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CHAPTER I 

 

INTRODUCTION 

 

History of Autism Spectrum Disorders 

Autism spectrum disorders (ASD, OMIM 209850) are complex, neurodevelopmental 

disorders characterized by impairments in social communication and the presence of 

restricted and repetitive behavioral patterns13. Autism was first described in 1943 by Dr. 

Leo Kanner102. Dr. Kanner described 11 patients, mostly boys, having a combination of 

severe social dysfunction, variable communication deficits, and the presence of 

repetitive restrictive behaviors. Interesting observations based on these initial case 

studies included the identification of large head size in approximately half of the 

subjects. Dr. Kanner also postulated a biological, genetic basis for the disorder. 

However, it was not until much later that autism began to be considered a distinct 

disorder in psychiatric diagnostic manuals. Since then, prevalence estimates have 

steadily been increasing with current estimates in the United States as high as 1 in 88 

children1. These estimates vary widely across all sites, by sex (ASD are estimated to be 

almost 5 times more common among boys), and by racial/ethnic group.  

There are numerous possible explanations for the substantial increase in ASD 

prevalence over such a short period of time. One is that the concept of autism has 

broadened from what was previously considered a 'strict' diagnosis of autistic disorder, 

to include individuals of normal intelligence with adequate language skills (DSM-IV 

Asperger Disorder), those not quite meeting diagnostic criteria in all three domains 

(DSM-IV Pervasive Developmental Disorders-Not Otherwise Specified), and those who 

develop normally for a period of time followed by regression in skills or a series of 

regressions in skills (DSM-IV Childhood Disintegrative Disorder)12. It is notable these 
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diagnoses are not based on etiology, but on expert observation and assessment of 

behavioral and cognitive characteristics. How these clinical domains relate to underlying 

dysfunction in specific cognitive domains is essentially unknown. 

Even within more unified diagnostic definitions, the severity of clinical presentation is 

quite heterogeneous. Some affected individuals also present with various comorbidities 

(i.e. epilepsy, mental retardation), endophenotypes (i.e. presence of savant skills, 

specific language impairment), and biomarkers (i.e. macrocephaly, hyperserotonemia)62, 

76, 151, 178, 209.  Thus, autistic disorder appears to be not a single entity but rather a 

complex phenotype expressing a continuum of symptom severity and neurocognitive 

impairments. This is reflected in the recent change in diagnostic criteria for ASD 

between the DSM-IV and the DSM-5. These revisions were motivated by the lack of 

empirical data supporting separate disorders within the autism spectrum13. 

 

Genetics of Autism Spectrum Disorders 

ASD was also for a long time not considered to have any underlying genetic basis81. 

The first evidence for an inherited genetic component to autism came from twin studies 

published in 197760, 61. These initial twin studies demonstrated a genetic susceptibility to 

the disorder and provided substantial evidence supporting biological origins. To date, 

there is overwhelming evidence suggesting strong genetic susceptibility factors 

underlying ASD. The sibling recurrence risk is estimated at 45–90 times greater than the 

population risk. Current estimates from twin studies indicate 58-60% of monozygotic 

twins are concordant for the full syndrome and 50-90% are concordant for related social 

or cognitive abnormalities21, 45, 79. There are also a number of syndromes with well-

defined genetic causes associated with ASD. These include, but are not limited to, Rett 

syndrome, tuberous sclerosis, neurofibromatosis, and Fragile X Syndrome14, 48, 104, 228. 

The hallmark presentations of these syndromes are more homogeneous profiles of 



3 
 

characteristic physical features, neurological impairment, and ASD symptoms. However, 

only a very small percentage of individuals with ASD (<1%) have an identifiable genetic 

etiology known to cause these monogenic disorders3. 

The reported prevalence and heritable nature of ASD suggests that genetic variation 

present at relatively common frequencies in the overall population contribute to the 

genetic etiology underlying these disorders. Numerous studies have evaluated the 

involvement of common variation in ASD. Results from these studies implicate a number 

of commonly occurring variations, across the genome, each with relatively small effect 

sizes15, 17, 106, 133, 221. It is hypothesized that many idiopathic ASD cases, those with no 

diagnosed clinical syndrome, are a result of the interactions of multiple common 

variants, each with small to moderate effect sizes. Identifying common variation with any 

appreciable influence on ASD risk has proven difficult; however, this is not incredibly 

surprising, given the obvious complexity of ASD. Common variation associated and/or 

linked to ASD is discussed in greater detail in Chapter III. 

A large number of rare, recurrent, and non-recurrent mutations have been identified 

that are thought to lead to ASD34, 142, 162. Most of the identified rare mutations are small 

regions of chromosomal structural variation known as copy number variants (CNVs). 

Many of these CNVs have large effect sizes and some appear to be sufficient to cause 

ASD. Identified inherited CNVs, like those at 16p11 and 15q11-13, are transmitted from 

apparently unaffected parents, who may display some level of autistic traits, to affected 

offspring176. However, most identified CNVs are de novo events, arising in the germline. 

These de novo CNVs are reported in ~5–10% of ASD probands25, 156, 176, 177. Overall, 

CNVs are linked to a broad variety of clinical features, including severe neurological 

symptoms, severe ASD, milder autism-spectrum traits, and behavioral disorders outside 

of the autism spectrum160. Many CNVs found in ASD patients have also been found in 

patients specifically with intellectual disability and schizophrenia, but no ASD47, 162. 
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Phenotypic heterogeneity characterizing CNV expressivity makes it difficult to determine 

whether an identified CNV is the sole cause of autism, confers vulnerability to the 

disease, or represents a chance finding. It is also important to note that many de novo 

CNVs associated with ASD, while rare, are also observed in unaffected controls, 

suggesting these variations are not necessarily causal or fully penetrant34. Some CNVs 

may be acting as complex genetic risk factors, with intermediate effect sizes, variable 

penetrance and variable expressivity70.  

The current results from numerous genetic analyses in ASD all indicate an incredible 

complexity of underlying genetic mechanisms. However, the known biological functions 

for recurrently implicated genes suggest involvement of shared molecular pathways. For 

example, numerous genes have been identified that encode proteins important to 

synaptic function. These include neurologins and neurexins, specifically NLGN3, NLGN4 

and NRXN158, 98. Interactions between neuroligins and neurexins trigger the formation of 

functional pre-synaptic boutons46. Also included are post-synaptic scaffolding proteins, 

specifically SHANK1, SHANK2, and SHANK327, 203.  

Another convergent molecular mechanism in ASD is related to morphogenesis. 

Numerous protein-altering mutations and cytogenetic abnormalities have been identified 

that affect morphogenetic and growth-regulating genes. These genes include HOXA1, 

the first HOX gene to be expressed during embryogenesis which is necessary for the 

proper development of the brainstem, cerebellum and several cranial nerves42, 136, 208. 

Another implicated growth-regulating gene is EIF4E, the rate limiting component of 

eukaryotic translation initiation that plays a key role in learning and memory154. Finally, 

mutations disrupting the tumor suppressor gene, PTEN, have been identified in 

numerous patients with ASD. Most subjects with autism carrying PTEN mutations are 

characterized by severe to extreme macrocephaly35. 
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A collection of recent genetic evidence suggests that some ASD cases may result 

from abnormal Ca2+ homeostasis during neurodevelopment112. Several genetic studies 

have identified autism-related genes encoding ion channels, receptors, and Ca2+-

regulated signaling proteins, often times crucial to central nervous system development. 

These genes include, CACNA1C, CACNA1F, CACNA1H, KCNMA1, and SCN2A85, 117, 

198, 199, 222. 

Finally, the most consistently replicated genes harboring common variants related to 

ASD are: the SLC6A4 gene encoding the serotonin transporter, the EN2 gene, encoding 

the engrailed homeobox 2 protein (implicated in pattern formation during central nervous 

system development), the OXTR gene, encoding a G-protein coupled oxytocin receptor, 

the CNTNAP2 gene, encoding a neurexin family protein that functions in the nervous 

system, the GABRB3 gene, encoding a ligand-gated gamma-aminobutyric acid receptor, 

the RELN gene, encoding an extracellular matrix protein important for neuronal 

migration during development, the ITGB3 gene, encoding an integrin important in cell 

adhesion and signaling, and the MET gene, encoding the Met proto-oncogene involved 

in brain development160. 

 

Small Molecule Compound Treatment of Autism Spectrum Disorders 

There are currently no approved treatments for ASD as a whole, however, treatment 

regimens have been developed to address specific symptoms related to ASD. Atypical 

antipsychotics have been evaluated and approved for treating aggressive or self-

injurious behavior, severe mood swings, tantrums, and irritability in individuals with ASD. 

A commonly prescribed, and well-studied, atypical antipsychotic in ASD is risperidone180. 

The primary action of this molecule is serotonin 5-HT2 receptor blockade. It is also a 

potent dopamine D2 receptor antagonist147. Selective serotonin reuptake inhibitors 

(SSRIs) are also often used for treating repetitive behaviors in ASD, and are known to 
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regulate peripheral and central nervous system serotonin levels110. SSRIs are effective 

in treating obsessive compulsive disorder in individuals without a diagnosed ASD39. 

However, current evidence suggests SSRIs, specifically citalopram (or escitalopram) 

and fluoxetine, are ineffective in treating restrictive repetitive behaviors in individuals with 

ASD110, 146. There has also been a recent push in the medical community to develop 

treatments that supplement endogenous molecules, like melatonin and oxytocin, shown 

to have dysregulated production in some ASD patients22, 137. Unfortunately, there is 

insufficient evidence supporting efficacy for most small molecule compounds used to 

treat ASD symptoms, and a large body of reported adverse events110, 146, 180. Further 

functional characterization of implicated genes and biological pathways are important 

avenues of research that will hopefully provide results helpful toward more effective 

personalized treatment of these psychiatric syndromes. 

 

All of the combined research in ASD highlights the incredible complexity of these 

disorders. It is difficult to identify unifying themes and establish reliable genotype-

phenotype relationships. The aim of this project was to overcome issues complicating 

identification and characterization of genetic factors involved in ASD. We attempted to 

minimize the effects of phenotypic heterogeneity, locus heterogeneity, epistasis and 

multiple genes conferring small effects to potentially increase power to detect genetic 

factors underlying ASD. To progress toward understanding how these significant genetic 

findings contribute to disease process and identify more effective treatments for ASD, 

further functional characterization of these associations is necessary. We attempted 

functional characterization of ASD-associated variation by screening a strongly 

implicated candidate gene for small molecule effects. This project has the opportunity to 

broadly impact the biomedical research community by contributing not only to ASD 

etiology and genetics, but also neurodevelopmental biology and pharmacogenetics. 
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CHAPTER II 

 

IDENTIFICATION OF GENETICALLY MEANINGFUL PHENOTYPIC SUBGROUPS IN 

AUTISM SPECTRUM DISORDERS 

 

Introduction 

 

As discussed in Chapter I, genetic factors have a strong influence on risk for Autism 

Spectrum Disorders (ASD)160. However, it has been difficult to identify individual, 

common genetic factors that replicate across multiple ASD cohorts, or confer large 

effects on risk15. A potential reason is that the wide variability in clinical manifestation 

can be explained by underlying genetic heterogeneity32, 70, 89. Identification of more 

phenotypically homogeneous subgroups of ASD may help account for this 

heterogeneity, allowing detection of genetic mechanisms conferring larger risk effects for 

specific ASD subgroups. 

Various attempts have been made to reduce heterogeneity in large-scale genetic 

studies of ASD. One approach is to separate individuals who meet Diagnostic and 

Statistical Manual-IV (DSM-IV) criteria for strict Autistic Disorder separately from those 

meeting only some criteria (i.e. DSM-IV Pervasive Developmental Disorder Not 

Otherwise Specified [PDD-NOS] or Asperger Disorder)12, 17, 123, 230. While this 

dichotomous categorization of ASD has advanced our knowledge of potential genetic 

risk factors, via detection of multiple statistically associated and/or linked chromosomal 

regions, it has still not implicated any genetic variants with large effects15. Further, family 

studies suggest that each of the behavioral domains underlying autism, including social 

impairment, communication impairment, and repetitive behavior, has separately 

inherited genetic risk factors that segregate in families44. Additionally, the change in 

criteria between DSM-IV and the new DSM-5 was motivated by the lack of empirical 
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data supporting separate disorders within the autism spectrum, highlighting the need for 

empirical approaches to identifying subphenotypes within ASD64, 192. 

Previous phenotype-focused studies have emphasized the importance of evaluating 

multiple sources of behavioral information when attempting to identify behaviorally 

defined subgroups within ASD65, 67, 122, 213. Multivariate statistical methods evaluating 

multiple sources of behavioral data have been used previously to identify between two 

and four defined subgroups within the broader classification of ASDs.  Categories used 

to distinguish these previously identified subgroups are severe, moderate and mild ASD, 

and severe intellectual disabilities53, 57, 164, 181, 187, 197, 201, 225. The most consistent findings 

across these different analyses are subgroups defined as either high- or low-functioning 

based on the level of symptom severity and some measure of intellectual capability. 

When age at exam is controlled for, fewer distinct clusters are identified and functional 

level (as indicated in these studies by nonverbal IQ, Wing Autistic Disorder Interview 

Checklist, Peabody Picture Vocabulary Tests, and VABS) stands out as a distinct 

identifier of subgroups57, 201. Despite these data, most studies have not evaluated 

whether or not there are specific genetic contributions to these phenotypic subgroups. 

One notable exception is a study where subsequent genetic analyses were performed in 

subgroups defined by cluster analysis88, 89, 91. Novel genetic factors were associated with 

distinct ASD subgroups, providing further support for phenotypic subgroups being 

genetically meaningful88. However, the cluster analysis used to define subgroups was 

limited to a single source of behavioral information, the ADI-R91. 

Many previous subgrouping efforts also lacked ascertainment of biomarkers or 

comorbidities commonly seen in ASD. As quantitative traits that are associated with ASD 

but not required for diagnosis, biochemical or anatomical biomarkers such as elevated 

whole blood serotonin levels or enlarged head size may improve our ability to identify 

more genetically homogeneous subgroups76, 89, 122, 214, 225. For example, multiple groups 
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have implicated the same chromosomal region, 7q35, and candidate gene, CNTNAP2, 

by refining phenotype definitions to include specific language impairment (SLI) in ASD, 

which parallels findings in isolated SLI6, 54, 161, 215, 223. With the DSM-5, SLI is removed 

from the ASD criteria and may therefore represent a comorbid diagnosis that is seen in a 

substantial minority of children with ASD, similar to other comorbid disorders like 

epilepsy209. 

We hypothesized that subgrouping cases using multiple sources of behavioral and 

biomarker data would create a more genetically meaningful phenotype definition and 

increase our power to detect genes influencing risk for ASD. We used novel applications 

of multivariate statistics to explore behavioral and clinical information from multiple 

sources. 

