
REUSABLE MODEL TRANSFORMATION TECHNIQUES FOR AUTOMATING

MIDDLEWARE QOS CONFIGURATION IN DISTRIBUTED REAL-TIME &

EMBEDDED SYSTEMS

By

Amogh Kavimandan

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

December, 2008

Nashville, Tennessee

Approved:

Dr. Aniruddha Gokhale

Dr. Douglas C. Schmidt

Dr. Janos Sztipanovits

Dr. Gabor Karsai

Dr. Jeff Gray

In loving memory of my mother

and

To my wife, Kanchan, for her patience and support

ii

ACKNOWLEDGMENTS

I am indebted to the following individuals for their guidance, support, encouragement,

and friendship during my tenure as a graduate student at Vanderbilt University. The expe-

riences I have had during the past five years while working in the DOC group will be, I

think, invaluable to me in the future.

I would like to thank my Adviser, Prof. Aniruddha Gokhale, for giving me the unique

opportunity of working with him at Vanderbilt University, which has been a greatly reward-

ing, enriching, and truly enjoyable experience for me. I am grateful to him for his guidance

through every phase in my graduate research and education. The in-depth discussions I’ve

had with him, and the constructive feedback I have received from him over the years, were

crucial in concretization and development of my dissertation work and research artifacts

resulting from it. Over the years, I have learned a great deal from him, on academic, pro-

fessional, and personal front and I hope to continue my learning experience with him in the

future as well. Next, I would like to thank Prof. Douglas C. Schmidt for numerous research

collaborations over the last few years. It has been a pleasure working with Prof. Schmidt,

and I was honored to have the opportunity to learn and colloborate with him.

I would like to thank Prof. Aniruddha Gokhale, Prof. Jeff Gray, Prof. Gabor Karsai,

Prof. Douglas C. Schmidt, and Prof. Janos Sztipanovits for agreeing to serve on my PhD

dissertation committee, for providing me with constructive feedback on my initial disserta-

tion proposal, and for their time and effort spent on reviewing and suggesting improvements

to this dissertation. I am particularly grateful to Prof. Gabor Karsai for collaborations over

the past two years on the application of structural correspondence technique for verification

of transformation algorithms in QUICKER.

I am especially thankful to Krishnakumar (Kitty) Balasubramanian for the initial ideas

and continuous guidance on QUICKER. His technical comments, practical observations,

iii

and insightful discussions on my dissertation subject were crucial for its further develop-

ment and improvement. I am indebted to him for that.

Thanks are also due to my long-time mentor at Avaya Laboratories, Dr. Reinhard Klemm.

He provided me with some very useful comments on MTS, and the initial dissertation

proposal, and also provided with the use-case for applying it in the context of enterprise

communications application.

My dissertation work was sponsored by a variety of sponsoring agencies. I would like

to thank them for their support, and for providing real-world problems that motivated some

of the work resulting from this dissertation. Specifically, I would like to thank the following

agencies/researchers: The initial QUICKER funding came from the DARPA ARMS pro-

gram. I am thankful to Richard Buskens at Lockheed Martin Advanced Technology Labo-

ratories, Cherry Hill, for providing the funding that resulted in the development of various

model transformation algorithms in QUICKER, and the evaluation studies conducted on

QUICKER. I am also thankful to Avaya Laboratories for the research travel support during

summer 2005; to Lockheed Martin Advanced Technology Center, Palo Alto, for providing

us with the NASA Magnetospheric Multiscale space Mission scenario used as a case study

in this dissertation; to Cisco Systems, San Jose, for their academic research gift; to the

Vanderbilt EECS department for my adviser’s faculty startup grant, which supported parts

of this dissertation.

I was fortunate to have been associated with several knowledgeable people as my col-

leagues in the DOC group and in ISIS at Vanderbilt, and have learned a lot from each one

of them. I would like to thank Krishnakumar (Kitty) Balasubramanian for bringing me up

to speed on the nuances of CORBA and the CoSMIC toolchain and answering numerous

questions over the past three years. I would also like to thank Nishanth Shankaran for the

discussions on the dynamic reconfiguration aspects in the QUICKER toolchain. Thanks

iv

are also due to Sumant Tambe for discussions on the initial draft of CQML; to Anan-

tha Narayanan for many fruitful discussions on verification of correctness of QUICKER’s

model transformation algorithms.

I am thankful to the following people for making my stay in Nashville memorable,

enjoyable, and fun: Ramya Balachandran, Jaiganesh Balasubramanian, Abhishek Dubey,

Sebastian Eluvathingal, Nithin Gomez, Ashish Gupta, Vishal Koparde, Prajakta Koparde,

Arvind Krishna, Manish Kushwaha, Anantha Narayanan, Srivatsan Pallavaram, Vishwa Ra-

machandran, Nilabja Roy, Indranil Roychoudhury, Nishanth Shankaran, and Di Yao.

Finally, I would like to thank my father, my brother, Nikhil, and his wife Reena, for

all the support over the years; my wife, Kanchan, for her unwavering patience, love, and

encouragement over the years in both good and bad times. Without her I could not have

come this far.

Amogh Kavimandan

Vanderbilt University

14thNovember 2008

v

TABLE OF CONTENTS

Page

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . ix

LIST OF FIGURES . x

Chapter

I. Introduction . 1

I.1. Overview of Component Middleware 2
I.2. Open Issues in QoS Configuration for Component-based DRE

Systems . 6
I.3. Research Approach . 9

I.3.1. Model-driven QoS Mapping Toolchain & Algorithms . 9
I.3.2. Model Transformation Templatization & Specialization 11

I.4. Dissertation Organization . 12

II. Model-driven QoS Mapping Toolchain and Algorithms 14

II.1. Taxonomy of Middleware QoS Configuration Approaches 18
II.1.1. Classification of Configuration Approaches 18
II.1.2. Comparing QoS Configuration Approaches 19

II.2. Challenges in Automated Middleware QoS Configuration 22
II.2.1. DRE system Case Studies 22
II.2.2. Design Challenges . 27

II.3. Design of QUICKER . 33
II.3.1. Specifying QoS Requirements using GT-QMAP Mod-

eling Capabilities . 35
II.3.2. Automating QoS requirements mapping using QUICKER 38
II.3.3. Applying QUICKER for Middleware QoS Configuration 43

II.4. Evaluating GT-QMAP Toolchain for Middleware QoS Configu-
ration . 44

III. On the Correctness of QUICKER Transformations 48

III.1. Overview of middleware QoS configuration process 50
III.2. Evaluation of QoS configuration process 52

III.2.1. DRE System Case Study 53

vi

III.2.2. Verifying the correctness of our QoS configuration pro-
cess . 54

III.2.3. Empirically evaluating BasicSP QoS configurations . . 60

IV. Optimization of QUICKER-generated QoS Configurations 65

IV.1. Challenges in Optimizing QoS Configurations 68
IV.2. Optimizing QoS Configuration for Component-based Systems . . 70

IV.2.1. Step I: Modeling Language used in the Transformation
Algorithm . 71

IV.2.2. Step II: QoS Policy Optimization Algorithm 72
IV.2.3. Resolving the Challenges in Optimizing QoS Configu-

rations . 73
IV.3. Evaluating the generated QoS Configuration Optimizations . . . 74

IV.3.1. Representative Case Study 74
IV.3.2. Experimental Setup & Empirical Results 75
IV.3.3. Discussion . 78

V. Model Transformation Templatization and Specialization 80

V.1. Representative Motivational Case Studies 83
V.1.1. Communication Dialog Creation for an Insurance En-

terprise . 83
V.1.2. Middleware QoS Configuration for Component-based

Applications . 85
V.2. Templatized Model Transformations 86

V.2.1. Step I: Defining the Templatized Transformation Rules . 87
V.2.2. Step II: Generating Variability Metamodels from Con-

straint Specifications 92
V.2.3. Step III: Synthesizing a Specialization Repository . . . 95
V.2.4. Step IV: Specializing the Application Instances 96

V.3. Evaluating the Merits of MTS 98
V.3.1. Reduction in Development Effort using MTS 99
V.3.2. Performance Overhead of using MTS 101

VI. Applying MTS to Context-sensitive Enterprise Communication Dialog Syn-
thesis . 103

VI.1. A Case Study Motivating Context-Sensitive Dialogs 105
VI.2. Design Challenges in Context-Sensitive Dialog Synthesis 108
VI.3. Templatized Model Transformation for Dialog Customization . . 111

VI.3.1. Applying MTS for Context-Sensitive Dialog Synthesis . 114
VI.3.2. Discussion . 122

VII. Related Work . 124

VII.1.Research on Middleware QoS Configuration 124
VII.2.Research on Model Transformation Templatization 138

vii

VIII. Concluding Remarks . 143

Appendix

A. List of Publications . 148

A.1. Refereed Conference Publications 148
A.2. Refereed Workshop Publications 150

REFERENCES . 152

viii

LIST OF TABLES

Table Page

II.1. Characteristics of Science Application 25

II.2. Complexity of application scenarios . 27

II.3. Comparing Requirements DSML against configuration space 46

II.4. Reduction in modeling effort using GT-QMAP 47

III.1. Generated QoS Configuration for BasicSP 62

V.1. SCV Analysis Results for QoS Configuration Case Study. 90

V.2. Details of the representative case studies. 99

VI.1. Dialog profiles for representative communication endpoints 116

VI.2. Using dynamic endpoint characteristics in dialog formatting & rendering 123

ix

LIST OF FIGURES

Figure Page

I.1. Real-time QoS Mechanisms in CORBA Component Model 1

I.2. Key Elements in the CORBA Component Model 3

I.3. Research Landscape for QoS Assurance in DRE Systems 9

I.4. QUICKER Model Transformation Toolchain for Automated Middleware
QoS Configuration . 10

I.5. MTS Approach to Reusable Model Transformations. 12

II.1. Configuration DSML snippet for RT request/response Configuration in
LwCCM . 21

II.2. Shipboard Computing Environment Operational String 23

II.3. MMS Mission System Components. 24

II.4. Challenge 1: Mechanism-level Specification is the Wrong Abstraction
for Component-based Application Development. 28

II.5. Challenge 2: Identifying QoS Policy Set for Realizing Application QoS. . 30

II.6. Challenge 3: Ensuring Semantic Compatibility of & Resolving Depen-
dencies between Application QoS Configurations. 31

II.7. QUICKER toolchain for mapping QoS requirements to platform-specific
QoS Options . 34

II.8. Simplified UML notation of QoS Requirements Associations in QUICKER 36

II.9. Simplified UML notation of real-time QoS configurations DSML 37

III.1. Model-driven QoS configuration process 51

III.2. Structural correspondence using cross-links 55

III.3. Dependency structure of BasicSP. Lc denotes threadpool lane and Bc de-
notes priority bands at component c. SD and CP indicate the SERVER_DECLARED

and CLIENT_PROPAGATED priority models, respectively. 60

x

III.4. Evaluating BasicSP QoS configurations against increasing workload at
a constant 20Hz invocation rate. 61

III.5. Evaluating BasicSP QoS configurations against increasing invocation
rate: All the plots use logarithmic X axis and linear Y axis. 63

IV.1. Basic Single Processor . 74

IV.2. Average end-to-end Latency . 76

IV.3. Standard Deviation in Latency . 77

V.1. Context-sensitive Communication Dialog Synthesis 81

V.2. Middleware QoS Configuration across a Heterogeneous Application . . . 81

V.3. A UML Representation of a Generic Communication Dialog. 84

V.4. A UML Representation of Middleware QoS Configuration Metamodels. . 85

V.5. Steps involved in developing model transformation using GReAT. 86

V.6. MTS Approach to Reusable Model Transformations. 87

V.7. Syntax of Constraint Specification Notation. 91

V.8. Templatized Transformation Rule in QoS Configuration Case Study. . . . 92

V.9. The Generation of VMM using MTS Higher-order Transformation. . . . 94

V.10. Generated VMM for the Representative Case Study. 95

V.11. A Sample VMM model for a Variant of QoS Configuration Case Study. . 95

V.12. Translations of Variabilities into VMM Model Objects. 96

V.13. Specializing the Application Instances using MTS Higher-order Trans-
formation. 97

V.14. Specialization of a QoS configuration rule using MTS. 98

V.15. Overhead in using MTS for the development of templatized transforma-
tions. The Y axis denotes the time taken by Algorithms 4 and 5. 100

VI.1. MTS: Model Transformation Templatization and Specialization 113

xi

VI.2. Generic dialog structure for supporting enterprise communication 114

VI.3. Auto-generated variability metamodel using SCV analysis results from
Phase I . 121

xii

CHAPTER I

INTRODUCTION

A common requirement of a large number of systems found in domains such as avion-

ics mission computing, shipboard computing, and intelligent transportation systems is their

need for different real-time quality of service (QoS) properties, such as bounded request ex-

ecution times, service prioritization, support for real-time asynchronous event-based com-

munication, and low overhead event scheduling, filtering and dispatching. Systems with

these characteristics are generally referred to as distributed, real-time and embedded (DRE)

systems.

Container

COMPONENT
EXECUTORS

Component
Home

POA

Callback
Interfaces

I n
t e

r n
al

In
te

rf a
c e

s

Eve
nt

S
inks

F
acets

R
ec

ep
t a

cl
es

E
ve

nt
So

ur
ce

s

Component
Reference

C
om

p o
ne

nt
C

on
t e

x
t

COMPONENT SERVER 1

Container

COMPONENT
EXECUTORS

Component
Home

POA

Callback
Interfaces

I n
te

r n
al

I n
t e

rf
a c

es

Eve nt
Si nks

F
ac ets

R
ec

ep
t a

cl
es

E
v e

nt
S

ou
rc

es

Component
Reference

C
om

p o
ne

nt
C

on
t e

xt

COMPONENT SERVER 2

ORB

End-to- End Priority
Propagation

End-to- End Priority
Propagation

Thread
Pools
Thread
Pools

Portable PrioritiesProtocol Properties

Priority Band

Priority
Model
Priority
Model

Figure I.1: Real-time QoS Mechanisms in CORBA Component Model

The increasing scale and complexity of modern DRE systems [79, 110] has prompted

1

their developers to move away from traditional stovepiped architectures to more open archi-

tectures that leverage newer software development paradigms [110] including component-

oriented middleware platforms. The capabilities of component-based DRE systems are re-

alized by deploying system functionality encapsulated within components on the resources

of target environment, and configuring middleware, operating system (OS) and networking

platforms on which these system components execute.

Contemporary component middleware platforms, such as Lightweight CORBA Com-

ponent Model (LwCCM) [92], Enterprise Java Beans (EJB) [119] and .NET Web Ser-

vices [84], are designed to be highly flexible to support a large class of DRE systems

from multiple domains. The success of such component middleware technologies has

raised the level of abstraction used to develop software for DRE systems. As a result,

commercial-off-the-shelf (COTS) middleware, such as application servers and object re-

quest brokers (ORBs), now provides out-of-the-box support for traditional concerns affect-

ing QoS in DRE system development, including multi-threading, assigning priorities to

tasks, publish/subscribe event-driven communication mechanisms, security, and multiple

scheduling algorithms. This support helps decouple application logic from QoS mecha-

nisms. For example, as shown in Figure I.1, the supported QoS options include portable

priority mapping, end-to-end priority propagation, thread pools, distributable threads and

schedulers, request buffering, and managing event subscriptions and event delivery. This in

turn, shields the developers from low-level OS specific details, and promotes more effective

reuse of such mechanisms.

I.1 Overview of Component Middleware

Component middleware technologies like EJB [119], Microsoft .NET [85], and LwCCM [91]

raised the level of abstraction by providing higher-level entities like components and con-

tainers. Components encapsulate “business” logic, and interact with other components via

ports.

2

Common Services

Operating System

Transaction Persistence

Events Security QoS

ComponentServer

Container

Component Assembly

CH
CH

CH

CH

CH

Required Interface

Provided Interface Event Sink

Event Source

Component Home

Component

Component

Component

Executor

Executors

Context

Figure I.2: Key Elements in the CORBA Component Model

As shown in Figure I.2, key elements and benefits of component middleware technolo-

gies like LwCCM include:

• Component, which is the basic building block used to encapsulate an element of

cohesive functionality. Components separate application logic from the underlying

middleware infrastructure.

• Component Ports, which allow a component to expose multiple views to clients.

Component ports provide the primary means for connecting components together to

form assemblies.

• Component Assembly, which is an abstraction for composing components into

3

larger reusable entities. A component assembly typically includes a number of com-

ponents connected together in an application-specific fashion. Unlike the other enti-

ties described here, there is no runtime entity corresponding to a component assem-

bly.

• Component home, which is a factory that creates and manages components. A com-

ponent home provides flexibility in managing the lifecycle of components, including

various strategies for component creation.

• Container, which is a high-level execution environment that hosts components and

provides them with an abstraction of the underlying middleware. Containers provide

clear boundaries for Quality-of-Service (QoS) policy configuration and enforcement,

and are also the lowest unit at which policy is enforced; a container regulates shared

access to the middleware infrastructure by the components.

• Component context, which links each component with its execution context and en-

ables navigation between its different ports, as well as access to its connected neigh-

bors. Component context eliminates coupling between a component implementation

and its context, and hence, allows the reuse of a component in multiple execution

contexts.

• Component server, which aggregates multiple containers and the components hosted

in them in a single address space, e.g., an OS process. Component servers facilitate

management at the level of entire applications.

• Common Services, which provide common middleware services, such as transac-

tion, events, security and persistence. Common services implement the platform-

specific aspects of transaction, events, security and persistence and allow components

to utilize these services through the container.

Components interact with clients (including other components) via component ports.

4

Component ports implement the Extension Interface pattern [106], which allows a single

component to expose multiple views to clients. For example, CCM defines four different

kinds of ports:

• Facets, which are distinct named interfaces provided by the component. Facets en-

able a component to export a set of distinct—though often related—functional roles

to its clients.

• Receptacles, which are interfaces used to specify relationships between components.

Receptacles allow a component to accept references to other components and invoke

operations upon these references. They thus enable a component to use the function-

ality provided by facets of other components.

• Event sources and sinks, which define a standard interface for the Publisher/Subscriber

pattern [14]. Event sources/sinks are named connection points that send/receive spec-

ified types of events to/from one or more interested consumers/suppliers. These ports

also hide the details of establishing and configuring event channels [44] needed to

support the Publisher/Subscriber pattern.

• Attributes, which are named values exposed via accessor and mutator operations.

Attributes can be used to expose the properties of a component to tools, such as

application deployment wizards that interact with the component to extract these

properties and guide decisions made during installation of these components, based

on the values of these properties. Attributes typically maintain state about the com-

ponent and can be modified by clients to trigger an action based on the value of the

attributes.

Reusable class libraries and application framework platforms minimize the need to rein-

vent common and domain-specific middleware services, such as transactions, discovery,

fault tolerance, event notification, security, and distributed resource management. For ex-

ample, enterprise systems in many domains are increasingly developed using applications

5

composed of distributed components running on feature-rich middleware frameworks. In

component middleware, components are designed to provide reusable capabilities to a

range of application domains, which are then composed into domain-specific assemblies

for application (re)use.

The transition to component middleware is gaining momentum in the realm of enter-

prise DRE systems because it helps address problems of inflexibility and reinvention of

core capabilities associated with prior generations of monolithic, functionally-designed,

and stove-piped legacy applications. Legacy applications were developed with the precise

capabilities required for a specific set of requirements and operating conditions, whereas

components are designed to have a range of capabilities that enable their reuse in other

contexts. As shown in Figure I.2, some key characteristics of component middleware that

help the development of complex enterprise distributed systems include:

• Support for transparent remote method invocations,

• Exposing multiple views of a single component,

• Language-independent component extensibility,

• High-level execution environments that provide layer(s) of reusable infrastructure

middleware services (such as naming and discovery, event and notification, security

and fault tolerance),

• Tools that enable application components to use the reusable middleware services in

different compositions.

I.2 Open Issues in QoS Configuration for Component-based DRE Systems

Although component middleware has helped move the configuration complexity away

from the application logic, the middleware itself has become more complex to develop

and configure properly. Assuring DRE system QoS properties involves multiple different

6

factors. Apart from making the right decisions on deployment and functional composition,

it is critical to perform the middleware QoS configuration activity. Such an activity requires

insights about different middleware configuration options, their impact on resulting QoS,

and their inter-dependencies. These QoS options exist at various levels (i.e., component-

, component server-, and port-level) in Figure I.2 and the middleware QoS configuration

must be performaned at each of these levels.

Specifically, the configuration process involves the binding of application level QoS

policies—which are dictated by domain requirements—onto the solution space comprising

the QoS mechanisms for tuning the underlying middleware. Examples of domain-level QoS

policies include (1) the number of threads necessary to provide a service, (2) the priorities

at which the different components should run, (3) the alternate protocols that can be used

to request a service, (4) the granularity of sharing among the application components of

the underlying resources such as transport level connections, (5) the number and size of

outstanding requests that are permissible at any instant in time, and (6) the maximum and

minimum amount of time to wait for completion of requests. All these must be mapped to

middleware-specific configurations.

QoS configuration bindings can be performed at several time scales, including stat-

ically, e.g., directly hard coded into the application or middleware, semi-statically, e.g.,

configured at deployment time using metadata descriptors, or dynamically, e.g., by modify-

ing QoS configurations at runtime. Regardless of the binding time, however, the following

challenges must be addressed:

1. The need to translate the domain-specific QoS policies of the application into QoS con-

figuration options of the underlying middleware.

2. The need to choose valid values for the selected set of QoS configuration options.

3. The need to understand the dependency relationships and impact between the different

7

QoS configuration options, both at individual component level (local) as well as at ag-

gregate intermediate levels, such as component assemblies, through the entire application

(global).

4. The need to validate the local and global QoS configurations, which include the values,

the dependency relationships, and the semantics of QoS configuration options at all times

throughout the DRE system lifecycle.

5. The need to optimize QoS configurations for an application such that they can exploit

platform-specific optimizations (for example, collocating components together has been

shown to reduce latencies [7]).

Further, the above challenges must be addressed for each of the middleware platforms

as well as every sub-application hosted on it, in the context of a DRE system. DRE sys-

tem developers understand application-specific design and implementation issues but sel-

dom have the necessary expertise to perform middleware QoS configuration. Failure to

carefully map domain-level QoS requirements onto low-level middleware-specific config-

uration options can lead to a suboptimal middleware configuration degrading the overall

system performance, and in worst cases cause runtime errors that are costly and difficult to

debug. As a result, failures will stem from a new class of configuration errors rather than

(just) traditional design/implementation errors or resource failures.

There is a significant need to bridge the gap that exists between domain-level require-

ments and platform-specific mechanisms that actuate the system QoS. Specifically, for

DRE developers, it is desirable that system QoS requirements can be expressed in terms

of higher level abstractions and automated techniques that map these requirements to low-

level QoS configurations. In conclusion, the challenge of automated middleware QoS con-

figuration (as shown in Figure I.3) has largely been unaddressed to date and needs to be

resolved.

8

Application
Requirements

Application
Functional

Specification

COTS
Middleware

Application
QoS

Specification

Application
Subsystems

Dynamic
QoS

Adaptation
Framework

Application
Functional

Policy

Application
QoS Policy

QoS
Specification
Languages

Functional
Specification

Functional
Analysis

QoS Analysis

Functional
Decomposition

Schedulability
& Timing
Analysis

Target Platform

Middleware
QoS

Configuration

QoS
Adaptation &
Optimization

Existent

Non-Existent

1

1

1

2

3

3

4

Figure I.3: Research Landscape for QoS Assurance in DRE Systems

I.3 Research Approach

This dissertation explores the use of MDE to solve the challenges outlined earlier in

Section I.2.

I.3.1 Model-driven QoS Mapping Toolchain & Algorithms

To address QoS configuration challenges, we developed the QUality of service pICKER

(QUICKER) model-driven engineering (MDE) toolchain. As shown in Figure I.4, QUICKER

extends the Platform-Independent Component Modeling Language (PICML) [8], which is

a domain-specific modeling language (DSML) built using the Generic Modeling Environ-

ment (GME) [2].

9

QUICKER
PICML Model

Transformation CQML Model Checker Target Platform

High-level application requirements Application-specific QoS configuration options

Model transformation for mapping requirements to QoS options
Design-time verification of generated QoS options

using model-checking

Figure I.4: QUICKER Model Transformation Toolchain for Automated Middleware
QoS Configuration

QUICKER enables developers of component-based DRE systems to annotate applica-

tions with QoS policies. These policies are specified at a higher level of abstraction using

platform-independent models, rather than using low-level platform-specific configuration

options typically found in middleware configuration files. QUICKER thus allows flexibil-

ity in binding the same QoS policy to other middleware technologies. Before the compo-

nents in a DRE system can be deployed, however, their platform-independent QoS policies

must be transformed into platform-specific configuration options. QUICKER therefore

uses model-transformation techniques [23] to translate the platform-independent specifi-

cations of QoS policies into a platform-specific model defined using the Component QoS

Modeling Language (CQML), which models the QoS configuration options required to

implement the QoS policies of the application specified in PICML. Unlike PICML (whose

models are platform-independent), CQML models are specific to the underlying middle-

ware infrastructure (which in our case is Real-time CCM [26]).

10

QUICKER subsequently uses generative techniques on the CQML model to synthesize

the descriptors in a middleware-specific format (such as XML) required to configure the

functional and QoS properties of the application in preparation for deployment in a target

environment.

I.3.2 Model Transformation Templatization & Specialization

In this dissertation we present MTS (Model-transformation Templatization and Spe-

cialization) we have developed to address these questions in the context of visual model

transformation tools. MTS provides transformation developers with a simple specification

language to define variabilities in their application family such that the variabilities are fac-

tored out and are decoupled from the transformation rules. MTS provides a higher order

transformation 1 [11] algorithm that automates the synthesis of a family-specific variability

metamodel, which is used by transformation developers to capture the variability across the

variants of an application family. Another higher order transformation algorithm defined in

MTS generates the specialized instances of the application family variants. MTS requires

minimal to no changes to the underlying model transformation engine.

MTS uses domain-specific modeling languages (DSMLs) [40] as its source and target

languages. The MTS approach is shown in Figure I.5 and consists of the following steps:

1. Identifying the variabilities: In this step transformation developers analyze their appli-

cation family to identify variabilities across the variants. Step 1 of Figure I.5 shows how

these variabilities are input to the model transformation in terms of a simple constraint no-

tation specification. This step decouples the transformation algorithm from its variabilities

that can change in an instance-specific manner. This is akin to template functions [34] in

C++ that outline the pattern of the function code.

2. Generating variability metamodel: In this step, developers use a higher order trans-

formation (i.e., those model transformations that work on meta-metamodels to translate
1Since the transformation(s) themselves become the input and(or) output, we refer to the transformation

process in MTS as higher order transformations.

11

Legend

 Transformation
developers analyze their

application family; the
variability results are input
using constraint notation to

the (templatized) model
transformation

1

 MTS Higher order transformation
used to automatically generate VMM

from model transformation
2

 Transformation
developers create

a specialization
repository for their
application family

3

A combination of model
transformation and a VMM model

synthesizes application family
instances

4

Templatized Model Transformation

G G’

G G’ G G’ G G’

G G’

G G’

G G’

Subsystems in
appln. familyApplication family

Variability
Metamodel

Publisher

-nesting : Type
-scheme : Granularity
-nestingLevel : int

GroupFilter

11

Publisher

-ecfiltering : ECFilteringType
EventChannel

1

1
11

-filter : ECFilteringType
Filter

1 0..*

InputPattern

1 1

11 1 11

1

1

1

1

1

1

1
1

1

Specialization Repository

V
ariable

C
om

ponent

V
ariable

C
om

ponent

V
ariable

C
om

ponent

V
ariable

C
om

ponent

V
ariable

C
om

ponent

Subscriber

Subscriber

OutputPattern

Figure I.5: MTS Approach to Reusable Model Transformations.

source metamodel(s) to target metamodel(s)) defined in MTS to automatically generate the

variability metamodel (VMM) for their application family.

3. Synthesizing specialization repository: Next, developers create VMM models, where

each VMM model corresponds to a family member. Thereafter, the variabilities identified

in Step 1 are instantiated for every family member. A collection of all the VMM models is

termed as a specialization repository of that family.

4. Specializing the application instances: Finally, as shown in Step 4, developers use

another higher order transformation defined in MTS to create application variants. This

step is similar to instantiating a C++ template where the compiler generates type-specific

code based on the type of the argument passed.

I.4 Dissertation Organization

Our research on MDE-based middleware QoS configuration and model transformation

templatization techniques have resulted in improved support for DRE system component-

based software development. This dissertation is organized as follows: Chaper II intro-

duces the MDE-based QUICKER toolchain, and discusses its input and output DSMLs. It

12

also discusses the overall approach and design of the toolchain, the model transformation

algorithms for QoS mapping. It also discusses in detail our evaluations of its modeling

capabilities and reduction in development effort using QUICKER. Chapter III discusses

the empirical validation of the generated QoS configurations by applying it to a represen-

tative DRE system case study. Chapter IV explains how we have optimized the gener-

ated QoS configurations further by applying known techniques as model transformation

algorithms. Chaper V discusses our templatization approach, its design and implementa-

tion, and also the various higher-order transformations used in MTS, and evaluates MTS.

Chaper VI demonstrates the broader applicability of QUICKER’s MTS and it in the context

of an enterprise communications dialog synthesis case study, and shows how it handles the

variabilities in MTS. Chaper VII discusses the existing research in middleware QOS con-

figuration, templatization of model transformation and points out the differences between

QUICKER and MTS research, respectively.

13

CHAPTER II

MODEL-DRIVEN QOS MAPPING TOOLCHAIN AND ALGORITHMS

Component-based software engineering (CBSE) [46] is finding wide acceptance in

the development of modern distributed real-time and embedded (DRE) systems. Con-

sequently component middleware platforms, such as Lightweight CORBA Component

Model (LwCCM), are designed to be highly flexible to support a large class of DRE systems

from multiple domains. These middleware platforms provide a number of configuration

mechanisms for (1) allocating CPU, network and OS resources a priori, (2) (re)configuring

and (re)deploying distributed system components, and (3) (de)marshaling communication

requests, component activation/deactivation and persistence services, all of which are de-

coupled from the functional composition aspects of DRE systems.

Assuring DRE system QoS properties involves multiple different factors. Apart from

making the right decisions on deployment and functional composition, it is critical to per-

form the middleware QoS configuration activity i.e., correctly mapping system QoS prop-

erties onto the underlying middleware configuration options. Such an activity requires

insights about different middleware configuration options, their impact on resulting QoS,

and their inter-dependencies. DRE system developers understand application-specific de-

sign and implementation issues but seldom have the necessary expertise to perform mid-

dleware QoS configuration. Failure to carefully map domain-level QoS requirements onto

low-level middleware-specific configuration options can lead to a suboptimal middleware

configuration degrading the overall system performance, and in worst cases cause runtime

errors that are costly and difficult to debug.

As discussed earlier in Chapter I, existing works in QoS assurance for DRE systems

have focused on: (1) application functional specification, decomposition and analysis [45]

to capture and study application structure and behavior, (2) QoS analysis, optimization and

14

adaptation [76] to allocate resources to applications, provide for application QoS optimiza-

tion and adaptation in multiple QoS dimensions, and (3) schedulability and timing analy-

sis [42, 116] to determine exact priorities and time periods for applications. Some work has

also been done in QoS specification languages [8, 100, 128] for capturing application QoS

properties by elevating middleware artifacts (such as its configuration options) to first class

modeling entities. We argue that this level of abstraction does not resolve the challenges

involved in middleware QoS configuration, which is the focus of this dissertation.

Solution Approach → Model-driven Middleware QoS Configuration. Model driven

engineering (MDE) has shown significant promise and success in enabling the reason-

ing of system properties using domain-specific notations, and automating platform-specific

artifacts using generative capabilities [37, 49, 73]. MDE has been successfully used in

verification of system correctness properties [45], and functional and QoS modeling [8].

This dissertation outlines the challenges and conceptual ideas in middleware QoS con-

figuration and describes our QUICKER MDE toolchain. It also delves into the details of the

automated transformation capabilities, which are the cornerstone of tools like QUICKER.

In particular, we describe QUICKER, which uses graph transformations [102, 108] on sys-

tem models to automate the middleware QoS configuration. QUICKER uses a process

of mapping domain-specific QoS requirements onto the right middleware-specific config-

uration options. Our model transformation-based approach begins with domain-specific,

platform-independent models (PIMs) of DRE system QoS requirements that are auto-

matically transformed to more refined and detailed middleware platform-specific models

(PSMs). In this dissertation we focus only on the automated QoS configurations for real-

time (RT) request-response and publish-subscribe communication dimensions shown in

Figure I.3.

To address QoS configuration challenges, we developed the QUICKER MDE toolchain.

Figure I.4 shows the toolchain. QUICKER extends the Platform-Independent Component

Modeling Language (PICML) [8], which is a domain-specific modeling language (DSML)

15

built using the Generic Modeling Environment (GME) [2]. GME is a meta-programmable

modeling environment with a general-purpose editing engine, separate view-controller GUI,

and a configurable persistence engine. Since GME is meta-programmable, the same en-

vironment used to define DSMLs is also used to build models, which are instances of

the metamodels. Model interpreters can be developed using the generative capabilities in

GME. The interpreters are used to traverse the models for generating artifacts for analysis

tools such as model-checking, emulation tools, etc.

QUICKER enables developers of component-based DRE systems to annotate applica-

tions with QoS policies. These policies are specified at a higher-level of abstraction using

platform-independent models, rather than using low-level platform-specific configuration

options typically found in middleware configuration files. QUICKER thus allows flexibility

in binding the same QoS policy to other middleware technologies.

To describe and evaluate the algorithms developed for QUICKER, we use the follow-

ing domain specific modeling languages (DSMLs) as input and output typed graphs for

the automated QoS mapping: (1) Platform Independent Component Modeling Language

(PICML) [8] used for modeling component assemblies, inter-and intra-assembly interac-

tions and interfaces, and simplifying various activities of component-based system devel-

opment such as packaging, and deployment, and (2) LwCCM QoS Modeling Language

(CQML)that allows system developers to express QoS configurations at different levels of

granularity using intuitive, visual representations.

The Requirements metamodel in QUICKER can be used to augment any system compo-

sition modeling language (SCML), such as PICML, that models functional composition of

a DRE system hosted on a component middleware platform. The Requirements metamodel

enables system models to be annotated with domain-specific QoS requirements. The QoS

Configuration metamodel in CQML on the other hand models low-level, LwCCM-specific

configuration QoS options. The transformation rules defined in QUICKER in terms of

input and output typed graphs (i.e., input and output metamodels) to automate the entire

16

middleware QoS configuration processs, thereby significantly reducing the system software

development lifecycle costs and time-to-market.

