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PREFACE

...the anatomy of the nerves provides more pleasant and profitable specu-
lations than the theory concerning any other part of the animal body: for
by means of it, are revealed the true and genuine reasons for very many
of the actions and passions that take place in our body.

—Thomas Willis, 1664 in Clarke and Jacyna (1987)

I can attest to the first part of Willis’s claim, that neuroscience provides the most

pleasant study in biology. The road to this thesis has been, above all, a joy. As to

his second claim, the reader can decide whether the work in this thesis is profitable.

No man is an island entire of itself...

—John Donne, Devotions upon Emergent Occasions, 1624; XVII. nunc
lento sonitu dicunt, morieris, meditation
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CHAPTER I

INTRODUCTION: SACCADE TARGET SELECTION AND DECISION
MAKING IN THE BRAIN

1.1 Introduction

It would be an important subject of pedagogical methodology to provide
firm and necessary rules for the perceptual activity of the eye.

—Purkinje 1819, in Wade and Brožek (2001).

Primate visual behavior is organized around a fovea which provides high acuity

vision over a limited range of the central visual field. Consequently, to identify an

object in a scene, gaze must shift so that the image of that object projects onto the

fovea. Because gaze can be directed to only one place at a time, some process must

distinguish among possible locations to select the target for a saccade. Consequently,

some items may be overlooked. The outcome of the selection process is purposeful in

the context of visually guided behavior (Jovancevic-Misic and Hayhoe, 2009). Pat-

terns of eye movements express regularities such as concentrating on conspicuous and

informative features of an image under diverse conditions (Hayhoe and Ballard, 2005;

Triesch et al., 2003).

Indeed, theories of primate evolution have long suggested that the development

of visual acuity played an important role in the development of fine motor skills:

Increased reliance upon the guidance of the sense of sight awakened in
the creature [Tarsier] the curiosity to examine the objects around it with
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closer minuteness and supplied guidance to the hands in executing more
precise and more skilled movements than the Tree Shrew attempts. Such
habits not only promoted the development of the motor cortex itself, and
cultivated the discriminative powers of the tactile and kinaesthetic senses,
but they linked up their cortical areas in bonds of more intimate associa-
tions with the visual cortex.

—G.E. Smith, The Evolution of Man, in Polyak (1957).

This chapter will review our current understanding of the neural basis of saccade

target selection. The process of selecting the target for pursuit eye movements is

similar (Carello and Krauzlis, 2004; Ferrera and Lisberger, 1995, 1997; Gardner and

Lisberger, 2001; Krauzlis et al., 1999; Krauzlis and Dill, 2002). This topic has been

reviewed recently (Bichot and Desimone, 2006; Fecteau and Munoz, 2006; Schall,

2003b, 2004b; Schall et al., 2003; Schiller and Tehovnik, 2005; Thompson and Bichot,

2005), so this chapter will frame the major issues and highlight more recent devel-

opments. A major theme will be that saccade target selection entails at least two

processes, one that identifies locations in the image to which to shift attention and

gaze and another that leads to the saccade.

1.2 Visual search, selection, attention and action

To investigate how the brain selects the target for an eye movement, multiple

stimuli that can be distinguished in some way must be presented. This experimental

design is referred to as visual search. The visual search paradigm has been used

extensively to investigate visual selection and attention (e.g., Wolfe and Horowitz,

2004). In a visual search task, multiple stimuli are presented among which a target is

discriminated and located. Search is efficient (with fewer errors and faster response
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times) if stimuli differ along basic visual feature dimensions, such as color, form

or direction of motion. Search becomes less efficient (more errors, longer response

times) if the distractors resemble the target or no single feature clearly distinguishes

the stimuli. Recently, another approach to investigating the visual and other factors

guiding saccade target selection has required participants to locate a more or less

vague target embedded in an image of random or structured noise or texture (e.g.,

Eckstein et al., 2001; Najemnik and Geisler, 2009). A general conclusion drawn

from these studies is that humans can direct gaze under these circumstances in a

statistically optimal manner. By introducing rapid variation over time in the structure

of the image, it is possible to measure the interval of visual input that most effectively

guides saccades (e.g., Caspi et al., 2004; Ludwig et al., 2005). These experiments have

found that in the ∼ 100 ms before a saccade is initiated, changes of visual input have

little or no influence except on subsequent saccades.

Saccade target selection cannot be discussed without consideration of the alloca-

tion of visual attention. In fact, several lines of evidence indicate that visual target

selection and the allocation of visual attention may be synonymous. For example,

perceptual sensitivity is reduced and saccade latency is elevated if attention is di-

rected away from the target for a saccade (Kowler et al., 1995; Deubel and Schneider,

1996), but this relationship varies with task demands (Deubel, 2008). Also, the vi-

sual conspicuousness of an oddball stimulus can drive covert (Theeuwes, 1991) and

overt (Theeuwes et al., 1998) selection, and non-target elements that resemble a

designated target can be inadvertently selected covertly (Kim and Cave, 1995) and

overtly (Bichot and Schall, 1999a; Motter and Belky, 1998; Zelinsky and Sheinberg,
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1997). Finally, target selection is influenced by implicit memory representations aris-

ing through short-term priming of location or stimulus features for covert (Maljkovic

and Nakayama, 1994, 1996) and overt (Bichot and Schall, 1999a; McPeek et al., 1999)

orienting. These observations are explained most commonly by postulating the exis-

tence of a map of salience derived from converging bottom-up and top-down influences

(Itti and Koch, 2001; Rodriguez-Sanchez et al., 2007; Wolfe, 2007). One major in-

put to the salience map is the maps of the features (color, shape, motion, depth) of

elements of the image. Another major input is topdown modulation based on goals

and expectations. Peaks of activation in the salience map that develop as a result of

competitive interactions represent locations to which attention has become allocated

for enhanced visual processing.

Some researchers have suggested that shifts of attention and eye movements are

tightly linked (Chelazzi, 1995; Deubel and Schneider, 1996; Henderson, 1991; Hoffman

and Subramaniam, 1995; Hunt and Kingstone, 2003; Kowler et al., 1995; Peterson

et al., 2004; Sheliga et al., 1994, 1995; Shepherd et al., 1986). This view is known as

the oculomotor readiness hypothesis (Klein, 1980; Klein and Pontefract, 1994) or the

premotor theory of attention (Rizzolatti, 1983; Sheliga et al., 1994, 1995; Shepherd

et al., 1986). However, the link between directing attention and shifting gaze is not

obligatory (Crawford and Muller, 1992; Eriksen and Hoffman, 1972; Jonides, 1980;

Klein et al., 1992; Posner, 1980; Remington, 1980; Reuter-Lorenz and Fendrich, 1992;

Shepherd et al., 1986). Certainly, when observers scan an image, the timing of saccade

production is not under immediate visual control (Hooge and Erkelens, 1996, 1998,

1999; Van Loon et al., 2002). These observations highlight the problem of explaining
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the timing of saccade production. A recent study showed two distinct groups of

fixations, one that increased in duration as the delay between saccade and visual

scene reappearance increased, and one that displayed constant fixation duration as

a function of delay (Henderson and Pierce, 2008). This suggests that some fixation

durations are under top-down control, whereas others are not.

A key measurement in describing stages of processing during eye-movement deci-

sions has been response time, the time taken from visual stimulus onset to saccade.

Separating a task into stages of processing allows for experimental manipulation of

one stage (e.g., target selection) while holding constant another (e.g., saccade prepara-

tion) (Donders, 1868/1969; Sternberg, 1969; Miller, 1988; Schall, 2004a). The decision

to make a saccade to a target has been described using the principle of accumulation

of evidence to a threshold (Carpenter and Williams, 1995; Reddi and Carpenter, 2000;

Reddi et al., 2003; Smith and Ratcliff, 2004). As we shall see later in this chapter, the

activity of distinct populations of neurons have been associated with different stages

of processing during saccade decisions.

The neural processes described as saccade target selection occur throughout the

visual pathway and ocular motor system. Pedagogically, it is easiest to review the

experimental evidence for each part of the brain in turn, but the reader should not gain

the mistaken impression that the various areas and structures operate in isolation or

sequence. In fact, the neural processes responsible for selecting a target and shifting

gaze transpire concurrently in an interconnected network woven through the brain

from front to back, top to bottom.

5



1.3 Superior colliculus

The properties and function of the superior colliculus have been reviewed thor-

oughly elsewhere (Moschovakis et al., 1996; Sparks and Hartwich-Young, 1989; Wurtz

and Albano, 1980, e.g.,). To learn how the superior colliculus contributes to selecting

the target for a saccade, several studies have presented monkeys with multiple stimuli

among which to locate the target for an eye movement. In some studies the target

location was specified by the properties of the stimulus at the central fixation point

(Horwitz and Newsome, 1999, 2001; Kustov and Robinson, 1996; Li and Basso, 2005)

or by implicit cuing (Goldberg and Wurtz, 1972; Wurtz and Mohler, 1976). In other

studies the target was identified by properties such as color distinct from non-target

stimuli (Basso and Wurtz, 1998; Glimcher and Sparks, 1992; Ignashchenkova et al.,

2004; Kim and Basso, 2008; McPeek and Keller, 2002; Olivier et al., 1999; Ottes et al.,

1987; Port and Wurtz, 2009; Shen and Paré, 2007). The central observations have

been made primarily on the visually responsive prelude and build-up neurons. While

the design of each study was different, the results can be summarized briefly. Ini-

tially, when multiple stimuli are presented, activation increases at all locations in the

superior colliculus map corresponding to the potential saccade targets. This happens

because neurons in the macaque superior colliculus are not naturally selective for

color, orientation, shape or direction of motion. Following the initial volley, activa-

tion becomes relatively lower at locations that would produce saccades to non-target

elements and grows at locations corresponding to more conspicuous or important

potential targets, ultimately yielding a burst that triggers the saccade produced by
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activation centered on just one location in the motor map. When the target is easily

distinguished from distractors (e.g., a red spot among green spots), then the differ-

ence in activity that signals target location arises 100-150 ms after the array appears.

The elevated neural activity for the target revealed in these studies likely corresponds

to the enhancement of visual responses originally described by Goldberg and Wurtz

(1972). In general, the pattern of activity of neurons in the superior colliculus largely

resembles what has been observed in cortical areas in the parietal and frontal lobes

from which these signals may arise through direct cortical afferents.

Recent studies using microstimulation and inactivation have demonstrated a causal

role of superior colliculus in target selection (Carello and Krauzlis, 2004; McPeek and

Keller, 2004; McPeek, 2008). In one study, reversible inactivation of superior collicu-

lus with lidocaine or muscimol caused deficits in target selection (McPeek and Keller,

2004). In this study, monkeys searched for a popout target among three distractors.

Before superior colliculus inactivation, monkeys performed with 100% accuracy. Af-

ter injections, monkeys made saccades to distractors on many trials when the target

appeared in the location corresponding to the injection site. This deficit in target

selection occurred without deficits in saccade production.

1.4 Primary visual cortex and the ventral stream

Selecting a particular element in an image requires that the element be distin-

guished from others in the image. Such a distinction can be derived from differences

in color, shape, motion or depth. Therefore, selection of a target for a visually guided

saccade must begin with neural signals that distinguish the features of elements in
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the image. A cornerstone of visual neuroscience is the fact that neurons in the visual

cortex respond selectively according to the color, shape, motion and depth of stimuli.

A signal sufficient to distinguish the features of visual objects is available in the first

few spikes produced by neurons in primary and extrastriate visual cortex (reviewed by

Orban, 2008). Selectivity of neural responses for visual features forms the necessary

substrate for visual target selection; however, it is not sufficient because targets are

distinguished only through a comparison to the features of other stimuli in the im-

age. When more than one stimulus is presented, interactions occur between neurons

responding to stimuli in neighboring parts of the scene. Different forms of response

modulation by surrounding stimuli has been observed in some neurons primary visual

cortex (Knierim and van Essen, 1992; Rossi et al., 2001; Zipser et al., 1996), areas MT

and MST (Saito et al., 1986) and area V4 (Desimone and Schein, 1987). Modulation

of the response of neurons to a stimulus in the receptive field by stimuli present in

the surrounding region provides the substrate for identifying the location of features

that are conspicuously different from surrounding features.

Having larger receptive fields, the responses of neurons in area V4 appear to

relate more directly to the guidance of saccades. Neurons in V4 exhibit modulated

discharge rates before saccade initiation (Fischer and Boch, 1981) that seems to signal

enhanced selectivity for the features of the stimulus at the location of the saccade

(Moore, 1999; Moore and Chang, 2009). Also, the receptive fields of V4 neurons have

been characterized as reducing in size to effectively focus around the target of the

saccade (Tolias et al., 2001), resembling a shift of sensitivity within the receptive field

in a spatial attention task (Connor et al., 1997). More direct information about how
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extrastriate cortex select targets has been obtained in studies that present multiple

stimuli. This line of research has been framed by the seminal observation that when

two stimuli are presented in the receptive field of many neurons in area V4, the

response to the preferred stimulus is modulated according to which of the two stimuli

is selected for guiding a behavioral response (reviewed by Reynolds and Chelazzi,

2004). For example, several studies have shown that neurons in V4 respond initially

indiscriminately to target and distractor stimuli in their receptive fields but then

the activity is modulated to signal through maximal activation the location of the

target stimulus, whether it is defined by similarity to a cue stimulus or distinctiveness

relative to non-target distractors (Chelazzi et al., 2001; Mirabella et al., 2007; Motter,

1994; Ogawa and Komatsu, 2004, 2006). The selective activation took some time, on

the order of 150 ms, to arise. The time needed to distinguish and locate a target

depends on the similarity of the target to non-target objects in the image (Hayden

and Gallant, 2005). Nevertheless, this selective activation occurs as well when targets

are selected during natural scanning eye movements (Bichot et al., 2005; David et al.,

2008; Gallant et al., 1998; Mazer and Gallant, 2003).

Measurements of event-related potentials over extrastriate visual cortex of hu-

man participants performing tasks that require target selection and attention alloca-

tion have identified a signature of the locus and time of attention allocation (Luck

and Hillyard, 1994a,b; Woodman and Luck, 1999, 2003b). Referred to as N2pc, it

is a slightly more negative polarization arising approximately 200 ms after stimulus

presentation in electrodes contralateral as compared to ipsilateral to the attended

hemifield. Source localization procedures indicate that the N2pc arises from an early
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parietal source and a later occipito-temporal source (Hopf et al., 2000). A recent

study demonstrated that a homologue of the N2pc can be recorded from electrodes

in the surface of the skull in macaque monkeys (Woodman et al., 2007).

The modulation of neural activity that has been observed in, for example, area V4

has also been found in areas in inferior temporal cortex where neural representations

of conjunctions of features and of objects arise. The stimulus selectivity of neurons

in inferior temporal lobe seems the same during active scanning in a cluttered image

as compared to passive presentation (DiCarlo and Maunsell, 2000). Studies have de-

scribed modulation of neurons to attended versus non-attended stimuli (Richmond

and Sato, 1987; Sato, 1988) and during natural scene viewing and search (Rolls et al.,

2003; Sheinberg and Logothetis, 2001). The process of selection by modulation of

neural activity for target and non-target stimuli that was described for V4 has also

been observed in inferior temporal cortex (Chelazzi et al., 1998). A general conclusion

of these studies is that multiple stimuli compete for an explicit neural representation,

and the competition among stimuli can be biased by other neural signals that re-

flect experience or instruction (Desimone and Duncan, 1995). Ultimately, though,

enhanced activity in visual cortex represents the features characterizing the target

and not that it is a target per se. A more general representation of the location of a

target regardless of its features is necessary to guide saccadic eye movements. Such

a representation seems to be present in the parietal and frontal lobes.

10



1.5 Posterior parietal cortex

A great deal is known about parietal cortex contributions to attention and gaze

(Andersen and Buneo, 2002; Behrmann et al., 2004; Constantinidis, 2006; Gottlieb,

2007), and we will only point to studies testing saccade target selection because a

more comprehensive account can be found in Chapter 14 (NOPE; REVIEW HERE!).

Posterior parietal cortex consists of multiple areas; we will focus on results from area

7a and the lateral intraparietal area (LIP).

The importance of LIP in performing visual search is demonstrated by the deficits

observed consequent to inactivation of LIP (Wardak et al., 2002, 2004). Recent stud-

ies have investigated the responses of neurons in posterior parietal cortex in monkeys

confronted with displays consisting of a target and one or more distractors (Balan

et al., 2008; Buschman and Miller, 2007; Constantinidis and Steinmetz, 2001a,b; Got-

tlieb et al., 1998; Ipata et al., 2006; Ogawa and Komatsu, 2009; Platt and Glimcher,

1997; Thomas and Paré, 2007). Neurons in area 7a signal the location of a stimulus of

one color among distractors of another color (Constantinidis and Steinmetz, 2001a).

Other studies have examined how neural activity in area LIP participates in target

selection (Balan et al., 2008; Buschman and Miller, 2007; Gottlieb et al., 1998; Ipata

et al., 2006; Thomas and Paré, 2007). As observed in the superior colliculus and, as

we shall see, the frontal eye field, the initial response to the array did not distinguish

the location of the oddball, but when the target was easily distinguished from vi-

sual search distractors, then within 100-150 ms the activation increased if the oddball

was in the receptive field and decayed if only distractors were in the receptive field.
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This neural activity is sufficient to represent the location of a conspicuous target. A

similar pattern of modulation has been observed in experiments in which monkeys

shift gaze to the object in an array of eight distinct objects that matches a sample

stimulus. If the object in the receptive field was designated the target, neurons ex-

hibited a significant elevation of activity. When the sample was presented during

fixation in the center of the array, the augmented activity for the target arose more

than 200 ms after the target was specified. This time is longer than that observed

in simple pop-out search because more time was needed to encode the properties of

the sample and locate the matching element. The modulation of activity is probably

related to the enhancement of responses if it is to be the target for a saccade (Bush-

nell et al., 1981; Mountcastle et al., 1981; Robinson et al., 1978) or the attenuation of

responses to a stimulus appearing at a location where attention is already allocated

(Powell and Goldberg, 2000; Robinson et al., 1995; Steinmetz et al., 1994; Steinmetz

and Constantinidis, 1995).

Overall, current results indicate that the visual representation in posterior parietal

cortex represents the location of conspicuous and relevant stimuli, i.e., likely targets

for orienting either covertly or overtly. Thus, neurons in posterior parietal cortex

embody the properties of units in a salience map (reviewed by Kusunoki et al., 2000;

Gottlieb, 2007).

1.6 Frontal eye field

David Ferrier discovered over 130 years ago that electrically stimulating a localized

region of the frontal cortex elicited eye movements:
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The results of the stimulation [were]...turning of the eyes and head to the
opposite side.

Ferrier (1874-1875)

FEF is an area in prefrontal cortex that contributes to transforming visual signals

into saccade commands (Schall, 1997, 2003b, 2004b; Schall and Thompson, 1999).

It is well known that microstimulation of FEF elicits saccades to the visual field

contralateral to the stimulated hemisphere (Bruce et al., 1985)—indeed, it has been

known for over 130 years (Ferrier, 1874-1875)—mediated by a population of neu-

rons that controls whether and when saccades are initiated (Bruce and Goldberg,

1985; Hanes and Schall, 1996; Hanes et al., 1998). These neurons project to supe-

rior colliculus (Segraves and Goldberg, 1987; Sommer and Wurtz, 2000, 2001) and

the brainstem (Segraves, 1992), which in turn generate saccades via outputs to the

oculomotor nuclei (Moschovakis et al., 1996). Although traditionally regarded as a

motor area, FEF is equally part of the visual system, being strongly interconnected

with numerous visual areas, cortically (Barone et al., 2000; Jouve et al., 1998; Schall

et al., 1995b) and subcortically (Huerta et al., 1986; Stanton et al., 1988). Most FEF

neurons have transient or sustained responses to visual stimuli (Bruce and Goldberg,

1985; Mohler et al., 1973; Schall, 1991) with relatively fast latencies on the order of

50 ms after the appearance of the stimulus (Schmolesky et al., 1998).

Thus, the clear engagement of FEF in visual and motor processing make it a

prime locus in which to investigate the signals involved in visual search and atten-

tional target selection. This approach is validated by the observation that ablation or

inactivation of FEF causes specific deficits in producing saccades when distractors are
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present as in visual search (Schiller and Chou, 2000; Wardak et al., 2006). In addi-

tion, a number of studies in human participants have demonstrated that transcranial

magnetic stimulation over FEF in a limited timeframe relative to array presentation

influences visual search performance, especially when the target is more difficult to

locate (Muggleton et al., 2003; O’Shea et al., 2004).

A series of investigations has described specific neural correlates of target selec-

tion for visually guided saccades by recording the activity of neurons in the FEF

of monkeys trained to shift gaze directly to a target in visual search arrays (Bichot

and Schall, 1999a,b; Bichot et al., 2001b,a; Cohen et al., 2009a; Murthy et al., 2001;

Ogawa and Komatsu, 2006; Sato et al., 2001; Sato and Schall, 2003; Schall, 2004b;

Schall and Hanes, 1993; Schall et al., 1995a, 2004; Thompson et al., 1996). The ex-

tensive evidence for the involvement of FEF in saccade target selection has led to the

suggestion that it can be understood in terms of a saliency map (Thompson et al.,

2001; Thompson and Bichot, 2005). However, we should not draw the unnecessary

and mistaken conclusion that FEF performs this function uniquely and exclusively.

Following presentation of an array with a single target among uniform distractors,

visually responsive neurons in FEF respond initially indiscriminately to the target or

the distractors of the search array in their receptive field. However, before a saccade to

the target was generated, a selection process proceeded by which visually responsive

neurons in FEF ultimately signaled the location of the oddball target stimulus. If the

target of the saccade was in the response field, FEF activity was greatest. If non-target

distractors were in the response field, the activity was suppressed. This selection

process requires more time when that target is less distinct from the distractors
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(Bichot et al., 2001b; Cohen et al., 2009a; Murthy et al., 2001) and occurs if no overt

response is made (Thompson et al., 1997) or if target location or property is signaled

by through a manual response (Thompson et al., 2005b). The target selection process

has also been described in local field potentials recorded from FEF (Monosov et al.,

2008); in fact the spatially selective activity identifying the location of the target in the

visual search array appeared in the spikes ∼ 30 ms before it appeared in the local field

potentials. If local field potentials reflect dendritic input and spikes measure neuronal

output from a brain region, then this temporal relationship suggests that spatial

selection necessary for attention and eye movements is computed locally in FEF from

spatially nonselective inputs. When gaze shift errors occur during these visual search

tasks, the selection process erroneously guides gaze to a distractor (Thompson et al.,

2005a). However, when manual response errors occur, the selection process locates

the singleton in the search array correctly (Trageser et al., 2008).

Clearly, the visual selection observed in FEF depends on the afferents from the

various visual areas conveying feature selectivity. However, FEF also provides ex-

tensive feedback connections to extrastriate visual cortex (Barone et al., 2000; Schall

et al., 1995b), so the state of neural activity in FEF can influence neural processing in

visual cortex. In fact, this connection from FEF to visual cortex is a central feature

of models of visual attention (Hamker and Zirnsak, 2006). Several recent studies have

described the relationship between activity in FEF and extrastriate cortex. Micros-

timulation of FEF biases V4 activity in a manner similar to what is observed when

attention is allocated (Armstrong et al., 2006; Armstrong and Moore, 2007; Moore

and Armstrong, 2003).
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In Chapter VI we compare the timing of target selection signals in FEF with

the N2pc, the signal of target selection measured in an event-related potential over

extrastriate cortex. In this study, three signals measuring target selection time were

recorded simultaneously while monkeys searched for a target defined by form among

distractors: FEF single neurons, FEF local field potentials and ERPs over extrastriate

cortex. Single FEF neurons selected the target among distractors first, followed by

FEF local field potentials, followed by ERPs. Recent anatomical work suggests that

target-selecting neurons in the upper layers of FEF project to V4 (Pouget et al.,

2009), providing the major anatomical substrate for the functional signals flowing

from FEF to V4.

Evidence that FEF neurons can convey signals related to endogenous spatial at-

tention has been presented recently (Zhou and Thompson, 2009). Neurons in FEF

exhibit elevated activity when a cue informs monkeys that one of two choice stimuli

would appear in their response field. This spatially selective anticipatory activity

occurred without any visual stimulus appearing in the neuron’s response field and

was not related to motor preparation. These results provide evidence that FEF is a

source of a purely top-down spatial attention signal in anticipation of visual stimuli

that need to be discriminated.

The selection of targets for gaze shifts is influenced by experience. In one exper-

iment monkeys were trained exclusively with search arrays that contained a single

item of a constant color among distractor items of another constant color (e.g., red

target among green distractors) (Bichot et al., 1996). These monkeys persistently

directed gaze to stimuli possessing the learned target color even if the target and dis-
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tractor colors switched. In monkeys trained exclusively on targets of one color, about

half of FEF neurons show selective responses for stimuli of that color appearing in

the earliest spikes. This result indicates that the visual system can be configured to

provide preferential processing of selected stimuli.

In another experiment monkeys were trained to perform visual search for a con-

junction of features (such as a red cross among red circles, green crosses and green

circles); this requires an explicit memory representation to identify the target (Treis-

man and Sato, 1990). Monkeys’ performance and the neural selection process in FEF

exhibited two, separate contextual influences: visual similarity of distractors to the

target and the history of target properties (Bichot and Schall, 1999a,b). The evidence

for the influence of visual similarity was revealed by the pattern of occasional erro-

neous saccades during conjunction search. Erroneous saccades tended to direct gaze

to distractors that resembled the current target. Similar observations have been made

with human observers during covert (Kim and Cave, 1995) and overt orienting (Find-

lay, 1997; Motter and Belky, 1998). Now, when monkeys successfully shifted gaze to

the target, following the initial indiscriminate response, FEF neurons not only dis-

criminated the target from distractors but also discriminated among the non-selected

distractors. More activation was present for distractors that were the same shape

or color as the target than for a distractor that shared neither feature of the target.

One consequence of this observation is that stimuli that are not selected overtly may

still influence subsequent processing because of the differential neural representation.

The history of stimulus presentation across sessions also affected the selection pro-

cess during conjunction search. If an error was made, monkeys showed a significant
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tendency (in addition to the visual similarity tendency just described) to shift gaze

to the distractors that had been the target in the previous session. Recordings from

FEF neurons during trials with correct saccades to the conjunction target revealed a

corresponding discrimination among distractors with more activation for distractors

that had been the target during the previous session. This effect was evident across

sessions that were more than a day apart and persisted throughout experimental

sessions.

Another expression of cognitive control of visual search is expressed on a shorter

time scale. Humans and monkeys are affected by trial-to-trial changes in stimulus

features and target location during pop-out visual search. For example, repetition of

stimulus features improves performance. This feature-based facilitation of return was

manifested in the target discrimination process in FEF; neurons discriminated the

target from distractors earlier and better with repetition of stimulus features, corre-

sponding to improvements in saccade latency and accuracy, respectively. In contrast

to the repetition of features, repetition of target position increased saccade latency.

This location-based inhibition of return was reflected in the neuronal discrimination

process but not in the baseline activity in FEF. These results show adjustments of

the target selection process in FEF contributing to changes in performance across

trials due to sequential regularities in display properties.