Methods 

 

Integrate Behavioral and Biomarker Data 

We included domain scores from the two main diagnostic instruments, the Autism 

Diagnostic Interview-Revised (ADI-R)128 and Autism Diagnostic Observation Schedule 

(ADOS)75, 127. Diagnosis-based studies find the greatest specificity when using both the 

ADI-R and ADOS in a multidisciplinary assessment process118. We also included scores 

from Vineland Adaptive Behavior Scales (VABS)193-195 for evaluation of intellectual and 

adaptive function, an important distinguishing factor in ASD28, 141. Ages at exam for all 

three instruments were included. Finally, we included the quantitative biomarker ‘head 

circumference’ (HC) as an indicator of either developmental or persistent macrocephaly. 

While macrocephaly is seen in the minority of adults with ASD, an increased rate of 

head growth during early childhood is noted in many children with ASD62, 213. 
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Multivariate Analyses 

We determined the correlation between phenotype traits in the discovery dataset 

using Spearman’s rank correlation coefficients. Since many variables are correlated, and 

discriminant analyses are extremely sensitive to variable input, we developed a 

weighting scheme (described below) for input variables based on the correlation 

structure to ensure that inter-correlated phenotype information did not overly influence 

the results. 

To understand the underlying phenotypic variability in the discovery dataset we 

performed a Principal Components Analysis (PCA)87. This analysis identifies the most 

important phenotypic traits in the data, simplifies the description of the dataset, and 

analyzes the structure of the observations and the input variables2. 

To define subgroups of phenotypic expression in the broader diagnostically-defined 

ASD dataset, we performed agglomerative hierarchical cluster analysis. This clustering 

method begins with each individual as a separate cluster and aggregates them back 

together using connectivity-based methods to evaluate the input data, effectively 

identifying groups of individuals having more similar measures across all input 

variables103. 

 

Dataset Demographics 

The discovery dataset consists of individuals from the Autism Genetic Resource 

Exchange (AGRE) family-based study71. Individuals not meeting DSM-IV criteria12 for an 

Autism Spectrum Disorder diagnosis on both the ADI-R and the ADOS were excluded. 

We also excluded individuals with potentially non-idiopathic autism (e.g. known 

neurogenetic disorders, known chromosomal abnormalities, prematurity <35 weeks). 

The final discovery dataset has 1,261 ASD cases, age at ADI-R 2-21 years old. The 

genetic ancestry as determined by the software program Structure165 is 73% European 
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American (EA), 17.8% Mexican American, 2.7% African American, and 6.5% unknown 

ethnicity due to missing genome-wide data. This dataset is 80% male and 95% of the 

cases are from multiplex families. 

The dataset we used for replication consists of individuals from the Autism Genome 

Project (AGP)92. This dataset is comprised of 2,563 ASD cases who are not present in 

the discovery AGRE dataset, meet DSM-IV criteria for a spectrum disorder on both the 

ADI-R and ADOS, and were 2-21 years old at the time of ADI-R. The genetic ancestry is 

64.6% European American, 3% Mexican American, 2% African American, and 30.4% 

unknown ethnicity due to missing genome-wide data. This dataset is 84% male and 54% 

of the cases are from multiplex families. The de-identified individual and family IDs for 

the final datasets are available in Appendix 1. 

 

Phenotype Data Comparisons 

We included social, communication, and restricted repetitive behavior (RRB) domain 

scores from both the ADI-R and ADOS. The communication measure for the ADI-R is 

divided into verbal and nonverbal scores. Since every person evaluated on the ADI-R 

receives a nonverbal score but not a verbal score and verbal and nonverbal 

communication scores are strongly correlated (ρ=0.86), we only incorporated the 

nonverbal scores in our analyses. We also included ‘abnormality of development evident 

at or before 36 months’ (DevAb) domain scores from the ADI-R. When available, domain 

standard scores for socialization, communication, daily living skills and motor skills were 

included from the VABS. Ages at exam for all behavioral tests were also incorporated 

into analyses. We evaluated head circumference (HC) z-scores taken at one time point. 

We generated z-scores for available HC measures by standardizing for age and sex 

using a normal population170. We excluded any HC measures taken when individuals 

were <1 month old. 25%-46% of the VABS and HC data were missing across the 



12 
 

datasets; however, the methods we used allow for and are robust to missing data (Table 

2.1).  

 

 

 

 

 

 

 

 

 

Traits included in our analyses represent different types of statistical variables, 

making direct comparisons difficult. The ADI-R is an interview given by a trained ASD 

specialist to caregivers of children and adults suspected of having an ASD. It probes for 

language, social, behavioral and functional abnormalities inconsistent with the 

individual’s current developmental stage. The ADI-R interview generates scores in each 

of three content areas: communication and language, social interaction, and restricted, 

repetitive behaviors. Item scores are measured on a finite ordinal scale. Increased 

scores indicate more severe abnormalities reported for the evaluated behaviors126, 128. 

Domain scores are calculated for all items assessing the behavioral characteristics 

relevant to ASD (social, communication, and restricted repetitive behaviors) and 

represent the sum of relevant item scores.  

Table 2.1. Availability of 

Phenotypes. Reported are 

percentage breakdowns of 

trait-specific information in 

both datasets. 



13 
 

ADOS is a semi-structured assessment of communication, social interaction and 

play, or imaginative use of materials, for individuals suspected of having autism or other 

pervasive developmental disorders127. Behavioral items relevant to ASD are scored on 

finite, ordinal scales, higher scores on these items indicate increased severity for 

abnormalities in the evaluated behavior75. Domain scores are calculated as described 

above for the ADI-R. ADOS domain scores were modified prior to percentile rank 

calculations to be comparable across the four possible modules by reducing raw ordinal 

values to that of the module with the smallest scale for each domain. For example, for 

ADOS modules 1, 3, and 4 communication is scored on an ordinal scale from 0-6, while 

for ADOS module 2 this measure is only scored on a scale from 0-4. Therefore, 

communication domain scores from modules 1, 3, and 4 were reduced to a scale of 0-4 

to make these scores more comparable to module 2. 

VABS focuses on social skills and is the measurement of adaptive behaviors, 

including the ability to cope with environmental changes, to learn new everyday skills 

and to demonstrate independence. This scale also yields composite and domain scores, 

however measured on a finite, continuous scale195. Increased scores on VABS 

measures indicate decreased severity for expression of evaluated traits. VABS data 

were ranked inversely to account for the inverse relationship of these severity scores 

when compared to the other diagnostic methods used in analyses. 

Head circumference z-scores and ages at exams represent continuous variables 

measured on an infinite scale. To allow more comparable measures, we chose to 

transform variables into Hazen percentile ranks using Stata 11.284, 200.  

We determined the correlation structure across all these variables by calculating 

pairwise Spearman’s rank correlation coefficients (ρ) (Stata 11.2) using all available 

percentile rank data. 
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Item-Level & Domain Score Comparisons: ADI-R & ADOS 

We chose to use domain scores, as opposed to item-level scores, from all evaluated 

behavioral instruments since these scores effectively cover information relevant to 

primary phenotype characteristics in ASD, and to minimize the potential for overfitting in 

our cluster analyses. Overfitting generally occurs when a model is excessively complex, 

such as having too many parameters relative to the number of observations. A model 

that has been overfit will generally have poor predictive performance, as it can 

exaggerate minor fluctuations in the data207. However, item level scores provide 

potentially genetically-relevant phenotypic information related to endophenotypes (i.e. 

savant skills)88, 89. To determine what information relevant to item-level scores were not 

covered by domain scores included in our analyses, we calculated percentile ranks for 

item-levels score from both instruments and determined the correlation across item 

scores and domain scores assessed on the same instrument. 

 

Principal Components Analysis (PCA) 

PCA was performed on percentile ranked data using the ‘FactoMineR’ package in 

R119. Variable weights were incorporated into PCA using the correlation structure 

observed in the dataset. We chose a threshold for independence at ρ<0.50. If a variable 

was correlated with another variable at ρ≥0.50 those variables were weighted to allow 

for only a partial variable contribution to PCA. Social and communication domain scores 

from the ADI-R were weighted such that these two scores together contributed one total 

variable weight in analysis. ADI-R RRB measures did not meet our threshold for 

correlation with any other variable and were therefore independent of other variables 

included in analysis. ‘Developmental abnormality evident prior to 36 months’ domain 

scores were also given one total variable weight. For the ADOS, we weighted social and 

communication domain scores together as one total variable contribution. The ADOS 
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RRB domain scores were weighted as an independent contribution. For the VABS, all of 

the domain standard scores were weighted as one total variable contribution. It is 

notable that the strongest correlations observed for the motor skills domain standard 

scores are with the communication domain standard scores at ρ=0.49, which did not 

quite meet our threshold for non-independence. However, the correlations observed by 

the VABS developers for the motor skills domain standard scores indicated dependence 

on the communication domain standard score (ρ=0.56-0.61)193. As such, we chose to 

incorporate only a partial weight for motor skills domain standard scores in our analyses. 

Head circumferences were given one total variable weight. Ages at exam for ADI-R, 

ADOS and VABS were weighted such that these three variables contributed one total 

variable weight. The cumulative number of variables incorporated into PCA using this 

weighting scheme equaled eight variables. We allowed up to 20 PCA dimensions to be 

retained in the results. 

 

Optimal Clustering Method and Dataset Partitions 

Dissimilarity matrices were calculated using the Gower dissimilarity measure from 

the ‘FD’ package in R, with variables weighted according to the weighting scheme 

described above for PCA115, 116. Seven different clustering methods were evaluated for 

internal validity while partitioning the dissimilarity matrix into anywhere from two to 15 

clusters using the ‘clValid’ package in R31. Evaluated clustering methods were kmeans, 

agglomerative hierarchical, model-based, partitioning around medoids, divisive 

hierarchical, self-organizing tree algorithm, and clustering large applications. 

To evaluate cluster validity, clValid calculates the Connectivity (an indication of the 

degree of connectedness of the clusters), Dunn index (a ratio of the smallest distance 

between observations not in the same cluster to the largest intra-cluster distance) and 

Silhouette Width (the overall average of the average distance between each observation 
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and others in the same cluster compared to different clusters). To evaluate cluster 

stability, clValid calculates the Average Proportion of Non-overlap (average proportion of 

observations not placed in the same cluster when variables are removed), Average 

Distance (average distance between observations placed in the same cluster when 

variables are removed), Average Distance between Means (average distance between 

cluster centers for observations placed in the same cluster when variables are removed) 

and Figure of Merit (average intra-cluster variance of the removed variable, where the 

clustering is based on the remaining variables)31. Sensitivity analysis was performed by 

removing one variable, reapplying weights to account for the missing variable, 

calculating a Gower dissimilarity matrix, clustering the data and calculating the above 

mentioned stability scores. This was done for each variable. 

 

Clustering and Cluster Validation 

Dissimilarity matrices were calculated as described above and variables were 

weighted according to the weighting scheme described above for PCA115, 116. The final 

agglomerative hierarchical clustering was performed on the Gower dissimilarity matrix 

using the ‘cluster’ package in R135. The agglomerative coefficient was calculated for the 

final clustering of the data. This represents a measure of all the individual dissimilarities 

calculated across the dataset and is an indication of the clustering structure identified103. 

This coefficient is measured on a scale from zero to one, zero indicating no clustering 

structure and one indicating complete structure. 

Validity of the final clusters was determined by permuting phenotype data across 

individuals, clustering the permuted data and calculating the Adjusted Hubert-Arabie 

Rand index (AHARI) to compare clustering of the real data to the permuted data94. This 

was done for 1,000 data permutations and the AHARIs were averaged. The 

permutations were accomplished by writing a function in R and the AHARI statistic was 
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calculated using a command from the ‘mclust’ package63. Sensitivity analyses were 

performed using the ‘clValid’ package in R, with slight modifications; weights were 

reapplied to account for variables removed and a Gower dissimilarity matrix was 

calculated prior to clustering31. Kruskal-Wallis tests were performed in STATA 11.2 on 

untransformed scores to determine the distributional variation of scores between main 

clusters and across subclusters. 

 

Genetic Contribution to Cluster Assignment 

Intra-cluster family structure was evaluated by calculating the odds of individuals 

being assigned to the same cluster given a familial relationship. We generated a 2X2 

contingency table and calculated an odds ratio via the chi-square statistic. ‘Case’ status 

was defined as a full sibling relationship and ‘exposure’ was defined as assignment to 

the same phenotype cluster. Each individual was manually scored for the number of full 

sibling relationships in the dataset. Since there are substantially more unrelated 

individuals than related in the datasets, we randomly sampled groups of unrelated 

individuals representing the same number of available familial relationships. We 

calculated an odds ratio for related ‘cases’ and each randomly sampled unrelated 

‘control’ group. This was done 10 times. The reported odds ratios represent the range for 

these calculations. We estimated genetic relationships using Single Nucleotide 

Polymorphism (SNP) markers previously genotyped in our datasets. Markers were 

pruned using genotyped founders based on linkage disequilibrium. We set an r2 

threshold of 0.16, within a 500 SNP window, sliding 5 SNPs at a time. We subsequently 

created a pedigree file of cases in our cluster dataset. Wright’s F-statistic (Fst) was then 

calculated using PLATO77. We grouped individuals into subpopulations based on cluster 

assignment. For each genetic marker, the correlation between individuals drawn from 
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the subpopulation relative to the total population was determined. We then took the 

average Fst calculated across the informative autosomal markers. 

 

 

Results 

 

Discovery Dataset (AGRE) 

Correlation Among Variables 

The correlation structure indicates diverse relationships among phenotype variables 

in the AGRE dataset (Fig. 2.1; Table 2.2). Social and communication scores measured 

on the same instrument are positively correlated (ρADI-R=0.62, ρADOS=0.57, ρVABS=0.80), 

while restricted and repetitive behavior scores are not strongly correlated with social and 

communication scores assessed on the same instrument (ρADI-R=0.07, 0.17; ρADOS=0.18, 

0.35). When comparing scores evaluating the same behavioral characteristic between 

the ADOS and ADI-R instruments, there is minimal correlation, especially with regard to 

RRB scores (ρSocial=0.37, ρCommunication=0.31, ρRRB=0.04). The strongest variable 

correlations across the ADI-R, ADOS and VABS are positive correlations between the 

social and communication scores from the ADI-R and VABS (ρ=0.45). The strongest 

correlation for the ‘developmental abnormality evident prior to 36 months’ scores from 

the ADI-R are a positive relationship with ADI-R social and communication domain 

scores (ρSocial=0.31, ρCommunication=0.29). Head circumferences are not strongly correlated 

with any of the behavioral measures. The strongest correlation for HCs is a positive 

correlation with VABS social and daily living skills domain standard scores (ρ=0.14). As 

expected, ages at exam are strongly correlated across the ADI-R, ADOS and VABS 

(ρ=0.84-0.94). 
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Table 2.2. Spearman’s Correlation Coefficients. Spearman’s rho correlations 

calculated in AGRE discovery dataset. Comm=Communication Domain Scores; 

RRB=Restricted, repetitive behaviors; DevAb=Abnormality of Development evident 

≤36 months; MS=MotorSkills; DL=Daily Living; HC=head circumferences. 