QUICKER is designed to bridge the gap shown in Figure I.3 between:

Functional specification and analysis tools, such as PICML [9, 10] and Cadena [45], that

allow specification and analysis of application structure and behavior,

Schedulability analysis tools, such as TIMES [4], AIRES [66], VEST [116], that perform

schedulability and timing analysis to determine the exact priorities and time periods for

application components, and

Dynamic QoS adaptation frameworks, such as the Resource Adaptation and Control

Engine (RACE) [109] and QuO [135], that allocate resources to application components,

monitor the QoS of the system continuously, and apply corrective control to modify the

QoS configuration of the middleware at runtime.

By combining model transformation and generative techniques with advanced model-

checking technologies, QUICKER automates the mapping of QoS policies of applica-

tions to QoS configuration options for a specific middleware technology. In particular,

QUICKER’s separation of platform-independent and platform-dependent concerns enables

the use of PICML models to specify QoS policies that can be mapped to other types of

middleware, such as Web Services and Enterprise Java Beans (EJB). As a result, develop-

ers can concentrate on inherent complexities in the application domain rather than wrestle

with low-level middleware-specific configuration options. QUICKER also helps ensure the

validity of the values for the QoS configuration options, both at the individual component

(local) level and at the aggregate application (global) level.

Chapter Organization. The remainder of this chapter is organized as follows: Section II.2

describes motivating DRE systems we use to describe the challenges in QoS mapping;

Section II.3 describes the QUICKER toolchain and how it addresses the challenges outlined

in Section II.2; Section II.4 evaluates QUICKER QoS configuration capabilities in the

context of the DRE system case studies.

17

II.1 Taxonomy of Middleware QoS Configuration Approaches

Performing middleware QoS configuration is critical to achieving the desired appli-

cation QoS on a particular middleware platform. In this section we discuss different ap-

proaches to middleware configuration that can be adopted by DRE system developers elab-

orating on their pros and cons.

II.1.1 Classification of Configuration Approaches

We outline three approaches for middleware QoS configuration in this subsection.

A. Platform-specific Descriptors. Middleware platforms define standard schemata that al-

low specification of functinal and QoS properties of the application. For example, platforms

such as J2EE, Microsoft .NET and Lightweight CORBA Component Model (LwCCM) use

XML descriptor metadata for describing component assemblies, their interfaces and inter-

actions and various non-functional properties. In order to configure their DRE system,

the system developers need to learn the XML schema itself before manually populating the

platform-specific descriptor document. Additionally, the DRE system developers must also

ensure the validity of (a) descriptor document of their application, and (b) configurations of

all application components and inter-connections. The above steps involved in this manual

QoS configuration approach are crucial to avoiding failures and/or errors during the DRE

system deployment; or worse, its execution phase.

B. Platform-specific Configuration Specification. In this approach, platform-specific

specifications, for example domain specific modeling languages (DSMLs), are used to cre-

ate configuration models of DRE system that capture its various configuration options.

Further, these configuration DSMLs define type checking constraints that are enforced at

design-time to ensure the validity of system configurations. Model interpreters are finally

used by developers to synthesize syntactically correct descriptors necessary for DRE sys-

tem configuration in preparation of its deployment. Use of modeling abstractions together

with the generative capabilities of this approach (that can be used repeatedly) shields the

18

developers from low-level XML schema details and has been shown [8] to be faster than

the first approach.

C. Platform-independent Requirements Specification. Although configuration DSMLs

provide substantial benefits over a manual approach, developers still must carefully study

various QoS options, their dependencies, and their impact on the resulting QoS in order

to perform QoS configuration for their DRE systems. Recent studies [59] have shown that

these platform-specific configuration complexities are at an incorrect level of abstraction

for DRE developers and in fact, may negate the benefits of component middleware tech-

nologies.

OMG’s Model Driven Architecture (MDA) [93, 94] development process centers around

defining platform-independent application models and applying typed, and attribute aug-

mented transformations to these models to generate detailed, platform-specific applica-

tion models. Recently, this idea has been applied to specification of an application’s non-

functional (i.e., QoS requirements) properties (in terms of platform-independent, domain-

level models) and its subsequent transformation into middleware configurations (in terms of

platform-specific models). Thus, using this approach, developers only need to specify the

QoS requirements model of their DRE system. Model transformations automatically trans-

late these requirements onto QoS configuration models, to which generative techniques can

be applied (as discussed in approach B above) to synthesize system descriptors.

II.1.2 Comparing QoS Configuration Approaches

We now compare and evaluate the applicability of the three approaches across the fol-

lowing dimensions: (a) specification size, (b) scalability, (c) ease of use, and (d) flexibility.

In each of the comparisons, we assume that the QoS specification does not reuse existing

models (or descriptors, where applicable); i.e., the specification is done from scratch.

A. Specification Size. QoS specification of an application consists of the following two

parts: (a) the actual data values of QoS options themselves, and (b) syntactic rules necessary

19

to construct valid QoS specification. Listing 1 shows a snipplet of an XML descriptor for

specifying RT request/response options for LwCCM-based applications.

1 <orbConfigs>
2 <resources>
3 <threadpoolWithLanes id="threadpool-2">
4 <threadpoolLane>
5 <static_threads>5</static_threads>
6 <dynamic_threads>0</dynamic_threads>
7 <priority>2</priority>
8 </threadpoolLane>
9 <threadpoolLane>

10 <static_threads>5</static_threads>
11 <dynamic_threads>0</dynamic_threads>
12 <priority>1</priority>
13 </threadpoolLane>
14 <stacksize>0</stacksize>
15 <allow_borrowing>false</allow_borrowing>
16 <allow_request_buffering>false</allow_request_buffering>
17 <max_buffered_requests>0</max_buffered_requests>
18 <max_request_buffered_size>0</max_request_buffered_size>
19 </threadpoolWithLanes>

Listing 1: XML Descriptor Snippet for RT request/response Configuration in LwCCM

As shown in lines 3-19, ThreadPoolWithLanes consists of the following two op-

tions: (a) Lane, specifying the number of thread resources and their type, and (b) Thr-

eadPool, governing various characteristics of a pool of Lanes. For each option in this

listing, the value of that option must be enclosed in appropriate XML tags such that the

QoS specification is valid and complete.

Figure II.1 shows a snippet of a configuration DSML for the same RT request/response

options specification. In order to completely capture QoS configuration for a DRE system,

similar to a manual approach, all data values of various QoS options must be specified.

However, as can be seen in the figure, since all the XML tags are modeled as reusable ele-

ments (e.g., ThreadPool element in Figure II.1), the size of QoS specification using this

configuration DSML is considerably smaller. A carefully designed Requirements DSML,

which is our third approach, would be able to reduce configuration specification size even

further as demonstrated in Section II.4.

20

10..* 1
0..1

1..*

-configuredBy 1

Figure II.1: Configuration DSML snippet for RT request/response Configuration in
LwCCM

Recently introduced requirements DSMLs [61, 121] use system structure and platform-

specific heuristics to deduce many of the QoS options from DRE system requirements spec-

ification. A carefully designed requirements DSML would be able to reduce configuration

specification size even further. This hypothesis is corroborated by our work [56] which

shows that the configuration effort using requirements a DSML is reduced by over 75%.

B. Scalability and Ease-of-use. Manually modifying descriptors for QoS configuration

is the least scalable of the three approaches and has been previously shown to be either

extremely tedious or in some cases infeasible [8] because of sheer size and complexity of

descriptor files.

Ease-of-use would be highest with Requirements DSMLs since they operate on domain-

level abstractions that are well-understood by DRE developers. Configuration DSMLs pro-

vide reusable modeling abstractions, and thus are easier to use than the manual approach.

C. Flexibility in QoS configuration. Assuming that they closely model descriptor schemata,

both configuration DSMLs and manual approaches provide the same high degree of flexi-

bility in QoS configuration. Requirements DSMLs on the other hand, ratiocinate many of

the options. In other words, these DSMLs do not explicitely capture all QoS options and

21

therefore are not as flexible. However, as shown in Section II.3, these can be used by gener-

ative algorithms to synthesize the configuration options by way of mapping them from the

application QoS requirements or deducing them from certain application characteristics.

In summary, even though they are not as flexible, requirements DSMLs shield DRE

developers from the complexities of low-level middleware QoS mechanisms and are thus

better suited for rapid QoS configuration. In the subsequent sections, we discuss the details

of our QUICKER toolchain and show how we leverage its Requirements DSML and model

transformations to automate the QoS configuration activity.

II.2 Challenges in Automated Middleware QoS Configuration

Section II outlined the need for automating the tedious and error-prone process of mid-

dleware QoS configuration. Developing a scientific approach to automate this activity poses

a certain set of challenges. We discuss these challenges in the context of three case studies,

which we also use in the chapter for evaluating our approach.

II.2.1 DRE system Case Studies

We chose the following DRE systems as the application scenarios for our experiments:

BasicSP. The Basic Single Processor (BasicSP) [110] is a scenario from the Boeing Bold

Stroke component avionics computing product line [110, 111]. BasicSP uses a publish/subscribe

service for event-based communication among its components, and has been developed and

configured using a QoS-enabled component middleware platform. The application is de-

ployed using a single deployment plan on two physical nodes.

A GPS device sends out periodic position updates to a GUI display that presents these

updates to a pilot. The desired data request and the display frequencies are fixed at 20

Hz. The scenario shown in Figure IV.1 begins with the GPS component being invoked

by the Timer component. On receiving a pulse event from the Timer, the GPS component

22

Figure II.2: Shipboard Computing Environment Operational String

generates its data and issues a data available event. The Airframe component retrieves the

data from the GPS component, updates its state and issues a data available event. Finally,

the NavDisplay component retrieves the data from the Airframe and updates its state and

displays it to the pilot.

SCE. The Shipboard Computing Environment (SCE) consists of a sequence of several

components connected together to form multiple operational strings1. Each operational

string has different importance levels and these levels are used to resolve any resource

contention between them.

As shown in Figure II.2, each operational string contains a number of sensor compo-

nents (e.g., ed1_A,ed2_A) and system monitor components (e.g., sm1_A, sm2_A) that pub-

lish data from the physical devices to a series of planner components (e.g., p1_A, p2_A).

1A single operational string is represented as a component assembly inside the application model

23

Comm Ground

Gizmo 1 Filter 1 Analysis 1

Gizmo 2 Filter 2 Analysis 2
Science
Agent

Gizmo 3 Filter 3 Analysis 3

Facet

Receptacle Event Source

Event Sink

Figure II.3: MMS Mission System Components.

Once the inputs from sensors and system monitors have been analyzed, the planners per-

form control decisions using the effector components (e.g., e1_A, e2_A). Each operational

string contains ten components altogether. SCE has ten operational strings that are de-

ployed using ten deployment plans on five physical nodes.

MMS. We use NASA’s Magnetospheric Multi-scale (MMS) space mission (stp.gsfc.

nasa.gov/missions/mms/mms.htm) as an example to motivate the need for au-

tomated tools for mapping the domain-specific QoS requirements to middleware-specific

QoS configurations. NASA’s MMS mission is a representative DRE system consisting of

several interacting subsystems with a number of complex QoS requirements. It consists

of four identical spacecrafts that orbit around a region of interest in a specific formation.

These spacecrafts sense and collect data specific for the region of interest and at appropriate

time intervals send it to the ground stations for further analysis.

Application developers of the MMS mission must account for mission-specific QoS

requirements along two separate dimensions: (1) each spacecraft needs to operate in mul-

tiple modes, and (2) each spacecraft collects data using sensors whose importance varies

according to the data being collected. The MMS mission involves three modes of oper-

ation: slow, fast, and burst survey modes. The slow survey mode is entered outside the

regions of scientific interests and enables only a minimal set of data acquisition (primarily

for health monitoring). The fast survey mode is entered when the spacecrafts are within

24

stp.gsfc.nasa.gov/missions/mms/mms.htm
stp.gsfc.nasa.gov/missions/mms/mms.htm

one or more regions of interest, which enables data acquisition for all payload sensors at a

moderate rate. If plasma activity is detected while in fast survey mode, the spacecraft enters

burst mode, which results in data collection at the highest data rates. Resource utilization

by, and importance of, a science application is determined by its mode of operation, which

is summarized by Table II.1.

Mode Relative Importance Resource Consumption
Slow survey Low Low
Fast survey Medium Medium

Burst High High

Table II.1: Characteristics of Science Application

Each spacecraft consists of an on-board intelligent mission planner, such as the spread-

ing activation partial order planner (SA-POP) [64] that decomposes overall mission goal(s).

SA-POP employs decision-theoretic methods and other AI schemes (such as hierarchical

task decomposition) to decompose mission goals into navigation, control, data gathering,

and data processing applications. In addition to initial generation of GNC and science

applications, SA-POP incrementally generates new applications in response to changing

mission goals and/or degraded performance reported by on-board mission monitors.

A prototype of the data processing subsystem of this distributed system has been devel-

oped [120] by our collaborators at Vanderbilt University using the Component-Integrated

ACE ORB (CIAO) [26] QoS-enabling component middleware framework, the RACE [109]

dynamic QoS adaptation framework and the PICML [8]. In this case study section we focus

on the physical activity sensor, data collection, and transmission challenges in the MMS

mission, which NASA is developing to study the microphysics of plasma processes.

Figure II.3 shows the components and their interactions within a single spacecraft. Each

spacecraft consists of a science agent that decomposes mission goals into navigation, con-

trol, data gathering, and data processing applications. Each science agent communicates

with multiple Gizmo components, which are connected to different payload sensors. Each

25

Gizmo component collects data from the sensors, which have varying data rate, data size,

and compression requirements.

The data collected from the different sensors have varying importance, depending on

the mode and on the mission. The collected data is passed through Filter components,

which remove noise from the data. The Filter components pass the data onto Analysis

components, which compute a quality value indicating the likelihood of a transient plasma

event. This quality value is then communicated to other spacecraft and used to determine

entry into burst mode while in fast mode. Finally, the analyzed data from each Analysis

component is passed to a Comm (communication) component, which transmits the data to

the Ground component at an appropriate time.

The use of QoS-enabled component middleware and MDE tools provided several ad-

vantages during development of software components for our MMS mission prototype. For

example, we modeled all components of the prototype using PICML, which (1) supported

a high-level abstraction for describing the structure of the MMS scenario and (2) automated

the generation of deployment metadata used to deploy the MMS components. Likewise,

implementing the components with CIAO enhanced flexibility by supporting runtime com-

ponent swapping [5] that allowed runtime reconfiguration of the algorithms used by the

Filter and Analysis components. Finally, using RACE to control the resource usage of

the CIAO components allowed dynamic management of resources used by the Gizmo, Fil-

ter, and Analysis components. Dynamic resource management helps our MMS prototype

adapt to changes in mission goals as determined by the Science components in response to

changing conditions or as requested by explicit user commands.

Configuration complexity of scenarios. As already mentioned, in this chapter we have

focussed on QoS specification for request-response and publish-subscribe communication

paradigms. From our past experiences with developing and configuring QoS for DRE

systems [59], we chose a 3-tuple {C; I;D} to represent configuration complexity of our

application scenarios where,

26

1. C defines the number of components of the application.

2. I defines distinct number of interactions between components of the application. An

interaction exists between two components if the outgoing port of one is connected to

incoming port of the other.

3. D defines the distinct number of dependencies between components of the application. A

dependency exists between two components if a change in the QoS configuration of one

necessitates a change in configuration of the other.

Table II.2: Complexity of application scenarios

Application scenarios # of components # of component interactions # of component dependencies
BasicSP 4 5 6
MMS 12 11 43
SCE 150 260 950

The application scenarios described in this subsection illustrate different levels of con-

figuration complexity and can be summarized using our 3-tuple definition as shown in

Table II.2.

II.2.2 Design Challenges

Although QoS-enabled component middleware and existing MDE tools provide sev-

eral advantages in software development, several key requirements need to be satisfied in

order to effectively enable QoS configuration of the middleware platforms hosting the dif-

ferent software components of a DRE system, such as the MMS Mission prototype. In the

remainder of this section, we discuss the challenges in automating the QoS configurations.

Challenge 1: Specifying domain-specific QoS requirements System developers are do-

main experts who can understand and reason about various domain-level issues. As shown

in Figure II.4, the QoS requirements of a DRE system must be expressible in terms of do-

main concerns rather than in terms of low-level, middleware-specific mechanisms required

27

to satisfy these concerns. Additionally, the scale and complexity of middleware configu-

ration space (which includes an appropriate and semantically valid subset of middleware

configuration mechanisms and their values) makes the specification non trivial.

de
ve

lop
s

QoS Design

Multi- service
Levels

Preserve invocn. priority

Event delivery
on- demand

Event
Filtering

Prioritize
invocations

Component
Impl Impl Impl

Properties Properties

deploys

Application
Specification

Platform
Specification

Figure II.4: Challenge 1: Mechanism-level Specification is the Wrong Abstraction
for Component-based Application Development.

For example, a requirement for the asynchronous connection between Comm and Anal-

ysis components in the MMS mission is that its access be thread-safe such that only one

28

Comm component thread can access the asynchronous connection (for retrieving its events,

for example) at any given time. Real-time publish/subscribe service provides advanced

synchronization mechanisms in order to address such application requirements. It is highly

desirable, however, for system developers to be able to specify these requirements at the

domain-level instead of the middleware.

Addressing this challenge requires tool support for intuitive modeling capabilities that

capture QoS concerns of a system using semantics and notations that are closer to the do-

main. Further, since DRE systems exhibit multidimensional QoS requirements, the tool

should provide clearcut separation of concerns during system QoS specification. Sec-

tion II.3.1 illustrates how our QUICKER toolchain addresses this challenge.

Challenge 2: Identifying the middleware-specific QoS configuration options for sat-

isfying QoS requirements Although a tool may provide modeling capabilities to specify

system-level QoS requirements, there remains the need to identify the right middleware-

specific QoS configuration options that will satisfy the system QoS requirements. As shown

in Figure II.5, this identification process can be a challenging task because of the following

factors: (1) systems evolve either as part of the software development lifecycle, or modified

domain requirements/end-goals. Naturally, the new middleware configurations would have

to be identified again, which is a tedious and error-prone process, and (2) for large-scale

systems this process becomes too time consuming, and in some cases infeasible.

For example, in the SCE application the planner component p1_A has the following re-

quirements: (1) asynchronous connections with its client components (i.e., here the system

monitors) must support bursty service invocations from each of these components, and (2)

service invocations from each of its client components must be prioritized. A way to satisfy

the second requirement is by configuring the planner to have a SERVER_DECLARED real-

time CCM (RT-CCM) [90] policy that handles invocations at pre-determined priorities. In

addition, sufficient thread resources should be available to handle all client priority levels.

This can be achieved by configuring the ThreadPool with Lanes feature, where a single

29

side filtering side filtering

Event- type
filtering

Dispatching Scheduling

Event Grouping Pub- proxy
collection

proxy collection

Event Timeout Pub- disconnect
control

disconnect

// Get the correct bands from the < server_ declared_obj>.
policies[0] = server_ declared_obj->_get_ policy

(RTCORBA:: PRIORITY_BANDED_ CONNECTION_POLICY_TYPE);
RTCORBA:: PriorityBandedConnectionPolicy_

bands_ policy = RTCORBA:: PriorityBandedConnectionPolicy
::_ narrow (policies

RTCORBA:: PriorityBands_var bands = bands

// Set the proper bands at the object level
// object is returned.
object = client_ propagated_obj->_set_ policy

// Get the correct bands from the < server_ declared_obj>.
policies[0] = server_ declared_obj->_get_ policy

(RTCORBA:: PRIORITY_BANDED_ CONNECTION_POLICY_TYPE);
RTCORBA:: PriorityBandedConnectionPolicy_

bands_ policy = RTCORBA:: PriorityBandedConnectionPolicy
::_ narrow (policies

RTCORBA:: PriorityBands_var bands = bands

// Set the proper bands at the object level
// object is returned.
object = client_ propagated_obj->_set_ policy

:

QoS

Figure II.5: Challenge 2: Identifying QoS Policy Set for Realizing Application QoS.

lane corresponds to an individual priority level. Such a QoS design scheme also ensures a

predictable application execution and does not exhibit unbounded priority inversions [98].

Finally, in order to satisfy the first requirement, it is prudent and economical to assign dy-

namic thread resources for bursty clients [105] than reserving them in a static manner for

the entire application life-cycle.

An automated QoS configuration tool should be able to codify these proven patterns

and correctly identify the QoS options necessary to achieve desired system QoS from a

given (semantically-correct) input model. If QoS requirements have been specified across

more than one RT QoS dimensions, the tool should identify corresponding options pertain-

ing to each of these dimensions. Section II.3.2 illustrates how QUICKER addresses this

requirement.

Challenge 3: Mapping the QoS requirements onto QoS configuration options Even if

30

the QoS configuration options that satisfy the system QoS requirements may be identified,

appropriate values for each of the configuration options must be chosen in order to correctly

configure the middleware and realize system level QoS properties as shown in Figure II.6.

Such a step would have to potentially be performed several times during the development

cycle of a system and thus should be easily (and relatively quickly) repeatable.

Comm Ground

Gizmo 1 Filter 1 Analysis 1

Gizmo 2 Filter 2 Analysis 2
Science
Agent

Gizmo 3 Filter 3 Analysis 3

Container

COMPONENT
EXECUTORS

Component
Home

POA

Callback
Interfaces

I n
t e

r n
al

In
te

rf
ac

es

Eve
nt

S
inks

F
acets

R
ec

ep
t a

cl
es

E
ve

nt
So

ur
ce

s

Component
Reference

C
o m

p o
ne

nt
C

on
t e

x
t

COMPONENT SERVER 1

Container

COMPONENT
EXECUTORS

Component
Home

POA

Callback
Interfaces

I n
t e

r n
al

In
te

rf
ac

es

Eve
nt

S
inks

F
acets

R
ec

ep
t a

cl
es

E
ve

nt
So

ur
ce

s

Component
Reference

C
o m

p o
ne

nt
C

on
t e

x
t

COMPONENT SERVER 1

Figure II.6: Challenge 3: Ensuring Semantic Compatibility of & Resolving Depen-
dencies between Application QoS Configurations.

For our MMS mission, the Comm component is best realized using the RT-CCM Th-

readpool_with_lanes feature so that it can provide varying levels of service to its

clients. Similarly, the Analysis components require the use of banded connections to

prevent priority of inversions on the communication links. In both of these cases, it is

necessary to identify how many lanes are needed in a thread pool, what priority values

should be set per lane, how many bands of communication are needed, and what priority

ranges are handled by each band.

Depending on the individual QoS requirements, one or more alternative QoS options

may be identified in the previous step. A QoS configuration tool should choose suitable

values for each of these QoS options. Additionally, it should ensure that QoS options are

31

valid, both for the association entity2, as well as for the entire component-based application.

Section II.3.2 illustrates how QUICKER addresses this requirement.

Challenge 4. Ensuring validity of QoS configuration options with changes in QoS

policies. QoS configuration options affect the non-functional behavior of a system, and

thus are affected by changes in the system environment. For a DRE system to operate

effectively in hostile environments, such as space missions, component middleware and

their associated QoS configuration options may need to adapt to their current conditions.

Middleware that can only be configured statically (i.e., at design- or installation-time)—but

does not allow dynamic reconfiguration—may be of limited use in these scenarios.

While it is useful to change QoS configuration options at runtime to affect changes in

behavior (such as re-prioritizing or increasing/decreasing resource usage), such dynamic

reconfigurations may incur another set of challenges. In particular, not only must we han-

dle static QoS configuration problems (such as checking validity of values and keeping

track of dependencies), there is typically little leeway to accommodate misconfiguration

at runtime. It is non-trivial to change a running system because the system might crash

during reconfiguration due to misconfiguration of QoS options. Moreover, the reconfigu-

ration process itself must be predictable for the reconfiguration to have the desired effect

on system behavior. In a DRE system, for instance, a reconfiguration done too late may be

worse than not performing a reconfiguration at all.

In our MMS mission prototype, for example, the science agent(s) on all spacecraft have

mission goals that represent requests from users or other science agents for the times and

types of data to acquire. Such changes in mission goals require dynamic reconfiguration,

which in turn can trigger changes in QoS configuration, such as modifying the relative

importance assigned to the gizmo components. Depending on the nature and extent of the

changes, dependent components of the gizmo component may be reconfigured using the

available options, along with re-validating the values chosen for the options. For instance,

2In the context of component middleware, an association entity would be, for example, a component, a
connection between components, or an assembly to which a QoS configuration is associated.

32

the size of the buffers in the comm agent corresponding to the data collected from the

different gizmo components, may need reconfiguration to accommodate changes in the

relative importance of the gizmo components.

Such exhaustive evaluation of possible choices of QoS configuration options and vali-

dation of the reconfigured state is too time consuming to perform at runtime and can delay

the reconfiguration process itself, rendering it useless. Once again, tools are needed to help

validate and automate this reconfiguration process. Section III.2.2.2 therefore describes

how the QUICKER MDE tool helps evaluate possible choices of QoS configuration design-

time evaluation of possible choices can be used to select runtime QoS configurations by the

RACE dynamic QoS adaptation framework.

Thus, without an appropriate tool-support each of these challenges would have to be

addressed by manually configuring the middleware for individual applications. Such ad-

hoc solutions lead to sub-optimal QoS middleware configuration, degrading the overall

application performance. In the worst case it might lead to runtime errors that are costly and

difficult to debug. An automated tool support is therefore crucial to solve the middleware

QoS configuration challenges effectively. The rest of the chapter discusses how QUICKER

addresses these challenges in the context of CIAO component middleware.

II.3 Design of QUICKER

This section describes the QUICKER QoS mapping toolchain for QoS-enabled compo-

nent middleware. QUICKER is a MDE framework, which relies on DSMLs for the descrip-

tion of high-level, domain-specific QoS requirements that enable capturing the (platform-

independent) system requirements across various QoS dimensions. Additionally, QUICKER

uses model-driven graph transformations [54] for the translation of these QoS requirements

into platform-specific QoS configuration options necessary to realize these QoS require-

ments on the underlying platform.

33

Legend

PICML

Requirement
Meta-Model

Assembly
Meta-Model

Package
Meta-Model

Model
Transformation

Analysis Tools

System Developer

CQML

QoS
Configuration
Meta-ModelS

ys
te

m
 C

on
fig

ur
at

io
n

E
vo

lu
tio

n

GReAT

Graph Rewriting Rules

G G’

G G’

G G’

G G’ G G’ G G’

PICML

Requirement
Meta-Model

Assembly
Meta-Model

Package
Meta-Model

PICML
Models

in
st

an
ce

of

CQML

QoS
Configuration
Meta-Model

CQML
Models

in
st

an
ce

of

QUICKER Meta-models

Existing PICML Meta-models

System-level
QoS

requirements

Figure II.7: QUICKER toolchain for mapping QoS requirements to platform-specific
QoS Options

Figure II.7 shows the overall QUICKER toolchain. DRE system developers use the Re-

quirements DSML in QUICKER to specify the system QoS requirements. A specification

of system QoS requirements acts as the source model of the QUICKER transformation.

Similarly, middleware-specific QoS configuration options are captured as models using the

QoS Configurations DSML which serves as the target model in the transformation process.

QUICKER uses the Generic Modeling Environment (GME) [2] toolkit for developing

the modeling languages used to describe the above, which provides a graphical user inter-

face that can be used to define both DSML semantics and system models that conform to

the DSMLs defined in it. Model interpreters can be developed using the generative capa-

bilities in GME. The interpreters are used to traverse the models for generating artifacts for

analysis tools such as model-checking, emulation tools, etc.

We have used the Graph Rewriting And Transformation (GReAT) [54] language for

34

defining model-to-model translations of QoS requirements.GReAT, which is developed us-

ing GME, can be used to define transformation rules using its visual language, and exe-

cuting these transformation rules for generating target models using the GReAT execution

engine (GR-Engine). The graph rewriting rules are defined in GReAT in terms of source

and target typed graph (i.e., metamodels). QUICKER transformation rules are used by

the GR-Engine in order to create the QoS options model of a DRE system from its QoS

requirements model.

For evaluating QUICKER modeling capabilities and demonstrating them through a pro-

totypical implementation, our Requirements DSML has been superimposed on PICML.

The requirements modeling abstractions however, are not tied to PICML alone and thus

can be generally associated with any other structural modeling language that provides ca-

pabilities for modeling functional entities (for example, a component, an assembly, or con-

nections thereof) of a component-based system.

In order to be able to associate the QoS policies with structural units (for example,

a component, an assembly, or connections thereof) of a component-based DRE system,

the Requirements metamodel is superimposed on the Platform Independent Modeling Lan-

guage (PICML) [8]. PICML can be used to capture the structure of a DRE system in terms

of its components, assemblies, their interfaces and interactions. Unless stated otherwise,

our use of PICML throughout the remainder of the chapter refers to its QoS Requirements

modeling capabilities.

II.3.1 Specifying QoS Requirements using GT-QMAP Modeling Capabilities
In Challenge 1 of Section VI.2 we motivated the need for domain-specific QoS speci-

fication for component-based DRE systems. We define modeling constructs in GT-QMAP

that can be used by the DRE system developers to define models that capture QoS require-

ments. This section describes this capability and how it resolves Challenge 1.

35

Requirement

OutEventPort

InEventPort

RequiredRequestPort

ProvidedRequestPort

RequestConnector
EventConnector

*

-src0..*

-dst0..*

*

*
-src0..1

-dst0..*

*

Component

ComponentAssembly

1

0..*

1

0..*

1

0..*

1

0..*

1

0..*

-src*

-dst1

-src*

-dst1

-src

*

-dst

1

-src

*

-dst

1

Figure II.8: Simplified UML notation of QoS Requirements Associations in QUICKER

II.3.1.1 Modeling QoS Requirements using QUICKER
QUICKER defines the Requirement element as a generalization of QoS require-

ments. As shown in Figure II.8, source elements Component, ComponentAssem-

bly or Port connections can be associated with a Requirement element. Modeling

abstractions in QUICKER allow association of multiple source elements with the same

Requirement as long as those source elements are of the same type. Moreover a Comp-

onentAssembly’s Requirement is also associated with all the components contained

in that ComponentAssembly. Such associations provide significant benefits in terms of

36

QoSCharacteristic

RTECConfiguration

Subscriber
-control : Control
-control_period : int
-collection_sync : CollectionSync
-collection_flag : CollectionFlag
-collection_iterator : CollectionIterator
-lock : LockType

RTECRoleFilterGroup
-filter_group : FilterGroupType

Publisher
-control : Control
-control_period : int
-collection_sync : CollectionSync
-collection_flag : CollectionFlag
-collection_iterator : CollectionIterator
-lock : LockType
-filtering : PublisherFilter

10..*

OutEventPort
InEventPort

1
1

1
1

-eventsFilteredBy

1..* *

RTECFactory
-use_orb_id : string
-dispatching : Dispatch
-dispatching_threads : int
-timeout : Timeout
-scheduling : Scheduling
-observer : Observer
-filtering : Filter

1
1

«enumeration»
Filter

+NULL
+BASIC
+PRIORITY
+PREFIX

«enumeration»
Dispatch

+PRIORITY
+REACTIVE
+MULTITHREADED

«enumeration»
Observer

+NULL
+BASIC

«enumeration»
CollectionIterator

+COPY_ON_READ
+COPY_ON_WRITE
+IMMEDIATE
+DELAYED

«enumeration»
FilterGroupType
+DISJUNCTION
+CONJUNCTION
+LOGICAL_AND

«enumeration»
PublisherFilter

+NULL
+PER_PUBLISHER

«enumeration»
CollectionFlag
+LIST
+RB_TREE

«enumeration»
Scheduling

+NULL
+PRIORITY

«enumeration»
Timeout

+REACTIVE
+PRIORITY

«enumeration»
LockType

+NULL
+REACTIVE
+THREAD«enumeration»

CollectionSync
+ST
+MT

«enumeration»
Control

+NULL
+REACTIVE

RealTimeConfiguration

EnvironmentConf
-cmd_line_options : string
-service_conf : string

BandedConnections
-low_range : long
-high_range : long

ThreadPool
-stacksize : long
-allow_borrowing : bool
-allow_buffering : bool
-max_buffered_requests : long
-max_buffer_size : long

Lane
-static_threads : int
-lane_priority : int
-dynamic_threads : int

PriorityModelPolicy
-priority_model : Policy
-default_priority : long

«enumeration»
Policy

+SERVER_DECLARED
+CLIENT_PROPAGATED

1

0..*
1

0..1
1

0..1

1

0..*

1

0..1

1..*

-configuredBy 1 1

-honors 1

(a) Publish/subscribe QoS options

(b) Real-time QoS options

(c) Enumerations

Figure II.9: Simplified UML notation of real-time QoS configurations DSML

flexibility in the creation of QoS requirements models and scalability of the models. The

metamodels we describe below have been integrated with PICML using these associations,

thus a single model of DRE system captures its entire QoS requirements specification.

As mentioned earlier for the scope of this chapter, QUICKER has been used in conjunc-

tion with PICML and therefore the discussion above pertains to associations of QUICKER

QoS requirements with various CCM-specific functional entities. However its modeling

abstractions are flexible enough to be extended for other component-oriented technologies.

Next we discuss the requirements specification across the following two RT QoS dimen-

sions: (1) RT-CCM that is used to specify requirements for components and synchronous

connections between components, and (2) RT publish/subscribe service that is used to spec-

ify requirements for asynchronous connections between components.

Real-time QoS requirements. Real-time requirements have component-level granularity.

A RTRequirement element which is derived from Requirement, captures real-time

requirements of a component and may have the following two attributes:(1) fixed_pri-

ority_service_execution, a server component Boolean property for specifying

37

whether or not it modifies client service invocation priorities, and (2) bursty_cli-

ent_requests, a server component Boolean property for specifying the profile of ser-

vice invocations made by its client components.

Publish/subscribe QoS requirements. We have modeled requirements for real-time pub-

lish/subscribe event service to enable specification of QoS across asynchronous and anony-

mous interactions in component-based DRE systems. In the context of a publish/subscribe

service, a Subscriber component subscribes to receive events from a Publisher compo-

nent that generates events. Publisher (subscriber) component connects to a mediator entity,

an Event Channel, to publish (subscribe to) events.

The ECRequirement element is derived from Requirement. It models the prop-

erties of the event channel and can be used to specify the following QoS requirements:

(1) network_quality, a connection-level property that captures the quality value of

network used for running the application. (2) connection_frequency, a component-

level property specifying the frequency at which the component (dis)connects with the

publish/subscribe connection. (3) event_distribution_ratio, a connection-level

property that specifies the ratio: Ea
c

Esc
, where Ea

c denotes number of events available for sub-

scription at connection c and Es
c denotes average number of events subscribed to at con-

nection c by each subscriber component. These modeling capabilities are at a sufficiently

high level of abstraction and are intuitive to be applied to a variety of publish/subscribe

mechanisms. All the requirements have an enumerated data type with values LO and HI.