A major question in this line of research concerns the relationship of the visual

target selection process to saccade preparation and production. This question touches

on multiple major questions. First, what is the origin of the variability of fixation

duration between saccades made during scanning a scene or reading. Multiple studies
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have found that the time spent fixating elements of an image cannot be explained

just by the properties of the image (Hooge and Erkelens, 1996; Jacobs, 1987). In

general, fixation duration seems to be adjusted according to the difficulty of finding

the desired target, but moment-by-moment control of fixation duration based on the

properties of the image does not seem to occur. This observation indicates that a form

of executive control can be exerted on saccade production. Second, the relation of

target selection and associated attention allocation with saccade production has been

the focus of the oculomotor readiness or premotor theory of attention. Neurophysi-

ological and anatomical data have been obtained that address specific claims of this

theory. Finally, understanding how target selection leads to adaptive saccade pro-

duction is an instance of the more general problem of understanding the mechanisms

responsible for response times. A marriage of neurophysiological measurements and

mental chronometry has provided new insights supporting the theory that response

times are the outcome of successive, stochastic stages of processing.

The neural process of target selection occupies a certain amount of time that can

be measured with reasonable accuracy. This provides an opportunity to determine

how the time of visual target selection relates to the time of saccade initiation. This

work is motivated by the general hypothesis that behavioral response times are occu-

pied by more or less distinct stages of processing (Donders, 1868/1969; Miller, 1988;

Schall, 2004a; Sternberg, 1969). Recent studies have investigated how the time taken

to select a target relates to the time taken to initiate the saccade.

One approach to this is the well-known method of selective influence. Different

stages of processing should be influenced by different manipulations. The time of tar-
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get selection by FEF neurons depends on the quality of the stimuli and, as described

above, the cognitive context. When the discrimination of the target is easy because

the target is visually distinct from the distractors, then the time taken by neurons in

FEF to locate the target is relatively short (∼ 140 ms for pop-out displays) and on

average does not account for the variability and duration of saccade latency. Note

that studies of LIP (Ipata et al., 2006; Thomas and Paré, 2007) have not found this

relationship. These investigators found that the time of target selection by LIP neu-

rons was more correlated with response time. One possible account for this difference

is the behavioral requirements in the respective experiments. In all of the experiments

in our laboratory monkeys are required to produce a single saccade to the target; this

emphasizes accuracy. In the experiments on LIP monkeys were permitted to produce

multiple saccades to locate the target; this allows a strategy of speed over accuracy

of the saccade. Experimental verification of this possibility has not been obtained to

date. When the discrimination of the target is more difficult because the target more

closely resembles the distractors, then the time taken by neurons in FEF to locate

the target increases and accounts for a larger fraction but not all of the variability

and duration of saccade latency (Bichot et al., 2001b; Cohen et al., 2009a; Sato et al.,

2001). For example, in monkeys performing a search for a T (or L) among randomly

oriented Ls (or Ts) with arrays of 2, 4 or 8 elements, the time taken for FEF neurons

to locate the target increases with the number of objects in the array. However, even

in the most difficult search in the 8-object array, saccades were initiated well after

the target was selected (see Chapter VII).
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If the time of visual target selection during search does not account for the full

duration and variability of saccade initiation times, then some other process must

occur to prepare and produce the saccade. As described above, a population of neu-

rons in FEF and superior colliculus linked through the basal ganglia and thalamus

provides the input to the brainstem network that produces the saccade. The activa-

tion of these neurons in FEF corresponds to the process of saccade preparation with

the activation of these presaccadic movement neurons (also referred to as build-up,

prelude or long-lead burst neurons). Saccades are initiated when the level of activa-

tion in this network reaches a certain level that may vary across task conditions but

appears to be constant within a condition (Dorris et al., 1997; Fecteau and Munoz,

2007; Hanes and Schall, 1996). Most of the variability of the latencies of saccades to

a visual target can be accounted for by randomness in the rate of growth of activity

to the threshold (Hanes and Schall, 1996)(Hanes and Schall 1996), although other

studies find variability of the baseline activity as well (Dorris et al., 1997; Fecteau

and Munoz, 2007).

Thus, the picture that emerges is that the process of visual selection occupies a

certain amount of time that can be shorter and less variable if the target is conspicu-

ous, or it can be longer and more variable if the target is less conspicuous. If subjects

wish to prevent a saccade to a non-target stimulus, then the preparation of the sac-

cade can be delayed until the visual selection process has proceeded to a high degree

of resolution (Woodman et al., 2008). Neural activity mediating saccade prepara-

tion begins to grow as the selection process is completed and (for reasons that are

not clear) the rate of growth of activity leading to the movement varies apparently
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randomly such that sometimes gaze shifts sooner and sometimes gaze shifts later.

Systematic adjustments of saccade latency, though, appear to arise through changes

in the time that the accumulation of activity begins. In fact, further evidence for the

distinction between target selection and saccade preparation is the observation that

the movement neurons in FEF do not discharge at all above baseline when monkeys

maintain fixation when monkeys report target location through a manual response

(Thompson et al., 2005b).

On the other hand, occasionally it is possible for the saccade preparation process

to become activated before identification of the currently fixated element and selection

of the next target are completed. For example, during visual search neurons in FEF

with no visual response and only presaccadic movement activity can exhibit partial

activation for non-target stimuli that resemble the target (Bichot and Schall, 1999a).

Such activation of movement neurons can, if excessive, result in premature, erroneous

saccades. Independence of visual selection and response preparation is also necessary

to explain the production of saccades that are not directed to the location of the

selected target.

The dynamics of visual selection and saccade preparation by the frontal eye field

has been investigated in macaque monkeys performing a search-step task that com-

bines the classic double-step saccade task with visual search (Camalier et al., 2007).

In most trials the target appeared in an array of distractors and reward was earned

for producing a saccade to the target. On random trials before the saccade was ini-

tiated, the target and one distractor swapped locations, and monkeys were rewarded

for shifting gaze to the new target location. Performance of this task is unpredictable,
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but on average, the longer the delay of the target step, the less likely will monkeys

(or humans) correctly shift gaze to the new target location. If target selection and

saccade preparation are too far advanced before the target step, then they will shift

gaze to the old target location. These errors are commonly followed by corrective

saccades to the new target location. Now, some investigators use double-step target

presentation as an explicit means of dissociating retinal error from motor error, but

performance of this task under the instruction to follow the target steps is different

from performance under the instruction to redirect gaze to the final target location

(Ray et al., 2004).

Performance of this task can be accounted for as the outcome of a race between

processes producing the two saccades and a process that inhibits production of the

first saccades (Camalier et al., 2007). The race model provides a powerful framework

in which to interpret and understand the activity of the different types of neurons.

Central to this model is the duration of the process that interrupts preparation of the

first saccade on trials when the target steps. This interval is referred to as target step

reaction time. The physiological properties of neurons in FEF of monkeys performing

this task have been described in several papers (Murthy et al., 2001, 2007, 2009).

When the target stepped out of a movement field, noncompensated saccades to the

original target location were produced when movement-related activity grew rapidly

to a threshold. Compensated saccades to the final target location were produced

when the growth of the original movement-related activity was interrupted within

target step reaction time and was replaced by activation of other neurons producing

the compensated saccade. When the target stepped into a receptive field, visual
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neurons selected the new target location regardless of the monkeys’ response. In other

words, even when gaze shifted away from the pop-out oddball of a search array, visual

neurons in FEF represented the current location of the target. A modulation of this

form has also been described in the superior colliculus (McPeek and Keller, 2002).

When the target stepped out of a receptive field most visual neurons maintained

the representation of the original target location, but a minority of visual neurons

showed reduced activity. These findings indicate that visual activity in the frontal

eye field signals the location of targets for orienting while movement-related activity

instantiates saccade preparation.

During natural scanning eye movements one observes occasional instances of sac-

cades initiated after fixation intervals that are too short to permit visual analysis of

the image sufficient to guide gaze. In the double-step or search-step task corrective

saccades are observed following similarly short fixation of the original target location

(Becker and Jürgens, 1979; Camalier et al., 2007; Sharika et al., 2008). In fact, the

race model provides an explanation for the incidence and timing of these corrective

saccades that includes an account of why midflight corrections are rare. The latency

of these corrective saccades is predicted by the timing of movement-related activity

in the FEF. Preceding rapid corrective saccades, the movement-related activity of

many neurons began before visual feedback of the error was registered and that of a

few neurons began before the error saccade was completed. Corrective saccade can

be produced, though, only if other neurons in the brain have located the new target

location and maintain that representation through the production of the error. As

noted above, this is just what the visual neurons in FEF do. However, this selection
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process is itself a variable process that may be more or less complete at the time of

saccade initiation. Thus, incomplete suppression of distractor-related activity results

in curvature of saccades toward the distractor (McPeek et al., 2003; McPeek, 2006).

The double-step or search-step condition dissociates visual target location from

saccade endpoint incidentally. The dissociation can also be accomplished explicitly

through instruction. For example, it is possible to shift gaze in the direction opposite

a visual target, referred to as antisaccade. In monkeys producing antisaccades visually

responsive neurons in the superior colliculus and FEF respond if the target falls in

the receptive field, and movement neurons are active for saccades into the movement

field whether it is a prosaccade or an antisaccade (Everling et al., 1999; Everling and

Munoz, 2000). To investigate the relationship of visual target selection to saccade

preparation explicitly, monkeys were trained to make a prosaccade to a color singleton

or an antisaccade to the distractor located opposite the singleton; the shape of the

singleton cued the direction of the saccade (Sato and Schall, 2003; Schall, 2004b).

As observed in previous studies, the response time for antisaccades was greater than

that for prosaccades. A goal of this experiment was to account for this difference in

terms of the neural processes that locate the singleton, encode its shape, map the

stimulus onto the response, select the endpoint of the saccade and finally initiate the

saccade. Two types of visually-responsive neurons could be distinguished in FEF. The

first, called Type I, exhibited the typical pattern of initially indiscriminant activity

followed by selection of the singleton in the response field through elevated discharge

rate regardless of whether the singletons features cue a prosaccade or an anti saccade.

Some of these Type I neurons maintained the representation of singleton location in
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antisaccade trials until the saccade was produced. However, the majority of the Type

I neurons exhibited a remarkable and dramatic modulation of discharge rate before

the antisaccade was initiated. After showing higher discharge rates for the singleton

as compared to a distractor in the receptive field, the firing rates changed such that

higher discharge rates were observed for the endpoint of the antisaccade relative to

the singleton location. This modulation could be described as the focus of attention

shifting from one location to the other before the saccade. The second type of neuron,

called Type II, resembled qualitatively the form of modulation of Type I neurons in

prosaccade trials, but in antisaccade trials, these neurons did not select the location of

the singleton and only selected the endpoint of the saccade. This endpoint selection

was distinct from movement neuron activation, but the selection times of Type II,

but not Type I, neurons accounted from some of the variability of saccade response

time on prosaccade or antisaccade trials.

This experiment revealed a sequence of processes that can be distinguished in

the modulation of different populations of neurons in FEF. The timecourse of these

processes can be measured and compared across stimulus-response mapping rules.

More details about the relationship of singleton selection time, endpoint selection

time and response time are described in Sato and Schall (2003). To summarize, Type

I neurons selected the singleton earlier than did Type II neurons. In the population

of Type I neurons the time of selection of the singleton in prosaccade and antisaccade

trials did not vary with stimulus response mapping or account for the difference in

RT. However, the singleton selection time of Type II neurons in prosaccade trials was

less synchronized with array presentation and more related to the time of saccade
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initiation. In antisaccade trials the time of endpoint selection by Type I neurons was

significantly later than that of Type II neurons. This result is as if the endpoint of

a saccade must be identified before attention can shift to the location. The endpoint

selection time of Type I neurons in antisaccade trials was too late to explain the

increase in RT relative to prosaccade trials. In contrast, the endpoint selection time

of Type II neurons in antisaccade trials, like the singleton selection time in prosaccade

trials, accounted for some but not all of the delay and variability of RT.

This visual search task with prosaccades and antisaccades provided a powerful test

of the pemotor theory of attention (Juan et al., 2004). The premotor theory of atten-

tion states that shifting visual spatial attention corresponds to preparing a saccade.

The focus of attention was dissociated momentarily from the endpoint of a saccade by

training monkeys to perform visual search for an attention-capturing color singleton

and then shift gaze either toward (prosaccade) or opposite (antisaccade) this color

singleton according to its orientation. Saccade preparation was probed by measuring

the direction of saccades evoked by intracortical microstimulation of the frontal eye

field at different times following the search array. Eye movements evoked on prosac-

cade trials deviated progressively toward the singleton that was the endpoint of the

saccade. Eye movements evoked on antisaccade trials deviated not toward the sin-

gleton but only toward the saccade endpoint opposite the singleton. These results

are interpreted in relation to previous work showing that on antisaccade trials most

visually responsive neurons in frontal eye field initially select the singleton while at-

tention is allocated to distinguish its shape. In contrast, preliminary data indicates

that movement neurons are activated but do not produce a directional signal after the
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saccade endpoint is selected. Evidence consistent with these observations has been

obtained in a study of human participants using transcranial magnetic stimulation

(Juan et al., 2008), and in a study probing explicitly the locus of attention (Smith

and Schenk, 2007). Thus, the brain can covertly orient attention without prepar-

ing a saccade to the locus of attention. The premotor theory should be revised to

accommodate these results.

To produce arbitrary responses to specific stimuli requires a mechanism to encode

the rules and context of the task. This brings us to areas in prefrontal cortex rostral

to the FEF.

1.7 Prefrontal cortex

Rostral to FEF are areas of ventrolateral and dorsolateral prefrontal cortex that

have been the focus of extensive investigation and theory (e.g., Fuster, 2008). Before

proceeding, we should note that the FEF is certainly an area in prefrontal cortex

defined by the presence of a granular layer and afferents from the mediodorsal nucleus

of the thalamus. Nevertheless, to simplify and summarize the function of the more

rostral areas, we can state that they contribute to enacting flexible stimulus-response

rules through time.

Recent lesion and microstimulation studies have established a general role of

macaque dorsolateral prefrontal cortex in attention and saccade target selection (Opris

et al., 2005; Rossi et al., 2007). However, we must note that the conditions of the

experiments investigating prefrontal cortex were not typical of the visual search ex-

periments reviewed above. For example, in one study, monkeys discriminated the
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orientation of a colored target grating among distractor gratings. When the cue

indicating which stimulus was the target was held constant across trials, monkeys

with prefrontal cortex lesions were unimpaired. When the cue switched frequently

across trials, however, monkeys with prefrontal cortex lesions were severely impaired

in attending to the target.

The activity of neurons in prefrontal cortex areas rostral to FEF has been de-

scribed during tasks that required different forms of visual target selection (Boussaoud

and Wise, 1993; Buschman and Miller, 2007; Constantinidis et al., 2001b; Everling

et al., 2006; Ferrera et al., 1999; Hasegawa et al., 2000; Kim and Shadlen, 1999;

Rainer et al., 1998). In some of these studies the selection of the target appeared

as effectively an all-or-none activation, largely because the responses began after the

selection process was completed in visual areas of the cortex.

A common feature of neurons recorded in dorsolateral prefrontal cortex is the

presence of activity during enforced delay periods in which monkeys must remember

specific aspects of the stimuli to guide the eventual response. The characteristics of

this delay period activation have been described in numerous studies. For example,

one study presented monkeys with two stimuli, a bright target and a distractor with

brightness that was varied across trials from that of the dim background to that of

the bright target (Constantinidis et al., 2001b). In this way the discriminability of the

target from the distractor was varied. After an instructed delay in which the stimuli

had been removed, monkeys shifted gaze to the location occupied by the brighter

stimulus. The activation during the delay period varied according to the brightness

of the stimulus in the receptive field and the performance of the monkeys. Neurons
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remained active during the delay period even if the stimulus in the receptive field had

been the distractor. This affords an opportunity for the properties of the non-selected

stimuli to influence subsequent performance. Also, the magnitude of the activation

varied such that if the distractor was more similar to the target, the activation evoked

by the distractor was more similar to the activation evoked by the target.

To summarize, the studies of dorsolateral prefrontal cortex have indicated that

neurons may not participate directly in the target selection process but can encode

the properties of selected and non-selected stimuli. Further work is needed to discover

how the function of dorsolateral prefrontal cortex influences target selection in the

more caudal parts of the brain.

1.8 Summary

Vision occurs naturally in a continuous cycle of fixations interrupted by gaze shifts.

The guidance of these eye movements requires information about what is where in the

image. The identity of objects is derived mainly from their visible features. Single

neurons in the visual pathway represent the presence of specific features by the level

of activation. Each point in the visual field is represented by populations of neurons

activated by all types of features. Topographic representations are found throughout

the visual and oculomotor systems; neighboring neurons tend to represent similar

visual field locations or saccades.

When confronted by an image with many possible targets, the visual system com-

pares the features of elements across the visual field. The retinotopic maps of the

visual field facilitate local interactions to implement such comparisons; in particular, a
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network of lateral inhibition can extract the locations of the most conspicuous stimuli

in the visual field. The process of these comparisons can be influenced by knowledge

so that inconspicuous but important elements in the image can be the focus of gaze.

This selection process results in a state of activation in which neurons with potential

targets in their receptive field are more active, and neurons with non-targets in their

receptive field are less active.

The outcome of this selection process can be represented at a level of abstraction

distinct from the representation of the features themselves. This is why the hypo-

thetical construct of a salience map is useful. The state of neural selection of a salient

target relative to surrounding non-target elements amounts to the covert allocation

of attention that usually precedes overt shifts of gaze. The time taken for the brain

to achieve an explicit representation of the location of a target varies predictably

according to how distinct the target appears in relation to non-target elements.

Coordinated with this visual processing is activation in a network including FEF

and superior colliculus that is responsible for producing the eye movement. A sac-

cade is produced when the activation at one location within the motor map reaches

a critical threshold. One job of visual processing influenced by memory and goals,

is to insure that only one site–the best site–within the map of movements becomes

activated. This is done when the neurons signaling the location of the desired tar-

get develop enhanced activation while the neurons responding to other locations are

attenuated. When confronted with ambiguous images having multiple potential tar-

gets, partial activation can occur in parts of the motor map representing saccades

to non-target elements that resemble the target. Saccade target selection converts
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an initially ambiguous pattern of neural activation into a pattern that reliably sig-

nals one target location in a winner-take-all fashion. However, the representation of

likely targets for orienting does not automatically and unalterably produce a saccade.

Sometimes potential targets are perceived without an overt gaze shift or gaze can

shift to locations not occupied by salient stimuli. The explanation of this flexible

coupling between target selection and saccade production requires separate stages or

modules that select a target for orienting and that produce gaze shifts. The flexible

relationship between target selection and saccade production also affords the ability

to emphasize speed or accuracy. Accuracy in fixating correctly can be emphasized at

the expense of speed by allowing the visual selection process to resolve alternatives

before producing a saccade. On the other hand, accuracy can be sacrificed for speed,

allowing the visuomotor system to produce a saccade that may be inaccurate because

it is premature relative to the target selection process.

1.9 Motivation: what we don’t know

The preceding discussion emphasized the correlation of firing rates of single neu-

rons across cortical and subcortical areas with attentional selection and eye movement

production. The role of interactions between neurons within and across these brain

areas and the timing of these interactions are poorly understood. To understand

the relationship between neuronal interactions in FEF and visual target selection, we

recorded from multiple FEF neurons simultaneously in monkeys performing visual

search. To understand the timing of target selection within and across brain areas,

we recorded FEF activity and visual event-related potentials over posterior cortex in
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monkeys performing visual search tasks of varying difficulty.

1.10 Road map

Each of the following chapters, save the last one, is a published paper or one in

preparation. Thus, each stands alone. I nevertheless encourage the reader to read

them in sequence, as I have ordered them so that they follow the title of this thesis; I

first present studies of neural coding of visual target selection, then studies of neural

timing of visual target selection.
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CHAPTER II

COOPERATION AND COMPETITION AMONG FRONTAL EYE FIELD
NEURONS DURING VISUAL TARGET SELECTION

2.1 Abstract

The role of spike rate versus timing codes in visual target selection is unclear. We

simultaneously recorded activity from multiple frontal eye field neurons and asked

whether they interacted to select targets from distractors during visual search. When

both neurons in a pair selected the target and had overlapping receptive fields (RFs),

they cooperated more than when one or neither neuron in the pair selected the target,

measured by positive spike timing correlations using joint peristimulus time histogram

analysis. The amount of cooperation depended on the location of the search target:

it was higher when the target was inside both neurons’ RFs than when it was inside

one RF but not the other, or outside both RFs. Elevated spike timing coincidences

occurred at the time of attentional selection of the target as measured by average

modulation of discharge rates. We observed competition among neurons with spa-

tially non-overlapping RFs, measured by negative spike timing correlations. Thus,

we provide evidence for dynamic and task-dependent cooperation and competition

among frontal eye field neurons during visual target selection.1

1This chapter has been submitted as Cohen JY, Crowder EA, Heitz RP, Subraveti CR, Thompson
KG, Woodman GF, Schall JD. Cooperation and competition among frontal eye field neurons during
visual target selection.
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2.2 Introduction

Complex behavior is the result of interactions among neurons in different brain

areas. Saccadic visual search is one behavior ideal for understanding the role of

neuronal interactions in perceptual decision making. Several studies have shown

functional correlations between pairs of neurons involved in perception and decisions

(Ahissar et al., 1992; Cohen et al., 2007; Das and Gilbert, 1999; Engel et al., 1991a,b;

Narayanan and Laubach, 2006; Poulet and Petersen, 2008; Samonds et al., 2006;

Snider et al., 1998; Stark et al., 2008; Ts’o et al., 1986; Vaadia et al., 1995; Zohary

et al., 1994), but it is unclear to what degree these correlations are dynamic and how

they depend on task demands.

During visual search for a target among distractors, the brain must allocate at-

tention to the target while filtering out distractor objects (Wolfe, 1998). Do cortical

neurons that discriminate between a search target and distractors interact to select

the target, or do they each select the target independently? To answer this, we inves-

tigated the role of spike synchrony in visual target selection in the macaque frontal

eye field (FEF). Visually-responsive FEF neurons signal the location of a target of

visual search by increasing activity with the target inside their receptive field (RF)

relative to when a distractor is in the RF (Cohen et al., 2009a; Sato and Schall, 2003;

Sato et al., 2001; Schall and Hanes, 1993; Schall et al., 1995a; Thompson et al., 1996).

We recorded activity from multiple FEF neurons simultaneously and measured spike

rate and timing correlations between pairs of neurons.

We show that when both neurons in a pair selected the target of search and had
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overlapping RFs, they cooperated through spike timing synchrony when the target

was inside the intersection of both neurons’ RFs around the time when each neuron

selected the target as measured by its firing rate. Furthermore, when both neurons

in a pair selected the target of search and had non-overlapping RFs, they competed

through spike timing asynchrony when the target was inside one but not the other

neuron’s RF. These results reject the hypothesis that each FEF neuron selects the

target independently and sends target selection signals to be pooled downstream.

Rather, FEF neurons cooperate and compete to select targets during visual search,

suggesting that spike timing, as well as spike rate, conveys information about target

location.

2.3 Materials and Methods

2.3.1 Behavioral task and recordings

We recorded activity from pairs or groups of FEF neurons in both hemispheres

of three male macaques (Macaca radiata) during color and form visual search tasks

of varying difficulty (Table 2.1). Because we analyzed spike timing relationships in

pairs of neurons, many neurons contributed data to more than one pair (107 out of

208). However, because the proportion of neurons contributing to the pairs of interest

(the rightmost three columns in Table 2.1) was smaller (36 out of 164), we removed

the neurons contributing data to multiple pairs and found similar results, albeit with

weaker effects. Thus, we present data with those neurons included.

In the color search task (Fig. 2.1A, left), monkey F searched for a target (green
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Total Both neu-
rons select
target

One neu-
ron selects
target

Neither neu-
ron selects
target

Monkey Recording
sessions

Pairs Neurons Pairs Neurons Pairs Neurons Pairs Neurons

F 28 154 97 (75) 17 25 (8) 27 39 (10) 12 18 (6)
Q 27 34 57 (6) 7 14 (0) 8 15 (1) 4 8 (0)
S 21 51 54 (26) 8 16 (0) 14 18 (8) 7 11 (3)
Total 76 239 208

(107)
32 55 (8) 49 72 (19) 23 37 (9)

Table 2.1: Numbers of neurons and pairs of neurons in each analysis of visual search
data. Numbers in parentheses indicate neurons contributing to more than one pair.

disk) among seven distractors (Sato et al., 2001). Each trial began with the monkey

fixating a central spot for approximately 600 ms. A target was then presented at

one of eight iso-eccentric locations equally spaced around the fixation spot. The

other seven locations contained distractor stimuli. Distractors could be red disks

(efficient search) or yellow-green disks (inefficient search). The monkey was given a

liquid reward for making a single saccade to the target location and fixating it for

approximately 400 ms.

In the form search task (Fig. 2.1A, right), monkeys Q and S searched for a target

(T or L) among distractors (L or T) (Cohen et al., 2009a; Woodman et al., 2007). Dis-

tractors could be homogeneous (e.g., upright Ls) or heterogeneous (e.g., Ls oriented

differently). Each trial began with the monkey fixating a central spot for approxi-

mately 600 ms. A target was then presented at one of eight iso-eccentric locations

equally spaced around the fixation spot. The other seven locations contained 1, 3

or 7 distractor stimuli (set sizes 2, 4 and 8, respectively). The monkey was given a

liquid reward for making a single saccade within 2000 ms to the target location and
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Figure 2.1: A: Color and form visual search tasks. In each task, monkeys were
required to make a single saccade to the target for reward. B : Diagram of RF
conditions. The dashed arcs represent the RFs of a pair of neurons. The shaded gray
region represents the intersection of the RFs. The “Intersection” condition occurred
when the target was inside the intersection of the pair of neurons’ RFs (i.e., in the
shaded gray region). The “Opposite” condition occurred when the target was in
a location opposite the RF intersection. The “XOR” condition occurred when the
target was in one neuron’s RF but outside the other’s RF. C : Example neuron that
selected the target during the form search task. The black curve with dark bands
represents the mean ± SE firing rate when the target was inside the neuron’s RF. The
gray curve with light bands represents the mean ± SE firing rate when the target was
opposite the RF. Initially, the neuron’s firing rate did not discriminate between target
and distractors, but after 130 ms its firing rate selected the target (dashed vertical
line).
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fixating it for 1000 ms. Across sessions the monkeys alternated between searching for

Ts with Ls as distractors and Ls with Ts as distractors. Trials with incorrect behav-

ioral responses were excluded from neural analyses. Behavioral analyses of these data

have been published previously (Cohen et al., 2009a; Sato et al., 2001).

Activity from each neuron was recorded during a memory-guided saccade task

to distinguish visual- from movement-related activity (Bruce and Goldberg, 1985;

Hikosaka and Wurtz, 1983). The target (filled gray circle) was presented in isolation

for 80-150 ms. Monkeys were required to maintain fixation for 400-1000 ms after the

target onset. When the fixation spot disappeared, the monkey was rewarded for

a saccade to the remembered location of the target. We used the data from the

memory-guided saccade task to classify neurons according to the following criteria

(Cohen et al., 2009b). Visual neurons had significantly greater activity in the 100 ms

after the target flash than in the 100 ms before the target flash. Movement neurons

had greater responses in the 100 ms leading up to the saccade than in the 100 ms before

the target flash. Visuomovement neurons had greater responses in the 100 ms after the

target flash and in the 100 ms leading up to the saccade than in the 100 ms before the

target flash. All three classes of neurons were included in our preliminary analyses,

as well as neurons that were not classified as visual, movement or visuomovement.

