). Social and communication scores measured
on the same instrument are positively correlated (papi.r=0.62, papos=0.57, pvass=0.80),
while restricted and repetitive behavior scores are not strongly correlated with social and
communication scores assessed on the same instrument (pap.r=0.07, 0.17; papos=0.18,
0.35). When comparing scores evaluating the same behavioral characteristic between
the ADOS and ADI-R instruments, there is minimal correlation, especially with regard to
RRB scores (Psocia=0.37, Pcommunication=0.31, Prre=0.04). The strongest variable
correlations across the ADI-R, ADOS and VABS are positive correlations between the
social and communication scores from the ADI-R and VABS (p=0.45). The strongest
correlation for the ‘developmental abnormality evident prior to 36 months’ scores from
the ADI-R are a positive relationship with ADI-R social and communication domain
scores (Psocia=0.31, Pcommunication=0.29). Head circumferences are not strongly correlated
with any of the behavioral measures. The strongest correlation for HCs is a positive
correlation with VABS social and daily living skills domain standard scores (p=0.14). As
expected, ages at exam are strongly correlated across the ADI-R, ADOS and VABS

(p=0.84-0.94).
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Figure 2.1. Variable Correlation Structure in Discovery Dataset. Plot of Spearman’s
correlation coefficients used in variable weighting scheme for PCA and clustering.

Variable ADI-R | ADI-R ADI-R | ADI-R | ADOS | ADOS | ADOS | VABS VABS VABS vaBs bL| Hc ADI-R | ADOS VABS
Social | Comm RRB DevAb | Social | Comm RRB Social | Comm MS Age Age Age
ADI-R
Social 1.00
ADIR | 62 1.00
Comm
ADI-R
RRB 0.17 0.07 1.00
ADI-R
DevAb 0.31 0.29 -0.02 1.00
AD(?S 0.37 0.39 -0.04 0.26 1.00
Social
ADOS 0.27 0.31 0.04 0.23 0.57 1.00
Comm
ADOS
RRB 0.21 0.31 0.04 0.19 0.35 0.18 1.00
VAB.S 0.45 0.42 0.09 0.18 0.41 0.24 0.29 1.00
Social
VABS 0.40 0.45 0.00 0.27 0.49 0.28 0.34 0.80 1.00
Comm
Vazs 0.22 0.33 0.01 0.27 0.33 0.22 0.34 0.37 0.49 1.00
V‘S?S 0.33 0.39 0.07 0.22 0.40 0.27 0.31 0.79 0.80 0.49 1.00
HC 0.09 0.13 -0.11 -0.03 0.11 0.04 0.10 0.14 0.13 0.05 0.14 1.00
ADI-R
Age 0.26 0.00 0.17 -0.13 -0.12 -0.12 -0.20 0.22 0.05 -0.38 -0.02 0.11 1.00
ADOS
Age 0.16 -0.03 0.14 -0.16 -0.10 -0.11 -0.16 0.31 0.13 -0.38 0.08 0.14 0.89 1.00
VABS
Age 0.15 -0.02 0.10 -0.17 -0.09 -0.11 -0.12 0.35 0.16 -0.39 0.11 0.14 0.84 0.94 1.00

Table 2.2. Spearman’s Correlation Coefficients. Spearman’s rho correlations
calculated in AGRE discovery dataset. Comm=Communication Domain Scores;
RRB=Restricted, repetitive behaviors; DevAb=Abnormality of Development evident
<36 months; MS=MotorSkills; DL=Daily Living; HC=head circumferences.
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Iltem-Level & Domain Score Comparisons: ADI-R & ADOS

Spearman’s correlation coefficients indicate that for the ADI-R, the domain scores we

included in analyses do not provide information relative to presentation of savant skills,

acts of aggression, or hyperactivity (Fig 2.2a). Domain scores from the ADOS do not

provide information relative to speech abnormalities associated with ASD, anxiety,

aggressive tendencies, or hyperactivity (Fig 2.2b).
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Figure 2.2. Correlation Across Domain and Item Scores. Plot of Spearman’s
correlation coefficients showing correlation across domain scores used as variable input
(indicated by stars) and item-level information not included in domain score calculations
for a. ADI-R and b. ADOS.
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Principal Components Analysis

PCA identifies15 components comprising the data, with 53% of the phenotypic
variance being explained by the first three components and the remainder of the
variance being explained in increasingly smaller increments from components four to 15
(Fig. 2.3). Principal component (PC) one defines 25% of the phenotypic variance in the
discovery dataset. Although most input variables contribute to the phenotypic variance
defined in PC1, the two variables with the strongest contributions are ADOS RRB scores
and ADI-R DevAb scores (Table 2.3). HC, ADI-R RRB scores and ages at exam do not
have strong contributions to PC1. However, these variables explain the majority of the
phenotypic variance defined by PC2 and PC3. These two components combined explain
another 29% of the phenotypic variance in the discovery dataset (PC2=15%, PC3=14%).
PC4 defines another 11% of the phenotype variation in the dataset. Similar to PC1, the
two variables contributing most to the phenotypic variance defined in PC4 are ADI-R
DevAb scores and ADOS RRB scores. However, unlike PC1, the next strongest
contributors are RRB scores from the ADI-R. Social and communication scores from the
ADI-R and ADOS, and scores from the VABS have much smaller contributions to PC4
than to PC1. PC5 defines 9% of the variance in the data and has strong contributions
from HCs, DevAb scores and RRB scores from the ADI-R. PC6 defines another 7.5% of
the variance in the dataset with ADOS RRB and communication scores contributing to
over half of this defined variance. PC7 defines another 5.5% of the phenotypic variance;
its strongest contributors are measures from the VABS and ADOS communication
scores. PC8 defines another 5% with the strongest contributors being ADI-R social and
communication scores closely followed by these same scores from the ADOS. The
combined phenotypic variance explained in the AGRE dataset by the first 8 principal
components is 91.5%. The remaining principal components, PC 9-15, each define very
small portions of the phenotypic variance observed in the data (0.35%-2.5%) and
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combined explain the remaining 8.5% of phenotypic variance in the dataset. The

variables contributing the most to these final seven PCs are further outlined in Table 2.3.

w_
=5
L]
5}
c
K]
s
e -
@
2
]
o
w0
ol  I— (N —
10 1" 12

1 2 3 4 5 6 7 8 9
Eigenvalue Rank

Figure 2.3. Phenotype Variance Explained by Principal Components. Plotted are the

percentages of phenotypic variance explained, based on eigenvalues, by each Principal
Component defined in the AGRE dataset.

13 14 15

Pczzzgse Comp1| Comp2 | Comp3 | Comp4 | Comp5 | Comp6 | Comp7 | Comp8 [ Comp9 [Comp10[Comp11(Comp12(Comp13|Comp14/Comp15
SAODCI;Z 9.47 5.90 0.25 3.56 0.22 0.60 2.38 26.14 5.61 36.13 8.03 0.45 0.03 0.67 0.57
éc?r:‘;sl 11.62 1.12 0.00 0.60 0.39 2.27 0.33 36.35 10.11 34.17 2.96 0.03 0.03 0.01 0.00
';[')QI-BR 0.32 29.47 32.83 13.33 20.98 0.83 0.32 1.02 0.17 0.65 0.01 0.03 0.05 0.01 0.00
Se[\)ll;ﬁ'?) 19.06 4.56 2.91 30.17 21.00 18.11 0.01 3.74 0.00 0.38 0.02 0.00 0.02 0.02 0.00
ADOS
Social 11.80 0.04 0.27 0.03 2.24 13.07 5.06 6.78 50.51 8.47 1.18 0.01 0.49 0.00 0.06
ADOS
Coiiiiii 7.30 0.04 0.05 0.36 0.13 24.48 15.66 15.23 31.32 5.30 0.01 0.01 0.11 0.00 0.00
ADOS

RRB 22.07 0.97 0.07 37.16 6.67 27.32 4.40 0.33 0.44 0.47 0.00 0.11 0.00 0.01 0.01
VABS
Social 3.80 3.09 0.20 0.39 3.81 0.11 14.46 1.38 0.19 0.02 5.42 1.50 0.00 65.30 0.35
VABS
Caiiiii 4.90 0.85 0.23 0.27 2.87 0.31 16.71 1.48 0.01 0.07 0.96 2.41 57.33 11.59 0.02
VABS
. 3.25 0.91 0.02 0.53 0.02 1.33 15.29 0.15 0.00 9.55 51.96 16.18 0.63 0.20 0.00

MotorSkills|
VABS
P 4.13 0.81 0.12 0.03 1.82 0.62 21.22 1.80 0.99 0.01 3.65 11.97 39.31 11.63 1.90

DailyLiving|

HC 1.18 6.12 61.59 2.92 28.00 0.08 0.00 0.04 0.00 0.01 0.03 0.00 0.01 0.00 0.00

ADI-R Age| 0.45 16.14 0.19 4.34 2.44 315 2.62 0.13 0.02 1.57 14.16 12.91 0.59 2.60 38.71

ADOS Age| 0.42 16.24 0.51 3.47 3.95 3.58 1.00 2.26 0.07 0.00 8.42 4.11 0.75 0.22 55.01

VABS Age| 0.26 13.74 0.77 2.85 5.48 4.15 0.54 3.18 0.58 3.21 3.21 50.28 0.65 7.75 3.38

Table 2.3. Variable Contributions to Principal Components of AGRE Dataset.
Variables contributing the most to the observed variance explained by each component
are indicated in bold italics.
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Clustering

PCA helped to define the underlying phenotypic variability in the dataset and identify
the most important classifying variables, but did not clarify the phenotypic nature of each
subgroup of cases. Unsupervised clustering was therefore performed to define ASD
subgroups and obtain a broader sense of the phenotype characteristics of these
subgroups. The overall best validity scores were calculated when using agglomerative
hierarchical clustering to group the AGRE dataset into two clusters. The next best
validity scores were calculated when using agglomerative hierarchical clustering to
subgroup the dataset into 10 subclusters (Table 2.4).

Following agglomerative hierarchical clustering, we grouped the data into the most
valid partition (i.e. two major clusters), one cluster with 443 cases and one cluster with
818 cases (Fig. 2.4). The agglomerative coefficient calculated for clustering of the AGRE
dataset is 0.78, evidence that a strong clustering structure was identified. We evaluated
phenotype variable distributions between the two main clusters. Kruskal-Wallis tests
show that all variable distributions, except ADI-R RRB and HC, are significantly different
(p<0.0001) between these clusters (Table 2.5). Examination of the summary statistics for
phenotype variables by cluster show that individuals with scores indicating more severe
measures for most variables are placed into the larger cluster, referred to as ‘more
severe’, when compared to the smaller cluster, referred to as ‘less severe’ (Table 2.6).
The two main clusters could then be grouped into 10 subclusters; the ‘more severe’ main
cluster grouped into six subclusters and the ‘less severe’ main cluster grouped into four
subclusters. Phenotype variable distributions were then evaluated across the 10
subclusters. Kruskal-Wallis tests show that the previously non-significant ADI-R RRBs
and HC are very different (p<0.0001) across the 10 subclusters. HC distributions are
statistically different across the four subclusters comprising the ‘less severe’ main cluster
(p=0.0034) and the six subclusters comprising the ‘more severe’ main cluster
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(p<0.0001). ADI-R RRB score distributions are also statistically different between the
four subclusters comprising the ‘less severe’ main cluster (p<0.0001) and the six
subclusters comprising the ‘more severe’ main cluster (p<0.0001). The average Adjusted
Hubert-Arabie Rand index (AHARI) calculated over 1,000 data permutations shows that
partitioning of real data for the discovery dataset is significantly different than partitioning
permuted datasets (AHARI=-6.14x107).

Sensitivity analyses show that ADI-R DevAb scores have the overall largest effect on
main cluster stability. Communication scores from the ADOS and social, communication
and daily living domain standard scores from the VABS appear to have the least effect
on main cluster stability. The remaining input variables have similar and modest effects
on main cluster stability. Regarding the subclusters, with the exception of the DevAB
scores from the ADI-R, removal of any other input variable has similar and minor effects
on subcluster stability (Table 2.7).

Familial relationships are significantly associated with assignment to the two main
phenotype clusters (OR=1.38-1.42, p<0.00001). Wright’s F-statistic indicates that
genotype frequencies are more similar within clusters than in the entire unclustered

dataset (Average Fst=0.17) (Table 2.8).
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] Table 2.5. Cluster Differences
Phenotype Main Clusters Subclusters in the AGRE Dataset. Kruskal
Variable ChiZ |pvalue| ChiZ | p-value Wallis comparisons of variable
ADI-R Social | 167.42 |<0.0001| 322.77 | <0.0001 ﬂ;ﬁﬂbclfﬂgpesrsb;vée:;g;i :‘r']"g en
ADI-R Comm 176.61 |<0.0001| 386.11 | <0.0001 subclusters. All input variable
ADI-R RRB 0.05 |0.8324| 461.90 | <0.0001 distributioné excep t ADI-R RRB
ADI-R DevAb 786.18 |<0.0001| 1145.27 | <0.0001 and HC are,si nifiF;:antI
ADOS Social 185.94 |<0.0001| 457.91 | <0.0001 different’ betwegen the méin
ADOS Comm 131.45 [<0.0001| 355.32 | <0.0001 clusters. ADI-R and HC
ADOS RRB 203.29 |<0.0001| 644.55 | <0.0001 distribut.ions are significantly
VABS Social 102.71 |<0.0001| 242.46 | <0.0001 different across subclusters
VABS Comm 160.47 [<0.0001| 308.29 | <0.0001 Asterisks indicate informatio.n
VABS MotorSkills| 140.49 [<0.0001| 221.53 | <0.0001 not used as input variable
VABS DailyLiving| 129.33 [<0.0001| 246.33 | <0.0001 ’
HC 0.05 |0.8258 | 40.71 <0.0001
ADI-R Age 18.86 |(<0.0001| 253.22 | <0.0001
Ethnicity* 3.89 |0.0486 | 29.32 0.0006
Sex* 0.03 |0.8692 11.38 0.2507
Phenotype Variable|Score Range Median Median | Median Mode Mode Mode
P 9 Entire Dataset | Cluster 1| Cluster 2 |[Entire Dataset|Cluster 1 | Cluster 2
ADI-R Social 1-30 24 20 25 28 26 30
ADI-R Comm 1-14 12 9 13 14 9 14
ADI-R RRB 0-12 6 6 6 4 6 4
ADI-R DevAb 0-5 5 3 5 5 4 4
ADOS Social 2-14 10 8 11 11 3 11
ADOS Comm 0-4 3 2 3 3 1 3
ADOS RRB 0-8 4 3 4 3 7 5
VABS Social 20-109 56 64 52 51 64 51
VABS Comm 20-134 62 75 52 20 74 20
VABS MotorSkills 30-121 79 92 73 113 113 84
VABS DailyLiving 20-120 56 66 48 20 64 20
HC (z-scores)* -3.38-4.66 0.72 0.72 0.72 0.35 -0.62 0.35
ADI-R Age* 2-21 7.67 8.37 7.3 6.4 6 6.4
ADOS Age* 2-29 8.4 9.09 8.03 6.3 9.1 5.1
VABS Age* 2-28 9.36 10.02 8.98 7 10.5 95