II.3.2 Automating QoS requirements mapping using QUICKER
Challenge 2 and 3 in Section VI.2 motivated the need for an automated toolchain for

performing QoS configuration of the underlying middleware platform. In this section, we

first describe CQML QoS Configuration DSML that defines middleware-specific QoS op-

tions and outline our transformation algorithm that transforms system QoS requirements.

38

II.3.2.1 Modeling Middleware QoS options in CQML
Rather than directly transforming source models of DRE system into configuration de-

scriptors required for deploying it on the middleware, we chose to generate models of

middleware-specific QoS options from these source models such that they can be used for

further analysis such as model-checking QoS properties of the DRE system. We have devel-

oped interpreters for parsing CQML system models and generating deployment descriptors

in preparation of deploying the DRE system on target environment.

Real-time QoS options. As shown in Figure II.9, CQML defines the following elements

corresponding to several RT-CCM configuration mechanisms: (1) Lane, which is a logical

set of threads each one of which runs at lane_priority priority level. It is possible

to configure static thread (i.e., those that remain active till the system is running and dy-

namic thread (i.e., those threads that are created and destroyed as required) numbers using

Lane element. (2) ThreadPool, which controls various settings of Lane elements,

or a group thereof. These setting include stacksize of threads, whether borrowing of

threads across two Lane elements is allowed, and maximum resources assigned to buffer

requests that cannot be immediately serviced. (3) PriorityModelPolicy, which con-

trols the policy model that a particular ThreadPool follows. It can be set to either

CLIENT_PROPAGATED if the invocation priority is preserved, or SERVER_DECLARED if

the server component changes the priority of invocation. (4) BandedConnections,

which defines separate connections for individual (client) service invocations.

Publish/subscribe QoS options. For QoS configuration of asynchronous event communi-

cations, CQML defines the following elements: (1) Publisher and Subscriber mod-

eling elements contain all the event source and sink settings, respectively. These include,

for example, thread locks management mechanisms for publishers (subscribers) that are

accessed by multi-threaded systems, and types of event filtering used, (2) RTECFactory

element contains configurations specific to the event channel itself. These include, for ex-

ample, event dispatching method that controls how events from publishers are forwarded

39

to the respective subscribers, scheduling of events for delivery and other scheduler-related

coordination, and handling of timeout events in order to forward them to respective sub-

scribers, and (3) FilterGroup element that specifies strategies to group more than one

filters together for publishers (subscribers).

II.3.2.2 QUICKER Transformations for QoS Mapping

The QUICKER model transformation rules have been defined in GReAT and are based

on our past experiences in configuring QoS for component-based DRE systems. They are

applicable to any system model that conforms to the Requirements DSML, and thus can

be used by the system developers repetitively during the development and/or maintenance

phase(s) of the DRE system. QUICKER model transformations preserve the granularity

specified in the source models.

Mapping real-time QoS requirements. Let Rp
o and Rp

i denote, respectively, the set of

outgoing (required/event source) and incoming (provided/event sink) ports of component

p ∈ P. Let S and C be the sets of server and client components respectively and are given

by:

p ∈ S i f Rp
i 6= /0 and p ∈C i f Rp

o 6= /0

Algorithm 1 describes (non-exhaustive) RT-CCM QoS mappings in QUICKER. Lines

5-13 show the thread resource allocation scheme for server components. For every in-

coming port of a server component, the number of interface operations and client com-

ponents are counted (lines 9 and 10). These counts are used by the auxillary function

T hreadResources to calculate the total threads required for handling all client service in-

vocations at that server.

For handling bursts of client requests, server components should configure their thread

pool to grow dynamically such that threads are created only when required.assignT hreadResources

function is used to adjust the ratio of static and dynamic threads for a server, depending on

40

Algorithm 1: Real-time QoS Requirements Mapping
Input: set of client components C, set of server components S, set of bursty client

components B, set of threadPool lanes T PLanes
begin1

InterfaceOperationsCount ioc; ClientsCount cc;2

IncomingPort ip; OutgoingPort op;ThreadCount tc;3

Component c;set of Components CPS; Buffering b f ;4

foreach p ∈ S do5

ioc← 0; cc← 0; tc← 0; b f ← f alse;6

CPS← ClientComponents(p);7

foreach ip ∈ Rp
i do8

ioc← ioc+ countOperations(p, ip);9

cc← cc+ countClientComponents(p, ip);10

end11

tc← T hreadResources(ioc,cc);12

createT PLanes(p, tc);13

foreach c ∈CPS do14

if c ∈ B then15

b f ← true;16

assignT hreadResources(17

T PLanesp,c, tc);18

assignT PoolAttributes(T PLanesp,b f);19

ioc← 0;20

foreach op ∈ Rc
o do21

ioc← ioc+ countOperations(c,op);22

end23

createBands(c, ioc); matchPriorities(p,c);24

end25

end26

end27

whether its bursty_client_requests property is set to TRUE. In addition, lane bor-

rowing feature at the server is set to TRUE such that the thread pool lanes across various

priority levels can be borrowed. Finally, PriorityBands are configured and the their priority

values are matched with server-side lane values in line 24.

Mapping publish/subscribe QoS requirements. Let PCc
s denote the synchronization

mechanism, PCc
t denote the type, PCc

i denote the iterator in proxy collection PC for com-

ponent c, respectively. Let Lc denote the locking policy, CPc denote control policy, SFc

41

denote supplier-based filtering at component c, respectively. Algorithm 2 gives the (non-

exhaustive) publish/subscribe QoS mappings.

Algorithm 2: Publish/Subscribe service QoS Requirements Mapping
Input: set of components CPS
begin1

Component c; ThreadPoolLaneCount lc;2

NetworkQuality nq;3

foreach c ∈CPS do4

lc = countT hreadResources(c); c f = connectionFrequency(c);5

nq = networkQuality(c); dr = eventDistributionRatio(c);
if lc 6= 1 then6

PCc
s = MT ; Lc = T HREAD;7

else8

PCc
s = ST ; Lc = NULL;9

end10

if c f 6= LO then11

PCc
t = LIST ; PCc

i = COPY _ON_READ;12

else13

PCc
t = RB_T REE; PCc

s = COPY _ON_WRIT E;14

end15

if nq 6= LO then16

CPc = NULL;17

else18

CPc = REACT IV E;19

end20

if c ∈ S then21

if dr 6= LO then22

SFc = PER_SUPPLIER;23

else24

SFc = NULL;25

end26

end27

end28

A publish/subscribe service has several settings for configuring the way collections of

publisher and subscriber object references are created and accessed, which must be chosen

appropriately for individual applications. Lines 6-9 in Algorithm 2 show how the choice

42

of serialization mechanism is affected by the number of thread resources configured at

component c.

The choice of the type of collection is based on the following: (1) RB_TREE data struc-

ture exhibits faster (O(log(n))) insertion and removal operations. Therefore, it is more

suited for connections whose components have a high (dis)connection rate; (2) LIST data

structure on the other hand, should be chosen in cases where iteration is frequent (and

therefore, more crucial for efficient application execution) than modifications to it.

Lines 11-14 give the steps in algorithm that configure the collection type. Finally,

REACTIVE policy is chosen for applications that use low-quality value network on Lines

16-19, which ensures that (publisher/subscriber) components are periodically polled for

determining their states (i.e., whether or not they are connected to the event channel).

II.3.3 Applying QUICKER for Middleware QoS Configuration

The challenges described in Section VI.2 are resolved using QUICKER modeling and

automated QoS configuration capabilities as follows:

Resolving Challenges 1 & 2: Target typed graph elements (i.e., QoS options), are well-

understood by implementation middleware experts. QUICKER transformation algorithms 1

and 2 are designed in terms of source and target typed graphs by these experts. System

developers can describe their system QoS requirements using the modeling capabilities

discussed in Section II.3.1.1. By providing platform-independent modeling elements in

QUICKER and defining representational semantics that closely follow those of the system

requirements, QUICKER allows system developers to describe system QoS using simple,

intuitive notations. Further, model transformations defined in QUICKER automatically

identify and deduce QoS configurations that are best suited to achieve the desired QoS for

DRE systems being configured.

For example, in the MMS mission, QUICKER automatically identifies thread safety

43

mechanisms applicable for asynchronous connection between Comm and Analysis compo-

nents as can be seen from lines 6-9 in Algorithm 2. In the SCE application, the requirement

of prioritization of service invocations at p1_A component can be easily specified by setting

fixed_priority_service_execution to TRUE.

Resolving Challenge 3: QUICKER transformation rules contain information about the

semantics of the QoS options, their inter-dependencies, and how they affect the high-level

QoS requirements of a DRE system and therefore are used to asssign values to the sub-

set of options chosen earlier. Further, QoS options semantics are known precisely during

transformations, and thus QUICKER ensures preservation of target typed graph semantics.

Component interactions defined in input typed graph instance (i.e., source model), along

with the user-specified QoS requirements captured in that instance are used to completely

generate an instance of the output graph.

For example, in SCE application, in addition to setting fixed_priority_ser-

vice_execution to TRUE, recall from discussion in Challenge 2 in Section VI.2 that

sufficient thread resources should also be configured to handle all client priority levels at

p1_A. T hreadResources on line 12 in Algorithm 1 calculates appropriate number of thread

resources as a function of client components of p1_A and their interface operations.

II.4 Evaluating GT-QMAP Toolchain for Middleware QoS Configuration

In this section we evaluate GT-QMAP modeling (i.e., using its Requirements DSML)

and transformation capabilitites in the context of DRE system case studies discussed in Sec-

tion V.1. Class count metrics were used for evaluating modeling effort in using GT-QMAP.

All the measurements use GME 6.11.9, GReAT 1.6.0 software packages on a Windows XP

SP2 workstation. Our prototype implementation of GT-QMAP uses PICML and CQML

from CoSMIC toolchain version 0.5.7.

CQML models represent detailed, middleware-specific DRE system QoS configura-

tions that are used for generating configuration descriptors necessary for its deployment. In

44

order to find the reduction in modeling effort using GT-QMAP, we compare its (Require-

ments) modeling capabilities with those of CQML.

Class counts is an important metric for model-based quantitative software measure-

mentsand has been applied and adopted in industrial contexts [16]. For our measurements,

we use the following counts from the (meta)models: (1) modeling elements, which in-

cludes all the concrete modeling objects, (2) connections between modeling elements, (3)

constraints that provide design-time type and/or dependency checks for enforcing language

semantics, and (4) attributes of modeling elements. The counts were measured for both

real-time and publish/subscribe QoS dimensions.

A comparison of CQML and GT-QMAP metamodels in terms of class counts given

above is tabulated in Table II.3. The configuration space in this table simply refers to all of

CQML’s modeling elements each of which corresponds to RT-CCM and publish/subscribe

options as explained in Section II.3.2.1. Using GT-QMAP, the number of modeling ele-

ments are reduced by an average of ∼58% while the number of attributes are reduced by

an average of ∼81%.

The results from class count measurments for BasicSP, MMS and SCE application sce-

narios are shown in Table II.4. From these results it is observed that the modeling elements

and number of attributes required for QoS specification for the publish/subscribe QoS di-

mension reduced by an average 54.55% and 76.4%, respectively. Reductions for RT-CCM

were considerably higher i.e., modeling elements reduction was 86.53% while number of

attributes were reduced by 88.47%.

Connections defined in GT-QMAP are simple associations between modeling elements.

For instance, recall from Section II.3.1.1 that real-time and publish/subscribe QoS require-

ment elements have component- or connection-level granularity. In contrast, modeling el-

ements in CQML exhibit more complex dependency relationships. For example, e.g., a RE-

ACTIVE event dispatching method at an event channel necessitates that ProxyCollection

at corresponding publisher and subscriber components be either MT or ST.

45

Table II.3: Comparing Requirements DSML against configuration space

Effort
measured on

of
modeling

of con-
nections

of con-
straints

of
Boolean

of
int/long

of
string

of
enum

elements
CQML
pub-
lish/subscribe

9 3 7 0 3 1 18

RT-CCM 6 2 3 2 9 2 1
GT-QMAP
pub-
lish/subscribe

4 1 0 1 0 0 4

RT-CCM 1 1 0 2 0 0 0

It is easier to evolve DRE system QoS using GT-QMAP owing to its automated require-

ments mapping capabilities. For example, an additional requirement in the SCE scenario

during its development cycle necessitates that similar to p1_A, component ec_A must prior-

itize its service invocations. In GT-QMAP this is achieved simply by setting fixed_pri-

ority_service_execution property at ec_A (to TRUE). For the entire SCE appli-

cation since it contains 10 such application strings (and therefore, 10 ec_A components),

this additional requirement requires modification of 10 attributes in its GT-QMAP model.

In CQML, on the other hand, such an additional requirement would require the follow-

ing modifications: (1) Configuring the PriorityModelPolicy to SERVER_DECLARED, and

assigning sufficient Lanes at ec_A for handling all of its client service invocations. (2)

Assigning PriorityBands at client components (e1_A etc.) such that a separate connection

is used for each request priority level. This configuration further requires that these band

priority values match with some lane values at ec_A component. Even if smallest possible

number of Bands and Lanes are chosen at respective components, this requires specifying

∼10 modeling elements, ∼4 connections, and ∼16 attributes for each of the 10 application

strings in SCE.

Qualitative Modeling Effort using GT-QMAP. Extensive user studies would be required

for measuring qualitative value of GT-QMAP’s modeling capabilities, however, we argue

46

Table II.4: Reduction in modeling effort using GT-QMAP

Effort measured on # of modeling # of # of # of # of # of # of
elements conns. constr. Bool. int/long string enum

BasicSP in CQML
publish/subscribe 27 9 21 0 3 1 54
RT-CCM 18 9 9 4 28 6 2
BasicSP in GT-QMAP
publish/subscribe 12 3 0 3 0 0 12
RT-CCM 3 3 0 4 0 0 0
MMS in CQML
publish/subscribe 101 35 77 0 35 11 210
RT-CCM 87 44 21 14 163 20 7
MMS in GT-QMAP
publish/subscribe 46 11 0 11 0 0 46
RT-CCM 10 10 0 18 0 0 0
SCE in CQML
publish/subscribe 1100 390 840 0 390 120 2270
RT-CCM 980 390 360 240 1000 160 120
SCE in GT-QMAP
publish/subscribe 510 120 0 120 0 0 510
RT-CCM 120 120 0 240 0 0 0

that in general, the platform-independent QoS specification in GT-QMAP is qualitatively

better than CQML owing to the following observations about the two languages:

1. Apart from the use of domain-level abstractions that naturally lead to simpler system

modeling, all the attributes defined in GT-QMAP are either Boolean or enumerated data

types with two values. Modeling in GT-QMAP is thus similar to answering a set of

questions about QoS requirements of the application.

2. No explicit type checking constraints are defined in GT-QMAP, as opposed to CQML

which defines a total of 10 constraints as shown in Table II.3. This feature allows easier

QoS specification since the language semantics are simpler, and is extremely useful as

DRE systems QoS configurations change during its development/maintenance cycle.

47

CHAPTER III

ON THE CORRECTNESS OF QUICKER TRANSFORMATIONS

The success of component middleware technologies like Enterprise Java Beans (EJB)

and CORBA Component Model (CCM) has raised the level of abstraction used to de-

velop software for distributed real-time and embedded (DRE) systems, such as avionics

mission-computing and shipboard computing systems. As a result, commercial-off-the-

shelf (COTS) middleware, such as application servers and object request brokers (ORBs),

now provides out-of-the-box support for traditional concerns affecting QoS in DRE sys-

tem development, including multi-threading, assigning priorities to tasks, publish/subscribe

event-driven communication mechanisms, security, and multiple scheduling algorithms.

This support helps decouple application logic from QoS mechanisms (such as portable

priority mapping, end-to-end priority propagation, thread pools, distributable threads and

schedulers, request buffering, and managing event subscriptions and event delivery neces-

sary to support the traditional concerns listed above), shields the developers from low-level

OS specific details, and promotes more effective reuse of such mechanisms.

Contemporary component middleware technologies, such as Enterprise Java Beans

(EJB) and CORBA Component Model (CCM), have helped to decouple application logic

from the quality of service (QoS) configuration of distributed real-time and embedded

(DRE) systems by moving the QoS configuration activity to the middleware platforms that

host these systems. Middleware provides out-of-the-box support for traditional concerns

affecting QoS in DRE systems including multi-threading, assigning priorities to tasks, pub-

lish/subscribe event-driven communication mechanisms, security, and multiple scheduling

algorithms.

48

Although this component middleware simplifies application logic, the DRE system de-

velopers are now faced with the complexities of choosing the right set of middleware con-

figuration parameters that meet the QoS demands of their systems. This problem is particu-

larly pronounced in general-purpose middleware platforms, such as CCM and EJB, which

are designed to be highly flexible and configurable to meet the needs of a large class of

distributed systems.

Prior research on software processes and artifacts for QoS management in DRE sys-

tems have focused on different dimensions of the problem space. For example, config-

uration, analysis, optimization and adaptation techniques [76, 127] allow allocation and

dynamic QoS adaptation such that end-to-end application goals are met. Another on-

line approach [131] applies feedback control theory in conjunction with application mon-

itors for affecting resource allocation. Several works for schedulability and timing analy-

sis [66, 116], and behavioral analysis and verification [45] exist in the literature for calculat-

ing the exact priority schemes, time periods, and resolving functional dependencies. These

related approaches often provide either runtime solutions for QoS management or their

outcomes are independent of any middleware platforms and hence must be mapped onto

middleware configuration options via another technique. It is only recently that design-

time techniques are starting to address [56, 72, 133] some of the challenges of middleware

configurations, which includes support for configuring low-level QoS properties of the mid-

dleware platform and generating test suites for benchmarking, among others.

Despite these recent research efforts in addressing the middleware configuration prob-

lem for DRE systems, techniques to evaluate the correctness of these software processes

and validating their effectiveness in meeting system QoS objectives remains largely unad-

dressed to date. This chapter focuses on this unresolved dimension of the problem space.

We demonstrate our ideas on our earlier work on a design-time process for middleware

QoS configuration, which includes the QUICKER [59] model-driven engineering (MDE)

toolchain and its QoS mapping algorithms [56] that use graph transformations.

49

In this chapter we verify the correctness of our QoS configuration process and validate

its effectiveness in meeting the QoS requirements of DRE systems. To this end, we use

structural correspondence between source and target modeling languages in QUICKER to

verify the correctness of their mapping. Further, we show how the Bogor [101] model-

checking tool can be seamlessly extended to employ real-time CCM (RT-CCM)-specific

language constructs to ascertain that the generated configurations are appropriate. We sub-

sequently apply our configuration in the context of a representative DRE system case study

and empirically evaluate the generated QoS configurations to show how the QoS require-

ments are met.

Chapter Organization. The remainder of this chapter is organized as follows: Section III.1

gives a brief overview of our configuration process and the input and output languages used

in its QoS mapping algorithms; Section V.3 verifies the correctness and empirically evalu-

ates our configuration process in the context of a DRE system case study.

III.1 Overview of middleware QoS configuration process

Figure III.1 shows our overall approach (for details please see [56]). DRE system de-

velopers use the Requirements domain-specific modeling language (DSML)/metamodel to

specify the system QoS requirements. Using our configuration process, a specification of

system QoS requirements acts as the source model of QoS mapping algorithms. As can be

seen in Figure III.1, our process uses model transformations for achieving QoS mapping.

Middleware-specific QoS configuration options are captured as models using the QoS Con-

figurations DSML which serves as the target model in the transformation process.

We have used the Generic Modeling Environment (GME) [2] toolkit for developing

these source and target languages, which provides a graphical user interface that can be

used to define both language semantics and system models that conform to the languages

defined in it. The model-to-model transformations, on the other hand, have been developed

50

Model
Transformation Analysis Tools

System Developer

System Configuration EvolutionSystem-level
QoS

requirements

Requirements
Metamodel

QoS
Configurations

Metamodel

GReAT

Requirements
Metamodel

Source
Model

in
st

a n
ce

of

QoS Configurations
Metamodel

Target
Model

Graph Rewriting Rules

G G’

G G’

G G’

G G’ G G’ G G’

in
st

an
ce

of

Figure III.1: Model-driven QoS configuration process

using the Graph Rewriting And Transformation (GReAT) [54]. GReAT, which is imple-

mented within the framework of GME, can be used to define transformation rules using

its visual language, and executing these transformation rules for generating target models

using the GReAT execution engine (GR-Engine).

In our configuration process developers specify QoS using the requirements language.

Our QoS mapping algorithms are codified as GReAT transformation rules which use the

modeled system structure and platform-specific heuristics for automatically translating the

system requirements to detailed QoS configuration models. This translation is an example

of a vertical exogenous transformation [83] that starts with an abstract type graph as the

input and refines the graph to generate a more detailed type graph as the output. Finally,

the generated configuration models are used for synthesizing (1) descriptors necessary for

configuring functional and QoS properties of DRE system in preparation for its deployment

on target platform, and (2) input to external model-checking tool for further analysis.

51

In our configuration process, modeling real-time requirements is simple and involves

specifying the following two component-level Boolean attributes: (1) fixed_priori-

ty_service_execution that indicates whether or not the component modifies client

service invocation priorities, and (2) bursty_client_requests that allows specifi-

cation of the profile of service invocations made by its client components i.e., whether the

invocations are bursty or periodic in nature.

Figure II.9 shows the QoS configurations metamodel which defines the following ele-

ments corresponding to several RT-CCM configuration mechanisms: (1) Lane, which is a

logical set of threads each one of which runs at lane_priority priority level. Threads

can be static or dynamic depending on their state with respect to the application execution

lifecycle; (2) ThreadPool, which controls various settings of Lane elements including

stacksize of threads, whether borrowing of threads across two Lane elements is al-

lowed, and resource limits for buffering requests that cannot be immediately serviced; (3)

PriorityModelPolicy, which controls the policy model that a particular Thread-

Pool follows. It can be set to either CLIENT_PROPAGATED if the invocation priority is to

be preserved end-to-end, or SERVER_DECLARED if the server component changes the pri-

ority of invocation; and (4) BandedConnections, which defines separate connections

for individual service invocations to avoid head-of-line blocking of high priority packets

by low priority packets.

For a detailed discussion of our QoS mapping transformation algorithms, we refer the

reader to [56]. In the next section, we evaluate our configuration process by applying it in

the context of a representative DRE system case study.

III.2 Evaluation of QoS configuration process

This section evaluates our configuration process to verify the correctness of its transfor-

mation algorithms and validate its effectiveness in meeting the QoS requirements of DRE

52

systems. First we present a representative DRE system case study we used for the evalu-

ation. Next we discuss our structural correspondence technique for proving that the input

and output models of transformations used in our process are correctly mapped. We then

describe how we have applied Bogor model-checking tool for verification of the gener-

ated configurations. Finally, through empirical evaluation, we validate the generated QoS

options.

III.2.1 DRE System Case Study

The Basic Single Processor (BasicSP) is a scenario from the Boeing Bold Stroke com-

ponent avionics computing product line. BasicSP uses a publish/subscribe service for

event-based communication among its components, and has been developed using a QoS-

enabled component middleware platform. The application is deployed using a single de-

ployment plan on two physical nodes. s A GPS device sends out periodic position updates

to a GUI display that presents these updates to a pilot. The desired data request and the

display frequencies are at 20 Hz. The scenario shown in Figure IV.1 begins with the GPS

component being invoked by the Timer component. On receiving a pulse event from the

Timer, the GPS component generates its data and issues a data available event. The Air-

frame component retrieves the data from the GPS component, updates its state, and issues

a data available event. Finally, the NavDisplay component retrieves the data from the Air-

frame and updates its state and displays it to the pilot. In its normal mode of operation,

the Timer component generates pulse events at a fixed priority level, although its real-time

configuration can be easily changed such that it can potentially support multiple priority

levels.

It is necessary to carefully examine the end-to-end application critical path and con-

figure the system components correctly such that the display refresh rate of 20 Hz may be

satisfied. In particular, the latency between Airframe and NavDisplay components needs

to be minimized to achieve the desired end goal. To this end, several characteristics of

53

the BasicSP components are important and must be taken into account in determining the

most appropriate QoS configuration space. For example, the NavDisplay component re-

ceives update events only from the Airframe component and does not send messages back

to the sender i.e., it just plays the role of a client. The Airframe component on the other

hand communicates with both the GPS and NavDisplay components thereby playing the

role of a client as well as a server. Various QoS options provided by the target middle-

ware platform (in case of BasicSP, it is RT-CCM) ensure that these application level QoS

requirements are satisfied. In the remainder of the chapter, we focus on verification and

validation of the QoS options generated using our approach.

III.2.2 Verifying the correctness of our QoS configuration process

Verifying our model-based configuration process entails verification of correctness prop-

erties across the following two dimensions: (1) Correctness of QoS mapping algorithms

i.e., QoS options generated are equivalent to the QoS requirements from which these op-

tions are mapped. In our case, this translates to verification of the QoS mapping/transformations

used. (2) Correctness of the generated QoS options themselves i.e., whether individual val-

ues of these options are appropriate locally (e.g., for a component) as well as globally (e.g.,

for all dependent components). This section discusses verification of our process across the

above two dimensions.

III.2.2.1 Assuring the correctness of QoS mapping algorithms

To provide an assurance that the QoS requirements specifications were correctly mapped

into the QoS configuration model, we have used the transformation verification technique

described in [88]. The source and target portions of the transformation are treated as typed,

attributed graphs, and the correctness of the transformation is specified as a relation be-

tween these graphs. Such a relation, called a structural correspondence, is specified by

54

RealTimeConfiguration

-priority_model : Policy
-default_priority : long

PriorityModelPolicy

10..1

StructuralCorrespondence
-bursty_client_requests : bool
-fixed_priority_service_execution : bool

RTRequirements

11 1 1

Figure III.2: Structural correspondence using cross-links

identifying pivot nodes in the metamodel and specifying what constitutes a correct trans-

formation for these nodes.

Using structural correspondence, the verification consists of two phases: the specifica-

tion of the correctness conditions, and the evaluation of the correctness. In the first phase,

we identify important points in the transformation, and specify the structural correspon-

dence rules for these points. From these rules, a model traverser is automatically generated,

which will traverse and evaluate the correspondence rules on the instance models. This step

needs to be performed only once. The second phase involves invoking the model traverser

after each execution of the model transformation. In this phase, the model instance being

transformed is traversed, and the structural correspondence rules are evaluated at each rel-

evant node. If any of the rules are not satisfied, it indicates that the model has not been

transformed satisfactorily.

Structural correspondence rules are described using (1) specification of the correspon-

dence condition itself, and (2) the rule path expressions, which are similar to XPath queries.

Figure III.2 shows how we have used cross-links in GReAT as means of specifying the cor-

respondence condition between input and output language objects such that their equiva-

lence can later be established. RTRequirements is an input language object that denotes

real-time requirement specification for a component. It has a correspondence relation with

RealTimeConfiguration output language object, indicated by presence of a cross-

link between them in Figure III.2.

55

Additionally, one of the transformation rules in our QoS mapping algorithms states that

if the Boolean attribute fixed_priority_service_execution of RTRequir-

ements is set to TRUE in the input model, then priority_model attribute of Prior-

ityModelPolicy object be set to SERVER_DECLARED in the output model. Otherwise

priority_model should be set to CLIENT_PROPAGATED. Additionally, if prior-

ity_model is set to SERVER_DECLARED for a component, Lane values at that com-

ponent and BandedConnection values at its clients must match. In order to complete

the correspondence rule specification, the above is encoded as a rule path expression as

follows:

(RTRequirement.

fixed_priority_service_execution = true ∧

(∀ b ∈ RTConfiguration. BandedConnection

∃ l ∈ RTConfiguration. Lanes :

(b.low_range ≤ l.priority ≤ b.high_range)) ∧

RealTimeConfiguration.PriorityModelPolicy.

priority_model = "SERVER_DECLARED") ∨

(RTRequirement.

fixed_priority_service_execution = false ∧

RealTimeConfiguration.PriorityModelPolicy.

priority_model = "CLIENT_PROPOGATED")

If this expression evaluates to TRUE on an instance model, then it implies that the QoS

configuration for this particular property has been mapped correctly. This applies to the

RTRequirements and RealTimeConfiguration classes, and correspondence con-

dition is added as a link between these classes in the metamodel. Similar to correspondence

condition between RTRequirements and RealTimeConfiguration we described,

other conditions for each of the QoS mapping rules have been specified ensuring that the

transformation is verified correct if all these conditions are satisfied.

56

III.2.2.2 Verifying the generated QoS configurations using model-checking

This section illustrates how the correctness of QoS configuration mappings is verified

using the Bogor model-checking framework, which is a customizable explicit-state model

checker implemented as an Eclipse plugin. Verifying a system using Bogor involves defin-

ing (1) a model of the system using the Bogor Input Representation (BIR) language and (2)

the property (i.e., specification) that the model is expected to satisfy. Bogor then traverses

the system model and checks whether or not the property holds. To validate QoS configu-

ration options of an application using Bogor, we need to specify the application model and

its QoS configurations. We use Bogor’s extension features to customize the model-checker

for resolving the QoS configuration challenges for component-based applications.

It is cumbersome to describe middleware QoS configuration options using the default

input specification capabilities of BIR. This is because such a representation is at a much

lower level of abstraction compared to domain-level concepts, such as components and

QoS options, which we want to model-check. Additionally, specifying middleware QoS

configuration options using BIR’s low-level constructs can yield an unmanageably large

state space since representing domain-level concepts with a low-level BIR specification

requires additional auxiliary states that may be irrelevant to the properties being model-

checked [101]. Therefore we have defined composite language constructs that represent

functional sub-systems (such as components) and QoS options (such as thread pools) as

though they were native BIR constructs.

Listing 1 shows an example of our QoS extensions in Bogor to represent QoS con-

figuration options in middleware, which define two new data types: Component, which

corresponds to a CCM component, and QoSOptions, which captures QoS configuration

options, such as lane, band, and threadpool.

In addition to defining constructs that represent domain concepts, such as components

and QoS options, we also need to specify the property that the application should satisfy. In

our case, property simply means whether or not the QoS configurations are verified correct.

57

extension QoSOptions for
edu.ksu.cis.bogor.module.QoSOptions.QoSOptionsModule
{
// Defines the new type to be used for
typedef lane;
typedef band;
typedef threadpool;
typedef prioritymodel;
typedef policy;
// Lane constructor.
expdef QoSOptions.lane createLane (
int static, int priority, int dynamic);
// ThreadPool constructor.
expdef QoSOptions.threadpool
createThreadPool (boolean allowreqbuffering,
int maxbufferedrequests, int stacksize, int
maxbuffersize, boolean allowborrowing);
// Set the band(s) for QoS policy.
actiondef registerBands (QoSOptions.policy
policy, QoSOptions.band ...);
// Set the lane(s) for QoS policy.
actiondef registerLanes (QoSOptions.policy
policy, QoSOptions.lane ...);
...

}
extension Quicker for
edu.ksu.cis.bogor.module.Quicker
{
// Defines the new type.
typedef Component;
// Component Constructor.
expdef Quicker.Component
createComponent (string component);
// Set the QoS policy for the component.
actiondef registerQoSOptions (Quicker.Component

component,QoSOptions.policy policy);
// Make connections between components.
actiondef connectComponents (Quicker.Component

server,Quicker.Component client);
...

}

Listing 1: QUICKER BIR Extension

Thus, since we need to verify values of various QoS options as means to check whether

application property is satisfied, we define rules that capture values of these QoS options.

BIR primitives are used to express these rules in the input specification of DRE system.

Primitives are also used to capture component interconnections in BIR format which are

required for populating the dependency structure for the specified input application. They

are also used later during verification of options for connected components.

QoS extensions are also helpful in maintaining and resolving dependencies between ap-

plication components. For example, consider a real-time configuration of BasicSP scenario

58

in which each of the GPS, AirFrame, and NavDisplay components are configured to have

priority bands for separate service invocation priorities and the Timer component

is configured to support multiple priority levels during generation of pulse events. Given

such a configuration, we have that priority band values at GPS (client) component

must match ThreadPoolLanes at Timer (server) component i.e., a direct configuration

dependency exists between these two components.

Further, since the pulse events are subsequently reported to AirFrame and NavDisplay

components there is a similar indirect dependency between band values at these com-

ponents and lanes at Timer component. The dependency structure of BasicSP scenario

is maintained in QoS extensions to track such dependencies between QoS options. Fig-

ure III.3 represents the dependency structure generated using QoS extensions with the given

configurations for our BasicSP scenario. Occurrences of change in configurations of either

of the dependent components are followed by detection of potential mismatches such that

all dependencies are exposed and resolved during application QoS design iterations.

Applications that need to be model-checked by Bogor must be represented in BIR for-

mat. Writing and maintaining BIR manually can be tedious and error-prone for domain

experts (e.g., avionics engineers) since configuring application QoS policies is typically

done iteratively. Depending on the number of components and available configuration op-

tions, manual processes do not scale well.

To automate the process of creating BIR specification of applications, we therefore used

the generative capabilities in GME to automatically generate BIR specification of an appli-

cation from its QoS configurations model. This generative process is done in GME using

a model interpreter that traverses the QoS configurations model and generates a BIR file

that captures the application structure and its QoS properties. Our toolchain therefore auto-

mates the entire process of mapping application QoS policies to middleware QoS options,

as well as converting these QoS options into BIR. A second model interpreter is used to

generate the Real-time CCM-specific descriptors required to configure functional and QoS

59

Comm
<Lanes,
PModel>

Ana1
<Bands>

Ana2
<Bands>

Ana3
<Bands>

Flt1
<Bands>

Flt2
<Bands>

Flt3
<Bands>

Gzm1
<Bands>

Gzm2
<Bands>

Gzm3
<Bands>

Depends on

Figure III.3: Dependency structure of BasicSP. Lc denotes threadpool lane and Bc
denotes priority bands at component c. SD and CP indicate the SERVER_DECLARED

and CLIENT_PROPAGATED priority models, respectively.

properties of an application and deploy it in its target environment. In the next section we

empirically validate these generated QoS configurations.

III.2.3 Empirically evaluating BasicSP QoS configurations

In this section we empirically validate the effectiveness of the generated QoS configu-

rations for the BasicSP case study.

Experiment Configuration. We have used ISISLab (www.dre.vanderbilt.edu/

ISISlab) for evaluating observed QoS properties of DRE systems based on middleware

QoS configurations generated using our configuration process. Each of the physical nodes

60

www.dre.vanderbilt.edu/ISISlab
www.dre.vanderbilt.edu/ISISlab

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60 70 80 90

L
at

en
cy

 (
us

)

Workload

Latency Variation

(a) End-to-end latency measurements

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90

St
an

da
rd

 D
ev

ia
tio

n

Workload

(b) Statistical dispersion of latency

Figure III.4: Evaluating BasicSP QoS configurations against increasing workload at
a constant 20Hz invocation rate.

used in our experiments was a 2.8 GHz Intel Xeon dual processor, 1 GB physical memory,

1 GHz network interface, and 40GB hard disks. Version 0.6 of our RT-CCM middle-

ware CIAO was used running on Redhat Fedora Core release 4 with real-time preemption

patches. The processes that hosted BasicSP components were run in the POSIX scheduling

class SCHED_FIFO, enabling first-in-first-out scheduling semantics based on the priority

of the process.

