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CHAPTER I

INTRODUCTION

The fields of biomedicine have seen an extensive growth in scientific methods, measurements,

procedures, collection, and storage resulting in the abundance of new, high-dimensional data sets.

Such data comes from varied domains including the “omics” fields (e.g., genomic, proteomics, etc.),

new high-resolution images, pharmaceutical studies, or clinical enterprises. With the growth of

the volume and variety of data being collected and aggregated, new methods must be created and

evaluated to aid analyses for the discovery of new information in each domain. In this thesis several

novel computational techniques for discovering informative patterns and complex relationships in

biomedical data are developed and investigated. Specifically, this thesis focuses on the following

areas: (I.1) an algorithm for the identification of the top-weighted features in a polynomial Support

Vector Machine model, (I.2) a variable selection method to identify the Markov Blanket in feature

space, (I.3) a comparison of techniques (global and local) for learning a region of a Bayesian network,

(I.4) and a strategy for making predictions under manipulation using the three techniques and

methods developed in this thesis research.

The first research area (I.1) concentrates on determining what variables and combinations of

variables (features) are important to a classification task when using a polynomial Support Vector

Machine (SVM) model (Vapnik, 1995, 1998; Boser et al., 1992). SVMs are a type of a kernel

method that have been shown to be very successful on classification tasks for high-dimensional data

(Joachims, 2002; Ling et al., 2005; Li et al., 2005; Ling et al., 2005; Larranaga et al., 2006). While

SVMs have been used frequently for classification models, they are often treated as black boxes.

This method attempts to make these models more understandable to a human user.

Next, the research focused on methods for variable selection (I.2) which have been studied and

applied in a number of biomedical domains (Friedman et al., 2000; Furey et al., 2000; Guyon et al.,

2002a; Inza et al., 2004; Yoo & Cooper, 2004; Wang et al., 2005; Woolf et al., 2005). Many methods
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and approaches have been developed for this problem with each having advantages and limitations to

their approach and application. This research combines the advantages of two approaches to create

a new method that removes some limitations. First, the new method developed is designed to scale

to domains with thousands up to hundreds of thousands of variables. Such high-dimensional data

often occur as the result of the application of biological mass-throughput measurement methods.

Second, the new method aims to improve the quality and comprehensibility of current kernel-based

methods (an important family of methods that have demonstrated their ability to handle high-

dimensional data). Finally, the new method is designed to discover important variables in specific

data distributions where other state-of-the-art methods fail (Glymour & Cooper, 1999; Spirtes et al.,

2000).

The third research area focuses (I.3) on the discovery of Bayesian network structures (Pearl,

1988). Even the most advanced algorithms for learning the structure of Bayesian network have

limitations in the number of variables (on the order of thousands of variables) to the structures

learned (Tsamardinos et al., 2006b). The limitations are both in terms of the quality of the learned

structure and also the efficiency of the methods to produce the results. For example, a data set

consisting of five thousands variables, could take several days of computation to learn the network

structure. The new method works by focusing the learning of the structure to a region about a

variable of interest. This new approach is expected to be more time-efficient, but the quality of the

regions learned was unknown before the evaluation. The evaluation showed that the new method

learned regions of equal or better quality to a traditional (global) approach.

Finally, using the above new methods and contemporary research, a principled submission (I.4)

to the Causality Challenge tasks was developed (WCCI 2008 Causality Challenge, 2008). The focus

of this challenge was on predicting the results of actions performed by an external agent. This

publicly available challenge, a part of the 2008 IEEE World Congress on Computational Intelligence

(WCCI 2008) had over 1400 submissions by more than 30 teams. The submission used the for-

malism of Causal Bayesian Networks to model and induce causal relations and to make predictions

about the effects of the manipulation of the variables. The overall strategy made use of the three
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other techniques described in this thesis as well as developing theory to perform predictions under

manipulation. The submission performed best on one of the four tasks presented (ranked first out

of 30 teams and over 350 entries). In addition, the results and methods were carefully analyzed to

discuss where the methods performed well and where they did not, on these real world data tasks.

Further details on the four areas of focus are presented below.

I.1 Identification of Top-Weighted Features of Polynomial Support Vector Machine Models

Support Vector Machine (SVM) and kernel methods in general have been proven very successful

methods for standard binary classification problems (Vapnik, 1998). Polynomial Support Vector

Machine models of degree d are linear functions in a feature space of monomials of, at most, degree

d (Boser et al., 1992). However, the actual representation is typically in the form of support vectors

and Lagrange multipliers. This representation of the model and the resulting classification function

are efficient to compute but unsuitable for the human modeler to gain an understanding of the

model’s “logic”. Specifically, it is difficult to determine from this representation which variables

(input components of data space) or combinations of these variables (features) strongly affect the

output of the classification function. Arguably, this is one reason why rule-learning classification,

decision trees and other easier-to-interpret classifiers are sometimes preferred over the SVM classifier.

The classification function may also be expressed explicitly as a linear function involving all

variables and combination of variables (determined by the Kernel function). This explicit represen-

tation allows easy interpretation and identification of the most important combinations of variables

(called interaction terms in standard-statistical linear regression): these are the monomials with the

largest absolute weight. This information can be used for human validation of the semantics of the

model, visualization and for further feature selection. Unfortunately, while potentially helpful, it is

time-prohibitive to compute the explicit representation for large models due to the explosion in the

number of features, f , to consider, for m variables and degree d of the kernel there is f =
(

m+d
d

)

number of features.

This thesis includes the design of a new algorithm that heuristically selects the most heavily
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weighted (and thus most important for classification) constructed features of a polynomial SVM.

The selected features may provide a new intuition into the behavior of the SVM and convey what

features are important to a domain. For example, if this proposed new method returns the feature

X1X2X3, where Xi is the expression level of a gene i, as the most important feature for the prediction

of the cancer type of a tissue, then a biologist can immediately infer that it is the interaction between

these three genes that is the most important factor in the classification task (the effect of each variable

alone may be masked by epistatic effects).

Sufficient conditions are provided for the heuristic algorithm to correctly return the top r weights.

Even when the sufficient conditions fail, the research empirically shows that the returned weights

closely approximate the true set of r top-weighted features when only examining a very small portion

of the feature space. In addition, the new algorithm is shown to return predictive features by

comparing the classification performance of the top-weighted features to models with all variables

or subsets identified by variable selection methods on several real-world data sets.

Research Summary: Support Vector Machine models are often used for classification tasks, but

do not immediately allow for interpretation of important variables to the task. This research presents

an efficient, heuristic method to identify the features of a polynomial Support Vector Machine model

with the largest absolute weights. These features are expected to be important to the classification

task.

I.2 Variable Selection in Feature Space

Variable selection is often employed as a dimensionality reduction and discovery technique in the

biomedical domain due to the high dimensional data sets. The goal of variable selection techniques

is to reduce a high-dimensional data set, containing M variables, to a low-dimensional representa-

tion that is still highly predictive of the target variable but containing instead only m variables,

where m < M . The new low-dimensional representation is expected to make evident patterns

and hidden information that were previously obfuscated in the abundance of data and noise at the

high-dimensional level.
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Several variable selection techniques use kernel methods, often Support Vector Machines (SVMs)

(Vapnik, 1998). The Recursive Feature Elimination (RFE) method will be used as a prototypical

example (Guyon et al., 2002b). Use of the kernel methods allows for the input data to be mapped to

a different space where the data patterns and relations may be simpler; this new space is called the

feature space and consists of constructed features. A constructed feature may be the product of the

original variables, for example the feature X1X2 is a combination of the two input variables X1 and

X2. The feature space is typically of even higher dimensionality than the original variable space,

reaching numbers of billions of dimensions. Nevertheless, kernel methods remain computationally

efficient because the mapping to feature space is performed implicitly.

Predictive variables however, do not necessarily have a direct causal relation with the target

variable (e.g., a clinical outcome). Causal discovery methods exist that formalize the induction of

causal relations (Aliferis et al., 2003a; Tsamardinos et al., 2003c,a; Peña et al., 2007; Margaritis

& Thrun, 1999; Koller & Sahami, 1996; Aliferis et al., 2009a). A principled approach in variable

selection is based on identifying the Markov Blanket of the target variable. A Markov Blanket of

the target is defined as a minimal set, conditioned on which all other variables become independent

of the target (Pearl, 1988). For the Markov Blanket to be a solution to the variable selection

problem, several conditions are required (Tsamardinos & Aliferis, 2003). Most local causal discovery

algorithms suffer from a significant drawback: they fail to identify causal relations in “difficult”

distributions, e.g., distributions where a variable has low or even non-existence pairwise association

with the target, but exhibits a high multivariate association with it in the context of other variables.

The new method attempts to combine the advantages from kernel methods for variable selection

and those designed for causal discovery. Currently, kernel-based methods and Bayesian network-

based causal discovery methods are considered as two totally different classes of methods with no

obvious way of combining them and leveraging their strengths. The new algorithm developed in

this thesis research is evaluated on several simulated, “difficult” distributions where the new method

is able to correctly identify the Markov Blanket with high sensitivity and specificity. Additionally,

the new method is run on several real world data sets returning a small number of features from
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which simple linear classification models can be constructed and assessed in terms of classification

performance versus other classifiers with all or other subsets of variables selected. The resulting

classification models are small compared to other variable selection methods (for the two data sets,

the model consists of 2-3 features which can be visualized). On another data set where a Markov

Blanket-based variable selection method performs poorly, the new method has improved performance

suggesting the existence of a complex, multivariate relationship in the underlying domain.

Research Summary: Combining the ideas of kernel-based and Markov Blanket-based variable

selection methods, a new algorithm was designed that improves the efficacy of inducing causal re-

lations in “difficult” distributions. With this method, it is possible to identify variables causally

related to a target variable, even when they exhibit no univariate association but only a multivariate

association.

I.3 Learning Local Regions

Discovery of causal relationships is a widely researched and hotly debated subject in many fields

including philosophy, sociology, psychology, economics, statistics and recently computer science. One

common formalism to represent and learn causal models from observational data in biomedicine is

the causal Bayesian Network (Andreassen et al., 1989; Beinlich et al., 1989; Cowell et al., 1999;

Heckerman et al., 1992; Lucas et al., 1998; Andreassen et al., 1999; Tong & Koller, 2001; Yoo &

Cooper, 2004; Friedman et al., 2000; Hartemink et al., 2002; Yoo et al., 2002; Bay et al., 2002;

Sachs et al., 2005; Woolf et al., 2005). As presented in my Masters research, one of the best (in

terms of quality of learning and time efficiency) algorithms for learning such models, the Max-Min

Hill Climbing algorithm (MMHC ) has been developed and published (Tsamardinos et al., 2006b).

However, this method (and all other similar methods) is still unable to scale up to the dimensionality

of data sets frequently appearing in biomedicine.

One option has been proposed for handling large data sets in these domains. This approach is to

learn only a part of the network, focusing the learning on a subgraph (region) of the network around

a variable of interest, e.g., a gene or protein of interest (Tsamardinos et al., 2003c; Peña et al., 2005).
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This is in contrast to the current approach of globally learning the complete set of causal relations

among all observed quantities. Learning a local region without inducing the complete network is not

trivial using previous methods and approaches. However, the work on MMHC has paved the way to

allow for the design of local causal discovery techniques.

A new local causal discovery method is designed and studied in this thesis research, empirically

and theoretically, for the focused learning of network regions from observational data. The new

method is expected to require only a fraction of the time required to learn the full network (global

approach) and so to be able to scale up to even larger data sets than what is currently possible. It is

unknown however, whether learning a region in a myopic way severely affects the quality of learning,

i.e., without simultaneously considering all parts of the network and how these interact. Thus, an

additional question is raised whether local learning is possible without sacrificing the quality of

learning, a question that is of general interest to all future local algorithms. In short, the evaluation

shows that in general the method for learning the region locally is more time-efficient and also

produces structures of equal or higher-quality.

Research Summary: A global and local approach are designed to learn a Bayesian network

region. The local method is expected to be computationally more efficient than the global method

approach; interestingly, the comparison in quality of the approaches reveals the local approach learning

structure of equal or higher-quality.

I.4 Making Predictions Under Manipulation

The Causality Challenge required researchers to use and develop an arsenal of methods using

real-world data to make predictions in the presence of manipulations (WCCI 2008 Causality Chal-

lenge, 2008). For the tasks presented, the training data comes from an unmanipulated or “natural”

distribution. However, several test sets were evaluated; the first is an unmanipulated test set and

comes from the same distribution, the second and third test sets had some of all of the variables

manipulated. When a variable is manipulated it is in a sense disconnected from its causes and
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consequently its predictive power may be affected. Methods should take into account the effect of

the manipulations in developing predictive models.

The new method developed in this thesis research uses Causal Bayesian networks (CBN) as the

formalism to model and induce causal relations and to make predictions about the effects of the

manipulation of the variables. Rather than use all variables to form the predictive model, the focus

was on identifying the Markov Blanket of the target node. In the case of the unmanipulated test

data, the approach for this task was to identify a Markov Blanket of the target then learn a predictive

model using only these variables. In the case of test data with known manipulations, a manipulated

Markov Blanket is identified (the manipulated Markov Blanket is a subset of the unmanipulated

Markov Blanket with the manipulated children and their corresponding spouses removed). For

the third case of test data with unknown manipulations, in order to avoid including irrelevant or

misleading variables, the prediction model is built using only the parents of the target.

Many algorithms exist to learn the Markov Blanket. These algorithms typically do not infer the

orientation of the causal relations of the members of the set. For the manipulated data sets, the

directionality of the causal relations is also needed to select the correct variables to build a predictive

model. Consequently, several methods were combined to determine this directionality. The approach

developed, combines methods for: (a) finding the Markov Blanket of the target even under some

non-faithfulness conditions using the methods developed in Chapters II and III, (b) reducing the

problems to a size manageable by subsequent algorithms using the method developed in Chapter IV,

(c) identifying and orienting the network edges, (d) identifying causal edges (i.e., not confounded),

and (e) selecting the causal Markov Blanket of the target in the manipulated distribution.

The results of this new method on this challenge are reported where the method performed best

on one of the four tasks. Additionally, an extensive discussion is included addressing issues raised

when adapting and combining these varied methods to address a real world problem.

Research Summary The method developed was used to create a submission to the Causality

Challenge. Overall, the research provides theoretical results on the approach to the problem and also
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employs a suite of contemporary algorithms (including the other methods described in this thesis) to

the real-world problems.

I.5 Summary

The thesis is constructed with chapters from the papers that have been submitted (or are in

preparation) on this research (note, the Chapters II-V are written in the voice (we) appropriate for

publication with advisor co-authors). Chapter II describes the algorithm to identify the top-weighted

features of a Support Vector Machine model and its evaluation. Chapter III introduces the variable

selection method, Feature Space Markov Blanket, that makes use of the previous method to perform

variable selection in several difficult distributions. In Chapter IV, the focus is on the local approach

of Bayesian network learning of regions. Chapter V presents the approach used for the submission

to the Causality Challenge. Within each of these chapters, the method will be described along

with any necessary theoretical concepts, definitions, and related work. Please note that because the

methods developed fit into several different research communities, the notation is consistent with

the standard in that community and may vary between chapters. However, within each chapter the

necessary notation and definitions are presented. Each chapter also presents self-contained results

on the evaluation of each method and discussion of future work and analyses. A final Chapter VI

summarizes overall conclusions and recommendations for future work based on this thesis research.
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CHAPTER II

IDENTIFYING TOP-WEIGHTED FEATURES IN POLYNOMIAL SVM MODELS

Polynomial Support Vector Machine models of degree d are linear functions in a feature space

of monomials of at most degree d. However, the actual representation is typically in the form of

support vectors and Lagrange multipliers that is unsuitable for human understanding. An efficient,

heuristic method for searching the feature space of a polynomial Support Vector Machine model for

those features with the largest absolute weights is presented. The time complexity of this method

is Θ(dms2 + sdp), where m is the number of variables, d the degree of the kernel, s the number of

support vectors, and p the number of features the algorithm is allowed to search. In contrast, the

brute force approach of constructing all weights and then selecting the largest weights has complexity

Θ(sd
(

m+d
d

)

). The method is shown to be effective in identifying the top-weighted features on several

simulated data sets, where the true weight vector is known. Additionally, the method is run on several

high-dimensional, real world data sets where the features returned may be used to construct classifiers

with classification performances similar to models built with all or subsets of variables returned by

variable selection methods. This algorithm provides a new ability to understand, conceptualize,

visualize, and communicate polynomial SVM models and has implications for feature constructions,

dimensionality reduction, and variable selection.

II.1 Introduction

Support Vector Machine (SVM) and kernel methods in general have been proven very successful

methods for standard binary classification problems. A polynomial SVM on a given learning task

returns a model represented by the set {〈ai, yi,xi〉} and the scalar b (called the offset), where xi

denotes the ith training vector, yi ∈ {−1,+1} its class, and each ai ≥ 0 is a scalar Lagrange

multiplier. The training vectors for which ai 6= 0 are called support vectors. The model classifies an

input vector x ∈ R
m to a member of {−1,+1} using a function of the form:
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g(x) = sgn





∑

k,ak 6=0

akykK(xk,x) + b





where K(x,x′) = (x ·x′ + 1)d is called the (full) polynomial Kernel of degree d. This representation

of the model and the resulting g(x) are efficient to compute but unsuitable for the human modeler

to gain an understanding of the model’s “logic”. Specifically, it is difficult to determine from this

representation which variables (components of x) or combinations of these variables strongly affect

the output of g(x). Arguably, this is one reason why rule-learning classification, decision trees and

other easier-to-interpret classifiers are sometimes preferred over the SVM classifier. The SVM model

however, can also be represented as an affine function composed with a function Φ mapping x ∈ R
m

to a new space R
f called the feature space:

g(x) = sgn (w ·Φ(x) + b) = sgn (
∑

q

wqΦq(x) + b).

Here w is a weight vector in R
f and a multinomial notation is used to index the feature space.

Feature space is then spanned by monomials of the form Φq(x) = xi1 · . . . · xij
= xq1

1 · · ·xqm
m , j ≤ d

and
∑

qi = j. Thus, the feature space contains all monomials of degree up to d. The former is

called the Kernel representation and the latter the explicit representation of g(x). The latter one

allows easy interpretation and identification of the most important combinations of variables (called

interaction terms in standard-statistical linear regression): these are the monomials with the largest

absolute weight. This information can be used for human validation of the semantics of the model,

visualization and for further feature selection.

The Kernel and the explicit formulations of the SVM model are juxtaposed in the following

example problem. The ith component of the x vector is denoted with xi and the ith component

(variable) of the random vector X with capital Xi. The training data consist of 70 independent

samples chosen from the uniform distribution on the square {−1, 1}×{−1, 1}, where the class labels

are given by the classification function, Y = sgn(X2
1 + X2

2 − 0.5); see Figure II-1(b) for a portion of

this data. Positive training examples are shown as (green) squares, with negative training examples
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Training Data Set

Sample X1 X2 Target

1 0.319 -0.364 -1

2 0.241 0.536 -1

3 -0.380 0.390 -1

4 -0.368 -0.455 -1
...

...
...

...

70 0.791 0.596 1

(a) (b)

Figure II-1: Example Problem Data: (a) Simulated training data over two variables X1 and X2

classified by Y = sgn(X2
1 + X2

2 − 0.5). Positive (negative) training examples are denoted with
triangles (squares). (b) A small portion of the training data set is presented.

Support Vectors Lagrange

X1 X2 Multipliers

x1 −0.368 −0.455 6.273

x2 0.057 −0.607 4.884

x3 −0.566 0.620 −2.120

x4 0.649 −0.543 −14.031

x5 −0.085 0.825 −1.570

x6 −0.223 −0.753 −33.436

(a)

Decision Function

Features Weights

X2
2 1.000

X2
1 0.993

b −0.522

X1X2 0.080

X2 −0.018

X1 −0.018

(b)

Figure II-2: Example Problem SVM Models: (a) The SVM model produced from the training data
in Figure II-1 in Kernel representation consisting of 6 support vectors and corresponding Lagrange
multipliers. (b) The model in explicit form. The weights (scaled by the maximum weight) and
features of the decision function of the SVM model.

given as (blue) triangles; the data is presented in Figure II-1(a). An SVM model was trained on this

data set using a degree 2 polynomial kernel. The six support vectors and Lagrange multipliers of

the model are given in Figure II-2(a). The corresponding explicit representation of the SVM model

is given in Figure II-2(b); the corresponding linear classification function is

g(x) = sgn(−0.018X1 − 0.018X2 + 0.080X1X2 + 0.993X2
1 + 1.000X2

2 − 0.522).

which is a good approximation of the true classifying function. From this representation it is easy

to determine that the dominating features are X2
1 ,X2

2 .
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Table II-1: Explosive Growth of Number of Features: The number of features in feature space is
presented as a function of the number of variables and degree of the polynomial kernel. For the
values greater than 1015, the results are not exact and only serve as estimates.

Number of Degree

Variables 2 3 4 5 10

10 6.6× 101 2.86× 102 1.00× 103 3.00× 103 1.84× 105

100 5.15× 103 1.77× 105 4.60× 106 9.66× 107 4.68× 1013

1000 5.01× 105 1.68× 108 4.21× 1010 8.46× 1012 2.91× 1023

10000 5.00× 107 1.68× 1011 4.17× 1014 8.35× 1017 2.77× 1033

100000 5.00× 109 1.67× 1014 4.17× 1018 8.33× 1022 2.76× 1043

1000000 5.00× 1011 1.67× 1017 4.17× 1022 8.33× 1027 2.76× 1053

Unfortunately, while potentially helpful, it is time-prohibitive to compute the explicit represen-

tation for large models. The number of features for m variables (components of the training vectors)

and degree d of the kernel is f =
(

m+d
d

)

. Table II-1 depicts the growth of this function.

In this Chapter, the problem of converting the Kernel representation to an approximation of the

explicit representation calculated by the r top-weighted features and their corresponding weights is

studied. In other words, the efficient identification of the set Qr of indexes of the r top-weighted

features, |Qr| = r and |wi| ≥ |wj | for i ∈ Qr and j 6∈ Qr is sought. Two heuristic algorithms

are presented and empirically compared that take as input a polynomial SVM model in Kernel

representation, the number r of weights and features to return, and a parameter p, the number of

features that are allowed to search in their effort to identify the top-weighted features. Sufficient

conditions are provided for the heuristic algorithms to correctly return the top r weights. Even when

the sufficient conditions fail, empirically the returned weights closely approximate the true set of r

top-weighted features when only examining a very small portion of the feature space p <<
(

m+d
d

)

.

The best heuristic method has a time complexity in terms of multiplications of Θ(dms2 + sdp),

where m is the number of variables, d is the degree of the kernel, s is the number of support vectors,

and p is the number of features to construct. In contrast, constructing all features and selecting

the r largest ones has complexity Θ(sdf) = Θ(sd
(

m+d
d

)

) ≤ O(sdmd). An empirical evaluation on

real high-dimensional data sets is presented, showing that the algorithm can convert SVM models

to human readable form, help interpret them and provide domain knowledge.
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The overall approach in constructing a model and gaining understanding into the domain is to

first build a potential high-degree polynomial SVM, then to identify the top-weighted features. In

contrast, other typical approaches are to either (i) use classifiers that produce easy-to-understand

models or (ii) to reduce the number of variables (in contrast to features) before building a model,

i.e., couple classification with variable selection. While certainly feasible, these approaches often

have the following disadvantages:

• Classifiers that produce comprehensive models (e.g., decision tress, rule-learning, linear regres-

sion) may be suboptimal for the learning task.

• Finding a variable selection method that adequately reduces the number of used variables

without decreasing the performance may not be possible or may require time-consuming ex-

perimentation.

Particularly problematic are learning tasks where a group of variables has a high-multivariate

association with the class Y , but every strict subset of the group has no association with Y . For

example let Y be the parity function of X1, X2 and X3. If all variables take values in {−1,+1},

then Y = X1 ·X2 ·X3. If all joint patterns of {X1,X2,X3} are equiprobable, then no strict subset

has any association with Y . This means that most variable selection methods that are based on

some kind of pairwise association of each variable with Y will fail to identify any of {X1,X2,X3} as

relevant. Such methods are selecting the top k variables ranked by any pairwise association with Y

(e.g., Pearson correlation, χ2, mutual information, etc.) and current Markov-Based approaches (e.g.,

HITON (Aliferis et al., 2003a, 2009a,b), Koller-Sahami (Koller & Sahami, 1996)). Greedy wrapper

methods such as forward variable selection will also fail as trying adding any of {X1,X2,X3} does

not affect the performance of the model.

There is no greedy way to identify the high-order interaction term as relevant (i.e., by checking

its subsets). Thus, only a method that simultaneously examines the three variables together can

safely hone in on the feature. Notice that a polynomial SVM of degree each to the arity of the parity

will implicitly construct this feature and thus be able to learn the correct classification function.

However, the problem of identifying the specific interaction term remains. SVM-based variable
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selection methods, such as the Recursive Feature Elimination algorithm, could possibly identify

such features but, as shown in the empirical results, it fails more often than our proposed methods.

Given the preceding discussion, the new method should be mostly suitable for problems with the

following properties:

• the SVM model is sparse or nearly sparse in feature space, that is, the weight vector w has

relatively few components with large magnitude,

• there are high-order interactions without correlated low-order interactions that make it difficult

for current variable selection methods to identify relevant variables,

• and the problem is too large to allow a brute force calculation of w.

Parity functions, where all input patterns are equiprobable, may seem fine-tuned, contrived

problems. However, cases of high-order interactions without correlated low-interactions may be

more common in nature than currently believed. This is because there are physical systems that

produce such mechanisms, biological Evolution being one of them. For instance, consider a motivating

example taken from (Scheines, 2009). Assume that gene C is up-regulated (with some noise) when

either A or (inclusive) B is up-regulated. However, when A is up-regulated, B is down-regulated

and vice-versa. The situation is graphically and qualitatively depicted in Figure II-3. The biological

semantics are that C is up-regulated when A is; if A is not being expressed (and only then) a

redundant mechanism (gene B) is activated to continue up-regulating C. Evolution produces such

mechanisms for redundancy and optimization of resources. Notice that, neither A or B is associated

with C: C is up-regulated even when A and B are not. This characteristic would make it hard for

most variable selection methods to identify the AB interaction as important among tens of thousands

of measured gene expressions. When looked at together however, A and B are highly-associated

with C. The proposed algorithm is a first step in identifying such interactions in real biological data.

In recent years, many researchers have worked on the problem of variable selection with SVMs1.

There are methods that rank the variables by scaling factors, where scaling factors are added into the

kernel and are optimized in the training of the model (Weston et al., 2000). The Recursive Feature

1Often called feature selection in the literature, but here variable selection (selecting a subset of the input variables)
should be distinguished from feature selection (selecting a subset of the features).
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Figure II-3: Redundant Mechanism Example: A small 3 variable network example illustrating a
redundant mechanism for activating variable C.

Elimination method (RFE) ranks each variable by removing each variable from consideration in

turn to construct a score, removes the lowest ranked variables, and iterates through this process

(Guyon et al., 2002b). Recently, methods for constructing SVMs with sparse weight vectors have

been developed (cf. l0− and l1 AROM (Weston et al., 2003) and the methods of (Rakotomamonjy,

2003)). For the most part, these methods have been developed for linear SVMs. In (Weston et al.,

2003), the authors also describe minimizing the zero-norm with non-linear kernels. However, they

note the difficulty in looking at the components of the resulting weight vector and only consider an

exemplar problem of sufficiently small size that permits the exhaustive examination of all weights.

The focus of the Chapter is not on a method to select variables or constructing sparse polynomial

SVM models, but on determining the largest weights (and their features) in a model regardless of

its origin. Note, the heuristic search algorithms performance is improved for SVMs with sparse

weight vectors and so the experimental results for real data sets are expected to improve when using

methods that produce such SVM models.

The Chapter is presented as follows, first in Section II.2 a short review of the necessary theory

of Support Vector Machines is introduced. The properties of the polynomial kernel exploited for

the new methods are presented in Section II.2.1. The next section contains a review of the explicit

construction of the decision surface of a polynomial SVM through brute force calculations (Section

II.3.1) followed by a description of the new heuristic methods for identifying the features with the

largest magnitude weights. Section II.4 reveals the behavior of both the brute force calculations and

the heuristic methods on several simulated and real data sets. How this new approach compares
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to contemporary research on variable selection and feature extraction is described in a section on

related work (Section II.4.2). Finally, a discussion reviewing the new approach including: limitations

of the method, relationships to other approaches, and implications for future research.