Table 2.6. Summary Statistics for Unclustered vs Clustered AGRE Datasets.
Reported are medians and modes observed in the unclustered dataset compared to
the two main clusters. Continuous variables are starred to indicate that the mean is
reported in place of the median. Cases with scores indicating increased ASD severity
preferentially cluster into the second, larger cluster. Age is reported in years.
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Variable Clusters Subclusters
Removed APN AD ADM FOM APN AD ADM FOM
ADI-R Social 0.16 0.31 0.04 0.26 0.32 0.27 0.09 0.25
ADI-R Comm 0.21 0.31 0.06 0.28 0.35 0.26 0.08 0.24
ADI-R RRB 0.21 0.31 0.06 0.29 0.46 0.27 0.11 0.29
ADI-R DevAb 0.41 0.33 0.10 0.26 0.60 0.30 0.14 0.25
ADOS Social 0.21 0.31 0.06 0.28 0.44 0.26 0.10 0.23
ADOS Comm 0.08 0.30 0.01 0.26 0.35 0.26 0.08 0.24
ADOS RRB 0.21 0.31 0.06 0.28 0.45 0.27 0.11 0.27
VABS Social 0.06 0.30 0.01 0.28 0.41 0.26 0.09 0.26
VABS Comm 0.04 0.30 0.01 0.27 0.35 0.25 0.08 0.25
VABS DailyLiving| 0.06 0.30 0.02 0.27 0.32 0.26 0.08 0.25
VABS MotorSkills| 0.21 0.31 0.06 0.28 0.31 0.25 0.08 0.25

HC 0.21 0.31 0.06 0.29 0.38 0.26 0.09 0.29
VABS Age 0.20 0.31 0.06 0.29 0.22 0.26 0.07 0.26
ADI-R Age 0.21 0.31 0.06 0.29 0.33 0.26 0.09 0.26
ADOS Age 0.21 0.31 0.06 0.29 0.38 0.25 0.08 0.26

Table 2.7. Sensitivity Analyses. Reported are results from sensitivity analyses. For
the stability measures calculated, smaller values indicate more stable cluster results.
Statistics evaluating cluster stability upon removal of each variable are: APN=Average
proportion of nonoverlap or number of individuals not placed in same cluster when
variable is removed (scale=0,1); AD= Average distance between individuals placed in
same cluster when variable is removed (scale=0, «); ADM=Average distance between
means between cluster centers for individuals placed in same cluster when variable is
removed (scale=0, «); FOM=Figure of merit or average intra-cluster variance of the
removed variable where clustering is based on remaining variables (scale=0, «).

Replication Dataset (AGP)

We tested for replication in the independent, non-overlapping Autism Genome
Project dataset. We see a similar correlation structure among AGP dataset phenotype
input variables as in the AGRE dataset (Table 2.9). Using the same correlation threshold
(p=0.50), we incorporated the same eight variable weighting scheme in subsequent PCA
and clustering analyses. To define the phenotypic variance, PCA again identified 15
components. Most input variables contribute similarly to phenotypic variance explained
in PC1, with the exception of HC, ADI-R RRBs, ages at exams and VABS motor skills
having little contribution. HC, ADI-R RRB and ages explain the majority of the
phenotypic variance defined by PC2 and PC3. Combined, PCs 1-3 define ~50% of the
phenotypic variance in the data. Further details on variable contributions to all 15 data
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components are outlined in Table 2.10. Again, the optimal clustering method
determined to group the AGP dataset was determined to be agglomerative hierarchical
(Table 2.11). This method validly grouped the AGP dataset into two main clusters and
15 subclusters (Fig. 2.5). Kruskal-Wallis tests show that most input variable distributions
are significantly different between the two main clusters (p<0.0001), with the exception
of HC (Table 2.12). However, the distributions of HC are significantly different across the
15 subclusters (p=0.0020). HCs are statistically different between the six subclusters
comprising the ‘less severe’ main cluster (p=0.0007) but not the nine subclusters
comprising the ‘more severe’ main cluster (p=0.37). Cases with increased severity
measures for most variables tended to group into the larger main cluster (n=1,527)
compared to the smaller main cluster (n=1,036) containing cases with generally less
severe scores for the majority of variables (Table 2.13). The agglomerative coefficient
calculated for clustering of the AGP dataset is 0.79, indicating strong hierarchical
clustering structure. The AHARI statistic shows that clustering of the real phenotype data
is significantly different than permuted datasets (AHARI=-4.10x10°).

Sensitivity analyses again show that ADI-R DevAb scores have the overall largest
effect on main cluster stability. The remaining input variables have similar and modest
effects on main cluster stability. Regarding the subclusters, removal of any input variable
has similar effects on subcluster stability (Table 2.14).

In the AGP dataset, we again see that given a full sibling relationship, cases have
increased odds of going into the same main cluster (OR=1.19-1.35, p<0.00001) and that
clusters contain individuals with more similar genotype frequencies than the unclustered

dataset (Average Fst=0.13) (Table 2.8).
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Odds of Same Cluster Assignment
Given Sibling Relationship

Dataset Odds Ratio Range p-value
AGRE 1.38-1.42 <0.00001
AGP 1.19-1.35 <0.00001

b.

F-statistic Comparing Clusters to Unc

lustered Dataset

Dataset |Mean Fst|Standard Error|{95% Conf. Interval
AGRE 0.1664 9.13x10+ (0.1646, 0.1682)
AGRE;, 0.1281 7.97x104 (0.1265, 0.1296)
AGP 0.1251 7.53x104 (0.1236, 0.1266)
AGPg, 0.1031 6.86x10+ (0.1018, 0.1045)

Table 2.8. Results Evaluating Genetics Underlying Cluster Assignments. a. Odds
Ratios represent increased odds of cases being assigned to the same cluster given a

familial relationship. b. Average Wright's F-statistic (Fst) across informative autosomal
markers comparing cluster subpopulations to total unclustered population. Fst

reported for the entire clustering dataset and the European Americans (EA) only.

Variable ADI-R | ADI-R ADI-R ADI-R | ADOS | ADOS | ADOS | VABS VABS VABS vaBs oLl Hc ADI-R | ADOS VABS
Social | Comm RRB DevAb | Social | Comm RRB Social | Comm MS Age Age Age

ADI-R

Social 1.00

ADIR | 64 1.00

Comm

ADI-R

RRB 0.23 0.13 1.00

ADI-R

DevAb 0.31 0.28 0.08 1.00

ADOS | 435 | 031 | -004 | 049 | 1.00

Social

ADOS 0.24 0.25 -0.06 0.16 0.63 1.00

Comm

ADOS

RRB 0.18 0.24 0.14 0.11 0.23 0.12 1.00

VAB.S 0.47 0.45 0.05 0.22 0.40 0.33 0.15 1.00

Social

VABS 0.39 0.41 -0.04 0.29 0.46 0.42 0.19 0.75 1.00

Comm

V:\ngs 0.17 0.30 -0.11 0.15 0.31 0.33 0.28 0.53 0.55 1.00

VSES 0.40 0.40 0.04 0.24 0.38 0.36 0.16 0.77 0.73 0.56 1.00

HC 0.05 0.00 0.03 -0.01 0.00 -0.03 -0.03 0.01 -0.05 -0.19 -0.02 1.00

ADI-R

Age 0.20 0.08 0.13 -0.09 -0.14 -0.16 -0.19 0.20 0.03 -0.22 0.04 0.19 1.00

AE;S 0.21 0.10 0.09 -0.13 -0.08 -0.12 -0.18 0.22 0.08 -0.19 0.08 0.18 0.89 1.00

VABS

Age 0.19 0.06 0.07 -0.04 -0.08 -0.11 -0.21 0.25 0.10 -0.23 0.11 0.20 0.84 0.79 1.00

Table 2.9. Variable Contributions to Principal Components of AGP Dataset.
Variables contributing the most to the observed variance explained by each component
are indicated in bold italics. Comm=Communication Domain Scores; RRB=Restricted,

repetitive behaviors; DevAb=Abnormality of Development evident <36 months;
MS=MotorSkills; DL=Daily Living; HC=head circumferences.
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Pc::;:;ylze Comp1| Comp2 | Comp3 | Comp4 | Comp5 | Comp6 | Comp7 | Comp8 | Comp9 |Comp10/Comp11|Comp12|Comp13|Comp14/Comp15
‘S\ll))cl-igl 12.88 4.36 0.24 1.55 1.25 0.17 19.75 4.92 0.75 0.69 52.69 0.45 0.21 0.10 0.00
é\oDr:::l 13.00 0.96 0.40 0.61 1.90 0.46 35.84 2.68 1.03 1.10 41.82 0.17 0.00 0.03 0.00
ARRRI-BR 4.39 21.55 50.27 0.66 1.39 19.17 1.28 0.69 0.04 0.01 0.45 0.02 0.05 0.01 0.03
ADI-R
DevAb 21.19 0.11 2.19 6.74 57.40 6.54 5.05 0.10 0.33 0.00 0.09 0.15 0.07 0.00 0.03
ADOS
Social 10.08 1.53 422 0.52 3.64 10.89 7.94 8.05 1.62 49.01 2.07 0.06 0.13 0.14 0.10
ADOS
Comm 7.25 1.92 543 0.15 2.66 19.96 7.68 8.07 4.74 41.20 0.73 0.12 0.04 0.06 0.00
ADOS

RRB 16.74 6.26 17.82 25.01 5.29 24.30 3.70 0.18 0.00 0.57 0.12 0.00 0.00 0.00 0.00
VABS
Social 4.53 0.55 1.89 0.57 2.99 0.00 0.11 16.33 3.97 0.07 0.00 0.01 15.36 53.13 0.49
VABS
Comm 4.58 0.00 229 0.39 1.87 0.14 0.48 17.98 3.68 0.17 0.09 2.00 66.24 0.03 0.09
VABS
. 0.90 0.51 0.27 0.06 0.46 0.21 0.22 14.34 72.78 529 1.21 3.73 0.01 0.00 0.00
MotorSkills)
VABS
P 4.24 0.07 1.48 0.37 1.90 0.25 0.07 23.12 432 0.79 0.01 0.65 17.27 44.94 0.52
DailyLiving|
HC 0.00 25.55 11.00 55.78 6.56 0.53 0.26 0.30 0.00 0.01 0.01 0.00 0.01 0.00 0.00

ADI-R Age| 0.12 14.13 0.45 273 3.99 6.53 4.56 1.52 295 0.02 0.05 8.59 0.10 0.27 54.01

ADOS Age| 0.08 12.71 0.82 231 5.63 5.74 4.33 1.46 3.06 0.22 0.10 18.72 0.01 0.71 44.11

VABS Age| 0.02 9.77 1.26 2,55 3.08 5.1 8.74 0.28 0.75 0.87 0.56 65.33 0.51 0.57 0.60

Table 2.10. Variable Contributions to Principal Components of AGP Dataset.
Variables contributing the most to the observed variance explained by each component
in the AGP dataset are indicated in bold italics.
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. Table 2.12. Cluster
Phenotype Main Clusters Subclusters Differences in AGP Dataset.
Variable Chi? |p-value| Chiz | p-value | Kruskal Wallis comparison of
ADIR Social | 513.44 |<0.0001| 755.42 | <0.0001 | Variable distributions between
ADI-R Comm | 558.16 |<0.0001| 742.53 | <0.0001 | the two main clusters and
ADI-R RRB | 18.93 |<0.0001| 1394.73 | <0.00071 | &cross the 15 subclusters. Al
ADI-R DevAb |1128.95/<0.0001| 2181.20 | <0.0001 | NPut variable d's.t”b.'];’.“onsl’
ADOS Social | 368.31 |<0.0001| 738.18 | <0.0001 gﬁfept Hg’ are 5'92' icantly
ADOS Comm | 291.73 |<0.0001| 639.70 | <0.0001 | diiferent between the main
ADOS RRB | 402.19 |<0.0001] 1379.58 | <0.0001 C!“SF]?TS' HIC dq]l]?t”b“t'ons are
VABS Social | 253.73 |<0.0001| 424.85 | <0.0001 S'Qg"l'camy : ere.“f( a.crgfs’s
VABS Comm | 312.50 |<0.0001| 471.42 | <0.0001 fsuf C“Stt.ers' Af’te”s ds In 'Cate
VABS MotorSkills| 66.45 |<0.0001| 119.13 | <0.0001 | " O.mt:f‘ lon Not used as Inpu
VABS DailyLiving | 250.39 |<0.0001| 359.83 | <0.0001 | Varavle.
HC 1.69 | 0.1939| 34.04 | 0.0020
ADI-R Age 35.76 |<0.0001| 473.90 | <0.0001
Ethnicity* 171 |01912| 1068 | 0.7111
Sex* 148 |02231| 1466 | 0.4015
Ph Variable |s R Median Median Median Mode Mode Mode
enotype variable |Score Range Entire Dataset|Cluster1| Cluster2 |Entire Dataset|Cluster1 |Cluster2
ADI-R Social 3-30 23 19 25 26 22 28
ADI-R Comm 0-14 11 9 12 14 9 14
ADI-R RRB 0-12 6 6 6 6 5 6
ADI-R DevAb 0-5 4 3 5 5 3 5
ADOS Social 0-14 10 8 1 11 8 11
ADOS Comm 0-4 3 2 3 3 3 3
ADOS RRB 0-8 3 2 4 2 2 4
VABS Social 19-152 59 67 54 52 72 51
VABS Comm 19-160 65 77 55 20 80 19
VABS MotorSkills 19-133 77 87 70 87 87 67
VABS DailyLiving 19-153 60 69 55 20 60 19
Head Circ (z-scores)*| -4.21-4.63 0.68 0.62 0.73 0.56 0.82 0.54
ADI-R Age* 2-21 8.37 8.83 8.05 53 6.3 5.3
ADOS Age* 1-30 8.92 9.28 8.68 58 8.8 58
VABS Age* 1-25 924 9.65 8.96 8.3 8.8 8.3

