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NonA D.  Nonadjacent digits or palm pads 
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OUT_OUT  Two stimulus probes outside the Response Field of one neuron 

p    Proximal  

P(1-4)    Digital palm pad 

PC    Principal Component 

PCA    Principal Component Analysis 

PETH    Perievent time histogram 

PH    Hypothenar palm pad 

Pi(1-3)   Insular palm pad 

PR    Rostrolateral parietal area 

PSTH    Peristimulus time histogram 
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CHAPTER I 

 

INTRODUCTION 

 

Background and Significance 

 

The primate somatosensory cortex has been well-studied; however, functional 

implications of the known anatomical connections are incompletely understood. Such 

information is necessary to relate to human neurological phenomena including phantom 

limb syndrome and recovery after nerve injury. Determining functional organization of 

intact cortex is a step toward modeling mechanisms of plasticity underlying these 

phenomena, since a requirement for understanding injury to the somatosensory system is 

the understanding of the basic intact network. As tactile object recognition depends on 

integration of information from different parts of the hand, it is logical to presume that 

neurons somewhere in the somatosensory system integrate information from locations 

across the hand or hands, and even beyond. This thesis proposes that much of this 

integration occurs at the level of primary somatosensory cortex and to a more limited 

extent, subcortically. An evaluation of the extent of this integration in primary 

somatosensory cortex, area 3b, is a critical step in determining how and where the 

somatosensory system mediates object perception and other abilities.  

Owl monkeys were selected as an experimental model for several reasons. 

Primate studies offer the closest approximation to studies that cannot be performed in 

humans and are thus essential to apply results related to cortical function. For technical 
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reasons, a primate that has area 3b on the cortical surface and is hardy for surgery and 

experiments is preferred. Finally, the somatosensory cortex of owl monkeys has been 

well-studied (e.g., Merzenich et al., 1983; Garraghty et al., 1989; Wang et al., 1995; 

Nicolelis et al., 1998; Xerri et al., 1999) and is thus a good model to use to expand our 

knowledge of somatosensory cortical processing.  

 

Anatomical Organization of the Primate Somatosensory System 

 Even a brief review of the primate somatosensory system reveals the complexity of its 

organization. Sensations of pain, temperature, and proprioception are not isolated from 

tactile sensation, but this review focuses on the sense of touch; specifically on the 

organization of the afferent path of tactile information from the glaborous hand to the 

cortex, with emphasis on our area of interest, area 3b (Figure 1-1). Feedback influences 

on the primary somatosensory cortex are noted as well. Tactile sensation in primates is 

mediated by rapidly adapting Meissner corpuscles and slowly adapting Merkel cells, as 

well as very rapidly adapting Pacinian corpuscles. Slowly adapting Ruffini corpuscles are 

sensitive to skin stretch and have been identified in humans but not in monkeys. Pacinian 

corpuscles respond best to high frequency vibrations; therefore, the low frequency skin 

indentations presented in these studies are likely to activate mainly Meissner corpuscles 

and Merkel cells (Mountcastle, 2005, p. 113-128). The spinothalamic tract is a secondary 

pathway for tactile information and there is some convergence of the areas activated by 

pain and temperature with those responding to touch (Mountcastle, 2005, p. 397). For 

example, nociceptive C-fibers are believed to be tonically active and blocking their 

activity has been shown to affect tactile receptive fields (for review, Calford, 2002). The 
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dorsal column pathway is the major pathway for tactile information from the hand to 

reach the brain, and thus descriptions are concentrated on this pathway.  

Tactile inputs from the hand project to the brainstem cuneate nucleus and then to 

the ventroposterior lateral nucleus of the thalamus. Anterior parietal cortex can be 

subdivided into areas 3a, 3b, 1, and 2; and area 3b is the homologue of primary 

somatosensory cortex (S1) in other mammals (Kaas, 1983). This designation is made 

because activating tactile inputs from the ventroposterior lateral nucleus project to area 

3b, while modulating inputs project to areas 1 and 2 (Kaas, 1983, 2000). Area 3b neurons 

then project to areas 1 and 2, as well as to 3a (which receives activating proprioceptive 

input). The neurons in the anterior parietal cortex project to the secondary somatosensory 

area, S2, and the parietal ventral area, PV. (Kaas, 2000) From these neurons in the lateral 

Sylvian cortex, tactile information travels to the insular and retroinsular cortical areas 

(Sewards and Sewards, 2002; Mountcastle, 2005, p. 383-397). Reciprocal connections 

and callosal connections provide feedback within the system. There are sparse callosal 

connections between the hand representations in areas 3a and 3b, moderately sparse 

connections in area 1, with denser connections in area 2 (Killackey et al., 1983). Higher-

order somatosensory areas have callosal connections of the hand representation (e.g., 

Manzoni et al., 1984). Some callosal connections are homotopic, others are not (e.g., 

Pandya and Vignolo, 1969; Jones et al., 1979). While the somatosensory system is 

connected to additional areas not discussed, this brief review of somatosensory pathways 

provides the basic information relevant to the studies in primary somatosensory cortex of 

anesthetized monkeys described in this thesis.  
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Figure 1-1. Highlights of the ascending somatosensory pathway for inputs from the hand in primates. 

Activating inputs originating from rapidly adapting (RA) and slowly adapting (SA) peripheral 

mechanoreceptors in the hand are depicted traveling from the cervical spinal cord, to the brainstem cuneate 

nucleus, to the ventroposterior lateral nucleus (VPL) of the thalamus, and to area 3b of anterior parietal 

cortex. Modulating inputs from the thalamus also project to other parts of anterior parietal cortex. Muscle 

spindle inputs primarily project from ventroposterior superior nucleus (VPS) of the thalamus to 3a, as well 
as to area 2. Spinothalamic projections to the ventroposterior inferior nucleus (VPI) modulate S2 and PV, 

as well as anterior parietal cortex (projection not shown). Anterior parietal cortical areas are interconnected, 

and project to secondary somatosensory area, S2, and parietal ventral area, PV. The ventral somatosensory 

area (VS) and rostrolateral parietal area (PR) have connections with S2 and PV. Anterior parietal cortex 

also projects to primary motor cortex (area 4) via 3a and to posterior parietal cortex (areas 5 and 7). Figure 

adapted from Jain et al., 1998 and Kaas et al., 2002.  
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Receptive Field Properties 

One of the metrics used in sensory research is the receptive field, which is the 

area of the receptor sheet where stimulation influences cell firing (e.g., Freeman et al., 

2001). Visual research uses the term classical receptive field (Allman et al., 1985), and 

stimuli outside the field can affect neuron responses to stimuli within the classical 

receptive field. In the somatosensory system, mechanical forces that spread in the skin 

complicate identification of the receptors that make up the receptive field; therefore, the 

minimal receptive field (mRF) is referred to as the regions of the body that evoke a 

reliable excitatory neural response to near-threshold stimulation (e.g., Merzenich et al., 

1983; Xerri et al., 1999; Wu and Kaas, 2003). Like the classical receptive field, the mRF, 

or near-threshold excitatory field can be surrounded by regions that, when stimulated, 

modulate responses from within the mRF (e.g., DiCarlo et al., 1998).  

Receptive fields increase in complexity as signals propagate from the periphery to 

the central cortical processing areas. Both rapidly adapting and slowly adapting afferents 

have very small receptive fields, but they have some differences in sensitivity to 

indentation depth and stimulus frequency (Mountcastle, 2005, p. 319). At this first level 

of somatosensory processing, afferents demonstrate response complexity. Due to the 

biomechanical properties of the skin (rather than neural properties), presenting a second 

stimulus at the edge of the receptive field of an afferent can suppress the response to a 

stimulus presented in the center of the field (Phillips and Johnson, 1981). Many complex 

stimulus features can be represented by artificially reconstructing population responses 

from the afferents (Goodwin and Wheat, 1999, 2002), and naturally, population 

responses are reconstructed by higher-order neurons.  



 6 

The properties of receptive fields are more complex in primary somatosensory 

cortex than in the peripheral afferents. Neurons in the hand representation of area 3b of 

monkeys have receptive fields with dynamic excitatory and inhibitory components (e.g., 

DiCarlo et al., 1998; Sripati et al., 2006). Such components likely underlie many of the 

response properties of the neurons including motion detection (e.g., Whitsel et al., 1972; 

Gardner et al.,1992) and motion direction perception (e.g., Hyvärinen and Poranen, 1978; 

Warren et al., 1986). No bilateral receptive fields have been described in the hand 

representation of area 3b neurons in monkeys; however, bilateral receptive fields exist in 

areas 1 and 2 (Iwamura, 2000, review). There are no known ipsilateral projections to 

mediate the bilateral receptive fields in the cortex; thus, callosal pathways are 

acknowledged to be responsible for their existence (Mountcastle, 2005, p. 393).  

The complexity of receptive fields increases in cortical areas beyond primary 

somatosensory cortex, as receptive fields become larger and bilateral fields become more 

common (Robinson and Burton, 1980a,b; Mountcastle 2005, p. 391). Selectivity for 

stimulus properties such as orientation is found in greater proportions of neurons (e.g., 

Hsiao et al., 2002) and the high-level process of attention more strongly affects neurons 

in S2 than in S1 (Hsiao et al., 1993). Receptive fields are large in insular neurons and 

bilateral fields are also common (Robinson and Burton, 1980a,b).  

 

Response Modulation in Primary Somatosensory Cortex 

This dissertation focuses on the properties of neurons in primary somatosensory 

cortex, which have been described to be of intermediate complexity between primary 

afferents and higher-order cortical areas. Despite the relative simplicity of their receptive 
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fields, the spatiotemporal integration properties of neurons in area 3b were investigated in 

response to paired stimuli presented on one or both hands. In visual cortex, stimuli 

presented outside the classical receptive field modulate neuron responses, mostly via 

surround inhibition (e.g., Allman et al., 1985; Bretzner et al., 2000; Walker et al., 2000; 

Freeman et al., 2001; Brown et al., 2003). Reports on ―surround modulation‖ due to 

neural mechanisms in somatosensory cortex are less prevalent. In this context, surround 

modulation is considered the change in neuronal response that occurs when the mRF and 

a site outside the mRF are stimulated compared to the response when the mRF is 

stimulated alone. The functional significance of surround modulation in somatosensory 

cortex is not known, but may be related to directing attention to salient stimuli (Burton 

and Sinclair, 2000; Hupe et al., 2001) or allowing stimuli to be perceived as related parts 

within a context (e.g., Allman et al., 1985; Albright and Stoner, 2002). This aspect of 

somatosensory processing has not been well studied.  

Modulation of responses to stimulation inside the mRF due to stimulation outside 

the mRF could arise from many sources including: feedforward thalamocortical 

connections (e.g., Friedman and Jones, 1980; Garraghty et al., 1989); intrinsic cortical 

connections (Manger et al., 1997; Fang et al., 2002); and extrinsic cortical connections, 

including intrahemispheric feedback and callosal connections (e.g., Ergenzinger et al., 

1998; Calford, 2002). Thalamocortical projections, believed to be the main contributors 

to the excitatory mRF, synapse onto layer 4 cells, as well as onto layer 3 and layer 5 

pyramidal cells with dendrites in layer 4 (e.g., White, 1989, p. 53, 80-81). In addition to 

these excitatory effects, GABAergic mechanisms shape neural responses and receptive 

fields (Hicks and Dykes, 1983; Alloway and Burton, 1986; Alloway et al., 1989; 
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Chowdhury and Rasmusson, 2003). Contributions to the surround are likely to come from 

horizontal connections and feedback connections (e.g., Thomson and Deuchars, 1994; 

Salin and Bullier, 1995; Lamme and Roelfsema, 2000). Distal structures such as the 

hands have few to no callosal connections in area 3b (Killackey et al., 1983); however, 

human studies indicate that ipsilateral cortex receives activation from hand stimulation 

(e.g., Schnitzler et al., 1995; Kurth et al., 1998; Hansson and Brismar, 1999; Tanosaki et 

al., 2002), likely due to feedback from areas outside 3b. Callosal projections come from 

pyramidal cells and are assumed to be excitatory. Few studies implicate non-pyramidal 

cells in callosal projections (Conti and Manzoni, 1994). Thus, callosal projections can be 

regarded as extrinsic connections that either act directly as excitatory or recruit 

GABAergic neurons and act as inhibitory inputs (Calford, 2002).  

 

Electrophysiological Measures of Neuronal Activity 

Receptive field properties are determined by using extracellular electrodes to 

record the activity of single neurons and multi-neuron clusters. Electrophysiological 

recordings provide excellent spatial and temporal resolution of neural activity; and 

current technology allow us to record from 100 electrodes simultaneously, covering a 

large spatial extent of the hand presentation in primary somatosensory cortex. Our 

experiments describe effects on single neurons (single-units) or small groups of neurons 

(multi-unit clusters) in the 3b hand representation of stimulating two sites on the body 

with mechanical probes providing simultaneous or asynchronous stimulation.  

Based on the spiking activity collected from each monkey, analyses focused on 

three basic measures: firing rate, response latency, and spike timing correlations between 
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neuron pairs. Firing rate and latency describe the response properties of individual 

neurons, and these basic measures were used to examine how neuron responses were 

modulated by stimulation that varied in spatiotemporal features. Spike timing correlations 

measure the relationship of the timings of spikes in two different neurons. Such 

correlations are thought to increase the probability that postsynaptic neurons will be 

driven to fire, and correlations can indicate the relationship between neurons. The effects 

of varying the spatiotemporal stimulus features on spike timing correlations were 

quantified. These physiological measures provide functional relationships which can 

imply anatomical relationships; however, they do not provide specific anatomical 

relationships between neurons within the hand representation of primary somatosensory 

cortex.  

 

Broad Significance 

The global aims of this dissertation were two-fold. First, we investigated the ways 

in which neurons in somatosensory cortex respond to a stimulus inside the receptive field, 

in the context of a distant stimulus which could be presented to the contralateral hand or 

the ipsilateral hand. These studies quantified intrahemispheric and interhemispheric 

spatiotemporal processing in intact monkeys. Second, the role of interhemispheric 

processing on the responses to contralateral hand stimulation was further investigated by 

blocking signaling from an ipsilateral digit. The normal functions of neurons in the 

somatosensory system are relevant not only for understanding the sense of touch, but also 

to understanding recoveries from damage to the somatosensory system (i.e., 

understanding the extent to which processing is altered by lesions and to what extent 
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normal function returns to the area with or without therapy). These studies will lead to 

improved models of functional circuitry of the somatosensory cortex in primates, which 

will aid in understanding changes that produce neurological phenomena following 

denervation-induced cortical reorganization in humans. Future experiments will test this 

further, but the work in this dissertation is part of the foundation necessary to interpret 

such future studies. 

 

Objective 

 

A central problem in systems neuroscience is determining how sensory 

information is represented in the brain. The objective of this dissertation is to investigate 

this question specifically for the hand representation in primary somatosensory cortex in 

primates. Humans and nonhuman primates use the hands extensively to manipulate 

objects and make perceptual discriminations that can guide behavior. The idea directing 

the dissertation research is that object discrimination requires integration of information 

from across the hand, and when used together, between the hands; and this integration is 

likely to involve primary somatosensory cortex (area 3b).  

To investigate the spatiotemporal properties of how area 3b neurons integrate 

information from across the hand or hands, groups of neurons were recorded 

simultaneously using a multielectrode array implanted in the 3b hand representation of 

owl monkeys (Aotus trivirgatus) while presenting tactile stimuli to one or both hands. 

This technique allowed many stimulus conditions to be recorded for each neuron unit and 

provided multiple pair-wise comparisons to examine the spike timing correlations in a 
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relatively large region of cortex (4 mm x 4 mm). The design was to place one stimulus 

probe within the minimal receptive field (mRF) of reference neurons to drive neural 

activity, and place a second probe outside the mRF to modulate the activity. The goal of 

this research was to examine how area 3b neurons integrate information from outside the 

neuron‘s minimal receptive field.  

 

Specific Aims 

 

This research investigated the effects on primate area 3b neurons of applying two 

tactile stimuli that varied in spatial and temporal proximity. We expected that responses 

of area 3b neurons are modulated when two stimuli are nearer in spatial and temporal 

proximity, but that modulations occur even when stimuli are separated by substantial 

distances. This premise was based on evidence that 1) stimuli close in proximity (on 

adjacent digits) applied closely in time modulate the neuron response to the stimulus in 

the receptive field and 2) stimulation or deafferentation of the ipsilateral hand can affect 

responses to stimulation on the contralateral hand in area 3b neurons. Our broad 

hypothesis was that neuronal processing of a stimulus presented to a single site on the 

contralateral hand is affected by the state of the rest of the hand, and even the state of the 

ipsilateral hand. The first test of this hypothesis involved stimulating two skin locations 

in intact monkeys to determine normal response modulations in area 3b neurons. The 

second test of this hypothesis focused on the possible effects that the state of the 

ipsilateral hand would have on processing a contralateral stimulus after blocking 
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spontaneous activity from an ipsilateral digit. To address this hypothesis, the following 

specific aims were proposed.  

 

Aim 1. Characterize Response Modulation to Paired Stimulation Inside the Minimal 

Receptive Field (mRF) and Outside the mRF 

 

We predicted that when the ‗outside‘ probe is near the probe inside the mRF 

spatially and temporally, neuronal responses in area 3b are modulated more than when 

stimuli are widely separated, but that modulations occur even when the two probes are 

separated by substantial distances (i.e., nonadjacent digit sites within the hand and paired 

sites on the two hands). We expected to find classical suppressive interactions that 

resembled surround inhibition, as well as response facilitations, depending on stimulus 

parameters, when stimuli were delivered to two locations. This aim is divided into two 

sub-aims.  

 

Aim1a. Characterize Response Modulation When the Spatial Proximity Between Stimuli 

is Varied   

 

We hypothesized that stimulation outside the mRF modulates neuron responses to 

stimulation in the mRF, and the greatest modulation occurs when ―surround‖ sites were 

close to the mRF. Two sites were stimulated simultaneously and modulations that 

occurred when paired sites differed in spatial proximity were characterized. If primate 

hands are similar to rat whisker fields, we would expect to find facilitation when adjacent 

sites are simultaneously stimulated (Ghazanfar and Nicolelis, 1997; Shimegi et al., 1999, 

2000). Several studies report mostly suppression (e.g., Simons, 1985; Simons and 

Carvell, 1989; Moore and Nelson, 1998; Moore et al., 1999; Mirabella et al., 2001; 
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Derdikman et al., 2003; Melzer et al., 2006); but facilitation may predominate in layer 2/3 

and occur widely in layer 5, similar to the findings of Shimegi et al. (1999, 2000) and 

Ghazanfar and Nicolelis (1997). The approach was to stimulate adjacent and nonadjacent 

digits, as stimulus interactions between nonadjacent digits should represent effects from 

‗beyond the classical receptive field‘ (e.g., Chowdhury and Rasmusson, 2003; Greek et 

al., 2003). Sites on both hands were also stimulated, as interactions will depend on direct 

or indirect callosal connections.    

 

Aim1b. Characterize Response Modulation When the Temporal Proximity Between 

Stimuli is Varied 

 

We hypothesized that stimuli presented close in time interact more strongly than 

stimuli separated in time. When stimuli are offset by more than a few milliseconds, the 

effects in the somatosensory system are reported to be mostly suppressive (e.g., Jänig et 

al., 1977, 1979; Laskin and Spencer, 1979; Gardner and Costanzo, 1980b; Brumberg et 

al., 1996; Moore et al., 1999; Chowdhury and Rasmusson, 2003; Greek et al., 2003). 

These effects occur for condition-test paradigms, in which stimulating a surround site 

prior to stimulating inside the receptive field results in suppression compared to 

stimulating inside the receptive field alone. While the effects are largely unexplored for 

the hand area in primate 3b, we also expected to find suppressive interactions when 

stimuli are offset in time. Typical spatiotemporal receptive fields for 3b neurons in the 

monkey hand region include a small excitatory region (that could include inhibitory 

surround), followed by a prolonged inhibition (e.g., Sripati et al., 2006). Sources of the 

prolonged inhibition and its spatial spread are not fully known. Depending on the spread 
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of this long inhibition, we expected that stimulating a surround site would suppress 

responses to stimuli applied inside the mRF later in time.  

Paired sites (as in Aim 1a) were tested with stimuli separated by a range of 

stimulus onset asynchronies to obtain spatiotemporal profiles of stimulus interactions. 

We expected that the distance between stimulus sites would likely affect maximum 

interaction time; thus, a spatiotemporal interaction effect would exist. Condition-test 

intervals resulting in maximum suppression in S1 cortex are 10-30 ms for adjacent 

whisker stimulation in rats (Moore et al., 1999, review) and 20-40 ms for adjacent digit 

stimulation in raccoons (Greek et al., 2003). Within receptive fields on the monkey arm, 

Gardner and Costanzo (1980) found maximum suppression intervals of 10-20 ms. Thus, 

we expected to find maximum suppression in owl monkey 3b for adjacent digit 

stimulation at similar condition-test intervals (10-40 ms). Stimulation on two distant 

locations, such as the two hands, would require longer intervals for maximum effects. 

 

Aim 2. Block Input from One Hand and Characterize the Change in Responses to 

Stimulation on the Opposite Hand 

 

We hypothesized that neurons in area 3b are influenced by the spontaneous 

activity of neurons with receptive fields outside the recorded neuron‘s mRF, including 

from the opposite hemisphere. Local anesthetic injections were used to reduce some of 

the spontaneous activity from outside the mRF to deduce the effects of normal levels of 

spontaneous activity. Digit denervation in bats and monkeys reveals expanded receptive 

fields on the opposite hand, suggesting that tonic interhemispheric inhibition has been 

removed (Calford and Tweedale, 1991a,b). Neuron activity was measured before and 

after a local anesthetic block of input from the ipsilateral hand to determine if neurons 
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become more or less responsive to stimulation on the contralateral hand and determine 

the spatial extent of the effects. Human evoked potential recordings indicate that cortical 

activity increases, along with tactile spatial acuity (Werhahn et al., 2002). We predicted 

that some of the recorded neurons would show response facilitations and neurons that did 

not respond to stimulation prior to the ipsilateral block would respond to the stimulation 

after the block. We expected to demonstrate and quantify interactions between the hand 

representations in area 3b of the two hemispheres, including the topographic specificity 

of the effects. 

 

Aim 3. Describe the Synchrony of Firing Between Neurons When One Stimulus Is 

Presented Repeatedly and When Two Stimuli Are Presented Either Simultaneously or at 

Different Stimulus Onset Delays 

 

Synchronous or asynchronous firing may be an indication of how groups of 

neurons respond to tactile stimulation that cannot be directly assessed by single electrode 

recordings. Modulation of responses may be in the form of synchrony or asynchrony of 

firing that does not change neuronal response properties of firing rate and latency (e.g., 

Vaadia et al., 1995; DeCharms and Merzenich, 1996). In the visual system, perceptual 

grouping, attention, and stimulus discrimination have been shown to generate synchrony 

of firing when integration of multiple features from a single object is necessary (for 

review, Singer and Gray, 1995). Interpretations of synchrony have been largely limited to 

the high-level integration processes of perception and attention in both the visual (for 

review, Bichot and Desimone, 2006) and somatosensory systems (for review, Niebur et 

al., 2002). However, there is evidence that modulations in the levels of correlated firing 

can be related to stimulus features, even in anesthetized animals, in the primary visual 
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cortex (e.g., Samonds et al., 2003, 2004, 2006; Zhou et al., 2008) and primary 

somatosensory cortex (e.g., Roy and Alloway 1999; Zhang and Alloway 2004, 2006). We 

hypothesized that spike timing correlations, a form of synchrony, occur widely between 

neurons in area 3b to facilitate the processing of information from across the hand. We 

also predicted that the spatiotemporal characteristics of paired stimuli alter the degree of 

correlated firing between neurons in area 3b.  

This work will lay a foundation for understanding stimulus interactions in the 

monkey 3b hand representation by determining spatiotemporal interactions of 

systematically-delivered tactile stimuli (Aims 1 and 3) and exploring interhemispheric 

interactions that may normally produce subthreshold effects for spike activity, but can be 

revealed after temporary digit denervation (Aim 2). These widespread effects are likely to 

be important for normal somatic sensation as well as for substrates of synaptic plasticity 

in recovery from injury. The results of this thesis will guide future investigations into the 

amount and types of integration that occur during somatosensory processing. 

 

Overview of the Dissertation 

 

Although the aims of this work are divided into three parts, the studies can be 

thought of as characterizing two main issues: 1) intrahemispheric and 2) inter-

hemispheric processing. Aim 1 includes both issues, as the spatial and temporal stimulus 

effects was studied by providing tactile stimulation to the contralateral hand, as well as 

by providing paired stimulation on the ipsilateral and contralateral hands. Aim 2 focused 

on interhemispheric processing by determining the effects of using local anesthetic 
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injections to block signals from the peripheral nerves in an ipsilateral digit on the 

responses to single-site stimulation on the contralateral hand. Aim 3 focused on intra-

hemispheric processing by analyzing correlated spike timings in pairs of neurons within 

the contralateral hemisphere during stimulation on the contralateral hand. The 

organization of the dissertation chapters does not directly correspond to the order of the 

specific aims, but corresponds to the two main ideas of intrahemispheric and inter-

hemispheric processing. 

Chapter 2 provides our initial evidence for widespread spatial processing within 

primary somatosensory cortex based on pair-wise correlations in spike timing (Aim 3). 

Chapter 3 describes response properties of individual neurons and multi-neuron clusters 

when tactile stimuli are presented with varying spatial and temporal relationships (Aim 

1a and b). Spatial and temporal properties of spike timing correlations are discussed in 

Chapter 4, to complete Aim 3. Interhemispheric effects are described in Chapter 5 and 6. 

The spatiotemporal effects on responses that occur when the ipsilateral and contralateral 

hand are stimulated simultaneously or asynchronously are discussed in Chapter 5, which 

completes the conditions from Aim 1. Chapter 6 is devoted to the results from Aim 2, in 

which interhemispheric processing is deduced based on blocking the nerves of one 

ipsilateral digit and analyzing the response properties to single-site stimulation on the 

contralateral hand before and after the local anesthetic. Chapter 7 summarizes the results 

from the previous five chapters and includes a discussion of the implications of this work. 
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CHAPTER II 

 

 

WIDESPREAD SPATIAL INTEGRATION IN PRIMARY SOMATOSENSORY 

CORTEX 

 

 

This chapter reproduces the published work:  Reed JL, Pouget P, Qi HX, Zhou Z, 

Bernard MR, Burish MJ, Haitas J, Bonds AB, Kaas JH. 2008. Widespread spatial 

integration in primary somatosensory cortex. Proc Natl Acad Sci USA. 105(29):10233-

10237. The figure numbers have been changed to reflect the chapter number and the 

references have been reformatted. The article content is otherwise unaltered. 

 

Abstract 

 

Tactile discrimination depends on integration of information from the discrete 

receptive fields (RFs) of peripheral sensory afferents. Because this information is 

processed over a hierarchy of subcortical nuclei and cortical areas, the integration likely 

occurs at multiple levels. The current study presents results indicating that neurons across 

most of the extent of the hand representation in monkey primary somatosensory cortex 

(area 3b) interact, even when these neurons have separate RFs. We obtained simultaneous 

recordings by using a 100-electrode array implanted in the hand representation of primary 

somatosensory cortex of two anesthetized owl monkeys. During a series of 0.5-s skin 

indentations with single or dual probes, the distance between the electrodes from which 

neurons with synchronized spike times were recorded exceeded 2 mm. The results 

provide evidence that stimuli on different parts of the hand influence the degree of 

synchronous firing among a large population of neurons. Because spike synchrony 

potentiates the activation of commonly targeted neurons, synchronous neural activity in 

primary somatosensory cortex can contribute to discrimination of complex tactile stimuli. 
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Introduction 

 

Humans and other primates use their hands to make tactile discriminations that 

guide choices and actions. The vast majority of those choices are based on stimuli that are 

presented to sites across the hand or hands. The transformation of these scattered 

information sources from receptors in distinct patches of skin into one percept presumes 

integration within the central nervous system. This integration could occur at several 

levels, but here we consider the primary somatosensory cortex (S1, i.e., area 3b). While 

area 3b contains a detailed somatotopic representation of the hand and neurons with small 

receptive fields (RFs), considerable integration across hand locations could already occur 

at this level via horizontal connections within area 3b. 

  One way of examining neuronal interactions is through spike timing synchrony. 

When the spikes of two neurons occur together more often than expected by chance, we 

can infer that those neurons are part of the same local network. The two neurons could 

receive a common input that drives the synchronous firing or the neurons could be 

synaptically connected. Our focus was on quantifying integration in the form of spike 

synchrony collected from neuronal activity in layers 2/3 of S1 in anesthetized owl 

monkeys (Aotus trivirgatus). Analysis of firing rate data will be presented elsewhere. 

Using a 100-electrode array (Cyberkinetics) covering 4 mm x 4 mm of cortical 

area (Figure 2-1A,B), our approach to examine sensory input integration in the area 3b 

hand representation focused on correlations in spike timing in pairs of neurons 

responding to the same or different stimulus probes (1 mm diameter contact surface). We 
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examined interactions across, rather than within, digit and palm pads to determine the 

extent of spatial integration in the area 3b hand representation. 

Correlations between neurons have been proposed as a biophysical mechanism by 

which neurons at lower levels in processing hierarchies more effectively increase the 

responsiveness of neurons at higher levels (e.g., Azouz and Gray, 2000; Salinas and 

Sejnowski, 2001). In the primate somatosensory system, spike timing correlations have 

been studied primarily in secondary somatosensory cortex (S2) in awake macaque 

monkeys performing attention tasks (e.g., Niebur et al., 2002; Roy et al., 2007), as firing 

rate changes without spike synchrony changes have been associated with attention in S1 

(Hsiao et al., 1993). Here we examined spike synchrony occurring in S1 of anesthetized 

owl monkeys. Rather than studying synchrony as neural correlate of attention, we studied 

the role of spike synchrony as a low-level correlate of stimulus processing and 

integration. We examined spike timing synchrony using the joint peristimulus time 

histogram analysis (JPSTH) based on methods from Aertsen and colleagues (1989). The 

analysis focuses on the subset of spike timing correlations that likely arise from 

functional connections rather than correlations due to stimulus-related changes in firing 

rate. In particular, our purpose is to infer the influences of common input and lateral 

connections in area 3b. The data presented include dual-site stimulation on nonadjacent 

hand locations, as stimulus interactions between nonadjacent digits would be strict 

indicators of effects from ―beyond the classical receptive field‖ (Allman et al., 1985).  
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Figure 2-1. An example of correlated spike activity recorded from two adjacent electrodes in monkey 1. A. 

A lateral schematic view of an owl monkey brain with area 3b shaded. Subdivisions representing the face 

and hand are outlined, including those that cannot be seen from a surface view. LS = lateral sulcus, STS = 

superior temporal sulcus. B. The location of the array for case 1 within the area 3b hand representation. The 

approximate representations of the digits (D1-5) and the digital (P1-3), thenar (PTh), hypothenar (PH) and 

insular (Pi) pads of the hand are identified and outlined. The red dots mark the electrodes where the two 

neurons were recorded for the analysis shown in C. Both neurons had receptive fields on PTh. C. An 
example of the spike timing synchrony between units recorded from adjacent electrodes. Two probes 

simultaneously indented the skin on PTh and P1. Spike synchrony between the two neurons is shown in the 

normalized joint peristimulus time histogram, the JPSTH matrix. The two PSTHs of the responses to 100 

repetitions of 0.5 s skin indentations are shown to the left and below the matrix, with the cross-correlation 

histogram derived from the JPSTH analysis directly below. The colored pixels in the JPSTH matrix 

represent the magnitude of the normalized correlation at different lag times over a poststimulus time of 700 

ms. Strong spike synchrony occurred around 0 ms lag time throughout the period. The cross-correlation 

histogram (black) revealed a peak correlation of 0.16 that exceeded the mean correlation from the shuffled 

trials (red).  
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Neurons with overlapping RFs might be expected to show spike timing 

correlations based on common input and synaptic connections. Neurons with 

nonoverlapping RFs might be less likely to share information and fire synchronous 

spikes. Simultaneous recordings in S1 and S2 in cats revealed that neurons with 

synchronized spike times tended to have overlapping RFs, while the pairs that did not 

show synchrony tended to have nonoverlapping RFs (Roy et al., 2001). However, recent 

studies in visual cortex have led to the proposal that synchrony is related to stimulus 

properties (e.g., Samonds et al., 2003, 2006). Therefore, we tested whether we could 

drive synchronous firing between neurons with nonoverlapping RFs responding to 

stimulation on nonadjacent locations, as a signal of information integration from beyond 

the classical RF.  

 

Results 

  

Recordings were obtained using a 100-electrode array implanted in layers 2/3 of 

S1 of two anesthetized owl monkeys when one or two sites on the hand were stimulated. 

We selected 182 units from the two monkeys based on response criteria to the stimulation 

conditions (see Methods). From monkey 1, 28 units were classified as single units and 66 

were multi-units. From monkey 2, 42 units were single units and 46 were multi-units. 

Across all stimulation conditions, this resulted in 1244 single unit pairs and 2476 multi-

unit pairs for spike timing analysis. Paired nonadjacent locations selected for stimulation 

included digit 1 (D1) with digit 3 (D3), digit 2 (D2) with digit 4 (D4), and the thenar 

palm pad (PTh) with palm pad 2 (P2). We obtained responses from 50 single units and 63 
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multi-units, while analyzing 316 single unit pairs and 473 multi-unit pairs for synchrony. 

Only one unit was selected per electrode for analysis so that no spike timing correlations 

were performed between units from the same electrode. This restriction ensured that 

spike correlations were unlikely calculated between contaminated spikes (Gerstein, 

2000). Our measure of synchrony was the peak magnitude of correlation between pairs of 

neurons based on JPSTH analysis with spike trains aligned on the start of a 0.5 s skin 

indentation. Pairs with significant correlations showed synchronous spiking during the 

sustained skin indentation, not only at the stimulus onset and removal (Figure 2-1C). 

 

Multi-Electrode Recordings Indicate Widespread Stimulus Effects 

Responses of area 3b neurons to 0.5 s skin indentations within the minimal RF 

(based on traditional mapping techniques) included a sharp onset response followed by 

some response depression, a variable level of maintained activity, and often an off 

response, depression, and a return to prestimulus levels of spontaneous activity. Neurons 

included in the analysis showed sustained activity in response to the 0.5 s stimulations on 

at least one of the hand locations in the recording conditions (see Methods). Although 

rapidly-adapting neuron types with low levels of spontaneous activity and transient 

responses to stimulation were recorded, these were not included in the analysis since the 

JPSTH calculation requires many spikes to obtain an estimate of spike timing synchrony 

(Aertsen et al., 1989; Gerstein et al., 1989; Gerstein, 2000). The recorded responses were 

similar to those reported previously from area 3b neurons in monkeys (e.g., Mountcastle 

et al., 1969; Sur et al., 1984).  



 32 

  We found correlated spike times occurred between pairs of neuron-units recorded 

from adjacent electrodes (0.4 mm center-to-center distance) as well as from distant 

electrodes (over 2 mm apart). An example of the extent of correlations when a single site 

on the palm (PTh) was stimulated repeatedly is shown in Figure 2-2. A representation of 

the peak firing rate for the subset of units analyzed for synchrony is shown in conjunction 

with the peak correlations between unit pairs.  

 

Quantification of Spatial Integration across Area 3b Indicates Extensive Interactions 

The proportions of unit pairs with synchronous spike timings decreased when two 

sites were stimulated compared to single-site stimulation. During single-site stimulation, 

49.6% of the pairs recorded showed synchrony in their spike timings. During dual-site 

stimulation, 28.2% of the pairs were synchronized. For both single- and dual-site 

stimulation conditions, the proportions of correlated pairs decreased as the cortical 

distance separating the two units increased (Table 2-1). When one site was stimulated, 

58.7% of the neuron pairs recorded less than 1.0 mm apart had significant spike timing 

correlations. This proportion dropped to 16.7% for pairs that were separated by 4.0 to 5.0 

mm. When two nonadjacent sites were stimulated, 35.6% of the neuron pairs recorded 

less than 1.0 mm apart were synchronized. This proportion dropped to 7.5% for pairs 

separated by 3.0 to 4.0 mm. We speculate that information provided by synchronous 

activity became more specific when two sites were stimulated. 
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Figure 2-2. An example of widespread spike timing correlations and firing activity. Significant peak 

correlations across the sampled neuron-units in the 100-electrode array are displayed in a grid with a color 

map representing the peak firing rates of the units overlaid on the schematic of the area 3b hand 

representation to indicate the approximate spatial locations of the electrodes. Shown is one example from 

case 1 when a single site on the thenar palm (PTh) was stimulated repeatedly (100 trials). Dots indicate 

electrode sites and significant correlations between units are represented by the lines connecting the dots. 
The size of the dots and the thickness of the connecting lines are visual representations of the peak 

magnitude of the correlation. Each colored box represents the peak firing rate of a unit at one electrode site. 

Peak firing rates are shown for those units included in the synchrony analysis. Dark blue squares indicate 

electrodes not analyzed for spike synchrony because units did not show sustained responses to stimulation.   

 

 

 

 

Table 2-1. Proportions of correlated pairs across cortical distance in S1.  
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As a next step, we examined the relationship of the distance between correlated 

pairs and the magnitude of the peak correlation. The data were summarized for both 

monkeys in a scatter plot (Figure 2-3) to determine if strong correlations tended to occur 

between neurons on adjacent electrodes. We found a weak, but significant trend for 

stronger correlations occurring between neurons recorded from nearby electrodes when a 

single site was stimulated (r = -0.2247, p < 0.0001, n = 533), as well as when two 

nonadjacent sites were simultaneously stimulated (r = -0.2048, p = 0.006, n = 179). We 

found that significant correlations occurred between neurons recorded from distant 

electrodes, over 2 mm apart.  

 

 

Figure 2-3. Relationship of spike timing peak correlation magnitude to the distance between electrodes. 

The normalized, significant peak correlation magnitudes are plotted as a function of distance between the 

correlated unit pairs, summarized for monkeys 1 and 2 when nonadjacent sites were simultaneously 

stimulated (Dual-Site) and when single sites were stimulated as controls (Single-Site).  
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Discussion 

 

 

One might expect that spatial integration by 3b neurons is very limited, as RFs 

have been consistently described as restricted in size, usually confined to part of a 

phalanx of a single digit or palm pad (Iwamura et al., 1983; Pons et al., 1987; DiCarlo et 

al., 1998), and appear uniformly excitatory when probed with punctate stimuli 

(Mountcastle et al., 1959; Sur, 1980; Sur et al., 1985; Sripati et al., 2006). Studies 

indicate that inhibitory surrounds of area 3b neurons in hand cortex do not substantially 

enlarge the RF area (DiCarlo et al., 1998; Sur, 1980; Sripati et al., 2006). Here we show 

that traditional depictions of RFs do not reflect the extent of integration that occurs in 

area 3b.  

The ability to record from 100 electrodes simultaneously allows us to examine 

responses and spike synchrony across a large extent within a single cortical area or 

between areas. Our experiment, using tactile stimulation of nonadjacent hand sites of 

anesthetized owl monkeys, demonstrates the widespread spatial integration of sensory 

inputs present in the area 3b hand representation. When even a single site was stimulated 

with repeated skin indentations, neurons on numerous electrodes responded to the 1 mm 

diameter stimulus. These results are in agreement with findings in which chronic multi-

site recordings in owl monkey somatosensory cortex areas 3b, 2, and S2 showed 

widespread activity in response to single-site tactile stimulation and evidence for 

ensemble coding of stimulus location using firing rates (Nicolelis et al., 1998). Spike 

timing correlations occurred between neurons separated by millimeters of cortex, beyond 

the predicted extent of the representation of the palm pad location at that site (Figure 2-

2), suggesting a functional connectivity that has been largely overlooked.  
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Correlated firing among neurons can occur through four basic ways: 1) a common 

input arriving nearly simultaneously to the neurons; 2) lateral connections within cortex; 

3) responses in unconnected neurons to a common stimulus; and 4) statistical coincidence 

due to firing rate. Our corrections in the correlation calculations remove or reduce the 

impact of 3) and 4), although ―uncorrected correlations‖ likely have roles in stimulus 

processing (Gerstein et al., 1989). Thus, we are left to determine if the correlations we 

find are due to common input or lateral connections. We recorded from neuron pairs with 

the same or overlapping RFs, which are likely to receive a common, activating input as 

well as have strong lateral connections (e.g., Gilbert, 1993; Burton and Fabri, 1995). 

These neurons were in close proximity (adjacent electrodes, 0.4 mm apart). Significant 

spike correlations also occurred for neurons with nonoverlapping RF across larger 

regions of cortex (over 2 mm apart). Synchronies between neuron pairs with dissimilar 

RFs induced by stimulating two nonadjacent digits simultaneously are unlikely due to 

common thalamocortical input, as the densest thalamocortical projections are 

topographically matched, although a few projections spread across distinct 

representations in area 3b of owl monkeys (Garraghty et al., 1989; Garraghty and Sur, 

1990). Lateral projections extend across segregated digit representations in monkey area 

3b (e.g., De Felipe et al., 1986; Manger et al., 1997; Fang et al., 2002). Thus, we propose 

that common thalamic inputs together with dense lateral connections result in strong 

correlations between neurons across a localized area of cortex in which neurons have 

overlapping RFs, while longer and less dense intrinsic lateral connections (De Felipe et 

al., 1986; Garraghty et al., 1989; Garraghty and Sur, 1990; Manger et al., 1997; Fang et 

al., 2002) contribute to weaker correlations that are spread across a larger area. An 
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additional source of correlated activity between distant neurons could be common 

feedback connections from higher-order somatosensory areas with large RFs.  

 

Evidence for Widespread Correlated Neural Assemblies in Area 3b 

Recent studies have shown measurable changes in spike time synchrony between 

pairs of neurons with changes in attention in primate somatosensory cortex (e.g., Hsiao et 

al., 1993; Steinmetz et al., 2000; Niebur et al., 2002; Roy et al., 2007). To a large extent, 

such synchronies have been interpreted as a high-level integration process based on 

feedback connections from higher levels, despite the evidence for robust presence of 

synchrony in anesthetized preparations (Alloway et al., 1993, 2002; Roy and Alloway, 

1999; Samonds et al., 2003, 2006; Bruno and Sakmann, 2006; Eggermont, 2006). The 

manifestation of synchrony in unconscious animals implies specific anatomical 

connectivity between neurons and populations of neurons and furthermore emphasizes 

that higher levels of integration must consider such low-level integration.  

Our results, using paired stimuli on multiple locations across the hand, expand 

previous correlation studies in somatosensory cortex which found that neurons with 

overlapping RFs have strong correlations when probed with single stimuli inside the RF 

and moving stimulation (e.g., Alloway et al., 1993, 2002; Roy and Alloway, 1999). 

Similar to findings in cat S2 (Alloway et al., 2002), we found that the magnitude of 

correlated activity decreased with increasing electrode distance (Figure 2-3). However, 

the spatial distance between correlated neurons was surprising, as significant correlations 

occurred between neurons separated by over 2 mm (Table 2-1, Figure 2-3). As suggested 

by Roy and Alloway (1999), we have found that spike timing synchrony in S1 may be 
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related to stimulus properties in anesthetized animals, indicating that low-level 

integration processes play an important role in neural coding, in addition to the role 

played by higher-level processes (such as attention). 

In conclusion, we have shown evidence for extensive sensory input integration in 

S1 cortex of anesthetized owl monkeys. Traditional minimal receptive field mapping is 

only the ―tip of the iceberg‖ in terms of reflecting the actual stimulus interactions that 

take place in the area 3b hand representation. Interactions extend across nonadjacent digit 

sites, despite the lack of RF mapping studies in primates showing such large fields in area 

3b. The differences in our findings compared to traditional RF mapping can be explained 

in part by our stimulus. We use a suprathreshold stimulus to drive responses, whereas RF 

mapping is typically done with near-threshold stimulation. Our suprathreshold stimulus 

may activate a larger pool of inputs, allowing us to measure interactions that are likely to 

occur during natural tactile stimulation. Using our methods, we found sensory input 

integration across regions much larger than the small RFs and discrete digit 

representations predict. We propose that neurons even at the first level of somatosensory 

cortex participate in global aspects of stimulus processing, upon which higher-level 

processing is based.  

 

Materials and Methods 

 

Preparation 

Two adult owl monkeys (1 kg) were prepared for electrophysiological recordings 

in primary somatosensory cortex under the guidelines established by the National 
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Institutes of Health and the Animal Care and Use Committee at Vanderbilt University. 

Animals were anesthetized with propofol and N2O and paralyzed with vecuronium 

bromide. See supporting information (SI) for detailed methods. A small craniotomy was 

made over the primary somatosensory cortex, and the dura was removed. The electrode 

array was inserted into the cortex pneumatically to a depth of 600 µm, so that electrode 

tips are expected to be within layers 2/3. The opening was covered with agar mixed with 

Ringer‘s solution to provide stability. Similar methods have been described elsewhere 

(Samonds et al., 2003; Xu et al., 2003).  

 

Stimulation Procedures 

Computer-controlled stimuli were generated in a custom-designed Visual Basic 

program and executed with two independent force- and position-feedback controlled 

motor systems (300B, Aurora Scientific Inc., Aurora, ON, CA). Round Teflon probes 1 

mm in diameter delivered tactile stimuli to the glaborous hand. Stimuli consisted of 

pulses that indented the skin 0.5 mm for 0.5 s, followed by 2.0 s off of the skin, repeated 

for 255-300 s. These parameters allowed us to detect responses to stimulus on and off 

times and classify phasic or sustained responses (Sur et al., 1984). Paired sites were 

selected for stimulation and the pulses were delivered simultaneously. Single-site control 

stimuli were delivered to each of the sites in the pair prior to simultaneous stimulation. 

For practical purposes, reference units were identified and probes were positioned so that 

one probe was inside and one probe was outside the minimal receptive field (mRF) of the 

reference neuron. Procedures for mRF mapping have been published elsewhere 
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(Merzenich et al., 1978; Nelson et al., 1980; Jain et al., 2001). See SI for details regarding 

mRF mapping and stimulation procedures.  

 

Data Acquisition 

Recordings were made using the 10 x 10 Utah array and the Bionics Data 

Acquisition System (Cyberkinetics Neurotechnology Systems Inc., Salt Lake City, UT). 

The signals on each channel were amplified by 5000 and band-pass filtered between 250 

Hz and 7.5 kHz. The threshold for each electrode was automatically set for 3.25 times the 

mean activity and the waveforms were sampled at 30 kHz for 1.5 ms windows (Samonds 

et al., 2003).  

 

Histology 

Following data collection, animals were perfused and the brains were prepared for 

histological analysis as described previously (Jain et al., 2001). The cortex was flattened 

and cut frozen at 40 µm. Sections were processed for myelin to aid in determining the 

electrode sites relative to the area 3b hand representation. SI Figure 2-4 shows the tissue 

quality that may be obtained using the 100-electrode array. 
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SI Figure 2-4. Illustration of tissue quality with use of the 100-electrode array. The damage produced by 

inserting the array appears to be minimal in most cases, but tears in the tissue caused by the array removal 

and tissue processing are common and did occur for both of the presented cases. Photomicrographs were 

adjusted for brightness and contrast in Adobe Photoshop CS and were not altered in any other way. 

Graphics and text were added in Adobe Illustrator 10. Medial is upward and rostral is to the right in A and 

B. White arrowheads mark matching blood vessels and the stars indicate approximately matched sites near 

the lateral sulcus. A. The individual electrode sites are visible in this section at 0.5 x magnification (section 

13) from one owl monkey in which the 100-electrode array was acutely implanted and removed after 

recording for over 2 days. CS indicates the location of the central sulcus. B. The same section in A is 

shown at 1 x magnification to show the detail of the electrode tracks. We find that the majority of the tissue 

damage comes from removing the electrode array from the brain prior to perfusion and from processing the 

tissue. 

 

 

Data Analysis 

 

Spike Sorting and Data Selection 

Spike signals were sorted offline with an automatic spike classification program 

for Matlab (The Mathworks, Inc., Natick, MA) based on the t-distribution Expectation 

Maximization algorithm (Shoham et al., 2003). All recordings for a given stimulation  

series were sorted together to standardize sorting across recordings. We reviewed each 

recording with a second spike sorter program, Plexon Offline Sorter (Plexon Inc., Dallas, 

TX). See SI Methods and SI Figure 2-5 for sorting details. We used the Plexon software 
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to verify the quality of unit isolation such that single units had refractory periods ≥ 1.2 

ms; p values ≤ 0.05 for multivariate ANOVA related to cluster separation; and distinct 

waveform amplitudes and shapes when compared with other activity on the same 

electrode (Nicolelis et al., 2003). Single- and multi-units were grouped separately. In 

each monkey, several of the electrodes recorded single unit activity (45 electrodes and 65 

electrodes in cases 1 and 2, respectively); however, not all single units responded 

significantly under each stimulus condition. Only units that responded to a given stimulus 

condition with peak firing rates above the upper 99% confidence limit of the expected 

mean firing rate were included in the analyses for that condition. Confidence limits were 

calculated with NeuroExplorer software (Nex Technologies, Littleton, MA) based on the 

assumption that the spike counts have a Poisson distribution.  

Additionally, neurons included in the analysis showed sustained activity in at least 

one of the stimulus conditions such that spiking activity was maintained during the 0.5 s 

skin indentation. In practice, both of the following criteria had to be reached for a unit to 

be included in the correlation analysis. The activity between 100 and 500 ms after 

stimulus onset must reach the upper 95% confidence limit of the mean firing rate for 3 or 

more consecutive 1 ms bins, and the activity within this 400 ms period must exceed the 

expected mean firing rate for at least 50 1 ms bins. Units showing only rapidly-adapting 

response properties typically had relatively low spike counts, which makes the 

interpretation of JPSTH analysis difficult or even biased, so these units were excluded 

from analysis. Finally, we selected one unit per electrode for JPSTH analysis, choosing 

single units over multi-units when possible. 

 

 



 43 

 
SI Figure 2-5. Examples of spike sorting quality. A. The left plot shows waveforms recorded from 

electrode 95 in monkey 2 from the Cyberkinetics Matlab-based automatic spike sorting program during 

stimulation on distal D2. The 539 waveforms classified as a single unit (green) were distinguishable from 

other waveforms. The black waveforms are classified as noise by the Matlab-based automatic spike sorter 

program. We considered the red unit a multi-unit due to the lack of separation from the background noise 
spikes. The right plot of the first and second principal components (PC1 and PC2) shows separate 

clustering of the single unit (green) from the background spikes (black). Since it was possible to record 

from multiple units per electrode, we examined the recorded files individually using Plexon Offline Sorter 

to ensure that the appropriate units were compared across recordings. In most cases, spikes that belong to 

one unit but are counted as ―noise‖ in the automatic spike sorter can be added to the appropriate unit using 

the Plexon program. (See large amplitude ―noise‖ waveforms and spikes within the green cluster.) B. The 

same plot style and units in A are shown after the ―erase noise‖ feature is used in the Matlab-based 

automatic spike sorting program to focus on the spikes from the green unit and the cluster separation. When 

two units were recorded simultaneously from one electrode, we only selected one unit per electrode for 

synchrony analysis, choosing single units over multi-units. In this case, we chose the single unit shown in 

green (designated as 95b). C. One way to view the stability of the recordings and unit designations is to 

show the appearance of waveforms and clusters across a series of stimulations. (This function cannot be 

performed using the Plexon spike sorting program unless all of the stimulations are recorded in the same 

file.) Shown here are the recordings for the single-site stimulation on D2 and D4, simultaneous stimulation 

on D2 and D4, and temporally offset stimulation on D2 and D4 (data not presented here), encompassing 

620 trials recorded over 79 minutes. The plot style is the same as B with ―noise‖ spikes hidden to focus on 

the isolation of single unit 95b (green) over the time course of the stimulus series.  



 44 

Spike Time Synchrony 

  Spike synchrony between pairs of neurons was measured from the cross-

correlation histogram derived from the JPSTH with all the spike trains aligned on the 

onset of skin indentation following previous conventions (Aertsen et al., 1989; Gerstein, 

2000; Ventura et al., 2005). See SI for detailed methods. We compared the peak 

correlation value from the cross-correlation histogram derived from the normalized 

JPSTH of neurons across stimulus conditions. SI Figure 2-6 shows examples of JPSTHs 

during stimulation and no stimulation; however, the very low spike counts in anesthetized 

animals in absence of tactile stimulation typically did not reach an appropriate number of 

spikes for use of the JPSTH calculation (Aertsen et al., 1989; Gerstein et al., 1989; 

Gerstein, 2000) and were not analyzed.  

  We tallied the proportions of synchronized neuron pairs to the total recorded pairs 

for groups of cortical distances separating the neurons in the pair. To represent the 

relationship of the electrode distance between the correlated neurons with the magnitude 

of the spike timing correlations, we measured the distance between electrodes and the 

correlation strength for the given stimulus condition. We examined these paired values of 

distance and spike timing correlation magnitude in a scatter plot and performed linear 

regression on the population summary to obtain the correlation coefficient using Matlab. 
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SI Figure 2-6. Examples of spike time synchrony during trials with stimulation or without tactile 

stimulation. The left column includes results during stimulation with the 500 ms indentation from 0 to 700 

ms. The right column includes results during the stimulus off periods from the same trials from 1000 to 

1700 ms. The same conventions as Fig. 1 are used for the JPSTH plot. A. The JPSTH matrix and associated 

cross-correlation histogram are shown for multi-units 5a and 15a from case 1 during 100 trials of dual-site 

stimulation on palm sites PTh and P1. The normalized peak correlation is 0.16, centered on 0 ms. Unit 5a 

has 1439 spikes, and unit 15a has 2359 spikes. B. The JPSTH and cross-correlation histogram are shown 

for the same units as A during the portion of the trials when the tactile probes were off of the skin. (Each 

trial contained a 2 s interstimulus interval when the probes were not touching the skin.) The normalized 

peak correlation is 0.11, centered on 0 ms. Unit 5a has 246 spikes, and unit 15a has 419 spikes. C. The 

JPSTH and cross-correlation histogram are shown for single units 85a and 95b from case 2 during 100 

trials of dual-site stimulation on digit sites distal D2 and D4. The normalized peak correlation is 0.14, 

centered on 0 ms. Unit 85a has 784 spikes, and unit 95b has 790 spikes. D. The JPSTH and cross-

correlation histogram are shown for the same units as C during the portion of the trials when the tactile 

probes were off of the skin. The normalized peak correlation is 0.08, centered on 0 ms. Unit 85a has 200 

spikes, and unit 95b has 386 spikes. Since the spike numbers were typically very low when no tactile 
stimulation was provided, we did not analyze the correlations from these data in the present study. The 

presence of these correlations in absence of a driving stimulus confirms that the peak correlations measured 

and interpreted did not result from spike coincidence due to only brief and extreme changes in firing rate at 

the initiation and removal of the stimulation. 
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Supporting Information 

 

SI Materials and Methods 

 

Preparation 

Each monkey was given an initial ketamine injection (10-30 mg/kg, 

intramuscular) for sedation during surgical preparations. Anesthesia was induced with 2-

4% halothane gas and maintained with intravenous propofol (10 mg/kg/hr) during 

surgery. The monkey was secured in a stereotaxic device. Rectal temperature was 

monitored and maintained between 37-39°C with a servo-controlled heating pad. 

Paralysis was induced with 1-3 ml vecuronium bromide and maintained by intravenous 

vecuronium bromide (0.1-0.3 mg/kg/hr) mixed with 5% dextrose and Lactated Ringer‘s 

solution. Once paralyzed, animals were artificially ventilated with a mixture of N2O: O2: 

CO2 (75: 23.5: 1.5) at a rate sufficient to maintain peak end tidal CO2 at ~ 4%. Paralysis 

was necessary to keep the hand stable during long stimulus blocks. Depth of anesthesia 

was monitored by electrocardiogram and electroencephalogram. Supplemental anesthesia 

was provided by 0.3 mg/kg/hr propofol.  

 

Stimulation Procedures 

The detailed mapping procedures can be found elsewhere (Merzenich et al., 1978; 

Nelson et al., 1980). Briefly, we located responsive regions on the hand for units on each 

electrode first by stimulating lightly with a hand-held probe and listening to the responses 

on an audio monitor. For well-isolated units, we mapped minimal receptive fields (mRFs) 



 51 

at a finer level by stimulating with graded Semmes-Weinstein filaments (starting with the 

10 g filament), finding the threshold, and then drawing mRFs on hand diagrams (Jain et 

al., 2001). We marked the estimated excitatory center of the mRF for probe placement. 

This procedure was followed at the beginning, end, and periodically throughout the 

recording experiment. Using hand-plotted mRFs was a practical way to determine probe 

placement (inside and outside the mRF of reference neurons).  

Before stimulation, the fingernails were glued (cyanoacrylic) to Teflon screws 

that were fixed in plasticine to keep the hand position stable during recording. Adhesive 

was removed from the fingernails using acetone.  