II.2 Support Vector Machines

We briefly review the soft-margin Support Vector Machine (SVM) with a polynomial kernel for

classification (Boser et al., 1992; Vapnik, 1998). We assume a training data set, D = {xk, yk}, k =

1, . . . , n consisting of sample vectors, xk from the input data space S ⊂ R
m, and associated class

labels, yk ∈ {−1, 1}. The SVM learning algorithm first maps each training vector xk ∈ R
m to a

vector in feature space Φ(xk) ∈ R
f . The SVM algorithm learns from the training data a weight

vector w in feature space and an offset b that define the hyperplane h in feature space:

h(x) = w ·Φ(x) + b. (II.1)

A sample vector x is classified by the decision function g(x) = sgn (h(x)). The parameters of the

model (weights w and the bias (intercept) b ) are learnt as the solution to the following optimization

problem:

min
w,b,ξ

1

2
‖w‖22 + C

n
∑

k=1

ξ1
k (II.2)

subject to the constraints ykh(xk) ≥ 1 − ξk and ξk ≥ 0, for k = 1, . . . , n. The solution hyperplane

defines a linear decision surface that balances the margin of separation between the two classes (equal

to 2/‖w‖2) and the p-norm of the distances ξk of the data falling on the wrong side of the margin

of separation. It is out of the scope of this work to discuss the intuition and the generalization

properties of the SVM classifier.

For a class of mapping functions Φ (i.e., those that satisfy the Mercer theorem) there exists a

kernel function K such that for x,x′ ∈ S,

K(x,x′) = Φ(x) · Φ(x′) (II.3)
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and the minimization problem of Eq. II.2 is equivalent to the Wolfe dual formulation of the problem,

min
a

1

2

n
∑

k=1,l=1

akalykylK(xk,xl)−
n
∑

k=1

ak (II.4)

subject to the constraints
∑n

k=1 ykak = 0 and C ≥ ak ≥ 0, for k = 1, . . . , n. The components of

the vector a = 〈a1, . . . , an〉 are called Lagrange multipliers, with each component corresponding to

a constraint ykh(xk) ≥ 1− ξk. The weight vector w is then given by

w =

n
∑

k=1

akykΦ(xk) =

s
∑

k,ak 6=0

akykΦ(xk), (II.5)

where the second summation is over the support vectors that is, the data samples with ak 6= 0

(we let s denote the number of support vectors). The offset b is the solution to the equation

ai{yi (
∑n

k=1 akykK(xk,xi)) + b − 1 + ξi} = 0, for any i such that 0 < ai < C. From Eq. II.5, the

function h can be rewritten to reflect this relationship,

h(x) = w ·Φ(x) + b =

s
∑

k,ak 6=0

akykK(xk,x) + b. (II.6)

In many cases, and particularly for the polynomial kernel that we focus on in this work, the

kernel function K is easily computable. Thus, by using the kernel function, K, and the dual

formulation, the explicit mapping to feature space, Φ is never computed. As a result of the “kernel

trick”, a linear decision surface is implicitly constructed in a feature space that, for typical non-

linear kernels, could be extremely high-dimensional. Consequently, typically for non-linear kernels

the representation of an SVM model is in the Kernel form {〈ai, yi,xi〉} and the scalar b using the

Lagrange multipliers and support vectors rather than the features and weights of the decision surface.

While the classification function g becomes easy to compute even in high-dimensional feature spaces,

the Kernel representation becomes a nonintuitive model that provides little information as regards

to its internal workings.
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II.2.1 Polynomial Kernel Properties

This work focuses solely on the full polynomial kernel, defined as K(x,x′) = (x ·x′ + 1)d, where

d is the degree of kernel. Kernel K is employed to implicitly map the training sample by a function

Φ, to be defined, to a feature space. We also use the notation Hd(x,x′) = (x ·x′)d to denote the

homogenous polynomial kernel of degree d. The kernels are related via

K(xk,xj) = (xk ·xj + 1)d =

d
∑

l=0

(

d

l

)

· (xk ·xj)
l =

d
∑

l=0

(

d

l

)

Hl(xk,xj) (II.7)

Letting x0 = 1, the polynomial kernel can be written in the form,

K(x,x′) =

(

m
∑

i=1

xix
′
i + 1

)d

=

(

m
∑

i=0

xix
′
i

)d

(II.8)

Now, we observe that

K(x,x′) =

(

m
∑

i=0

xix
′
i

)d

=

m
∑

i1=...=id=0

xi1 . . . xid
x′

i1
. . . x′

id
(II.9)

Each monomial xi1 . . . xid
chooses exactly d variables with replacement from vector x (including

the dummy variable x0 = 1). Instead of using the vector 〈i1, . . . , id〉 to index the monomial, we

can use a vector q = 〈q1, . . . , qm〉 with the exponents to raise each variable xi1 . . . xid
= xq0

0 . . . xqm
m ,

with qi ≥ 0, ||q||1 ≤ d and q0 = d − ||q||1. For example, for m = 2 and d = 3, the factor x0x0x2

corresponds to q = 〈0, 1〉 (q0 = 2). Notice that, a monomial, e.g., x0x0x2 can occur multiple times in

the summation of Eq. II.9 and in fact, it can be shown it occurs exactly c2
q =

(

d
q

)

= d!
q0!···qm! times for

the corresponding exponent vector q. Let us also use the multinomial notation xq = xq1

1 · · ·xqm
m . The

set of all possible exponent vectors q corresponding to the monomials that appear in the summation

of Eq. II.9 becomes Qm,d = {q = 〈q1, ..., qm〉 | qi ≥ 0 for i = 1, ...,m, ||q||1 ≤ d}. Given the above,
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we can rewrite Eq. II.9 as

K(x,x′) =
∑

q∈Qm,d

(

d

q

)

xqx′q (II.10)

=
∑

q∈Qm,d

cqx · cqx′ (II.11)

=
∑

q∈Qm,d

Φq(x)Φq(x′) (II.12)

by defining

Φq(x) = cqx
q =

√

(

d

q

) m
∏

v=1

xqv
v (II.13)

we obtain that

K(x,x′) = Φ(x)Φ(x′) = (x ·x′ + 1)d

for the feature space defined by Φ that includes all monomials of degree exactly equal to d when

the dummy variable x0 = 1 is included, or equivalently, to the space of all monomials of degree less

or equal to d of the original variables. Function Φ is not the unique function for which K(x,x′) =

Φ(x)Φ(x′); however, for all learning and classification purposes any function for which the previous

equation holds is equivalent. For the purposes of this research, we will concentrate on identifying

the features in the feature space defined Eq. II.13. The exact order of the variables in the vector

Φ(x) is not important. Consider an example: a data set consisting of 2 variables and a polynomial

kernel with a degree of 2 results in 6 features. A vector in the data space, x = 〈x1, x2〉 maps to the

following features

Φ(x) =













































c0,0 x0
1x

0
2

c1,0 x1
1x

0
2

c0,1 x0
1x

1
2
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2

c2,0 x2
1x

0
2
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1x
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√
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√
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(II.14)
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We now develop scores to assess the importance of a specific variable to classifying using Eq. II.1.

A variable participates in more than one features (in the above example x1 participates, i.e., q1 > 0,

in three features:
√

2x1,
√

2x1x2, x
2
1 ) and thus is associated with a set of weights corresponding to

these features. Specifically, we show how to efficiently calculate ||wv
l || defined as the norm of the

weights corresponding to monomials of exactly degree l containing variables v.

Consider the following quantities to be calculated from the weight vector. For v = 1, ...,m and

x ∈ S and z ∈ R
f , let x\v denote the vector x with its vth component set to zero and z\v be the

vector obtained from z by setting all components of z involving the variable v to zero, i.e., the qth

component of z\v is:

z\v
q =



















0 if qv 6= 0

zq if qv = 0

(II.15)

It then follows easily that Φ(x)\v = Φ(x\v). Recall from Eq. II.5, the weight vector w can be

written in the form w =
∑n

k=1 αkΦ(xk), where αk = akyk. Then, w\v can be written as

w\v =

n
∑

k=1

αkΦ(xk)\v =

n
∑

k=1

αkΦ(x
\v

k ) (II.16)

The sum of the squares of the weights of the features that do not contain variable v, that is the

norm of w\v is then,

‖w\v‖2 = w\v ·w\v =
n
∑

k=1

αkΦ(xk)\v ·
n
∑

j=1

αjΦ(xj)
\v (II.17)

=
n
∑

j,k=1

αkαjΦ(x
\v

k ) ·Φ(x
\v

j ) (II.18)

=

n
∑

j,k=1

αkαj(x
\v

k ·x
\v

j + 1)d (II.19)

Hence, the quantity ‖w\v‖2 can be computed efficiently. We next consider the weight vector wv

of features that do contain variable v and is defined as wv = w − w\v. Since wv and w\v vanish

on complimentary subsets of features space, we have wv ·w\v = 0 and hence by the Pythagorean
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theorem, we have

‖wv‖2 = ‖w‖2 − ‖w\v‖2 (II.20)

The weight vector may be further decomposed by the degree of the features considered. Recall from

Eq. II.7, the polynomial kernel is K(xk,xj) =
∑d

l=0

(

d
l

)

Hl(xk,xj). Consider a vector z in R
f , let

zl be the vector obtained from z by setting all components of z whose product of variables do not

have degree exactly l to zero, i.e., the qth component of zl is,

zl,q =



















0 if
∑

v qv 6= l

zq if
∑

v qv = l

(II.21)

Similarly, wl denotes the weights corresponding to all the features (products of original variables)

with degree exactly l and the norm of this vector is

‖wl‖2 =

n
∑

k,j=1

αkαj ·
(

d

l

)

Hl(xk,xj) (II.22)

=

(

d

l

) n
∑

k,j=1

αkαj ·Hl(xk,xj) (II.23)

Arranging features by degree forms a partition of feature space, we have

‖w‖2 = ‖w0‖2 + · · ·+ ‖wd‖2 (II.24)

Equations II.19 and II.23 can be combined in the following formula; the norm of the weights of the

features of a specific degree l that do not contain variable v, may be written as

‖w\v

l ‖2 =

(

d

l

) n
∑

k,j=1

αkαjHl(x
\v

j ,x
\v

k ) (II.25)

Finally, the norm of the weights of the features of a specific degree l that do contain variable v is

given by

‖wv
l ‖2 = ‖wl‖2 − ‖w\v

l ‖2 (II.26)

The number of weights being summed into the norm quantities grows exponentially as the number
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Table II-2: Number of weights involved in sums use the following base quantities: number of variables
m, degree of the kernel d, degree level of interest l, and the variable of interest v.s

Number of terms in Sum

‖wv‖
(

m+(d−1)
d−1

)

‖wl‖
(

m+(l−1)
l

)

‖wv
l ‖

(

m+(l−2)
l−1

)

of variables grow (similar to how the number of features grow). Specifically, the norm of the weights

of the features that contain variable v, ‖wv‖, is a sum of
(

m+(d−1)
d−1

)

features. The number of features

in the sum of norm of the weights of the features of degree l is
(

m+(l−1)
l

)

where l ≤ d. The number

of features in the sum of the weights of features of a degree l that contain variable v is
(

m+(l−2)
l−1

)

features. This information is summarized in Table II-2.

Methods to Partition the Features and Weights

The previous definitions in this section have focused on examining subsets of the weight vector

partitioning on whether a single variable is present or absent. It will be useful to also think of sets of

features (and their corresponding weights) defined over subsets of the variables. For a given subset

of variables V ⊂ {1, ...,m}, we define the following subsets of features:

F \V = { q | qv = 0 if v ∈ V } (II.27)

FV = { q | qv 6= 0 for some v ∈ V } (II.28)

FV = F \V c

= {q | qv 6= 0 for v ∈ V,qv = 0 for v 6∈ V }. (II.29)

That is, F \V is the set of features which do not contain any variable v ∈ V . The set of features FV

includes all features where some variable v ∈ V is in each feature. Finally, FV is the set of features

consisting solely of variables v ∈ V .

To construct the calculations for the norm of the weight vector over these sets we will revisit

the notation of the previous section updating it to consider sets of variables rather than a single
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variable. For v = 1, . . . ,m, x ∈ S, and z ∈ R
f , let x\V denote the vector,

x\v =



















0 if v ∈ V,

xv otherwise.

(II.30)

and let z\V denote the vector,

z\V
q =



















0 if qv 6= 0 for some v ∈ V

zq if qv = 0

(II.31)

That is, x\V is the vector obtained from x by setting the each of the components in V to zero and

z\V is the vector obtained from z by setting all each of the components involving variables v ∈ V

to zero.

Alternatively, z
\V
q is zero when q ∈ FV and equal to zq otherwise. It follows that Φ(x)\V =

Φ(x\V ). Then, w\V can be written as

w\V =

n
∑

k=1

αkΦ(xk)\V =

n
∑

k=1

αkΦ(x
\V

k ). (II.32)

The sum of the squares of the weights of the features that do not contain variables v ∈ V , F \V is

then,

‖w\V ‖2 =

n
∑

j,k=1

αkαj(x
\V

k ·x
\V

j + 1)d. (II.33)

From this the other sum of the squares of the weights over the different feature sets may be calculated,

namely,

‖wV ‖2 = ‖w‖2 − ‖w\V ‖2. (II.34)

For instance if V = {vi, vj , vk} then the sum of the squares of the weights of the feature that contain

a variable v ∈ V is ‖wV ‖2 = ‖w{vi,vj ,vk}‖2. The norm of the weight vector over a set of features

consisting solely of variables v ∈ V , FV can also be defined. For example, consider the set of features

FV that contain both variable u and v, F {u,v}. The norm of the weight vector for these features is
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denoted as w{u,v} through the following equation

‖w{u,v}‖2 = ‖wu‖2 + ‖wv‖2 − ‖w{u,v}‖2. (II.35)

This equation can be generalized to sets of variables V of all sizes. Or alternatively, from Eq. II.29,

the norm of the weights over the features FV is equivalent to the norm over the features F \V C

.

II.2.2 Efficient Computation of the Weight Norms

In the algorithms to follow, we compute ‖wv
l ‖ for all variables v and all degrees l. We now

show how to perform this computation efficiently. Let us denote with X − [s × s] the matrix

with support vectors as rows, and a the row vector of αi’s. As defined in Eq. II.5, ‖w‖ =

∑s

k αkΦ(xk)
∑s

j αjΦ(xj) =
∑

k,j αkK(xk,xj)αj =
∑

k,j αk(xk · xj + 1)dαj from which we obtain

‖w‖2 = a(XXT + 1).daT (II.36)

where we use X .d to denote element-wise exponentiation and 1 denotes a matrix of the same size as

X with elements all 1. The computation requires Θ(s2(m + d)) multiplications and additions, and

for d < m this becomes Θ(s2m). Similarly, by using Eq. II.23 we obtain:

‖wl‖2 = a(XXT ).laT (II.37)

Now, regarding ‖w\v

l ‖2 we can write this computation using Eq. II.25 as
(

d
l

)
∑n

k,j=1 αkαj(x
\v

j ·x
\v

k )l

=
(

d
l

)
∑n

k,j=1 αkαj(xjxk − xk,vxj,v)l. Thus, before exponentiating, we remove from each vector

product xjxk the factor xk,vxj,v. By defining the row vector Xv as the values of the support vectors

of the v variable, we can write the above in matrix format:

‖w\v

l ‖2 =

(

d

l

)

a(XXT −XT
v Xv).laT (II.38)
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we finally obtain

‖wv
l ‖2 =

(

d

l

)

a(XXT ).laT −
(

d

l

)

a(XXT −XT
v Xv).laT (II.39)

Once again the time-complexity of this computation is Θ(s2m). Calculating ‖wv
l ‖2 for all variables

at all levels without any caching of intermediate results would incur a cost of Θ(s2m2d), which is

prohibitive for high-dimensional problems. Let us assume however, that we compute XXT and

XT
v Xv for each variable and cache the results. Both of these operations require a cost of s2m

respectively. Now, once we have computed ‖wv
1‖ and cached the intermediate results, we can

compute the first term of ‖wv
2‖ with s2 multiplications: (XXT ) ∗ (XXT ), where ∗ is the element-

wise multiplication. Similarly, the second term of the equation requires another s2 multiplications.

Thus, in total it requires Θ(s2md) to calculate all ‖wv
l ‖2.

II.3 Identifying The Top-Weighted Features

In this section, we present the brute force and two heuristic methods for identifying the weights,

i.e. components of a weight vector w, that are largest in magnitude. The heuristic approaches intro-

duced here avoid the expensive explicit construction of the entire weight vector, by using condensed

information of the weights. Specifically, the heuristic methods conduct a search for the top weights

of the SVM model, guided by the norm of the weights summed over various subsets of features

described in Section II.2.1. All methods are currently implemented in Matlab. Because complex

data structures are not commonly used or efficiently implemented in Matlab, the methods’ complex-

ity is analyzed in its current implementation and although other better-suited data structures are

discussed. Briefly, the three methods presented are:

• Brute Force: Explicitly calculate the weight vector w and identify the largest in magnitude

components (feature weights).

• Heur1: Rank variables according to the sum of weights in all features they participate in,

i.e., rank variable v according to ‖wv‖2. Select the top k variables and explicitly calculate all

weights of the features that can be constructed with these variables only.
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• Heur2: Calculate s(v, l) = ‖wv
l ‖2 for each variable and degree l ≤ d. These are the sums of

weights of features involving a particular variable of specific degree l. Using this information,

select a level l′ and a set of variables H and construct all possible features and their weights

involving only variables in H at level l′. The identified weights are removed from the corre-

sponding sums of weights s(v, l′) for each v ∈ H. Thus, at this point s(v, l) contain the sum

of remaining-to-identify weights involving v of degree l. The process is repeated until enough

weights have been explicitly constructed.

II.3.1 Exhaustive Search

To identify each feature Φq and its corresponding weight wq we use Eq. II.20 and II.13:

wq =

s
∑

k

αkΦq(xk) =

s
∑

k

αk

√

(

d

q

)

x
q
k (II.40)

Calculating x
q
k requires at most d multiplications (there are at most d non-zero exponents in q);

calculating wq requires another s additions, where s is the number of support vectors. We consider

the calculation of the constants cq =
√

(

d
q

)

of constant complexity: for low d there is a small

number of different values of these constants (the number of different cq’s is the number of possible

ways to obtain the sum of d by summing integers from 0 to d). Thus, to identify all features the

time-complexity is Θ(sdf), where f the total number of features, equal to:

f =

(

m + d

d

)

. (II.41)

This growth in the number of features is presented in Table II-1. The explosive growth does not

allow all features (and weights) to be calculated for large data sets and d > 1. Sorting and obtaining

the largest r weights (and corresponding features) requires another Θ(f log f) time. Notice that

Θ(f) = Θ(
(

m+d
d

)

) ⊂ O(md) and so, the complexity order of the method becomes Θ(sdf + f log f) ⊂

O(sdmd).

This brute force method is currently implemented in Matlab to maximize speed in the mapping
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to feature space. Namely a quick but memory inefficient method is used to determine Qm,d = {q =

〈q1, ..., qm〉} the exponents for all features. It is a memory limitation in calculating this matrix

that limits the brute force calculation of the weight vector (using an ordinary PC the scope of the

problems is limited to ∼> 700 variables with a degree 2 kernel, and ∼> 50 variables with a degree 4

kernel). However, alternative methods for constructing all features are also possible using iterations

of for-loops to consider each feature’s weight to be calculated. This method has also been coded

into Matlab, however the for-loop construction of this method does not take advantage of Matlab’s

matrix operations and is therefore limited in its use by the speed of the method (for example, on

a degree 2 problem with 200 variables to construct the 20,301 elements of the weight vector takes

over 45 seconds). An implementation in C could be faster in execution time yet is still limited by

the overall complexity requirements of the method.

Even these straight-forward approaches will eventually also run into memory limitations of keep-

ing the data, weight vector, and Q matrix of corresponding feature in memory (the size of the

weight vector alone for a 10,000 variable, degree 3 problem is over 150GB). Because we are looking

at identifying the top weights, the brute force method may be implemented such that only the top r

weights are kept and returned (similar to the heuristic methods). Therefore, rather than just place

each weight in turn in a vector as it is created, a sorted list of the top weights will be constructed

and maintained. This memory-saving implementation will add complexity to the algorithm to keep

the sorted list no matter what data structures used.

II.3.2 Selection of Top Ranked Variables Then Exhaustive Search

The first heuristic method is referred to as Heur1. The idea of this method is to perform variable

selection using the “naive” variable ranking score of non-linear RFE, that is using only the first

iteration of RFE (Guyon et al., 2002b), then the brute force calculation of features and weights for

the selected variables. The variables are ranked according to the sum of the weights of all features

they participate in, that is rank each variable v according to ‖wv‖. The top k variables are selected

and all features and weights among those variables are explicitly constructed.
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This method is presented in Algorithm 1 where the inputs are the support vectors SV, alpha

values α and two parameters p the number of features to construct and r the number of features

to return. The parameter p determines how many features constructed and weights calculated and

consequently determines the number of variables considered. The number of variables for which all

features are constructed, k, is maximized so that,

k = max
i=1,...,m

(

i + d

d

)

such that

(

i + d

d

)

≤ p. (II.42)

For each variables, a score is calculated as the norm of the weight vector for all features involving

that variable, ‖wv‖2 (line 3-5). The top k ranked variables are calculated from this score and stored

in the subset V (line 6). All features involving solely variables in V are constructed (FV ) and weights

calculated (line 7-10). From these the top r weights (wV ,r) are corresponding features (FV ,r) are

identified and returned as output of the Heur1 method.

Algorithm 1 IdentifyTopWeights-Heur1 Method

1: procedure IdentifyTopWeights-Heur1 (SV, α, p, r)
Inputs: SV − [s×m], support vectors; α− [s× 1], alpha values

p - number of features to construct; r - number of features to return
Output: O = {〈wFV r , FV r 〉}, list of top r largest weights wFV r and feature indices FV r

% Determine k, number of variables in feature construction
2: k = maxi=1,...,m

(

i+d
d

)

s.t.
(

i+d
d

)

≤ p

% Score each variable, Select V the top k ranked variables
3: for i = 1, ...,m do

4: s[i] = ‖wi‖2
5: end for

6: V = {i | s[i] in top k}

% Construct all features among variables in V

7: FV = {q | qv ≥ 0 for any v ∈ V and qv = 0 for v 6∈ V }
8: for q ∈ FV do

9: wq =
∑

j αjΦq(SVj)
10: end for

% Sort to identify top r weighted features

11: wFV r = {wq | q ∈ FV and wq in top r weights}
12: FV r = {q | q ∈ FV and wq in top r weights}
13: return O = {〈wFV r , FV r 〉}
14: end procedure

The overall time complexity of this method is Θ(dms2 + sdp) multiplications. The complexity
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is broken down as follows: the cost to calculate the score for each variable is Θ(dms2) (where the

complexity of this operation is discussed in Section II.2.2) and the cost to calculate the weights first

mapping the support vectors to the p features identified Θ(sdp) then computing the weights Θ(sp).

In addition to the cost of the multiplications, the vector of variable scores and weights are sorted at

cost O(m log m) and O(p log p) for each item respectively; however, the main computational time of

the method is dominated by the weight and score calculations.

II.3.3 Guided Search to Construct Top Features

The second heuristic method, referred to as Heur2, uses the norm of the weight vector decomposed

by both variable and degree of the features to guide the search for the top-weighted features (s(v, l) =

‖wv
l ‖2, Eq. II.26). This information is used to select a level l′ and set of variables V for which all

possible features (among variables V at that level) and their weights are calculated. The weights

found are subtracted from corresponding sums s(v, l′) and the next level and variables are selected;

repeating this process until a specified number of features are constructed.

If a variable v participates in only one feature at degree level l with a non-zero weight wq then

‖wv
l ‖ = |wq|. When a variable v participates in more than one feature at level l then ‖wv

l ‖ > |wq|.

In either case, the quantity ‖wv
l ‖ is an upper bound on the largest (in magnitude) weight for any

feature involving variable v at level l. The search for the top weights uses these quantities as a guide

to selectively calculate the weights of suspected top features.

This method takes the same inputs as Heur1: the support vectors of the SVM model SV, the

alpha values α, p - the number of features to construct, and r - the number of features to return.

A pseudo-code description of the implementation is presented in Algorithm 2. The method begins

with the construction of the d×m contributions matrix s where s[l][v] = ‖wv
l ‖2 for l = 1, . . . , d and

v = 1, . . . ,m. This quantity is calculated via Equations II.26 and II.25, therefore,

‖wv
l ‖22 =

(

d

l

) n
∑

k,j=1

αkαj ·Hl(xj ,xk)−Hl(x
\v

j ,x
\v

k ). (II.43)

After the calculation of the initial contributions matrix, s, the heuristic search loops through the
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following 3 sub-procedures: (1) select the next level and variable(s) to focus construction, (2) ex-

plicitly construct the features and calculate their weights for the selected variables and level, and

(3) update the bounds of the contribution matrix. Once the search procedure constructs p features,

the features are sorted by their absolute weight and the top r features are returned.

Algorithm 2 IdentifyTopWeights-Heur2 Method

1: procedure IdentifyTopWeights-Heur2 (SV, α, p, r)
Inputs: SV − [s×m], support vectors; α− [s× 1], alpha values, p - number of

features to construct; r - number of features to return
Output: O = {〈Wr,Fr〉}, list of r largest weights Wr and their feature indices Fr

% Create contributions matrix, s

2: for l = 1, . . . , d and v = 1, . . . ,m do

3: s[l][v] = ‖wv
l ‖2

4: end for

5: W← ∅, F← ∅
6: while |W| ≤ p do

% Select Expansion Level and Variables of Interest
7: [l′, Vl′ , v

′] = select-level-variables(s,F)

% Construct all features among variables in Vl′ and v′

8: FVl′
= {q | qv′ > 0, qv ≥ 0 for any v ∈ V, qv = 0 for v 6∈ V, and

∑

q = l′}
9: for q ∈ FVl′

do

10: wq =
∑

j αjΦq(SVj)
11: end for

% Update Bounds
12: for each q ∈ FVl′

do

13: s[l′][v] = s[l′][v]− w2
q , where qv > 0

14: end for

15: W = W ∪wFV
l′
; F = F ∪ FVl′

16: end while

% Sort to identify top r weighted features
17: Wr = {wq | q ∈ F and wq in top r weights}
18: Fr = {q | q ∈ F and wq in top r weights}
19: return O = {〈Wr,Fr〉}
20: end procedure

The first sub-procedure (function select-level-variables, line 7, Algorithm 2) determines what

are the next features to be constructed and weights calculated is described in Algorithm 3. First,

the level on which to focus, l′, is selected by one of two simple methods. The first simply selects

the level of the contributions matrix with the maximum value. The second method normalizes the

contributions matrix by the number of items in each cell (N[l][v]), then selects the level with the

maximum value.
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Algorithm 3 IdentifyTopWeights Select Level and Variables Function

1: function Select-Level-Variables(s,F)
% Select level on which to focus, l′

2: for i = 1, . . . , d do

3: maxval[i] = max(s[i][:]) or maxval[i] = max(s[i][:]/N[i][:])
4: end for

5: l′ = arg max maxval[:]

% Determine variables previously considered at level l′, Vl′ ,
% and new variable to consider v′

6: Vl′ = {i | any q ∈ F,qi > 0}
7: v′ = arg max s[l′][{1, . . . ,m} \ Vl′ ]
8: return l′, Vl′ , v

′

9: end function

The selection of a set of variables from which all features will be constructed uses only the

contributions information at the selected level and also considers what features of this level have

already been constructed. First, the variables involved in features at this level is determined, Vl′ .

Then, the variable with the top contributions matrix value at level l′ that is not in Vl′ is selected v′.

The second sub-procedure explicitly constructs the features and calculates the weights for the

selected level and variable sets found (line 8-11, Algorithm 2). The construction of new features

includes all combinations with any variables already constructed at the selected level, Vl′ with the

new selected variable v′. Initially, Vl′ is empty so only the feature consisting of variable v′ at level

l′ is constructed, but as the algorithm continues combinations of variables are considered.

The final step involves updating the bounds on the top weight (lines 12-14, Algorithm 2), con-

sequently the contributions matrix is updated by any weights explicitly calculated. For example,

if the feature X1X32 is constructed and its weight, wX1X32 , is calculated, then the contribution

matrix is updated: s[l][v] = s[l][v] − (wX1X32)2 where l = 3, the degree of the feature constructed

and v = 1 and 3 the variables in this feature.

The three sub-procedures reside in a loop that continues until the list of features (and their

weights) has at least p items. Overall, the calculation of the top p weights via the heuristic method

is Θ(dms2 + sdp), with s support vectors, m variables, d the degree of the kernel, and p the number

of features to construct.

The cost of creating the contributions matrix could be estimated as Θ(dm2s2), where for each cell
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of the matrix of which there are [d×m], the calculations cost Θ(ms2). However, by efficient storing

of partial information this cost is reduced to O(dms2). For instance, the Gram matrix SV ∗ SV T

costing O(ms2) is calculated only once; all subsequent operations use the resulting matrix. Also,

for a given variable the partial results from the previous level (H
\v

l−1) are stored and used in the

calculation of the current level (H
\v

l ). The cost of this select level and variables sub-procedure

requires either no numeric calculations for determining the level or the Θ(dm) divisions for the

version which does a normalization. In addition, the procedure requires finding the maximum value

for each level or Θ(dm) look-ups.

The cost of constructing/calculating each new feature/weight is Θ(sd) multiplications. This

procedure does not require the storage of all previously created features, rather just the variables

at each level. A look-up just identifies the next variable that may be used for a given level. When

developing this heuristic several implementations were considered that slightly altered the order of

constructing new features and what information was stored between iterations. However, the final

method described here was simple and efficient without sacrificing quality of the results.