Table 2.13. Summary Statistics for Unclustered vs Clustered AGP Datasets.
Reported are medians and modes observed in the unclustered dataset compared to
the two main clusters. Continuous variables are starred to indicate that the mean is
reported in place of the median. Cases with scores indicating increased ASD severity
preferentially cluster into the second, larger cluster. Age is reported in years.
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Clusters Subclusters

Variable Removed APN AD ADM FOM APN AD ADM FOM

ADI-R Social 0.18 0.32 0.04 0.27 0.64 0.27 0.12 0.24
ADI-R Comm 0.20 0.32 0.04 0.26 0.57 0.27 0.12 0.25

ADI-R RRB 0.15 0.32 0.03 0.29 0.63 0.27 0.12 0.28
ADI-R DevAb 0.36 0.33 0.09 0.27 0.72 0.30 0.14 0.27
ADOS Social 0.22 0.32 0.04 0.27 0.60 0.28 0.13 0.23
ADOS Comm 0.25 0.33 0.05 0.25 0.56 0.27 0.11 0.24
ADOS RRB 0.32 0.33 0.07 0.28 0.56 0.27 0.12 0.28
VABS Social 0.12 0.32 0.02 0.27 0.57 0.26 0.11 0.25

VABS Comm 0.15 0.32 0.03 0.26 047 0.26 0.10 0.24

VABS DailyLiving| 0.14 0.32 0.03 0.27 0.50 0.27 0.10 0.25

VABS MotorSkills| 0.16 0.32 0.03 0.27 043 0.26 0.09 0.26

HC 0.29 0.33 0.08 0.29 0.40 0.26 0.08 0.29
VABS Age 0.13 0.32 0.02 0.29 0.48 0.26 0.10 0.24
ADI-R Age 0.29 0.33 0.08 0.29 0.51 0.26 0.10 0.27
ADOS Age 0.20 0.32 0.05 0.28 047 0.26 0.10 0.26

Table 2.14. Sensitivity Analyses: AGP Dataset. Reported are results from
sensitivity analyses. For the stability measures calculated, smaller values indicate
more stable cluster results. Statistics evaluating cluster stability upon removal of each
variable are: APN=Average proportion of nonoverlap or number of individuals not
placed in same cluster when variable is removed (scale=0,1); AD= Average distance
between individuals placed in same cluster when variable is removed (scale=0, «);
ADM=Average distance between means between cluster centers for individuals
placed in same cluster when variable is removed (scale=0, «); FOM=Figure of merit
or average intra-cluster variance of the removed variable where clustering is based
on remaining variables (scale=0, ).

Discussion

The extensive phenotypic variability within ASDs may hinder our ability to identify
genotype-phenotype associations. To address this problem, we used multivariate
statistical analyses to take advantage of ASD-related behavioral information from
multiple sources and to include quantitative data relevant to macrocephaly. This
approach allows effective evaluation of a broad array of data, enabling potentially more
accurate phenotype definitions for large ASD datasets. We demonstrate that ASD
phenotypic subgroups exist and can be replicated. Further, we demonstrate that these

subgroups are genetically relevant.
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Optimal Clustering Method

It is interesting that the optimal clustering method used to evaluate the ASD data is
the agglomerative hierarchical method. This method uses connectivity based clustering
and is unique from other methods because it begins with each individual as a separate
cluster and aggregates them back together using the variable dissimilarities calculated
for each individual when compared to every other individual*®. It may be then for very
complex traits, like those seen impaired in ASD, initially focusing on similarities across
the dataset instead of differences will lead to identification of traits having the largest

effect on variation overall.

Phenotype Clusters

The strongest and most obvious clustering aggregates ASDs into two major clusters,
grouped on overall symptom severity. When comparing variable distributions between
the unclustered AGRE and AGP datasets, we observed that the two datasets had
significantly different distributions of family structure and gender. The AGRE dataset
having proportionally more females (z=3.41, p=0.003) and multiplex families (z=21.67,
p<0.00001) than the AGP dataset. Previous research has suggested that phenotypic
expression of ASD in multiplex families is distinct from that in simplex families®*®. There
is also previous evidence indicating sex-specific effects in ASD>*. It is striking that given
these initial differences between datasets, our approach still identified main clusters with
similar characteristics. In fact, some input variable distributions that were significantly
different between the unclustered datasets were no longer significantly different when
comparing distributions in the similarly-defined main clusters from both datasets (i.e.
AGRE "less severe" and AGP "less severe") (Table 2.15). The initial differences
between the AGRE and AGP datasets may account for the resulting subclusters being
not as easily comparable (Table 2.16). Even with the different variable distributions we
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observe when comparing the subclusters from both datasets, there are some interesting
similarities. For instance, at this level of subclustering we observe very small groups of
cases that are remote from the other larger subclusters. In the AGRE dataset, we
observe one small subcluster (n=47) within the ‘less severe’ main cluster, and three
small subclusters (n=10, 38, 38) within the ‘more severe’ main cluster. The commonality
across each of these smaller subclusters is that assigned individuals have large
discrepancies between comparable domain scores (e.g., communication domain) from
the ADI-R and ADOS. For example, individuals have either more severe scores on the
ADI-R domains and less severe scores on the ADOS domains, when compared to larger
subclusters within the same main cluster, or vice versa even though the ages at exam
for both instruments are very similar. We see similar outlier groups in the AGP dataset

subclusters.

Phenotype Unclustered |“Less Severe”| “More Severe”
Variable

Chi? |p-value| Chi? |p-value| Chi? |p-value
ADI-R Social 8.11 |0.0044 | 1.92 | 0.1662 | 1.20 | 0.2738
ADI-R Comm 20.60 |<0.0001| 15.66 [<0.0001| 1.97 | 0.1669

ADI-R RRB 30.49 |<0.0001| 2.13 | 0.1442 | 39.00 [<0.0001
ADI-R DevAb 135.86 [<0.0001|61.20 (<0.0001| 115.15 |<0.0001
ADOS Social 459 |0.0322| 3.99 |0.0457 | 10.76 | 0.0010
ADOS Comm 26.97 |<0.0001| 8.20 | 0.0042 | 48.19 |<0.0001

ADOS RRB 713.35 | 0.0003 | 521 [0.0224 | 2.78 | 0.0953
VABS Social 27.58 |<0.0001|10.55|0.0012 | 12.47 | 0.0004
VABS Comm 11.37 | 0.0007 | 3.38 | 0.0661| 586 |0.0155

VABS MotorSkills| 73.64 | 0.0002 | 14.17 | 0.0002 | 2.87 | 0.0903

VABS DailyLiving| 30.85 [<0.0001|12.58 | 0.0004 | 15.22 [<0.0001

HC 041 |0.5246 | 0.694 | 0.4049 | 0.008 | 0.9283
ADI-R Age 34.63 |<0.0001| 7.05 | 0.0079 | 21.36 |<0.0001
Ethnicity* 183.44 |«0.0001| 68.19 (<0.0001| 112.98 |<0.0001
Sex* 11.60 |0.0007 | 7.45 | 0.0063 | 9.473 | 0.0021

Table 2.15. Dataset Differences. Kruskal Wallis comparisons of variable
distributions between the AGRE and AGP datasets, as well as the resulting clusters.
Particularly, ADI-R social scores, and ADI-R & ADOS RRB scores are more
divergent between the two datasets than the comparable main clusters.
Unclustered=AGRE vs. AGP dataset; “Less Severe’="less severe” AGRE cluster vs.
“less severe” AGP cluster and similar for the “more severe” clusters. Asterisks

indicate information not used as input variable.
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“Less Severe” | “More Severe” Table 2.16. Subcluster

Phenotype Subclusters Subclusters | Differences between Datasets.
Variable en? lovaluel o2 loovalue| Kruskal Wallis comparisons of
p- p- variable distributions across

:DDII'RR gocial 176666805 :ggggl g;;;i :ggggl subclusters from both datasets.
= Lomm ' ' ' ' All input variable distributions are

ADI-R RRB 986.63|<0.0001| 836.84 [<0.0001 significantly different among the

»:DDZRS%W{“ZI‘ 475476232 :g-gggl 252;09;5108 :g'gggl subclusters when comparing
ocla . . : : these groups between the AGRE

ADOS Comm_ |114.76|<0.0001] 530.11 |<0.0001 and AGP datasets. “Less Severe”

ADOS RRB 540.14|<0.0001|1047.27|<0.0001] _ Subclusters within the “less

VABS Social | 79.14 |<0.0001| 284.17 |<0.0001] ¢o\ere” main clusters compared

VABS Comm | 61.31 [<0.0001|289.93 [<0.0001| | orveen datasets and similar for
VABS MotorSkills | 57.35 [<0.0001| 110.97 |<0.0001| 1o “more severe” subclusters.

VABS DailyLiving | 49.63 |[<0.0001| 240.11 |<0.0001| Acterisks indicate information not

HC 35.24 |<0.0001] 35.01 [0.0015 | ceq as input variable.

ADI-R Age 350.11]<0.0001]| 351.33 |<0.0001

Ethnicity* 97.96 [<0.0001| 131.68 |<0.0001

Sex* 18.95 | 0.0256 | 18.36 | 0.1910

With the exception of these small outlier subclusters, it is apparent that age ranges
are much smaller within subclusters when compared to main clusters. In both the AGRE
and AGP datasets, there is one subcluster grouped separately from the other
subclusters within the ‘more severe’ main cluster that contains some of the youngest
individuals in the datasets (T acre_api-r=6.6 years, 95%Clacre apir=6.3-6.9, Nagre ApI-
r=416; I acp_apir=D.7 years, 95%Clacp aprr=5.4-6.1, Nagp apir=277). In the AGRE
dataset there are also two subclusters within the ‘more severe’ main cluster that include
a majority of nonverbal individuals (61%-63% nonverbal) when compared to other
subclusters within the ‘more severe’ main cluster (0-18% nonverbal) and the subclusters
comprising the ‘less severe’ main cluster (6%-14% nonverbal). We also see two similar
subclusters within the ‘more severe’ AGP dataset cluster (61%-64% nonverbal).

We see that scores assessing similar ASD traits do not correlate strongly between
the ADI-R and ADOS, especially with regard to the RRB measure, even though all
individuals evaluated meet ASD diagnostic criteria on both instruments. Our

observations of weaker correlations for the RRB measures are also consistent with other
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studies where weaker correlation was observed between the ADI-R and ADOS repetitive
behavior scores compared to the social and communication scores''®. Previous studies
have also shown that the ADI-R and ADOS make independent, additive contributions to
more accurate diagnostic decisions and that specificities improve significantly when both

instruments are used compared to each alone'®

. Our results provide further evidence
that including information from both tests is important for precise definition of ASD

phenotypes.

Effect of Developmental Abnormality Measure
All variables included as input in our multivariate analyses influence PCA results and
cluster assignment. However, the ‘severity of abnormalities related to ASD behavioral
criteria exhibited by 36 months of age’ (DevAb) score from the ADI-R stands out as
having a stronger influence on cluster and PCA results. This measure is used in
diagnosis in the ADI-R, based on criteria established by the DSM-IV. There must be
evidence of deficient social or communication skills prior to or by 36 months for a

128 \We see that this measure from the ADI-R does

diagnosis of strict autism to be made
not exhibit strong correlations with any other input variable and has a substantial
influence on the phenotypic variance explained in the first PC of both datasets. This
measure has consistently different distributions between clusters and across subclusters
and the largest overall effect on cluster and subcluster stability. In both the discovery
and replication datasets, we see in the resulting ‘more severe’ clusters that 59-80% of
individuals received the highest score possible for this measure indicating very severe

abnormality of development observed early in life, compared to 0-0.4% of individuals in

the ‘less severe’ clusters.
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Effect of Repetitive Behavior Measures

Repetitive behaviors also stand out from other variables in their contribution to the
phenotypic variance explained in the first three PCs of both datasets. ADOS RRB
measures have a strong contribution to the first data component, and consequently have
significantly different score distributions between individuals in the two main clusters.
Interestingly, ADI-R RRB measures are not strong contributors to the first PC of the
AGRE dataset. However, ADI-R RRB measures do have strong contributions to PC2
and PC3. In the AGP dataset, the contribution from these measures to PC1 is more
comparable to other input variables. Yet, ADI-R RRB scores still do not contribute as
much to PC1 as do RRBs assessed with the ADOS. This is also apparent in the
clustering results; ADI-R RRBs are not significantly different between the two main
AGRE dataset clusters but are significantly different between the two main AGP dataset
clusters. These scores also have significantly different distributions across the
subclusters from both datasets. It is interesting that RRB measures have different levels
of influence on both phenotypic variance defined via PCA and definition of the two main
clusters, based on whether they are evaluated with the ADOS or the ADI-R.

One explanation for the differing influence of RRBs on multivariate statistical results
when comparing diagnostic instruments is that RRBs are not as extensively evaluated
with the ADOS as with the ADI-R. RRBs observed on the ADOS are more likely to be
simple repetitive behaviors that are easily observed in a brief interaction. Many RRBs
are difficult to assess in a short period of time because certain restrictive and repetitive
behaviors may only occur in specific situations, and the ADOS is limited by both time
and context™. In contrast, the ADI-R captures a broader array of RRBs and provides
information for more complex repetitive behaviors. It is notable that by including ADI-R
domain scores and not item level scores we are not fully distinguishing simple versus
complex repetitive behaviors.
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An explanation for the differing influence of ADI-R RRBs on multivariate statistical
results when comparing datasets is that the AGP dataset has more than twice the
number of individuals with this information than does the AGRE dataset. Since the ADI-
R is useful for distinguishing types of RRBs, it may be necessary to have more data from
individuals exhibiting similar RRB characteristics for this measure to have an appreciable
impact on main cluster assignment. Even with this difference, ADI-R RRB scores are
more noticeably distinct across the subclusters when compared to the main clusters
from both datasets.