Monkeys were surgically implanted with a head post, a subconjunctival scleral eye

coil and recording chambers. Surgery was conducted under aseptic conditions with

animals under isofluorane anesthesia. Antibiotics and analgesics were administered

postoperatively. All surgical and experimental procedures were in accordance with the

National Institutes of Health Guide for the Care and Use of Laboratory Animals and
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approved by the Vanderbilt Institutional Animal Care and Use Committee. Details

have been described previously (Cohen et al., 2009a; Sato et al., 2001; Schall et al.,

1995a).

Recordings were acquired from the rostral bank of the arcuate sulcus using tung-

sten microelectrodes (FHC, Bowdoin, ME). To confirm that electrodes were in FEF,

we evoked saccades with low-threshold microstimulation (< 50µA) at each site (e.g.,

Bruce et al., 1985). Spikes were sorted online and offline using principal components

analysis and template matching (Plexon, Dallas, TX). To ensure that spikes came

from different neurons, we only analyzed pairs of neurons recorded from different elec-

trodes. To measure the firing rate of each neuron, we used a spike density function,

convolving each spike with a kernel resembling a postsynaptic potential (Thompson

et al., 1996). Spike density functions were used to measure target selection time, but

not in spike synchrony analyses.

2.3.2 Data analysis

2.3.2.1 Target selection time

To measure the time of target selection we used ms-by-ms Wilcoxon rank sum

tests. Selection time was defined as the time at which the distribution of activity

when the search target was inside a neuron’s RF was significantly greater than the dis-

tribution of activity when the target was opposite the RF for ten consecutive ms with

p < 0.01. For one neuron, we used a more conservative criterion of 50 consecutive ms

based on visual inspection of the spike-density functions. This “neuron-antineuron”
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approach presumes that a population of neurons in the brain representing the loca-

tion of the target competes with a population of neurons representing the location

of distractors opposite the target. Measuring selection time with a receiver operat-

ing characteristic analysis (Thompson et al., 1996) yielded indistinguishable results.

Neurons from which we measured a target selection time were all classified as visual

and visuomovement and had significant above-baseline activity during the memory

delay period in the memory-guided saccade task. Fourteen neurons had phasic visual

activity with no activity above baseline during the delay of the memory-guided sac-

cade task; these neurons did not discriminate between target and distractors during

the search task because their responses were too brief. There was no difference in

target selection time between visual and visuomovement neurons. While movement

neurons showed increased activity before a saccade was made to the target inside of

their movement field relative to a distractor outside of their movement field, this ac-

tivity was not considered “target selective” because these neurons select the endpoint

of the saccade, not the location of the target (Murthy et al., 2001; Sato and Schall,

2003; Schall, 2004b; Thompson et al., 1997). Indeed, we observed that these neurons

fired at their baseline rate when a saccade was made outside their movement fields.

Thus, while we measured a “target selection time” for these movement neurons, we

did not classify them as target selective; rather, they were saccade endpoint selective.

Figure 2.1C shows target selection in an example neuron. One of the factors of

interest in this study was whether both, one or neither neuron in a pair selected the

target. Of the neurons that did not select the target, some were movement neurons

that were involved in preparing saccades, some were visual or visuomovement neurons

41



that did not select the target (typically transiently firing visual neurons) and some

were not task-related. Of the 208 total neurons in the data set, 115 were visual or

visuomovement neurons that selected the target.

2.3.2.2 Visuomovement index

To quantify the strength of visual- and movement-related activity, we computed

a visuomovement index for each target-selecting visual and visuomovement neuron,

V −M
V +M

,

where V is the average firing rate from 50 ms to 150 ms after target onset in the

memory-guided saccade task and M is the average firing rate in the 100 ms before

saccades in the memory-guided saccade task. The visuomovement index is −1 for

neurons with only movement-related activity and 1 for neurons with only visual-

related activity.

2.3.2.3 Spike rate noise correlations

We measured spike rate noise correlations as the trial-by-trial spike rate correlation

after the mean spike rate was subtracted from each neuron in the pair (Averbeck and

Lee, 2004). The noise correlation is defined as

〈
〈λi1λi2〉 − Λ1Λ2√

〈(λi1 − Λ1)2〉 〈(λi2 − Λ2)2〉

〉
,
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where λj is the spike rate from the jth neuron and Λj is the mean spike rate from the

jth neuron, where i references a given trial and 〈·〉 denotes expected value.

2.3.2.4 Spike synchrony

We measured spike-timing relationships using joint peristimulus time histograms

(JPSTHs; Aertsen et al., 1989; Brody, 1999a,b). The shuffle-corrected, normalized

JPSTH is defined as

JN(t1, t2) =
〈Si1(t1)Si2(t2)〉 − 〈Si1(t1)〉 〈Si2(t2)〉

σ1(t1)σ2(t2)
,

where t1 and t2 are time points within a trial, Si(t) is the spike train on the ith trial

at time t and σ(t) is the standard deviation of the PSTHs S(t). JPSTH measures

correlations in spike timing over the time course of experimental trials at varying

lags between spike trains. To compute JPSTHs, we used the time from 50 ms before

search array onset to the 90th percentile of the saccade response time distribution for a

given pair of neurons. We used a 1 ms bin width for spike counts to search for precise

spike timing relationships. To visualize trends in the JPSTH matrix we applied a

two-dimensional mean filter with a 10× 10 square kernel (Fig. 3); all statistical tests

were performed on unfiltered data. Figure 2.3 shows the normalized JPSTH (JN in

the above equation).

From the JPSTH, we extracted two measures: a crosscorrelogram, which measures

the overall correlation of spike times at varying lags, and a coincidence histogram,

which measures the average spike timing correlation over time. Crosscorrelograms
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(gray histograms in the upper right of each JPSTH in Fig. 2.3) and their 95% confi-

dence intervals were computed using ±50 ms around a lag of 0 ms (Brody, 1999a,b).

Crosscorrelograms were counted as significant if two consecutive values exceeded the

confidence intervals. Coincidence histograms (black histograms to the right of JP-

STHs in Fig. 2.3) were computed as the average JPSTH at ±10 ms around the main

diagonal. To determine the effects of experimental manipulations on spike timing

relationships, we measured the area under the crosscorrelograms in a 20 ms window

around a lag of 0 ms and the area under the coincidence histograms. Each of these

area measures (i.e., the integral) was the sum of the crosscorrelogram or coincidence

histogram values in the appropriate time window, so that positive values were added

to the area and negative values were subtracted from the area.

To avoid spurious crosscorrelation due to stimulus-induced firing rate increases,

we used both an excitability correction (Brody, 1999a,b) and we simulated spike

trains with the same average firing rates of the neurons in our data set. To generate

a simulated spike train from a given neuron, we used that neuron’s peristimulus

time histogram (PSTH) as the probability of spiking at each time point over the

course of a trial. For each simulated trial and time bin, we drew from a binomial

probability distribution. If the value drawn was less than or equal to the PSTH at

that time bin, the simulated trial would have a spike in that time bin. This ensured

that while the average time-varying firing rate of the simulated neurons remained

the same as the real neurons, the specific spike timing information was random,

so any spurious JPSTH correlation caused purely by mean firing rate should also

be present in the simulations. This confound is different from that controlled for by
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Brody’s excitability correction (Brody, 1999a,b), which is why we used this additional

negative control. None of the comparisons described in Results (section 2.4) using the

excitability correction or the simulated neurons were significant. Crosscorrelograms

and coincidence histograms were fit with smoothing splines for visualization, but bar

plots and statistics show results from unsmoothed data. All statistical tests were

done with Bonferroni corrections for multiple comparisons. Analyses were done with

R (http://www.r-project.org/) and Matlab (The MathWorks).

2.4 Results

We recorded from 239 pairs of neurons from different electrodes from three macaques

(154 pairs from monkey F in the color search task, 34 from monkey Q in the form

search task and 51 from monkey S in the form search task). We measured spike

rate and timing correlations manipulating two experimental factors. The first factor,

the number of neurons in the pair that selected the search target, had three levels:

both neurons in the pair selected, one neuron selected or neither neuron selected.

The second factor, the position of the target relative to the RFs, had three levels

(Fig. 2.1B): target inside the intersection of the RFs (“Intersection”), target inside

the RF of one neuron but not the other (“XOR”) or target opposite the intersection

of the RFs (“Opposite”). We analyzed the 104 pairs of neurons with overlapping RFs

(comprised of the 32, 49, and 23 pairs in which both neurons, one neuron, or neither

neuron selected the target; see Table 2.1). Nine pairs of neurons had completely

overlapping RFs, so there was no XOR condition for these pairs.

We defined two types of neurons: (1) visual and visuomovement neurons that
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selected the target from distractors (see Methods and Materials) and (2) neurons that

did not select the target (some of these included movement neurons, which selected

the target on correct trials but selected the distractor that was the endpoint of the

saccade on incorrect trials). We recorded from 47 neurons that selected the target in

the color search task and 68 that selected the target in the form search task. Table

2.1 shows the number of pairs of each type associated with each analysis.

2.4.1 Noise correlation

We first measured the spike rate noise correlation to determine whether the vari-

ability of spike rates of pairs of simultaneously recorded neurons tended to covary.

Noise correlation was higher on trials when the target appeared at the intersection of

the RFs than when it was opposite the intersection or in one RF but not the other

(Fig. 2.2A; F(2,181) = 5.1, p < 0.01).

We next analyzed 18 pairs of neurons in which both neurons in each pair selected

the target and the RFs of each pair were non-overlapping in the visual field. These

pairs can be considered to comprise neurons from different pools, whereas the pairs

of neurons with overlapping RFs can be considered as derived from the same pool,

analogous to neurons with similar or different direction tuning in MT (Cohen and

Newsome, 2008). We found negative noise correlations for these 18 pairs of neurons

when the search target was in one RF but not the other (Fig. 2.2B ; mean ± SE,

−0.077 ± 0.026, t(17) = −2.95, p < 0.01). This indicates that signals arriving from

neurons in different spatial pools in FEF exhibit a “push-pull” interaction in spike

rate.
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Figure 2.2: A: Mean ± SE noise correlation between pairs of neurons in which both
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2.4.2 Joint peristimulus time histogram analysis

Next, we measured JPSTHs for each pair of neurons. Figure 2.3 shows two ex-

ample JPSTHs with crosscorrelograms and coincidence histograms. In Figure 2.3A,

the left plot shows analysis of a pair of visual neurons that selected the target in

the color search task. The right plot shows analysis of simulated neurons with the

same time-varying average firing rates as the two visual neurons (note the similar

PSTHs between data and simulated neurons). The data clearly show synchronous

firing beginning around the time of target selection (dashed lines) in the two neurons

that does not appear in the analysis of simulated neurons. This is apparent in the

JPSTH, coincidence histogram and the crosscorrelogram. Figure 2.3B shows a pair

of movement neurons recorded in the color search task with strong synchronous firing

around the time of saccade onset, which does not appear in the analysis of simulated

neurons with the same time-varying average firing rates.

2.4.3 Crosscorrelogram analysis

To measure the spike timing relationships between pairs of FEF neurons, we cal-

culated crosscorrelograms. The crosscorrelogram measures the correlation between

spiking in the pair of neurons, taking into account spurious correlations based on

firing rate (see Methods and Materials, section 2.3), but ignoring the time course

of correlations. Of the 239 pairs of neurons, 21 (8.8%) showed significant peaks in

the crosscorrelogram, while none of the simulated pairs of neurons showed significant

peaks, measured using 95% confidence intervals (see Methods and Materials, section
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Figure 2.3: A: JPSTH of a pair of target-selecting visual neurons (left panel) and a
pair of simulated neurons with the same mean firing rates (right panel; see Materials
and Methods). The color plots are JPSTH matrices. The gray histograms to the
left and below the color plot are PSTHs from the two neurons. The time axis goes
from −50 ms before array onset to 244 ms after array onset (90th percentile of saccade
response time distribution). The black histogram to the right of the color plot is the
coincidence histogram, calculated from a ±10 ms window around the main diagonal
of the JPSTH. The gray histogram in the upper right corner is the crosscorrelogram,
calculated from a ±50 ms window collapsed across the main diagonal (see Materials
and Methods). Dashed black lines indicate search array onset and target selection
time (TST) for each neuron. Box-and-whisker plots next to each PSTH show the
median, interquartile range and the range saccade response times. Note the increase in
synchrony around the time of target selection in the real neurons but not the simulated
neurons, evident in the JPSTH, the coincidence histogram and the crosscorrelogram.
B : JPSTH of a pair of movement neurons. Conventions are as in (A). The time axis
goes from −50 ms before array onset to 315 ms after array onset (90th percentile of
saccade response time distribution). Note the synchrony around the time of saccades
in the real neurons but not the simulated neurons.
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2.3).

Figure 2.4 shows crosscorrelograms from each experimental condition collapsed

across task difficulty. The left column shows the crosscorrelograms and the right

column shows the area under the crosscorrelograms in a window ±10 ms wide around

zero lag. There was a significant effect of neuron pair type (i.e., both, one, or neither

neuron in a pair selected the target; mixed-effects ANOVA, F(2,98) = 3.4, p < 0.05)

and target location (i.e., Intersection, XOR or Opposite; F(2,180) = 18.1, p < 0.001) on

crosscorrelogram area. When both neurons in a pair selected the target (32 pairs), and

the target was inside the intersection of their RFs, they showed significantly higher

positive correlations than when the target was opposite the intersection (Fig. 2.4;

paired t(31) = 3.9, p < 0.001). The same effect held for pairs in which one neuron, but

not the other, selected the target and the target was inside the intersection of the RFs

versus in one RF but not the other (49 pairs; paired t(48) = 3.4, p < 0.01) or opposite

the intersection (t(39) = 2.9, p < 0.01). Comparing across pair type, when the target

was inside the intersection of RFs, pairs of neurons in which both selected the target

showed significantly higher positive correlations than pairs in which neither neuron

selected the target (Fig. 2.4, Welch’s t(53) = 2.2, p < 0.05).

To ensure that these effects were not due to changes in firing rate, we simulated

neurons with the same time-varying average firing rates (see Methods and Materials,

section 2.3). There were no significant correlations or pairwise differences in any

correlations (Fig. 2.4, gray bars). Thus, pairs of neurons showed the strongest positive

correlations when the target of search was inside both of their RFs and both neurons

selected the target from distractors.
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Figure 2.4: Crosscorrelograms and crosscorrelogram areas for each experimental con-
dition, combined across task difficulty. The left column shows mean ± SE cross-
correlograms when the target was inside the intersection of the RFs (“Intersection”
condition; blue), in one RF but not the other (“XOR” condition; red) and opposite
the intersection of the RFs (“Opposite” condition; black). The right column shows
mean ± SE of the differences in the area (i.e., integral) of the crosscorrelograms in
a ±10 ms window around a lag of 0 ms for each paired comparison. Asterisks denote
significance. The top row shows results from pairs in which both neurons selected the
target. The middle row shows results from pairs in which one neuron, but not the
other, selected the target. The bottom row shows results from pairs in which neither
neuron selected the target.
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2.4.4 Coincidence histogram analysis

To measure the time course of spike correlations, we extracted coincidence his-

tograms from the JPSTHs. The coincidence histogram is a measure of the time course

of correlations in a window ±10 ms wide around zero lag, ignoring the spike timing

relationships in terms of lag. Figure 2.5 shows coincidence histograms from each

experimental condition collapsed across task difficulty, aligned to the time of search

array onset (left column) and saccade onset (right column). Note that the increase

in coincidence histograms occurred after the initial increase in firing rate in response

to the onset of the search array (dashed line in Fig. 2.5, top left), suggesting that the

increased spike timing correlations were not due solely to increased firing rates.

There was a significant effect of neuron pair type (i.e., both, one, or neither

neuron in a pair selected the target; mixed-effects ANOVA, F(2,98) = 3.1, p < 0.05)

and target location (i.e., Intersection, XOR or Opposite; F(2,195) = 26.0, p < 0.001)

on coincidence histogram area. Coincidence histogram area was significantly larger

when both neurons in a pair selected the target than when one or neither neuron

selected the target (Welch’s t(170) = 2.6 and t(151) = 3.9, p < 0.01).

2.4.5 Relationship to target selection time

We noticed that around the time of target selection for individual neurons (ver-

tical gray line in Fig. 2.5 shows the mean target selection time), correlations rapidly

increased from baseline when both neurons in a pair selected the target. Therefore,

we used target selection time to divide the time course of synchrony into two inter-
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Figure 2.5: Coincidence histograms for each experimental condition, combined across
task difficulty. The top row shows mean ± SE coincidence histograms when both
neurons selected the target, aligned to array onset (left) and saccade onset (right)
when the target was inside the intersection of the RFs (“Intersection” condition; blue),
in one RF but not the other (“XOR” condition; red) and opposite the intersection of
the RFs (“Opposite” condition; black). The middle row shows the same when only
one neuron in the pair selected the target. The bottom row shows the same when
neither neuron in the pair selected the target. Vertical line indicates mean target
selection time in individual neurons when both neurons selected the target. Dashed
line in upper left plot shows the average firing rate when the target was inside RFs,
normalized between 0 and 0.2, indicating that the increase in coincidence was not a
result of the initial increase in firing rate of individual neurons.
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Figure 2.6: Mean ± SE area under coincidence histograms under three target location
conditions (Intersection, Opposite and XOR; depicted below the abscissa labels; see
Fig. 1 for details) when both neurons in the pair selected the target (left panel),
when one neuron selected the target (middle panel) and when neither neuron selected
the target (right panel). Asterisks indicate significant differences (see text) between
RF conditions within each group of pair type (“both,” “one” or “neither”). All
coincidence histogram areas from simulated neurons were not significantly different
from zero, and are not shown here. Areas are normalized by the length of the interval.

vals. The first was from array onset to target selection time, the second from target

selection time to the 90th percentile of saccade response times. For pairs of neurons in

which both selected the target, the first interval ended at the earlier of the two target

selection times and the second interval began at the later of the two target selection

times (the median difference between target selection times for these pairs was 23 ms;

the median difference between target selection times from pairs of neurons recorded

at different times was 30 ms, which was significantly larger measured by Wilcoxon

rank sum test, p < 0.05). We measured the time course of spike synchrony in the two

intervals using the area of the coincidence histogram in each (Fig. 2.6).

There was a significant effect of interval (before vs. after target selection time) on
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coincidence histogram area (mixed-effects ANOVA, F(1,77) = 29.9, p < 0.001). When

both neurons in a pair selected the target, there was significantly larger area in the

coincidence histogram after target selection time than before selection time both when

the target was inside the intersection of the RFs and when the target was opposite

the RFs (paired t(31) = 5.2 and 3.1, p < 0.01). Similarly, there was significantly larger

coincidence histogram area after as opposed to before selection time when one neuron

in the pair selected the target and the target was inside the intersection of the RFs

(paired t(48) = 4.2, p < 0.001).

Next, we tested whether there was a difference in coincidence histogram area across

neuron pair types as a function of target location (Intersection, Opposite or XOR)

and interval (before or after target selection time; Fig. 2.6). When both neurons in

a pair selected the target, we found significantly larger coincidence histogram area

after target selection time than when one or neither neuron in a pair selected the

target. This effect was present when the target was inside the intersection of the RFs

(Welch’s t(62) = 2.1 and t(52) = 3.6, p < 0.05) and when the target was opposite the

intersection (Welch’s t(63) = 2.5 and t(53) = 3.2, p < 0.05). There were no differences

between any coincidence histogram areas before target selection time, suggesting that

the increase in synchrony when the target was inside the intersection of the RFs was

associated with the target selection process.

There was a significant effect of target location on coincidence histogram area

(F(2,156) = 22.5, p < 0.001). When the target was inside the intersection of RFs coin-

cidence histogram area was larger than when the target was opposite the intersection

(Welch’s t(57) = 2.2, p < 0.05) or in one RF but not the other (t(62) = 3.4, p < 0.01)
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for pairs of neurons in which both selected the target. When one neuron in the pair

selected the target, coincidence histogram area was larger when the target was in

the intersection of RFs than when it was in one RF but not the other (t(86) = 3.3,

p < 0.01).

2.4.6 Effects of distance between neurons

To determine whether the strength of spike timing correlations varied as a function

of distance between neurons, we performed two analyses. First, we split crosscorrel-

ograms and coincidence histograms from pairs of neurons with overlapping RFs into

two groups: pairs of neurons recorded in the same hemisphere and pairs recorded in

different hemispheres. Crosscorrelogram area was significantly larger for intra- ver-

sus interhemispheric pairs of neurons when the target was in the intersection of RFs

(Fig. 2.7A; Welch’s t(79) = 2.3, p < 0.05).

Coincidence histogram area after target selection time, but not before, was larger

within the same hemisphere than across different hemispheres. When the target was

inside the intersection of the RFs, coincidence histogram area was significantly larger

when the neurons were recorded from the same hemisphere than from different hemi-

spheres (Fig. 2.7B and C ; Welch’s t(90) = 3.5, p < 0.01). To rule out the possibility

that these differences were due to differences in the magnitude of target selection

between pairs of neurons in the same versus different hemispheres, we measured the

firing rate difference between when the target was inside each neuron’s RF and when

the target was opposite the RF, yielding an index of the magnitude of target selec-

tivity. We found no difference in the magnitude of target selection between pairs
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Figure 2.7: Effects of distance between neurons. A: Mean ± SE crosscorrelogram area
in a ±10 ms window around a lag of 0 ms when the target was inside the intersection of
a pair of neurons’ RFs (Int), opposite the intersection (Opp) and in one RF but not the
other (XOR), when the pair of neurons came from the same (black bars) and different
(gray bars) hemispheres. Asterisk indicates that when pairs of neurons came from the
same hemisphere and the target was inside the intersection of RFs, crosscorrelogram
area was the largest. B : Mean ± SE coincidence histogram area after target selection
time (gray vertical lines in C ). Other conventions are as in (A). C : Coincidence
histograms when both neurons selected the target when the neurons were recorded
in the same (left panel) and different (right panel) hemispheres. Shown are mean ±
SE coincidence histograms when the target was inside the intersection of RFs (blue),
opposite the intersection (black) and in one RF but not the other (red). Vertical lines
indicate mean target selection time in individual neurons when both neurons selected
the target. D : Crosscorrelogram area as a function of distance between neurons
when the target was in the intersection of RFs and both neurons selected the target
(circles), one neuron selected the target (triangles), or neither neuron selected the
target (Xs), for pairs of neurons recorded in the same hemisphere. Regression line is
shown superimposed. E : Coincidence histogram area after target selection time as a
function of distance between neurons recorded in the same hemisphere. Conventions
are as in (D).
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of neurons recorded in the same versus different hemispheres (Welch’s t(90) = 0.44,

p > 0.6). We also tested for differences in the amount of overlap between RFs of

pairs of neurons in the same versus different hemispheres. ANOVAs with number of

overlapping RF locations and same/different hemisphere revealed no significant effect

of the number of overlapping RF locations on crosscorrelogram area (F(1,101) = 0.013,

p > 0.9) or coincidence histogram area (F(1,101) = 0.059, p > 0.8).

Second, we correlated the area under the crosscorrelograms and coincidence his-

tograms with the distance between pairs of neurons recorded in the same hemi-

sphere. We found that area under the crosscorrelograms decreased as a function

of distance between neurons (Fig. 2.7D ; linear regression slope = −0.27± 0.14, inter-

cept = 1.13 ± 0.16, p < 0.05). Similarly, area under the coincidence histogram after

target selection time decreased as a function of distance between neurons (Fig. 2.7E ;

linear regression slope = −0.04± 0.01, intercept = 0.14± 0.02, p < 0.05).

2.4.7 Relationship to saccade response time

To determine whether increases in synchrony varied with saccade response time,

we divided the data from each pair of neurons into two groups: trials faster than

the median and slower than the median response time for each session. Previous

studies have shown that these neurons select the target later with longer response

times (Bichot et al., 2001b; Cohen et al., 2009a; Sato et al., 2001). The increase in

the coincidence histogram when the target was inside the intersection of RFs relative

to when the target was inside one RF but not the other first became significant (ms-

by-ms Wilcoxon signed rank test, p < 0.05) at 163 ms after array onset for fast trials
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Figure 2.8: Mean ± SE coincidence histograms for pairs of neurons in which both
selected the target, when the target was inside the intersection of RFs (blue) versus
in one RF but not the other (red) for trials faster (left) and slower (right) than the
median saccade response time in each session. Solid gray vertical lines indicate mean
target selection times for individual neurons. Dashed gray vertical lines indicate the
time at which the blue curves exceeded the red ones statistically (see text). Solid
black vertical lines indicate mean saccade response times.

(Fig. 2.8, dashed gray lines; ms-by-ms Wilcoxon signed rank test, p < 0.05). For

slow trials, the coincidence histogram when the target was inside the intersection of

RFs exceeded that when the target was in one RF but not the other 191 ms after

array onset. This earlier onset of coincidence histogram difference for fast trials than

slow ones correlated with the difference in target selection time between fast and

slow trials (Fig. 2.8, solid gray lines; mean ± SE fast trials, 148± 3.0 ms; slow trials,

188±3.8 ms; Welch’s t(101) = 8.2, p < 0.001). The difference in saccade response time

was also significant (Fig. 2.8, solid black lines; mean ± SE fast trials, 195 ± 3.4 ms;

slow trials, 304±8.8 ms; Welch’s t(97) = 11.4, p < 0.001). A similar pattern of effects,

albeit weaker, was observed when we divided data into easy (efficient search in the

color task and set size 2 in the form task) and hard (inefficient search in the color

task and set size 8 in the form task) trials.
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2.4.8 Visuomovement index

To determine whether the strength of spike synchrony varied with the relative

amount of visual- versus movement-related activity in pairs of neurons, we computed

a visuomovement index for the 55 target-selecting neurons that comprised the pairs

in which both selected the target. The distribution of visuomovement indices hap-

pened to be significantly larger than zero (mean ± SE, 0.22 ± 0.06; t(54) = 3.4,

p < 0.01), indicating that target-selecting neurons tended to have stronger visual-

than movement-related activity during the memory-guided saccade task. There was

no significant correlation between the area under the crosscorrelogram or coincidence

histogram and the mean visuomovement index or difference between visuomovement

indices between pairs of neurons (all p > 0.2).

2.4.9 Spike correlations during the memory-guided saccade task

To determine whether the observed spike timing correlations were present dur-

ing saccade target selection without distractors, we calculated JPSTHs during the

memory-guided saccade task for the same pairs of neurons analyzed above. Of the 32

pairs of neurons in which both selected the target, 25 of them had sufficient numbers

of trials (> 50) to calculate JPSTHs. For this sample of 25 pairs of neurons, we

calculated crosscorrelograms and coincidence histograms (Fig. 2.9). There was sig-

nificantly larger crosscorrelogram area when the target was in the intersection of RFs

than when the target was in one RF but not the other (paired t(24) = 2.99, p < 0.01).