The heuristic methods require initial calculations above and beyond the brute-force approach

(the heuristic methods the contributions calculations are Θ(dms2)). Recall, the brute force calcula-

tion costs in total Θ(sdf), where f is the number of features. Therefore, for small problems, with

f < p + ms, the brute force approach is expected to more efficient; see Section II.4 for confirmation

of this proposition. In practice, the brute force calculation is first limited by the memory require-

ments for the calculation rather than the efficiency of the method (although more memory efficient

implementations are possible, as discussed in Section II.3.1). In contrast, the heuristic method is

quite scalable. The method has been run on data sets consisting of over 100,000 variables with a

degree 2 kernel completing the calculations in less than 2 hours.
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II.3.4 Sufficient Conditions for Heuristic Methods to Return Top r Weights

We next present sufficient conditions on w and p for the heuristic methods to return the top r

weights. These sufficient conditions may also be used as stopping criteria for choosing p (note the

maximally choice of p depends on the computational resources available to a user).

Lemma 1. Let V ⊂ {1, . . . ,m} denote the set of k variables selected in Heur1 and let Q ⊂ F

denote the set of r features returned by Heur1. Let wr = minq∈Q |wq| If

wr ≥ max
i∈{1,...,m}\V

‖wi‖ (II.44)

then Heur1 returns the top r weighted features, that is, |wq| ≥ |wq′ | for all q ∈ Q and all q′ ∈ F \Q.

Proof. Suppose II.44 holds. Let wr = minqinQ |wq| and let Q̃ denote the features that only involve

the variables in V . If q′ ∈ Q̃ \Q, then |wq′ | ≤ wr since Q consists of the r features from Q̃ with the

largest magnitude weights. If q′ 6∈ Q̃ then q′
i 6= 0 for some i 6∈ V and so w2

q′ ≤ ‖wi‖2 ≤ w2
r which

completes the proof.

Lemma 2. Let Q ⊂ F denote the set of r features returned by Heur2 and let s denote the final

‘contributions’ matrix. Let wr = minq∈Q |wq|. If

wr ≥ max
i,j

s[i][j] (II.45)

then Heur2 returns the top r weighted features, that is, |wq| ≥ |wq′ | for all q ∈ Q and all q′ ∈ F \Q.

These sufficient conditions for stopping for both Heur1 and Heur2 methods may be loose bounds

in practice. The parameter p will be used in the experimental evaluation to facilitate comparisons

between the methods.

II.4 Experimental Results

The experimental evaluation compares the ability of the brute force and heuristic methods of

identifying the largest weights of the SVM model. First, the evaluation is performed on several

simulated data sets. These data sets have the advantage that the classification function is known
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thus, providing insight into the ideal top weighted features. The results emphasize: (1) the ability of

the heuristic methods to identify the features with the largest magnitude weights for a SVM model,

(2) the heuristic method identifies the top features efficiently, and (3) the identified features provide

insight into the functionality of the SVM model. Additionally, there will be focused attention on two

simulated problems which serve as motivating examples to show where the use of this technique may

be focused for difficult problems. Finally, the heuristic method that performs best is also then tested

on several large real data sets. Here the results demonstrate the ability of the heuristic method to

efficiently identify features with high predictive classification performance that may provide new or

corroborate existing domain knowledge.

II.4.1 Simulated Data Results

We consider three simulated problems referred to as the Circle, Double-XOR, and Checkerboard

problems. For the Circle problem, the classification is determined by the function Y = sgn(x2
1+x2

2 <

0.5). All components of x are independent samples from the uniform distribution on [−1, 1]. For the

Double-XOR problem, the data was sampled from the Bayesian Network shown in Figure II-4. The

variable T determines the classification of a sample. For the Checkerboard problem, classification is

determined using the 3 relevant variables by which octant a data point resides (the class labels are

determined by a parity function on the sign of the 3 relevant variable’s coordinates). The data was

sampled from a uniform distribution on [−1,+1]. For each problem, the number of input variable

sizes was varied and is specified for each simulation. Data sets of 50, 100, 500, and 1000 training

instances were sampled for each problem and input variable size. It is know in the large sample limit

that these classifiers are sparse, that is all features involving variables not used to classify the data

will have a weight that goes to zero (this statement is also observed in practice with the data sets)

(Hardin et al., 2004).

SVM Parameters

In general, a user does not know the optimal parameters to create an SVM model; for a poly-

nomial SVM the degree of the kernel and C soft-margin parameter must be selected. In practice,
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Figure II-4: Double-XOR Example Problem: The network from which data is sampled. The variables
X1 and X2 are in an XOR relationship with T . Similarly, T and X4 are in an XOR relationship
with X3. Tiled copies of the Alarm network form the other variables in the network.

classification performance is often used to choose these parameters, e.g., a nested cross-validation

design is performed to optimize the selection of the SVM model parameters, with the expectation

that the degree of the kernel will need to reflect the degree of the underlying classification function.

The focus of this work is not how best to optimize parameters for a SVM model, but on selecting

the top features once an SVM model has been trained. For the rest of the simulated experimental

section, the degree of the SVM kernel is selected to match the classification function and the C

parameter is set to 103, i.e, the Circle and Double-XOR problem use a degree 2 kernel and the

Checkerboard problem uses a degree 3 kernel.

Encoding of Binary Data

For problems consisting of binary data, the manner in which the binary data is encoded may

have an effect on the learned SVM model. Consider the case of learning an XOR relationship of two

variables with a degree 2 polynomial kernel. The features X1, X2, X2
1 , X2

2 , X1X2 and intercept b

are available to the SVM model to assign weights in constructing the separating hyperplane. When

a binary 0/1 encoding is used, one arithmetic expression that is equivalent to XOR to separate the

data is X1+X2−2X1X2. However, if the data was encoded as -1/+1, then the arithmetic expression
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Figure II-5: Redundancies of Binary Encodings: (a) Using the binary 0/1 encoding, all variables
raised to a power have the same functionality as the single variable, e.g., X2

1 ≡ X1. (b) When the
+1/-1 encoding is used, the all variables raised to an even power become constant and variables
raised to an odd power are equivalent to the variable itself, e.g., X2

1 ≡ 1 and X3
1 ≡ X1.

−X1X2 could be used to express the XOR relationship. The equation of the hyperplane is therefore

affected by the encoding of the data, where one encoding may be preferred over another due to the

simplicity of the learned function. However, when faced with a problem with a unknown underlying

distribution it is impossible to select the best encoding a priori.

Regardless of the which of these two encodings are selected, when the input data to the SVM

is binary the features of the SVM model are redundant in their representation. For example, when

the input data is using a 0/1 encoding, any variable raised to a higher power is equivalent to the

original variable. Figure II-5(a) shows several such equivalencies, e.g., X1 ≡ X2
1 and X1 ≡ X3

1 .

When the input data uses -1/+1 encoding, a different set of redundancies emerge. In this case, any

variable raised to a even power becomes the constant 1 while any variable raised to an odd power is

equivalent to the original variable. For example, X2
1 ≡ 1 and X3

1 ≡ X1; see Figure II-5(b) for more

examples.

In addition to the redundancy among the features, the two encodings may results in the features

interpreted in different manners. For instance, consider the feature X1X2 in both encodings. Figure

II-5(a) and (a) shows the behavior of this feature with respect to its base variables. With the 0/1

encoding the feature is reflecting an AND relationship among its constituent variables. When the

-1/+1 encoding is considered, the feature has an exclusive OR relationship among its constituent

variables. In either case, it is the interaction of the two variables that define the feature, but how

the interaction occurs depends on the encoding.

The heuristic method is developed to be a general purpose procedure that does not differen-
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tiate its behavior depending on the type of input data and its supplied encoding. Consequently,

the redundancies of the binary data are removed after a feature list is returned by the methods.

Specifically, the list of features is processed to remove redundant features. For the case of binary

data, all possible features are expressed with exponents of either zero or one (i.e., xq = xq0

0 · · ·xqm
m

is restricted s.t. qi ∈ {0, 1}). In order to return the specified number of features, r, the heuristic

procedure may need to continue its search (the procedure may be designed as an anytime algorithm

to achieve this goal).

Comparison of Heuristic Methods

The two heuristic methods described in Section II.3.2 and II.3.3 are compared in terms of the

time efficiency and a quality metric indicating their ability to return the top-weighted features. The

quality metric is defined as the norm of the r features returned by the method relative to the norm

of the true top r features sorted from the complete weight vector. That is, if the method is asked to

return 100 features, the norm of those 100 features is compared to the norm of the 100 top-weighted

features found in the entire weight vector. The heuristic methods are compared on the simulated

data sets.

The Heur1 and Heur2 methods are compared with results summarized in Table II-3. For this

comparison, the problem size for each problem is as follows: 400, 500, 600, and 700 variables

for Circle, 337, 448, 559, and 707 variables for Double-XOR, and 70, 80, 100, and 125 variables

for the Checkerboard problem. The Heur1 and Heur2 method were both run to construct p =

{50, 100, 500, 1000, 5000} features. The time ratio of the two methods is calculated for the different

vales of p, problems, problem sizes (number of variables), and sample sizes. For each problem, the

time ratio was averaged over values of p and either problem size (top portion of the table) or sample

size (bottom portion of the table). A time ratio of greater than one indicates Heur1 taking longer

than Heur2 while a ratio of less than one indicates Heur2 taking longer than Heur1. The Heur1

method is in general faster than Heur2. This observation meets expectations because the Heur1

method requires less overhead than Heur2.

The results also reveal a general pattern that the speed gains of Heur2 are affected by the number
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Table II-3: Comparing Heur1 and Heur2. The time and quality of the two heuristic methods, Heur1
and Heur2, are compared. The time ratio of the two methods was measured for a number of runs
with different values of p (number of features to construct), problems, problem sizes (number of
variables), and sample sizes. For each problem, the time ratio was averaged over values of p and
either problem size (top of the table) or sample size (bottom of the table). A time ratio of greater
than one indicates Heur1 being less efficient while a ratio of less than one indicates Heur2 as the
slower method. The quality ratio measured the ability of the two methods to return the top features.
The quality measure is calculated for each instantiation over different values of p (number of features
to construct), r (number of features to return), problems, problem sizes, and sample sizes. For each
problem, the quality ratio was averaged over values of p, r, and either problem size (top of the table)
or sample size (bottom of the table). A quality ratio of greater than one indicates Heur1 returning
the higher weighted features while a ratio of less than one indicates Heur2 returning higher quality
features.

Time - Heur1/ Heur2 Quality - Heur1/ Heur2

Number of Samples Number of Samples

Data Set 50 100 500 1000 50 100 500 1000

Circle 0.620 0.753 0.960 0.975 0.812 0.778 0.796 0.794

Double-XOR 0.831 0.899 0.985 0.990 0.999 1.000 0.996 0.995

Checkerboard 0.782 0.870 0.991 0.995 0.746 0.717 0.718 0.813

Number of Variables Number of Variables

Data Set Increasing Num. Vars. −→ Increasing Num. Vars. −→

Circle 0.844 0.834 0.823 0.807 0.838 0.801 0.777 0.763

Double-XOR 0.914 0.921 0.931 0.939 0.997 0.998 0.996 0.998

Checkerboard 0.905 0.907 0.915 0.910 0.843 0.755 0.715 0.682

of samples in the data. The sample size of course plays an important part in calculating the weights

for both methods however, this calculation is the same for both methods. The sample size also

influences the distribution of the components of the weight vector (see Figure II-6(a-c)). As sample

size increases (across the row), the distribution of weights becomes more concentrated in a few

important features. The change in the weight distribution can affect the entries of the contributions

matrix. Figure II-6 illustrates the weight distribution (top 25 weights) for the Circle problem (the

other problems show similar results and are presented in Appendix A.I). As the sample size grows

the change in make-up of the contributions matrix will affect how new features are constructed in

the search process and may explain this timing difference between the two heuristic methods.

In terms of the quality metric, the results are presented as a ratio of Heur1 over Heur2, where

a ratio of greater than one indicates Heur1 increased ability to return the top-weighted features

(less than one indicates Heur2 is better at returning the top-weighted features). The quality ratio
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Figure II-6: Distribution of Weights of Top 25 Features of the Circle example with increasing sample:
(a) 100, (b) 500, and (c) 1000 samples.

was measured for the two heuristics for different values of numbers of features to construct p =

{100, 500, 1000, 5000}, number of features to return r = {50, 100, 500, 1000}, problem, problem size,

and sample size. For each problem also shown in Table II-3, the quality ratio was averaged over

values for p, r (with r < p), and either problem size (top portion of table) or sample size (bottom

portion of table). Heur2 shows equal or better ability to return the top-weighted features in all cases

(the method exhibits equal ability on the Double-XOR problem, and improved ability on the other

two problems). Another trend to observe is that as the size of the problem gets larger the Heur2

method improves over the Heur1 method. There are tradeoffs between the two method, with no

method showing dominance in both time and quality however, the difference in time is less significant

than the potential ability to find the top-weighted features. Therefore of the two heuristic methods

the Heur2 will be used in future comparisons to the brute force approach and on real data sets.

Comparison of Brute Force to Heuristic Method

The brute force approach is compared to the Heur2 heuristic method in terms of the execution

time to complete each procedure (the execution time does not include the time to learn the SVM

model - which is necessary and equal for both procedures). For this comparison, the problem size for

each problem is as follows: 250, 350, and 450 variables for Circle, 226, 337, and 448 for Double-XOR,

and 50, 70,and 80 variables for Checkerboard problems. The smaller data problem sizes were used

again in order for the brute force to run and produce all features. The heuristic method was run
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Table II-4: Comparing Brute Force and Heur2. The time and quality of the brute force and heuristic
Heur2 method are compared. The time ratio of the two methods was measured for a number of
features to construct - p (all features for the case of brute force), problem, problem size (number
of variables), and sample size. For each problem, the time ratio was averaged over values of p and
either problem size (top portion of table) or sample size (bottom portion of table). The quality ratio
measured the ability of the heuristic approach to return the top features for a each instantiation
compared to the true top features over differing number of features to identify - p, number of
features to return - r, problem, problem size, and sample size. For each problem, the quality ratio
was averaged over values for p, r, and either problem size (top portion of table) or sample size
(bottom portion of table).

Time - Brute Force / Heur2 Quality - Brute Force / Heur2

Number of Samples Number of Samples

Data Set 50 100 500 1000 50 100 500 1000

Circle 396.0 144.8 6.9 2.1 1.02 1.03 1.08 1.04

Double-XOR 411.8 182.3 10.3 2.5 1.01 1.00 1.00 1.00

Checkerboard 1055.1 519.6 34.0 9.9 1.00 1.01 1.03 1.01

Problem Size Problem Size

Data Set Small Mid Large Small Mid Large

Circle 32.9 104.0 275.3 1.03 1.04 1.05

Double-XOR 46.5 93.3 315.3 1.00 1.00 1.01

Checkerboard 79.9 357.8 776.2 1.01 1.01 1.02

for increasing values of p (number of features the method should construct) while the brute force

approach constructed all features. Table II-4 summarizes the comparison of the two approaches.

The timing results are presented as the ratio of brute force over Heur2. A time ratio of greater than

one indicates the brute force approach taking longer than Heur2. The timing ratio was calculated for

different values of the number of features to construct p = {50, 100, 500, 1000, 5000} (for the heuristic

approach), problem, problem size (number of variables), and sample size. For each problem, the

time ratio was averaged over values of p (the brute force approach remains the same over this value)

and either problem size (top portion of the table) or sample size (bottom portion of the table).

Further visualizations of these results can be examined in Appendix A.II where the timing results

are plotted by problem size, sample size, and number of features to construct.

Several trends in terms of the timing of each method individually and in comparison are observed

from the table and graph in the appendix. First, in each of the problems presented the brute force

approach requires more time than the heuristic method. This observation is expected as the brute
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force is constructing all the features compared to a portion of the features and weight vector. Second,

both the brute force and heuristic methods increase in time as the sample size increases for each

problem (this is expected, with increasing sample the number of support vectors will likely increase

causing an increase in the number of calculations for each method). Also, both methods increase in

time as the size of the problem (number of variables, number of features) increase. For the heuristic

method, the time results increase as the number of the weights to calculate increases (i.e., the value

of p increases). However, the heuristic time increase is small as p increases compared to the increase

in time for an increase in sample size or problem size for all but the smallest problem size; a majority

of the heuristic method’s time is spent in constructing the contributions matrix, with only a small

percentage of time spent searching for the top p weights. Finally, the difference between the brute

force and heuristic method grows as the size of the problem increases and the difference decreases

as the sample size of the data increases.

The quality results are presented as a ratio of brute force over Heur2. The brute force approach

has available the entire feature vector therefore it represents the ideal case and the quality ratio

presented represents how close the heuristic method approaches the ideal. The closer the quality

ratio is to one the better the heuristic method is at constructing all the top-weighted features. Since

the heuristic method search via queries of large collections of features (the norm of the weight vector

for specific variables and levels) it is expected that the returned features will have low weight features

among them. The quality metric will therefore diverge from ideal as a number of low weighted feature

are created. To counteract this situation, the two parameters, p - the number of features constructed

and r - the number of features returned are both used where r ≤ p. When a r is selected that is less

than p, then those lower weighted features are removed from consideration. The heuristic method

with different values of the number of features to construct p = {1000, 5000} and number of features

to return r = {5, 10, 25, 50, 100} was compared to the brute force for the different problems, problem

sizes, and sample sizes. For each problem also shown in Table II-4, the quality ratio was averaged

over values for p, r, and either problem size (top portion of table) or sample size (bottom portion
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of table). Additional graphs plotting the results under the different parameter values are shown in

Appendix A.II.2.

From Table II-4 and the appendix several comments on the quality metric can be made. In

general, the heuristic method diverges from the ideal quality metric of one as r increases. This

observation can be explained by looking at the distribution of the weights. In Figure II-6(a-b), the

weight distribution of the SVM model is shown. Focusing on Figure II-6(b), the Circle problem

with 400 variables and 1000 samples is given in subplot showing only the top 25 weights. For this

problem, two features hold the top weights after a gap in magnitude of the weights there exists a long

tail of slowly diminishing weights. The heuristic method performs well to identify the top weights

(the top two features). However, after identifying those top two features, the next highest weights

are equal or close to the same value for many of the following features. The heuristic method does

not perform as well in identifying the top feature within this noise. In order to achieve the ideal

metric extensive searching for the top weights is required in the worst-case constructing all features

and weights which degrades to the brute force approach. As with many other methods, there exist a

trade-off between spending additional time searching and stopping the search with achieving a lower

ideal in terms of finding all of the top weights.

An additional quality measure compares the classification performance of the full SVM model

(brute force approach) to the returned features of the heuristic method (measured as AUC). This

quality ratio is presented as a ratio of brute force over Heur2’s classification performance. A ratio

of less than one indicates the heuristic method has a higher classification performance (a ratio of

greater than one indicates the full SVM model has better classification performance). In Table II-5,

this quality ratio was averaged over values for p, r, and either problem size (left portion of table) or

sample size (right portion of table).

II.4.2 Related Methods

The heuristic method presented is the first of its kind to return the top features involved in the

classification of a SVM model. Other methods do use SVM models to perform variable selection but

43



Table II-5: Comparing Brute Force and Heur2. The quality of the heuristic method was also
assessed in terms of the classification performance of the full SVM model (brute force) compared to
the classification performance of the returned features of the heuristic method. This quality ratio
was measured for a number of features to construct - p (all features for the case of brute force),
problem, problem size (number of variables), and sample size. For each problem, the classification
performance ratio was averaged over values of p, r, and either problem size (left portion of table) or
sample size (right portion of table).

Classification Performance (AUC) - Brute Force / Heur2

Number of Samples Problem Size

Data Set 50 100 500 1000 Small Mid Large

Circle 0.927 0.942 0.866 0.774 0.895 0.884 0.853

Double-XOR 0.964 0.938 0.833 0.855 0.948 0.903 0.841

Checkerboard 1.005 1.016 0.863 0.794 0.891 0.930 0.937

do not identify the top features of the SVM; example methods include Recursive Feature Elimination

(RFE) (Guyon et al., 2002b), R2W 2 (Weston et al., 2000), l0− and l1− AROM (Weston et al., 2003),

and the methods of (Rakotomamonjy, 2003).

As a check of our methods, we compare the heuristic approach to identify the top-weighted

features with the following: construct all features among the variables selected by a variable selection

method (here we use the RFE as the variable selection method). RFE was run on the simulated

data sets using a 1-fold 80/20 split on the data sets in order to train and test the performance of

the SVM model. RFE was run using both linear (often the standard in practice) and polynomial

kernels; for the polynomial kernel, the same kernel parameters as the heuristic method were used.

Each iteration of the RFE algorithm eliminated the lowest ranked feature.

For the simulated data sets, the features constructed by the RFE variables are compared to the

top-weighted features of entire weight vector. A comparison is also made to the Heur2 method,

where the same number of features that are created from the RFE variables are selected from the

top Heur2 features list (letting p=5000) and also compared to the top-weighted features from the

entire weight vector. The quality is assessed as the norm of the features’ weights made with RFE or

Heur2 divided by the norm of the same number of top weighted features of the entire weight vector.

The features constructed from linear RFE variables performs poorly across all three data sets and

is therefore excluded from further consideration. This result is not unexpected; the three simulated
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data problems all have non-linear decision surfaces. The quality metric is plotted for the different

problems and sample sizes for the heuristic method and polynomial RFE in Figure II-7. In general,

the features of Heur2 represent more of the top weights. Also, in addition the quality of the RFE

method the efficiency of this method must be considered. RFE requires many iterations of learning

a SVM model to select the variables whereas, the heuristic method learns the SVM model once (full

timing results are available in Appendix A.III.1).

II.4.3 Motivating Example Problem

In the introduction, we briefly list the properties of the type of problems that this technique is

aimed at:

• the SVM model is sparse or nearly sparse in feature space, that is, the weight vector w has

relatively few components with large magnitude,

• there are high-order interactions without correlated low-order interactions that make it difficult

for current variable selection methods to identify relevant variables,

• and the problem is too large to allow a brute force calculation of w.

One particular problem where these properties are all true is the general parity problem. We have

run our identification top weights method on 4-parity problems with variable of 250 variables (over

1.6× 108 features) where we are able to identify the top feature. As the size of the 4-parity problem

grows much beyond this point, the top-weighted features does not have a significant magnitude

weight above the other features in order to fit the above criteria and be regularly found by our

technique (in the future work section we discuss using a L0 or L1-norm SVM in order to create

extremely sparse weight vectors that may be better suited to this and other tasks). This result

is none-the-less important because most other variable selection/feature selection methods fail to

detect this type of multivariate relationship (our method may be able to reveal new information for

a domain).
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Figure II-7: Quality Results - RFE constructed Features: The quality results assess whether the
variables returned by RFE can be used to construct the top-weighted features. The quality metric
presented is the norm of the weights of the features constructed using the variables returned by
RFE over the norm of the same number of the top-weighted features. The same number of features
are selected from top of the features list returned by Heur2 to use as comparison to the heuristic
approach. The subplots present the quality metric over increasing problem sizes for the Circle (a-c),
Double XOR (d-f), and Checkerboard (g-i) problems. The different color bars represent the quality
metric the features from the RFE variables and the heuristic method. The different groupings within
each plot show the quality metric for training data sets of increasing sample size.
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Table II-6: Characteristics of Real Data sets

Data Set Splice Site Lung Cancer Thrombin

Type Splice Site Gene Expression Drug

Identification Diagnosis Discovery

# of Vars 400 12,600 139,351

# of Samples 2000 160 2543

Design 10-fold c.v. 5-fold c.v. 1-fold c.v.

II.4.4 Real Data Sets

In addition to the simulated data analysis, the heuristic method was run on several diverse, real

world data sets. In these data sets, the true classification function is unknown and the problems

have high-dimensional data sets that do not allow the brute force approach to be run. Therefore,

the method is evaluated in several indirect aspects. First, the features returned by the method are

used to build a linear SVM model (that is, a linear model where the input variables are a subset

of the features). The classification performance of this model is compared to that of a SVM model

using all variables, and the variables selected by two methods: RFE and HITON (Aliferis et al.,

2003a, 2009a,b). The classification performance is used to gauge whether the selected features are

informative to the classification decision. Also, the constituent variables of the top features are

compared with the variables selected by RFE and HITON. Finally, the top features are detailed and

compared against other published information on the data sets.

The first real-world data is in the drug discovery domain; the classification of whether bio-

molecules are able (or not) to bind to thrombin (KDD Cup 2001, 2001). This data set illustrates the

ability of our technique to scale to a very large number of variables (over 100,000) and present new

information to the domain. The second task is diagnosis of lung cancer from oligonucleotide gene

expression array data, specifically determining squamous versus adenocarcinoma types of cancer

(Bhattacharjee et al., 2001). The final task is to identify splice sites from a genomic sequence (Saeys

et al., 2003). For this task, we spend additional time relating the returned features found to other

biological knowledge on this subject in the literature. The characteristics of the data sets are given in

Table II-6. The results and details on the evaluation are presented in each of the following sections.
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Table II-7: Classification Performance of Thrombin Data: The classification performance (measured
by AUC) for SVM models using all available variables and the selected variables returned by either
RFE or HITON is presented. The classification performance of the SVM model built using only the
top 100 features (involving 16 variables) is also presented for comparison.

Top 100

All RFE HITON Feats

Num. Vars 139,531 8709 32 16

AUC 0.925 0.919 0.926 0.928

RFE was run with a linear kernel eliminating half of the variables at each iteration. HITON was

implemented using either the G2 (discrete data) of Fisher’s z-test (continuous data) as the statistical

test used.

Thrombin Data

A first experiment was performed on a very high-dimensional real data set - the Thrombin data

set initially presented in KDD Cup 2001. The data set consists of 139,351 binary variables and a

binary target. The data was split to train, validation and test sets. The parameters of the SVM were

selected from the sets d = {1, 2, 3, 4} and C = 10i, i = {−8, ..., 3} by optimizing the classification

performance (measured as AUC) by training on train set and testing on the validation set. The

heuristic method was then run on a SVM model with the optimal parameters trained on the train

set to return the top 100 features. A new SVM classifier was trained on the train+validation set of

the top 100 features; the performance is reported on the test set. The performance of the classifier

was compared to a SVM model created using all variables and variable subset selected by two

common feature selection methods HITON and RFE. The results of each method is reported in

Table II-7.

The top features of heuristic method are listed in Table II-8. The variables in the top 100 features

are also presented with the information of whether each variable is also selected by either RFE or

HITON. Of the 16 variables in the top features 3 are also returned in variable set returned by RFE

(a set of over 8000 variables). Also, none of the variables in the top 100 features are also returned

by HITON (HITON selects 32 variables).
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Table II-8: Top Features of Thrombin Data: The top 100 features constructed from the Thrombin
data set. For each variable involved in the features listed whether this variables was also found by
the variable selection methods of RFE and HITON is also presented.

Vars. in Var. Var.

Rank Feature Top Features in RFE? in HITON?

1 X16592X16887 X6244 N N

2 X16592X17176 X6270 N N

3 X16887X17176 X6517 Y N

4 X16592X16597 X6523 N N

5 X16597X17176 X6526 N N

6 X16895X17176 X6737 N N

7 X16592X16895 X16558 N N

8 X16597X16887 X16592 N N

9 X16597X16895 X16597 N N

10 X16887X16895 X16837 N N

11 X16865X17176 X16847 N N

12 X16592X16865 X16865 N N

13 X16597X16865 X16887 N N

14 X16865X16895 X16895 N N

15 X16865X16887 X17176 Y N

16 X16592X17226 X17226 Y N

17 X17176X17226

18 X16895X17226

19 X16887X17226

20 X16597X17226
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Table II-9: Classification Performance of Lung Cancer Data: The classification performance (mea-
sured by AUC) for SVM models using all available variables and the selected variables returned by
either RFE or HITON is presented. The classification performance of the SVM model built using
only the top 1000 features (involving 18 variables) is also presented for comparison.

Top 1000

All RFE HITON Feats

Num. Vars 12,600 19 16 18

AUC 0.991 0.986 0.978 0.993

Lung Cancer

The lung cancer data set is used to classify gene expression samples between squamous and

adenocarcinoma types of cancer. The data was split following a nested 5-fold cross validation

design (Aliferis et al., 2003a) in order to estimate the performance of the model and optimize SVM

parameters from the sets d = {1, 2, 3, 4} and C = 10i, i = {−8, . . . , 3}.

The classification performance of the different methods on this data set are summarized in Table

II-9. The classification performance of the SVM model with all variables is similar to that of the

model built using only the top 1000 features (involving 18 variables). While the performance of the

models using the subsets of variables selected by RFE (19 variables) and HITON (16 variables) is

also similar but slightly lower.

The top features returned by the heuristic method are listed in Table II-10 as well as the variables

returned by RFE and HITON. The features involve several variables not considered by HITON (zero

variables intersect between the two sets) and RFE (two variables intersect between the two sets).