Figure 2.1. Variable Correlation Structure in Discovery Dataset. Plot of Spearman’s 

correlation coefficients used in variable weighting scheme for PCA and clustering. 
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Item-Level & Domain Score Comparisons: ADI-R & ADOS 

Spearman’s correlation coefficients indicate that for the ADI-R, the domain scores we 

included in analyses do not provide information relative to presentation of savant skills, 

acts of aggression, or hyperactivity (Fig 2.2a). Domain scores from the ADOS do not 

provide information relative to speech abnormalities associated with ASD, anxiety, 

aggressive tendencies, or hyperactivity (Fig 2.2b). 

Figure 2.2. Correlation Across Domain and Item Scores. Plot of Spearman’s 
correlation coefficients showing correlation across domain scores used as variable input 
(indicated by stars) and item-level information not included in domain score calculations 

for a. ADI-R and b. ADOS. 
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Principal Components Analysis 

PCA identifies15 components comprising the data, with 53% of the phenotypic 

variance being explained by the first three components and the remainder of the 

variance being explained in increasingly smaller increments from components four to 15 

(Fig. 2.3). Principal component (PC) one defines 25% of the phenotypic variance in the 

discovery dataset. Although most input variables contribute to the phenotypic variance 

defined in PC1, the two variables with the strongest contributions are ADOS RRB scores 

and ADI-R DevAb scores (Table 2.3). HC, ADI-R RRB scores and ages at exam do not 

have strong contributions to PC1. However, these variables explain the majority of the 

phenotypic variance defined by PC2 and PC3. These two components combined explain 

another 29% of the phenotypic variance in the discovery dataset (PC2≈15%, PC3≈14%). 

PC4 defines another 11% of the phenotype variation in the dataset. Similar to PC1, the 

two variables contributing most to the phenotypic variance defined in PC4 are ADI-R 

DevAb scores and ADOS RRB scores. However, unlike PC1, the next strongest 

contributors are RRB scores from the ADI-R. Social and communication scores from the 

ADI-R and ADOS, and scores from the VABS have much smaller contributions to PC4 

than to PC1. PC5 defines 9% of the variance in the data and has strong contributions 

from HCs, DevAb scores and RRB scores from the ADI-R. PC6 defines another 7.5% of 

the variance in the dataset with ADOS RRB and communication scores contributing to 

over half of this defined variance. PC7 defines another 5.5% of the phenotypic variance; 

its strongest contributors are measures from the VABS and ADOS communication 

scores. PC8 defines another 5% with the strongest contributors being ADI-R social and 

communication scores closely followed by these same scores from the ADOS. The 

combined phenotypic variance explained in the AGRE dataset by the first 8 principal 

components is 91.5%. The remaining principal components, PC 9-15, each define very 

small portions of the phenotypic variance observed in the data (0.35%-2.5%) and 
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Figure 2.3. Phenotype Variance Explained by Principal Components. Plotted are the 
percentages of phenotypic variance explained, based on eigenvalues, by each Principal 
Component defined in the AGRE dataset. 

combined explain the remaining 8.5% of phenotypic variance in the dataset. The 

variables contributing the most to these final seven PCs are further outlined in Table 2.3. 

Table 2.3. Variable Contributions to Principal Components of AGRE Dataset. 
Variables contributing the most to the observed variance explained by each component 
are indicated in bold italics. 
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Clustering 

PCA helped to define the underlying phenotypic variability in the dataset and identify 

the most important classifying variables, but did not clarify the phenotypic nature of each 

subgroup of cases. Unsupervised clustering was therefore performed to define ASD 

subgroups and obtain a broader sense of the phenotype characteristics of these 

subgroups. The overall best validity scores were calculated when using agglomerative 

hierarchical clustering to group the AGRE dataset into two clusters. The next best 

validity scores were calculated when using agglomerative hierarchical clustering to 

subgroup the dataset into 10 subclusters (Table 2.4). 

Following agglomerative hierarchical clustering, we grouped the data into the most 

valid partition (i.e. two major clusters), one cluster with 443 cases and one cluster with 

818 cases (Fig. 2.4). The agglomerative coefficient calculated for clustering of the AGRE 

dataset is 0.78, evidence that a strong clustering structure was identified. We evaluated 

phenotype variable distributions between the two main clusters. Kruskal-Wallis tests 

show that all variable distributions, except ADI-R RRB and HC, are significantly different 

(p<0.0001) between these clusters (Table 2.5). Examination of the summary statistics for 

phenotype variables by cluster show that individuals with scores indicating more severe 

measures for most variables are placed into the larger cluster, referred to as ‘more 

severe’, when compared to the smaller cluster, referred to as ‘less severe’ (Table 2.6). 

The two main clusters could then be grouped into 10 subclusters; the ‘more severe’ main 

cluster grouped into six subclusters and the ‘less severe’ main cluster grouped into four 

subclusters. Phenotype variable distributions were then evaluated across the 10 

subclusters. Kruskal-Wallis tests show that the previously non-significant ADI-R RRBs 

and HC are very different (p<0.0001) across the 10 subclusters. HC distributions are 

statistically different across the four subclusters comprising the ‘less severe’ main cluster 

(p=0.0034) and the six subclusters comprising the ‘more severe’ main cluster 
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(p<0.0001). ADI-R RRB score distributions are also statistically different between the 

four subclusters comprising the ‘less severe’ main cluster (p<0.0001) and the six 

subclusters comprising the ‘more severe’ main cluster (p<0.0001). The average Adjusted 

Hubert-Arabie Rand index (AHARI) calculated over 1,000 data permutations shows that 

partitioning of real data for the discovery dataset is significantly different than partitioning 

permuted datasets (AHARI=-6.14x10-5). 

Sensitivity analyses show that ADI-R DevAb scores have the overall largest effect on 

main cluster stability. Communication scores from the ADOS and social, communication 

and daily living domain standard scores from the VABS appear to have the least effect 

on main cluster stability. The remaining input variables have similar and modest effects 

on main cluster stability. Regarding the subclusters, with the exception of the DevAB 

scores from the ADI-R, removal of any other input variable has similar and minor effects 

on subcluster stability (Table 2.7). 

Familial relationships are significantly associated with assignment to the two main 

phenotype clusters (OR≈1.38-1.42, p<0.00001). Wright’s F-statistic indicates that 

genotype frequencies are more similar within clusters than in the entire unclustered 

dataset (Average Fst≈0.17) (Table 2.8). 
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Table 2.5. Cluster Differences 
in the AGRE Dataset. Kruskal 
Wallis comparisons of variable 
distributions between the two 
main clusters and across the ten 
subclusters. All input variable 
distributions, except ADI-R RRB 
and HC, are significantly 
different between the main 
clusters. ADI-R and HC 
distributions are significantly 
different across subclusters. 
Asterisks indicate information 
not used as input variable. 

Table 2.6. Summary Statistics for Unclustered vs Clustered AGRE Datasets. 
Reported are medians and modes observed in the unclustered dataset compared to 
the two main clusters. Continuous variables are starred to indicate that the mean is 
reported in place of the median. Cases with scores indicating increased ASD severity 
preferentially cluster into the second, larger cluster. Age is reported in years. 
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Replication Dataset (AGP) 

We tested for replication in the independent, non-overlapping Autism Genome 

Project dataset. We see a similar correlation structure among AGP dataset phenotype 

input variables as in the AGRE dataset (Table 2.9). Using the same correlation threshold 

(ρ≥0.50), we incorporated the same eight variable weighting scheme in subsequent PCA 

and clustering analyses. To define the phenotypic variance, PCA again identified 15 

components. Most input variables contribute similarly to phenotypic variance explained 

in PC1, with the exception of HC, ADI-R RRBs, ages at exams and VABS motor skills 

having little contribution. HC, ADI-R RRB and ages explain the majority of the 

phenotypic variance defined by PC2 and PC3. Combined, PCs 1-3 define ~50% of the 

phenotypic variance in the data. Further details on variable contributions to all 15 data 

Table 2.7. Sensitivity Analyses. Reported are results from sensitivity analyses. For 
the stability measures calculated, smaller values indicate more stable cluster results. 
Statistics evaluating cluster stability upon removal of each variable are: APN=Average 
proportion of nonoverlap or number of individuals not placed in same cluster when 
variable is removed (scale=0,1); AD= Average distance between individuals placed in 
same cluster when variable is removed (scale=0, ∞); ADM=Average distance between 
means between cluster centers for individuals  placed in same cluster when variable is 
removed (scale=0, ∞); FOM=Figure of merit or average intra-cluster variance of the 
removed variable where clustering is based on remaining variables (scale=0, ∞). 
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components are outlined in Table 2.10.  Again, the optimal clustering method 

determined to group the AGP dataset was determined to be agglomerative hierarchical 

(Table 2.11). This method validly grouped the AGP dataset into two main clusters and 

15 subclusters (Fig. 2.5). Kruskal-Wallis tests show that most input variable distributions 

are significantly different between the two main clusters (p<0.0001), with the exception 

of HC (Table 2.12). However, the distributions of HC are significantly different across the 

15 subclusters (p=0.0020). HCs are statistically different between the six subclusters 

comprising the ‘less severe’ main cluster (p=0.0007) but not the nine subclusters 

comprising the ‘more severe’ main cluster (p=0.37). Cases with increased severity 

measures for most variables tended to group into the larger main cluster (n=1,527) 

compared to the smaller main cluster (n=1,036) containing cases with generally less 

severe scores for the majority of variables (Table 2.13). The agglomerative coefficient 

calculated for clustering of the AGP dataset is 0.79, indicating strong hierarchical 

clustering structure. The AHARI statistic shows that clustering of the real phenotype data 

is significantly different than permuted datasets (AHARI=-4.10x10-6). 

Sensitivity analyses again show that ADI-R DevAb scores have the overall largest 

effect on main cluster stability. The remaining input variables have similar and modest 

effects on main cluster stability. Regarding the subclusters, removal of any input variable 

has similar effects on subcluster stability (Table 2.14). 

In the AGP dataset, we again see that given a full sibling relationship, cases have 

increased odds of going into the same main cluster (OR≈1.19-1.35, p<0.00001) and that 

clusters contain individuals with more similar genotype frequencies than the unclustered 

dataset (Average Fst≈0.13) (Table 2.8). 
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Table 2.8. Results Evaluating Genetics Underlying Cluster Assignments. a. Odds 

Ratios represent increased odds of cases being assigned to the same cluster given a 

familial relationship. b. Average Wright’s F-statistic (Fst) across informative autosomal 

markers comparing cluster subpopulations to total unclustered population. Fst 

reported for the entire clustering dataset and the European Americans (EA) only. 

Frequency (f) of full sibling relationships in main clusters used for odds ratio 

calculations are: fAGRE=0.91; fAGP=0.38. 

cluster.  

Table 2.9. Variable Contributions to Principal Components of AGP Dataset. 
Variables contributing the most to the observed variance explained by each component 
are indicated in bold italics. Comm=Communication Domain Scores; RRB=Restricted, 
repetitive behaviors; DevAb=Abnormality of Development evident ≤36 months; 
MS=MotorSkills; DL=Daily Living; HC=head circumferences. 
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Table 2.10. Variable Contributions to Principal Components of AGP Dataset. 
Variables contributing the most to the observed variance explained by each component 
in the AGP dataset are indicated in bold italics. 
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Table 2.12. Cluster 
Differences in AGP Dataset. 
Kruskal Wallis comparison of 
variable distributions between 
the two main clusters and 
across the 15 subclusters. All 
input variable distributions, 
except HC, are significantly 
different between the main 
clusters. HC distributions are 
significantly different across 
subclusters. Asterisks indicate 
information not used as input 
variable. 

Table 2.13. Summary Statistics for Unclustered vs Clustered AGP Datasets. 
Reported are medians and modes observed in the unclustered dataset compared to 
the two main clusters. Continuous variables are starred to indicate that the mean is 
reported in place of the median. Cases with scores indicating increased ASD severity 
preferentially cluster into the second, larger cluster. Age is reported in years. 
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Discussion 

 

The extensive phenotypic variability within ASDs may hinder our ability to identify 

genotype-phenotype associations. To address this problem, we used multivariate 

statistical analyses to take advantage of ASD-related behavioral information from 

multiple sources and to include quantitative data relevant to macrocephaly. This 

approach allows effective evaluation of a broad array of data, enabling potentially more 

accurate phenotype definitions for large ASD datasets. We demonstrate that ASD 

phenotypic subgroups exist and can be replicated. Further, we demonstrate that these 

subgroups are genetically relevant. 

Table 2.14. Sensitivity Analyses: AGP Dataset. Reported are results from 
sensitivity analyses. For the stability measures calculated, smaller values indicate 
more stable cluster results. Statistics evaluating cluster stability upon removal of each 
variable are: APN=Average proportion of nonoverlap or number of individuals not 
placed in same cluster when variable is removed (scale=0,1); AD= Average distance 
between individuals placed in same cluster when variable is removed (scale=0, ∞); 
ADM=Average distance between means between cluster centers for individuals  
placed in same cluster when variable is removed (scale=0, ∞); FOM=Figure of merit 
or average intra-cluster variance of the removed variable where clustering is based 
on remaining variables (scale=0, ∞). 
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Optimal Clustering Method 

It is interesting that the optimal clustering method used to evaluate the ASD data is 

the agglomerative hierarchical method. This method uses connectivity based clustering 

and is unique from other methods because it begins with each individual as a separate 

cluster and aggregates them back together using the variable dissimilarities calculated 

for each individual when compared to every other individual103. It may be then for very 

complex traits, like those seen impaired in ASD, initially focusing on similarities across 

the dataset instead of differences will lead to identification of traits having the largest 

effect on variation overall. 

 

Phenotype Clusters 

The strongest and most obvious clustering aggregates ASDs into two major clusters, 

grouped on overall symptom severity. When comparing variable distributions between 

the unclustered AGRE and AGP datasets, we observed that the two datasets had 

significantly different distributions of family structure and gender. The AGRE dataset 

having proportionally more females (z=3.41, p=0.003) and multiplex families (z=21.67, 

p<0.00001) than the AGP dataset. Previous research has suggested that phenotypic 

expression of ASD in multiplex families is distinct from that in simplex families216. There 

is also previous evidence indicating sex-specific effects in ASD54. It is striking that given 

these initial differences between datasets, our approach still identified main clusters with 

similar characteristics. In fact, some input variable distributions that were significantly 

different between the unclustered datasets were no longer significantly different when 

comparing distributions in the similarly-defined main clusters from both datasets (i.e. 

AGRE "less severe" and AGP "less severe") (Table 2.15). The initial differences 

between the AGRE and AGP datasets may account for the resulting subclusters being 

not as easily comparable (Table 2.16). Even with the different variable distributions we 
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observe when comparing the subclusters from both datasets, there are some interesting 

similarities. For instance, at this level of subclustering we observe very small groups of 

cases that are remote from the other larger subclusters. In the AGRE dataset, we 

observe one small subcluster (n=47) within the ‘less severe’ main cluster, and three 

small subclusters (n=10, 38, 38) within the ‘more severe’ main cluster. The commonality 

across each of these smaller subclusters is that assigned individuals have large 

discrepancies between comparable domain scores (e.g., communication domain) from 

the ADI-R and ADOS. For example, individuals have either more severe scores on the 

ADI-R domains and less severe scores on the ADOS domains, when compared to larger 

subclusters within the same main cluster, or vice versa even though the ages at exam 

for both instruments are very similar. We see similar outlier groups in the AGP dataset 

subclusters.  