The combined evidence from PCA and agglomerative hierarchical clustering suggest
that presence of RRBs is important to ASD phenotype definitions in these datasets and
that this behavior is unique from the social and communication deficits for definition of
ASD subphenotypes. This is in line with numerous previous studies?: 382 95 138,163,172,
173,182,188 There js also evidence that ADI-R RRB scores have the strongest within-
family concordance when compared to the social and communication measures

providing support for a uniquely inherited component?’.

Effect of Head Circumference

Head circumferences do not contribute significantly to the phenotypic variance
observed in the first principal component of either dataset, which by design defines more
variance than any other PC®’. We also see that the distributions for this measure are not
significantly different between the two main clusters grouped by overall ASD severity.
We do, however, see a substantial contribution to the definition of phenotypic variance
explained by the third PC of the AGRE dataset and the second PC of the AGP dataset,
and HCs do seem to have a strong influence on subcluster assignment. However, in the
AGRE dataset HCs are significantly different across the subclusters regardless of main
cluster assignment whereas in the AGP dataset, HCs are only significantly different
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across the subclusters comprising the less severe main cluster. We were surprised that
head circumference did not have a stronger influence on main cluster assignment, AGP
subcluster assignment, and definition of PCL1. It is notable that for both evaluated
datasets, the mean normalized HC is above average compared to individuals not
diagnosed with a spectrum disorder (T agre=0.72, I acp=0.66). It is possible that most
individuals with ASD have larger head circumferences compared to normal individuals
and that this is not a distinguishing trait for ASD subgroups but rather a trait specific to
the broader diagnostic classification. Macrocephaly roughly defined as >2 standard
deviations above the mean is only comorbid in ~13% of individuals for which this
measure is available, in both the AGRE and AGP datasets. These rates are slightly
lower than expected based on previously reported estimates ranging from 15-35%°% %’
This is consistent with other observations indicating individuals with ASD have increased
head growth but do not meet criteria for macrocephaly. Unfortunately, HC measures are
only available for ~54% of the AGRE dataset and ~47% of the AGP dataset. This could
also be an explanation for the observed impact of HC on cluster assignment and the
lower rate of macrocephaly in the AGRE and AGP datasets.

Another important caveat to our evaluation of head circumference is that ethnicity is

22T \We normalized HC

noted to be important in head circumference normalization
measures using a non-diseased population of European descent, due to our inability to
identify normal population statistics for other ethnicities of interest with a similar age
range to the datasets evaluated in our study. Our datasets have a slightly different ethnic
background than does the normal population we used to normalize HC and this could
affect our z-score calculations. We also did not take into account height, another factor
that should be considered when evaluating macrocephaly, since this information is
available for even fewer individuals in the AGRE and AGP datasets (~29% and ~46%,

respectively). Height and head circumference measures, when available in our datasets,
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do exhibit positive correlations suggesting the increased HC may be due to increased

stature and not necessarily exhibition of an endophenotype (pacre=0.66; pacp=0.44)

(Figure 2.6).
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Figure 2.6. Correlation of Head Circumference & Height in Evaluated Datasets.

Plotted are head circumferences (cm) versus height (cm) for individuals in the a. AGRE
dataset and b. AGP dataset. Reported are squared Pearson's correlation coefficients (r?).

The combined results from PCA and clustering indicate HC is important in defining
ASD subphenotypes, but not in determining overall severity. Again, these measures are

not available for a large portion of the cases in the datasets we evaluated, which could
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affect the variable’s impact on definition of PC1 and main clusters even with our
stringent weighting scheme and the ability of the methods to allow for missing data. The
same is also true for Vineland domain standard scores. While these scores do seem to
be involved in definition of the main clusters, they do not contribute greatly to PC
definition or stand out as classifying variables. These findings are possibly a result of
having fewer individuals with VABS scores compared to ADI-R and ADOS scores. We
chose to retain cases that are missing VABS and HC information since these are not

considered ASD-specific diagnostic criteria.

Familial Clustering

Odds ratios showed significantly increased odds for affected siblings to cluster
together into the two main clusters when compared to unrelated cases. These
calculations are indicative of underlying genetic architecture. Further supporting this
assumption, Wright’s Fst calculations suggest cases with more similar genetic
architecture clustered together into the two main clusters. Although Fst can be
confounded by genetic ancestry, we obtained similar results using only individuals with
European ancestry. It is notable that there is still evidence for significant genetic and
phenotypic heterogeneity within ASD families. This is in agreement with many previous
studies and the growing body of evidence reporting the involvement of de novo
mutations arising in the germ-line®> *’* " However, the relationship of genotype to
phenotype should be somewhat independent of inheritance patterns. While our results
supported an underlying genetic influence on overall cluster assignment, to determine
the true contribution of genetic factors to phenotypic cluster assignment it will be

necessary to perform future genetic analyses based on these cluster groupings.
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The overlapping interpretation of our results from two different multivariate analyses,
PCA and clustering, demonstrate the utility of this approach. That we were able to show
defined subgroups of phenotypic expression appearing to be genetically meaningful in
the AGRE dataset and replicate these findings in an independent AGP dataset lends
further support to the validity of the resulting cluster groupings and the idea that the
phenotype clusters recapitulate underlying genetic mechanisms in Autism Spectrum

Disorders.
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CHAPTER IlI

PATHWAY-BASED GENOME-WIDE ASSOCIATION STUDIES IN DEFINED

SUBGROUPS

Introduction

Genetic factors have a strong influence in the etiology of ASD. However, the
individual effects of most previously implicated common variants are modest, tend not to
replicate in independent cohorts, and the combined evidence from many analyses does
not explain the estimated heritability®> ** 4> 7°15°_ The difficulty in identifying common,
inherited variation with replicable effects may arise from the wide variability in clinical
manifestation of ASD and the relationship to genetic influences.

Evaluating larger sample sizes is one way to increase power in genetic studies of
complex disorders, like ASD*. Studies have been conducted in large ASD cohorts when
the phenotype is categorized dichotomously (i.e., affected/unaffected) by diagnostic cut-

Offsl7, 123, 230

. However, none of these associations replicate in independent cohorts,
suggesting an increase in sample size is not sufficient to optimize power for ASD. It is
also difficult to interpret potential phenotype-genotype relationships using results from
these large-scale genetic analyses since evaluated cases express a wide continuum of
symptom severity.

Previous studies have defined more phenotypically homogenous subgroups in ASD
using overall trait severity, endophenotypes, and comorbidity information and evaluated
genetic contributions to these subgroups’ 2* 88 90.179.183. 184,204 |0 hymerous cases,
linkage and association signals were increased despite a substantial reduction in sample

size. Many of these studies also replicate previous results from analyses performed
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when subphenotypes of ASD were further defined® “> **°. These studies provide strong
support for phenotypic subgroups being genetically meaningful.

Factors further complicating genetic association studies in ASD are related to the
complexity of the underlying genetic models of the disorder. There are hundreds of
different genes and risk loci implicated in ASD etiology®® *****’. Few, if any, of the
currently identified genetic factors alone seem to contribute strong effects (OR>1.2) to
risk for ASD*® *°. These smaller effects are easily overlooked in the typical approach to
analysis of GWAS data, which looks for the most significantly associated individual
single nucleotide polymorphisms (SNPs). Evidence from multiple independent studies
indicates common, inherited variants have a cumulative effect on ASD risk®® *°" 1% |n
reality, genes often work as complex interacting networks, especially those involved in
neural development. Pathway-based analysis of genome-wide SNP data considers the
combined effects of multiple genetic variants functioning together in biological

155, 218

pathways . By applying this methodology to analysis of ASD genetic data, causal

pathways and/or genetic interactions may be implicated giving biological insights that
would otherwise be imperceptible!® 8¢ 121 132,158

Our hypothesis is that performing pathway-based genetic analyses in more
phenotypically homogeneous ASD subgroups accounts for some heterogeneity, thus
increasing power to detect genetic effects. We previously performed extensive
phenotypic analyses in an Autism Genetic Resource Exchange (AGRE)’* dataset*?. We

used data from the Autism Diagnostic Interview-Revised (ADI-R)*?®

, Autism Diagnostic
Observation Schedule (ADOS)', Vineland Adaptive Behavior Scales'®, head
circumferences, and ages as classifying variables. Unsupervised clustering identified
two distinct groups of cases, dividing primarily on the severity of phenotypes. The same
approach similarly identified two distinct groups of cases and confirmed this severity-

based dichotomy in an independent dataset from the Autism Genome Project (AGP)®.
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In addition, there was significant familial clustering within groups (OR=1.38-1.42,
p<0.00001), suggesting that the clusters recapitulated genetic etiology. ldentifying
biological pathways and sets of genes contributing to the underlying mechanisms
involved in expression of subphenotypes of ASD will help us gain further insight into the
functional foundations of the various phenotypic aspects of this disorder. This study is
one of the first to apply pathway analysis to ASD GWAS data, and to apply this

methodology to well-defined subgroups of affected individuals.

Methods

Dataset Demographics and Quality Control

The discovery dataset consisted of individuals from the AGRE family-based study.
We used previously generated, publicly available genetic data; samples were genotyped
on the lllumina Bead Array and Affymetrix 550 chip®**. Genetic data were merged in
PLINK'® and the final merged datasets were subjected to numerous quality control (QC)
procedures (Figure 3.1). The final discovery dataset included 4,110 individuals (2,559
males and 1,551 females) in 895 families. 91.2% of these families were multiplex, 8.6%
were simplex, and 0.2% had unknown family structure. Genetic ancestry determined by
the software program Structure'®® was 80.1% European American, 16.2% Mexican
American, 2.8% African American, and 0.8% mixed ancestry. After QC, a total of
507,669 SNPs, with a genotyping rate of 99.4%, were analyzed in discovery association
analyses.

For the validation dataset, we used samples from the AGP database. Samples were
previously genotyped on the lllumina 1M platform***. The same QC procedures used on
genotyping data from the discovery dataset were used for the validation dataset. The
final validation dataset contained 8,908 individuals (5,475 males and 3,275 females) in
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2,960 families. 31% of the families in the validation dataset were multiplex, 49% were
simplex families, and 20% of the dataset had unknown family structure. Genetic ancestry
was 91.4% European American, 5.8% Mexican American, 2.6% African American, 0.2%
mixed ancestry. After QC, a total of 779,343 SNPs with a genotyping rate of 99.8%,

were analyzed in validation association analyses.

561,466 BeadArray SNPs 555,352 BeadArray SNPs 549,190 550K SNPs
4,147 Individuals 291 Individuals 3,347 Individuals

y

Merged Files
571,738 SNPs
4,423 Individuals

T

Markers with minor allele f Individuals with >10% missing

frequency<0.05 genotypes
Markers with >10% missing genotypes Individuals with sex errors

y v

Markers with Hardy Weinberg
Equilibrium p<1e-06

Duplicate samples and MZ twins

{

Markers with >10% Mendelian errors Families with >5% Mendelian errors
( Final Marker Set 1 Final Sample Set A
507,669 SNPs 1,046 Nuclear Families

Genotyping Rate = 0.993 4,110 Individuals

Figure 3.1. Quality Control Procedures. Outlined is a flow diagram detailing exclusion
criteria used to obtain quality genotyping data for AGRE discovery analyses and the
final number of evaluated SNPs and samples. Marker exclusion criteria are detailed on
the left and sample exclusion criteria are detailed on the right.

Single-SNP Association Analyses: AGRE Dataset
We used the AGRE family dataset for our initial modeling. Exclusion criteria and
affection status for association analyses were selected based upon phenotype analyses
described in detail in Chapter Il. Briefly, cases meet Diagnostic and Statistical Manual-1V
(DSM-1V) criteria for an Autism Spectrum Disorder diagnosis on both the Autism
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Diagnostic Interview-Revised'?® (ADI-R) and the Autism Diagnostic Observation
Schedule'®’ (ADOS), age at ADI-R 2-21 years old. We excluded individuals with
potential non-idiopathic autism (e.g. known neurogenetic disorders, known chromosomal
abnormalities, prematurity <35 weeks). We used agglomerative hierarchical clustering to
group individuals with ASD relative to multiple sources of behavioral and clinical exam
information. Association analyses were performed using the Family-Based Association
Test (FBAT)'*. We tested the null hypothesis of no association in the presence of
linkage using the empirical variance-covariance estimator under an additive, multi-allelic

Ill3

genetic model. We performed three FBAT analyses for the AGRE dataset according

to the phenotypic subgrouping (Figure 3.2).

Discovery Dataset
(AGRE)

| l !

i All ) [ “LessSevere” ) (" “More Severe”
L \1’ ) L Subjtoup ) 4 Subiroup }
Single-SNP 1 ( Single-SNP i i Single-SNP 1
( Analysisl.l ] | Analysisl.2 _ Analysis 1.3
¢p<0.05 \Lp<0.05 ¢p<0.05
e —\ — ) r — )
Pathway Analysis Pathway Analysis Pathway Analysis
! 1.1 J L 1.2 )L 1.3 J

Figure 3.2. Analysis Plan Schematic: AGRE Dataset. Three single-SNP
association analyses and subsequent pathway analyses were performed on the
discovery dataset based on different ASD phenotype definitions. All=no phenotypic
subgrouping; ‘'Less Severe'=individuals in the less severe subgroup; 'More
Severe'=individuals in the more severe subgroup.
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For the first analysis, affection status was assigned to all individuals meeting criteria
for an ASD diagnosis on both the ADI-R and the ADOS, regardless of phenotypic
subgrouping. There were 48 males and 37 females in this dataset that were evaluated
on both the ADI-R and ADOS and did not meet diagnostic criteria for an ASD on either
instrument. These individuals were coded as unaffected. We also analyzed the data with
the 85 unaffected individuals alternatively coded as unknown and compared FBAT
results at each SNP. There were no differences in p-value for evaluated SNPs. For the
second analysis, affection status was assigned only to individuals in a ‘less severe’
subgroup. Cases in this subgroup have scores indicating less severe measures for
interrogated behavioral and clinical exam information. Cases assigned to the alternate
subgroup were coded with unknown affection status. For the third analysis, affection
status was assigned only to individuals in a ‘more severe’ subgroup. Cases in this
subgroup have scores indicating more severe measures for interrogated behavioral and

clinical exam information (Table 3.1).

Analysis 1.1 Analysis 1.2 Analysis 1.3
Affected Males 940 328 613
Affected Females 221 79 141
Unaffected 85 85 85
Unknown 2,864 3,618 3,271
Total Families 641 315 509

Table 3.1. Breakdown of Affection Status for Single-SNP Analyses: AGRE
Dataset. Reported are the numbers of individuals evaluated for informative
transmissions in Family-based Association Tests.