In addition, the features typically involve combinations of 2 or 3 variables. Addition biological

information about the selected variables is given in Appendix A.IV to allow further explorations by

biologists and researchers in this domain.

Splice Data

The classification task of the splice data is to identify splice sites from DNA sequences. In most

eukaryotic organisms, a gene is often not a continuous sequence of DNA; rather sections of DNA are

spliced in and out to form the protein sequence. The regions of DNA that are coded into protein
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Table II-10: Lung Cancer Data Top Features: The top 20 features returned by the heuristic method
are listed alongside the variables returned by the variable selection method RFE and HITON.

Rank Feature RFE HITON

1 X23X2515X12097 X1060 X288

2 X23X3157X12097 X8201 X2093

3 X23X4935X12097 X6814 X3119

4 X23X1907X12097 X7366 X3255

5 X23X11942X12097 X12150 X3676

6 X23X4934X12097 X8914 X4525

7 X23X205X12097 X1376 X4596

8 X2515X3157X12097 X8727 X6686

9 X23X11436X12097 X6536 X6905

10 X23X4983X11942 X8429 X8843

11 X23X3157X4983 X1679 X9071

12 X2
23X12097 X6908 X10139

13 X23X1906X12097 X11743 X10525

14 X23X205X4983 X4786 X10936

15 X23X9977X12097 X7756 X11300

16 X2515X4935X12097 X11355 X11359

17 X23X1905X12097 X10997

18 X23X2515X8021 X1668

19 X1907X2515X12097 X12414

20 X3157X4935X12097
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Table II-11: Classification Performance on Splice Data: The classification performance (measured
by AUC) for SVM models using all available variables and the selected variables returned by either
RFE or HITON is presented. The classification performance of the SVM model built using only the
top 1000 features (involving 11 variables) is also presented for comparison.

Top 1000

All RFE HITON Feats

Num. Vars 400 400 26 11

AUC 0.982 0.982 0.926 0.952

are referred to as exons and non-coding segments are referred to as introns. A splice site refers to

the border of the exon/intron or intron/exon transition. Typically, the intron is marked by two

consensus dinucleotides of GT at the 5’ end (the donor site) and AG at the 3’ end (the acceptor

site). We focus on identification of the acceptor site, although a similar analysis could be made for

the donor site. The prediction of many genetic markers and signals have been studied using many

supervised learning algorithms (see (Haussler, 1997) for reviews and references).

For this analysis, sequence data from Arabidopsis thaliana is used to construct the data set

as described in (Degroeve et al., 2002) and (Saeys et al., 2003). Each data sample consists of 50

nucleotides upstream and 50 nucleotides downstream of the consensus acceptor site. The nucleotides

are converted to 400 binary features. The training data set consists of 1000 positive and 1000 negative

instances. A testing set has 281 positive and 7643 negative instances.

Model parameters were selected via 10-fold cross validation from the sets degree = {1, 2, 3, 6, 9}

and c = {0.001, 0.05, 0.1} (choice of the parameter options was influenced by previously published

results). The best model parameters were selected via cross-validation by maximizing AUC and

found to be degree 6 kernel with c = 0.05. With the parameters of the model selected, a final

SVM model was created on the training data set to examine the top features and weights for each

problem. The heuristic method was run on this model asking for the top t=100000 and r=1000

features (out of a possible 5.99 × 1012). These features are used to map the data to a small subset

of feature space. A new model was trained on the mapped data and compared against the SVM

classifier on the original data. The classification performance was calculated for an SVM model

using all variables, the variables selected by RFE, HITON, and the top 1000 features determined by
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Figure II-8: Splice Site Identification: (a) The variables involved in the top 1000 features. (b) The
variables selected by HITON (an additional variable is not shown, G at 30 downstream). (c) The
top 25 variables reported in (Degroeve et al., 2002) using a method similar to RFE (five additional
variables not shown at 50 upstream (T) and 7, 10, 19, and 46 downstream (G)).

the heuristic method and shown in Table II-11. The top features returned by the heuristic method

are able to accurately classify the test data, therefore we shall more closely examine the features

returned by the method.

The constituent variables of the top features are visualized along with the variables selected by

HITON and the top 25 variables found in (Degroeve et al., 2002) using an method similar to RFE

in figure II-8. Several observations can be made from this figure. First, the variables selected by all

methods are generally close to the splice site. This suggests there is little interaction of variables

at a distance with the splice site machinery; several other papers using this same data set have
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made similar observations. In fact, (Degroeve et al., 2002) suggest only the variables less than 10

nucleotides upstream of the splice site and 3 nucleotides downstream of the site are important for

prediction.

Also, the top feature is the presence of the C nucleotide directly upstream of the splice site (a

list of a selection of the top features is in Figure II-9). The next largest-weighted features consists of

either pairs, triplets, and quartets of variables involving 1, 2, or 3 groupings of the upstream T’s and

the C or pairs, triplets, and quartets of the upstream T’s alone. These results are again consistent

with other published results. In (Lim & Burge, 2001), the authors show that the C nucleotide

directly upstream of the splice site is the most frequent at this position (over 60%). Additionally,

the many features involving combinations of the upstream T’s is corroborated. In A. thaliana (and

also humans), the presence of a small subset of pentamers applies a large contribution to splice site

recognition. The pentamers associated with A. thaliana are all heavily based on sequences of T’s,

e.g., TTTTT, TCTCT, TTCTT, TTTTA, etc. These short sequences are not dependent on relative

position to the splice site.

Another observation can be made on the features receiving positive or negative weights. A

negative weight suggest that this feature when active indicates that there is not a splice site present,

while an active positive weighted feature indicates there is a splice site present. The variable,

corresponding to a C in the position before the splice site, only occurs in positive features suggesting

this nucleotide in this position is particularly indicative of a splice site. In contrast, the variable,

corresponding to a G in the same position, only occurs in negative features therefore suggesting this

nucleotide is not indicative of a splice site.

II.4.5 Summary of Real Data Sets

The method of selecting the top features are compared to variable selection through the indirect

measure of classification performance. The features are used to create a linear SVM model, while

alternative SVM models are build using all variables, and the variables selected by RFE and HITON.

The number of variables returned by the variable selection method (and the number of variables
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Figure II-9: Splice Site Identification: The top 20 features are listed. Each feature (numbered down
the list) is a combination of the variables in the row. The numbers across the columns indicate the
position from the splice site.
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Figure II-10: Real Data Sets Results: Plots of the classification performance versus the number of
variables used in the model. The variables are selected via four methods: all variables included,
RFE, HITON, and top features selected.

involved in the top features) are plotted by the classification performance for each data set in Figure

II-10. This figure illustrates this new method to create effective models for classification involving a

few number of variables, while providing additional information about the top features (combinations

of variables) that may be important to a domain.

II.5 Discussion

In this Chapter, we present an efficient, heuristic method for identifying the largest weights of

a polynomial support vector machine model. This algorithm provides a new ability to understand

polynomial SVM models. Prior to this work in order to understand how an SVM model decides on a

classification either the entire feature weight vector, w, would need to be identified or some variable

selection method would be applied to identify a smaller subset of the “best” variables (where best

can be defined via several criteria). Explicating the entire weight vector is a prohibitively expensive

process, that becomes intractable for many problems that SVM models are aimed at. Whereas, a

particular variable selection method may not provide any new insight into the functionality of the

SVM model.

The experimental results presented here are over several different problems involving continuous

and discrete data. However, the scope of the experiments is still limited and several questions in

the application of this new method are not fully addressed in the work. First, the choice of the

kernel parameters is set for the simulated data sets so that the minimal degree kernel is selected to
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include all features important for classification. In the real world data sets, the kernel parameters are

selected by cross validation classification performance (a standard technique in many experimental

designs). However, it should be noted that as the degree of the kernel defines the features of the

SVM choosing a degree that is too low may result in not finding a feature that may be important in

classifying the data and a degree that is too high may results in redundant features identified and

an increased search space for the algorithm to parse.

Also, the heuristic method developed here is general purpose restricted only to the polynomial

kernel and does not consider the specifics of the data type or how it is encoded. We employ the

standard practices of typically normalizing continuous data to a mean of zero and standard deviation

of 1 and encoding binary data as 0/1. The choice of the input to train the SVM does not affect how

the heuristic method is run, however, it may impact the SVM model trained and consequently the

feature list returned. For instance, the effect of different binary encodings is described in Section

II.4.1. Future iterations of the heuristic method could be developed to tailor to a specific data type

or encoding, in order to remove redundancy in the search procedure.

In addition to the practical application of the procedure there are theoretical questions raised.

For instance, the heuristic method returns the top-weighted features however, when are the most

“relevant” features guaranteed to be the highest weighted? Are there distributions where the features

important for classification will not be found and is it possible to assess if a specific data set falls

into such a case? Questions such as these are outside the scope of this work, but are important for

the understanding and application of SVM models to specific domains.

II.5.1 Future Directions

We consider this research a first step in attempting to identify the top-weighted features of an

SVM model; there are many future directions of this work, several of which will be discussed here.

First, the SVM models used within this Chapter all use the standard L2 SVM models learned via

the widely-used LibSVM package. Please note that the L2 norm tends spread the weighting across
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the features. In the future, we plan to investigate the use of L1 or L0 SVMs which may provide

more sparsity in the weight vector allowing for easier searching by the heuristic method.

The search procedure itself can be extended and explored. Here, the search was guided by

groupings of features involving a variable v at a level l; however, collections of variables could be

considered. In section II.2.1, several general formulations are presented to consider sets of features

and the norm of the weight vector over those features. Additional subsets of features where the

grouping is by both variable v, degree of the feature l, and specific exponent p of variable v can be

constructed:

‖wv,p
l ‖2 =

(

d

l

) n
∑

j,k=1

αkαjHl(x
v,p
j ,xv,p

k )Hl(x
\v

j ,x
\v

k ). (II.46)

Another direction is to extend the process here of selecting the top weighted features with Markov-

blanket based variable selection algorithms. A new algorithm Feature Space Markov Blanket (FSMB)

attempts to combine these approaches (this algorithm will be discussed in Chapter III with only a

short introduction here). The main idea of FSMB is to identify the Markov Blanket of T in feature

space where multivariate associations become pairwise associations instead of in the original variable

space. FSMB employs an SVM to dictate which features may have pairwise association with T in

feature space. To avoid explicitly computing all features, FSMB uses the heuristic method described

here to identify the top features. A subset of the top-weighted features returned are selected and the

original data is mapped to the subset of feature space defined by the selected features. Finally, the

new feature space data set is passed to a Markov Blanket identification method (MMMB, HITON,

PCMV, etc.) to select the Markov Blanket in feature space.

This new approach has been run on several of the real data sets used in this Chapter and shown

to have ability to return features that have good classification performance. For instance on the lung

cancer data set, the classification AUC for the SVM with all variables, variables selected by RFE

and variables selected by HITON is 0.991, 0.986, and 0.978 respectively. FSMB returns 4 features

that provide a classification performance of 0.979. For the Thrombin data set, RFE selected over

8000 variables, HITON selected 32 variables, FSMB selects 5 features while providing the following

classification performances respectively 0.919, 0.926, 0.939.
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The FSMB method works well compared to many MB-based feature selection on two problems

in particular. The first example is the general parity problem where traditional MB-based variable

selection algorithms are often unable to detect the variables involved in the high-order interaction

relevant to the target. The second example is for problems with redundant mechanisms. In this type

of problem (see Figure II-3), variable A when “on” causes variable C to be “on”. When variable

A is not on this causes variable B to be on. Also, when variable B is on this causes variable C to

be on. The nature of this network is to assure the variable C is always on either by the variable A

or variable B. For this example, the SVM weights the feature involving A, B, and AB highly and

the FSMB algorithm will return AB. This problem is difficult for traditional MB-based variable

selection algorithms which will not be able to properly detect that A and B are parents of C and

therefore in the Markov Blanket. These examples and other problems will be more formally explored

in the next Chapter focusing on the FSMB method.

II.6 Conclusions

Support Vector Machines (SVMs) models have been widely used to classify data. However, the

reasoning behind the classification is complex, and previously unavailable to the user. This Chapter

examines a method to explicitly determine the decision function used to classify data for polynomial

SVMs. In particular, a heuristic method was designed to identify the highly weighted features of

this decision function. These features may give insight into how the SVM classifies data and provide

information on the features and variables relevant to the target class.
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CHAPTER III

MARKOV BLANKET-BASED VARIABLE SELECTION IN FEATURE SPACE

Variable selection (a.k.a. feature selection) for a target variable of interest, T , is an important

problem in prediction modeling that has drawn significant attention. A new variable selection algo-

rithm is presented. This algorithm, Feature Space Markov Blanket (FSMB), exhibits two attractive

properties under certain conditions: (i) it is able to select multivariately-predictive variables even

when these variables have a small or no pairwise association with T (e.g., they are associated with

T via a parity function), and (ii) it is able to identify a minimal variable subset required for optimal

prediction. FSMB combines ideas from kernel-based and Markov Blanket-based variable selection

methods to borrow the theoretical properties from each; to our knowledge, it is the first such filtering

algorithm. The advantages of FSMB are empirically shown over previous approaches in simulated

and real, large data sets and illustrate its potential for principled, efficient, and high-quality variable

selection. For some cases, FSMB is able to identify 2 or 3 features which can then be used to visu-

alize the discriminative power of the features. Additionally, data sets where Markov Blanket-based

methods perform poorly compared to FSMB suggest the existence of multivariate relationships in

the underlying data.

III.1 Introduction

Variable selection for predictive modeling (also called feature selection in the literature) has re-

ceived considerable attention during the last three decades both in statistics and in machine learning

(Guyon & Elisseeff, 2003). Intuitively, variable selection for prediction aims to select only a subset

(proper or not) of variables for constructing a diagnostic or predictive model for a given classification

or regression task. Reasons for performing variable selection include: (i) improving the prediction

power and addressing the curse-of-dimensionality, (ii) reducing the cost of observing, storing, and
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using the predicting variables, and finally (iii) gaining an understanding of the underlying modeling

task.

There are many ways to formally define the problem of variable selection giving preferences

to different variable subsets and predictive models. In this Chapter, the following formalism for

the problem of variable selection is defined. Let x be a random vector x = 〈x1, . . . , xm〉, let T

be a random variable such that T = {+1,−1}, where the random variables 〈x, T 〉 follows a joint

probability distribution P . Let D = {〈xk, Tk〉}nk=1 consist of n independent samples of 〈x, T 〉. We

further assume a given learner A is provided that can construct a predictive model MF for T using

the the sample D projected on a subset of all the variables F ⊆ x. Finally, a performance metric

E(MF,F) is given that scores the model and the selected variable subset F. The problem of variable

selection is to select the variable subset F that maximizes the performance E(MF,F).

In a learning setting where variable selection is not performed, the performance function only

depends on the prediction power of the model, e.g., the accuracy or expected loss. However, when

variable selection is desired, the performance may also depend on the number or cost of the variables

selected for inclusion in the model; hence the evaluation function accepts the second parameter F.

Typical performance functions prefer (scores highly) the smallest variable subset that can be used

to construct the model with the highest prediction accuracy. Other performance functions may try

to achieve a balance between prediction power and cost of observing the variables.

Markov Blanket-based and kernel-based methods illustrate two prominent paradigms in variable

selection. The former follows a principled approach to variable selection and is able to guarantee

some desirable theoretical properties such as optimality under certain broad conditions (e.g., data is

i.i.d., Markov condition, faithfulness condition, etc.). Two examples of the conditions being violated

are: (i) the optimal variable subset contains multivariate associations whose participant variables

have no detectable univariate associations with T and (ii) the target variable is caused by variables

from specific redundant mechanism distributions (see section III.3 for further details). The kernel-

based approach is able to capture the multivariate and redundant relationships in such situations

even in very high dimensional data sets. In this Chapter, we introduce a new variable selection
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algorithm that combines the advantages of both approaches in a non-trivial way, this new algorithm

we call Feature Space Markov Blanket (FSMB).

In the following sections, the Markov Blanket-Based variable selection approach is reviewed

(Section III.2). The prototypical problems for which the FSMB algorithm is designed are discussed

in Section III.3 (these problems are cases where Markov Blanket-based techniques fail). Section

III.4 reviews kernel-based variable selection from which the new method draws upon. A discussion

on general variable selection methods and their applicability to the prototypical problems is given

in Section III.5. Section III.6 presents the new FSMB algorithm. Finally, in section III.7 the

experimental evaluation and comparison of the algorithms are presented. We conclude in section

III.8 with final remarks on the method including its limitations and future directions.

III.2 Markov Blanket-Based Variable Selection

A principled approach in variable selection is based on identifying the Markov Blanket of the

prediction variable T . A Markov Blanket of T , denoted as MB(T ), is defined as a minimal set

conditioned on which all other variables in x become independent of T (the Markov Boundary in

the terminology of Pearl (1988)):

P (T |x) = P (T |MB(T )). (III.1)

Thus, all information for predicting T is contained within the MB(T ) and therefore, intuitively it

seems that these should be the only variables required for optimal prediction. The latter statement is

not true in general however, as the learner and the performance metric used are important. For the

MB(T ) to be the solution to the variable selection problem as it was defined above, two conditions

are sufficient (Tsamardinos & Aliferis, 2003):

1. The algorithm A constructing the prediction model can learn the distribution P (T |MB(T )).

For example, if the MB(T ) predicts T via a highly non-linear function but the learner employed

is linear, then for this specific learner it may be preferable to select a different set of variables.
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2. The performance metric is such that perfect estimation of the probability distribution of T is

required with the smallest number of variables.

Consider for example the following distribution where T and x1 are both binary: P (T =

1|x1 = 1) = 0.6 and P (T = 1|x1 = −1) = 0.7 and assume the marginal P (T = 1) = 0.65.

MB(T ) = {x1} and knowledge of the value of x1 is necessary for optimal density estimation or

calibrated accuracy. However, if the goal is to maximize accuracy (i.e., percentage of correct

classifications) then x1 is not necessary in the model: whether we know its value or not, T

is always classified as T = 1. In this case, the MB(T ) will be a superset of the minimal

subset required for optimal performance. In addition, a preference for selecting the smallest

possible number of variables is important. If for example, it is not the minimum-size but the

minimum-cost maximally-predictive variable subset that is sought, then the MB(T ) maybe a

poor approximation.

Frequently in variable selection applications the above conditions hold or hold approximately.

In these cases, it makes theoretical sense to identify the MB(T ) as a first approximation of the

variable subset to select. Many time- and sample-efficient MB-identifying algorithms appear in the

literature, including HITON (Aliferis et al., 2003a, 2009a,b), MMMB (Tsamardinos et al., 2003c),

IAMB (Tsamardinos et al., 2003a), PCMB (Peña et al., 2007), GS (Margaritis & Thrun, 1999),

Koller-Sahami (Koller & Sahami, 1996), among others. Most, if not all of these algorithms are

based on the theory of Bayesian Networks (Pearl, 1988). We assume the reader is familiar with the

Bayesian Network formalism and theory, although a few important concepts are re-iterated here.

Definition III.1. Let P be a discrete joint probability distribution of the random variables1 in some

set V = x ∪ T and G = 〈V, E〉 be a Directed Acyclic Graph (DAG). We call 〈G, P 〉 a (discrete)

Bayesian network if 〈G, P 〉 satisfies the Markov Condition: every variable is independent of any

subset of its non-descendant variables conditioned on its parents (Pearl, 1988; Spirtes et al., 1993;

Glymour & Cooper, 1999; Pearl, 2000; Spirtes et al., 2000; Neapolitan, 2003).

1Variables are also interchangeably called nodes or vertices in the context of a Bayesian network.
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The graph of a network in conjunction with the Markov Condition directly encode some of the

independencies of the probability distribution and entail others (see Neapolitan, 2003, pp. 70 for a

definition of entailment). The faithfulness condition below, asserts that the conditional independen-

cies observed in the distribution of a network are not accidental properties of the distribution, but

instead due to the structure of the network.

Definition III.2. If all and only the conditional independencies true in the distribution P are

entailed by the Markov condition applied to G, we will say that P and G are faithful to each other

(Spirtes et al., 1993, 2000; Neapolitan, 2003). Furthermore, a distribution P is faithful if there

exists a graph, G, to which it is faithful.

Definition III.3. A Bayesian network 〈G, P 〉 satisfies the faithfulness condition if P embodies only

independencies that can be represented in the DAG G (Spirtes et al., 1993). We will call such a

Bayesian network a faithful network.

The following theorem is utilized in most constraint-based algorithms such as the ones presented

here:

Theorem III.1. In a faithful BN 〈G, P 〉 on variables V there is an edge between the pair of nodes

x1 and x2 in V iff DepP (x1;x2|xk), for all xk ⊆ V (Spirtes et al., 1993).

Faithfulness is important for MB(T ) identification. Consider this reinterpretation of the theorem:

a BN is faithful if a dependency (association) exists between any pair of nodes connected by an

edge, conditioned on any other subset of variables (Spirtes et al., 2000). Thus, all direct (to T )

multivariate associations can be discovered incrementally, since if an edge xi → T exists, (i.e., xi

participates in a multivariate dependency) there should be a pairwise (conditional or not) association

too. In addition, in a faithful Bayesian Network, the MB(T ) (i) is unique and (ii) has a graphical

interpretation: it is the set of parents, children, and spouses of (i.e., nodes with common children

with) T (Neapolitan, 2003). An example graph of a Bayesian Network is shown in Fig. III-1(a)

whose MB(T ) is {x1, x2, x3, x4}.
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Figure III-1: Example Bayesian Networks: (a) The parents, children, and spouses (nodes with
common children) of T are the MB(T ) = {x1, x2, x3, x4}; these are the only nodes required for
perfect estimation of the distribution of T . (b) A small 3 variable network example illustrating a
redundant mechanism for activating variable T .

For the rest of this Chapter, the MB-based variable selection method used is HITON; a successful

MB algorithm that is efficient and selects a highly predictive variable subset as shown empirically

on a variety of problems (Aliferis et al., 2003a, 2009a,b). HITON first identifies the MB(T ) to

significantly reduce the number of variables to consider for inclusion in the output subset. It then

performs a backward search for eliminating variables from the MB(T ) that do not affect the predic-

tive performance (e.g., as this is measured by accuracy or the Area Under the Receiving operating

characteristic curve of a Support Vector Machine trained on the sample projected on the specific

variable subset).

Apart from time-efficiency and quality of output, one of HITON’s attractive properties is its

theoretical guarantees: if the data distribution is faithful, then it will provably, in the sample limit,

identify the MB(T ).2 Thus, if both conditions mentioned at the start of this section also hold,

HITON will optimally solve the variable selection problem.

III.3 Problems of Interest

In this work, we focus on problems where Markov Blanket-based variable selection methods fail.

Two prototypical examples that illustrate this property will be discussed throughout the chapter,

2Actually, some false positives may enter; see Tsamardinos et al. (2006b) for an analysis of this case; these will be
removed by the backward search in the next phase.
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from both theoretical basis and also experimentally to verify the new algorithm’s ability on such

problems.

HITON and all other MB-based algorithms mentioned may not identify variables as belonging

in the MB(T ) when the data distribution is not faithful. Consider again for example the network

in Fig. III-1(a). Let us assume that all variables are binary taking values {−1, 1} and that T is the

XOR of variables x1, x2, i.e., T = 1 when x1 and x2 take different values, and T = −1 otherwise

(the generalization of this example is a parity function). In addition, let us suppose the x1 and

x2 are independent of each other (conditioned on the empty set) and their marginal probability of

taking the value of 1 is 0.5. In this extreme case, there is no pairwise association between either of

these two variables and T . Only when both of them are examined together, a strong multivariate

association with T emerges. Thus, this is a non-faithful distribution.

HITON and the other MB-algorithms mentioned depend on a parent or a child variable of T

having a detectable pairwise association with T . Thus, in the XOR example above, HITON will fail

to identify any of the four variables {x1, x2, x3, x4} as belonging in the MB(T ). In practice, when

the sample is finite HITON may also miss variables that have a small pairwise association with

T , even when they have a strong multivariate association. This problem is a specialization of the

general problem of parity functions.

Another example of MB-based algorithms failing to identify the MB(T ) when the data not

faithful is illustrated in the redundant mechanism example of Figure III-1(b) (Scheines, 2009). In

this type of problem, variables x1 when “on” causes variable T to be “on”. When variables x1 is not

on this causes variable x2 to be on. Also, when variable x2 is on this causes variable T to be on. The

nature of this network is to assure the variable T is always on either by variable x1 or variable x2 .

In this example, the probability distribution may be set such that there is no detectable association

between x1 and T consequently, HITON will miss identifying variable x1 as belonging in the MB(T )

for those distributions.
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III.4 Kernel-Based Variable Selection

The invention of kernel-based methods was a breakthrough step towards addressing the problem

of detecting multivariate associations of a group of variables that exhibit no univariate association

with T . These methods involve mapping the data from variable space to a constructed feature

space possibly containing interaction terms, where the multivariate associations become pairwise

associations between the features and T . By performing the mapping implicitly, the constructed

features do not have to be computed.

In recent years, many researchers have worked on the problem of variable selection with SVMs3.

There are methods that rank the variables by scaling factors, where scaling factors are added into the

kernel and are optimized in the training of the model (Weston et al., 2000). The Recursive Feature

Elimination method (RFE) ranks each variable by removing each variable from consideration in

turn to construct a score, removes the lowest ranked variables, and iterates through this process

(Guyon et al., 2002b). Recently, methods for constructing SVMs with sparse weight vectors have

been developed (cf. l0− and l1 AROM (Weston et al., 2003) and the methods of (Rakotomamonjy,

2003)). For the most part, these methods have been developed for linear SVMs. In (Weston et al.,

2003), the authors also describe minimizing the zero-norm with non-linear kernels. We will consider

RFE as an examplar from this set of techniques due to its prominent use across many domains as a

variable selection method.

Before delving into the details of kernel-based variable selection methods, some background and

notation on Support Vector Machines is presented (Vapnik, 1998). In this Chapter, we focus on a

soft-margin 1-norm Support Vector Machine with full polynomial kernel of degree d for a binary

classification problem (Schölkopf et al., 1999).4 We will work with the canonical polynomial mapping

Φ : R
m → R

f of degree d that satisfies for x,x′ ∈ R
m, K(x,x′) = Φ(x) ·Φ(x′) = (x ·x′ + 1)d. A

component of the vector x ∈ R
m is called a variable (denoted as xi) and a component of a feature

vector Φ(x) ∈ R
f is a feature, denoted as Φi(x). For this mapping, each component consists of a

multivariate monomial of at most degree d there are f =
(

m+d
d

)

such components (features). The

3Often called feature selection in the literature, but here we distinguish between variable selection (selecting a
subset of the input variables) and feature selection (selecting a subset of the features).

4The polynomial kernel is the only kernel discussed here because it is needed for the FSMB method.
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SVM model determines a linear function in feature space (via the mapping Φ) of the following form,

h(x) = w ·Φ(x) + b. (III.2)

A sample vector x is classified by the decision function g(x) = sgn (h(x)). The weight vector w is

given by the equation,

w =
n
∑

k=1

aktkΦ(xk) =
s
∑

k,ak 6=0

aktkΦ(xk), (III.3)

where the second summation is over the support vectors that is, the data samples with ak 6= 0 (we

let s denote the number of support vectors). In the equations, the a’s are the minimizers for the

optimization problem,

min
a

1

2

n
∑

k=1,l=1

akaltktlK(xk,xl)−
n
∑

k=1

ak (III.4)

s.t.

n
∑

k=1

tkak = 0, C ≥ ak ≥ 0, k = 1, . . . , n

and the ai’s are called the Lagrange multipliers.

The weight vector w defines a decision hyperplane in feature space that balances the margin of

separation between the two classes (equal to 2/‖w‖2) and the 1-norm of the distances ξk of the data

falling on the wrong side of the margin of separation. The classification function g can be written

as:

g(x) = (

n
∑

k=1

aktkK(xk,x) + b) . (III.5)

By using the kernel function, K, and the dual formulation of the optimization problem, the explicit

mapping to feature space, Φ is never computed. As a result of the “kernel trick”, a linear decision

surface is constructed in an extremely high dimensional feature space without explicitly mapping to

the feature space. Consequently, the SVM model consists of the Lagrange multipliers and support

vectors rather than the features and weights of the decision surface. The weight vector w is never

explicitly constructed.
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Letting x0 = 1, the polynomial kernel can be written in the form,

K(x,x′) =

(

m
∑

i=1

xix
′
i + 1

)d

=

(

m
∑

i=0

xix
′
i

)d

. (III.6)

One choice of Φ corresponding to this kernel maps the input variables to a set of features consisting

of all products of the variables up to degree d. Consider the space Qm,d to index the features;

let Qm,d = {q = 〈q1, ..., qm〉 | qi ∈ {0, ..., d} for i = 1, ...,m and
∑m

i=1 qi ≤ d} then, Φ(x) =

(Φq(x))
q∈Qm,d

where

Φq(x) = cqx
q =

√

(

d

q

) m
∏

v=1

xqv
v . (III.7)

We use the multinomial notation xq = xq0

0 · · ·xqm
m and

(

d
q

)

= d!
q0!···qm! for q ∈ Qm,d. The q-th feature

is Φq(x) = cqx
q with cq =

√

(

d
q

)

or equivalently Eq. III.7. Then, for the polynomial kernel K and

this choice of Φ, the following holds:

K(x,x′) =

(

m
∑

i=0

xix
′
i

)d

(III.8)

=
∑

q

d!

q0! · · · qm!
(x0x

′
0)

q0 · · · (xmx′
m)qm (III.9)

=
∑

q

(

d

q

)

xqx′q (III.10)

=
∑

q

Φ(xq) ·Φ(x′q). (III.11)

Consider an example: a data set consisting of 2 variables and a polynomial kernel with a degree
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of 2 results in 6 features. A vector in the data space, x = 〈x1, x2〉 maps to the following features

Φ(x) =
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(III.12)

In our prototypical variable selection algorithm RFE, an SVM is trained on the data and then

the “importance” of each variable for classification is scored (Guyon et al., 2002b). The half of the

variables corresponding to the smallest scores are eliminated (the number or percentage of variables

eliminated vary in different implementations of this method). The process is repeated recursively

with the remaining variables. Of the log2 |x| SVMs models and corresponding variable sets produced

this way, the one with the maximum prediction performance (e.g., accuracy) is selected.