 

 

 

 

 

 

 

 

Table 2.15. Dataset Differences. Kruskal Wallis comparisons of variable 

distributions between the AGRE and AGP datasets, as well as the resulting clusters. 

Particularly, ADI-R social scores, and ADI-R & ADOS RRB scores are more 

divergent between the two datasets than the comparable main clusters. 

Unclustered=AGRE vs. AGP dataset; “Less Severe”=“less severe” AGRE cluster vs. 

“less severe” AGP cluster and similar for the “more severe” clusters. Asterisks 

indicate information not used as input variable. 
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With the exception of these small outlier subclusters, it is apparent that age ranges 

are much smaller within subclusters when compared to main clusters. In both the AGRE 

and AGP datasets, there is one subcluster grouped separately from the other 

subclusters within the ‘more severe’ main cluster that contains some of the youngest 

individuals in the datasets ( AGRE_ADI-R=6.6 years, 95%CIAGRE_ADI-R=6.3-6.9, nAGRE_ADI-

R=416; AGP_ADI-R=5.7 years, 95%CIAGP_ADI-R=5.4-6.1, nAGP_ADI-R=277). In the AGRE 

dataset there are also two subclusters within the ‘more severe’ main cluster that include 

a majority of nonverbal individuals (61%-63% nonverbal) when compared to other 

subclusters within the ‘more severe’ main cluster (0-18% nonverbal) and the subclusters 

comprising the ‘less severe’ main cluster (6%-14% nonverbal). We also see two similar 

subclusters within the ‘more severe’ AGP dataset cluster (61%-64% nonverbal). 

We see that scores assessing similar ASD traits do not correlate strongly between 

the ADI-R and ADOS, especially with regard to the RRB measure, even though all 

individuals evaluated meet ASD diagnostic criteria on both instruments. Our 

observations of weaker correlations for the RRB measures are also consistent with other 

Table 2.16. Subcluster 
Differences between Datasets. 
Kruskal Wallis comparisons of 
variable distributions across 
subclusters from both datasets. 
All input variable distributions are 
significantly different among the 
subclusters when comparing 
these groups between the AGRE 
and AGP datasets. “Less Severe” 
= Subclusters within the “less 
severe” main clusters compared 
between datasets and similar for 
the “more severe” subclusters. 
Asterisks indicate information not 
used as input variable. 
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studies where weaker correlation was observed between the ADI-R and ADOS repetitive 

behavior scores compared to the social and communication scores118. Previous studies 

have also shown that the ADI-R and ADOS make independent, additive contributions to 

more accurate diagnostic decisions and that specificities improve significantly when both 

instruments are used compared to each alone105. Our results provide further evidence 

that including information from both tests is important for precise definition of ASD 

phenotypes. 

 

Effect of Developmental Abnormality Measure 

All variables included as input in our multivariate analyses influence PCA results and 

cluster assignment. However, the ‘severity of abnormalities related to ASD behavioral 

criteria exhibited by 36 months of age’ (DevAb) score from the ADI-R stands out as 

having a stronger influence on cluster and PCA results. This measure is used in 

diagnosis in the ADI-R, based on criteria established by the DSM-IV. There must be 

evidence of deficient social or communication skills prior to or by 36 months for a 

diagnosis of strict autism to be made128. We see that this measure from the ADI-R does 

not exhibit strong correlations with any other input variable and has a substantial 

influence on the phenotypic variance explained in the first PC of both datasets. This 

measure has consistently different distributions between clusters and across subclusters 

and the largest overall effect on cluster and subcluster stability. In both the discovery 

and replication datasets, we see in the resulting ‘more severe’ clusters that 59-80% of 

individuals received the highest score possible for this measure indicating very severe 

abnormality of development observed early in life, compared to 0-0.4% of individuals in 

the ‘less severe’ clusters. 
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Effect of Repetitive Behavior Measures 

Repetitive behaviors also stand out from other variables in their contribution to the 

phenotypic variance explained in the first three PCs of both datasets. ADOS RRB 

measures have a strong contribution to the first data component, and consequently have 

significantly different score distributions between individuals in the two main clusters. 

Interestingly, ADI-R RRB measures are not strong contributors to the first PC of the 

AGRE dataset. However, ADI-R RRB measures do have strong contributions to PC2 

and PC3. In the AGP dataset, the contribution from these measures to PC1 is more 

comparable to other input variables. Yet, ADI-R RRB scores still do not contribute as 

much to PC1 as do RRBs assessed with the ADOS. This is also apparent in the 

clustering results; ADI-R RRBs are not significantly different between the two main 

AGRE dataset clusters but are significantly different between the two main AGP dataset 

clusters. These scores also have significantly different distributions across the 

subclusters from both datasets. It is interesting that RRB measures have different levels 

of influence on both phenotypic variance defined via PCA and definition of the two main 

clusters, based on whether they are evaluated with the ADOS or the ADI-R. 

One explanation for the differing influence of RRBs on multivariate statistical results 

when comparing diagnostic instruments is that RRBs are not as extensively evaluated 

with the ADOS as with the ADI-R. RRBs observed on the ADOS are more likely to be 

simple repetitive behaviors that are easily observed in a brief interaction. Many RRBs 

are difficult to assess in a short period of time because certain restrictive and repetitive 

behaviors may only occur in specific situations, and the ADOS is limited by both time 

and context95. In contrast, the ADI-R captures a broader array of RRBs and provides 

information for more complex repetitive behaviors. It is notable that by including ADI-R 

domain scores and not item level scores we are not fully distinguishing simple versus 

complex repetitive behaviors. 
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An explanation for the differing influence of ADI-R RRBs on multivariate statistical 

results when comparing datasets is that the AGP dataset has more than twice the 

number of individuals with this information than does the AGRE dataset. Since the ADI-

R is useful for distinguishing types of RRBs, it may be necessary to have more data from 

individuals exhibiting similar RRB characteristics for this measure to have an appreciable 

impact on main cluster assignment. Even with this difference, ADI-R RRB scores are 

more noticeably distinct across the subclusters when compared to the main clusters 

from both datasets. 

The combined evidence from PCA and agglomerative hierarchical clustering suggest 

that presence of RRBs is important to ASD phenotype definitions in these datasets and 

that this behavior is unique from the social and communication deficits for definition of 

ASD subphenotypes. This is in line with numerous previous studies29, 36, 82, 95, 138, 163, 172, 

173, 182, 188. There is also evidence that ADI-R RRB scores have the strongest within-

family concordance when compared to the social and communication measures 

providing support for a uniquely inherited component197. 

 

Effect of Head Circumference 

Head circumferences do not contribute significantly to the phenotypic variance 

observed in the first principal component of either dataset, which by design defines more 

variance than any other PC87. We also see that the distributions for this measure are not 

significantly different between the two main clusters grouped by overall ASD severity. 

We do, however, see a substantial contribution to the definition of phenotypic variance 

explained by the third PC of the AGRE dataset and the second PC of the AGP dataset, 

and HCs do seem to have a strong influence on subcluster assignment. However, in the 

AGRE dataset HCs are significantly different across the subclusters regardless of main 

cluster assignment whereas in the AGP dataset, HCs are only significantly different 
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across the subclusters comprising the less severe main cluster. We were surprised that 

head circumference did not have a stronger influence on main cluster assignment, AGP 

subcluster assignment, and definition of PC1. It is notable that for both evaluated 

datasets, the mean normalized HC is above average compared to individuals not 

diagnosed with a spectrum disorder ( AGRE=0.72, AGP=0.66). It is possible that most 

individuals with ASD have larger head circumferences compared to normal individuals 

and that this is not a distinguishing trait for ASD subgroups but rather a trait specific to 

the broader diagnostic classification. Macrocephaly roughly defined as >2 standard 

deviations above the mean is only comorbid in ~13% of individuals for which this 

measure is available, in both the AGRE and AGP datasets. These rates are slightly 

lower than expected based on previously reported estimates ranging from 15-35%62, 227. 

This is consistent with other observations indicating individuals with ASD have increased 

head growth but do not meet criteria for macrocephaly. Unfortunately, HC measures are 

only available for ~54% of the AGRE dataset and ~47% of the AGP dataset. This could 

also be an explanation for the observed impact of HC on cluster assignment and the 

lower rate of macrocephaly in the AGRE and AGP datasets.  

Another important caveat to our evaluation of head circumference is that ethnicity is 

noted to be important in head circumference normalization227. We normalized HC 

measures using a non-diseased population of European descent, due to our inability to 

identify normal population statistics for other ethnicities of interest with a similar age 

range to the datasets evaluated in our study. Our datasets have a slightly different ethnic 

background than does the normal population we used to normalize HC and this could 

affect our z-score calculations. We also did not take into account height, another factor 

that should be considered when evaluating macrocephaly, since this information is 

available for even fewer individuals in the AGRE and AGP datasets (~29% and ~46%, 

respectively). Height and head circumference measures, when available in our datasets, 
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Figure 2.6. Correlation of Head Circumference & Height in Evaluated Datasets. 
Plotted are head circumferences (cm) versus height (cm) for individuals in the a. AGRE 

dataset and b. AGP dataset. Reported are squared Pearson's correlation coefficients (r2). 

do exhibit positive correlations suggesting the increased HC may be due to increased 

stature and not necessarily exhibition of an endophenotype (ρAGRE=0.66; ρAGP=0.44) 

(Figure 2.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The combined results from PCA and clustering indicate HC is important in defining 

ASD subphenotypes, but not in determining overall severity. Again, these measures are 

not available for a large portion of the cases in the datasets we evaluated, which could 
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affect the variable’s impact on definition of PC1 and main clusters even with our 

stringent weighting scheme and the ability of the methods to allow for missing data. The 

same is also true for Vineland domain standard scores. While these scores do seem to 

be involved in definition of the main clusters, they do not contribute greatly to PC 

definition or stand out as classifying variables. These findings are possibly a result of 

having fewer individuals with VABS scores compared to ADI-R and ADOS scores. We 

chose to retain cases that are missing VABS and HC information since these are not 

considered ASD-specific diagnostic criteria. 

 

Familial Clustering 

Odds ratios showed significantly increased odds for affected siblings to cluster 

together into the two main clusters when compared to unrelated cases. These 

calculations are indicative of underlying genetic architecture. Further supporting this 

assumption, Wright’s Fst calculations suggest cases with more similar genetic 

architecture clustered together into the two main clusters. Although Fst can be 

confounded by genetic ancestry, we obtained similar results using only individuals with 

European ancestry. It is notable that there is still evidence for significant genetic and 

phenotypic heterogeneity within ASD families. This is in agreement with many previous 

studies and the growing body of evidence reporting the involvement of de novo 

mutations arising in the germ-line25, 176, 177. However, the relationship of genotype to 

phenotype should be somewhat independent of inheritance patterns. While our results 

supported an underlying genetic influence on overall cluster assignment, to determine 

the true contribution of genetic factors to phenotypic cluster assignment it will be 

necessary to perform future genetic analyses based on these cluster groupings. 
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The overlapping interpretation of our results from two different multivariate analyses, 

PCA and clustering, demonstrate the utility of this approach. That we were able to show 

defined subgroups of phenotypic expression appearing to be genetically meaningful in 

the AGRE dataset and replicate these findings in an independent AGP dataset lends 

further support to the validity of the resulting cluster groupings and the idea that the 

phenotype clusters recapitulate underlying genetic mechanisms in Autism Spectrum 

Disorders. 
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CHAPTER III 

 

PATHWAY-BASED GENOME-WIDE ASSOCIATION STUDIES IN DEFINED 

SUBGROUPS 

 

Introduction 

 

Genetic factors have a strong influence in the etiology of ASD. However, the 

individual effects of most previously implicated common variants are modest, tend not to 

replicate in independent cohorts, and the combined evidence from many analyses does 

not explain the estimated heritability21, 44, 45, 79, 159. The difficulty in identifying common, 

inherited variation with replicable effects may arise from the wide variability in clinical 

manifestation of ASD and the relationship to genetic influences. 

Evaluating larger sample sizes is one way to increase power in genetic studies of 

complex disorders, like ASD56. Studies have been conducted in large ASD cohorts when 

the phenotype is categorized dichotomously (i.e., affected/unaffected) by diagnostic cut-

offs17, 123, 230.  However, none of these associations replicate in independent cohorts, 

suggesting an increase in sample size is not sufficient to optimize power for ASD. It is 

also difficult to interpret potential phenotype-genotype relationships using results from 

these large-scale genetic analyses since evaluated cases express a wide continuum of 

symptom severity. 

Previous studies have defined more phenotypically homogenous subgroups in ASD 

using overall trait severity, endophenotypes, and comorbidity information and evaluated 

genetic contributions to these subgroups7, 24, 88, 90, 179, 183, 184, 204. In numerous cases, 

linkage and association signals were increased despite a substantial reduction in sample 

size. Many of these studies also replicate previous results from analyses performed 
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when subphenotypes of ASD were further defined8, 40, 130. These studies provide strong 

support for phenotypic subgroups being genetically meaningful. 

Factors further complicating genetic association studies in ASD are related to the 

complexity of the underlying genetic models of the disorder. There are hundreds of 

different genes and risk loci implicated in ASD etiology26, 143, 157. Few, if any, of the 

currently identified genetic factors alone seem to contribute strong effects (OR>1.2) to 

risk for ASD16, 50. These smaller effects are easily overlooked in the typical approach to 

analysis of GWAS data, which looks for the most significantly associated individual 

single nucleotide polymorphisms (SNPs). Evidence from multiple independent studies 

indicates common, inherited variants have a cumulative effect on ASD risk68, 107, 168. In 

reality, genes often work as complex interacting networks, especially those involved in 

neural development. Pathway-based analysis of genome-wide SNP data considers the 

combined effects of multiple genetic variants functioning together in biological 

pathways155, 218.  By applying this methodology to analysis of ASD genetic data, causal 

pathways and/or genetic interactions may be implicated giving biological insights that 

would otherwise be imperceptible18, 86, 121, 132, 158. 

Our hypothesis is that performing pathway-based genetic analyses in more 

phenotypically homogeneous ASD subgroups accounts for some heterogeneity, thus 

increasing power to detect genetic effects. We previously performed extensive 

phenotypic analyses in an Autism Genetic Resource Exchange (AGRE)72 dataset212. We 

used data from the Autism Diagnostic Interview-Revised (ADI-R)128, Autism Diagnostic 

Observation Schedule (ADOS)127, Vineland Adaptive Behavior Scales196, head 

circumferences, and ages as classifying variables. Unsupervised clustering identified 

two distinct groups of cases, dividing primarily on the severity of phenotypes. The same 

approach similarly identified two distinct groups of cases and confirmed this severity-

based dichotomy in an independent dataset from the Autism Genome Project (AGP)93. 
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In addition, there was significant familial clustering within groups (OR≈1.38-1.42, 

p<0.00001), suggesting that the clusters recapitulated genetic etiology. Identifying 

biological pathways and sets of genes contributing to the underlying mechanisms 

involved in expression of subphenotypes of ASD will help us gain further insight into the 

functional foundations of the various phenotypic aspects of this disorder. This study is 

one of the first to apply pathway analysis to ASD GWAS data, and to apply this 

methodology to well-defined subgroups of affected individuals. 