Deviation from the expected chi-square distribution was visualized in quantile-
quantile plots generated with a unique source code and the ggplot2 package in R* %,
Population substructure does not cause type | error in family-based association tests,
however, due to the diverse genetic ancestry of the evaluated dataset, genomic inflation

factors (A\) were estimated for results from each FBAT analysis using the GenABEL

package for R?°. Manhattan plots were produced using a unique source code and the
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ggplot2 package in R?'%?**, The estimation of odds ratios (ORs) and 95% confidence
interval (Cl) calculations for evaluated SNPs were performed using UNPHASED®?. To
determine the overall OR for genes of interest, an average was calculated for all SNPs

located within each gene boundary.

Pathway Analyses: AGRE dataset

Three separate pathway analyses were performed with the Pathway Analysis by
Randomization Incorporating Structure (PARIS) pathway analysis software package®®
using p-values generated in the corresponding single-SNP analysis (i.e. 'Analysis 1.1',
'1.2','1.3"). By assigning SNPs to genes based on chromosomal locations and looking
for functionally-defined gene sets with an overrepresentation of significant SNPs, PARIS
identifies biological pathways of interest. Since we expected that there would be many
variants of minor effect working together, we set a less-stringent threshold (p<0.05) for
SNPs entered into the subsequent pathway analyses to ensure this information was
captured. We evaluated 209 pathways defined in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database for pathway-based association'®*. SNPs were assigned to a
pathway gene if it fell within +/-50 kb of the ENSEMBL genomic interval (build hg19).
Hapmap CEPH samples (release 27) were used to account for patterns of linkage
disequilibrium (LD). Bonferroni corrected significance for evaluated pathways was
p<0.0002. However, PARIS was currently only designed to generate pathway p-values
as low as p<0.001. Also, many KEGG pathways contained overlapping genes and each
significance test was not independent. Therefore, we chose the most stringent
significance threshold available (p<0.001) for pathway-based results.

Since the primary functional focus of pathways defined in the KEGG database is not
neurodevelopment, in order to more thoroughly understand the relationship of identified
pathways to ASD we felt it was necessary to further subject significantly associated
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KEGG-defined pathways to permutation-based investigations and identify ‘core’ genes
driving overall pathway associations. We defined ‘core’ genes as genes whose p-value
in the context of the biological pathway was p<0.001, and upon removal from pathway
analysis reduced the significance of the overall pathway above the significance
threshold. To determine the overall OR for ‘core' genes, an average was calculated for
all SNPs located within the gene boundary, while taking into account the direction of the

effect

Single-SNP Association and Pathway Analyses: AGP Dataset
We performed three FBAT validation analyses in the AGP dataset similar to that
described above for the AGRE dataset (Figure 3.3). The breakdown of affection status
for subgroup-specific single-SNP analyses is reported in Table 3.2.
Nominally significant SNPs (p<0.05) from each of the single-SNP association
analyses were subsequently evaluated in respective pathway analyses, via PARIS, as

described above for the AGRE dataset (Figure 3.3).
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Figure 3.3. Analysis Plan Schematic: AGP Dataset. Three single-SNP association
analyses and subsequent pathway analyses were performed on the validation
dataset based on different ASD phenotype definitions. All=no phenotypic
subgrouping; 'Less Severe'=individuals in the less severe subgroup; 'More
Severe'=individuals in the more severe subgroup.

Analysis 2.1 Analysis 2.2 Analysis 2.3
Affected Males 1,183 473 710
Affected Females 172 67 105
Unknown 7,395 8,210 7,935
Total Families 1,344 537 811

Table 3.2. Breakdown of Affection Status for Single-SNP Analyses: AGP
Dataset. Reported are the numbers of individuals evaluated for informative
transmissions in Family-based Association Tests using the AGP dataset.
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Results

Single-SNP Association Analyses: AGRE Dataset
A total of 507,675 SNPs were analyzed for association in the discovery analyses. These
SNPs were evaluated for association with all individuals meeting diagnostic criteria for
an ASD on both the ADI-R and ADOS (Single-SNP Analysis 1.1), only affected
individuals assigned to the ‘less severe’ phenotypic subgroup (Single-SNP Analysis 1.2),
and only affected individuals assigned to the ‘more severe’ ASD subgroup (Single-SNP
Analysis 1.3) (Figure 3.2). Genomic inflation factors for these analyses were 1.028,
1.020, and 1.011, respectively (Figure 3.4). This indicates that population structure had

no appreciable impact on our results**. No SNPs met a Bonferroni corrected significance

threshold of p59.85x10'8 for any of the three association analyses (Figure 3.5).

From Single-SNP Analysis 1.1, there were 26,970 SNPs (p<0.05) further evaluated
in Pathway Analysis 1.1. From Single-SNP Analysis 1.2, 26,712 SNPs were evaluated in
Pathway Analysis 1.2 and from Single-SNP Analysis 1.3, 26,335 SNPs were evaluated
in the Pathway Analysis 1.3. Only 655 SNPs were associated (p<0.05) in all three
analyses. 5,703 SNPs were associated (p<0.05) in Single-SNP Analyses 1.1 and 2, but
not Analysis 1.3. 11,291 SNPs were associated (p<0.05) in Single-SNP Analyses 1.1
and 1.3, but not Analysis 1.2. 743 SNPs were associated (p<0.05) in Single-SNP
Analyses 1.2 and 1.3, but not Analysis 1.1. 9,321 SNPs were only associated (p<0.05)
when all affected individuals were considered together, regardless of phenotypic
subgroup assignment. 19,611 SNPs were uniquely associated (p<0.05) with individuals
assigned to the ‘less severe’ phenotypic subgroup. 13,646 SNPs were uniquely

associated (p<0.05) with individuals assigned to the ‘more severe’ phenotypic subgroup.

55



' a.

=" A=1.03+629X10%s.e. P
o

L

T

@

e

@

w

2.

@]

Expected -log,q (p)
A=1.02+113X10%s.e. .

Cy g
>

L)

="

@

et

@

m B

=]

(@]

Expected -log,, (p)
7 cl
A=1.01%£122X10%s.e. "

C

2.
L)
o

o .

Z

@

(7]

2

8-

4 5 8

= 4

2

Expected -log,, (p)

Figure 3.4. AGRE QQ Plots. Quantile-quantile plots of p-values from FBAT
evaluating single-SNP associations with: a. all affected individuals b. 'less severe'
subgroup c. 'more severe' subgroup. A=genomic inflation factor; s.e.=standard error

56



.
—
o :
-~ .
(=)
2
o
0
[
o4
1 2 3 4 5 6 T 8 a9 10 1" 12 13 14 15 16 17 1@ 19 21 23
Chromosome
b
L]
o] .
— o
o .
S "
(=)
2
o -
0
[
o
1 2 3 4 5 & i B 9 0 n 12 13 14 15 16 17 18 19 21 23
Chromosome
m'c.
- -
o
S o °
o
2
=)
9 -
1]

Chromosome

Figure 3.5. AGRE Genome-wide Single-SNP Association Results. Manhattan
plots of p-values from FBAT evaluating SNP associations with: a. all affected
individuals b. 'less severe' subgroup c. 'more severe' subgroup. Red line=Bonferroni

corrected significance threshold (p59.85x10-8).

57



Pathway-Based Analyses: AGRE Dataset

We evaluated 209 pathways defined in the KEGG database for pathway-based
association. We performed three separate pathway-based analyses using p-values
generated via the three separate single-SNP analyses described above. We chose a
threshold for significance at p<0.001 for pathway-based results. Seven KEGG pathways
were associated (p<0.001) with in the full AGRE dataset. Three of these pathways
remained associated when evaluating only the ‘more severe’ subgroup, while no
pathways remained significant when evaluating only the ‘less severe’ subgroup (Table
3.3). Five KEGG pathways were exclusively associated (p<0.001) with cases in the ‘less
severe’ subgroup (Table 3.3). Five different KEGG pathways were associated (p<0.001)
with the ‘more severe’ subgroup. Two of these pathways were not associated in either of

the other two pathway analyses (Table 3.3).

KEGG Pathway Pathway Description Pathway P-value | Pathway P-value |Pathway P-value
Name All Affecteds "Less Severe"” | "More Severe"
hsa04722 Neurotrophin signaling pathway < 0.001 0.800 < 0.001
hsa04210 Apoptosis < 0.001 0.732 <0.001
hsa05100 Bacterial invasion of epithelial cells < 0.001 0.538 < 0.001
hsa04742 Taste transduction <0.001 0.018 0.124
hsa00532 Glycosaminoglycan biosynthesischondroitin sulfate < 0.001 0.389 0.022
hsa00330 Arginine and proline metabolism < 0.001 0.825 0.021
hsa05213 Endometrial cancer < 0.001 0.997 0.008
hsa04940 Type | diabetes mellitus 0.082 < 0.001 0.375
hsa05332 Graft-versus-host disease 0.089 < 0.001 0.829
hsa05330 Allograft rejection 0.160 < 0.001 0.899
hsa04612 Antigen processing and presentation 0.241 <0.001 0.975
hsa05320 Autoimmune thyroid disease 0.485 <0.001 0.999
hsa05223 Non-small cell lung cancer 0.113 0.789 < 0.001
hsa05222 Smallcell lung cancer 0.299 0.256 < 0.001

Table 3.3. Pathway-based Association Results: AGRE Dataset. Listed are
biological pathways defined in the KEGG database that were associated (p<0.001)
with at least one affection group. All=no phenotypic subgrouping; “LS”=individuals in
the LS subgroup; “MS”=individuals in the MS subgroup.

Associated KEGG pathways were further subjected to permutation-based
investigations to identify ‘core’ genes driving pathway associations. We defined ‘core’

genes as any gene whose p-value, in the context of the biological pathway, was p<0.001

and upon removal from analysis, the overall pathway p-value increased such that the
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previously implicated mechanism no longer met the significance threshold (Table 3.4).
We identified 35 core genes within KEGG pathways associated (p<0.001) with all
affected individuals, eight of these core genes function in 22 of these associated
pathways. There are 39 genes total that associate (p<0.001) with all affected individuals,
not all of these genes represent core genes driving pathway associations. Eleven of
these genes did not meet our significance threshold for association in analyses where
individuals were further defined by phenotypic subgroup (Table 3.5). We identified ten
core genes within KEGG pathways associated (p<0.001) with the ‘less severe’
subgroup, five of these core genes function in 22 of these pathways. There are 18 total
candidate genes associated (p<0.001) with the ‘less severe’ subgroup, eight of these
genes did not meet our significance threshold when evaluating all affected individuals
together, or the ‘more severe’ phenotypic subgroup (Table 3.5). We identified 24 core
genes within KEGG pathways associated (p<0.001) with the ‘more severe’ subgroup, 10
of these genes function in 22 of these pathways. There are 34 total candidate genes
associated (p<0.001) with the ‘more severe’ subgroup, 12 of these did not meet our

significance threshold in any other analysis (Table 3.5).

Pathway Pathway Pathway
KEGﬁaI::Lhway Pathway Description p-value All | p-value'LS' | p-value 'MS'
NCG NCG NCG
hsa04722 Neurotrophin signaling pathway 0.369 0.986 0.863
hsa04210 Apoptosis 0.123 0.985 0.587
hsa05100 Bacterial invasion of epithelial cells 0.198 0.945 0.033
hsa04742 Taste transduction 0.143 0.421 0.883
hsa00532 Glycosaminoglycan biosynthesischondroitin sulfate 0.562 0.189 0.021
hsa00330 Arginine and proline metabolism 0.047 0.737 0.594
hsa05213 Endometrial cancer 0.043 1.000 0.303
hsa04940 Type | diabetes mellitus 0.042 0.192 0.915
hsa05332 Graft-versus-host disease 0.239 0.001 0.935
hsa05330 Allograft rejection 0.269 0.013 0.983
hsa04612 Antigen processing and presentation 0.783 0.027 0.999
hsa05320 Autoimmune thyroid disease 0.845 0.010 0.998
hsa05223 Non-small cell lung cancer 0.583 0.961 0.017
hsa05222 Small cell lung cancer 0.922 0.388 0.084

Table 3.4. Pathway-based Associations Following Removal of '‘Core' Genes.
Reported are p-values for biological pathways of interest following removal of SNPs
assigned to suspected core genes. P-values in bold italics indicate these pathways met
the significance threshold (p<0.001) in the full pathway-analysis for this affection group.
All=no phenotypic subgrouping; 'LS'=individuals in the LS subgroup; ‘MS'=individuals in
the MS subgroup. NCG=no core genes included in analyses.
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Single-SNP Association Analyses: AGP Dataset
A total of 779,343 SNPs were analyzed for association in the validation analyses.
These SNPs were evaluated for association with all AGP dataset individuals meeting
diagnostic criteria for an ASD on both the ADI-R and ADOS (Single-SNP Analysis 2.1),
only affected individuals assigned to the ‘less severe’ phenotypic subgroup (Single-SNP
Analysis 2.2), and only affected individuals assigned to the ‘more severe’ ASD subgroup
(Single-SNP Analysis 2.3) (Figure 3.3). Genomic inflation factors for these analyses

were 1.028, 1.017, and 1.017, respectively (Figure 3.6). Nine SNPs met a Bonferroni

corrected significance threshold of p56.42x10'8 in Single-SNP Analysis 2.1 (Figure 3.7).
Associations for these markers have not previously been reported as the sex
chromosomes were not included in these analyses'®!. However, the current version of
FBAT allows for evaluation of markers on the sex chromosomes
(http://www.biostat.harvard.edu/fbat/fbat.htm). Further information on SNPs surpassing a
Bonferroni corrected significance threshold is provided in Table 3.6 and Figure 3.8.
From Single-SNP Analysis 2.1, there were 41,331 SNPs (p<0.05) that were
evaluated in Pathway Analysis 2.1. From Single-SNP Analysis 2.2, 40,953 SNPs were
evaluated in Pathway Analysis 2.2. From Single-SNP Analysis 2.3, 40,375 SNPs were
evaluated in Pathway Analysis 2.3. Only 1,140 SNPs were associated (p<0.05) in all
three analyses. 10,531 SNPs were associated (p<0.05) in Single-SNP Analyses 2.1 and
2.2, but not Analysis 2.3. 15,730 SNPs were associated (p<0.05) in Single-SNP
Analyses 2.1 and 2.3, but not Analysis 2.2. 1,016 SNPs were associated (p<0.05) in
Single-SNP Analyses 2.2 and 2.3, but not Analysis 2.1. 13,930 SNPs were associated
(p<0.05) only when all affected individuals were considered together, regardless of
phenotypic subgroup assignment. 28,266 SNPs were uniquely associated (p<0.05) with

individuals assigned to the ‘less severe’ phenotypic subgroup. 22,489 SNPs were
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uniquely associated (p<0.05) with individuals assigned to the ‘more severe’ phenotypic

subgroup.
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Figure 3.6. AGP QQ Plots. Quantile-quantile plots of p-values from FBAT evaluating single-
SNP associations with: a. all affected individuals b. 'less severe' subgroup c. 'more severe'
subgroup. A=genomic inflation factor; s.e.=standard error.
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Figure 3.7. AGP Genome-wide Single-SNP Association Results. Manhattan plots of p-
values from FBAT evaluating SNP associations with: a. all affected individuals b. 'less
severe' subgroup c. 'more severe' subgoupr. Red line=Bonferroni corrected significance

threshold (p<6.42x10 ).
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Pathway-Based Analyses: AGP Dataset