In RFE the score of each variable xi corresponds to the difference of the value of the objective

function in (III.4) when all variables are included with the value of the objective function with xi is

removed from the data. Roughly, this is indicative of the difference between the separation margins

between the classes with and without the inclusion of xi. To allow for efficient computation of this

difference, RFE assumes that the Lagrange multipliers ai’s do not change when removing a variable

xi and resolving the optimization problem. Under this assumption, the score of each variable xi can

be calculated as:

si =
1

2

n
∑

k=1,l=1

akaltktl(K(xk,xl)−K(x
\i

k ,x
\i

l )) (III.13)

where x
\i

k denotes vector xk with the i component removed. In fact, it can be shown that

si =
∑

q,qi>0

w2
q (III.14)
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and for the polynomial kernel si is the sum of the squares of the weights wq of all constructed features

Φq where variable xi appears in the product
∏m

v=1 xqv
v with a non-zero degree qi > 0.

Let us now recall the example of Fig. III-1(a), considering that T is XOR of x1 and x2. The SVM

will implicitly construct the feature Φq = cqx1x2 with q = 〈1, 1〉 that corresponds to the product of

the variables. Notice that, since the variables take values in {−1, 1}, the product x1x2 = −T . Thus,

the feature Φq = cqx1x2 is adequate to perfectly classify T and will be given a high weight wq. This

weight wq will be included and increase the scores si’s of both variables x1 and x2. Hopefully then,

they will be highly ranked and returned by RFE.

Thus, depending on the kernel used, RFE is in principle able to identify parity functions (as

shown in preliminary experiments of Guyon et al., 2002b) and, in general, multivariate associations

of variables with small or no pairwise association with T . Moreover, it performs this task efficiently

(quadratically to the number of training examples n and linearly to the number of variables m) and

without explicitly constructing all possible interaction terms, i.e., products of the original variables.

In contrast, explicitly searching for a parity function of exactly d variables among m variables, would

require checking all
(

m
d

)

such terms.

Unfortunately, it has been shown theoretically that an SVM will not only assign non-zero weights

to variables necessary for optimal classification, but it may also assign a non-zero weights to super-

fluous variables (Hardin et al., 2004). In the terminology of Kohavi & John (1997), these are the

weakly-relevant variables: informative for prediction, but superfluous to optimality. This helps ex-

plain why algorithms such as RFE, based on SVMs, tend to output numerous false positives, as

shown in our experimental section.

A pictorial example is shown in Fig. III-2. In this example, there are two variables x1 and x2

while the class T of each sample is denoted with circles or squares. Variable x2 is superfluous to

perfect classification (weakly-relevant) but will still be given a weight arbitrarily close to that of x1.

In other words and in this example, the SVM cannot separate between strongly-relevant (absolutely

necessary) variables and superfluous variables. Notice that, the SVM will still output the same result

independently of whether there are exactly three training examples (samples) provided or millions
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Figure III-2: An example where the weakly relevant variable x2 receives a non-zero weight by the
maximum margin classifier (dashed diagonal lines). The gap corresponding to the classifier that
assigns a zero weight to x2 (dashed vertical lines) can have an arbitrarily smaller gap.

of samples that all fall onto the depicted points of the graph. Approaches that use statistical tests

however, such as HITON, would have been able to determine that with high statistical confidence,

x2 is superfluous, i.e., x2 is independent of T given x1 with sufficient sample and x2 is removed from

consideration.

This is not a contrived example but often occurs in practice. This pattern is observed in extensive

experiments of Statnikov et al. (2006), the experimental results of presented here, and the following

illustrative problem (Fig. III-3). Given a network consisting of 10 tiled copies of the ALARM network

(from Tsamardinos et al., 2006b), a target variable was selected randomly (shown as unfilled circle)

and RFE was run with a polynomial kernel of degree 2. The variables selected by RFE have 4 true

positives (shown as filled circles in the figure), 7 false positives (shown as triangles in the figure),

and 1 false negative (shown as a square) which are scattered all over the network. HITON typically

perfectly identifies the MB(T ) for the variables of this network. Unlike the Markov Blanket-based

methods, RFE and similar kernel-based algorithms provide no theoretical guarantees regarding their

output.
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Figure III-3: An example network of 10 tiled copies of Alarm; a data set of 2500 instances was
sampled from the distribution of the network. RFE was run (with a polynomial kernel of degree
2) on a target node selected randomly (unfilled circle) and returned 7 false positive (triangles) and
1 false negative (square), scattered all over the network. HITON typically perfectly identifies the
MB(T ) on this network.
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III.5 Related Work

Variable selection (also called feature selection in the literature) has received considerable atten-

tion during the last three decades both in statistics and in machine learning (Guyon & Elisseeff,

2003). Variable selection methods are typically divided into three classes: filters, wrappers, and

embedded methods (Guyon & Elisseeff, 2003; Kohavi & John, 1997). In filter methods, variable

selection can be viewed as a pre-processing step, that is independent of the learner A to produce a

model. In the wrapper approach, the learner is included in the variable selection method; a search

through the space of subset is executed with an objective function to guide the search is evaluated

on the subsets of variables considered. Embedded methods incorporate the variable selection process

directly in the learning method.

Filter Methods

Filter methods are thought of as a pre-processing step, that screens (or filters) extraneous vari-

ables. Two main classes of filter methods exist: variable ranking and Markov Blanket-based ap-

proaches. In variable ranking techniques, each variable is given some score (assume a high score

indicates that the variable is useful for the learning task). Then, the scores can be ranked and a

threshold used to select the top variables. Where the threshold can be selected by the user, have

statistical (a standard 5% cutoff), be a hard count (select the top m variables), or other meaning.

Variable ranking methods can be separated as univariate or multivariate methods. A standard

univariate approach is to calculate the pairwise association (or correlation) of each variable with the

target value. Many different univariate measure may be employed depending on the data type and

learning task. These methods include: signal-to-noise ratio, Fisher’s criterion (Furey et al., 2000),

the T-test criterion (Tusher et al., 2001; Hastie et al., 2001), odds ratio (Mladenic & Grobelnik,

1999), and other information theoretic measures. The univariate methods will not perform well on

the class of prototypical problems discussed in this paper, because the variables relationship to the

target are in multivariate relationships with no (or little) univariate association.

Multivariate variable ranking methods use criterion that involve subsets of variables in the scoring

function. A historical multivariate variable ranking method is the Relief algorithm (Kira & Rendell,
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1992) and its many extensions (Kononenko, 1994; Florez-Lopez, 2002; Robnik-Sikonja & Kononenko,

2003; Guyon et al., 2003; Gilad-Bachrachy et al., 2004). In general, this method calculates a weight

for each variable based on a randomized nearest neighbor algorithm (randomized in the sense that a

random data instance is selected and used to update the weight vector using the nearest hit, closet

sample from the same class, and nearest miss, closest sample from the opposite class). The Relief

family of algorithms has been applied to the parity problem. However, its application is most often

tested on small toy examples to prove its applicability (e.g., 5Parity + 5, a problem of 10 variables

with 5 involved in a parity function; or a 3-parity example on 10 variables). Another historical

variable ranking approach is the FOCUS algorithm, which recovers the minimum and sufficient

subset of variables that is necessary to determine the labels for all training data (Allmuallim &

Dietterich, 1994). This algorithm is highly sensitive to noise (a single misclassification can cause

bogus results, Koller & Sahami, 1996). Other filtering methods are based on correlation measures

(Hall, 2000; Yu & Liu, 2003); however, these methods may not work well on the prototypical problems

of this Chapter because a single variable might not exhibit correlation with the target. The method

of Zhao & Liu (2007) is designed to identify interacting variables (however, is not tested on synthetic

examples to illustrate its properties beyond the Monks and Corral problems John et al., 1994). The

second class of filter methods is based on identifying the Markov Blanket (which is discussed in

detail in Section III.2.

Wrapper Methods

In the wrapper methodology, a search through the space of subsets of variables is performed where

the search is guided by an objective function applied to the output of a learner. Wrapper methods

are classed according to their search methodology. For any non-trivial size problem, all subsets

of variables can not be search therefore greedy heuristic strategies are employed namely: forward

selection, backward selection, and general stepwise selection. Enumerable wrapper algorithms may

be developed by selection of different search strategies, performance measures, and learners. The

RFE algorithm discussed in detail in Section III.4 is an example of a wrapper method. Other methods
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employing SVMs are the learner uses a variant of sensitivity analysis with the leave-one-out-error

as the objective function to rank and eliminate variables (Rakotomamonjy, 2003).

Embedded Methods

Embedded methods incorporate the variable selection process directly into the learning proce-

dure. Examples of such methods include: shrinkage regression methods, decision trees, and specific

kernel method formulations. Shrinkage regression methods include ridge regression techniques (Ho-

erl & Kennard, 1970; Hastie et al., 2001), methods combining shrinkage with variable selection (e.g.,

nonnegative garrote) (Breiman, 1995), least absolute shrinkage and selection operator (lasso) (Tib-

shirani, 1996; Efron et al., 2004; Zou & Hastie, 2005), bridge regression (Frank & Friedman, 1993;

Fu, 1998), sure independence screening (Fan & Lv, 2008), and elastic nets (Zou & Hastie, 2005).

In decision trees, the “best” variables is chosen for the next node in the tree (information gain is

often the criterion used to select the best variables). With pruning only a small subset of the pos-

sible variables may be included in the tree structure, consequently an implicit variable selection is

performed. The classical criterion for selecting variables would have difficulties on the prototypical

problems of this Chapter due to the multivariate associations (Tuv et al., 2009).

Recently, several researcher have looked at alternative formulations of SVMs to implicitly perform

variable selection. Often the l0 or l1 norm is employed (these norms concentrate weights on several

sparse variables) (Bi et al., 2003), or an approximation is formed by repeated application and scaling

of the weights with a l2 formulation (Weston et al., 2003).

III.6 Feature Space Markov Blanket Algorithm

The Feature Space Markov Blanket (FSMB) algorithm is the first attempt to construct an al-

gorithm combining the theoretical properties of the two approaches. The main idea of FSMB is to

identify the Markov Blanket of T from feature space instead of in the original variable space, where

multivariate associations become pairwise associations. FSMB employs a SVM to identify which

features may have large pairwise association with T in feature space, so as to avoid considering all

features.
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Figure III-4: The BN of feature space with the Fig. III-1(a) variables using a degree 2 polynomial
kernel. T is the noisy XOR of x1 and x2, and x3 is the noisy XOR of T and x4. The two necessary
features for perfect estimation of T , x1x2 and x3x4, appear as the parents of T and have a large
pairwise association with T .

Example III.1. Consider again the network in Fig. III-1(a), let us assume that T is the noisy XOR

of x1 and x2 (i.e., T = 1 with probability 0.7 when x1 and x2 are different, and T = 1 with probability

0.3 otherwise). The same functional relation holds for x3 and the pair T and x4. Also assume the

prior of x1, x2 and x4 is 0.5. No pair of variables has a non-zero association. The pairs x1, x2 and

x3, x4 have a multivariate association with T . All variables are required for perfect estimation of

the distribution of T . Figure III-4 shows the BN in feature space of the original variables when a

polynomial kernel of degree 2 is used, consisting of all products of the original variables of degree

up to 2. The network was reconstructed using the MMHC algorithm (Tsamardinos et al., 2006b).

A Markov Blanket of T in feature space, denoted as MBΦ(T ) has as expected the features x1x2 and

x3x4 containing all the variables of the original MB(T ). �

The network in feature space is certainly not faithful because of the deterministic construction

of the features: notice that feature x1x2 is independent of T given features x1 and x2 even though

there is a direct edge between T and x1x2. Thus, we do not expect the MBΦ(T ) to necessarily

be unique. Even though the distribution is still not faithful, HITON should be able to discover a
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MBΦ(T ) since the features containing the original MB(T ) variables now have detectable pairwise

associations with T .

In general, there is an exponential number of features to the number of variables. For FSMB to

be scalable it should avoid explicitly computing all features. To this end, FSMB first trains an SVM

model on the data that implicitly learns a weight vector w. A key assumption is that a low absolute

weight |wq| implies low association of the corresponding feature Φq with the target. FSMB uses a

heuristic method to compute the top k weights |wq| and subsequently, the corresponding features Φq

are calculated by (III.7) and passed to HITON. The algorithm is shown in Algorithm 4.

Algorithm 4

1: procedure FSMB(D = {〈xi, ti〉}ni=1)
// Train an SVM on the data and obtain the Lagrange multipliers a and Support Vectors SV.

2: {a,SV} = TrainSVM(D)
// Identify the largest magnitude weights, |wq|, and corresponding features, q.

3: {〈wq,q〉} = IdentifyTopWeights(SV,a, p, r)
// Project the data onto the features identified see Eq. (III.7).

4: For each q and xi, Φq(xi) = cq
∏n

v=1 x
qv

i,v

// Run HITON on the constructed features and obtain the MBF (T )
5: MBF (T ) = HITON({〈Φq(xi), ti〉}mi=1)
6: MB(T ) = All variables participating in some feature of MBF (T )

return 〈MB(T ),MBF (T )〉
7: end procedure

Identify Top Weights Method. The heuristic method IdentifyTopWeights is a new polynomial

algorithm that aims to identify the largest (in magnitude) weights of an SVM model (details and

experimental results showing the ability of this algorithm to identify the top weights are presented in

Chapter II, the main approach of the algorithm is summarized here). Without the heuristic, a brute

force approach of constructing and sorting the entire weight vector is possible for small problems,

but quickly grows intractable as the degree and/or number of variables increase. Also, notice that

directly optimizing the quantity |wq| = |
∑n

k=1 aktkcq

∏m

v=1 xqv

k,v| seems to be a hard problem since

the vector elements qv are integers and the tk can be negative, so the quantity is not a posynomial.

Therefore, the heuristic approach avoids the expensive explicit construction of the weight vector

by conducting a search for the top weights of the SVM model, guided by the norm of the weights

summed over various subsets of features.

Recall, the quantity si of (III.13) corresponding to the sum of the squared weights of all features

78



containing variable xi. Alternatively, the norm of the weight vector, can be partitioned into values

si,j corresponding to the sum of the squared weights of all features that contain variable xi and are

of degree j,

sj,i =

(

d

j

) n
∑

k,l=1

akaltktl

(

Hj(xk,xl)−Hj(x
\i

k ,x
\i

l )
)

, (III.15)

where Hj(xk,xl) = (xk · xl)
j is the homogeneous polynomial kernel of degree j. If a variable i

participates in only one feature at degree level j with a non-zero weight wq then si,j = |wq|. When

a variable i participates in more than one feature at level j then si,j > |wq|. In either case, the

quantity si,j is an upper bound on the largest (in magnitude) weight for any feature involving

variable i at level j. The search for the top weights uses these quantities as a guide to selectively

calculate the weights of suspected top features.

The method IdentifyTopWeights takes as inputs the support vectors of the SVM model SV,

the alpha values α = at, p - the number of features to construct, and r - the number of features

to return. The method begins with the construction of the d × m contributions matrix, B where

Bj,i = sj,i for j = 1, . . . , d and i = 1, . . . ,m. After the calculation of the initial contributions matrix,

B, the heuristic search loops through the following 3 sub-procedures: (1) select the next level and

variable(s) to focus construction, (2) explicitly construct the features and calculate their weights for

the selected variables and level, and (3) update the bounds of the contribution matrix. Once the

search procedure constructs p features, the features are sorted by their absolute weight and the top

r features are returned.

The first sub-procedure selects the next level and variables to focus construction. The method

normalizes the contributions matrix by the number of features in the sum of each cell of the matrix.

After normalization the selection function returns the level with the maximum normalized value, l,

and a sorted variable list for that level v.

The next sub-procedure explicitly constructs the features and weights selected in the previous

step. The construction of new features always includes all combinations with any variables already

used to construct features at the level under consideration. Initially, there are no such variables.

As the algorithm proceeds, the features to be constructed consist of all combination of variables
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already selected at the level l and the next highest ranked variable in v that has not previously been

selected. Once the new feature(s) are determined, then the weights are calculated.

The final sub-procedure of the loop involves updating the bounds on the top weight, that is

updating the contributions matrix. For example, if the feature x1x
2
3 was constructed then its feature

index q = 〈102〉 and weight wq is calculated and the contributions matrix is updated: Bj,i =

Bj,i−w2
〈102〉 where j = 3, the degree of the feature, and i = 1 textand 3, the variables in the feature.

The search loop continues until p features and weights have been computed. This list is sorted

by the magnitude of the weights. The top r weights and corresponding feature index vectors are

returned. Overall, the calculations of the top p weights via the heuristic method is O(dms2 + sdp),

with s support vectors, m variables, d degree of the kernel, and p features to construct.

III.7 Experimental Evaluation

The new method, FSMB, was evaluated against other variable selection methods: the two main

approaches that influenced its design, HITON and RFE, and the Relief method, which is capable

of selecting variables in the difficult distributions discussed. All four methods were implemented in

Matlab. The implementation of HITON follows that used in Aliferis et al. (2003a, 2009a,b) (HITON-

MB and HITON-PC are available in the Causal Explorer library, Aliferis et al., 2003b; Statnikov

et al., 2009). The RFE implementation was also used in Aliferis et al. (2003a, 2009a,b). Relief was

implemented (from the CLOP toolkit, Guyon et al., 2009) with a backwards wrapper. The SVMs

were trained using LibSVM software (Chang & Lin, 2001).

Parameter selection for the given algorithms followed generally accepted choices. The statistical

test for independence used in both HITON and FSMB was G2 test of Fisher’s z test using a 5%

threshold and maximum conditioning set of 3. RFE was run reducing the variables considered by

a half each iteration and selecting the subset with the maximum performance score on a test set

(AUC measured performance on a test split of 20% of the data). 5. Relief was run with k = 5

neighbors (k = 1 neighbors was also run on limited problems, but found to have worse results and

5Alternative parameterizations of RFE were considered, i.e., reducing the variables by 20% each iteration, removing
one variable iteration; however, this parameters selected in general had the best and most efficient results
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was discontinued). FSMB was run searching for the top 20,000 features (p=20,000) then the top

10, 25, 50, or 1000 features were returned and used to construct feature data. The reported results

are for the case of 50 features (there is often no difference between considering the top 10, 25, or 50

features, upwards of that some additional features may not always be removed as begin related to

the target). The methods are first compared on simulated data sets where the true Markov Blanket

is known and different difficult distributions can be explored. Finally, the methods were evaluated

on several large, real world data sets.

III.7.1 Simulated Data

The four methods were evaluated on several simulated data sets. For each problem, FSMB and

RFE use SVM models; a polynomial kernel was used and its parameters selected with a high cost

C-value and the degree set to match the problem (that is, for the double noisy-xor problem a degree

2 kernel was selected, the redundant mechanism example a degree 2 kernel was used, and the noisy

3-parity problem a degree 3 kernel was used).

The metrics used to compare the methods are the sensitivity and specificity in identifying the true

Markov Blanket. An additional metric, the distance from the true Markov Blanket, was calculated

that combines the sensitivity and specificity as d =
√

(1− sensitivity)2 + (1− specificity)2. When

the algorithms identify the Markov Blanket and only the Markov Blanket, then the sensitivity and

specificity should be 1.000 and the distance measure should be 0.000. For each problem, the methods

were run for 10 data samplings and the mean and standard deviation of the metrics are presented

for each method.

Double Noisy-XOR:

The first example is the 5-variable network described in Example 1 and Figure III-1(a). Recall

in this example, there are two noisy XOR relationships with the probability distribution set to be

such that there is no detectable pairwise association with the target. The true Markov Blanket of

the target, T , is all other variables: MB(T ) = {x1, x2, x3, x4}. The total number of features in the

problem is 15 therefore, FSMB converts the data for all features before running HITON.
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The results on this prototype problem are summarized here with a detailed table of the results

in Appendix B.I. For this problem the specificity is always undefined since every variable is included

in the Markov Blanket. Therefore, values of 1.00 were entered for each method. HITON rarely

identified any of the variables in the Markov Blanket (sensitivity values of 0.05 and 0.125). This

results is expected because any detectable pairwise associations between the variables and target

is due to chance in the data sampling. In general, Relief is able to identify the Markov Blanket

(sensitivity values of 0.875, 1.000, and 0.975 with increasing sample). RFE was also able to identify

all four members of the Markov Blanket (sensitivity values of 0.80, 0.95, 0.975 with increasing

sample). FSMB can be thought of as running HITON on the distribution of the network shown in

Fig. III-4. The method generally returns two features x1x2 and x3x4 involving all variables of the

Markov Blanket. For the larger sample sizes, FSMB correctly identifies all four variables reliably

(at the lowest sample size it occasionally will miss a feature, but performs similarly to the other

methods: sensitivity of 0.900).

Embedded Double Noisy-XOR:

The second example embedded the 5 variable Double Noisy-XOR network of Fig. III-1(a) in a

larger network for a total of 153 variables (including the target variable), as shown in Fig. III-5.

The embedding was such that all dependencies and independencies between the 5 variables were

maintained (Tsamardinos et al., 2006a). FSMB converted the top 100 weighted features into feature

data on which to run HITON (out of the 11780 total number of features). The variables returned

by each algorithm were compared to the true MB(T ) = {x1, x2, x3, x4}.

The mean and standard deviation of the sensitivity, specificity, and distance measure is reported

for the four algorithms in Table III-1. HITON rarely includes the correct members of the Markov

Blanket as shown by the low sensitivities. RFE occasionally misses a member of the Markov Blanket

and often includes a number of false positives. Relief identifies the Markov Blanket correctly for the

larger sample sizes (as does FSMB), but introduces slightly more false positives than FSMB. These

results are also presented in Figure III-6. The distance measure is plotted versus increasing sample

size for the different algorithms.
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Figure III-5: The BN for the Embedded Double Noisy-XOR data set, where the network of Fig.
III-1(a) is embedded into a larger network. The subgraphs with label Alarm are not shown in detail
and are copies of the ALARM network (Beinlich et al., 1989).

Table III-1: Results on Embedded Double-XOR Problem of 153 variables.The sensitivity, specificity,
and distance metric for identifying the true Markov Blanket (MB(T ) = {x1, x2, x3, x4}) by each
algorithm on the network of Fig. III-5. In this network, all parent-child relationships involving
T are noisy-XOR. The results are presented as mean values and their standard deviation over 10
different samplings from the distribution.

Data Sensitivity

Size HITON Relief RFE FSMB

100 0.025 ± 0.08 0.450 ± 0.33 0.725 ± 0.32 0.400 ± 0.32

500 0.075 ± 0.12 1.000 ± 0.00 0.875 ± 0.21 1.000 ± 0.00

1000 0.100 ± 0.13 1.000 ± 0.00 0.925 ± 0.17 1.000 ± 0.00

Data Specificity

Size HITON Relief RFE FSMB

100 0.792 ± 0.12 0.811 ± 0.18 0.984 ± 0.01 0.960 ± 0.02

500 0.959 ± 0.04 0.963 ± 0.04 0.932 ± 0.15 0.991 ± 0.01

1000 0.980 ± 0.01 0.976 ± 0.02 0.972 ± 0.01 0.986 ± 0.01

Data Distance

Size HITON Relief RFE FSMB

100 1.003 ± 0.09 0.627 ± 0.29 0.285 ± 0.31 0.605 ± 0.31

500 0.927 ± 0.12 0.037 ± 0.04 0.191 ± 0.22 0.009 ± 0.01

1000 0.900 ± 0.13 0.024 ± 0.02 0.099 ± 0.16 0.014 ± 0.01
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Figure III-6: Results on Embedded Double-XOR Problem. This figure is plotting the distance
metrics for each algorithm versus increasing sample size. A distance measure of zero indicates
perfect identification of the Markov Blanket. At the smallest sample size, RFE performs the best;
while for the larger sample sizes Relief and FSMB perform well, with FSMB having slightly fewer
false positives.

At this point, we would like to make the following observation: the embedded double noisy XOR

example is harder than typical toy examples in the literature. A common practice is to try new

variable selection algorithms on toy problems that contain a set of necessary-for-optimality variables

and a set of completely independent-to-the-target variables. Usually, these sets are named the

“relevant” and the “irrelevant” variables. However, most real data sets contain informative but

superfluous variables (weakly-relevant). This is evident by the fact that most BNs reconstructed

from real data are connected. Most algorithms are favored when there are no superfluous variables,

such as RFE as shown in Statnikov et al. (2006). In our example, all variables not in the MB(T )

are not irrelevant, but superfluous given MB(T ).

Redundant Mechanism:

The four methods were run on the 3-variable network pictured in Figure III-1(b), with a re-

dundant mechanism distribution with no pairwise association between x1 and the target. The true

Markov Blanket of the target, T , is all other variables: MB(T ) = {x1, x2}. The total number of fea-

tures in the problem is 6 therefore, FSMB converts the data for all features and then runs HITON.

Mean and standard deviation of the sensitivity, specificity, and distance results are summarized here

and detailed table of results in Appendix B.II. For this problem the sample sizes used increased to

84



500, 1000, 1500, and 2000 all methods did not perform well at the lowest sample size considered,

100 samples).

For this problem, the specificity is again undefined since every variable is included in the Markov

Blanket. Therefore, values of 1.00 were entered for each method. HITON rarely identified the

members of the Markov Blanket (sensitivity values of 0.00 to 0.40). Relief is able to identify the

MB in general (sensitivity values of 0.70-0.95). RFE was also able to identify the MB in general

with sensitivity values of 0.65 - 0.95. FSMB is able to identify the MB perfectly for all but the

lowest sample size (sensitivity of 0.70 for 500 samples, and 1.00 for larger sample sizes).

Embedded Redundant Mechanism:

This example embedded the 3 variable network of Fig. III-1(b) in a larger network of increasing

sizes (the total number of variables goes from 262 to 447 variables, created with tiling 7 and 12

copies of the Alarm network). FSMB constructed a feature data set on the top 50 weighted features

(out of the 25878 and 100576 total number of features). The variables returned by each method

were compared to the true MB(T ){x1, x2}. The mean and standard deviation of the sensitivity,

specificity, and distance results are presented in Table III-2 and III-3. Note, in this example larger

sample sizes were used because all methods did not perform well at the lowest sample sizes. For

FSMB at the lower sample sizes the SVM model does not give the features of interest a large weight,

therefore the algorithm will not select the feature of interest to convert to feature data.

On this problem, HITON has a low sensitivity and high specificity because it rarely finds the true

positives, but includes very few false positive results. Both Relief and RFE have both sensitivities

and specificities ranging from 0.50 - 0.80. This indicates the methods occasionally miss the true

members of the Markov Blanket but may also return many false positives. The range of variables

selected by either method goes from 2 variables to the set of all possible variables. FSMB has quite

high sensitivity and specificities (resulting in the lowest distance measures). For the smaller problem

size with the two larger sample sizes and the larger problem size with the largest sample sizes, FSMB

has perfect sensitivity.

The distance measure for each algorithm is plotted versus increasing sample sizes in Figure III-7.
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Table III-2: Results on Embedded Redundant Mechanism Problem of 262 Variables. The sensitivity,
specificity, and distance measure for identifying the true Markov Blanket (MB(T ) = {x1, x2}) for
each algorithm on the network of Fig. III-1(b) embedded into a larger network of 262 total variables
(similar to Fig. III-5). The results are presented as mean values and their standard deviation over
10 different samplings from the distribution.