 

Methods 

 

Dataset Demographics and Quality Control 

The discovery dataset consisted of individuals from the AGRE family-based study. 

We used previously generated, publicly available genetic data; samples were genotyped 

on the Illumina Bead Array and Affymetrix 550 chip134. Genetic data were merged in 

PLINK166 and the final merged datasets were subjected to numerous quality control (QC) 

procedures (Figure 3.1). The final discovery dataset included 4,110 individuals (2,559 

males and 1,551 females) in 895 families. 91.2% of these families were multiplex, 8.6% 

were simplex, and 0.2% had unknown family structure. Genetic ancestry determined by 

the software program Structure165 was 80.1% European American, 16.2% Mexican 

American, 2.8% African American, and 0.8% mixed ancestry. After QC, a total of 

507,669 SNPs, with a genotyping rate of 99.4%, were analyzed in discovery association 

analyses. 

For the validation dataset, we used samples from the AGP database. Samples were 

previously genotyped on the Illumina 1M platform134. The same QC procedures used on 

genotyping data from the discovery dataset were used for the validation dataset. The 

final validation dataset contained 8,908 individuals (5,475 males and 3,275 females) in 
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2,960 families. 31% of the families in the validation dataset were multiplex, 49% were 

simplex families, and 20% of the dataset had unknown family structure. Genetic ancestry 

was 91.4% European American, 5.8% Mexican American, 2.6% African American, 0.2% 

mixed ancestry. After QC, a total of 779,343 SNPs with a genotyping rate of 99.8%, 

were analyzed in validation association analyses. 

 

Single-SNP Association Analyses: AGRE Dataset 

We used the AGRE family dataset for our initial modeling.  Exclusion criteria and 

affection status for association analyses were selected based upon phenotype analyses 

described in detail in Chapter II. Briefly, cases meet Diagnostic and Statistical Manual-IV 

(DSM-IV) criteria for an Autism Spectrum Disorder diagnosis on both the Autism 

Figure 3.1. Quality Control Procedures. Outlined is a flow diagram detailing exclusion 
criteria used to obtain quality genotyping data for AGRE discovery analyses and the 
final number of evaluated SNPs and samples. Marker exclusion criteria are detailed on 
the left and sample exclusion criteria are detailed on the right. 
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Diagnostic Interview-Revised128 (ADI-R) and the Autism Diagnostic Observation 

Schedule127 (ADOS), age at ADI-R 2-21 years old. We excluded individuals with 

potential non-idiopathic autism (e.g. known neurogenetic disorders, known chromosomal 

abnormalities, prematurity <35 weeks). We used agglomerative hierarchical clustering to 

group individuals with ASD relative to multiple sources of behavioral and clinical exam 

information. Association analyses were performed using the Family-Based Association 

Test (FBAT)114. We tested the null hypothesis of no association in the presence of 

linkage using the empirical variance-covariance estimator under an additive, multi-allelic 

genetic model113. We performed three FBAT analyses for the AGRE dataset according 

to the phenotypic subgrouping (Figure 3.2). 

Figure 3.2. Analysis Plan Schematic: AGRE Dataset. Three single-SNP 
association analyses and subsequent pathway analyses were performed on the 
discovery dataset based on different ASD phenotype definitions. All=no phenotypic 
subgrouping; 'Less Severe'=individuals in the less severe subgroup; 'More 
Severe'=individuals in the more severe subgroup. 
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For the first analysis, affection status was assigned to all individuals meeting criteria 

for an ASD diagnosis on both the ADI-R and the ADOS, regardless of phenotypic 

subgrouping. There were 48 males and 37 females in this dataset that were evaluated 

on both the ADI-R and ADOS and did not meet diagnostic criteria for an ASD on either 

instrument. These individuals were coded as unaffected. We also analyzed the data with 

the 85 unaffected individuals alternatively coded as unknown and compared FBAT 

results at each SNP. There were no differences in p-value for evaluated SNPs. For the 

second analysis, affection status was assigned only to individuals in a ‘less severe’ 

subgroup. Cases in this subgroup have scores indicating less severe measures for 

interrogated behavioral and clinical exam information. Cases assigned to the alternate 

subgroup were coded with unknown affection status. For the third analysis, affection 

status was assigned only to individuals in a ‘more severe’ subgroup. Cases in this 

subgroup have scores indicating more severe measures for interrogated behavioral and 

clinical exam information (Table 3.1). 

Deviation from the expected chi-square distribution was visualized in quantile-

quantile plots generated with a unique source code and the ggplot2 package in R210, 224. 

Population substructure does not cause type I error in family-based association tests, 

however, due to the diverse genetic ancestry of the evaluated dataset, genomic inflation 

factors (λ) were estimated for results from each FBAT analysis using the GenABEL 

package for R20. Manhattan plots were produced using a unique source code and the 

Table 3.1. Breakdown of Affection Status for Single-SNP Analyses: AGRE 
Dataset. Reported are the numbers of individuals evaluated for informative 
transmissions in Family-based Association Tests. 
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ggplot2 package in R210, 224. The estimation of odds ratios (ORs) and 95% confidence 

interval (CI) calculations for evaluated SNPs were performed using UNPHASED52. To 

determine the overall OR for genes of interest, an average was calculated for all SNPs 

located within each gene boundary. 

 

Pathway Analyses: AGRE dataset 

Three separate pathway analyses were performed with the Pathway Analysis by 

Randomization Incorporating Structure (PARIS) pathway analysis software package229 

using p-values generated in the corresponding single-SNP analysis (i.e. 'Analysis 1.1', 

'1.2', '1.3'). By assigning SNPs to genes based on chromosomal locations and looking 

for functionally-defined gene sets with an overrepresentation of significant SNPs, PARIS 

identifies biological pathways of interest. Since we expected that there would be many 

variants of minor effect working together, we set a less-stringent threshold (p<0.05) for 

SNPs entered into the subsequent pathway analyses to ensure this information was 

captured. We evaluated 209 pathways defined in the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) database for pathway-based association101. SNPs were assigned to a 

pathway gene if it fell within +/−50 kb of the ENSEMBL genomic interval (build hg19). 

Hapmap CEPH samples (release 27) were used to account for patterns of linkage 

disequilibrium (LD). Bonferroni corrected significance for evaluated pathways was 

p≤0.0002. However, PARIS was currently only designed to generate pathway p-values 

as low as p<0.001. Also, many KEGG pathways contained overlapping genes and each 

significance test was not independent. Therefore, we chose the most stringent 

significance threshold available (p<0.001) for pathway-based results. 

Since the primary functional focus of pathways defined in the KEGG database is not 

neurodevelopment, in order to more thoroughly understand the relationship of identified 

pathways to ASD we felt it was necessary to further subject significantly associated 
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KEGG-defined pathways to permutation-based investigations and identify ‘core’ genes 

driving overall pathway associations. We defined ‘core’ genes as genes whose p-value 

in the context of the biological pathway was p<0.001, and upon removal from pathway 

analysis reduced the significance of the overall pathway above the significance 

threshold. To determine the overall OR for 'core' genes, an average was calculated for 

all SNPs located within the gene boundary, while taking into account the direction of the 

effect 

 

Single-SNP Association and Pathway Analyses: AGP Dataset 

We performed three FBAT validation analyses in the AGP dataset similar to that 

described above for the AGRE dataset (Figure 3.3). The breakdown of affection status 

for subgroup-specific single-SNP analyses is reported in Table 3.2.  

Nominally significant SNPs (p<0.05) from each of the single-SNP association 

analyses were subsequently evaluated in respective pathway analyses, via PARIS, as 

described above for the AGRE dataset (Figure 3.3). 
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Figure 3.3. Analysis Plan Schematic: AGP Dataset. Three single-SNP association 
analyses and subsequent pathway analyses were performed on the validation 
dataset based on different ASD phenotype definitions. All=no phenotypic 
subgrouping; 'Less Severe'=individuals in the less severe subgroup; 'More 
Severe'=individuals in the more severe subgroup. 

Table 3.2. Breakdown of Affection Status for Single-SNP Analyses: AGP 
Dataset. Reported are the numbers of individuals evaluated for informative 
transmissions in Family-based Association Tests using the AGP dataset. 
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Results 

 

Single-SNP Association Analyses: AGRE Dataset 

A total of 507,675 SNPs were analyzed for association in the discovery analyses. These 

SNPs were evaluated for association with all individuals meeting diagnostic criteria for 

an ASD on both the ADI-R and ADOS (Single-SNP Analysis 1.1), only affected 

individuals assigned to the ‘less severe’ phenotypic subgroup (Single-SNP Analysis 1.2), 

and only affected individuals assigned to the ‘more severe’ ASD subgroup (Single-SNP 

Analysis 1.3) (Figure 3.2). Genomic inflation factors for these analyses were 1.028, 

1.020, and 1.011, respectively (Figure 3.4). This indicates that population structure had 

no appreciable impact on our results49. No SNPs met a Bonferroni corrected significance 

threshold of p≤9.85x10
-8

 for any of the three association analyses (Figure 3.5).  

From Single-SNP Analysis 1.1, there were 26,970 SNPs (p<0.05) further evaluated 

in Pathway Analysis 1.1. From Single-SNP Analysis 1.2, 26,712 SNPs were evaluated in 

Pathway Analysis 1.2 and from Single-SNP Analysis 1.3, 26,335 SNPs were evaluated 

in the Pathway Analysis 1.3. Only 655 SNPs were associated (p<0.05) in all three 

analyses. 5,703 SNPs were associated (p<0.05) in Single-SNP Analyses 1.1 and 2, but 

not Analysis 1.3. 11,291 SNPs were associated (p<0.05) in Single-SNP Analyses 1.1 

and 1.3, but not Analysis 1.2. 743 SNPs were associated (p<0.05) in Single-SNP 

Analyses 1.2 and 1.3, but not Analysis 1.1. 9,321 SNPs were only associated (p<0.05) 

when all affected individuals were considered together, regardless of phenotypic 

subgroup assignment. 19,611 SNPs were uniquely associated (p<0.05) with individuals 

assigned to the ‘less severe’ phenotypic subgroup. 13,646 SNPs were uniquely 

associated (p<0.05) with individuals assigned to the ‘more severe’ phenotypic subgroup. 
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Figure 3.4. AGRE QQ Plots. Quantile-quantile plots of p-values from FBAT 
evaluating single-SNP associations with: a. all affected individuals b. 'less severe' 
subgroup c. 'more severe' subgroup. λ=genomic inflation factor; s.e.=standard error  
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Figure 3.5. AGRE Genome-wide Single-SNP Association Results. Manhattan 
plots of p-values from FBAT evaluating SNP associations with: a. all affected 
individuals b. 'less severe' subgroup c. 'more severe' subgroup. Red line=Bonferroni 

corrected significance threshold (p≤9.85x10
-8

). 
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Pathway-Based Analyses: AGRE Dataset 

We evaluated 209 pathways defined in the KEGG database for pathway-based 

association. We performed three separate pathway-based analyses using p-values 

generated via the three separate single-SNP analyses described above. We chose a 

threshold for significance at p<0.001 for pathway-based results. Seven KEGG pathways 

were associated (p<0.001) with in the full AGRE dataset. Three of these pathways 

remained associated when evaluating only the ‘more severe’ subgroup, while no 

pathways remained significant when evaluating only the ‘less severe’ subgroup (Table 

3.3). Five KEGG pathways were exclusively associated (p<0.001) with cases in the ‘less 

severe’ subgroup (Table 3.3). Five different KEGG pathways were associated (p<0.001) 

with the ‘more severe’ subgroup. Two of these pathways were not associated in either of 

the other two pathway analyses (Table 3.3). 

  Associated KEGG pathways were further subjected to permutation-based 

investigations to identify ‘core’ genes driving pathway associations. We defined ‘core’ 

genes as any gene whose p-value, in the context of the biological pathway, was p<0.001 

and upon removal from analysis, the overall pathway p-value increased such that the 

Table 3.3. Pathway-based Association Results: AGRE Dataset. Listed are 
biological pathways defined in the KEGG database that were associated (p<0.001) 
with at least one affection group. All=no phenotypic subgrouping; “LS”=individuals in 
the LS subgroup; “MS”=individuals in the MS subgroup. 
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previously implicated mechanism no longer met the significance threshold (Table 3.4). 

We identified 35 core genes within KEGG pathways associated (p<0.001) with all 

affected individuals, eight of these core genes function in ≥2 of these associated 

pathways. There are 39 genes total that associate (p<0.001) with all affected individuals, 

not all of these genes represent core genes driving pathway associations. Eleven of 

these genes did not meet our significance threshold for association in analyses where 

individuals were further defined by phenotypic subgroup (Table 3.5). We identified ten 

core genes within KEGG pathways associated (p<0.001) with the ‘less severe’ 

subgroup, five of these core genes function in ≥2 of these pathways. There are 18 total 

candidate genes associated (p<0.001) with the ‘less severe’ subgroup, eight of these 

genes did not meet our significance threshold when evaluating all affected individuals 

together, or the ‘more severe’ phenotypic subgroup (Table 3.5). We identified 24 core 

genes within KEGG pathways associated (p<0.001) with the ‘more severe’ subgroup, 10 

of these genes function in ≥2 of these pathways. There are 34 total candidate genes 

associated (p<0.001) with the ‘more severe’ subgroup, 12 of these did not meet our 

significance threshold in any other analysis (Table 3.5). 

Table 3.4. Pathway-based Associations Following Removal of 'Core' Genes. 
Reported are p-values for biological pathways of interest following removal of SNPs 
assigned to suspected core genes. P-values in bold italics indicate these pathways met 
the significance threshold (p<0.001) in the full pathway-analysis for this affection group. 
All=no phenotypic subgrouping; 'LS'=individuals in the LS subgroup; 'MS'=individuals in 
the MS subgroup. NCG=no core genes included in analyses. 
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  Single-SNP Association Analyses: AGP Dataset 

A total of 779,343 SNPs were analyzed for association in the validation analyses. 

These SNPs were evaluated for association with all AGP dataset individuals meeting 

diagnostic criteria for an ASD on both the ADI-R and ADOS (Single-SNP Analysis 2.1), 

only affected individuals assigned to the ‘less severe’ phenotypic subgroup (Single-SNP 

Analysis 2.2), and only affected individuals assigned to the ‘more severe’ ASD subgroup 

(Single-SNP Analysis 2.3) (Figure 3.3). Genomic inflation factors for these analyses 

were 1.028, 1.017, and 1.017, respectively (Figure 3.6). Nine SNPs met a Bonferroni 

corrected significance threshold of p≤6.42x10
-8 

in Single-SNP Analysis 2.1 (Figure 3.7). 