To determine which AGRE associated KEGG pathways validated in the AGP
dataset, we chose a threshold for pathway significance at p<0.05. A total of seven
pathways validated in the AGP dataset at this significance threshold. The pathway
defined in KEGG as ‘Bacterial invasion of epithelial cells’ validated not only across
datasets, but was associated with the ‘more severe’ subgroups from both datasets
(Table 3.7; Figure 3.9). The other six pathways that validate in the AGP dataset are
associated independent of phenotypic subgroup assignment. For example, the pathway
defined as ‘Allograft rejection’ is associated (p<0.001) with the ‘less severe’ AGRE
subgroup and the ‘more severe’ AGP subgroup (Table 3.7). There are another 13 KEGG
pathways that are trending towards significance (p<0.05) in at least one analysis for both
datasets (Table 3.8). We further investigated validated pathways to identify genes
driving pathway associations and compared these results with core genes identified with
the AGRE dataset (Table 3.9). Four core genes identified in the ‘less severe’ AGRE
subgroup analysis validated (p<0.001) in the ‘less severe’ AGP subgroup analysis, and
five core genes identified in the ‘more severe’ AGRE subgroup analysis validated
(p<0.001) in the ‘more severe’ AGP subgroup analysis (Table 3.9). In some cases, the
same specific gene did not validate but genes within the same gene family were
identified as driving pathway associations in both datasets. For example, the ARPC3
and ARPC5 genes are significantly associated (p<0.001) with the ‘more severe’ AGRE
subgroup while the ARPC1A gene is significantly associated (p<0.001) with the ‘more

severe’ AGP subgroup (Figure 3.9).
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Discussion

Our results show that different genetic factors are uniquely associated with ASD
subgroups defined using multiple sources of behavioral and clinical exam information.
This suggests that meaningful phenotypic subgroup definitions can help clarify the
underlying genetic etiology of ASD. Further, the pathway-based approach seemed to be
a more biologically relevant way to evaluate the risk effects of common, inherited
variation, as opposed to single-variant analysis. The vast majority of the SNPs evaluated
did not meet a multiple-testing adjusted significance threshold when analyzed
individually. However, by evaluating the combined effects from many SNPs, we were
able to identify groups of genes with similar function contributing to risk for ASD and
effectively account for underlying genetic heterogeneity across two independent ASD
datasets. By using the combined approach of phenotypic subgrouping and pathway-
based genetic analysis, we were able to implicate functional pathways of interest and
refine the genetic bottlenecks related to specific ASD traits.

By subgrouping individuals based on similar expression of ASD-related phenotypes,
we drastically reduced the number of cases evaluated in subgroup-specific analyses
(AGRE=35%-65% reduction; AGP=40%-60% reduction). Despite these substantial
reductions in sample size, subgroup-specific odds ratio (OR) calculations for core genes
that were also associated when analyzing all cases together indicate no reduction in
observed genetic effects. In fact, the effects on risk only seem to increase in subgroup-
specific analyses. This suggested our method of phenotypic subgrouping potentially
reduced statistical noise and increased the ability to detect genetic effects.

Performing phenotypic subgroup-specific genetic analyses also allowed us to more
easily refine potential phenotype-genotype relationships. For example, we observed that
pathways and 'core' genes related to adaptive immunity were almost exclusively
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associated with the ‘less severe’ AGRE subgroup. Two 'core' genes in all of the
pathways associated with the ‘less severe’ AGRE subgroup were located in the major
histocompatibility complex (HLA-B, HLA-G). Increasing evidence supports substantial
neural-immune crosstalk starting in the fetal brain and continuing throughout life® *4°.
Many members of the major histocompatibility complex are thought to play important
roles in brain development and function, reviewed in Needleman & McAllister, 20123,
Multiple studies have also identified extensive changes in the immune systems of
individuals with ASD, reviewed in Careaga, 2010*. Interestingly, two pathways
significantly associated with the ‘less severe’ AGRE subgroup are ‘autoimmune thyroid
disease’ and ‘type-| diabetes mellitus’. A few epidemiological studies have reported
associations between both of these diseases and ASD*® ** ' Specifically,
autoimmune thyroid disease is more frequent in children diagnosed with a regressive
form of ASD, compared to children diagnosed with an early-onset form**. It is assumed

100 \we saw that

that cases with regressive ASD exhibit less delayed early development
the ‘abnormality of development evident < 36 months’ domain score from the ADI-R
stood out as having a strong influence on assignment of individuals to our ASD
subgroups. Higher scores on this measure indicate very severe abnormality of
development observed early in life. All individuals assigned to the ‘less severe’ AGRE
subgroup had low severity scores on this measure; it is possible that some of these
individuals exhibited a regressive form of ASD. Cases in the AGP subgroups were older,
on average, at the time of ADI-R than were cases in the AGRE subgroups
(tmoresevere=5.01, p<0.00001; t| esssevere=2.10, p=0.017). A larger portion of individuals in
the ‘more severe’ AGP subgroup have less severe scores on the ‘abnormality of
development evident < 36 months’ measure compared to individuals in the ‘more severe’
AGRE subgroup (Zmannwhimey=10.73, p<0.00001). If cases with regressive ASD do exhibit

less delayed early development, but have more severe presentation later in life, then
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ADI-R evaluations performed in older individuals should indicate lower severity scores
on the ‘abnormality of development evident < 36 months’ domain score, but greater
severity scores on other ADI-R domains. Our results connecting immune system
function uniquely with phenotypically-defined ASD subgroups support the idea that
immune dysfunction is not linked with all forms of ASD, but is confined to specific
subphenotypes of ASD*’.

Our results indicate applying a pathway-based approach to analysis of genome-wide
ASD data helps account for underlying genetic heterogeneity. This was apparent when
comparing genes in the same biological pathway that were associated with subgroups
from the two independent datasets. For example, results from the AGRE analyses show
the ‘taste transduction’ pathway is very significant (p<0.001) when case status is defined
using solely diagnostic criteria (Pathway Analysis 1), but not when more extensive
phenotype definition is used to classify ASD subgroups (piesssevere=0.018;
Pmoresevere=0.124). Upon further investigation of core genes driving the association with
this pathway, we see unique genomic features associate (p<0.001) with the ‘less severe’
subgroup (ADCY4, PRKACA, TAS2R16, ADCY8) and others the ‘more severe’ (KCNB1,
GNAS, TAS2R13, TAS2R14, TAS2R43, TAS2R31, TAS2R46, TAS2R19, TAS2R20,
TAS2R50, TAS2R42). While the same exact genes have not to our knowledge been
previously implicated in ASD, the chromosomal locations coding these genes have been
found linked to male-only subgrouped phenotypes® and affected sib-pairs®’. Also, a
SNP near the TAS2R1 gene on chr5p15 was identified in a GWAS of exclusively
multiplex families?®*. Neither the specific taste receptor gene nor assigned SNPs were
significant (pras2r1=1.000; psnps=0.0595) in our studies. One set of taste-related genes
appear to be working in the 'less severe' subgroup, and another subset in the 'more
severe' subgroup. It is conceivable that multiple different genes functioning in one, or a
few pathways, could lead to many different phenotypic consequences, culminating in the
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autistic spectrum. There is substantial evidence supporting this concept in ASD,
reviewed in Geshwind, 2008%.

Another example of how genetic heterogeneity was accounted for is the association
of the pathway described as ‘Bacterial invasion of epithelial cells’. This pathway is very
significant (p<0.002) when case status is defined using solely diagnostic criteria for both
datasets. When affected individuals from both datasets are further defined into ‘less
severe’ subgroups, this association signal is no longer significant (pagre:Lesssevere=0.538,
PacpLesssevere=0.689). However, when affected individuals from the two datasets are
further defined into ‘more severe’ subgroups the pathway association remains significant
(PAGREMoresevere<0.001, pacpmoresevere=0.021). Upon further investigation of 'core’ genes in
this pathway, we observed that different genes were associated with the 'more severe'
AGRE subgroup when compared to the 'more severe' AGP subgroup. While the same
specific gene did not validate, genes within the same family and different genes with
similar predicted function related to single transduction and cell motility were identified
as driving the pathway's association with both datasets. For example, the ARPC3 and
ARPCS5 genes were significantly associated with the ‘more severe’ AGRE subgroup
while the ARPC1A gene was significantly associated with the ‘more severe’ AGP
subgroup. In a typical single-SNP approach to analysis of GWAS data, or candidate
gene analyses, the validated association of this mechanism with the AGP dataset would
have gone unnoticed. Known functions of core genes driving the associations for this
pathway in the ‘more severe’ subgroups relate to single transduction and cell motility,
processes crucial to proper neurodevelopment. Interestingly, some of these core genes
have been previously linked to ASD, and in some cases with specific endophenotypes.
For example, the genomic region encoding ARPC5L (9g33-g34) was found linked in
multiplex families when using ‘age at first word’ from the ADI-R as a quantitative trait*"®.

This item is included in calculating the ‘abnormality of development evident < 36 months’
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domain score and a majority of cases with very severe scores for this measure are
assigned to the ‘more severe’ ASD subgroups.

Other interesting pathways identified initially when analyzing all diagnostically-
defined cases, upon subgrouping, appear to be uniquely associated with the ‘more
severe’ AGRE subgroup (pmoresevere<0.001; Plesssevere=0.538). The ‘Neurotrophin
signaling pathway’ validated, however exclusively in the ‘less severe’ AGP subgroup
(PrLesssevere=0.003; pari=0.168; Pmoresevere=0.106). Many of the core genes driving the
pathway association in the ‘more severe’ AGRE subgroup have previously been
implicated in nonverbal ASD subgroups. Linkage at interval chrip13—q12 to nonverbal
cases was originally observed in multiplex AGRE families*'. We identified three core
genes in the ‘Neurotrophin signaling pathway’ located within this interval (JUN, NRAS,
and NGF). The nerve growth factor (NGF) gene is also a core gene in the ‘Apoptosis’
pathway which was uniguely-associated (p<0.001) with the ‘more severe’ AGRE
subgroup. Fine-mapping in the previously linked chrlp13-q12 interval detected
associations for three haplotype blocks, intronic to the NGF gene, in more AGRE
families™!. Further studies identified an association to the NGF gene region in an AGP
dataset, having simplex and multiplex families. However, this association was to a
different haplotype block than the associated AGRE haplotypes and LD calculations
indicated these signals were independent. We did not validate direct association to the
NGF gene in the AGP dataset evaluated in our analyses (pai=0.134; pPresssevere=0.612;
Pmoresevere =0.145). Interestingly, there are proportionally more nonverbal individuals in
the AGRE subgroups compared to the AGP subgroups (Z: esssevere=5.09, p<0.00001;
ZMoresevere=15.88, p<0.00001). These results may further support a relationship between
variations in the NGF gene and nonverbal ASD subgroups.

While we were able to validate a portion of pathways and core genes identified in the
AGRE dataset in the AGP dataset, numerous pathways either do not validate, or
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validate in a different subgroup classification. Despite our success developing and
applying novel multivariate statistical methods to identify genetically meaningful ASD
subgroups in both datasets, there are still substantial phenotypic differences between
the AGRE and AGP datasets and similarly-defined subgroups from the two datasets.
These differences are potentially why we observe distinct genetic signals when
comparing results for similarly-defined subgroups from the two datasets. For instance,
recent research has suggested that both the phenotypic expression and underlying
genetic architecture of ASD in multiplex families is distinct from that in simplex
families®*®. Many of the previously reported candidate genes we found associated with
the ‘more severe’ AGRE subgroup, that do not validate in the ‘more severe’ AGP
subgroup, were initially identified in exclusively multiplex families, or in analysis of
subgroups from the AGRE dataset. The majority of families in the evaluated AGRE
dataset are multiplex (91.2%) compared to a minority of families in the evaluated AGP
dataset (31%). Kruskal-Wallis tests show family structure is significantly different
(p<0.0001) when comparing both the ‘less severe’ subgroups and ‘more severe’
subgroups defined in both datasets. The proportion of multiplex families evaluated in
AGRE subgroups was also significantly higher than in AGP subgroups (Z: esssevere=15.28,
p<0.00001; Zmoresevere=15.35, p<0.00001). There is also previous evidence indicating
sex-specific genetic effects underlying ASD*?°. Similar to our observations regarding
dataset-specific family structure, gender is very different between the AGRE ‘less
severe’ subgroup and the AGP ‘less severe’ subgroup (p=0.0063) as well as the AGRE
‘more severe’ subgroup and the AGP ‘more severe’ subgroup (p=0.0021). The
proportion of females evaluated in AGRE subgroups was significantly higher than in
AGP subgroups (Zesssevere=2.73, P=0.003; Z'moresevere=2.15, p=0.016). It is also notable

that the AGRE and AGP samples were genotyped on two different microarray SNP
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platforms. 3.4% of the pathway-analyzed SNPs identified in the AGRE dataset were not
genotyped in the AGP dataset.