The area under the coincidence histogram from 50 ms to 200 ms after the target flash
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Figure 2.9: Mean ± SE crosscorrelograms (upper left) and coincidence histograms
(bottom row; left, aligned to target flash, indicated by gray bar; right, aligned to
saccade onset) during the memory-guided saccade task. Data from 25 of 32 pairs of
neurons with sufficient trials to compute JPSTH are shown when the target was inside
the intersection of the RFs (“Intersection” condition; blue), in one RF but not the
other (“XOR” condition; red) and opposite the intersection of the RFs (“Opposite”
condition; black).

was significantly larger when the target was in the intersection of RFs than when it

was in one RF but not the other (paired t(24) = 3.20, p < 0.01).

We compared the coincidence histograms between the memory-guided and visual

search tasks for these 25 pairs of neurons. Coincidence histogram area was signifi-

cantly larger during the search task than the memory-guided task (paired t(24) = 4.62,

p < 0.01), suggesting that target-distractor competition enhanced cooperation among

neurons with overlapping RFs.
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2.4.10 Spike correlations among neurons with non-overlapping receptive fields

Thus far, we have measured spike timing correlations among pairs of neurons with

overlapping RFs (i.e., from the same pool). Next, we measured JPSTH for the 18 pairs

of neurons analyzed in Figure 2.2F : those pairs in which both neurons selected the

target and the RFs were spatially non-overlapping. We found that around the time

of target selection for these neurons, the coincidence histograms shifted to negative

correlation values when the target was in one RF but not the other (“XOR”) relative

to when the target was in neither RF (Fig. 2.10). This decrease was significant in the

interval from target selection time to saccade (paired t(17) = 2.47, p < 0.05) but not

from array onset to target selection time (paired t(17) = 1.03, p > 0.3), as measured

by the area under the coincidence histogram in each interval. These results suggest

that neurons with spatially non-overlapping RFs compete during target selection.

2.4.11 Effects of firing rate

In the analyses reported above, we used three control analyses (shuffle correction,

excitability correction and simulation) to ensure that the spike timing relationships we

observed were not due to covariations in firing rate between pairs of neurons. However,

these controls do not rule out the possibility that the magnitude of spike timing

correlations was related to the magnitude of the firing rates (but see Fig. 2.5). To test

this possibility, we plotted the absolute value of the area under the crosscorrelogram

as a function of the mean of the mean firing rates from search array onset to saccade

onset for all pairs of neurons. Across the population of 239 pairs of neurons, we
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Figure 2.11: Log-log plot with linear regression of the absolute value of the area under
crosscorrelograms versus the mean of the mean firing rates from search array onset
to saccade for all 239 pairs of neurons with the target in all locations.

found a significant power law between crosscorrelogram area and firing rate: CCA =

0.0055 · FR1.17, where CCA is the crosscorrelogram area and FR is the mean of the

mean firing rates (Fig. 2.11; p < 0.001 for slope and intercept). Thus, we cannot rule

out that common driving input is a source of cooperation and competition in FEF,

although we cannot distinguish between this interpretation, one in which cooperation

and competition occur exclusively in FEF, and a combination of the two.

2.5 Discussion

We show that interactions between neurons are time varying and depend on

whether and how neurons are involved in a task. Pairs of FEF neurons cooper-

ated to select a visual search target from distractors by increasing their probability

64



of firing synchronously when the firing rates of both neurons discriminated target

from distractors and when the target was inside both of their RFs. The timing of

cooperative synchrony was aligned to the presentation of the visual search array, not

saccade onset (Fig. 2.5), suggesting that the observed synchrony was involved in tar-

get selection and not saccade preparation. This is not surprising given that this effect

was present in pairs of visual and visuomovement neurons that selected the target

individually. The onset of cooperative synchrony also scaled with saccade response

time (Fig. 2.8).

We found greater cooperative synchrony in pairs of neurons located in FEF in the

same versus different hemisphere and competitive synchrony in pairs of neurons with

non-overlapping RFs. This supports models of selective attention that propose that

populations of neurons compete for representation of stimuli (Desimone and Duncan,

1995). However, it is unclear how such models would account for our observation of

weak but significant synchrony during the memory-guided saccade task, in which a

single target was flashed without distractors (Fig. 2.9). We showed previously, using

a multivariate analysis, that movement neurons were engaged in greater interactions

with visual and visuomovement neurons than vice versa (Cohen et al., 2007). Al-

though we could not assess the direction of the interactions in this study given our

limited sample of movement neurons, we did find surprisingly precise timing of the

onset of synchrony in target-selecting visual and visuomovement neurons that varied

with RT and task difficulty (e.g., Fig. 2.8). This is a significant advance over Cohen

et al. (2007) because the previous study did not examine the time-dependence of

neuronal interactions.
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We observed some crosscorrelograms with broad peaks (Fig. 2.3B), which have

been interpreted as evidence for common synaptic input or co-modulation (Averbeck

and Lee, 2004; König and Engel, 1995; Nowak et al., 1995; Ts’o et al., 1986). Most

crosscorrelograms, however, had sharper peaks on the order of 20 ms (Fig. 2.3A and

Fig. 2.4), consistent with those observed in other cortical areas across species, includ-

ing primary visual cortex (Das and Gilbert, 1999; DeAngelis et al., 1999; Samonds

et al., 2006; Toyama et al., 1981; Ts’o et al., 1986), visual area MT (Bair et al., 2001),

inferior temporal cortex (Gochin et al., 1991), somatosensory cortex (Celikel et al.,

2004; Poulet and Petersen, 2008), auditory cortex (Ahissar et al., 1992; deCharms

and Merzenich, 1996; Tomita and Eggermont, 2005), gustatory cortex (Yokota and

Satoh, 2001), motor cortex (Allum et al., 1982; Jackson et al., 2003; Narayanan and

Laubach, 2006) and prefrontal cortex (Constantinidis et al., 2001a,b; Constantini-

dis and Goldman-Rakic, 2002; Funahashi and Inoue, 2000; Narayanan and Laubach,

2006; Tsujimoto et al., 2008; Vaadia et al., 1995). These peaks probably do not

reflect direct synaptic connections between pairs of recorded neurons, although the

percent of significant crosscorrelations is consistent with anatomical studies estimat-

ing the probability of corticocortical connections using probability models (Abeles,

1991) and fluorescent labeling and patch clamping (Brown and Hestrin, 2009). Re-

cent work has shown synchrony between unconnected neurons in vitro (de la Rocha

et al., 2007) and zero-lag peaks that reflect long-range synaptic connections (Vicente

et al., 2008). Previous work in cat visual cortex has shown interhemispheric syn-

chrony (Nowak et al., 1995). Thus, we do not claim that the neurons we recorded

were synaptically connected, but we emphasize that at a population level these inter-
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actions are modulated by the task and could therefore contribute to the decision to

select a target.

Given our observation that FEF neurons cooperate to locate a search target, how

many neurons are required to make a decision about the target location? A recent

study showed that weak correlations in spike timing between cortical neurons can

imply strongly correlated networks of neurons (Schneidman et al., 2006). Thus, our

observation of small correlation values could have profound effects in FEF population

codes. Several studies report optimal or sufficient decision making with a population

of 10-100 neurons (Newsome et al., 1989; Panzeri et al., 2003; Schoppik et al., 2008;

Shadlen et al., 1996; Shadlen and Newsome, 1998; Zohary et al., 1994), including in

FEF (Bichot et al., 2001b). Thus, models of networks of neurons that do not account

for weak but informative temporal correlations between neurons may overestimate

the amount of information a population can encode (Averbeck et al., 2006; Averbeck

and Lee, 2004; Panzeri et al., 1999; Pouget et al., 2000). Indeed, a previous study of

FEF neurons found that 7-14 neurons were sufficient to select a search target from

distractors; they noted that this may have been an underestimate because they did

not account for neuronal correlations (Bichot et al., 2001b).

We measured noise correlation to determine whether variability in spiking was

correlated trial-by-trial. Previous studies have shown that noise correlation depends

on the amount of time used to calculate it (Averbeck and Lee, 2003, 2004; Constan-

tinidis and Goldman-Rakic, 2002; Reich et al., 2001), so we used the spike rates from

search array onset to saccade, scaled by that duration. A previous study of MT neu-

rons showed noise correlation values of about 0.12 for pairs of neighboring neurons

67



(Zohary et al., 1994). We find similar values of noise correlation in FEF, but the

precise values vary as a function of neurons’ involvement in a task (Fig. 2.2A) for

pairs of neurons recorded as far away as opposite hemispheres.

Our noise correlation results suggest that population coding models need to be

modified to account for positive and negative noise correlations among neurons in the

same versus different pool, respectively. Recent work has shown that MT neurons

representing different pools (disparate motion direction preferences) have lower noise

correlation values than pairs of neurons representing the same pool (neurons with

similar motion direction preferences) (Cohen and Newsome, 2008, 2009). Analogously,

we may define pairs of neurons with overlapping RFs as part of the same pool and

neurons with non-overlapping RFs as belonging to different pools. FEF neurons tend

to have contralateral RFs (Bruce and Goldberg, 1985; Mohler et al., 1973; Schall,

1991), so it may be natural to think of each FEF as representing a different population

of neurons involved in target selection and attention. Our data are consistent with a

model in which neurons with spatially overlapping RFs excite each other as well as a

population of interneurons that inhibit neurons with nonoverlapping RFs (Fig. 2.12).

Of course, FEF is not the only brain area containing target-selecting neurons. Neu-

rons in posterior parietal cortex (e.g., Constantinidis and Steinmetz, 2001a; Thomas

and Paré, 2007) and superior colliculus (e.g., McPeek and Keller, 2002) show similar

behavior during visual search tasks. The question arises, then, whether neurons in

these areas also cooperate to select targets, and how the three areas interact. One

hypothesis is that neurons in all three areas cooperate independently within each

area and are then pooled downstream (in the superior colliculus, for example). An
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Figure 2.12: Circuit illustrating interactions among FEF neurons representing the
target (in the left visual field, represented by right FEF) and distractors during vi-
sual search. Large shaded circles represent excitatory neurons. Small shaded circles
represent inhibitory interneurons. V-shaped symbols represent excitatory synapses.
Small black circles represent inhibitory synapses. Solid lines represent strong con-
nections. Dotted lines represent weak connections. Dashed lines in the search array
represent the RFs of the pair of excitatory neurons in each FEF.
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alternative hypothesis is that neurons in all three areas interact as one large popula-

tion of target-selecting neurons. Multiple-neuron recordings are required to address

this question and, given their anatomical connections, it seems likely that a combina-

tion of the two hypotheses is at work. Given the power law between crosscorrelation

magnitude and firing rate (Fig. 2.11), future experiments should distinguish between

common input versus local interactions as the source of cooperation and competition

in FEF.

In conclusion, we wish to draw a speculative analogy that we believe relates our

findings to decision-making studies across different scientific fields. Increased syn-

chrony around the time of target selection may signal formation of a quorum, a

feature of many biological systems (Couzin, 2009), including groups of ants (Pratt

et al., 2002), bees (Passino et al., 2008; Seeley and Visscher, 2004), bacteria (Waters

and Bassler, 2005) and yeast (De Monte et al., 2007). Individuals in a group (e.g.,

neurons) do not need to know the outcome of the group decision; each individual

signals its choice based on local interactions with other individuals, and the decision

forms, often very quickly (Taylor et al., 2009). We suggest that it may be useful to

view the self-organization evident in neuronal interactions within a framework used

by behavioral ecologists to understand large-scale biological patterns.
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CHAPTER III

DIFFICULTY OF VISUAL SEARCH MODULATES NEURONAL
INTERACTIONS AND RESPONSE VARIABILITY IN THE FRONTAL EYE

FIELD

3.1 Abstract

The frontal eye field (FEF) is involved in selecting visual targets for eye move-

ments. To understand how populations of FEF neurons interact during target se-

lection, we recorded activity from multiple neurons simultaneously while macaques

performed two versions of a visual search task. We used a multivariate analysis in

a point process statistical framework to estimate the instantaneous firing rate and

compare interactions among neurons between tasks. We found that FEF neurons

were engaged in more interactions during easier visual search tasks compared with

harder search tasks. In particular, eye movementrelated neurons were involved in

more interactions than visual-related neurons. In addition, our analysis revealed a

decrease in the variability of spiking activity in the FEF beginning ∼ 100 ms before

saccade onset. The minimum in response variability occurred ∼ 20 ms earlier for the

easier search task compared with the harder one. This difference is positively corre-

lated with the difference in saccade reaction times for the two tasks. These findings

show that a multivariate analysis can provide a measure of neuronal interactions and

characterize the spiking activity of FEF neurons in the context of a population of
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neurons.1

3.2 Introduction

Neuronal activity in the primate frontal eye field (FEF) reflects visual target se-

lection and eye movement commands (Bichot and Schall, 1999a; Murthy et al., 2001;

Schall and Thompson, 1999; Thompson et al., 1996, 1997). Information from the

visual system converges on the FEF (Schall et al., 1995b) and is integrated into eye

movement commands through inputs to oculomotor structures (Hanes and Schall,

1996; Helminski and Segraves, 2003; Sommer and Wurtz, 1998, 2001). Three func-

tional classes of neurons have been described in the FEF: visual-related, visual-and-

movementrelated, and movement-related (Bruce and Goldberg, 1985; Schall, 1991;

Schall and Hanes, 1993; Schall and Thompson, 1999; Schall et al., 1995a; Segraves

and Goldberg, 1987). How these classes of neurons in the FEF interact to contribute

to target selection remains unknown. To address how such visual-to-motor integration

occurs, we analyzed the activity of FEF neurons recorded during a visual search task,

emphasizing interactions that occurred among simultaneously recorded neurons. We

compared neuronal interactions associated with hard and easy visual search tasks. A

hard task was defined as one with a high degree of similarity between the target of

the search and the distractor stimuli to be ignored. An easy task was defined as one

with a low degree of target-distractor similarity (Duncan and Humphreys, 1989).

Recent developments in multivariate point process modeling of neural responses

1This chapter was published as Cohen JY, Pouget P, Woodman GF, Subraveti CR, Schall JD,
Rossi AF. Difficulty of visual search modulates neuronal interactions and response variability in the
frontal eye field. J Neurophysiol 98: 2580-2587, 2007.
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have provided an analytical framework to characterize neural activity in the context

of interactions between simultaneously recorded neurons (Brown et al., 2002; Okatan

et al., 2005; Truccolo et al., 2005). This analysis models the instantaneous firing rate

of a neuron using its own spiking history and that of other simultaneously recorded

neurons as covariates in the model. The significance of each covariate provides an

estimate of its contribution to the response of the modeled neuron. If the multivariate

model’s estimate of instantaneous firing rate is significantly improved by including

covariates representing the activity of other neurons, it is evidence of interactions

among neurons in the recorded ensemble. Such interactions may be direct synap-

tic connections between neurons or may be mediated polysynaptically or by shared

input. Compared with conventional univariate estimates of neuronal activity, such

as the peristimulus time histogram (PSTH), the multivariate approach can distin-

guish between a neuron’s response and its response in the context of interactions

in a population of neurons. Furthermore, point process modeling of neural activity

preserves spike timing information which is distorted by measures that average over

time-interval windows (e.g., PSTH). Traditional approaches for analysis of interac-

tions between neurons, such as the covariogram and joint PSTH (Aertsen et al., 1989;

Brody, 1999a,b; Constantinidis et al., 2001a), are limited to pairwise comparisons and

do not provide adequate measures of ensemble interactions. The multivariate point

process model estimates the instantaneous firing rate of a neuron in real-time without

limits on ensemble size. Nonetheless, it can extract the same interactions as pairwise

measures.

We show that the multivariate approach can accurately model spiking activity
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in the FEF and characterize interactions among simultaneously recorded neurons

while monkeys perform a visual search task. To better understand how neuronal

interactions in the FEF contribute to target selection, we addressed the following

questions. 1) Do interactions among FEF neurons differ for hard and easy search?

2) Are there differences in interactions between the three classes of FEF associated

with saccade onset times?

3.3 Methods

3.3.1 Behavioral task and recording

Activity of FEF neurons was recorded in macaques performing a visual search task

in which they were required to saccade to a singleton target defined by color (Sato

et al., 2001). Each trial began with the monkey fixating a central spot for ∼ 600 ms.

A target was presented at one of eight isoeccentric locations equally spaced around the

fixation spot (Fig. 3.1A, inset). The other seven locations contained distractor stimuli.

Monkeys were given a juice reward for making a saccade to the target location and

holding their gaze on the target for ∼ 400 ms. There were two levels of task difficulty,

hard and easy, determined by the degree of target-distractor similarity. The hard task

contained a green target among yellow-green distractors. The easy task contained a

green target among red distractors. Recordings were made simultaneously from two

to four tungsten electrodes placed in the rostral bank of the arcuate sulcus. A neural

ensemble was defined as a set of simultaneously recorded neurons with overlapping

receptive fields. Our data set consisted of 91 neurons in 29 ensembles from one
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Figure 3.1: Behavioral task and performance. A: top: density of saccade reaction
times (RTs) for hard task (gray dashed line denotes mean). Bottom: density of RTs
for easy task (black dashed line denotes mean). Hard search task consisted of a green
target among yellow-green distractors. Easy task consisted of a green target among
red distractors. Data are pooled across all sessions for both monkeys. B : histogram
of session-by-session RT differences (hard minus easy).

monkey (Macaca mulatta) and 21 neurons in 7 ensembles from a second monkey

(Macaca radiata). Of the 36 ensembles, 15 contained two neurons, 10 contained three

neurons, 6 contained four neurons, 4 contained five neurons, and 1 contained eight

neurons. Spikes were sorted off-line using principal components analysis (Plexon).

Because data from each monkey were collected during the same behavioral tasks and

were similar, we pooled data from both monkeys.

Monkeys were trained on a memory-guided saccade task to distinguish visual-

from movement-related activity (Bruce and Goldberg, 1985; Hikosaka and Wurtz,

1983). The target was flashed alone for 80 ms. The monkey was required to maintain
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fixation for 400-1000 ms after the target offset. When the fixation spot disappeared,

the monkey was rewarded for a saccade to the remembered location of the target.

The movement-related neurons analyzed here had significantly greater responses in

the 100 ms leading up to the saccade than in the 100 ms after the target flash. Visual-

and visual-and-movementrelated neurons had greater responses in the 100 ms after

the target flash than in the 100 ms before the target flash.

Each monkey was surgically implanted with a head post, a scleral eye coil, and

a recording chamber. Surgery was conducted under aseptic conditions with isofluo-

rane anesthesia (Schall et al., 1995a). Antibiotics and analgesics were administered

postoperatively. All experimental procedures were performed in accordance with the

National Institutes of Health Guide for the Care and Use of Laboratory Animals and

approved by the Vanderbilt Institutional Animal Care and Use Committee.

3.3.2 Data analysis

To assess simultaneously the interactions of several neurons, we used a point pro-

cess multivariate analysis (Okatan et al., 2005; Truccolo et al., 2005). The point

process framework can provide for comparisons of arbitrarily large ensembles of si-

multaneously recorded neurons that pairwise measures cannot. We constructed a

statistical model of the firing rate of a neuron by incorporating its firing history and

the firing history of other neurons in its ensemble from stimulus onset to saccade

onset (5315 correct hard search trials, 7414 correct easy search trials). We used a

modified version of the generalized linear model (GLM) approach recently applied by

(Truccolo et al., 2005). The modification was necessary because the fitted GLMs for
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the hard and easy tasks may be different. Therefore unless they are nested, compar-

ing such models statistically is intractable. We modified the GLM in the following

way so that the data for both the hard and the easy tasks (for a particular neuron)

were combined in a single GLM.

Using the theory of point processes, we represented recorded spike trains as sets of

discrete event times. We modeled the instantaneous firing rate (conditional intensity

function) of a neuron as a combination of terms of covariates (Truccolo et al., 2005).

The conditional intensity function (λt) is more informative of the instantaneous firing

rate than univariate measures (e.g., PSTH) because its estimate is derived in the

context of interacting neurons. We predicted the firing of a neuron using its firing

history (autoregressive process) and the firing history of other neurons recorded si-

multaneously (crossregressive process). We concatenated data from all correct trials

for each neuron and used a GLM to predict the firing rate of a neuron as

log(λt) = (µx1 + φx2) +

Q∑
i=1

(αix1 + βix2)δNt−i

+
∑
c

R∑
j=1

(η
(c)
j x1 + ν

(c)
j x2)δN

(c)
t−j,

where λt is the firing rate at time t, µ is a baseline term associated with the hard

search condition, φ is a baseline term associated with the easy search condition, {αi}

is the set of hard search autoregressive (AR) parameters, {βi} is the set of easy search

AR parameters, {ηj} is the set of hard search crossregressive (CR) parameters (1 for
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each neuron in the ensemble at each lag), {νj} is the set of easy search CR parameters,

and δN
(c)
t−k is the spike count in the kth ms before the current time t, for neuron c

in the ensemble. Q and R are the AR and CR lags of the model, respectively. The

indicator variables x1 and x2 combine the parameters associated with each task into

a single model. x1 is 0 for easy search trials and 1 for hard search trials. x2 is 1 for

easy search trials and 0 for hard search trials. Because of constraints on the length

of the recordings (relative to the firing rate) we set Q = R = 30. This constraint

was not of consequence to our analysis because the parameter fits stabilized well

before lags of 30 ms. In the GLM above, the AR parameters describe the timing of

the modeled neurons dependence on its firing history and the CR ones describe the

timing of interactions between neurons. To compare models of hard and easy visual

search trials, x1 and x2 terms were merged to create a separate GLM for each task.

We fit the GLM using an iteratively reweighed least squares algorithm (McCullagh

and Nelder, 1989). This algorithm provides a robust maximum likelihood estimate

of model parameters. If the assumptions of the GLM are met, the fitted model’s

residuals should have a normal distribution around mean 0 and constant variance

with no autocorrelations (McCullagh and Nelder, 1989; Truccolo et al., 2005). Thus

we examined the residuals of each of our model fits.

To compare the fit of nested models, we used likelihood ratio tests. For each

neuron, we compared the model deviance (D = −2 logL) for AR-only models and

for AR-CR models for hard and easy search trials separately. This deviance comes

from a χ2 distribution. Thus we can test the hypothesis that adding CR terms to

an AR model does not improve the GLM fits (McCullagh and Nelder, 1989). If
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the likelihood ratio is large, the modeled neuron’s response depends heavily on the

ensemble neuron’s responses. We measured variability in λt across neurons using a

standardized measure of variability, the coefficient of variation (CV) (SD/mean). All

analyses were performed in R (http://r-project.org/).

3.3.3 Model fits

To show that the GLM accurately accounted for the firing of FEF neurons, we

compared the conditional intensity functions (λt, instantaneous firing rates) against

the observed spike trains. Figure 3.2 shows the modeled intensity (black curve) and

the observed spike train (gray vertical lines) for one example neuron over the course

of 300 ms. The model covariates are the neuron’s spiking history and the history

of a second neuron in the ensemble. The modeled rate closely follows the observed

spike times. Note that the magnitude of the intensity increases with the frequency

of spikes. The brief (1 ms) decrease in the intensity after a spike likely corresponds

to the neuron’s absolute refractory period (Truccolo et al., 2005). This decrease

is evident in Fig. 3.2B, which depicts the spike-triggered average intensity for the

neuron in Fig. 3.2A. We also examined the Pearson residuals for each model. If the

Pearson residuals were distributed normally with mean 0 and variance 1, the firing

left unexplained by the model was insignificant McCullagh and Nelder (1989). For

the model in Fig. 3.2, which was representative of the model fits of FEF neurons in

our sample, the mean of the Pearson residuals was 6.08×10−4, the variance was 0.892,

and they were distributed normally. Models for all neurons had normally distributed

Pearson residuals (Shapiro-Wilk test, p < 0.05).
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Figure 3.2: Example model fit. A: spike train and modeled intensity for 1 frontal eye
field (FEF) neuron over 300 ms. Gray vertical lines denote spike times. Black curve
is modeled conditional intensity. B : spike-triggered average intensity for neuron in
A over course of entire recording.
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3.3.4 Simulation and interpretation of parameters

A simulation was performed to test whether the GLM analysis extracted the same

interactions that standard measures of pairwise interactions do. Figure 3.3, A and B,

shows a comparison of the GLM fitting results for a simulated pair of spike trains with

a standard measure of interactions between pairs of neurons, the covariogram Brody

(1999a). The CR parameter values in Fig. 3.3B match the lags of high correlation

between the pair of simulated spike trains in Fig. 3.3A. Significant parameters (by

Wald Z test, p < 0.05) corresponded to interactions between the covariate and the

target neuron at that lag, although not necessarily “monosynaptically.” Positive

parameter values corresponded to high probability that the covariate neuron excited

the modeled neuron. Negative values corresponded to high probability of inhibition.

Nonsignificant parameters (gray points) corresponded to low probability that the

covariate interacted with the modeled neuron at those lags.

Figure 3.3, C and D, shows boxplots of parameter values at each time lag for all

hard and easy models for all FEF recordings. Both AR and CR parameter values

were stable past 15 ms, making it unnecessary to use a history of > 30 ms. The

neurons’ own history dependence (AR parameters) typically included ∼ 10 ms and

was inhibitory (negative parameter values). This likely corresponded to effects of

absolute and relative refractory periods (Truccolo et al., 2005). Neurons’ dependence

on ensemble neurons’ history (CR parameters) was, overall, relatively uniform except

for at a lag of 1 ms. Baseline rates differed by < 1 spike/s between hard and easy

tasks.
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Figure 3.3: Model interpretation. A: covariogram between a pair of simulated neu-
rons. Dashed lines indicate significance. B : crossregressive (CR) parameter values
with SE (from Wald Z test) from the generalized linear model (GLM) fit for the same
pair. Gray points are not significantly different from 0. C : autoregressive (AR) pa-
rameter values significantly different from 0 for hard and easy search models. Filled
point is mean, horizontal bar is median, box delimits interquartile range, and whiskers
extend to point no more than 1.5 times interquartile range. Outliers are not shown
in figure but are included in analyses. D : same for CR parameters.
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There were no significant differences between AR or CR parameters between hard

and easy tasks. Figure 3.3, C and D, displays the overall pattern of history depen-

dence on a neurons firing.

3.4 Results

Activity of 112 neurons was recorded in the FEF of two macaques performing two

versions of a saccade-to-oddball visual search task (Fig. 3.1A, inset). These neurons

were recorded in 36 ensembles. An ensemble was defined as a set of simultaneously

recorded neurons with overlapping receptive fields. Ensemble sizes ranged from two

to eight neurons.

Because both monkeys showed similar differences in performance for the easy and

hard search tasks, these data were pooled. The easy and hard search tasks resulted

in significant differences in percent correct (hard task = 71.6%; easy task = 96.6%;

Wilcoxon rank sum test, p < 1015) and mean saccade reaction time (hard task =

237 ms; easy task = 196 ms; p < 1015). Figure 3.1A shows the densities of saccade

reaction times (RTs) for the hard and easy search tasks. In addition to the significant

difference in the mean RT (44.3 ms) for the two tasks, the variability of saccade RT

was greater for the hard search task (SD = 65.3 ms) than the easy search task (SD =

41.2 ms). The mean difference in reaction time (hard minus easy) within each session

was 44.4± 3.6 (SE) ms, with a minimum of 15.4 ms (Fig. 3.1B).
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3.4.1 Do interactions among FEF neurons differ for hard and easy search?