Number of Variables = 262

Data Sensitivity

Size HITON Relief RFE FSMB

1000 0.200 ± 0.42 0.750 ± 0.35 0.750 ± 0.42 0.850 ± 0.34

1500 0.200 ± 0.42 0.800 ± 0.42 0.750 ± 0.42 1.000 ± 0.00

2000 0.300 ± 0.48 0.500 ± 0.47 0.550 ± 0.50 1.000 ± 0.00

Data Specificity

Size HITON Relief RFE FSMB

1000 0.989 ± 0.00 0.525 ± 0.47 0.729 ± 0.31 0.984 ± 0.00

1500 0.988 ± 0.00 0.707 ± 0.33 0.610 ± 0.45 0.990 ± 0.00

2000 0.988 ± 0.00 0.796 ± 0.32 0.800 ± 0.32 0.988 ± 0.01

Data Distance

Size HITON Relief RFE FSMB

1000 0.801 ± 0.42 0.706 ± 0.34 0.512 ± 0.37 0.162 ± 0.33

1500 0.802 ± 0.42 0.492 ± 0.39 0.630 ± 0.42 0.010 ± 0.00

2000 0.703 ± 0.48 0.678 ± 0.37 0.626 ± 0.43 0.012 ± 0.01

The different colored lines illustrate the results for the different methods (“blue” - HITON, “green” -

Relief, “red” - RFE, “black” - FSMB). The plot on the left is for the smaller problem (226 variables).

The plot on the right is for the larger problem (447 variables). The figure confirms FSMB superiority

to other methods on this problem and the general trend of the method increases its performance as

sample size increases.

Noisy 3-Parity:

The data for this classification problem is determined by a noisy 3-input parity function. The

parity function is a generalization of the XOR function and is difficult to detect the multivariate

relationship. The noisy portion of the function allows for on average 30% of the target values to

be switched. The margin probabilities of the true causes of the target were set such that there

is no detectable pairwise association to the target. The data was sampled from a uniform binary

distribution taking values of {−1,+1}. With problems of sizes of 60, 80, and 100 variables, FSMB
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Table III-3: Results on Embedded Redundant Mechanism Problem of 447 Variables. The sensitivity,
specificity, and distance measure for identifying the true Markov Blanket (MB(T ) = {x1, x2}) for
each algorithm on the network of Fig. III-1(b) embedded into a larger network of 447 total variables
(similar to Fig. III-5). The results are presented as mean values and their standard deviation over
10 different samplings from the distribution.

Number of Variables = 447

Data Sensitivity

Size HITON Relief RFE FSMB

1000 0.200 ± 0.42 0.750 ± 0.35 0.750 ± 0.42 0.900 ± 0.32

1500 0.200 ± 0.42 0.800 ± 0.42 0.750 ± 0.42 0.950 ± 0.16

2000 0.300 ± 0.48 0.500 ± 0.47 0.550 ± 0.50 1.000 ± 0.00

Data Specificity

Size HITON Relief RFE FSMB

1000 0.989 ± 0.00 0.525 ± 0.47 0.729 ± 0.31 0.976 ± 0.01

1500 0.988 ± 0.00 0.707 ± 0.33 0.610 ± 0.45 0.982 ± 0.00

2000 0.988 ± 0.00 0.796 ± 0.32 0.800 ± 0.32 0.985 ± 0.00

Data Distance

Size HITON Relief RFE FSMB

1000 0.801 ± 0.42 0.706 ± 0.34 0.512 ± 0.37 0.121 ± 0.31

1500 0.802 ± 0.42 0.492 ± 0.39 0.630 ± 0.42 0.066 ± 0.15

2000 0.703 ± 0.48 0.678 ± 0.37 0.626 ± 0.43 0.015 ± 0.00
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Figure III-7: Results on Embedded Redundant Mechanism Problems. This figure is plotting the
distance metrics for each algorithm versus increasing sample size. The figure on the left is for the
smaller problem (226 variables), the figure on the right is for the larger problem (447 variables).
FSMB outperforms all algorithms for all sample sizes and problem size.
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Table III-4: The Results on Noisy 3-Parity Problem of 60 Variables. The sensitivity, specificity,
and distance measure for identifying the true Markov Blanket (MB(T ) = {x1, x2, x3}) of the noisy
3-parity problem with 60 variables. The results are presented as mean values and their standard
deviation over 10 different samplings from the distribution.

Number of Variables = 60

Data Sensitivity

Size HITON Relief RFE FSMB

100 0.000 ± 0.00 0.500 ± 0.39 0.367 ± 0.40 0.700 ± 0.43

500 0.033 ± 0.11 0.500 ± 0.45 0.633 ± 0.48 1.000 ± 0.00

1000 0.000 ± 0.00 0.767 ± 0.42 1.000 ± 0.00 1.000 ± 0.00

Data Specificity

Size HITON Relief RFE FSMB

100 0.975 ± 0.01 0.537 ± 0.40 0.709 ± 0.38 0.712 ± 0.03

500 0.968 ± 0.02 0.811 ± 0.21 0.802 ± 0.30 0.782 ± 0.04

1000 0.977 ± 0.01 0.718 ± 0.39 0.863 ± 0.31 0.775 ± 0.04

Data Distance

Size HITON Relief RFE FSMB

100 1.000 ± 0.00 0.850 ± 0.17 0.847 ± 0.22 0.502 ± 0.31

500 0.967 ± 0.10 0.587 ± 0.43 0.504 ± 0.48 0.218 ± 0.04

1000 1.000 ± 0.00 0.472 ± 0.47 0.137 ± 0.31 0.225 ± 0.04

heuristically selected the top 100 features to then process with HITON (out of a total of 39711,

91881, and 176851 features).

The variables returned by each algorithm were compared to the true MB(T ) = {x1, x2, x3}. The

mean and standard deviation of the sensitivity, specificity, and distance value for identifying the

Markov Blanket are reported in Table III-4, III-5, and III-6. HITON again did poorly on this data

set; most often missing all members of the Markov Blanket. Relief occasionally misses members of

the Markov Blanket and includes additional variables in the set identified. RFE performs well for

the smallest problem and largest sample size (in one class outperforming FSMB). However, for the

larger problems RFE begins identifying more false positives and eventually misses the true members

of the Markov Blanket. FSMB performs best for all but the smallest problem with the largest sample

size.

To help visualize the trends in the results, the distance measure for each algorithm is plotted

versus increasing sample sizes in Figure III-8. The three plots are for the three problems sizes

increasing from left to right: 60, 80, and 100 variables. The colored lines indicate the method: blue
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Table III-5: The Results on Noisy 3-Parity Problem of 80 Variables. The sensitivity, specificity,
and distance measure for identifying the true Markov Blanket (MB(T ) = {x1, x2, x3}) of the noisy
3-parity problem with 80 variables. The results are presented as mean values and their standard
deviation over 10 different samplings from the distribution.

Number of Variables = 80

Data Sensitivity

Size HITON Relief RFE FSMB

100 0.000 ± 0.00 0.467 ± 0.36 0.433 ± 0.45 0.633 ± 0.37

500 0.000 ± 0.00 0.367 ± 0.43 0.500 ± 0.42 0.933 ± 0.21

1000 0.000 ± 0.00 0.533 ± 0.45 1.000 ± 0.00 1.000 ± 0.00

Data Specificity

Size HITON Relief RFE FSMB

100 0.978 ± 0.01 0.648 ± 0.37 0.643 ± 0.38 0.782 ± 0.03

500 0.974 ± 0.01 0.794 ± 0.18 0.697 ± 0.32 0.809 ± 0.04

1000 0.983 ± 0.01 0.787 ± 0.29 0.787 ± 0.41 0.810 ± 0.03

Data Distance

Size HITON Relief RFE FSMB

100 1.000 ± 0.00 0.769 ± 0.25 0.846 ± 0.21 0.479 ± 0.29

500 1.000 ± 0.00 0.702 ± 0.40 0.686 ± 0.37 0.236 ± 0.17

1000 1.000 ± 0.00 0.592 ± 0.44 0.213 ± 0.41 0.190 ± 0.03

Table III-6: The Results on Noisy 3-Parity Problem of 100 Variables. The sensitivity, specificity,
and distance measure for identifying the true Markov Blanket (MB(T ) = {x1, x2, x3}) of the noisy
3-parity problem with 100 variables. The results are presented as mean values and their standard
deviation over 10 different samplings from the distribution.

Number of Variables = 100

Data Sensitivity

Size HITON Relief RFE FSMB

100 0.000 ± 0.00 0.533 ± 0.42 0.233 ± 0.42 0.367 ± 0.40

500 0.000 ± 0.00 0.433 ± 0.39 0.367 ± 0.46 0.800 ± 0.32

1000 0.000 ± 0.00 0.500 ± 0.48 0.733 ± 0.38 0.933 ± 0.21

Data Specificity

Size HITON Relief RFE FSMB

100 0.980 ± 0.01 0.567 ± 0.43 0.701 ± 0.39 0.825 ± 0.03

500 0.979 ± 0.01 0.670 ± 0.38 0.762 ± 0.40 0.860 ± 0.03

1000 0.986 ± 0.01 0.828 ± 0.30 0.799 ± 0.32 0.837 ± 0.02

Data Distance

Size HITON Relief RFE FSMB

100 1.000 ± 0.00 0.822 ± 0.24 0.985 ± 0.05 0.684 ± 0.35

500 1.000 ± 0.00 0.806 ± 0.22 0.836 ± 0.32 0.296 ± 0.27

1000 1.000 ± 0.00 0.619 ± 0.45 0.410 ± 0.43 0.212 ± 0.17
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Figure III-8: Noisy 3-Parity Results Summary. This figure is plotting the distance metrics for each
algorithm versus increasing sample size. The three plots are for the three problems sizes increasing
from left to right: 60, 80, and 100 variables. The colored lines indicate the method: blue - HITON,
green - Relief, red - RFE, and black - FSMB.

- HITON, green - Relief, red - RFE, and black - FSMB. The figure shows FSMB general superiority

to the other methods. Only for the largest sample size and smaller problem sizes does RFE beat or

compete with FSMB.

The same synthetic problem was also run with the noise for the parity function set to 20%.

The results for this analysis are presented in Tables B-3, B-4, B-5 in the Appendix B.III. On this

problem, HITON performs porrly. Relief and RFE do as well or better than FSMB on the smaller

problems with large sample. As the problem size gets larger, FSMB begins to meet and then exceed

the other methods performance. Once again, the distance metrics are plotted and presented in

Figure B-1.

High-Dimensional Noisy 3-Parity:

A final experiment was performed with the noisy 3-parity problem to show that our method

scales to higher-dimensional problems. We ran FSMB on a noisy 3-parity problem of 1000 variables

and 5000 samples. The problem has over 108 features to search among. FSMB was run on three data

samplings and took on average 31 minutes. Compare this to a brute force approach if 1000 test/s

were possible, then to test all features would take approximately 2 days time. For this problem,

FSMB is able to detect and return the interaction feature of interest with very few 3-8 extra variables

returned as false positives.

90



Table III-7: Summary of Variables and Features Identified. The number of variables selected by
each method where FSMB also reports the number of features returned. The number is averaged
across the ten samplings and sample sizes for each simulated problem.

Number of Variables Num. of Feats

Problem HITON Relief RFE FSMB FSMB

Small Double XOR 0.30 3.80 3.63 3.87 2.03

Small Redundant Mechanism 0.40 1.63 1.63 1.85 1.06

Embedded Double XOR 13.57 15.57 8.87 6.27 3.57

Embedded Redundant Mechanism

226 Variables 3.57 85.23 75.67 5.17 2.83

447 Variables 3.57 107.53 94.77 5.87 3.20

Noisy 3-Parity

60 Variables 1.33 19.53 13.90 16.57 6.57

80 Variables 1.67 21.17 24.33 17.93 6.80

100 Variables 1.77 31.70 25.20 17.57 6.87

Summary of Variables Selected

A final summary is given in Table III-7 reporting the number of variables identified by each

method. Additionally, for FSMB the number of features found is reported. These numbers are

averaged over the ten data samplings and sample sizes for each problem. For the Small Double-

XOR and Small Redundant Mechanism problem, the optimal number of variables to return is 4 and

2 respectively. For the other problems, the number of variables returned often exceeds the optimal

number of variables (2-4). HITON often returns the fewest variables, but that is expected since the

problems are designed so that the variables have no association with the target. Relief often returns

the greatest number of variables. RFE generally returns fewer variables than Relief, but often more

than FSMB. FSMB returns the fewest number of variables (excluding HITON) while selecting the

optimal variables (as illustrated by the tables above). The number of features FSMB returns is also

reported for each problem.

Timing Results

The focus of this chapter is on the development of a new algorithm for variable selection that

works on several difficult problems that other techniques fail or produce sub-optimal results. The

emphasis is on the quality of the performance of the new method - FSMB, but a short presentation

on the efficiency of the method is now presented. In terms of execution time, FSMB was the slowest
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algorithm presented. Table III-8 summarizes the execution time on the simulated problems. First,

notice the time for HITON on the embedded redundant mechanism and noisy 3-parity problems

is extremely low. This results is because the first step of HITON is to filter only those variables

associated with the target. These two problems were designed to exploit this property and cause

HITON to fail. So while the method completes very quickly, the results are equally as poor. The

times for Relief and RFE are in the middle with RFE taking longer (the scoring function for RFE

requires doing computations with the kernel that take longer). Note, that the timing results of these

methods would be affected by how the wrapper was designed. Recall, these methods eliminate half

of the variables each iteration; if the variable reduction was lessened to 20% or only one variable at

a time, then the methods computation time would be increased. For FSMB, the algorithm spends

the majority of its time searching for the top-weighted features. The parameters selected for the

methods were meant to be generous to ensure catching all top features (that is, FSMB was run with

the parameter set to construct the top 20,000 features, from this the top 50 were then passed to

HITON). The time complexity of the searching portion of FSMB is Θ(dms2 + sdp), where m is the

number of variables, d the degree of the kernel, s the number of support vectors, and p the number

of features the algorithm is allowed to search (see Chapter II.3.3 for detailed analysis on this result).

It is important to note, that even for greatly increased scales of problems FSMB does not become

intractable. For example, the Thrombin data set (discussed in the next section) has over 139,000

variables and 2,000 samples is analyzed by FSMB in approximately 2 hours.

III.7.2 Real World Data

In addition to the simulated data analysis, comparisons of the methods were performed on

several diverse, real world data sets. The evaluation will first look at the FSMB, RFE, and HITON

algorithms on several data sets. Several of these data sets were analyzed previously for many variable

selection methods Aliferis et al. (2003a, 2009a,b). The evaluation was constructed following these

previous analysis in order to compare the results of various variable selection methods.

All of the real-world data sets and their characteristics are listed in Table III-9. These sets cover
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Table III-8: Summary of Execution Time on Simulated Problems. The execution time (in seconds)
of the variable selection methods on different simulated problems. The time reported is the mean
over the ten samplings and sample sizes.

Execution Time (seconds)

Problem HITON Relief RFE FSMB

Embedded Double XOR 70.6 3.5 12.7 121.5

Embedded Redundant Mechanism

226 Variables 1.9 31.5 107.8 626.5

447 Variables 3.8 37.8 186.9 785.2

Noisy 3-Parity

60 Variables 0.3 4.9 19.0 363.2

80 Variables 0.3 10.2 35.7 499.6

100 Variables 0.4 17.3 48.0 397.5

many different domains and data types. The first data set is on the diagnosis of lung cancer from

oligonucleotide gene expression array data, specifically determining squamous versus adenocarcinoma

types of cancer (Bhattacharjee et al., 2001). The second data set is on splice site prediction, that

is the identification of splice sites from a genomic sequence (Saeys et al., 2003). The next task was

on prediction of infant mortality within one year from clinical values (Mani & Cooper, 1999). This

is followed by a task of text categorization; text (Medline) documents from the OHSUMED corpus

(version from Joachims, 2002) are labeled relevant or non-relevant to neonatal disease (Hersh et al.,

1994). Also included were data sets from different public challenges (NIPS 2003 Challenge, 2003;

WCCI 2006 Challenge, 2006): Gisette, Sylva, Hiva, and Thrombin. The domain of each of these

data sets is digit recognition, ecology, and two on drug discovery respectively. Where the final data

set is for the classification of whether biomolecules are able (or not) to find to thrombin (KDD Cup

2001, 2001).

For the real data sets, the true MB is not available to assess the quality of each variables selection

method. Therefore, two metrics were used to assess variable selection methods. First, the number of

variables returned by the method (listed as an absolute number or percentage of variables returned)

was reported. Also, the classification performance measured by the area under the receiver operator

characteristic curve (AUC) was presented.
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Table III-9: Characteristics of Real Data sets

Data Set Problem Number Number Evaluation

Name Domain Vars. Samples Design

Lung Cancer Genomic 12,600 160 5-fold c.v.

Splice Site Genetic 400 2000 10-fold c.v.

Infant Mortality Clinical 86 5337 1-fold c.v.

OHSUMED Text Cat. 14,373 5000 1-fold c.v.

Gisette Digit Rec. 5000 7000 1-fold c.v.

Sylva Ecology 216 14394 1-fold c.v.

Hiva Drug Disc. 1617 4229 1-fold c.v.

Thrombin Drug Disc. 139,351 2543 1-fold c.v.

Performance of RFE, HITON, and FSMB

The first two data sets analyzed were the Lung Cancer and Splice Site data. These data sets

were also discussed and used in the evaluation of the IdentifyTopWeights method of Chapter II.

Results on the next six data sets using several variable selection methods were reported in Aliferis

et al. (2009a,b). The data were split following the same cross validation design exactly as in ibid. A

nested stratified cross validation design was employed: in the outer loop the performance estimate

was calculated for the optimal model, in the inner loop the choice of parameter and variables subsets

was selected. The best parameters of the SVM classifier were selected from the sets d = {1, 2, 3, 4}

and C = 10i, i = {−8, . . . , 3}. For FSMB, the SVM model with all variables and trained with the

optimal parameters is used by the FSMB algorithm to heuristically identify the top 1000 features

(100 features for Thrombin). The top features were passed to HITON in order to identify the

MBΦ(T ). The results comparing the three main methods: RFE, HITON, and FSMB are presented

here.

The results of the variable selection methods are presented in Table III-10. The classification

performance and number of variables selected is given for each method. For FSMB, the number

of features is also presented. A second table (Table III-11) illustrates the simplicity of the FSMB

results. The number of features FSMB using in its classifier model is given alongside the number of

features used to evaluate the other methods. For these methods, the number of features,
(

v+d
d

)

, is
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Table III-10: Results on Real World Data: The classification performance for model built on all
variables and the subsets selected by the three variable selection method is given. In addition, the
number of variables selected is presented for each data set.

Evaluation Variable Selection Method

Data Set Metric None RFE HITON FSMB

Lung Cancer
Num. Vars/Feats 12,600 19 16 4 / 2

AUC 0.991 0.986 0.978 0.979

Splice Site
Num. Vars/Feats 400 400 26 10 / 21

AUC 0.982 0.982 0.926 0.961

Infant Mortality
Num. Vars/Feats 86 5 7 15 /37

AUC 0.820 0.748 0.865 0.823

OHSUMED
Num. Vars/Feats 14,373 112 34 40 / 43

AUC 0.905 0.807 0.829 0.811

Gisette
Num. Vars/Feats 5,000 625 226 48 / 38

AUC 0.997 0.998 0.997 0.994

Sylva
Num. Vars/Feats 216 27 50 29 / 41

AUC 0.998 0.998 0.997 0.997

Hiva
Num. Vars/Feats 1617 51 8 14 / 15

AUC 0.717 0.640 0.527 0.702

Thrombin
Num. Vars/Feats 139,531 8709 32 5 / 3

AUC 0.925 0.919 0.926 0.939

calculated using the number of variables selected, v, and the degree of the kernel, d. FSMB provides

simpler models in all but one case.

Lung Cancer Data Set.

The lung cancer data set is used to classify gene expression samples between squamous and

adenocarcinoma types of cancer. Previous results on these data sets using RFE and HITON have

been reported (Aliferis et al., 2003a) (this data set was also used in the analysis of Chapter II.4.4).

The data were split following the same cross validation design exactly as in ibid in order to estimate

the performance of the model and optimize SVM parameters from the sets d = {1, 2, 3, 4} and

C = 10i, i = {−8, . . . , 3}. For FSMB, the SVM model with all variables and trained with the

optimal parameters is used by the FSMB algorithm to heuristically identify the top 1000 features.

The top features were passed to HITON in order to identify the MBΦ(T ).
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Table III-11: Number of Features with Variable Selection Methods. The number of features in
final models is calculated from the number of variables selected by the methods (None, RFE, and
HITON) and degree of the SVM model. The number of features for FSMB is directly determined
by what FSMB returns.

Degree of Kernel Variable Selection Method

Data Set Metric None RFE HITON FSMB

Lung Cancer d = 3 3.33× 1011 1540 969 2

Splice Site d = 6 5.99× 1012 5.99× 1012 906192 21

Infant Mortality d = 2 3828 21 36 37

OHSUMED d = 2 103313125 6441 630 43

Gisette d = 2 12507501 196251 25878 38

Sylva d = 2 23653 406 1326 41

Hiva d = 2 1309771 1378 45 15

Thrombin d = 2 9.73× 109 37936405 561 3

The results of the different methods on the Lung Cancer data set are summarized in Table

III-10. For this data set, the best classification performance is when all variables are included in

the model. However, there is only a slight reduction in performance when models of much smaller

subsets of variables are selected. The number of variables selected by RFE is 19 (0.15% of the total

number of variables) and by HITON is 16 (0.13% of the total number). FSMB returns 2 features

{X2515X3157X12097, X205X2515X12097} defined over 4 variables (0.03% of the total number). On

this data set, FSMB performed well with fewer variables selected. The discriminative performance

of FSMB can be visualized by plotting the data over these two features (Figure III-9).

Splice Site Data Set.

The second data set is for the classification task identifying splice sites from DNA sequences

(Degroeve et al., 2002; Saeys et al., 2003). This data set was also used in the analysis of Chapter

II.4.4 where more details on the data can be found. Model parameters were selected via 10-fold cross

validation from the sets degree = {1, 2, 3, 6, 9} and c = {0.001, 0.05, 0.1} (choice of the parameter

options was influenced by previously published results). The best model parameters were selected

via cross-validation by maximizing AUC and found to be degree 6 kernel with c = 0.05. With

the parameters of the model selected, a final SVM model was created on the training data set to

examine the top features and weights for each problem. In FSMB, the top 1000 features were passed
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Figure III-9: Lung Cancer Data on FSMB Features. The lung cancer data is plotted on the two
FSMB features. The “o” points are negative class examples and “+” are positive class examples.

to HITON to identify the MBΦ(T ). The classification performance was calculated for an SVM model

using all variables, the variables selected by RFE, HITON, and FSMB with results shown in Table

III-10.

The best classification performance resulted when using all variables. However, FSMB had only

a slight performance reduction while reducing the number of variables to only 2.5% of the total.

RFE did not reduce the number of variables on this problem and HITON selected 26 variables but

had a lower classification performance. FSMB does well on this data set and looking at the domain

this is not unexpected. The top features identified often involve pairs, triplets, and quartets of

variables involving groupings of the upstream T’s. These results are consistent with biologist beliefs

in recognizing splice sites (see Chapter II.4.4 for additional discussion). FSMB is able to identify

the features (variable combinations) rather than each variable individually.

Infant Mortality Data Set.

The results of the different variable selection methods on the Infant Mortality data set are

presented in Table III-10. The best classification performance is achieved via the model that uses

HITON’s variables. This outperforms the model that uses all variables, FSMB, and RFE. FSMB

also outperforms RFE and the model using all variables. The reduction in the number of variables
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is not as great for this data set (since the original data set has only 86 variables). However, the

number of variables returned is less than 20% for all methods.

OHSUMED Data Set.

For the OSUMED results (Table III-10), the best classification performance is achieved via the

model that uses all 14,000+ variables. For the models using only a subset of the variables (selected by

either RFE, HITON, or FSMB), the classification performance decreases. In terms of the number of

variables found by the variables selection methods, RFE retains the most with 112 variables (0.78%

of the total number of variables). HITON returns 34 variables (0.24% of the total), while FSMB

returns 43 features defined over 40 variables (0.28% of the total number of variables).

On this data sets, none of the variable selection methods are effective compared to the perfor-

mance with the full data set. One possible explanation of this results it the sparseness of the data.

Recall, this data comes from the text categorization domain where the documents are represented

using a bag of words approach. There might exist words or phrase (corresponding to features in the

FSMB approach) that are indicative to a specific target class. However, if the words only appear in

a very limited number of documents then the whether using a statistical test or SVM model there

will be little chance of this variables (feature being selected).

Gisette Data Set.

The Gisette data set results all illustrate good classification performance by all models. The

model built with all 5000 original variables has a classification performance of 0.997. HITON illus-

trates the same performance with only 226 variables. RFE has 625 variables yield a classification

performance of 0.998. FSMB returns only 48 variables yet still achieves a classification performance

of 0.994.

Sylva Data Set.

The results on the Sylva data set of the three main variable methods are presented in Table

III-10 for comparison. Models build with all variables and the three variable subsets all have high

classification performance. In terms of the number of variables selected, RFE and FSMB had the
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greatest reduction in number of variables selected returning 12.5% and 13.4% of the total number

of variables.

Hiva Data Set.

The Hiva data set comes from the drug discovery domain specifically whether a drug compound

is active against AIDS HIV infection. The variables represent properties of the molecule inferred

from its structure. On the Hiva data set, the top classification performance came from the model

involving all variables (AUC = 0.717), with the model built with the variables of FSMB exhibiting

the next best performance (AUC = 0.702). This model was built using only 0.87% of the total

number of variables. The models build using the variables selected with RFE or HITON had lower

classification performance. On this data set, FSMB doing so much better than HITON suggest that

there might be epistatic multivariate relationships in this domain. For instance there are 9 variables

in the features FSMB returns that do not have large enough association with the target to be

considered by the HITON method. Those variables solely make up 8 of the 15 features returned by

FSMB. Looking at the feature data the variables with no univariate association now have detectable

association between the target and the features.

Thrombin Data Set.

The general results for the variable selection method on the Thrombin data set are also shown in

Table III-10. The classification performance was highest on the variables subset of FSMB (although

the performance for the other methods is not much less). The number of variables returned by RFE

is more than 8,000 (5.73% of the total number of variables). The number of variables returned by

HITON is 32 (0.023% of the total). FSMB returns 3 features {X16598X17177, X6524X16896, X16888}

defined over 5 variables (0.0036% of the total). The discriminative performance of FSMB can be

visualized by plotting the data over the two top features (Figure III-10).

III.7.3 Other Variable Selection Methods Results

The data sets of Infant Mortality, OHSUMED, Gisette, Sylva, Hiva, and Thrombin were all in

the analysis of Aliferis et al. (2009a) and Aliferis et al. (2009b). This evaluation followed the same
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Figure III-10: Thrombin Data Split by FSMB Features. The Thrombin data distribution is shown
on the two FSMB features.

experimental design so as to include further comparison with additional variable selection methods.

A selection of 26 variable selection instances (a single method may have been run with several differ-

ent parameters) are reported here (the original evaluation had additional parameter combinations).

The performance of each method (including FSMB) was reported for the number of variables se-

lected, the percentage of variables selected and the classification performance in Appendices B.IV,

B.V, and B.VI.

In general, FSMB follows the trend of other causal discovery approaches in it parsimonious

selection of variables. Furthermore, it is able to achieve this reduction in variables while often not

sacrificing the classification performance when compared to the full model or other variable selection

methods.

III.8 Conclusions

The Feature Space Markov Blanket algorithm for variable selection was presented. FSMB marries

two different approaches to the variable selection problem, the kernel-based and the Markov Blanket-

based strategies, combining their strengths. Similar to the latter approach, FSMB identifies the

Markov Blanket as the smallest, most-predictive variable set. However, the search for the Markov

Blanket is performed in the feature space, where multivariate associations may become pairwise

associations and thus detectable. This overcomes a significant limitation of all present MB-based
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algorithms that depend on the existence of pairwise association of the MB-variables and the target.

The feature space is implicitly constructed by a Support Vector Machine. A heuristic sub-algorithm

explicitly constructs only the interesting portion of the feature space, those features with a high

absolute weight and possibly, a high association with the target. This work demonstrates the

advantages of FSMB over two standard algorithms HITON and RFE, and shows promising results

on both simulated data and on a large, real data sets.

The results of this research have several limitations. First, the choice of parameters for the FSMB

method is not addressed (for which the degree of the kernel may greatly affect the performance):

either the kernel parameters are given (for the simulated data sets) or selected via a cross validation

design (for the real data sets). Also, the number of features K to pass to HITON is also given

as a small default value (e.g., 50, 100, or 1000); whether these are reasonable values needs further

investigation. Additionally, the heuristic method offers a simple, efficient method to identify the top

weights, but other search methods could be employed with tradeoffs in efficiency and/or quality of

the results. Finally, the FSMB relies on the assumption that the features with the largest magnitude

weights are most important (relevant) for the classification task; whether this assumption holds and

why it may fail will be examined. These theoretical properties of FSMB should examined and the

heuristic for identifying the top-weighted features improved in future work.

Additional future work in this area should be completed to first formally define the class of

distributions where the FSMB algorithm is expected to exceed other methods. Once this completed,

then a examination of the prevalence of such distributions should be explored (Dash, 2005). Also,

the performance of the method should be more fully tested for various aspects of the underlying

problem, e.g., training set sample size, number of relevant variables, number of irrelevant variables,

number of relevant features, redundant features. This last concept connects to the idea of there may

be many equivalent sets of variables that make-up the Markov Boundary (Statnikov, 2009). Will

this method identify all possible members of the Markov Boundary or what possible subsets can be

found? Questions such as these should receive additional attention in the future work.