 

Histology 

The myelin-stained sections of flattened cortex were used to help reconstruct the 

location of the electrodes within S1 by examining the patterns of myelin staining. Area 

3b is myelin-rich and darkly stained, and characteristic ―ovals‖ representing the face and 

oral cavity can be identified (Jain et al., 1998, 2001). Electrode depth can be estimated by 

tracking the appearance and disappearance of electrode tracks across sections. Two 

primary factors were considered. First, the cortex was cut parallel to the pia, which is not 

always precisely parallel to the electrode locations. Second, tissue shrinking and 

stretching may occur during processing. We estimated this by comparing the observed 

distance between electrodes across the array to the expected distance (4 mm). By taking 

these issues into account, we can obtain an approximation of the electrode depth and 

location.  
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Data Analysis 

Spike sorting and data selection. Initial spike sorting was performed using the 

automatic spike classification software available from Cyberkinetics. This method using 

an adaptation of the Expectation Maximization algorithm with t-distributions has been 

shown to perform more reliably than statistical methods that rely on the Gaussian model 

of waveform variability (Shoham et al., 2003). The automatic nature of the classification 

and the capacity of the software to be used with data collected from the Bionics recording 

system made this method of spike sorting the preferred first step. Due to memory 

limitations and the large amounts of data recorded during an experiment, not all of the 

possible conditions (recorded over the course of two days) were able to be sorted 

simultaneously within the automatic classification software. (As mentioned in the text, all 

of the recordings for a given stimulation protocol were sorted together.) For the purpose 

of the project (beyond the scope of this paper), we want to not only compare the 

responses of the same unit within a given stimulation protocol, but also to compare the 

responses of the same unit across different stimulation types when the same unit was 

held. Since the automatic spike sorter program does not designate the units by the same 

name across multiple recorded files not sorted together, we used the Plexon Offline 

Sorter program (Plexon Inc., Dallas, TX) to review and sort each recorded file 

individually. This was necessary to ensure that the same units were compared across 

stimulus conditions. For example, when more than one unit was recorded on an electrode, 

the unit called ―95b‖ in recording 1 must be called ―95b‖ in recording 5 if those 

recordings will be compared. Plexon Offline Sorter allowed us to swap unit names if 



 53 

necessary and perform semi-automatic sorting (such as Valley-Seeking) if needed to 

obtain better unit isolation.  

In addition, Plexon Offline Sorter allowed us to check the stability of the 

recordings by viewing the unit clustering in Principal Component space in three 

dimensions with the z-axis as timestamps (x-axis as PC1, y-axis as PC2). None of the 

units included in the analysis were found to drift over time or change unit identities over 

the course of the stimulation protocol. The manual adjustment capabilities in the Plexon 

software allowed us to ensure that we used the same populations of units in our control 

conditions (single-site stimulation) and experimental conditions (nonadjacent dual-site 

stimulation). We also examined the stability of the recordings by sorting multiple 

recorded files simultaneously using the Cyberkinetics Matlab-based automatic spike 

sorting program and viewing the unit isolation in multiple files simultaneously 

(equivalent to approximately 2 hours of recording at one time). Units included in the 

analysis were observed to be stable using both methods of examination (with Plexon and 

Cyberkinetics spike sorter programs).     

Spike time synchrony. There are multiple time scales for which temporal 

correlation can be examined. To assess very precise spike synchrony, small time bins (1-

5 ms) have been used; however, such small bins require relatively high spike counts. 

Coarse temporal correlation is considered at time scales > 20 ms (e.g., Vaadia et al., 

1995; Oram et al., 2001). Bin sizes between 1-15 ms are commonly reported (e.g., Vaadia 

et al., 1995; Benda et al., 2006; Narayanan and Laubach, 2006). In our case, spike 

correlation was examined in 700 ms windows divided into 70 bins—we use 10 ms bins 

since only the brief on and off response transients will peak with firing rates above 100 
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Hz. This appears for these data to be a reasonable compromise to be able to extract the 

fine temporal correlation especially for the period of relatively low firing during the 

sustained portion of the stimulus (Figure 2-1, SI Figure 2-6). The peri-stimulus time 

histograms (PSTH) of spike counts aligned on stimulation onset with 10 ms bins were 

obtained for each of a pair of neurons: 

 

Where n(i)
(k)(u) is the number of spikes per bin in the kth

 of K total trials. Using the same 

notation, the contribution to the joint peri-event time histogram (JPETH) of spikes in the 

kth
 trial is just the product of the counts in each time bin in the matrix for each neuron in 

the pair:  

 

The average raw JPSTH is obtained by:  

 

 

The raw JPSTH measures the average incidence of common spike occurrences, 

but of course, this incidence naturally will be affected by modulation of the discharge rate 

of either neuron in the pair. The fraction of coincident spikes resulting from such 

modulation (also known as the shift-predictor) is estimated by calculating the cross-

product matrix of the individual peri-event time histograms: 
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In abbreviated notation, the normalized JPSTH was determined by subtracting this shift-

predictor from the raw JPSTH and scaling each bin by the square root of the product of 

the standard deviations from the individual neurons: 

 

 

Thus, the normalized JPSTH measures the probability of coincident spikes in the pair of 

neurons corrected for overall modulation of discharge rates; the values are treated as 

correlation coefficients, ranging from -1 to +1 (Aertsen et al., 1989). 

The JPSTH matrix represents time from earlier in the lower left to later in the 

upper right; the bins along this main diagonal measure the coincidences with 0 time lag 

(Figure 2-1C). The JPSTH can be summarized in two additional plots. First, the time-

averaged cross-correlogram is computed by summing the JPSTH bins parallel to the main 

diagonal; the cross-correlogram measures the average positive or negative correlation 

across the entire interval of analysis (Figure 2-1C). Second, the coincidence histogram 

(not shown) represents the coincident or near-coincident firing of the cells time-locked to 

the event on which the PETH are aligned. Although the dynamics of the correlation are 

not analyzed here, examination of the JPSTH revealed that the correlated spike times 

occur during the sustained portion of the stimulus-driven activity, rather than at the 
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transient responses to stimulus onset and removal. The spike timing coincidence will be 

examined elsewhere. 

To test the reliability of the normalized JPSTH, we repeated the JPSTH 

calculation on two sets of spike trains in which no correlation should be present but 

where in the first case the spike train variability is preserved or in the second case the 

spike train variability is derived from a non-homogeneous Poisson process. The first was 

the shuffled JPETH generated by shuffling the order of the trials for one of each pair of 

neurons. It is important to emphasize that the trial-by-trial variability present in the 

normalized JPETH is preserved within the shuffled JPETH even if no correlation should 

be observed. Only pairs showing a normalized JPSTH correlation value significantly 

larger than the shuffled JPSTH were considered for further analysis. In practice, a 

bootstrapping (5000 iterations) procedure was used to test each correlation value against 

the distribution of the entire population of shuffled correlation values. Only the pairs for 

which the correlation value exceeded two times the standard deviation over the mean of 

the bootstrapped distribution were considered as significant.  

Firing rate spike density function. Peak firing rate of individual neuron-units was 

determined from spike density functions. A spike density function was produced by 

convolving the spike train from each trial with a function resembling a postsynaptic 

potential specified by τg, the time constant for the growth phase, and τd, the time constant 

for the decay phase as:  

R(t) = (1 – exp(-t/τd)*exp(-t/τd). Based on physiological data from excitatory synapses, τg 

was set to 1 ms (e.g., Mason et al., 1991; Moore and Nelson, 1998). We set τd to 5 ms 

(Mason et al., 1991; Moore and Nelson, 1998; Steinmetz et al., 2000; Veredas et al., 
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2005) rather than 20 ms because the transient nature of the on and off responses in 

primary somatosensory neurons was excessively smoothed using the commonly used 

decay constant of 20 ms. Other stimulus conditions in the same monkeys included dual-

site stimulation delivered at temporal offsets of 10 and 30 ms (results will be presented 

elsewhere); therefore, we selected a smaller value for τd that best fit the data.  

We visualized the peak firing rates across the sampled neurons in the 100-

electrode array by creating a color map in Matlab. In some cases, to view the extent of 

high and low firing rates, we converted the firing rate values to logarithmic values. These 

graphics are for visualization purposes only.  
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CHAPTER III 

 

RESPONSE PROPERTIES OF NEURONS IN PRIMARY SOMATOSENSORY 

CORTEX OF OWL MONKEYS REFLECT WIDESPREAD SPATIOTEMPORAL 

INTEGRATION 

 

This chapter reproduces the manuscript submitted to the Journal of Neurophysiology on 

August 4, 2009 with contributions from Drs. Hui-Xin Qi, Zhiyi Zhou, Melanie R. 

Bernard, Mark J. Burish, A.B. Bonds, and Jon H. Kaas. 

 

 

Abstract 

 

Receptive fields of neurons in somatosensory area 3b of monkeys are typically 

described as restricted to part of a single digit or palm pad. However, such neurons are 

likely involved in integrating stimulus information from across the hand. To evaluate this 

possibility, we recorded from area 3b neurons in anesthetized owl monkeys with 100-

electrode arrays, stimulating two hand locations with electro-mechanical probes 

simultaneously or asynchronously. Response magnitudes and latencies of single- and 

multi-units varied with stimulus conditions, and multi-unit responses were similar to 

single unit responses. The mean peak firing rate for single neurons stimulated within the 

preferred location was estimated to be ~26 spikes/s. Simultaneous stimulation with a 

second probe outside the preferred location slightly decreased peak firing rates to ~22 

spikes/s. When the non-preferred stimulus preceded the preferred stimulus by 10–500 ms, 

peak firing rates were suppressed, with greatest suppression when the non-preferred 

stimulus preceded by 30 ms (~7 spikes/s). The mean latency for single neurons 

stimulated within the preferred location was ~23 ms, and latency was little affected by 
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paired stimulation. However, when the non-preferred stimulus preceded the preferred 

stimulus by 10 ms, latencies shortened to ~16 ms. Response suppression occurred even 

when stimuli were separated by long distances spatially (nonadjacent digits) and 

temporally (500 ms onset asynchrony). Facilitation, though rare, occurred most often 

when the stimulus onsets were within 0-30 ms of each other. These findings quantify 

spatiotemporal interactions and support the hypothesis that area 3b is involved in 

widespread stimulus integration. 

 

Introduction 

 

As tactile object recognition depends on the integration of information from 

different parts of the hand, it is logical to presume that neurons somewhere in the 

somatosensory system integrate information from locations across the hand. Primary 

somatosensory cortex (S1) is the first cortical level at which this integration could take 

place. In primates, anterior parietal cortex can be subdivided into somatosensory areas 3a, 

3b, 1, and 2; with area 3b, the homologue of S1 in other mammals (Kaas, 1983), as the 

first site for processing tactile information. We selected owl monkeys because the cortical 

area of interest, area 3b, is not buried in a central sulcus in this primate, and the 

somatosensory cortex has been well studied (e.g., Merzenich et al., 1978; Cusick et al., 

1989; Garraghty et al., 1989; Nicolelis et al., 2003). An evaluation of the extent of this 

integration in area 3b is a critical step in determining how and where the somatosensory 

system mediates object perception and other abilities.  
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Do Widespread Spatial Interactions Exist in Area 3b? 

Area 3b receptive fields in monkeys have been consistently described as restricted 

in size, usually confined to part of a single digit phalanx or palm pad (e.g., Sur, 1980; 

Iwamura et al., 1983; Sur et al., 1985; Pons et al., 1987; DiCarlo et al., 1998). Previous 

studies in several species have examined spatial and temporal response properties in 

primary sensory cortical areas, including area 3b, and there is good evidence for stimuli 

that are spatially distant to modulate neuron behavior, reviewed as follows. Stimuli 

―beyond the classical receptive field‖ are known to modulate responses of neurons in 

primary visual cortex to stimuli within the receptive field (e.g., Allman et al., 1985; 

Wang et al., 1995; Walker et al., 2000; Brown et al., 2003). Like the classical receptive 

field defined in vision research, the tactile minimal receptive field (mRF; e.g., Merzenich 

et al., 1983; Xerri et al., 1999), or the excitatory field to near-threshold stimuli, of the 

monkey hand can be surrounded by regions that, when stimulated, modulate responses 

within the mRF (e.g., DiCarlo et al., 1998; Mountcastle, 2005; Sripati et al., 2006). In S1 

of rats, neuron responses are modulated by stimulating whiskers beyond the traditional 

receptive field of a primary whisker and immediately adjacent whiskers (e.g., Armstrong-

James and Fox, 1987; Ghazanfar and Nicolelis, 1997, 1999; Moore and Nelson, 1998; 

Zhu and Connors, 1999), and even by stimulating the forepaw (Berwick et al., 2004). 

Studies in the forelimb representation of the somatosensory system in several species 

have examined effects of stimuli within the receptive field and at sites near, but outside of 

the excitatory receptive field of neurons in cortex (e.g., Mountcastle and Powell, 1959; 

Laskin and Spencer, 1979; Gardner and Costanzo, 1980a,b; Burton et al., 1998; DiCarlo 

et al., 1998, 2000, 2002; Greek et al., 2003; Sripati et al., 2006), thalamus (e.g., Jänig et 
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al., 1979; Canedo and Aguilar, 2000; Greek et al., 2003), and brainstem (e.g., Jänig et al., 

1977; Canedo and Aguilar, 2000). Although the proximity of the second stimulus to the 

receptive field varies, the overall finding is that inhibition caused by the second stimulus 

is maximal at the receptive field center and decreases with distance from center. 

Similarly, human psychophysics (e.g., Schweizer et al., 2000; Braun et al., 2005) and 

evoked potential and magnetic field responses (e.g., Hoechstetter et al., 2001; Tanosaki et 

al., 2002a,b; Pilz et al., 2004) indicate that a second stimulus will interfere with the 

response to the first stimulus in a topographic manner, such that near stimuli have a 

greater effect than distant stimuli. We extended these studies by testing paired stimuli 

within and across digits on the monkey hand, to relate to findings in humans in which 

invasive studies are rarely performed.  

 

How Might Temporal Factors Influence Spatial Interactions? 

Previous work on area 3b has shown that after a single stimulus is presented 

within the mRF, there is an initial excitation peak surrounded by inhibition; over time 

that excitatory peak is replaced by inhibition (Sripati et al., 2006). These dynamics can 

shape the responses of neurons when stimulation is provided beyond the minimal 

receptive field. Temporal stimulus relationships may signal object relatedness and play a 

role in forming cortical topography and receptive fields (Xing and Gerstein, 1996; 

Wiemer et al., 2000). For example, Merzenich and colleagues (1988, 1995) found that 

increasing co-activation of the digits resulted in multi-digit receptive fields and 

concluded that receptive fields do not simply reflect anatomical connections, but are 

derived from a subset of inputs based on temporal correlations of activity. Similarly, 
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human fMRI showed that after simultaneous stimulation of digits 2, 3, and 4 for three 

hours, the S1 cortical representations for the co-activated fingers moved closer together 

(Pilz et al., 2004). Additionally, later testing for detection of tactile stimuli resulted in 

increased mislocalizations. When digits were stimulated asynchronously, the cortical 

representations moved apart and mislocalizations were reduced (Pilz et al., 2004).  

To examine the effects of temporal stimulus relationships on neuronal response 

properties, we designed a modification of condition-test paradigms in which the 

conditioning stimulus is presented outside the minimal receptive field and the test 

stimulus is within or outside of the suprathreshold receptive field for a given neuron. We 

selected onset delays between the conditioning stimulus and the test stimulus based on 

studies in raccoons (e.g., Chowdhury and Rasmusson, 2003; Greek et al., 2003) and 

macaque monkeys (Gardner and Costanzo, 1980b; Burton et al., 1998) that involved 

similar condition-test paradigms. Condition-test paradigms have also been studied 

extensively in the rat whisker barrel system with wide-ranging intervals between the 

conditioning and test stimuli (e.g., Simons, 1985; Shimegi et al., 1999; Boloori and 

Stanley, 2006). 

 

How Will the Current Study Extend Previous Studies? 

In this study of single- and multi-unit response properties, we sought to determine 

the properties of the dynamic interactions that could result in such dramatic changes. To 

do so, we studied the immediate effects of simultaneous and asynchronous stimulation of 

adjacent and nonadjacent hand locations on neuron responses in area 3b in owl monkeys. 

We compared stimulation at paired locations within a single digit with stimulation at 
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locations on two separate digits to determine how the stimulus interactions depend on 

spatial topography. We sought to investigate whether interactions within a digit differ 

from interactions across digits, as the local connections within area 3b are denser distal-

to-proximally within a single digit representation than across digit representations (Fang 

et al., 2002). Additionally, we presented the paired stimuli simultaneously and at selected 

temporal onset asynchronies to determine if temporal interactions influence the responses 

of area 3b neurons. 

In our design, a conditioning stimulus is referred to as the ―non-preferred 

stimulus‖ because this stimulus always evokes fewer spikes from the reference neuron 

than the ―test‖ or ―preferred stimulus‖. We presented tactile stimuli that indented the skin 

for 500 ms, followed by 2.0 s off of the skin, in blocks of 100-120 trials so that each 

stimulus had the potential to cause sustained activation. Then, we selected paired skin 

sites and delivered pulses simultaneously (0 ms delay) and at selected stimulus onset 

asynchronies of 10, 30, 50, 100, and 500 ms to study the effects of varying the temporal 

proximity of stimuli. Thus, the paired 500 ms stimuli variably overlapped in time. (For 

the 500 ms stimulus onset asynchrony condition, as the conditioning stimulus is lifting 

off of the skin, the test stimulus is contacting the skin. Depending on the spatial 

proximity of the stimuli, this conditioning stimulus may not affect the response to the test 

stimulus since the stimuli occur far apart in time.) Here, we consider that when the 

presence of a non-preferred stimulus affects the responses of one neuron to a preferred 

stimulus, a stimulus ―interaction‖ occurs. The term ―widespread interaction‖ can then be 

applied when the effects on the reference neuron occur when stimuli are presented widely 

separated in space or time. Thus, differences in response properties due to paired 
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stimulation with varying spatial and temporal parameters allow us to quantify 

spatiotemporal stimulus interactions. 

 

Materials and Methods 

 

The present study examines the effects on firing rate and latency of neurons in 

area 3b of owl monkeys (Aotus trivirgatus) when two 500 ms skin indentations were 

presented simultaneously or at stimulus onset asynchronies to adjacent or nonadjacent 

hand locations. One stimulus was within the ―Response Field‖ and the other was within 

or outside of the Response Field of the reference neuron (see Response Field section).  

 

Preparation for Recording 

Two adult male owl monkeys (cases 1 and 2; each 1 kg) and one adult female owl 

monkey (case 3; 1.2 kg) were prepared for electrophysiological recordings in primary 

somatosensory cortex following procedures detailed previously (Reed et al., 2008). 

Monkeys 1 and 2 were part of a previous study related to spike timing correlations (Reed 

et al., 2008). All procedures followed the guidelines established by the National Institutes 

of Health and the Animal Care and Use Committee at Vanderbilt University. Each 

monkey was given a ketamine injection (10-30 mg/kg, intramuscular) for sedation during 

surgical preparations. Anesthesia was induced with 2-4% halothane gas and maintained 

with propofol (10 mg/kg/hr, intravenous) during surgery. Rectal temperature was 

monitored and maintained between 37-39°C with a servo-controlled heating pad. The 

monkey was secured in a stereotaxic device for surgery and throughout the experiment. 
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After anesthetizing the animal, paralysis was induced with 1-3 ml vecuronium bromide 

and maintained by intravenous vecuronium bromide (0.1-0.3 mg/kg/hr) mixed with 5% 

dextrose and Lactated Ringer‘s solution. Once paralyzed, animals were artificially 

ventilated with a mixture of N2O: O2: CO2 (75: 23.5: 1.5) at a rate sufficient to maintain 

peak end tidal CO2 at ~ 4%. Paralysis was induced to keep the hand stable during long 

stimulus blocks. Electrocardiograms (ECG) and electroencephalograms (EEG) were 

monitored to gauge depth of anesthesia. The skull and dura overlying primary 

somatosensory cortex were removed. The pneumatic inserter for the electrode array was 

set to a depth of 600 µm, so that electrode tips were expected to be within cortical layer 

3. After the insertion of the electrode array, the opening was covered with 1% agar mixed 

with Ringer‘s solution to provide electrode stability and prevent desiccation. Following 

surgical procedures, supplemental anesthesia during recordings was provided by 0.3 

mg/kg/hr propofol. Similar methods have been described elsewhere (Samonds et al., 

2003; Xu et al., 2003). In one monkey (case 3), 1.2 mg/kg sufentanil was added to the 

Lactated Ringer‘s solution for slow infusion during the surgical procedures in order to 

stabilize anesthetic depth. Following delivery of this amount of sufentanil, the monkey 

was maintained under propofol anesthesia and vecuronium bromide paralysis without 

supplemental sufentanil during extracellular recordings. All monkeys were maintained 

approximately within sleep stage 2 during the recording experiments, as estimated by 

inspection of the EEG and ECG. 
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Stimulation Procedures 

We focused on comparing neuron responses to paired stimulation on adjacent 

digits versus nonadjacent digits; however, we also collected responses to paired 

stimulation on adjacent and nonadjacent phalanges within a single digit. Stimuli were 

provided by two independent force- and position-feedback controlled motor systems 

(300B, Aurora Scientific Inc., Aurora, ON, CA). The lever arms of the motors were 

tipped with round Teflon probes 1 mm in diameter; thus, the stimulus probes represented 

a small contact surface. Stimuli consisted of square wave pulses that indented the skin 0.5 

mm for 0.5 s, followed by 2.0 s off of the skin, repeated for 255-300 s (100 to 120 trials). 

We used the minimal ramp time allowed by the stimulation equipment, which had a 

length step response time of 1.3 ms. The long duration of the indentation allowed us to 

record phasic and sustained responses (Sur et al., 1984). Paired skin sites were selected 

for stimulation and the indentations were delivered simultaneously (0 ms delay) and at 

selected stimulus onset asynchronies of 10, 30, 50, 100, and 500 ms, with the 

conditioning stimulus preceding the test stimulus, to study the effects of varying the 

temporal proximity of stimuli. Single-site control stimuli were delivered to each of the 

sites prior to paired stimulation. These stimulus parameters were selected to analyze 

spatiotemporal effects on response properties of neurons in primary somatosensory 

cortex. For practical purposes, reference units were identified and probes were positioned 

so that one probe was inside and one probe was outside the minimal receptive field 

(mRF) of the reference neuron. The mRF was defined as the region of skin where a near-

threshold light touch with a probe reliably evoked spikes from the recorded neurons. 

Procedures for mRF mapping have been published elsewhere (e.g., Merzenich et al., 
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1978; Nelson et al., 1980), and our general procedures have been published (Reed et al., 

2008). Receptive field mapping also helped locate electrodes as within and outside of 

area 3b in a manner that complemented our subsequent histological identification of area 

3b. The fingernails were glued (cyanoacrylic) to Teflon screws fixed in plasticine to keep 

the hand in place during stimulus blocks. Adhesive was removed from the fingernails 

using acetone.  

 

Data Acquisition 

Recordings were made using the 10 x 10 ―Utah‖ array and the Bionics Data 

Acquisition System (Blackrock Microsystems, Salt Lake City, UT). The signals on each 

channel were amplified by 5000 and band-pass filtered between 250 Hz and 7.5 kHz. The 

threshold for each electrode was automatically set for 3.25 times the mean activity and 

the waveforms were sampled at 30 kHz for 1.5 ms windows (Samonds et al., 2003).  

 

Histology 

Following data collection, animals were perfused with saline followed by fixative, 

and the brains were prepared for histological analysis as described previously (Jain et al., 

2001). The cortex was flattened, frozen, and cut parallel to the surface at 40 µm. Sections 

were processed for myelin to aid in determining the electrode sites relative to the area 3b 

hand representation. (See Reed et al., 2008 for an example of the tissue quality that may 

be obtained using the 100-electrode array and a description of how electrode depths and 

locations are estimated.) We estimated electrode depth by tracking the appearance and 

disappearance of electrode tracks across serial sections.  
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Data Analysis 

 

Spike Sorting 

    The details of the spike sorting procedures have been described previously (Reed et 

al., 2008). Recorded signals were sorted offline with an automatic spike classification 

program based on the t-distribution Expectation Maximization algorithm (Shoham et al., 

2003) which is part of the data acquisition system. The recordings for a given stimulus 

block were sorted together to standardize sorting across recordings. We used a second 

spike sorter program, Plexon Offline Sorter (Plexon Inc., Dallas, TX) to verify the quality 

of unit isolation such that single units had refractory periods ≥ 1.2 ms; p values ≤ 0.05 for 

multivariate ANOVA related to cluster separation; and distinct waveform amplitudes and 

shapes when compared with other activity on the same electrode (Nicolelis et al., 2003). 

Single- and multi-units were categorized separately but grouped together for factor 

analysis. If multiple single units were collected from one electrode, all were included in 

the analysis, and at most only one multi-unit per electrode was included in the analysis. 

Typically, our multi-unit recordings were of multiple neuron clusters that could not be 

isolated into individual units, but the waveforms had typical neuron-like negative and 

positive deflections. 

 

Peak Firing Rate 

As described in Reed et al. (2008), spike trains were smoothed with a spike 

density function to determine peak firing rate using Matlab (The Mathworks, Inc., Natick, 

MA). A spike density function was produced by convolving the spike train from each 
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trial with a function resembling a postsynaptic potential specified by τg, the time constant 

for the growth phase, and τd, the time constant for the decay phase as:  

R(t) = (1 – exp(-t/τd)*exp(-t/τd).  

Based on physiological data from excitatory synapses, τg was set to 1 ms (e.g., Mason et 

al., 1991; Moore and Nelson, 1998). We set τd to 5 ms (Mason et al., 1991; Moore and 

Nelson, 1998; Veredas et al., 2005) because the transient nature of the on and off 

responses in primary somatosensory neurons was excessively smoothed at larger values, 

particularly for cases in which stimuli were presented at stimulus onset asynchronies of 

10 and 30 ms. For stimuli presented with onset asynchronies, we focused on responses 

that occurred within a response time window of 50 ms following the onset of the second 

stimulus; thus, the first stimulus acted as ―conditioning stimulus‖ as used in many other 

studies (e.g., Gardner and Costanzo, 1980b; Chowdhury and Rasumusson, 2003; Greek et 

al., 2003).  

For excitatory responses, the peak firing rate was determined as the maximum of 

the spike density function within the response time window, and the average baseline 

firing rate (calculated over a 500 ms window prior to stimulation onset) was subtracted 

from this value. This peak firing rate value was required to be greater than a threshold 

value, which was the average baseline firing rate plus two standard deviations of this 

baseline with a minimum value of 5 spikes/s. To determine if this value was significant, 

the nonparametric Mann-Whitney U test and the parametric Student‘s t-test with two tails 

were performed and results compared. The U test and t test resulted in the same 

categorizations of significance (α = 0.05). If no excitatory response was detected in the 

response window, responses were examined for possible suppressive effects. Our criteria 
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for suppressive responses were average firing rates from the spike density function less 

than the average baseline firing rate below 1.65 times the standard deviation of the 

baseline, and this low firing had to be sustained for 10 ms or more. We used the average 

peak firing rate over 100 trials as our measure of interest because neuron responses in 

area 3b (for rapidly-adapting and slowly-adapting responses) tend to show an initial 

transient onset response, followed by a variable amount of firing suppression (e.g., Sur, 

1980). Therefore, peak firing rate acts as a general measure of responsiveness that would 

not depend on the presence of sustained responsiveness to the stimuli and would indicate 

if the onset responses were influenced by the presence of the conditioning stimulus. 

 

Response Latency  

Response latencies were calculated using Matlab and determined from spike 

density function histograms as the initial time when the rate meets the half-height over 

the threshold value of the peak firing rate within the response time window (see above). 

The peak latency was calculated using the greater of the half-height or the threshold 

value. Since the data were not continuous, polynomial fitting of the spike density 

function was used to determine the time of the half-height. The value that was found at 

the least distance from the time of the peak and preceding the peak such that the rate 

values followed an increasing trend (upward slope towards the peak) was called the 

response latency. This method of determining latency is similar to measures that 

determine the width or duration of peaks in histograms (e.g., Tutunculer et al., 2006; 

Davidson et al., 2007). Latencies were only calculated when response criteria were met 
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for excitatory or suppressive responses (see Peak Firing Rate). Results were checked 

individually to ensure proper assignments.  

 

Firing Rate Modulation Index  

A modulation index was developed for Matlab based on methods used to describe 

multisensory integration (Stanford et al., 2005; Alvarado et al., 2007). The observed 

average response in the 50 ms window of interest during a given 2-site stimulation 

condition was compared with the distribution of expected average responses based on 

simple summation of the unit‘s response to the two stimuli presented individually. The 

expected distribution is based on the sum of two control values computed for every 

combination of trials, for 100 trials (100 x 100). From the distribution, 100 trials were 

randomly selected (without replacement) and averaged to give the predicted average 

response to 2-site stimulation. This was repeated 10,000 times to build a reference 

distribution of predicted responses, and the observed response was compared to this 

distribution, following the methods of Alvarado et al. (2007). The Kolmogorov-Smirnov 

test of normality was used for the observed responses (100 trials each) and the predicted 

responses (100 trials selected from 10,000 bootstrapped samples). When normality 

assumptions were met, paired t tests for matched samples were used; otherwise, 

nonparametric Wilcoxon signed rank tests were used (α = 0.05). The modulation 

categories were ―superadditive‖, ―subadditive‖, ―additive‖, ―suppressive‖, or ―no 

difference‖ from the response to the preferred single stimulus, similar to the methods of 

Stanford et al. (2005). ―Superadditive‖ responses were greater than the predicted 

distribution by 2 times the standard deviation of the distribution, and ―subadditive‖ 
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responses were less than the predicted distribution by 2 times the standard deviation of 

the distribution. Responses were classified as ―suppressive‖ when the magnitude of the 

response to 2-site stimulation was less than that of the response to the preferred single 

stimulus. These categories were determined for individual neuron units across conditions 

and tallied.  

 

Response Field 

While the placement of our stimulus probes was guided by the previously 

determined mRF, we also defined large excitatory ―Response Fields‖ with our above-

threshold skin indentations with our stimulus probes. Since we recorded from multiple 

neurons simultaneously using a 100-electrode array, the stimulus locations did not always 

coincide with the receptive fields of each neuron. We defined an excitatory ―Response 

Field‖ based on the neuron unit firing rates in response to suprathreshold tactile 

stimulation. We devised the classification of the Response Field to relate the neurons‘ 

receptive field to the stimulus locations in expectation that this categorization would help 

explain why condition-test paradigms in S1 variably caused suppression, facilitation, or 

no change in neuron subsets.  

First, the peak firing rate of each unit was corrected by subtracting the average 

baseline firing rate of that unit. Then, the corrected peak firing rates of all of the neurons 

recorded from the array were averaged, resulting in a population average firing rate. 

When a single site on the hand was stimulated, that site was classified as inside that unit‘s 

excitatory Response Field if the corrected peak firing rate was greater than or equal to 3 

times the standard deviation of the population firing rate. For a given neuron, responses 
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for all of the locations that were stimulated for a given experiment were compared and 

the maximum firing rate was found, with the location becoming designated as in the 

center of that unit‘s Response Field. When the unit firing rate did not meet the criteria to 

be categorized as inside, the location was considered outside of the Response Field. This 

Response Field is a firing-rate-based estimate similar to the concept of the receptive field 

(as measured by suprathreshold stimulation) and was used to examine and classify spatial 

integration. Although two sites were routinely stimulated together, the Response Field 

classification was based on the responses to stimulation at the single sites. 

 

Data Selection and Classification 

  The data were classified based on several factors that were used in a statistical 

model to estimate the contributions of those factors to the observed latencies and firing 

rates. These factors were the temporal proximity of the stimuli, the spatial proximity of 

the stimuli, and the neuron‘s Response Field relationship to the stimuli. 

 

Temporal Asynchrony Condition  

 For each stimulus block, two stimulation sites were selected and stimulated 

individually for comparison with paired stimulus presentations. The firing rates of 

individual neurons for stimulation at a ―preferred‖ site were examined compared to 

paired stimulation at ―preferred‖ and ―non-preferred‖ sites. The ―non-preferred‖ site was 

designated to be the skin location to which the neuron responded with the lower peak 

firing rate. The ―preferred control‖ was assigned as the skin location to which the neuron 

responded with the higher peak firing rate. Results from stimulation at the preferred 
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control site alone represented the first level of the temporal condition factor for analysis. 

Paired stimuli were presented simultaneously (0 ms delay) and at selected stimulus onset 

asynchronies of 10, 30, 50, 100, and 500 ms, with the non-preferred stimulus preceding 

the preferred control stimulus, for a total of seven levels. See Figure 3-1A. The data were 

selected such that the preferred stimulus for a given neuron was presented second and the 

non-preferred stimulus was presented first.  

 

Spatial Proximity Condition  

 The paired hand locations stimulated included adjacent hand sites distal digit 2 

(dD2) with distal digit 3 (dD3) (monkey 1, 2, 3), dD3 with distal digit 4 (dD4) (monkey 

2, 3), dD4 with distal digit 5 (dD5) (monkey 3), and distal thenar palm pad (dPTh) with 

center palm pad 1 (P1) (monkey 1). Nonadjacent hand locations included dD2 with dD4 

(monkey 2), dD3 with dD5 (monkey 3), dD2 with dD5 (monkey 3), middle digit 1 (mD1) 

with dD3 (monkey 2), and dPTh with center palm pad 2 (P2) (monkey 1). From monkey 

case 2, stimuli within digit 2 including paired stimulation on adjacent phalanges dD2 and 

middle D2 (mD2), mD2 and proximal D2 (pD2), and nonadjacent phalanges dD2 with 

pD2. From monkey case 3, we recorded responses during paired stimulation on adjacent 

phalanges dD4 and mD4, and nonadjacent phalanges dD4 and pD4, as well as dD4 with 

center palm pad 3 (P3). Recordings with stimulation on adjacent phalanges were grouped 

for analysis as were those with stimulation on nonadjacent phalanges or palm pads. These 

stimulus conditions allowed us to have four levels of the spatial proximity condition, 

which we abbreviated as follows: adjacent digits= Adj D.; nonadjacent digits= NonA D.; 
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within a digit, adjacent phalanges = Adj Ph.; within a digit, nonadjacent phalanges = 

NonA Ph. See Figure 3-1B. 

 

Response Field Condition  

 The relationship of the paired stimuli to the Response Field of the reference unit 

was included as a factor that could influence the firing rate and latency of the unit. We 

collected the following relationships under our stimulus conditions: 1) one probe in the 

center of the unit‘s Response Field, and the other probe also inside but not in the center 

―hotspot‖ of the Response Field, abbreviated as CN_IN; 2) both probes inside the unit‘s 

Response Field (but not in the center), abbreviated as IN_BOTH; 3) one probe in the 

center and one probe outside the Response Field, abbreviated as CN_OUT; 4) one probe 

inside the Response Field and one probe outside the Response Field, abbreviated as 

IN_OUT; and 5) both probes outside the Response Field, abbreviated as OUT_OUT. We 

never had an instance in which both stimulus probes were located in the center of a unit‘s 

Response Field. Thus, the Response Field factor had five levels. See Figure 3-1C. 

 

Signal Isolation Category  

 We classified the data as single unit (SU) and multi-unit (MU) signal isolation 

based on our spike sorting criteria and included this two-level factor in the analysis to 

determine the influence on the response latency and peak firing rate. See Figure 3-1D. 
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Summary Statistics 

Data from Matlab calculations for firing rate and latency measures were compiled 

and summarized in Excel to select units and conditions in which the non-preferred 

location was stimulated first in the series. Data for which the preferred location was 

stimulated first and the non-preferred location stimulated second were not included in this 

analysis of firing rate and latency. To be included in the summary analysis for firing rate 

and latency, units had to respond to at least one single-site stimulation condition and at 

least one dual-site stimulation condition. If a unit‘s response was suppressed in all 

stimulus conditions after the control stimulation so that no significant peak firing rates or 

latencies could be detected, then that unit was not included in the analysis. Only 

excitatory responses were included in this analysis. The data subset was imported into 

SPSS 17.0 (SPSS, Inc., Chicago, IL) for further statistical analysis. The alpha level for all 

significance tests was 0.05. We examined the raw data values for firing rate and latency, 

but for comparison across stimulus conditions, we also duplicated the data and 

normalized the values to those for the control stimulation for each unit in order to 

evaluate how the response properties changed when two sites were stimulated compared 

to the single preferred control site. 

Across all conditions we performed the Kolmogorov-Smirnov 1-sample 

distribution test (SPSS 17.0) on the values we obtained for response latency and firing 

rate, and we determined that the distributions differed from the normal and Poisson 

distributions; therefore, we analyzed firing rate and latency using an extension of the 

Generalized Linear Model, which is becoming more widely used in psychological 

sciences (Tuerlinckx et al., 2006, review), known as the Generalized Estimating 
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Figure 3-1. Schematic representations of data categories. A. The pattern of stimulation is depicted by solid 

lines indicating the duration the stimulus probe indents the skin (0.5 s), the depth of indentation (0.5 mm), 

and the duration the stimulus probe is off of the skin per stimulus cycle (2.0 s). Paired stimulation, 

indicated by the schematics of Probe 1 and Probe 2, may be simultaneous or asynchronous. To depict 

asynchronous stimulation generally, the gray solid line representing Probe 2 is shifted relative to the black 

solid line. The two probes are presented to different skin sites on the hand; however, the schematic depicts 

the overlap in contact time of the stimuli presented via Probe 1 and Probe 2. B. The spatial stimulus 

relationships were divided into 4 categories. Locations of the two stimulus probes on schematics of the owl 

monkey hand illustrate the proximity category. Scale bars on hand diagrams are 1 mm. Adj D. = adjacent 

digits (or palm pads); NonA D. = nonadjacent digits (or palm pads); Adj Ph. = adjacent phalanges; NonA 

Ph. = nonadjacent phalanges. C. The Response Field category is determined by the unit‘s Response Field 

relative to the stimulation location. Black shading on schematics of the owl monkey hand indicates the 

center of the Response Field for a hypothetical unit. Gray shading on the hand indicates locations inside the 
Response Field, but outside the center ―hotspot‖ for the hypothetical reference unit. The locations of the 

two gray probes indicate the location of the stimulation relative to the Response Field for each Response 

Field category. D. Data were also classified by the quality of the signal isolation into single units or multi-

units. Examples of each unit type are shown from monkey case 3. The trace window for each unit type 

shown spanned 128 µV and 1.6 ms. 
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Equations approach (e.g., Liang and Zeger, 1986; Zeger and Liang, 1986). We 

specifically employed Generalized Estimating Equations because this method estimates 

the contributions of multiple factors resulting in the observed responses and is able to 

take into account the presence of correlated data in the sample, unlike other methods 

which require that observations are independent. This analysis has fewer assumptions 

regarding the data distribution than parametric analysis of variance (e.g., Liang and 

Zeger, 1986), and while it accounts for the correlated data, it does not specify the within-

subject effects (Tuerlinckx et al., 2006, review). Both the firing rate and latency data 

were better fit by a gamma distribution function than the normal distribution, and the 

Generalized Estimating Equations analysis using SPSS allowed us to select the gamma 

distribution with a log link function (e.g., Hardin and Hilbe, 2003) as the model 

distribution. 

We used this approach on our peak firing rate and response latency data sets to 

estimate the sources of variance related to the temporal stimulus condition, the spatial 

proximity of the stimuli, and the Response Field relationship of the neuron unit subjects. 

In our case, neuron properties were measured across the temporal conditions and 

therefore could be correlated within subjects (neuron units). A model was made for the 

dependent variable (response latencies or peak firing rates) and the effects of the 

between-subjects predictors are estimated by solving the generalized estimating equation 

based on the parameters provided. Thus, in these models, latency or peak firing rate acted 

as the dependent variable, the within-subject variable was the stimulation condition, 

while the predictor factors included: the temporal stimulation condition, the spatial 

proximity of stimuli (Adj D., NonA D., Adj Ph., NonA Ph.), the relationship of the 
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stimulus to the Response Field of the neuron unit, and the classification of the unit as a 

single- or multi-unit. Then we analyzed single unit data separately from multi-unit data in 

additional statistical analyses.  

The model parameters for both latency and firing rate results were based on a 

gamma probability distribution with the log link function, a first-order autoregressive 

correlation matrix, and a robust model estimator. We tested other probability distributions 

including Poisson and Gaussian (normal); however, the gamma distribution with the log 

link fit the data best (according to data fitting and model goodness-of-fit tests). We tested 

possible working correlation matrix structures to determine which estimate of the 

dependency within the data resulted in the best fitting models. We used an autoregressive 

correlation matrix for the model because this incorporates the time dependence of the 

repeated measures, but we also tested other correlation matrix structures for the best fit 

(e.g., Hardin and Hilbe, 2003). We selected a robust model estimator rather than a model-

based estimator because the robust model estimator is consistent even when the working 

correlation matrix structure is mis-specified (Hardin and Hilbe, 2003, p 30). We applied 

the Bonferroni correction for multiple comparisons. The Wald Chi-Square statistic was 

used to test the significance of the model effects resulting from the Generalized 

Estimating Equations analysis. The results of the Generalized Estimating Equations 

analysis provide estimated values to fit the observed data, and calculations to indicate the 

likely significance of the differences; therefore, the values reported in the Results are the 

predictions from the analysis. These predicted values did not differ greatly from the 

observed values and followed the same trends. See Supplemental Material for plots of the 

observed data values. 
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Results 

 

We recorded from 100-electrode arrays implanted in layer 3 of anterior parietal 

cortex, primarily area 3b, of three anesthetized owl monkeys during stimulation on 

selected hand locations and analyzed the contributions of spatiotemporal stimulus 

properties to the observed response latencies and peak firing rates. Figure 3-2 depicts the 

placement of the electrode arrays in each of the three monkey cases as determined from 

patterns of myelin staining in sections of flattened cortex and from receptive field 

mapping during the recording procedures. Several electrodes recorded single unit activity 

in each monkey (45 electrodes in case 1 and 65 electrodes in both cases 2 and 3); 

however, not all single units responded significantly under each stimulus condition. Note, 

the numbers of single units reported for firing rate and latency are higher than the 

numbers of electrodes recording single units as more than one single unit could be 

recorded from the same electrode. The same units were not always maintained during the 

1-3 days of recording. The numbers of units in each summary analysis are those studied 

for each stimulus condition. The numbers of units meeting the criteria for analysis were 

as follows: 19 single units (SUs) and 64 multi-units (MUs) from monkey 1; 44 SUs and 

71 MUs from monkey 2; and 99 SUs and 71 MUs from monkey 3. Data from SUs and 

MUs were collapsed for summary analysis to determine statistical differences between 

SU and MU responses for peak firing rate and latency, and then these categories were 

analyzed separately. Typical response histograms of a single neuron are shown in Figure 

3-3.  
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Figure 3-2. Schematic reconstructions show 100-electrode array placement in area 3b of three owl monkey 

cases. A. A schematic of the owl monkey brain is shown with the area 3b body representations highlighted 

as area 3a and area 1 neurons tended not to respond well to light tactile stimulation under the anesthetic 

conditions of these experiments. B-D. Electrode locations in each owl monkey case were approximated 

based on examination of myelin-stained sections of flattened cortex, in which area 3b stains more darkly 
than surrounding areas, with a myelin-poor septum indicating the border of the hand and face 

representation. Occasionally, myelin-poor septa can seen between digit representations in flattened cortex  

preparations, but in our cases we used the results of receptive field mapping during recording experiments 

to estimate the digit and palm pad representations. The placements of the 4 mm x 4 mm array in each case 

tended to cover a large part of the hand representation. The 1mm scale bar corresponds to the size of the 

array schematics for all three owl monkey cases. 



 83 

 Spatiotemporal Stimulus Effects on Peak Firing Rate and Response Latency 

Peak firing rates varied with spatiotemporal features of the stimulus conditions. 

We collected 1385 SU firing rate responses and 2213 MU firing rate responses that met 

the inclusion criteria under the spatiotemporal stimulus conditions. These values are 

slightly higher than the number of latencies collected because firing rate responses could 

have a zero value when the firing rate did not differ from the spontaneous rate; however, 

latencies could not be given zero values. We collected 1098 SU response latencies and 

1771 MU response latencies that met our inclusion criteria under the spatiotemporal 

stimulus conditions. The mean of the observed peak firing rates for the dataset was 28.70 

spikes/s (SD 36.04), and the median of the peak firing rates was 14.95 spikes/s. The mean 

of the observed response latency for the dataset over all conditions was 20.67 ms (SD 

6.31), and the median was 19.80 ms.  

In Supplemental Figure S3-1 the group medians of the peak firing rates and 

latencies are plotted in three dimensions to show the distributions along the four main 

categories: temporal asynchrony, spatial proximity, Response Field relationship, and 

signal isolation (SU vs. MU). Peak firing rates tended to cluster based on these 

categories, with a tendency to be lowest when stimulation probes were both outside the 

Response Field (OUT_OUT), highest when both were located inside the Response Field 

(CN_IN and IN_BOTH), and intermediate when one stimulus probe was inside and one 

probe was outside the Response Field (CN_OUT and IN_OUT). Latencies tended to be 

longer when both stimuli were located outside the Response Field (OUT_OUT), but 

latencies were dispersed across the categories rather than falling into clusters.  
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We used Generalized Estimating Equations analysis on the full data set to 

determine the contributions of these categories on the variability of peak firing rate 

responses and response latencies. Our analysis indicated that several factors influenced 

the neuron response properties of peak firing rate and latency. 

 

Signal Isolation Category 

As one might expect, the multi-unit peak firing rates were significantly higher 

than those of single units (MU = 27.46 spikes/s ± 2.21; SU = 19.17 spikes/s ± 1.81; P = 

0.002). Excitatory response latencies in a MU cluster were slightly but significantly 

shorter than those of SUs (MUs = 19.48 ms ± 0.26; SUs = 21.24 ms ± 0.36; P < 0.0005). 

The differences between single unit and multi-unit peak firing rates and latencies are 

plotted in Supplemental Figure S3-5, along with the effects of the spatiotemporal 

stimulus conditions on the population of single- and multi-units combined. Although our 

analysis indicated that single units and multi-units did not follow different trends, we 

separated single units from multi-units for the subsequent analysis to determine the 

effects on the variance of single unit responses and multi-unit responses separately (see 

Supplemental Tables S3-1-S3-4).  

 

Temporal Asynchrony Category 

For the temporal stimulation condition, peak firing rates were suppressed by co-

stimulation with a non-preferred stimulus compared to stimulation by the preferred 

control stimulus alone (see SU results in Figure 3-4A; combined results in Supplemental  
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Figure 3-3. Example histograms from a single unit depict peak firing rate and latency changes across 

selected spatiotemporal stimulus conditions. Arrows point to dots on the diagrams of the owl monkey hand 

which indicate the stimulus locations on digit 1 and digit 3 for a series of recordings in monkey case 2. 

Inset. The trace of the single unit in each histogram is shown at the lower left corner in a trace window that 

spanned 128 µV and 1.6 ms. Histograms are shown for the neuron‘s responses when the two locations 

stimulated individually, then for both locations simultaneously, and finally for two stimulus blocks in 

which the non-preferred, or conditioning, stimulus was presented at 10 ms and 50 ms before the onset of 

the preferred stimulus. Stimulation was presented in blocks of 100 trials. Histograms are smoothed by a 

spike density function as described in the Methods. Vertical dashed lines indicate when the latency was 

determined using the criteria described in the Methods. The duration for each stimulus was 500 ms, as 

indicated by the line on the x-axis; therefore, paired stimulation overlapped in time for all stimulus onset 

delays tested except for 500 ms (not shown). The measures we examined included the peak firing rate 
within 50 ms of the preferred stimulus onset and the associated latency of that response. The peak firing 

rates and response latencies following stimulation of the preferred location are given for each excitatory 

response. The firing rate modulation category is listed for examples of paired stimulation. While the 10ms 

delay resulted in an average peak firing rate value that was about 13% larger than the response during 

control stimulation alone, the analysis for firing rate modulation found that this difference was not 

statistically significant in this example.  
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Figure S3-2A). Significant decreases in peak response magnitudes compared to single-

site control stimulation (SU = 26.11 spikes/s ± 1.15) occurred for all of the paired 

stimulation conditions at stimulus onset asynchronies as follows: 0 ms: SU = 22.04 

spikes/s ± 1.08, P = 0.007; 10 ms: SU = 11.78 spikes/s ± 0.88, P < 0.0005; 30 ms: SU = 

6.76 spikes/s ± 0.68, P < 0.0005; 50 ms: SU = 10.85 spikes/s ± 1.03, P < 0.0005; 100 ms: 

SU = 20.34 spikes/s ± 1.79, P = 0.033;  and 500 ms, 15.10 ± 1.17, P < 0.0005. On 

average, peak firing rate responses of single units were suppressed by the presence of the 

non-preferred stimulus at all delays tested, with maximal suppression when the non-

preferred stimulus preceded the preferred stimulus by 30 ms. Thus, peak firing rates 

indicate that stimulus information is integrated across time up to 500 ms, with strong 

effects when the non-preferred stimulus is presented between 10-50 ms before the 

preferred stimulus. Multi-units followed the same trend, and these data are presented in 

Supplemental Material.  

In contrast to the results for peak firing rates, we found shortened response 

latencies occurred when stimuli were paired and presented simultaneously (SU = 21.55 

ms ± 0.37; P = 0.003) or when the preferred (test) stimulus was presented at a 10 ms 

delay (SU = 15.64 ms ± 0.61; P < 0.0005) compared to single-site stimulation (SU = 

22.89 ms ± 0.38), as shown in Figure 3-4B. Latencies in response to stimulations at onset 

delays of 30 ms (SU = 20.41 ms ± 0.91; P = 0.235), 50 ms (SU = 23.09 ms ± 0.58; P = 

1.000), 100 ms (SU = 23.79 ms ± 0.47; P = 1.000), and 500 ms (SU = 23.83 ms ± 0.63; P 

= 1.000) were not significantly different from the latency during single-site stimulation 

(SU = 22.89 ms ± 0.38). Multi-units followed the same trend (see Supplemental 
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Material). Thus, latencies were reduced by paired stimulus presentations within 10 ms 

and did not show clear relationships to stimulus integration across time. 

Relationship between response latency and firing rate. The shortened mean 

latency we observed when the non-preferred stimulus preceded the preferred stimulus by 

10 ms compared to the latency in response to the preferred control stimulus alone (Figure 

3-4B) appeared to conflict with the decreased peak firing rate in response to the 10 ms 

onset delay compared to the response to the preferred control stimulus alone (Figure 3-

4A). To investigate this result further, we performed a Wilcoxon signed ranks test 

between matched samples such that the peak firing rate for each neuron was compared 

between the control stimulation condition and the condition in which the onset of the 

preferred stimulus was delayed by 10 ms relative to the onset of the non-preferred 

stimulus. We performed the same test for the response latency for each neuron in our data 

set. From the test of firing rate values, 294 values were negative differences and 127 

values were positive differences (0 ties); therefore, the majority of firing rates decreased 

in the 10 ms delay group relative to the control group (Z = -7.788, P < 0.0005). From the 

test of latency values, 235 values were negative differences and 69 values were positive 

differences (0 ties); therefore most of the latencies were shortened in the 10 ms delay 

group compared to the control group (Z = -10.503, P < 0.0005). Thus, the summary 

results in Figures 3-4A and 3-4B reflect the response properties of the majority of the 

neurons in the dataset; however, some neurons responded differently. We determined the 

nonparametric Spearman correlation coefficient (ρ) to relate response latency with peak 

firing rates paired for each neuron across all of the spatiotemporal stimulus conditions. A 
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weak negative correlation existed between latency and peak firing rate (ρ = -0.141, P < 

0.0005), such that latencies shortened as peak firing rates increased overall, as expected. 

 

Spatial Proximity Category 

Peak firing rates were generally suppressed by paired stimulation compared to 

single-site stimulation (Single-site: SU = 26.11 spikes/s ± 1.15; Adj D.: SU = 12.92 

spikes/s ± 1.92, P < 0.0005; NonA D.: SU = 20.37 spikes/s ± 2.33, P = 0.074; Adj Ph.: 

SU = 7.94 spikes/s ± 1.08, P < 0.0005; NonA Ph.: SU = 15.53 spikes/s ± 1.90, P < 

0.0005), with the greatest suppression when stimuli were presented to adjacent phalanges 

(Figure 3-4C). While latencies were slightly delayed when stimuli were presented to 

adjacent phalanges (Adj Ph.: SU = 24.23 ms ± 0.64) compared to single-site stimulation 

(Single-site: SU = 22.89 ms ± 0.38), this difference was not statistically significant (P = 

0.660). However, latencies were slightly shortened when adjacent digits were stimulated 

(Adj D.: SU = 18.59 ms ± 0.69) compared to single-site stimulation (Single-site: SU = 

22.89 ms ± 0.38; P < 0.0005). These spatially-dependent effects on latency indicate 

stronger facilitative effects (shorter latencies) between adjacent digits and stronger 

suppressive effects (longer latencies) between adjacent phalanges within a digit. The 

trends for both peak firing rates and latencies were mirrored by multi-units (see 

Supplemental Material). Thus, widespread integration of stimulus information from 

different parts of the hand was demonstrated by differences in peak firing rates in 

response to single-site stimulation compared to dual-site stimulations even when paired 

locations were nonadjacent digits. Response latencies were somewhat affected by the 
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spatial proximity of paired stimuli, and therefore also demonstrated some relationship to 

stimulus integration across the hand. 

 

Response Field Relationship Category  

The relationship of the location of the stimulation sites to the Response Field 

affected peak firing rates (Figure 3-4E), but did not affect latencies (Figure 3-4F). As 

may be expected, the peak firing rates were significantly lower when both stimuli were 

outside of the Response Field (OUT_OUT: SU =  3.72 spikes/s ± 0.49) compared to other 

conditions when one or both stimuli were inside the Response Field, as follows: 

IN_OUT: SU = 9.64 spikes/s ± 1.19; P < 0.0005; CN_OUT: SU = 14.60 spikes/s ± 2.48; 

P < 0.0005; IN_BOTH: SU = 39.56 spikes/s ± 6.50; P < 0.0005; and CN_IN: SU =  24.08 

spikes/s ± 2.63; P < 0.0005. The highest firing rates were found when both stimuli were 

within the Response Field of the reference unit, and the responses in these two categories 

were not significantly different (IN_BOTH and CN_IN, P = 0.272). Similarly, there was 

no significant difference in firing rates when the Response Field was classified as 

IN_OUT compared to CN_OUT (P = 0.713). Overall, peak firing rates were lowest when 

both stimuli were outside the Response Field and highest when both stimuli were within 

the Response Field, and presenting one stimulus outside the Response Field reduced peak 

firing rates approximately 50%. When both stimuli were outside of the Response Field, 

the latencies were slightly longer (OUT_OUT: SU = 23.02 ms ± 1.06) than when both 

stimuli were inside the Response Field (IN_BOTH: SU = 20.05 ms ± 0.76), but this small 

difference was not statistically significant (P = 0.228). Thus, the Response Field 

relationship influenced peak firing rates but not latencies (and these results were also 
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found in multi-units as reported in Supplemental Material). We expected that the 

categorization of the Response Field relationship with the stimulation parameters would 

be related to the ways neurons integrate widespread stimulus information in time and 

space. 

Since we recorded from multiple neuron units simultaneously using the 100-

electrode array, we expected that not all of the neurons recorded under each condition 

would behave the same way, given the differences in Response Field relationships to the 

stimulus locations. For visualization of the activity patterns across the spatial extent of 

the electrode array under different stimulus conditions, Figure 3-5 shows color map plots 

of the peak firing rate values for single- and multi-units recorded from the 100-electrode 

array during a subset of the stimulus parameters for each block. Individual units had 

different changes in peak firing rates with each change in stimulation parameters. To 

address these individual changes and determine the population effects across 

spatiotemporal stimulation parameters, we calculated a modulation index for each unit 

across the levels of our temporal stimulation variable. For further treatment of 

spatiotemporal interactions, see Supplemental Material and Tables S3-5-S3-6. 

 

Firing Rate Modulation Index 

To further describe the effects of spatiotemporal stimulation on peak firing rate, 

we used a modulation index to categorize how the responses to the paired stimuli 

compared to the linear sum of the responses to both of the single sites alone. In this 

analysis, mean firing rate responses to each single-site stimulus alone were summed for 

comparison to mean firing rate responses to co-stimulation, as described in the Methods.  
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For these data, there was no significant difference between single- and multi-units 

(P = 0.948), so the results are plotted together. In total across the conditions, 51.1% (N = 

1671 out of 3272) of the responses were classified as ―suppressive‖; 39.2% (N = 1283) of 

the responses were classified as ―no difference‖; 5.7% (N = 187) were classified as 

―superadditive‖; and 4.0% (N = 131) were classified as ―subadditive‖. We found no 

instances of ―additive‖ modulation in which the response to paired stimulation was not 

statistically different from the linear sum of the two single-site responses. The counts for 

each modulation index category are shown in Figure 3-6, divided into the stimulation 

categories on the x-axis and grouped by the proximity of the stimuli in each panel. We 

collected fewer conditions for stimulation within a digit (N = 543, Adj Ph.; N = 389, 

NonA Ph.) compared to stimulation across two digits (N = 936, Adj D.; N = 1402, NonA 

D.); however, the majority of the responses under all conditions were ―no difference‖ 

from the best control response and ―suppressive‖ compared to the best control response. 