We asked whether the amount of interactions among neurons in the FEF was

affected by the difficulty of the visual search task. To measure interactions between

neurons, we used a point process multivariate analysis to model the instantaneous

firing rate of each neuron for each task (hard and easy) taking into account the firing

history of all neurons in the recorded ensemble (see 3.3). The model estimated the

conditional intensity function (instantaneous firing rate) of the neuron with respect

to the covariates (AR and CR) when a saccade was made to a target located within

the receptive field. We computed the likelihood ratios of models for each neuron

for each task by subtracting the deviance of the AR-CR model from the deviance of

the AR model. Large likelihood ratios indicated that including ensemble neurons in

the model of a neuron greatly improved the prediction of the firing of that neuron.

Because the likelihood ratio is distributed as χ2, it is an ideal measure of the degree to

which addition of CR covariates improved the estimate of the firing rate McCullagh

and Nelder (1989).

We found that for 63.7% of easy task models and 51.6% of hard task models, χ2

p-values were < 0.05, indicating that the inclusion of CR covariates improved the

prediction of firing rate in the majority of models. We compared the likelihood ra-

tios of the two pairs of models (hard vs. easy) to determine under which task the

addition of ensemble responses (CR covariates) improved the model the most. The

model that benefited the most from addition of CR covariates was judged to convey

more interactions. Figure 3.4A is a histogram of the difference between likelihood
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ratios for each neuron (easy minus hard). The histogram is shifted significantly to

the right of zero (paired Wilcoxon rank sum test, p = 3.05 × 10−3). Thus we could

better predict the firing of neurons in the easy task than the hard task when including

the firing history of other neurons recorded simultaneously, indicating that neurons

interacted more with each other during easy visual search. Simulations revealed that,

regardless of visual search task, adding randomly firing simulated neurons to models

of FEF neurons did not improve those model fits. Therefore improvements to mod-

els of FEF neurons by adding CR covariates were caused by neuronal interactions,

whether monosynaptic, polysynaptic, or through shared input. There was no signifi-

cant correlation (p = 0.490) between RT difference (hard minus easy) and likelihood

ratio difference (easy minus hard), possibly because of low variability in RTs.

We cannot completely rule out that differences in interactions were not caused

by differences in trial lengths or spike counts between hard and easy trials. This

seems unlikely, however, for two reasons. First, the average firing rate difference

between hard and easy trials was < 1 spike/s. Second, an analysis in which we

equated for trial length yielded similar results. In this analysis, we removed data

from the end of the spike train for each trial to equate with the length of the spike

train of the shortest trial in each session. Before equating for trial length, 63.7%

of neurons in the easy task and 51.6% in the hard task showed improved fits on

addition of CR covariates, a difference of 12.1%. After equating for trial length, the

number of neurons that showed improved fits decreased because of loss of data, but

the same trend remained: 31.9% of neurons in the easy task and 20.9% in the hard

task showed improved fits on addition of CR covariates, a difference of 11.0%. Thus

85



0
5

10
15 Mean

−40 −20 0 20 40 60

A

LR diff. (easy − hard)

F
re

qu
en

cy

−50 −30 −10 10 30 50 70

0
5

10
15

20

B

LR diff. (easy − hard)
F

re
qu

en
cy

20 60 100 180 260

0
5

10
15

20

C

Easy likelihood ratios

F
re

qu
en

cy

20 60 100 180 260

0
5

10
15

20

D

Hard likelihood ratios

F
re

qu
en

cy

Figure 3.4: Likelihood ratio analysis. A: histogram of likelihood ratio (LR) differ-
ences (easy minus hard) for each neuron. B : histogram of LR differences split by
neuron class (black: visual-related neurons; gray: visual-and-movement-related neu-
rons; white: movement-related neurons). C : histogram of LRs in easy task models
split by neuron class. D : histogram of LRs in hard task models split by neuron class.
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despite discarding a considerable amount of data to equate for trial length, we found

that neurons exhibited more interactions during easy trials than during hard trials.

3.4.2 Are there differences in interactions between the three classes of FEF neurons?

We classified each neuron as visual-related, movement-related, or visual-and-movementrelated.

There were 46 visual-related neurons, 16 movement-related neurons, 49 visual-and-

movementrelated neurons, and 1 that was unclassified. Figure 3.5 shows the responses

of representative neurons of each class from our sample of recordings. The model for

each showed improved fit on addition of CR covariates. Each PSTH in this figure

shows the average firing rate of the neuron when the target was presented in the

neuron’s receptive field. Visual-related neurons had clear responses ∼ 50 ms after

target onset (Fig. 3.5A), visual-and-movementrelated neurons had similar visual la-

tencies and increased firing leading up to saccades (Fig. 3.5B), and movement-related

neurons fired at baseline until ∼ 60 ms before saccades (Fig. 3.5C ). The difference

in visual-and-movement and movement-related responses during the hard and easy

tasks correlated with the difference in mean RT between the hard (gray arrowhead)

and easy (black arrowhead) tasks.

We tested whether there were systematic differences in interactions based on neu-

ron class. Figure 3.4B shows likelihood ratio differences (easy minus hard) by neu-

ron class. There were no significant differences in the distributions of likelihood

ratio differences between visual- and movement-related neurons (Wilcoxon rank sum

test, p = 0.203), visual- and visual-andmovement related neurons (p = 1.00), and

visual-and-movement and movement-related neurons (p = 0.329). Figure 3.4, C
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Figure 3.5: Example neurons of each class. A: peristimulus time histogram (PSTH)
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and D, shows likelihood ratios for easy and hard tasks split by neuron class. We

found that the likelihood ratios were significantly larger for movement-related neu-

rons (white bars) than for visual-related neurons (black bars) for both hard (Fig. 3.4D ;

p = 1.90×10−3) and easy tasks (Fig. 3.4C ; p = 2.18×10−5). Likewise, the ratios were

larger for visual-and-movement related neurons (gray bars) than for visual-related

neurons for both tasks (hard: p = 6.34 × 10−12; easy: p = 7.36 × 10−11). This

indicates that movement- and visual-and-movementrelated neurons were engaged in

greater interactions than the visual-related neurons. Likelihood ratios were signifi-

cantly larger for the easy task than the hard task for visual-related neurons (paired

Wilcoxon rank sum test, p = 0.0425) and movement-related neurons (p = 0.0443)

and approached significance for visual-and-movementrelated neurons (p = 0.0990).

This indicates that the model better predicted the firing of neurons in the easy task

on addition of CR covariates than the hard task and that addition of CR covariates

significantly improved firing predictions. The percent of neurons of each class with

improved fits on addition of CR covariates was larger for neurons with movement-

related activity than for neurons with only visual-related activity. For the easy task,

48.0% of visual-related neurons, 87.5% of movement-related neurons, and 63.3% of

visual-and-movementrelated neurons showed improved fits. For the hard task, 32.0%

of visualrelated neurons, 56.3% of movement-related neurons, and 59.2% of visual-

and-movementrelated neurons showed improved fits. There were no differences in

mean firing rate between neurons that showed improved fits and those that did not

for each neuron class (Wilcoxon rank sum test, p > 0.287).
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3.4.3 Are interactions among FEF neurons time-locked to saccade onset?

Because movement-related neurons in the FEF characteristically increase their

firing leading up to saccades (Hanes and Schall, 1996) (see Fig. 3.5C ), we analyzed the

conditional intensity functions (λt, instantaneous firing rates) for movement-related

neurons to determine whether the timing of interactions reflected the decision of the

monkeys to move their eyes. To observe the neuronal responses around saccades, we

modeled the intensity of these neurons from target onset to 50 ms after the saccade.

Figure 3.6 shows the mean intensity (λt) for the 16 movement-related neurons during

the hard task (Fig. 3.6A) and during the easy task (Fig. 3.6B). The gray curves show

the mean intensities of AR models during the 100 ms leading up to saccades for the

hard task; the black curves are the mean intensities of AR-CR models.

Figure 3.6, C and D, shows the difference between AR-CR and AR models of

mean intensities for hard trials (C ) and easy trials (D). For both hard and easy tasks,

addition of CR covariates increased λt leading up to saccades, relative to λt for AR

models. Thus interactions between neurons statistically accounted for a significant

portion of the presaccadic activity in movement-related neurons. Figure 3.6, E and F,

shows the normalized mean PSTH (gray curve) and intensity function (black curve)

for hard trials (E ) and easy trials (F ). A comparison of the intensity functions and

PSTHs shows that the AR-CR models accurately describe both the magnitude and

the dynamics of the PSTHs for the two search tasks. The intensity functions are

shifted ∼ 30 ms to the right of the PSTHs, reflecting the integration of 30 ms of firing

history into the estimate of the intensities.
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Figure 3.6: Mean instantaneous firing rate of movement-related neurons before sac-
cade. A: black curve is mean intensity function for 16 movement-related neurons
during hard search task, averaged over all trials for AR-CR models. Gray curve is
the same for AR models. Curves are aligned to each trial’s saccade. B : same for
AR-CR models (black) and AR models (gray) for easy task. C : difference between
AR-CR and AR intensities for hard task, i.e., difference between black and gray curves
in A. D : difference between AR-CR and AR intensities for easy task. E : compari-
son of intensities and PSTHs. Normalized mean intensity function (black curve) and
PSTH (gray curve, 1-ms bins) for hard task. F : same for easy task.
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To further explore the effect of ensemble interactions on the activity of movement-

related neurons, we compared the variability of the conditional intensity functions

for each search task. The CV (SD/mean) is a measure of standardized variability

frequently used in neuroscience and may be interpreted as a “noise-to-signal” ratio

(de Ruyter van Steveninck et al., 1997; Feng and Brown, 1999; Stein and Matthews,

1965; Stevens and Zador, 1998). We used the CV to measure changes in instantaneous

firing rate of movement-related neurons that occurred just before saccades. Decreases

in the CV over time reflected less variability (or noise) in the system.

Figure 3.7 shows the CV of the mean intensity function for the movement-related

neurons for the hard (gray curves) and easy (black curves) tasks for AR-CR models

(Fig. 3.7A) and AR models (Fig. 3.7B). For both hard and easy tasks, the CV de-

creased leading up to saccades in the AR-CR models until just before saccades, at

which point the CV increased. Thus addition of CR covariates decreased standardized

variability (CV) leading up to saccades.

Remarkably, there was a clear difference between the time at which the CV began

to increase preceding saccades for hard and easy tasks. We fit smoothing splines to

each curve to estimate the time at which each curve attained its minimum. In the

AR-CR models, the CV started increasing 28 ms before saccades for the easy task and

7 ms for the hard task. This difference suggests that the movement-related neurons

responded with the least variability ∼ 20 ms earlier in the easy task, despite the fact

that we aligned intensities on saccade times. The difference in minimum CV times

between easy and hard search was closer for AR-CR models (Fig. 3.7A) than for AR

models (Fig. 3.7B). Presumably, this was because of poorer fits of AR models. It is
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important to note that, although intensities were shifted to the right of PSTHs, the

timing results in Fig. 3.7 compare identical measures to each other (i.e., intensity to

intensity and PSTH to PSTH). Thus the differences in time course of the CV between

the hard and easy tasks reflect the dynamics of the conditional intensity functions.

We compared the results using the intensity function to a standard model of the

firing rate, the PSTH. Figure 3.7C shows the CV of the PSTHs of movement-related

neurons. Similar to the results obtained from the intensity functions (Fig. 3.7, A

and B), the PSTH CV decreased leading up to saccades and increased 510 ms before

saccades. However, there was no difference between time of increase for hard and easy

tasks. It is important to keep in mind that comparing changes in the PSTH between

hard and easy tasks cannot reveal the same information as the intensity can, because

the latter measures changes in the system in the context of interacting neurons. Thus

the intensity function is a better measure of instantaneous firing rate than the PSTH

to measure time of response variability in the FEF.

3.5 Discussion

An outstanding problem in neuroscience is determining how populations of neu-

rons interact to produce behavior. We have recorded simultaneous activity from

multiple FEF neurons while monkeys performed two versions of a visual search task,

one hard and one easy, defined by similarity between the target and distractors.

These results indicate that easier visual search tasks are associated with greater

interactions among populations of FEF neurons. This is seemingly counterintuitive.

After all, why should neurons interact more during a task that seemingly requires
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fewer resources to solve? The average firing rates are not significantly different be-

tween the two conditions, so there must be a difference in the structure of the spike

trains. There are at least two potential explanations. 1) During hard tasks, FEF

neurons fire less randomly, requiring fewer interactions to accomplish the same goals

(target selection and saccade preparation). 2) FEF neurons fire more randomly dur-

ing hard tasks, requiring more information from other neurons. We measured the

CV of the interspike intervals during hard and easy tasks. We found no significant

difference between the two (p = 0.255), although there was a trend toward larger

CV during the easy task. Further studies are required to determine whether FEF

neurons’ firing patterns differ between tasks.

Hanes and Schall (1996) determined that single movement-related neurons in the

FEF could reliably predict saccade reaction time. This finding leads to the question

of how movement-related neurons integrate visual information. It is possible that

interactions between the three neuron classes in the FEF fully predict the timing of

saccades. Simultaneous recordings from the FEF and other prefrontal areas (e.g., area

46) or parietal areas (e.g., lateral intraparietal cortex) would address this issue. In

concert with a point process analysis, such an experiment would describe the timing of

interactions between areas and determine how neurons in other cortical areas interact

with FEF neurons to decide to move the eyes.

We propose that the timing of changes in the intensity function of movement-

related neurons reveals the time at which networks of neurons decide to initiate a

saccade. For models that include ensemble activity, the CV decreases until just before

saccades, which coincides with the period of time when information about the decision
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to saccade accumulates. The CV is a second-order measure. As such, it reflects

changes in noise in the system. Thus it provides an estimate of the time between the

saccade decision time of FEF movement-related neurons and execution of the saccade.

Because the CV reflects noise in the system, remarkably, this also suggests that the

noise in the system actually decreases as the firing rate of these neurons increases

leading up to saccades (until the increase in CV just before saccades). Therefore

we show not only that movement-related neurons have activity sufficient to trigger

a saccade (Hanes and Schall, 1996), but that their presaccadic activity reflects a

decrease in firing variability.

The difference in time of increase of CV between hard and easy tasks has important

implications for when the decision to make a saccade occurs. In our experiments, the

neurons spent 20 ms longer reaching their minimum in response variability in the

hard task than in the easy one. This may correspond to earlier decision times in the

easy task than in the hard one. Therefore it seems that the decision to move the

eyes is mediated by the movement-related neurons. The larger likelihood ratios for

movement-related neurons versus visual-related neurons suggest that the movement-

related neurons receive greater interactions from other FEF neurons. This agrees with

models of visual search in the FEF, which assert that projections from visual-related

neurons to movement-related neurons transform information about visual stimuli into

a saccade execution plan (Thompson et al., 1996).

How does the estimate of 20-ms difference in time of minimum response variability

correspond to differences in saccade RT? The mean RT difference between the hard

and easy tasks was 44.3 ms. The CV during the 100 ms after target onset did not
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decrease for visual-related neurons (data not shown). This may be because of the

location of presynaptic neurons connecting with these visual-related neurons. If, as

the anatomy suggests (Schall et al., 1995b), visual-related neurons receive synaptic

connections from visually responsive neurons in the parietal, temporal, and occipital

cortices, we would not have observed visual-related FEF neurons in the context of

those interactions. Simultaneous recording from the FEF and cortical areas that

project to the FEF would address this issue. Such an experiment would address

whether sensorimotor integration occurs in a single bottom-up volley or is the result

of continued flow of information between neurons with sensory responses and those

with motor responses (Riehle et al., 1997; Woodman et al., 2008).

We showed that accounting for ensemble activity is a powerful method of modeling

the firing rate of a neuron. There are several ways to measure activity of single

neurons, however. A continuous function best represents the firing of a neuron if it

accounts for the synaptic input to the neuron (a network property) and approximates

the instantaneous firing rate of the neuron. The intensity function has two advantages

over other measures of neuronal firing, such as the PSTH. First, it accounts for

network activity (the CR covariates) and second, it approximates instantaneous firing

rate better than the PSTH (Truccolo et al., 2005). We have shown that using the

intensity function to describe the firing of FEF neurons reveals the time-course of

activity leading to the decision to saccade more sensitively than the PSTH.

Although the point process model can account for a large number of influences

on a neuron’s firing, it is not a mechanistic model. It cannot, therefore, distinguish

between neurons that are synaptically connected and neurons that share common
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input. This limitation is shared by other common techniques such as the covariogram

and joint PSTH. A challenge for future studies of neuronal interactions is to include

knowledge about anatomical connections and biophysical properties of neurons in

mechanistic models of networks of neurons.

We postulate that the distinction between easy and hard tasks, as detected by

our results (e.g., difference in lag between minimum CV and saccade) is continuous,

rather than dichotomous. Theoretically, there must exist a minimal set of neurons

that are required to complete a given visual search task and a latest time before

saccade that the decision is made. Our results show that easier visual search tasks

are associated with greater interactions among populations of FEF neurons and may

result in earlier saccade decision times.
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CHAPTER IV

NEURAL VARIABILITY IN FRONTAL EYE FIELD DURING VISUAL SEARCH

4.1 Introduction

When presented with the same stimulus repeatedly, we respond with variable

response times (RTs). What is the source of this variability in behavior? Can it be

identified with particular stages of processing during perceptual decisions? The mean

firing rates of neurons in several cortical areas correlate with RT and can explain

variability in RT in a variety of tasks, including in extrastriate visual cortex (Britten

et al., 1992), posterior parietal cortex (Thomas and Paré, 2007) and prefrontal cortex

(Cohen et al., 2009a; Sato et al., 2001). Can firing variability account for variability

in RT?

Recent work has shown that firing variability in dorsal premotor cortex accounts

for variability in RT in a reaching task in monkeys (Churchland et al., 2006). This

suggests that some of the variability in RT lies in variability in movement preparation.

We trained two macaques to perform a visual search task in which they made a

single saccade to a target presented among distractor stimuli. We recorded spiking

from frontal eye field (FEF) neurons and measured their firing variability. We asked

whether firing variability in FEF accounts for variability in RT during visual search.

In this task, at least two populations of neurons in FEF correlate with two processing

stages: target selection and saccade preparation. The mean firing rates of visually-

responsive FEF neurons select the target of visual search among distractors by firing
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more when the target versus a distractor is in their receptive fields (RFs). The mean

firing rates of other neurons, called movement neurons, increase to a threshold before

purposive saccadic eye movements to their movement fields (MFs) but fire at their

baseline rate before saccades outside their MFs (Bruce and Goldberg, 1985; Hanes

and Schall, 1996).

We show that (1) variability decreased to a minimum after search array onset,

(2) variability decreased more when the search task was easier versus harder and (3)

variability decreased more when the search target was inside versus outside RFs. The

first two findings suggest that the brain reaches a minimum variability in spiking to

make a decision and that this minimum correlates with the difficulty of the task.

The third finding suggests that neurons use the variability as well as the mean to

discriminate between target and distractors during visual search decisions.

4.2 Methods

4.2.1 Behavioral task and recording

Activity of FEF neurons was recorded in both hemispheres of two male macaques

(Macaca radiata) performing memory-guided saccade and visual search tasks. Record-

ings were acquired from the rostral bank of the arcuate sulcus using tungsten micro-

electrodes (FHC). In the search task, monkeys searched for a target (T or L) among

distractors (L or T) (Woodman et al. 2007). Distractors could be homogeneous (e.g.,

upright Ls) or heterogeneous (e.g., Ls oriented differently). Each trial began with

monkeys fixating a central spot for about 600 ms. A target was then presented at one
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of eight isoeccentric locations equally spaced around the fixation spot (Fig. 7.1A).

The other seven locations contained seven distractor stimuli, three distractors, or one

distractor. During each recording session, the target was a T or an L rotated by 0,

90, 180, or 270 ◦. Monkeys were given a liquid reward for making a saccade to the

target location and fixating it for 1000 ms.

Activity from each neuron was recorded during a memory-guided saccade task

to distinguish visual- from movement-related activity (Bruce and Goldberg, 1985;

Hikosaka and Wurtz, 1983). The target was flashed alone for 80 ms. Monkeys were

required to maintain fixation for 500-1000 ms after the target onset. When the fixation

spot disappeared, the monkey was rewarded for a saccade to the remembered location

of the target.

Our data set consists of 68 neurons from monkey Q and 27 neurons from monkey

S. Spikes were sorted on-line and off-line using principal components analysis and

template matching (Plexon, Dallas, TX).

Monkeys were surgically implanted with a head post, a subconjunctival eye coil,

and recording chambers. Surgery was conducted under aseptic conditions with ani-

mals under isoflurane anesthesia. Antibiotics and analgesics were administered post-

operatively. All surgical and experimental procedures were in accordance with the

National Institutes of Health Guide for the Care and Use of Laboratory Animals and

approved by the Vanderbilt Institutional Animal Care and Use Committee.
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4.2.2 Data analysis

To measure the firing rate of each neuron, we used a spike density function, con-

volving each spike with a kernel resembling a postsynaptic potential (Thompson et al.,

1996).

We used a memory-guided saccade task to classify neurons. Visual neurons had

significantly greater activity in the 100 ms after the target flash than in the 100 ms

before the target flash. Movement neurons had greater responses in the 100 ms leading

up to the saccade than in the 100 ms before the target flash. Visuomovement neurons

had greater responses in the 100 ms after the target flash and in the 100 ms leading

up to the saccade than in the 100 ms before the target flash. Of the 95 neurons in

the data set, 83 were visual and visuomovement neurons and had significant above-

baseline activity during the memory delay and 12 were movement neurons.

To measure the time of target selection we used millisecond-by-millisecond Wilcoxon

rank-sum tests. Selection time is defined as the time at which the distribution of ac-

tivity when the search target was inside a neuron’s RF was significantly greater than

the distribution of activity when the target was opposite the RF for ten consecutive

milliseconds with p < 0.01. This “neuron-antineuron” approach presumes that a pop-

ulation of neurons in the brain representing the location of the target competes with

a population of neurons representing the location of distractors opposite the target.

Measuring selection time with a receiver operating characteristic analysis (Thompson

et al., 1996) yielded similar results. There was no difference in target selection time

between visual and visuomovement neurons.
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To measure firing variability, we used a metric similar to the Fano factor (vari-

ance/mean), but scaled by the time-varying mean firing rate (Churchland et al.,

2006).

To quantify the timing of mean and variability changes in firing rate, we used

a receiver operating characteristic (ROC) analysis, in which we calculated the area

under the curve of probability of mean or variability exceeding a particular criterion

for target versus distractor. Area values close to 0.5 indicate the absence of selectivity.

Area values close to 1 indicate strong discrimination between target and distractor

activity.

All statistical tests were done with Bonferroni corrections for multiple compar-

isons. All analyses were done with R (http://www.r-project.org/).

4.3 Results

4.3.1 Normalized variability

Visual and visuomovement neurons

Figure 4.1 shows the mean firing rate of an example visuomovement neuron when

the target was inside and opposite its RF. This neuron selected the target by increas-

ing its firing rate when the target was in its RF.

Figure 4.2 shows the mean firing rate of 83 visual and visuomovement neurons by

set size for each monkey when the target was inside or opposite RFs.

Figure 4.3 shows the time-varying firing variability of the 83 visual and visuomove-

ment neurons from Figure 4.2. The firing variability decreased regardless of which
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Figure 4.1: Example neuron that selected the target during the visual search task.
The black curve with dark bands represents the mean ± SE firing rate when the
target was inside the neuron’s RF. The gray curve with light bands represents the
mean ± SE firing rate when the target was opposite the RF. Initially, the neuron’s
firing rate did not discriminate between target and distractors, but after 130 ms its
firing rate selected the target (dashed vertical line).

stimulus was inside RFs, but it decreased more when the target was inside RFs than

when distractors were inside RFs. Thus, the firing variability discriminated between

target and distractors just as the mean firing rates did.

Figure 4.4 shows the ROC area for each set for the variability and the mean firing

rate for the population of visual and visuomovement neurons. Target selection was

later for larger set sizes.

Movement neurons

Figure 4.5 shows the mean firing rate of 12 movement neurons by set size when the

target was inside or opposite MFs. As with the visual and visuomovement neurons,

the firing variability decreased with time when the target was inside MFs, but, in
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Figure 4.2: Mean ± SE population mean firing rates when the target was inside
(dark) and opposite (light) neurons’ RFs as a function of set size.
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and opposite (light) neurons’ RFs as a function of set size for movement neurons.

contrast to visual and visuomovement neurons, did not decrease when the target was

outside MFs.

4.3.2 Relationship between firing rate and response time

We asked whether monkey’s RTs were fastest when neurons had the highest firing

rate or when they fired closest to their mean rate. Figure 4.6 shows scatterplots

of RT versus deviation from each neuron’s mean firing rate for all neurons and all

trials in the data set. The top row shows the quadratic fits of curves for visual and
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Figure 4.6: Scatterplots of RT versus deviation from mean firing rate with quadratic
fits.

visuomovement neurons from 50 to 150 ms after search array onset (left panel) and

from 100 ms before saccade onset to saccade onset (right panel). The bottom row

shows the same scatterplots for movement neurons.

RT was fastest when visually-responsive neurons fired closest to their mean after

target presentation and movement neurons fired closest to their mean before saccade

onset. This suggests that the population of neurons selecting the search target and the

population of neurons preparing the saccade each reached an optimal firing rate for

the monkey to have its fastest RT. This suggests that neurons downstream of FEF

movement neurons (e.g., in the superior colliculus) may not reach their threshold
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fastest when receiving the most input from FEF quickly. Rather, an optimal network

state may be required to activate burst neurons in the superior colliculus, consisting

of balanced input from FEF movement neurons, and neurons in other areas, including

within superior colliculus. On the other hand, the quadratic fits in Figure 4.6 were to

over 30000 data points, so this conclusion must be taken with a degree of skepticism.
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CHAPTER V

BIOPHYSICAL SUPPORT FOR FUNCTIONALLY DISTINCT CELL TYPES IN
THE FRONTAL EYE FIELD

5.1 Abstract

Numerous studies have described different functional cell types in the frontal eye

field (FEF), but the reliability of the distinction between these types has been un-

certain. Studies in other brain areas have described specific differences in the width

of action potentials recorded from different cell types. To substantiate the function-

ally defined cell types encountered in FEF, we measured the width of spikes of visual,

movement, and visuomovement types of FEF neurons in macaque monkeys. We show

that visuomovement neurons had the thinnest spikes, consistent with a role in local

processing. Movement neurons had the widest spikes, consistent with their role in

sending eye movement commands to subcortical structures such as the superior col-

liculus. Visual neurons had wider spikes than visuomovement neurons, consistent

with their role in receiving projections from occipital and parietal cortex. These re-

sults show how structure and function of FEF can be linked to guide inferences about

neuronal architecture.1

1This chapter was published as Cohen JY, Pouget P, Heitz RP, Woodman GF, Schall JD. Bio-
physical support for functionally distinct cell types in the frontal eye field. J Neurophysiol 101:
912-916, 2009.
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5.2 Introduction

This paper concerns the general problem of how the primate brain transforms

visual input into eye-movement output. Several cortical areas and subcortical regions

contribute to this visual-motor mapping. One such area, the frontal eye field (FEF),

contains at least three main functional types of neurons: visual, movement, and visuo-

movement neurons (Bruce and Goldberg, 1985; DiCarlo and Maunsell, 2005; Goldberg

and Bushnell, 1981; Hanes et al., 1998; Kodaka et al., 1997; Schall, 1991; Segraves,

1992; Segraves and Goldberg, 1987; Umeno and Goldberg, 1997). In FEF, a popula-

tion of visual and visuomovement neurons selects the target of search by increasing

their firing rate in response to the presence of the target in their receptive fields (RFs)

relative to when a distractor is situated in their RFs (e.g., Schall and Hanes, 1993;

Thompson et al., 1996). A different population of neurons, called movement neurons,

increases their firing rate leading up to saccades into their movement fields (MFs)

(e.g., Hanes and Schall, 1996). Visuomovement neurons also increase their firing

rate leading up to saccades. Despite these differences, distinctions between these cell

types have relied largely on firing-rate patterns as opposed to inherent biophysical

properties of the neurons being studied. Moreover, disagreements persist about the

reliability of the distinction between cell types.