Finally, this work has solely used SVM models for binary classification. In the future, we would
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like to explore extending the theory and methods to SVM models for regression or multi-categorical

SVMs. We believe such extensions are possible; the methods rely on the properties of the poly-

nomial kernel to construct and consider features. This kernel can be used in the alternative SVM

formulations. The promising results of this paper support many future theoretical and empirical

investigations into this new method and its properties.
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CHAPTER IV

LEARNING BAYESIAN NETWORK REGIONS

The extremely large data sets emerging from a multitude of domains have exceeded the limits of

traditional Bayesian network learning algorithms. Often however, an analyst may be only interested

in the Bayesian network structure (region) around a target variable of interest. One approach to

learning the region (called the global method throughout the Chapter) first induces the full network

and then prunes or extracts the region of interest. A second approach directly learns just the desired

region without making inductive inferences for unrelated parts of the network. A global approach has

the advantage that it may use information induced from remote parts of the network to better learn

the region of interest. At the same time however, erroneous statistical inferences may also propagate

and affect the induction of the region. In this Chapter, one of the best algorithms for learning

Bayesian networks (MMHC) is extended to locally learn a region. The resulting local method is

compared to the global MMHC in an empirical evaluation. As expected, the local method takes only

a fraction of the time to learn the region compared to MMHC. Interestingly, the empirical results

also show that the local technique learns a region with equal or better quality compared to the

global one. In other words, propagation of errors from remote parts of the network often outweigh

the benefits from propagation of useful information. Thus, within the scope of the evaluation and

current methods for learning Bayesian networks, it is possible to learn a local structure of interest

in reasonable time and without sacrificing the quality of learning.

IV.1 Introduction

In recent years there has been increasing interest in the use of Bayesian networks (BNs) for causal

and predictive modeling in several domains including learning genetic regulatory pathways (Fried-

man et al., 2000; Hartemink et al., 2002; Friedman, 2004), discovering protein signaling networks

(Sachs et al., 2005; Woolf et al., 2005), and modeling and generating hypotheses for biomedical
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researchers. These domains require techniques that scale to handle the large data sets consisting

of thousands to hundreds-of-thousands of variables and samples. Unfortunately, learning the most

probable a-posteriori Bayesian network is an NP -Hard problem. Until recently, learning the com-

plete Bayesian network in reasonable time with hundreds or thousands of variables was beyond the

reach of any algorithm. Thus, BN-based data analysis had to be restricted to domains of relatively

small dimensionality.

However, researchers may be interested in the local area of the BN around a target variable of

interest. In this Chapter, we focus on methods for learning a BN region defined as the subgraph

within the radius depth of d edges about a target node. The most simplistic approach, referred to as

the global approach, for learning such a BN region is to first learn the entire network and then prune

the edges to the desired region depth. This global approach lacks efficiency by learning parts of the

network that may be greatly removed from the target region (especially for problems with a large

number of variables and small depth). However, the quality of the network learned may be aided by

information propagating from one part of the network to a distant area. Alternatively, errors may

also be propagated reducing the network quality. For example, if the learner identifies a collider,

i.e., the substructure A → C ← B, the orientation of the edges may propagate and help orient the

other edges in the region. Conversely, if C is not truly a collider, statistical fluctuations result in a

false inference. Then the constraints and information propagated by this induction may negatively

affect the quality of the network structure.

An alternative intuitive approach, referred to as the local approach, is to first identify members

of the region out to the specified depth then learn the network structure for this subset of variables.

Variables belonging to the region about a target could be identified by recursively applying local

learning techniques, e.g., methods for finding the parents and children or the Markov blanket of

a node. Any number of traditional BN learning techniques can then be applied to reconstruct

the network region structure using only the regional subset of variables. As the local approach is

restricted to using only closely related variables, the propagation of information, whether correct

104



or erroneous, is limited in its scope. Whether and how this propagation of information affects the

quality of a learned structure is unclear.

This research compares the global and local approaches in terms of time-efficiency and structural

quality. We expect the comparison will lend insight into whether the global approach benefits from

or is hindered by the propagation of information. For the study, the global BN learning algorithm

used is Max-Min Hill-Climbing, MMHC (Tsamardinos et al., 2006b). MMHC is one of the most

competitive BN learning algorithms today and can be naturally modified to take a local approach.

This new algorithm, RegionMMHC presented in Section IV.3.3, works by first identifying the set

of parents and children of the target variable in the data-generating BN, by using constraint-based

techniques. This process is then repeated recursively to the set of parents and children, identifying

the nodes and edges, without their orientation, within the targeted region. A search-and-score

procedure is subsequently applied to orient this BN region skeleton and the final graph of the region

is returned.

By using MMHC and RegionMMHC as the global and local approaches to learning BN regions

respectively, the comparisons between the two approaches can be made with algorithms that use the

same assumptions, have similar learning mechanisms, and consist of the same functional basis. The

results show that in general, (1) RegionMMHC takes a fraction of the time to learn a specified region

and (2) the learned structure of RegionMMHC is of the same quality as the structure learned by the

global approach. In other words, the propagation of errors from remote parts of the network offsets

the benefits from propagation of useful information. Thus, by using the local method one can scale

learning to domains with unprecedented sizes, hundreds of thousands of variables, while retaining

the quality of learning. Additionally, the local approach is compared to another method that uses

the concept of learning a local region from a target node, AlgorithmGPC (Peña et al., 2005). When

the AlgorithmGPC learns the network (for larger networks and sample sizes AlgorithmGPC does

not complete), it is in general faster than RegionMMHC however the regions learned are of lower

quality.
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IV.2 Background

First a few notational definitions, a variable is denoted with an upper-case letter (e.g., A, Vi)

and a state or value of that variable by the same lower-case letter (e.g., a, vi). A set of variables is

denoted by upper-case bold-face (e.g., Z, Pai) and the corresponding lower-case bold-face symbol is

an assignment of state or value to each variable in the given set (e.g., z, pai). Calligraphic fonts are

used for special sets of variables such as the set of all variables considered V. In this Chapter, only

discrete probability distributions and complete data sets are considered (i.e., all modeled variables

in all training instances obtain an observed known value). We denote conditional independence of

X and Y given Z according to distribution P as IndP (X;Y |Z) and dependence as

DepP (X;Y |Z) ≡ ¬IndP (X;Y |Z)

Definition IV.1. Let P be a discrete joint probability distribution of the random variables1 in some

set V and G = 〈V, E〉 be a Directed Acyclic Graph (DAG). We call 〈G, P 〉 a (discrete) Bayesian

network if 〈G, P 〉 satisfies the Markov Condition: every variable is independent of any subset of its

non-descendant variables conditioned on its parents (Pearl, 1988; Spirtes et al., 1993; Glymour &

Cooper, 1999; Pearl, 2000; Spirtes et al., 2000; Neapolitan, 2003).

We denote the set of the parents of variable Vi in the graph G as PaG
i . By utilizing the Markov

Condition, it is easy to prove that for a Bayesian network 〈G, P 〉 the distribution P of the variables

V can be factored as follows:

P (V) = P (V1, . . . , Vn) =
∏

Vi∈V

P (Vi|PaG
i )

The graph of a network in conjunction with the Markov Condition directly encode some of the

independencies of the probability distribution and entail others (see Neapolitan 2003, pp. 70 for a

definition of entailment). A graphical criterion for entailment is that of d-separation (Pearl, 1988,

2000). It is defined on the basis of blocked paths:

1Variables are also interchangeably called nodes or vertices in the context of a Bayesian network.
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Definition IV.2. A node W of a path p is a collider if p contains two incoming edges into W .

Definition IV.3. A path p from node X to node Y is blocked by a set of nodes Z, if there is a

node W on p for which one of the following two conditions hold:

1. W is not a collider and W ∈ Z, or

2. W is a collider and neither W or its descendants are in Z (Pearl, 1988).

Definition IV.4. Two nodes X and Y are d-separated by Z in graph G (denoted as DsepG(X;Y |Z))

if and only if every path from X to Y is blocked by Z. Two nodes are d-connected if they are not

d-separated.

A pair of nodes d-separated by a variable set in network 〈G, P 〉 is also conditionally independent

in P given the set (Verma & Pearl, 1988). The faithfulness condition below, asserts that the condi-

tional independencies observed in the distribution of a network are not accidental properties of the

distribution, but instead due to the structure of the network.

Definition IV.5. If all and only the conditional independencies true in the distribution P are

entailed by the Markov condition applied to G, we will say that P and G are faithful to each other

(Spirtes et al., 1993, 2000; Neapolitan, 2003). Furthermore, a distribution P is faithful if there

exists a graph, G, to which it is faithful.

Definition IV.6. A Bayesian network 〈G, P 〉 satisfies the faithfulness condition if P embodies only

independencies that can be represented in the DAG G (Spirtes et al., 1993). We will call such a

Bayesian network a faithful network.

The following theorem is utilized in most constraint-based algorithms such as the ones presented

here:

Theorem IV.1. In a faithful BN 〈G, P 〉 on variables V there is an edge between the pair of nodes

X and Y in V iff DepP (X;Y |Z), for all Z ⊆ V (Spirtes et al., 1993).

We define the distance between a node X and T , δ(X,T ) as the length of the shortest undirected

path between the two nodes. We denote an edge from node X to node Y by X → Y .
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Figure IV-1: The regions, R(T, 1), R(T, 2) and R(T, 3) extracted from the whole graph on the left
of the figure.

Definition IV.7. A region of depth d around node T of the BN with DAG G = (V, E)is denoted

as RG(T, d). The region RG(T, d) is a subgraph of G consisting of the nodes with distance at most d

from T and all edges in E between said nodes. RG(T, d) = 〈VR, ER〉 where,

1. VR = {Vi ∈ V : δ(Vi, T ) ≤ d}, and,

2. ER = {Vi → Vj : Vi, Vj ∈ VR, Vi → Vj ∈ E}.

The subscript G is dropped when it can be inferred from the context. To illustrate this concept,

Figure IV-1 shows three regions of increasing depth, R(T, 1), R(T, 2) and R(T, 3), extracted from

the whole graph on the left side of the figure.

Several specialized regions have been studied extensively, namely algorithms for finding the

parents and children of a node (region with depth, d = 1) and the Markov Blanket (the parents,

children and spouses) of a target node (subset of a region with depth, d = 2) (Koller & Sahami, 1996;

Margaritis & Thrun, 1999; Tsamardinos et al., 2003a,c; Yaramakala & Margaritis, 2005). Other local

learning approaches include the LCD algorithm (Cooper, 1997) and the CCC algorithm (Silverstein

et al., 2000); both of which can only identify local features of the underlying BN if they exhibit

certain special structural properties.
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In Tsamardinos et al. (2003c), the authors describes the first algorithm that could learn a local

BN region of arbitrary size; their algorithm returns the BN skeleton in a radius d edges around

a target or “seed” node. This method was shown to reconstruct skeletal regions from a network

of 10,000 variables and was the first to scale to domains of such dimensionality. A similar general

methodology has also been used to learn boolean networks (Hashimoto et al., 2004). In Peña et al.

(2005), a corrected version of the algorithm of Tsamardinos et al. (2003c) is used (the correction is

also found in Tsamardinos et al. (2006b)) to recursively grow out the skeleton region a given depth

then edge orientations are added to return an equivalence class. Also, Bai et al. (2008) learn and

orient the Markov Blanket for a target of interest. The purpose of this research is not to find the

“best” method for learning regions of a BN (if one could even proof such a method existed), but

to compare the two approaches (local vs. global) on this problem. Consequently, the focus of the

Chapter will be on the MMHC and RegionMMHC algorithms (although we include results with

Pena’s AlgorithmGPC as additional comparison).

IV.3 Learning Regions of Bayesian Network

The main problem examined in this research is that of learning a local region RG(T, d) of a BN

〈G, P 〉, given T , d and statistical data D following the joint distribution P of the network (in other

words the data-generating graph G is unknown or the problem would be trivial). Since there may

be numerous graphs G such that 〈G, P 〉 is a Bayesian network the above problem is not well-defined.

Several definitions are possible for the problem of learning G or RG(T, d) from the data, giving

preferences to inducing different structures. Here, we adapt Neapolitan (2003), pp. 533 to define

the problem as follows:

Definition IV.8. Let P be a faithful distribution and D a statistical sample following P . The

problem of learning the structure of a region with nodes of at most distance d from T given D is to

induce RG(T, d) where 〈G, P 〉 is a faithful Bayesian network.

We now present the global and the local approach for solving the above problem. In the global

approach a BN learning algorithm reconstructs from the data D a complete BN 〈G, P 〉. Subsequently,
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with the graph G given, the region RG(T, d) is extracted using simple graph operations. In the local

approach, the region is found considering only the subset of variables identified to belonging to the

region. In this Chapter, the two approaches use the same base algorithmic foundation, which aids

in their comparison. This base algorithm, Max-Min Parents and Children, is discussed followed by

the global and local approaches built upon this foundation.

IV.3.1 The Max-Min Parents and Children Algorithm

Max-Min Parents and Children (MMPC , first published in Tsamardinos et al. (2003c), with a

correction described in Tsamardinos et al. (2006b), a short description is presented here for self-

containment) is a local discovery algorithm. From the algorithm’s name, “Max-Min” refers to the

heuristic used in the algorithm while “Parents and Children” refers to the algorithm’s output. A

few notational conventions are as follows: the set of parents and children of a node T in a graph G is

denoted as PCG
T , the parents of T in G is denoted as PaG

T . In two faithful Bayesian networks (to the

same distribution), 〈G, P 〉 and 〈G′, P 〉, then any variable T has the property PCG
T = PCG′

T (Verma &

Pearl, 1990, 1991; Tsamardinos et al., 2003d). In other words, the set of parents and children of T is

unique among the Bayesian networks faithful to the same distribution. Consequently, the superscript

is dropped and the parents and children set is denoted as PCT . For example, PCT = {A,B,C} in

the network in Figure IV-1.

MMPC is shown given a target variable, T , and observational data, D, to return PCT if there

is a graph faithful to the data distribution and all statistical tests are reliable. Note, a variable may

be a child of T in one network and a parent in another network both of which are faithful to the

same distribution, e.g., X → T and X ← T . The set of parents and children remain the same, e.g.,

{X} is the PCT in both networks.

Running MMPC for a target node T is a method of identifying the edges into and out of T ,

without knowing the orientation of the edges. Assessing the results of invoking MMPC with all the

variables as targets, all edges in the network can be identified (this un-oriented network is referred

to as the skeleton of the network). Full reconstruction require the orientation of the edges; an
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Algorithm 5 MMPC Algorithm

1: procedure MMPC (T ,D)
Input: target variable T ; data D
Output: the parents and children of T in any Bayesian
network faithfully representing the data distribution
%Phase I: Forward

2: CPC = ∅
3: repeat

4: 〈F, assocF 〉 = MaxMinHeuristic(T ;CPC)
5: if assocF 6= 0 then

6: CPC = CPC ∪ F
7: end if

8: until CPC has not changed

%Phase II: Backward
9: for all X ∈ CPC do

10: if ∃S ⊆ CPC, s.t. Ind(X;T |S) then

11: CPC = CPC \ {X}
12: end if

13: end for

14: return CPC

15: end procedure

16: procedure MaxMinHeuristic(T ,CPC)
Input: target variable T ; subset of variables CPC

Output: the maximum over all variables of the minimum association with T relative to CPC,
and the variable that achieves the maximum

17: assocF = maxX∈V MinAssoc(X;T |CPC)
18: F = arg maxX∈V MinAssoc(X;T |CPC)
19: return 〈F, assocF 〉
20: end procedure

algorithm that completes the full reconstruction is the Max-Min Hill-Climbing (MMHC ) algorithm

and is discussed as part of the global approach for learning a region.

A simplified version of the algorithm we call MMPC is presented first for clarity. MMPC may

return false positives depending on the structure, i.e., it may return a superset of PCT . The complete

and sound MMPC is a simple extension of this base algorithm.

The simplified algorithm is shown in Algorithm 5. MMPC makes use of functions for indepen-

dence tests, IndP (X;T |Z), and measures of association, Assoc(X;T |Z). The function IndP (X;T |Z)

uses a statistical test on the training data, D2, to estimate and return the values true if X and T

are conditionally independent given Z. The function Assoc(X;T |Z) estimates the strength of the

2For simplicity of notation, D is omitted from the parameter list of all functions that use the data.
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association between X and T given Z. The following assumption is made relating the two functions,

IndP (X;T |Z) ⇔ (Assoc(X;T |Z) = 0). Finally, the function MinAssoc(X;T |Z) is defined as the

minimum association between X and T considering all subsets of Z.

From Theorem IV.1, the identification of a subset Z such that IndP (X;T |Z) results in the

knowledge of no edge existing between X and T in the learned graph. MMPC makes use of this

property to try to quickly identify the conditioning set Z that results in the independence relationship

between variables X and T , proving X 6∈ PCT .

The algorithm MMPC discovers PCT with a two-phase design. In the first (forward) phase, a

candidate PCT , CPC, is created with variables entering sequentially via a heuristic function. The

Max-Min heuristics function selects the variables that maximizes the minimum association with T

relative to CPC. The intuition behind the heuristic is the variable that despite all efforts, condi-

tioning upon all subsets of CPC, continues to be strongly associated with the target T should be

selected. The Max-Min heuristic is admissible; all variables adjacent to T , i.e., with an edge to of

from T , and possibly additional variables will enter CPC. The first phase is completed once the

remaining variables are found independent of T by a subset of CPC.

The second (backward) phase aims to remove any false positives that may have entered the

CPC. Each variable, X, in CPC is tested for a subset S ⊆ CPC such that IndP (X;T |S) holds,

therefore X can be removed from CPC. The search over all subsets at lines 10, 17, and 18 on the

algorithm is in practice bounded by the available sample.

The output of MMPC will include all members of PCT in its output assuming faithfulness.

However, MMPC may return false positives in certain cases. Since the relation PC should be

symmetric, a break of symmetry in the output of the algorithm is an indication of a false positive

member. MMPC in Algorithm 6 checks whether T ∈ MMPC (X,D) for all X ∈ MMPC (T,D); if

this is not the case it removes X from its output. MMPC is theoretically sound and will return PCT

when the sample is adequate for no errors to occur in the tests of independence and the network is

faithful (Tsamardinos et al., 2006b).
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Algorithm 6 MMPC Algorithm

procedure MMPC(T ,D)
CPC = MMPC (T,D)
for every variable X ∈ CPC do

if T 6∈ MMPC (X,D) then

CPC = CPC \X
end if

end for

return CPC

end procedure

Algorithm 7 MMHC Algorithm

1: procedure MMHC(D, T, d)
Input: data D, target node T , distance d
Output: RG(T, d)
% Restrict

2: for every variable X ∈ V do

3: PCX = MMPC(X,D)
4: end for

% Search
5: Starting from an empty graph perform Greedy Hill-Climbing with operators add-edge, delete-

edge, reverse-edge. Only try operator add-edge Y → X if Y ∈ PCX .
6: Let G be the highest scoring DAG found
7: Extract and return region RG(T, d)
8: end procedure

IV.3.2 Global Structure Learning

Any algorithm for learning BNs, such as PC (Spirtes et al., 1990), TPDA (Cheng et al., 2002),

OR (Moore & Wong, 2003), GES (Chickering, 2002), among others, can be used in conjunction

with pruning to address the learning regions problem. However, most of the general BN learning

algorithms cannot be easily adapted to learn the region, without first inducing the complete graph. A

recent BN learning algorithm called the Max-Min Hill-Climbing (MMHC ) algorithm (Tsamardinos

et al. 2006b, Algorithm 7) is shown to be (a) one of the most competitive algorithms for learning

BNs in extensive studies against a plethora of other state-of-the-art algorithms and (b) easily and

naturally adapted for local learning of BN regions. By use of the global and local versions of the

algorithm we can compare the two approaches and identify their respective strengths, since the

underlying learning mechanisms are similar.

Algorithm 7 presents the MMHC algorithm (adapted to return a region). It takes as input a

data set, D, a target T and a distance d, learns a network G from the data D, and returns the
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Figure IV-2: Finding a region using the global approach and MMHC : (a) the original graph to be
learned, (b) the graph actually learned by MMHC (with finite sample), (c) the region extracted
from the global graph, about node T up to distance 2.

region RG(T, d). MMHC uses the parents and children sets returned for each variable to restrict the

search space of a search-and-score procedure. Specifically, a greedy hill-climbing search extended

with a TABU list starting from the empty network is run. The search using operators of adding,

deleting, and reversing an edge is restricted to only considering adding an edge Y → X if Y ∈ PCX .

Once the complete network is induced from the data, the region RG(T, d) is extracted using graph

operations only and returned. An example of using MMHC is in Figure IV-2.

The data-generating graph structure (labeled true graph) is shown in Figure IV-2(a). The highest

scoring DAG (from line 6 of the MMHC Algorithm 7) is shown in (b). Finally, the extracted region

about T with depth 2 is illustrated in (c). This example displays a potential negative consequence

to the global approach for learning a region, with errors propagating and compounding in regions

of increasing depths (please note, local approaches have no guarantees on also not committing the

same errors). An error in creating the learned graph (i.e, missing the edge T → C) can propagate

greater depths when extracting a region. The missing edge is at depth 1, but when the region to

depth 2 is extracted three edges are now missing (T → C, C → E, and C → F ).

IV.3.3 Local Structure Learning

The new algorithm, RegionMMHC , is an extension of MMHC to learn the region of a BN around

a target node T . RegionMMHC takes as its inputs a data set D, a target node T , and a depth d.
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Algorithm 8 RegionMMHC Algorithm

1: procedure RegionMMHC(D, T , d)
Input: data D, target node T , distance d
Output: RG(T, d)
% Restrict

2: nodes0 = T , i = 1
3: while i ≤ d + 1 do

4: for every variable X ∈ nodesi−1 do

5: PCX = MMPC(X,D)
6: nodesi = nodesi ∪ PCX

7: end for

8: i = i + 1
9: end while

% Search
10: Starting from an empty graph perform Greedy Hill-Climbing with operators add-edge, delete-

edge, reverse-edge. Only try operator add-edge Y → X if Y ∈ PCX .
11: DAG = the highest scoring DAG found, pruned around T to depth of d.
12: Return DAG
13: end procedure

Similarly to MMHC , RegionMMHC also uses MMPC to create candidate parents sets to restrict

the search-and-score procedure.

In detail, the algorithm begins with discovering the parents and children of the target node,

PCT . The members of PCT are the variables at depth 1, nodes1. For each member of the set,

X ∈ nodes1, the parents and children of the variable are found, PCX . These variables are added to

the set nodes2, the variables at depth 2. This continues recursively, for every variable Y ∈ nodesi−1,

the parents and children set of the variable are found PCY and the members are added to the set

of nodes at depth i, nodesi = nodesi ∪PCY . This process continues out to a depth of d + 1.

The greedy search procedure is started to orient and find the highest scoring network. The same

search procedure as in MMHC is run except the variables are limited to totalnodes =
⋃

i nodesi.

The highest scoring DAG is returned and the region can be found by pruning back to the given

depth d.

In finding a region of depth d, note that the RegionMMHC algorithm runs the local learning and

the search-and-score procedure to depth d + 1. The reason for this choice is the following: let X

and Y be two top (minimal) nodes in the region with no edge to each other, i.e., two nodes with no

parents within the region. If there is a common ancestor Z of both X and Y then the two variables

are d-connected though a path X ← . . . ← Z → . . . → Y and thus dependent. The only subsets
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that would render X and Y conditionally independent include ancestors of X and Y that are not in

the region. Thus, MMPC will fail to identify a d-separating subset and will assume there is an edge

between X and Y . This would severely impair the accuracy of the reconstruction of the region by

introducing several false positive edges: all pairs of nodes of the region that are connected through

ancestors in the original graph would be connected by an edge.

IV.4 A Theoretical Comparison: Global vs Local

In the global approach, we first learn the skeleton of the graph, then orient all the edges3 and

finally, we extract the region of interest. In the local approach, we learn the skeleton of the region

(to depth d+1) and orient the edges of the region only.

In terms of the efficiency of the two approaches, what are the expected differences between the

two methods? First consider just the construction of the network (or region) skeleton, ignoring the

search-and-score orientation portion of the algorithms. The performance of the two methods can be

compared by the number of conditional independence tests and association calculations. A single

operation of MMPC for a target will calculated the association of every variable with the target

conditioned on all subsets of CPC (in the worst case) (Tsamardinos et al., 2006b). The number

of tests is bounded by O(|V| · 2|CPC|). In the global approach, identifying the network skeleton

requires calling MMPC with all targets. By caching the calls to MMPC the overall cost is bounded

by O(|V|2 · 2|CPC|) in the worst case (|CPC| is the maximum found over all variables). The local

approach is bounded by O(|R| · |V| · 2|CPC|), where |R| is the number of variables in the region (the

term |CPC| is the maximum found within variables of the region). Note, in practice the size of the

conditioning sets is limited by the available sample.

The relative difference between the two approaches can be more closely examined under the

following two assumptions: first, the maximum size of the CPC used in both approaches is approxi-

mately the same and second, the upper bounds are tight. With those assumptions, the relative time

efficiency ( local / global ) is expected to be ≈ |R|
|V| . That is to say the relative time of the local

technique to the global technique is proportional to the size of the region discovered.

3Notice, that the hill-climbing search-and-score phase is allowed to remove some of the edges found.
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In terms of quality of the regions structure produced by both approaches, the global approach has

available to it all edges of the network to decide their orientation, while the local one has a myopic

view of the network structure to use for orientation. The global approach can both be helped and

hindered by information propagated to the region by inferences made at parts of the network at an

arbitrarily distance from T . An example is shown in Figure IV-3. Suppose that the true network is

the one shown in Figure IV-3(b) and contains a collider at distance d from the target that can be

used to orient all edges in the network4. The local approach will not be able to make this inference,

unless it reconstructs the complete network at distance d+1 from T . In particular, it will not be able

to differentiate between the structures in Figure IV-3(a). Note that the distance d can be arbitrarily

near or far from T .

Alternatively, if node C in the figure is mistaken for a collider by the global approach, this error

will be propagated to the rest of the network. Such errors can occur both because of the greedy

nature of the hill-climbing algorithm trapped in local minima and often, because of false positives

and negatives in the independence and associations tests, or statistical fluctuations of the score used

in the search-and-score greedy search due to finite available sample.

Thus, in the global approach, orientations of the edges in the local region are the result of a

compound of inferences made not only locally, by propagated from all parts of the network. Since

greedy search in MMHC is allowed to also remove edges, the reconstructed skeleton, and not just

the orientations, of the region is affected by global inferences. It is currently unknown, whether in

typical networks, distributions, and learning problems, global inferences are a positive, negative, or

negligible influence on the average and so, whether locally restricting learning will impair, improve,

or not affect (respectively) learning. The empirical investigation of this question is the subject of

the next section.

4See the PC algorithm (Spirtes et al., 1990) for a set of sound edge-orientation rules that will allow these orientations
to be inferred given enough sample. The greedy search-and-score with Bayesian scoring will also provide the same
orientations.
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Figure IV-3: Intuition into learning out to depth d + 1. (a) Algorithm runs only to depth d (b)
Algorithm runs to depth d + 1.

IV.5 Experimental Evaluation

The subsequent experiments were run with implementations of Max-Min Hill-Climbing (MM-

HC ) and RegionMMHC in Matlab 6.5. Both algorithms used the standard 5% statistical threshold

for tests of independence. The search-and-score procedure used BDeu scoring with the equivalent

sample size of 10. The computations were run on Pentium Xeons, 2.4GHz with 2GB RAM running

Linux.

The networks used in evaluating the algorithms consist of real or tiled networks and random

BNs. The real BNs used are decision support BNs commonly cited in the literature: namely, Alarm

(Beinlich et al., 1989) and Pigs (Jensen, 1997). In addition tiled networks were created using a base

of the Alarm, Hailfinder (Abramson et al., 1996), and Insurance (Binder et al., 1997) networks.

The tiled networks are created by tiling several copies of a smaller BN together where the tiling is

performed in such a way that the structural and probabilistic properties of the original network

are maintained (Tsamardinos et al., 2006a). The tiled networks used in the evaluation Alarm10,

Hail5 and Ins10 (where the number denotes the number of tiles). The network selection criteria

was made to choose networks from a wide range of disciplines, with varying network properties, and

consisting of several hundreds of variables (this problem size was selected in that it was not too small

as to become a trivial problem, where exact solutions may be applied, but not too large a problem
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Table IV-1: Characteristics of the Bayesian networks used in the evaluation: number of variables,
number of edges, maximum and minimum domain values for the variables, and diameter of the graph
(the greatest distance between any pair of nodes).

Num. Num. Domain Graph

Network Vars Edges Range Diameter

Alarm 37 46 2 - 4 12

Ins10 270 556 2 - 5 12

Hail5 280 458 2 - 11 10

Alarm10 370 570 2 - 4 15

Pigs 441 592 3 19

RN50 50 138 2 - 3 5

RN100 100 284 2 - 3 6

RN500 500 1497 2 - 3 7

where the computational time becomes prohibitive in a thorough evaluation). Note, Alarm is an

exception to the final criteria and was included as a baseline comparison.