An interesting effect due to the temporal stimulation parameters appears prominent when 

reviewing the panels for stimulation on adjacent (Adj D.) and nonadjacent (NonA D.) 

digit pairs in Figure 3-6. As the stimulus onset asynchrony increases from 0 to 500 ms, 

the number of responses classified as ―no difference‖ decreases, and the number of 

responses classified as ―suppressive‖ increases. 

We present the same data in a second way in Figure 3-7 in order to illustrate the 

findings based on percent of responses within each stimulation category. Suppression 

dominated the response modulation types averaged across categories (~59% for Adj D., 

~50% for NonA D., ~50% for Adj Ph., and ~35% for NonA Ph.). But this effect was not 

found uniformly across the stimulus conditions, as also indicated by the counts in Figure 
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Figure 3-4. Main effects for peak firing rate and response latency from single units across spatiotemporal 

stimulus conditions. Estimated mean values from Generalized Estimating Equations analysis of 309 single 

units are shown with error bars representing ± 1 standard error of the mean. A. Means of peak firing rates 

(spikes/s) are plotted for each temporal stimulation category, comparing the preferred control stimulation 

(Single) to paired stimulation at 0, 10, 30, 50, 100, and 500 ms stimulus onset asynchronies. Dual-site 
stimulation suppressed peak firing rates relative to single-site stimulation. The 30 ms onset delay resulted 

in the greatest suppression. B. Means of response latencies (ms) plotted for each temporal stimulation 

condition show that 0 and 10 ms onset delays resulted in faster latencies than single-site stimulation. C. 

Means of peak firing rates plotted for each spatial condition in which the stimuli were presented on 

adjacent digits (Adj D.), nonadjacent digits (NonA D.), adjacent phalanges (Adj Ph.), or nonadjacent 

phalanges (NonA Ph.). Dual-site stimulation suppressed firing rates compared to single-site stimulation for 

all conditions except when NonA digits were stimulated. Peak firing rates were higher for stimulation on 

NonA D. than Adj Ph. D. Latencies were slightly faster for stimulation on Adj D. and NonA Ph. compared 

to single-site stimulation. E. Means of peak firing rates are plotted for each Response Field relationship. 

Firing rates were lower when the stimuli were outside of the Response Field (OUT_OUT) compared to all 

other conditions. CN_IN was not different from IN_BOTH or CN_OUT, and IN_OUT was not different 

from CN_OUT. F. Latencies were slightly, but not significantly longer when both stimuli were presented 

outside of the neuron‘s Response Field (OUT_OUT) compared to all other Response Field relationships.  
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Figure 3-5. Peak firing rate values represented across the 100-electrode array under selected stimulus 

conditions. Color maps of the peak firing rate responses across the array were generated in Matlab with hot 

colors representing higher peak firing rates. Each square represents an electrode in the array and the peak 

firing rate value during the 50 ms response window. Electrodes from which no significant responses were 

obtained during the stimulations shown are indicated in dark blue (no squares). The dashed lines indicate 

approximate locations of the representations within area 3b in monkey 3. Upper Left panel shows the 

responses when a single site on distal digit 4 (D4) was stimulated for 100 trials. Upper Right panel shows 

the responses when a single site on the adjacent digit 5 (D5) was stimulated. Both single-site stimulation 

conditions show that the hotspots of activity occurred in the expected representations, but the activity could 

cross into adjacent representations and be non-uniform. In the Lower Left panel, both single site locations 

were stimulated simultaneously, resulting in a pattern of activity that one would not expect from simple 

summation across electrodes. The Lower Right panel shows the responses when D4 was stimulated 50 ms 

before D5 was stimulated, with the responses after D5 stimulation captured. The responding electrodes 

appear to show suppressed or unchanged responses.  
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3-6. For example, we found that when paired stimuli were presented simultaneously, 

most of the responses showed ―no difference‖ compared to the best control site across 

each of the four stimulus proximity factors (~51% for Adj D., ~59% for NonA D., ~61% 

for Adj Ph., and ~69% for NonA Ph.). Facilitation was rare. Summing the proportions of 

total facilitation (from ―subadditive‖ and ―superadditive‖ categories), we found that 

stimuli presented on nonadjacent sites resulted in the highest proportion of facilitation 

(~11%); followed by stimulation within a digit on adjacent phalanges (~10%), adjacent 

site stimulation on separate digits (~8%), and stimulation within a digit on nonadjacent 

phalanges (~6%). However, when facilitation occurred (―subadditive‖ and 

―superadditive‖ categories), the stimuli were more likely to be presented at short stimulus 

onset asynchronies (0, 10, 30 ms) across each of the proximity factors (~81% for Adj D., 

~81% for NonA D., ~79% for Adj Ph., and ~96% for NonA Ph.). Thus, using this 

response modulation index, we found that responses were suppressed in large proportions 

across the temporal stimulation and spatial proximity categories. In addition, 

spatiotemporal characteristics of stimulus presentations influenced the proportions of 

neurons showing ―no difference‖, ―suppression‖, and ―subadditive‖ and ―superadditive‖ 

facilitation of firing rate when two sites were stimulated compared to the sum of the rates 

when each site was stimulated separately.  

The proportion of SU and MU neurons falling into the response modulation 

categories of ―suppression‖, ―no difference‖, ―subadditive‖ facilitation, and 

―superadditive‖ facilitation were similar across the relations of the stimulation locations 

to the neurons Response Fields (Figure 3-8). The response modulation types were 

distributed across the Response Field categories such that no one category contained the 
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majority of any one response modulation type. Neurons that responded with facilitation, 

for example, did not fall into one specific category. The response categories of 

―suppression‖, ―no difference‖, ―subadditive‖ facilitation, and ―superadditive‖ facilitation 

were similarly distributed across the Response Field categories.  

 

Discussion 

 

We examined peak firing rate and excitatory response latency during stimulation 

conditions that varied in spatiotemporal characteristics in order to quantify how neurons 

in primary somatosensory cortex integrate information from paired stimuli presented 

inside and outside their receptive fields at various stimulus onset asynchronies. The 

ranges of stimulus onset asynchronies along with the stimulus pairings on locations 

within single digits and across digits have not been reported previously, nor has the 

categorization of the Response Field been applied to extracting the contributions of 

stimulus properties to the response properties. The hypothesis that both spatial and 

temporal stimulus properties shape responses to paired stimuli was supported and the 

intricacies of the effects were explored. As predicted, we found that peak firing rate and 

latency were affected by the spatial and temporal stimulus parameters, but some of the 

effects were unexpected, including how far in space and time paired stimuli interact to 

influence neuron responses. Our results are consistent with those from previous studies, 

but we provide new information regarding spatiotemporal stimulus integration. Here we 

treat each aspect of the analysis individually, and then discuss the possible mechanisms 

that mediate the effects and the functional implications of the results. 
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Figure 3-6. Total counts of firing rate modulation classes categorized by spatial and temporal stimulation 

parameters. Individual bar shades indicate the classes of firing rate modulation in response to paired 

stimulation which occurred in these data: ―No Difference‖ compared to the response to the preferred 

control, ―Subadditive‖ compared to the summation of the responses of both controls, ―Superadditive‖ 

compared to the summation of the responses of the controls, and ―Suppressive‖ compared to the response 

to the preferred control. The types of paired stimulation conditions are grouped on the x-axis referring to 

the stimulus onset asynchronies from 0 to 500 ms, in which the preferred stimulus was always presented 

after the non-preferred stimulus. The panels show the total counts of these categories for each of the four 

tested stimulus proximity categories. Fewer recordings were made with paired stimuli within a single digit 

(Adj Ph., NonA Ph.). Suppression and no difference compared to the preferred control stimulation 

dominate the modulation classification types. Note the pattern such that many responses are classified as 

―no difference‖ during stimulation at short stimulus onset delays (0-30 ms) and there are fewer at longer 

delays (50-500 ms). Responses classified as ―suppressive‖ show the reverse effect, particularly in the 

panels for adjacent and nonadjacent digit stimulation conditions. Facilitation (subadditive, superadditive) 

occurred less often, but was predominantly found when the delays were short (0-30 ms). 
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Figure 3-7. Percentages of response types for firing rate modulation categorized by spatial and temporal 
stimulation parameters. Four classes of firing rate modulation in response to paired stimulation occurred in 

these data: ―no difference‖ compared to the response to the preferred control, ―subadditive‖ compared to 

the summation of the responses of both controls, ―superadditive‖ compared to the summation of the 

responses of the controls, and ―suppressive‖ compared to the response to the preferred control; and these 

are displayed on the x-axis. Individual bar shades indicate the paired stimulation type referring to the 

stimulus onset asynchronies in which the preferred stimulus was always presented after the non-preferred 

stimulus. The panels show the total counts of these categories for each of the four tested stimulus proximity 

categories. Note that fewer recordings were made for the categories stimulating within a single digit (Adj 

Ph., NonA Ph.). Percent on the y-axis refers to the percentage of occurrences of each response type 

category, calculated within each panel for the four proximity categories. This view of the same data from 

Figure 3-6 shows that when stimuli were presented at short delays (0-30 ms), response types tended to be 

―no difference‖ and ―facilitative‖ (subadditive, superadditive). At these short delays, paired stimuli 

presented within a single digit (Adj Ph., NonA Ph.) were suppressive modulators of firing rate in greater 

proportions than when paired stimuli were presented on adjacent or nonadjacent digits.
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Figure 3-8. Percentages of response types for firing rate modulation categorized by Response Field 

relationships. The Response Field categories are shown on the x-axis. On the y-axis, the percentages of 

occurrences of the four response classes of ―no difference‖, ―subadditive‖, ―superadditive‖, and 
―suppressive‖ were determined within each Response Field relationship category. The response classes 

were distributed across the Response Field categories rather than grouped within the categories.  



 99 

 Response Field Mapping and Cortical Topography 

The first step in our analysis of the data from each monkey was to reconstruct the 

location of the electrodes in the array relative to the hand representation. This was done 

based on histological reconstruction from myelin stained sections of flattened cortex, 

minimal receptive field mapping data, and the classification of the Response Field based 

on the mechanical stimulation. Locations of multi-digit receptive fields based on minimal 

receptive field mapping helped us to draw approximate borders between representations. 

Our classification of the excitatory Response Field was based on neuron firing rate to 

suprathreshold stimuli. While minimal receptive fields studied with near-threshold 

stimuli have been described as small and localized within a single digit, the 

suprathreshold Response Fields we characterized can be large, often encompassing 

different digits. The idea that primary somatosensory cortex, area 3b, responds only to 

small and discrete body locations is now supplemented by a growing awareness of how 

stimulation ―beyond the classical receptive field‖ influences neuron responses (e.g., Clark 

et al., 1988; Nicolelis et al., 1998; Chen et al., 2003; Friedman et al., 2008; Reed et al., 

2008). The inclusion of separate digits within the Response Field indicates that the large 

receptive fields are not simply artifacts caused by the spread of deformations in the skin. 

Since near-threshold stimuli are commonly used to map minimal receptive fields in the 

somatosensory system, small receptive fields usually contained within a single digit have 

been primarily reported within area 3b. We used mechanical stimulation that indented the 

skin 0.5 mm, and this stimulus would be suprathreshold for some neurons; therefore, two-

digit receptive fields may not be surprising, even for single neurons. Ours is not the first 

report of receptive fields encompassing multiple digits. For example, Tremblay et al. 
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(1996) reported 59 out of 96 single neurons recorded from area 3b in macaque monkeys 

had single digit receptive fields, which was a higher proportion of single digit receptive 

fields than found in areas 1 and 2. There may be some differences when our study 

compared with others which use traditional receptive field mapping with near-threshold 

stimulation due to our naming conventions regarding the ―center‖, ―inside‖, and 

―outside‖ of the Response Field characterized by suprathreshold stimulation. Our study 

may have revealed fewer ―surround‖ effects than would be reported using near-threshold 

measures of the receptive field and suprathreshold stimulation outside the minimal 

receptive field. Finer mapping of receptive fields or stimulating a specific set of several 

locations across the hand may reveal even more spatiotemporal interactions and increase 

the specificity of the effects.  

While we do not presume that these approximate topographic maps are 

permanent, we did not specifically test how the topography may or may not be affected 

by the passive mechanical stimulation employed in this experiment. We had reason to 

believe that in our anesthetized preparation with passive stimulation, the topography of 

area 3b would not change significantly due to the spatiotemporal stimulation (e.g., 

Darian-Smith, 2009), and that stimuli need to be behaviorally relevant (Clark et al., 1988; 

Xerri et al., 1999; Pilz et al., 2004) or applied for extended periods of time (Kalisch et al., 

2007) in order to cause the cortical maps to reorganize. While we applied stimuli for 

extended periods of time, the locations to which the stimuli were applied varied 

throughout the experiment. The basic techniques we applied could be used to extend the 

study to investigate changes in cortical topography due to spatiotemporal stimulation. 
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Spatiotemporal Contributions to Peak Firing Rate and Response Latency Changes 

Our analyses support the hypothesis that spatiotemporal interactions modulate 

response magnitudes during paired stimulation (Supplemental Tables S3-1, S3-2 - S3-5). 

Notably, these results indicate that presentation of a conditioning stimulus affects the 

response to a test stimulus that may be presented far apart in space (nonadjacent digits) 

and time (50-500 ms), and we examined the effects of paired stimulus presentation when 

stimuli were presented closely in space (within the same digit) and time (simultaneously 

to 30 ms stimulus onset delays). Our results are consistent with our premise that 

widespread spatiotemporal stimulus interactions occur in area 3b, and these results 

quantify the relationships of specific spatiotemporal stimulus characteristics to neuron 

response properties. We added a new level of analysis in which we related the neuron‘s 

Response Field to the location of the paired stimulation. As expected, the peak firing 

rates differed among these categories such that when both probes were outside the 

Response Field (OUT_OUT), the peak firing rate was low; and when both probes were 

inside the Response Field (CN_IN, IN_BOTH), the peak firing rate was much higher 

(Figure 3-4E). Using this categorization, we were able to detect the interaction of this 

factor with the other prediction factors of temporal and spatial stimulus proximity 

(Supplemental Tables S3-1- S3-2, and Supplemental Figure S3-6). These trends include 

the suppression of peak firing rates in general by a preceding conditioning stimulus, 

particularly when test stimuli within the neuron‘s Response Field were presented after a 

30 or 50 ms delay. Co-stimulating adjacent phalanges resulted in strong suppression of 

the peak firing rate across all Response Field relationships when the conditioning 

stimulus was presented 30 or 50 ms ahead of the test stimulus. Overall, stimulating 
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nonadjacent digits resulted in less suppression, particularly when one stimulus was inside 

and the other was outside the Response Field. Suppression of the response peak was 

found when the stimulation locations were close spatially (within a digit) or both within 

the neuron‘s suprathreshold receptive field. The suppression was lessened (or more 

facilitation was present) when stimulation locations were distant (nonadjacent digits) and 

the conditioning stimulus was located outside the neuron‘s Response Field.  

The influences of the relationship of the stimulation sites to the Response Field on 

response latencies were mostly predictable. Paired stimuli outside the Response Field 

resulted in the longest latencies and paired stimuli inside the Response Field resulted in 

the shortest latencies (Figure 3-4F). The response was primed for paired stimulation 

within a single digit across all of the Response Field categories, and also for paired 

stimulation on adjacent digits when the conditioning stimulus was within the neuron‘s 

Response Field. This indicates a facilitative effect specific for when the stimulated 

locations are close spatially or both within the neuron‘s suprathreshold receptive field. In 

these situations in which latencies are shortened, excitatory drive must outweigh the ―in-

field inhibition‖ (e.g., Mountcastle and Powell, 1959; Jänig et al., 1979; Gardner and 

Costanzo, 1980a,b; DiCarlo et al., 1998; Sripati et al., 2006; Helmstaedter et al., 2009) 

and lateral inhibition effects (e.g., Hicks and Dykes, 1983; Chowdhury and Rasmusson, 

2003; Helmstaedter et al., 2009) that depress firing and instead allow the increase in spike 

rate to occur a few milliseconds quicker than when the conditioning stimulus is not 

present.  

We found the maximal suppression of firing rates when stimulus onsets were 

presented 30-50 ms apart (Figure 3-4A, Supplemental Figure S3-2A), and this coincides 
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well with results from other studies. Condition-test intervals resulting in maximum 

suppression in S1 cortex were 10-30 ms for adjacent whisker stimulation in rats (Moore 

et al., 1999, review) and 20-40 ms for adjacent digit stimulation in raccoons (Greek et al., 

2003). Within the large receptive fields on the arm in awake macaque monkeys, Gardner 

and Costanzo (1980b) found maximum suppression intervals of 10-20 ms using air jet 

stimulation (mostly to hairs). Our suppressive effects for tactile stimulation on paired 

locations within a digit and across separate digits, rather than on adjacent whiskers or 

within larger receptive fields, are most similar to the values found for adjacent digit 

stimulation in raccoons (Greek et al., 2003).  

We expected that latencies would be generally lengthened by co-stimulating digits 

with varying spatiotemporal stimulus parameters as firing rates were typically reduced. 

Instead, response latencies decreased compared to single-site stimulation on the preferred 

location when the two stimuli were presented simultaneously or when a conditioning, 

non-preferred stimulus preceded the test stimulus by 30 ms or less. The shortest latencies 

occurred when the conditioning stimulus preceded the test stimulus by 10 ms. This result 

occurred across the spatial categories of stimulus proximity and the relationship of the 

Response Field to the stimuli (Figures 3-4B, Supplemental Figure S3-2B). Latencies 

were longer when the test stimulus was preceded by a conditioning stimulus by more than 

30 ms, but most latencies were not significantly longer compared to the latency when the 

preferred site was stimulated alone (Figures 3-4B, Supplemental Figure S3-2B). Boloori 

and Stanley (2006), who used stimulation of pairs of whiskers in rats to examine the 

spatiotemporal response properties in S1 neurons (in layers 2/3 and 4), found that the 

conditioning stimulus increased the latencies of the test responses, and they did not 
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describe neurons with shortened latencies. In addition, Boloori and Stanley (2006) found 

that response latency was longer than baseline for short interstimulus delays but 

recovered to baseline as the delay lengthened. Our finding that the shortest latencies 

occur when stimuli are presented within 10 ms of each other demonstrates a facilitative 

effect in which the response to conditioning stimulus, which is often subthreshold, 

facilitates the response to the preferred stimulus. The facilitative effect peaked when the 

conditioning stimulus preceded the test stimulus by 10 ms and decreased in strength 

when the delay increased to 30 ms. Stimuli presented farther apart in time had 

insignificant effects on response latencies.  

Latencies were shortened when paired locations were stimulated on separate 

digits compared to paired locations within a single digit (Figure 3-4D). Co-stimulating 

adjacent digits resulted in the shortest latencies, and co-stimulating adjacent phalanges 

within a single digit resulted in the longest latencies. The result from stimulating adjacent 

digits is similar to the finding in the superior colliculus of cats that multisensory 

stimulation shortens response latencies of neurons compared to the preferred unisensory 

stimulus (Rowland et al., 2007). Instead of providing two stimuli from different sensory 

modalities, our pairing tactile stimuli at short delays likely resulted in the summation of 

subthreshold inputs to allow the spiking threshold to be reached sooner.  

 

Single Unit and Multi-Unit Data Comparisons 

We reported results for single unit peak firing rates and latencies throughout this 

article and referred to similar trends in multi-unit data in the Supplemental Material. We 

found that the population means from multi-units resulted in higher peak firing rates than 
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those from single units (MU = 27.46 spikes/s ± 2.21; SU = 19.17 spikes/s ± 1.81; P = 

0.002), and latencies from the multi-unit population were slightly shorter than those from 

single units (MUs = 19.48 ms ± 0.26; SUs = 21.24 ms ± 0.36; P < 0.0005). This appeared 

to be a shift in the multi-unit means compared to single units by recording signals that 

were averaged over multiple single neurons. This mean shift did not appear to influence 

the responses of multi-units to spatiotemporal stimulation differently than the responses 

of single neurons. Multi-unit results appeared to closely reflect the single unit results; 

therefore, we do not expect that single unit activity reflects an unusual subset of neurons 

sampled by the 100-electrode array. Using single electrodes that can be adjusted in depth 

may result in sampling bias as experimenters isolate the spikes from the largest neurons; 

however, our method used immovable electrodes. Thus, isolated single units were likely 

to be those that happened to be closest to the recording electrodes, all of which were 

within cortical layer 3. When we examined how the firing rate was modulated when 

paired sites were stimulated compared to the expected response (based on the sum of the 

responses to stimulation on each site alone), data from single units and multi-units were 

not significantly different (P = 0.948); and we analyzed those data together. 

 

Relationship of Peak Response Magnitudes and Latencies 

The relationship between response latency and peak firing rate (paired neuron-by-

neuron) followed expectations overall, such that across all spatiotemporal stimulation 

conditions tested, latencies tended to shorten as firing rates increased (ρ = -0.141, P < 

0.0005). Our findings differ somewhat from those of Boloori and Stanley (2006), who 

found a correlation of -0.76 (P < 0.00001) between latency and firing rate, such that 
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longer response latencies were strongly associated with firing rate suppression in rat S1 

neurons (for the second whisker deflection in a stimulus pair). Because our summary 

analysis of the effects of the spatiotemporal stimulus conditions on response latency 

(Figure 3-4B) and peak firing rate (Figure 3-4A) did not consistently reveal the expected 

inverse relationship between latency and firing rate, we used Wilcoxon signed ranks tests 

for paired samples to specifically examine the condition in which the trend was clearly 

violated. When the non-preferred stimulus preceded the preferred stimulus by 10 ms, 

some neurons responded with shorter latencies but lower firing rates compared to the 

response to the preferred stimulus alone. However, in a subset of units, we found relative 

increases in firing rates when paired stimuli were presented within short delays (Figures 

3-6, 3-7), so some underlying facilitative drive must exist to result in shortened latencies 

and firing rate increases compared to single-site stimulation on the preferred skin 

location. (See Figure 3-3 for one example neuron which shows an increased firing rate 

and shortened latency when the preferred stimulus is delayed 10 ms compared to the 

response to the preferred stimulus alone.) The underlying cause for the response diversity 

within our dataset is uncertain. 

 

Spatiotemporal Contributions to Deviations from Simple Summation of Peak Firing 

Rates in Response to Paired Stimulation 

 

Based on the analyses of firing rate modulation, small subsets of neurons were 

facilitated, primarily when stimuli were presented at the shortest delays of 0, 10, and 30 

ms (Figure 3-7). Although the average value of the peak firing rate was maximally 

suppressed for 30 ms delays across all spatial parameters, this delay also resulted in 

response facilitation in a subset of neurons; and particularly for conditions in which 
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stimulation occurred on separate digits. Additionally, we found that with increasing 

stimulus onset asynchronies, peak response suppression increased (Figure 3-6). Even at 

100 and 500 ms delays, the instances of suppression were still high, particularly for 

stimulation on adjacent and nonadjacent digits. Studies with condition-test paradigms 

typically do not use intervals as long as 500 ms, as they tend to use stimuli that are 

shorter in duration than ours. At their longest interval tested of 260 ms, Boloori and 

Stanley (2006) found that test responses had not fully recovered to control levels. Our 

stimuli may have been capable of interacting over such large time intervals because the 

stimulus duration was long (500 ms) and the 0.5 mm indentation was suprathreshold 

stimulation for a subset of neurons; therefore, our stimuli may recruit more neurons and 

activate them for longer periods than brief stimulus pulses at low intensities.  

While suppression tends to dominate the results of condition-test paradigms (e.g., 

Jänig et al., 1977, 1979; Laskin and Spencer, 1979; Gardner and Costanzo, 1980b; 

Simons, 1985; Simons and Carvell, 1989; Brumberg et al., 1996; Burton et al., 1998; 

Moore et al., 1999; Mirabella et al., 2001; Chowdhury and Rasmusson, 2003; Derdikman 

et al., 2003; Greek et al., 2003; Melzer et al., 2006), we and others (e.g., Shimegi et al., 

1999, 2000; Greek et al., 2003) report mixed effects on responses after the conditioning 

stimulus. We hypothesized that the relationship of the Response Field to the stimulus 

sites might account for the different response types, and reveal why most neuron 

responses are suppressed in condition-test paradigms, while subsets of others are 

facilitated or unchanged. We found, however, that each of the Response Field categories 

included units showing no change, suppression, or facilitation of response peaks (Figure 

3-8).  
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While their studies focused on other issues, results from optical imaging 

experiments in squirrel monkeys (Chen et al., 2003; Friedman et al., 2008) and a 

supporting sample of single electrode recordings (Friedman et al., 2008) apply to the 

issues of widespread spatial interactions in area 3b. Optical imaging results showed that 

simultaneous stimulation on two adjacent digits reduced the signal amplitude at the 

individual cortical sites for digits. As the signal reduction was not significant when 

nonadjacent digits were stimulated (Chen et al., 2003; Friedman et al., 2008), suppressive 

effects were likely stronger when the cortical locations were closer in proximity. While 

―no effect,‖ ―facilitatory,‖ and ―suppressive‖ categories were calculated differently than 

our modulation index categories, more than one third of the neuron responses in their 

sample (N = 27 area 3b neurons) were suppressed by simultaneous stimulation on 

adjacent or nonadjacent digits, 30% of the neuron responses were facilitated, and one-

third of the responses were unchanged by paired stimulation (Friedman et al., 2008). The 

differences in the proportions of responses categorized as no effect, facilitative, or 

suppressive in the two studies may relate to the sample sizes and differences in 

categorization calculations. Together with our findings, these studies suggest a spatial 

gradient of inhibition-facilitation interactions exists such that simultaneous stimulation on 

adjacent digits results in stronger suppression than that on nonadjacent digits. Our results 

suggest further that suppression is strongest between locations on adjacent phalanges 

within a single digit. 
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Possible Origins of Spatiotemporal Interactions in the 3b Hand Representation 

While our study has not defined all aspects of spatiotemporal interactions in area 

3b, we can consider the possible anatomical substrates underlying the effects. Clearly 

there are facilitative and suppressive components contributing to the responses across the 

digit representation. These proposed underlying components are shown in Figure 3-9, 

which is a summary of our findings focused on how peak firing rate and response latency 

are modulated by stimulation on paired locations and the proportions of units that show 

facilitative versus suppressive interactions overall. Suppressive effects on firing rate were 

found over all of the spatial and temporal stimulus conditions; but the largest proportion 

of suppressive effects occurred between adjacent phalanges within a single digit, 

followed by nonadjacent phalanges within a single digit. The shortened latencies and 

increased firing rates indicate that facilitative mechanisms occurred when adjacent digits 

were stimulated; and our temporal stimulus conditions revealed that facilitation occurred 

more often when two stimuli were presented within 0 to 30 ms of each other. Interactions 

between stimuli presented to nonadjacent digits resulted in the highest proportions of 

neurons with facilitated firing rates in response to co-stimulation (11%); however, since 

the response latencies and peak firing rates showed facilitative effects when adjacent 

digits were stimulated (Figures 3-4B, 3-7B), we estimated that facilitation between 

stimuli presented to nonadjacent digits is similar in strength to that when adjacent digits 

are stimulated.  

Intracortical connections are the most likely sources of the spatiotemporal 

interactions we observed. Primate area 3b has dense horizontal connections overall (De 

Felipe et al., 1986; Burton and Fabri, 1995; Manger et al., 1997), with particularly dense 
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connections within individual digit regions and between digit and adjoining palm regions 

rather than across adjacent digits (Fang et al., 2002). However, horizontal connections 

also extend across digit representations (Burton and Fabri, 1995; Manger et al., 1997), 

and the distribution of projections is likely to decrease in density as distance from the 

soma increases (Tanosaki et al., 2002a,b). We found that co-stimulating adjacent 

phalanges on the same digits had a suppressive effect. Yet, sites within a single digit are 

close in physical proximity and have dense intracortical connections in area 3b (Fang et 

al., 2002).Thus, our results suggest that intrinsic, horizontal connections primarily have 

suppressive effects that result in both delayed latencies and decreased firing rates, within 

the cortical representation of a digit while the less dense horizontal connections between 

the representations of digits have mainly a facilitative effect. Of course, other connections 

may mediate the response differences. 

As horizontal collaterals of pyramidal cells in layers 3 and 5 extend over 3–6mm 

in monkey 3b (De Felipe et al., 1986); they form a substrate for widespread spatial 

interactions. Surround receptive fields of neurons in S1 barrel cortex of rats are primarily 

derived by intracortical mechanisms (e.g., Li and Waters, 1996; Fox et al., 2003). 

Intracellular recording studies confirm that subthreshold receptive fields are more 

extensive than suprathreshold receptive fields (e.g., Smits et al., 1991; Moore and Nelson, 

1998; Brecht and Sakmann, 2002; Fox, 2002), and neurons in S1 of rats receive 

subthreshold inputs from 3 or more digits (Li and Waters, 1996; Arnold et al., 2001). 

Similarly, in primary visual cortex, horizontal connections appear to mediate integration 

of information from larger regions of visual space than the classical receptive fields 

predict (e.g., Gilbert, 1992, review). 
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The responses of neurons in the present study to spatially distributed stimuli are 

not necessarily only the result of interactions through cortical connections within area 3b. 

Area 3b neurons have other ways of being responsive to spatially separate stimuli in 

addition to using intra-areal connections. 1) The ascending system is divergent in its 

connections, and receptive fields are maintained in part by lateral inhibition, with relays 

in the brainstem (cuneate nucleus) and thalamus (ventroposterior nucleus) (e.g., Hicks 

and Dykes, 1983; Jones et al., 1982, 1997; Garraghty and Sur, 1990; Rausell et al., 1995, 

1998; Xu and Wall, 1999). Thalamocortical axon arbors have been traced in owl 

monkeys (Garraghty et al., 1989) and macaque monkeys (Garraghty and Sur, 1990) to 

reveal that these arbors can span across cortical columns and can have secondary 

branches terminating away from the main branch. Adjacent thalamic neurons can project 

to targets up to 1.5 mm apart in area 3b of macaque monkeys (Rausell and Jones, 1995), 

reflecting dispersion greater than 3b receptive field mapping reveals. These thalamo-

cortical projections could account for some of the interactions within digits and possibly 

across adjacent digits. Most notably, theoretical modeling of neuron responses in primary 

visual cortex suggests that many response properties are mediated by thalamocortical 

connections, including some of the suppression caused by stimuli considered outside the 

classical receptive field (Carandini et al., 2002); these findings could be relevant to S1 as 

well. 2) Cortical feedback to thalamic and subthalamic levels appears to sharpen or 

diminish the receptive field size in visual (e.g., Murphy et al., 1987, 1999; Sillito and 

Jones, 2002), auditory (e.g., Yan and Suga, 1996; Zhang et al., 1997, 2000), and 

somatosensory systems (e.g., Shin and Chapin, 1990; Ghosh et al., 1994; Ghazanfar et 

al., 1997, 1999, 2001; Ergenzinger et al., 1998; Temereanca and Simons, 2004). Thus, 
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spatial interactions of some extent occur subcortically. Feedback that adjusts subcortical 

receptive fields will in turn influence cortical responses. 3) Area 3b receives feedback 

connections from other somatosensory representations, especially those in areas 3a, 1, 2, 

S2, and PV (e.g., Cusick et al., 1989; Kaas, 1990; Darian-Smith et al., 1993; Krubitzer 

and Burton et al., 1995a,b; Qi et al., 2002; Wu and Kaas, 2003) that influence response 

properties. 4) Finally, callosal connections reach 3b directly (albeit, few; see Killackey et 

al., 1983 for owl monkeys) and via feedback from other fields with denser callosal 

connections (Calford, 2002, review). Our stimuli were presented only within the 

contralateral hand; therefore, these callosal connections are expected to contribute little to 

the response properties observed. 

 

Functional Relevance of Spatiotemporal Interactions in the Hand Representation 

The spatiotemporal effects on neuron responses to somatosensory stimuli we 

report here affect stimulus processing, and therefore, perception. Although our procedure 

of stimulating one or two hand locations does not mimic many natural stimulation 

situations, this simplified stimulation allowed us to quantitatively evaluate how sensory 

information from the hand is integrated in area 3b. Spatiotemporal response 

characteristics have been suggested to account for motion detection (e.g., Whitsel et al. , 

1972; Hyvärinen and Poranen, 1978; Warren et al., 1986; Gardner et al., 1992), motion 

direction perception (e.g., Hyvärinen and Poranen, 1978; Warren et al., 1986), feature 

detection regardless of stimulus velocity (DiCarlo et al., 2002), and orientation detection 

(e.g., Hyvärinen and Poranen, 1978; Warren et al., 1986; DiCarlo et al., 2002). While our 

stimuli are unlikely to elicit perceptions of continuous motion across the paired sites on 
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Figure 3-9. A summary diagram of the spatiotemporal interactions resulting from functional connections 

between parts of the hand representation in area 3b. Representations of three digits (D2, D3, D4) in area 3b 

are shown above the schematic of the owl monkey brain indicating the location of area 3b. These represent 

stimulation applied to adjacent and nonadjacent locations rather than to the specific digits. One digit is 

divided into distal (d), middle (m), and proximal (p) sections to represent the stimulation on phalanges 

within each digit. Line thickness between sites is an approximate representation of the proportion of 

suppression or facilitation recorded from the selected locations. Black lines refer to suppressive interactions 
(-) that occurred when stimuli were presented on the paired locations indicated, and these lines are solid to 

indicate that suppressive interactions were found at all stimulus onset asynchronies tested, from 0-500 ms. 

Gray lines refer to facilitative interactions (+) that occurred when stimuli were presented on the paired sites 

indicated. All of the gray lines are dashed to indicate that facilitative interactions tended to dominate during 

short stimulus onset delays from 0-30 ms. The most facilitation via effects on firing rate and latency was 

found when adjacent digits were stimulated; thus, the lines are the thickest.  
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the digits, these simple stimuli allowed us to investigate basic neuron response properties 

that underlie more complex stimulus discriminations. 

Our electrophysiological results relate to a recent human psychophysical study by 

Horner (2006) which compared tactile pattern discrimination along adjacent locations on 

the index finger and found that 1) performance was best when patterns were presented to 

the same location rather than separate digit locations; 2) discrimination was best on the 

distal phalange compared to the middle phalange; and 3) short stimulus onset 

asynchronies (120 ms) impaired performance compared to long onset asynchronies (540 

and 990 ms). Horner described the results as consistent with the idea that since the distal 

digits are more densely innervated than the proximal parts of the hand (e.g., Johansson 

and Vallbo, 1979); the distal digits have a performance advantage. We found shortened 

latencies and higher peak firing rates when adjacent and nonadjacent digits were 

stimulated, and our stimulation locations were primarily distal digits (see Methods). 

Thus, the facilitative effect on firing rates and latencies we observed in area 3b neurons 

when stimulating separate digits may be related to the innervation density and the 

performance advantage of distal digits.  

While Horner did not discuss the contributions to impaired discrimination when 

stimuli were applied with short stimulus onset asynchronies, our data along with others 

(e.g., Jänig et al., 1977, 1979; Laskin and Spencer, 1979; Gardner and Costanzo, 1980b; 

Burton et al., 1998; Chowdhury and Rasmusson, 2003; Greek et al., 2003), suggest that 

the impaired discrimination may be related to the firing rate suppression that occurs when 

two stimuli are applied to locations on the hand (or forelimb) synchronously or 

asynchronously. Long-term passive tactile stimulation on all fingers of the human hand 
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has been shown to improve tactile acuity when the stimulation was synchronous, while 

asynchronous stimulation did not improve tactile acuity and showed trends for reducing 

acuity (Kalisch et al., 2007). Taken with human psychophysical studies, our results 

predict that tactile perception and discrimination would be impaired when paired stimuli 

are presented within one digit compared to across separate digits and that asynchronous 

presentation of stimuli would impair the perception of a second, target stimulus. 
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Supplemental Material 

 

 

 
 

Figure S3-1. Peak firing rates and response latencies plotted to show distributions across spatiotemporal 

stimulation categories. These plots indicate the distributions of peak firing rates along the four categories 

we analyzed: temporal asynchrony, spatial proximity, Response Field relationship, and signal isolation. The 

temporal stimulation conditions are plotted in the x-axis and the spatial proximity conditions are plotted in 

the z-axis. ―Control‖ refers to single-site stimulation on the preferred location in a stimulus pair. Other 

stimulation categories refer to the time between the onset of the non-preferred stimulus (first) and the 

preferred control stimulus (second). The Response Field relationship is designated by the color of each data 

point. Single unit (SU) recordings are plotted in the upper panels across the figure, and multi-unit 

recordings (MU) are plotted in the lower panels. Left. Within each category, the group median peak firing 

rates (spikes/s) are plotted in three dimensions to summarize the data distributions within the 

spatiotemporal stimulation categories (medians calculated from 1385 SU observations; 2213 MU 

observations). Right. Within each category, the group median response latencies (ms) are plotted in three 

dimensions to summarize the data distributions within the spatiotemporal stimulation categories.(medians 

calculated from 1098 SU observations; 1771 MU observations).  
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Supplemental Results 

 

 

Spatiotemporal Stimulus Effects on Peak Firing Rate and Response Latency 

Temporal asynchrony category. Significant decreases in peak response 

magnitudes compared to control stimulation (MU = 34.17 spikes/s ± 1.62) were predicted 

to occur statistically for all of the paired stimulation conditions at stimulus onset 

asynchronies as follows: 10 ms: SU = 14.40 spikes/s ± 1.59, P < 0.0005; 30 ms: MU = 

4.64 spikes/s ± 0.46, P < 0.0005; 50 ms: MU = 5.25 spikes/s ± 0.62, P < 0.0005; 100 ms: 

MU = 16.24 spikes/s ± 1.63, P < 0.0005;  and 500 ms, 17.80 ± 1.66, P < 0.0005. Unlike 

the results for SUs, MUs did not show a significant difference between single-site control 

stimulation and simultaneous stimulation (0 ms: MU = 33.84 spikes/s ± 1.59, P = 1.000). 

On average, peak firing rate responses of single units were suppressed by the presence of 

the non-preferred stimulus at all delays tested, with maximal suppression when the non-

preferred stimulus preceded the preferred stimulus by 30 ms. Thus, peak firing rates of 

both single units and multi-units indicate that stimulus information is integrated across 

time up to 500 ms, with strong effects when the non-preferred stimulus is presented 

between 10-50 ms before the preferred stimulus (see Figure S3-2A for effects when SUs 

and MUs were combined).  

Similar to results for single units, we found shortened response latencies for 

multi-units occurred when the preferred (test) stimulus was presented at a 10 ms delay 

(MU = 13.99 ms ± 0.53; P < 0.0005) compared to single-site stimulation (MU = 20.37 ms 

± 0.32). We found that presenting the test stimulus at a 50 ms delay (MU = 22.76 ms ± 

0.43; P < 0.0005) lengthened response latency slightly for multi-units when no significant 

effects were found for single units compared to control stimulation. Latencies of multi-



 132 

units in response to stimulations at the remaining onset delays were not significantly 

different from the latency during single-site stimulation (0 ms: MU = 19.44 ms ± 0.22, P 

= 0.051; 30 ms: MU = 19.61 ms ± 0.34, P = 1.000; 100 ms: MU = 21.42 ms ± 0.40, P = 

0.292; 500 ms: MU = 20.44 ms ± 0.27; P = 1.000). See Figure S3-2B for effects when 

SUs and MUs were combined. 

Spatial proximity category. Peak firing rates were generally suppressed by paired 

stimulation compared to single-site stimulation (Single-site: MU = 34.17 spikes/s ± 1.62; 

Adj D.: MU = 19.82 spikes/s ± 2.20, P < 0.0005; NonA D.: MU = 28.19 spikes/s ± 3.60, 

P = 0.876; Adj Ph.: MU = 10.98 spikes/s ± 1.27, P < 0.0005; NonA Ph.: MU = 3.71 

spikes/s ± 0.86, P < 0.0005), with the greatest suppression when stimuli were presented to 

nonadjacent phalanges. See Figure S3-3A for combined SU and MU results. The slight 

shortening of multi-unit latencies when adjacent digits were stimulated (Adj D.: MU = 

17.62 ms ± 0.29) compared to single-site stimulation (Single-site: MU = 20.37 ± 0.32, P 

< 0.0005) was present in single-unit data (see Figure S3-3B for combined SU and MU 

data). 

Response Field relationship category. Like results for single units, the peak firing 

rates of multi-unit data were significantly lower when both stimuli were outside of the 

Response Field (OUT_OUT: MU =  3.51 spikes/s ± 0.77) compared to other conditions 

when one or both stimuli were inside the Response Field, as follows: IN_OUT: MU = 

20.93 spikes/s ± 3.32, P < 0.0005; CN_OUT: MU = 11.68 spikes/s ± 2.00, P = 0.001; 

IN_BOTH: MU = 14.26 spikes/s ± 2.57, P = 0.001; and CN_IN: MU =  28.49 spikes/s ± 

2.20, P < 0.0005. Overall, peak firing rates were lowest when both stimuli were outside 

the Response Field and highest when both stimuli were within the Response Field, and 
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presenting one stimulus outside the Response Field reduced peak firing rates 

approximately 50%, like our results for single-units (see Figure S3-4A for combined SU 

and MU results). When both stimuli were outside of the Response Field, the latencies 

were slightly longer (OUT_OUT: MU = 21.89 ms ± 0.60) than when both stimuli were 

inside the Response Field (IN_BOTH: MU = 18.52 ms ± 0.63, P = 0.002; CN_IN: MU = 

17.80 ms ± 0.30, P < 0.0005). This effect was not significantly different when single unit 

data were analyzed separately. See Figure S3-4B for combined SU and MU results. 

  

 

 
 

Figure S3-2. Effects of temporal stimulation conditions for peak firing rate and response latency measures 

from single- and multi-units. Observed mean values from 309 single units and 392 multi-units are shown 

with error bars representing 95% confidence intervals. A. Means of peak firing rate values (spikes/s) are 

plotted for each temporal stimulation category comparing the preferred control stimulation (Single) to 

paired stimulation at 0, 10, 30, 50, 100, and 500 ms stimulus onset asynchronies. Dual-site stimulation 

suppressed peak firing rates relative to single-site stimulation. A stimulus onset asynchrony of 30 ms 

resulted in the greatest suppression of peak firing rate, and this suppression was significantly different from 

all other stimulus categories (P < 0.0005 for all comparisons) except from the 50 ms delay category (P = 

0.605). B. Means of response latencies (ms) plotted for each temporal stimulation condition show that 10 

ms stimulus onset delays resulted in faster latencies than single-site control stimulation (P < 0.0005).  
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Figure S3-3. Effects of spatial stimulation conditions for peak firing rate and response latency measures 

from single- and multi-units. Observed mean values from 309 single units and 392 multi-units are shown 

with error bars representing 95% confidence intervals. A. Means of peak firing rates are plotted for each 

spatial proximity condition in which the stimuli were presented on separate adjacent digit sites (Adj D.), 

separate nonadjacent digit sites (NonA D.), within a single digit on adjacent phalanges (Adj Ph.), or within 

a single digit on nonadjacent phalanges (NonA Ph.). Dual-site stimulation suppressed peak firing rates 

compared to single-site stimulation for all conditions (P < 0.0005) except when nonadjacent phalanges 

were stimulated (P = 0.184). B. Latencies did not vary greatly with spatial stimulus proximity, but latencies 

were slightly faster in response to stimulation on Adj D. and NonA Ph. compared to single-site stimulation 

(P < 0.0005 and P = 0.043, respectively).  

 

 

 
 

Figure S3-4. Effects of Response Field relationships for peak firing rate and response latency measures 

from single- and multi-units. Observed mean values from 309 single units and 392 multi-units are shown 

with error bars representing 95% confidence intervals. A. Means of peak firing rate values are plotted for 

each type of relationship of the Response Field to the stimulus location. Peak firing rates were lower when 

the stimuli were outside of the Response Field (OUT_OUT) compared to all other conditions (P < 0.0005 

for all comparisons). B. Latencies were slightly, but not significantly longer when both stimuli were 

presented outside of the neuron‘s Response Field (OUT_OUT) compared to all other Response Field 

stimulus relationships.  
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Figure S3-5. Effect of signal isolation for peak firing rate and response latency measures. Observed mean 

values from 309 single units and 392 multi-units are shown with error bars representing 95% confidence 

intervals. A. Means of peak firing rates were significantly different between single units (SU) and multi-

units (MU), P = 0.004. B. Means of latencies were significantly different between SUs and MUs, P < 
0.0005.  

 

 

 

Spatiotemporal interactions. To display how peak firing rate responses were 

affected by presenting the two stimuli at varying spatiotemporal relationships, we 

normalized the firing rate values by the preferred site stimulation values. Once 

normalized, firing rate values in SU and MU categories were not significantly different (P 

= 0.542), therefore, we plotted the normalized values together (Figure S3-6). Peak firing 

rates were reduced when stimuli were presented at 30 and 50 ms delays at sites both 

within the neuron‘s Response Field. Co-stimulating nonadjacent digits resulted in less 

suppression overall, particularly when one stimulus was inside and the other was outside 

the Response Field. Stimulation on adjacent phalanges within a digit resulted in strong 

suppression across all Response Field relationships when the preferred stimulus was 

presented at 30 and 50 ms delays after the non-preferred stimulus onset. Table S3-5 

provides the significant differences for the 3-way interactions between temporal 

stimulation condition, spatial proximity, and Response Field relationship for the data 
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normalized to the control condition for individual units. We were interested in the 3- and 

4-way interactions in our analysis that take into account all of the tested factors that 

influence response latencies. To display how response latencies were affected by the 

paired stimuli presented with varying spatiotemporal relationships compared to the 

control stimulation for each condition, we normalized the latency values by the control 

stimulation. Once normalized, latency values in SUs and MUs were not significantly 

different (P = 0.438); therefore, we plotted the normalized values together (Figure S3-7). 

Since latencies did not vary greatly among units (SD 6.31 ms), the changes in latency due 

to the stimulus conditions were slight. The shortest latencies occurred in response to the 

presentation of the preferred stimulus 10 ms after the non-preferred stimulus within the 

same digit, regardless of Response Field relationship. Short latencies occurred as well as 

when the preferred stimulus was presented 10 ms after the non-preferred stimulus on 

adjacent digits when the locations were both within the neuron‘s Response Field. Table 

S3-6 provides the results for the significant differences for the 3-way interactions 

between temporal stimulation condition, spatial proximity, and Response Field 

relationship after the data for individual units were normalized to the control condition. 
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Figure S3-6. Means of peak firing rate values normalized to single-site stimulation across spatial and 

temporal stimulus conditions. Bar graphs show the mean peak firing rate after the value for each neuron 

unit was divided by the value during the single-site stimulation on the preferred location in the stimulus 

pair. Thus, the control values are all equal to 1 and deviations from the control are greater than or less than 

1. (See Methods.) The temporal stimulation conditions are shown on the x-axis to group the values. Shaded 

bars indicate the spatial proximity of the tested stimulation: gray, Adj D. = adjacent digits; dark gray, NonA 
D. = nonadjacent digits; black, Adj Ph. = within 1 digit, adjacent phalanges; white, NonA Ph. = within 1 

digit, nonadjacent phalanges or palm pads. When a bar is not shown, there were zero units with significant 

responses in that category. Separate panels designate the relationship of the stimulation to the Response 

Field of the reference unit as: CN_IN = 1 probe in the center of the Response Field, 1 probe inside the 

Response Field; IN_BOTH = 2 probes inside the Response Field, but not in the center; CN_OUT = 1 probe 

in the center of the Response Field, 1 probe outside the Response Field; IN_OUT = 1 probe inside the 

Response Field, but not in the center, 1 probe outside the Response Field; and OUT_OUT = 2 probes 

outside the Response Field. Error bars are ± 1 SEM. Asterisks (*) indicate significant differences P ≤ 0.05. 

Dashes (–) indicate differences from control that did not reach the a priori significance level, but are 0.100 

≥ P > 0.05. Data are shown for single units and multi-units combined because normalized values were not 

significantly different (P = 0.542).  
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Figure S3-7. Mean latency normalized to control stimulation across spatial and temporal stimulus 

conditions. Bar graphs show the mean excitatory latency after the value for each neuron unit was divided 

by the value during the control stimulation, with the conventions as in Figure S3-6. Error bars are ± 1 SEM. 

Asterisks (*) indicate significant differences P ≤ 0.05. The dash (–) indicates difference from control that 

did not reach the a priori significance level, but is 0.100 ≥ P > 0.05. Data are shown for single units and 

multi-units combined because normalized values were not significantly different (P = 0.438). While effects 

were present, the latency differences were small and less systematic than the effects on peak firing rate 

(Figure S3-6). 
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CHAPTER IV 

 

EFFECTS OF SPATIOTEMPORAL STIMULUS PROPERTIES ON SPIKE TIMING 

CORRELATIONS IN OWL MONKEY PRIMARY SOMATOSENSORY CORTEX 

HAND REPRESENTATION 

 

Abstract 

 

Neuronal spike timing correlations may be one way in which stimulus properties 

are encoded in primary somatosensory cortex. One aspect of neuronal correlations that 

has not been well studied is how the spatiotemporal properties of tactile stimuli may 

affect the presence and magnitude of correlations. We presented single- and dual-site 

stimuli with varying spatiotemporal relationships to the hands of three anesthetized owl 

monkeys (Aotus trivirgatus) and recorded neuronal activity from 100-electrode arrays 

implanted in primary somatosensory cortex. We examined the correlation magnitudes 

derived from joint peristimulus time histogram (JPSTH) analysis of single neuron pairs to 

determine how spike timing correlations may be related to spatiotemporal stimulus 

properties. As expected, we found that the proportions of correlated pairs tended to 

decrease as the distance between the electrodes increased. Additionally, correlations were 

related to the stimuli such that when paired stimulus sites were closer spatially, the 

proportions of correlated pairs were greater (~24%, adjacent phalanges) than when the 

paired stimuli were distant (~15%, nonadjacent digits). Presenting paired stimuli at 

stimulus onset asynchronies had small but significant effects on the correlation 

magnitude. The spatial proximity of the paired stimuli also affected the correlation 

magnitude, but the relationship did not precisely follow that expected based on cortical 
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connectivity between stimulus sites. These results provide evidence that spatiotemporal 

integration occurs at the level of area 3b in monkeys in unexpected ways. 

 

Introduction 

 

In daily life, tactile stimulation occurs at multiple points simultaneously (such as 

when one is seated at a desk, typing), and the tactile sensations we experience may be 

suppressed or utilized in our behavior. In a highly simplified version of the real-life 

situation, we stimulated two points simultaneously or asynchronously on adjacent and 

nonadjacent hand sites to examine the spatiotemporal stimulus effects on cortical 

populations in primary somatosensory cortex, area 3b, in three anesthetized owl 

monkeys. We hypothesized that spike timing correlations would be related to the 

spatiotemporal properties of tactile stimulation in predictable ways based on anatomical 

connectivity. Our goal was to extend the existing studies on the properties of correlations 

in primary somatosensory cortex of primates to determine if spatial and temporal 

stimulus manipulations affect the presence and magnitude of spike timing correlations. 

As discussed in our previous paper (Reed et al., 2008), we focus on correlated firing that 

may reflect a common input arriving nearly simultaneously to the neurons, or lateral 

connections within cortex, or may reflect both types of connections. The properties and 

possible roles of neuronal correlations are actively studied in multiple brain areas and are 

reviewed elsewhere (e.g., Salinas and Sejnowski, 2001; Jermakowicz and Casagrande, 

2007), but the existing information on the correlations in primate primary somatosensory 

cortex is perhaps less extensive than data from primate primary visual cortex. We briefly 
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review studies of primary somatosensory cortex from which we inferred that 

spatiotemporal stimulus parameters may affect neuron correlations.  

We are particularly interested in the hand representation of the primate 

somatosensory cortex, and while spatiotemporal contributions to changes in correlated 

activity have not been completely specified, we draw from previous work in this model. 

Spike timing correlations have been shown to change in the 3b hand representations of 

two owl monkeys following long-term behavioral training to detect taps presented to 

adjacent digits (Blake et al., 2005). Receptive fields expanded, often to include sites on 

the two adjacent digits stimulated; and correlations between neuron pairs emerged across 

distances ≤ 1.4 mm (Blake et al., 2005). Thus, it has been established that providing 

asynchronous taps on adjacent digits in a behaviorally relevant context affects the 

presence of correlations between neuron pairs. Our study tests if similar stimuli affect the 

presence and magnitude of correlations in anesthetized monkeys.  

Area 3b in primates is the homologue of S1 in other mammals (Kaas, 1983); and 

correlated spiking activity in S1 of anesthetized cats has been shown to relate to features 

of stationary and moving air jet stimuli, including location preference and directional 

selectivity based on the correlation magnitudes (Roy and Alloway, 1999). For example, 

some neuron pairs were more strongly correlated when stationary air jets stimulated one 

site over another, and some neuron pairs were more strongly correlated when the air jet 

moved in one direction versus the opposite (Roy and Alloway, 1999). In anesthetized 

rats, whiskers were stimulated at different frequencies and the correlations in S1 neuron 

pairs were compared to determine if particular stimuli were more likely to cause 

correlations (Zhang and Alloway, 2004). While neurons in layer 4 did not show clear 
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selectivity for stimulus frequency, neuron pairs in other layers showed evidence for 

selectivity for high or low frequencies (Zhang and Alloway, 2004). In an extension of this 

study, Zhang and Alloway (2006) used air jets moving along the rows and arcs of the rat 

whiskers to examine directional selectivity of the correlated activity. They found that 

correlation magnitudes were strongest for pairs in the same row of barrel cortex and 

strongest for stimulation moving along a row rather than an arc. Thus, they concluded 

that the strength of correlations varied with the density of intracortical connections. 

(Zhang and Alloway, 2006) Therefore, a basis for spatial and temporal stimulus 

parameters to affect pairwise correlations in S1 has been generally established by studies 

in anesthetized cats and rats.  

We had the following expectations of our results. As the density of intrinsic 

connections has been implicated in affecting the strength of neuronal correlations (e.g., 

Roy and Alloway, 1999; Blake et al., 2005; Zhang and Alloway, 2006), we expected that 

neurons close in spatial proximity cortically would tend to have higher correlation 

magnitudes than distant neurons we recorded in anesthetized owl monkeys. Further, we 

expected that simultaneous stimulation of paired locations would result in higher 

correlations between neuron pairs with common input (compared to asynchronous 

stimulation), since the synchronization of the stimuli would be reflected in the neuron 

firing. Spatial and temporal parameters might interact, such that the strongest correlations 

might occur for neuron pairs closest in cortical space, representing the closest locations 

on the hand, when the stimuli were presented closest in time. Then, we expected 

interactions to vary as a function of spatial and temporal proximity in a predictable 

pattern. Thus, we expected our results to yield probable explanations for the properties of 
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correlations in area 3b in the primate hand representation. To test our predictions, the 

current study examined the effects of both spatial and temporal stimulus features by 

presenting paired stimuli simultaneously and at selected stimulus onset asynchronies on 

locations that varied in spatial proximity on the hand (from sites within a single digit to 

sites across digits). We published an initial report from two of the three monkeys 

described here in which we compared the correlation magnitudes between stimulation on 

a single digit site with simultaneous stimulation on nonadjacent digit sites to examine the 

occurrence and magnitudes of correlations across the 3b hand representation (Reed et al., 

2008). Here we extend those studies to describe the spatiotemporal stimulus effects on 

the occurrence and magnitude of correlations.  

 

Materials and Methods 

 

Preparation 

All procedures followed the guidelines established by the National Institutes of 

Health and the Animal Care and Use Committee at Vanderbilt University. Three adult 

owl monkeys (Aotus trivirgatus) were prepared for electrophysiological recordings in 

primary somatosensory cortex as previously described (Reed et al., 2008). Cases 1 and 2 

were males, each weighing1 kg, and case 3 was a female, weighing 1.2 kg. The same 

three monkeys were part of a study on neuron response properties (Chapter 3), and cases 

1 and 2 were part of a previous study related to spike timing correlations (Reed et al., 

2008). A ketamine injection (10-30 mg/kg, intramuscular) was administered to each 

monkey for sedation during surgical preparations. Anesthesia was induced with 2-4% 
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halothane gas and intravenous propofol (10 mg/kg/hr) was used to maintain anesthesia 

during surgery. A servo-controlled heating pad was used to maintain body temperature 

(measured rectally) between 37-39°C. The monkey was secured in a stereotaxic device 

throughout the surgery and experiment. Paralysis was maintained by intravenous 

vecuronium bromide (0.1-0.3 mg/kg/hr) mixed with 5% dextrose and Lactated Ringer‘s 

solution after the initial induction dose of 1-3 ml vecuronium bromide. Animals were 

then artificially ventilated with a mixture of N2O: O2: CO2 (75: 23.5: 1.5) at a rate 

sufficient to maintain peak end tidal CO2 at ~ 4%. Electrocardiograms and 

electroencephalograms aided our assessment of anesthetic depth. A craniotomy and 

duratomy were performed overlying the area of interest in primary somatosensory cortex. 

The pneumatic array inserter was set to 600 µm depth to aim for placement of the 

electrode tips within layer 3 of cortex. The opening was covered with 1% agar mixed 

with Ringer‘s solution to prevent desiccation and provide electrode stability. 