Understanding how visuomotor transformations occur requires knowledge of the

underlying circuitry, which is composed of different types of neurons. Cortical neurons

have been distinguished by morphology (Kawaguchi, 1995; Krimer et al., 2005), neu-

rotransmitter (Connors and Gutnick, 1990), laminar distribution (Bullier and Henry,
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1979; Condé et al., 1994; Dow, 1974), molecular composition (Cauli et al., 1997;

Martina et al., 1998), functional property (González-Burgos et al., 2005), and devel-

opmental origin Letinic et al. (2002). Differences between neuron types have typically

been distinguished in vitro or intracellularly. Several studies, however, have distin-

guished types of neurons by the shape of extracellularly recorded action potentials

(Barthó et al., 2004; Chen et al., 2008; Constantinidis and Goldman-Rakic, 2002;

Csicsvari et al., 1999; Henze et al., 2000; Mountcastle et al., 1969). For example,

extracellular recordings of neurons in extrastriate visual cortex (V4) have shown that

neurons with thin spikes (putative interneurons) showed stronger attentional modu-

lation than neurons with wider spikes (Mitchell et al., 2007).

To determine whether functional cell types in FEF exhibit biophysical differences,

we measured spike waveforms of functional cell types distinguished by their responses

following visual stimuli or before saccades. The results are consistent with the hy-

pothesis that different functional cell types correspond to different anatomical cell

types.

5.3 Methods

5.3.1 Behavioral task and recording

All experimental procedures were performed in accordance with the National In-

stitutes of Health Guide for the Care and Use of Laboratory Animals and approved

by the Vanderbilt Institutional Animal Care and Use Committee. Activity of FEF

neurons was recorded in four male macaques (Macaca radiata) performing three dif-
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ferent tasks that have been described in detail previously. Monkey Q performed visual

search for a singleton target defined by color (Cohen et al., 2007; Sato et al., 2001).

Monkeys Q and S performed visual search for a target (T or L) among distractors (Ls

or Ts, respectively) (Woodman et al., 2007). Monkeys M and U performed a saccade

stop signal (countermanding) task (Hanes et al., 1998). All monkeys were trained on

a memory-guided saccade task. Activity from each neuron was recorded during this

task to distinguish visualfrom movement-related activity (Bruce and Goldberg, 1985;

Hikosaka and Wurtz, 1983).

Our data set consists of 12 neurons from monkey Q during the color singleton

visual search task, 48 neurons from monkey Q during the form visual search task, 20

neurons from monkey S during the form visual search task, 9 neurons from monkey M

during the countermanding task, and 5 neurons from monkey U during the counter-

manding task, for a total of 94 neurons. Spikes were sorted on-line and off-line using

principal components analysis (Plexon). A neuron was only considered for analysis

if its spike waveforms were clearly discriminable and its activity was clearly visual

related, movement related, or visual and movement related.

5.3.2 Data analysis

To measure the firing rate of each neuron, we used a spike density function, con-

volving each spike with a kernel resembling a postsynaptic potential (Thompson et al.,

1996). We used the memory-guided saccade task to classify neurons. Visual neurons

had significantly greater activity in the 100 ms after the target flash than in the 100 ms

before the target flash. Movement neurons had greater responses in the 100 ms lead-
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ing up to the saccade than in the 100 ms before the target flash. Visuomovement

neurons had greater responses in the 100 ms after the target flash and in the 100 ms

leading up to the saccade than in the 100 ms before the target flash.

Because spike amplitude, but not width, is dependent on the distance from elec-

trode tip (Henze et al., 2000), we used spike width as a measure of action potential

shape. We applied a smoothing spline to each mean spike waveform. Spike width was

computed as the time from trough to peak (Mitchell et al., 2007) (see Fig. 5.2A). This

measure resulted in smaller spike width values than those reported in other studies

(e.g., Constantinidis and Goldman-Rakic, 2002), which measured spike width as the

time from first to second trough. Spike waveforms were sampled at 40 kHz for 800µs.

In addition to classifying neurons based on their activity during the memory-

guided saccade task, we computed a visuomovement index for each neuron based on

activity during the search or countermanding task in the RF location that elicited

the largest response during the memory-guided task. The index was computed as

V −B
M −B

,

where V is the neuron’s average visual-related firing rate from 50 to 150 ms after target

onset, M is its average movement-related firing rate from 100 ms before saccades to

the time of saccades and B is its average baseline firing rate 100 ms before target

onset. We did not use spike density functions to compute visuomovement indices.

We measured spiking variability using the coefficient of variation (CV) (Softky

and Koch, 1993) in bins of 100 interspike intervals. The CV is defined as the ratio of
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the SD to the mean of the interspike intervals.

To measure differences between groups of neurons, we used Wilcoxon rank-sum

tests with Bonferroni corrections for multiple comparisons. All analyses were per-

formed in R (http://www.r-project.org/).

5.4 Results

We analyzed the activity of 94 FEF neurons from four monkeys during memory-

guided visual search and countermanding tasks. We classified neurons as visual,

movement or visuomovement and compared spike widths across functionally defined

neuron types.

5.4.1 Types of FEF neurons

To classify neurons, we measured responses during the memory-guided saccade

task. We classified 33 neurons as visual, 28 as movement, and 33 as visuomovement.

The fraction of visuomovement neurons is lower than reported in previous studies

(Bruce and Goldberg, 1985; Schall, 1991). Figure 5.1 shows average firing rates for

a representative neuron of each type during the memory-guided task. Figure 5.1A,

left, shows the firing rate of a visual neuron aligned to target onset. The neuron had

its largest response following the target flash in its RF (cumulative distribution of

saccade times shown as dashed gray curve). Figure 5.1A, right, shows the firing rate

of the same neuron aligned to the time of saccade (dashed line). The neuron did not

fire above baseline prior to saccades. Figure 5.1B shows the response of a movement

neuron. This neuron increased its firing rate leading up to saccades (right). It did
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Figure 5.1: Representative visual (A), movement (B), and visuomovement (C ) neu-
rons. Left: average firing rate during the memory-guided saccade task aligned to the
time of presentation of the target inside the neuron’s receptive field. Dashed gray
line plots the distribution of response times. Right: average firing rate aligned on the
time of saccade initiation (dashed gray line).

not fire above baseline in response to the target flash (left). Figure 5.1C shows the

response of a visuomovement neuron. This neuron responded to the visual stimulus

and before saccades. We found no difference in spike amplitude or firing rate between

types of neurons.
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5.4.2 Spike widths

After categorizing neurons, we measured the width of the mean spike waveform for

each neuron from trough to peak (Fig. 5.2). Figure 5.2A shows an example mean spike

waveform from a visuomovement neuron and demonstrates our method for computing

spike width. This neuron had a mean spike width of 250µs. Figure 5.2B shows all the

normalized mean spike waveforms for visual neurons (black), movement neurons (red)

and visuomovement neurons (blue) fitted with smoothing splines. Each mean spike

waveform was normalized by dividing its values by the difference of its maximum

and minimum values. Figure 5.2C shows histograms of spike widths of all neurons of

each type, and Fig. 5.2D shows the cumulative distributions of spike widths for each

type of neuron. The mean spike widths (± SE) were 329± 20.5µs for visual neurons

(V), 352 ± 19.5µs for movement neurons (M), and 218 ± 16.4µs for visuomovement

neurons (VM).

A Kruskal-Wallis rank sum test revealed a significant effect of neuron type (χ2 =

28.1, p < 0.001). Spike widths were significantly larger for movement neurons than

for visuomovement neurons (Wilcoxon rank sum test with Bonferroni correction for

multiple comparisons, p < 0.001) and larger for visual neurons than for visuomove-

ment neurons (p < 0.005). There was no significant difference between visual and

movement neuron spike widths (p > 0.3).

To verify that the demands of the task did not affect the shape of a neuron’s spike,

we compared the spike widths during the intertrial intervals and during the period

from target onset to saccade onset. All neurons showed no difference in spike width
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Figure 5.2: Spike width by neuron type. A: mean (—) and mean ± SD (- - -) spike
waveforms from a representative visuomovement neuron. B : all mean, normalized
spike waveforms for visual (V, black), movement (M, red) and visuomovement (VM,
blue) neurons. C : histogram of spike widths for each type of neuron. D : cumulative
distribution of spike widths for each type of neuron.
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between task performance and baseline activity (p > 0.9).

We computed a visuomovement index for each neuron defined as the ratio of the

difference between visual activity and baseline activity and movement activity and

baseline activity during the search or countermanding task. Classifying neurons us-

ing the visuomovement index reproduced classification using the activity during the

memory-guided task. Figure 5.3A shows boxplots of visuomovement indices grouped

by neuron type as defined in the memory-guided task. Visuomovement indices were

significantly different between visual and movement neurons (Wilcoxon rank sum

test with Bonferroni correction for multiple comparisons, p < 0.001), between visual

and visuomovement neurons (p < 0.001) and between movement and visuomovement

neurons (p < 0.001). To obtain an independent classification of neurons, we divided

the distribution of visuomovement indices into three groups. Figure 5.3B shows this

division and the classification of neurons into visual (V), movement (M), and visuo-

movement (VM) categories. Two visuomovement neurons were classified differently

using the visuomovement index, one as a visual neuron and one as a movement neu-

ron. These are shown as gray points in Fig. 5.3B. Using this classification, spike

widths were significantly larger for visual than visuomovement neurons (p < 0.001)

and for movement than visuomovement neurons (p < 0.001). There was no significant

difference in spike width between visual and movement neurons (p > 0.7).

Neuron classification using the visuomovement index was robust within a small

range of boundaries between classes of neurons. Figure 5.3, C and D, show the

number of misclassified neurons as a function of the boundary between movement

and visuomovement neurons and visuomovement and visual neurons for each type of
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Figure 5.3: Visuomovement index. A: boxplot of visuomovement indices derived
from activity during the memory-guided saccade task. B : scatter plot of spike width
vs. visuomovement index. Neurons were classified into movement (M), visuomove-
ment (VM), and visual (V) groups separated by dashed black lines, and 2 neurons
that were classified as visuomovement during the memory-guided task were classified
differently using the index; these are shown in gray. C : number of misclassified M and
VM neurons as a function of the boundary between M and VM in B. The value min-
imizing the number of misclassified neurons was 0.2, indicated by the dashed vertical
line. D : number of misclassified VM and V neurons as a function of the boundary
between VM and V in B. The value minimizing the number of misclassified neurons
was 0.7, indicated by the dashed vertical line.
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neuron. The boundaries shown in Fig. 5.3B (0.2 and 0.7) correspond to the minimum

number of misclassified neurons (the 2 visuomovement neurons shown in gray in

Fig. 5.3B). These boundaries are indicated by dashed vertical lines in Fig. 5.3, C and

D.

5.4.3 Spiking variability

To obtain another measure useful for distinguishing neuron types, we measured

the coefficient of variation of spiking (CV) in bins of 100 interspike intervals. Figure

5.4 shows cumulative distributions of CV for the three classes of neurons. CV was

significantly larger for visuomovement neurons than for visual neurons (Wilcoxon rank

sum test, p < 0.001) and for movement neurons (p < 0.001). CV was not significantly

different between visual and movement neurons (Wilcoxon rank sum test, p > 0.5).

5.5 Discussion

We have shown that three functional types of FEF neurons have different spike

waveforms. This suggests that distinct types of neurons defined functionally may

constitute different types of neurons defined morphologically. It is tempting to classify

visuomovement neurons, those neurons with the thinnest spikes, as local inhibitory

interneurons. We cannot, however, say that all neurons with short spike durations

are inhibitory. Some studies suggest only particular subclasses of GABAergic neurons

display short spike durations (McCormick et al., 1985; Naegele and Katz, 1990). Some

or all may be small neurons with local excitatory connections (Gur et al., 1999).

Likewise, we cannot say that all visual and movement neurons are pyramidal neurons
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ment (M), and visuomovement (VM) neurons.

because they have wider spikes than visuomovement neurons although data from

anatomical and physiological studies are in agreement with such a claim (Fries, 1984;

Segraves and Goldberg, 1987; Sommer and Wurtz, 1998, 2001).

Are there really three categories of neurons in FEF? Although there appears to be

a continuum of responses from visual related to movement related (see Fig. 5.3), our

results reveal a significant difference in spike width related to functional neuron clas-

sification. This is important for exposing the possibility that visuomovement neurons

may constitute a different morphological type of neuron than visual or movement

neurons. While further research is needed to verify or refute this hypothesis, the

current results add to a growing literature providing evidence for the heterogeneity

of neurons in FEF. The ability to distinguish types of neurons in FEF is necessary
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to understand whether the visual to motor transformation occurs within or across

distinct neuron types.
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CHAPTER VI

ON THE ORIGIN OF EVENT-RELATED POTENTIALS
INDEXING COVERT ATTENTIONAL SELECTION DURING VISUAL SEARCH

6.1 Abstract

Despite nearly a century of electrophysiological studies recording extracranially

from humans and intracranially from monkeys, the neural generators of nearly all hu-

man event-related potentials (ERPs) have not been definitively localized. We recorded

an attention-related ERP component, known as the N2pc, simultaneously with in-

tracranial spikes and local field potentials (LFPs) in macaques to test the hypothesis

that an attentional-control structure, the frontal eye field (FEF), contributed to the

generation of the macaque homologue of the N2pc (m-N2pc). While macaques per-

formed a difficult visual search task, the search target was selected earliest by spikes

from single FEF neurons, later by FEF LFPs, and latest by the m-N2pc. This neu-

rochronometric comparison provides an empirical bridge connecting macaque and hu-

man experiments and a step toward localizing the neural generator of this important

attention-related ERP component.1

1This chapter was published as Cohen JY, Heitz RP, Schall JD, Woodman GF. On the origin of
event-related potentials indexing covert attentional selection during visual search. J Neurophysiol
102: 2375-2386, 2009.
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6.2 Introduction

The electroencephalogram (EEG) has long been used as an electrophysiological

measure of human brain activity (Berger, 1929). Time-averaged event-related poten-

tials (ERPs) derived from the EEG map onto diverse perceptual and cognitive states

and processes (Rugg and Coles, 1995). However, definitively identifying the neural

generators of ERP components measuring specific cognitive operations has been in-

tractable because the number of source configurations that can produce a given EEG

voltage distribution on the scalp is infinite (Hillyard and Anllo-Vento, 1998; Luck,

2006; Nunez and Srinivasan, 2006). Helmholtz (1853) proved that when the number

of electrical generators is unknown, an infinite number of inverse solutions can ac-

count for any pattern of voltages across a sphere (like the head). Since the dawn of

human electrophysiology, investigators have sought solutions to this inverse problem

(Adrian and Matthews, 1934; Walter, 1938). Modern approaches infer the neural gen-

erators of human ERP components using source estimation algorithms (Nunez and

Srinivasan, 2006) or additional information from brain imaging (e.g., Heinze et al.,

1994). However, this basic problem will remain underdetermined without constraints

from intracranial recordings.

Intracranial recordings from epilepsy patients have provided useful information

(Lachaux et al., 2003; Michel et al., 2004), but clinical and ethical constraints limit

the general utility of this approach. Intracranial recordings can be carried out system-

atically and thoroughly in nonhuman primates. However, this is predicated on the

homology of specific ERP components in humans and nonhuman primates. Several
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studies have identified ERP components in monkeys that are homologous to those

in humans (Arthur and Starr, 1984; Glover et al., 1991; Javitt et al., 1992; Lamme

et al., 1992; Mehta et al., 2000a,b; Paller et al., 1992; Schroeder et al., 1991, 1992).

Recently, we described a macaque homologue of the N2pc (an abbreviation of N2-

posterior-contralateral, hereafter referred to as m-N2pc) (Woodman et al., 2007), an

ERP component that measures the allocation of covert visual attention (Luck and

Hillyard, 1994a,b). We determined that the m-N2pc is maximal over extrastriate

visual cortex and that the time and magnitude of the m-N2pc vary with visual search

array set size. These properties parallel observations in humans.

The N2pc has been critical in distinguishing between models of attentional deploy-

ment during visual search because it provides a millisecond-by-millisecond measure

of the focusing of attention in the left or right visual field (Woodman and Luck, 1999,

2003b). The N2pc indexes a covert visual attention mechanism that is sensitive to

the degree of distractor suppression required during visual search (Luck and Hillyard,

1994a,b; Luck et al., 1997) and a perceptual selection mechanism that operates inde-

pendent of later stages of processing (Woodman and Luck, 2003a). When the N2pc

was discovered, it was hypothesized to result from feedback from an attentional-

control structure because this index of covert attention occurred after the earliest

evidence for attentional selection found using spatial cuing paradigms (Heinze et al.,

1994; Hopf et al., 2004; Luck and Hillyard, 1994a). By establishing the homology be-

tween the N2pc in human and monkey, we can now test hypotheses about the origin

of the N2pc.

To understand the dynamics of this component, we collected three measures of
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neural activity while macaque monkeys performed a difficult visual search task. We

recorded intracranially from microelectrodes in the frontal eye field (FEF), an area

in prefrontal cortex involved in covert visual selection hypothesized to represent a

saliency map used to guide attention (Cohen et al., 2009a; Sato and Schall, 2003;

Sato et al., 2001; Schall, 2004b; Schall and Hanes, 1993; Thompson and Bichot, 2005;

Thompson et al., 1997, 2005b). The first neural measure was from the spike times

of single neurons in FEF that discriminate between target and distractors during

visual search. The second measure was from local field potentials (LFPs) recorded

simultaneously with the single neurons that exhibit polarization differences for the

target compared with distractors (Monosov et al., 2008). The LFP is believed to be

a weighted average of dendrosomatic activity of about 105 neurons in approximately

1 mm2 of cerebral cortex (Braitenberg and Schüz, 1991; Katzner et al., 2009; Logo-

thetis and Wandell, 2004; Rockel et al., 1980). The third measure was the m-N2pc

component, which is maximal over extrastriate visual cortex. ERP components have

been estimated to arise from a weighted average of the LFPs summating from the

synchronous activity of around 107 neurons in about 6 cm2 of cortex (Cooper et al.,

1965; Ebersole, 1997; Nunez and Srinivasan, 2006). These electrophysiological signals

provide millisecond resolution of attention-related activity at multiple spatial scales.

By measuring these three signals we addressed a simple question: when the brain

selects a target on which to allocate attention, does it happen all at once or through

some sequence of processes at different scales in different places? The answer provides

insight into the origin of the m-N2pc. If, under the conditions tested, the m-N2pc

is driven by feedback from the selection process in FEF, then we should find that 1)
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target selection in FEF precedes the m-N2pc and 2) the amplitude of FEF activity

correlates with the amplitude of the m-N2pc trial by trial.

6.3 Methods

6.3.1 Behavioral task and recording

We recorded spikes from FEF neurons and LFPs from the same microelectrodes in

both hemispheres of two male macaque monkeys (Macaca radiata, identified as Q and

S). Simultaneously, we recorded ERPs from skull electrodes located at approximately

OL/OR and T5/T6 in the human 1020 system scaled to the macaque skull. In monkey

S, we also recorded from anterior and middle electrodes corresponding to F3/F4 and

C1/C2 in the human 1020 system. The monkeys performed a memory-guided saccade

task and a visual search task. In the search task, monkeys searched for a target (T

or L in one of four orientations) among distractors (L or T). Distractors could be

homogeneous (oriented uniformly) or heterogeneous (oriented randomly). Each trial

began with the monkey fixating a central spot for about 600 ms. A target was then

presented at one of eight isoeccentric locations equally spaced around the fixation

spot (Fig. 6.1A). The other seven locations contained one, three, or seven distractor

stimuli (set sizes 2, 4, and 8). The monkey was given a liquid reward for making a

single saccade to the target location and fixating it for 1000 ms. This single-saccadic-

response criterion was used to ensure that the animals would process the search array

prior to their response, enabling us to observe the deployment of covert attention to

the target. Within sessions, trials with different set sizes were randomly interleaved.
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Across sessions the monkeys alternated between searching for Ts with Ls as distractors

or Ls with Ts as distractors.

Activity from each neuron was recorded during a memory-guided saccade task

to distinguish visual- from movement-related activity (Bruce and Goldberg, 1985;

Hikosaka and Wurtz, 1983). The target was flashed alone for 80 ms. Monkeys were

required to maintain fixation for 400-1000 ms after the target onset. When the fixation

spot disappeared, the monkey was rewarded for a saccade to the remembered location

of the target.

Our data set consisted of 57 neurons from monkey Q and 23 neurons from monkey

S, with simultaneously recorded LFPs and ERPs. Spikes were sorted on-line and off-

line using principal-components analysis and template matching (Plexon). FEF LFPs

were recorded from the same electrodes (2- to 5-MΩ impedance) as the single neurons,

sampled at 1 kHz, and filtered at 0.7170 Hz, using Plexon head-stage HST/8 050-G20

with an input impedance of 38 MΩ. EEG signals were sampled at 1 kHz and filtered

between 0.7 and 170 Hz. A guide tube used with the microelectrodes, in contact

with the surface of the dura, was used as reference for the LFP signal. The frontal

EEG electrode (approximating human Fz) was used as reference for the EEG signal

(Woodman et al., 2007).

Monkeys were surgically implanted with a head post, a subconjunctival scleral eye

coil, EEG electrodes, and recording chambers under aseptic conditions with isoflurane

anesthesia. Antibiotics and analgesics were administered postoperatively. All surgical

and experimental procedures were in accordance with the Guide for the Care and Use

of Laboratory Animals and approved by the Vanderbilt Institutional Animal Care and
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Figure 6.1: Visual search task. A: monkeys made saccades to a target (here, an
upright L; not to scale) presented with 1, 3, or 7 distractors. The monkey’s eye
position is represented by the dashed circle, which is invisible to the monkey. B :
saccade response time (circles) and percentage error (squares) vs. set size for each
monkey. Error bars represent SE around the mean of the session means. Filled
symbols: monkey Q; open symbols: monkey S. Error bars for percentage error are
smaller than plotted points.
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Use Committee.

6.3.2 Data analysis

To measure the firing rate of each neuron, we used a spike density function, con-

volving each spike with a kernel resembling a postsynaptic potential (Thompson et al.,

1996). We used a memory-guided saccade task to classify neurons (Cohen et al.,

2009b). Visual neurons had significantly greater activity in the 100 ms after the tar-

get flash than in the 100 ms before the target flash. Movement neurons had greater

responses in the 100 ms leading up to the saccade than in the 100 ms before the target

flash. Visuomovement neurons had greater responses in the 100 ms after the target

flash and in the 100 ms leading up to the saccade than in the 100 ms before the target

flash. Neurons analyzed in this study exhibited tonic visual and visuomovement ac-

tivity with firing rates above baseline during the memory delay in the memory-guided

task.

To measure the time of target selection, we used millisecond-by-millisecond Wilcoxon

rank-sum tests. Selection time is defined as the time at which the distribution of activ-

ity when the search target was inside a neuron’s receptive field (RF) was significantly

greater than the distribution of activity when the target was opposite the RF for 10

consecutive milliseconds with p < 0.01. This “neuronantineuron” approach (Britten

et al., 1992; Thompson et al., 1996) presumes that a population of neurons in the

brain representing the location of the target competes with a population of neurons

representing the location of distractors opposite the target. No difference in target

selection time was seen between visual neurons and visuomovement neurons.
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We measured target selection time in LFPs and ERPs similarly. The beginning

of the m-N2pc is simply the target selection time in ERPs as defined earlier. Because

ERPs do not have RFs per se, we did two kinds of comparisons. The first compar-

ison was based on the RF of the neuron recorded simultaneously with the ERP; we

measured the difference between the ERPs on trials when the search array target

was inside the single neuron’s RF and the ERPs on trials when the target fell at the

location(s) opposite the neuron’s RF. The second comparison was the more typical

approach used in ERP research: we measured the difference between the ERPs on

trials when the target was in the hemifield contralateral to the EEG electrode and the

ERPs on trials when the target was in the hemifield ipsilateral to the EEG electrode.

Of the 80 recording sessions, each neuron selected the target of search, 56 LFPs se-

lected the target, and 77 ERPs selected the target. Thus for the paired comparisons

of simultaneously recorded neurons and LFPs (and LFPs and ERPs) the sample size

was 56.

We also measured the trial-by-trial correlation in the amplitude of modulation of

spike rate, LFP polarization, and ERP polarization in the 56 spikeLFPERP triplets

in which all three signals selected the target. We computed a Pearson correlation

coefficient for each simultaneously recorded spikesERP (and spikesLFP) pair using

the trial-by-trial spike rate and integral of ERP (or LFP) amplitude in a window from

150 ms after the search array appeared until saccade initiation (to exclude the initial

nonselective visual response), divided by the length of the time window. Similarly,

we computed the correlation for each LFP-ERP pair using the trial-by-trial integral

of the amplitude in the same time window, divided by the length of the window.
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To measure the onset time of visual activity in each signal, we compared baseline

activity in the 100 ms before search array onset to each millisecond of activity after

array onset. We used millisecond-by-millisecond Wilcoxon rank-sum tests to compare

the two distributions. To ensure that our measurements of covert attentional selection

were not an artifact of the overt response required to perform the task we also analyzed

the signals truncated 20 ms prior to the saccade response. These analyses yielded

the same pattern of results. Visual onset time was defined as the first time when

activity after array onset exceeded baseline activity for 10 consecutive milliseconds

with p < 0.01. All statistical tests were done with Bonferroni corrections for multiple

comparisons. All analyses were done with R (http://www.r-project.org/) (Cohen

and Cohen, 2008).

6.4 Results

6.4.1 Behavior

Two monkeys searched for a target stimulus among one, three, or seven distractor

stimuli (set sizes 2, 4, and 8) composed of the same basic features in a T/L search

display (Fig. 6.1A). Both monkeys responded to larger set sizes with longer saccade

response times (Fig. 6.1B, Table 6.1), demonstrating the attentional demands of the

task (Cohen et al., 2009a; Duncan and Humphreys, 1989; Treisman and Gelade, 1980).
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Monkey Q Monkey S
Target selection time mean
± s.e.m. (ms)
Neuron 163± 4.2 156± 5.7
LFP 191± 3.9 169± 7.7
ERP 213± 4.6 191± 4.5
Visual onset time mean ±
s.e.m. (ms)
Neuron 72± 3.0 62± 4.0
LFP 54± 2.2 59± 4.3
ERP 67± 1.8 77± 1.8
RT mean ± s.e.m. (ms)
Set size 2 249± 5.4 231± 5.4
Set size 4 302± 8.5 269± 10.2
Set size 8 383± 9.5 296± 14.3
Slope of linear regression 22.1± 1.9 10.2± 2.5
Target selection time mean
± s.e.m. (ms)
Neuron set size 2 177± 6.1 168± 8.4
Neuron set size 4 179± 5.7 189± 8.8
Neuron set size 8 194± 6.0 191± 9.2
LFP set size 2 203± 4.9 208± 14.3
LFP set size 4 221± 6.6 213± 15.7
LFP set size 8 234± 7.1 226± 16.1
ERP set size 2 206± 4.3 197± 7.1
ERP set size 4 235± 6.2 215± 8.2
ERP set size 8 266± 6.3 239± 8.6

Table 6.1: Comparisons of RT, target selection time and visual onset time. Values
are means and standard errors of the mean.