As the first step, we modeled BasicSP QoS requirements using the requirements DSML

described in Section III.1. bursty_client_requests was set to FALSE for all com-

ponents and fixed_priority_service_execution attribute was set to FALSE for

every component except Timer. Secondly, we applied our model transformation algorithm

to the requirements model above for generating detailed application configurations. Ta-

ble III.1 captures some of the important QoS configurations generated in our process. These

configurations are represented as an application model. In the final step, we apply model

interpreters for synthesizing descriptors required to configure the functional and QoS prop-

erties of the application during deployment.

In evaluating effectiveness of our configuration process, we collected end-to-end la-

tency measurements between Timer and NavDisplay components. Earlier in Section III.2.2.2

61

Table III.1: Generated QoS Configuration for BasicSP

QoS configuration Timer GPS Airframe
PriorityModel SD CP CP

ThreadPool
stacksize 1024 1024 1024
max_buff_reqs. – 20 20
allow_borro. FALSE FALSE FALSE

allow_req_buff FALSE TRUE TRUE

Lane
static_thrds 4 8 8
dyna_thrds 0 0 0

we discussed how correctness of QoS options can be verified using our process, the first ex-

periment discussed below empirically evaluates the effectiveness of these options in meet-

ing 20Hz operational display refresh rate of BasicSP from low to high workload condi-

tions. Further, operational conditions of DRE system might change (unfavorably) during

its execution. In order to evaluate the tolerance of our generated configurations under such

conditions, in the second experiment we measure the metrics discussed above when invo-

cation rate is steadily increased. Each of these experiments were performed for a constant

time period and after executing 10,000 warmup iterations.

Experiment 1: Increasing System Workload. Figure III.4 plots the latency measure-

ments under increasing system workload. The workload is characterized [98] as a func-

tion performed with every client invocation. The signature of the function is given as:

void work(int units); where units argument specifies the amount of processor intensive

work performed per call. The experiment was run for workload values of 10 through 80.

End-to-end latency was observed to be at an average value of ∼1925 as can be seen in Fig-

ure III.4a. Further, successive event-driven computations in the scenario exhibit an almost

constant time complexity, indicated by relatively small dispersion in latencies as plotted in

Figure III.4b.

62

 1000

 1500

 2000

 2500

 3000

 10 100 1000 10000

L
at

en
cy

 (
us

)

Invocation Rate (Hz)

Latency Variation

(a) End-to-end latency measurements

 20

 25

 30

 35

 40

 45

 50

 55

 60

 10 100 1000 10000

St
an

da
rd

 D
ev

ia
tio

n

Invocation Rate (Hz)

(b) Statistical dispersion of latency

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 10 100 1000 10000

M
is

s
R

at
io

Invocation Rate (Hz)

(c) Missed deadlines

Figure III.5: Evaluating BasicSP QoS configurations against increasing invocation
rate: All the plots use logarithmic X axis and linear Y axis.

Experiment 2: Increasing System Invocation Rate. Performance of the generated con-

figurations for BasicSP is given in Figure III.5. Throughout this experiment the rate of invo-

cation was increased from a normal operational value of 20Hz to a maximum of 40000Hz.

Latency results are shown in Figure III.5a which plots maximum, mean and minimum de-

lay measurements for each invocation rate data point. Even with increasing rate the mean

latency did not change significantly and was observed to be consistently just above 1900

µs for the entire range of invocation rates. Note that this is a desirable characteristic since

even with an unfavorable change in operational conditions (i.e., change in invocation rate)

63

the latency was observed to be constant. Jitter in latencies for each invocation rate is plotted

in Figure III.5b which shows that the deviation is bound between a high value of 42.44 (at

40Hz) and low value of 26.68 (at 2500Hz). At frequencies 2500Hz and higher the jitter

values became quite stable showing a maximum variation of only 2.11. Overall, our results

indicate that even under increased rate of invocation, the configurations perform effectively

in achieving BasicSP latency requirements.

64

CHAPTER IV

OPTIMIZATION OF QUICKER-GENERATED QOS CONFIGURATIONS

The component-based programming, design, and configuration paradigm has received

much attention over the past few years to develop distributed, real-time, and embedded

(DRE) systems. DRE systems have stringent quality of service (QoS) requirements that

must be satisfied by their resource constrained runtime environments. Examples of DRE

systems include emergency response systems, aircraft navigation and command supervi-

sory systems, and total shipboard computing systems. With a simplified programming

model and mechanisms to separate functional and non-functional aspects of the system

being designed, lends the component-based paradigm to rapid prototyping, (re-) configura-

tion, and easier maintenance of DRE systems.

Deployment of application functionality (i.e., allocation of CPU and other resources

to components based on their QoS requirements and resource availability) and configura-

tion of the infrastructure (i.e., choosing the right configuration options of the middleware)

play a key role in realizing the QoS requirements of DRE systems. To that end, middle-

ware that provides the component-based programming paradigm to DRE systems, such as

Lightweight CORBA Component Model (LwCCM) [92], have been designed to be flexible

and configurable such that they can be manipulated and optimized during system develop-

ment for individual application domains.

Specifically, component middleware provide a large variety of mechanisms, such as

containers to host components that (1) allow choosing the number of thread resources

to be configured for each component, their type (i.e., static or dynamic), and properties

such as stacksize, etc., (2) control over asynchronous event communication, and the pub-

lisher/subscriber event filtering and delivery options, and (3) set the client request invo-

cation priorities on the server component. The configuration space – identified by all the

65

mechanisms for specifying system QoS and their appropriate values – becomes highly

complex due in large part to the generality of these middleware platforms.

Figure I.3 provides an overview of existing research in QoS configuration and deploy-

ment for DRE systems, which so far has focused on: (1) application functional specifica-

tion, decomposition and analysis [45] to capture and study application structure and behav-

ior, which is then realized as components of DRE systems that can be deployed, (2) QoS

analysis, optimization and adaptation [76, 135], allocation of resources to applications, and

node placement [25], (3) QoS specification languages [31, 100, 128] for capturing appli-

cation QoS properties, which are helpful in determining the configuration parameters for

the middleware, and (4) schedulability and timing analysis [42, 116] to determine exact

priorities and time periods for applications, which help in partitioning the system resources

and configuring the middleware.

Despite these advances, there still remain unresolved challenges in the effective de-

ployment and configuration of DRE systems. For example, although bin packing algo-

rithms [25] make effective decisions on component deployment, these decisions are at best

coarse grained since they determine only the nodes on which the components must be de-

ployed but do not indicate how they are deployed within the containers of the component

middleware. These limitations may lead to suboptimal performance since these decisions

are now left to application developers.

On the other hand, research efforts, such as the Physical Assembly Mapper (PAM) [7],

demonstrate how time and space overheads can be reduced by optimizing (i.e., merging)

collocated components at system deployment-time. However, these benefits can be realized

only if the identities of the collocated components is known a priori. Unfortunately, these

decisions too are left to the developer.

Chapter II dealt with automating the process of mapping QoS configuration options

from higher level DRE system QoS requirements. In particular, we described the use of

66

graph transformations [102, 108] to automate the translation of domain-specific, platform-

independent models of DRE system QoS requirements to more refined and detailed mid-

dleware platform-specific models. However, these research efforts in QoS configuration,

including ours, have so far been largely restricted to specification, analysis, and mapping

techniques in the configuration space.

To address existing gaps in deployment and configuration for DRE systems, this chapter

presents a model transformation-based approach to optimize QoS configuration in component-

based DRE systems. Our approach optimizes QoS configuration of component-based ap-

plications by combining (a) our analysis of the configuration space design decisions based

on higher level application requirements with (b) heuristics based on its allocated comput-

ing resources and deployment plans1. Our research prototype has been implemented for

the LwCCM middleware, and it encapsulates the platform-specific rules that can be used

to optimize the DRE system QoS configuration. These rules are encoded as model trans-

formation rules and thus can be reapplied repeatedly during DRE system development. We

present the design of our approach and the process in using it to achieve QoS configu-

ration for a representative component-based DRE system. We also discuss our results in

applying our technique to a representative application and compare them with the existing

state-of-the-art.

This chapter is organized as follows: Section IV.1 discusses the important sources of

gratuitous overheads in component-based application configuration, and the challenges

developers face in achieving optimal QoS configuration for such systems; Section IV.2

presents the overall approach taken, the enabling technologies used in our technique, and

the model transformation algorithm we have developed; Section IV.3 discusses a represen-

tative case study, and also empirically evaluates our approach.

1Deployment plan identifies the deployment specification capturing how component to node mapping
occurs for an application at runtime.

67

IV.1 Challenges in Optimizing QoS Configurations

We now present the challenges in bridging the gap in current deployment and configu-

ration techniques so that the resulting QoS configurations are optimal for component-based

applications. We focus on issues that are both innate to the middleware platforms as well

as those that are accidental.

Challenge 1: Inherent challenges in QoS Policy Configuration. In the context of com-

ponent middleware platforms, such as LwCCM, a container is an execution environment

provided for hosting the components such that they can access the capabilities of the hard-

ware, networking and software (OS and middleware) resources. In particular, containers

act as a higher-level of abstraction for hosting the components in which all the developer-

specified QoS policies can be properly configured. Components with similar QoS config-

uration specifications are hosted within the same container so that all components in that

container obtain the same QoS capabilities.

Service request invocations between the components hosted on different containers,

despite being on the same host and process, have to go through the typical request demulti-

plexing layers and marshaling/demarshaling and mechanisms. Therefore, such invocations

are considerably slower than the invocations between components that share the same con-

tainer [126].

A number of analyses of DRE systems (e.g. application schedulability and timing

analysis, and component priority analysis) and deployment and resource allocation de-

cisions (e.g., where each component resides in the available computing node farm) af-

fect the QoS configurations chosen for individual components of the application. For

example, LwCCM defines QoS policies such as allocation of priorities to every compo-

nent, and fixed/variable priority request invocation (PriorityModelPolicy), mapping

component priority with the execution platform priority (PriorityMapping), number

of thread resources, their type (i.e., static or dynamic), and concurrency characteristics

(ThreadPool).

68

For a component-based application, the mapping of the above analyses onto these avail-

able policies results in a number of unique QoS configurations, and naturally, as many

containers. Thus, in effect, components placed on different containers (which are in turn

created from unique QoS policies) are unable to exploit the collocation optimizations per-

formed by the middleware. As such, the sub-optimal QoS configuration of the application

leads to increased average end-to-end latencies. As the number of components in the sys-

tem that are sub-optimally configured increases, the adverse impact on end-to-end latencies

can significant.

Challenge 2: Accidental Complexities in QoS Policy Configuration. The developers can

keep track of the QoS policies created, and depending on their application can potentially

choose to combine these policies. Such a manual approach introduces several non-trivial

challenges for the application developers:

1. Large-scale applications typically consist of hundreds of components spanning across

multiple assemblies. Manually keeping track of all the policies (and potentially combin-

ing them) in such large-scale applications is very difficult and in some cases infeasible.

2. Development of DRE systems is often an iterative process where new requirements are

added. Thus, the application configuration needs to evolve accordingly to cater to new

requirements, and the optimizations listed above need to be performed at the end of each

reconfiguration cycle.

3. The configuration optimization activity forces the developers to have a detailed knowl-

edge of the middleware platform. Further, the activity itself is not central to the develop-

ment of application logic and may in fact be counter-productive.

In conclusion, it is essential to design and develop automated tools and techniques to

perform the QoS configuration optimization process in component-based DRE systems.

The rest of the chapter discusses our solution approach that addresses the challenges dis-

cussed in this section.

69

IV.2 Optimizing QoS Configuration for Component-based Systems

We now present our model transformation-based approach to QoS configurations for

component-based DRE systems. The model transformation algorithm in our approach takes

the following as its input: (1) DRE QoS configuration specification, and (2) DRE system

deployment plan indicating coarse-grained component collocation groups (i.e., components

that can be placed together on the same process). Its output is a new QoS policy set2, which

is incorporated into the DRE system model. Our approach produces optimized QoS policy

set by employing novel ways of reusing and/or combining existing configurations based on

deployment heuristics in an application-specific manner.

We have used the Generic Modeling Environment (GME) [2] toolkit for developing

the modeling languages used. GME provides a graphical user interface that can be used to

define both modeling language semantics and system models that conform to the languages

defined in it. Model interpreters can be developed using the generative capabilities in

GME that parse and can be used to generate deployment, and configuration artifacts for the

modeled application.

We have used the Graph Rewriting And Transformation (GReAT) [54] language for

defining our algorithms. GReAT, which is developed using GME, can be used to define

transformation rules using its visual language, and executing these transformation rules

for generating target models using the GReAT execution engine (GR-Engine). The graph

rewriting rules are defined in GReAT in terms of source and target languages (i.e., meta-

models).

DRE system developers use GME to model their application, specify the QoS, and

deployment files. The GReAT toolchain is later used for applying our model transforma-

tion algorithm to the DRE system model such that its QoS configuration is updated (i.e.,

optimized). We explain each of these steps in more details.

2QoS policy set is a group of configuration files that completely capture the application QoS. These files
are used by the middleware to ultimately provision infrastructure resources such that QoS can be met.

70

IV.2.1 Step I: Modeling Language used in the Transformation Algorithm

To demonstrate our technique we require a modeling language for component-based

DRE systems. To that end we leverage our Component QoS Modeling Language (CQML) [59]

for modeling QoS configurations and deployment plans of a DRE system. A simplified

UML QoS configuration metamodel in CQML is shown in Figure II.9.

As shown, CQML defines the following elements corresponding to several LwCCM

real-time configuration mechanisms:

1. Lane, which is a logical set of threads each one of which runs at lane_priority

priority level. It is possible to configure the number of static threads (i.e., those that

remain active till the system is running, and dynamic threads (i.e., those threads that are

created and destroyed as required) using Lane element.

2. ThreadPool, which controls various settings of Lane elements, or a group thereof.

These settings include stacksize of threads, whether borrowing of threads across two

Lane elements is allowed, and maximum resources assigned to the buffer requests that

cannot be immediately serviced.

3. PriorityModelPolicy, which controls the policy model that a particular Thread-

Pool follows. It can be set to either CLIENT_PROPAGATED if the invocation priority

is preserved, or SERVER_DECLARED if the server component changes the priority of

invocation.

4. BandedConnections, which defines separate connections for individual (client) ser-

vice invocations. Thus, using BandedConnections, it is possible to define a separate

connection for each (range of) service invocation priorities of a client component. The

range can be defined using low_range and high_range option values of BandedC-

onnections.

Thus, using the CQML modeling elements explained above, developers specify QoS

configuration policies for their DRE systems. We now explain how these QoS policies

specified by the developers are updated using our model transformation algorithm.

71

IV.2.2 Step II: QoS Policy Optimization Algorithm

Algorithm 3: Transformation Algorithm for Optimization of QoS Policy Configura-
tions

Input: set of deployment plans SP, set of components SC, SCS, SCC, component c, cp,
deployment plan p, set of QoS policies SQ1, SQ2, qpa, qpb, set of collocation
groups SCG, collocation group g

begin1

foreach p ∈ SP do2

SCG← collocationGroups(p);3

foreach g ∈ SCG do4

cp← components(p);5

SC← SC + cp | cp ∈ cgComponents(g);6

if c ∈ SC | c.priorityModel == SERV ER_DECLARED then7

SCS← SCS + c;8

else if c ∈ SC | c.priorityModel == CLIENT _PROPAGAT ED then9

SCC← SCC + c;10

foreach c ∈ SCS do11

SQ1← SQ1 + c.QoSPolocy();12

minimize SQ113

subject to qpa ./ qpb | qpa ∼= qpb;14

end15

foreach c ∈ SCC do16

SQ2← SQ2 + c.QoSPolocy();17

minimize SQ218

subject to qpa ./ qpb | qpa ∼= qpb;19

end20

end21

modi f yDeploymentPlan(p,SQ1,SQ2);22

end23

end24

Algorithm 3 shows our model transformation algorithm, which uses CQML as its

source and target language, for optimizing QoS policies. The algorithm is executed for

all the deployment plans specified for an application and the policy optimizations are ap-

plied for each such plan as shown in Line 2. In Line 6, all the components from a sin-

gle collocation group are found.3 Based on whether they have SERVER_DECLARED or
3Note that this is a host-based collocation group.

72

CLIENT_PROPAGATED priority model, they are grouped together in SCS and SCC as shown

in Lines 8 and 10, respectively.

Finally, for each set of components above, the algorithm minimizes the number of QoS

policies in Line 13 subject to the condition in Line 14: if QoS policies of two (sets of)

components a and b each indicated in Algorithm by qpa and qpb, respectively, are similar

(binary Boolean function ∼= finds whether the policies are similar), then they are combined

(indicated by ./) leading to reduction in the size of SQ1. The Algorithm implements sym-

metric rules for CLIENT_PROPAGATED policy model. In Line 22 the results from applying

all the above rules to the DRE system model are used to modify the current deployment

plan, and the process is repeated for all the remaining plans of the DRE system.

At the end of step I, the developers created the application model that captured the

initial QoS policies. The transformation Algorithm 3 is applied in step II to that DRE

system model, which updates it and generates a modified QoS configuration policies using

the rules described above.

IV.2.3 Resolving the Challenges in Optimizing QoS Configurations

Our automated, model transformation-based approach resolves the challenges we have

discussed in Section IV.1 as follows: The inherent platform-specific complexities in opti-

mizing DRE system QoS configurations are encapsulated in the transformation rules de-

scribed in Section IV.2.2. The developers can thus focus on application business logic,

and use our approach to optimize the QoS configuration. Further, the model transforma-

tion rules are reusable and can be applied repeatedly, during application development, and

maintenance.

Next, we apply our approach to a representative case study and show how it improves

the end-to-end invocation latency.

73

IV.3 Evaluating the generated QoS Configuration Optimizations

This section evaluates our approach to optimizing QoS configurations for component-

based DRE systems. We describe our results in the context of a small but real DRE system

use case. We show how the end-to-end latency results after applying our algorithm achieves

considerable improvement over the existing state-of-the-art. Moreover, we also demon-

strate how our results can be used by existing optimization frameworks like PAM [7].

IV.3.1 Representative Case Study

TIMER20H
z

GPS NAV
DISPAIRFRAME

TIMER20H
z

GPS NAV
DISPAIRFRAME

timeout data_avail

get_data ()

data_avail

get_data ()

Figure IV.1: Basic Single Processor

The Basic Single Processor (BasicSP) is a scenario from the Boeing Bold Stroke [110]

component avionics computing product line. BasicSP uses a publish/subscribe service for

event-based communication among its components, and has been developed using a QoS-

enabled component middleware platform. The system is deployed using a single deploy-

ment plan on two physical nodes.

A GPS device sends out periodic position updates to a GUI display that presents these

updates to a pilot. The desired data request and the display frequencies are at 20 Hz. The

scenario shown in Figure IV.1 begins with the GPS component being invoked by the Timer

component. On receiving a pulse event from the Timer, the GPS component generates its

data and issues a data available event. The Airframe component retrieves the data from the

GPS component, updates its state, and issues a data available event. Finally, the NavDisplay

74

component retrieves the data from the Airframe and updates its state and displays it to the

pilot.

In its normal mode of operation, the Timer component generates pulse events at a fixed

priority level, although its real-time configuration can be easily changed such that it can

potentially support multiple priority levels.

It is necessary to carefully examine the end-to-end application critical path and con-

figure the system components correctly such that the display refresh rate of 20 Hz may be

satisfied. In particular, the latency between Timer and NavDisplay components needs to

be minimized to achieve the desired end goal. To this end, several characteristics of the

BasicSP components are important and must be taken into account in determining the most

appropriate QoS configuration space.

For example, the NavDisplay component receives update events only from the Airframe

component and does not send messages back to the sender, i.e., it just plays the role of a

client. The Airframe component on the other hand communicates with both the GPS and

NavDisplay components thereby playing the role of a client as well as a server. Various

QoS options provided by the target middleware platform (in case of BasicSP, it is LwCCM)

ensure that these application-level QoS requirements are satisfied. For achieving the goal of

reducing the latency between Timer and NavDisplay components, it is crucial to carefully

analyze the QoS options chosen for each component in BasicSP, and exploit opportunities

to either reuse or combine them such that this goal can be met.

IV.3.2 Experimental Setup & Empirical Results

We have used ISISLab (www.dre.vanderbilt.edu/ISISlab) for evaluating

our approach in optimizing QoS configurations. Each of the physical nodes used in our

experiments was a 2.8 GHz Intel Xeon dual processor, 1 GB physical memory, 1 GHz

network interface, and 40GB hard disks. Version 0.6 of our Real-time LwCCM middleware

called CIAO was used running on Redhat Fedora Core release 4 with real-time preemption

75

www.dre.vanderbilt.edu/ISISlab

0

200

400

600

800

1000

1200

1400

La
te

nc
y

(u
s)

Without optimizations

With optimizations

With
optimizations &

PAM

Figure IV.2: Average end-to-end Latency

patches. The processes that hosted BasicSP components were run in the POSIX scheduling

class SCHED_FIFO, enabling first-in-first-out scheduling semantics based on the priority

of the process.

As the first step we modeled the the BasicSP scenario and generated the standard QoS

configuration for each of its components. We then applied the transformation algorithm 3

to our BasicSP application model that updated the application QoS policies. The BasicSP

scenario was executed again with the updated QoS policies to get the results after our

technique was applied.

Figures IV.2 and IV.3 show the results of applying our approach to BasicSP scenario

explained in Section VI.1. The figure plots the average end-to-end latency and its stan-

dard deviation for the invocations from Timer to NavDisplay components in BasicSP with

and without our approach. The results were obtained by repeating invocations for 100,000

iterations after 10,000 warmup iterations. As shown in Figure IV.2, the average latency

76

was improved by ∼70% when our technique was used for optimizing BasicSP QoS con-

figurations. The standard deviation on the other hand, improved by ∼59% as plotted in

Figure IV.3.

Without our approach, the initial BasicSP QoS configuration contained separate poli-

cies for each of its four components. Out of the four components, only the Timer com-

ponent has SERVER_DECLARED priority model, while the rest of the components have

CLIENT_PROPAGATED priority model. Thus, as indicated on Lines 13 and 14, when Al-

gorithm 3 is applied to BasicSP, the QoS policy set is reduced to a size of two, one for each

kind of priority model. This reduction in the size of the QoS policy set leads to the ∼70%

improvement in end-to-end latency between Timer and NavDisplay components.

0

10

20

30

40

50

60

La
te

nc
y

(u
s)

Without optimizations

With optimizations With
optimizations &

PAM

Figure IV.3: Standard Deviation in Latency

77

IV.3.3 Discussion

Our design-time approach described in Sections IV.2 and IV.3.2 relies on QoS config-

uration analyses in a platform-specific manner. We specifically showed how it has been

realized in the context of a LwCCM middleware implementation. Naturally to extend it to

other middleware platforms requires a careful study of the other platform’s configuration

space.

The results indicated an improvement of ∼70% in invocation latency between an exe-

cution path consisting of four components (the execution path here refers to the invocations

from Timer, to GPS, to AirFrame, and finally to NavDisplay components in BasicSP). With

large-scale, distributed applications comprising hundreds of components, we expect the im-

provements would be even higher. This is because, using our approach, the reduction in

end-to-end latency is dependent upon how effectively the QoS policy sets SQ1 and SQ2

in Algorithm 3 are minimized. Large-scale DRE systems would have a number of QoS

policies specified across their component assemblies, and in general, would be expected

to have more opportunities to combine and reuse these policies leading to further latency

improvements.

Existing deployment- and runtime techniques in standards-based middleware have fo-

cused on improving the performance of the infrastructure itself to optimize application-

level QoS. For example, NetQoPE [6] deals with improving the deployment framework

to improve network QoS provisioning by optimizing QoS policies. PAM [7] describes

deployment-time techniques that allow for fusing of a set of components to reduce memory

footprint and latency between service invocations.

One of the key differences between these techniques and our work is that we raise the

level of optimizations to DRE system model-level. Thus, once the transformation algorithm

has been applied, the modified DRE system model (i.e., its QoS configuration specification)

can be further used by the developers in verification. For example, these models can be used

to reason about the correctness of various application properties using model-checking.

78

Our approach can be used in a complementary fashion with these techniques to further

improve the application QoS. Since PAM is essentially a model-driven tool, the modified

DRE system QoS configuration model resulting from applying our model transformation

algorithm can directly be used to investigate fusion opportunities for the application. As

shown in Figures IV.2 and IV.3, when applied in conjunction with PAM, our approach

leads to a combined improvement of ∼83% in the end-to-end latency and ∼65% in the

observed standard deviation in latency for BasicSP scenario.

79

CHAPTER V

MODEL TRANSFORMATION TEMPLATIZATION AND SPECIALIZATION

The industrial software development landscape has gradually transitioned from a strictly

low-level, programmatic approach employing third-generation languages for various soft-

ware development processes to a model-driven approach that relies heavily on the use of

distinct application view models to better manage the system complexity. One of the pri-

mary requirements in model-driven software development is the support for (1) evolution

of models along various application views, each corresponding to a different level of gran-

ularity, and (2) representation and translation of application into different models of com-

putation (e.g., finite state automaton, discrete event systems).

Model transformations are key to the success of model-based software development.

They are used to define progressive refinements of application models from abstract, high-

level views into low-level, detailed views that are used by the execution platform for differ-

ent purposes, such as application configuration, deployment, and code synthesis. They are

also used in transforming models to representations suitable for analysis tools that check

various properties, such as correctness or deadlock free behavior. Additionally, they are

also used in the transformation of application models to different models of computation

used by analysis frameworks to facilitate examination of the application’s functional and

non-functional properties, such as ensuring property correctness using a model checking

framework.

Model transformations have been applied in significantly diverse use cases as in (a)

transforming XML documents from XSLT representation into XQuery representation [15],

(b) middleware quality of service (QoS) configuration [56], which involves automatically

mapping application-specific QoS requirements onto the correct QoS configuration options

for the middleware platform, (c) transforming Simulink/Stateflow models into their hybrid

80

Endpoint

Recipient
Content
Medium

Context-Sensitive, Dynamic
Dialog Generation

Content + Context
Parameters

Context-
Sensitive Dialog

Dialog
Rendering

Rules

Figure V.1: Context-sensitive Communication Dialog Synthesis

Application Subsystem Application Subsystem Application Subsystem

Figure V.2: Middleware QoS Configuration across a Heterogeneous Application

automata representation for formal verification [1], and (d) synthesizing dialogs for com-

munication endpoints (i.e., hardware devices/software applications for communications,

such as cellphone, instant messenger (IM), pager) in enterprise workflows for rapid deci-

sion making [60].

Despite the diversity in the use cases, a noticeable trait in the model transformations

for variants of individual use cases illustrates a significant commonality in the transfor-

mations. For example, as shown in Figure V.2, in the QoS configuration use case for a

heterogeneous application, many generated middleware configurations are same across a

class of applications that are related to each other due to similarities in their QoS require-

ments and the implementation platforms. The overall mapping process thus, moving from

QoS requirements to QoS mechanisms, is essentially the same for all the implementation

81

platforms though the exact mechanisms and their values change. Similarly, in the dialog

use case, despite differences in the communication endpoints, a number of dialog properties

remain common. Thus, as shown in Figure V.1, the overall process of mapping communi-

cation dialog characteristics & content from the enterprise workflows essentially remains

the same.

The existence of multiple variants within each use case illustrates a trait similar to

product-line architectures (PLAs) [18]. PLAs are identified by the scope, commonality and

variability (SCV) [22] engineering process, and rely on reusing services and artifacts for

building systems rather than building them from scratch.

Our study of the advances in model transformations illustrates that despite the strong

evidence of recurring patterns in the transformations, model transformation tools and tech-

niques [32, 33, 53, 67] lack support for reusability, modularization and extensibility of the

model transformation rules and algorithms. These shortcomings force the transformation

developers to reinvent the transformation steps and the translation logic leading to signifi-

cant code duplication in the transformations, and increased efforts in code maintenance and

evolution activities.

Recent research efforts [30, 125] have demonstrated the use of model transformations to

families of applications or product lines [18]. Yet, the following research questions remain

unresolved: (a) How can the commonalities in the transformation process be factored out

such that they can be reused by the entire application family? (b) How can the variabilities

be decoupled from the model transformation rules while maximizing the flexibility of the

transformation process? (c) How can the model transformation process for an application

family be extended with new variants, however, with minimally invasive changes to the

transformation rules? (d) How can all these capabilities be achieved with minimal to no

changes in existing model transformation tools?

In this chapter we present MTS (Model-transformation Templatization and Specializa-

tion) to address these questions in the context of visual model transformation tools. MTS

82

provides transformation developers with a simple specification language to define variabil-

ities in their application family such that the variabilities are factored out and are decoupled

from the transformation rules. MTS provides a higher order transformation 1 [11] algorithm

that automates the synthesis of a family-specific variability metamodel, which is used by

transformation developers to capture the variability across the variants of an application

family. Another higher order transformation algorithm defined in MTS generates the spe-

cialized instances of the application family variants. MTS requires minimal to no changes

to the underlying model transformation engine.

Chapter Organization. The rest of the chapter is organized as follows: Section V.1 dis-

cusses two representative case studies; Section VI.3 describes the overall solution approach

and demonstrates how it can be applied in practice; Section V.3 evaluates our approach.

V.1 Representative Motivational Case Studies

In this section we briefly discuss representative model transformation case studies taken

from two diverse problem domains. Our goal is to highlight how two entirely different ex-

amples pose similar challenges for model transformation processes irrespective of whether

the transformation is endogeneous or exogeneous [83]. To that end we illustrate the com-

monalities and variabilities in these diverse scenarios that their respective transformation

processes must account for.

V.1.1 Communication Dialog Creation for an Insurance Enterprise

Our first case study deals with the creation of dialogs for a set of communication end-

points from workflow decision points in an insurance company. As part of their opera-

tion, modern enterprise workflows set up communications between decision makers (i.e.,

employees) in an enterprise, and publish (collect) important information to (from) these

decision makers. Since the employees in an enterprise may potentially be using several

1Since the transformation(s) themselves become the input and(or) output, we refer to the transformation
process in MTS as higher order transformations.

83

endpoints (i.e., devices), an important consideration in delivering information content from

the workflows to the employees is the customization of communication dialogs for individ-

ual endpoints, which is accomplished using model transformations.

Dialog

-topic_info : string
-topic_detail : string

Topic

-info : string
Invitation_brief

-url : string
-brief_text : string

Documentation

-user_response : bool
-suggest_alternate : Employee = NULL
-amend_invitation : Amend

Response

-detail_invitation_info : string
-meeting_date : Date
-meeting_time : Time

Invitation_detail

Invitation

-day : long
-month : long
-year : long

Date

-hour : long
-minute : long

Time
-change_date : Date
-change_time : Time
-change_modality : ENDPOINT

Amend

-name : string
-eid : long

Employee

1

1

1

1

1
1

1

1

-number : long
Call

1

1

Figure V.3: A UML Representation of a Generic Communication Dialog.

Figure VI.2 shows the communication dialog metamodel used in our case study, which

serves as both the source and target metamodel for the transformation process used to

customize the dialog thereby making it an endogeneous transformation. The model trans-

formation process is concerned with generating a dialog tailored to the properties of the

communication end point. The transformation process must account for the following

commonalities and variabilities: (1) the dialogs for all the endpoints contain, at the very

least, the topic_info, and info (in Invitation_brief element) attributes; (2) the

Call, Documentation, and Response model objects may be present in some but not

all endpoints; and (3) the response to a communication dialog may be YES, NO, or may

contain advanced options such as suggest_alternate or amend_invitation.

We will use this specific case study in this chapter to evaluate our MTS approach. Later,

in Chapter VI we will discuss this case study in more details, show how we have applied our

84

MTS tool in the context of handling the variabilities is different communication endpoints

in an enterprise.

V.1.2 Middleware QoS Configuration for Component-based Applications

Our second case study requires an exogenous transformation which translates component-

based application QoS requirements into the underlying middleware platform-specific QoS

configuration options. Figure V.4 shows the UML representation of both the source and

the target metamodels used in the QoS configuration case study. As shown, the source

metamodel contains the following Booleans for server components: (1) fixed_prio-

rity_service_execution that indicates whether the component changes the prior-

ity of client service invocations, and (2) multi_service_levels to indicate whether

the component provides multiple service levels to its clients. The output metamodel models

the real-time CORBA [95] middleware configurations.

Source metamodel

Target metamodel

RealTimeConfiguration

-cmd_line_options : string
-service_conf : string

EnvironmentConf -low_range : long
-high_range : long

BandedConnections

-stacksize : long
-allow_borrowing : bool
-allow_buffering : bool
-max_buffered_requests : long
-max_buffer_size : long

ThreadPool
-static_threads : int
-lane_priority : int
-dynamic_threads : int

Lane
-priority_model : Policy
-default_priority : long

PriorityModelPolicy

+SERVER_DECLARED
+CLIENT_PROPAGATED

«enumeration»
Policy

1

0..*
10..1

1
0..1

1

0..*

1

0..1

1..*

-configuredBy 1 1

-honors 1

-fixed_priority_service_execution : bool
-multi_service_levels : bool

RTRequirement

Figure V.4: A UML Representation of Middleware QoS Configuration Metamodels.

Transformations for middleware QoS configuration are applicable across a number of

85

application domains. The individual configurations generated using the model transforma-

tion should be easily customizable for slight variations in these domains. Thus, the case

study has the following requirements for the generated middleware QoS configurations:

(1) the PriorityModelPolicy object along with its attributes are transformed from

fixed_priority_service_execution source attribute; (2) Lane object and its

attributes are transformed from multi_service_levels source attribute. The Lane

object cardinality and the exact values of its attributes, however, can change; and (3) the

cardinality of BandedConnections, the values of all the attributes of ThreadPool

except stacksize are assigned statically, however, they may vary for different applica-

tion domains.

V.2 Templatized Model Transformations

We now present MTS (Model-transformation Templatization and Specialization). MTS

uses the Generic Modeling Environment (GME) [2] as the modeling environment. GME

provides a general-purpose editing engine and a separate model-view-controller GUI. GME

is metaprogrammable in that the same environment used to define modeling languages is

also used to build models, which are instances of the metamodels.

Transformation rules are defined using the Graph Rewriting And Transformation (GReAT) [53]

GReAT

G G’

G G’ G G’ G G’

G G’

G G’

G G’

GR-Engine

2

3

1

Source DSML

Target DSML

Transformation rules in
terms of source and

target patterns

Transformed instance
of output DSML

Figure V.5: Steps involved in developing model transformation using GReAT.