Supplemental anesthesia during recordings was provided by 0.3 mg/kg/hr propofol 

following the completion of surgical procedures. In monkey 3, 1.2 mg/kg sufentanil was 

added to the Lactated Ringer‘s solution for infusion during the surgical procedures in 

order to stabilize anesthetic depth. Following delivery of this sufentanil dose, monkey 3 

was maintained under propofol anesthesia and vecuronium bromide paralysis without 

supplemental sufentanil for the remainder of the recording experiment.  

 

Stimulation Procedures 

We collected responses to paired stimulation on adjacent and nonadjacent digits, 

as well as on adjacent and nonadjacent phalanges within a single digit. Two independent 
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force- and position-feedback controlled motor systems (300B, Aurora Scientific Inc., 

Aurora, ON, CA) provided the paired stimulation via a custom-designed Visual Basic 

program. Round Teflon probes 1 mm in diameter were secured to the lever arms of the 

motors to provide a small contact surface of stimulation. Stimulus probes indented the 

skin 0.5 mm for 0.5 s, followed by 2.0 s off of the skin, for 100 to 120 trials (255-300 s). 

(Data were analyzed from 100 trials.) The long indentation allowed us to record transient 

and sustained responses (Sur et al., 1984). Indentations were delivered to selected skin 

sites simultaneously (0 ms) and at stimulus onset asynchronies of 10, 30, 50, 100, and 

500 ms to study the effects of varying the temporal proximity of stimuli on correlations in 

spike timing between neuron pairs. Each site in the stimulus pair was also stimulated 

individually for 100-120 trials and considered ―control stimulation‖. We mapped 

receptive fields during the experiment to help reconstruct the electrode array location. We 

used minimal receptive field mapping to aid our placement of the stimulus probes. We 

followed standard mapping procedures as published elsewhere (Merzenich et al., 1978; 

Nelson et al., 1980), and our procedures for mapping and tactile stimulation have been 

published (Reed et al., 2008).  

 

Data Acquisition 

Recordings were made using the 100-electrode ―Utah‖ array and the Bionics Data 

Acquisition System (now Blackrock Microsystems, Salt Lake City, UT). Signals were 

amplified by 5000 and band-pass filtered between 250 Hz and 7.5 kHz. Each electrode 

threshold was automatically set for 3.25 times the mean activity. The waveforms were 

sampled at 30 kHz for 1.5 ms windows (Samonds et al., 2003).  
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Histology 

Following data collection, animals were given an overdose of sodium 

pentobarbital and perfused transcardially with saline followed by fixative. The brains 

were removed and prepared for histological analysis as described previously (Jain et al. , 

2001). The cortex was separated from the thalamus, flattened, and cut frozen at 40 µm. 

We processed sections for myelin to aid in reconstructing the electrode sites. (See Reed et 

al., 2008; Figure SI 4) The appearance and disappearance of electrode tracks across serial 

sections was used to estimate electrode depth.  

 

Data Analysis 

 

Spike Sorting and Data Selection  

Details regarding the spike sorting procedures are reported fully in Reed et al., 

2008. Recording files were opened in Matlab (The Mathworks, Inc., Natick, MA) and 

signals for a given stimulus block were sorted together offline with an automatic spike 

classification program based on the t-distribution Expectation Maximization algorithm 

(Shoham et al., 2003) which is made available with the data acquisition system. A second 

spike sorter program, Plexon Offline Sorter (Plexon Inc., Dallas, TX), was then used to 

verify the quality of unit isolation such that single units had refractory periods ≥ 1.2 ms; p 

values ≤ 0.05 for multivariate ANOVA related to cluster separation; and distinct 

waveform amplitudes and shapes when compared with other activity on the same 

electrode (Nicolelis et al., 2003). Only single units were included in this analysis and 

only one single unit per electrode was included in the analysis to avoid possible spurious 
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correlations between units on the same electrode if our unit isolation was imperfect. 

When more than one single unit was collected on an electrode, we selected the single unit 

with the best waveform isolation and the best responsiveness over multiple stimulation 

conditions. In addition to selecting only single units to include in the analysis, we 

included only those units that met the following conditions: 1) the unit should respond to 

at least one of the conditions in a stimulus series or 2) should have mean firing rates 

greater than 2 spikes/s during the sustained portion of the stimulation between 100 and 

500 ms after stimulus onset and 3) if the unit did not respond to any of the conditions in a 

stimulus series, at least half of the conditions should produce firing rates that meet 

condition #2. These criteria reduced the number of units that would have too few spikes 

for a valid calculation of the spike timing correlations (e.g., Aertsen et al., 1989; Gerstein 

et al., 1989; Gerstein, 2000). From the selected single units, we generated all of the 

possible pairs for cross-correlation analysis. 

 

Spike Timing Correlations  

While there are many aspects of the JPSTH and cross-correlation histogram to 

examine, our measure of interest in this study was the magnitude of the peak correlation. 

We followed the same methods for obtaining the peak correlations between neurons pairs 

that we published previously (Reed et al., 2008) in which the cross-correlation histogram 

is derived from the conventional joint peristimulus time histogram (JPSTH) analysis 

(e.g., Aertsen et al., 1989; Gerstein et al., 1989; Ventura et al., 2005) with all the spike 

trains aligned on the onset of skin indentation, similar to other studies in somatosensory 

cortex (S. Roy et al., 1999, 2001; Zhang and Alloway, 2004, 2006; Blake et al., 2005; A. 
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Roy et al., 2007). To measure precise spike timing synchrony, small bin sizes between 1-

5 ms are often used to ensure that each bin contains 1 spike or less (e.g., Aertsen et al., 

1989; Gerstein et al., 1989; Oram et al., 2001; Alloway et al., 2002; Roy et al., 2007). We 

chose an intermediate bin size of 10 ms due to the low spontaneous firing rates in the 

cortex under anesthesia. Bin sizes greater than 5 ms have been used by others (e.g., 

Vaadia et al., 1995; Oram et al., 2001) and this resolution is finer than the coarse 

temporal synchrony found using bin sizes larger than 20 ms (Oram et al., 2001). For our 

data, the 10 ms bins still allow most bins to contain 1 spike or less, as only the occasional 

transient response reaching 100 spikes/s or more will violate this assumption, and this bin 

size allows us to measure the correlation during the sustained portion of the stimulus in 

which firing rates were relatively low and often did not reach an appropriate number of 

spikes for use in the JPSTH calculation (Aertsen et al., 1989; Gerstein et al., 1989; 

Gerstein, 2000) without this binning adjustment. The JPSTH was measured in windows 

from 0 to 700 ms after stimulus onset (70 bins) and was normalized by the standard 

method of subtracting the shift-predictor to correct for the effects of firing rate on the 

coincidence of spike occurrences. We then tested the reliability of the normalized JPSTH 

to determine which of the peak correlations derived from the normalized JPSTHs could 

be considered a significant correlation value among the population that we collected. The 

JPSTHs were grouped based on the spatial and temporal stimulus conditions and the 

relationship of the neuron pairs to the stimulus sites. Then, for one of each pair of 

neurons, the order of the trials was shuffled and the ―shuffled correlation‖ value was 

derived from this JPSTH. These shuffled correlations were obtained for all of the pairs in 

each spatiotemporal group, and we used a bootstrapping procedure (5000 iterations) to 
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test the normalized peak correlation values from each neuron pair against the distribution 

of the population of shuffled correlation values. Correlation values which exceeded two 

times the standard deviation over the mean of the bootstrapped distribution were 

considered significant. Our standard corrections in the correlation calculations reduce the 

impact of responses in unconnected neurons to a common stimulus and statistical 

coincidence due to firing rate. Like others, we acknowledge that ―uncorrected 

correlations‖ likely have roles in stimulus processing (e.g., Gerstein et al., 1989), but our 

goal was to relate correlations to functional connectivity. Figure 4-1 shows a normalized 

JPSTH and a shuffled JPSTH from two neurons recorded in area 3b of monkey 1 to 

demonstrate the method. We compared the significant peak correlation values across 

stimulus conditions to determine how spatiotemporal stimulus properties may affect the 

correlation strength in the summary analysis described in a later subsection.  

To represent the relationship of the electrode distance between the correlated 

neurons with the magnitude of the spike timing correlations, we measured the distance 

between electrodes and the correlation strength when the dual-site stimuli were presented 

simultaneously. We examined these paired values of distance and spike timing 

correlation magnitude in a scatter plot categorized by the proximity between the stimulus 

locations, and for each obtained the linear correlation coefficient using Matlab 

(―corrcoef‖ command). For visualization purposes, we developed a spatial representation 

of the 100-electrode array as published previously (Reed et al., 2008). In these 

schematics, dots signify the location of each neuron in the array, and the dot sizes 

indicate the mean correlation strength for the neuron at that electrode location, averaged 
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across all of the neuron pairings. We graphed connecting lines between pairs of 

correlated neurons and depicted the strength of the correlation by the line thickness. 

 

Firing Rate Responses  

We performed two types of firing rate measures. The first measure was used to 

determine the relationship between average firing rates and correlation magnitudes. The 

geometric mean spike rate is commonly used for this purpose to average the firing rates 

of the two neurons in the correlated pair (e.g., Bair et al., 2001; de la Rocha et al., 2007; 

Greenberg, 2008; Jermakowicz et al., 2009). For this measure, we took the average firing 

rate of each neuron during the period for which the correlation was determined, 0 to 700 

ms from stimulus onset. The geometric mean firing rate (GMFR) was calculated as the 

square root of the product of the two neurons‘ firing rates.  

The second measure was used to determine the relationship of the responsiveness 

of the individual neurons in the correlated pair to the stimulus location. We collected 

information about the receptive fields of each neuron with the intention of grouping the 

data based on the relationship of the neurons in the pair to each other and to the stimulus 

sites using a ―Response Field‖ calculation we described in a companion study (Chapter 

3). However, the relationship of the receptive fields of both neurons in each correlated 

pair with the locations of each stimulus probe was complex and had too many levels to 

analyze meaningfully (44 levels that could be grouped to a minimum of 9 levels). To 

include an assessment of the firing rate responses of each neuron in a correlated pair may 

affect the magnitude of correlation, we used a factor based on firing rate that is similar to 

measuring receptive field overlap, but is simplified to a calculation of the presence or 
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absence of a response to stimulation. We termed our variable ―pair response‖ to relate the 

responses of the neurons in the correlated pair. If both neurons in the pair responded to 

the given stimulation, pair response = 2; if only one of the neurons in pair responded to 

stimulation, pair response = 1; and if neither neuron responded to the stimulation, pair 

response = 0.  

Neuron responsiveness was determined based on the peak firing rate meeting 

criteria as follows. First, spike data were smoothed by convolving spike trains with a 

function resembling a postsynaptic potential using Matlab (The Mathworks, Inc., Natick, 

MA), as described in Reed et al., 2008. Next, the peak firing rate was calculated from 100 

trials as the maximum of the spike density function within a response time window (50 

ms after stimulation onset) and corrected by subtracting the average baseline firing rate 

calculated over 500 ms prior to stimulation onset. The threshold value for excitatory 

responses was determined as the average baseline firing rate plus two standard deviations 

of this baseline, with a minimum value of 5 spikes/s. If the peak firing rate exceeded the 

threshold value, it was considered a significant response. The response designation for 

each neuron in a correlated pair was combined to result in the final value for the ―pair 

response‖ measure. The variable is not equivalent to a measure of receptive field overlap, 

but actually relates to the relationship of the two neurons‘ receptive fields with the 

stimulus locations. Pair response = 0 does not mean the pair has 0% receptive field 

overlap, but it means that the stimuli were outside of the receptive fields of both neurons 

in the correlated pair.  
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Summary Statistics 

Data from Matlab calculations for neuron correlation measures were compiled 

and summarized in Excel to determine which normalized correlations were statistically 

significant out of the total recorded pairs and to import only the information from neuron 

pairs with significant correlations into SPSS 17.0 (SPSS, Inc., Chicago, IL) for further 

analysis. The information associated with each significant correlation included: 1) the 

temporal stimulation type of single- or dual-site stimulation at 0, 10, 30, 50, 100, or 500 

ms stimulus onset delays; 2) the spatial proximity of the stimulus probes in the stimulus 

series of adjacent digits (Adj D.), nonadjacent digits (NonA D.), adjacent phalanges 

within a digit (Adj Ph.), or nonadjacent phalanges within a digit (NonA Ph.); and 3) a 

variable we termed ―pair response‖ related to the firing rate response to stimulation of 

each neuron in the pair. (See above for determination of the pair response variable.)     

We performed a form of analysis of variance on the factors related to the stimulus 

onset asynchrony, the proximity of the stimuli, and the pair response relationship of the 

neuron pairs. The data had several properties that led us to use Generalized Estimating 

Equations, an extension of Generalized Linear Models (for review, Tuerlinckx et al., 

2006), to analyze the factors contributing to the variance in correlation magnitudes. The 

data were imbalanced by group, and most importantly, the data were likely to be 

correlated rather than best considered independent observations (e.g., Hardin and Hilbe, 

2003, p. 3-5) since some of the same neuron pairs had been recorded across several 

temporal stimulation conditions. This analysis has fewer assumptions regarding the data 

distribution than a parametric repeated measures analysis of variance and accounts for the 

possibility of correlated (non-independent) data across the stimulus measures (e.g., Liang 
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and Zeger, 1986; Zeger and Liang, 1986). We used this approach to estimate the sources 

of variance in the data set of correlation values related to the factors of the temporal 

stimulus condition, the spatial proximity of the stimuli, and the pair response relationship 

of the neuron pairs. The Bonferroni correction for multiple comparisons was applied 

within the analysis. The Generalized Estimating Equations analysis provides estimates of 

the population averages of the correlation magnitude (our dependent variable) based on 

the values of the predictor variables and estimates for the significance of the effects.  

To compare correlation magnitudes with other measures, we performed linear 

regression using SPSS. These measures included cortical distance between correlated 

neurons and geometric mean firing rate (GMFR) between correlated neurons. 

 

Results 

 

The majority of the electrodes were located in the area 3b hand representation 

(see Figure 4-1 for case 1; Figure 4-3 for case 3; Figure 4-4 for case 2). The neurons 

included in the analysis were drawn primarily from area 3b as neurons in areas 3a and 1 

did not respond well under the anesthetic conditions. We obtained the fewest single unit 

pairs from monkey 1, at 2,921 pairs, since this experiment was our first and shortest in 

recording duration. We obtained 58,571 single unit pairs across the experiment duration 

from monkey 2, and 25,420 pairs from monkey 3. 
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Figure 4-1. Example of a normalized and a shuffled JPSTH reveal significant correlations in spike timing 

between two neurons. A. The estimated array location for case 1 within the area 3b hand representation is 

shown with the approximate representations of the digits (D1-5) and the palm including the digital (P1-3), 

thenar (PTh), hypothenar (PH) and insular (Pi) pads are outlined. The pink and blue dots mark the 

electrodes where the two neurons ―060a‖ and ―070b‖ were recorded for the analysis shown. These two 

single units recorded from the hypothenar palm pad representation (PH) showed strong spike timing 

correlations revealed in the normalized JPSTH and the correlation histogram derived from the JPSTH 
during single-site stimulation on P1 (B). B, top. Spike timing synchrony between the two neurons is shown 

in the normalized JPSTH matrix for 10 ms bins. The color code represents the magnitude of the normalized 

correlation at lag times over a poststimulus time of 700 ms, with the 0 ms lag time at the diagonal. The 

PSTHs from the two neurons in response to 100 repetitions of 0.5 s skin indentations on P1 are shown to 

the left and below the matrix. The red and blue lines overlying the PSTHs indicate that matched trials were 

analyzed (i.e., spikes in trial 1 from unit 060a were binned with spikes in trial 1 from unit 070b). B, bottom. 

The cross-correlation histogram derived from the normalized JPSTH is computed by summing the JPSTH 

bins parallel to the main diagonal to show the average correlation magnitude. In this case, spike times were 

correlated at the 0 ms lag with a peak magnitude of 0.11. The peak magnitude of the correlation is our 

measure of interest, and we determine if this peak magnitude exceeds that determined when the precise 

spike timing is disrupted by shuffling the trials. C, top. The shuffled JPSTH is determined by shuffling the 

trials with respect to each other to disrupt spike timing without changing the average firing rate. The trial 

shuffling is indicated by the blue dashes overlying the PSTHs of each neuron such that the trials of neuron 

2 do not match the trials of neuron 1 (i.e., spikes in trial 1 from unit 060a were binned with spikes in trial 

25 from unit 070b). C, bottom. The correlation derived from the shuffled JPSTH is compared to the 

correlation from the normalized JPSTH to determine if the peak in the normalized correlation exceeds two 

times the standard deviation over the mean of the shuffled correlation. Additionally, to determine whether 
peak correlation magnitudes represented significant correlations within the population, we compared each 

peak correlation to a distribution of shuffled correlations obtained for a population of neuron pairs as 

described in the Methods. In subsequent figures of JPSTH-derived correlations, the normalized correlations 

are shown as a black line and the shuffled correlations are overlaid as a red line.     
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 To evaluate the spatiotemporal factors contributing to differences in correlation 

magnitude, we selected only those pairs which were determined to be significantly 

correlated within the population (see Methods). Thus, we analyzed 16,011 normalized 

peak correlations from 4,938 single unit pairs, as some pairs were recorded across 

multiple stimulus conditions. The mean of the observed correlation magnitudes for the 

dataset was 0.0335 (SD 0.0149), and the median and mode were both 0.0300. The 

maximum correlation observed in the data set was 0.22 and the minimum for significant 

correlation values was 0.01. We used Generalized Estimating Equations to determine the 

significant sources of variance between correlated pairs, using a factorial model of 

temporal stimulus asynchrony, spatial stimulus proximity, and the (firing rate) responses 

of both units in the pair to the stimulation. The distribution of the correlation magnitudes 

across these spatial and temporal conditions is shown in Figure 4-2. The estimated mean 

correlation magnitude was 0.034, which was close to the observed mean. All main 

effects, two-way interactions, and three-way interactions tested were highly significant as 

determined through the Generalized Estimating Equations analysis (Table 4-1). All 

figures plot the observed data, while significance values of the statistical effects were 

determined based on the estimates of the data from the statistical analysis. Figure 4-3 

shows the main effects on correlation magnitudes for temporal asynchrony, spatial 

proximity, and responsiveness categories for the observed correlation values.  
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Figure 4-2. Peak correlations between single units plotted in three dimensions show distributions across 

spatiotemporal parameters. Peak correlations significantly greater than the shuffled correlations are shown 

in the 3-D scatter plot with the temporal stimulation condition plotted on the x-axis, and the spatial 

proximity of the paired stimulus sites plotted on the z-axis, versus correlation magnitude on the y-axis. The 

marker color indicates the pair response condition, which refers to whether both, one, or neither unit in the 

pair responded with significant firing rate increases to stimulation. When neither unit responded to 

stimulation, correlation magnitudes tended to be lowest across all other conditions. The schematic depicts 

the configurations of the stimulation probes in relation to receptive fields (RFs) for hypothetical units in a 

correlated pair, unit ―a‖ and unit ―b‖. When the pair response value is 2, two types of relationships are 
possible. The RFs of the two units can be close in proximity and the stimulation can be close in proximity 

(within the same digit) so that both units in the pair respond to stimulation. Alternatively, the RFs of the 

units could be distant (on adjacent or nonadjacent digits) and one stimulus probe is within the RF of one 

unit, while the second probe is within the RF of the second unit. Thus, this categorization does not directly 

relate to RF overlap, but rather relates to mutual firing rate increases due to stimulation inside the RF.  
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Temporal Stimulus Asynchrony 

Presenting the stimulation alone or in pairs simultaneously and at delays from 10-

500 ms had small but significant effects on the correlation magnitudes. The variations in 

correlation magnitudes did not follow predictable patterns, as shown in Figure 4-3A. The 

estimated mean correlation when a single location was stimulated (0.0341 ± 0.00034) 
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was greater than the mean correlation when two locations were stimulated simultaneously 

(0.0319 ± 0.00040; P < 0.0005) and was less than the correlation when stimuli were 

presented at the following onset delays: 10 ms (0.0363 ± 0.00053; P < 0.0005) and 100 

ms (0.0373 ± 0.00063; P < 0.0005). When stimuli were presented at the other tested 

delays, the correlation magnitudes were not significantly different from single-site 

stimulation (30 ms = 0.0341 ± 0.00074, P = 1.000; 50 ms = 0.0356 ± 0.00093, P = 1.000; 

500 ms = 0.0333 ± 0.00062, P = 1.000). These correlation magnitudes varied within a 

small range, but the differences were statistically significant. In contrast to our 

predictions, correlation magnitudes did not decrease as the paired stimuli were separated 

by longer time delays.  

 

Spatial Stimulus Proximity 

The effects of spatial proximity on correlation magnitudes differed slightly from 

those expected. We expected that the strongest correlations would occur when adjacent 

phalanges within a digit were stimulated because these locations are close in proximity 

and densely connected in area 3b, while the weakest correlations would occur when 

nonadjacent digits were stimulated., The correlation magnitudes we observed are shown 

in Figure 4-3B. The estimated correlation magnitude when a single site was stimulated 

was 0.0341 ± 0.00034, which was significantly less than the correlation magnitude when 

adjacent digits were stimulated (Adj D. = 0.0370 ± 0.00088, P = 0.003) and when 

adjacent phalanges were stimulated (Adj Ph. = 0.0381 ± 0.00116; P = 0.004); and was 

significant greater than when nonadjacent phalanges were stimulated (NonA Ph. = 0.0301 

± 0.00083; P < 0.0005). Stimulation on nonadjacent digits did not result in significant 
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differences from single-site stimulation (NonA D. = 0.0339 ± 0.00077, P = 1.000). 

Stimulation on adjacent digits resulted in similar correlation magnitudes as stimulation on 

adjacent phalanges within a digit (P = 1.000), and greater correlation magnitudes than 

stimulation on nonadjacent phalanges (P < 0.0005) and stimulation on nonadjacent digits 

(P = 0.047). Generally, a spatial gradient existed such that correlation magnitudes showed 

dependence on the proximity between the paired stimulus sites. 

 

Pair Response Relationships 

We also examined the relationship between the correlation magnitude and the 

neuron responsiveness to stimulation, and the results were consistent with our 

expectations. When both neurons in the pair responded to the stimulation the correlation 

magnitude was higher than when only one neuron in the pair responded and when neither 

responded (Figure 4-3C). The JPSTH procedure we used to obtain the correlation 

magnitudes is designed to correct for the correlations expected based on firing rate. (The 

more spikes each neuron fires, the more chances there are for the spike timings to be 

correlated between the two reference neurons. The correlation magnitudes we report are 

those beyond what is expected based on firing rate alone.) The categorization of the 

responsiveness in this case does not directly reflect the receptive field relationships of the 

neurons in the pair to the stimulation locations (see Figure 4-2, Inset). The trends in the 

observed correlation magnitudes are shown in Figure 4-3C. When both neurons in the 

pair responded to the stimulation, the mean correlation was the highest (0.0406 ± 

0.00121) and greater than when only one neuron in the pair responded to stimulation 

(0.0328 ± 0.00029; P < 0.0005) and when neither neuron responded (0.0308 ± 0.00031; P 
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< 0.0005). The mean correlation when one neuron in the pair responded to stimulation 

was greater than when neither neuron responded (P < 0.0005). Thus, as expected, two 

neurons that were stimulated within their receptive fields were more strongly correlated 

than other neurons. 

 

Spatiotemporal Interactions 

The interactions of spatial and temporal stimulus characteristics were also factors 

in our analysis since temporal and spatial stimulus parameters did not occur in isolation, 

but in combination. We illustrate examples from two monkey cases. Figure 4-4 shows an 

example from a pair of neurons recorded from monkey 3 in which the correlation 

magnitude during single-site stimulation was greater than correlation when two sites were 

stimulated simultaneously within one digit. These neurons had overlapping minimal 

receptive fields, but the stimulation did not occur in the region of overlap. Figure 4-5 

shows an example from a pair of neurons recorded from monkey 2 in which the minimal 

receptive fields did not overlap and the stimulation did not take place within the minimal 

receptive fields, but a high correlation magnitude was maintained during single-site 

stimulation and simultaneous stimulation within one digit.  

For the population, all of the spatiotemporal interaction effects included in our 

model were significant effects. We focused on the 3-way interaction (P < 0.0005) 

between the temporal stimulus relationship, the proximity of the stimuli on the hand, and 

the ―pair response‖ to relate the responses of the two neurons in the pair to the  
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Figure 4-3. Correlation magnitude variations across spatiotemporal stimulus parameters. Asterisks (*) 

indicate significant differences from the first group in each panel. See Figure 4-2 for abbreviations and 

category descriptions. A. The mean correlation when a single control location was stimulated was 

significantly higher than when two locations were stimulated simultaneously, and lower than when one site 

was stimulated 10 ms or 100 ms before the second location; however, the correlation values only varied 

slightly. B. The mean correlations were higher for dual-site stimulation compared to single-site stimulation 

for all cases except when nonadjacent digits (NonA D.) were stimulated. C. When both neurons in the pair 

responded to the stimulation (2), the correlation magnitude was higher than when only one neuron in the 

pair responded and when neither responded. When only one neuron in the pair responded (1), the 

correlation magnitude was higher than when neither responded. 
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Figure 4-4. Example of correlations between a neuron pair during single-site and simultaneous dual-site 

stimulation that follows the population trends. Upper panel. The location of the array relative to the area 3b 

hand representation is depicted for monkey 3, following conventions in Figure 4-1. The electrode locations 

for the single neurons are represented by a pink dot (006d) and a blue dot (017c), and the receptive fields 

from these electrodes are indicated on the hand diagrams in corresponding colors. Overlap of receptive 

fields is indicated by violet shading. Black dots on hand schematics represent the stimulation locations on 

distal digit 4 alone (left) and on paired sites, distal and proximal D4 (right). Lower panel. The normalized 
JPSTHs and correlation histograms show spike timing correlations between units 006d and 017c when dD4 

was stimulated alone (left) or stimulated with pD4 simultaneously (right). The spike timing correlation at 

the 0 ms lag was strong at 0.12 when dD4 was stimulated alone, despite the distance of the stimulation 

location from the region of receptive field overlap. When a simultaneous stimulus was added on pD4, close 

to the receptive field from electrode 17, the correlation magnitude decreased. 
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Figure 4-5. Example of correlations between a neuron pair during single-site and simultaneous dual-site 

stimulation that violates the population trends. Upper panel. The location of the array relative to the area 3b 

hand representation is depicted for monkey 2. The electrode locations for the single neurons in this example 

are represented by a pink dot (025b) and a blue dot (055b), and receptive fields from these electrodes are 

indicated on the hand diagrams in corresponding colors. Black dots on hand schematics represent the 

stimulation locations on middle digit 2 alone (left) and on paired sites, middle and proximal D2 (right). 
Lower panel. The normalized JPSTHs and correlation histograms show spike timing correlations between 

units 025b and 055b when mD2 was stimulated alone (left) or stimulated with pD2 simultaneously (right). 

The spike timing correlation at the 0 ms lag was strong at 0.11 when mD2 was stimulated alone, despite the 

distance of the stimulation location from the receptive fields. When a simultaneous stimulus was added on 

pD2, the correlation remained nearly the same, with the peak magnitude decreasing slightly to 0.10. 
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stimulation in Figure 4-6. Correlation magnitudes were consistently highest when both 

neurons in the pair responded to stimulation (pair response = 2). Correlation magnitudes 

tended to increase more when both neurons in the pair responded to stimulation (pair 

response = 2) when that stimulation was presented at longer stimulus onset delays, except 

when stimuli were presented to adjacent digits. Instead, when adjacent digits were 

stimulated, correlation magnitudes were relatively stable across temporal stimulation 

conditions. The correlation magnitudes were lowest in general when nonadjacent 

phalanges within a digit were stimulated and the trends were variable, in part due to large 

variability in the mean correlation in some categories. The interaction effects were not as 

clear as we had predicted, but the main effects were recapitulated across temporal and 

spatial stimulus conditions.  

The 100-electrode array allows us to study multiple neuron pairs simultaneously, 

and allows us to examine patterns of correlations across cortical space. Figure 4-7 shows 

an example of the correlation patterns of single neurons from selected spatiotemporal 

stimulus conditions in monkey 3. These patterns show overall similarities when single 

sites were stimulated, despite the difference in location of the two single controls (digits 2 

and 5). In other words, the basic network structure did not shift much across the recorded 

locations based on the stimulus parameters. The numbers of significant correlations 

decreased when these two sites were stimulated simultaneously, but some correlations 

between specific pairs appeared that were not present in either of the single-site 

stimulation conditions. The correlations in the remaining dual-site stimulation conditions 

shown in Figure 4-7 increase in number and magnitude compared to simultaneous  
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Figure 4-6. Mean correlation magnitudes across spatiotemporal stimulation conditions. Bar graphs of mean 
correlation magnitudes are shown with error bars representing 95% confidence intervals. The conditions of 

single site control stimulation, simultaneous stimulation (0), and asynchronous stimulation at 10, 30, 50, 

100, and 500 ms delays are shown on the x-axis to group the values. Shaded bars indicate the firing rate 

responses of the two neurons in the correlated pair relative to the stimulation: 2 = both neurons responded 

to stimulation; 1 = only one neuron responded; 0 = neither neuron responded. Separate panels designate the 

spatial proximity of the stimulation sites in a stimulus block. Adj D. = adjacent digits or palm pads; NonA 

D. = nonadjacent digits or palm pads; Adj Ph. = adjacent phalanges within a digit; NonA Ph. = nonadjacent 

phalanges or pads within a digit or digit to adjacent palm pad.  
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stimulation, which is similar to the trends in the population (Figure 4-3A). Single-site 

stimulation can result in significant correlations between neurons separated by large 

distances across the hand (Figure 4-7), but we sought to determine if the distance 

between paired stimuli would affect the strength of the correlations relative to the 

distance between the two neurons, as described in the following section. 

 

Electrode Distance Effects on Correlation Magnitude and Proportions 

We examined the relationship of the magnitude of the correlation derived from 

the JPSTH and the distance between the electrode pairs from which the correlated 

neurons were recorded, as has been done in other studies within somatosensory cortex 

(Roy et al., 1999; Alloway et al., 2002; Reed et al., 2008). The overall results were 

somewhat unexpected, as the distance between stimulation locations did not greatly affect 

the distance between correlated neurons. Since the temporal stimulation condition had 

variable effects, we selected only the condition in which stimuli were presented 

simultaneously, and then analyzed only the pairs with significant spike timing 

correlations. The Pearson correlation between the electrode distance and the magnitude of 

the correlated activity was -0.083 (P < 0.0005; N = 2529), and the correlation between 

stimulus proximity and correlation magnitude was -0.077 (P < 0.0005; N = 2529). The 

data are shown in a scatter plot divided by the proximity category (Figure 4-8). Weak but 

significant correlations were found between neuron pairs across all electrode distances, 

from 400 to 4800 µm, while stronger correlation magnitudes tended to occur between 

neurons recorded from nearby electrodes. However, relatively strong correlations were 

found between neuron pairs separated by more than 4 mm, particularly when locations 
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Figure 4-7. Depiction of correlations between neuron pairs during spatiotemporal stimulation blocks. 

Stimuli were presented to distal digit 2 (dD2) and distal digit 5 (dD5) individually in monkey 3 in blocks of 

100 trials. These locations were stimulated simultaneously and then asynchronously with dD2 stimulation 

preceding dD5. Black dots indicate electrode sites from which single neurons were recorded and significant 

correlations between neurons are represented by the lines connecting the dots. The size of the dots and the 

thickness of the connecting lines represent the magnitude of the correlations. When correlations are not 

statistically significant, no lines are shown, but the sizes of the dots increase accordingly. Each panel 

includes an overlay of the approximate location of the electrode array within the hand representation of 

area 3b. Note, electrodes represented outside of the 3b hand representation may be located in area 3a or in 

area 3b, as the boundary drawn is approximate.  
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within a single digit were stimulated. The proportions of correlated pairs compared to the 

total recorded pairs for each proximity classification during simultaneous stimulation are 

listed in Table 4-2. Stimulation on adjacent phalanges resulted in the greatest proportion 

of correlated pairs at 27.1%, followed by stimulation on adjacent digits (24.6%) and 

stimulation on nonadjacent phalanges (24.1%), with fewer pairs correlated when 

nonadjacent digits were stimulated (17.2%). These total proportions determined for the 

simultaneous stimulation condition matched our expectations and resembled the values 

determined by summarizing over all of the stimulation conditions, described to follow. 

 

Stimulus Proximity Effects on Proportions of Correlations 

Based on the proximity of the stimulation on the hand, we determined the 

proportions of single units that were significantly correlated out of the total recorded 

pairs. Summarizing over all stimulation conditions for the data from the three monkeys 

combined, the proportions of correlated pairs appeared to decrease when the stimulation 

sites were distant, as we expected. When stimulus sites were presented to adjacent 

phalanges within a single digit, the proportion of correlated pairs was greatest at 23.5% 

(6,148/26,148 pairs). When nonadjacent phalanges within a single digit were stimulated 

19.2% of the pairs were correlated (3,027/15,738 pairs). When adjacent digits (or palm 

pads) were stimulated 16.2% of the pairs were correlated (1,995/12,296 pairs). 14.8% of 

the pairs were correlated when nonadjacent digits (or palm pads) were stimulated 

(4,842/32,730 pairs). Therefore, the proportions of correlated pairs were highest when 

sites within a single digit were stimulated and lowest when sites across separate digits 

were stimulated. 
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Figure 4-8. The relationship between correlation magnitude and distance between electrode pairs. The 

magnitudes of statistically significant correlations are plotted (y-axis) based on the geometric distance 

between the electrode pairs from which the activity was recorded (x-axis). Data are plotted only for the 

stimulus conditions in which two sites were stimulated simultaneously. Locations of the stimuli varied 

based on proximity measures and these proximity measures are shown such that gray filled circles represent 

stimulation on adjacent phalanges within a digit (Adj Ph.); gray open diamonds represent stimulation on 

nonadjacent phalanges within a digit (NonA Ph.); green open squares represent stimulation on separate, 

adjacent digits (Adj D.); and black open triangles represent stimulation on separate, nonadjacent digits 

(NonA D.).  
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Relationship of Correlation Magnitude and Firing Rate by Spatiotemporal Conditions 

We examined the relationship between correlation magnitudes and the average 

firing rates of neurons in the correlated pair as a way to assess how neuron 

responsiveness to the stimulus conditions affected the correlation strength. Additionally, 

if correlations are important for relaying stimulus information, we would expect 

correlation magnitudes to show some independence from firing rates. Across all temporal 

stimulation conditions, spatial proximity of the stimuli affected the relationships between 

correlation magnitude and average firing rate. Figure 4-9A presents the entire data set of 

significant correlation magnitudes plotted against the geometric mean firing rate (GMFR, 

spikes/s), in which the temporal stimulation condition is plotted on the z-axis and the 

spatial proximity of the stimuli is shown by the color of the data markers.  

Linear regression analysis on the data without accounting for different spatial 

proximity factors showed that correlation magnitudes tended to increase with larger mean 

firing rates (Pearson r = 0.452, P < 0.0005, N = 16,011). However, inspection revealed 

that the relationship was strongest when nonadjacent digit locations were stimulated 

(Pearson r = 0.639, P < 0.0005, N = 4842) and weakest found when adjacent phalanges 

within a single digit were stimulated (Pearson r = 0.311, P < 0.0005, N = 6148). When 

nonadjacent digits were stimulated, correlation magnitudes were relatively low, but the 

average firing rates were relatively high (mean correlation = 0.0335, SD = 0.0170; mean 

GMFR = 4.716 spikes/s, SD = 6.614). When adjacent phalanges within a single digit 

were stimulated, firing rates remained low overall, while correlations between neuron 

pairs reached their highest magnitudes (mean correlation = 0.0356, SD = 0.0165; mean 

GMFR = 2.257 spikes/s, SD = 1.935). When adjacent digits were stimulated, the 
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relationship between correlation magnitude and average firing rate was weakly positive 

(Pearson r = 0.0464, P < 0.0005, N = 1994), as was the relationship when nonadjacent 

phalanges within a single digit were stimulated (Pearson r = 0.515, P < 0.0005, N = 

3027). However, different effects led to these similar weak linear relationships. When 

adjacent digits were stimulated the average correlations and average firing rates were 

relatively high (mean correlation = 0.0367, SD = 0.0148; mean GMFR = 3.494 spikes/s, 

SD = 2.915). When nonadjacent phalanges within a digit were stimulated, the average 

correlations and average firing rates were low (mean correlation = 0.0297, SD = 0.0121; 

mean GMFR = 2.130 spikes/s, SD = 1.516). The trends can be seen clearly in Figure 4-

9B, in which the data are shown for only a single temporal stimulation condition. Thus, 

when stimulation locations were close in proximity, correlation magnitudes did not vary 

strongly with firing rate, while correlation magnitude varied with firing rate more 

strongly when nonadjacent digits were stimulated. 

We expected some dissociation between correlation magnitude and average firing 

rate. While the average firing rates for the neuron pairs with significant correlations 

varied within the control condition, the average firing rates tended to be reduced by 

paired stimulation, with the maximal reductions occurring when paired stimuli were 

presented within 30 and 50 ms of each other (Figure 4-10A). The exception to this trend 

occurred when stimuli were presented on nonadjacent digit locations. Correlation 

magnitudes did not follow the firing rate trends under these spatiotemporal stimulation 

conditions (Figure 4-10B).  
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Figure 4-9. Spatiotemporal stimulus effects on the relationship between correlation and firing rate 

magnitudes. A. Peak correlation magnitudes versus the geometric mean firing rate (GMFR, spikes/s) of the 
neurons in the correlated pair are shown in the 3-D scatter plot with the temporal stimulation condition 

plotted on the z-axis. Marker color indicates the spatial proximity of the dual probe stimulation on adjacent 

digits (Adj D.), nonadjacent digits (NonA D.), adjacent phalanges within a digit (Adj Ph.), and nonadjacent 

phalanges within a digit (NonA Ph.). B. A 2-D scatter plot is shown by selecting only the data points within 

the temporal stimulation condition in which one probe contact preceded the other by 30 ms. This view 

helps reveal that the relationship of correlation magnitudes increasing with increasing firing rates occurs 

primarily when nonadjacent digit locations were stimulated, as the average firing rate was not strongly 

suppressed by the paired stimulation under these conditions.  
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Figure 4-10. Spatiotemporal stimulus effects on average firing rates compared to correlations. A. The 

geometric mean firing rates (GMFR, spikes/s) for the correlated neuron pairs in the dataset were averaged 

within temporal stimulation conditions (x-axis) and spatial proximity conditions (each bar series). Error 

bars represent 95% confidence intervals. The control condition refers to single-site stimulation on the 

individual hand locations that were stimulated in pairs. While the GMFRs for the neuron pairs with 

significant correlations varied within the control condition, the GMFR was reduced by paired stimulation, 

with the maximal reductions occurring when paired stimuli were presented within 30 and 50 ms of each 

other. Note, when stimuli were presented on nonadjacent digit locations this trend was not found. B. The 

correlation magnitudes were averaged within temporal stimulation conditions (x-axis) and spatial proximity 

conditions (each bar series). Spatial and temporal stimulation conditions resulted in variable changes in 

correlation magnitudes. The changes in correlation magnitudes do not follow the trends shown by the 

average firing rate magnitudes of the correlated neuron pairs in A. 
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Discussion 

 

The presence of spike timing correlations suggests that neuron pairs are linked in 

some way, by common input or synaptic connections, for example. It is becoming widely 

accepted that the functional connections measured through spike timing correlations are 

dynamic and have been shown to change in area 3b neurons after tactile behavioral 

training in owl monkeys (Blake et al., 2005). We found that a general network of 

correlated pairs existed in our simultaneous recordings from 100-electrode arrays in area 

3b; and stimuli varying in spatiotemporal properties resulted in small changes to the 

magnitude of correlations and the identities of correlated pairs (Figure 4-7), perhaps 

illustrating the short-term dynamics in the population related to stimulus properties. We 

did not find the precise patterns of spatiotemporal interactions we expected to obtain 

based on anatomical connectivity within area 3b; however, we can compare our results to 

those of others to make some assertions regarding how spatiotemporal stimulus 

parameters affect spike timing correlations in primary somatosensory cortex.  

 

Effects of Spatial and Temporal Stimulus Properties on Correlation Magnitudes 

In accordance with the hypothesis that the correlations in primary somatosensory 

cortex are useful for signaling objects that are grouped in time and space, we expected 

that simultaneous stimulation of two locations might increase the magnitude or numbers 

of correlations between neuron pairs due to common synaptic input; and that the farther 

apart in time two paired stimuli were presented, the lower the correlation magnitudes 

would be. Our results did not match this expectation, as dual-site simultaneous 
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stimulation reduced the overall correlation magnitude compared to stimulation on a 

single site, as well as compared to paired stimulation presented farther apart in time 

(Figure 4-3A). A possible explanation for this finding is that simultaneous stimulation on 

different and discontinuous parts of the hand is more disruptive to the existing 

correlations occurring in a given network and may be closely related to the effects of 

lateral inhibition and activating projections in the cortex. We did not calculate 

correlations during periods of spontaneous activity as a comparison condition because 

spontaneous firing rates tended to be very low in our anesthetized monkeys; however, for 

our conditions, correlations obtained during driven activity tended to reflect correlations 

present during spontaneous activity when spike rates are high enough to perform the 

calculation (Reed et al., 2008, Chapter 2 see SI Figure 2-6). 

Summarizing over the entire set of temporal stimulus conditions, the proximity of 

the paired stimuli on the hand affected the magnitude of significant correlations (Figure 

4-3B); although again the effect did not precisely follow expectations. We expected that 

the closer the stimulus locations were in space, the higher the correlation magnitude 

would be, assuming that correlation magnitude reflected aspects of common input and 

density of intrinsic connections, and theoretically, object similarity. We found that 

stimulation on adjacent digits resulted in the highest correlation magnitudes, followed by 

stimulation on adjacent phalanges within a digit. It is possible that the two stimuli 

presented on adjacent digits could be more readily perceived as a possible common 

object than two small and distinct stimuli presented on adjacent phalanges within a digit. 

This idea may also help explain why stimulation on nonadjacent digit sites resulted in 

greater correlation magnitudes than stimulation on nonadjacent phalanges. These 
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perception-based explanations are speculative, but anatomical connections within the area 

3b hand representation appear denser in the distal to proximal axis within a digit than 

across digit representations (Fang et al., 2002); thus, there is an anatomical basis to 

expect differences in the functional connections of these regions. However, we expected 

correlations to be higher in the distal to proximal axis within a digit than across digits. 

The final main effect we examined to explain the variance in the correlations was 

a factor we termed ―pair responses‖, which represents the number of units in the 

correlated pair that responded to the presented stimulus with significant increases in 

firing rate above baseline. Thus, ―pair responses‖ gives a simplified measure of the 

overlap between neuron receptive fields with the stimulus locations. We selected this 

measure after determining that the relationship of the receptive fields of both neurons in 

each pair with the locations of each stimulus probe was too complex to analyze (44 levels 

that could be combined to a minimum of 9 levels). As may be expected, we found that 

when both neurons in the pair responded to the stimulation, the correlation magnitude 

was highest, and when neither neuron responded to stimulation, significant correlations 

were still present, but the correlation magnitude was lowest (Figure 4-3C). With this 

indirect relation that takes the responses of both neurons in the pair into account, our 

results are similar to others (e.g., de la Rocha et al., 2007 [in vitro and model neurons]; 

Greenberg et al., 2008 [rat visual cortex]; Jermakowicz et al., 2009 [primate visual 

cortex]) who reported trends for correlation magnitude to increase with increasing firing 

rates, averaged over both neurons in the correlated pair.  
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Spatiotemporal Stimulus Interactions 

We made basic predictions regarding the existence of spatiotemporal interactions 

affecting the magnitude of correlations. While our model predicted significant 

interactions, the 3-way interactions between temporal stimulus onset asynchronies, 

spatial proximity of the stimuli, and the pair response relationships (Figure 4-6) deviated 

from the trends we expected. Our results corroborated the expectation that the pair 

responses would play a role in the magnitude of the correlations across all stimulus 

parameters. But our results did not satisfy the following two expectations: 1) that 

stimulation on distant locations (nonadjacent digits) would result in decreases in 

correlation magnitudes compared to paired stimulation within a single digit, and 2) that 

stimulation at longer stimulus onset delays would result in decreases in correlation 

magnitudes compared to near-simultaneous stimulation. If such effects exist, they were 

not detectable in our experiments and analysis. An example of the correlations in the 

recorded single units from one monkey during a specific stimulation series presented in 

Figure 4-7 reflects the complexity of the interactions occurring across the hand 

representation under the selected spatiotemporal stimulation conditions. The general 

localization of the correlated pairs remained qualitatively the same, spanning most of the 

hand representation, throughout the stimulation series. Single site stimulation on digit 5 

did not result in increased correlation numbers or magnitudes localized within the 

representation of that digit. The example in this figure illustrates the surprising result that 

simultaneous stimulation, regardless of stimulation proximity, resulted in decreased 

correlation magnitudes on average. We use these figures for illustration purposes, but we 

currently do not have a way to analyze these patterns for individual examples to 
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determine if there are significant differences. We rely on our statistical analysis of the 

population to extract the importance of spatial and temporal stimulus parameters on the 

overall patterns we obtain from the population. 

 

Relationship of Correlations and Cortical Distance 

Although the variation in the magnitude of correlations did not match all of our 

predictions, the variation in the proportion of correlations across cortical distance and 

stimulus proximity followed our expectations. Generally, the proportions of correlated 

neurons decreased with increasing distance between neuron pairs; and when sites closer 

in spatial proximity were stimulated simultaneously, greater proportions of neurons were 

correlated (Table 4-2). These data extend our report on nonadjacent digit stimulation in a 

previous paper (Reed et al., 2008). Alloway and colleagues (1999, 2002) examined cross-

correlations between neuron pairs in cat somatosensory cortex (S1 and S2) and also 

found a tendency for the proportion of correlated pairs to decrease with increasing 

distance between electrode pairs recording single unit and multi-unit activity; however, 

they examined smaller electrode spacing to a total distance of about 0.9 mm, while our 

array allowed us to examine 0.4 mm electrode spacing up to a total distance of 4.8 mm. 

We also found a tendency for correlation magnitudes to decrease when the electrode 

distance increased, but significant correlations were found even at distances beyond 4 

mm (Figure 4-8). The presence of low magnitude correlations across all distances 

recorded resulted in a linear correlation coefficient that was low and weak (Pearson r =    

-0.083; P < 0.0005; N = 2529). This trend resembles that found by Greenberg et al. 

(2008) in their calcium imaging study in visual cortex of awake and anesthetized rats. 
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They reported weak relationships between the correlation magnitude and distance 

between electrode sites (awake: r = 0.004, P = 0.94; anesthetized r = -0.07, P = 0.023). 

When we examined the correlation magnitudes based on proximity of stimulation sites, 

there was a tendency for simultaneous stimulation on adjacent phalanges to result in the 

highest magnitude correlations overall; however, low magnitude correlations were 

present across all stimulus types (Figure 4-2) and all electrode distances (Figure 4-8).  

 

Relationship of Correlation Magnitude and Average Firing Rate by Spatiotemporal 

Conditions 

 

Several reports describe significant relationships between correlation magnitudes 

and average firing rates, such that higher correlation magnitudes tend to occur when the 

two neurons in the pair have higher average firing rates (e.g., de la Rocha et al., 2007; 

Greenberg et al., 2008; Jermakowicz et al., 2009); though others have reported only very 

weak relationships (Samonds and Bonds, 2005). We examined this trend in our data and 

found weak, positive relationships overall. However, when we analyzed the linear 

relationship of correlation and average firing rate based on the spatial proximity of the 

paired stimulation, we found that the relationship of correlation magnitudes increasing 

with increasing firing rates appeared primarily when nonadjacent digit locations were 

stimulated (Figure 4-9). This effect occurred because the average firing rates were not 

greatly suppressed by the paired stimulation on nonadjacent digit locations, while firing 

rates tended to be reduced (compared to single-site control stimulation) when paired 

stimuli were presented on locations in closer proximity (Figure 4-10A). This difference in 

suppression may result from weaker lateral inhibition when nonadjacent digits were 

stimulated compared to when sites closer in proximity were stimulated. We found some 
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potential sampling bias such that geometric mean firing rates were lowest for correlated 

pairs collected during single-site stimulation of locations that were later part of dual-site 

stimulation on phalanges within the same digit (Figure 4-10A). This sampling effect may 

have occurred because only two of the three monkeys were tested with stimuli presented 

within the same digit; while all three monkeys were tested with stimuli presented to 

locations on adjacent and nonadjacent digit or palm sites. Nevertheless, similar trends in 

average firing rate were found when stimuli were presented on adjacent digits, adjacent 

phalanges, and nonadjacent phalanges within a digit; thus, the low magnitudes of the 

average firing rates during stimulation within a digit did not change the trends we found 

when the paired stimuli were presented with stimulus onset delays.  

Figure 4-11 summarizes the magnitudes of correlations and average firing rates of 

the correlated neurons when paired stimuli were presented to sites across the hand, 

averaged over all temporal stimulation conditions. The correlation magnitudes did not 

strictly decrease with decreasing average firing rates when different parts of the hand 

were stimulated. Stimulation on adjacent phalanges within a digit representation resulted 

in the highest proportion of correlated pairs and nearly the highest correlation 

magnitudes; thus, Figure 4-11 depicts the relationship between these locations as the 

strongest based on correlations, followed by a nearly equivalent strength between 

locations on adjacent digits. This reflects the lower proportion of correlated pairs and the 

higher correlation magnitudes found when adjacent digit sites were stimulated. 

Stimulation on nonadjacent phalanges resulted in the second largest proportion of 

correlated pairs, but the magnitudes were low, reflected by the thin line. The line between 

nonadjacent digits was similar in thickness, as this group had the lowest proportion of 
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correlated pairs by far, but the magnitudes of those correlations were high. In some ways, 

the results correspond to the density of intrinsic connections along the distal-proximal 

axis of the digit representation (Fang et al., 2002), with unexpectedly high correlation 

strength between adjacent digit representations. When nonadjacent digits were 

stimulated, average firing rates showed the largest magnitudes and least suppression. 

Analysis of average firing rates indicated suppressive interactions of similar strength 

when adjacent and nonadjacent phalanges were stimulated; however, the correlations did 

not show the same relationships across these areas. Thus, our findings indicate that 

correlation magnitudes do not necessarily increase with firing rate under all stimulus 

conditions (Figure 4-10). 

Similar to our results, Roy and Alloway (1999) found that 17% of the neuron 

pairs they recorded in cat S1 showed changes in correlations related to directional 

preferences to moving air jet stimulation without corresponding changes in the firing rate. 

But in general, they found that when firing rate increased (comparing spontaneous and 

driven activity as well as comparing stationary and moving stimuli), correlation 

magnitudes tended to increase (Roy and Alloway, 1999). Interestingly, Greenberg et al. 

(2008) confirmed that firing rates decreased during anesthesia; however, they found that 

spike timing correlations increased during anesthesia compared to awake periods. Vaadia 

et al. (1995), studying sensorimotor frontal cortex neurons in behaving macaque 

monkeys, and deCharms and Merzenich (1996), studying auditory cortex neurons in 

anesthetized marmoset monkeys, both found that spike timing correlations can change 

without corresponding changes in mean firing rate. Roelfsema et al. (2004), studying 

primary visual cortex neurons in behaving macaques, found that firing rates covaried  
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Figure 4-11. Summary schematic of interactions within the hand representation based on correlations and 

average firing rate responses. A schematic of the owl monkey brain shows the organization of area 3b. The 

orientation of the brain is indicated by arrows. M = medial and R = rostral. Part of the hand representation 

is schematized and enlarged to illustrate a summary of correlation and firing rate response results. Solid 

black lines represent relationships between parts of the area 3b hand representation based on the 

magnitudes of spike timing correlations. Solid gray lines between parts of the digit representations indicate 

relationships based on magnitudes of average firing rate based on the geometric mean firing rate of the 

correlated pairs. Line thickness approximates the relative magnitudes within each line category for the 

spatial proximity of paired stimuli, averaged over the temporal stimulation conditions. The relative strength 

of correlations between neurons did not strictly follow the magnitudes of average firing rates of those 

neurons when different parts of the hand were stimulated. (See Discussion for details.) 
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with perceptual grouping of stimuli, but correlation magnitudes varied instead with 

general task difficulty. Our findings, in conjunction with those of others, indicate that 

correlation magnitudes do not strictly follow firing rate modulations and thus reveal a 

different type of modulation compared to the firing rate responses.  

Firing rates are affected by stimulus properties and can be suppressed by effects 

such as lateral inhibition. If spike timings are correlated, spikes from presynaptic neurons 

may be able to activate postsynaptic neurons even when spike rates are low. In our study, 

we found conditions when firing rates tended to decrease while the correlation strength 

was maintained near control levels, such as when stimuli were presented with their onsets 

30 ms apart (Figures 4-9, 4-10). In instances in which firing rates decrease and 

correlations do not follow, additional stimulus information may potentially be conveyed 

via correlated activity to drive postsynaptic neurons. These results indicate that the 

spatiotemporal stimulus influences on correlation magnitudes are not directly tied to the 

influences on firing rate magnitudes, and correlations between neurons may play 

additional roles in integrating tactile information.  

Overall, these correlations between neurons spanning across the hand 

representation in primary somatosensory cortex indicate that widespread interactions 

occur within area 3b of primates, and the magnitude and presence of correlated activity is 

affected by the spatial and temporal configurations of tactile stimuli in some unexpected 

ways that do not mirror changes in firing rate. While the influence of the temporal 

stimulus relationships on the magnitude of spike timing correlations is unclear, the 

average strength of correlations suggests that adjacent phalanges and adjacent digits have 

stronger functional connections than nonadjacent phalanges and nonadjacent digits in the 
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area 3b hand representation of owl monkeys. These findings may be relevant to tactile 

object perception, as stimuli that contact adjacent skin locations may be more likely to be 

part of the same object. Our results support the hypothesis that sensory stimulus 

information affects correlations between neurons, and these correlations may play a 

different role in the brain than firing rate alone.  

 

Acknowledgements 

 

Each of the following will be co-authors on the published manuscript from this 

work: Drs. Hui-Xin Qi, Pierre Pouget, Zhiyi Zhou, Melanie Bernard, Mark J. Burish, 

A.B. Bonds, and Jon H. Kaas. This work was supported by the James S. McDonnell 

Foundation (JHK) and NIH grants NS16446 (JHK), F31-NS053231 (JLR), EY014680-03 

(ABB), and T32-GM07347 (MJB). Matlab scripts were written primarily by P. Pouget 

and John Haitas in collaboration with J.L. Reed and Jurnell Cockhren. We thank Dr. 

Omar Gharbawie and Corrie Camalier for help collecting data from 2 of the 3 monkeys.  

 

References 

 

 

Aertsen AMHJ, Gerstein GL, Habib M, Palm G. 1989. Dynamics of neuronal firing  

correlation: modulation of ―effective connectivity‖. J Neurophysiol 61: 900-917.  

 

Alloway KD, Zhang M, Dick SH, Roy SA. 2002. Pervasive synchronization of local          

neural networks in the secondary somatosensory cortex of cats during focal 

cutaneous stimulation. Exp Brain Res 147: 227–242. 

 

Bair W, Zohary E, Newsome WT. 2001.Correlated firing in macaque visual area MT:  

time scales and relationship to behavior. J Neurosci 21: 1676-1697. 

 

Blake DT, Strata F, Kempter R, Merzenich MM. 2005. Experience-dependent plasticity  

in S1 caused by noncoincident inputs. J Neurophysiol 94: 2239-2250. 



 188 

 

DeCharms RC, Merzenich MM. 1996. Primary cortical representation of sounds by the  

coordination of action-potential timing. Nature 381: 610-613. 

 

De la Rocha J, Doiron B, Shea-Brown E, Josić K, Reyes A. 2007. Correlation between  

neural spike trains increases with firing rate. Nature 448: 802-807.  

 

Fang P-C, Jain N, Kaas JH. 2002. Few intrinsic connections cross the hand-face border of 

area 3b of new world monkeys. J Comp Neurol 454: 310-319.  

 

Gerstein GL. 2000. Cross-correlation measures of unresolved multi-neuron recordings. J  

Neurosci Methods 100: 41–51.  

 

Gerstein GL, Bedenbaugh P, Aertsen AMHJ. 1989. Neuronal assemblies. IEEE Trans  

Biomed Eng 36: 4-14. 

 

Greenberg DS, Houweling AR, Kerr JND. 2008. Population imaging of ongoing neuronal  

activity in the visual cortex of awake rats. Nat Neurosci 11: 749-751. 

 

Hardin JW, Hilbe JM. 2003. Generalized estimating equations. Boca Raton:  

Chapman and Hall/CRC. 

 

Jain N, Qi H-X, Kaas JH. 2001. Long-term chronic multichannel recordings from  

sensorimotor cortex and thalamus of primates. Chapter 5 In Progress in Brain 

Research, ed. MAL Nicolelis, 130: 1-10. Amsterdam: Elsevier Science B.V.  

 

Jermakowicz WJ, Casagrande VA. 2007. Neural networks a century after Cajal. Brain 

Res Rev 55: 264-284.  

 

Jermakowicz WJ, Chen X, Khaytin I, Bonds AB, Casagrande VA. 2009. Relationship 

between spontaneous and evoked spike-time correlations in primate visual cortex. 