6.4.2 Target selection time

We recorded spiking activity from 57 neurons in monkey Q and 23 neurons in

monkey S, simultaneously with LFPs in FEF and the m-N2pc from EEG electrodes

over extrastriate visual cortex. Each neuron exhibited visual responses and sustained

activity during a memory-guided saccade task. We compared target selection time in

each of the three measures of neural activity, defined as the time at which each signal
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discriminated between the target and distractors.

Figure 6.2 shows representative simultaneous recordings of spikes and LFPs in

FEF and the m-N2pc in the ERP over extrastriate visual cortex. The FEF neuron

initially responded at the same rate when the target or only distractors appeared in its

RF but then evolved to select the target of search by increasing discharge rate when

the target was in its RF relative to when a distractor was in its RF. The concurrently

recorded LFP exhibited an equivalent early polarization when the target was in the

neuron’s RF relative to when only distractors were in the neuron’s RF followed by a

greater negativity for the target relative to distractors. Likewise, the simultaneously

recorded visual ERP over extrastriate visual cortex exhibited an initial period of

unselective polarization in response to the search array, but eventually showed a more

positive polarization when the target appeared inside the simultaneously recorded

neuron’s RF relative to when a distractor appeared in the neuron’s RF (the m-N2pc).

Thus qualitatively, each level and location of electrophysiological signal underwent

the same state change from nonselective to a selective representation. However, this

state change occurred at different times for each level of electrophysiological signal.

A differential signal sufficient to locate the target occurred earliest in the spikes of

the FEF neuron (113 ms after search array onset), later in the FEF LFP (163 ms),

and latest in the visual ERP (183 ms). This was also observed in comparisons of all

trials with the target contralateral compared with those with the target ipsilateral to

the EEG electrode (Fig. 6.3).

Figure 6.4A demonstrates that this sequence of target selection was a common

observation across the sample of sessions with different neurons recorded with LFPs
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Figure 6.2: Target selection during a representative session. A, top: visual search
display (shown here with a set size of 8) with the target (L) inside the neuron’s
receptive field (indicated by the dashed arc) (left) and opposite the receptive field
(right). Bottom: schematic of recording sites and signals. Single-unit discharges
(blue) and local field potentials (green) were recorded intracranially from frontal
eye field (FEF). Event-related potentials (ERPs) were recorded from electrodes over
extrastriate visual cortex (red). B : average activity of one neuron when the search
target was inside (dark) and opposite (light) its receptive field. Bands around average
firing rates show time-varying SE. Vertical line indicates target selection time when
the 2 curves became statistically significantly different. C : FEF local field potential
(LFP) with the target inside (dark) and opposite (light) the simultaneously recorded
neuron’s receptive field (RF). D : ERP over extrastriate visual cortex from trials with
the target inside (dark) and opposite (light) the receptive field of the concomitantly
recorded FEF neuron. This component is the macaque homologue of the human N2pc
(m-N2pc).
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indicate onset of the m-N2pc. The bottom row shows histograms of m-N2pc minus
single-neuron selection times for each monkey, in which m-N2pc was computed using
contralateral vs. ipsilateral target responses. Despite the increased number of trials
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hemisphere-based m-N2pc (Wilcoxon signed-rank test, p < 0.001 for each monkey).
Dashed vertical lines indicate zero difference between m-N2pc and neuron.
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at different sites in FEF and with the same posterior EEG electrodes. Overall, the

target was selected significantly earlier by FEF single-neuron spikes (mean ± SE,

161±3.4 ms) than by FEF LFPs (184±3.7 ms) (Wilcoxon signed-rank test, p < 0.001),

as observed previously (Monosov et al., 2008). Moreover, single neurons in FEF

selected the target before the m-N2pc (207 ± 3.7 ms) (p < 0.001). Likewise, the

target was selected significantly earlier by FEF LFPs than by the ERPs, as reflected

by the m-N2pc (p < 0.001; Table 6.1). This sequence of target selection timing

was highly reliable within recording sessions for both monkeys (Figs. 6.4 and 6.5;

Table 6.1). The average difference between FEF single-neuron selection time and

LFP selection time was 31± 5.4 ms for monkey Q and 13± 5.9 ms for monkey S. The

average difference between LFP selection time and the m-N2pc was 18 ± 4.3 ms for

monkey Q and 22± 8.6 ms for monkey S, and the average difference between neuron

selection time and the m-N2pc was 49 ± 5.6 ms for monkey Q and 37 ± 6.3 ms for

monkey S.

To ensure that the delay of LFP and ERP signals relative to the spike rate mod-

ulation was not an artifact of the recording procedures, we measured the latency of

the earliest visual response in each neural signal. The earliest visual response was ob-

served in FEF LFPs (Table 6.1), in agreement with a recent study of the relationship

between visually responsive neurons and concurrently recorded LFPs (Monosov et al.,

2008). The latencies of the initial nonselective visual ERP component were similar

to those observed in extrastriate areas such as V4 (Schmolesky et al., 1998). Across

monkeys, the onset of the earliest visual response was 57 ms for the FEF LFPs, 67 ms

for FEF neurons, and 72 ms for the posterior visual ERPs. Thus the differences we
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Figure 6.5: Target selection time within sessions sorted by neuron selection time (A),
LFP selection time (B), m-N2pc (C ), and saccade RT (D). Each row corresponds
to one recording session, with FEF single-neuron selection time in blue, FEF LFP
selection time in green, visual cortex ERP selection time (m-N2pc) in red, and mean
saccade RT in that session in gray.
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observed in the timing of attentional selection signals cannot be explained by inherent

differences in when the first visual activity was observed across the different signals.

Results of these analyses are consistent with the hypothesis that feedback from

FEF contributes to the generation of the m-N2pc component. This was tested further

by assessing whether the target selection time in FEF and the m-N2pc varied in

parallel with search array set size and saccade response time.

6.4.3 Set-size effects

As noted earlier, both monkeys produced longer saccade response times with larger

set sizes (Fig. 6.1B, Table 6.1). The single-unit recordings show that a delay in the

time for FEF neurons to locate the target predicted the increase of saccade response

time with set size (Cohen et al., 2009a) (Fig. 6.6). Next, we determined the extent

to which delays of target selection by LFPs and the m-N2pc predicted the delay of

saccade response time. Figure 6.6 shows that the time of target selection was delayed

with increasing set size measured through single FEF neurons (linear regression slope

3.0 ± 1.4 SE ms/item for monkey Q, 2.7 ± 2.3 ms/item for monkey S), FEF LFPs

(5.0± 1.9 Q, 3.0± 4.0 S), and the m-N2pc (9.6± 1.4 Q, 6.8± 1.8 S). Thus increasing

the set size led to delayed target selection for the FEF activity and the m-N2pc. Note

that this delay was significantly greater for the m-N2pc than that for FEF LFPs or

single neurons.
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Figure 6.6: Target selection time mean and SE for FEF single-neuron spikes (blue),
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6.4.4 Trial-by-trial correlation of spike rate, LFP, and ERP amplitude

If FEF contributes to the generation of the m-N2pc measured over extrastriate

visual cortex, then the amplitude of FEF activity and posterior ERPs should covary

across trials. We used FEF single-neuron spikes, FEF LFPs, and the extrastriate

ERPs that selected the target from distractors and computed the correlation coeffi-

cients from trials in which the target was inside the neuronal RFs. The trial-by-trial

correlation between the spike rate of individual neurons in FEF and the integral of

ERP amplitude was significant in just 4 of the 56 pairs (Fisher’s z test, p < 0.05;

Fig. 6.7A). In contrast, the trial-by-trial correlation between the integral of FEF LFP

and extrastriate ERP amplitude was significant in 34 of the 56 pairs (Fisher’s z test,

p < 0.05; Fig. 6.7B). In addition, the LFPERP correlation coefficients were signifi-

cantly larger when the target fell within the RFs (mean r± SE, 0.26±0.02), compared

with when only distractors fell within the RFs (0.19 ± 0.02) (Wilcoxon signed-rank

test, p < 0.05). The lack of correlation between spikes and ERPs was not a result

of comparing different signal types. The trial-by-trial correlation between spikes and

LFPs was significant in 32 of the 56 pairs (Fisher’s z test, p < 0.05; Fig. 6.7C ).

These amplitude correlations between FEF LFPs and posterior ERPs support the

hypothesis that FEF contributes to the generation of the m-N2pc.

6.4.5 Signal and noise in each measure of neural activity

Although the timing of target selection by FEF neurons and LFP relative to

the extrastriate ERPs is consistent with the hypothesis that the m-N2pc is driven by
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Figure 6.7: Trial-by-trial correlation between spike rates and ERP amplitude (A),
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feedback from the selection process in FEF, we wanted to rule out a simple alternative

explanation. The pattern of target selection times could just be a difference inherent

in the neural measures at different spatial scales. In particular, the signal-to-noise

characteristics of the spike times of single neurons may be different from the signal-

to-noise characteristics of an LFP (derived from ∼ 105 neurons) and from the signal-

to-noise characteristics of an ERP component (derived from ∼ 107 neurons). It

may be that through summation the LFP and ERP become more reliable measures.

Alternatively, the summation may introduce more noise into the LFP and ERP.

To quantify the reliability of the signals at each spatial scale, we computed target

selection time for each signal as a function of number of trials (Fig. 6.8, A and B).

The estimate of target selection time tends to decrease with the number of trials

contributing to the calculation until an asymptote is reached (Bichot et al., 2001b).

We reasoned that target selection time would vary with trial number according to

the signal-to-noise characteristics of the signals at different spatial scales. We fit an

exponential function to the average curves of FEF single-neuron selection time, FEF

LFP selection time, and the m-N2pc,

TST = TSTmax+mine
−n/τ + TSTmin,

where TST is target selection time; n is the number of trials; and τ , TSTmax+min,

and TSTmin are the decay (in units of trials), baseline (ms), and asymptote (ms)

parameters that were free to vary. The mean decay parameter τ± SE was 336 ± 96
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trials for neurons, 308 ± 75 trials for LFPs, and 432 ± 125 trials for the m-N2pc for

monkey Q, and 423± 224 trials for neurons, 209± 39 trials for LFPs, and 358± 245

trials for the m-N2pc for monkey S (Fig. 6.8C ). These values were not significantly

different from one another (Wilcoxon rank-sum test, p > 0.1). The mean TSTmin±

SE was 139±12 ms for neurons, 156±6 ms for LFPs, and 157±14 ms for the m-N2pc

for monkey Q, and 134 ± 12 ms for neurons, 131 ± 80 ms for LFPs, and 164 ± 26 ms

for the m-N2pc for monkey S (Fig. 6.8D). For monkey Q, TSTmin was significantly

smaller for neurons than for LFPs and ERPs (Wilcoxon rank-sum test, p < 0.01). For

monkey S, TSTmin was significantly smaller for neurons than for ERPs and for LFPs

than for ERPs (Wilcoxon rank-sum test, p < 0.01), corresponding to the differences

in target selection time reported earlier (Fig. 6.4; Table 6.1).

These fits show that the asymptote of target selection time was reached with fewer

trials than the number of trials sampled in our data set (indicated by the black point

and horizontal error bars in Fig. 6.8B). We next compared selection times across the

three measures for varying numbers of sampled trials. When the number of trials

exceeded 400, FEF single-neuron selection time was significantly earlier than FEF

LFP selection time and FEF LFP selection time was significantly earlier than the

m-N2pc (Wilcoxon signed-rank tests, p < 0.05). These findings are consistent with

the observation that the SEs of the means for the signals at each spatial scale were

comparable (Fig. 6.2). Therefore the timing differences across the electrophysiological

indices of attentional selection seem not to be an artifact of different signal-to-noise

characteristics of the signals at different spatial scales.
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Figure 6.8: Target selection time as a function of number of trials. A: target selection
time estimates as a function of randomly sampled (without replacement) trials from an
example recording of an FEF single neuron (blue), FEF LFP (green), and extrastriate
visual cortex ERP (m-N2pc; red). B : average target selection time estimates as a
function of randomly sampled (with replacement) trials across recordings for FEF
neurons (blue), FEF LFPs (green) and m-N2pc (red). The black point with SE bars
indicates the number of trials sampled in our data set. C : decay parameter estimates
from exponential fits to the selection time × number of trials curve for each session.
Gray boxes are from monkey Q, white boxes from monkey S. D : asymptote parameter
estimates from the same exponential fits as in C.
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6.4.6 Spatial distribution of the m-N2pc

To evaluate the possibility that dipoles in FEF contributed to the posterior ERPs,

we measured ERPs from anterior, middle, and posterior pairs of lateralized electrode

sites. As shown previously, the m-N2pc is not observed on anterior electrodes (Wood-

man et al., 2007). This is so despite the clear evidence of a target-selection process

in LFPs recorded in FEF beneath these anterior surface electrode pairs (Fig. 6.9).

Apparently, the LFPs in FEF do not create a dipole with the proper geometry to

be observed on EEG electrodes over frontal cortex. This is not surprising, given the

anatomical location of FEF in the rostral bank of the arcuate sulcus with pyramidal

neurons oriented close to parallel to the surface of the skull.

If the LFPs generated in FEF create an electrical dipole oriented perpendicular

to the pial surface of the frontal lobe, then this would result in a rostrocaudally

oriented electrical field. Such an electric field could produce surface voltage density

gradients over the parietal or occipital lobe. Thus it is possible that the m-N2pc is

really a manifestation of the volume conduction of the FEF dipole. However, if this

were the case, then because electrical signal conduction is essentially instantaneous

in the conductive medium of the brain (Nunez and Srinivasan, 2006), the m-N2pc

should occur instantaneously with the FEF LFPs. This was not the case under the

conditions of this experiment.
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Figure 6.9: Spatial distribution of ERPs shown with FEF LFP from an example
recording session in monkey S. Dark curves represent potentials when the target
was contralateral to the recording site (i.e., left visual field), light curves represent
potentials when the target was ipsilateral to the recording site (i.e., right visual
field). Bands around activity curves indicate SE. The anterior electroencephalo-
graphic (EEG) electrode was embedded in the skull, but is displayed here on top
of the exposed cortical surface for purposes of illustration.
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6.4.7 Shape of the ERP

ERPs over posterior cortex show a transient negative polarization in response to

a visual stimulus in humans and monkeys known as the N1 component (Woodman

et al., 2007). Curiously, a craniotomy over FEF in monkey S inverted the N1 to a

positive polarization in the left hemisphere but not the right (Fig. 6.3). Note that

the m-N2pc was not inverted; it remained a positive polarization. Importantly, the

m-N2pc timing was not significantly different between left and right hemispheres for

either monkey (Wilcoxon rank-sum test, p > 0.2 for each monkey), although the

shape of the target-selection signal was different between left and right hemispheres

for each monkey (Fig. 6.3).

6.4.8 Signal distortion by the recording circuit

Recent work has shown that LFPs are distorted by the intrinsic filtering character-

istics of high-impedance microelectrode recording circuits (Nelson et al., 2008). This

distortion is systematic and can be corrected. An example corrected LFP is shown in

Fig. 6.10. Target selection time was not significantly different between corrected and

uncorrected LFPs. Because of this lack of difference in selection times, we report val-

ues drawn from the raw, uncorrected LFPs, to compare directly to a previous study

(Monosov et al., 2008). The impedance of the EEG electrodes, 25 kΩ measured at

30 kHz, was sufficiently low that it caused minimal signal distortion; indeed, when we

applied the correction to ERPs, we saw no difference in target selection time between

uncorrected and corrected signals.
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Figure 6.10: Signal distortion by the recording circuit. The top panel shows the raw
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indicate target selection time measured using the uncorrected LFPs. Bands around
activity curves indicate SE.
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6.5 Discussion

To create a bridge between research investigating attentional selection using hu-

man ERPs and research using macaque intracranial electrophysiology, we recorded

the putative macaque homologue of the N2pc component indexing covert selection si-

multaneously with spikes from single neurons and LFPs in FEF. We show that visual

targets are selected by FEF spikes and LFPs earlier than the ERP component that

is maximal over extrastriate visual cortex. Thus our findings support the hypothesis

that the N2pc is generated due to feedback from an attentional-control structure (such

as FEF) because in this visual search task the target is located by FEF before it is

located by the m-N2pc. Before accepting this conclusion, we discuss three alternative

explanations that can be ruled out.

First, the signal-to-noise characteristics of the spike times of single neurons may

be different from the signal-to-noise characteristics of the ensemble activity measured

with LFPs and ERPs. However, as shown earlier (Fig. 6.8), the three electrophysio-

logical measures of target selection time exhibited similar reliability as a function of

the number of trials sampled. If one of the signals were more reliable across trials,

then the estimate of target selection time would have reached asymptote with fewer

trials sampled. Not observing any difference is consistent with the basic observation

of similar variability in the different signals (Fig. 6.2, Table 6.1) and rules out the

possibility that the differences in timing were simply due to greater intrinsic signal-

to-noise differences in the ERPs or LFPs relative to the neurons. This finding has

implications for neural prosthetics. If the signal-to-noise ratio of spikes, LFPs, and
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ERPs are similar, then the ability to decode an appropriately chosen ERP will be

similar to that of spikes.

Second, the difference in voltage polarity between human N2pc (negative) and

macaque m-N2pc (positive) could mean that these potentials are measuring differ-

ent underlying ERP components. However, this proposition would need to explain

why the m-N2pc and the human N2pc have such similar timing (Figs. 6.26.5), task

dependence (Fig. 6.6), and spatial distribution (Fig. 6.9). On the other hand, the

difference in polarity can be explained by the difference in anatomy. The neural gen-

erator of the human N2pc is thought to include area V4 (Hopf et al., 2000; Luck

et al., 1997). Macaque V4 is located partially on the surface of the prelunate gyrus

(Gattass et al., 1988; Zeki, 1971), whereas the human homologue of V4 is buried in

a region containing multiple sulci and gyri (Orban et al., 2004; Sereno et al., 1995;

Tootell and Hadjikhani, 2001). Thus it is plausible that the m-N2pc has the opposite

polarity of the human N2pc because of the differences in cortical folding between

species. Indeed, similar reasoning about the contribution of cortical folding to the

polarity of ERPs applies to at least two other ERP components. The human C1 has

a negative polarity when a visual stimulus is presented above the horizontal meridian

and a positive polarity when a stimulus is presented below the horizontal meridian,

consistent with the shape of the calcarine sulcus (Clark et al., 1995). The lateralized

readiness potential has a negative polarity preceding hand movements and a pos-

itive polarity preceding foot movements, consistent with the opposing locations of

the hand (lateral) and foot (medial) representations in primary motor cortex (Brunia

and Vingerhoets, 1980; Leuthold and Jentzsch, 2002). Thus based on differences in
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cortical folding between macaques and humans, we believe that the m-N2pc is homol-

ogous to the human N2pc. We also considered the possibility that the m-N2pc could

be generated from a rostrocaudally oriented dipole in the macaque FEF. However,

the timing differences between target selection in the FEF LFP and the m-N2pc are

inconsistent with this hypothesis. It is likely that the FEF dipole is actively can-

celled out by electrical fields with similar timing and of opposite polarity generated

in neighboring cortical areas or in brain areas that lie between FEF and the poste-

rior electrodes above extrastriate visual cortex (e.g., the lateral intraparietal area).

This latter source of active cancellation of the FEF dipole would be consistent with

a magnetoencephalography study of the N2pc component in humans, showing that

the N2pc over ventral visual cortex is preceded by an activation in posterior parietal

cortex (Hopf et al., 2000).

Third, one might hypothesize that an ERP component recorded outside the brain

arises with some delay after the synaptic events in the dipole source producing that

ERP component. We can reject this hypothesis because, whereas EEG is subject to

spatial distortion, it is not delayed relative to synaptic activity (Nunez and Srinivasan,

2006). Thus the remaining and most plausible hypothesis is that, under the conditions

tested, target selection in FEF precedes that of the m-N2pc.

Our results demonstrate that the brain selects a target during visual search

through a sequence of processes manifesting in the frontal lobe before posterior visual

areas. This attentional cascade occurs in the spike rates of single neurons in FEF

before the selective polarization of intracranial LFPs and the ERPs recorded through

the skull, which represent a summation of field potentials in the brain. This shows
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that the N2pc component in primates does not index the earliest time that the brain

selects a visual search target to receive the benefit of attention. This is consistent

with evidence suggesting that areas that perform spatial visual selection lead those

that perform detailed processing of object identity (Hopf et al., 2000).

These findings bear on hypotheses about the functional architecture of attention

and visual search. The larger increase in m-N2pc onset than target selection time

in FEF as a function of set size (Fig. 6.6) is consistent with the hypothesis that

the selection process in a putative saliency map (such as FEF) takes less time than

the focusing of visual attention performed in the areas generating the m-N2pc (Luck

and Hillyard, 1994b). Attentional models of visual search such as Guided Search

(Wolfe, 2007) propose that increased activity in the saliency map precedes the effects

of focusing visual attention on the target representation in extrastriate visual cortex,

resulting in the binding of target features.

We also rule out a simple feedforward architecture, in which visual signals propa-

gate only from visual cortex to frontal cortex. The data support theories of attention

that propose that top-down input from frontal cortex guides attentional selection in

visual cortical areas (Bundesen et al., 2005; Desimone and Duncan, 1995; Lamme

and Roelfsema, 2000). FEF is situated chronometrically and anatomically to influ-

ence areas such as V4 and IT (Barone et al., 2000; Gregoriou et al., 2009; Schmolesky

et al., 1998) and it appears that target-selecting neurons in FEF may be a major

source of signals to extrastriate visual cortex (Pouget et al., 2009). The potency of

this signal has been demonstrated in humans and macaques. Transcranial magnetic

stimulation over human FEF biases attention in the corresponding part of space and
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visual ERPs (Juan et al., 2008; Taylor et al., 2007) and microstimulation of macaque

FEF biases attention and activity in extrastriate visual cortex (Armstrong et al.,

2006). Finally, our results provide the first direct test of the hypothesis that the

N2pc is due to feedback from an area that controls the focus of visuospatial attention

(Luck and Hillyard, 1994b). The timing of this feedback may depend strongly on task

demands. A recent study reported that attentional modulation occurred on average

8 ms earlier in FEF neurons than in V4 neurons (Gregoriou et al., 2009), although

this measurement had a large amount of variability. Our results indicate nearly an

order-of-magnitude greater time difference (ranging from ∼ 30 to 70 ms depending

on set size). This difference may have arisen from a difference in the attentional de-

mands of the task or the contribution of other areas in extrastriate or parietal cortex

to the m-N2pc. Gregoriou et al. (2009) suggested that the 8-ms delay corresponded

to the axonal transmission time between FEF and V4. However, the reliability of ax-

onal conduction cannot explain the degree of variability in their estimate. The time

differences we measured are long enough to permit axonal conduction plus synaptic

integration, which seems more plausible for an interaction of the sort described by

models of top-down processing.

In addition to our conclusions about the relationship between FEF and the m-

N2pc, we also replicated a recent finding in FEF: LFPs select visual targets later

than the simultaneously recorded spikes (Monosov et al., 2008). This may seem

counterintuitive; if the LFP represents synaptic potentials that lead to spikes, then

one might expect them to show target selection before spikes. Indeed, the initial

visual responses were earlier in the LFPs than in the spikes (Table 6.1). However,
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the later target selection times in LFPs than those in spikes suggests that FEF LFPs

reflect nonselective visual inputs to FEF neurons, whereas FEF spikes reflect the

outcome of target selection that is computed in FEF itself.

Despite this seemingly clear dissociation between FEF inputs and outputs, our

results also challenge the view that LFPs represent only the synaptic input to a

region of cortex. We observed a strong trial-by-trial correlation between FEF LFPs

and posterior ERPs, but not between FEF spikes and posterior ERPs (Fig. 6.7). If

spikes represent output from a cortical area and LFPs represent strictly input, then

these correlations could reflect that the neural generator of the m-N2pc also projected

to FEF but that FEF did not project directly to the neural generator of the m-N2pc.

Because the projection from FEF to extrastriate cortex is strong (Barone et al., 2000;

Pouget et al., 2009) and it is likely that many of the neurons we recorded projected

to extrastriate cortex (see Fig. 5 in Thompson et al., 1996), this explanation seems

unlikely. Thus we propose that the weak correlations between spikes and ERPs reflect

the weak relationships between these signals. Indeed, several studies have shown weak

relationships between spikes and slow-wave EEG (Buchwald et al., 1965; Fromm and

Bond, 1964, 1967; Marsan, 1965) (but see Baker et al., 2003; Foote et al., 1980).

We also propose that the strong correlations between LFPs and ERPs represent the

strong relationship between aggregate local synaptic processing of target selection in

FEF and the neural generator of the m-N2pc, suggesting that LFPs do not reflect

only input to a cortical area.