86

language. GReAT is developed using GME and can be used to define model transforma-

tion rules using its visual modeling language. It uses domain-specific modeling languages

(DSMLs) as its source and target languages. Figure V.5 shows the various high-level steps

involved in developing transformation algorithms using the GReAT tool chain. In Step 1,

the source and target DSMLs for the transformation tool chain are defined. In Step 2, trans-

formation developers use the GReAT transformation language to define various translation

rules in terms of patterns2 of source and target modeling objects. Finally, in Step 3, devel-

opers execute the GR-engine that translates the source model using rules specified in Step

2 into the target model.

The MTS approach shown in Figure V.6 leverages GReAT, however, without modifying

it. The remainder of this section delves into the details of each step of MTS.

Legend

 Transformation
developers analyze their

application family; the
variability results are input
using constraint notation to

the (templatized) model
transformation

1

 MTS Higher order transformation
used to automatically generate VMM

from model transformation
2

 Transformation
developers create

a specialization
repository for their
application family

3

A combination of model
transformation and a VMM model

synthesizes application family
instances

4

Templatized Model Transformation

G G’

G G’ G G’ G G’

G G’

G G’

G G’

Subsystems in
appln. familyApplication family

Variability
Metamodel

Publisher

-nesting : Type
-scheme : Granularity
-nestingLevel : int

GroupFilter

11

Publisher

-ecfiltering : ECFilteringType
EventChannel

1

1
11

-filter : ECFilteringType
Filter

1 0..*

InputPattern

1 1

11 1 11

1

1

1

1

1

1

1
1

1

Specialization Repository

V
ariable

C
om

ponent

V
ariable

C
om

ponent

V
ariable

C
om

ponent

V
ariable

C
om

ponent

V
ariable

C
om

ponent

Subscriber

Subscriber

OutputPattern

Figure V.6: MTS Approach to Reusable Model Transformations.

V.2.1 Step I: Defining the Templatized Transformation Rules

In programming languages like C++, templates are a mechanism to handle variabil-

ity among concrete data types. We need a similar capability for model transformations,

however, with minimum modifications to the model transformation tools. The basic idea
2Here, pattern refers to valid structural composition using model objects in source (target) DSML.

87

behind templatized transformations in MTS is that all the commonalities of an applica-

tion family are transformed directly from the input models as family instance-independent

transformation rules. The variabilities are dissociated from the transformation rules to al-

low independent evolution of the transformation and its variabilities.

Algorithm 4: Generating Family-specific VMM from Constraint Specifications.
Input: source modeling language S, target modeling language T , templatized transformation (set of its rules) R
Output: variability metamodel V
begin1

transformation rule r; constraint notation block cnb; set of constraint notation blocks CNB; structural variability cm;set of2
structural variabilities CM; quantitative variability qm;set of quantitative variabilities QM; pattern p; modeling object ob;
attribute at; modeling object type type;attribute type atttype; integer c;
initializeV MM(V);3
foreach r ∈ R do4

if r.cnb() 6= /0 then5
CNB← r.cnb(); // populate all constraints specifications for that rule6

foreach cnb ∈CNB do7
if cnb.structuralVariabilities() 6= /0 then8

CM← cnb.structuralVariabilities();9
foreach cm ∈CM do10

p← cm.SRC();11
foreach ob ∈ p do12

parseLanguage(S,ob, type); createSRCOb ject(V,ob, type);13
end14
p← cm.T GT ();15
foreach ob ∈ p do16

parseLanguage(T,ob, type); createT GTOb ject(V,ob, type);17
end18
/* Do similar steps for patterns in target */
composeVariabilityAssociation(V); /* creates a connection between source and target objects19

created earlier */
end20

if cnb.quantitativeVariabilities() 6= /0 then21
QM← cnb.quantitativeVariabilities();22
foreach qm ∈ QM do23

p← qm.SRC();24
foreach ob ∈ p do25

parseLanguage(S,ob, type); createSRCOb ject(V,ob, type);26
foreach at ∈ ob do27

parseOb ject(ob,at,atttype); createSRCAttribute(V,ob,at,atttype);28
end29

end30
p← qm.T GT ();31
foreach ob ∈ p do32

parseLanguage(T,ob, type); createT GTOb ject(V,ob, type);33
foreach at ∈ ob do34

parseOb ject(ob,at,atttype); createT GTAttribute(V,ob,at,atttype);35
end36

end37
composeVariabilityAssociation(V); /*creates a connection between source and target objects created38
earlier*/

end39
createContainingOb ject(V); /* name of the containing object is a combination of rule name, and constraint40

block name, each of which must be unique */
end41
CNB← /0; /* constraint blocks from previous loop are deleted, s.t. those from the next rule can be read */42

end43
end44

88

Application families are defined by the commonalities, which constitute the invariant

characteristics of the family, and variabilities, which constitute family member idiosyn-

chrasies or dissimilarities among the members. MTS enables all the common features

of an application family to be transformed directly from the input specification as fam-

ily instance-independent transformation rules. MTS however decouples the variabilities

from the transformation rules to allow independent evolution of the transformation and its

variabilities.

To realize this, transformation developers must first carry out scope, commonality and

variability (SCV) [22] analysis of their application family. The developers then express

the results of SCV analysis as constraint specifications, which is a capability in MTS we

discuss below. The following two categories of variabilities can be specified using our

constraint notation specification:

(a) Structural variabilities, where the basic building blocks i.e., model elements, or their

cardinalities in every family member model are different. Thus, the variation in family

member models emanates from dissimilarities in their structural composition.

(b) Quantitative variabilities, where the family member models may share model ele-

ments, but the data values of their attributes are different.

Table V.1 shows the results of the SCV analysis for the QoS configuration case study

presented in Section V.1.3 For example, in the QoS configuration case study, we show

three configuration variants with their commonalities and variabilities. The variabilities are

further classified as structural and quantitative. For example, Config_1 includes only the

Lane attribute in its structure while the others include even the Banded_Connections.

Although the attributes in the quantitative variability dimension are same across the three

configurations, they vary in the values of these attributes.

Both these variabilities in Items (a) and (b) above can be denoted as simple implication

3Due to space constraints the MTS steps are shown only for the QoS configuration case study.

89

Table V.1: SCV Analysis Results for QoS Configuration Case Study.

Commonalities Family Variabilities in Family Variant
Variant Structural Quantitative

PriorityModelPolicy,
EnvironmentConf,

Config_1 Lane allow_borrowing, allow_buffering, max_buffd_reqs., max_buff_size,

stacksize Config_2 Lane, Banded-
Connections

allow_borrowing, allow_buffering, max_buffd_reqs., max_buff_size

Config_3 Lane, Banded-
Connections

allow_borrowing, allow_buffering, max_buffd_reqs., max_buff_size
(Note: values differ from that of Config_1 and Config_2)

relations and are characterized by one of the following types of associations between source

(s ∈ S) and target (t ∈ T) objects:

• A one-to-one association between a pair (s, t) of source and target objects respec-

tively, defined as an injective function: s ∈ S, t ∈ T ∃ f (s) α7−→ f (t) such that i f f (s) =

f (t) then s = t.

• A one-to-many association between pairs (s, t) of source and target objects respec-

tively, defined as: s
φ7−→ t, where s ∈ S, and t = {P2(t1, t2, ..., tn) | ti=1..n ∈ T}.

• A many-to-one association between pairs (s, t) of source and target objects respec-

tively, defined as: s
ϕ7−→ t, where t ∈ T , and s = {P1(s1,s2, ..,sm) | s j=1..m ∈ S}.

• A many-to-many association between pairs (s, t) of source and target objects respec-

tively, defined as: s
ϕ7−→ t, where s = {P1(s1,s2, ..,sm) | s j=1..m ∈ S}, and

t = {P2(t1, t2, ..., tn) | ti=1..n ∈ T}.

Note that, P1 and P2 denote patterns of source and target objects.

MTS defines a constraint specification notation whose form is shown in Figure V.7.

This notation is used by developers after the SCV analysis to capture the variabilities in

their transformations. The Quantitative block captures all the attributes while the

Structural block captures all the model elements that vary between family members.

In the Structural block shown, there is an association defined between source model

object I1, and target model objects O1 and O2 which implies that the composition of O1

and O2 is dependent on I1.

90

1 Structural { Quantitative {
2 I1::O1;O2 I2:A1::O3:A1,O3:A2,O3:A3
3 O7 I3:A3::O5:A6
4 ...} O6:A7
5 ...}

Figure V.7: Syntax of Constraint Specification Notation.

In Figure V.7, the Quantitative block captures many-to-many and one-to-one re-

lations between source and target elements. For example, the values of A1, A2, and A3

of model object O3 are dependent on that of the A1 attribute of object I2, as shown in in

Line 2 of Quantitative block. The specification O6:A7 states that the attribute A7

is directly mapped, i.e., it is hard-coded and is assigned statically in the model transfor-

mation. This is also true for O7 in Structural block which is created in target model

irrespective of presence of any specific source model object(s).

To realize this capability without requiring modifications to the underlying transforma-

tion tool like GReAT, MTS requires developers to insert the constraint specifications as

special comments inside the AttributeMapping model element in GReAT. This ele-

ment allows assignment of the attributes of matched objects in a transformation rule using

C++ code. Note that the constraint specification is opaque to the GReAT interpretation

logic (for reading source and target metamodels of the transformation) and hence does not

affect its GR-engine execution. Our approach can easily be extended to other model trans-

formation tools as long as they provide the means to develop higher order transformations

necessary for implementing MTS.

Figure V.8 shows an excerpt of the templatized transformation rules for the QoS con-

figuration case study. Notice how the structural variability from Table V.1 is captured as

a transformation rule from the source element, i.e., RTRequirement, to the target el-

ement, i.e., Lane. The excerpt of the constraint specification block shown captures the

Quantitative variability for the attributes of these source and target elements.

As shown, there is an association between multi_service_levels attribute of

91

 /*
Quantitative{
RTRequirement:
 multi_service_levels::
 Lane:static_threads,
 Lane:dynamic_threads,
 Lane.lane_priority

ThreadPool:max_buffer_size
ThreadPool:max_buffered_request
s
ThreadPool:allow_buffering
ThreadPool:allow_borrowing
 }
 */

Figure V.8: Templatized Transformation Rule in QoS Configuration Case Study.

RTRequirement source object and attributes of Lane target object. This indicates that

the values of the latter are dependent on that of the former, and that the values themselves

can vary for different configurations. The example specification implies the following:

for Lane attribute set {static_threads, dynamic_threads, lane_priority},

config_1 in Table V.1 can have data values {10, 20, 50}, while config_2 can have

data values {5, 2, 15} to realize the requirement that the server component should support

multiple levels for service invocations of its clients.

V.2.2 Step II: Generating Variability Metamodels from Constraint Specifications

Although the constraint specifications discussed in Step I capture the variability in the

transformations, the notation used is not recognized by the model transformation tool. The

next step in MTS therefore converts the constraint specifications into a Variability Meta

Model (VMM) using a higher order transformation. It is used to create source and target

model objects in the VMM that correspond to the variabilities in these specifications. A

VMM modularizes the variabilities and decouples them from the model transformation

rules to promote independent evolution.

Algorithm 4 depicts the higher order transformation for generating the VMM and the

92

Algorithm 5: Specializing the Model Transformation from a VMM model.
Input: variability metamodel V , templatized transformation R
Output: specialized instance of input templatized transformation R′

begin1
transformation rule r; set of model objects OB,IO; pattern p; modeling object ob,io,tmp; attribute at; modeling object type2
type;attribute type atttype;
R′← R; OB← containingModelOb ject(V);3
foreach ob ∈ OB do4

r← searchRule(R′,ob jName(ob)); createTempOb ject(tmp,r); deleteCNB(r);5
IO← parseSRCPattern(ob);6
foreach io ∈ IO do7

createOb jectRe f s(io, tmp); assignCardinalities(io, tmp);8
createAttribs(io, tmp); assignValues(io, tmp);9

end10
/* do similar steps for target pattern */
IO← parseT GT Pattern(ob);11
foreach io ∈ IO do12

createOb jectRe f s(io, tmp); assignCardinalities(io, tmp);13
createAttribs(io, tmp); assignValues(io, tmp);14

end15
end16

end17

process itself is captured in Figure V.9. The basic idea behind the algorithm is as follows:

Recall from Section V.2.1 that the structural variability is concerned only with capturing

the (source and target) model objects (or their cardinalities) used in composition of fam-

ily variants. For every structural variability block, the algorithm creates the corresponding

model objects in VMM. The quantitative variability, on the other hand, captures the dissim-

ilarities in values of model object attributes. Therefore, for these variabilities the algorithm

creates model objects and their attributes as well.

The function initializeV MM(V) on Line 3 creates a new VMM, V , and initializes its

internal variables. This is necessary so that in the following rules the syntax and semantics

of V can be defined in GME. Line 11 reads the source patterns that correspond to every

structural variability in the templatized transformation R. Next, the types of each model-

ing object for the pattern read in the previous rule are deduced by parsing the modeling

language as shown in Line 13. This type information is used to create appropriate model-

ing objects corresponding to the specified source patterns. Similar logic is carried out for

patterns in the target language.

93

Transformation Developer

Meta Modeling Environment

Model Transformations
for Variability Meta-
model Composition

Variabillity Model

VarML

Transformation Project
G G’

G G’ G G’ G G’

G G’

G G’

G G’

Platform-specific
Meta-model

Paradigm3

Paradigm1 Paradigm2

Paradigm4

Platform-independent
Meta-model

Paradigm3

Paradigm1 Paradigm2

Paradigm4

Variability Points

Object Type
Information

develops

specifies

in
st

an
ce

of

Tool Provided/generated
language/transformations

Legend

Figure V.9: The Generation of VMM using MTS Higher-order Transformation.

Once the source and target objects are created in the VMM, the function compose-

VariabilityAssociation (V) creates a simple connection between these objects

to denote their association. In a similar fashion, VMM modeling objects are generated for

quantitative variabilities in R. Additionally, for quantitative variabilities, attributes of the

corresponding modeling objects are also created. The final rule creates a new model object,

that contains each of these source and target objects created in earlier rules, as shown on

Line 40.

We applied Algorithm 4 to the templatized model transformation of our QoS configu-

ration case study to automatically generate a VMM. Figure V.10 shows a screenshot of the

generated VMM in GME. The variabilities are modeled as pairs of SourcePattern and

TargetPattern, and annotated by whether they are Structural or Quantitati-

ve using Boolean attributes. The figure corresponds to the Quantitative variability

rule of Figure V.8 in that the attributes of a Lane are dependent on the multi_serv-

ice_levels attribute of RTRequirement. The ThreadPool attribute values, on

the other hand, can vary among each configuration (e.g., Config_1, Config_2 etc. in

Table V.1), and are generated in the VMM.

94

Indicates whether
contained model
objects capture

structural or
quantitative variability

Figure V.10: Generated VMM for the Representative Case Study.

V.2.3 Step III: Synthesizing a Specialization Repository

In the next step transformation developers use the generated VMM to create VMM

model instances, where each VMM model corresponds to a family member (or more ap-

propriately, variabilities of a family member). Figure V.12 shows how individual mappings

in the initial constraint specification are translated into model objects in VMM. A collec-

tion of such VMM models for a family is called a specialization repository. This step is

similar to partial specialization in programming languages for different data types.

Figure V.11 shows a sample VMM model that instantiates

Exact values of attributes of
RTRequirement and Lane

elements can now be modified in
VMM models. Variability is thus in
models not in transformation rules

Figure V.11: A Sample VMM model for a Variant of QoS Configuration Case Study.

the quantitative variability in terms of exact values of the RTRequirement and Lane

attributes. Note that since the exact values are now specified as models rather than being

95

Transformation Algorithm Variability Points

Name-value pairs

Source-target value pairs

Source-target creation pairs

VarML Associations

-value : object
targetObjectName

-value : object
sourceObjectName

-value : object
targetObjectName

sourceObjectName targetObjectName

1..* 1..*

1..* 1..*

Figure V.12: Translations of Variabilities into VMM Model Objects.

encoded in terms of transformation rules, it is considerably easier to modify these values.

Notice that none of the rules are modified to change an existing mapping, and hence the

transformation logic need not be re-compiled and linked.

V.2.4 Step IV: Specializing the Application Instances

To realize a complete transformation for a family variant, transformation tools like

GReAT must combine the VMM models generated in Step III, which are partial special-

izations, along with the (original) templatized model transformation rules. To address this

need, MTS provides a second higher order transformation that (1) reads the input VMM

model for a family member, and (2) adds temporary objects at appropriate points in the

templatized transformation rules, which serve as placeholders to insert the instantiated vari-

ability of a family member (corresponding to the current VMM model). Figure V.13 shows

the overall approach.

Algorithm 5 shows the translation rules in this transformation. Lines 3–5 create a new

model transformation instance R′ from the input templatized transformation R, read the

96

Transformation Project

VarML Model
inObject

srcobjValue

outObject

trgtobjValue

G G’

G G’ G G’ G G’

G G’

G G’

G G’

Rule2 Rule3

G G’

currentBlock

New rule to incorporate variability

sequencing
{
 currentBlock:Rule2
}
direct
{
 …
 …
}
conditional_value
{
 …
 srcObjValue:trgtObjValue
 …
}
conditional_creation
{
 …
 …
}

Figure V.13: Specializing the Application Instances using MTS Higher-order Trans-
formation.

containing model objects in VMM V , and for every model object ob search the correspond-

ing rule in the transformation R′.4 This rule denotes the location where the variabilities

contained in ob were specified in Section V.2.1.

Once rule r is known, the constraint block is deleted from this rule in function deleteCNB(r).

The function createTempOb ject(tmp,r) creates a temporary object tmp inside this rule.

For every Structural variability in the source pattern in ob, object references are read

from V , and created in tmp and in addition, their cardinalities are assigned as shown in

Line 8. Similarly, attributes in VMM that capture Quantitative variabilities are read

from V , and created and assigned values in tmp in Line 9. The same rule is also repeated

for all target patterns in ob.

We applied Algorithm 5 to our QoS configuration case study. One of the rules in this

case study assigns specific data values to the attributes of Lane (target) element depending

on whether or not the multi_service_levels (source) element value is set to TRUE.

Further, as identified earlier in Section V.2.1, there is a quantitative variability involving

4For creating application family instances, it is not necessary to create a new instance R′, but is done only
for Algorithm 5 to avoid modification of the original templatized transformation R.

97

these two elements. The same variability is also given in Figure V.14 for reference. The at-

tributes in tempObject are assigned values from the values of the corresponding attribute

in the VMM model. Similarly, for the structural variability, the model object references are

also created by parsing and reading the VMM model.

 bool multi =
 tempObject.multi_service_levels ();
 int static tempObject.static_threads ();
 int dyna =
tempObject.dynamic_threads ();
 int prio tempObject.lane_priority ();
 if (multi == RTRequirement.
 multi_service_levels ()) {
 Lane.static_threads () = static;
 Lane.dynamic_threads () = dyna;
 Lane.lane_priority () = prio;
 }

Temporary object created by
Algorithm 2; attributes/model
objects contained correspond
to the constraint specification
in cnb_service_levels of this

rule

Source and target attributes are
read (and assigned) from the

attributes of tempObject that are
read from VMM model. Thus, the

rule need not change for changing
values of attributes

Figure V.14: Specialization of a QoS configuration rule using MTS.

Thus, the rule service_levels_attribute_mapping (and in effect, the model

transformation itself) need not change, when some of these data values/model object car-

dinalities have to be altered. This is because the modifications can now be done simply by

modifying the appropriate VMM model.

V.3 Evaluating the Merits of MTS

Since MTS is developed to enhance reusability, we first evaluate its merits in terms

of the reduction in effort to write the transformation rules. Second, since MTS provides

higher order transformations, we also discuss the overhead incurred by the higher order

transformations. Our prototype implementation of MTS is part of the CoSMIC5 tool suite.

For all of our experiments below, we used CoSMIC version 0.5.7. We used GME version

6.11.9 and GReAT version 1.6.0 software packages which are necessary for using MTS.

5http://www.dre.vanderbilt.edu/cosmic/

98

All the overhead measurement experiments were run on a Windows XP SP2 workstation

with 2.66 GHz Intel Xeon dual processor and 2 GB physical memory.

V.3.1 Reduction in Development Effort using MTS

Recall from Section VI.3 that to create a target model from source model using GReAT,

developers need to execute the GR-engine that executes all the translation rules of that

model transformation. More specifically, developers must first specify all the rules that

transform the elements of the source model to the target model. Thereafter, the GR-engine

execution involves the following steps: (1) executing the master interpreter that generates

the necessary intermediate files containing all the rules in the current transformation, (2)

compile these intermediate files, if not done already, and (3) run the generated executable.

Steps 1 and 2 must be executed each time the model transformation rules are modified –

which is the case with variants of a family.

Table V.2: Details of the representative case studies.

(a) The size of the metamodels.
Metamodel # of # of # of

modeling elmts. attribs. conns.
Insurance
Enterprise

SRC/TRGT 8 14 0
QoS
Configuration

SRC 3 2 2
TRGT 8 14 4

(b) Distribution of variabilities.
Data Point Insurance Enterprise QoS Configuration

Quantitative Structural Quantitative Structural
1 2 0 2 0
2 2 2 4 0
3 3 4 5 0
4 3 6 5 2
5 5 6 6 3
6 6 7 8 3
7 6 9 n.a. n.a.

Without MTS, model transformations for each variant of an application family must

expend effort in all of the above steps. Our goal is to evaluate MTS in terms of effort saved.

We focus on two specific cases discussed below.

Case 1: Newly added variant is subsumed by existing constraint specifications: The

existing constraint specification for the application family may be sufficient to capture all

the variabilities of a new family variant. Thus, the developers can create a new variant

99

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20

T
im

e
(s

ec
on

ds
)

of variabilities

1

2

3
4

5 6

7

Algorithm 1
Algorithm 2

(a) Insurance enterprise case study

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14

T
im

e
(s

ec
on

ds
)

of variabilities

1

2
3

4

5

6

Algorithm 1
Algorithm 2

(b) QoS configuration case study

Figure V.15: Overhead in using MTS for the development of templatized transfor-
mations. The Y axis denotes the time taken by Algorithms 4 and 5.

simply by re-executing the same model transformation with VMM model of the variant as

one of the inputs to the transformation. Note that the first two steps have to be performed

only once when the model transformation is being executed for the first time. Since all

the instance-specific customizations/changes are done in the corresponding VMM model,

developers only need to execute Step 3 after each change to produce output of the transfor-

mation (i.e., a new family instance).

In contrast, the traditional approach of one model transformation per single (subset of)

family instance(s) will require maintenance of I ∗Rn rules, where I is the number of family

instances, and Rn is the average number of rules per instance. With MTS, assuming that the

average number of rules do not change, the total number of rules to be maintained reduces

by a fraction of I−1
I .

Case 2: New variant requiring additional constraint specifications: If the variabilities

of a new family variant are not completely captured using existing constraint specification

for the application family, MTS requires enhancements to the constraint specification itself.

Such a change necessitates executing the first two steps above once to produce a new VMM

which can be used to model variabilities in the new variant. Note that despite this change,

the VMM models corresponding to the existing variants will still be valid provided the

100

changes in constraint specification (on account of a new family variant) are orthogonal to

the existing variabilities.

V.3.2 Performance Overhead of using MTS

The rationale behind these experiments is to quantify the overhead placed by the higher

order transformations in Algorithms 4 and 5 when the number of structural and quantita-

tive variabilities are increased. The performance overhead was calculated in terms of the

time taken by each of these algorithms when used in the context of each of the two case

studies. In all we identified (a maximum of) fifteen variabilities for insurance enterprise

case study, and eleven variabilities for QoS configuration case study. The performance

overhead was measured by increasing the variabilities in each case study from a minimum

value of two to the maximum values above. The size of both the metamodels is given in

Table V.2a. Table V.2b shows the distribution of variabilities across the quantitative and

structural dimensions for these cases.

Figure V.15 shows the overhead involved in using MTS to generate VMM (Step 1), and

specialize the transformation (Step 4). In general, the algorithms take slightly more time for

QoS configuration than the insurance enterprise, for the same number of variabilities, which

is attributed to the larger size of the combined size of the source and target metamodels of

the former.

For a variation of {Q=4, S=9} in insurance enterprise case study where Q and S denote

the total variation in quantitative and structural variabilities, respectively, the time com-

plexity of Algorithm 4 increased by 350% from an initial value of 6 seconds, while that of

Algorithm 5 increased by 380% from an initial value of 5 seconds. For QoS configuration

case study, with a total variation of {Q=6, S=3}, the increase was ∼136% and ∼300%, for

Algorithms 4 and 5, respectively.

Thus, if the new family variant is already subsumed by the notation as discussed in

case 1 in Section V.3.1, the developers incur an additional overhead in using MTS only for

101

the first time when each of these algorithms have to be applied (i.e., once for generating

VMM, and once for creating temporary objects in the model transformation). Thus, the

cost of using MTS is amortized over the total number of transformation runs, during the

development cycle of that application family. For the remaining cases, if the variabilities

of the new variant are not captured by the existing specification, the two steps listed in

Section V.3.1 have to be executed once after modifications in the specification have been

made according to the variabilities of the new variant.

102

CHAPTER VI

APPLYING MTS TO CONTEXT-SENSITIVE ENTERPRISE COMMUNICATION
DIALOG SYNTHESIS

As part of their normal or exceptional operation, modern enterprise workflows not only

set up communications (calls, conferences, chats, etc.) between decision makers in the

enterprise but also need to deliver information to users and, in return, collect important

input from users in a timely fashion. Such input is typically based on the information that

a workflow delivered to a user and serves as the basis for further decision-making in the

workflow. As enterprises strive to increase productivity and efficiency by automating their

business processes through workflows, there is a growing need to accelerate this type of

interaction between workflows and enterprise users. In this context, we call a mechanism

to present information to a user and collect subsequent feedback from the user a dialog

between workflow and user.

Increasingly, context-aware communications middleware is used to provide commu-

nication support to workflows including the synthesis, delivery, and rendering of dialogs.

The need for accelerating the interaction between workflows and users results in a require-

ment to embed sophisticated context-sensitive dialog synthesis, delivery, and rendering

mechanisms in the middleware to reach enterprise users in a ubiquitous fashion. Due to

ever-increasing user mobility and progress in communications technology, enterprise user

communication environments have changed from a limited set of fixed, largely stationary

devices and clients to a wide array of personal and shared, stationary and mobile commu-

nications endpoints of differing capabilities and supporting different kinds of media. The

panoply of endpoints in use in modern enterprises poses a set of complex challenges to the

context-sensitive support for dialogs in communications middleware. With a potentially

large volume of dialogs between workflows and certain users, the receipt, perusal of, and

103

response to dialogs has to be as convenient and efficient for the user so as to maintain a

high level of user productivity.

The true difficulty with our goal of customizing dialogs for a multitude of endpoints

and based on user context, in the interest of accelerating workflow/user interactions and

maintaining user productivity, is that most dialogs are created at workflow runtime. Thus,

dialog customization has to be done dynamically as well and suggests the development of

a large number of customization software modules (akin to device drivers). These modules

would need to be constantly adapted to the ever-changing landscape of endpoints.

Despite the need for such a customization, the set of dialogs tend to share strong com-

monalities with each other and, depending on the endpoint on which they have to be ren-

dered, have certain distinct characteristics. Thus, there is a significant opportunity to syn-

thesize families of dialogs by employing customizable and reusable software patterns and

artifacts, as opposed to building them from scratch. Product-line architectures (PLAs)

and its characteristic scope, commonality, and variability (SCV) [22] engineering process

present a promising approach to development of families of dialogs.

This chapter first describes how we have conducted SCV analysis for a family of di-

alogs. We then show how templatized model transformations can be used to synthesize

customized dialogs. In our approach, the commonalities among the dialog variants are

captured as a common set of transformation rules. Higher order parametrized rules capture

the variability lending themselves well to the notion of templatized transformations.

Chapter Organization. The remainder of the chapter is organized as follows: Section VI.1

discusses an enterprise case study that motivated our work on dialogs; Section VI.2 presents

the challenges in context-sensitive dialog synthesis in detail; Section VI.3 discusses design

details of our solution and lists various steps involved in the development of reusable model

transformations, and how we have applied it to our case study.

104

VI.1 A Case Study Motivating Context-Sensitive Dialogs

An example of context-aware communications middleware that supports enterprise

workflows and ubiquitous, automated dialogs between workflows and users is Hermes [51],

developed at Avaya Labs Research. An illustrating use case scenario for Hermes, drawn

from an extensive case study with several insurance companies, is a business process work-

flow that deals with claims in a car insurance company. The workflow gets triggered when

a policy holder calls in an insurance claim for damages to his/her car. Suppose this claim

raises a difficult question and it is unclear how to apply the insurance company’s rules to

this claim. In such a case, the workflow attempts to set up a conference call between var-

ious employees of the insurance company, including a legal expert, an appraiser, and the

appraiser’s supervisor, to resolve the question.

As part of the process of setting up the conference call, the workflow has to first reach

out to potential participants and present (1) a conference call topic (open claim), (2) doc-

umentation or a link to documentation pertaining to the case, possibly containing audio,

video, and image elements in addition to text, (3) an invitation to a conference call, and (4)

a range of user response options to establish the user’s ability, availability, and willingness

to participate in the conference call.

These four items constitute a simple dialog in Hermes. For example, the dialog may

first provide the information "There is an open claim from policy holder 243779 that cannot

proceed due to a mismatch between the appraised damage and a corporate limit on lifetime

coverage for a vehicle. For more information, please consult case number 243779-041".

Next, the dialog may pose the question "Can you be available to participate in a voice

conference about this claim at 2 PM EDT today?" Eventually, the dialog gives the user a

range of response options including "Yes", "1 hour earlier", "1 hour later", "Only if you

cannot find somebody else", and "No".

A communications-enabled workflow platform like Hermes could, of course, simply

send a notification of a pending dialog to the recipient via an email that contains a link

105

to an enterprise portal with the actual dialog. The dialog could then be an HTML form

or similar. However, this procedure may lead to many scenarios where the recipient may

not receive or respond to the dialog in a timely fashion, thus violating our stated goal of

accelerating the interaction between workflows and users. The following are some of these

scenarios:

1. The recipient is in a location such as a car, an off-site meeting, or a conference room with

sporadic, limited, or no email access.

2. Due to a focus on other activities, the recipient is not checking incoming email frequently

enough.

3. The recipient can receive email on a mobile device which does not have access to the

enterprise portal.

4. The mobile device of the recipient cannot render Web pages or makes it very inconvenient

to navigate the enterprise portal and dialogs.

5. The recipient is driving or for other reasons is not in a position to read a dialog or use a

manual input device (mouse, keyboard, keypad) to respond to it.

To remedy some of the problems that the above approach to conveying dialogs to a

user incurs, the Hermes middleware attempts to send (1) a dialog topic (Item 1 above), (2)

a URL for the actual dialog in a Web-based portal (i.e., a link to Items 2-4 above) to an

endpoint that the user is likely to be present on at this time. Hermes makes a determination

of the target endpoint based on the user’s context information which includes information

about the user’s presence and activities on various monitored endpoints such as telephones,

instant messaging (IM) and email clients, Web browsers, etc. However, the user must ac-

cess the URL via a Web browser to find the dialog in question. As with the email approach

described in the previous paragraph, forcing the user to log into the Web portal, finding the

dialog there, reading it, and responding to it via a mouse or keyboard may not be possible in

a timely fashion or, at the least, may negatively impact user convenience and productivity.

Our goal for Hermes is therefore to send the entire dialog to a specific endpoint and

106

to customize its rendering to this endpoint and a given communication modality (voice,

IM, email, Web, SMS, etc.). For example, assuming that the user is present and active

on a Web browser on his/her office computer, a dialog may be presented as an HTML

popup in that browser [58]. This endpoint is also suitable for presenting the supporting

documentation (Item 2 above) about the insurance claim. The response options in the dialog

can be rendered as HTML buttons. In addition, a more sophisticated response option may

be included, such as a text box that allows a freeform specification of a different time, day,

and modality by the user.

On the other hand, suppose the employee is known to be present on his/her mobile

phone that has no (known) data connectivity and only a standard phone numeric keypad.

Due to its limited hardware capabilities, the content of the dialog to be sent to the mobile

phone ought to be significantly different from the HTML popup described earlier. More-

over, the mobile phone user may not be in a position to read the dialog on the mobile device

or respond via the keypad because he/she may be driving a car at this point in time. Thus,

the dialog may best be rendered as a call to the mobile phone with a VoiceXML (VXML)

script that first renders Item 1 as voice, skips Item 2 except for a brief summary of the

documentation, and renders Item 3. Finally, for collecting the user’s response, the script

reads the available response choices and asks for either a voice response ("Yes" etc.) and/or

a key input ("Press 1 for Yes" etc.).

Clearly, the set of customized dialogs derived from a defined sequence of Items 1-4

share strong commonalities with each other and, depending on the endpoint on which they

have to be rendered, have specific distinct characteristics.

Thus, there is a significant opportunity to synthesize families of dialogs by employing

customizable and reusable software patterns and artifacts, as opposed to building them from

scratch. Scope, commonality, and variability (SCV) [22] analysis is a promising approach

to engineering such families of dialogs. This requires the identification of the scope of

107

the product families, and the determination of the common and variable properties among

them.

Next, we use the case study described in this section to present a detailed discussion

of the challenges involved in dynamically adapting the content and rendering of dialogs

based on user context ("context-sensitive dialog synthesis") in enterprise communications

middleware such as Hermes. We demonstrate how we have used model transformations for

the automatic synthesis of dialogs from specific decision points in enterprise workflows.

We also explain how we have applied SCV analysis to our dialog generation process in

order to develop families of dialog variants.

VI.2 Design Challenges in Context-Sensitive Dialog Synthesis

In Section VI.1 we introduced a communications-enabled workflow in an insurance

company. We explained the motivation behind adapting the workflow-generated dialogs

to suit various communication endpoints of employees of the insurance company. We

described how the target communication endpoints for the dialogs were selected based on

current user context. Below we discuss some of the design challenges in automatically

synthesizing dialogs based on user context.

1. Programmatic, customizable mappings for dialog creation. The dialog in our in-

surance example asked only one simple question to ascertain the ability, availability, and

willingness of an employee to participate in a conference call. However, dialogs in general

may be much more complicated and may involve a sequence of sub-interactions. Currently

in Hermes, the content of a dialog is a simple text template that a workflow designer man-

ually creates for a specific decision point in a workflow and that can be parameterized at

runtime with user names, URLs, case and policy numbers, etc. The entirely manual cre-

ation and maintenance, especially of complicated dialogs for a large number of workflow

decisions points, requires significant efforts.

108

Instead, we would like to come up with programmatic mappings from workflow deci-

sion points and user context to dialogs on specific endpoint types. User context not only

determines which endpoint to send the dialog to and to render on but also ideally results in

adjusting the dialog content to the specifics of a user. If, for example, one of the recipients

of the insurance dialog in our above example is hearing- or vision-impaired or is most flu-

ent in a language other than the insurance company’s official business language, the dialog

would ideally accommodate these user-specific parameters. Different sets of employees

also have different skill sets. For example, the appraiser in our case study may receive

case details as part of the dialog that are meaningful only to somebody with expertise in

appraising car damages.