Associations for these markers have not previously been reported as the sex 

chromosomes were not included in these analyses134. However, the current version of 

FBAT allows for evaluation of markers on the sex chromosomes 

(http://www.biostat.harvard.edu/fbat/fbat.htm). Further information on SNPs surpassing a 

Bonferroni corrected significance threshold is provided in Table 3.6 and Figure 3.8.  

From Single-SNP Analysis 2.1, there were 41,331 SNPs (p<0.05) that were 

evaluated in Pathway Analysis 2.1. From Single-SNP Analysis 2.2, 40,953 SNPs were 

evaluated in Pathway Analysis 2.2. From Single-SNP Analysis 2.3, 40,375 SNPs were 

evaluated in Pathway Analysis 2.3. Only 1,140 SNPs were associated (p<0.05) in all 

three analyses. 10,531 SNPs were associated (p<0.05) in Single-SNP Analyses 2.1 and 

2.2, but not Analysis 2.3. 15,730 SNPs were associated (p<0.05) in Single-SNP 

Analyses 2.1 and 2.3, but not Analysis 2.2.  1,016 SNPs were associated (p<0.05) in 

Single-SNP Analyses 2.2 and 2.3, but not Analysis 2.1. 13,930 SNPs were associated 

(p<0.05) only when all affected individuals were considered together, regardless of 

phenotypic subgroup assignment. 28,266 SNPs were uniquely associated (p<0.05) with 

individuals assigned to the ‘less severe’ phenotypic subgroup. 22,489 SNPs were 
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uniquely associated (p<0.05) with individuals assigned to the ‘more severe’ phenotypic 

subgroup. 

 

Figure 3.6. AGP QQ Plots. Quantile-quantile plots of p-values from FBAT evaluating single-
SNP associations with: a. all affected individuals b. 'less severe' subgroup c. 'more severe' 
subgroup. λ=genomic inflation factor; s.e.=standard error. 
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Figure 3.7. AGP Genome-wide Single-SNP Association Results. Manhattan plots of p-
values from FBAT evaluating SNP associations with: a. all affected individuals b. 'less 
severe' subgroup c. 'more severe' subgoupr. Red line=Bonferroni corrected significance 

threshold (p≤6.42x10
-8

). 
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Pathway-Based Analyses: AGP Dataset 

To determine which AGRE associated KEGG pathways validated in the AGP 

dataset, we chose a threshold for pathway significance at p<0.05. A total of seven 

pathways validated in the AGP dataset at this significance threshold. The pathway 

defined in KEGG as ‘Bacterial invasion of epithelial cells’ validated not only across 

datasets, but was associated with the ‘more severe’ subgroups from both datasets 

(Table 3.7; Figure 3.9). The other six pathways that validate in the AGP dataset are 

associated independent of phenotypic subgroup assignment. For example, the pathway 

defined as ‘Allograft rejection’ is associated (p<0.001) with the ‘less severe’ AGRE 

subgroup and the ‘more severe’ AGP subgroup (Table 3.7). There are another 13 KEGG 

pathways that are trending towards significance (p<0.05) in at least one analysis for both 

datasets (Table 3.8). We further investigated validated pathways to identify genes 

driving pathway associations and compared these results with core genes identified with 

the AGRE dataset (Table 3.9). Four core genes identified in the ‘less severe’ AGRE 

subgroup analysis validated (p<0.001) in the ‘less severe’ AGP subgroup analysis, and 

five core genes identified in the ‘more severe’ AGRE subgroup analysis validated 

(p<0.001) in the ‘more severe’ AGP subgroup analysis (Table 3.9). In some cases, the 

same specific gene did not validate but genes within the same gene family were 

identified as driving pathway associations in both datasets. For example, the ARPC3 

and ARPC5 genes are significantly associated (p<0.001) with the ‘more severe’ AGRE 

subgroup while the ARPC1A gene is significantly associated (p<0.001) with the ‘more 

severe’ AGP subgroup (Figure 3.9). 
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Discussion 

 

Our results show that different genetic factors are uniquely associated with ASD 

subgroups defined using multiple sources of behavioral and clinical exam information. 

This suggests that meaningful phenotypic subgroup definitions can help clarify the 

underlying genetic etiology of ASD. Further, the pathway-based approach seemed to be 

a more biologically relevant way to evaluate the risk effects of common, inherited 

variation, as opposed to single-variant analysis. The vast majority of the SNPs evaluated 

did not meet a multiple-testing adjusted significance threshold when analyzed 

individually. However, by evaluating the combined effects from many SNPs, we were 

able to identify groups of genes with similar function contributing to risk for ASD and 

effectively account for underlying genetic heterogeneity across two independent ASD 

datasets. By using the combined approach of phenotypic subgrouping and pathway-

based genetic analysis, we were able to implicate functional pathways of interest and 

refine the genetic bottlenecks related to specific ASD traits. 

By subgrouping individuals based on similar expression of ASD-related phenotypes, 

we drastically reduced the number of cases evaluated in subgroup-specific analyses 

(AGRE=35%-65% reduction; AGP=40%-60% reduction). Despite these substantial 

reductions in sample size, subgroup-specific odds ratio (OR) calculations for core genes 

that were also associated when analyzing all cases together indicate no reduction in 

observed genetic effects. In fact, the effects on risk only seem to increase in subgroup-

specific analyses. This suggested our method of phenotypic subgrouping potentially 

reduced statistical noise and increased the ability to detect genetic effects. 

Performing phenotypic subgroup-specific genetic analyses also allowed us to more 

easily refine potential phenotype-genotype relationships. For example, we observed that 

pathways and 'core' genes related to adaptive immunity were almost exclusively 
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associated with the ‘less severe’ AGRE subgroup. Two 'core' genes in all of the 

pathways associated with the ‘less severe’ AGRE subgroup were located in the major 

histocompatibility complex (HLA-B, HLA-G). Increasing evidence supports substantial 

neural-immune crosstalk starting in the fetal brain and continuing throughout life38, 145. 

Many members of the major histocompatibility complex are thought to play important 

roles in brain development and function, reviewed in Needleman & McAllister, 2012153. 

Multiple studies have also identified extensive changes in the immune systems of 

individuals with ASD, reviewed in Careaga, 201037. Interestingly, two pathways 

significantly associated with the ‘less severe’ AGRE subgroup are ‘autoimmune thyroid 

disease’ and ‘type-I diabetes mellitus’. A few epidemiological studies have reported 

associations between both of these diseases and ASD19, 149, 150. Specifically, 

autoimmune thyroid disease is more frequent in children diagnosed with a regressive 

form of ASD, compared to children diagnosed with an early-onset form149. It is assumed 

that cases with regressive ASD exhibit less delayed early development100. We saw that 

the ‘abnormality of development evident ≤ 36 months’ domain score from the ADI-R 

stood out as having a strong influence on assignment of individuals to our ASD 

subgroups. Higher scores on this measure indicate very severe abnormality of 

development observed early in life. All individuals assigned to the ‘less severe’ AGRE 

subgroup had low severity scores on this measure; it is possible that some of these 

individuals exhibited a regressive form of ASD. Cases in the AGP subgroups were older, 

on average, at the time of ADI-R than were cases in the AGRE subgroups 

(tMoreSevere=5.01, p<0.00001; tLessSevere=2.10, p=0.017). A larger portion of individuals in 

the ‘more severe’ AGP subgroup have less severe scores on the 'abnormality of 

development evident ≤ 36 months’ measure compared to individuals in the ‘more severe’ 

AGRE subgroup (zMannWhitney=10.73, p<0.00001). If cases with regressive ASD do exhibit 

less delayed early development, but have more severe presentation later in life, then 
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ADI-R evaluations performed in older individuals should indicate lower severity scores 

on the ‘abnormality of development evident ≤ 36 months’ domain score, but greater 

severity scores on other ADI-R domains. Our results connecting immune system 

function uniquely with phenotypically-defined ASD subgroups support the idea that 

immune dysfunction is not linked with all forms of ASD, but is confined to specific 

subphenotypes of ASD37. 

Our results indicate applying a pathway-based approach to analysis of genome-wide 

ASD data helps account for underlying genetic heterogeneity. This was apparent when 

comparing genes in the same biological pathway that were associated with subgroups 

from the two independent datasets. For example, results from the AGRE analyses show 

the ‘taste transduction’ pathway is very significant (p<0.001) when case status is defined 

using solely diagnostic criteria (Pathway Analysis 1), but not when more extensive 

phenotype definition is used to classify ASD subgroups (pLessSevere=0.018; 

pMoreSevere=0.124). Upon further investigation of core genes driving the association with 

this pathway, we see unique genomic features associate (p<0.001) with the ‘less severe’ 

subgroup (ADCY4, PRKACA, TAS2R16, ADCY8) and others the ‘more severe’ (KCNB1, 

GNAS, TAS2R13, TAS2R14, TAS2R43, TAS2R31, TAS2R46, TAS2R19, TAS2R20, 

TAS2R50, TAS2R42). While the same exact genes have not to our knowledge been 

previously implicated in ASD, the chromosomal locations coding these genes have been 

found linked to male-only subgrouped phenotypes205 and affected sib-pairs97. Also, a 

SNP near the TAS2R1 gene on chr5p15 was identified in a GWAS of exclusively 

multiplex families221. Neither the specific taste receptor gene nor assigned SNPs were 

significant (pTAS2R1=1.000; pSNPs≥0.0595) in our studies. One set of taste-related genes 

appear to be working in the 'less severe' subgroup, and another subset in the 'more 

severe' subgroup. It is conceivable that multiple different genes functioning in one, or a 

few pathways, could lead to many different phenotypic consequences, culminating in the 
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autistic spectrum. There is substantial evidence supporting this concept in ASD, 

reviewed in Geshwind, 200869. 

Another example of how genetic heterogeneity was accounted for is the association 

of the pathway described as ‘Bacterial invasion of epithelial cells’. This pathway is very 

significant (p≤0.002) when case status is defined using solely diagnostic criteria for both 

datasets. When affected individuals from both datasets are further defined into ‘less 

severe’ subgroups, this association signal is no longer significant (pAGRE‘LessSevere’=0.538, 

pAGP‘LessSevere’=0.689). However, when affected individuals from the two datasets are 

further defined into ‘more severe’ subgroups the pathway association remains significant 

(pAGRE‘MoreSevere’<0.001, pAGP‘MoreSevere’=0.021). Upon further investigation of 'core' genes in 

this pathway, we observed that different genes were associated with the 'more severe' 

AGRE subgroup when compared to the 'more severe' AGP subgroup. While the same 

specific gene did not validate, genes within the same family and different genes with 

similar predicted function related to single transduction and cell motility were identified 

as driving the pathway's association with both datasets. For example, the ARPC3 and 

ARPC5 genes were significantly associated with the ‘more severe’ AGRE subgroup 

while the ARPC1A gene was significantly associated with the ‘more severe’ AGP 

subgroup. In a typical single-SNP approach to analysis of GWAS data, or candidate 

gene analyses, the validated association of this mechanism with the AGP dataset would 

have gone unnoticed. Known functions of core genes driving the associations for this 

pathway in the ‘more severe’ subgroups relate to single transduction and cell motility, 

processes crucial to proper neurodevelopment. Interestingly, some of these core genes 

have been previously linked to ASD, and in some cases with specific endophenotypes. 

For example, the genomic region encoding ARPC5L (9q33-q34) was found linked in 

multiplex families when using ‘age at first word’ from the ADI-R as a quantitative trait179. 

This item is included in calculating the ‘abnormality of development evident ≤ 36 months’ 
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domain score and a majority of cases with very severe scores for this measure are 

assigned to the ‘more severe’ ASD subgroups. 

Other interesting pathways identified initially when analyzing all diagnostically-

defined cases, upon subgrouping, appear to be uniquely associated with the ‘more 

severe’ AGRE subgroup (p’MoreSevere’<0.001; p’LessSevere’≥0.538). The ‘Neurotrophin 

signaling pathway’ validated, however exclusively in the ‘less severe’ AGP subgroup 

(p’LessSevere’=0.003; pAll=0.168; p’MoreSevere’=0.106). Many of the core genes driving the 

pathway association in the ‘more severe’ AGRE subgroup have previously been 

implicated in nonverbal ASD subgroups. Linkage at interval chr1p13–q12 to nonverbal 

cases was originally observed in multiplex AGRE families41. We identified three core 

genes in the ‘Neurotrophin signaling pathway’ located within this interval (JUN, NRAS, 

and NGF).  The nerve growth factor (NGF) gene is also a core gene in the ‘Apoptosis’ 

pathway which was uniquely-associated (p<0.001) with the ‘more severe’ AGRE 

subgroup. Fine-mapping in the previously linked chr1p13-q12 interval detected 

associations for three haplotype blocks, intronic to the NGF gene, in more AGRE 

families131. Further studies identified an association to the NGF gene region in an AGP 

dataset, having simplex and multiplex families. However, this association was to a 

different haplotype block than the associated AGRE haplotypes and LD calculations 

indicated these signals were independent. We did not validate direct association to the 

NGF gene in the AGP dataset evaluated in our analyses (pAll=0.134; p’LessSevere’=0.612; 

p’MoreSevere’=0.145). Interestingly, there are proportionally more nonverbal individuals in 

the AGRE subgroups compared to the AGP subgroups (z’LessSevere’=5.09, p<0.00001; 

z’MoreSevere’=15.88, p<0.00001). These results may further support a relationship between 

variations in the NGF gene and nonverbal ASD subgroups. 

While we were able to validate a portion of pathways and core genes identified in the 

AGRE dataset in the AGP dataset, numerous pathways either do not validate, or 
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validate in a different subgroup classification. Despite our success developing and 

applying novel multivariate statistical methods to identify genetically meaningful ASD 

subgroups in both datasets, there are still substantial phenotypic differences between 

the AGRE and AGP datasets and similarly-defined subgroups from the two datasets. 

These differences are potentially why we observe distinct genetic signals when 

comparing results for similarly-defined subgroups from the two datasets. For instance, 

recent research has suggested that both the phenotypic expression and underlying 

genetic architecture of ASD in multiplex families is distinct from that in simplex 

families216. Many of the previously reported candidate genes we found associated with 

the ‘more severe’ AGRE subgroup, that do not validate in the ‘more severe’ AGP 

subgroup, were initially identified in exclusively multiplex families, or in analysis of 

subgroups from the AGRE dataset. The majority of families in the evaluated AGRE 

dataset are multiplex (91.2%) compared to a minority of families in the evaluated AGP 

dataset (31%). Kruskal-Wallis tests show family structure is significantly different 

(p<0.0001) when comparing both the ‘less severe’ subgroups and ‘more severe’ 

subgroups defined in both datasets. The proportion of multiplex families evaluated in 

AGRE subgroups was also significantly higher than in AGP subgroups (z’LessSevere’=15.28, 

p<0.00001; z’MoreSevere’=15.35, p<0.00001). There is also previous evidence indicating 

sex-specific genetic effects underlying ASD129. Similar to our observations regarding 

dataset-specific family structure, gender is very different between the AGRE ‘less 

severe’ subgroup and the AGP ‘less severe’ subgroup (p=0.0063) as well as the AGRE 

‘more severe’ subgroup and the AGP ‘more severe’ subgroup (p=0.0021). The 

proportion of females evaluated in AGRE subgroups was significantly higher than in 

AGP subgroups (z’LessSevere’=2.73, p=0.003; z’MoreSevere’=2.15, p=0.016). It is also notable 

that the AGRE and AGP samples were genotyped on two different microarray SNP 
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platforms. 3.4% of the pathway-analyzed SNPs identified in the AGRE dataset were not 

genotyped in the AGP dataset. 