J Neurophysiol 101: 2279-2289. 

 

Kaas JH. What, if anything, is SI? 1983. Organization of first somatosensory area of  

cortex. Physiol Rev 63: 206-231.  

 

Liang K-Y, Zeger SL. 1986. Longitudinal data analysis using generalized linear models. 

Biometrika 73: 13-22. 

 

Merzenich MM, Kaas JH, Sur M, Lin CS. 1978. Double representations of the body  

surface within cytoarchitectonic areas 3b and 1 in ―SI‖ in the owl monkey (Aotus 

trivirgatus). J Comp Neurol 181: 41-74. 

 

Nelson RJ, Sur M, Felleman DJ, Kaas JH. 1980. Representations of the body surface in  

postcentral parietal cortex of Macaca fascicularis. J Comp Neurol 192: 611- 

643.  



 189 

 

Nicolelis MAL, Dimitrov D, Carmena JM, Crist R, Lehew G, Kralik JD, Wise SP. 2003. 

Chronic, multisite, multielectrode recordings in macaque monkeys. Proc Natl 

Acad Sci USA 100: 11041-11046.  

  

Oram MW, Hatsopoulos NG, Richmond BJ, Donoghue JP. 2001. Excess synchrony in  

motor cortical neurons provides redundant direction information with that from 

coarse temporal measures. J Neurophysiol 86: 1700-1716.  

 

Reed JL, Pouget P, Qi H-X, Zhou Z, Bernard MR, Burish MJ, Haitas J, Bonds AB,  

Kaas JH. 2008. Widespread spatial integration in primary somatosensory cortex. 

Proc Natl Acad Sci USA 105: 10233-10237.  

 

Roelfsema PR, Lamme VA, Spekreijse H. 2004. Synchrony and covariation of firing  

rates in the primary visual cortex during contour grouping. Nat Neurosci 7: 982-

991.  

 

Roy A, Steinmetz PN, Hsiao SS, Johnson KO, Niebur E. 2007. Synchrony: a neural  

 correlate of somatosensory attention. J Neurophysiol 98: 1645-1661.  

 

Roy S, Alloway KD. 1999. Synchronization of local neural networks in the  

somatosensory cortex: a comparison of stationary and moving stimuli. J 

Neurophysiol 81: 999–1013.  

 

Roy SA, Dear SP, Alloway KD. 2001. Long-range cortical synchronization without  

concomitant oscillations in the somatosensory system of anesthetized cats. J    

Neurosci 21: 1795-1808.  

 

Salinas E, Sejnowski TJ. 2001. Correlated neuronal activity and the flow of neural  

   information. Nat Rev Neurosci 2: 539-550.  

 

Samonds JM, Allison JD, Brown HA, Bonds AB. 2003. Cooperation between area 17  

neuron pairs enhances fine discrimination of orientation. J Neurosci 23: 2416-

2425.  

 

Samonds JM, Bonds AB. 2005. Gamma oscillation maintains stimulus structure- 

   dependent synchronization in cat visual cortex. J Neurophysiol 93: 223-236. 

 

Shoham S, Fellows MR, Normann RA. 2003. Robust, automatic spike sorting using  

   mixtures of multivariate t-distributions. J Neurosci Methods 127:111-122.  

 

Sur M, Wall, JT, Kaas JH. 1984. Modular distribution of neurons with slowly adapting 

and rapidly adapting responses in area 3b of somatosensory cortex in monkeys. 

J Neurophysiol 51: 724-744.  

 

 



 190 

Tuerlinckx F, Rijmen F, Verbeke G, De Boeck P. 2006. Statistical inference in  

generalized linear mixed models: A review. Br J Math Stat Psychol 59: 225-255. 

 

Vaadia E, Haalman I, Abeles M, Bergman H, Prut Y, Slovin H, Aertsen A. 1995.  

Dynamics of neuronal interactions in monkey cortex in relation to behavioural 

events. Nature 373: 515-518.  

 

Ventura V, Cai C, Kass RE. 2005. Statistical assessment of time-varying dependency  

between two neurons. J Neurophysiol 94: 2940-2947.  

 

Zeger SL, Liang K-Y. 1986. Longitudinal data analysis for discrete and continuous  

outcomes. Biometrics 42: 121-130. 

 

Zhang M, Alloway KD. 2004. Stimulus-induced intercolumnar synchronization of  

neuronal activity in rat barrel cortex: A laminar analysis. J Neurophysiol 92: 

1464-1478.  

 

Zhang M, Alloway KD. 2006. Intercolumnar synchronization of neuronal activity in rat  

barrel cortex during patterned airjet stimulation: A laminar analysis. Exp Brain 

Res 169: 311-325.  

 

 

 

 

   

 



 191 

CHAPTER V 

 

SPATIOTEMPORAL PROPERTIES OF NEURON RESPONSE SUPPRESSION IN 

OWL MONKEY PRIMARY SOMATOSENSORY CORTEX BY STIMULI 

PRESENTED TO BOTH HANDS 

 

Abstract 

 

Despite the lack of ipsilateral receptive fields (RFs) in area 3b of primary 

somatosensory cortex, interhemispheric interactions have been reported to varying 

degrees. We investigated the spatiotemporal properties of these interactions to determine: 

1) the types of responses; 2) timing between bimanual stimuli to evoke the strongest 

interactions; 3) topographical distribution of effects; and 4) their dependence on the 

similarity of stimulus locations on the two hands. We examined response magnitudes and 

latencies of single neurons and multi-neuron clusters recorded from 100-electrode arrays 

implanted in one hemisphere of two anesthetized owl monkeys. Skin indentations were 

delivered to the two hands simultaneously and asynchronously at mirror locations 

(matched sites on the same digit on each hand) and nonmirror locations. Since multiple 

neurons were recorded simultaneously, stimuli on the contralateral hand could be within 

or outside of the classical RFs. For most neurons, stimulation on the ipsilateral hand 

suppressed responses to stimuli on the contralateral hand. Maximum suppression 

occurred when the ipsilateral stimulus was presented 100 ms before the contralateral 

stimulus onset (P < 0.0005). The longest stimulus onset delay of 500 ms allowed 

contralateral responses to recover to control levels (P = 0.428). Stimulation on mirror 

digits did not differ from stimulation on nonmirror locations (P = 1.000). Response 
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latencies changed little with stimulation parameters; latencies for all categories averaging 

23.74 ms (SD = 6.91). These results indicate that interhemispheric interactions are 

common in area 3b, somewhat topographically diffuse, and maximal when the 

suppressing ipsilateral stimulus preceded the activating contralateral stimulus.  

 

Introduction 

 

Receptive fields for monkey area 3b neurons have been exclusively localized to 

the contralateral hand (for review, see Kaas, 1983), and 3b has few callosal connections 

to directly mediate hand-hand interactions (Killackey et al., 1983). Bilateral receptive 

fields have been found in the hand representations of higher-level cortical areas, 

including areas 1, 2, and the secondary somatosensory area, S2 (for review, see Iwamura, 

2002). While it may seem unlikely that stimuli on the two hands interact to influence 

responses in area 3b, there are reasons to postulate that such interactions exist. Several 

studies have reported evidence for interhemispheric interactions in anterior parietal cortex 

during bimanual stimulation in humans (e.g., Schnitzler et al., 1995; Hoechstetter et al., 

2001; Braun et al., 2005; Zhu et al., 2007) and nonhuman primates (Burton et al., 1998; 

Tommerdahl et al., 2006). Thus, our purpose is not to prove that such interactions exist; 

rather, our purpose is to focus on neuron response properties in area 3b in order to 

quantify the spatial and temporal properties of these interhemispheric interactions. 

Specifically, we investigated the distribution of response types (suppression, facilitation), 

the topographic specificity of the effects (mirror versus nonmirror hand sites), and the 
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timing between stimulus presentation on the two hands that evoked the strongest effects 

in area 3b of anesthetized owl monkeys. 

In the primary somatosensory cortex of monkeys, interhemispheric interactions 

have been described as primarily suppressive, such that simultaneous tactile stimulation 

on both hands suppresses neural activity in the contralateral hemisphere as measured 

through optical imaging (Tommerdahl et al., 2006). Interhemispheric effects are likely to 

involve intrahemispheric feedback projections to area 3b from higher-order cortical areas 

which contain bilateral receptive fields (for review, Calford, 2002). The topographic 

extent of these suppressive effects has not been well-established, but the effects are 

expected to be somewhat widely distributed topographically based on the diffuse nature 

of feedback projections (e.g., Cusick et al., 1989; Darian-Smith et al., 1993; Burton and 

Fabri, 1995; Burton et al., 1995).  

Additionally, the temporal properties of interhemispheric effects have not been 

well studied in area 3b. When tactile stimuli are presented to the two hands 

asynchronously, how do neurons respond? Because the interhemispheric interactions 

likely require multi-synaptic processing, we expected that when contralateral stimuli 

were presented with increasing onset delays relative to ipsilateral stimuli, the suppressive 

effects would increase to reach a maximum. Burton et al. (1998) presented vibratory 

tactile stimuli to matching sites on the two hands in awake macaque monkeys, and the 

stimuli had asynchronous onset delays of 150 or 300 ms. (In their study, ipsilateral 

stimuli could precede or follow the contralateral stimuli.) They did not report changes in 

firing rate in area 3b neurons during asynchronous bimanual stimulation; however, 

Burton et al. (1998) reported mostly suppression in neurons in areas 1, 2, and S2. 
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Therefore, we presented 500 ms skin indentations on matching and non-matching 

locations on the two hands, as long duration indentations drive area 3b neurons well, and 

presented the paired stimuli simultaneously or at onset delays of 10, 30, 50, 100, and 500 

ms to characterize the spatiotemporal stimulation effects on interhemispheric interactions. 

 

Materials and Methods 

 

Preparation 

All procedures followed the guidelines established by the National Institutes of 

Health and the Animal Care and Use Committee at Vanderbilt University. Two adult owl 

monkeys (Aotus trivirgatus) were prepared for electrophysiological recordings in the left 

hemisphere of primary somatosensory cortex following procedures detailed previously 

(Reed et al., 2008). These monkeys (case 2, male, 1 kg and case 3, female, 1.2 kg) were 

both part of studies related to processing stimuli on the contralateral hand (Reed et al., 

2008; Chapter 3). Monkeys were anesthetized with propofol during surgery (10 mg/kg/hr, 

intravenous) and electrophysiological recording (0.3 mg/kg/hr). During surgery and 

recording sessions monkeys were paralyzed via vecuronium bromide (0.1-0.3 mg/kg/hr, 

intravenous) mixed with 5% dextrose and Lactated Ringer‘s solution and were artificially 

ventilated with a mixture of N2O: O2: CO2 (75: 23.5: 1.5) at a rate sufficient to maintain 

peak end tidal CO2 at ~ 4%. In monkey 3, 1.2 mg/kg sufentanil was added to the 

Lactated Ringer‘s solution during the surgical procedures in order to stabilize anesthetic 

depth. Following delivery of this amount of sufentanil, the monkey was maintained under 

anesthesia without supplemental sufentanil during extracellular recordings. As described 
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previously (Reed et al., 2008), the 100-electrode array (now Blackrock Microsystems, 

Salt Lake City, UT) was inserted to a depth of 600 µm using a pneumatic inserter so that 

the electrode tips were expected to be located within cortical layer 3.  

 

Tactile Stimulation and Recording Procedures 

We compared responses to paired stimulation on mirror digits versus nonmirror 

digits. Our equipment and stimulus parameters have been described previously (Reed et 

al., 2008; Chapter 3). Briefly, stimuli were provided by two independent force- and 

position-feedback controlled motor systems (300B, Aurora Scientific Inc., Aurora, ON, 

CA), with contact made by round Teflon probes 1 mm in diameter. Stimuli consisted of 

pulses that indented the skin 0.5 mm for 0.5 s, followed by 2.0 s off of the skin, repeated 

for 255 s (100 trials). Indentations were delivered to paired skin sites simultaneously (0 

ms) and at selected stimulus onset delays of 10, 30, 50, 100, and 500 ms. Single-site 

control stimuli were delivered to the ipsilateral and contralateral sites prior to paired 

stimulation while recordings were made from the left hemisphere. The fingernails were 

glued (cyanoacrylic) to Teflon screws fixed in plasticine to keep the hand stable during 

stimulus blocks.  

In addition to controlled mechanical stimulation, we used light tactile stimulation 

to map the minimal receptive fields (mRFs) of selected electrodes. Receptive field 

mapping aided our reconstruction of the electrode locations as within and outside of area 

3b, to complement our subsequent histological identification of area 3b. As we have 

published previously (Reed et al., 2008), the mRF was defined as the region of skin 

where a near-threshold light touch with a probe reliably evoked spikes from the recorded 
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neurons. Typical procedures for mRF mapping have been published (e.g., Merzenich et 

al., 1978; Nelson et al., 1980). 

Recordings were made using the 100-electrode array and the Bionics Data 

Acquisition System (now Blackrock Microsystems). The signals on each channel were 

amplified by 5000 and band-pass filtered between 250 Hz and 7.5 kHz. The threshold for 

each electrode was automatically set for 3.25 times the mean activity and the waveforms 

were sampled at 30 kHz for 1.5 ms windows (Samonds et al., 2003).  

 

Histology 

Upon experiment completion, animals were perfused with saline followed by 

fixative, and the brains were prepared for histological analysis as previously described 

(Jain et al., 2001). The cortex was flattened, frozen, and cut parallel to the surface at 40 

µm. Sections were processed for myelin to aid in determining the electrode locations 

relative to the area 3b hand representation (see Reed et al., 2008). Electrode depth was 

estimated by identifying the appearance and disappearance of electrode tracks across 

serial sections.  

 

Data Analysis 

 

Spike Sorting   

The details of the spike sorting procedures have been described previously (Reed 

et al., 2008). Briefly, spike signals were sorted offline with an automatic spike 

classification program based on the t-distribution Expectation Maximization algorithm 
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(Shoham et al. 2003) which is part of the data acquisition system. A second spike sorter 

program, Plexon Offline Sorter (Plexon Inc., Dallas, TX), was used to verify the quality 

of unit isolation such that single units had refractory periods ≥ 1.2 ms; P values ≤ 0.05 for 

multivariate ANOVA related to cluster separation; and distinct waveform amplitudes and 

shapes when compared with other activity on the same electrode (Nicolelis et al., 2003). 

Single- and multi-units were categorized separately but grouped together for factor 

analysis. Multiple single units collected from one electrode were included in the analysis, 

but at most only one multi-unit per electrode was included in the analysis.  

 

Peak Firing Rate 

As described in Reed et al. (2008), to determine peak firing rate, spike trains were 

smoothed with a spike density function using Matlab (The Mathworks, Inc., Natick, 

MA). A spike density function was produced by convolving the spike train from each 

trial with a function resembling a postsynaptic potential specified by τg, the time constant 

for the growth phase, and τd, the time constant for the decay phase as:   

R(t) = (1 – exp(-t/τd)*exp(-t/τd).  

  Based on physiological data from excitatory synapses, τg was set to 1 ms (e.g., 

Mason et al., 1991; Moore and Nelson, 1998). We set τd to 5 ms (Mason et al., 1991; 

Moore and Nelson, 1998; Veredas et al., 2005) because the transient nature of the on and 

off responses in primary somatosensory neurons was excessively smoothed at larger 

values, particularly when stimuli were presented at stimulus onset asynchronies of 10 and 

30 ms. We examined onset responses within a 50 ms response time window from the 

onset of the stimulus of interest. When stimuli were presented with onset asynchronies, 
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the window began from the onset of the second (contralateral) stimulus; thus, the first 

(ipsilateral) stimulus acted as a ―conditioning stimulus‖ as described by others (e.g., 

Chowdhury and Rasumusson, 2003; Gardner and Costanzo, 1980b; Greek et al., 2003).  

The excitatory peak firing rate was determined as the maximum of the spike 

density function within the response time window, and the average baseline firing rate 

(calculated over a 500 ms window prior to stimulation onset) was subtracted from this 

value. This peak firing rate value was required to be greater than a threshold value, which 

was the average baseline firing rate plus two standard deviations of this baseline with a 

minimum value of 5 spikes/s. To determine if this value was significant, the 

nonparametric Mann-Whitney U test and the parametric Student‘s t-test were performed 

and results compared. The U test and t test resulted in the same categorizations of 

significance (α = 0.05). When no excitatory response was detected in the response 

window, responses were examined for possible suppressive effects. However, the current 

study does not include inhibitory responses. 

 

Response Latency 

Response latencies were calculated using Matlab and determined from spike 

density function histograms as the initial time when the rate meets the half-height over 

the threshold value of the peak firing rate within the response time window (see Peak 

Firing Rate). Briefly, the peak latency was calculated using polynomial fitting of the 

spike density function. The firing rate values of the half-height and the threshold value 

were compared. The greater of the half-height or the threshold value was selected, and 

the time was designated as the response latency. This method of determining excitatory 
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response latency is similar to measures that determine the width or duration of peaks in 

histograms (e.g., Tutunculer et al., 2006; Davidson et al., 2007). Results were checked 

manually for proper assignments.  

 

Firing Rate Modulation Index 

We developed a modulation index based on methods used to describe 

multisensory integration (Stanford et al., 2005; Alvarado et al., 2007). The observed 

average firing rate response within the 50 ms response window during a given bimanual 

stimulation condition was compared with the distribution of expected average responses 

based on summation of the unit‘s response to the two stimuli presented individually. The 

expected distribution was based on the sum of two control values computed for every 

combination of trials, for 100 trials (100 x 100). 100 trials were randomly selected 

(without replacement) from the distribution and averaged to give the predicted average 

response to bimanual stimulation. This was repeated 10,000 times to build a reference 

distribution of predicted responses and compare the observed response to this 

distribution, following the methods of Alvarado et al. (2007). The Kolmogorov-Smirnov 

test of normality was used for the observed responses (100 trials each) and the predicted 

responses (100 trials selected from 10,000 bootstrapped samples). When normality 

assumptions were met, paired t tests for matched samples were used; otherwise, 

nonparametric Wilcoxon signed rank tests were used. The modulation categories were 

―superadditive‖, ―subadditive‖, ―additive‖, ―suppressive‖, or ―no difference‖ from the 

response to the contralateral stimulus, similar to the methods of Stanford et al. (2005). 

―Superadditive‖ responses were greater than the predicted distribution by 2 times the 
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standard deviation of the distribution, and ―subadditive‖ responses were less than the 

predicted distribution by 2 times the standard deviation of the distribution.  

As an additional quantifier, a percent modulation calculation was also performed 

similar to the multisensory integration index (Meredith and Stein, 1983; Alvarado et al., 

2007) and suppression index (Jiang and Stein, 2003) using the following equation:  

% modulation = ((FRbimanual stimuli - FRcontralateral control) / FRcontralateral control)*100. 

 These calculations incorporated a correction to subtract the average baseline 

firing rate from the observed average firing rate, and the overall calculation is a 

subtraction of the response to the contralateral stimulus from the response to the 2-site 

stimulation, with the result divided by the response to the contralateral stimulus and 

multiplied by 100.  

 

Response Field 

Since we recorded from multiple neurons simultaneously using a 100-electrode 

array, the stimulus locations did not always coincide with the receptive fields of each 

neuron. We defined excitatory ―Response Fields‖ based on the neuron unit firing rates in 

response to above-threshold skin indentations with our stimulus probes. When a single 

site on the hand was stimulated, that site was classified as inside that unit‘s excitatory 

Response Field if the peak firing rate after subtracting the average baseline firing rate was 

greater than or equal to 3 times the standard deviation of the average firing rate for the 

population of neurons (see Chapter 3). For a given neuron, responses for all of the 

locations that were stimulated for a given experiment were compared. The maximum 

value for firing rate was found, and that stimulation location was designated as in the 
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center of that unit‘s Response Field. When the unit firing rate did not meet the criteria to 

be categorized as inside, the location was considered outside of the Response Field. This 

Response Field is a firing-rate-based estimate similar to the concept of the receptive field 

(as measured by suprathreshold stimulation) and was used to examine and classify spatial 

integration. When both hands were stimulated together, the Response Field designations 

during stimulation of the two single sites were combined.  

 

Data Classification  

Data were classified based on several conditions that were used in a statistical 

model to estimate the contributions of those factors to the observed latencies and firing 

rates. These factors were the temporal relationship of the stimuli, the spatial relationship 

of the stimuli, and the neuron‘s Response Field relationship to the stimuli (Figure 5-1). 

For the temporal stimulation condition, the preferred control was the contralateral 

location in a stimulus pairing, and the paired stimulus conditions included presentations 

of the ipsilateral stimulus with the contralateral stimulus simultaneously (0 ms) or 

preceding the contralateral stimulus by 10, 30, 50, 100, or 500 ms. The spatial 

relationship of the stimuli refers to the stimulus probe placement on mirror or nonmirror 

locations on the two hands. The paired hand locations stimulated included ―mirror 

locations‖ for monkey 2 on left and right distal digit 2 (dD2) and left and right distal digit 

3 (dD3); and for monkey 3 on left and right distal digit 4 (dD4), left and right palm pad 3 

(P3), and left and right palm pad 4 (P4). Stimulation on ―nonmirror locations‖ included 

for monkey 2 left middle D3 with right dD2, left middle D4 with right dD2, left dD2 with 

right dD3, left middle D4 with right dD3, and left dD4 with right dD3; and for monkey 3 
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left distal digit 5 (dD5) with right dD4 and left dD5 with right palm pad 3 (monkey 3). 

The relationship of the paired stimuli to the Response Field of the reference unit was 

included as a factor that could influence the firing rate and latency. Although we allowed 

for the possibility that units would respond to the ipsilateral stimulus, the ipsilateral 

stimulus was outside of the Response Fields of all the units collected and included in this 

analysis. As such, the combined categories were outside-outside (OUT_OUT), inside-

outside (IN_OUT), and center-outside (CN_OUT). Finally, we classified the data into 

single units (SU) and multi-units (MU) and tested this factor for influence on response 

latency and peak firing rate. 

 

Summary Analysis 

The values we obtained for excitatory response latency and peak firing rate from 

Matlab were summarized in Excel and imported into SPSS 17.0 (SPSS, Inc., Chicago, IL) 

for further analysis. The data distributions differed from the normal and Poisson 

distributions (Kolmogorov-Smirnov 1-sample test); therefore, we employed Generalized 

Estimating Equations (for correlations in data due to repeated measures) in SPSS to 

analyze this complex dataset. (For detailed information regarding Generalized Estimating 

Equations analysis, refer to Liang and Zeger, 1986; Zeger and Liang, 1986; Hardin and 

Hilbe, 2003.) We tested several parameters, and the final statistical model parameters for 

both latency and firing rate results were based on a gamma probability distribution with 

the log link function, a first-order autoregressive correlation matrix, and a robust model 

estimator. See Chapter 3 and Appendix A for detailed descriptions of use of the 

Generalized Estimating Equations method. In these models, latency or peak firing rate 
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acted as the dependent variable and the predictor variables included: the temporal 

stimulus relationship, the spatial relationship of stimuli, the relationship of the stimulus to 

the Response Field of the neuron unit, and the classification of the unit as a single- or 

muli-unit. (See depictions of the predictor variable categories in Figure 5-1.) The 

Bonferroni correction for multiple comparisons was applied, and the Wald Chi-Square 

statistic was used to test the significance of the effects of the statistical model. The 

Generalized Estimating Equations analysis provides estimates of the population averages 

of the dependent variable based on the values of the predictor variables and provides 

estimates for the significance of the effects.  

 

Results 

 

We obtained single- and multi-unit recordings from 100-electrode arrays 

implanted in cortical layer 3, primarily from area 3b, of two owl monkeys during 

stimulation on selected locations on the ipsilateral and contralateral hand. Figure 5-2 

depicts the placement of the electrode arrays in the left hemispheres of each of the 

monkey cases, as determined from receptive field mapping during the recording 

procedures and myelin staining patterns in sections of flattened cortex. The numbers of 

units meeting the criteria for analysis were as follows: 117 single units (SUs) and 152 

multi-units (MUs) from case 2; and 132 SUs and 121 MUs from case 3. Data were 

collapsed across the two monkeys for summary analysis. The numbers of SUs and MUs 

in the summary analysis were based on unique combinations of units and stimulus 

conditions. 
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Figure 5-1. Schematics depict data categories used for summary analysis. A. Temporal stimulation is 

depicted by solid lines indicating the duration the stimulus probe indents the skin (0.5 s), indentation depth 

(0.5 mm), and duration the probe is off of the skin per stimulus cycle (2.0 s). Paired stimulation, indicated 

by Probe 1 and Probe 2, may be simultaneous or asynchronous. To depict overlap in contact time of the 

asynchronous stimulation, the gray line is shifted relative to the black line. B. Locations of the two stimulus 

probes on schematics of the owl monkey hand illustrate the spatial proximity category on matching sites on 

the two hands (Mirror), on non-matching sites (Nonmirror), or on the contralateral hand alone (Single). C. 

Black shading on schematics of the owl monkey hand indicates the center of the Response Field for a 

hypothetical neuron. Gray shading on the hand indicates locations inside the Response Field, but outside 

the center ―hotspot‖ for the hypothetical reference neuron. The locations of the two probes indicate the 

stimulus location relative to the Response Field. D. Data were also classified by the quality of the signal 

isolation into single units (SU) or multi-units (MU). Examples of each unit type are shown from monkey 
case 3. The trace window for each unit type shown spanned 128 µV and 1.6 ms.  



 205 

 A series of example rasters and histograms in Figure 5-3 shows one neuron‘s 

responses to ipsilateral, contralateral, and bimanual stimulation on matching, mirror 

locations. Figure 5-4 shows the responses of the same neuron when the paired stimulation 

sites were located on non-matching, nonmirror locations. The effects in this example 

neuron resemble the population results; such that ipsilateral stimulation suppressed 

responses to contralateral stimuli, and this effect was slightly more pronounced when the 

stimuli were presented on mirror locations instead of nonmirror locations. We examined 

changes in the response latency and peak firing rate compared to those during contra-

lateral stimulation under these varying spatial and temporal conditions.  

 

Contributions to the Variance of Peak Firing Rate and Response Latency 

We collected 1743 SU firing rate observations and 1911 MU firing rate 

observations that met the inclusion criteria under the spatiotemporal stimulus conditions. 

The mean peak firing rate for the observed values in the dataset was 19.37 spikes/s (SD 

25.14) and the median peak firing rate was 11.32 spikes/s. We obtained fewer response 

latencies than firing rate observations because not all firing rates were significantly 

greater than the baseline in response to stimulation. We collected 1322 SU response 

latencies and 1558 MU response latencies that met our inclusion criteria under the 

spatiotemporal stimulus conditions. The mean response latency for the observed values in 

the dataset over all conditions was 23.74 ms (SD 6.91) and the median response latency 

was 22.20 ms. The modeling analysis predicted that several factors influenced the peak 

firing rate values; and these spatiotemporal stimulus conditions affected peak firing rate 

more than latency. 
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Figure 5-2. Schematic reconstructions show 100-electrode array placement in two owl monkey cases. A. A 

schematic of the owl monkey brain is shown with area 3b highlighted. The orientation of the brain is 

indicated by the arrows. R = rostral and M = medial. B-C. The placements of the 100-electrode array in 

each case tended to cover a large part of the area 3b hand representation. The 1 mm scale bar refers to the 

array size for both monkey cases.  
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Figure 5-3. Example histograms depict changes in response to bimanual stimulation on mirror locations. 

Traces of the unit waveforms are inset (unit 074a from case 2). Histograms smoothed by a spike density 

function over 100 trials are shown: when each hand was stimulated individually; then for both locations 

simultaneously; and for trials when the ipsilateral (left) stimulus was presented at intervals before the onset 

of the contralateral (right) stimulus. Each stimulus duration was 500 ms, indicated by the line on the x-axis. 

Vertical dashed lines indicate latency. Generally, peak firing rates were suppressed by bimanual 

stimulation.  
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Figure 5-4. Example histograms from a single unit depict peak firing rate and latency changes in response 

to bimanual stimulation on nonmirror locations. The traces of the unit waveforms recorded for the given 

stimulation series are inset in the upper left histogram (unit 074a from case 2, same as Figure 5-3). 

Stimulation on nonmirror locations resulted in less suppression in the same unit shown in Figure 5-3 

compared to responses during stimulation on mirror locations. In both cases, the firing rate response 

dropped to its lowest level when the ipsilateral stimulus preceded the contralateral stimulus by 100 ms. 
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Tests of the model effects were performed using the Wald Chi-Square statistic for 

significance of main effects and selected 2-, 3-, and 4-way interactions (Tables 5-1, 5-2). 

The results for which significance calculations are reported are estimates of the peak 

firing rate and latency values based on the analysis (rather than the observed data values). 

Deviations between the observed data values and the predicted estimates were slight, and 

the estimates from the analysis followed the trends in the data. Plots in Figures 5-5 and 5-

6 are observed values. 
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Temporal Stimulation Relationship 

As expected based on the work of others, we found decreases in peak response 

magnitudes compared to contralateral stimulation (17.44 spikes/s ± 0.59) for all of the 

temporal stimulation conditions in which the ipsilateral stimulus was presented 

simultaneously with or preceding the contralateral stimulus. As shown in Figure 5-5A, 

maximum suppression was found when the ipsilateral stimulus was presented 100 ms 

before the onset of the contralateral stimulus (12.67 spikes/s ± 0.71, P < 0.0005). The 

longest stimulus onset delay of 500 ms allowed the contralateral response to recover 

nearly to control levels (15.93 spikes/s ± 0.81, P = 0.428). The remaining pairwise 

comparisons with contralateral control stimulation are as follows: 0 ms = 14.00 spikes/s ± 

0.76, P < 0.0005; 10 ms = 15.02 spikes/s ± 0.80, P = 0.003; 30 ms = 14.43 spikes/s ± 

0.80, P < 0.0005; and 50 ms = 14.22 spikes/s ± 0.80, P < 0.0005. Thus, the inter-

hemispheric effects on the responses to contralateral stimulation occurred not only when 

stimuli were presented simultaneously, but they had a maximum suppressive effect when 

the onset of the ipsilateral stimulus preceded the contralateral stimulus by 100 ms. 

Unlike peak firing rate, the response latency to the contralateral stimulus was not 

significantly affected by the presentation of the ipsilateral stimulus (P = 0.094, Figure 5-

5B). Thus, ipsilateral stimulation in conjuction with contralateral stimulation did not 

affect the latency of responses, but did affect the peak response magnitude. 
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Figure 5-5. Peak firing rates and response latencies differ across spatial and temporal stimulus factors. 

Error bars represent 95% confidence intervals. Asterisks (*) indicate significant differences relative to the 

first category in each panel. A. Means of peak firing rates (spikes/s) are plotted for each temporal 

stimulation category. On the x-axis, ―Single‖ refers to the contralateral stimulus, and numbers refer to the 

delay between the onset of the ipsilateral stimulus and the onset of the contralateral stimulus. Contralateral 

stimulation resulted in differences from all groups except the 500 ms onset delay group. B. Means of 
latencies (ms) were not significantly different for temporal stimulation conditions. C. Means of peak firing 

rate values are plotted for the spatial proximity conditions in which the stimuli were on matched locations 

on the two hands (Mirror), when the stimuli were on different digits of the hands (Nonmirror), and when a 

single site on the contralateral hand was stimulated (Single). Peak firing rates were suppressed by mirror 

and nonmirror bimanual stimulation compared to single-site contralateral stimulation, but mirror and 

nonmirror groups were not significantly different from each other. D. Mean latencies were not significantly 

different for the spatial proximity categories. E. Means of peak firing rates for each type of Response Field 

relationship show that peak firing rates were lower when the stimuli were outside of the Response Field 

(OUT_OUT) compared to when the contralateral stimulus was inside the Response Field (IN_OUT, 

CN_OUT). IN_OUT and CN_OUT groups were not significantly different from each other. F. Differences 

in mean response latencies for the Response Field relationships were not statistically significant.  
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Spatial Stimulation Relationship 

Bimanual stimulation resulted in suppression of peak firing rates compared to 

contralateral stimulation alone (Contralateral = 17.44 spikes/s ± 0.58; Mirror = 14.62 

spikes/s ± 1.03, P = 0.010; Nonmirror = 14.08 spikes/s ± 0.80, P < 0.0005; Figure 5-5C). 

Stimulation on mirror digits was not different from stimulation on nonmirror digits (P = 

1.000). Also, presenting paired stimuli on mirror or nonmirror hand locations did not 

impact the latency of the response to contralateral stimulation (P = 0.983, Figure 5-5D). 

Therefore, the interhemispheric effects were not strongly topographically matched.  

 

Response Field Relationship 

Shown in Figure 5-5E, when both stimuli were outside of the Response Field 

(OUT_OUT, 6.08 spikes/s ±0.51), the peak firing rates were significantly lower than 

other conditions when the contralateral stimulus was inside the Response Field (IN_OUT, 

25.01 spikes/s ± 2.08; P < 0.0005; CN_OUT, 20.29 spikes/s ± 1.66; P < 0.0005). The 

highest firing rates were found when the contralateral stimulus was within the Response 

Field of the reference unit, and the responses in these two categories were not 

significantly different (IN_OUT and CN_OUT, P = 0.229). Thus, the location of the 

contralateral stimulus in relation to the Response Field of the reference unit had a large 

effect on the firing rate; and the interaction of Response Field with the temporal stimulus 

relationship was a significant source of the variance in firing rates (P < 0.0005, Table 5-

1).  

While the Response Field relationship may exhibit a weak tendency to affect the 

latency of the response to the contralateral stimulus (P = 0.079, Table 5-2) such that 
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latencies are longer when the paired stimuli are both outside the Response Field, none of 

the pairwise comparisons between the Response Field categories were significantly 

different from each other (Figure 5-5F). Thus, the Response Field categorization affected 

the variance in peak firing rates but had little effect on latencies. 

 

Unit Isolation 

Peak firing rate responses of MUs were slightly but significantly higher than those 

of SUs (MU = 16.05 spikes/s ± 1.06; SU = 13.22 spikes/s ± 0.92; P = 0.043; Figure 5-

6A). Similarly, excitatory response latencies of MUs were slightly, but significantly 

faster than those of SUs (MU = 22.37 ms ± 0.33; SU = 25.44 ms ± 0.42; P < 0.0005; 

Figure 5-6B). 

 

 

Figure 5-6. Peak firing rates and response latencies differ between single units and multi-units. Error bars 

represent 95% confidence intervals for both panels. Asterisks (*) indicate significant differences relative to 

the single unit category. A. On average, multi-units (MU) had higher peak firing rates than single units 

(SU). B. Multi-units had shorter latencies than single units, on average. 
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Interactions and Summary 

Although the effect of the spatial stimulus relationship was not a significant 

source of variance in the statistical model, the interaction of temporal stimulus 

relationship with spatial stimulus relationship was significant for peak firing rate (P = 

0.001; Table 5-1) and for latencies (P = 0.003, Table 5-2). This interaction effect resulted 

from the suppression relative to contralateral stimulation (17.44 spikes/s ± 0.59) that was 

stronger during simultaneous stimulation of mirror locations (13.40 spikes/s ± 1.02; P = 

0.002) than simultaneous stimulation on nonmirror locations (14.63 spikes/s ± 1.13, P = 

0.328), and the suppression when stimuli were applied asynchronously at 10 ms delays 

was weaker for stimulation on mirror locations (15.99 spikes/s ± 1.16, P = 1.000) than for 

nonmirror locations (14.11 spikes/s ± 0.42, P = 0.039). In contrast, latencies in response 

to bimanual stimulation differed most from latencies in response to contralateral 

stimulation alone (24.76 ms ± 0.37) when the stimulation sites were on nonmirror 

locations and the ipsilateral stimulus preceded the contralateral stimulus by 30 ms (22.89 

ms ± 0.46, P = 0.026). However, this latency difference and all other pairwise differences 

in latency were very small (1-2 ms differences), and were thus not convincing 

contributions to the variance in latencies.  

Notably, the interaction between the temporal stimulation category and the unit 

isolation was not significant for peak firing rate (P = 0.511, Table 5-1) or latency (P = 

0.863, Table 5-2). This indicates that single units and multiunits behave similarly rather 

than differently in response to the temporal stimulation. The 3- and 4-way interactions 

tested were not significant sources of variance and are not displayed graphically. Since 

the interaction of all four factors, including the signal isolation, did not contribute to the 
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variance in the peak firing rates (P = 0.114, Table 5-1) and latencies (P = 0.662, Table 5-

2), our results provided further indications that single- and multi-units appeared to behave 

in similar ways in response to the spatiotemporal stimulation conditions. 

In summary, the peak firing rate in response to contralateral stimulation was 

affected by the temporal relationship of the onsets of the contralateral and ipsilateral 

stimuli. While there was little difference on average between peak firing rates when the 

paired stimuli were presented to mirror or nonmirror locations on the hand, there was a 

significant spatiotemporal interaction effect on peak firing rate. In contrast, the latency in 

response to the contralateral stimulus was affected little by the spatiotemporal 

relationship with the ipsilateral stimulus. 

To depict population responses from recordings across the 100-electrode array, 

we plotted the peak firing responses in a color map of the array for a subset of stimulus 

parameters in each of the two monkeys during stimulation on mirror (Figure 5-7A) and 

nonmirror locations (Figure 5-7B). Individual neuron units (represented by colored 

squares) sometimes showed different changes in firing rate under the same stimulation 

parameters, but the color map plots are not easily quantified. Therefore, we calculated a 

trial-by-trial modulation index for each unit to determine whether paired bimanual 

stimulation affected the response to the contralateral stimulus.  
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Figure 5-7. Peak firing rates represented as color maps across the 100-electrode array during bimanual 
stimulation on mirror and nonmirror locations. Each square represents an electrode in the array and the 

peak firing rate value averaged over 100 trials during the 50 ms response window. The color scale ranges 

from 5 to 85 spikes/s with hot colors representing higher peak firing rates. Electrodes from which no 

significant responses were obtained during the stimulation are indicated in dark blue (no squares). The 

dashed lines indicate approximate locations of the representations within area 3b. A. Peak firing rates in 

case 2 during a stimulation series on mirror locations on distal digit 2 (dD2) show that no driven activity (> 

5 spikes/s) was found when a single site on the ipsilateral digit was stimulated (top left). As expected, 

activity was evoked when the contralateral digit was stimulated (top right). When the two mirror sites were 

stimulated simultaneously (lower left), peak firing rates decreased on average across the recording area. 

When the ipsilateral digit was stimulated 100 ms before the onset of the contralateral stimulus, the overall 

suppression was maintained and some units were further suppressed (lower right). B. Peak firing rates in 

case 3 during a stimulation series on nonmirror locations show similar trends to those found during 

stimulation on mirror locations. No driven activity was found when a single site on the ipsilateral distal 

digit 5 (LdD5) was stimulated (top left), and driven activity was found when the contralateral distal digit 4 

(RdD4) was stimulated (top right). When both locations were stimulated simultaneously (lower left), the 

activity across most electrodes decreased, but activity on some electrodes increased. When the ipsilateral 

site was stimulated 100 ms before the onset of the contralateral stimulation (lower right), most units were 
suppressed or unchanged compared to simultaneous bimanual stimulation.  
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Firing Rate Modulation Index 

We analyzed the single unit and multi-unit data together for firing rate modulation 

calculations because single units were not significantly different from multi-units (P = 

0.261). Summarizing over the stimulation parameters, we found that the majority of unit 

responses were suppressed by paired ipsilateral stimulation (1865/2994, 62.3%). About 

one third (1005/2994, 33.6%) of the unit responses to contralateral stimulation were not 

significantly changed by ipsilateral stimulation. Only about 4% of unit responses 

(124/2994) were facilitated by ipsilateral stimulation. The presence of response 

facilitation is somewhat unexpected, but only a small proportion of responses showed this 

form of modulation during bimanual stimulation. 

When we tallied the response modulation types based on the spatial and temporal 

stimulus characteristics, we found that stimulation on mirror and nonmirror locations in 

which the stimulus probes were within or outside of the neuron‘s Response Field resulted 

in the same basic trends (Figures 5-8, 5-9). Facilitation occurred rarely, but when 

facilitation was found, the ipsilateral stimulus was presented at short onset delays (0, 10, 

or 30 ms) before the contralateral stimulus. Suppression occurred with increasing 

frequency as the stimulus onset delays increased. Particularly when mirror locations were 

stimulated, the most instances of suppression were found when the ipsilateral stimulus 

preceded the contralateral stimulus by 100 ms. When the contralateral (and ipsilateral) 

stimulus location was outside the neuron‘s Response Field, the proportion of suppressive 

responses was nearly equivalent to the proportion of responses that did not change during 

bimanual stimulation compared to contralateral stimulation alone. Overall, the dominant 
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effect of a preceding ipsilateral stimulus was to suppress the response to the contralateral 

stimulus at long onset delays (50, 100, or 500 ms).  

 In addition to the increased number of suppressed responses with increasing 

stimulus onset delays, the magnitude of the suppression increased as well (Figure 5-10). 

The greatest percentage of suppression occurred when the ipsilateral stimulus preceded 

the contralateral stimulus by 100 ms. The magnitude of facilitation changed in an 

opposing manner. The magnitude of facilitation was very low when the stimuli were 

presented at long onset delays, and reached 10% or greater when the stimuli were 

presented within 10 ms of each other. The magnitude of suppression was low, but still 

around 20% when stimuli were presented at short onset delays, and increased in 

magnitude when stimuli were presented at long onset delays. In general, both mirror and 

nonmirror stimulation resulted in the same trends; however, the effects on modulation 

magnitude were more pronounced when mirror locations were stimulated. 

 

Discussion  

 

The goal of this study was to quantify the contributions of spatial and temporal 

stimulus properties to the response properties of neurons in primary somatosensory 

cortex when tactile stimuli were applied to both hands. To address this goal, we recorded 

the activity of single neurons and multi-neuron clusters in owl monkeys using a 100-

electrode array implanted in the left hemisphere of primary somatosensory cortex and 

presented stimuli on mirror and nonmirror locations on the hands with selected stimulus 

onset delays. Overall, stimulation on the two hands had weak effects on the latency of 

responses to contralateral stimuli (Table 5-2, Figure 5-5). However, the spatiotemporal 
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Figure 5-8. Suppression dominates observations of firing rate modulation across spatiotemporal stimulus 

conditions at longer stimulus onset asynchronies. Comparing the expected sum of the responses to 

ipsilateral and contralateral stimulation to the actual responses resulted in modulation categories of: ―No 

Difference‖ compared to the response to the contralateral stimulus alone, ―Facilitative‖ compared to the 

summation of the responses of the controls, and ―Suppressive‖ compared to the response to the 

contralateral control. Shaded bars represent the modulation categories. The types of paired stimulation 

conditions are grouped on the x-axis referring to the stimulus onset delays from 0 to 500 ms, in which the 

contralateral stimulus was always presented after the ipsilateral stimulus. The row panels show the total 

counts of these categories for the two spatial stimulus proximity categories, ―Mirror‖ and ―Nonmirror‖. The 

column panels divide the data based on the Response Field category: ―OUT_OUT‖, ―IN_OUT‖, and 

―CN_OUT‖. As expected, we collected fewer responses to stimulation when both stimulation sites were 

outside the Response Field of the neuron, and the counts reflect this, but the trends were the same across 

the categories. Suppression dominated the modulation types, particularly at longer stimulus onset delays 

(50-500 ms); whereas many responses were classified as ―no difference‖ for short stimulus onset delays (0-
30 ms). Facilitation occurred rarely, but was predominantly found when the stimulus onset delays were 

short (0-30 ms).  
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Figure 5-9. Percentage of responses per temporal stimulation category provides the proportions of 

responses which were facilitated, suppressed, or unchanged relative to the sum of the responses to 

ipsilateral and contralateral stimulation. These data are the same as those in Figure 5-8; however, instead of 

showing the counts of observations, the percentage of responses exhibiting each modulation type were 

calculated within each temporal stimulus relationship category on the x-axis. Additionally, the data were 

summarized across all of the Response Field relationships because similar trends were found across these 
categories. For stimulation on mirror and nonmirror locations, at short temporal stimulus asynchronies, 

fewer responses differed from the expected sum of the ipsilateral and contralateral responses. As the delay 

between stimulus onsets increased, the proportion of responses that were suppressed increased. The greatest 

proportion of responses were suppressed when the ipsilateral stimulus preceded the contralateral stimulus 

by 100 ms (88% of responses were suppressed during mirror stimulation, and 85% were suppressed during 

nonmirror stimulation). Facilitation was rare, but occurred primarily when the two hands were stimulated 

nearly simultaneously (17% of responses were facilitated when mirror locations were stimulated with the 

10 ms onset delay, and 10% were facilitated when nonmirror locations were stimulated with the 10 ms 

onset delay).  
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Figure 5-10. The percentage of facilitation and suppression was quantified to provide an index for how 

much the peak firing rates during paired stimulation differed from expected across the temporal stimulation 

conditions (x-axis). The values are collapsed across the Response Field categories, but separate panels 

show the effects for stimulation on Mirror locations and Nonmirror locations. The plots have dual y-axes 

such that the mean percentage of suppression in each category is shown by the gray bars and the values 

follow the left axis. The mean percentage of facilitation is shown by the red line and data markers and the 

values follow the right axis. Error bars are 95% confidence intervals. Using this index, when the response 

to paired stimulation does not differ from the contralateral response, the value is zero. The average 

percentages for suppression and facilitation include the zero values. The magnitude of facilitation dropped 

near zero when stimulus onsets were separated by 50–500 ms and hovered around a 10% difference when 

stimulus onsets were closer in time. The average magnitude of suppression was low when the stimulus 

onsets were close in time, and increased when the stimulus onsets were separated by longer delays. 

Responses were suppressed the most on average, by 92%, when mirror locations were stimulated with a 

100 ms delay in stimulus onsets.  
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relationships of the bimanual stimuli significantly affected the peak firing rates in 

response to contralateral stimuli (Table 5-1, Figures 5-5, 5-8). Although SUs and MUs 

had significantly different estimated mean values for peak firing rate and latency, they 

appeared to behave similarly in response to the spatiotemporal stimulation conditions 

since the interaction factors in the statistical analysis were not significant (Tables 5-1, 5-

2). In other words, the mean values of the peak firing rate differed between these groups, 

but when single units decreased in peak firing rate, multi-units decreased in peak firing 

rate as well. Since latency was little changed by the spatiotemporal stimulus properties, 

we discuss latency first, and then discuss the effects on measures of firing rate.  

 

Response Latency Is Influenced Little by Bimanual Stimulation 

 The response latencies in our data set did not vary much with the spatiotemporal 

properties of bimanual stimulation (Figure 5-5). Although we found a statistical 

interaction between the temporal stimulus relationship and the spatial stimulus 

relationship (P = 0.003, Table 5-1), the latency differences were only about 1-2 ms, and 

thus were not convincing. While the main spatiotemporal effects analyzed in this study 

were not statistically convincing contributors to the variance in response latencies, we 

found a trend that response latencies were longer when the stimulus was located outside 

the Response Field of the neuron unit (Figure 5-5F). This result is consistent with the 

finding that latencies tend to increase (lengthen) when firing rates decrease (e.g., Boloori 

and Stanley, 2006), as peak firing rates were low when the stimulus was outside the 

Response Field (by definition). Both of these results correspond to our findings on the 
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effects of spatiotemporal bimanual stimulation parameters on firing rate (see next section 

on Peak Firing Rate). 

 Overall, the effects of bimanual stimulation on response latencies of area 3b 

neurons in primates have not been well-described. However, the effects of unilateral 

stimulation of the ipsilateral and contralateral hands alone have been described in area 3b 

neurons in macaque monkeys (Lipton et al., 2006). In current source density analysis of 

the field potentials, the onset latency of the ipsilateral response (mean ~ 23 ms) was 

longer  than the contralateral response (mean ~ 6.4 ms) and the activity began in the 

extragranular layers rather than the granular layers. This suggests a feedback process is 

responsible for the cortical activity in response to ipsilateral median nerve stimulation. 

(Lipton et al., 2006) Our electrode recordings were taken only from the supragranular 

layers; however, we expect that our stimulation conditions would evoke laminar profiles 

similar to those found in macaque monkeys. There is evidence that findings in monkeys 

may be similar to findings in humans. In subsets of patients in evoked potential studies 

(Noachtar et al., 1997) and magnetoencephalography (MEG) studies (Zhu et al., 2007), 

ipsilateral primary somatosensory cortex responded to unilateral median nerve 

stimulation or tactile stimulation, and these ipsilateral responses occurred with longer 

latency than the contralateral responses (1.2-17.8 ms delay for evoked potentials, 3.5-24 

ms delay for MEG signals). Rather than finding ipsilateral activation in subsets of human 

subjects, reliable detection (10/10 subjects) has been reported recently for evoked 

potentials in response to unilateral median nerve stimulation (Sutherland and Tang, 

2006); thus, we do not expect that ipsilateral activation is found only in monkeys and 

subsets of humans. We did not observe significant changes in firing rate of neurons to 
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stimulation on the ipsilateral hand alone; therefore, we did not have latency values to 

compare between ipsilateral and contralateral stimulation alone. The responses to 

bimanual stimulation occurred after the ipsilateral information was integrated within the 

individual neurons, and our average response latency value was ~ was 24 ms (SD 6.91).  

 Although we did not find striking changes in response latency based on the 

spatiotemporal parameters of bimanual stimulation, these results provide new information 

regarding the response latency in area 3b neurons during bimanual stimulation and are 

consistent with hypothesis that the effects in area 3b are mediated by feedback 

connections with diffuse projection patterns (e.g., Cusick et al., 1989; Darian-Smith et al., 

1993; Burton and Fabri, 1995; Burton et al., 1995; Angelucci et al., 2002; Shmuel et al., 

2005), such that stimulation on mirror versus nonmirror locations does not have a large 

influence on the neuron response properties. 

 

Peak Firing Rate Is Influenced by Bimanual Stimulation 

 As expected, firing rates were primarily suppressed by bimanual stimulation 

(Figure 5-5A, C). These results coincide with the predominance of suppressive 

modulation reported by others for primary somatosensory neurons in monkeys (Burton et 

al., 1998; Tommerdahl et al., 2006). We found the maximal suppression occurred when 

the ipsilateral stimulus preceded the contralateral stimulus onset by 100 ms (Figures 5-

5A, 5-8). To our knowledge, similar studies using the same stimulus onset asynchronies 

have not been published. However, using similar stimulation parameters, Greek et al. 

(2003) found that stimulation on adjacent digits on the contralateral hand of raccoons 

resulted in maximum response suppression of primary somatosensory cortex neurons at 
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interstimulus intervals between 20-40 ms. Under our stimulation conditions, we have 

found that maximum response suppression occurs in area 3b of owl monkeys at 

interstimulus intervals between 30-50 ms (see Chapter 3). Thus, maximum response 

suppression for bimanual stimuli occurs at longer stimulus onset delays than for paired 

unilateral stimuli.  

 Burton et al. (1998) did not find strong effects of paired ipsilateral and 

contralateral vibratory stimulation on area 3b neurons in awake, behaving macaque 

monkeys; however, in area 2 and S2 they found primarily response suppression when an 

ipsilateral stimulus preceded the contralateral stimulus. The authors reasoned that the 

neurons they studied in areas 3b and 1 may not have received subthreshold input from the 

ipsilateral hand (Burton et al., 1998). In contrast, we found suppressive effects in area 3b 

of anesthetized monkeys receiving passive pulse indentation stimulation. There may be 

differences between macaque and owl monkeys or the neurons sampled to account for the 

differences between our current findings with those of Burton et al. (1998). Nevertheless, 

we do not find our results to be at odds with other studies. In fact, from their discussion it 

appeared that Burton et al. (1998) expected to find suppressive effects in area 3b:  ―And 

we might have seen onset order effects in anterior parts of S1 with even smaller receptive 

fields because in-field inhibition is also found in this part of S1 (Alloway and Burton, 

1991). Failure to see stimulus order effects in all of the area 3b and most area 1 cells 

studied simply may be because none of these cells received even subthreshold excitatory 

drive from the ipsilateral hand.‖ 

 Like Burton et al. (1998), Calford and Tweedale (1990) indicated that bimanual 

stimulation of single neurons in primary somatosensory cortex of macaque monkeys and 
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flying foxes resulted in no differences from contralateral stimulation alone. They did, 

however, find evidence that interhemispheric interactions do occur and were revealed 

when a digit ipsilateral to the recorded neurons was amputated or anesthetized (Calford 

and Tweedale, 1990, 1991a,b). While Calford and Tweedale (1990, 1991a,b) did not 

quantify changes in peristimulus time histograms, they did report that receptive field 

sizes of neurons contralateral to the amputated or anesthetized digit increased.  

 Our results of firing rate suppression in area 3b neurons during bimanual 

stimulation are consistent with imaging studies in squirrel monkeys (Tommerdahl et al., 

2006). Using optical imaging of areas 3b and 1, Tommerdahl et al. (2006) found that 

simultaneous stimulation of the two hands resulted in suppression of the cortical activity 

compared to contralateral stimulation alone. Optical imaging revealed a small increase in 

activity in the contralateral cortex following stimulation of the ipsilateral hand alone that 

we did not observe in our extracellular recordings (Tommerdahl et al., 2006), and 

together these results are consistent with subthreshold activation of contralateral primary 

somatosensory cortex by ipsilateral input.   

 While the effects of bimanual stimulation have not been well-described for area 

3b neurons in primates, our findings relate to studies by others of unilateral stimulation. 

In fMRI and field potential analyses in macaque monkeys, Lipton et al. (2006) found that 

electrical stimulation of the ipsilateral median nerve resulted in the expected excitatory 

contralateral response as well as an ipsilateral response dominated by inhibition. 

Similarly, in subsets of human subjects, Hlushchuk and Hari (2006) found negative 

BOLD responses during tactile stimulation of the ipsilateral hand. These examples 
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illustrate that ipsilateral input is expected to provide subthreshold input to the 

contralateral hemisphere that is mostly suppressive. 

 Suppression by the presence of an ipsilateral stimulus was not a universal effect in 

our study, as some responses were facilitated or unchanged relative to contralateral 

stimulation alone (Figures 5-8, 5-9). Many neurons showed no effect of bimanual 

stimulation, but a subset showed facilitation of response magnitudes, and when these 

facilitations occurred, they were at short stimulus onset delays (Figures 5-8, 5-9). 

Facilitative response modulation during bimanual stimulation was unexpected based on 

the reports by others (Burton et al., 1998; Tommerdahl et al., 2006); however, the 

proportion of facilitation was low (4%) and was likely revealed based on our large 

sample of simultaneous electrophysiological recordings and our spatiotemporal 

stimulation parameters (Figure 5-10). 

 The effects on firing rate were not very topographically specific within the hand 

representation (Figures 5-5B, 5-8), as may be expected for effects mediated by diffusely 

distributed feedback connections (e.g., Cusick et al., 1989; Darian-Smith et al., 1993; 

Burton and Fabri, 1995; Burton et al., 1995; Angelucci et al., 2002; Shmuel et al., 2005). 

However, the statistical analysis revealed spatiotemporal interactions such that the most 

firing rate suppression (92%) occurred when the ipsilateral stimulus preceded the 

contralateral stimulus by 100 ms, particularly when mirror locations were stimulated 

(Table 5-1, Figure 5-10). In their optical imaging studies, Tommerdahl et al. (2006) 

found no difference between stimulating on mirror and nonmirror hand locations 

simultaneously; however, stimulating the contralateral hand and ipsilateral foot 

simultaneously did not differ from stimulating the contralateral hand alone. Like 
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Tommerdahl et al. (2006), we did not find significant differences between simultaneous 

stimulation on mirror and nonmirror locations, and only when we stimulated the sites 

asynchronously did we uncover topographic specificity related to interhemispheric 

interactions.  

 

Possible Significance 

 These results contribute to the understanding of spatiotemporal response 

properties that may relate to tactile discrimination and learning. As these studies were 

performed in anesthetized animals, the effects reflect the basic responses to passive 

stimulation without the influence of attention or task-relevance.  

 Suppression has roles in information transmission and is likely related to the 

―interference‖ effects revealed in psychophysical studies in humans. For example, Braun 

et al. (2005) found that suprathreshold stimuli applied to the left hand 200 or 500 ms 

before a near-threshold test stimulus on the right hand resulted in increased numbers of 

subject responses incorrectly identifying the location of the test stimulus. Thus, the 

presentation of the ipsilateral stimulus ―interfered‖ with the ability of subjects to correctly 

localize the contralateral stimulus. Our findings that suprathreshold ipsilateral stimuli 

suppressed responses to suprathreshold contralateral stimuli in many neurons sampled 

from area 3b (~ 62% of the responses) correspond well with human psychophysical 

studies such as from Braun et al. (2005). However, human neurophysiological studies do 

not consistently find that primary somatosensory cortex is suppressed by bimanual 

stimulation. For example, in a magnetoencephalographic (MEG) study, Hoechstetter et 

al. (2001) stimulated the two hands simultaneously and found that significant suppressive 
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interactions occurred in secondary somatosensory cortex, but not primary somatosensory 

cortex. Disbrow et al. (2001) found no significant differences in the latency and 

magnitude of the MEG response between stimulation on one hand versus two hands for 

primary somatosensory cortex. The fact that we found substantial numbers of neurons 

that were not affected by bimanual stimulation (~ 34% of the responses) may relate in 

part to the reasons why human studies have not found suppressive interactions between 

bimanual stimulation in primary somatosensory cortex. 