Thus, programmatic mappings must allow customization of the output dialogs based on

parameters outside the workflow decision point and user context, such as the enterprise for

which the workflow is designed, the vertical market in which the enterprise is operating, or

technical constraints of the communications middleware. Section VI.3.1.1 discusses how

we have resolved this challenge.

2. Dialog formatting and rendering. Even though content formatting and rendering of a

dialog are inextricably intertwined, we list the determination of how to format and render a

dialog separately from the content selection because the emphasis is different in both chal-

lenges. The challenge in formatting a dialog for and rendering it on a target communication

endpoint is the large number of static and dynamic characteristics of endpoints, resulting

in vastly different types of formatting and rendering options for basically the same dialog

content.

The static characteristics include the modality (voice, IM, email, Web, SMS, plain text,

etc.), processing power, screen size and resolution, type of input devices attached to the

endpoint, audio/video capabilities, etc. The dynamic characteristics include current data

connectivity and battery power. An explanation of how such characteristics are determined

in Hermes is provided in [58]. For example, the same abstract dialog may have to be

109

rendered as a VXML script over a voice connection, via an HTML form on a mobile device,

or as a sequence of SMS or IM messages, each one of which would require the user to

reply with an SMS/IM message. Section VI.3.2 describes how our approach resolves this

challenge by allowing developers to model variabilities in the dialogs so as to render them

on their endpoints.

3. Response option definition. To be really useful, many dialogs require fairly differen-

tiated or complex feedback from the user, based on response options given in the dialog.

Our insurance example listed response options such as "1 hour earlier", "1 hour later",

"Only if you cannot find somebody else" in addition to "Yes" and "No". Clearly, these op-

tions unreasonably limit the recipient’s expressiveness in terms of the most desirable time

and communication modality of and willingness to participate in the conference call. The

situation is exacerbated in more complex dialogs.

There is a trade-off between the number of response options in a dialog on the one hand

and user convenience and productivity on the other hand. Too few response options may

frustrate the user because the response that the user might like to give is not part of the

dialog. Too many response options may frustrate the user because it takes too long and too

much effort to peruse and understand the given response options, and to select the most

appropriate one.

4. Linking to additional documentation. Our stated goal in Section VI.1 was to render

the entire dialog in a target communication endpoint, including potentially multimodal

supporting documentation (Item 2 in Section VI.1), in the interest of a timely delivery

of information to the user, collection of a response, and increased user productivity and

convenience. However, even lengthy or rich text documentation, let alone audio/video or

other multimodal documentation pertaining to the dialog, is often infeasible or too costly

to render on a given endpoint. In such cases, the programmatic mapping to dialogs would

have to produce a solution that leaves the supporting documentation out of dialogs but

allows dialog recipients to access it as easily and quickly as possible. A fallback solution is

110

always to email links to the documentation to the recipient but more sophisticated options

may be possible as well. For example, the recipient of a dialog on a mobile device may

have the option of sending an SMS with a fax number to an enterprise server that would

then send out supporting text documentation to that fax number.

5. Extending customizable mappings to new endpoints. The steady evolution of commu-

nication media and endpoints, in particular mobile devices and more powerful enterprise-

class hard- and softphones, increases the complexity of managing dialogs. For example,

suppose the insurance company in our example had upgraded their office phone system to

IP telephones with large touch-screens. A dialog sent to such a phone may now best be ren-

dered not as a phone call but as a rich text popup on the display with user response options

rendered as touch buttons. Thus the programmatic, customizable mappings from workflow

decision points to dialogs must be flexible enough to accommodate new endpoints with

relatively minor changes to the mappings and negligible workflow execution downtime.

Section VI.3.1.1 describes how our approach helps modularize these mappings and

separate their variabilities, and Section VI.3.2 discusses how developers can incorporate

new endpoints by (partially) using existing mappings.

VI.3 Templatized Model Transformation for Dialog Customization

Section VI.1 discussed the design challenges in synthesizing context-sensitive dialogs.

This section discusses details of MTS which consists of the following two stages: (1)

SCV analysis, and (2) Transformation specialization. We show how it allows designing

of templatized model transformations that can be used as the basis for developing and

maintaining customizable, reusable, and flexible mappings for dialogs. Our approach is

similar in concept to C++ class templates and Java generics but is applicable more widely

to developing generalized transformation rules.

We analyzed our enterprise communications case study. We identified that the case

study exhibits a number of commonalities and variabilities in communication dialogs for

111

various endpoints. The variabilities can stem from application structure pattern(s) in the

dialog, various attribute values, and mapping rules of that map these dialogs from commu-

nication workflows.

Using MTS for templatized model transformations involves the following two main

phases:

This section describes how we have used Model transformations Templatization and

Specialization (MTS) [55], which is our templatized transformation framework, for dialog

customization. At the heart of our dialog synthesis approach are two phases shown in

Figure VI.1 and described below:

1. Phase I: SCV analysis. In this offline phase, developers analyze their transformations

and identify their commonalities and variabilities across workflow structure patterns, var-

ious attribute values, and mapping rules. The result of this analysis phase is fed into the

transformation in terms of a simple constraint notation specification discussed in detail

in Section VI.3.1.1. This phase is similar to coding templatized functions in C++ that

captures the pattern of the code to be generated later by the compiler.

2. Phase II: Transformation specialization. In this phase, the developers use higher order

transformations defined in MTS to generate a variability metamodel (VMM) from their

templatized model transformations. VMM is useful in creating a specialization repository

of a particular product-line and is created in terms of VMM models. The specialization

repository contains a VMM model for each communication endpoint. A combination of

templatized transformation and a VMM model (corresponding to that endpoint) is used

for generating the communication dialog for a specific endpoint. This phase is similar to

template instantiation in C++ when the compiler automatically generates the code specific

to the actual type of parameters passed to a template function.

We have used the Generic Modeling Environment (GME) [2] as the modeling environ-

ment in MTS. GME provides a general-purpose editing engine, a separate view-controller

GUI, and a configurable persistence engine. GME is meta-programmable, and thus the

112

Templatized Transformation

Invitation_detail

Documentation.url
Topic.topic_detail

Response.user_response
Response.suggest_alternate
Response.amend_invitation

Invitation_detail
Topic.topic_detail

Response.user_response

Invitation_brief

Call.number
Topic.topic_info

G G’

G G’ G G’ G G’

G G’

G G’

G G’

Endpoint-specific
dialog mappings

Specialization Repository

D
ialog

C
om

ponent

D
ialog

C
om

ponent

D
ialog

C
om

ponent

D
ialog

C
om

ponent

D
ialog

C
om

ponent

D
ialog

C
om

ponent

D
ialog

C
om

ponent

D
ialog

C
om

ponent

D
ialog

C
om

ponent

D
ialog

C
om

ponent

D
ialog

C
om

ponent

D
ialog

C
om

ponent

Phase I

Phase II

Phase II

Figure VI.1: MTS: Model Transformation Templatization and Specialization

same environment used to define modeling languages is also used to build models, which

are instances of the metamodels.

For defining transformation rules we have used the Graph Rewriting And Transforma-

tion (GReAT) [53] language. GReAT is developed using GME and can be used to define

model-to-model transformation rules using its visual modeling language. It also provides

the GReAT Execution Engine (GR-Engine) for execution of these transformation rules for

generating target models.

113

Dialog

-topic_info : string
-topic_detail : string

Topic

-info : string
Invitation_brief

-url : string
-brief_text : string

Documentation

-user_response : bool
-suggest_alternate : Employee = NULL
-amend_invitation : Amend

Response

-detail_invitation_info : string
-meeting_date : Date
-meeting_time : Time

Invitation_detail

Invitation

-day : long
-month : long
-year : long

Date

-hour : long
-minute : long

Time
-change_date : Date
-change_time : Time
-change_modality : ENDPOINT

Amend

-name : string
-eid : long

Employee

1

1

1

1

1
1

1

1

-number : long
Call

1

1

Figure VI.2: Generic dialog structure for supporting enterprise communication

Model transformations in GReAT require source and target domain-specific model-

ing languages (and their corresponding metamodels). A transformation developer uses

the GReAT visual transformation language to define various translation rules in terms of

patterns of input and output modeling objects. Finally, developers execute GReAT’s trans-

formation engine called GR-engine that translates an input model using the specified rules

into an output model. The remainder of this section describes the details of our approach.

Although our templatization idea has been realized using specific modeling and trans-

formation environments, the concepts we discuss in this chapter for supporting variabilities

in transformation rules are generic and can be re-applied to other model transformation tool

suites. The remainder of this section described the details of our approach.

VI.3.1 Applying MTS for Context-Sensitive Dialog Synthesis

In this section, we first explain the details of a generic dialog generated by the workflow

which acts as the input for our templatized transformation. We then discuss the constraint

notation in MTS, and how it can be used for separating transformation variabilities for our

114

customizable mappings. Finally, we show how VMM models in the specialization reposi-

tory are incorporated into the middleware to yield context-sensitive dialogs for individual

endpoints.

VI.3.1.1 Phase I: SCV Analysis

In Figure VI.2, we revisit the UML notation of a generic dialog in an enterprise work-

flow in the Hermes middleware we introduced earlier in Chapter V. The following are some

of the properties/attributes in this communication dialog: (1) User_endpoint indicates

the most active endpoint the employee has used, (2) Call specifies a number to call to

retrieve a dialog, (3) Documentation contains further details about documentation per-

taining to the claim in question, (4) Topic specifies details about the claim itself, (5)

Invitation contains details about a conference call for discussing the claim, and (6)

Response allows an employee to reply to the invitation in the current dialog.

Additionally, the Response element allows an employee to suggest an alternate em-

ployee that can be contacted about the claim in question. The latter can be done by setting

user_response to FALSE and populating the suggest_alternate attribute with

an appropriate value. Similarly, a user can send a request for a modified invitation to the

workflow that initiated this dialog by using the amend_invitation enumerated data

type.

115

Table VI.1: Dialog profiles for representative communication endpoints

Communication Dialog properties/Attributes
endpoint Modality Commonalities Variabilities

invitation_detail, meeting_date,
Cell phone/Office phone VXML invitation_info, topic_info, meeting_time, user_response,

User_endpoint topic_detail, claim_id, customer_name,
customer_id, claim_date

invitation_info, topic_info,
Pager text User_endpoint call

user_response, suggest_alternate,
Web browser SMIL invitation_info, topic_info, Documentation, invitation_detail,

User_endpoint meeting_date, meeting_time,
topic_detail, claim_id, customer_name,
customer_id, claim_date, amend_invitation

As the first step in using MTS for the templatization of a set of model transformations,

i.e., endpoint-specific dialog customization mappings, the commonalities and variabilities

across various elements (instances) in the set must be identified. This is crucial for the fol-

lowing reasons: (1) the commonalities constitute the invariants among the transformation

instances. These commonalities can be directly used to construct common but templatized

transformation rules; and (2) the variabilities constitute the dissimilarities of individual

transformation instances and therefore must be separated from the templatized transfor-

mation rules so that both common transformation rules and individual mapping instance

variabilities can evolve independently.

As a first step in the automated synthesis of dialogs, we must first determine the com-

monalities and variabilities across the elements (instances). In our model transformations

approach the commonalities constitute the templatized transformation rules while the vari-

abilities constitute the specializations. This is achieved via the SCV analysis.

SCV analysis for Dialog profiles (i.e., properties necessary to create a dialog for an

endpoint) are shown in Table VI.1 for three representative communication endpoints. To

cover wider range of handheld devices, we have used two endpoints handheld_1 and

handheld_2 the later having better hardware and software capabilities and data connec-

tion. The Modality field in the Table is a static characteristic of an endpoint and indicates

116

the communication type used to deliver the dialog. Notice that a given endpoint may sup-

port more than one modality. The modality clearly affects the format and rendering of a

dialog. For example, VXML and SMIL are W3C standard XML formats for designing

interactive voice- and multimedia-based dialogs, respectively. As shown in Table VI.1, cell

phones and office phones use VXML while Web browsers use the SMIL modality. Note

that the modality will affect the format and rendering of a dialog.

In Table VI.1, all profiles contain at a minimum the invitation_info, topic_info

and User_endpoint attributes. However, only the cell phone, browser, and office phone

endpoint profiles contain all of the attributes in the Topic and Invitation elements of

a dialog. Only the Web browser endpoint allows the user to respond with an alternate em-

ployee that can be contacted for the claim in question, or request a change in the invitation,

and can optionally present documentation about the claim. Similarly, the Call element is

present only for a pager. Note that the User_endpoint attribute is common for all end-

point profiles and is used in selecting the appropriate VMM in the specialization repository.

We will explain the details on this model selection in Section VI.3.1.2. The general idea in

using MTS for developing templatized transformations is that all the common features of

a product family, here a family of dialogs, get mapped directly from the input specification

as family instance-independent transformation rules. The results of the SCV analysis must

then be mapped to templatized transformation rules (for the commonalities) and constraint

specifications (for the variabilities). For example, during our synthesis of a dialog family

the common model elements in Table VI.1 get mapped directly from a generic dialog in

Figure VI.2. The variabilities from our SCV analysis results, on the other hand, must be

incorporated into the transformation so that they can be subsequently used by MTS. In our

insurance case study, the variabilities can be categorized as follows:

1. Compositional variabilities, where model elements in each family instance/member are

different and variability stems from these instances getting composed using distinct model

elements. For example, compositional variability exists between pager and Web browser

117

endpoints. Recall from Table VI.1 that the dialog profile of a pager endpoint consists of

Call, Invitation, Topic, and User_endpoint elements. On the other hand, the

profile of a Web browser endpoint is composed of Invitation, Topic, Response,

Documentation, and User_endpoint elements.

2. Qualitative variabilities, where two family instances may share a common model ele-

ment but not the absolute values of attributes of that element. The term quality here refers

to what a system model describes as a whole, which is a collective aggregate of values of

all of its attributes. Thus, even though the Response element is present in both the cell

phone and the Web browser, the suggest_alternate and amend_invitation

attributes are not applicable and are omitted for the cell phone (because of limited capa-

bilities of the endpoint). For a Web browser endpoint, however, these attributes can be

used in its dialog and are available. A similar variability exists for the attributes of the

Invitation element for the office phone and pager endpoints.

In our MTS approach, the constraint notation specification is inserted as a special com-

ment in the transformation rules that is transparent to the GR-engine and thus does not

interfere with the engine’s execution and translation logic. The constraint specification

captures the variabilities in a model transformation as simple implication relations between

source (s ∈ S) and target (t ∈ T) model elements as follows:

s
φ7−→ t, where s = {P1(s1,s2, ..,sm) | s j=1..m ∈ S} and

t = {P2(t1, t2, ..., tn) | ti=1..n ∈ T}

P1 and P2 define patterns of source and target elements.

The constraint specification captures the variabilities in a model transformation as sim-

ple implication relations between the source and target model elements. In our insurance

case study both the source and target model elements belong to the Dialog modeling lan-

guage and hence the same input dialog specification is specialized and transformed into a

dialog for individual endpoints. As such, the variabilities are captured in terms of generic

118

dialog model elements. Below we show excerpts from a complete constraint specification

for capturing the variabilities that we discussed in Items (a) and (b) above:

Sequencing {

....

....

}

Compositional {

Call

Documentation

}

Qualitative {

Response.user_response

Response.suggest_alternate

Response.amend_invitation

Invitation.invitation_info

Invitation.invitation_detail

Invitation.meeting_date

Invitation.meeting_time

}

Sequencing {

....

....

}

Compositional {

Call

Documentation

119

}

Qualitative {

Response.user_response

Response.suggest_alternate

Response.amend_invitation

Invitation.invitation_info

Invitation.invitation_detail

Invitation.meeting_date

Invitation.meeting_time

}

The specification is quite self explanatory – the Qualitative block captures all the

attributes while the Compositional block captures all the model elements that vary

between family members. The Sequencing block is used later in the specialization in

Phase II and will be explained in Section VI.3.1.2.

VI.3.1.2 Phase II: Transformation Specialization

In this section, we explain the higher order transformation algorithm for generating

the variability metamodel (VMM) from the constraint specification introduced in Sec-

tion VI.3.1.1. We also explain the use of VMM in creating a family-specific specialization

repository that easily captures all the variabilities in terms of VMM models. A combination

of templatized transformation and instance-specific VMM model is used to create a model

transformation for that instance.

The auxiliary function initializeV MM(V) on Line 5 creates VMM V and initializes its

attributes required in order to define a new language in GME. As shown in the Algorithm,

for all the compositional mappings in the transformation, the source and target patterns are

read in Lines 13 and 18. Next the types of each modeling object, for both source and target

patterns is found by parsing the respective modeling languages as shown in Lines 15 and

120

Indicates whether
contained model
objects capture

structural or
quantitative variability

Figure VI.3: Auto-generated variability metamodel using SCV analysis results from
Phase I

20. The type information is used to create appropriate modeling objects corresponding to

the specified source and target patterns in Lines 16 and 21. A similar approach is taken in

generating modeling objects in VMM for qualitative variabilities in constraint specification

as shown in Lines 25–42. Additionally, attributes of the corresponding modeling objects

are also created as shown in Lines 31–33 and Lines 38–40.

Thus, when higher order transformation represented by Algorithm 4 is applied to the

transformation for our insurance case study from Section VI.3.1.1, a VMM is generated

automatically for the dialog family. Figure VI.3 shows a screenshot of the generated VMM

in GME. In this Figure, InputPattern denotes the source language pattern (e.g., it

is generated in Algorithm 4 in Lines 13–16) while OutputPattern denotes the target

language pattern (e.g., it is generated in Algorithm 4 in Lines 18–21). As stated earlier,

since the same input dialog specification is refined as it is transformed in our case study,

the InputPattern model does not contain any elements.

Variabilities are separately modeled and contained in the Compositional and Qualitative

elements. The specialization repository can now be easily synthesized by developers in

121

terms of VMM models, where each model captures an individual dialog profile (for ex-

ample, as shown in Table VI.1). Finally, VMM models are used in conjunction with our

original (templatized) transformation to create context-sensitive dialogs as shown in Fig-

ure VI.1.

VI.3.2 Discussion

The mappings from workflow decision points to dialogs are highly use case-specific

and largely depend on the characteristics of individual dialog family members. An MTS

constraint specification allows capturing all the commonality and variability properties of

these family members. Our somewhat simplistic communication dialog case study showed

how MTS can be used successfully to define and maintain mappings that are customizable

across compositional and qualitative dimensions as identified in its SCV analysis.

The rendering of communication dialogs can be affected for individual endpoints by

modifying the specialization repository instance at modeling level (i.e., the VMM model

for that endpoint). In particular, we showed how static characteristics of an endpoint (in

our example its modality), can be be used to format dialogs.

Our approach can easily be extended to include dynamic endpoint information, such as

current data connectivity levels (bandwidth) or remaining battery power, simply by updat-

ing the specialization repository. For example, Table VI.2 shows two dialog profiles for

handheld devices. The handheld_1 profile can be used for devices known to have suffi-

cient battery and bandwidth. On the other hand, handheld_2 does not contain detailed

claim information and therefore is more applicable for devices with low batter power and

bandwidth.

With MTS it is possible to control the degree of flexibility in responding to an in-

vitation. Thus, on one hand, it can be used to define a wide range of response options

set for the Web browser endpoint, and on the other, a minimal response options set (with

only "Yes" and "No" allowed options) for the cell phone. Some of these response options

122

Table VI.2: Using dynamic endpoint characteristics in dialog formatting & rendering

comm. endpt. modality Dialog Prop./Attribs.
invitn_detail, meeting_date,
invitn_info, topic_info,
meeting_time, user_resp.,

handheld_1 text User_endpt., topic_detail, claim_id,
Doc., amend_invitn.,
customer_id, claim_date,
customer_name,
suggest_altern.

handheld_2 text invitation_info, topic_info,
user_response, User_endpoint

are dictated by the type of endpoints (e.g., options such as suggest_alternate and

amend_invitation can not be used for the pager endpoints). For others however, the

transformation developers need to perform a careful tradeoff analysis, between providing

a rich feature set and increasing employee productivity. MTS allows rapid synthesis of

dialogs (e.g., each with a separate response set) and thus can be a very effective tool in a

tradeoff analysis.

Finally, using VMM models for specifying variability in dialog synthesis allows devel-

opers to reuse dialog customization mapping rules for new endpoints. In addition, VMM

offers the following advantages: (1) both transformations and VMM models can evolve

independently, and (2) changes in requirements for dialogs targeted at a particular endpoint

does not require recompilation of the model transformation.

123

CHAPTER VII

RELATED WORK

In this Chapter we discuss our research wih existing works in middleware QoS config-

uration & templatization of model transformation techniques.

VII.1 Research on Middleware QoS Configuration

This section compares our work on QUICKER with existing literature on performing

QoS configuration activity.

Ritter et.al. [100] describe CCM extensions for generic QoS support and discusses a

QoS metamodel that supports domain-specific multi-category QoS contracts. Their ap-

proach allows CCM components to negotiate QoS properties (QoS contract) before they

can start their normal operational interactions. The negotiation mechanism they have pro-

posed is independent of any application domain and thus can be reused by a variety of

applications. The concrete QoS contracts that are subject of the negotiation are, on the

other hand, domain specific. The authors have also proposed the implementation of QoS

architecture by incorporating some changes in the CCM container architecture and its lan-

guage mapping. The authors claim it is possible to switch the QoS support on or off for a

given component implementation.

The QML QoS specification language [31] specifies component-level QoS properties.

QML is mainly concerned with how to specify the required or provided QoS for servers

implementing CORBA IDL interface. It provides three main abstraction mechanisms for

QoS specification: contract type, contract and profile. QML allows definition of contract

types that represent specific QoS aspects, such as performance or reliability. A contract

type defines the dimensions that can be used to characterize a particular QoS aspect. A

124

dimension has a domain of values that may be ordered, and there may be three kinds of do-

mains: set domains, enumerated domains and numeric domains. A contract is an instance

of a contract type and represents a particular QoS specification. In order to be useful with

the overall application interface specification, QML profiles allow association of contracts

with interfaces, operations, operation arguments and operation results.

Authors in [47] detail an approach to capture user requirements that are translated into

corresponding network and system parameters. The authors propose modeling & concept

for development support in the mapping activity of end user QoS onto system and network

QoS. They discuss QoS agents in structured object middleware that relate end-user QoS

specifications to multimedia stream application domain bindings. The authors note that

the end user QoS requirements, generally a set of nonorthogonal specifications, should be

supported using the available middleware QoS classes.

The work in [50], on the other hand, focuses on capturing QoS properties in terms of

interaction patterns amongst system components that are involved in executing a particu-

lar service and supporting runtime monitoring of QoS properties by distributing them over

components (which can be monitored) to realize that service. In this work, the authors have

demonstrated the specification and monitoring of end-to-end QoS properties – specifically,

interaction deadlines Ű by employing models that capture the cross-cutting interaction as-

pects of distributed, reactive systems. The authors put the functionalities (or features, ser-

vices) provided by the system – as opposed to the execution components/modules that im-

plementing them – in the center of the development process. The authors also demonstrate

how to create an infrastructure for simulation and validation based on RT-CORBA. The

authors have shown through this demonstration how monitoring of deadline violations can

be achieved in executable specifications, which can be an important capability for check-

ing various application properties during conformance testing of supplier-provided compo-

nents. Their work on monitoring execution can be used in conjunction with the existing

125

techniques for system testing and formal validation techniques, such as model checking

and theorem proving.

An approach that uses an aspect-oriented specification techniques for component-based

distributed systems is discussed in [13]. This work deals with specification of functional be-

havior, non-functional behavior, QoS management policies, and requirements of the appli-

cation and synthesis of QoS management components for that supporting application-level

adaptation strategies. The technique discussed in [13] called aspect-oriented specification

(AOS), has the specifications broken up into four different aspects: functional, nonfunc-

tional, QoS management policies and requirements. The QoS management policies cat-

egory is concerned with the ongoing management policies related to the (non-functional)

QoS properties. Their approach allows different formal languages to be used, if appropri-

ate, to specify different aspects. For such cases, the authors propose that different specifica-

tions can be brought together using formal composition rules built on a common operational

semantics. Their formal composition process is similar to the aspect-weaving process of

aspect-oriented programming, and the join-points of an aspect-oriented program are mir-

rored by the cross-synchronization of events in their composition process. A declarative

approach is used to specify the system, e.g., real-time temporal logic and timed automata

notations are used to describe the application requirements and QoS management policies,

respectively. This aspect-oriented technique is similar to QuO [135], which uses several

high-level languages to capture different aspects of QoS support.

In contrast to the above works, QUICKER focuses on automating the error-prone activ-

ity of middleware QoS configuration, i.e., mapping QoS requirements to QoS configuration

options. Such an automation along with a flexible and intuitive QoS requirement specifi-

cation mechanism naturally supports application QoS evolution during its development

cycle. An interesting side effect of using model transformations for QoS configuration is

that since the changes to application QoS are made only at QoS requirement specification

time, the implementation platform details (i.e., middleware QoS options) always remain

126

in-sync with the application QoS requirements, thereby addressing the productivity prob-

lem [65] at the middleware level. Finally, since the specification of the QoS requirements

itself is platform-independent, it allows for reconfiguring the QoS mappings to suit other

middleware platforms.

Model-driven techniques in [8, 9, 29, 38, 39, 72, 81, 133] rely on a visual interface to

help developers select a wide array of middleware QoS options for their applications. Such

information is later used for generating testsuites for purposes of empirical evaluation. For

example, the work in [72] extended two existing languages (1) Options Configuration

Modeling Language (OCML) [123], which is an MDD tool that simplifies the specification

and validation of complex DRE middleware and application configurations, and (2) Bench-

mark Generation Modeling Language (BGML) [71], which is an MDD tool that synthe-

sizes benchmarking testsuites to analyze the QoS performance of OCML-configured DRE

systems. This work illustrated how these two languages can be used to measure the im-

pact of middleware configurations on end-to-end DRE system performance, and evaluated

how these tools help alleviate the complexities of configuring QoS-enabled middleware to

support particular DRE system requirements. This work describes a process to system-

atically document and validate how different configurations of QoS-enabled middleware

affect DRE system QoS.

The work in [133] discusses a benchmark application generation toolsuite that exploits

MDA development techniques and existing cartridges using AndroMDA [69]. In this ap-

proach, the load testing behavior is modeled using a modified version of the UML Testing

profile. To achieve this, they implemented various stereotypes in the UML 2.0 Testing Pro-

file including SUT(System under Test), Test Context, Test Component etc. Each stereotype

includes a set of tagged values for various purposes including correlations to the SUT, test

data modeling, test scenario modeling (such as transaction mix) and performance testing

configurations (number of runs, ramp up time and etc.). The AndroMDA extension for load

test modeling and generation results in a new cartridge. The design and implementation of

127

the cartridge combines OO-based meta-modelling and domain specific language design.

The authors also discuss a complete template for generating a default implementation of

the loadTestAll() test case with randomly generated data based on a data pool model and

transaction mix.

In contrast, our configuration process does not expose the developers to all of the con-

figuration space of underlying middleware and relies on platform-specific heuristics for

generating QoS configurations. Futher, using our process, the correctness of generated

configurations is established in the design time. We argue that since our transformation al-

gorithms codify best practices and patterns in middleware QoS configuration, QoS design

and evolution throughout the system lifecycle using our approach is faster.

Analysis tools such as VEST [116], Cadena [45] and AIRES [66] evaluate whether cer-

tain timing, memory, power, and cost constraints and functional depenencies of real-time

and embedded applications are satisfied. VEST [115, 117] focuses on the development

of effective composition mechanisms, and the associated dependency and nonfunctional

analyses for real-time embedded systems. It is based on extending the notion of aspects.

Aspects [21, 62, 63] are defined as those issues that cannot be cleanly encapsulated in

a generalized procedure, and typically include issues that affect the performance or se-

mantics of components. For example, many real-time, concurrency, synchronization, and

reliability issues are aspects of a distributed system. In this work, the authors have ex-

tended the notion of aspects to language independent notions and applied them at system

design time. They introduce two kinds of language-independent aspects: aspect checks

and prescriptive aspects. Together these permit the benefits of aspects to be exercised early

in the composition process rather than in the implementation phase. The proof-of-concept

has been implemented in the VEST (Virginia Embedded Systems Toolkit). VEST provides

an environment for constructing and analyzing component-based DRE systems. VEST

helps developers select or create passive software components, compose them into a prod-

uct, map the passive components onto active structures such as threads, map threads onto

128

specific hardware, and perform dependency checks and nonfunctional analyses to offer as

many guarantees as possible along many dimensions including real-time performance and

reliability. DRE systems issues are explicitly addressed in VEST via the mapping of com-

ponents to active threads and to hardware, the ability to include middleware as components,

and the specification of a network and distributed nodes.

AIRES [42, 43, 66] proposed an approach for eliminating the inter-task dependencies

using shared buffers between dependent tasks in DRE systems. The system correctness,

with respect to data-dependency, is ensured by having each dependent task poll the shared

buffers at a fixed rate. Therefore individual tasks can be allocated as well as scheduled

independent of their predecessors. To meet the timing constraints of the original dependent-

task system, the authors iteratively derive the polling rates based on end-to-end system

deadline constraints. The overheads associated with the shared buffers and the polling

mechanism are minimized by clustering tasks according to their communication and timing

constraints. The authors also give simluation-based proof with the task allocation based on

a simple first-fit bin packing algorithm that their approach scales almost linearly with the

system size, and clustering tasks greatly reduces the polling overhead.

Cadena [17, 45, 99, 113, 114] is an integrated environment built using Eclipse for

building and analyzing CCM based systems. Cadena provides a framework for lightweight

dependency analysis (including both intra-component and inter-component) of behavior of

components. It supports an integrated model-checking infrastructure (using Bogor) dedi-

cated to checking global system properties using event-based inter-component communi-

cation via real-time middleware. The framework is targetted specifically towards avionics

mission computing systems, though it can be applied in the context of general, CCM-based

applications. It provides a number of capabilities including the following: (1) A collec-

tion of light-weight specification files that complement the IDL specification to describe

129

mode variable domains, intra-component dependencies, and component state-transition se-

mantics. These files have a natural refinement order so that useful feedback can be ob-

tained with little annotation effort, and increasing the precision of annotation yields more

precise analysis. In addition, Cadena specifications allow DRE developers to specify the

same information in different ways, achieving a form of checkable redundancy that can

be useful for exposing design flaws. (2) Dependency analysis capabilities such that trac-

ing inter/intra-component event and data dependencies can be done easily. It also pro-

vides as well as algorithms for synthesizing dependency-based real-time and distribution

aspect information. (3) An integrated model-checking infrastructure for event-based inter-

component communication via realtime middleware that enables system design models

(derived from CCM IDL, component-assembly descriptions and annotations) to be model-

checked for global system properties. (4) Java component stub and skeleton code generated

using the CCM IDL to Java compiler. (5) A component assembly framework supporting

a variety of visualization and programming tools for developing component connections.

(6) A CCM deployment facility dedicated to the Boeing Bold Stroke architecture (static

component connections with a real-time event-channel) that allows deployment code to be

automatically generated. (7) The toolchain is implemented as plug-ins to IBMŠs Eclipse

IDE, thus providing an end-to-end integrated development environment for CCM-based

Java systems.

QUICKER is similar to Cadena in terms of usage of Bogor for model-checking. The

difference is that Cadena applies model-checking to verify functional behavior of compo-

nents, whereas QUICKER applies model-checking to verify QoS configuration options of

component middleware in the presence of dynamic adaptation of these options via RACE.

Our configuration process can be used as a complementary QoS design and analysis tech-

nique to these efforts since it emphasizes on mechanisms to (1) translate design-intent into

130

actual configuration options of underlying middleware and (2) verify that both the trans-

formation and subsequent modifications to the configuration options remain semantically

valid.

The Adaptive Quality Modeling Language (AQML) [89] provides QoS adaption policy

modeling artifacts. AQML generators can (1) translate the QoS adaption policies (specified

in AQML) into Matlab Simulink/Stateflow models for simulations using a control-centric

view of QoS adaptation and (2) generate Contract Definition Language (CDL) specifica-

tions used in QuO [135] from AQML models. QUICKER differs with AQML in several

ways, including the application of QoS adaption and the precision of the middleware mod-

eling. For example, QUICKER models the configuration of standards-based QoS-enabled

component middleware technologies, such as real-time CORBA and RT-CCM, whereas

AQML targets QuO. Moreover, QUICKER’s middleware model is precisely abstracts the

actual real-time CORBA implementation so it does not need a two-level declarative trans-

lation (from AQML to CDL to potentially CCM using QuO delegates [135]) to achieve

QoS adaptation. Finally, we employ automated model-checking in QUICKER to analyze

the QoS adaptation as a function of QoS configuration options of middleware.

The Distributed QoS modeling environment (DQME) [28, 78, 129] is a DSML that en-

ables the design of QoS adaptive applications in combination with using QoS provisioning

frameworks, such as QuO [135]. DQME uses a hierarchical representation for model-

ing QoS adaptation strategies and supports design of controllers based on state machines.

The primary difference is that DQME focuses on a high-level design of QoS adaptation

strategies, whereas QUICKER’s emphasis is more fine-grained and focuses on the runtime

configuration options of the underlying middleware. Operating at a high-level of abstrac-

tion with respect to QoS adaptation strategies ultimately requires mapping of the design

adaptation strategies to implementation-specific options. QUICKER focuses on translating

high-level QoS adaptation design intent into actual QoS configuration options that exists in

tools like DQME. QUICKER also helps configure QoS adaptation strategies dynamically

131

at runtime by feeding RACE information about valid QoS configuration states from the

analysis results obtained using model-checking.

A classic example of model transformations is the Model Driven Architecture (MDA) [93]

development process, which centers around defining PIMs of an application and applying

(typed, and attribute augmented) transformations to PIMs to obtain PSMs. The COMQU-

AD project [103] discusses extensions to MDA in order to allow application developers

to refine non-functional aspects of their application from an abstract point of view to a

model closer to the implementation. Model transformations are defined between different

non-functional aspects and are applied to QoS characteristics (i.e., measurement of quality

value) definitions to allow for such a refinement. In this work, the central idea of QoS

specifications is the measurement or characteristic. A measurement is defined as a map-

ping from states, objects, or events of a physical system to a formal system. Measurements

thus can be the response time (a mapping from an operation call in a running system to

a real number representing the time taken from invocation to return), or confidentiality

(a mapping from a channel used to transfer information to a value indicating the level of

confidentiality achieved by this channel). The authors claim that by using models of the

relevant aspects of target applications for the definition of measurements, the definitions

themselves can be made independent of specific applications. Therefore, it follows from

the above claim that they will be applicable to any system model that can be viewed as an

instance of the models used in the definition of the measurement. Non-functional specifi-

cations essentially constrain measurements applied to a functional model of a system, and

are thus, application specific.