The findings from this combination of techniques provide a step toward under-

standing the neural basis of selective visual processing across spatial scales and brain
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areas. Recording ERP components simultaneously with LFPs and single-neuron

activity achieves two goals of cognitive neuroscience. First, recording ERPs from

macaques performing the same tasks used in studies of humans allows us to bridge

the gap between human and nonhuman primate electrophysiology. Second, this com-

bination of methods yields data with excellent spatial and temporal resolution. This

has been the goal of combining ERP and imaging methods, although this marriage

of neuroscientific techniques uses source estimation procedures that are themselves

suggestive, not definitive, due to a number of factors (e.g., Hillyard and Anllo-Vento,

1998; Nunez and Srinivasan, 2006). Our study shows how hypotheses about the gen-

eration of human ERP components can be tested by recording multiple electrophys-

iological measures from primates exhibiting homologous ERP components. Under-

standing the neural substrates of noninvasive electrophysiological measures of human

cognition is vital for progress in testing psychological theories, treating disorders, and

creating braincomputer interfaces.
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CHAPTER VII

NEURAL BASIS OF THE SET-SIZE EFFECT IN FRONTAL EYE FIELD:
TIMING OF ATTENTION DURING VISUAL SEARCH

7.1 Abstract

Visual search for a target object among distractors often takes longer when more

distractors are present. To understand the neural basis of this capacity limitation, we

recorded activity from visually responsive neurons in the frontal eye field (FEF) of

macaque monkeys searching for a target among distractors defined by form (randomly

oriented T or L). To test the hypothesis that the delay of response time with increasing

number of distractors originates in the delay of attention allocation by FEF neurons,

we manipulated the number of distractors presented with the search target. When

monkeys were presented with more distractors, visual target selection was delayed and

neuronal activity was reduced in proportion to longer response time. These findings

indicate that the time taken by FEF neurons to select the target contributes to the

variation in visual search efficiency.1

7.2 Introduction

Because only some of all the information entering the visual system is relevant

for acting in a given environment, attention must be allocated to selectively process

1This chapter was published as Cohen JY, Heitz RP, Woodman GF, Schall JD. Neural basis of
the set-size effect in frontal eye field: timing of attention during visual search. J Neurophysiol 101:
1699-1704, 2009.
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one among many alternatives, especially when those alternatives are difficult to dis-

tinguish. This has been investigated using visual search for a target stimulus in an

array of distractor stimuli (Bergen and Julesz, 1983; Carrasco and Yeshurun, 1998;

Duncan and Humphreys, 1989; Palmer, 1994; Treisman and Gelade, 1980; Wolfe,

2007). The observation that visual search response time (RT) often increases with

the number of distractors has been central in theories of attention (Bundesen, 1990;

Bundesen et al., 2005; Desimone and Duncan, 1995; Duncan and Humphreys, 1989;

Treisman and Gelade, 1980; Wolfe, 2007). Previous work has shown that brain areas

in the macaque visuomotor system have distinct classes of neurons involved in differ-

ent stages of visual search. Visual and visuomovement neurons in the frontal eye field

(FEF) (Schall and Hanes, 1993; Thompson et al., 1996), lateral intraparietal area

(LIP) (Bisley and Goldberg, 2003; Ipata et al., 2006; Thomas and Paré, 2007), and

superior colliculus (SC) (McPeek and Keller, 2002) participate in the visual selection

of target objects by increasing activity when the target is inside the neurons receptive

field (RF) relative to when a distractor is in the RF. Other neurons in these areas par-

ticipate in preparing eye movement responses (Bruce and Goldberg, 1985; Hanes and

Schall, 1996; Segraves and Goldberg, 1987; Sommer and Wurtz, 1998; Sparks et al.,

1976; Wurtz and Goldberg, 1971). Neurophysiological recordings from nonhuman

primates can distinguish between competing accounts of the locus of increases in RT

with increased set size because the activity of different types of neurons reveals the

timing of different stages of processing (Sato et al., 2001; Sternberg, 2001; Woodman

et al., 2008).

To determine the neural locus of processing delays with increasing search set sizes,
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we measured the activity of visually responsive neurons in FEF during a demanding

visual search task. The activity of these neurons discriminates between target and

distractor, thus measuring the time of target selection, which corresponds to attention

allocation (Bichot and Schall, 1999b; Juan et al., 2004; Murthy et al., 2001; Schall,

2004b; Thompson et al., 1997, 2005b). We trained two monkeys to search for a target

stimulus among one, three, or seven distractor stimuli (set sizes 2, 4, and 8) in a T/L

search display (Fig. 7.1A). Monkeys fixated a spot at the center of the display and

received a liquid reward for producing a single saccadic eye movement to the target

(in Fig. 7.11A, the L). Across experimental sessions, the monkeys alternated between

searching for Ts or Ls among randomly rotated distractors. This visual search task

results in longer RT with larger set size in human observers (Bergen and Julesz, 1983;

Carrasco and Yeshurun, 1998; Duncan and Humphreys, 1989; Palmer, 1994; Treisman

and Gelade, 1980; Wolfe, 2007). We found that neurons selected search targets later

and discharged fewer spikes when presented with more distractors.

7.3 Methods

7.3.1 Behavioral task and recording

Activity of FEF neurons was recorded in both hemispheres of two male macaques

(Macaca radiata) performing memory-guided saccade and visual search tasks. Record-

ings were acquired from the rostral bank of the arcuate sulcus using tungsten micro-

electrodes (FHC). In the search task, monkeys searched for a target (T or L) among

distractors (L or T) (Woodman et al. 2007). Distractors could be homogeneous (e.g.,
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Figure 7.1: Visual search task. A: monkeys made saccades to a target (here, an
upright L; not to scale) presented with 1, 3, or 7 distractors. The monkeys eye position
is represented by the dashed circle, which is invisible to the monkey. B : response time
(RT, circles) and percentage error (squares) vs. set size for each monkey. Error bars
represent SE around the mean of the session means. Filled symbols: monkey Q. Open
symbols: monkey S. Error bars for percentage error are smaller than plotted points.
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upright Ls) or heterogeneous (e.g., Ls oriented differently). Each trial began with

monkeys fixating a central spot for about 600 ms. A target was then presented at one

of eight isoeccentric locations equally spaced around the fixation spot (Fig. 7.1A).

The other seven locations contained seven distractor stimuli, three distractors, or one

distractor. During each recording session, the target was a T or an L rotated by 0,

90, 180, or 270 ◦. Monkeys were given a liquid reward for making a saccade to the

target location and fixating it for 1000 ms.

Activity from each neuron was recorded during a memory-guided saccade task

to distinguish visual- from movement-related activity (Bruce and Goldberg, 1985;

Hikosaka and Wurtz, 1983). The target was flashed alone for 80 ms. Monkeys were

required to maintain fixation for 500-1000 ms after the target onset. When the fixation

spot disappeared, the monkey was rewarded for a saccade to the remembered location

of the target.

Our data set consists of 57 neurons from monkey Q and 26 neurons from monkey

S. Spikes were sorted on-line and off-line using principal components analysis and

template matching (Plexon, Dallas, TX).

Monkeys were surgically implanted with a head post, a subconjunctival eye coil,

and recording chambers. Surgery was conducted under aseptic conditions with ani-

mals under isoflurane anesthesia. Antibiotics and analgesics were administered post-

operatively. All surgical and experimental procedures were in accordance with the

National Institutes of Health Guide for the Care and Use of Laboratory Animals and

approved by the Vanderbilt Institutional Animal Care and Use Committee.
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7.3.2 Data analysis

To measure the firing rate of each neuron, we used a spike density function, con-

volving each spike with a kernel resembling a postsynaptic potential (Thompson et al.,

1996).

We used a memory-guided saccade task to classify neurons. Visual neurons had

significantly greater activity in the 100 ms after the target flash than in the 100 ms

before the target flash. Movement neurons had greater responses in the 100 ms leading

up to the saccade than in the 100 ms before the target flash. Visuomovement neurons

had greater responses in the 100 ms after the target flash and in the 100 ms leading

up to the saccade than in the 100 ms before the target flash. Neurons analyzed in

this study were visual and visuomovement and had significant above-baseline activity

during the memory delay.

To measure the time of target selection we used millisecond-by-millisecond Wilcoxon

rank-sum tests. Selection time is defined as the time at which the distribution of ac-

tivity when the search target was inside a neuron’s RF was significantly greater than

the distribution of activity when the target was opposite the RF for ten consecutive

milliseconds with p < 0.01. This “neuron-antineuron” approach presumes that a pop-

ulation of neurons in the brain representing the location of the target competes with

a population of neurons representing the location of distractors opposite the target.

Measuring selection time with a receiver operating characteristic analysis (Thompson

et al., 1996) yielded similar results. There was no difference in target selection time

between visual and visuomovement neurons.
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All statistical tests were done with Bonferroni corrections for multiple compar-

isons. All analyses were done with R (http://www.r-project.org/).

7.4 Results

7.4.1 Behavior

Both monkeys exhibited a consistent and strong effect of set size on RT (Fig. 7.1B).

Across sessions RT was significantly longer for set size 8 compared with set size 4 and

for set size 4 compared with set size 2 and, within sessions, RT increased significantly

with set size in 100% of sessions (Table 7.1). The slopes of RT by set size corresponded

to an increase of 22 ms per additional distractor for monkey Q and 10 ms per additional

distractor for monkey S. Percentage error (moving the eyes to a distractor) was low

for both monkeys and increased with set size only for monkey S (Fig. 7.1B ; Wilcoxon

signed-rank test, p < 0.001). These results indicate that the monkeys consistently

emphasized accuracy over speed.
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Monkey Q Monkey S
Target selection time mean ± s.e.m. (ms)

Neuron 163± 4.2 156± 5.7
LFP 191± 3.9 169± 7.7
ERP 213± 4.6 191± 4.5

Visual onset time mean ± s.e.m. (ms)
Neuron 72± 3.0 62± 4.0

LFP 54± 2.2 59± 4.3
ERP 67± 1.8 77± 1.8

RT mean ± s.e.m. (ms)
Set size 2 249± 5.4 231± 5.4
Set size 4 302± 8.5 269± 10.2
Set size 8 383± 9.5 296± 14.3

Slope of linear regression 22.1± 1.9 10.2± 2.5
Target selection time mean ± s.e.m. (ms)

Neuron set size 2 177± 6.1 168± 8.4
Neuron set size 4 179± 5.7 189± 8.8
Neuron set size 8 194± 6.0 191± 9.2

LFP set size 2 203± 4.9 208± 14.3
LFP set size 4 221± 6.6 213± 15.7
LFP set size 8 234± 7.1 226± 16.1
ERP set size 2 206± 4.3 197± 7.1
ERP set size 4 235± 6.2 215± 8.2
ERP set size 8 266± 6.3 239± 8.6

Table 7.1: Comparisons of RT, target selection time and visual onset time. Values
are means and standard errors of the mean.

7.4.2 Set-size effects on target selection time

We recorded the activity of 57 visually responsive FEF neurons from monkey

Q and 26 from monkey S that selected the target in the visual search task. This

selection has been identified with the allocation of attention (Bichot et al., 2001b;

Schall, 2004b; Thompson and Bichot, 2005; Thompson et al., 2005b). Each neuron

exhibited visual responses and sustained activity during the delay period of a memory-

guided saccade task. Target selection time measures the time at which a neuron’s

activity on trials with the search target inside its RF exceeded activity on trials with
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a distractor in its RF (and the target opposite its RF). To determine how variation

of target selection time related to variation of RT, we aligned neuronal responses to

the time of presentation of the search array and measured target selection time for

each set size.

Figure 7.2 shows the average response of a neuron when the target versus a distrac-

tor appeared in the RF for each set size, aligned to the onset of the search array. The

neuron selected the target after 160 ms when one distractor was present (Fig. 7.2A,

vertical line), after 177 ms when three distractors were present (Fig. 7.2B), and after

230 ms when seven distractors were present (Fig. 7.2C ). The delay of the target selec-

tion corresponded with the delay of the RT (set size 2 mean RT ± SE, 219± 4.2 ms;

set size 4, 265 ± 7.8 ms; set size 8, 386 ± 12.3 ms). Median RT for each set size is

indicated by the black arrowhead in each panel.

Neurons selected the target later when confronted with larger set sizes (Fig. 7.3,

Table 7.1). Comparing across neurons, target selection time was significantly later for

set size 8 than for set sizes 2 or 4 (KruskalWallis rank-sum test, p < 0.01). Comparing

within neurons, target selection time was significantly later for set size 4 compared

with set size 2 for monkey S and was significantly later for set size 8 than for set size

4 and for set size 8 than for set size 2 for both monkeys.

We measured the relationship between RT and selection time by computing a

linear regression for each set size (Table 7.1). The regression for monkey Q was

significant for set size 8 (solid gray line in Fig. 7.4C ). For monkey S, regression was

significant for set size 4 (solid line in Fig. 7.4B) and set size 8 (solid black line in

Fig. 7.4C ). Combined across monkeys, regression was significant for set size 8, with a
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Figure 7.2: Target selection time by set size for an example neuron. A: average firing
rate when the target was inside the neuron’s receptive field (RF; dark band around
black curve, 102 trials) and opposite the RF (light band around gray curve, 113 trials)
for set size 2. Median RT is denoted by the black arrowhead. Filled bands indicate
SE around the mean firing rates. The solid vertical line indicates target selection
time. The dashed horizontal line indicates the peak firing rate. The inset shows an
example search array of set size 2. B : the same as in A, but for set size 4 (dark, 108
trials; light, 105 trials), with the dashed vertical line indicating target selection time.
The dashed horizontal line indicates the peak firing rate in A. C : the same as in A,
but for set size 8 (dark, 102 trials; light, 92 trials), with the solid gray line indicating
selection time and the dashed horizontal line indicating peak firing rate in A.
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Figure 7.3: Target selection time by set size. A: cumulative distributions of selection
time across neurons for set sizes 2 (black), 4 (dashed), and 8 (gray). B : stacked
histogram of differences in selection time between set sizes 4 and 2 (dark gray), 8
and 2 (gray), and 4 and 2 (light gray), for monkey Q. Most of the histogram falls to
the right of zero, indicated by the dashed vertical line. C : the same as in B, but for
monkey S.
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slope of 0.79± 0.16 (p < 0.001) and intercept of 189± 31 ms (p < 0.001). That is, for

set size 8, a 10 ms increase in selection time corresponded to an approximately 8 ms

increase in RT. Thus target selection time of FEF neurons accounts for a significant

amount of variance in RT for large set sizes.

7.4.3 Set-size effects on firing rate

We measured peak mean firing rate for each neuron from search array onset until

saccade onset when the search target was inside the neuron’s RF. For the example

neuron in Fig. 7.2, the dashed horizontal lines indicate peak mean firing rate for set

size 2. Peak firing rate decreased from 72 to 64 to 56 spikes/s for set sizes 2, 4, and

8, respectively. Across the population of neurons, peak firing rate decreased with

increasing set size (Fig. 7.5, Table 7.1). Firing rate was significantly higher for set

size 2 than that for set size 4 for monkey Q. Firing rate was significantly higher for

set size 2 than that for set size 8 and for set size 4 than that for set size 8 for both

monkeys. Thus increasing set size decreases peak firing rate in FEF.

7.5 Discussion

We discovered that neurons in FEF that select the location of the target in a

visual search array do so later with fewer spikes when presented with progressively

more, complex distractors. This result complements earlier observations that the time

course of target selection by FEF neurons is related to the visual similarity between

targets and distractors in singleton and conjunction search (Bichot and Schall, 1999a;

Bichot et al., 2001b; Sato et al., 2001; Thompson et al., 1996). The target selection
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Q. Dashed gray lines indicate unity.
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Figure 7.5: Firing rate by set size. A: cumulative distributions of firing rate across
neurons for set sizes 2 (black), 4 (dashed), and 8 (gray). B : stacked histogram of
differences in firing rate between set sizes 2 and 4 (dark gray), 2 and 8 (gray), and
4 and 8 (light gray), for monkey Q. Most of the histogram falls to the right of zero,
indicated by the dashed vertical line. C : the same for monkey S.
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process first described in FEF (Schall and Hanes, 1993) has now been observed in

posterior parietal cortex (Constantinidis and Steinmetz, 2001a; Ipata et al., 2006;

Thomas and Paré, 2007) and SC (McPeek and Keller, 2002). These results are con-

sistent with the hypothesis that a population of neurons in FEF, LIP, and SC can be

identified with the salience map in models of visual search and attention (Bundesen

et al., 2005; Itti and Koch, 2000; Thompson and Bichot, 2005; Wolfe, 2007). These

neurons represent the extent to which a stimulus in their RF is the focus of attention.

The target selection process marks the outcome of visual processing and the covert

allocation of attention to the target that precedes overt responses (Schall, 2004b;

Thompson and Bichot, 2005). We found that RT varied with selection time as if the

saccade could not be produced until the target was located. This occurs because the

onset of activation of presaccadic movement neurons in FEF is delayed when visual

search is less efficient, yielding longer RT (Woodman et al., 2008). In other words,

under the conditions of our experiments, preparation of the eye-movement response

does not begin until perceptual processing of the visual array is completed. Note that

although target selection time in FEF accounted for a large amount of variation of

RT, other sources also contributed to the variation in RT; the major source is the

postselection stochastic process of saccade preparation (Woodman et al., 2008).

Theories of visual attention propose that the cause of longer RT with increased

set size arises because of the limited capacity of the visual system to simultaneously

analyze all elements in a visual search array (Bundesen, 1990; Bundesen et al., 2005;

Desimone and Duncan, 1995; Duncan and Humphreys, 1989; Treisman and Gelade,

1980; Wolfe, 2007). Such theories predict that a neural index of the allocation of at-
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tention to the target is delayed when more nontarget stimuli must be processed. The

time at which visually responsive neurons in FEF signal the location of the target

provides a neurochronometric measure of the conclusion of perceptual analysis (Juan

et al., 2004; Murthy et al., 2001; Schall, 2004b; Thompson et al., 1997, 2005b) and

Wolfe’s Guided Search (Wolfe, 2007), target selection maps onto a mechanism direct-

ing attention in the visual field. Our measure of selection time indicates when, on

average, attention is reliably focused on the target. This time is later with larger set

sizes because attention shifts more often to one or more distractors before focusing on

the target. According to other theories of attention, such as Bundesen’s Theory of Vi-

sual Attention (TVA) (Bundesen, 1990; Bundesen et al., 2005), attention is deployed

to all of the possible targets simultaneously and eventually selects an object when

it enters short-term memory. According to TVA, the neurochronometric measure of

target selection would mark the time at which perceptual processing is completed

and the target representation is transferred into memory. Because FEF activity has

been associated with attention and working memory (Funahashi et al., 1989) both of

these theoretical explanations of our findings are tenable and distinguishing between

them is a goal for future research.

The reduced discharge rate with larger stimulus arrays has been observed previ-

ously (Balan et al., 2008) and described in terms of increased uncertainty (Basso and

Wurtz, 1998), number of alternatives (Lee and Keller, 2008), or RF surround suppres-

sion (Schall et al., 1995a). This may underlie the capacity limitation of visual search

with increasing number of distractors (Desimone and Duncan, 1995; Palmer, 1994;

Treisman and Gelade, 1980). Lower discharge rates among the neurons representing
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the target and distractors result in less dynamic range for discriminating between the

alternative representations. Thus more time is taken to achieve a given signal-to-noise

ratio (Bichot et al., 2001b; Shadlen et al., 1996). This is consistent with accounts of

variation of search efficiency in terms of signal detection theory (Palmer et al., 2000).

Confronted with stimulus ambiguity and armed with a target template, a top-down

influence can bias processing of stimuli that resemble the target (Bundesen et al.,

2005; Desimone and Duncan, 1995; Sato et al., 2003). The dense reciprocity of con-

nectivity between FEF and extrastriate visual cortex (Schall et al., 1995b) makes it

difficult to distinguish the respective contributions of activity in areas like V4 and

MT signaling the features of search items (Ogawa and Komatsu, 2004) and activa-

tion in FEF feeding back to influence extrastriate areas (Hamker, 2005; Moore and

Armstrong, 2003). This basic question may be resolved in future studies that directly

compare the timing of signals across areas.

In contrast to what we found in FEF, a recent study of area LIP in macaques

performing a different visual search task reported that the time for target selection

did not vary with set size (Balan et al., 2008). We believe that these contradictory

findings are unlikely to be due to differences between LIP and FEF and instead can be

attributed to differences in performance. The effect of set size on RT was larger in our

study of FEF than it was in the study of LIP. For example, we obtained a significant

increase of RT with set size in 100% of the experimental sessions, compared with

roughly 70% of the sessions reported in the LIP study. Also, we obtained a variation

of RT relative to the overall mean RT from the largest (8) to the smallest (2) set

size of 2543%; the study of LIP found a ratio from the largest (6) to the smallest
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(2) set size of around 10%. Finally, the error rates in our experiment did not vary

substantially with set size; the error rates in the LIP study increased with set size.

Consequently, it seems most plausible that we observed the variation of RT with

neural selection time because we obtained a larger variation of RT against which to

perform the regression.

In summary, when presented with complex search arrays containing more distrac-

tors, FEF neurons, as part of a distributed network, take longer to locate the target

because the representations of both target and distractors are weaker. This provides

a mechanistic basis for the capacity limitation that is expressed when visual inputs

compete for representation.

176



CHAPTER VIII

GENERAL DISCUSSION

In proportion to the development of the faculty of attention are the in-
tellectual and reflective powers manifested. This is in accordance with
the anatomical development of the frontal lobes of the brain, and we have
various experimental and pathological data for localizing in these centers
of inhibition, the physiological substrata of this psychological faculty.

—Ferrier (1876)

8.1 Summary of results

How does the brain select visual targets for eye movements? Chapters 2-7 de-

scribe studies of the neural coding and timing of visual target selection. We recorded

neural activity while macaques performed visual search in which they were trained

to move their eyes to a target stimulus among an array of distractor stimuli for a

reward. Three signals were used to measure the relationship between the decision to

move the eyes to a target and neural activity: spike rates from neurons in FEF, LFPs

from FEF, and ERPs recorded from the skull. We found that (1) FEF neurons co-

operated and competed to select visual targets, measured using correlations between

spike times of simultaneously recorded neurons, (2) FEF neurons interacted more

when the visual search task was easier (i.e., the target and distractors were easily dis-

criminable), measured using a multivariate analysis and decreased firing variability

before eye movements, (3) FEF neurons decreased firing variability around the time

of target selection by the mean firing rate, (4) FEF neurons were distinguished both
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functionally and biophysically, on the basis of action potential width, (5) FEF may

be a source of a human cognitive event-related potential (the N2pc) that marks the

allocation of attention, and (6) the time between visual search array presentation and

the time that FEF neurons discriminated between target and distractors was later

when there were more stimuli the animal needed to choose from.

8.2 Decision making in other tasks and sensory systems

The neural basis and circuits of decision making nonhuman primates (Gold and

Shadlen, 2007; Schall, 2003a) and invertebrates (Kristan, 2008) has received much

attention in the last two decades. Is our work limited to visual target selection and

attention or does it generalize to other tasks and sensory systems? Put another

way, does the brain use different perceptual decision making processes for different

contexts and sensory modalities, or is there a general (or “central”) mechanism for

perceptual decision making? A few studies have examined perceptual decision mak-

ing in other sensory modalities across species. In monkeys making somatosensory

decisions, neurons in parietal cortex reflect the outcome of the decision (Romo et al.,

2002). Microstimulation of primary somatosensory cortex biases somatosensory dis-

crimination decisions (Romo et al., 1998, 2000), analogous to similar work in MT and

LIP.

Several studies have examined perceptual decision making in the auditory system

(e.g., Binder et al., 2004), olfactory system (e.g., Uchida and Mainen, 2003) and gus-

tatory system (e.g., Padoa-Schioppa and Assad, 2006, 2008). In humans, there may

be a general circuit involved in perceptual decision making irrespective of response
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modality (Heekeren et al., 2004, 2006).

8.3 Neural integration in perceptual decision making

A common theme of perceptual decision-making studies across sensory modalities

is the integration of sensory information over time. It is well known that neural in-

tegration exists in, for example, eye movement generation in the brainstem (Aksay

et al., 2001; Cannon et al., 1983; Cannon and Robinson, 1987; Koulakov et al., 2002).

Recent studies have described neural activity that resembles activation functions in

mathematical models of decision making. For example, FEF movement neurons in-

crease firing rates before saccades in a manner similar to diffusion models (Hanes and

Schall, 1996); this increase may reflect integration of visual inputs from visual and

visuomovement neurons in FEF (Purcell et al., 2008) or, similarly, in SC (Schiller and

Koerner, 1971). A random-dot motion task has been used in monkeys to show that

LIP neurons appear to integrate inputs from MT (Mazurek et al., 2003).

Not all models of decision making assume integration of sensory input by a differ-

ent population of neurons, however (Ghose, 2006; Ghose and Harrison, 2009; Ludwig

et al., 2005; Nienborg and Cumming, 2009). In a recent study, observers made sac-

cades to a target stimulus that had, on average over time, higher luminance than

the distractor, but at any given moment could have lower luminance than the dis-

tractor stimulus (Ludwig et al., 2005). Observers did not use the optimal strategy of

integrating luminance over time. Instead, they appeared to use a temporal impulse

response
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8.4 Learning

The animals in our studies were well-trained and performed several thousand trials

of visual search each session over the course of many months. Although we did not in-

clude learning as a variable in our experiments, it is well known that training induces

behavioral and neural changes. In humans, training in visual search (e.g., Czerwinski

et al., 1992) and other perceptual decision tasks (e.g., Ahissar and Hochstein, 1997)

results in faster RT and higher percent correct. Several changes in different brain

areas have been reported during learning or as a result of training. In visual search,

FEF neurons in monkeys repeatedly exposed to one target have higher firing rates

when shown that target than a rare target (Bichot et al., 1996). In monkeys learning

a random-dot motion discrimination task, LIP neurons increase their firing rate se-

lectivity for direction of motion, while MT neurons maintain the same magnitude of

selectivity for motion (Law and Gold, 2008). In humans, there is evidence for changes

in V1 with training on an orientation discrimination task (Schiltz et al., 1999).

Many of these behavioral and neural changes fall under the umbrella of plasticity.

Despite the wealth of studies reporting these changes, little is known about how they

occur. Synaptic long-term potentiation and long-term depression, involving input-

dependent changes in pre- and postsynaptic insertion of receptors, are commonly

thought to underlie plasticity (Malenka and Bear, 2004), although this has yet to be

explored fully in vivo.
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8.5 A preview of things to come

Neuroscience, like most of science, has developed in parallel with technological

advances. The discovery of electricity in the 19th century led to early recordings

of neural activity (Caton, 1875) and early observations of the effects of electrical

stimulation on brain function and behavior (Ferrier, 1876; Fritsch and Hitzig, 1870).

Similarly, 20th-century revolutions in genetics, molecular biology and physics have led

to advances in genetic manipulations and functional brain imaging. By the end of

21st century we may be able to map poetic statements about the brain onto reality:

The neural flash swoops relentlessly in its Achillean path, in shapes stranger
then [sic] the dash of a gnat-hungry swallow; every twist, every turn fore-
ordained by the neural structure in Achilles’ brain, until sensory input
messages interfere.

—Hofstadter (1979)
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neural spike trains increases with firing rate. Nature 448: 802–806, 2007.

De Monte S, d’Ovidio F, Danø S, Sørensen PG. Dynamical quorum sensing: Pop-
ulation density encoded in cellular dynamics. Proc Natl Acad Sci U S A 104:
18377–18381, 2007.

de Ruyter van Steveninck RR, Lewen GD, Strong SP, Koberle R, Bialek W. Repro-
ducibility and variability in neural spike trains. Science 275: 1805–1808, 1997.

DeAngelis GC, Ghose GM, Ohzawa I, Freeman RD. Functional micro-organization
of primary visual cortex: receptive field analysis of nearby neurons. J Neurosci 19:
4046–4064, 1999.

deCharms RC, Merzenich MM. Primary cortical representation of sounds by the
coordination of action-potential timing. Nature 381: 610–613, 1996.

Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev
Neurosci 18: 193–222, 1995.

Desimone R, Schein SJ. Visual properties of neurons in area V4 of the macaque:
sensitivity to stimulus form. J Neurophysiol 57: 835–868, 1987.

Deubel H. The time course of presaccadic attention shifts. Psychol Res 72: 630–640,
2008.

Deubel H, Schneider WX. Saccade target selection and object recognition: evidence
for a common attentional mechanism. Vision Res 36: 1827–1837, 1996.

DiCarlo JJ, Maunsell JH. Form representation in monkey inferotemporal cortex is
virtually unaltered by free viewing. Nat Neurosci 3: 814–821, 2000.

DiCarlo JJ, Maunsell JH. Using neuronal latency to determine sensory-motor pro-
cessing pathways in reaction time tasks. J Neurophysiol 93: 2974–2986, 2005.

Donders FC. On the speed of mental processes. Acta Psychol (Amst) 30: 412–431,
1868/1969.
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