We observed strong associations for nine sex chromosome SNPs in the AGP single-

SNP analyses. Five SNPs located on the pseudoautosomal region of the X/Y 

chromosomes, and four SNPs located on the X chromosome pass the threshold for 

Bonferroni-adjusted significance (p≤6.42x10
-8

) (Figure 3.8; Table 3.6). It is difficult to 

assess the validity of these very significant SNPs. This is mainly due to the statistical 

limitations involved in evaluating associations for sex-specific genetic markers. These 

markers were also not assayed on the platforms used to genotype the discovery AGRE 

dataset. We performed pathway-based analyses with and without these SNPs included 

and saw no appreciable effects on the significance of associations. This is not 

unexpected, two of these SNPs are not within +/-50kb of any predicted gene boundaries, 

one SNP is assigned to a pseudogene (SSX6), and one SNP is assigned to a long 

intergenic non-protein coding RNA (XR_110926.1). For the remaining SNPs, there is 

previous evidence supporting the involvement of the assigned genes in underlying 

mechanisms of ASD. SNP rs2896799 (ORAll_AGP≈6.19; 95% CI=3.77-10.16) is located 

inside gene boundaries for both KAL1 and VCX3B. KAL1 is predicted to be involved in 

neurite outgrowth, axon guidance and branching, and cell adhesion55. All developmental 

mechanisms thought to be involved in ASD96, 152, 202. The involvement of VCX3B in ASD 

etiology has also been implicated via inherited deletions of this genomic region43. SNP 

rs909439 (ORAll_AGP≈12.72; 95% CI=5.54-29.20) is located in VAMP7, a gene also 

known to be involved in neurite outgrowth9, 10. Two SNPs, rs34013457 (ORAll_AGP≈5.24; 

95% CI=3.21-8.56) and rs34537684 (ORAll_AGP≈7.53; 95% CI=4.47-12.69), are located in 

PCDH11. This gene is a member of the protocadherins family. Other genes in the 
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protocadherins family have been previously implicated statistically, and via their 

functions in synaptic cell-adhesion pathways27. 

The pathway-based approach seems to be a more biologically relevant way to 

evaluate the effects of common, single genetic variants, especially in a group of 

disorders known to be as complex and heterogeneous as ASD.  We show our method of 

phenotypic subgrouping is genetically relevant and that using a pathway-based 

approach to evaluate genetic effects on ASD risk is an effective way to account for 

genetic heterogeneity, implicating more refined biological mechanisms. By further linking 

functional pathways of interest and refining the genetic bottlenecks effecting proper 

pathway function related to specific ASD traits, there may be potential to discover more 

effective methods of symptom treatment. 
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CHAPTER IV 

 

EVALUATING SMALL MOLECULE EFFECTS ON EXPRESSION OF AN AUTISM 

CANDIDATE GENE: ACETYLSEROTONIN O-METHYLTRANSFERASE 

 

Introduction 

 

Uncovering pathways associated with subgroups of ASD has elucidated potential 

sets of genes involved in expression of certain ASD traits. However, to progress toward 

understanding how these significant findings contribute to disorder process, further 

functional characterization of these associations is necessary. Most genes identified 

through pathway analysis have some known biological function but the relationship of 

these genes to ASD is likely unknown. While some progress has been made, there is 

still much to learn about pathophysiology and pharmacology in ASD146, 217.  

Many children with ASD are currently treated with medical interventions, yet little 

evidence exists to support the benefit of these treatments146. Evidence also supports 

significant exhibition of adverse side effects of many medications thereby limiting their 

use to certain ASD patients78, 110, 146, 185. The emerging field of pharmacogenetics is 

concerned with studying the effects of genetic factors on drug response. Previous 

pharmacogenetic studies suggest that the altered efficacy and varied side effects seen 

with many drugs used to treat neurological disorders are related to individual genetic 

variation109, 124, 174. Furthermore, evidence from a study evaluating antidepressant 

efficacy suggests that single nucleotide polymorphisms (SNPs) located in promoter 

regions directly affect patient response to drug treatment120. Single base-pair changes in 

the genetic code could allow or disrupt binding of small molecule compounds, causing a 

drug response in a patient with this variant different from that observed in individuals 
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without these changes. Screening for gene expression effects of small molecule 

compounds has been used previously toward compound profiling and lead discovery144, 

211. We applied this concept to functional characterization of known ASD-related SNPs to 

determine if they cause the gene to respond differently to small molecule compounds 

when compared to the genotype not associated with ASD. 

Acetylserotonin O-methyltransferase (ASMT), also known as Hydroxyindole-O-

methyltransferase, is the initial candidate gene we chose to test for genotype-specific 

altered gene expression effects in vitro when cell lines are exposed to small molecule 

compounds. ASMT encodes the enzyme that catalyzes the final reaction in melatonin 

synthesis. Numerous studies have reported abnormal levels of melatonin in individuals 

with ASD175 and sleep disorders are common in patients with the disorders with 

prevalence estimates ranging from 39-80%73, 111, 137, 190. Melatonin is involved in 

regulating the sleep-wake cycle in humans and is synthesized in the pineal gland5, 33, 140. 

Synthesis of melatonin begins with the active uptake of the amino acid tryptophan into 

the gland. Tryptophan is then hydroxylated and decarboxylated to serotonin, another 

molecule with ample evidence for involvement in ASD83. Serotonin is then N-acetylated 

by the rate-limiting enzyme in this pathway, arylalkylamine, and subsequently converted 

to melatonin by the ASMT enzyme5. 

Melatonin supplementation is an emerging approach to treating sleep defects in 

ASD, however some patients are non-responders175. Other patients undergoing 

melatonin treatment report relief from comorbid symptoms like irritable bowel 

syndrome220, anxiety and seizures189, while some exhibit more severe symptoms23, 78, 185. 

These seemingly contradictory findings suggest that underlying genetic architecture may 

affect exhibition of adverse side effects resulting from melatonin treatment. These 

findings are not exclusive to treatment with melatonin. Interestingly, for many other 

compounds used to treat comorbid symptoms of ASD, individuals report sleep problems 
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as adverse side effects146. One possible explanation is that these small molecule 

compounds are somehow perturbing the melatonin synthesis pathway, potentially by 

affecting expression of ASMT. 

The involvement of ASMT in ASD etiology has been studied extensively99, 148, 175, 219. 

There are three isoforms of the ASMT gene resulting from alternative splicing of exons 6 

and 751. There are also two distinct putative promoters reported, promoter A and 

promoter B171.  Previous tissue-specific expression studies indicate promoter A is 

expressed almost exclusively in the retina, while promoter B drives ASMT expression in 

high amounts in the pineal gland. There are two SNPs located in promoter B of ASMT 

that have been statistically associated with increased ASD risk, rs4446909 and 

rs5989681. Additionally, homozygous presence of the risk alleles for both SNPs was 

correlated with a significant decrease in ASMT expression and ASMT enzymatic activity 

in patients148. The ASMT promoter polymorphisms conferring risk for ASD are located in 

transcription factor binding sites for nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB) and specificity protein 1 (Sp1)99. As such, the reported SNPs 

are thought to alter gene expression by disrupting transcription factor binding. An ASD-

risk haplotype has also been reported that includes the promoter B SNPs and a third 

SNP, rs6644635, located in the 5'-untranslated region (UTR) of the only know functional 

isoform of ASMT30, 148, 219. 

We hypothesized that the ASMT gene promoter B could be a target for small 

molecule compounds and wanted to determine the effects of current ASD treatments on 

genotype-specific ASMT expression. The goal is to determine if effects of individual 

genetic variation, in relation to ASMT expression, could help explain the observed 

inefficacy and adverse side effects of certain drugs used to treat ASD comorbid 

symptoms. The ultimate goal for all pharmacogenetic studies is to provide evidence 
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useful toward optimizing more effective medical treatments for each person’s unique 

genetic architecture. 

 

Methods 

 

Choice of Cell Type 

We used previously generated lymphoblast cell lines derived from individuals 

ascertained by our lab and collaborators. We chose to utilize lymphoblast cell lines 

(LCLs) to allow evaluation of small molecule effects in the endogenous melatonin 

system. Promoter B is reported to be actively expressed in LCL and these cells are the 

same lines used by Melke et al, 2008 to identify the published ASMT genotype-specific 

gene expression, indicating gene expression of the candidate gene should be detectable 

in these cells.  Further, melatonin biosynthesis has been reported in human 

mononuclear lymphocytes59. It is also important to note, LCLs have a relatively low 

reported somatic mutation rate at low passages (0.3%)186. 

 

Sequence Confirmation 

We screened DNA previously extracted from the blood of 22 individuals, in 15 ASD 

families, previously genotyped at the rs4446909 marker, for which cell lines were 

available. A region of ASMT, including the promoter B element, 5-UTR, and exon 1B, 

was amplified for each DNA sample via polymerase chain reactions (PCR) using the 

following primers: forward 5'-AAAAGGGGTCTCACTATGTTGC-3'; reverse 5'-

TGGAACGTGAGTGTGATG AAC-3'. Amplified products were purified from reactions 

with the QIAquick® PCR Purification Kit and Sanger sequenced at GenHunter® 

Corporation. Presence of the genotypes of interest at each SNP in the haplotype of 

interest was verified by analyzing raw sequence chromatograms. The linkage 
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disequilibrium (LD) map for SNPs of interest in this region was calculated using pairwise 

D' with Haploview.  

 

Cell Culture, DNA and RNA Isolation 

We chose two cell lines from affected individuals homozygous for the associated risk 

haplotype (rs4446909GG, rs5989681GG, rs6644635CC), and one cell line from an affected 

individual homozygous for the promoter B risk alleles and heterozygous at the third SNP 

in the haplotype (rs4446909GG, rs5989681GG, rs6644635CT). Two cell lines were also 

chosen from affected individuals heterozygous at all SNPs (rs4446909AG, rs5989681CG, 

rs6644635CT), and one cell line from an affected individual heterozygous for the 

promoter B risk alleles and homozygous at the third SNP in the haplotype (rs4446909AG, 

rs5989681CG, rs6644635CC). Finally, we chose three cell lines from individuals, two 

affected and one father, homozygous for the unassociated promoter B genotypes 

(rs4446909AA, rs5989681CC, rs6644635CC). Due to the lower frequency of these 

genotypes in our case population, it was necessary to choose one parental cell line. It 

was previously reported that individuals with homozygous non-risk genotypes at the 

promoter B SNPs had higher ASMT transcription regardless of case status. It was also 

shown that in parents of children diagnosed with ASD, ASMT transcription correlated 

with melatonin levels148. 

Cells were grown at 37°C in RPMI-1640 medium, plus L-glutamine (Life 

Technologies, Inc., Grand Island, NY, USA).  Growth media was supplemented with 

10% heat-inactivated, undialyzed fetal bovine serum (FBS), and 1% 

penicillin/streptomycin (10,000ug/ml) antibiotic. DNA was extracted using the DNeasy® 

Tissue Kit from Qiagen®. DNA extracted from cell lines was sequenced, as described 

above, to verify the correct sequence of interest in each line. Total RNA was isolated 

using the phenol/chloroform method. 
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Characterization of Basal ASMT Transcript Levels 

Over the course of 4 weeks, at one week intervals, RNA was extracted from each 

cell line. Oligo(dT)-primed cDNA was constructed from 5µg total RNA, using the 

Superscript II kit (Invitrogen, Grand Island, NY, USA), according to the manufacturer 

instructions, with RNase inhibitor. These cDNAs were standardized to the same 

concentration (100ng) and used directly in quantitative real-time PCR (qPCR). Multiplex 

qPCRs were performed, in triplicate, using the TaqMan® Fast Advanced Master Mix, on 

the Applied Biosystems® 7900HT Fast Real-Time PCR System. ASMT mRNA was 

quantified using a commercially available FAM-labeled TaqMan® assay spanning the 

boundary between exon 1B and exon 2 (Hs00946625_m1). Relative quantification of 

ASMT expression was determined using the comparative cycle threshold (2−ΔΔCt) 

method. Amplification efficiencies were determined using linear regression analysis 

performed on log fluorescence data (i.e. the inverse log of the slope in the log linear 

phase)66. ASMT expression was normalized to Ct values for a VIC-labeled TaqMan® 

assay spanning exons 1 and 2 of the polymerase (RNA) II (DNA directed) polypeptide A 

(POLR2A) gene (Hs00172187_m1). Statistical significance of qPCR results was 

determined using a Student’s two-tailed t-test, with unequal variance. 

 

Effects of FBS Serotonin Exposure on ASMT Expression 

We controlled for serotonin present in the FBS used for cell culture by adapting the 

cells into completely serum-free media and serum-starving them for at least 24 hours 

prior to performing small molecule treatments. We used AIM V® Medium, Liquid with 

Human Serum Albumin. To determine the effect of serum starvation on expression of 

ASMT, aliquots of cells from each line were spun down and resuspended in either the 

serum-supplemented ‘growth’ media or the serum-free ‘starvation’ media, to mimic the 

experimental environment of small molecule treatments. Resuspended cells were 
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allowed to grow for 24hrs and total RNA was isolated. Oligo(dT)-primed cDNA was 

constructed and RT-qPCRs were performed as described above. 

 

Small Molecule Treatments 

We focused small molecule experiments on five compounds currently used to treat 

symptoms in ASD, where reported side effects include sleep disturbances. These 

compounds were: Risperidone, Escitalopram, Fluoxetine, Serotonin and Melatonin. Prior 

to cell treatments, we ensured receptors for chosen compounds were expressed in 

human lymphocytes125, 139, 169, 191. Cell lines were spun down and resuspended in serum-

free media as described above. After at least 24 hours of serum-deprivation, when cells 

were in the mid-logarithmic phase of growth, six wells were plated for each cell line, at 

2.5 ml total volume per well. Small molecule treatments were performed with cells 

suspended in serum-free media. Experiments were standardized to have similar counts 

of cells/mL in each treatment well (i.e. cell counts were diluted to equal the well with the 

lowest cell count/mL and were ~500,000). Compounds were dissolved in DMSO+H2O 

and added to cells at concentrations comparable to clinical dosage, when available. For 

FDA approved drugs, treatment concentrations were determined based on reported 

peak plasma concentrations in humans11, 167, 226. Melatonin has yet to be approved by the 

FDA, however, pharmacokinetics of melatonin have been reported in older adults74 and 

a phase I trial has been performed to evaluate melatonin treatment for sleep problems in 

autistic individuals137. We used the reported effective dosages in autistic children at the 

corresponding reported peak plasma concentration from the study performed on older 

adults. For serotonin treatments, we used mean whole-blood 5-HT concentrations 

reported for children with ASD, which were shown to be higher when compared to 

healthy control children80. Negative controls were treated with vehicle-only (DMSO+H2O) 

(Table 4.1). Six hours after addition of compounds, 1mL of cells from each treatment 
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were aliquoted, spun down at 1,000g for 5 minutes, and frozen at -80°C. The remaining 

1.5mL were spun down at 1,000g for 5 minutes, and frozen at -80°C, 12 hours after 

addition of compounds. This treatment protocol was performed in three experimental 

replicates over the course of one week to minimize potential biases that may arise due 

to different batches of growth media and serum-free media, and cell passages. Total 

RNA was isolated from cells from the first small molecule treatment experiments. 