Authors in [3] attempt to clearly define platform-independent modeling in MDA de-

velopment by introducing an important architectural notion of Abstract Platform that cap-

tures an abstraction of infrastructure characteristics for models of an application at some

platform-independent level in its design process. An important observation of the authors

is that design languages should allow for appropriate levels of platform-independence to

132

be defined at each development steps. An abstract platform defines an acceptable or, to

some extent, ideal platform from an application developerŠs point of view. It is an ab-

straction of infrastructure characteristics assumed for models of an application at some

point of (the platform-independent phase of) the design process. Alternatively, an abstract

platform defines characteristics that must have proper mappings onto the set of concrete

target platforms that are considered for an MDA design process, thereby defining the level

of platform-independence for this particular process. Defining an abstract platform forces

a designer to address two conflicting goals: (i) to achieve platformindependence, and (ii)

to reduce the size of the design space explored for platform-specific realization. In this

work, the authors have presented some guidelines for platform-independent design and

have defined requirements for design languages intended to support platform-independent

design. The authors also discuss how the architectural concept of abstract platform can be

supported in UML.

QUICKER differs from the above projects as follows: COMQUAD allows for specifi-

cation and transformation of non-functional aspects at different levels of abstraction as the

application itself evolves. For example, response time of a function call may be expressed

more clearly as the time between reception of a request and sending the corresponding re-

sponse, or time between reception of a request and reception of the corresponding response.

Successive refinement models in COMQUAD are exposed to the application developers

such that more details can be added.

Similarly, work discussed in [3] proposes that design languages should support platform-

independence at each abstract platform levels. QUICKER, on the other hand, deals with

mechanisms to translate QoS requirements a system places on the implementation plat-

form onto QoS configuration options of that platform. Output models of QUICKER can be

treated as read only models. Application developers model and modify only the high-level

requirements models, and are thus shielded from the low-level details about the middleware

platform. Finally, we focus on QoS requirements (and mappings thereof) of an application

133

at the middleware level while COMQUAD focuses on QoS characteristics for an applica-

tion (e.g., response time, delay, memory usage).

Research presented in [82] maps application models captured in the Embedded Systems

Modeling Language (ESML) to UPPAAL timed automata [75] using graph transformation

to verify automata using graph transformation to verify properties like schedulability of a

set of real-time tasks with both time- and event-driven interactions, and absence of dead-

locks in the system. Other related efforts include the Virginia Embedded Systems Toolkit

(VEST) [116] and the Automatic Integration of Reusable Embedded Systems (AIRES) [42],

which are model-driven analysis tools that evaluate whether certain timing, memory, power,

and cost constraints of real-time and embedded applications are satisfied.

QUICKER focuses on a different level of abstraction (i.e., QoS policy mapping tools)

than [42, 82, 116] which are QoS analysis tools. QUICKER is complementary to these

efforts since it emphasizes on mechanisms for (1) capturing system QoS requirements at

domain-level abstractions to simplify QoS requirements specification, and (2) correctly

translating design-intent into QoS configuration options of underlying middleware plat-

form.

This work deals with specification of functional behavior, non-functional behavior, QoS

management policies, and requirements of the application and synthesis of QoS manage-

ment components for that supporting application-level adaptation strategies. A declarative

approach is used to specify the system, e.g., real-time temporal logic and timed automata

notations are used to describe the application requirements and QoS management policies,

respectively. This aspect-oriented technique is similar to QuO [135], which uses several

high-level languages to capture different aspects of QoS support.

In contrast to the above works, QUICKER focuses on automating the error-prone activ-

ity of middleware QoS configuration, i.e., mapping QoS requirements to QoS configuration

options. Such an automation along with a flexible and intuitive QoS requirement specifi-

cation mechanism naturally supports application QoS evolution during its development

134

cycle. An interesting side effect of using model transformations for QoS configuration is

that since the changes to application QoS are made only at QoS requirement specification

time, the implementation platform details (i.e., middleware QoS options) always remain

in-sync with the application QoS requirements, thereby addressing the productivity prob-

lem [65] at the middleware level. Finally, since the specification of the QoS requirements

itself is platform-independent, it allows for reconfiguring the QoS mappings to suit other

middleware platforms.

Design-time approaches to component middleware optimization include eliminating

the dynamic loading of component implementation shared libraries and establishing con-

nections between components done at runtime, as described in the static configuration of

CIAO [118]. Our approach is different since it uses model transformations of application

QoS configurations at design-time. Our approach is thus not restricted to optimizing just

the inter-connections between components. Moreover, the static configuration approach

can be applied in combination to our approach.

An approach to optimizing the middleware at design/development-time employs context-

specific middleware specializations for product-line architectures has been discussed in [70].

The central idea of this work is based on utilizing various application-, middleware- and

platform-level characteristics that remain constant or are invariant and do not vary dur-

ing the normal application execution in order to reduce the excessive overhead caused by

the generality of middleware platforms. Some research also exists in the area of Aspect-

Oriented Programming (AOP) that relies on automatically deriving most appropriate sub-

sets of middleware platforms depending on the application use-case requirements [48], and

modifying applications so as to bypass the middleware layers using aspect-oriented exten-

sions to CORBA Interface Definition Language(IDL) [96]. Additionally, other researchers

have constructed the middleware in a “just-in-time” fashion by integrating source code

analysis, and inferring features and synthesizing implementations [130] for achieving opti-

mizations.

135

Contrary to the above approaches, our model transformation-based technique relies

only on the specified (1) application QoS configuration and (2) the initial deployment plan,

in order to optimize the QoS policies. Our approach does not necessitate any modifications

to the application, i.e., the application developer need not design his/her application tuned

for a specific deployment scenario. As our results in Section IV.3.3 have indicated, our

approach can be used in a complementary fashion to any of the design/development-time

approaches discussed above, since there exist several opportunities for QoS optimization at

various stages in application development.

Research on approaches to optimizing middleware at runtime on the other hand, has fo-

cused on choosing optimal component implementations from a set of available alternatives

based on the current execution context [27]. The work on QuO [52, 97, 124, 134, 135] is

relevant in this context as it is a dynamic QoS framework that allows dynamic adaptation of

desired behavior specified in contracts, selected using proxy objects called delegates with

inputs from runtime monitoring of resources by system condition objects. QuO has been

integrated into component middleware technologies, such as LwCCM.

Other aspects of runtime optimization of middleware include domain-specific middle-

ware scheduling optimizations for DRE systems [36], using feedback control theory to

affect server resource allocation in internet servers [132] as well as to perform real-time

scheduling in Real-time CORBA middleware [80]. Our work is targeted at optimizing the

middleware resources required to host composition of components in the presence of a large

number of components, whereas, the main focus of these efforts is to either build the mid-

dleware to satisfy certain performance guarantees, or effect adaptations via the middleware

depending upon changing conditions at runtime.

Runtime approaches to application-specific optimizations have focused on data repli-

cation for edge services, i.e., replicating servers at geographically distributed sites [35].

Significant performance improvements in the latency and availability has been achieved

136

by relaxing the consistency of data that is replicated at the edge servers using application-

specific semantics. Other research on optimizing web services has focused on utilizing

reflective techniques encapsulated in the request metadata [87] for dynamic negotiation of

best communication mechanisms between any requester and provider of a service. Other

research [112] on dynamic optimization approaches include improving algorithms for event

ordering within component middleware by making use of application context information

available in models.

The approaches outlined above optimize the middleware/on-the-wire protocol using

knowledge of the computations performed by the application. Our approach makes use

of the application deployment information on each node of the target domain and is thus

focused on optimizing the execution of the components at each end-system as opposed to

optimizing the on-the-wire protocol.

Deployment-time optimizations research such as [77] have focused on optimization of

web services. This research is aimed at optimizing the client-server binding selection using

a set of rules stored in a policy repository and rewriting the application code to use the opti-

mized binding. It uses techniques such as configuration discovery that extract deployment

information from configuration files present in individual component packages. By oper-

ating at the level of individual client-server combinations, the QoS optimizations achieved

in our transformation-based approach are non-trivial to perform using the above mentioned

approach. Italso relies on modification to the application source code to rewrite the appli-

cation code, while our approach is non-intrusive and does not require application source

code modifications, and it only relies on the specified application policies and deployment

plans.

137

VII.2 Research on Model Transformation Templatization

Existing model transformation tools [15, 32, 107] support some form of higher order

transformations. PROGRES and ATL allow specification of type parameters while VIA-

TRA allows development of meta-transformations, i.e., higher order transformations that

can manipulate transformation rules and hence model transformations. Unlike MTS how-

ever, these tools do not provide mechanisms for separation of variabilities from model

transformations to facilitate automated development of application families.

The model driven architecture (MDA) [65, 93] development process is centered around

defining application platform-independent models and applying (typed, and attribute aug-

mented) transformations to these models to obtain application platform-specific models. In

the context of MDA, requirements and challenges in generating specialized transformations

from generic transformations are discussed in [68].

Reflective model driven engineering (MDE) approach [12] proposes a two dimensional

MDA process by expressing model transformations in a tool- or platform-independent way

and transforming this expression into actual tool- or platform-specific model transformation

expressions.

There is return on investment (ROI) associated with developing and maintaining map-

pings from platform-independent transformations to platform-specific transformations in

terms of reuse, composition, customization, maintenance etc. The authors argue that the

ROI for a two-dimensional MDA process is greater than conventional one dimensional

MDA.

Although reflective MDE focuses on having durable transformation expressions that

naturally facilitate technological evolution and development of tool-agnostic transforma-

tion projects, mappings still have to be evolved with change in platform-specific tech-

nologies. MTS, however, is concerned with managing and evolving model transformation

138

variability in systems developed using an MDA process. Parameterization techniques sup-

ported by MTS can be highly effective in managing variability of mappings from platform-

independent to specific forms in the context of the above body of work.

Asset variation points discussed in [104] deal with expressing variability in models

of product lines [18]. A variation point is identified by several characteristics (e.g. point

reference, and context, use and rationale of the variation point) that uniquely identify that

point in the product lines. These asset variation points capture variation rules of imple-

mentation components of a product-line member. The authors define processes, methods

and techniques investigated in expressing the variability between products and its usage to

derive new products from the software product line. In order to describe the variability, the

authors identify various development concerns:

1. Expression of what can vary in the asset, called the variable asset;

2. Expression of why it can vary, rather than how it can vary using variability rules tated

using variability attributes;

3. Decision to take to realize the variability using variability mechanism relating the trans-

formation to apply in order to select or to build a variant;

4. Decision to take to select variants, supported by decision points ordered in a decision

model.

In addition, they also list two different kinds of variabilities that must be accounted for:

1. Under-specification: leaving variability unspecified. This solution guides the application

engineer but leaves great flexibility to the programmer.

2. Provision: specifying variability and providing elements to help the choice of solutions

at derivation time by engineers. All elements should be documented.

The authors also proposed to clearly identify the product characterization and the product

building as separate processes. The authors further claim that product characterization can

be done with the help of a decision model, that can be provided with a simple semantic of

a graph made of decision points with inclusion/exclusion relationships – the graph in turn

139

forms a decision plane. From this product characterization an application model can be

drawn that forms the ground from which the strategy of variability resolution is built. The

resolution of variability inside the domain engineering assets is driven by the variability

resolution plane. The derivation attributes come out of this plane, which are consumed

by the variation points. From these attributes, variability resolution rules that are part of

variation pointŠs specification drive the transformation of the assets they are attached to.

An aspect-oriented approach to managing transformation variability is discussed in [125]

that relies on capturing variability in terms of models and code generators. This work ex-

plores an approach that integrates model-driven and aspect-oriented techniques in order to

facilitate variability implementation, management and tracing in SPLE. The general ap-

proach is as follows: (1) Express the set of artifacts in software development in terms

of application models. It is beneficial to maximize the size of this set as it lends itself

to the use of model transformations, (2) the automated translations from problem space

to solution space are encoded as model transformations, that enable formal descriptions

of mappings and repeatability in their execution, (3) variable parts of the resulting sys-

tem are either assembled from pre-build assets generated from models or implemented via

interpreters, (4) aspect-oriented modeling is used to implement variability in models for

supporting the selective adaptation of models, (5) aspect-oriented programming is used

to implement crosscutting features on code level that cannot easily be modularized in the

generator, (6) certain parts of a product will still be implemented manually because, for

economic reasons, developing a custom generator is too costly. The manually written code

is integrated with the generated code in well-defined ways.

Another approach is model weaving [41], which is used in the composition of separate

models that together define the system as a whole. Aspect models allow specifying vari-

ability that is weaved into a base model to form an instance of a product-line. Using the

aspect-oriented approach requires developers to learn a new modeling language for creating

aspect models for their product-line.

140

In contrast, the VMM models generated by MTS use modeling objects that are part

of the source (or target) modeling languages requiring no additional learning curve. MTS

generates VMM from variability specification in the templatized transformation to auto-

mate the entire process. The population of VMM models itself, as shown in Section VI.3,

does not involve learning an entirely new language since all its modeling objects are part

of a source (or target) modeling language of the transformation.

Research presented in [19, 20] discusses how user interfaces can be customized based

on user context information. The authors employ a model-based development process to

model user communication (in terms of interactions) with a context-aware system. Services

such as context-sensitive guided tours using users’ mobile devices can be developed using

their prototypical approach. In [19], the authors extend their earlier approach to designing

context-sensitive user interfaces for static context, such that it is possible to design and pro-

vide runtime support for user interfaces that can be affected by dynamic context changes.

The dynamic context changes takes into account the target platform, network properties and

other environmental conditions. Additionally, the authors also provide solutions on how to

design a UI for a service, and how to cope with this service when it becomes available

to the application on the portable device of the user. The proof-of-concept DynaMo-AID

which is part of the Dygimes User Interface Creation Framework has been applied to a

representative case study to illustrate its practical use.

A number of context-aware services and frameworks have been proposed over the

years [24, 86, 122] that incorporate users’ location and availability, and awareness informa-

tion while establishing communications between them. For example, the connector service

in [24] aims at establishing communication between two users at the most appropriate

time, using the most appropriate endpoints, and takes factors such as physical location,

social relations and current state of the users into account [24]. Our previous work in

141

this area [58] discussed a Web browser-based dialog system that facilitated user commu-

nications in response to events in the enterprise workflow so as to improve and accelerate

decision-making.

In contrast to the above body of work, our research focuses on customizing dialogs

such that they can be appropriately rendered on user endpoints. User context, in our case, is

very specific to the users’ endpoints and communication devices and encompasses endpoint

characteristics such as hardware, software, and network capabilities, remaining battery life,

keyboard support and other parameters, as opposed to user location etc.

Our work can be used in conjunction with user interface customization approaches such

as [20] when different kinds of user endpoints are allowed to use the context-aware service.

142

CHAPTER VIII

CONCLUDING REMARKS

Middleware QoS Configuration With the trend towards implementing key DRE sys-

tem infrastructure at the middleware level, achieving the desired QoS is increasingly be-

coming more of a configuration problem than (just) a development problem. The flexibility

of configuration options in QoS-enabled component middleware, however, has created a

new set of challenges. Key challenges include determining the correct set of values for

the configuration options, understanding the dependency relations between the different

options, and evolving the QoS configurations with changes to application functionality.

QUICKER MDE Toolchain To address these challenges, we have developed the QUal-

ity of service pICKER (QUICKER) toolchain, which (1) uses model transformation to auto-

mate the mapping of application QoS policies into middleware-specific QoS configuration

options and (2) applies model-checking to ensure that the QoS configuration options are

valid at the individual component level as well as at the application level. To demonstrate

the use of QUICKER, we applied it to address configuration challenges in representative

DRE system case studies. We also showed how QUICKER’s QoS mapping capabilities and

validation of QoS options using model-checking enabled the successful configuration and

deployment of DRE system components. The following is a summary of lessons learned

from our experience using QUICKER to develop this prototype:

QoS mapping is critical to successful deployment of systems built using component

middleware. With the increase in configuration complexity, the QoS mapping capabilities

provided by QUICKER are essential to managing the complexity. Configuration of mid-

dleware options to achieve the desired QoS in DRE systems can be viewed as an directed

acyclic graph whose root is the high-level mission requirements, edges are the individual

143

mappings joining the vertices in a top-down fashion, and the vertices correspond to the dif-

ferent options available at each intermediate layer of abstraction. QUICKER is a part of a

chain of mappings starting from high-level mission requirements to the actual deployment

platform, and resides between the application components and the underlying component

middleware implementation. By employing MDE tools, QUICKER not only simplifies

the QoS mapping process for DRE system developers, it also preserves the rich semantics

associated with the mapping between the QoS policies and QoS configuration options at

this level. Using MDE tools also helps QUICKER integrate with mapping technologies

that exist both above (e.g., mission requirement mapping tools, functional decomposition

tools, and functional analysis tools) and below (e.g., deployment planning tools) the level

at which QUICKER operates in a component-based DRE system development lifecycle.

Integration of QoS mapping with runtime entities like runtime QoS controllers es-

sential to ensure dynamic configuration. In addition to QUICKER toolchain capabilities

described in this proposal, our ultimate goal is to provide inputs to runtime QoS controllers,

such as those in RACE. The current version of the RACE controller [109] performs coarse-

grained control of CCM components by changing component priorities to effect control.

Managing resource utilization by controlling priority alone, however, does not cover the

entire spectrum of resource control capabilities. In particular, response time of the con-

troller is also critical for DRE systems. To enable fine-grained control of CCM compo-

nents, therefore, we are extending the QUICKER toolchain to incorporate a cost model

for dynamic resource adaptation and automatic generation of a RACE controller based on

results of the Bogor model-checker.

Horizontal mapping of QoS is as important as vertical QoS mapping. QUICKER

currently focuses on mapping application QoS policies onto a single underlying middle-

ware technology: the CIAO and RACE RT-CCM platform. Large-scale DRE systems—

particularly systems requiring dynamic resource management [74]—are often composed

of heterogeneous technologies. It is therefore essential for QoS mapping tools to not only

144

support vertical mapping (i.e., the mapping of policies and validation onto a single technol-

ogy) but also horizontal mapping (i.e., the mapping of QoS policies onto multiple hetero-

geneous technologies, while reconciling the differences between these technologies). Until

such mapping is performed, QoS configuration and associated tools will remain as islands,

which significantly complicates integration efforts for large-scale DRE systems.

GT-QMAP Model Transformation Algorithms Large-scale distributed systems are

increasingly built using middleware technologies that provide reusable building blocks and

services to support rapid software development by composition. In order to configure them

correctly for different application needs, these middleware platforms provide highly cus-

tomizable QoS mechanisms.

In this dissertation we introduced an automated, reusable model-driven QoS mapping

toolchain that (1) raises the level of specification abstraction for system developers (who

lack a detailed understanding of these QoS mechanisms and their inter-dependencies) such

that system QoS requirements can be expressed intuitively, and (2) correctly maps these

QoS specifications to middleware-specific QoS configuration options.

In this dissertation we discussed our approach to evaluating correctness and effective-

ness of a QoS configuration process in the context of a representative DRE system. We

showed how structural correspondence between input and output languages in our model-

driven approach can be used to establish that initial system requirements are correctly

mapped to middleware QoS options. We verified the correctness of generated QoS op-

tions using a model-checker and empirically showed that they are effective in satisfying

system requirements.

Templatized Model Transformation In this dissertation we discussed a model transformation-

based approach to customizing dialogs between enterprise workflows and users to a variety

of user communication endpoints, from cell phones to Web browsers to office phones. Our

two-phase approach to dialog specialization offers the following benefits: (1) It allows de-

velopers to separate variabilities in their dialog mappings in Phase I such that templatized

145

model transformations can be developed. (2) Through use of VMM models in the special-

ization repository in Phase II, developers can easily create family instance-specific dialogs

for individual endpoints, and extend existing mappings such that dialogs for new endpoints

could be synthesized.

The following is a summary of lessons learnt from our work:

• Mapping of workflows to context-sensitive communication is essential to rapid

decision-making in enterprises. With the increasing reliance on automated processes

in enterprises, there is an immediate need to accelerate the communication between work-

flows and enterprise employees. Such communication enables employees to make informed

business decisions with lesser "turnaround time", which ultimately leads to increased over-

all productivity and efficiency of the enterprise. Our MTS approach provides a simple,

extensible solution to context-sensitive dialog creation. The templatized transformation

together with the specialization repository are useful in automatically mapping workflow

decision points onto appropriate dialogs. Since the variabilities are expressed as VMM

models, addition of dialogs, corresponding to new endpoints introduced in the enterprise,

can be achieved simply by creating a new VMM model.

• Templatized transformations & specializations can be more widely applicable

to development of PLAs in other domains. The MTS approach in this work has been

demonstrated specifically in the context of context-sensitive dialog synthesis. However,

the MTS toolchain, its various development processes and artifacts are not domain-specific

and can be re-targeted for other domains. Thus, the toolchain itself can be applied in

general to any product-line development scenario, without requiring any change. An effort

is underway in applying the MTS approach to configuration of heterogeneous component-

based distributed applications [55, 57].

This dissertation presented MTS (Model-transformation Templatization and Special-

ization), which is an enabling technology that seamlessly integrates with existing model

transformation tools to support reusable model transformations for application families.

146

Existing model transformation tools lack support for reusable transformations which force

developers to reinvent transformation rules. MTS overcomes these limitations while requir-

ing no change to contemporary tools. MTS defines templatized transformations to factor

out the commonalities, and uses the notion of a generated variability metamodel to capture

the variabilities in the transformation process across variants of an application family. MTS

defines two higher order transformations to specialize the transformations for different vari-

ants. Although our existing prototype is implemented in GReAT, it can be easily extended

for other model transformation toolchains as long as they provide means to develop higher

order transformations. Results of evaluating MTS indicate that it enhances developer pro-

ductivity and effectiveness of model-based software development for application families.

147

APPENDIX A

LIST OF PUBLICATIONS

Our research on QUICKER and MTS has lead to the following conference and work-

shop publications.

A.1 Refereed Conference Publications

1. Amogh Kavimandan, Reinhard Klemm, and Aniruddha Gokhale, “Context-Sensitive

Dialog Synthesis for Enterprise Workflows Using Templatized Model Transforma-

tions,” in The Twelfth IEEE International Enterprise Computing Conference (EDOC

2008), Munchen, Germany, September 15-19, 2008.

2. Amogh Kavimandan, and Aniruddha Gokhale, “Evaluating the Correctness and Ef-

fectiveness of a Middleware QoS Configuration Process in Distributed Real-time

and Embedded Systems,” in The Eleventh IEEE International Symposium on Ob-

ject/Component/Service oriented Real-time Distributed Computing (ISORC 2008),

Orlando, FL, May 5-7, 2008, pp. 100–107.

3. Amogh Kavimandan, and Aniruddha Gokhale, “Automated Middleware QoS Con-

figuration Techniques using Model Transformations,” in The Fourteenth IEEE Inter-

national Real-Time and Embedded Technology and Applications Symposium (RTAS

2008), St. Louis, MO, April, 2008, pp. 93–102.

148

4. Amogh Kavimandan, Reinhard Klemm, Dort’ee Duncan Seligmann, and Anirud-

dha Gokhale, “Enhancing Enterprise User Productivity with Embedded Context-

Aware Voice Applications,” in The IEEE International Conference on Mobile Ubiq-

uitous Computing, Systems, Services and Technologies (UBICOMM 2007), Papeete,

French Polynesia, November 4-9, 2007, pp. 169–176.

5. Amogh Kavimandan, Aniruddha Gokhale, “A Model-driven QoS mapping tool for

QoS-enabled Component Middleware,” (short paper) in Proceedings of The Tenth

ACM/IEEE International Conference on Model Driven Engineering Languages and

Systems (MODELS 2007), Nashville, TN, September-October, 2007.

6. Amogh Kavimandan, Krishnakumar Balasubramanian, Nishanth Shankaran, Anirud-

dha Gokhale, and Douglas C. Schmidt, “QUICKER: A Model-driven QoS Mapping

Tool for QoS-enabled Component Middleware,” in The Tenth IEEE International

Symposium on Object/Component/Service oriented Real-time Distributed Comput-

ing (ISORC 2007), Santorini Island, Greece, May 7-9, 2007, pp. 62–70.

7. Amogh Kavimandan, Reinhard Klemm, Ajita John, Dort’ee Duncan Seligmann,

and Aniruddha Gokhale, “A Client-Side Architecture for Supporting Pervasive En-

terprise Communications,” in The International Conference on Pervasive Services

(ICPS 2006), Lyon, France, June 26-29, 2006, pp. 222–232.

8. Amogh Kavimandan, Wonsuck Lee, Marina Thottan, Aniruddha Gokhale, and Ramesh

Viswanathan, “Network Simulation via Hybrid System Modeling: A Time-Stepped

149

Approach,” in The Fourteenth International Conference on Computer Communica-

tions And Networks (ICCCN 2005), San Diego, CA, October 17-19, 2005, pp. 531–

536.

9. Amogh Kavimandan, Aniruddha Gokhale, “An Energy-efficient and Scalable Data

Dissemination Protocol for Wireless Sensor Networks,” (short paper) in Proceedings

of the Third International Conference on Mobile Systems, Applications and Services

(MobiSys 2005), Seattle, WA, June 6-7, 2005.

10. Amogh Kavimandan, and Aniruddha Gokhale, “Applying Model-driven Generative

Programming to Communication Network Performance Evaluation,” (short paper) in

Proceedings of The Global Telecommunications Conference (GLOBECOM 2005),

St. Louis, MO, November-December, 2005.

A.2 Refereed Workshop Publications

1. Amogh Kavimandan, and Aniruddha Gokhale, “Templatized Model Transforma-

tions for Middleware QoS Configuration of Heterogeneous DRE Systems,” in Pro-

ceedings of OMG’s Real-time Systems Workshop (OMG-RTWS 2008), Washington

D.C., July, 2008.

2. Amogh Kavimandan, and Aniruddha Gokhale, “A Parameterized Model Transfor-

mations Approach for Automating Middleware QoS Configurations in Distributed

Real-time and Embedded Systems,” in Proceedings of ASE workshop on Automating

Service Quality, (WRASQ 2007), Atlanta, GA, November 6, 2007.

150

3. Amogh Kavimandan, and Aniruddha Gokhale, “Automated Middleware QoS Con-

figuration Techniques using Model Transformations,” in Proceedings of the EDOC

workshop on Advances in Quality of Service Management, (AQuSerM 2007), An-

napolis, MD, October 15-19, 2007.

4. Amogh Kavimandan, and Aniruddha Gokhale, “Supporting Systems QoS Design

and Evolution through Model Transformations,” in Proceedings of Companion to

the Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications, (OOPSLA Companion 2007), Montreal, Canada, Oc-

tober 21-25, 2007.

5. Amogh Kavimandan, Krishnakumar Balasubramanian, Nishanth Shankaran, Anirud-

dha Gokhale, and Douglas C. Schmidt, “A Model-driven QoS Mapping Tool for

QoS-enabled Component Middleware,” in Proceedings of OMG’s Real-time Systems

Workshop (OMG-RTWS 2007), Washington D.C., July, 2007.

6. Amogh Kavimandan, Marina Thottan, Aniruddha Gokhale, Wonsuck Lee, and Ramesh

Viswanathan, “SeMA: A model-driven Multi-paradigm Integrated Simulation Frame-

work For Analysis of Communication Networks,” in Proceedings of the OMGŠs First

Annual Model-Integrated Computing (MIC) workshop, Exploring the synergy be-

tween MIC and MDA, Washington D.C., October, 2004.

151

REFERENCES

[1] Aditya Agrawal, Gyula Simon, and Gabor Karsai. Semantic translation of
simulink/stateflow models to hybrid automata using graph transformations. In In-
ternational Workshop on Graph Transformation and Visual Modeling Techniques
(GT-VMT), Barcelona, Spain, 2004.

[2] Ákos Lédeczi, Árpád Bakay, Miklós Maróti, Péter Völgyesi, Greg Nordstrom,
Jonathan Sprinkle, and Gábor Karsai. Composing domain-specific design environ-
ments. Computer, 34(11):44–51, 2001. ISSN 0018-9162. doi: http://dx.doi.org/10.
1109/2.963443.

[3] Joao Paulo Almeida, Remco Dijkman, Marten van Sinderen, and Luís Ferreira Pires.
On the Notion of Abstract Platform in MDA Development. In Proceedings of the 3rd

IEEE International Enterprise Distributed Object Computing Conference (EDOC
2004), pages 253–263, September 2004.

[4] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi.
TIMES: A Tool for Schedulability Analysis and Code Generation of Real-Time Sys-
tems. In Kim Guldstrand Larsen and Peter Niebert, editors, Formal Modeling and
Analysis of Timed Systems: First International Workshop, FORMATS 2003, Mar-
seille, France, September 6-7, 2003. Revised Papers, volume 2791 of Lecture Notes
in Computer Science, pages 60–72. Springer, 2003. ISBN 3-540-21671-5.

[5] Jaiganesh Balasubramanian, Balachandran Natarajan, Douglas C. Schmidt, Anirud-
dha Gokhale, Gan Deng, and Jeff Parsons. Middleware Support for Dynamic Com-
ponent Updating. In International Symposium on Distributed Objects and Applica-
tions (DOA 2005), Agia Napa, Cyprus, October 2005.

[6] Jaiganesh Balasubramanian, Sumant Tambe, Balakrishnan Dasarathy, Shrirang
Gadgil, Frederick Porter, Aniruddha Gokhale, and Douglas C. Schmidt. Netqope: A
model-driven network qos provisioning engine for distributed real-time and embed-
ded systems. In RTAS’ 08: Proceedings of the 14th IEEE Real-Time and Embed-
ded Technology and Applications Symposium, pages 113–122, Los Alamitos, CA,
USA, 2008. IEEE Computer Society. doi: http://doi.ieeecomputersociety.org/10.
1109/RTAS.2008.32.

[7] Krishnakumar Balasubramanian and Douglas C. Schmidt. Physical Assembly Map-
per: A Model-driven Optimization Tool for QoS-enabled Component Middleware.
In Proceedings of the 14th IEEE Real-time and Embedded Technology and Applica-
tions Symposium, pages 123–134, St. Louis, MO, USA, April 2008.

152

[8] Krishnakumar Balasubramanian, Jaiganesh Balasubramanian, Jeff Parsons, Anirud-
dha Gokhale, and Douglas C. Schmidt. A platform-independent component mod-
eling language for distributed real-time and embedded systems. In RTAS ’05: Pro-
ceedings of the 11th IEEE Real Time on Embedded Technology and Applications
Symposium, pages 190–199, Washington, DC, USA, 2005. IEEE Computer Society.
ISBN 0-7695-2302-1. doi: http://dx.doi.org/10.1109/RTAS.2005.4.

[9] Krishnakumar Balasubramanian, Arvind S. Krishna, Emre Turkay, Jaiganesh Bala-
subramanian, Jeff Parsons, Aniruddha Gokhale, and Douglas C. Schmidt. Applying
Model-Driven Development to Distributed Real-time and Embedded Avionics Sys-
tems. International Journal of Embedded Systems: Special Issue on the Design and
Verification of Real-Time Embedded Software, 2:142–155, 2006.

[10] Krishnakumar Balasubramanian, Jaiganesh Balasubramanian, Jeff Parsons, Anirud-
dha Gokhale, and Douglas C. Schmidt. A Platform-Independent Component Mod-
eling Language for Distributed Real-time and Embedded Systems. Journal of Com-
puter Systems Science, 73(2):171–185, 2007. ISSN 0022-0000. doi: dx.doi.org/10.
1016/j.jcss.2006.04.008.

[11] Jean Bézivin, Erwan Breton, Grégoire Dupé, and Patrick Valduriez. The ATL
Transformation-based Model Management Framework. In Research Report, ATLAS
Group, INRIA and IRIN, September 2003.

[12] Jean Bézivin, Nicolas Farcet, Jean-Marc Jézéquel, Benoît Langlois, and Damien
Pollet. Reflective Model Driven Engineering. In Proceeding of The 5th International
Conference on Unified Modeling Language, Modeling Languages and Applications,
pages 175–189, October 2003.

[13] Lynne Blair, Gordon S. Blair, Anders Anderson, and Trevor Jones. Formal Sup-
port For Dynamic QoS Management in the Development of Open Component-based
Distributed Systems. IEEE Software, 148(3), November 2001.

[14] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture—A System of Patterns. Wiley & Sons,
New York, 1996.

[15] Jean Bézivin, Grégoire Dupé, Frédéric Jouault, Gilles Pitette, and Jamal Eddine
Rougui. First Experiments with the ATL Model Transformation Language: Trans-
forming XSLT into XQuery. In Companion of the 18th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2003. ACM, 2003.

[16] B. H. C. Cheng, R. Stephenson, and B. Berenbach. Lessons learned from automated
analysis of industrial uml class models (an experience report). In Model Driven En-
gineering Languages and Systems, 8th International Conference (MoDELS 2005),
volume 3713, pages 324–338, 2005.

153

[17] Adam Childs, Georg Jung, Gurdip Singh, Jesse Greenwald, John Hatcliff,
Matthew B. Dwyer, Prashant Kumar, Venkatesh Ranganath, and Xianghua Deng.
Supporting Model-driven Development of Component-based Embedded Systems
with Cadena, August 15 2003. URL citeseer.ist.psu.edu/664688.
html;www.cs.iastate.edu/~leavens/SAVCBS/2003/papers/
invited/dwyer.pdf.

[18] Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, Boston, 2002.

[19] Tim Clerckx, Kris Luyten, and Karin Coninx. Dynamo-aid: A Design Process and
a Runtime Architecture for Dynamic Model-based User Interface Development. In
Engineering Human Computer Interaction and Interactive Systems Lecture Notes
in Computer Science, volume 3425/2005, pages 77–95. Springer Berlin/Heidelberg,
July 2005.

[20] Tim Clerckx, Chris Vandervelpen, Kris Luyten, and Karin Coninx. A Prototype-
Driven Development Process for Context-Aware User Interfaces. In Task Models and
Diagrams for Users Interface Design Lecture Notes in Computer Science, volume
4385/2007, pages 339–354. Springer Berlin/Heidelberg, August 2007.

[21] Yvonne Coady, Gregor Kiczales, Mike Feeley, Norm Hutchinson, and Joon Suan
Ong. Structuring operating system aspects: using aop to improve os structure mod-
ularity. Communications of the ACM, 44(10):79–82, 2001. ISSN 0001-0782.

[22] James Coplien, Daniel Hoffman, and David Weiss. Commonality and Variability in
Software Engineering. IEEE Software, 15(6), November/December 1998.

[23] K. Czarnecki and S. Helsen. Feature-based Survey of Model Transformation Ap-
proaches. IBM Syst. J., 45(3):621–645, 2006. ISSN 0018-8670.