 Our results indicate that an underlying perceptual bias exists when locations on 

the two hands are stimulated so that in most cases, the presence of the ipsilateral stimulus 

interferes with and suppresses the response to the contralateral stimulus. However, in 

order to successfully perceive tactile stimulation, some neurons should be unchanged or 

even facilitated by the presence of an ipsilateral stimulation, as we found. Training of a 

contralateral finger on tactile pressure discrimination has been shown to transfer to the 

mirror ipsilateral finger (as well as to the adjacent contralateral finger) in humans; thus, 

learning of some tactile discriminations on the hands has been shown to have 

topographical organization (Harris et al., 2001). Firing rate suppression due to bimanual 

stimulation does not appear to be the best mechanism to result in such learning transfer. 

Thus, the 4% of neuron responses in our sample which were facilitative may relate to the 

subset of neurons in primary somatosensory cortex that mediate the accurate perception 

of tactile stimuli presented to both hands and transfer of tactile learning.  
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CHAPTER VI 

 

DIGITAL NERVE BLOCK ON ONE HAND AFFECTS RESPONSES TO 

STIMULATION ON THE OPPOSITE HAND IN OWL MONKEY PRIMARY 

SOMATOSENSORY CORTEX NEURONS 

 

 

Abstract 

 

When a single finger is anesthetized with local anesthetic, humans perceive 

increases in the size of that digit, and neurons recorded from primary somatosensory 

cortex of non-human primates expand their receptive field sizes associated with that digit. 

Additionally, receptive field sizes of neurons recorded in the cortex ipsilateral to the 

anesthetized digit expand. We focused on quantifying interhemispheric interactions in 

area 3b (primary somatosensory cortex) that correspond to these receptive field 

expansions. To accomplish this goal, we implanted a 100-electrode array in the left 

hemisphere of three owl monkeys to record neuron response magnitudes and latencies to 

stimulation on the right hand before and after blocking the nerves from one digit on the 

left hand with local anesthetic. We sought to determine how the location of the 

contralateral stimulus affected the neuron responses after the ipsilateral digit block. We 

expected that locations that were outside the neuron‘s receptive field before the digit 

block might respond to stimulation after the block, and neurons with receptive fields on 

the contralateral digit that matched the anesthetized digit might show facilitated 

responses to stimulation. The changes we found in peak firing rates and latencies were 

complementary, but did not precisely match these expectations, as stimulation did not 
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result in overall peak firing rate increases that we expected based on receptive field 

expansion. Thus, the electrophysiological responses are more complex than the 

homogeneous effect of receptive field expansion suggests. These quantitative results 

reveal both the heterogeneity of responses in primate area 3b and the relationship of the 

response types to the spatial location of the stimulation. 

 

Introduction 

 

Temporary digit denervations by local anesthetic injections induce short-term 

plasticity in primary somatosensory cortex and reveal sources of input to a region that are 

normally suppressed. Several studies on this phenomenon have been conducted to 

characterize changes in receptive field sizes in animal subjects (e.g., Calford and 

Tweedale, 1990, 1991a,b) and changes in perception (e.g., Gandevia and Phegan, 1999; 

Werhahn et al., 2002) or cortical activity (e.g., Werhahn et al., 2002; Waberski et al., 

2003, 2007) in humans. Studies by Calford and Tweedale (e.g., 1990, 1991a,b) reported 

that within a few minutes after a single digit is denervated by local anesthetic injections 

(or amputation in some studies), receptive fields of neurons representing that digit in the 

contralateral primary somatosensory cortex expand. In addition, receptive fields of 

neurons representing that digit (on the opposite hand) in the ipsilateral primary 

somatosensory cortex expand. The results of these denervation studies indicate that 

neuron responses are influenced by the spontaneous activity of neurons with receptive 

fields outside the recorded neuron‘s receptive field, even across the hemispheres. These 

interhemispheric effects were particularly surprising because while bilateral receptive 
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fields have been reported for higher somatosensory areas (for review, Iwamura, 2002), 

none have been reported for the 3b hand area (for review, Kaas, 1983); and area 3b has 

few to no callosal connections between the hand representations (Killackey et al., 1983). 

These studies did not characterize neuron response properties beyond mapping the 

receptive fields of neurons and did not completely describe the effects of denervation on 

heterotopic digits (i.e., when digit 1 was denervated, neurons which originally responded 

to contralateral or ipsilateral digit 1 and some neighboring skin sites were mapped). 

Therefore, in the current study we focused on quantifying the neuronal response 

properties of firing rate and latency rather than receptive field mapping, and we 

stimulated matching (homotopic) digits and nonmatching (heterotopic) sites relative to 

the injected digit. 

 To focus our efforts on quantifying the surprising interhemispheric effects, we 

blocked input from one digit and characterized the changes in responses to stimulation on 

the opposite hand in owl monkeys. Our aim was to reduce some of the spontaneous 

activity from the opposite hand to deduce the effects of normal levels of spontaneous 

activity and quantify the changes in neuron response properties, rather than to repeat 

studies which characterized receptive fields. One aspect missing from previous studies is 

an analysis of the spatial topography of the interhemispheric effects and the response 

property changes due to the location of the stimulus relative to the receptive field of the 

neuron. Since the presence of expanded receptive fields on the opposite hand suggests 

that tonic interhemispheric inhibition was removed after denervation (e.g., Calford and 

Tweedale, 1990, 1991a,b; Calford, 2002), we predicted that response properties of 

neurons in area 3b would reflect this disinhibition by increasing peak firing rate and 
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possibly shortening response latency. Some neurons that did not respond to stimulation at 

a particular location before denervation should respond to stimulation after denervation, 

if receptive field expansion corresponds to disinhibiting latent inputs to cortical neurons. 

In order to test these predictions, we measured neuron activity before and after a local 

anesthetic block of input from the ipsilateral hand to determine if neurons become more 

or less responsive to stimulation on the contralateral hand. Additionally, we sought to 

determine if the effects of local anesthetic blocking were specific to matched sites on the 

two hands or if the effects occurred diffusely across the hand representation. Since the 

area 3b hand representation receives few callosal projections from the homotopic area, 

feedback projections that area 3b receives from higher order somatosensory areas that do 

have callosal projections likely mediate some of the interhemispheric effects (Calford, 

2002, review). Feedback projections are somewhat diffusely somatotopically organized 

(e.g., Cusick et al., 1989; Darian-Smith et al., 1993; Burton and Fabri, 1995; Burton et 

al., 1995); therefore, the effects on neuron response properties may reflect such 

somatotopy. We also expected some variability in the response properties that may relate 

to the location of the stimulus inside or outside the receptive field of the neuron.    

 

Materials and Methods 

 

Three adult owl monkeys (Aotus trivirgatus), weighing between 1-1.5 kg, were 

subjects in these experiments. One of these monkeys (case 3, female, 1.2 kg) was used in 

studies related to normal tactile processing without local anesthetic injections (Chapters 3 

and 4). After beginning the experiment in case 5 (male, 1 kg), we discovered the distal 
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part of right digit 3 had been damaged (in an incident that was not included in medical 

records and must have occurred several years prior). This animal was wild-caught by 

another facility and the full medical history was unknown. The results of the experiment 

in case 5 are included as a comparison with the results from case 3 and case 4 (female, 

1.5 kg). Results from case 5 can be considered a case study on the effects of acute 

deafferentation of an ipsilateral digit following chronic deafferentation of part of a 

contralateral digit. 

 

Preparation 

 All procedures followed the guidelines established by the National Institutes of Health 

and the Animal Care and Use Committee at Vanderbilt University. Owl monkeys were 

prepared for electrophysiological recordings in the left hemisphere of primary 

somatosensory cortex as described previously (Reed et al., 2008). To briefly summarize, 

monkeys were anesthetized with propofol during surgery (10 mg/kg/hr, intravenous) and 

electrophysiological recording (0.3 mg/kg/hr). Monkeys were paralyzed with vecuronium 

bromide (0.1-0.3 mg/kg/hr, intravenous) mixed with 5% dextrose and Lactated Ringer‘s 

solution and were artificially ventilated with a mixture of N2O: O2: CO2 (75: 23.5: 1.5) 

at a rate sufficient to maintain peak end tidal CO2 at ~ 4%. For monkey 3 only, 1.2 

mg/kg sufentanil was added to the Lactated Ringer‘s solution during the surgical 

procedures in order to stabilize anesthetic depth. Following delivery of this amount of 

sufentanil, the monkey was maintained under anesthesia without supplemental sufentanil 

during recording experiments. The 100-electrode array (Blackrock Microsystems, Salt 

Lake City, UT) was inserted to a depth of 600 µm using a pneumatic inserter so that the 
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electrode tips were expected to be located within layer 3 of the left hemisphere of anterior 

parietal cortex.  

 

Local Bupivacaine Injections 

We administered local anesthetic, 0.25% bupivacaine hydrochloride, from here on 

referred to as bupivacaine, to a single digit ipsilateral to the recording electrodes in each 

monkey. In case 5 we administered 0.1 cc to each side of the base of the digit (digit 5). In 

cases 3 and 4, we administered 0.05 cc to each side of the base of the digit (digits 4 and 5, 

respectively). The total volumes of 0.25% bupivacaine (0.1 and 0.2 mL) we used for 

digital nerve block in owl monkeys were adapted from values commonly used in humans 

(~0.03 mg/kg). In each monkey, only one digit was injected with bupivacaine and the 

responses to stimulation before and after bupivacaine injection were recorded in one day. 

Other studies exploring the effects of local anesthesia on receptive field size used 

lidocaine rather than bupivacaine (e.g., Calford and Tweedale, 1990, 1991a,b). A recent 

study (Alhelail et al., 2009) comparing bupivacaine (0.5%) and lidocaine (1%) with 

epinephrine for digital nerve blocks in humans confirmed that the duration of anesthesia 

induced by bupivacaine tends to be longer than that induced by lidocaine (median = 701 

min and 321 min, respectively; P < 0.05). We chose bupivacaine for its longer duration of 

action compared to lidocaine. Alhelail et al. (2009) also found no difference in the onset 

of anesthesia (tested by pin pricks) between bupivacaine (median = 3.30 min) and 

lidocaine with epinephrine (median = 3.45 min; P = 0.84). Additionally, digital injections 

of 0.25% bupivacaine induced local anesthesia within the same period of time as a 1:1 

mixture of 1% lidocaine and 0.25% bupivacaine (Valvano and Leffler, 1996); therefore, 
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we do not expect that our use of bupivacaine resulted in qualitatively different effects 

from the use of lidocaine in other studies beyond the increased duration of anesthesia.  

We emulated traditional digital block methods used in patients (for brief review, 

Scarff and Scarff, 2007). When properly performed, pin prick tests confirm that the entire 

digit becomes anesthetized following this procedure. While we had no confirmation of 

the anesthetic effect from our owl monkey subjects, we inferred the onset and 

approximate duration of the neural effects based on receptive field mapping. Recordings 

of neuron responses to mechanical stimulation were made beginning a few minutes after 

bupivacaine injection and continued until the effects of the bupivacaine appeared to wane 

(~2.5-6 hours) based on receptive field mapping of a selected electrode channel. 

 

Tactile Stimulation and Recording Procedures 

Our equipment and stimulus parameters have been described previously (Reed et 

al., 2008; Chapter 3). Briefly, stimuli were provided by two independent force- and 

position-feedback controlled motor systems (300B, Aurora Scientific Inc., Aurora, ON, 

CA), with contact made by round Teflon probes 1 mm in diameter. Stimuli consisted of 

pulses that indented the skin 0.5 mm for 0.5 s, followed by 2.0 s off of the skin, repeated 

for at least 255 s (100 trials). In one owl monkey, case 4, the stimuli were delivered using 

a Chubbuck stimulator (Chubbuck, 1966) with a 1 mm diameter probe (because the 

primary stimulator was undergoing hardware servicing). Stimuli were applied before and 

after injecting bupivacaine into one digit on the left (ipsilateral) hand while recordings 

were made from the left hemisphere. The fingernails were glued (cyanoacrylic) to Teflon 

screws fixed in plasticine to keep the hand stable during stimulus blocks. We marked 
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stimulus locations on the skin with permanent marker as well as on a drawing of the hand 

in order to place the stimulus probe as close as possible to the same locations before and 

after bupivacaine injections. Recordings after bupivacaine began after receptive field 

mapping of a selected electrode channel revealed receptive field expansion. This occurred 

within the first 7-20 minutes after bupivacaine injection. All of the recordings after 

bupivacaine included in the analysis were made before the receptive mapping of the 

selected channel indicated that the receptive field size had returned to the original size 

before bupivacaine injection. For both cases 4 and 5, all recordings included in the 

analysis were made within 2.5 hours after bupivacaine injection. For case 3, most of the 

recordings were made within 2.5 hours, but 3 recordings were made up to 4.5 hours after 

the bupivacaine injection.  

In addition to controlled stimulation, we manually applied light tactile stimulation 

to map the minimal receptive fields (mRFs) of selected electrodes. As we have previously 

described (Reed et al., 2008), the mRF was defined as the region of skin where a near-

threshold light touch with a probe reliably evoked spikes from the recorded neurons. We 

followed typical procedures for mRF mapping (e.g., Merzenich et al., 1978; Nelson et al., 

1980). We determined mRFs for each responsive electrode in the array at least one time 

during the experiment. We then focused on selected electrodes to map before and after 

bupivacaine injection. Mapping mRFs served two purposes: 1) to indicate the effect of 

local anesthetic by receptive field expansion and 2) to aid our reconstruction of the 

electrode locations as within and outside of area 3b.  

We used the 100-electrode array and the Bionics Data Acquisition System (now 

Blackrock Microsystems, Salt Lake City, UT) to record signals from single neurons and 
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multi-neuron clusters. The signals on each channel were amplified by 5000 and band-

pass filtered between 250 Hz and 7.5 kHz. The threshold for each electrode was 

automatically set for 3.25 times the mean activity and the waveforms were sampled at 30 

kHz for 1.5 ms windows (Samonds et al., 2003).  

 

Histology 

Upon experiment completion, animals were perfused with saline followed by 

fixative, and the brains were prepared for histological analysis as previously described 

(Jain et al., 2001). The cortex was flattened, frozen, and cut parallel to the surface at 40 

µm. Sections were processed for myelin to aid in determining the electrode locations 

relative to the area 3b hand representation (see Reed et al., 2008), along with minimal 

receptive field maps.  

 

Data Analysis 

 

Spike Sorting 

The details of the spike sorting procedures have been described previously (Reed 

et al., 2008). To summarize briefly, spike signals were sorted offline with an automatic 

spike classification program (Shoham et al., 2003) which is part of the data acquisition 

system. We used a second spike sorter program, Plexon Offline Sorter (Plexon Inc., 

Dallas, TX), to verify the quality of unit isolation such that single units had refractory 

periods ≥ 1.2 ms; P values ≤ 0.05 for multivariate ANOVA related to cluster separation; 

and distinct waveform amplitudes and shapes when compared with other activity on the 
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same electrode (Nicolelis et al., 2003). Single- and multi-units were categorized 

separately but grouped together for factor analysis in the statistical model. Multiple single 

units collected from one electrode were included in the analysis, but at most only one 

multi-unit per electrode was included in the analysis.  

 

Peak Firing Rate 

As described in Reed et al. (2008), spike trains were smoothed with a spike 

density function using Matlab (The Mathworks, Inc., Natick, MA) before peak firing rate 

was determined. A spike density function was produced by convolving the spike train 

from each trial with a function resembling a postsynaptic potential specified by τg, the 

time constant for the growth phase, and τd, the time constant for the decay phase as:  R(t) 

= (1 – exp(-t/τd)*exp(-t/τd).  

Based on physiological data from excitatory synapses, τg was set to 1 ms (e.g., 

Mason et al., 1991; Moore and Nelson, 1998). We set τd to 5 ms (Mason et al., 1991; 

Moore and Nelson, 1998; Veredas et al., 2005) because the transient nature of the on and 

off responses in primary somatosensory neurons was excessively smoothed at larger 

values. We examined onset responses within a 50 ms window from the stimulus onset.  

The excitatory peak firing rate was determined as the maximum of the spike 

density function within the 50 ms response time window, and the average baseline firing 

rate (calculated over a 500 ms window prior to stimulation onset) was subtracted from 

this value. This peak firing rate value was required to be greater than a threshold value, 

which was the average baseline firing rate plus two standard deviations of this baseline, 

with a minimum value of 5 spikes/s. To determine if this value was significant, the 
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nonparametric Mann-Whitney U test and the parametric Student‘s t-test were performed 

and results compared. The U test and t test resulted in the same categorizations of 

significance (α = 0.05). When no excitatory response was detected in the response 

window, responses were examined for possible suppressive effects. Suppressive 

responses had average firing rates less than the average baseline firing rate by at least 

1.65 times below the standard deviation of the baseline, and this low firing had to be 

sustained for 10 ms or longer. 

 

Response Latency 

We calculated response latencies from spike density function histograms as the 

initial time when the firing rate meets the half-height over the threshold value of the peak 

firing rate within the response time window (see Peak Firing Rate). Briefly, the peak 

latency was calculated using polynomial fitting of the spike density function in Matlab to 

determine the time of the greater of the half-height or the threshold value (see Chapters 3 

and 4). This method of determining excitatory response latency is similar to measures 

that determine the width or duration of peaks in histograms (e.g., Davidson et al., 2007). 

Suppressive response latencies were not included in the statistical analysis. Results were 

checked manually for proper assignments.  

 

Response Field  

Receptive field mapping across the 100-electrode array takes time, and we needed 

a quick measure of how the stimulus location related to the receptive fields of each 

neuron across the recording time. We defined excitatory ―Response Fields‖ based on the 
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neuron unit firing rates in response to above-threshold skin indentations with our stimulus 

probes. Thus, the Response Field is a firing-rate-based estimate similar to the concept of 

the receptive field measured by suprathreshold stimulation. When a single site on the 

hand was stimulated, that site was classified as inside that unit‘s excitatory Response 

Field if the peak firing rate after subtracting the average baseline firing rate was greater 

than or equal to 3 times the standard deviation of the average firing rate for the 

population of neurons recorded from the 100-electrode array. For a given neuron, 

responses for all of the locations that were stimulated for a given experiment were 

compared. The maximum value for firing rate was found, and that stimulation location 

was designated as in the center of that unit‘s Response Field. When the unit firing rate 

did not meet the criteria to be categorized as inside, the location was considered to be 

outside of the Response Field.  

 

Data Classification 

Data were classified based on several conditions that were used in a statistical 

model to estimate the contributions of those factors to the observed response properties. 

These factors were the 1) the recording period before (pre) or after (post) the local 

bupivacaine injection; 2) the spatial relationship of the contralateral stimulus to the 

ipsilateral injection site (match or non-match); 3) the relationship of the neuron‘s 

Response Field to the stimuli (out, in, or center); 4) the quality of the signal isolation into 

single units (SUs) or multi-units (MUs); and 5) the identity of the monkey case from 

which the neurons were recorded (case 3, 4, or 5).  
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Summary Analysis 

The values we obtained for excitatory peak firing rates and latencies from Matlab 

were summarized in Excel and imported into SPSS 17.0 (SPSS, Inc., Chicago, IL) for 

further analysis, along with the associated classifications (described above). Although we 

included one measure before bupivacaine injection and one measure after bupivacaine 

injection, we did not perform a nonparametric 2-sample test (like the Wilcoxon signed 

rank test) because we wanted to assess the contributions of the selected factors to the 

variance in the firing rates and latencies. Two measures, one before bupivacaine and one 

after bupivacaine injection, were selected for each stimulation location since not all 

locations were stimulated more than once before the apparent effects of bupivacaine 

ended in each monkey. All of the recordings included in the analysis were made before 

the receptive field sizes of selected channels had returned to their original sizes; 

therefore, the time after injection was not included as a variable in this analysis.  

  We employed Generalized Estimating Equations (e.g., Liang and Zeger, 1986; 

Zeger and Liang, 1986) in SPSS to analyze this complex dataset, using the normal 

distribution with the identity link function and a first-order autoregressive correlation 

matrix structure (e.g., Hardin and Hilbe, 2003, p. 66) for repeated measures on each 

neuron observation. See Appendix A for detailed information regarding Generalized 

Estimating Equations. Thus, in these models, latency or firing rate acted as the dependent 

variable and the predictor variables included: the bupivacaine injection period (pre or 

post), the spatial relationship of the stimulus to the injected digit (matched or non-

matched), the relationship of the stimulus to the Response Field of the neuron unit (out, 

in, or center), and the classification of the unit as a single- or muli-unit, and the monkey 
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case. We first examined the data for each monkey separately since we knew that monkey 

5 could potentially have different results from the other two monkeys due to the 

unreported injury. Including the data from monkey 5 in the statistical analysis prevented 

the Generalized Estimating Equations routine from reaching convergence to fit the data. 

Thus, we included only the data from monkeys 3 and 4 in our statistical analysis to 

examine the normal effects on contralateral area 3b neurons of anesthetizing an ipsilateral 

digit. Similarly, selecting the alternative distribution and link function for continuously 

distributed data, namely the gamma distribution with the log link function, to analyze 

these data prevented the model from converging on a solution. Therefore, we did not 

employ the comparison of goodness-of-fit statistics between solutions based on the 

normal distribution and the gamma distribution described in Appendix A. The data from 

latency measures resembled the normal distribution; however, data from firing rate 

measures were skewed due to the presence of unresponsive neurons which were assigned 

values of 0 spikes/s for peak firing rate responses. The analysis only used neurons which 

had non-zero values before and after bupivacaine administration; thus, the data used in 

the statistical analysis resembled the normal distribution.  

We performed the Generalized Estimating Equations analysis for the full factorial 

model, and then performed subsequent modeling analyses to select the combination of 

main effects and interactions that best represented the hypothesis and the data (based on 

model goodness-of–fit statistics). The criterion for statistical significance of all tests was 

alpha = 0.05. The Bonferroni correction for multiple comparisons was applied. The 

Generalized Estimating Equations analysis provides estimates of the population averages 
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of the dependent variable (peak firing rate and response latency) based on the values of 

the predictor variables and estimates the significance of the effects. 

 

Results 

 

We recorded single- (SUs) and mult-units (MUs) from a 100-electrode array 

implanted in cortical layer 3 of the left anterior parietal cortex of three owl monkeys. 

Recordings were made mostly from area 3b of each owl monkey, as depicted in Figure 6-

1. Since the array placements varied somewhat in each owl monkey, we tallied the 

numbers of electrodes that were likely located in area 3b and in area 3a. The proportions 

of electrodes located in area 3b were similar in each case: Case 3 = 68 electrodes in 3b, 

32 electrodes in 3a; Case 4 = 62 electrodes in 3b, 38 in 3a; Case 5 = 66 in 3b, 34 in 3a.  

The recordings after bupivacaine injections that were included in the analysis were made 

after minimal receptive field mapping revealed that receptive fields of selected electrodes 

had expanded, as shown in Figure 6-2, indicating that the local anesthetic had taken effect 

to expand receptive field sizes (e.g., Calford and Tweedale, 1990, 1991a,b). As 

mentioned, we discovered that monkey 5 had been recovered from an injury to the right 

distal digit 3 (see Figure 6-1D). Due to the possibility of plasticity in the somatosensory 

hand representation following injury, data were summarized from monkeys 3 and 4 for 

statistical analysis, while the data from monkey 5 was separated and compared with data 

from monkeys 3 and 4. In fact, including the data from monkey 5 in the statistical 

analysis prevented the modeling routine from fitting the data; therefore, data from 

monkey 5 were omitted from the final statistical models and were considered separately.  
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Figure 6-1. Schematic reconstructions of 100-electrode array placement in primary somatosensory cortex of 

three owl monkey cases. A. Area 3b is highlighted in a schematic of the owl monkey brain. Areas 3a and 1 

flank 3b, but neurons in these areas tend not to respond well to light tactile stimulation under the general 

anesthetic conditions of these experiments. The brain orientation is indicated by arrows. M = medial, R = 

rostral. B-C. The placements of the 100-electrode array in monkeys 3 and 4 covered much of the area 3b 

hand representation but excluded part or all of digit 1 (D1) and part of the palm. D. The placement of the 

100-electrode array in case 5 included most of the digit representations, but excluded part of digit 5 and 

part of the palm. Inset is a post-mortem photograph of the right hand in case 5, revealing the abnormal digit 

3. In all cases, electrode locations were approximated based on examination of myelin-stained sections of 

flattened cortex and the results of receptive field mapping during recording experiments to estimate the 

digit and palm pad representations in area 3b. The scale bar refers to the electrode schematics, as electrodes 

were spaced 0.4 mm apart.  
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Figure 6-2. Sample receptive field maps before and after bupivacaine injection in one digit of the ipsilateral 

(left) hand from three different owl monkeys. Left. Minimal receptive fields (mRFs) were mapped for a 
selected electrode channel from each of the three monkeys. Middle. Bupivacaine was injected into each 

side of the base of the digit indicated with an ―X‖. Right. Between 5-20 minutes after bupivacaine 

injection, mRFs were mapped again for the same channels, revealing some expansion consistent with 

previous studies (Calford and Tweedale, 1990, 1991a,b). 
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Across all recordings, we obtained single- and multi-unit activity in response to 

contralateral stimulation before and after bupivacaine injection in an ipsilateral digit: 

from case 3 we obtained 490 SU response pairs and 401 MU response pairs; from case 4 

we obtained 667 SU response pairs and 440 MU response pairs; and from case 5 we 

obtained 305 SU response pairs and 394 MU response pairs. Not all of these responses 

before and after bupivacaine injection were significantly greater than baseline firing 

rates; therefore, from case 3 we analyzed 120 SUs and 127 MUs; from case 4 we 

analyzed 80 SUs and 49 MUs; and from case 5 we analyzed 21 SUs and 38 MUs. (Fewer 

responsive electrodes were found in case 5, and this case was used as a comparison due 

to the digit injury.) Only units that responded with firing rates significantly greater than 

baseline firing before and after bupivacaine injection could be analyzed using the 

statistical models; therefore, we tallied the numbers of units that did not respond 

significantly as well in order to determine the overall responsiveness that may not be 

reflected in the statistical analysis.  

From case 3, 38% (339/891) of the units recorded did not show an excitatory 

response to stimulation before and after bupivacaine injection; and 5 of these units were 

inhibited before and after bupivacaine, 3 were inhibited before bupivacaine but showed 

no excitatory or inhibitory response after injection, and 3 showed no response before 

bupivacaine but were inhibited after injection. Nearly 18% (158/891) of the units did not 

respond to stimulation before bupivacaine, but responded significantly to stimulation 

after injection, and of these units, 9 were inhibited before bupivacaine. About 16% 

(147/891) of the units responded to stimulation before bupivacaine but not after injection, 

and of these units, 2 were inhibited after injection. About 28% (247/891) units responded 



 255 

to stimulation before and after bupivacaine injection and were included in the further 

statistical analysis.  

From case 4, nearly 60% (664/1107) of the units did not respond to stimulation 

before and after bupivacaine injection; and of these units, 1 unit was inhibited before and 

after bupivacaine, 1 was inhibited before bupivacaine but did showed no excitatory or 

inhibitory response after injection, and 10 units showed no response before bupivacaine 

but were inhibited after injection. Nearly 20% (221/1107) of the units did not respond 

before bupivacaine, but responded after injection. About 8.4% (93/1107) of the units 

responded to stimulation before bupivacaine but did not respond after injection, and of 

these units, 3 were inhibited after injection. Nearly 11.7% (129/1107) of the units 

responded to stimulation before and after bupivacaine injection and were included in 

further analysis.  

From case 5, nearly 73% of the units recorded did not respond to stimulation 

before and after bupivacaine injection (508/699 units); and of these units, 2 were 

inhibited before bupivacaine but did not respond after injection, and 4 did not respond 

before bupivacaine but were inhibited after injection. Less than 10% of the units were 

responsive after bupivacaine but not before injection (67/699 units), and of these units, 2 

were inhibited before injection. About 9% of the units were responsive before 

bupivacaine but not after injection (65/699 units). The 8.4% (59/699) of the units 

remaining were responsive before and after bupivacaine injection and were able to be 

further analyzed. Thus, recordings from case 5 were the least responsive.  

The mean of the peak firing rate values from all three monkeys before 

bupivacaine injection was 24.51 spikes/s (SD 27.95), and the median was 13.90 spikes/s. 
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The mean of the response latency values from all three monkeys before bupivacaine 

injection was 26.84 ms (SD 9.67), and the median was 25.28 ms. When monkey 5 was 

excluded from the summary, the mean of the peak firing rate values was 24.77 spikes/s 

(SD 27.43), and the median was 14.24 spikes/s. The mean of the response latency values 

was 25.88 ms (SD 8.42), and the median was 25.10 ms. The results of the statistical 

analysis (of the data from monkeys 3 and 4) of peak firing rate and latency are found in 

Tables 6-1 and 6-2, respectively. All figures plot the observed data, while the significance 

values of the statistical effects were determined based on the predicted data values 

estimated from the statistical analysis. Examples of units responsive to contralateral 

 



 257 

 

 

 

 

stimulation before bupivacaine injection are shown for cases 3 and 4 in Figure 6-3 and in 

Figure 6-4 for case 5. These example units followed the overall trends we found in the 

population for response property changes after ipsilateral bupivacaine injection.  
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BEFORE    AFTER 

 

Figure 6-3. Peristimulus time histograms (PSTHs) and rasters before and after bupivacaine injection in two 

monkeys. PSTHs left of the arrow occurred before bupivacaine injection, and those right of the arrow 

occurred after injection. PSTHs show 100 trials of 500 ms indentations (indicated by horizontal gray line). 

Vertical dashed lines indicate response latency. Examples reflect trends in the data. A. Neuron 065c from 

monkey 3 was more responsive before bupivacaine injection than after. Stimulation occurred on right distal 

digit 4 (RdD4), inside the Response Field of the neuron. Bupivacaine was administered to left D4, indicated 

by the label ―Match‖. B. When a non-matching digit, right distal digit 5 (RdD5), was stimulated neuron 

087d from case 3 showed the opposite pattern. C. The peak response of neuron 057a from monkey 4 

decreased slightly, while the activity during sustained stimulation increased when RdD5 was stimulated 

after left D5 was injected with bupivacaine. D. Neuron 074c from case 4 responded weakly to stimulation 

on RdD3 before bupivacaine injection, but increased responsiveness after the injection on left D5.  
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BEFORE    AFTER 
 

 

 

Figure 6-4. Example peristimulus time histograms (PSTHs) and rasters before and after bupivacaine 

injection in monkey 5. PSTHs left of the arrow show neuron activity before bupivacaine injection, and 

PSTHs right of the arrow show activity after bupivacaine injection. Conventions are the same as Figure 6-

3. Case 5 had a long-standing injury that was not described in the medical records, and since the responses 
to bupivacaine injection did not follow the trends from the other two cases, this monkey was examined 

separately. A. An example neuron (097a) recorded from monkey 5 was nearly equally responsive to 

stimulation on the right radial tip of digit 5 (RrtD5) before and after the bupivacaine injection in the left 

D5. B. An example neuron cluster (079a) from monkey 5 responded well to stimulation on right proximal 

digit 4 (RpD4) before bupivacaine was injected into a non-matching digit (left D5), but did not respond to 

stimulation following the injection. These individual examples reflect the trends in the population from 

monkey 5. 
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Effects of Ipsilateral Bupivacaine Injection on Peak Firing Rate and Response Latency 

The peak firing rates and response latencies of units before and after bupivacaine 

injection were analyzed for cases 3 and 4 in order to estimate the sources of variance in 

the responses to ipsilateral bupivacaine injection. Averaged over both monkeys, the mean 

response latency before bupivacaine was 25.88 ± 0.34 ms (N = 615), and the mean 

response latency after bupivacaine was 26.72 ± 0.32 ms (N = 754; Figure 6-5A). This 

small difference in response latency after bupivacaine injection was not statistically 

significant (P = 0.383). The mean peak firing rate before bupivacaine was 15.30 ± 0.78 

spikes/s (N = 997), and the mean peak firing rate after bupivacaine was 17.31 ± 0.74 

spikes/s (N = 997; Figure 6-5B); however, this small increase in firing rate was not 

statistically significant (P = 0.740). Overall, bupivacaine injection in an ipsilateral digit 

had little effect on response latency, and slightly increased peak firing rates in response to 

stimulation on the contralateral hand. Although the effect of local bupivacaine anesthesia  

was not significant when averaged across neurons, we examined interactions between the 

bupivacaine injection and the other predictor variables. 

 

Effects of Stimulation Location Compared to Bupivacaine Injection Location 

As expected, the stimulation location itself did not affect the response latency 

when the effect of bupivacaine is not considered. The effect of the stimulation location is 

best considered as the interaction effect between the bupivacaine injection and the 

stimulation location (an interaction term in the statistical model instead of a main effect 

term). When the contralateral stimulation location matched the ipsilateral digit injected 

with bupivacaine, response latency tended to lengthen following the injection (26.33 ± 
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0.47 ms and 27.54 ± 0.51 ms, P = 0.362). Response latency tended to shorten slightly 

following bupivacaine injection when the contralateral stimulation location did not match 

the ipsilateral digit injected with bupivacaine (26.30 ± 0.52 ms and 25.87 ± 0.40 ms, P = 

1.000). The interaction of the bupivacaine injection and the relationship of the stimulus 

location to the injection location approached significance due to the difference between 

the direction of the effects on latency (P = 0.069).  

Peak firing rate tended to decrease slightly after bupivacaine injection when the 

contralateral stimulation location matched the ipsilateral digit injected (25.96 ± 1.72 

spikes/s and 23.30 ± 1.44 spikes/s, P = 0.766). Peak firing rate tended to increase slightly 

after bupivacaine injection when the contralateral stimulation location did not match the 

ipsilateral digit injected (19.12 ± 1.19 spikes/s and 21.03 ± 1.03 spikes/s, P = 1.000). The 

interaction of the bupivacaine injection and the relationship of the stimulus location to the 

injection location was significant due to the difference between the direction of the 

effects (P = 0.012).  

Thus, both peak firing rate and latency showed complementary patterns of effects 

of bupivacaine when the relationship of the stimulus location to the injection site was 

taken into account.  
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Figure 6-5. Averaged over all conditions, latencies and peak firing rates changed little after bupivacaine 

injection. Averages are plotted with error bars representing 95% confidence intervals. A. Response 

latencies averaged over all conditions across cases 3 and 4 did not differ before and after bupivacaine 

injection into an ipsilateral digit (P = 0.383). Examined individually, cases 3 and 4 showed similarly small 

differences in response latencies (~2 ms; not plotted). B. Peak firing rates averaged over all conditions 

across cases 3 and 4 revealed a slight increase in peak firing rate occurred after bupivacaine injection, but 

this was not statistically convincing (P = 0.740). We found similar trends for individual monkeys (not 
plotted), which did not reach statistical significance (case 3: P = 0.400; case 4: P = 0.493). 
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Effects of Response Field Relationship to Stimulation Before and After Bupivacaine 

By definition, the Response Field categorization varied with firing rate; therefore, 

the effects of interest included how the Response Field categorization may affect the 

firing rate and latency following ipsilateral bupivacaine injection. Since some receptive 

fields are known to expand in size following ipsilateral digit denervation, we expected 

that after bupivacaine, fewer neurons would be categorized as outside the Response Field, 

and this categorization would relate to increases in firing rate and perhaps shortening of 

response latencies.  

The interaction of the bupivacaine injection with the Response Field 

categorization affected response latencies (P = 0.006). Latency shortened slightly after 

bupivacaine injection when neurons were stimulated in the center of the Response Field 

(CENTER = 26.51 ± 0.68 ms and 25.76 ± 0.63 ms, P = 1.000). Latency lengthened 

slightly when neurons were stimulated inside (but not in the center) of the Response Field 

(IN = 25.45 ± 0.35 ms and 26.34 ± 0.36 ms, P = 0.556) and when neurons were 

stimulated outside of the Response Field (OUT = 26.99 ± 0.71 ms and 28.03 ± 0.63 ms, P 

= 1.000). Thus, while the differences in response latency before and after bupivacaine 

were not significantly different based on Response Field classifications, the interaction 

effect was significant overall because the latencies tended to shorten when the stimulus 

was in the center of the Response Field and the latencies tended to lengthen when the 

stimulus was located elsewhere in relation to the Response Field.  

The interaction between the bupivacaine injection with the Response Field 

categorization affected the peak firing rates (P < 0.0005), but not in the precise way 

expected. Following bupivacaine injection, peak firing rates increased when the neurons 
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were stimulated outside of the Response Field (OUT = 5.64 ± 0.49 spikes/s and 7.02 ± 

0.45 spikes/s, P = 0.029). However, this trend was not found when neurons were 

stimulated in the center of the Response Field (CENTER = 34.85 ± 2.59 spikes/s and 

31.98 ± 2.12 spikes/s, P = 1.000) or inside (but not in the center) of the Response Field 

(IN = 27.13 ± 1.24 spikes/s and 27.50 ± 1.13 spikes/s, P = 1.000). Because the Response 

Field was determined based on the characteristics of the population firing rates (see 

METHODS), the observed firing rate increase when locations outside the Response Field 

were stimulated following bupivacaine suggests that the firing rates within the population 

increased, despite the lack of effects when the stimulus was located inside the Response 

Field. The neurons responding to stimuli inside their Response Fields may have already 

been firing near their maximum rate. 

 

Differences Between Single- and Multi-Units 

As may be expected, there were slight but significant differences in response 

latency and peak firing rate between single- and multi-units. The latencies of single units 

were slightly longer in general than latencies of multi-units (27.91 ± 0.32 ms and 25.12 ± 

0.38 ms, respectively, P < 0.0005). Bupivacaine did not differentially affect latencies of 

single- and multi-units after injection, as bupivacaine slightly lengthened the latencies of 

single units (27.51 ± 0.44 ms and 28.31 ± 0.41 ms, P = 0.902) and multi-units (25.13 ± 

0.51 ms and 25.10 ± 0.47 ms, P = 1.000). Correspondingly, the firing rates of single units 

were lower than firing rates of multi-units (18.73 ± 0.62 spikes/s and 25.98 ± 1.30 

spikes/s, respectively, P < 0.0005). Bupivacaine did not differentially affect peak firing 

rates of single units (18.94 ± 0.89 spikes/s and 18.52 ± 0.79 spikes/s, P = 1.000) and 
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multi-units (26.14 ± 1.56 spikes/s and 25.82 ± 1.38 spikes/s, P = 1.000). Thus, although 

the magnitudes of response latencies and firing rates differed between single- and multi-

units, bupivacaine did not act on single- units differently than multi-units. 

 

Contributions of Multiple Stimulus Variables on the Effects of Bupivacaine 

We expected that the combined influences of the stimulus location relative to the 

Response Field of the neuron and relative to the bupivacaine injection on the ipsilateral 

digit would affect neuron response properties following bupivacaine injection. Latency 

was not significantly affected by the interaction of these three conditions (P = 0.424), but 

the trends are shown in Figure 6-6A. When the contralateral stimulation location matched 

the location of the ipsilateral bupivacaine injection the latency tended to lengthen 

following the injection when the stimulus was outside (OUT = 26.41 ± 1.00 ms and 29.47 

± 0.96 ms, P = 1.000 ) or inside (IN = 25.80 ± 0.39 ms and 26.71 ± 0.47 ms, P = 1.000) 

the neuron‘s Response Field, but changed little when the stimulus was in the center of the 

Response Field (CENTER = 26.79 ± 0.87 ms and 26.45 ± 1.05 ms, P = 1.000). In 

contrast, when the contralateral stimulation location did not match the location of the 

ipsilateral bupivacaine injection, the latencies tended to shorten after injection when the 

stimulus was outside (OUT = 27.57 ± 0.98 ms and 26.58 ± 0.81 ms, P = 1.000) the 

neuron‘s Response Field, while latencies changed little when the stimulus was in the 

center of the neuron‘s Response Field (CENTER = 26.24 ± 1.05 ms and 25.06 ± 0.69 ms, 

P = 1.000) or inside (IN = 25.11 ± 0.57 ms and 25.96 ± 0.55 ms, P = 1.000) the Response 

Field. Thus, the interaction of bupivacaine with the relationships of the stimulus location 

to the injected digit and to the neuron‘s Response Field was not significant, but trends 
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emerged such that bupivacaine had some differential influence on response latencies 

depending on the stimulus location.  

Unlike latency, peak firing rate was affected by the interaction of bupivacaine 

injection with the relationships of the stimulus location to the injection site and to the 

Response Field of the neuron (P = 0.015), as shown in Figure 6-6B. When the 

contralateral stimulation location matched the location of the bupivacaine injection and 

the stimulus was located outside the neuron‘s Response Field, firing rate increased after 

injection (OUT = 6.49 ± 0.72 spikes/s and 8.55 ± 0.70 spikes/s, P = 0.048). When the 

stimulus was inside the Response Field or in the center of the Response Field, firing rates 

tended to decrease following bupivacaine, but the differences were not significant (IN = 

30.73 ± 1.84 spikes/s and 27.52 ± 1.63 spikes/s, P = 1.000; CENTER = 40.66 ± 4.19 

spikes/s and 33.84 ± 3.45 spikes/s, P = 1.000). When the stimulation location did not 

match the location of the bupivacaine injection, firing rates tended to increase after 

injection within all of the Response Field categories (OUT = 4.78 ± 0.57 spikes/s and 

5.49 ± 0.49 spikes/s, P = 1.000; IN = 23.53 ± 1.72 spikes/s and 27.48 ± 1.57 spikes/s, P = 

1.000; CENTER = 29.04 ± 2.99 spikes/s and 30.12 ± 2.42 spikes/s, P = 1.000). 

Therefore, even though not all of the pairwise comparisons were significantly different, 

the overall interaction effect was a significant contributor to the variance in peak firing 

rates because the bupivacaine injection tended to have differential effects on firing rate 

depending on the stimulation location. 
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Figure 6-6. Bupivacaine effects on latencies and peak firing rates differ depending on stimulus 

relationships. Data from monkeys 3 and 4 were categorized based on the relationship of the stimulus 

location to the neuron Response Field (OUT, IN, or CENTER). Data in the left columns were collected 

when the stimulation site on the right hand was located on a non-matching digit relative to the bupivacaine 

injection on the left hand (Non-match). Data in the right column were collected when the stimulation site 

on the right hand was located on the digit that matched the bupivacaine injection location on the left hand 

(Match). Light gray bars indicate data collected before the bupivacaine injection (Pre), and dark gray bars 
indicate data after the bupivacaine injection (Post). Error bars are 95% confidence intervals. A. When a 

non-matching digit was stimulated, latencies tended to shorten after bupivacaine injection, but when the 

matching digit was stimulated, latencies tended to lengthen after bupivacaine injection. B. The changes in 

firing rate tend to oppose the changes in latency. Firing rates tend to increase after bupivacaine injection 

when a non-matching digit was stimulated relative to the ipsilateral bupivacaine injection. When the 

stimulated digit on the right hand matched the digit on the left hand that was anesthetized, the firing rate 

tended to decrease. When the stimulus location was outside the Response Field of the neuron, firing rates 

remained low before and after bupivacaine injection.  
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Comparisons Between Normal Monkeys and an Injured Monkey 

The latency and peak firing rate data varied somewhat across all three monkeys, 

but the data from monkey 5 were treated separately due to the injury monkey 5 suffered 

on right digit 3 that could result in plasticity in the somatosensory cortex. In the statistical 

model, we found that the data from monkeys 3 and 4 also varied from each other in 

response latency (P < 0.0005) and peak firing rate (P < 0.0005), with samples from 

monkey 3 showing shorter latencies (case 3 = 24.86 ± 0.34 ms; case 4 = 28.17 ± 0.37 ms) 

and higher firing rates (case 3 = 25.09 ± 1.13 spikes/s; case 4 = 19.62 ± 0.74 spikes/s) 

than monkey 4. However, the data from these two monkeys combined yielded similar 

trends and a working statistical model. (Recall, including the data from monkey 5 in the 

statistical analysis prevented the modeling analysis from fitting the data.) Generally the 

latency and peak firing rate data from monkey 5 were more variable (Figure 6-7A, B), the 

latencies tended to be longer (32.29 ± 0.83 ms), and the peak firing rates tended to be 

lower (3.64 ± 0.35 spikes/s) than those we obtained from monkeys 3 and 4. However, we 

found receptive field expansion in all three cases following ipsilateral bupivacaine 

injection (Figure 6-2).  
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Figure 6-7. Comparison of bupivacaine effects on latencies and peak firing rates across cases. Data shown 

in Figure 6-6 (monkeys 3 and 4 combined) are divided to show the effects of bupivacaine in all three 

monkey cases. Light gray bars indicate responses before bupivacaine injection (Pre), and dark gray bars 
indicate responses after bupivacaine injection (Post). Error bars are 95% confidence intervals. Data were 

divided into categories based on monkey case (columns), stimulus relationship to the Response Field 

(rows), and stimulus relationship to the bupivacaine injection site (column subdivisions). A. Latencies were 

categorized to indicate how bupivacaine injection in an ipsilateral digit affected response latencies to 

contralateral stimulation within each monkey. Data from monkey 5 were more variable than data from the 

other two monkeys. B. Peak firing rates were categorized to indicate how bupivacaine injection affected 

responses within each monkey. Peak firing rates were more variable from monkey 5 than other monkeys, 

and the effects of bupivacaine appeared to show opposite trends in monkey 5 compared to the data from 

monkeys 3 and 4.  
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Additionally, the classification of the relationship of the stimulus to the Response 

Field changed as expected for all monkey cases. Figure 6-8 shows the tallies of the 

Response Field categorizations for cases 3 and 4 combined, and for monkey 5 separately 

(inset). As expected if the primary effect of bupivacaine injection in an ipsilateral digit is 

to expand affected receptive fields (rather than shrink their sizes), we found that after 

bupivacaine injection, fewer stimulus locations were classified as outside of the Response 

Field (OUT) and more locations were classified as inside of the Response Field (IN, 

CENTER). This effect generally occurred across stimulus locations and across all three 

monkey cases. Despite the similarities of the effects of bupivacaine on the Response 

Field tallies, the counts of the locations classified as outside of the Response Field (OUT) 

were higher relative to the counts of the locations classified as inside of the Response 

Field (IN, CENTER) in monkey 5 compared to monkeys 3 and 4 combined (Figure 6-8). 

Cortical activity appeared to be more depressed in monkey 5, and examining the 

topography of the responses (Figure 6-9), we found that the electrodes that responded to 

stimulation were more scattered across the representations rather than mostly 

concentrated within the expected representations compared to the uninjured monkeys.  
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Figure 6-8. Bupivacaine effects on the tallies of Response Field properties. The effects of bupivacaine 

injection in an ipsilateral digit on the relationship of the stimulus to the neuron Response Field are shown 

for the conditions in which a non-matching digit was stimulated relative to the ipsilateral bupivacaine 

injection (Non-match) and when the matching digit was stimulated (Match). Data are summarized across 

monkeys 3 and 4. Light gray bars indicate the counts before bupivacaine was administered and dark gray 

bars indicate the counts after the injection. The trend shows that the stimulus locations classified as outside 

the Response Field (OUT) decreased after bupivacaine injection, while the locations classified as inside the 

Response Field (IN, CENTER) increased. Inset shows the data for monkey 5, which resembles the data 

from the other monkeys, but we obtained fewer instances in which the stimulus was inside the Response 

Field in monkey 5 and more instances in which the stimulus was outside the Response Field compared to 

the results from the other two monkeys.   
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Figure 6-9. Comparison of neuron activity across the 100-electrode array between two monkeys. Peak 

firing rates of single neurons and multi-units are shown in a color map with dashed lines overlaid to 

indicate the approximate sites of activity within cortex. The color scale ranges from 5 to 85 spikes/s. Dark 

blue (no squares) indicates that activity over 5 spikes/s did not occur within 50 ms from stimulus onset. 

Left column shows peak firing rates averaged over 100 trials before the bupivacaine injection in an 

ipsilateral digit. Right column shows peak firing rates after the bupivacaine injection. A. Recordings from a 

normal monkey, case 3, are shown before and after bupivacaine injection in left digit 4 (D4). Upper panel 

shows responses when a site on right distal D4 (RdD4) was stimulated (Match). After bupivacaine, peak 

firing rates within the D4 representation decreased on average. A subset of electrodes showed increases and 

no changes in peak firing rates after bupivacaine injection. Lower panel shows responses when RdD3 was 

stimulated (Non-Match) before and after bupivacaine injection into left D4. Many peak firing rates 

increased after bupivacaine injection, while a few decreased or showed no change. B. Monkey 5 had 

recovered from an unknown injury on right digit 3, and the number of responsive electrodes were fewer 

and more scattered than those in monkeys 3 and 4. Upper panel shows the peak firing rates when RdD5 
was stimulated before and after bupivacaine was injected into the matching ipsilateral digit, left D5 

(Match). Several electrodes within the D5 representation increased firing rates following bupivacaine. A 

few electrodes outside the approximated D5 representation decreased firing rates after bupivacaine. Lower 

panel shows activity when right middle digit 4 (RmD4) was stimulated before after bupivacaine injection 

into left D5 (Non-Match). Peak firing rates tended to decrease after bupivacaine, but a few electrodes, 

notably near the D3 and D4 representations, increased peak firing rates after the local anesthetic.  
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Discussion 

 

 

We measured neuron activity following local anesthetic injection to block afferent 

input from the ipsilateral hand in order to determine what modulation occurs in units 

responding to stimulation on the contralateral hand. This quantitative study expands 

previous electrophysiological studies and applies to the functional effects of spontaneous 

activity outside the minimal receptive field on response modulation, specifically for 

interactions between the two hand representations. We found changes in peak firing rates 

and latencies following local anesthetic injections that were complementary and largely 

corresponded to focal receptive field expansions, but the response properties did not 

follow expectations precisely. The majority of Response Fields (or receptive fields) may 

not be changed by bupivacaine injection, but those that changed expanded rather than 

shrank. Here we discuss the results found in two normal monkeys and discuss how these 

results compare to those found in the injured monkey and to previous studies. We 

conclude with the implications for interhemispheric interactions that can be gained from 

quantitative study. 

 

Effects of Bupivacaine on the Sample Responses 

The recordings from all three monkeys included large proportions of neurons that 

were not responsive to the stimulation conditions tested before and after bupivacaine 

injection: Case 3 ~ 38%, Case 4 ~ 60%, Case 5 ~ 73%. These proportions likely differed 

due to the placement of the electrode arrays and the stimulus conditions tested in each 

monkey. In all three cases, we focused on stimulating right digits 4 and 5 because we 
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anesthetized left digit 4 (monkey 3) or digit 5 (monkeys 4 and 5). The placement of the 

electrode array in monkey 5 missed a portion of the representation of digit 5; therefore, 

we may have obtained more responses from monkey 5 if the array placement had been 

shifted slightly. In all cases, few neurons sampled were inhibited before or after 

bupivacaine injection: Case 3 = 22 units, Case 4 = 15 units, Case 5 = 8 units. Units that 

were not responsive before bupivacaine became responsive after bupivacaine may reflect 

expanding receptive fields: Case 3 ~ 16%, Case 4 ~ 20%, Case 5 ~ 10%. However, we 

did not include these units in the statistical analysis because it was not always clear that 

the units were comparable before and after bupivacaine injection (as over the course of 

the experiments, new signals can be spontaneously recorded). Thus, the tallies of unit 

responses indicate that few neurons were inhibited under any stimulus condition and that 

between 10-20% of the sampled units may have gained new responsiveness following 

bupivacaine injection corresponding to receptive field expansion. We further analyzed 

the subset of units which responded to stimulation before and after bupivacaine injection 

to determine if the response properties changed and if the spatial location of the stimulus 

(relative to the anesthetized digit) contributed to the variance in the response properties.  

 

Spatial Stimulus Influences on Effects of Bupivacaine on Neuron Response Properties 

The effects of bupivacaine on peak firing rate and response latency were not 

statistically significant when averaged over the stimulus conditions (Tables 6-1, 6-2). Our 

interest was in the topographic specificity of the effects of bupivacaine to infer the 

underlying somatotopy of interhemispheric interactions. In addition, we asked whether 

the relationship of the stimulus location to the neuron‘s Response Field influenced the 
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direction of the interhemispheric interactions. We found trends for changes following 

bupivacaine injection in latency (P = 0.069; Table 6-2) which complemented the 

significant changes in peak firing rate (P = 0.012; Table 6-1) that were associated with 

the relationship of the stimulus location to the injection location (Match or Non-match; 

Figure 6-6). This finding that peak firing rate increased after bupivacaine when locations 

were stimulated that did not match the ipsilateral injection location appears to relate well 

with observed receptive field expansion described in previous studies (e.g., Calford and 

Tweedale, 1990, 1991a,b). In other words, neurons responded more strongly to 

stimulation after bupivacaine than before bupivacaine when the stimulus was located on a 

non-matching digit site; and this situation may be expected to occur when receptive fields 

associated with the matched digit expand to the non-matched digit. 

Perhaps it is surprising that firing rates decreased when the stimulation locations 

were within the digit that matched the ipsilateral injection location since the small 

receptive fields on the digit generally first expand within the same digit, and then may 

expand to adjacent digit or palm sites. We expected that the receptive field expansions 

would correspond to response facilitation within the site of the original receptive field. 

This contradictory finding indicates that the firing rate decreased or did not change for 

neurons that responded to stimulation on the matched digit. The effect of bupivacaine 

injection thus has a topographic distribution that is not uniformly excitatory. One possible 

explanation for the unexpected firing rate decreases (and trend for latency lengthening) is 

related to lateral inhibition. Before the local anesthetic block, a neuron responds to 

stimulation on the matched digit with a high peak firing rate. Following the block, 

activation spreads across the digit, which also evokes more lateral inhibition. The average 
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decrease in peak firing rate resembles the effect of cortical cooling of area 3b was tested 

in one macaque monkey and 14 bats (Clarey et al., 1996). In their study, Clarey et al. 

(1996) found that initially following cortical cooling of the foot representation in area 3b 

in one hemisphere, receptive fields of neurons in the opposite hemisphere expanded, and 

initially, responses to mechanical (brush) stimulation increased and new responses 

emerged. However, during the plateau of the cortical cooling (about 42 to 52 minutes 

after the start of the cooling procedure), the neuron responses to mechanical stimulation 

decreased even below original levels before returning to the approximate pre-cooling 

levels (Clarey et al., 1996). The data from this study were summarized by comparing the 

pre-cooling responses to the maximum increase or decrease in response magnitude of all 

neurons in each animal; thus, the initial response increases following the cooling 

dominated the final data summary. Our data were all collected during this ―plateau 

period‖ rather than the initial onset of the anesthetic effect, and we divided the data based 

on the relationship of the stimulus location to the anesthetic injection and to the Response 

Field of the reference neuron. Therefore, our data are consistent with, but expand, those 

of previous studies.  

Some electrophysiological properties of neurons in primary somatosensory cortex 

have been described in raccoons after digit amputation or nerve transaction (Turnbull and 

Rasmusson, 1990); however, the findings appear to be slightly different from those 

reported in monkeys following local anesthetic injections or amputation. When digital 

nerves innervating the glaborous skin were transected in digit 4 of raccoons and 

recordings were made in the contralateral primary somatosensory cortex, Turnbull and 

Rasmusson (1990) found that the receptive fields were most abnormal within the digit 4 
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representation and less likely to be abnormal near the representations of digits 3 and 4, 

while the overall responsiveness of the cortex was reduced compared to normal animals. 

Amputation resulted in neurons that responded only to the offset of stimulation, rather 

than to the onset, and these off responses had more variable latencies and large receptive 

fields than those found in normal cortical neurons (Turnbull and Rasmusson, 1990). The 

effects in raccoons were studied only in the contralateral cortex; therefore, the 

electrophysiological properties of response latency and amplitude in the primary 

somatosensory cortex have not been studied following local anesthetic injection into an 

ipsilateral digit. A study in which topographic maps were determined before and 

immediately after median nerve section and ligation in an adult owl monkey and 3 

squirrel monkeys found that inputs to areas 3b and 1 from the radial and dorsal hand were 

―unmasked‖ and area 3b receptive fields were much larger (Merzenich et al., 1983b). 

Similar to the nerve section studies in raccoons (Turnbull and Rasmusson, 1990), 

Merzenich et al. (1983b) found large unresponsive zones that corresponded to the normal 

territory of the median nerve input in contralateral cortex immediately following median 

nerve section.  

Since our results and those of Calford and Tweedale (e.g., 1990, 1991a,b) did not 

include large unresponsive territories in the cortex ipsilateral to the digit blocked with 

local anesthetic, we expect that acute deafferentation by local anesthetic injections may 

have different effects on neuron response properties in the ipsilateral cortex than nerve 

transection and amputation have on the contralateral cortex. Deafferentation induces 

rapid changes in cortex thought to result from the unmasking of connections, particularly 

horizontal connections. This rapid plasticity likely involves inhibitory processes based on 
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evidence that receptor damage leads to loss of inhibitory inputs (Rajan, 1998) and studies 

that reveal unmasking of normally silent inputs in deprived cortex (Wall et al., 2002, 

review). Specifically regarding interhemispheric interactions, evidence indicates that 

tonic inhibition in the somatosensory pathways is released by deafferentation, and 

activity is transferred between hemispheres to area 3b via the callosal connections of the 

areas 1 and 2 representations (Killackey, 1983; Calford, 2002, review). The majority of 

callosal projections appear to release excitatory neurotransmitters; however, a subset of 

callosal projections (10-32%) may have inhibitory effects (Cont and Manzoni, 1994, 

review). It is possible that the topographic differences in the effects of the local anesthetic 

injections could be mediated by subsets of callosal connections. 