We observed strong associations for nine sex chromosome SNPs in the AGP single-
SNP analyses. Five SNPs located on the pseudoautosomal region of the X/Y

chromosomes, and four SNPs located on the X chromosome pass the threshold for

Bonferroni-adjusted significance (pSG.42x10_8) (Figure 3.8; Table 3.6). It is difficult to
assess the validity of these very significant SNPs. This is mainly due to the statistical
limitations involved in evaluating associations for sex-specific genetic markers. These
markers were also not assayed on the platforms used to genotype the discovery AGRE
dataset. We performed pathway-based analyses with and without these SNPs included
and saw no appreciable effects on the significance of associations. This is not
unexpected, two of these SNPs are not within +/-50kb of any predicted gene boundaries,
one SNP is assigned to a pseudogene (SSX6), and one SNP is assigned to a long
intergenic non-protein coding RNA (XR_110926.1). For the remaining SNPs, there is
previous evidence supporting the involvement of the assigned genes in underlying
mechanisms of ASD. SNP rs2896799 (ORaj_acp=6.19; 95% CI=3.77-10.16) is located
inside gene boundaries for both KAL1 and VCX3B. KALL1 is predicted to be involved in
neurite outgrowth, axon guidance and branching, and cell adhesion®. All developmental
mechanisms thought to be involved in ASD 2 2°2, The involvement of VCX3B in ASD
etiology has also been implicated via inherited deletions of this genomic region*®. SNP
rs909439 (ORui_acp=12.72; 95% CI=5.54-29.20) is located in VAMP7, a gene also
known to be involved in neurite outgrowth® *°. Two SNPs, rs34013457 (ORaj acp=5.24;
95% CI=3.21-8.56) and rs34537684 (ORa_acr=7.53; 95% Cl=4.47-12.69), are located in

PCDH11. This gene is a member of the protocadherins family. Other genes in the
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protocadherins family have been previously implicated statistically, and via their
functions in synaptic cell-adhesion pathways®’.

The pathway-based approach seems to be a more biologically relevant way to
evaluate the effects of common, single genetic variants, especially in a group of
disorders known to be as complex and heterogeneous as ASD. We show our method of
phenotypic subgrouping is genetically relevant and that using a pathway-based
approach to evaluate genetic effects on ASD risk is an effective way to account for
genetic heterogeneity, implicating more refined biological mechanisms. By further linking
functional pathways of interest and refining the genetic bottlenecks effecting proper
pathway function related to specific ASD traits, there may be potential to discover more

effective methods of symptom treatment.
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CHAPTER IV

EVALUATING SMALL MOLECULE EFFECTS ON EXPRESSION OF AN AUTISM

CANDIDATE GENE: ACETYLSEROTONIN O-METHYLTRANSFERASE

Introduction

Uncovering pathways associated with subgroups of ASD has elucidated potential
sets of genes involved in expression of certain ASD traits. However, to progress toward
understanding how these significant findings contribute to disorder process, further
functional characterization of these associations is necessary. Most genes identified
through pathway analysis have some known biological function but the relationship of
these genes to ASD is likely unknown. While some progress has been made, there is
still much to learn about pathophysiology and pharmacology in ASD**® 27,

Many children with ASD are currently treated with medical interventions, yet little
evidence exists to support the benefit of these treatments**®. Evidence also supports
significant exhibition of adverse side effects of many medications thereby limiting their
use to certain ASD patients’® ' 14618 The emerging field of pharmacogenetics is
concerned with studying the effects of genetic factors on drug response. Previous
pharmacogenetic studies suggest that the altered efficacy and varied side effects seen
with many drugs used to treat neurological disorders are related to individual genetic
variation'®® ?* "% Furthermore, evidence from a study evaluating antidepressant
efficacy suggests that single nucleotide polymorphisms (SNPs) located in promoter
regions directly affect patient response to drug treatment*?. Single base-pair changes in
the genetic code could allow or disrupt binding of small molecule compounds, causing a

drug response in a patient with this variant different from that observed in individuals
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without these changes. Screening for gene expression effects of small molecule
compounds has been used previously toward compound profiling and lead discovery™**
211 We applied this concept to functional characterization of known ASD-related SNPs to
determine if they cause the gene to respond differently to small molecule compounds
when compared to the genotype not associated with ASD.

Acetylserotonin O-methyltransferase (ASMT), also known as Hydroxyindole-O-
methyltransferase, is the initial candidate gene we chose to test for genotype-specific
altered gene expression effects in vitro when cell lines are exposed to small molecule
compounds. ASMT encodes the enzyme that catalyzes the final reaction in melatonin
synthesis. Numerous studies have reported abnormal levels of melatonin in individuals
with ASD*” and sleep disorders are common in patients with the disorders with
prevalence estimates ranging from 39-80%" ** 137:1% Melatonin is involved in
regulating the sleep-wake cycle in humans and is synthesized in the pineal gland® 3* 4°.
Synthesis of melatonin begins with the active uptake of the amino acid tryptophan into
the gland. Tryptophan is then hydroxylated and decarboxylated to serotonin, another
molecule with ample evidence for involvement in ASD®. Serotonin is then N-acetylated
by the rate-limiting enzyme in this pathway, arylalkylamine, and subsequently converted
to melatonin by the ASMT enzyme”.

Melatonin supplementation is an emerging approach to treating sleep defects in

175

ASD, however some patients are non-responders™". Other patients undergoing

melatonin treatment report relief from comorbid symptoms like irritable bowel
syndrome®®, anxiety and seizures™®®, while some exhibit more severe symptoms® "® 18,
These seemingly contradictory findings suggest that underlying genetic architecture may
affect exhibition of adverse side effects resulting from melatonin treatment. These
findings are not exclusive to treatment with melatonin. Interestingly, for many other

compounds used to treat comorbid symptoms of ASD, individuals report sleep problems
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as adverse side effects'*®

. One possible explanation is that these small molecule
compounds are somehow perturbing the melatonin synthesis pathway, potentially by
affecting expression of ASMT.

The involvement of ASMT in ASD etiology has been studied extensively®® 148175219,
There are three isoforms of the ASMT gene resulting from alternative splicing of exons 6
and 7°%. There are also two distinct putative promoters reported, promoter A and
promoter B!, Previous tissue-specific expression studies indicate promoter A is
expressed almost exclusively in the retina, while promoter B drives ASMT expression in
high amounts in the pineal gland. There are two SNPs located in promoter B of ASMT
that have been statistically associated with increased ASD risk, rs4446909 and
rs5989681. Additionally, homozygous presence of the risk alleles for both SNPs was
correlated with a significant decrease in ASMT expression and ASMT enzymatic activity
in patients**®. The ASMT promoter polymorphisms conferring risk for ASD are located in
transcription factor binding sites for nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB) and specificity protein 1 (Sp1)®. As such, the reported SNPs
are thought to alter gene expression by disrupting transcription factor binding. An ASD-
risk haplotype has also been reported that includes the promoter B SNPs and a third
SNP, rs6644635, located in the 5'-untranslated region (UTR) of the only know functional
isoform of ASMT3? 148219,

We hypothesized that the ASMT gene promoter B could be a target for small
molecule compounds and wanted to determine the effects of current ASD treatments on
genotype-specific ASMT expression. The goal is to determine if effects of individual
genetic variation, in relation to ASMT expression, could help explain the observed

inefficacy and adverse side effects of certain drugs used to treat ASD comorbid

symptoms. The ultimate goal for all pharmacogenetic studies is to provide evidence
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useful toward optimizing more effective medical treatments for each person’s unique

genetic architecture.

Methods

Choice of Cell Type

We used previously generated lymphoblast cell lines derived from individuals
ascertained by our lab and collaborators. We chose to utilize lymphoblast cell lines
(LCLSs) to allow evaluation of small molecule effects in the endogenous melatonin
system. Promoter B is reported to be actively expressed in LCL and these cells are the
same lines used by Melke et al, 2008 to identify the published ASMT genotype-specific
gene expression, indicating gene expression of the candidate gene should be detectable
in these cells. Further, melatonin biosynthesis has been reported in human
mononuclear lymphocytes®. It is also important to note, LCLs have a relatively low

reported somatic mutation rate at low passages (0.3%)"'%.

Sequence Confirmation

We screened DNA previously extracted from the blood of 22 individuals, in 15 ASD
families, previously genotyped at the rs4446909 marker, for which cell lines were
available. A region of ASMT, including the promoter B element, 5-UTR, and exon 1B,
was amplified for each DNA sample via polymerase chain reactions (PCR) using the
following primers: forward 5-AAAAGGGGTCTCACTATGTTGC-3'; reverse 5'-
TGGAACGTGAGTGTGATG AAC-3'. Amplified products were purified from reactions
with the QIAquick® PCR Purification Kit and Sanger sequenced at GenHunter®
Corporation. Presence of the genotypes of interest at each SNP in the haplotype of
interest was verified by analyzing raw sequence chromatograms. The linkage
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disequilibrium (LD) map for SNPs of interest in this region was calculated using pairwise

D' with Haploview.

Cell Culture, DNA and RNA Isolation

We chose two cell lines from affected individuals homozygous for the associated risk
haplotype (rs4446909¢¢, rs5989681q¢, rs6644635c¢c), and one cell line from an affected
individual homozygous for the promoter B risk alleles and heterozygous at the third SNP
in the haplotype (rs4446909¢¢, rs5989681 ¢, rs6644635.7). Two cell lines were also
chosen from affected individuals heterozygous at all SNPs (rs4446909,¢, rs5989681cg,
rs6644635c7), and one cell line from an affected individual heterozygous for the
promoter B risk alleles and homozygous at the third SNP in the haplotype (rs4446909,¢,
rs5989681.c, rs6644635cc). Finally, we chose three cell lines from individuals, two
affected and one father, homozygous for the unassociated promoter B genotypes
(rs4446909,4, rs5989681cc, rs6644635cc). Due to the lower frequency of these
genotypes in our case population, it was necessary to choose one parental cell line. It
was previously reported that individuals with homozygous non-risk genotypes at the
promoter B SNPs had higher ASMT transcription regardless of case status. It was also
shown that in parents of children diagnosed with ASD, ASMT transcription correlated
with melatonin levels'*.

Cells were grown at 37°C in RPMI-1640 medium, plus L-glutamine (Life
Technologies, Inc., Grand Island, NY, USA). Growth media was supplemented with
10% heat-inactivated, undialyzed fetal bovine serum (FBS), and 1%
penicillin/streptomycin (10,000ug/ml) antibiotic. DNA was extracted using the DNeasy®
Tissue Kit from Qiagen®. DNA extracted from cell lines was sequenced, as described
above, to verify the correct sequence of interest in each line. Total RNA was isolated
using the phenol/chloroform method.
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Characterization of Basal ASMT Transcript Levels

Over the course of 4 weeks, at one week intervals, RNA was extracted from each
cell line. Oligo(dT)-primed cDNA was constructed from 5ug total RNA, using the
Superscript Il kit (Invitrogen, Grand Island, NY, USA), according to the manufacturer
instructions, with RNase inhibitor. These cDNAs were standardized to the same
concentration (100ng) and used directly in quantitative real-time PCR (qPCR). Multiplex
gPCRs were performed, in triplicate, using the TagMan® Fast Advanced Master Mix, on
the Applied Biosystems® 7900HT Fast Real-Time PCR System. ASMT mRNA was
guantified using a commercially available FAM-labeled TagMan® assay spanning the
boundary between exon 1B and exon 2 (Hs00946625_m1). Relative quantification of
ASMT expression was determined using the comparative cycle threshold (2724
method. Amplification efficiencies were determined using linear regression analysis
performed on log fluorescence data (i.e. the inverse log of the slope in the log linear
phase)®. ASMT expression was normalized to C,values for a VIC-labeled TagMan®
assay spanning exons 1 and 2 of the polymerase (RNA) Il (DNA directed) polypeptide A
(POLR2A) gene (Hs00172187 m1). Statistical significance of gPCR results was

determined using a Student’s two-tailed t-test, with unequal variance.

Effects of FBS Serotonin Exposure on ASMT Expression

We controlled for serotonin present in the FBS used for cell culture by adapting the
cells into completely serum-free media and serum-starving them for at least 24 hours
prior to performing small molecule treatments. We used AIM V® Medium, Liquid with
Human Serum Albumin. To determine the effect of serum starvation on expression of
ASMT, aliquots of cells from each line were spun down and resuspended in either the
serum-supplemented ‘growth’ media or the serum-free ‘starvation’ media, to mimic the
experimental environment of small molecule treatments. Resuspended cells were

85



allowed to grow for 24hrs and total RNA was isolated. Oligo(dT)-primed cDNA was

constructed and RT-gPCRs were performed as described above.

Small Molecule Treatments

We focused small molecule experiments on five compounds currently used to treat
symptoms in ASD, where reported side effects include sleep disturbances. These
compounds were: Risperidone, Escitalopram, Fluoxetine, Serotonin and Melatonin. Prior
to cell treatments, we ensured receptors for chosen compounds were expressed in
human lymphocytes'?® 1319191 ‘Ce|| lines were spun down and resuspended in serum-
free media as described above. After at least 24 hours of serum-deprivation, when cells
were in the mid-logarithmic phase of growth, six wells were plated for each cell line, at
2.5 ml total volume per well. Small molecule treatments were performed with cells
suspended in serum-free media. Experiments were standardized to have similar counts
of cells/mL in each treatment well (i.e. cell counts were diluted to equal the well with the
lowest cell count/mL and were ~500,000). Compounds were dissolved in DMSO+H,0
and added to cells at concentrations comparable to clinical dosage, when available. For
FDA approved drugs, treatment concentrations were determined based on reported
peak plasma concentrations in humans™ **” ??° Melatonin has yet to be approved by the
FDA, however, pharmacokinetics of melatonin have been reported in older adults™ and
a phase I trial has been performed to evaluate melatonin treatment for sleep problems in

autistic individuals™®’

. We used the reported effective dosages in autistic children at the
corresponding reported peak plasma concentration from the study performed on older
adults. For serotonin treatments, we used mean whole-blood 5-HT concentrations
reported for children with ASD, which were shown to be higher when compared to
healthy control children®®. Negative controls were treated with vehicle-only (DMSO+H,0)

(Table 4.1). Six hours after addition of compounds, 1mL of cells from each treatment
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were aliquoted, spun down at 1,000g for 5 minutes, and frozen at -80°C. The remaining
1.5mL were spun down at 1,000g for 5 minutes, and frozen at -80°C, 12 hours after
addition of compounds. This treatment protocol was performed in three experimental
replicates over the course of one week to minimize potential biases that may arise due
to different batches of growth media and serum-free media, and cell passages. Total
RNA was isolated from cells from the first small molecule treatment experiments.
Randomly-primed cDNA was constructed, without RNase inhibitor, using the High-
Capacity cDNA Reverse Transcription Kits from Applied Biosystems. RT-qPCRs were

performed, in triplicate, as described above.