[24] Maria Danninger, G. Flaherty, Keni Bernardin, Hazim Kemal Ekenel, T. Köhler,
Robert Malkin, Rainer Stiefelhagen, and Alex Waibel. The Connector: Facilitating
Context-aware Communication. In Proceedings of the 7th International Conference
on Multimodal Interfaces (ICMI 2005), pages 69–75, Trento, Italy, October 2005.
ACM.

[25] Dionisio de Niz and Raj Rajkumar. Partitioning Bin-Packing Algorithms for Dis-
tributed Real-time Systems. International Journal of Embedded Systems, 2(3):196–
208, 2006.

[26] Gan Deng, Chris Gill, Douglas C. Schmidt, and Nanbor Wang. QoS-enabled Com-
ponent Middleware for Distributed Real-Time and Embedded Systems. In I. Lee,
J. Leung, and S. Son, editors, Handbook of Real-Time and Embedded Systems. CRC
Press, 2007.

154

citeseer.ist.psu.edu/664688.html; www.cs.iastate.edu/~leavens/SAVCBS/2003/papers/invited/dwyer.pdf
citeseer.ist.psu.edu/664688.html; www.cs.iastate.edu/~leavens/SAVCBS/2003/papers/invited/dwyer.pdf
citeseer.ist.psu.edu/664688.html; www.cs.iastate.edu/~leavens/SAVCBS/2003/papers/invited/dwyer.pdf

[27] Ada Diaconescu, Adrian Mos, and John Murphy. Automatic performance man-
agement in component based software systems. In ICAC ’04: Proceedings of the
First International Conference on Autonomic Computing (ICAC’04), pages 214–
221, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2114-2.

[28] Jianming Ye et al. A Model-Based Approach to Designing QoS Adaptive Appli-
cations. In Proceedings of the 25th IEEE International Real-Time Systems Sympo-
sium, pages 221–230, Washington, DC, USA, 2004. IEEE Computer Society. ISBN
0-7695-2247-5. doi: dx.doi.org/10.1109/REAL.2004.7.

[29] Tao Lu et al. CoSMIC: An MDA Tool suite for Application Deployment and Config-
uration. In Proceedings of the OOPSLA 2003 Workshop on Generative Techniques
in the Context of Model Driven Architecture, Anaheim, CA, October 2003. ACM.

[30] François Terrier Frédéric Thomas, Jérôme Delatour and Sébastien Gérard. Toward a
Framework for Explicit Platform-Based Transformations. In Proceedings of the 11th

IEEE International Symposium on Object-oriented Real-time distributed Computing
(ISORC 2008), Orlando, FL, USA, May 2008.

[31] Svend Frolund and Jari Koistinen. Quality of Service Specification in Distributed
Object Systems. IEE/BCS Distributed Systems Engineering Journal, 5:179–202,
December 1998.

[32] G. Csertán and G. Huszerl and I. Majzik and Z. Pap and A. Pataricza and D. Varró.
VIATRA: Visual Automated Transformations for Formal Verification and Valida-
tion of UML Models. In Proceedings of 17th IEEE International Conference on
Automated Software Engineering, pages 267–270, Edinburgh, UK, 2002. IEEE.

[33] Gabriele Taentzer. AGG: A Graph Transformation Environment for Modeling
and Validation of Software. In International Workshop on Application of Graph
Transformations with Industrial Relevance (AGTIVE 2003), pages 446–453, Char-
lottesville, VA, September 2003.

[34] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA,
1995.

[35] Lei Gao, Mike Dahlin, Amol Nayate, Jiandan Zheng, and Arun Iyengar. Application
specific data replication for edge services. In WWW ’03: Proceedings of the 12th
international conference on World Wide Web, pages 449–460, New York, NY, USA,
2003. ACM Press. ISBN 1-58113-680-3. doi: doi.acm.org/10.1145/775152.775217.

[36] Christopher D. Gill, Ron Cytron, and Douglas C. Schmidt. Middleware Schedul-
ing Optimization Techniques for Distributed Real-time and Embedded Systems. In
Proceedings of the 7th Workshop on Object-oriented Real-time Dependable Systems,
San Diego, CA, January 2002. IEEE.

155

[37] Aniruddha Gokhale, Balachandran Natarajan, Douglas C. Schmidt, Andrey Nechy-
purenko, Jeff Gray, Nanbor Wang, Sandeep Neema, Ted Bapty, and Jeff Parsons.
CoSMIC: An MDA Generative Tool for Distributed Real-time and Embdedded
Component Middleware and Applications. In Proceedings of the OOPSLA 2002
Workshop on Generative Techniques in the Context of Model Driven Architecture,
Seattle, WA, November 2002. ACM.

[38] Aniruddha Gokhale, Douglas C. Schmidt, Balachandran Natarajan, Jeff Gray, and
Nanbor Wang. Model Driven Middleware. In Qusay Mahmoud, editor, Middleware
for Communications, pages 163–187. Wiley and Sons, New York, 2004.

[39] Aniruddha Gokhale, Krishnakumar Balasubramanian, Jaiganesh Balasubramanian,
Arvind S. Krishna, George T. Edwards, Gan Deng, Emre Turkay, Jeffrey Parsons,
and Douglas C. Schmidt. Model Driven Middleware: A New Paradigm for De-
ploying and Provisioning Distributed Real-time and Embedded Applications. The
Journal of Science of Computer Programming: Special Issue on Foundations and
Applications of Model Driven Architecture (MDA), 73(1):39–58, 2008.

[40] Jeff Gray, Juha-Pekka Tolvanen, Steven Kelly, Aniruddha Gokhale, Sandeep Neema,
and Jonathan Sprinkle. Domain-Specific Modeling. In CRC Handbook on Dynamic
System Modeling, (Paul Fishwick, ed.), pages 7.1–7.20. CRC Press, May 2007.

[41] Jeffrey Gray, Ted Bapty, and Sandeep Neema. Handling Crosscutting Constraints
in Domain-Specific Modeling. Communications of the ACM, pages 87–93, October
2001.

[42] Zonghua Gu, Sharath Kodase, Shige Wang, and Kang G. Shin. A model-based ap-
proach to system-level dependency and real-time analysis of embedded software. In
RTAS ’03: Proceedings of the The 9th IEEE Real-Time and Embedded Technology
and Applications Symposium, page 78, Washington, DC, USA, 2003. IEEE Com-
puter Society. ISBN 0-7695-1956-3.

[43] Zonghua Gu, Sharath Kodase, Shige Wang, and Kang G. Shin. A Model-Based
Approach to System-Level Dependency and Real-time Analysis of Embedded Soft-
ware. In RTAS’03, pages 78–85, Washington, DC, May 2003. IEEE.

[44] Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt. The Design and
Performance of a Real-time CORBA Event Service. In Proceedings of OOPSLA
’97, pages 184–199, Atlanta, GA, October 1997.

[45] John Hatcliff, William Deng, Matthew Dwyer, Georg Jung, and Venkatesh Prasad.
Cadena: An Integrated Development, Analysis, and Verification Environment for
Component-based Systems. In Proceedings of the 25th International Conference on
Software Engineering, pages 160–172, Portland, OR, May 2003.

[46] George T. Heineman and William T. Councill, editors. Component-based Software

156

Engineering: Putting the Pieces Together. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2001. ISBN 0-201-70485-4.

[47] Cristian Hesselman, Ing Widya, Aart van Halteren, and Bart Nieuwenhuis. Mid-
dleware Support for Media Streaming Establishment Driven by User-Oriented QoS
Requirements. In Lecture Notes in Computer Science: Interactive Distributed Mul-
timedia Systems and Telecommunication Services (IDMS’00), volume 1905, pages
158–171, Enschede, The Netherlands, October 2000. Springer-Verlag.

[48] Frank Hunleth and Ron K. Cytron. Footprint and Feature Management Using
Aspect-oriented Programming Techniques. In Proceedings of the Joint Conference
on Languages, Compilers and Tools for Embedded Systems (LCTES 02), pages 38–
45. ACM Press, 2002. ISBN 1-58113-527-0. doi: doi.acm.org/10.1145/513829.
513838.

[49] Institute for Software Integrated Systems. Component Synthesis using Model Inte-
grated Computing (CoSMIC). www.dre.vanderbilt.edu/cosmic, Vanderbilt Univer-
sity, Nashville, TN.

[50] Jaswinder Ahluwalia and Ingolf H. Krüger and Walter Phillips and Michael
Meisinger. Model-Based Run-Time Monitoring of End-to-End Deadlines. In Pro-
ceedings of the Fifth ACM International Conference On Embedded Software, pages
100–109, Jersey City, NJ, September 2005. ACM.

[51] Ajita John, Reinhard Klemm, Ankur Mani, and Doree Seligmann. Hermes: A Plat-
form for Context-Aware Enterprise Communication. In Proceedings of the 3rd Inter-
national PerCom Workshop on Context Modeling and Reasoning (CoMoRea), Pisa,
Italy, March 2006. IEEE.

[52] David A. Karr, Craig Rodrigues, Yamuna Krishnamurthy, Irfan Pyarali, and Dou-
glas C. Schmidt. Application of the QuO Quality-of-Service Framework to a Dis-
tributed Video Application. In Proceedings of the 3rd International Symposium on
Distributed Objects and Applications, Rome, Italy, September 2001. OMG.

[53] G. Karsai, A. Agrawal, F. Shi, and J. Sprinkle. On the Use of Graph Transformations
in the Formal Specification of Computer-Based Systems. In Proceedings of IEEE
TC-ECBS and IFIP10.1 Joint Workshop on Formal Specifications of Computer-
Based Systems, Huntsville, AL, April 2003. IEEE.

[54] G. Karsai, A. Agrawal, F. Shi, and J. Sprinkle. On the Use of Graph Transfor-
mation in the Formal Specification of Model Interpreters. Journal of Universal
Computer Science, 9(11):1296–1321, 2003. www.jucs.org/jucs_9_11/on_
the_use_of.

[55] Amogh Kavimandan and Aniruddha Gokhale. A Parameterized Model Transfor-
mations Approach for Automating Middleware QoS Configurations in Distributed

157

www.jucs.org/jucs_9_11/on_the_use_of
www.jucs.org/jucs_9_11/on_the_use_of

Real-time and Embedded Systems. In Proceedings of ASE Workshop on Automating
Service Quality, (WRASQ 2007), Atlanta, GA, November 2007.

[56] Amogh Kavimandan and Aniruddha Gokhale. Automated Middleware QoS Config-
uration Techniques using Model Transformations. In Proceedings of the 14th IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS 2008),
pages 93–102, St. Louis, MO, USA, April 2008.

[57] Amogh Kavimandan and Aniruddha Gokhale. Automated Middleware QoS Con-
figuration Techniques using Graph Transformations. Technical Report ISIS-07-808,
Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, May
2007.

[58] Amogh Kavimandan, Reinhard Klemm, Ajita John, Doree Seligmann, and Anirud-
dha Gokhale. A Client-Side Architecture for Supporting Pervasive Enterprise Com-
munications. In Proceedings of the IEEE International Conference on Pervasive
Services (ICPS) 2006, pages 222–232, Lyon, France, June 2006. IEEE.

[59] Amogh Kavimandan, Krishnakumar Balasubramanian, Nishanth Shankaran,
Aniruddha Gokhale, and Douglas C. Schmidt. Quicker: A model-driven qos map-
ping tool for qos-enabled component middleware. In ISORC ’07: Proceedings of the
10th IEEE International Symposium on Object and Component-Oriented Real-Time
Distributed Computing, pages 62–70, Washington, DC, USA, 2007. IEEE Computer
Society. ISBN 0-7695-2765-5. doi: dx.doi.org/10.1109/ISORC.2007.50.

[60] Amogh Kavimandan, Reinhard Klemm, and Aniruddha Gokhale. Automated
Context-sensitive Dialog Synthesis for Enterprise Workflows using Templatized
Model Transformations. In Proceedings of the 12th International Conference on
Enterprise Computing (EDOC ’08), pages 159–168, Munchen, Germany, Septem-
ber 2008. IEEE.

[61] Amogh Kavimandan, Anantha Narayanan, Aniruddha Gokhale, and Gabor Karsai.
Evaluating the Correctness and Effectiveness of a Middleware QoS Configuration
Process in Distributed Real-time and Embedded Systems. In Proceedings of the 11th

IEEE International Symposium on Object-oriented Real-time distributed Computing
(ISORC 2008), pages 100–107, Orlando, FL, USA, May 2008.

[62] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In
Proceedings of the 11th European Conference on Object-Oriented Programming,
pages 220–242, June 1997.

[63] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview of AspectJ. Lecture Notes in
Computer Science, 2072:327–355, 2001. URL citeseer.nj.nec.com/
kiczales01overview.html.

158

citeseer.nj.nec.com/kiczales01overview.html
citeseer.nj.nec.com/kiczales01overview.html

[64] John Kinnebrew, Nishanth Shankaran, Gautam Biswas, and Douglas Schmidt.
A Decision-Theoretic Planner with Dynamic Component Reconguration for Dis-
tributed Real-Time Applications. In Poster paper at the Twenty-First National Con-
ference on Artificial Intelligence, Boston, MA, July 2006.

[65] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model Driven
Architecture(MDAT M): Practice and Promise. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, Apr 2003. ISBN 978-0321194428.

[66] Sharath Kodase, Shige Wang, Zonghua Gu, and Kang G. Shin. Improving Scalability
of Task Allocation and Scheduling in Large Distributed Real-time Systems using
Shared Buffers. In Proceedings of the 9th Real-time/Embedded Technology and
Applications Symposium (RTAS 2003), Washington, DC, May 2003. IEEE.

[67] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. The Epsilon Trans-
formation Language. In Proceedings of the 1st International Conference on Theory
and Practice of Model Transformations (ICMT 2008), pages 46–60, Zurich, Switzer-
land, July 2008.

[68] Jernej Kovse. Generic Model-to-Model Transformations in MDA: Why and How?
In Proceeding of 1st OOPSLA Workshop on Generative Techniques in the context of
Model Driven Architecture, November 2002.

[69] Joel Kozikowski. A Bird’s Eye View of AndroMDA. galaxy.andromda.org/
docs-3.1/contrib/birds-eye-view.html.

[70] Arvind Krishna, Aniruddha Gokhale, Douglas C. Schmidt, John Hatcliff, and
Venkatesh Ranganath. Context-Specific Middleware Specialization Techniques for
Optimizing Software Product-line Architectures. In Proceedings of EuroSys 2006,
pages 205–218, Leuven, Belgium, April 2006.

[71] Arvind S. Krishna, Douglas C. Schmidt, Adam Porter, Atif Memon, and Diego
Sevilla-Ruiz. Validating Quality of Service for Reusable Software via Model-
integrated Distributed Continuous Quality Assurance. In Proceedings of the 8th
International Conference on Software Reuse, pages 286–295, Madrid, Spain, July
2004. ACM/IEEE.

[72] Arvind S. Krishna, Emre Turkay, Aniruddha Gokhale, and Douglas C. Schmidt.
Model-Driven Techniques for Evaluating the QoS of Middleware Configurations for
DRE Systems. In Proceedings of the 11th Real-time Technology and Application
Symposium (RTAS ’05), pages 180–189, San Francisco, CA, March 2005. IEEE.

[73] Arvind S. Krishna, Nanbor Wang, Balachandran Natarajan, Aniruddha Gokhale,
Douglas C. Schmidt, and Gautam Thaker. CCMPerf: A Benchmarking Tool for
CORBA Component Model Implementations. Journal of Real-time Systems, 24,
2005.

159

galaxy.andromda.org/docs-3.1/contrib/birds-eye-view.html
galaxy.andromda.org/docs-3.1/contrib/birds-eye-view.html

[74] Patrick Lardieri, Jaiganesh Balasubramanian, Douglas C. Schmidt, Gautam Thaker,
Aniruddha Gokhale, and Tom Damiano. A Multi-layered Resource Management
Framework for Dynamic Resource Management in Enterprise DRE Systems. Jour-
nal of Systems and Software: Special Issue on Dynamic Resource Management in
Distributed Real-time Systems, 80(7):984–996, July 2007.

[75] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Int. Journal on
Software Tools for Technology Transfer, 1(1–2):134–152, October 1997.

[76] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, and J. Hansen. A Scalable Solution
to the Multi-Resource QoS Problem. In Proceedings of the IEEE Real-time Systems
Symposium (RTSS 99), pages 315–326, Phoenix, AZ, December 1999.

[77] SangJeong Lee, Kang-Won Lee, Kyung Dong Ryu, Jong-Deok Choi, and Dinesh
Verma. Ise01-4: Deployment time performance optimization of internet services.
Global Telecommunications Conference, 2006. GLOBECOM’06. IEEE, pages 1–6,
Nov 2006.

[78] Joseph Loyall, Jianming Ye, Sandeep Neema, and Nagabhushan Mahadevan.
Model-based design of end-to-end quality of service in a multi-uav surveillance and
target tracking application. In Second RTAS Workshop on Model-Driven Embedded
Systems (MoDES ’04), May 2004.

[79] Joseph P. Loyall, Richard E. Schantz, David Corman, James L. Paunicka, and
Sylvester Fernandez. A Distributed Real-Time Embedded Application for Surveil-
lance, Detection, and Tracking of Time Critical Targets. In IEEE Real-Time and
Embedded Technology and Applications Symposium, pages 88–97, San Francisco,
CA, 2005.

[80] Chenyang Lu, John A. Stankovic, Sang H. Son, and Gang Tao. Feedback control
real-time scheduling: Framework, modeling, and algorithms. Real-Time Syst., 23
(1-2):85–126, 2002.

[81] Tao Lu, Emre Turkay, Aniruddha Gokhale, and Douglas C. Schmidt. CoSMIC: An
MDA Tool suite for Application Deployment and Configuration. In Proceedings
of the OOPSLA 2003 Workshop on Generative Techniques in the Context of Model
Driven Architecture, Anaheim, CA, October 2003. ACM.

[82] Gabor Madl, Sherif Abdelwahed, and Gabor Karsai. Automatic Verification of
Component-Based Real-time CORBA Applications. In The 25th IEEE Real-time
Systems Symposium (RTSS’04), Lisbon, Portugal, December 2004.

[83] Tom Mens, Pieter Van Gorp, Daniel Varro, and Gabor Karsai. Applying a Model
Transformation Taxonomy to Graph Transformation Technology. In Lecture Notes
in Computer Science: Proceedings of the International Workshop on Graph and
Model Transformation (GraMoT’05), volume 152, pages 143–159, Tallinn, Estonia,

160

September 2006. Springer-Verlag.

[84] Microsoft. .NET Web Services Platform. www.microsoft.com/net.

[85] Microsoft Corporation. Microsoft .NET Development. msdn.microsoft.com/
net/, 2002.

[86] Allen E. Milewski and Thomas M. Smith. Providing Presence Cues to Telephone
Users. In Proceedings of the ACM Conference on Computer Supported Cooperative
Work (CSCW 2000), pages 89–96, Philadelphia, PA, December 2000.

[87] Nirmal K. Mukhi, Ravi Konuru, and Francisco Curbera. Cooperative middleware
specialization for service oriented architectures. In WWW Alt. ’04: Proceedings
of the 13th international World Wide Web conference on Alternate track papers &
posters, pages 206–215, New York, NY, USA, 2004. ACM Press. ISBN 1-58113-
912-8. doi: doi.acm.org/10.1145/1013367.1013401.

[88] Anantha Narayanan and Gabor Karsai. Verifying Model Transformations by Struc-
tural Correspondence. Technical Report ISIS-07-809, Institute for Software Inte-
grated Systems, Vanderbilt University, Nashville, TN, Dec 2007.

[89] Sandeep Neema, Ted Bapty, Jeff Gray, and Aniruddha Gokhale. Generators for
Synthesis of QoS Adaptation in Distributed Real-time Embedded Systems. In Pro-
ceedings of the ACM SIGPLAN/SIGSOFT Conference on Generative Programming
and Component Engineering (GPCE’02), pages 236–251, Pittsburgh, PA, October
2002.

[90] Object Management Group. The Common Object Request Broker: Architecture and
Specification Version 3.1, Part 3: CORBA Component Model. Object Management
Group, OMG Document formal/2008-01-08 edition, January 2008.

[91] CORBA Components. Object Management Group, OMG Document formal/2002-
06-65 edition, June 2002.

[92] Object Management Group. Lightweight CCM RFP. Object Management Group,
realtime/02-11-27 edition, November 2002.

[93] Model Driven Architecture (MDA). Object Management Group, OMG Document
ormsc/2001-07-01 edition, July 2001.

[94] Model Driven Architecture (MDA) Guide V1.0.1. Object Management Group, OMG
Document omg/03-06-01 edition, June 2001.

[95] Object Management Group. Real-time CORBA Specification. Object Management
Group, 1.2 edition, January 2005.

[96] Ömer Erdem Demir, Prémkumar Dévanbu, Eric Wohlstadter, and Stefan Tai. An

161

www.microsoft.com/net
msdn.microsoft.com/net/
msdn.microsoft.com/net/

Aspect-oriented Approach to Bypassing Middleware Layers. In AOSD ’07: Pro-
ceedings of the 6th international conference on Aspect-oriented software develop-
ment, pages 25–35, New York, NY, USA, 2007. ACM Press. ISBN 1-59593-615-7.
doi: doi.acm.org/10.1145/1218563.1218567.

[97] P. Pal, J. Loyall, R. Schantz, J. Zinky, R. Shapiro, and J. Megquier. Using QDL to
Specify QoS Aware Distributed (QuO) Application Configuration. In Proceedings of
the International Symposium on Object-Oriented Real-time Distributed Computing
(ISORC), Newport Beach, CA, March 2000. IEEE/IFIP.

[98] I. Pyarali, D.C. Schmidt, and R.K. Cytron. Techniques for enhancing real-time corba
quality of service. Proceedings of the IEEE, 91(7):1070–1085, July 2003. ISSN
0018-9219. doi: 10.1109/JPROC.2003.814616.

[99] Venkatesh Prasad Ranganath, Adam Childs, Jesse Greenwald, Matthew B. Dwyer,
John Hatcliff, and Gurdip Singh. Cadena: enabling CCM-based application devel-
opment in Eclipse. In OOPSLA Workshop on Eclipse Technology eXchange, pages
20–24, 2003. URL doi.acm.org/10.1145/965665.

[100] Tom Ritter, Marc Born, Thomas Unterschütz, and Torben Weis. A QoS Metamodel
and its Realization in a CORBA Component Infrastructure. In Proceedings of the
36th Hawaii International Conference on System Sciences (HICSS’03), page 318,
Honolulu, HI, January 2003.

[101] Robby, Matthew Dwyer, and John Hatcliff. Bogor: An Extensible and Highly-
Modular Model Checking Framework. In Proceedings of the 4th Joint Meeting of the
European Software Engineering Conference and ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE 2003), Helsinki, Finland, Septem-
ber 2003. ACM.

[102] Grzegorz Rozenberg. Handbook of Graph Grammars and Computing by Graph
Transformation, Volume 1: Foundations. World Scientific Publishing Company, jan
1997. ISBN 9810228848.

[103] Simone Röttger and Steffen Zschaler. Model-Driven Development for Non-
functional Properties: Refinement Through Model Transformation. In Proceedings
of the 7th International Conference on Unified Modelling Language: Modelling Lan-
guages and Applications (UML 2004), pages 275–289, October 2004.

[104] Serge Salicki and Nicolas Farcet. Expression and usage of the variability in the
software product lines. In Proceeding of The 4th International Workshop on Software
Product-Family Engineering, volume 2290 of Lecture Notes in Computer Science,
pages 304–318. Springer, 2002. ISBN 3-540-43659-6.

[105] Douglas C. Schmidt and Fred Kuhns. An Overview of the Real-time CORBA Spec-
ification. IEEE Computer Magazine, Special Issue on Object-oriented Real-time

162

doi.acm.org/10.1145/965665

Computing, 33(6), June 2000.

[106] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture: Patterns for Concurrent and Networked Objects,
Volume 2. Wiley & Sons, New York, 2000.

[107] Andy Schürr, Andreas J. Winter, and Albert Zündorf. Progres: Language and envi-
ronment. In H. Ehrig, G. Engels, H. Kreowski, and G. Rozenberg, editors, Hand-
book on Graph Grammars and Computing by Graph Transformation: Applications,
Languages, and Tools, pages 487–550. World Scientific Publishing Company, 1999.

[108] Shane Sendall and Wojtek Kozaczynski. Model transformation: The heart and soul
of model-driven software development. IEEE Software, 20(5):42–45, 2003.

[109] Nishanth Shankaran, Douglas C. Schmidt, Yingming Chen, Xenofon Koutsoukous,
and Chenyang Lu. The Design and Performance of Configurable Component Mid-
dleware for End-to-End Adaptation of Distributed Real-time Embedded Systems.
In Proc. of the 10th IEEE International Symposium on Object/Component/Service-
oriented Real-time Distributed Computing (ISORC 2007), Santorini Island, Greece,
May 2007.

[110] David C. Sharp. Reducing Avionics Software Cost Through Component Based Prod-
uct Line Development. In Software Product Lines: Experience and Research Direc-
tions, volume 576, pages 353–370, Aug 2000.

[111] David C. Sharp and Wendy C. Roll. Model-Based Integration of Reusable
Component-Based Avionics System. Proceedings of the Workshop on Model-Driven
Embedded Systems in RTAS 2003, May 2003.

[112] Gurdip Singh and Sanghamitra Das. Customizing event ordering middleware
for component-based systems. In ISORC ’05: Proceedings of the Eighth IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC’05), pages 359–362, Washington, DC, USA, 2005. IEEE Computer Society.
ISBN 0-7695-2356-0. doi: dx.doi.org/10.1109/ISORC.2005.23.

[113] Gurdip Singh, Prashant S. Kumar, and Qiang Zeng. Configurable Event Communi-
cation in Cadena. In IEEE Real-time and Embedded Technology and Applications
Symposium, pages 130–139, May 2004.

[114] Gurdip Singh, Bob Maddula, and Qiang Zeng. Event Channel Configuration in
Cadena. In Proceedings of the IEEE Real-time/Embedded Technology Application
Symposium (RTAS), Toronto, Canada, May 2004. IEEE.

[115] John A. Stankovic, Hexin Wang, Marty Humphrey, Ruiquing Zhu, Ramasubrama-
niam Poornalingam, and Chenyang Lu. VEST: Virginia Embedded Systems Toolkit.
In Proceedings of the IEEE Real-time Embedded Systems Workshop, London, UK,

163

December 2001. IEEE.

[116] John A. Stankovic, Ruiqing Zhu, Ram Poornalingam, Chenyang Lu, Zhendong Yu,
Marty Humphrey, and Brian Ellis. VEST: An Aspect-Based Composition Tool for
Real-Time Systems. In RTAS ’03: Proceedings of the The 9th IEEE Real-Time
and Embedded Technology and Applications Symposium, page 58, Washington, DC,
USA, 2003. IEEE Computer Society. ISBN 0-7695-1956-3.

[117] John A. Stankovic, Ruiqing Zhu, Ram Poornalingam, Chenyang Lu, Zhendong Yu,
Marty Humphrey, and Brian Ellis. Vest: An aspect-based composition tool for real-
time systems. In Proc. of RTAS’03, page 58, Washington, DC, USA, 2003. ISBN
0-7695-1956-3.

[118] Venkita Subramonian, Liang-Jui Shen, Christopher Gill, and Nanbor Wang. The
design and performance of configurable component middleware for distributed
real-time and embedded systems. In RTSS ’04: Proceedings of the 25th IEEE
International Real-Time Systems Symposium (RTSS’04), pages 252–261, Wash-
ington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2247-5. doi:
dx.doi.org/10.1109/REAL.2004.53.

[119] Sun Microsystems. Enterprise JavaBeans Specification.
java.sun.com/products/ejb/docs.html, August 2001.

[120] Dipa Suri, Adam Howell, Nishanth Shankaran, John Kinnebrew, Will Otte, Dou-
glas C. Schmidt, and Gautam Biswas. Onboard Processing using the Adaptive Net-
work Architecture. In Proceedings of the Sixth Annual NASA Earth Science Tech-
nology Conference, College Park, MD, June 2006.

[121] Sumant Tambe, Akshay Dabholkar, Amogh Kavimandan, and Aniruddha Gokhale.
A Platform Independent Component QoS Modeling Language for Distributed Real-
time and Embedded Systems. Technical Report ISIS-07-809, Institute for Software
Integrated Systems, Vanderbilt University, Nashville, TN, June 2007.

[122] John C. Tang, Nicole Yankelovich, James Begole, Max Van Kleek, Francis C. Li, and
Janak R. Bhalodia. ConNexus to Awarenex: Extending awareness to mobile users.
In Proceedings of the International Conference on Computer Human Interaction
(CHI 2001), pages 221–228, Seattle, WA, April 2001. ACM.

[123] Emre Turkay, Aniruddha Gokhale, and Bala Natarajan. Addressing the Middleware
Configuration Challenges using Model-based Techniques. In Proceedings of the
42nd Annual Southeast Conference, pages 166–170, Huntsville, AL, April 2004.
ACM.

[124] R. Vanegas, J. Zinky, J. Loyall, D. Karr, R. Schantz, and D. Bakken. Quo’s Runtime
Support for Quality of Service in Distributed Objects. In Proceedings of the IFIP
International Conference on Distributed Systems Platforms and Open Distributed

164

Processing (Middleware’98), The Lake District, England, September 1998. IFIP.

[125] Markus Voelter and Iris Groher. Product Line Implementation using Aspect-
Oriented and Model-Driven Software Development. In Proceedings of the 11th
Annual Software Product Line Conference (SPLC), Kyoto, Japan, September 2007.

[126] Nanbor Wang, Douglas C. Schmidt, Kirthika Parameswaran, and Michael Kircher.
Applying Reflective Middleware Techniques to Optimize a QoS-enabled CORBA
Component Model Implementation. In 24th Computer Software and Applications
Conference, Taipei, Taiwan, October 2000. IEEE.

[127] Xiaorui Wang, Yingming Chen, Chenyang Lu, and Xenofon Koutsoukos. FC-ORB:
A robust distributed real-time embedded middleware with end-to-end utilization
controlstar, open. Journal of Systems and Software, 80(7):938–950, 2007.

[128] Duangdao Wichadakul. Q-Compiler: MetaData QoS-Aware Programming and
Compilation Framework. PhD thesis, University of Illinois at Urbana Champaign,
2003.

[129] Jianming Ye, Joseph Loyall, Richard Shapiro, Richard Schantz, Sandeep Neema,
Sherif Abdelwahed, Nagabhushan Mahadevan, Michael Koets, and Denise Varner.
A Model-Based Approach to Designing QoS Adaptive Applications. In Proceed-
ings of the 25th IEEE International Real-Time Systems Symposium, pages 221–230,
Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2247-5. doi:
dx.doi.org/10.1109/REAL.2004.7.

[130] Charles Zhang, Dapeng Gao, and Hans-Arno Jacobsen. Towards Just-in-time Mid-
dleware Architectures. In AOSD ’05: Proceedings of the 4th international con-
ference on Aspect-oriented software development, pages 63–74, New York, NY,
USA, 2005. ACM Press. ISBN 1-59593-042-6. doi: doi.acm.org/10.1145/1052898.
1052904.

[131] Ronghua Zhang, Chenyang Lu, Tarek F. Abdelzaher, and John A. Stankovic. Con-
trolWare: A Middleware Architecture for Feedback Control of Software Perfor-
mance. In Proceedings of the International Conference on Distributed Computing
Systems (ICDCS), Vienna, Austria, July 2002.

[132] Ronghua Zhang, Chenyang Lu, Tarek F. Abdelzaher, and John A. Stankovic. Con-
trolWare: A Middleware Architecture for Feedback Control of Software Perfor-
mance. In ICDCS ’02: Proceedings of the 22 nd International Conference on Dis-
tributed Computing Systems (ICDCS), page 301, Washington, DC, USA, 2002.

[133] Liming Zhu, Ngoc Bao Bui, Yan Liu, and Ian Gorton. MDABench: Customized
benchmark generation using MDA. Journal of Systems and Software, 80(2):265–
282, February 2007.

165

[134] John A. Zinky, David E. Bakken, and Richard Schantz. Overview of Quality of
Service for Objects. In Proceedings of the Fifth Dual Use Conference. IEEE, May
1995.

[135] John A. Zinky, David E. Bakken, and Richard Schantz. Architectural Support for
Quality of Service for CORBA Objects. Theory and Practice of Object Systems, 3
(1):1–20, 1997.

166

	Dedication
	Acknowledgments
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Overview of Component Middleware
	Open Issues in QoS Configuration for Component-based DRE Systems
	Research Approach
	Model-driven QoS Mapping Toolchain & Algorithms
	Model Transformation Templatization & Specialization

	Dissertation Organization

	Model-driven QoS Mapping Toolchain and Algorithms
	Taxonomy of Middleware QoS Configuration Approaches
	Classification of Configuration Approaches
	Comparing QoS Configuration Approaches

	Challenges in Automated Middleware QoS Configuration
	DRE system Case Studies
	Design Challenges

	Design of QUICKER
	Specifying QoS Requirements using GT-QMAP Modeling Capabilities
	Automating QoS requirements mapping using QUICKER
	Applying QUICKER for Middleware QoS Configuration

	Evaluating GT-QMAP Toolchain for Middleware QoS Configuration

	On the Correctness of QUICKER Transformations
	Overview of middleware QoS configuration process
	Evaluation of QoS configuration process
	DRE System Case Study
	Verifying the correctness of our QoS configuration process
	Empirically evaluating BasicSP QoS configurations

	Optimization of QUICKER-generated QoS Configurations
	Challenges in Optimizing QoS Configurations
	Optimizing QoS Configuration for Component-based Systems
	Step I: Modeling Language used in the Transformation Algorithm
	Step II: QoS Policy Optimization Algorithm
	Resolving the Challenges in Optimizing QoS Configurations

	Evaluating the generated QoS Configuration Optimizations
	Representative Case Study
	Experimental Setup & Empirical Results
	Discussion

	Model Transformation Templatization and Specialization
	Representative Motivational Case Studies
	Communication Dialog Creation for an Insurance Enterprise
	Middleware QoS Configuration for Component-based Applications

	Templatized Model Transformations
	Step I: Defining the Templatized Transformation Rules
	Step II: Generating Variability Metamodels from Constraint Specifications
	Step III: Synthesizing a Specialization Repository
	Step IV: Specializing the Application Instances

	Evaluating the Merits of MTS
	Reduction in Development Effort using MTS
	Performance Overhead of using MTS

	Applying MTS to Context-sensitive Enterprise Communication Dialog Synthesis
	A Case Study Motivating Context-Sensitive Dialogs
	Design Challenges in Context-Sensitive Dialog Synthesis
	Templatized Model Transformation for Dialog Customization
	Applying MTS for Context-Sensitive Dialog Synthesis
	Discussion

	Related Work
	Research on Middleware QoS Configuration
	Research on Model Transformation Templatization

	Concluding Remarks
	List of Publications
	Refereed Conference Publications
	Refereed Workshop Publications

	REFERENCES