 

Comparison of Normal Monkeys with a Monkey After Unknown Digit Injury 

As shown in Figure 6-1, case 5 had sustained an injury to the right distal digit 3 at 

some point prior to his acquisition, presumably sustained in his natural habitat at least 4 

years before the experiment. The injury was not included in the medical records and was 

unnoticed when monkeys were selected for the experiment. Given that the medical 

history of this monkey included two years within our facility and two years within 

another facility, this monkey had recovered from the injury for several years before our 

experiment. Despite the injury, the cortical organization in area 3b of monkey 5 did not 

appear to differ greatly from that of the other two cases (Figure 6-1, Figure 6-9). 

Qualitative examination of the area representing the digits in monkey 5 did not reveal 

dramatic changes in the sizes of the digit representations (Figure 6-1) or minimal 

receptive fields (see Figure 6-2 for an example) to compensate for the abnormal D3. 
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These findings are consistent with previous research showing that individual animals are 

known to have substantial variability of the area 3b hand representation (Merzenich et al., 

1987), and receptive field size and organization has been shown to resemble those of 

normal animals after long survival times after peripheral nerve injury (Churchill et al., 

1998). The overall topography of the hand representation of area 3b in monkey 5 

appeared to be nearly normal, which differs somewhat from reorganization following 

complete digit amputations (e.g, Merzenich et al., 1984; Jain et al., 1998, review); 

however, only the distal portion of digit 3 was missing in monkey 5. The comparably 

normal topography in monkey 5 is consistent with findings in owl and squirrel monkeys 

2-9 months following median nerve sections (e.g., Merzenich et al., 1983a; Garraghty 

and Kaas, 1991) and other peripheral nerve injury studies (for review, Kaas, 2000). The 

remaining portions of digit 3 appeared to take up the region normally occupied by the 

intact digit 3, and this phenomenon was also found in a macaque monkey after partial 

amputation of digit 2 (Manger et al., 1996).  

The quantitative examination of the responses revealed differences between the 

abnormal case and normal monkeys. The differences between the data obtained from 

monkey 5 and cases 3 and 4 prevented these data from being included in a statistical 

model of the effects of bupivacaine and the relationship of stimulus location to the effects 

(the model using Generalized Estimating Equations would not come to a convergence to 

fit the data). The proportions of electrodes placed within area 3b versus area 3a were 

similar across all 3 monkeys; therefore, we do not expect that the differences between 

monkey 5 and the other monkeys were due in large part to the placement of the array. If 

more electrodes had been placed in area 3a in monkey 5, then we would expect lower 
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numbers of neurons responsive to light tactile stimulation. Rather, the differences 

between the two normal monkeys and monkey 5 were related in part to the low firing 

rates and long latencies in the injured monkey before and after bupivacaine injection. 

However, the maximum peak firing rate in response to stimulation in monkey 5 was still 

high (~158 spikes/s) and comparable to the maximum peak firing rates we recorded in 

monkeys 3 and 4 (~229 spikes/s and ~141 spikes/s, respectively). Over all, the variances 

in the peak firing rates were similar as well. The standard deviation of the peak firing 

rates before bupivacaine injection was 24.8 spikes/s for Case 3, 11.1 spikes/s for Case 4, 

and 14.8 spikes/s for Case 5 (N = 891, N = 1159, N = 699, respectively). However, the 

variability of the firing rates and latencies recorded when the stimulation was inside the 

Response Field (IN, CENTER) was very large, and the effects of bupivacaine injection in 

the ipsilateral digit tended to follow opposite patterns compared to those found in the 

normal monkeys (Figure 6-7). Since the cortical organization and neuron properties of 

monkey 5 were largely similar to those of the normal monkeys, it is possible that the 

variability in the data that prevented analysis of the data from monkey 5 with monkeys 3 

and 4. Some of this variability may have arisen from differences in anesthetic depth 

across the cases, although we tried to maintain anesthetic depth at similar levels. Thus, 

the responsiveness of neurons sampled from monkey 5 was largely similar to normal 

monkeys, but the interhemispheric interactions due to acute deafferentation of an 

ipsilateral digit may have been altered, possibly due at least in part to the partial loss of a 

contralateral digit. 

The effects of bupivacaine in the two normal monkeys can be considered to reveal 

acute interhemispheric plasticity. In monkey 5, loss of the right distal digit 3 at least 4 
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years prior to experimentation had resulted in a chronic change of the sensory surface; 

therefore the acute effects of bupivacaine injection in the left hand occurred within the 

context of chronic changes following injury. To our knowledge, no studies have 

examined the interhemispheric effects of local anesthetic injections into an ipsilateral 

digit following partial amputation (or any form of deafferentation) of a contralateral digit. 

The findings from this case indicate that despite generally normal properties in the cortex 

contralateral to the amputation, the injury may have changed the system enough so that 

interhemispheric connections produce responses that would be unexpected in normal 

monkeys.  

 

Functional Relevance of Interhemispheric Interactions 

A primary inspiration for this work came from the receptive field mapping studies 

of Calford and Tweedale (e.g., 1990, 1991a,b). Receptive field expansions of 

contralateral neurons following ipsilateral digit denervation by local anesthesia or 

amputation suggests that a source of tonic inhibition was removed by denervation that 

affected both the contralateral and ipsilateral cortex (Calford and Tweedale, 1990, 

1991a,b; Calford, 2002, review). Studies have investigated this effect in humans. After 

lidocaine was injected into the thumb (Gandevia and Phegan, 1999), subjects reported 

that the perceived size of the anesthetized thumb and the unanesthetized lips increased. 

The perceived sizes of the digits adjacent to the thumb did not change, nor were changes 

reported for the digits contralateral to the injected thumb. Non-painful electrical 

stimulation and painful cooling of the thumb both increased the perceived thumb size, but 

to a lesser extent than did lidocaine injection. These perceptual changes may be 
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consistent with a psychophysical and evoked potential study in which the right hand was 

anesthetized and the subjects performed a grating orientation task with the left index 

finger or lower lip (Werhahn et al., 2002). Werhahn et al. (2002) reported enhanced 

tactile spatial acuity specific to the hand and not found on the lip when the hand was 

anesthetized, and this behavioral effect was associated with cortical processing 

enhancement.  

These human studies confirm a large-scale topographic specificity of the 

interhemispheric interactions; while our study shows evidence of additional fine-scale 

topography which resulted in differences between the effects of local anesthesia on 

matched and non-matched hand locations. These effects were not expected based on the 

previous studies of receptive field expansion and await confirmation in humans. 
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CHAPTER VII 

 

DISCUSSION 

 

Although each chapter of this dissertation stands alone, this section integrates 

information across the chapters and specific aims. A summary of the main findings from 

each chapter is provided here, followed by an examination of how these results can be 

integrated into an overall view of spatiotemporal stimulus processing in the primate 

primary somatosensory cortex. Also included is a justification of the use of the common 

methods throughout the body of work, and a discussion of the research limitations. 

Finally, applications and future directions of this research are discussed.  

 

Main Findings and Conclusions 

 

Our main findings from our recordings of area 3b neuronal responses can be 

divided into three main categories: 1) results of single-site stimulation on the hand; 2) 

results of dual-site stimulation within one hand; and 3) how input from the two hands 

affects area 3b. For each chapter of the dissertation, we obtained responses to single-site 

stimulation, which were compared with responses to dual-site stimuli presented within 

the contralateral hand or were used to examine interhemispheric interactions.  
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Results of Single-Site Stimulation on the Contralateral Hand 

To summarize the findings from single-site stimulation, responses of area 3b 

neurons to the 500 ms skin indentations within the minimal receptive field included 

transient excitatory onset responses, which could be followed by some response 

depression, a variable level of maintained activity, and often an offset response, 

depression, and a return to pre-stimulus levels of spontaneous activity. Many of the 

neurons we recorded appeared to have rapidly adapting-like characteristics and did not 

maintain high levels of activity throughout the skin indentation. When single-site 

stimulation occurred outside the minimal receptive field of a reference neuron, we found 

that responses could be absent or weakly excitatory, and in very rare occasions, could 

suppress spontaneous firing rates. The responses to single-site stimulation inside and 

outside the minimal receptive field were similar to those reported previously from area 3b 

neurons in anesthetized owl monkeys and macaque monkeys (Sur et al., 1984) and awake 

macaque monkeys (e.g., Towe and Amassian, 1958; Mountcastle et al., 1969; Gardner 

and Costanzo, 1980a,b; Burton et al., 1998; DiCarlo et al., 1998; Sripati et al., 2006). 

While there have been fewer studies of pairwise correlations between neurons in primary 

somatosensory cortex of monkeys, our correlation magnitudes during single-site 

stimulation were similar to those reported previously in anesthetized squirrel monkeys 

(Jain et al., 2001) and to those in primary somatosensory cortex of anesthetized cats (e.g., 

Alloway et al., 2002). When a single site on the contralateral hand was stimulated, we 

found that pairs of neurons had correlated spike times even when the distance between 

the electrodes exceeded 2 mm. Overall, the proportions of correlated pairs tended to 

decrease as the distance between the electrodes increased. (Chapter 2, Reed et al., 2008) 
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Results of Dual-Site Stimulation within the Contralateral Hand 

The dual-site stimulus conditions used in these studies were selected to 

investigate temporal and spatial stimulus influences on neuron responses. As reported in 

Chapter 2 (Reed et al., 2008), we found that when nonadjacent digit or palm locations 

were stimulated simultaneously, pairs of neurons had correlated spike times across 

distances that covered nearly the entire length of the hand representation in owl monkeys. 

These results suggested that neuronal interactions can extend across nonadjacent digit 

representations, despite the lack of receptive fields that encompass nonadjacent digits in 

area 3b (e.g., Merzenich et al., 1978). This chapter provided initial evidence that 

intrahemispheric processing of stimuli likely involves integrating sensory input from 

across multiple digits or palm pad representations.  

To extend our investigations beyond simultaneous dual-site stimulation, we 

adapted traditional condition-test paradigms to our stimulus parameters such that the 

onset of a conditioning stimulus occurred before the onset of a test stimulus. Typically, 

the stimuli used in these studies are short duration pulses so that the stimuli are not 

affecting the skin at the same time (e.g., Gardner and Costanzo, 1980b, Greek et al., 

2003). We used a 500 ms duration stimulus and stimulus onset asynchronies of 0, 10, 30, 

50, 100, and 500 ms. These onset asynchronies were chosen from previous studies (e.g., 

Gardner and Costanzo, 1980b, Greek et al., 2003) to determine what intervals might 

cause maximal interactions across the stimuli. To examine spatial stimulus influences on 

response properties, we selected paired stimulation locations on adjacent and nonadjacent 

digit or palm locations, as well as paired sites within a digit on adjacent and nonadjacent 

phalanges. These sites were selected to encompass paired sites on the hand and to 
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compare the effects of stimulation within digits to effects across digits to determine any 

spatial topography of the effects.  

In Chapter 3, we investigated the spatiotemporal stimulus effects on the neuron 

properties of peak firing rate and response latency. Compatible with our initial study in 

Chapter 2 on spike timing correlations, we found that paired stimulation across 

nonadjacent digits can affect neuron responses, thus, we confirmed that spatial 

interactions were revealed by firing rate and latency measures. Additionally, we found a 

temporal gradient for stimulus interactions such that a preceding, non-preferred stimulus 

suppressed the response to the second, preferred stimulus when separated by a stimulus 

onset asynchrony of 30-50 ms. For the effects of spatial locations, we found that paired 

stimulation on adjacent digits resulted in greater peak firing rates than stimulation on 

adjacent phalanges within a digit, which was somewhat surprising considering that the 

density of intrinsic connections within the hand representation is particularly strong 

within a digit (Fang et al., 2002). This comparison of responses to stimulation presented 

within and across digits is new to the literature. Another addition we contributed to the 

literature was that of the ―Response Field‖, which we used to characterize the relationship 

of the stimulus location to the response of a given neuron. We also introduced an 

adaptation of a modulation index that is typically used in multisensory research (e.g., 

Stanford et al., 2005; Alvarado et al., 2007) to categorize how the responses of neurons to 

paired stimuli compared to the response expected from the sum of the responses to the 

single sites alone. From this index, we determined that stimuli presented at onset 

asynchronies produced different response types in subsets of neurons across all four 

spatial stimulation categories, with suppressive modulation dominating when the onset 
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asynchronies were 30 ms or greater. Facilitative modulation was rare, but when it 

occurred, it occurred when stimulus onset asynchronies were between 0 and 30 ms. Thus, 

in this chapter we quantified spatiotemporal stimulus influences on neuron response 

properties when sites on one hand were stimulated. 

Chapter 4 returned to correlations as the measure of interest, but expanded on 

Chapter 2 by including the spatiotemporal stimulus conditions described in Chapter 3. 

Correlations did not follow our predictions, but they were somewhat affected by 

spatiotemporal stimulus properties and still supported the hypothesis that widespread 

spatiotemporal interactions occur in area 3b. When paired stimulus sites were closer in 

spatial proximity, the proportions of correlated pairs were greater than when the paired 

stimuli were distant. However, correlation magnitudes did not follow predictable patterns 

in response to temporal onset asynchronies. The spatial proximity of the paired stimuli 

affected the correlation magnitude, but the relationship did not precisely follow that 

expected based on cortical connectivity between stimulus sites, as stimulation on 

separate, adjacent digit sites resulted in similar correlation magnitudes as stimulation on 

adjacent phalanges within one digit and greater correlation magnitudes than stimulation 

on nonadjacent phalanges within one digit and stimulation on nonadjacent digits. These 

results provided evidence that spatiotemporal integration in the form of spike timing 

correlations occurs at the level of area 3b in monkeys in ways which differed from 

patterns of firing rates. 
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How Input from the Two Hands Affected Area 3b 

The first chapter to address interhemispheric interactions was Chapter 5, which 

described the effects on neuron firing rate and latency in response to bimanual 

stimulation. The temporal stimulation parameters matched those we used in experiments 

to stimulate the contralateral hand, but the spatial stimulation conditions were reduced in 

complexity because paired stimulation was applied to mirror sites or nonmirror sites on 

the two hands. The majority of responses in the primary somatosensory cortex were 

suppressed by paired stimulation. Maximal suppression occurred when the ipsilateral 

stimulus preceded the contralateral stimulus by 100 ms, and this was particularly strong 

when mirror locations were stimulated. We found a tendency for the effects of paired 

stimulation to be stronger when mirror locations were stimulated instead of nonmirror 

sites, but differences between stimulation on mirror and nonmirror locations were small. 

Our studies added temporal stimulus onset asynchronies and spatial stimulus categories 

not present in the literature previously. Previous studies reported primarily suppressive 

effects of ipsilateral stimulation on the response to contralateral stimulation (Burton et al., 

1998; Tommerdahl et al., 2006), while our study revealed proportions of responses that 

were facilitated (~4%) or unchanged (~34%) relative to contralateral stimulation alone.  

Chapter 6 addressed interhemispheric interactions with a study of acute de-

afferentation of one digit and tactile stimulation on the opposite hand. This study was 

initiated based on reports of receptive field expansions in cortex following local 

anesthetic injections or digit amputation on the ipsilateral hand (e.g., Calford and 

Tweedale, 1990; Calford and Tweedale, 1991a,b). We sought to quantify the response 

properties that underlie the receptive field expansions, and.we found unexpected 
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heterogeneity of responses. This study included a comparison between normal animals 

and one monkey (case 5) that had experienced a partial digit amputation at least 4 years 

prior to the experiment. Despite the long-term injury, several aspects of the responses in 

case 5 resembled normal responses. Thus, this study provided quantitative analysis from 

three monkeys regarding the emergence of responses to contralateral stimulation 

following local anesthetic injections into an ipsilateral digit. The variations in the 

responses when the contralateral stimulation location matched the site of the ipsilateral 

injection compared to when the contralateral stimulation location did not match the 

ipsilateral injection site supported the findings of coarse somatotopy in other studies of 

interhemispheric interactions (e.g., Werhahn et al., 2002). 

 

Synthesis 

 

Intrahemispheric Processing in Primary Somatosensory Cortex 

In this dissertation we have employed several methods to better understand tactile 

stimulus processing when only one hand is stimulated, with the focus on how neurons 

within the contralateral primary somatosensory cortex respond. Our studies on response 

properties of firing rate and latency can give us general information about stimulus 

interactions in cortex, which must have underlying anatomical substrates; and our studies 

on spike timing correlations between pairs of neurons relate to the underlying functional 

connections within the primary somatosensory cortex. Shorter latencies tended to occur 

in neurons with higher firing rates (Chapter 3). To simplify the discussion, we focused on 

comparing results from spike timing correlations and individual neuron firing rate 
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measures. Correlation magnitude is generally believed to be related to the firing rate (e.g., 

de la Rocha et al., 2007), since the more spikes two neurons fire, the more likely it will be 

that spikes will occur at the same time. However, correlations in spike timing could occur 

independently of firing rate, as we and others have found (for review, see Salinas and 

Sejnowski, 2001). The normalized JPSTH procedure that we used to determine the cross-

correlations between neuron pairs took firing rate into account to determine the 

correlation magnitudes beyond those expected based on firing rates. Thus, when we 

examined our firing rate results (either the geometric mean firing rate of neuron pairs or 

individual neuron firing rates) we found that they did not precisely follow the same trends 

that we found for correlation magnitudes. 

Even though firing rate suppression increased when the stimuli were separated in 

time, correlations did not decrease in magnitude and did not follow consistent patterns 

that matched the patterns in firing rates (Figure 7-1). Note that the correlations are 

measured across pairs of neurons, and these values are averaged across all correlated 

pairs (which could have any spatial locations within the area of cortex sampled by the 

100-electrode array), while the population means of peak firing rates calculated from 

individual neurons are shown in Figure 7-1. For a more direct relationship between 

correlations of neuron pairs with firing rate, we calculated the geometric mean firing rate 

between the two correlated neurons. For geometric mean firing rate, the firing rate when 

adjacent phalanges were stimulated was less than when nonadjacent digits were 

stimulated across temporal stimulation conditions; however, the correlation magnitudes 

were slightly higher on average when adjacent phalanges were stimulated compared to 

when nonadjacent digits were stimulated (see Figure 4-9). This example shows that the 
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correlation magnitudes did not reflect simply the geometric mean firing rate of the two 

neurons in the pair. It appears that despite the magnitude of the geometric mean firing 

rate of neurons in the pair, correlation magnitudes were highest when adjacent digits were 

stimulated, followed by when adjacent phalanges were stimulated. Peak firing rates of 

individual single neurons did not show the same trend (Figure 7-1C, D). This pattern is 

not exactly what we would have predicted for effects mediated largely by intrinsic 

connections, based on the report that intrinsic connections are very dense within the digit 

representations and slightly less dense across digit representations (Fang et al., 2002). In 

accordance with these intrinsic connection patterns, we expected correlations would be 

stronger when sites within a single digit were stimulated and weakest when nonadjacent 

digits were stimulated. Similarly, we expected that paired stimuli would have the 

strongest effects on peak firing rate when the stimuli were presented within the same 

finger and would have weak to no effects when presented on nonadjacent digits. 

However, intrinsic connections are still likely substrates for these effects due to the 

gradient of the effects. It is possible that the dense connections within the digits also 

mediate lateral inhibition that reduces the firing rate and correlations when those two 

sites are stimulated together, similar to ―in-field inhibition‖ described by Gardner and 

Costanzo (1980a,b) when multiple air puffs were presented to the forearm in 

unanesthetized macaque monkeys.   

In summary, we applied three different measures to examine intrahemispheric 

processing of spatiotemporal stimulus information in primary somatosensory cortex. 

These measures quantify different properties of neurons, and here we discuss what the  

 
 

 



 296 

 

 

 

 

 

 

 

Figure 7-1. Comparison of trends in peak firing rates of single units and correlation magnitudes between 

pairs of single neurons for temporal and spatial stimulus relationships. Error bars are 95% confidence 

intervals for all panels. Markers indicate the means of the observed datasets (not statistical predicted 

values). A. Peak firing rates showed a clear decreasing trend when a non-preferred stimulus was presented 

before the preferred stimulus, with firing rates suppressed the most when the onset delays occurred at 30 

and 50 ms. B. Correlation magnitudes did not follow the firing rate trends and varied within a small range 

in inconsistent patterns when stimuli were presented with selected stimulus onset delays. C. Peak firing 

rates of single neurons were suppressed when dual-site stimuli were presented compared to single-site 

stimuli. D. Correlation magnitudes did not follow the trends in firing rate due to the spatial relationship of 
stimuli. Stimulation on adjacent digits (Adj D.) and adjacent phalanges (Adj Ph.) resulted in slightly higher 

correlations than single-site stimulation (Single) and stimulation on nonadjacent digits (NonA D.) and 

nonadjacent phalanges within a digit (NonA Ph.).  
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combined information can reveal. The individual neuron measures of firing rate and 

latency are thought to be related, such that when firing rate increases, latencies tend to 

shorten (e.g., Boloori and Stanley, 2006). We have found that this relationship was not 

always strong, as firing rate and latency did not change together in many of the instances 

in our large sample, and we found a weak negative correlation between latency and peak 

firing rate (ρ = -0.141, P < 0.0005; see Chapter 3). Measures of firing rate and latency are 

associated with stimulus preferences of neurons and preference changes. Spike timing 

correlations are believed to be related to functional connectivity between neurons, how 

reliably information may be transmitted (for reviews, see Salinas and Sejnowski, 2001; 

Niebur et al., 2002), and may be related to stimulus properties in the somatosensory 

system (e.g., Zhang and Alloway, 2004, 2006). 

What do the differences between the patterns in firing rate and the patterns in the 

correlation magnitudes tell us?  Perhaps these differences could mean that firing rate and 

correlations can provide different information or serve different functions. Salinas and 

Sejnowski (2001) suggested that spike timing correlations (and oscillations) may control 

the strength of the neuronal signal rather than providing different information than the 

spike rate. Since the state of oscillatory activity in the brain is related to the likelihood of 

a neuron firing an action potential (e.g., Fetz et al., 2000), this role for correlations seems 

highly plausible. In addition, Samonds and Bonds (2005) found that gamma oscillation 

contributes to the maintenance of spike timing synchrony in cat primary visual cortex 

cells, and similar to Salinas and Sejnowski (2001), they suggested that maintained 

synchrony could aid in reliable transmission of the spiking information. There is also 

evidence that spike timing correlations may be related to encoding information from 
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complex stimuli, such as visual cocircular contours (Samonds et al., 2006 [cat]) and airjet 

motion (Zhang and Alloway, 2004, 2006 [rat whiskers]). Our study used relatively simple 

stimuli (single or paired skin indentations), rather than complex tactile stimuli resembling 

contours or movement arcs. However, correlation magnitudes appeared to relate to the 

spatial relationships of the paired stimuli (rather than the temporal relationships of the 

indentations). Thus, we suggest that our results examining the firing rates and latencies of 

single neurons and multi-unit clusters may be closely related to how stimuli affect 

individual neurons (or small groups of neurons), while the strength of the correlations 

may relate to how reliably that information is transmitted and provide some stimulus-

related spatial information.  

 

Interhemispheric Processing Compared to Intrahemispheric Processing in Primary 

Somatosensory Cortex 

 

Integrating the results from our studies of intrahemispheric processing and inter-

hemispheric processing produce a more complete picture of how area 3b functions. While 

we did not record neuron responses in two hemispheres simultaneously, we analyzed 

response magnitudes and response latencies under conditions in which one or both 

hemispheres were expected to contribute to the neuron response properties observed. 

Two main aspects of the intra- and interhemispheric studies were interesting to compare: 

the stimulus onset asynchrony that resulted in the maximum suppression of peak firing 

rate; and the distributions of response facilitation, suppression, and no change during 

dual-site stimulation.  

 

 



 299 

Maximum Response Suppression 

Our investigations of the temporal interaction effects were based on condition-test 

paradigms in animal studies, but also resemble ―temporal masking‖ experiments 

performed in psychophysical studies in humans. Using temporal masking terminology, 

the first, conditioning stimulus in our experiments is the ―masker‖ and the second, test 

stimulus is called the ―target‖ stimulus. Temporal masking is greatest when the masker 

and the target are presented to the same location on the hand; however, masking is found 

when the two stimuli are presented to different locations on the same hand and on 

opposite hands (for review, see Craig, 2009). Human studies more often use vibratory 

stimuli rather than the pulse stimuli used in this dissertation, and these studies tend to find 

that when stimuli are presented on opposite hands, the greatest masking effect occurs 

when the stimuli are presented simultaneously (e.g., Craig, 2009, review). In contrast, our 

method using 0.5 s indentations that overlapped in time allowed us to determine 

differences between intrahemispheric and interhemispheric processing that are likely to 

relate to the underlying functional connectivity mediating the temporal masking effects at 

the level of neurons in primary somatosensory cortex.  

The peak firing rate was suppressed most when the non-preferred stimulus on the 

contralateral hand preceded the preferred stimulus by 30 ms and 50 ms (Figure 3-4A). 

When the non-preferred stimulus was presented to the ipsilateral hand, the peak firing 

rate was suppressed most when the preferred contralateral stimulus was presented at 100 

ms onset delay (Figure 5-5A). The difference in the onset delay resulting in maximal 

suppression for contralateral and bilateral stimuli implies that the full strength of the 
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suppression occurs when the delay of the second stimulus accounts for the time for the 

signals to travel to reach the reference neuron.  

 

Distribution of Modulation Types 

Dual-site stimulation within the contralateral hand and dual-site stimulation on the 

ipsilateral and contralateral hand resulted in large proportions of suppression, but also 

responses that were unchanged by the presence of the non-preferred stimulus. Somewhat 

surprisingly, both types of experiments resulted in small proportions of facilitated 

responses and these facilitations occurred primarily when the two stimuli were presented 

closely in time, between 0-30 ms (see Figures 3-6, 3-7, 5-8). The occurrence of 

facilitations during bimanual stimuli was surprising, based on the predominance of 

suppression reported under similar stimulus conditions (e.g., Burton et al., 1998; 

Tommerdahl et al., 2006), as discussed in Chapter 5. Additionally, the observation that 

facilitation occurred within the same stimulus onset asynchronies (0-30 ms) when paired 

stimuli were presented within one hand and when paired stimuli were presented to the 

two hands was unexpected. Instead, we expected that when the stimuli presented to the 

two hands, longer stimulation onset asynchronies would be required for facilitation to 

occur than when stimuli were presented within one hand. These findings for facilitation 

when bimanual stimuli were presented simultaneously and near-simultaneously indicate a 

relatively fast pathway is able to modulate the responses of area 3b neurons despite the 

sparse callosal connections between the hand representations of area 3b (Killackey et al., 

1983).  
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Two Studies of Interhemispheric Interactions: Bimanual Stimulation Compared to 

Contralateral Stimulation after Local Anesthetic 

 

Bimanual stimulation resulted in mostly response suppressions, while digital 

nerve block on the ipsilateral hand was associated with expanded receptive field sizes on 

the contralateral hand and stimulation on the contralateral hand resulted in increases in 

peak firing rates on average (although this effect was weak and variable). Nevertheless, 

these complementary effects of bimanual stimulation versus removal of a subset of 

ipsilateral inputs supports the idea that the local anesthetic injection results in 

disinhibition to allow receptive field expansion (for review, see Calford, 2002). A 

problem with the disinhibition theory to explain receptive field expansion and changes in 

responsiveness is that the possible source of tonic inhibition is unknown. C-fibers have 

been suggested as sources of tonic inhibition, but no C-fibers with tonic activity have 

been found (Calford, 2002, review).  

Even without knowing the precise mechanism through which the two hemispheres 

interact to affect area 3b neurons, our studies revealed topographic effects that have not 

been described previously. Experiments using bimanual stimulation revealed slight 

differences in response properties between stimulating mirror locations on the two hands 

compared to nonmirror locations (Tables 5-1, 5-2; Figure 5-8). Local anesthetic 

injections revealed that contralateral stimulation on the digit that matched the ipsilateral 

anesthetized digit resulted in opposite effects compared to contralateral stimulation on a 

non-matching digit (Table 6-1; Figure 6-6). Since weakly somatotopic interhemispheric 

interactions were found under both experiment types, these results provide additional 

support to the prevailing theories that feedback projections mediate interhemispheric 



 302 

interactions in area 3b rather than homotopic callosal connections (Calford, 2002, 

review). 

 

Overall Integration 

The series of studies included in this dissertation examined intrahemispheric and 

interhemispheric processing of tactile stimuli in primary somatosensory cortex of owl 

monkeys. The effects of surround modulation were studied in all experiments. In most 

experiments, at least one stimulus probe was placed in the surround of a given neuron‘s 

receptive field. In the experiments in which local anesthetic was delivered to an 

ipsilateral digit and single-site stimulation was provided to a contralateral location, we 

considered that anesthetic revealed the surround effects of the ipsilateral hand. All of 

these studies have shown that surround modulation of neurons in primary somatosensory 

cortex is extensive in time (stimulus onset asynchronies over 100 ms can suppress 

responses) and in space (stimulation on nonadjacent digits within one hand and even the 

opposite hand can affect responses). While these studies were not the first to suggest the 

presence of widespread spatiotemporal interactions in primary somatosensory cortex, this 

dissertation offers more quantification of these effects across additional stimulus 

parameters and categories beyond what has been previously reported.  
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Common Measures, Methods, Analyses, and Their Validities 

 

Measures 

Our primary measures included the individual neuron measures of response 

latency and response magnitude (peak firing rate) as well as the pairwise measure of 

spike timing correlations. We selected peak firing rate as our primary measure of firing 

rate (compared to average firing rate over a given time window) because this measure 

would provide common results for all types of excitatory responses. In particular, peak 

firing rate values were similar between rapidly-adapting (RA) responses and slowly-

adapting (SA) responses, while average firing rates measured across the stimulus duration 

would have differed between the two response types. We originally categorized unit 

responses as RA- and SA-like based on methods by Leiser and Moxon (2006), but the 

units were not consistently categorized, as different stimuli caused responses of the same 

neuron to be RA- or SA-like. Average firing rate over a given response window would be 

greater for SA- than RA-like responses, and the firing patterns could change differentially 

due to different stimulation parameters. For universality and simplicity, we chose to 

investigate peak firing rate as the unit of the response magnitude. However, we collected 

average firing rates in addition to peak firing rates. Further analysis would be required to 

characterize the firing patterns and average firing rates over longer time windows and 

compare RA-like responses with SA-like responses.  

Latency is a standard measurement; however, there is no single standard method 

for calculating latency in the literature. The method used depends on the brain region 

studied (e.g., low baseline activity versus high baseline activity) and the experimental 
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questions and methods. Therefore we selected a method to calculate latency that was 

similar to other methods (e.g., Tutunculer et al., 2006; Davidson et al., 2007) and 

produced appropriate results empirically. All of the latency calculations described in this 

dissertation followed the same methods involving the selection of firing-rate-based 

criteria to determine the response latency. We also compared our method to another 

method and found similar latency values, described as follows. On a subset of data (all of 

the recordings from monkey 1 and half of the recordings from monkey 2), we used a 

―Poisson surprise index‖ to determine latency based on the average time when bursts of 

spikes occurred that deviated from expectations based on Poisson processes. This routine 

was written for Matlab and provided by Dr. Pierre Pouget (then at Vanderbilt University) 

and was based on Poisson spike train analysis from Hanes et al. (1995). The original 

Matlab code was written by Dr. Chenchal Subraveti, then P. Pouget provided 

modifications, and final modifications were made by the dissertation author. When the 

maximum response occurred within our window of interest, these two latency measures 

were well-correlated. However, because the Poisson surprise latency measure was not 

able to restrict the burst analysis to a small time window, this measure would identify 

responses that were outside our region of interest (e.g., the ―off‖ response instead of the 

―on‖ response). The latency measure used in this dissertation coincided with the response 

latencies determined by visual inspection, was usually similar to the values determined 

by the Poisson surprise index, and resulted in numerical values within normal latency 

ranges reported in monkey primary somatosensory cortex (e.g., Hsiao et al., 2009, 

review). Additionally, we used the same latency calculation consistently throughout this 

body of work; therefore, we have confidence that the summary analyses from latency 
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calculations are reasonable indicators of the effects of spatiotemporal stimulus conditions 

on excitatory response latency. 

Multiple methods exist to calculate spike timing synchrony; however, the cross-

correlation derived from the JPSTH is well-established (e.g., Aertsen et al., 1989; 

Gerstein and Kirkland, 2001). We included only single units in our analysis of the 

changes in the correlation magnitudes due to varying spatio-temporal stimulation 

(Chapter 4); thus, we eliminated the difficulty of interpreting multi-unit correlations (e.g., 

Bedenbaugh and Gerstein, 1997; Gerstein, 2000). We focused on the presence of 

correlations and changes in the magnitude of the peak of the cross-correlation histogram. 

While our correlation magnitudes were low, they were within the ranges commonly 

reported (e.g., Roy and Alloway, 1999; Steinmetz et al., 2000; Alloway et al., 2002). 

There are several additional aspects of neuronal synchrony that may be analyzed using 

these data, including: the lag times of the peak in the correlations; the patterns in the 

coincidence histograms; and effects beyond the 0 ms diagonal, such as the presence of 

oscillations. We found that significant peaks in the cross-correlation histograms occurred 

at 0 ms lag times with 10 ms bins for our data, which may not be surprising given that the 

majority of the electrodes were recording from the same cortical area and the same 

cortical layer. Additional analyses and improved methods for examining correlated firing 

between two or more neurons could be applied to this data set in the future.  

 

Experimental Methods and Data Classification 

We performed common methods throughout the experiments of this dissertation 

which helped to examine spatiotemporal interactions and classify the data. In a typical 
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experiment, we stimulated single locations on the hand, and we stimulated paired 

locations simultaneously and at stimulus onset asynchronies. When we used stimulus 

onset asynchronies, our experiments resembled condition-test paradigms in which the 

conditioning stimulus is presented prior to the test stimulus. This condition provided our 

examination of how temporal stimulus relationships influenced neurons in the 

contralateral primary somatosensory cortex. We selected specific values for stimulus 

onset asynchronies based on those used by Gardner and Costanzo (1980b) and Greek, 

Chowdhury, and Rasmusson (2003) to examine a range of temporal intervals. We 

included the 500 ms onset delay, which was a longer delay than other studies had tested, 

so that we would include a wide range of intervals and to use the same parameters to 

explore intra- and interhemispheric interactions.  

To examine how spatial stimulus relationships influenced neurons, we stimulated 

paired sites on the hand that varied in their proximity within digits and across digits. 

Other studies have investigated the effects of stimulation on adjacent digits and 

nonadjacent digits (e.g., Friedman et al., 2008), but this work extended to stimulation on 

adjacent and nonadjacent phalanges within a single digit. We also classified the 

relationship of the stimulus to the Response Field, a category that we developed that is 

similar to the receptive field as determined by firing rate. This measure was similar to the 

qualitative measure of receptive fields described by Tutunculer et al. (2006). 

We classified units as single units and multi-units, based on waveform isolation 

using offline spike sorting tools. In most experiments, we included single units and multi-

units in the statistical analysis to determine if these categories of units were different 

from each other. Across all of the experiments, we found that the means of the multi-unit 
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measures were different from the means of the single unit measures. However, 

classification as a single unit or multi-unit did not significantly affect the way that units 

responded to the spatiotemporal stimuli. For measures of pairwise spike timing 

correlations, only single units were analyzed. While multi-unit cross-correlations can be 

more sensitive to detect relationships than single unit cross-correlations, changes in the 

correlations can be difficult to interpret since the number of cells recorded in the multi-

units on each electrode could change, affecting the correlation value (Bedenbaugh and 

Gerstein, 1997). Since the focus of Chapter 4 was how the correlations change with 

stimulus conditions, we selected only single unit neuron pairs for the analysis. 

 

Summary Analysis Methods 

Data from each experiment were compiled in order to analyze the contributions to 

the variance in the observed measures of peak firing rate, response latency, or correlation 

magnitude. We followed a similar analysis strategy for all experiments because the data 

were collected simultaneously from the 100 electrodes in the array and were collected 

over time. Occasionally, neuron signals would be lost over the course of an experiment, 

or new neuron signals would be gained, leaving gaps in the time series of a given neuron. 

These gaps were considered missing observations. When a given neuron was recorded 

throughout a time series (such as all control stimulation and dual-site stimulation), the 

responses of that neuron during one stimulus block are likely to be related (or correlated) 

to the responses of that neuron during the next stimulus block. Thus, the errors in 

statistical predictions of these data are likely to be correlated. This knowledge led to 
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investigating analysis methods that have not been commonly described in 

neurophysiological literature. 

In many other analysis methods typically used by neurophysiologists, individual 

neuronal recordings are typically considered independent observations, which meet the 

assumptions of parametric or nonparametric analysis of variance (ANOVA). However, 

simultaneously recorded neurons are likely to be correlated in their response properties, 

as outlined by Kenny and Judd (1986) and reviewed in Appendix A. Longitudinal 

clustered or correlated data are better analyzed using methods that do not require 

improper assumptions to be met regarding the independence of observations and the 

statistical distribution; therefore, we used Generalized Estimating Equations analysis 

introduced by Liang and Zeger (1986) for our simultaneously recorded data. While this 

method has not been commonly applied to neurophysiological data, its use is an 

improvement over traditional ANOVA of linear model theory when the data may not be 

normally distributed and when the observations are expected to be correlated rather than 

independent (e.g., Liang and Zeger, 1986; Zeger and Liang, 1986; Hardin and Hilbe, 

2003). For a detailed description of Generalized Estimating Equations analysis and its 

applications for analyzing large-scale neuronal recording data, refer to Appendix A.  

 

Research Limitations 

 

At the time this research was conducted, the 100-electrode ―Utah‖ array was 

increasingly used for studies in animals and humans, particularly related to applications 

for brain-computer-interfaces (e.g., Maynard et al., 1997; Buzsáki, 2004; Normann et al., 
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2009). As this particular array was patented in 1994, perfecting its use and developing 

techniques to analyze the data obtained through the array recordings were still in 

relatively early stages of development (e.g., Nordhausen et al., 1994, 1996). The large 

numbers of neurons that could be simultaneously recorded using the 100-electrode array 

was an advance over previous array technologies; however, several complications arise 

from such recordings, many of which have been reviewed elsewhere (e.g., Gerstein and 

Kirkland, 2001; Buzsáki, 2004). One such complication is the large amount of time and 

computational resources required for procedures including spike sorting, calculating 

appropriate variable measures, and summarizing the data statistically. This dissertation 

relied on mostly well-established measures and analysis methods; however, methods 

appropriate to large-scale neuronal data recordings were applied with an eye to the 

current advances. Thus, this section explains some limitations of the methods applied in 

this dissertation, and briefly discusses alternate methods of analysis and future questions 

that could be addressed from these data.  

Experiments were performed on anesthetized and paralyzed monkeys, which 

provided the benefits of stable recording conditions, prevention of the hand from moving 

during stimulus trials, and elimination of fluctuations in attention levels and other factors. 

However, experiments performed in anesthetized animals may not provide the same 

results as experiments performed in unanesthetized animals. Given the complications 

with training monkeys for somatosensory experiments in the awake state, we chose to 

perform experiments in anesthetized animals in order to describe the basic responses 

without the confounds of attention and other behavioral effects. Some of our effects were 

similar to those seen in unanesthetized macaque monkeys (e.g., Gardner and Costanzo, 
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1980a,b; Burton et al., 1998) and correspond well to results in awake humans (e.g., 

Tanosaki et al., 2002; Werhahn et al., 2002; Braun et al., 2005).  

Individual neuron response properties including firing rate and response latency 

have been long-studied, especially from individual single-electrode recordings. The 

typical method of performing such single-electrode studies has involved the repeated 

presentation of a stimulus (or behavior-inducing event) in order to accumulate an average 

response of the neuron studied. This method assumes the likely scenario in which a 

postsynaptic neuron receives input from multiple single neurons that behave in similar 

ways, thus the averages accumulated in the peristimulus time histograms (PSTHs) 

theoretically reflect a population effect (e.g., Gerstner and Kistler, 2002). Although we 

recorded from a population of neurons simultaneously, we continued to follow the 

traditional method of accumulating average responses to repeated stimulus presentations, 

rather than attempting to ―decode‖ stimulus information from the activity of multiple 

neuron responses within a single stimulus trial. While single-trial analysis of multiple 

neuron response is a worthy achievement to understand neuronal coding (Quiroga and 

Panzeri, 2009, review), complications in the interpretation of the results and in the 

implementation of the available analysis methods kept us from choosing such methods as 

our research focus. Rather than decoding the stimulus parameters from the population of 

neuronal responses, we asked how the stimulus parameters affect the response properties 

of neurons within the population.  

Studying response magnitude and latency using the traditional PSTH-based 

methods appears to neglect some of the interesting aspects of neuronal population 

recording. Some may ask, ―How is this analysis of simultaneously recorded data different 
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from accumulating many individual neuron recordings?‖ In some ways, the analyses used 

in this dissertation resemble those that would be used for individually recorded neuron 

responses. However, there are important differences in the way that these data were 

analyzed that are unique to simultaneous recordings. Specifically, individual neuronal 

recordings are traditionally considered independent observations and the contributions to 

the variance in the dependent variables of interest are then estimated using parametric or 

nonparametric ANOVA. Our experimental design was a repeated-measures design in 

which the same neurons were tested across several different stimulus conditions that were 

compared. Additionally, our data did not always appear to be drawn from a normal 

distribution. Therefore, our simultaneous recording data were better analyzed using 

Generalized Estimating Equations (e.g., Liang and Zeger, 1986; Zeger and Liang, 1986) 

to address the potential correlations among the clustered data. Thus, simultaneously 

recorded data required different analysis methods than individually recorded data allows, 

even when the dependent variables of interest (such as response magnitude and latency) 

were collected in traditional ways. There are alternative methods besides Generalized 

Estimating Equations analysis to apply to large-scale neuronal recordings, depending on 

the research question. A limitation of this research may be that we did not perform 

alternative analyses; however, some alternative methods could be applied to these data in 

the future to fully utilize these data. Several alternative analysis methods for 

simultaneous neuronal recordings are briefly reviewed in Appendix A.  

Our use of traditional measures rather than exploring neuronal coding methods 

may be a limitation of this work. We described and quantified the occurrence of 

―spatiotemporal integration‖ without calculations based on information theory and other 
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neuronal coding strategies (e.g, Quiroga and Panzeri, 2009, review). An important point 

to clarify is how we can infer that widespread spatiotemporal integration occurs using our 

analysis of response properties without employing information theory. While the 

previous chapters of this dissertation were designed to address this question, it is worth 

the time to make the answer concrete. Individual neuron response properties may not 

come to mind when one thinks about neuron population analysis and widespread 

spatiotemporal integration. However, the key point in all of the chapters regarding 

neuronal response properties is that by using two stimuli, one in a non-preferred location 

and a second in a preferred location for a given neuron, interactions are revealed when 

the non-preferred stimulation affects the responses to the preferred stimulation. When a 

non-preferred stimulus that is presented far away in space or time from a preferred 

stimulus affects the neuron‘s response, spatiotemporal interaction related to the stimulus 

parameters has occurred. Thus, even by using traditional measures, we were able to 

investigate complex properties that occur in neuronal populations and determine how 

focal or widespread the interactions are, and this was aided by the ability to record from 

many neurons simultaneously.  

In addition to measures described above, measures beyond individual neuron 

response properties should be studied using simultaneous recordings, and we studied one 

such measure out of the many possibilities. We examined the correlation coefficient 

derived from the joint peristimulus time histogram (JPSTH) analysis as a measure of the 

spike timing synchrony between two neurons. This method has been well-established, 

and we used a variation of the procedure by Aertsen et al. (1989), as described in Chapter 

2. Simultaneous recordings are the only direct way to obtain spike timing correlations 
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between two neurons, and this method has been used to estimate the underlying 

functional connectivity between pairs of neurons within a population. We used JPSTH 

analysis to determine how spatiotemporal stimulation parameters may change the 

presence and magnitude of these functional connections. This traditional method is only 

designed to compute pair-wise interactions between neurons and is not able to quantify 

higher-order interactions between three or more neurons in the population, which may be 

a limitation.  

Several other methods introduce the ability to identify clusters of three or more 

neurons with correlated firing and spike times, including those used by Bonds and 

colleagues (e.g., Samonds et al., 2003 [type analysis]; Bernard, 2008, p. 51-58 

[dissertation introducing ―PSP method‖]) and NeuroXidence developed by Pipa et al. 

(2008) to detect excess or deficiency of joint spike timings in two or more neurons. Other 

methods can reveal clusters of correlated neurons but are more difficult to apply to 

quantitative analyses, or require subsequent analysis after clusters are identified, or still 

include pair-wise comparisons as their basis. Such methods include gravitational 

clustering (e.g., Gerstein and Aertsen, 1985; Baker and Gerstein, 2000) and various 

analyses involving hierarchical clustering (e.g., Eggermont, 2006; Hosoda et al., 2009). 

Additional methods to analyze large-scale neuronal recording data have been discussed 

by Kralik et al. (2001) and Pereda et al. (2005). We were interested in the effects of 

spatiotemporal stimulation on neuronal measures rather than identifying specific neuronal 

ensembles within each monkey that may have been active during the stimulations. JPSTH 

analysis allowed us to reveal some of the effects of spatiotemporal stimulation on neuron 



 314 

pairs in our samples; however, we may be missing information by not having the 

capability of analyzing higher-order interactions through this method.  

Since we were interested in how the functional connectivity (even between 

neuron pairs) may be affected by the spatiotemporal parameters of stimulation, we 

applied the Generalized Estimating Equations analysis to our dependent variable of the 

correlation coefficient in order to determine the spatiotemporal factors that account for 

the variance observed in this measure. As analysis methods are further developed, even 

the data we have already collected could be analyzed in new ways to extract information 

to better characterize spatiotemporal stimulation effects on small populations of neurons 

in area 3b. Thus, this work lays a foundation and points to promising directions for future 

studies. 

 

Applications and Future Directions 

 

This body of research has direct applications that the Kaas laboratory will pursue. 

Currently, we are comparing the response properties of neurons and spike timing 

correlations of neuron pairs in normal monkeys to those in monkeys who sustained injury 

to the dorsal column (sensory pathway) of the spinal cord (Qi et al., 2009 [abstract]). 

Additionally, we are comparing the properties of spike waveforms (i.e., duration, 

amplitude) between normal monkeys and monkeys after dorsal column injury. In these 

studies, lesions are made in the cervical spinal cord to disrupt the transmission of sensory 

information from part or all of the hand to the brain, with every effort made to keep the 

ventral spinal cord (motor pathway) intact. This procedure initially disrupts motor 
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behavior, as monkeys prefer not to use the hand from which they have no tactile 

sensation; however, behavioral training restores the hand use in behavioral tasks to 

normal or near-normal levels (e.g., Darian-Smith, 2009, review). In additional 

experiments that have not commenced, we plan to provide treatment beyond behavioral 

training for subsets of monkeys. These treatments are intended to promote the recovery of 

the spinal cord after injury and will be based on methods performed by Kaas and 

colleagues (2008) and others (Fawcett, 2009, review). We will be able to determine if the 

animals recover faster behaviorally and determine when and if neurons in the primary 

somatosensory cortex return to near-normal levels of responsiveness across the groups of 

monkeys. Some of the findings from this dissertation will be directly compared to 

findings in monkeys with spinal cord injuries, and all of our findings will be used to 

inform our predictions and analyses of the data recorded from primary somatosensory 

cortex neurons in monkeys after injury.  

Beyond this work that we plan to pursue immediately, the knowledge gained from 

this research will be useful for understanding normal somatosensory cortical processing 

and for relating normal findings to human neurological conditions such as recovery from 

nerve injury and phantom limb syndrome. This dissertation work quantified aspects of 

surround modulation, including ipsilateral signals as contributing to surround modulation 

in primary somatosensory cortex of owl monkeys. Surround modulation has not been a 

well-studied aspect of somatosensory processing, and in the context of our passive 

stimulation experiments in anesthetized animals, such modulation was not related to 

attention (Burton and Sinclair, 2000; Hupe et al., 2001), but may have been related to 

how stimuli are perceived within a context rather than in isolation (e.g., Allman et al., 
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1985; Albright and Stoner, 2002). The results from this dissertation apply to the 

underlying effects that occur in absence of conscious processing, and future studies can 

compare these effects in anesthetized animals to those that occur in awake, behaving 

animals to determine the differential contributions.  

The work within this dissertation was intended to guide investigations of 

widespread integration that occurs during somatosensory processing. The effects of 

spatiotemporal stimulation are important for understanding normal somatosensory 

processing as well as understanding existing substrates for recovery from injury. In 

addition to the further analyses we have suggested could be performed on these existing 

data, we suggest that further studies could be performed in different brain regions, 

including the thalamus, to investigate the contributions of these regions to the stimulus 

integration effects. The contribution of feedback projections to the responses in the brain 

region of interest could be further elucidated with regional blocking studies, such as those 

performed by Chowdhury and Rassmusson (2003) in raccoon primary somatosensory 

cortex. Even the fine anatomical connectivity within the hand representation could be 

studied further with microiontophoretic injections of neuronal tracers, and the connection 

patterns could be compared to the observed cross-correlations and response properties 

recorded from the region of interest. An abstract presented at the Society for 

Neuroscience meeting in October combined optical imaging with neuronal tracer 

injections into area 3b in squirrel monkeys (Negyessy et al., 2009); therefore, studies 

comparing such anatomical connectivity results with functional connectivity results 

appear to be imminent. Several aspects of the anatomical and functional relationships 

between neurons in the somatosensory hand representation await full characterization. As 
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it is acquired, this knowledge will aid in the understanding of normal somatosensory 

processing of information from the hand and in how sensation and use of the hand may 

be recovered following injuries.  
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APPENDIX A 

 

 

STATISTICAL ANALYSIS OF LARGE-SCALE NEURONAL RECORDING DATA 

 

 

This appendix reproduces the work submitted by Reed JL and Kaas JH to Neural 

Networks on October 1, 2009 as an invited paper for a special issue on ―Analysis and 

modeling of massively parallel neural signals‖. 

 

Abstract 

 

Relating stimulus properties to the response properties of individual neurons and 

neuronal networks is a major goal of sensory research. Many investigators implant 

electrode arrays in multiple brain areas and record from chronically implanted electrodes 

over time to answer a variety of questions. Technical challenges related to analyzing 

large-scale neuronal recording data are not trivial. Several analysis methods traditionally 

used by neurophysiologists do not account for dependencies in the data that are inherent 

in multi-electrode recordings. In addition, when neurophysiological data are not best 

modeled by the normal distribution and when the variables of interest may not be linearly 

related, extensions of the linear modeling techniques are recommended. A variety of 

methods exist to analyze correlated data, even when data are not normally distributed and 

the relationships are nonlinear. Here we review expansions of the Generalized Linear 

Model designed to address these data properties. Such methods are used in other research 

fields, and the application to large-scale neuronal recording data will enable investigators 

to determine the variable properties that convincingly contribute to the variances in the 

observed neuronal measures. Standard measures of neuron properties such as response 

magnitudes can be analyzed using these methods, and measures of neuronal network 
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activity such as spike timing correlations can be analyzed as well. We have done just that 

in recordings from 100-electrode arrays implanted in the primary somatosensory cortex 

of owl monkeys. Here we illustrate how one example method, Generalized Estimating 

Equations analysis, is a useful method to apply to large-scale neuronal recordings.  

 

1. Introduction 

 

1.1 Motivation 

Recording large-scale neuronal data in vivo is an expanding field; however, 

methods that can best describe and quantify the results of these recordings are essential to 

utilizing these data. Our laboratory with our colleagues have implanted multi-electrode 

arrays into somatosensory and motor regions of the cortex in non-human primates (e.g., 

Nicolelis et al., 1998; Jain et al., 2001; Reed et al., 2008), and we recognize the 

challenges that performing such experiments and analyzing these data present. Data can 

be analyzed in traditional ways, treating simultaneous neuron recording as an efficient 

means of increasing the sample size of neurons recorded from each monkey at a time. 

However, these traditional analyses rely on the assumption that the data collected from 

each neuron is independent, which may not be a valid assumption. Thus, we intend to 

introduce alternative analysis methods that may not be widely considered or used in 

current neurophysiological research. From in vivo recordings, computational 

neuroscientists often make neural network models that can include complex properties of 

real neurons, such as the dependence of the observed firing rate on the spiking history 

(e.g., Lewi, Butera, and Paninski, 2009). Such models have been used to understand the 
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properties of individual neurons considered in isolation from the recorded population 

(e.g., Pei et al., 2009) as well as to understand network properties (e.g., Deadwyler and 

Hampson, 1997, review). Here, we review selected methods for analyzing the variance of 

in vivo recording measures of large-scale neuronal populations, while we intend for 

neural network modeling to be addressed by others (maybe some in this special issue).  

We believe this review will be helpful as the special circumstances of large-scale 

neuronal recordings are not currently well-recognized in the literature. In particular, we 

focused on two extensions of the Generalized Linear Model (McCullagh and Nelder, 

1989), the Generalized Estimating Equations (Liang and Zeger, 1986; Zeger and Liang, 

1986) and the Generalized Linear Mixed Models (e.g., Laird and Ware, 1982; Searle, 

Casella, and McCulloch, 1992), as practical methods of estimating the contributions of 

selected factors to the variance in the dependent measures of interest due to the existence 

of correlations inherent in large-scale recording experiments. A Pubmed search for 

―generalized estimating equations‖ produced 1648 hits on September 1, 2009. However, 

a Pubmed search for ―neuron generalized estimating equations‖ produced 6 hits. A 

Pubmed search for ―neuron generalized linear model‖ resulted in 56 hits, but most of 

these articles focused on neuronal network models rather than ways to analyze data 

collected in vivo for the contributions to the variance in the dependent variables. Forms 

of the Generalized Linear Models are already commonly used to model individual neuron 

properties, with recent examples from Lewi, Butera, and Paninski (2009) and Song et al. 

(2009). Without a full review of the content of each hit from the search, it is still clear 

that few neuroscientists are applying the Generalized Linear Model to their data for 

analysis of variance. We hope that a straightforward review of analysis methods and 
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practical considerations for their use will aid researchers in making decisions about how 

to analyze the complex data sets obtained from large-scale neuronal recordings. 

 

1.2 Use of Generalized Linear Model Analysis in Other Research Fields 

Reviews have been written for other fields to explain and encourage the use of the 

Generalized Estimating Equations, Generalized Linear Mixed Models, and other 

extensions of the Generalized Linear Models. Edwards (2000) described both 

Generalized Estimating Equations and Generalized Linear Mixed Models analyses for 

biomedical longitudinal studies. Other examples include behavioral research (Lee et al., 

2007); ecology (Bolker et al., 2008); epidemiology (Hanley et al., 2003); psychology and 

social sciences (Tuerlinckx et al., 2006); and even political science (Zorn, 2001) and  

organizational research (Ballinger, 2004). Within most of these reviews, the term 

―subjects‖ is applied to people (patients, participants in research, etc.) for the purpose of 

statistical analysis of ―between-subjects‖ or ―within-subjects‖ effects on the variance of 

the dependent variable of interest. The term ―subjects‖ is a general one, and for 

longitudinal data or other studies with clustered observations, it refers to the variable for 

which observations may be correlated (with respect to standard errors). In many 

neurophysiological studies, subjects are individual neurons. These neurons are nested 

within individuals, monkeys, in our case. This situation is analogous to studies in which 

human participants are nested within communities, for example. Most neurophysiological 

studies, especially those on non-human primates, provide the number of animals used in 

the experiment, but pool all of the neurons across animals so that the number of subjects 

for analysis of variance is large (number of neurons) instead of small (number of 
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animals). By incorporating the nested effects of neurons within animals, 

neurophysiologists can continue to investigate neurons as subjects without violating 

important statistical assumptions (e.g., Kenny and Judd, 1986) as long as appropriate 

measures are used to try to account for the likely correlations within subjects. Section 2 

of this review describes this issue and how extensions of the Generalized Linear Model 

can be used to address multielectrode recording data. Now that these methods are 

becoming more widely used in other fields and many options for these analyses are 

included in commercially available statistical software packages, re-introducing 

Generalized Estimating Equations and Generalized Linear Mixed Models analysis for 

applicability to parallel neural recordings appears to be overdue.   

 

2. Complexities of Parallel Neuronal Recording Data and How to Address Them 

 

2.1 Complexities of Parallel Neuronal Recordings and Experimental Designs 

The use of multi-electrode array to simultaneously record from small populations 

of neurons allows neuroscientists to study how neural ensembles may work (e.g., 

Buzsáki, 2004, review) and has played a role in the study of brain-machine-interfaces for 

neuroprosthetics (e.g., Chapin, 2004, review). There are diverse questions that can be 

addressed using large-scale neuronal recordings. Here, we consider issues that typically 

apply to such studies. While individual experiments will have specific design 

considerations, many designs are aimed at recording the responses of large numbers of 

individual neurons in order to relate changes in activity to specific sensory or behavioral 

conditions. Some sensory experiments can be more easily performed in anesthetized 

animals than in awake animals, while behavioral experiments require animals to behave 
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in the awake state. All of our experiments have been performed in lightly anesthetized 

animals. 