Randomly-primed cDNA was constructed, without RNase inhibitor, using the High-

Capacity cDNA Reverse Transcription Kits from Applied Biosystems. RT-qPCRs were 

performed, in triplicate, as described above. 

 

Compound Drug (g) 
DMSO 

(ml) 

Compound 

Initial 

Concentration 

(ng/ml) 

Final Concentration 

(ng/ml) 

Final 

Volume 

Added 

to Cells 

(ul) 

Risperidone 0.0005 0.1 50000 15.90 0.80 

Melatonin 0.0001 1.0 150000 18.80 0.31 

Fluoxetine 0.0006 0.1 62500 171.00 6.84 

Escitalopram 0.0015 0.1 170000 278.80 4.10 

Serotonin 0.0017 0.1 1000 4.00 10.00 

Negative 

Control: 

DMSO+H2O 

NA 1.0 NA 1ml DMSO:100ml H2O 10.00 

 

 

 

 

Table 4.1. Compound Dilutions for Cell Line Treatments. Reported are the final 

concentrations and amounts of small molecule compounds added to cell lines for 

experimental treatments. All compounds were initially dissolved in the recommended 

amount of DMSO. Initial compound dilutions were then diluted further with 100mL 

H2O to allow pipettable volumes for experiments. 
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Results 

 

Sequence Confirmation 

Sequencing of the ASMT promoter B element and 5'-UTR for the 21 affected 

individuals (15 males and 7 females), we evaluated indicates low levels of LD across the 

three markers previously reported to be inherited as a risk haplotype for ASD (Figure 

4.1). 

 

 

Characterization of Basal ASMT Transcript Levels & Effects of FBS Serotonin Exposure 

on ASMT Expression 

Results from qPCR for these experiments show Cts vary widely across triplicates and 

reactions have low amplification efficiencies (efficiencies < 80%). Evaluation of the raw 

amplification plots show that expression of the endogenous control gene we chose, 

POLR2A, is extremely variable across triplicates, and in many cases has lower Ct-values 

than the gene of interest. 

 

Figure 4.1. Haplotype block structure 

of the promoter B and 5'-UTR SNPs in 

ASMT. Reported are the relative position 

of each SNP, and the pairwise LD (r2) 

between all SNPs. 
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Small Molecule Treatments 

Amplification efficiencies for qPCR are low for a majority of these reactions. 

Efficiencies for negative controls treated with vehicle-only range from 66%-128% for the 

ASMT assay, and 73%-83% for the POLR2A assay. We potentially see significantly 

(p≤0.03) decreased ASMT expression for individuals homozygous for risk alleles at the 

promoter B SNPs, compared to individuals homozygous for the alternative alleles at 

these SNPs. We also observe significant reductions in ASMT expression for individuals 

heterozygous at the two promoter B SNPs, compared to individuals homozygous for the 

alternative alleles at these SNPs (Table 4.2; Figure 4.2). 

Table 4.2. Fold Change Differences By Genotypes. Reported are results from 

Student’s t-tests, with unequal variance. Genotypes are indicated in order of 

chromosomal location: rs4446909/rs5989681/rs6644635. Asterisks denote calibrator 

sample, statistics for this sample are reported for the mean calculated across 

triplicates. All other statistics represent those calculated for the fold change difference 

observed. Std. Err.=standard error, 95% CI=95% confidence interval. 
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We observed one sample having a potentially significant increase (p=0.02) in ASMT 

expression after exposure to Serotonin for 12 hours. This did not replicate across the 

other two samples with the same combination of genotypes at the three SNPs of interest 

(AA/CC/CC). We did not observe any other significant changes in ASMT expression 

following exposure of cells with the non-risk genotypes to any of the other evaluated 

compounds (Figure 4.3). Results from qPCR for treatment experiments on samples 

heterozygous or homozygous for risk genotypes vary widely across triplicates and are 

inconclusive. 
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Sample Genotypes For Each SNP 

Figure 4.2. Genotype-Specific ASMT Gene Expression. Quantification of ASMT 

transcripts relative to genotypes of interest for each SNP. Genotypes are indicated in 

order of chromosomal location: rs4446909/rs5989681/rs6644635. Statistical 

significance determined via Student’s t test with unequal variance. *p ≤ 0.03. 

* 
* * * * * 
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Discussion 

 

We observe higher recombination rates between SNPs in the predicted risk 

haplotype for our small subset of samples, compared to currently reported estimates in 

larger European and Han Chinese descent ASD cohorts148, 219. The previously reported 

structure for the ASMT promoter B SNPs and 5'-UTR SNP suggests strong linkage 

disequilibrium (LD) across all three markers. D' estimates between the two promoter B 

SNPs, rs4446909 and rs5989681, suggest the two SNPs are inherited more often as a 

Figure 4.3. Effects of Small Molecule Treatments on ASMT Gene Expression: 

Non-Risk Alleles. Quantification of ASMT transcripts following exposure to evaluated 

small molecule compounds for the non-risk haplotypes. Genotypes are indicated in 

order of chromosomal location: rs4446909/rs5989681/rs6644635. Statistical 

significance determined via Student’s t test with unequal variance. *p = 0.03. 
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haplotype (D’=0.92-0.94). This is also true for reported D' estimates between rs4446909 

and rs6644635 (D'=0.84), and rs5989681 and rs6644635 (D'=0.98)148, 219. We are 

reporting pairwise measures of the squared correlation coefficient (r2), since D' 

calculations in our evaluated samples are not informative. Due to the equation used to 

calculate the D' statistic, missing genotype combinations always result in D'=1. There are 

missing genotype combinations between markers rs4446909 and rs598968, and 

markers rs598968 and rs6644635. Our estimates of r2 suggest these three SNPs are not 

inherited as a haplotype block in these ASD families. 

Unfortunately, we were unable to ensure that the level of ASMT expression in our 

cell lines was stable over a four-week time course. However, previous evidence 

suggests ASMT mRNA expression and enzymatic activity in the pineal gland does not 

fluctuate based on diurnal rhythms4. We were also unable to determine the effect of 

serum-deprivation on expression of ASMT. Interestingly, the observation that POLR2A 

had lower expression than ASMT for most samples was only in reactions using the 

Oligo(dT)-primed cDNA prepared with an RNase Inhibitor. There is previous evidence 

suggesting decreases in POLR2A mRNA levels are attributable to RNase H-mediated 

cleavage of the mRNA206. It is possible that by treating cDNA samples with RNase H we 

affected expression of our endogenous control, rendering the qPCR results unreliable. 

We evaluated seven different potential control genes prior to performing these qPCR 

experiments. The goal was to obtain a normalizer gene with Ct-values similar to those 

observed for ASMT. An alternative gene we anticipate using in future experiments is 

GAPDH. 

By evaluating qPCR results from vehicle-only treated controls, our data are 

consistent with previous findings indicating homozygous presence of the risk alleles at 

the promoter B SNPs, rs4446909 and rs5989681, results in decreased ASMT gene 

expression148. Previous reports also suggest the observed decrease in expression was 
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only attributable to homozygosity for risk alleles at these two SNPs. There are no 

reported effects on ASMT gene expression attributable to heterozygosity at the promoter 

B SNPs or to any genotype at the 5'-UTR SNP, rs6644635. We do observe decreased 

ASMT expression when individuals are heterozygous, compared to homozygous non-

risk genotypes at these markers. This is very preliminary and to accurately determine the 

effects of heterozygosity at these markers on ASMT expression would require further 

experiments aimed at modeling the effect of genotypes at each SNP alone and 

conducted on cDNA extracted from entirely untreated cells. 

Initial results suggest there are no large changes in ASMT gene expression upon 

exposure to small molecule compounds at either the 6 or 12 hour time point for the non-

risk haplotype. Again, reaction efficiencies are low and estimates of relative ASMT 

quantities are highly variable across triplicates. This is especially true for samples where 

ASMT transcript production is already reduced in negative controls. It is possible the low 

level of expression for our candidate gene in LCL is too low to be accurately detected via 

qPCR. It is also possible that exposure to the small molecule compounds alter 

expression of our chosen endogenous control gene. The low reaction efficiencies could 

also be attributable to pipetting error, poor PCR primer design, a result of multiplexing 

the reaction, or cDNA concentrations that are too low, or high, to be detected 

accurately108. It is difficult to determine the effects of small molecule compound exposure 

on ASMT expression using these reported results. Future experiments, directed at 

optimizing the qPCR, will be necessary to formulate conclusions from our small molecule 

treatments. 
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CHAPTER V 

 

CONCLUSION 

 

Summary 

Autism Spectrum Disorder exhibits multiple levels of complexity related to clinical 

manifestation and etiology. There are many mechanisms implicated in ASD, including, 

but not limited to, biological epistasis, genetic heterogeneity, gene-environment 

interactions, and epigenetic effects. The research conducted in this dissertation was 

motivated by the idea that the difficulty in identifying genetic variation with strong effects 

on risk for ASD is due to the wide variability in clinical manifestation, being explained in 

large part by underlying genetic heterogeneity. 

We hypothesized that phenotypic heterogeneity could be one phenomenon 

complicating identification of genetic factors. By performing unsupervised clustering, 

based on a myriad of carefully chosen phenotypic information, derived from more than 

one source, we were able to effectively evaluate a broad array of information and enable 

a more complete phenotype definition for subsets of individuals with ASD. The 

overlapping interpretation of our results from two different multivariate analyses, PCA 

and clustering, demonstrate the utility of this approach. That we were able to show 

defined subgroups of phenotypic expression appearing to be genetically meaningful in 

the AGRE dataset and replicate these findings in an independent AGP dataset lends 

further support to the validity of the resulting cluster groupings and the idea that the 

phenotype clusters recapitulate underlying genetic mechanisms in Autism Spectrum 

Disorders. 

To further support this idea, we see that unique biological mechanisms are 

implicated when comparing genes associated with either the ‘more severe’ or ‘less 
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severe’ ASD subgroups. Our results suggest that meaningful phenotypic subgroup 

definitions can help clarify the underlying genetic etiology of Autism Spectrum Disorders. 

The pathway-based approach seems to be a more biologically relevant way to evaluate 

the effects of common, single genetic variants, especially in a group of disorders known 

to be as complex and genetically heterogeneous as ASD.  We show that using a 

pathway-based approach to evaluate genetic effects on ASD risk is an effective way to 

account for genetic heterogeneity, implicating more refined biological mechanisms. By 

further linking functional pathways of interest and refining the genetic bottlenecks 

effecting proper pathway function related to specific ASD traits, there may be potential to 

discover more effective methods of symptom treatment. 

Results from our functional pharmacogenetic analyses evaluating genotype-specific 

small molecule effects on expression of ASMT are largely inconclusive and will need to 

be evaluated further in future studies. However, our data are consistent with previous 

results indicating homozygous presence of risk alleles at the promoter B SNPs 

significantly reduces ASMT expression. We also have potentially implicated previously 

unreported gene expression effects related to heterozygosity. We did not observe any 

conclusive effects of compound treatment on expression in the non-risk haplotype. This 

may indicate that altered efficacy and presentation of adverse sleep-related events are 

not attributable to deregulation of ASMT. 

 

Future Directions 

We chose to conduct completely separate analyses in the AGRE and AGP datasets. 

The initial goal was to determine the replicability of the phenotypic subgrouping. As 

such, it was necessary to run independent multivariate statistical analyses in these 

datasets. However, the utility of this approach may not have been the most powerful 

option in our subsequent genetic analyses. There are many potential reasons that a 
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portion of the sub-group specific genetic results, identified in the AGRE dataset, did not 

validate, or validate in a different subgroup, in the AGP dataset. A number of these 

potential reasons are discussed in more detail in Chapter III. To truly replicate genetic 

analyses in the AGP dataset, it will be necessary to perform a confirmatory factor 

analysis by applying the same cluster analysis and principal component loadings 

identified in the AGRE dataset, to the AGP dataset. In other words, to fit phenotype 

characteristics of individuals in the AGP dataset into the defined AGRE clusters. 

It is interesting to speculate at potential genotype-phenotype relationships resulting 

from pathway analyses of the main cluster groupings. However, there is still substantial 

phenotypic heterogeneity in these main subgroups within the same dataset. It would be 

beneficial to further evaluate genetic contributions to ASD-related phenotypes in the 

smaller subclusters, as opposed to main clusters. The defined subclusters within each 

main cluster seem to represent ASD subgroups with more homogeneous phenotypic 

expression than the main clusters, and could be very informative for these types of 

evaluations. For example, an interesting analysis would be to evaluate genetic 

contributions in the 'youngest' subclusters. These subclusters grouped separately from 

the other subclusters within the ‘more severe’ main clusters for both datasets. 

Since the functional focus of the KEGG database is definition of primarily metabolic 

pathways, it would be interesting to evaluate other pathway databases more potentially 

relevant to functional mechanisms implicated in ASD. We have evaluated the Gene 

Ontology database with PARIS and have numerous interesting results from these 

analyses that could be evaluated in future studies. Preliminary examination of the Gene 

Ontology results show that some of the core genes identified in the KEGG database 

analyses overlap with genes in the Gene Ontology database, but many strongly 

associated genes are unique. 
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To obtain more conclusive and reliable results from our small molecule experiments, 

it will be necessary to further troubleshoot qPCR and try to obtain tighter cycle 

thresholds for triplicates. Obtaining an endogenous control gene that is not affected by 

exposure to small molecule compounds is an important next step. In the future, we 

would like to run qPCR normalizing to a primer-limited assay for GAPDH, to determine if 

compounds do have genotype-specific functional effects that do not relate directly to 

ASMT expression. It would be interesting to evaluate potential expression effects of 

these small molecules on other genes in the melatonin pathway. It may be that the 

expression of other genes in the melatonin pathway is dependent on endogenous ASMT 

expression, which is altered due to the genotype-specific effects of SNPs in the ASMT 

promoter B and 5-UTR. It would also be relevant to perform unbiased transcriptome 

profiling using RNA extracted from our treated cells to evaluate potential expression 

effects on many genes that function in other pathways, in addition to the melatonin 

pathway. 

 

The importance of determining the relationship of genotype to phenotype in all 

aspects of genetic analysis of complex disease cannot be overstated. Most of the ASD 

risk genes identified, especially via pathway-based analysis, have some known 

biological function, but the relationship of these genes to ASD is largely unknown. The 

currently known list of ASD risk genes and other genetic abnormalities need to be 

extensively studied to truly understand the functional consequences of each variation. 

While progress has been made, there is still much to learn about pathophysiology and 

pharmacology in ASD. 
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