Final
Com!opund . : Volume
Compound | Drug (g) DMSO Initial . Final Concentration Added
(ml) | Concentration (ng/ml)
(ng/ml) to Cells
(ul)
Risperidone | 0.0005 0.1 50000 15.90 0.80
Melatonin 0.0001 1.0 150000 18.80 0.31
Fluoxetine 0.0006 0.1 62500 171.00 6.84
Escitalopram | 0.0015 0.1 170000 278.80 4.10
Serotonin 0.0017 0.1 1000 4.00 10.00
Negative
Control: NA 1.0 NA 1ml DMS0:100ml H20 | 10.00
DMSO+H,0

Table 4.1. Compound Dilutions for Cell Line Treatments. Reported are the final
concentrations and amounts of small molecule compounds added to cell lines for
experimental treatments. All compounds were initially dissolved in the recommended
amount of DMSO. Initial compound dilutions were then diluted further with 2700mL
H,O to allow pipettable volumes for experiments.
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Results

Sequence Confirmation
Sequencing of the ASMT promoter B element and 5-UTR for the 21 affected
individuals (15 males and 7 females), we evaluated indicates low levels of LD across the

three markers previously reported to be inherited as a risk haplotype for ASD (Figure

4.1).

Figure 4.1. Haplotype block structure
| of the promoter B and 5'-UTR SNPs in
ASMT. Reported are the relative position
of each SNP, and the pairwise LD (r?)
between all SNPs.

rsd446509
rs5989681 —
rs6644634

41 16
12

Characterization of Basal ASMT Transcript Levels & Effects of FBS Serotonin Exposure
on ASMT Expression
Results from gPCR for these experiments show C;s vary widely across triplicates and
reactions have low amplification efficiencies (efficiencies < 80%). Evaluation of the raw
amplification plots show that expression of the endogenous control gene we chose,

POLRZ2A, is extremely variable across triplicates, and in many cases has lower Ci-values

than the gene of interest.
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Small Molecule Treatments

Amplification efficiencies for gPCR are low for a majority of these reactions.

Efficiencies for negative controls treated with vehicle-only range from 66%-128% for the

ASMT assay, and 73%-83% for the POLR2A assay. We potentially see significantly

(p=<0.03) decreased ASMT expression for individuals homozygous for risk alleles at the

promoter B SNPs, compared to individuals homozygous for the alternative alleles at

these SNPs. We also observe significant reductions in ASMT expression for individuals

heterozygous at the two promoter B SNPs, compared to individuals homozygous for the

alternative alleles at these SNPs (Table 4.2; Figure 4.2).

Sample Genotypes | Fold Changepitterence | f-statistic | p-value | Std. Err. 95% ClI
AA/CCI/CC* 0.00 NA NA 0.23* |0.0312*|1.9688*
AA/CCICC 0.22 0.55 0.31 0.40 |-0.9662|1.4062
AA/CCICC 0.03 0.08 0.47 0.37 |-1.0107|1.0707
AG/CG/CC 0.79 3.30 0.03 0.24 |-0.0635|1.6435
AG/CGICT 0.97 4.24 0.02 0.23 |0.0406 | 1.8994
AG/CGICT 0.98 412 0.02 024 |0.1142|1.8418
GGIGGICT 0.98 4.16 0.02 0.24 |0.1054 | 1.8546
GGIGG/CC 0.96 4.25 0.03 0.23 |-0.0009| 1.9209
GG/IGG/CC 0.98 4.32 0.02 0.23 |0.0324 | 1.9276

Table 4.2. Fold Change Differences By Genotypes. Reported are results from
Student’s t-tests, with unequal variance. Genotypes are indicated in order of
chromosomal location: rs4446909/rs5989681/rs6644635. Asterisks denote calibrator
sample, statistics for this sample are reported for the mean calculated across
triplicates. All other statistics represent those calculated for the fold change difference
observed. Std. Err.=standard error, 95% CI=95% confidence interval.
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Figure 4.2. Genotype-Specific ASMT Gene Expression. Quantification of ASMT
transcripts relative to genotypes of interest for each SNP. Genotypes are indicated in
order of chromosomal location: rs4446909/rs5989681/rs6644635. Statistical
significance determined via Student’s t test with unequal variance. *p < 0.03.

We observed one sample having a potentially significant increase (p=0.02) in ASMT
expression after exposure to Serotonin for 12 hours. This did not replicate across the
other two samples with the same combination of genotypes at the three SNPs of interest
(AA/CC/CC). We did not observe any other significant changes in ASMT expression
following exposure of cells with the non-risk genotypes to any of the other evaluated
compounds (Figure 4.3). Results from gPCR for treatment experiments on samples
heterozygous or homozygous for risk genotypes vary widely across triplicates and are

inconclusive.
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significance determined via Student’s t test with unequal variance. *p = 0.03.
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Discussion

We observe higher recombination rates between SNPs in the predicted risk

haplotype for our small subset of samples, compared to currently reported estimates in

larger European and Han Chinese descent ASD cohorts™*® ?*°. The previously reported

structure for the ASMT promoter B SNPs and 5-UTR SNP suggests strong linkage

disequilibrium (LD) across all three markers. D' estimates between the two promoter B

SNPs, rs4446909 and rs5989681, suggest the two SNPs are inherited more often as a
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haplotype (D’=0.92-0.94). This is also true for reported D' estimates between rs4446909
and rs6644635 (D'=0.84), and rs5989681 and rs6644635 (D'=0.98)®°, We are
reporting pairwise measures of the squared correlation coefficient (r?), since D'
calculations in our evaluated samples are not informative. Due to the equation used to
calculate the D' statistic, missing genotype combinations always result in D'=1. There are
missing genotype combinations between markers rs4446909 and rs598968, and
markers rs598968 and rs6644635. Our estimates of r* suggest these three SNPs are not
inherited as a haplotype block in these ASD families.

Unfortunately, we were unable to ensure that the level of ASMT expression in our
cell lines was stable over a four-week time course. However, previous evidence
suggests ASMT mRNA expression and enzymatic activity in the pineal gland does not
fluctuate based on diurnal rhythms®. We were also unable to determine the effect of
serum-deprivation on expression of ASMT. Interestingly, the observation that POLR2A
had lower expression than ASMT for most samples was only in reactions using the
Oligo(dT)-primed cDNA prepared with an RNase Inhibitor. There is previous evidence
suggesting decreases in POLR2A mRNA levels are attributable to RNase H-mediated
cleavage of the mRNA®. It is possible that by treating cDNA samples with RNase H we
affected expression of our endogenous control, rendering the gPCR results unreliable.
We evaluated seven different potential control genes prior to performing these gPCR
experiments. The goal was to obtain a normalizer gene with Ci-values similar to those
observed for ASMT. An alternative gene we anticipate using in future experiments is
GAPDH.

By evaluating qPCR results from vehicle-only treated controls, our data are
consistent with previous findings indicating homozygous presence of the risk alleles at
the promoter B SNPs, rs4446909 and rs5989681, results in decreased ASMT gene
expression'*®. Previous reports also suggest the observed decrease in expression was
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only attributable to homozygosity for risk alleles at these two SNPs. There are no
reported effects on ASMT gene expression attributable to heterozygosity at the promoter
B SNPs or to any genotype at the 5'-UTR SNP, rs6644635. We do observe decreased
ASMT expression when individuals are heterozygous, compared to homozygous non-
risk genotypes at these markers. This is very preliminary and to accurately determine the
effects of heterozygosity at these markers on ASMT expression would require further
experiments aimed at modeling the effect of genotypes at each SNP alone and
conducted on cDNA extracted from entirely untreated cells.

Initial results suggest there are no large changes in ASMT gene expression upon
exposure to small molecule compounds at either the 6 or 12 hour time point for the non-
risk haplotype. Again, reaction efficiencies are low and estimates of relative ASMT
guantities are highly variable across triplicates. This is especially true for samples where
ASMT transcript production is already reduced in negative controls. It is possible the low
level of expression for our candidate gene in LCL is too low to be accurately detected via
gPCR. It is also possible that exposure to the small molecule compounds alter
expression of our chosen endogenous control gene. The low reaction efficiencies could
also be attributable to pipetting error, poor PCR primer design, a result of multiplexing
the reaction, or cONA concentrations that are too low, or high, to be detected
accurately'®. It is difficult to determine the effects of small molecule compound exposure
on ASMT expression using these reported results. Future experiments, directed at
optimizing the gPCR, will be necessary to formulate conclusions from our small molecule

treatments.
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CHAPTER YV

CONCLUSION

Summary

Autism Spectrum Disorder exhibits multiple levels of complexity related to clinical
manifestation and etiology. There are many mechanisms implicated in ASD, including,
but not limited to, biological epistasis, genetic heterogeneity, gene-environment
interactions, and epigenetic effects. The research conducted in this dissertation was
motivated by the idea that the difficulty in identifying genetic variation with strong effects
on risk for ASD is due to the wide variability in clinical manifestation, being explained in
large part by underlying genetic heterogeneity.

We hypothesized that phenotypic heterogeneity could be one phenomenon
complicating identification of genetic factors. By performing unsupervised clustering,
based on a myriad of carefully chosen phenotypic information, derived from more than
one source, we were able to effectively evaluate a broad array of information and enable
a more complete phenotype definition for subsets of individuals with ASD. The
overlapping interpretation of our results from two different multivariate analyses, PCA
and clustering, demonstrate the utility of this approach. That we were able to show
defined subgroups of phenotypic expression appearing to be genetically meaningful in
the AGRE dataset and replicate these findings in an independent AGP dataset lends
further support to the validity of the resulting cluster groupings and the idea that the
phenotype clusters recapitulate underlying genetic mechanisms in Autism Spectrum
Disorders.

To further support this idea, we see that unique biological mechanisms are
implicated when comparing genes associated with either the ‘more severe’ or ‘less
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severe’ ASD subgroups. Our results suggest that meaningful phenotypic subgroup
definitions can help clarify the underlying genetic etiology of Autism Spectrum Disorders.
The pathway-based approach seems to be a more biologically relevant way to evaluate
the effects of common, single genetic variants, especially in a group of disorders known
to be as complex and genetically heterogeneous as ASD. We show that using a
pathway-based approach to evaluate genetic effects on ASD risk is an effective way to
account for genetic heterogeneity, implicating more refined biological mechanisms. By
further linking functional pathways of interest and refining the genetic bottlenecks
effecting proper pathway function related to specific ASD traits, there may be potential to
discover more effective methods of symptom treatment.

Results from our functional pharmacogenetic analyses evaluating genotype-specific
small molecule effects on expression of ASMT are largely inconclusive and will need to
be evaluated further in future studies. However, our data are consistent with previous
results indicating homozygous presence of risk alleles at the promoter B SNPs
significantly reduces ASMT expression. We also have potentially implicated previously
unreported gene expression effects related to heterozygosity. We did not observe any
conclusive effects of compound treatment on expression in the non-risk haplotype. This
may indicate that altered efficacy and presentation of adverse sleep-related events are

not attributable to deregulation of ASMT.

Future Directions
We chose to conduct completely separate analyses in the AGRE and AGP datasets.
The initial goal was to determine the replicability of the phenotypic subgrouping. As
such, it was necessary to run independent multivariate statistical analyses in these
datasets. However, the utility of this approach may not have been the most powerful
option in our subsequent genetic analyses. There are many potential reasons that a
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portion of the sub-group specific genetic results, identified in the AGRE dataset, did not
validate, or validate in a different subgroup, in the AGP dataset. A number of these
potential reasons are discussed in more detail in Chapter Ill. To truly replicate genetic
analyses in the AGP dataset, it will be necessary to perform a confirmatory factor
analysis by applying the same cluster analysis and principal component loadings
identified in the AGRE dataset, to the AGP dataset. In other words, to fit phenotype
characteristics of individuals in the AGP dataset into the defined AGRE clusters.

It is interesting to speculate at potential genotype-phenotype relationships resulting
from pathway analyses of the main cluster groupings. However, there is still substantial
phenotypic heterogeneity in these main subgroups within the same dataset. It would be
beneficial to further evaluate genetic contributions to ASD-related phenotypes in the
smaller subclusters, as opposed to main clusters. The defined subclusters within each
main cluster seem to represent ASD subgroups with more homogeneous phenotypic
expression than the main clusters, and could be very informative for these types of
evaluations. For example, an interesting analysis would be to evaluate genetic
contributions in the 'youngest' subclusters. These subclusters grouped separately from
the other subclusters within the ‘more severe’ main clusters for both datasets.

Since the functional focus of the KEGG database is definition of primarily metabolic
pathways, it would be interesting to evaluate other pathway databases more potentially
relevant to functional mechanisms implicated in ASD. We have evaluated the Gene
Ontology database with PARIS and have numerous interesting results from these
analyses that could be evaluated in future studies. Preliminary examination of the Gene
Ontology results show that some of the core genes identified in the KEGG database
analyses overlap with genes in the Gene Ontology database, but many strongly

associated genes are unique.
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To obtain more conclusive and reliable results from our small molecule experiments,
it will be necessary to further troubleshoot gPCR and try to obtain tighter cycle
thresholds for triplicates. Obtaining an endogenous control gene that is not affected by
exposure to small molecule compounds is an important next step. In the future, we
would like to run gPCR normalizing to a primer-limited assay for GAPDH, to determine if
compounds do have genotype-specific functional effects that do not relate directly to
ASMT expression. It would be interesting to evaluate potential expression effects of
these small molecules on other genes in the melatonin pathway. It may be that the
expression of other genes in the melatonin pathway is dependent on endogenous ASMT
expression, which is altered due to the genotype-specific effects of SNPs in the ASMT
promoter B and 5-UTR. It would also be relevant to perform unbiased transcriptome
profiling using RNA extracted from our treated cells to evaluate potential expression
effects on many genes that function in other pathways, in addition to the melatonin

pathway.

The importance of determining the relationship of genotype to phenotype in all
aspects of genetic analysis of complex disease cannot be overstated. Most of the ASD
risk genes identified, especially via pathway-based analysis, have some known
biological function, but the relationship of these genes to ASD is largely unknown. The
currently known list of ASD risk genes and other genetic abnormalities need to be
extensively studied to truly understand the functional consequences of each variation.
While progress has been made, there is still much to learn about pathophysiology and

pharmacology in ASD.
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