Experiments can also be divided into ―chronic‖ and ―acute‖ recording categories. 

We have implanted microwire multi-electrode arrays chronically for long-term studies in 

primary somatosensory and primary motor cortex of squirrel monkeys (Jain et al., 2001), 

and we have implanted the 100-electrode silicon ―Utah‖ array in primary somatosensory 

cortex of owl monkeys (Reed et al., 2008) for acute studies (in which the electrodes are 

not fixed permanently as for animal recovery experiments). New World monkeys (such 

as squirrel monkeys and owl monkeys) are often used for multielectrode recording 

studies because many cortical areas of interest are available on the cortical surface rather 

than buried in a sulcus. We chose owl monkeys because the area of interest in our case, 

area 3b, is not buried in the central sulcus, and the somatosensory cortex has been well 

studied (e.g., Cusick et al. 1989; Garraghty et al. 1989; Merzenich et al. 1978; Nicolelis 

et al. 2003). The acute recording experiment is a relatively simple design that still 

requires special consideration. In such experiments, recordings are made from the 

multiple electrodes implanted in one subject during a single experiment, and data are 

collected from multiple subjects to obtain the sample population of neuronal recordings. 

A common, but more complicated experiment is the chronic or longitudinal recording 

experiment. In such experiments, electrodes are chronically implanted so that the position 

of the electrodes is the same over time, and the recordings are made periodically over an 

extended time, which sometimes encompasses a period in which changes are expected to 

occur (e.g., Jain et al., 2001). For example, long-term recordings could be made in 

behaving animals before learning a task and after learning a task or before and after 
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injury or treatment. Even in acute experiments, signals from the same neurons can be 

recorded under different conditions within the recording session, but unlike chronic 

recording studies, these neurons are not tracked over months of time. As the ability to 

track neuronal signals over days to months becomes more reliable (such as through the 

recent single neuron stability assessments introduced by Dickey et al., 2009), analysis 

methods concerned with the complexities of longitudinal recordings will increase in 

importance.  

From a practical standpoint, these data require advanced techniques to process the 

signals to isolate single neuron signals from multi-neuron clusters (called ―spike 

sorting‖), careful organization and data management, and high-level analysis techniques. 

These data can be analyzed in traditional ways by looking at neurons individually for 

their response properties or looking at correlations across neurons. Often ―snapshots‖ of 

neuronal activity distributed across the electrode arrays are generated from these data 

(e.g., Rousche et al., 1999 (rat whisker representation); Ghazanfar and Nicolelis, 1999 

(rat whisker representation); Reed et al., 2008 (monkey hand representation); however, 

how such snapshots can be analyzed rather than described has not been clear. Snapshot of 

peak firing rates across the 100-electrode array in the primary somatosensory cortex hand 

representation of one owl monkey under two different conditions is shown in Figure A-1 

as an example to illustrate changes that can be visualized.  
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Figure A-1. Snapshots of activity recorded from a 100-electrode array under two different stimulation 

conditions. Activity snapshots were plotted in color maps of the peak firing rate measured across the 10 x 

10 electrode array in monkey 3. Each square represents an electrode in the array and the color indicates the 

peak firing rate value during the 50 ms response window. Electrodes from which no significant responses 

(firing rate increases over baseline) were obtained during the stimulations shown are indicated in dark blue 

(no squares). The lower schematics indicate the locations of the stimulus probes on the owl monkey hand. 
Left panel shows the activity when adjacent digit locations on digit 4 (D4) and digit 5 (D5) were stimulated 

simultaneously (0 ms temporal onset asynchrony). Right panel shows the activity when nonadjacent digit 

locations on digit 3 (D3) and D5 were stimulated simultaneously. Differences between the patterns of 

activity during the two stimulation conditions are obvious and can easily be described visually, but 

quantitative measures are desired. 
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In somatosensory research, we are interested in contributions to the responses 

from stimulation across different parts of the skin to different parts of the brain. How 

neurons may integrate information from within and outside of their receptive fields is one 

question we ask to determine how the cortex processes tactile stimuli. Our research seeks 

to address how stimuli presented with varying spatial and temporal relationships affect 

neuron response properties in primary somatosensory cortex to reveal widespread 

stimulus integration. Here the term ―widespread interaction‖ applies to when the effects 

of stimuli on the neurons occur when the stimuli are presented widely separated in space 

or time. We therefore categorize our stimulus parameters to use as predictor variables for 

analysis of variance (ANOVA) when we analyze these data to quantify spatiotemporal 

stimulus interactions. Data from both acute and chronic recording studies have properties 

that differ from those assumed by typical ANOVA procedures based on linear model 

theory. In the following sections, we illustrate properties of parallel neuronal recordings 

that could be better analyzed by extensions of the Generalized Linear Model. We have 

selected a particular route for analyzing the data, which we justify and illustrate in the 

following sections. 

 

2.2 Correlated Instead of Independent Observations in Multi-Neuron Recordings 

The data from large-scale neuronal recordings are likely to be correlated, but the 

types of correlations may vary depending on the experiment. Generally, the neuronal 

signals recorded during even acute experiments without repeated measures designs are 

best considered to be correlated rather than independent observations. Specifically, the 

errors in the predictions of the neuronal measures may be correlated. This violates the 



 333 

assumption of linear model theory that the error is distributed independently with a zero 

mean and constant variance (Gill, 2001, p. 2). Biologically, correlations could take the 

form of the neurons in a particular brain area behaving similarly under the given 

experimental conditions since they are likely to be interconnected; thus, within each 

experimental human or animal subject, the neuron measures are correlated rather than 

independent. In a chronic recording experiment, measures of an individual neuron 

recorded at one time would also be expected to correlate with measures of the same 

neuron recorded at a later time. Many traditional analyses disregard the likely 

correlations and assume that each neuron measure is an independent observation. Most 

analyses also tend to assume that individual subjects do not vary enough to prevent 

pooling of the neuronal data between subjects without regard to subject identity. This 

may prove to be a reasonable assumption, but it seems worth testing as appropriate 

methods for accounting for non-independence have been developed.  

An important article on the topic of assuming that neuron responses are 

independent observations in analysis of variance was published by Kenny and Judd in 

1986. The review focused on identifying ―nonindependent‖ observations and examining 

the consequences of violating the independence assumption of analysis of variance 

(ANOVA). When neurons are used as subjects and observations made from these 

neurons under different stimulus conditions are assumed to be independent in order to 

meet the assumptions of linear model theory, possible bias in the analysis can arise. Here 

we briefly recall the main points from Kenny and Judd (1986). Three main types of 

nonindependence were identified for typical neurophysiological recordings: 

―nonindependence due to groups‖, ―nonindependence due to sequence‖, and 
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―nonindependence due to space‖. Nonindependence due to groups refers to correlations 

between members of a functional group; perhaps all of the neural responses collected 

from one subject will be grouped and slightly different from all of the responses collected 

from a second subject. Or perhaps neurons within an individual subject are linked in 

functional groups and these neurons will have similar responses and differ from other 

neurons outside the functional group. Nonindependence due to sequence will occur when 

observations are taken from the same neuron unit over time, as it is likely that 

observations taken close together in time will be more similar than observations that are 

separated by more time. Finally, nonindependence due to space occurs when neighbors in 

space are more similar than neurons farther away spatially; which is a reasonable 

assumption for most brain areas.  

Kenny and Judd (1986) and others have demonstrated the general consequences 

of violating the assumption of independence; therefore, we do not repeat the derivations, 

but summarize the key points. When these effects of nonindependence are ignored, bias 

in the mean square for the independent variable and in the mean square for error can 

affect the F ratios in ANOVA and alter the type I errors in either direction (Kenny and 

Judd, 1986). Treating neurons collected from individual animals as independent greatly 

increases the sample size, and when between-subjects differences are the measures of 

interest, the type I errors (false positives) can be increased (e.g., Snijders and Bosker, 

1999, p. 15). When within-subject differences are of interest, the type I errors can be too 

low (e.g., Snijders and Bosker, 1999, p. 16). To illustrate this situation, if the data are 

correlated but analyzed as though they are independent, the estimate of the variance may 

be larger than the estimate that would be obtained when the correlation is is included in 
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the analysis; and this affects the hypothesis testing (e.g., Fitzmaurice, Laird, and Ware, 

2004, p. 44). When nonindependence due to groups (e.g., nesting of neurons within 

monkeys) is ignored, the bias introduced depends on the real correlation and the true 

effect of the independent variables on the dependent variables, as demonstrated in detail 

by Kenny and Judd (1986). Thus, parallel neuronal recording experiments with or 

without repeated measures within neurons should be analyzed using methods that take 

into account the potential for neuron measures to be correlated in the ways outlined by 

Kenny and Judd (1986). 

 

2.3 Distribution Assumption May Be Violated By Neural Recording Data 

The distribution assumption of linear model theory may be violated by parallel 

recordings of neuronal activity (i.e., it is not universally true that neuronal recording data 

are non-normally distributed). When the data do not fit the normal (Gaussian) 

distribution, the generalized linear model extends the linear model theory to 

accommodate measures which were drawn from non-normal distributions (Gill, 2001, p. 

2) to select a variety of distributions from the exponential family of distributions (Hardin 

and Hilbe, 2003, p. 7-8). To be clear, the term ―exponential family‖ does not imply 

restrictive relationship to the exponential probability density function. Instead, this refers 

to a method in which the terms in the probability functions are moved to the exponent to 

transform the functions to a common notation that is mathematically useful (Gill, 2001, p. 

9-10). A ―link function‖ is added to generalized linear models to define the relationship 

between the linear predictor and the expected value from the mean of the dependent 

variable (e.g., Zeger and Liang, 1986; Gill, 2001, p. 30; Hardin and Hilbe, 2003, p. 7-8). 



 336 

Thus, the generalized linear model should be used when the distribution of the dependent 

variable is believed to be non-normal or even discontinuous, as in the binomial 

distribution; and when the relationship between the dependent variable and the predictor 

variables may not be linear (e.g., McCullagh and Nelder, 1989, review).  

Models of the data will fit better when the appropriate probability distribution and 

link functions are selected, and the best fitting parameters can be tested within the model 

analysis. One can perform Kolmogorov-Smirnov tests and create Probability-Probability 

plots to assess whether the experimental distribution differs from the normal distribution 

(or other distributions). Inappropriate distribution and link function choices may result in 

under- or over-estimating the predicted values. One can use the Generalized Linear 

Models analyses since these methods generalize to data distributions beyond the normal 

distribution.  

 

2.4 How to Analyze Neural Recording Data to Avoid Violating Assumptions 

Given some examples in this section of the ways in which large-scale neuronal 

recording data can differ from the assumptions of standard linear model theory, the 

alternative methods should be able to account for these violations or be robust in the face 

of violations. We review two extensions of generalized linear models that are well-suited 

options for analyzing the sources variance associated with measures of interest from 

parallel neuronal recordings. Generalized Estimating Equations analysis was developed 

for longitudinal studies to account for the presence of clustered or correlated data (e.g., 

Liang and Zeger, 1986; Zeger and Liang, 1986; Hardin and Hilbe, 2003). Similarly, 

Generalized Linear Mixed Models can be used for clustered data and unbalanced 
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longitudinal studies, particularly when effects within subjects are of experimental interest 

(review, Breslow and Clayton, 1993; tutorial, Cnaan, Laird, and Slasor, 1997). Such 

methods should be considered for large-scale neuronal recordings, specifically due to the 

presence of correlated data as outlined by Kenny and Judd (1986) and for cases in which 

the data are not normally distributed (e.g., count data).  

Recording studies can take advantage of repeated-measures or longitudinal 

experimental design and the inherent correlations can be accounted for using the 

Generalized Estimating Equations analysis and Generalized Linear Mixed Models. 

Around the same time that the Kenny and Judd (1986) article was published, the 

Generalized Estimating Equations analysis was introduced by Liang and Zeger (1986) for 

analysis of longitudinal data that were not necessarily normally distributed; however, 

neurophysiologists did not adopt the new method. The title of this article, ―Longitudinal 

data analysis using generalized linear models‖ may not have revealed its potential 

significance to analyzing non-independent or correlated data to neurophysiologists. 

Generalized Linear Mixed Models analysis was introduced even earlier than Generalized 

Estimating Equations; and article titles such as, ―Random-effects models for longitudinal 

data‖ by Laird and Ware in 1982 did not reveal relevance to neurophysiologists, 

particularly at a time when longitudinal or repeated measures studies were not widely 

performed in neurophysiology. The term ―longitudinal data‖ in the titles may not have 

signaled to non-statisticians that the articles focused on alternative analyses for data that 

violate the independence assumption of linear model theory (while informed readers 

would be aware that ―longitudinal‖ implied ―non-independent‖ in statistical terms). In 

addition, perhaps the concerns of non-independence of observations seemed more 
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relevant to data from human behavioral research than from neuronal data. Thus, while 

these methods have not been conspicuously applied to neurophysiological data over the 

years since their development, these methods based on the Generalized Linear Model 

have been (and are currently) actively researched by statisticians and are currently used in 

other research fields, as highlighted in Section 1.2.  

For the remainder of this article, we explain why the Generalized Estimating 

Equations and Generalized Linear Mixed Models analyses meet these criteria for 

alternative methods to analyze parallel recording data and the differences between the 

two approaches (Section 3). We then illustrate the use of Generalized Estimating 

Equations analysis with neurophysiological data from our experiments in Section 4. 

There are multiple alternative analysis methods depending on the research question, some 

of which are discussed in Section 5; however, we focus on Generalized Estimating 

Equations and Generalized Linear Mixed Models as two practical methods.  

 

3. Generalized Estimating Equations and Generalized Linear Mixed Models 

Analysis for Neuronal Recordings 

 

3.1 Comparisons of Generalized Estimating Equations and Generalized Linear Mixed 

Models 

 

Both Generalized Estimating Equations and Generalized Linear Mixed Models 

use the correlation or covariance between observations when modeling longitudinal data. 

Longitudinal studies can be generally divided into two categories which affect their 

analysis. In the first category, the experimental focus is on how predictor variables 

influence the dependent variable, and the number of subjects must be larger than the 

number of observations per subject. In the second category, the experimental focus is on 
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the correlation or within-subjects effects, and the number of experimental subjects may 

be small. (Diggle et al., 2002, p. 20) Generalized Estimating Equations are well-suited to 

address the first category of experiments and Generalized Linear Mixed Models are well- 

suited to address the second category.  

These methods have several differences and fall into separate categories of the 

basic extensions of generalized linear models. Generalized Estimating Equations is 

categorized as a marginal method which allows interpretation of population-average 

effects. Mixed models are random effects models which allow both the population effects 

and subject specific effects to be interpreted. (e.g., Edwards, 2000) Regarding the issue of 

correlated error in the data observations within subjects, dependence can be considered 

an interesting focus to be investigated or a nuisance that must be taken into account to 

properly investigate between subjects (Snijders and Bosker, 1999, p. 6-8). How non-

independence is regarded by the investigator depends on the research questions. 

Generalized Estimating Equations regards dependence as a nuisance; thus, Generalized 

Estimating Equations may be the analysis method of choice when population-average 

effects between subjects are of interest. Mixed models include random effects for the 

within-subject variables and dependence within these effects is regarded as a 

characteristic of interest. Mixed models are preferred when within- subject effects are 

important to answer the research questions. In practical use, Generalized Linear Mixed 

Models can better handle multi-level correlations and complexity than Generalized 

Estimating Equations in conventional software packages, but Generalized Estimating 

Equations are robust to mis-specification of correlation structure (e.g., Tuerlinckx et al., 

2006). When the data are normally distributed and related to the prediction with the 
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(linear) identity link, then the difference between the solutions from the two methods is 

slight. But when the data are non-normal and nonlinear, there can be differences in the 

results derived from the two methods.  

 Generalized Estimating Equations analysis requires large sample sizes, and 

Generalized Linear Mixed Models are preferred for small samples. Generalized 

Estimating Equations may underestimate the variance in the samples and have inflated 

type I errors (false positives) when the number of subjects with repeated observations is 

less than 40 (e.g., Kauermann and Carroll, 2001; Mancl and DeRouen, 2001; Lu et al., 

2007). However, Lu et al. (2007) compared two correction methods (Kauermann and 

Carroll, 2001; Mancl and DeRouen, 2001) for small samples using Generalized 

Estimating Equations analysis and proposed corrections that may perform well when the 

number of samples (with repeated observations) is 10 or greater. The repeated measures 

taken within these samples should be balanced (taken at specific time points across 

subjects) and as complete as possible (few missing observations) when using the 

Generalized Estimating Equations approach. Neurophysiological experiments may 

comply with these guidelines better than some studies requiring observations from human 

subjects at strict time points.   

It is not uncommon to have missing observations in any experiment, and 

Generalized Estimating Equations analysis and Generalized Linear Mixed Models have 

slight differences in their tolerances for missing data. Generalized Estimating Equations 

can account for missing values; however, the missing values are assumed to occur 

completely at random (MCAR) and without intervention by the investigator, the routine 

will proceed with an analysis of only complete observations (e.g., Hardin and Hilbe, 
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2003, p. 122). This method is still likely to be appropriate when the data are missing due 

to a dropout process (like losing the neuronal signal for the last observations in a series) if 

the process is not related to the parameters of interest (Hardin and Hilbe, 2003, p. 127). 

Generalized Linear Mixed Models is mathematically valid for data missing at random 

(MAR) and MCAR data. MAR is the term applied when the mechanism that causes the 

missing observations does not depend on the unobserved data. MCAR refers to the case 

when the probability of an observation being missing does not depend on the observed or 

the unobserved data (e.g, Hardin and Hilbe, 2003, p. 122-123). The problem when the 

missing data are ―nonignorable‖ or are missing in a non-random pattern (MNAR) is 

briefly discussed in Section 5.2 on ―Limitations‖. Here we focus on analyses that can be 

performed using the methods commonly available in statistical software for more 

widespread applicability, but readers are encouraged to investigate alternatives and 

extensions appropriate for the data. 

 

3.2 Note on Practicality of Use 

An incomplete list of software packages that contain commands for the 

Generalized Estimating Equations routine include SAS (SAS Institute Inc.), SPSS (SPSS 

Inc.), and Stata (Stata Corp). For a review of software for performing Generalized 

Estimating Equations analysis, see Horton and Lipsitz (1999). Note that their 1999 

review excluded SPSS, which currently includes the Generalized Estimating Equations 

analysis. While these same software packages also have versions of linear mixed 

modeling analysis, SPSS does not currently allow users to choose probability 

distributions, thus, the linear model based on the normal distribution is the only option. 
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See Bolker et al. (2008) for a list of software packages for Generalized Linear Mixed 

Models analysis. Each software package has different directions and implementations, 

and the current review does not specify the steps to perform the analysis for each 

package. However, the ability for researchers and students to employ the Generalized 

Estimating Equations and Generalized Linear Mixed Models through the use of standard 

statistical software makes these methods relatively practical for widespread use to 

analyze large-scale neuronal recordings, particularly with the help of statisticians as 

needed. 

 

4. Illustration of Use of Generalized Estimating Equations for Neuronal Recording 

Data 

 

For our research question, we selected Generalized Estimating Equations instead 

of Generalized Linear Mixed Models for a few reasons. Our research question was 

specific to population average effects and we did not intend to determine neuron-specific 

predictions for our effects. Of a practical consideration, our data were highly complex 

and large numbers of neurons were sampled from a small number of monkeys, and this 

proved computationally challenging for our software and memory available on our 

computer to run linear mixed modeling. In addition, one feature of the Generalized 

Estimating Equations that we have highlighted is the ability to consistently estimate the 

parameters even when the correlation structure is mis-specified, as we illustrate in this 

section. For other research situations, including those related to subject-specific effects, 

Generalized Linear Mixed Models analysis is recommended.  
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Here we assume that data has been collected and measures of relevance have been 

determined. In many situations, the relevant neuronal data include the spike timings 

relative to some event. From this information, typical measures of response magnitude 

(firing rate) and response latency can be determined, along with measures of network 

activity such as the simple pairwise spike timing correlation. We obtained these measures 

from our recordings using a 100-electrode array (Reed et al., 2008). We measured neuron 

responses to several stimulation conditions over short periods of time and our 

simultaneously recorded neuronal data were likely to be correlated, we selected the 

Generalized Estimating Equations analysis to investigate the sources of the variance 

related to these neuron responses while accounting for the aspect of correlation that was 

most important in our experiment: the correlation within individual neurons measured 

over short periods of time. Generalized Estimating Equations are not able to ―nest‖ 

measures within neurons within monkeys; however, we were able to allow the data 

dependencies within the repeated measures to differ in the three monkeys we studied 

rather than assuming that the repeated measures in all three monkeys had equivalent 

relationships. We related categorical factors (or predictor variables) to the variance 

observed in the measure of interest, peak firing rate. Our interest is directed toward the 

spatiotemporal stimulus effects on neuron response properties. Thus, our experiments 

involved presentations of paired stimuli that varied in spatial and temporal characteristics 

in relation to each other and to the Response Fields of the neurons. (These predictor 

variables are described in Section 4.2.) Based on the literature in somatosensory systems 

research, we formulated several hypotheses. We expected that when two stimuli were 

presented to locations on the hand with different temporal onset asynchronies, the 
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presence of the first, non-preferred stimulus would suppress the response (decrease the 

peak firing rate) to the second, preferred stimulus. Four measures of the temporal onset 

asynchronies were tested in each neuron: 0 ms, 30 ms, 50 ms, and 100 ms in a balanced 

design. The location of the paired stimulus probes may affect the peak firing rate of 

neurons, since stimuli close in proximity could have a suppressive or additive effect on 

the peak firing rate. Since neuron firing rates are related to the location of stimuli within 

their receptive fields, we predicted that when both stimulus probes were outside the 

Response Field, the peak firing rate would be low. When one stimulus probe was inside 

the Response Field and the other probe was outside the Response Field, we predicted that 

the peak firing rate would be higher, and the highest peak firing rates would occur when 

both stimulus probes were inside the Response Field. Finally, since all three of these 

effects act in concert, we expected possible interactions between these factors. For 

example, the spatial proximity could affect which level of the temporal onset asynchrony 

condition caused the greatest suppression, and the relationship of the stimulus probes to 

the Response Fields could affect these firing rate decreases.  

For simplicity in this example, we focused on only one neuronal response 

property: response magnitude in the form of peak firing rate (spikes/s). Peak firing rate 

measures were calculated using Matlab and were collected from 100-electrode arrays 

implanted in three different monkeys in which varying spatiotemporal stimuli were 

presented to the monkeys‘ hands over the course of 2-3 days while the monkeys were 

anesthetized. Data were compiled in Excel (Microsoft) and imported into SPSS 17.0 for 

summary statistical analysis. Generalized Estimating Equations routines were performed 
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to determine the convincing contributions to the variance in the peak firing rate measures. 

The details are described in the remainder of this section. 

 

4.1 Methods to Obtain Example Data 

Procedures followed the guidelines established by the National Institutes of 

Health and the Vanderbilt University Animal Care and Use Committee. Three adult owl 

monkeys (Aotus trivirgatus) were prepared for electrophysiological recordings in primary 

somatosensory cortex as previously described (Reed et al., 2008, Reed et al., submitted). 

Animals were anesthetized with propofol and paralyzed with vecuronium bromide and 

artificially ventilated with a mixture of N2O: O2: CO2 (75: 23.5: 1.5) during surgery to 

implant the electrode array and during experimental recordings. The 100-electrode array 

(Cyberkinetics, now Blackrock Microsystems, Salt Lake City, UT) was acutely implanted 

using a pneumatic inserter set to 600 µm depth, so that the electrode tips were expected to 

be within layer 3 of anterior parietal cortex. Recordings were made continuously for 2-3 

days from each anesthetized monkey. 

As previously described (Reed et al., 2008), recording data was acquired via the 

Bionics Data Acquisition System (now Blackrock Microsystems), and signals were 

amplified by 5000 and band-pass filtered between 250 Hz and 7.5 kHz. The waveforms 

were sampled at 30 kHz for 1.5 ms windows.  

Computer-controlled mechanical stimulation was provided to the hand using two 

independent force- and position-feedback controlled motor systems (300B, Aurora 

Scientific Inc., Aurora, ON, CA), with contact made by round Teflon probes, 1 mm in 

diameter. Pulse stimuli that indented the skin 0.5 mm for 0.5 s, followed by 2.0 s off of 
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the skin were presented for at least 100 trials (~ 4 min). These stimuli were selected for 

experimental purposes beyond the scope of this review, but in general were selected to 

investigate how spatiotemporal stimulus relationships affected neuron response 

properties. For complete methods and details for obtaining the example data, see Reed et 

al. (2008).  

 

4.2 Pre-Processing Methods for the Sample Data Set 

The first step after obtaining extracellular recordings is to spike sort the data, and 

we performed spike sorting procedures offline as described previously (Reed et al., 

2008). Spike sorting separates the data from each electrode into signals from single 

neuron units and multi-unit clusters. Data were then analyzed using programs written in 

Matlab (The Mathworks, Natick, MA) to determine the baseline firing rate, peak firing 

rate, and response latency for individual neurons, as well as the spike timing correlations 

between neuron pairs.  

 Data were classified based on the stimulus conditions and the relationship of 

individual neurons to the stimulus conditions. These stimulus conditions were the 

categorical predictors we expected would be associated with the variance in the neuronal 

measures. With the two tactile stimulus probes, we stimulated paired locations on the 

hand which could include adjacent digits or nonadjacent digits. The two tactile stimuli 

were presented at varying temporal onset asynchronies including 0 ms (simultaneous) 

and 30, 50, and 100 ms. The measurement intervals were consistent for the neurons 

recorded throughout the experiment. We selected data to include in the analysis such that 
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the preferred stimulus for a given neuron was presented second and the non-preferred 

stimulus was presented first, for the purposes of addressing our experimental hypothesis.  

In addition to calculating response properties of the neurons, we determined the 

relationship of the tactile stimulus probes to the neuron‘s receptive field. To do this, we 

examined the firing rates of the neurons across all of the given set of stimulus locations 

on the hand. Since we used a classification measure based on the firing rate in response to 

indentation stimulation, we used the term ―Response Field‖ to refer to the classification 

since the full receptive field properties of the neuron were not characterized. When the 

peak firing rate (after the average baseline firing rate was subtracted) was greater than or 

equal to 3 times the standard deviation of the average firing rate for the population of 

neurons recorded on the electrode array, then that stimulus site was classified as ―Inside‖ 

the neuron‘s Response Field. Otherwise, the stimulus site was classified as ―Outside‖ the 

neuron‘s Response Field. For a complete description, see Reed et al., submitted. Since the 

stimulus sites were paired, the combination of the Response Field categories for each 

single stimulus site was used to classify the Response Field relationship of the neuron to 

the two (paired) stimuli. Thus, the final categories for Response Field were: 1) both 

probes Outside of the Response Field (OUT_OUT); 2) one probe Inside the Response 

Field and one probe Outside (IN_OUT); and 3) both probes Inside the Response Field 

(IN_IN). This classification was important to our hypothesis that the location of the 

stimulation relative to the Response Field of the neurons would impact the changes in 

their firing rates. See Figure A-2 for a schematic representation of the predictor variables 

used in this example data set. 
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4.3 General Use of Generalized Estimating Equations 

The Generalized Estimating Equations uses quasi-likelihood estimation for 

longitudinal data analysis of clustered or correlated data. Estimating equations are 

derived by specification of the quasi-likelihood for the marginal distributions of the 

observed (dependent) variable and the working correlation matrix, which refers to the 

time dependence for the repeated observations from each subject (e.g., Liang and Zeger, 

1986; Zeger and Liang, 1986). There are a few aspects of the Generalized Estimating 

Equations procedure that require basic knowledge of the data in order to specify the 

model. However, even when the correlation matrix structure is mis-specified (since we 

use our best estimate to select how the observations may be time-dependent), the method 

is robust and produces consistent and asymptotically normal solutions for the estimates of 

the regression coefficients and their variances (Zeger and Liang, 1986).  

 

4.3.1 Distribution and link function 

The researcher must select the type of data distribution from which the dependent 

variable comes, and the Generalized Estimating Equations analysis allows one to select a 

variety of distributions from the exponential family of distributions along with a general 

link function that relates the linear predictor to the expected value (e.g., Zeger and Liang, 

1986; Hardin and Hilbe, 2003, p. 7-8). (Distributions include the normal distribution, 

gamma, Poisson, binomial, Tweedie, etc. Link functions include, but are not limited to 

the identity link, log, logit, and reciprocal.) 
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Figure A-2. Schematic of factors evaluated in the example data set. The categorical factors related to the 

stimulus parameters and the experimental subjects are shown with schematics to represent the levels over 

which the categories vary. The temporal stimulation asynchrony factor involves the relationship between 

the onset of stimulation by two tactile probes. The gray line represents how the onset of the second 

stimulation can be delayed in time relative to the onset of the stimulus provided by probe 1. The spatial 

proximity factor relates to the location of the two tactile probes on the hand. The signal isolation factor 

categorizes the neurophysiological recording signals as isolated from a single unit (neuron) or a cluster of 

neurons (multi-unit). The final factor categorizes the data from which monkey case the signals were 

recorded. Schematic representations of the location of the 100-electrode array relative to the hand 

representation in primary somatosensory cortex (area 3b) are shown to designate each monkey case. (D = 

digit; P = palm pad; Th = thenar; H = hypothenar; i = insular.) 
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4.3.2 Variable assignment, model effects to test 

The dependent variable of interest must be selected. The subjects and the within-

subjects measures specifying the repeated measurement condition must be specified in 

the model. First, the full factorial model can be selected, or main effects and interactions 

specific to a research hypothesis can be tested. In addition, the factors included in (or 

excluded from) the model can be varied to determine the best fit to achieve a final model 

of the data.  

 

4.3.3 Working correlation matrix structure 

The first model specification we describe is the working correlation matrix. The 

working correlation matrix structure can be selected based on the researcher‘s best 

estimate of the time dependence in the data, and this parameter can be varied to 

determine if alternative correlation structures better fit the data. Brief descriptions of a 

subset of the options are as follows (from Hardin and Hilbe, 2003, p. 59-73), and selected 

example working correlation matrices are shown from our experimental data. The 

―independent correlation‖ derived by Liang and Zeger (1986) assumes that repeated 

observations within a subject are independent (uncorrelated). All off-diagonal elements 

of the matrix are zero (compare with the exchangeable working correlation matrix 

example in Table A-1). In the case of repeated observations on the same subjects, the 

variance of the repeated measurements is usually not constant over time. The dependence 

among the repeated measurements is accounted for by allowing the off-diagonal elements 

of the correlation matrices to be non-zero (Fitzmaurice, Laird, and Ware, 2004, p. 30). 

The ―exchangeable correlation‖ (or ―compound symmetry‖) is appropriate when the 
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measurements have no time dependence and any permutation of the repeated 

measurements is valid. This type of structure may not be the most appropriate from 

repeated measures gathered across long periods of time, since the exchangeable structure 

does not account for the likelihood that measures obtained closely together in time are 

expected to have stronger correlations than measures obtained further apart in time. In 

our experiments, the first measure in the repeated measures series was taken less than 40 

minutes before the last repeated measure in the series; therefore, we tested the 

exchangeable correlation structure (Table A-1), along with other structures. The 

―autoregressive correlation‖ is used when time dependence between the repeated 

measurements should be assumed, such as in a long-term recovery of function or other 

treatment study. An example of the first-order autoregressive correlation matrix tested 

from our data is found in Table A-2. The ―unstructured correlation‖ is the most general 

correlation matrix, as it imposes no structure. While this unstructured option may seem 

the best for all situations, efficiency increases and better model fits will be obtained when 

the closest approximation to the actual correlation structure of the data is found (Zeger 

and Liang, 1986). This depends also on the number of time points relative to the number 

of subjects. An example of the unstructured correlation matrix tested using our data is 

found in Table A-3. Each of these example structures shows the matrices when only the 

repeated measures within neurons are considered. When we consider that the repeated 

measures on neurons may show dependencies within monkeys, the working correlation 

matrix structure increases in complexity. In fact, when we selected the unstructured 

working correlation matrix for repeated measures on neurons dependent within monkeys 

(Table A-4), the Generalized Estimating Equations routine failed to come to convergence 
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on a solution when the same model parameters resulted in convergence when structured 

(exchangeable, autoregressive) correlation matrices were selected. Similarly, the 

unstructured working correlation matrix was highly complex when we tested the effects 

of repeated measures dependent within neurons, and in turn dependent within monkeys, 

and given our large number of neurons, this working correlation matrix was too large to 

illustrate. 

 

 

 

Table A-1. Exchangeable working correlation matrix from example data                                                   

with simple repeated measures  

 

 
 
    

 

Table A-2. First-order autoregressive working correlation matrix from example                                        

data with simple repeated measures  
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Table A-3. Unstructured working correlation matrix from example data                                                     

with simple repeated measures  

 

 
 
 
Table A-4. Unstructured working correlation matrix from example data with repeated measures within 

monkeys 

 
 

 

4.3.4 Estimating equations and testing 

In addition to the correlation matrix structure, the variance-covariance estimator 

must be selected. This variance estimator can be a ―robust estimator‖ or a ―model-based 

estimator‖. The mean and variance of the response must be correctly specified for the 

model based estimator. The robust estimator is consistent even when the working 

correlation matrix is mis-specified, so the robust estimator is usually recommended (e.g., 
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Hardin and Hilbe, 2003, p 30). Using statistical software packages, the Generalized 

Estimating Equations routine runs for a selected number of iterations to reach the 

specified model convergence. The results of the analysis include estimated regression 

coefficients for the main effects and interactions in the model and estimated marginal 

means, along with estimates of significance. When the effects have multiple levels, the 

research selects the adjustment for multiple comparisons (e.g., the Bonferroni correction).  

 

4.4 Performing Summary Data Analysis Using Generalized Estimating Equations 

An important aspect of the analysis is choosing the best final model of the data. A 

guide for model selection is the goodness-of-fit statistic: either the quasi likelihood under 

independence model criterion (QIC) or the corrected quasi likelihood under independence 

model criterion (QICC) are often used, as they resemble Akaike‘s information criterion 

(AIC), which is a well-established goodness-of-fit statistic (Hardin and Hilbe, 2003, p. 

139). The smallest value is best using the QIC and QICC. Note that the goodness-of-fit 

statistic should not be used as the sole criterion for selecting the best working correlation 

structure for the data—if there are experimental reasons to specify a particular correlation 

structure, follow this reasoning. Similarly, the QIC is particularly useful when choosing 

between models including various main effects and interactions between factors, but the 

effects of interest for the model may be determined by the research hypothesis rather than 

the goodness-of-fit statistics. (Hardin and Hilbe, 2003, p. 142).  

The procedure for determining the best model for the data using Generalized 

Estimating Equations involves changing the model parameters to select the best fit based 

on goodness-of-fit statistics. We compared models which assumed the data were 
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normally distributed with models that assumed the data followed a gamma distribution. 

In addition to the distribution, several other characteristics of the data must be selected by 

the researcher, as described in Section 4.3, and some of these can be varied to test the 

best model fit. Here we describe the different selections specific to the models that we 

tested using the gamma and normal distribution functions.   

In our models, we selected various correlation matrix structures in order to 

determine the best fit. For the normal distribution (linear relationship), the link function is 

typically the ―identity‖ link function (Hardin and Hilbe, p. 8), and this is what we used 

for our models using testing the linear relationship of our variables. We used the typical 

link function for the gamma distribution, the ―log link‖ function, in our models using the 

gamma distribution. The reciprocal link function is canonical for the gamma distribution; 

however, this link function does not preserve the positivity of the data distribution, so the 

log link function is commonly used (e.g., Lindsey, 2004, p. 30). For additional 

distributions and link functions, see Hardin and Hilbe (2003, p. 8). We always selected 

the robust estimator of the variance-covariance matrix since this selection is robust in the 

general case (e.g., Hardin and Hilbe, 2003, p 30). 

The subject identification variables and the within-subjects measures indicating 

the repeated measurement condition must be specified in the model. In our case, the 

subjects were the individual neuron units from which the repeated measures were taken. 

We performed the analysis two ways. In the first, the within-subjects repeated 

measurements were the varying levels of the stimulation conditions (without regard to the 

individual monkeys). In the second, the varying levels of the stimulation conditions 

measured for the neurons were regarded as dependent within the individual monkeys. 
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These two methods affected the working correlation matrix structure used to determine 

the Generalized Estimating Equations solutions. (Compare the unstructured working 

correlation matrix in Table A-3 when only the repeated measures taken for each neuron 

were included with that in Table A-4 when the neuron measures were incorporated as 

dependent within monkeys.)   

The Generalized Estimating Equations analysis only works on one dependent 

variable (unlike multivariate ANOVA), and this was the peak firing rate magnitude in our 

experiment. We selected several categorical predictor variables for the model: temporal 

stimulation asynchrony; spatial stimulation proximity; and Response Field relationship. 

For our example data, we used a final model with all three main effects and one three-

way interaction effect. The tests of model effects for our best fit models using the gamma 

and normal distributions are shown in Tables A-5 and A-6, respectively. 

 

4.5 Results of Data Analysis Using Generalized Estimating Equations 

 While neuronal signals were recorded from all 100 electrodes of the array, only 

the signals that were likely to come from single neurons (rather than multi-neuron 

clusters) were included in this analysis. During the selected stimulus conditions, only a 

subset of the electrodes implanted in each monkey recorded neural activity from which 

we were able to isolate single neurons. From monkey 1, results from 19 single neurons 

were collected and 4 repeated measures were collected from each neuron (except for 2 

missing observations), for a total of 74 observations. From monkey 2, results from 46 

single neurons were collected with 4 repeated measures each, for a total of 184 

observations. From monkey 3, 61 single neurons were collected with 4 repeated measures 
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Table A-5. Tests of Generalized Estimating Equations model effects on peak  firing rate using the gamma 

probability distribution with log link function  

 

 
   Dependent variable: peak firing rate (spikes/s). Model parameters: gamma distribution, log link, first-

order autoregressive correlation matrix. Subject effects for 126 neurons, with four levels of within-subject 

repeated-measures stimulation (total N = 499, 5 missing) 
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Table A-6. Tests of Generalized Estimating Equations model effects on peak firing rate using the normal 

probability distribution with identity link function  

 
    

 

Dependent variable: peak firing rate (spikes/s). Model parameters: normal distribution, identity link, first-

order autoregressive correlation matrix. Subject effects for 126 neurons, with four levels of within-subject 

repeated-measures stimulation (total N = 499, 5 missing) 
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(except for 3 missing observations), for 241 observations. Thus, the total number of 

observations was N = 499, while 5 values were excluded due to missing observations 

from the repeated measures series. The mean response magnitude for the data set was 

18.05 spikes/s, with a standard deviation of 23.81.  

The results for model fitting using both the gamma and normal distributions are 

described here for illustration purposes. We investigated working correlation matrices of: 

first-order autoregressive, exchangeable, and unstructured for the normal distribution 

with the identity link function and for the gamma distribution with the log link function. 

For all working correlation matrices specified, the goodness-of-fit statistic QIC was 

substantially better using the gamma distribution compared to the normal distribution 

(e.g., 1480.789 and 239,348.869, respectively, under the same model parameters, 

described to follow). In addition, we tested correlation structures that incorporated only 

the repeated measures taken from individual neurons and those that included repeated 

measures within monkeys (which we term ―complex model‖). We again examined the 

QIC goodness-of-fit statistic to help determine the best correlation structure for the 

analysis. After reducing the effects included in the model from the full factorial model, 

we selected possible correlation matrices, and checked the QICC goodness-of-fit statistic 

to determine the best model parameters to fit the data. The QICC did not differ between 

models that included all main effects and the 3-way interaction and those that included 

the main effects, 3-way interaction, and 2-way interactions. Because the 2-way 

interactions were never significant sources of variance in the models, we selected the 

model that only included the significant effects (3 main effects and the 3-way 

interaction).  
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Under the model including 3 main effects and the 3-way interaction, the QIC 

values were very similar, sometimes identical when the repeated measures were 

considered to be dependent within monkeys. However, there was a dramatic difference in 

the QIC values for the simple and the complex models when the working correlation 

matrix was specified as unstructured. The Generalized Estimating Equations routine 

could not come to convergence on a solution when the within-subjects effects were 

complex and the gamma distribution was specified. The last iteration of the procedure 

produced the QIC value of 1535.166, while the solution was reached in the simple model 

with a QIC value of 1480.809. The QIC values and the parameter estimates when the 

exchangeable working matrix structure was selected was equivalent for the complex and 

simple within-subjects effects (1480.792). Including three levels of within-subjects 

variables so that repeated measures were dependent within neurons, which in turn were 

dependent within monkeys worsened the fit of the model and again, the routine could not 

come to convergence when the unstructured correlation matrix was specified (QIC for the 

last iteration was 1644.810). This illustrates a noteworthy aspect of Generalized 

Estimating Equations. The parameter estimates are typically the same in spite of 

differences in the covariance structure selected by the user (e.g., Liang and Zeger, 1986; 

Zeger and Liang, 1986). The standard errors of the effects used for confidence intervals 

and hypothesis testing can change based on these selections. In our case, the differences 

between the parameter estimates and the standard errors were negligible between models 

with different working correlation matrices. 

The final model we selected used the gamma distribution with the log link 

function and the first-order autoregressive correlation matrix structure, and had a 
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goodness-of-fit QIC = 1480.789 (Model Effects shown in Table A-5). The equivalent 

model using the normal distribution and identity link function resulted in a QIC value of 

239,348.869 (Model Effects shown in Table A-6). Although this model using the normal 

distribution reported significant effects similar to those reported using the gamma 

distribution, there are some differences in the effects that reach significance, different 

regression parameter estimates, and clearly a large difference in model fit. Thus, we 

rejected the Generalized Estimating Equations model using the normal distribution in 

favor of the Generalized Estimating Equations model using the gamma distribution, and 

for these data we reject other analysis methods that rely on the assumption of independent 

observations from the normal distribution.  

From the Generalized Estimating Equations analysis, we obtained a model that 

included the factors that relate to the variance in the observed measurements (Table A-5); 

the estimated regression parameters that describe the relationships of the factors to the 

dependent variable the estimated marginal means of these factors (see one example 

Figure A-3); and pairwise comparisons for significance between the levels of each factor. 

We used the estimated marginal means and the significance calculations to determine 

how the spatiotemporal stimulus relationships affected the peak firing rates of the 

neurons we recorded within the three monkeys. Selected regression parameter estimates 

for the best model are shown in Table A-7. We can interpret the parameter estimates to 

describe the relationships between the factors in the data. In general, linear regression 

coefficients are interpreted such that the coefficient represents the amount of change to 

the response variable for a one-unit change in the variable associated with the coefficient, 

with the other predictors held constant (e.g., Hardin and Hilbe, 2007, p. 133). Examining 
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our data for example, as expected for the somatosensory system, the relationship of the 

location of the paired stimuli to the Response Field of the neuron influenced the peak 

firing rate. The parameter estimate for the case when the paired stimulus probes were 

both outside of the Response Field (OUT_OUT) was -1.309, which was less than the 

estimate for the case when one of the stimulus probes was inside the Response Field and 

the other probe was outside of the Response Field (IN_OUT) of the given neuron            

(-0.804), and these values refer to case when both stimulus probes were inside the 

Response Field (IN_IN). 

Overall, the results are similar to those produced by repeated-measures ANOVA 

using linear model theory. These Generalized Estimating Equations results provide 

population average effects of the categorical predictor factors on the dependent variable 

of interest, while accounting for individual-level correlations. To focus on the individual 

data subjects, a subject-specific Generalized Estimating Equations model would need to 

be created (programmatically) that resemble within-subjects effects analysis, or 

alternative methods such as Generalized Linear Mixed Models could be performed. Our 

experimental questions referred to population averages rather than within-subjects 

effects; thus, we were able to find support for our hypotheses and determine quantitative 

estimates of the ways spatiotemporal stimulus properties affect neuron firing rates in 

primary somatosensory cortex of owl monkeys. 
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Figure A-3. Observed means and estimated means for the temporal asynchrony factor from the best model. 

The categories from one factor, temporal asynchrony, is plotted on the x-axis and the dependent variable, 

response magnitude (spikes/s) is plotted on the y-axis. Observed mean response magnitudes are shown by 

category with filled squares. Estimated marginal means from the best fitting Generalized Estimating 

Equations routine is shown by category with open diamonds. Although the values of the estimates are not 

equal to the observed values, the patterns of the effects of the predictor variable categories on the response 

magnitude are the same.  
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Table A-7. Regression parameter estimates from the Generalized Estimating Equations routine for peak 

firing rate using the gamma probability distribution with log link function (only main effects shown)  

 

 

   Redundant parameters set to 0 indicated by 
a
 . RF = Response Field. See text for other abbreviations.                                                   
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5. Limitations and Alternatives 

 

The example in Section 4 was intended to illustrate how specific types of data can 

be modeled using the Generalized Estimating Equations analysis. The Generalized 

Estimating Equations analysis is particularly useful for large samples of longitudinal or 

repeated measures data that are expected to be correlated or clustered and that may not 

have linear relationships or fit the normal distribution. Another advantage of the 

Generalized Estimating Equations approach is that it provides consistent estimates for the 

regression parameters of the model even if the working correlation selected by the 

researcher is not the most appropriate (Tuerlinckx et al., 2006). There are limitations to 

this analysis, which may not be ideal for all designs, and there are alternative analysis 

methods that may be generally applicable to large-scale neuronal recording data to 

consider.  

 

5.1 Limitations of the Generalized Estimating Equations Analysis 

A possible limitation of the Generalized Estimating Equations analysis for some 

designs is that interpretation of cluster-specific effects (within-subjects effects) is usually 

not included in the analysis within standard software packages, even though the analysis 

does take into account the correlated structure of the data for the between-subjects 

effects. The Generalized Estimating Equations method itself does include two main 

classifications that address between-subjects and within-subjects effects, respectively, the 

population-averaged model and the subject-specific model (Hardin and Hilbe, 2003, p. 

49). Those who are concerned with the within-subjects variance and require methods 
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built into a commercial statistical package would be best served by an alternative analysis 

method, such as Generalized Linear Mixed Models, as described in Section 3.1.  

Another limitation of Generalized Estimating Equations analysis is one that is 

shared by most other methods, and this involves the biases possible when accounting for 

nonignorable missing data values (also called informatively missing data or nonrandom 

missing data). By nonignorable, we refer to missing data that are caused by a nonrandom 

process related to the condition under study. Unlike ANOVA, Generalized Estimating 

Equations can account for missing values; however, the missing values are assumed to 

occur completely at random (MCAR) and without intervention by the investigator, the 

routine will proceed with an analysis of only complete observations. This method is still 

likely to be appropriate when the data are missing due to a dropout process (like losing 

the neuronal signal for the last observations in a series) if the process is not related to the 

parameters of interest (Hardin and Hilbe, 2003, p. 127). Hardin and Hilbe (2003, p 122-

128) describe techniques to deal with missing data for Generalized Estimating Equations 

analysis. First, the data can be divided into complete and incomplete series, and then 

typically missing values are replaced with values imputed from the data. Investigators 

should carefully consider when to use data imputation methods. Alternative methods 

include modeling the complete data and the missing data separately, but models for the 

missing data sets are not built in to statistical software. There are a few occasions that 

come to mind in which missing data are unlikely to occur at random in 

neurophysiological experiments. For instance, in an experiment when one measures 

response latency, there will be missing values when the neuron fails to respond to 

specific stimulus conditions (no response = no response latency). This situation is not 
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simply random since the failure of the neuron to respond is related to the stimulus 

condition. Nonignorable missing data is a recognized problem in several types of clinical 

longitudinal studies, and methods accounting for such data have been described for use in 

Generalized Linear Mixed Models analysis (e.g., Ibrahim, Chen, and Lipsitz, 2001). 

Currently, there appear to be no standard ways to account for nonignorable missing data, 

such as occurs for latency observations. While the problem of nonignorable missing data 

does not plague all neurophysiological measurements, it is a concern that is not directly 

addressed without data imputation or other procedures, and certainly methods are not 

built into commercial statistics packages to specifically analyze data sets including 

nonignorable missing data.  

Finally, as mentioned previously, the Generalized Estimating Equations analysis 

as implemented in software packages allows for one dependent variable (but multiple 

covariates) to be analyzed. Multivariate research questions may be better analyzed with 

an alternative method. In addition, complex clustering is not easily incorporated into the 

Generalized Estimating Equations. In our example using SPSS, we were able to include 

clustering of the repeated measures on neurons within our individual monkey subjects. 

However, as the complexity of the working correlation structure increased, the 

Generalized Estimating Equations routine was not able to come to convergence on a 

solution. Random effects models, such as Generalized Linear Mixed Models, can 

typically handle complicated nesting structures due to differences in the calculation of 

random effects compared to marginal models of residuals. In our case, recall that the 

model fits were equivalent when the complex dependence was used for the working 

correlation matrix and when the simple dependence (without accounting for dependencies 
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of neuron observations within monkeys) was used, except when the unstructured matrix 

was chosen rather than a structured (autoregressive or exchangeable) matrix. Thus, 

methods of choice depend on the measure of interest and computational considerations. 

Since the correlation matrix structure of the Generalized Estimating Equations analysis 

could not incorporate nested effects, we were not able to account for potential 

correlations in measures between neurons (which might be expected due to spatial 

proximity, for example). Dependency between neurons is not precisely known, and here 

we considered that neurons were independent; however, adaptations of Generalized 

Linear Mixed Models or other analysis methods may be able to model the possible 

dependencies better. 

 

5.2 Some Alternatives to the Generalized Estimating Equations Analysis for Large-Scale 

Neuronal Recordings 

 

Here we briefly describe selected alternatives to Generalized Estimating 

Equations analysis that may have useful applications to large-scale neuronal recording 

data. We assume that data from parallel microelectrode recordings are likely to have 

correlated or non-constant variability due to recording from clusters of neurons over time. 

We also suggest that good alternative analysis methods will allow for the dependent 

measure of interest to possibly come from non-normal distributions to account for the 

different types of data that may be obtained through such neuronal recordings.  

As previously introduced, Generalized Linear Mixed Models are similar to 

Generalized Estimating Equations, in that both are extensions of Generalized Linear 

Models and may be used to analyze correlated or clustered data from non-normal 

distributions (e.g., Tuerlinckx et al., 2006, review). Generalized Linear Mixed Models 
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may be advantageous over Generalized Estimating Equations when the dependence or 

correlations within subjects is of interest (rather than a nuisance; e.g., Snijders and 

Bosker, 1999, p. 6-7) so that subject-specific predictions can be made and when the 

number of clustered observations is low (e.g., < 40), since Generalized Estimating 

Equations tend to underestimate the true variance in small samples (Lu et al., 2007).  

An addition to some statistical packages (e.g., Amos, SAS) is structural equation 

modeling, which can link the dependent variables with independent observed variables 

and latent variables (e.g., Tuerlinckx, 2006). A benefit of structural equation modeling is 

that researchers may build models to express unobserved latent variables that are 

expected to contribute to the observed measures by expressing latent variables in terms of 

the observed variables, which could be of interest in some neuronal recording 

experiments. The use of structural equation modeling to examine latent variables is 

similar to the use of Principal Components Analysis and Independent Component 

Analysis to identify underlying sources of variance related to the observed measures. 

Principal Component Analysis (PCA) has already been applied to neuronal 

recording data (e.g., Chapin and Nicolelis, 1999; Kralik et al., 2001; Devilbiss and 

Waterhouse, 2002), as a method to describe the linear relationship between variables (i.e., 

how stimulus information relates to neuron spike trains). Proportions of the variance are 

explained by each Principal Component, with the first PC accounting for the most 

variance in the data. The interpretation of PCA may not be intuitive in all experimental 

designs, and this analysis assumes linear relationships between variables and that the 

sources of the variance have a normal distribution. But given the right circumstances, 

PCA provides an interesting way to assess changes distributed among recorded neurons 
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(e.g., Devilbiss and Waterhouse, 2002) and to estimate relationships within neuronal 

ensembles (e.g., Chapin and Nicolelis, 1999).  

Similar to PCA, Independent Components Analysis (ICA) has also been used to 

examine data from parallel neuronal recordings, and has been shown to identify 

groupings of neurons with correlated firing distributed over the recorded neuronal 

ensembles (Laubach, Shuler, and Nicolelis, 1999; Kralik et al., 2001). ICA was found to 

perform better than PCA at identifying groups of neurons with correlated firing when 

those neurons shared common input (Laubach, Shuler, and Nicolelis, 1999). Unlike PCA, 

ICA should be used when the sources of variance do not have a normal distribution 

(Makeig et al., 1999). However, ICA has limitations, one of which is that a given IC can 

represent a linear combination of sources of variance, rather than an ―independent‖ 

source (Makeig et al, 1999), and similarly, ICA cannot identify the actual number of 

source signals. Thus the reliability, accuracy, and interpretation of results of ICA can be 

difficult to determine in general. 

Pereda and colleagues (2005) reviewed nonlinear multivariate methods for 

analyzing parallel neurophysiological recordings to determine the synchronization across 

the signals. These methods are not limited to describing the linear features of neuronal 

signals, and neuronal signals may be intrinsically nonlinear. Such multivariate measures 

can assess the interdependence between simultaneously recorded neuronal signals or data 

types, and this assessment is a feature not possessed by standard Generalized Estimating 

Equations analysis methods. Nonlinear multivariate methods of ―generalized 

synchronization‖ and ―phase synchronization‖ have a wide range of applications to 

neurophysiology. These methods range from nonlinear correlation coefficients to 
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information-theory-based methods. Many of these methods examine pairwise interactions 

(e.g., cross-correlations) between neuronal signals (e.g., spike trains), but a subset can be 

used to analyze high-order interactions. (Pereda, Quiroga, and Bhattacharya, 2005) Most 

of these applications are not part of commercial statistical software, but sometimes the 

implementation of these analysis methods are made available by authors or can be found 

in neurophysiological analysis software. Kralik et al. (2001) suggested several strategies 

for analyzing neuronal data from multi-electrode recordings ranging from single neuron 

analysis techniques to employing artificial neuronal networks with information theory; 

and some of their methods are available in analysis software such as Matlab. 

Many neurophysiological studies, including the example provided in this review, 

rely on multiple trials to average the responses (or other measurements) of individual 

neurons. This technique is rooted in the study of single neurons with single electrodes, in 

which the average over multiple trials resembles the information received by a 

postsynaptic neuron that receives input from several other neurons performing in a 

similar way to the recorded neuron. When the experimental system and research 

questions are appropriate, analyses of multiple-neuron recordings to extract information 

from neuronal populations within one or a few trials may provide a more realistic 

depiction of how the brain works. In their recent review, Quiroga and Panzeri (2009) 

described two main (and complementary) approaches to obtaining information from 

neuronal population recordings for the purpose of application to single-trial analysis: 

decoding and information theory. Decoding algorithms predict the likely stimulus (or 

behavior) related to the observed neuronal response. Using the information theory 

approach, one can quantify the average amount of information gained with each stimulus 
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presentation or behavioral event. (Quiroga and Panzeri, 2009) Typically, decoding 

neuronal responses and applying information theory requires carefully planned 

experiments, careful interpretation and knowledge of programming since such algorithms 

are not often found in commercial statistical packages. However, as knowledgeable users 

continue to employ these methods, their use will likely extend and become more 

widespread as experiments utilizing large-scale neuronal recordings increase.  

 

6. Conclusions 

 

Current statistics packages and incarnations of the Generalized Estimating 

Equations and Generalized Linear Mixed Models analyses can accomplish many of the 

data analysis goals required by the increasingly complex large-scale neuronal recordings. 

Specifically, these analyses address concerns that have been largely overlooked when 

analyzing parallel neuronal recording data collected over time: that these data are likely 

to be correlated or clustered and that the normal distribution may not be the appropriate 

distribution to test. We illustrated our use of Generalized Estimating Equations to address 

questions regarding stimulus-response relationships in simultaneously recorded neurons 

in monkey somatosensory cortex. The Generalized Estimating Equations analysis has 

limitations, and alternative methods may provide more appropriate answers to some 

research questions.  

In addition to revealing stimulus-response relationships as described in our 

example data, the Generalized Estimating Equations and Generalized Linear Mixed 

Models analysis appear to be well-suited to studies involving plasticity, learning, and 
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attention processes, which can all be tested in longitudinal designs with various neuronal 

measures obtained from simultaneous recordings. In our data example, the goal was to 

determine how the responses of populations of neurons may be influenced by specific 

stimulus parameters recorded over relatively short periods of time; however, the 

technological advancements in chronic recording techniques and algorithms to determine 

when electrophysiological signals are stable over time and likely to originate from the 

same neuron will surely aid the progress of such longitudinal studies. Although we used 

the response magnitude example for simplicity, measures of correlated activity that can 

only be made by simultaneous neuronal recordings (such as those reviewed by Pereda, 

Quiroga, and Bhattacharya, 2005) can be used as the dependent measure when the goal is 

to determine how independent variables may affect the variance in these measures 

recorded longitudinally. The options are nearly unlimited. The analysis of long-term, 

large-scale neuronal recordings promises to increase our understanding of complex brain 

activity, and meeting the challenge to produce and employ efficient and appropriate 

analysis methods is important to reach this goal. 
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