Additionally, several random BNs were created with 50, 100, and 500 variables. The networks

were created with a maximum fan-in of 5 (the exact number of parents for a given node is sampled

from a discrete uniform distribution). The variables were randomly selected to have a domain of

either 2 or 3. The random BNs were referenced by the number of variables, i.e., RN50 is the random

network with 50 variables. The characteristic properties of these networks used in the evaluation

are given in Table IV-1. Also, a larger random BNs was created with 100,000 variables in order to

illustrate the scalability of new technique.

The training data sets were generated from the networks above with sample sizes (SS) of 500,

1000, and 5000. Five data sets were created for each sample size; the results then were averaged

across the five samplings.

IV.5.1 Results of Evaluation

MMHC , referred to in the results tables as the global approach, was run for each sample size and

network’s five different data set samplings. RegionMMHC , referred to in the results tables as the
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local approach, was run for each sample size and network on 10 randomly chosen target variables,

each for depths of 1, 2, 3, 4, and 5 for the five different samplings.

Table IV-2: Execution Time Results for the local and global approaches. The global method’s
execution time is averaged over the 5 data samples and given for each network and sample size (the
extraction of the region is dominated by learning the complete network therefore, the global time
remains the same for each depth of region and is reported once). The local method execution time is
averaged over the 5 data samples and the 10 random target nodes for each network and sample size.
The relative execution time (local / global) is then reported for each network, sample size, and depth
of region. The local method is statistically significantly faster than the global method (calculated
using permutation testing) at a 0.05 level in all cases except for RN100 with 5000 samples at depths
of 3, 4, and 5 indicated with †.

Global Relative Time (Local / Global)

Data SS Time (sec) d=1 d=2 d=3 d=4 d=5

Alarm 500 6.86 30.8% 40.4% 48.1% 59.0% 70.0%

Alarm 1000 8.90 28.8% 42.1% 53.5% 68.2% 82.7%

Alarm 5000 23.26 26.8% 42.0% 57.0% 73.6% 86.0%

Ins10 500 385.94 2.7% 4.5% 6.6% 9.2% 12.4%

Ins10 1000 610.62 2.8% 4.6% 6.3% 8.4% 10.7%

Ins10 5000 1529.38 4.0% 6.5% 10.0% 14.5% 20.5%

Alarm10 500 829.74 1.1% 2.0% 3.2% 4.5% 6.3%

Alarm10 1000 1026.06 1.4% 2.5% 3.9% 5.6% 7.8%

Alarm10 5000 1702.34 1.8% 3.5% 5.9% 9.2% 13.7%

Hail5 500 685.37 12.7% 31.0% 53.6% 69.4% 80.3%

Hail5 1000 1058.09 7.7% 15.6% 25.2% 37.3% 49.3%

Hail5 5000 4725.03 9.9% 14.9% 28.8% 49.7% 74.5%

Pigs 500 1710.44 4.6% 9.5% 19.9% 32.0% 47.0%

Pigs 1000 2029.42 7.1% 12.9% 26.8% 39.1% 54.3%

Pigs 5000 76753.42 28.5% 40.0% 76.6% 87.1% 97.6%

RN50 500 36.44 6.7% 13.5% 23.3% 35.2% 46.9%

RN50 1000 51.82 10.1% 22.9% 41.3% 59.9% 73.4%

RN50 5000 386.59 19.4% 48.6% 78.4% 90.6% 93.8%

RN100 500 13.77 17.0% 27.8% 40.9% 51.8% 58.7%

RN100 1000 14.78 24.2% 44.9% 66.3% 79.5% 86.9%

RN100 5000 75.64 46.1% 78.2% 95.2%† 99.8%† 99.9%†
RN500 500 1028.94 1.0% 1.8% 3.3% 5.6% 8.9%

RN500 1000 1072.09 1.4% 3.1% 6.8% 13.9% 26.5%

RN500 5000 3612.14 2.9% 11.6% 28.9% 56.1% 79.4%

Time Results

First, the two methods for discovering a region of a BN are compared in terms of execution

time. The global results are calculated as the mean execution time for each network and sample

size averaged over the five sampled data sets. Note, the global procedure uses the same time result
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for each target node and depth of region because the time to extract the region from the global

network is dominated by the time to learn the complete BN. The local results are calculated as the

mean execution time for each network, sample size, and depth averaged over the 10 randomly chosen

target variables and the 5 sampled data sets. The overall timing results for the evaluation networks

are presented in Table IV-2. For each network and sample size the global execution time is given.

In addition, the relative execution time (local / global) is presented for each depth, d = 1, 2, 3, 4,

and 5.

The reduction in execution time ranges from RegionMMHC taking 1.0% of the time that MMHC

does on RN500 with a sample size of 500 and depth of 1, to almost no reduction in time for RN100

with a sample size of 5000 and depth of 5. The Alarm10 network is shown to have the greatest

time savings for all sample sizes. The local method is statistically significantly faster than the global

method at a 0.05 level in all cases except for RN100 with 5000 samples at depths of 3, 4, and 5

(calculated using permutation testing) indicated with † in the Table IV-2. The experimental results

confirm the natural intuition that as the depth of the region increases the time savings for using the

local procedure versus the global approach is eroded, this is illustrated in Figure IV-4. Figure IV-4

plots the relative time averaged over the data set samplings, target nodes, and sample size (SS) for

each of the networks.

The reduction of execution time varies widely between network and depth of the region. Much

of the variation can be explained by the number of variables considered in learning the region

(the number of variables found in the restrict step of RegionMMHC ). Recall from the theoretical

exploration of the two techniques, that under a few assumptions the relative time (local / global)

of the techniques for learning the skeletons should be approximately the proportion of the entire

network the region encompasses, ≈ |R|
|V| . Figure IV-5 explores this relationship by plotting the relative

number of nodes that are considered in reconstructing the region, |R|
|V| , versus the relative time spent

building the skeleton of the graph (this does not include the time orienting the graph). The points

plotted for increasing time and nodes considered represent increasing region depths. This figure
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Figure IV-4: The relative execution time (local / global) averaged over data set samplings, target
nodes, and sample size (SS) plotted for each network and region depth.

indicates an approximately linear relationship between the number of nodes and time in learning a

region as suggested in the theoretical comparison.

Each network in the evaluation has inherent properties that might make one “harder” to learn

than another. Figures IV-4 and IV-5 illustrate this point, where each network has different pattern

between the local and global techniques.

Quality of Reconstructed Region

In addition to the timing results of the two methods, the quality of the discovered regions must

be evaluated. For this evaluation, we use the metric of Structural Hamming Distance (SHD) as

a measure of quality (Tsamardinos et al., 2006b). The Structural Hamming Distance compares

the structure of the corresponding equivalence classes of the learned and original network regions.

Two networks in the same equivalence class capture the same independencies and dependencies;

consequently are statistically indistinguishable. The equivalence class is represented as a partially
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Figure IV-5: The relative number of nodes ( |R|
|V| ) is plotted versus the relative time (local / global) in

learning the skeleton of the region. The points are averaged over data set samplings, target nodes,
and sample size and plotted for each network and increasing depth.

directed acyclic graph and referred to as a DAG pattern. The DAG pattern is made up with

directed edges when all DAGs in the class agree on the orientation and undirected edges when the

orientation differs between the DAGs. The distance between the two DAG patterns is the number

of the following operators required to make the DAG patterns match: add or delete an undirected

edge, and add, remove, or reverse the orientation of a directed edge (see Tsamardinos et al. 2006b

for more details and use of this metric). Thus, an algorithm will be penalized by a score increase

of one for learning a DAG pattern with an extra un-oriented edge and by one for not orienting an

edge that should have been oriented. The reason for using a metric on DAG patterns is so we do

not penalize an algorithm for not differentiating between statistically indistinguishable orientations.

For the global approach and the original network, the graphs were first converted to the associated

DAG patterns then the region of interest around each of the 10 randomly chosen variables out to the

given depth is extracted from the DAG pattern for comparison. For the local approach, the DAG
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found by the search-and-score procedure before pruning (to depth d + 1) is converted to the DAG

pattern, then the region of depth d is extracted around each node of interest. The SHD is calculated

from the region’s DAG pattern. The results in terms of structural quality of the regions is shown in

Table IV-3. The values used to evaluate the two methods in Table IV-3 are the relative difference

between the local and global approach (calculated as local SHD- global SHD). The SHD ’s relative

difference for the extracted region for each network, sample size and depth is the difference between

the mean SHD of the local and global methods. For each the mean SHD is averaged over the 10

random target variables and the 5 sampled data sets. Note, the relative comparison between the two

methods is given as a difference, rather than a ratio as in the timing results presented above, because

for several cases specifically the Pigs network with 5000 sample the global approach reconstructs the

network perfectly. The exact reconstruction results in a SHD of 0.0 and the ratio diverges. When

the reported relative difference between the methods is negative then the local method resulted in

fewer errors and when positive the global approach had fewer errors.
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Table IV-3: Structural Quality Results for the local and global approaches. The local and global
structural quality is measured by Structural Hamming Distance (SHD). The global and local SHD
is averaged over the 5 data samples and 10 random target nodes. The relative quality of the two
approaches is given by the difference in SHD (local - global) and is reported for each network, sample
size and depth of region. A negative relative SHD indicates fewer errors by the local approach;
whereas, a positive relative SHD indicates fewer errors by the global approach. The local method is
found to differ significantly from the global approach only for Pigs at sample size 5000 for depths
3, 4, and 5 (using permutation testing and alpha = 0.05) indicated with the ‡.

Relative Quality (Local - Global)

Data SS d=1 d=2 d=3 d=4 d=5

Alarm 500 −0.34 −0.84 −0.10 1.20 −1.40

Alarm 1000 −0.12 −0.50 −1.14 −1.04 0.42

Alarm 5000 −0.24 −1.20 −0.50 0.12 0.24

Ins10 500 −0.08 −0.82 −0.48 −0.38 −1.06

Ins10 1000 −0.46 −1.50 −1.92 −1.64 −1.34

Ins10 5000 −0.40 −2.14 −3.16 −3.86 −5.40

Hail5 500 −0.08 −0.32 −0.44 −0.94 −0.72

Hail5 1000 −0.22 −0.28 −0.86 −1.36 −1.66

Hail5 5000 0.08 0.42 −0.76 0.56 1.18

Alarm10 500 −0.30 −0.64 −0.18 −0.50 −0.94

Alarm10 1000 −0.38 −1.14 −1.66 −2.32 −2.48

Alarm10 5000 −0.52 −1.32 −2.26 −1.54 −0.78

Pigs 500 0.00 0.00 0.34 1.26 2.18

Pigs 1000 0.00 0.06 0.24 1.96 6.52

Pigs 5000 0.00 0.12 0.16‡ 1.56‡ 3.70‡
RN50 500 −0.08 0.00 −0.86 −1.46 −1.44

RN50 1000 −0.10 −0.50 −1.88 −3.38 −3.26

RN50 5000 0.04 0.22 −0.06 −0.20 0.06

RN100 500 −0.32 −0.58 −1.06 −0.64 −0.58

RN100 1000 −0.30 −0.42 −0.66 −0.72 0.30

RN100 5000 −0.26 −0.10 −0.32 −0.20 0.00

RN500 500 −0.26 −0.18 −1.48 −4.54 −3.48

RN500 1000 −0.16 −0.08 −0.70 −1.08 −5.12

RN500 5000 −0.24 −0.30 0.14 −1.78 −4.56

From Table IV-3, in all but 28 of the 120 cases the local method has fewer errors than the

global methods (15 of those 28 cases are on the Pigs network where the global method performs

exceptionally well). Overall, the mean difference between the local and global approaches averaged

across all parameters is -0.46. The local methods is averaging fewer errors. Recall that the SHD

measure is increased by one for each additional, missing, or mis-directed edge, therefore intuitively

this difference represents less than one additional/missing edge on average. The greatest difference
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Figure IV-6: The relative structural quality of the learned regions (local - global) averaged over data
set samplings, target nodes, and sample size (SS) plotted for each network and depth of region.

in terms of quality performance is for the Pigs network (see Figure IV-6. MMHC learns the Pigs

network completely correctly for sample size of 5000, therefore all extracted regions are correctly

found as well. Additionally, for 1000 samples on the Pigs network MMHC learns the d = 1 correctly

for the 10 random target variables chosen. In terms of quality of the network region constructed the

local method is found to differ significantly from the global approach only for Pigs at sample size

5000 for depths 3, 4, and 5 (using permutation testing and alpha = 0.05).

IV.5.2 Results versus another Local Learning Method

In this section, we now compare our local approach to that of Peña’s AlgorithmGPC method

(Peña et al., 2005). This approach uses the same idea of recursive identification of the parent and

children set out to some depth d+1 before pruning and edge orientation. It is in this final step, that
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RegionMMHC and AlgorithmGPC differ. RegionMMHC uses PC-orient rules to identify collider

edges and orient edges. RegionMMHC returns a PDAG or the equivalence class of the region.

We ran RegionMMHC on the same data sets measuring the elapsed time and the quality of

the structure learned (because RegionMMHC return’s an equivalence class the SHD was calculated

directly from this structure). RegionMMHC used the standard 5% statistical threshold for tests of

independence. RegionMMHC is a windows executable of C++ code, the computations were run on

Pentium Xeon, 3.2GHz with 2GB RAM running Windows.

In general, AlgorithmGPC was more efficient when it completed the learning task. However,

there were several learning tasks that RegionMMHC did not complete its computation: Pigs with

5000 sample, Hail5 at all sample sizes, and RN500 at all sample sizes). Note, the comparison of

computation time between the two methods comes with several caveats: the two methods were run on

different machines with different hardware, with different operating systems, and different programs

(Matlab for RegionMMHC and compiled C++ for AlgorithmGPC ). A complete comparison of the

relative execution time of AlgorithmGPC over RegionMMHC is presented in Appendix C.I Table

C-1.

In terms of structural quality of the returned region, AlgorithmGPC had in general, more struc-

tural errors than RegionMMHC . The structural quality is variable depending on network, sample

size, and depth of region to be learned. Out of the 85 different cases (averaged over target nodes and

data set samples) where AlgorithmGPC completed, in only 9 cases did AlgorithmGPC have higher

structural quality. A complete comparison of the relative structural quality of RegionMMHC ’s SHD

- AlgorithmGPC ’s SHD is presented in Appendix C.I Table C-2.

IV.5.3 Learning Regions with 100,000 variables

A final feasibility study was included to show that RegionMMHC is able to scale to networks

with hundreds of thousands of variables. A random network with 100,000 variables was created in

the same manner as the other random networks. Five target nodes were selected randomly and a

region of depth, d = 3 was learned on a data set of 1000 samples. The average region consisting
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of 43 variables was found in 8426 seconds. Errors in finding the correct region were most often the

result of missing an edge in building the skeleton. Running MMHC on this size of network would

be extremely resource and computation expensive (as a comparison MMHC running on a random

network of 10,000 variables takes over 5 days of computing time).

Additionally, problems were created with 10,000, 25,000, 50,000, and 75,000 variables to examine

the behavior with increasing numbers of variables. Again, 5 random target nodes were selected and

regions of depth d = 3 were learned. The time to learn the region increased, as expected, with the

number of variables in approximately a linear relationship. The number of errors in the region also

increased with the number of variables.

IV.6 Discussion of Results

The proposed local method was compared to a state-of-the-art global BN learning algorithm in

terms of the time required to learn a region as well as the quality of the reconstruction. The local

method was found to be faster on average on all but one case out of 120 combinations of network,

sample size and depth. The average relative execution time for the local approach versus the global

approach was 12% ± 10%, 22% ± 16%, 34% ± 21%, 44% ± 25%, and 54% ± 27% for regions

of depth d = 1, 2, 3, 4, and 5 respectively. The computational gains are greatly affected by the

difficulty of the learning task, the connectivity of the network, the amount of sample given to the

learning procedure, and the depth of region to be learned (consequently the coverage in terms of

percentage of the entire network) . In the worst case, the local method reduces to the global method

(i.e., the region depth was large enough that approximately all of the variables in the network were

considered for the region).

Of interest is that the learned region of the local approach has comparable quality to the global

method. The quality of the region was better for the global approach only for the Pigs network

with 5000 samples where the global approach learned the network perfectly. In summary, the local

approach is able to achieve a speed-up in time while not (in general) reducing the quality of the
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Figure IV-7: Interpreting d-separations from Global Network and Regions: (a) shows a global
network graph and (b) shows the local region of depth d = 1 extracted from the global network.
The local region structure matches that of the global network however, the d-separations read from
the global network may not match those read from the region. For example, the global network has
A and B d-connected conditioned on the empty set while the local region has A and B d-separated
by the empty set.

region learned. These results suggest that the global viewpoint may not be needed for edge direction

using the search-and-score procedure.

The comparison between local and global learning of regions was performed with algorithms

both based on the same basic processes: the MMPC and search-and-score orientation methodolo-

gies. Consequently, the algorithms share many of the same assumptions and properties that aid in

comparing the two methods. However, this common algorithmic base restricts the generalization

of the results presented. The additional experimentation adds a comparison between the local ap-

proach (RegionMMHC ) and another method aimed at learning local structures (AlgorithmGPC ).

When considering RegionMMHC and AlgorithmGPC , the AlgorithmGPC method learns a region in

less time when the method completes however, for the larger networks and sample sizes the method

may not run. In terms of quality, the AlgorithmGPC method in general learns region of lower quality

then those of RegionMMHC .

IV.6.1 Future Work

The approach discussed aims to return the local subgraph of the Bayesian network. The infor-

mation drawn from the region should be interpreted with care. Consider the two networks shown in

Figure IV-7; Figure IV-7(a) shows the global network to consider and Figure IV-7(b) presents the
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Algorithm 9 RegionDsepMMHC Algorithm

1: procedure RegionDsepMMHC(D, T , d)
Input: data D, target node T , distance d
Output: RG(T, d)
% Restrict

2: nodes0 = T , i = 1
3: while i ≤ d + 1 do

4: for every variable X ∈ nodesi−1 do

5: PCX = MMPC(X,D)
6: nodesi = nodesi ∪ PCX

7: end for

8: i = i + 1
9: end while

10: D⌈+∞ = data set only involving variables at d + 1 level.
11: for every variable X ∈ nodesd+1 do

12: PCX = PCX∪ MMPC(X,Dd+1)
13: end for

% Search
14: Starting from an empty graph perform Greedy Hill-Climbing with operators add-edge, delete-

edge, reverse-edge. Only try operator add-edge Y → X if Y ∈ PCX .
15: DAG = the highest scoring DAG found, pruned around T to depth of d + 1.
16: Return DAG
17: end procedure

local region of depth d = 1 extracted from the global network. While the network structure remains

the same between the global structure and local region, the d-separations (or independences when

considering a faithful network) read from the global network may not match those read from the

local region in isolation. From the networks shown Figure IV-7(a) and (b), the global network has

A and B d-connected when conditioning on the empty set while the local region shows A and B

d-separated by the empty set.

This example illustrates that the d-separations read from the region graph are not guaranteed

to correspond to those of the global graph. The definition of a region could be adjusted so that

the d-separations read from the region graph correspond to those of the global graph. With this

definition, an alternative version of the RegionMMHC method could be designed to return this

graph (see method in Algorithm 9). This alternative method will return a region out to depth d + 1

however, d-separations should be considered for those variables up to depth d and variables at depth

d + 1 could only be considered in the conditioning set. Formally, the d-separation between any pair

of variables X and Y such that X,Y ∈ RG(T, d) of the region should be the same as the global

network when the variables at the d + 1 depth, Z = {z|z ∈ RG(T, d + 1) − RG(T, d)}, are included
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in the conditional set and represent all global variables outside of the region RG(T, d). In this

representation, d-separations should not be read from variables at the d + 1 depth, these variables

should only be used in a conditioning set.

Additional future work could focus on learning a different kind of region subgraph. The regions

described here are one of an infinite kind of subgraphs that could be learned. In the RegionMMHC

algorithm, variables are considered in a breadth-first, homogeneous expansion from the target, but

the method is not dependent on this mode of exploration. Modifying RegionMMHC to change how

the nodes are considered and expanded, can create many different algorithms that fit other desired

subgraph arrangements. Additionally, an interesting new avenue of research is the possible use of

techniques for combining local regions to form the complete global network.

IV.7 Conclusions

The emergence of extremely large data sets from a multitude of domains has exceeded the limits

of most traditional BN learning algorithms. New techniques are necessary for handling the needs

of these new data sets. In this Chapter, a new algorithm RegionMMHC for learning a region of

a Bayesian network is presented. The learned region encapsulates a subgraph around a node of

interest up to depth d. The results encourage future work in the area of learning local regions.
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CHAPTER V

A STRATEGY FOR MAKING PREDICTIONS UNDER MANIPULATION

The first Causality Challenge competition (WCCI 2008 Causality Challenge, 2008) posted several

causal discovery problems that require researchers to employ the full arsenal of state-of-the-art causal

discovery methods, while prompting the development of new ones. The focus of this challenge is on

predicting in the presence of manipulations performed by an external agent. The approach used the

formalism of Causal Bayesian Networks to model and induce causal relations and to make predictions

about the effects of the manipulation of the variables. Using state-of-the-art, under development, or

newly invented methods specifically for the purposes of the competition, the approach addressed the

following problems in turn in order to build and evaluate a model: (a) finding the Markov Blanket

of the target even under some non-faithfulness conditions (e.g., parity functions), (b) reducing the

problems to a size manageable by subsequent algorithms, (c) identifying and orienting the network

edges, (d) identifying causal edges (i.e., not confounded), and (e) selecting the causal Markov Blanket

of the target in the manipulated distribution. The results of the competition illustrate some of the

strengths and weaknesses of the state-of-the-art of causal discovery methods and point to new

directions in the field. An implementation of our approach is available at http://www.dsl-lab.org

for use by other researchers.

V.1 Introduction

A principled submission to the first Causality Challenge tasks was developed (WCCI 2008 Causal-

ity Challenge, 2008). This publicly available challenge a part of the 2008 IEEE World Congress on

Computational Intelligence (WCCI 2008) had over 1400 submission by more than 30 teams. This

challenge focused on making predictions in the presence of manipulations. When a variable is ma-

nipulated it is in a sense disconnected from its causes and consequently its predictive power may be

affected. Methods should take into account the effect of the manipulations in developing predictive
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models. However, many variable selection algorithms do not discover the cause-effect relationships

between variables and the target. In an observational setting where the training and testing sets

are obtained from the same “natural” distribution, the underlying mechanism is not required. In

the challenge, the training and test sets are not necessarily identically distributed. The training set

comes from the “natural” distribution, while different versions of the test set are used drawn from

the “natural distribution” and other manipulated distributions.

In order to optimally predict the effects of manipulations on a system, one needs to induce

a subset of the causal relations among the parts of the system. Three key characteristics of the

challenge data sets led to the choice of Causal Bayesian Networks (CBN) as the formalism to model

and induce causal relations and to make predictions about the effects of the manipulation of the

variables: the data contain cross-sectional measurements, the generating causal models contain no

feedback loops, and the definition of causality is stochastic. A CBN is a Bayesian Network where

the edges have the additional semantics that they correspond to direct causal relations. Thus, a

first major assumption in the analyses is that there exists a CBN that can represent the probability

distribution of the data. This in turn implies assuming the Causal Markov Condition holds: every

node X is probabilistically independent of its non-causal effects conditioned on its direct causes. An

example of a graph of a CBN is shown in Figure V-1(a).

V.1.1 Theory for Making Predictions Under Manipulation

We will denote the variable to predict with the letter T (target). Let us denote the set of variables

as V that is partitioned into observed variables included in the data O, and unobserved variables H.

Single variables are denoted with capital letters or with Vi where i is an index and sets of variables

with bold capital letters. Let M denote the set of manipulated variables. For the challenge it is

assumed that M ⊆ O, i.e., there are no manipulated unobserved variables. We will denote with

PM(V) the joint probability distribution of variables V when the set of manipulated variables is M.

There were three different types of tasks in the competition, each requiring a different approach,

that we now explain.
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Figure V-1: Causal Bayesian Networks: The unmanipulated CBN graph, G∅, and CBN graph G{S}

where S is manipulated, are depicted in (a) and (b). In (c), a network with a hidden variables H1
causing both B and T , H2 causing both D and Q, and dashed edges (when the marginal over the
observed variables, O, is considered) is shown.

Predictions under no manipulation

For this type of task, one could first estimate P∅(T |V \ {T}). The estimation may be difficult

and unreliable if the size of V is large. A Markov Blanket of T , MB∅(T ), for distribution P∅, is

defined as a minimal set such that P∅(T |V\{T}) = P∅(T |MB∅(T )). In other words, a Markov Blanket

contains the required information for optimal prediction of T , thus rendering the remaining variables

superfluous and is the solution to the variable selection problem under some general conditions

(Tsamardinos & Aliferis, 2003). Notice that in a CBN (by definition a minimal I-map, Pearl 1988),

a MB∅(T ) corresponds to the parents, children, and spouses of T in the graph (Pearl, 1988, Sec.

3.3, Corollary 6). Based on the above, the approach for this task was to identify a Markov Blanket

of T , MB∅(T ) then learn a predictive model using only these variables.

Predictions under known manipulations

In this case, we assume that there is a known subset of variables M ⊆ O that are being effectively

manipulated, i.e., their values are completely determined by the external agent, that we model with

variable E. As in a typical supervised learning setting, one could attempt to learn a model for

PM(T |V \ {T}). According to Pearl (2000) and Spirtes et al. (2000), the joint distribution can be

factorized as

PM(V) =
∏

Vi∈V\M

P∅(Vi|Pa(Vi)) ·
∏

Vi∈M

PM(Vi|E)
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where Pa(Vi) are the parents (direct causes) of Vi and PM(Vi|E) the manipulated distribution of

a variable. From PM(V) one could obtain PM(T |V \ {T}) and solve the problem. However, this

approach requires knowledge of the distributions of the manipulated variables PM(Vi|E) that is

not provided; in addition, it requires fitting the complete joint distribution of the variables that is

computationally inefficient and prone to statistical errors.

Alternatively, we employ the concept of the Markov Blanket, to instead learn a model for

PM(T |MBM(T )). If the causal graph is known, the MBM(T ) can be identified from it as follows.

Let G∅ and GM be the CBN graphs of the unmanipulated and manipulated distribution respectively.

From Pearl (2000) and Spirtes et al. (2000), GM results from G∅ by removing the direct causes of

every variable Vi∈M and replacing them with an edge from an external agent performing the ma-

nipulations, E. An example is shown in Figures V-1(a-b) for M={S}. Intuitively, this is justified

by the fact that the manipulated variables have no other causal dependence but with the external

agent. Thus, MBM(T ) is a subset of MB∅(T ) with manipulated children and their corresponding

spouses removed (if a node is a spouse via multiple children, it is removed only if all of them are

manipulated). Even if MBM(T ) is known, PM(T |MBM(T )) should be induced from observational

data following P∅. We now present the following theorem stemming again from the more general

theory of probability invariance under manipulations by Spirtes et al. (2000) (proof in Appendix

D.I):

Theorem V.1. Let 〈G∅, P∅〉 be a CBN and 〈GM, PM〉 be the resulting CBN under manipulations

of variables in M. Suppose that T 6∈ M and also that there is no manipulated child C of T in G∅

with a descendant D in G∅ that is also in MBM(T ). Then,

PM(T |MBM(T )) = P∅(T |MBM(T )).

In other words, when the theorem holds, we can learn an optimal model for predicting T in the

manipulated distribution by learning P∅(T |MBM(T )) from data sampled from the unmanipulated

distribution. The latter of course requires knowledge of MBM(T ) which is a subset of MB∅(T ). When

the theorem does not hold, then predicting T using P∅(T |MBM(T )) is not theoretically guaranteed
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to be optimal; however, the condition of the theorem is relatively strict and it is expected that it

often holds in practice (of course, this claim requires further evaluation).

Notice the condition regarding the existence of a manipulated child of T and its descendant

D ∈ MBM(T ) is important. Consider the network in Figure V-1(a), where the condition does not

hold when S is manipulated, and the resulting network V-1(b). Then, we have:

P∅(T |MBM(T )) =
P∅(T ) · P∅(S|T ) · P∅(C|S, T )
∑

t P∅(t) · P∅(S|t) · P∅(C|S, t)

PM(T |MBM(T )) =
PM(T ) · PM(do(S)) · PM(C|S, T )
∑

t PM(t) · PM(do(S)) · PM(C|S, t)

=
P∅(T ) · PM(do(S)) · P∅(C|S, T )
∑

t P∅(t) · PM(do(S)) · P∅(C|S, t)
,

where P (do(S)) follows Pearl’s nomenclature denoting the probability of S being manipulated to

obtain a specific value and if V is not manipulated then PM(V |Pa(V )) = P∅(V |Pa(V )) (see Pearl

2000 for explanation and discussion). In general the top quantity takes different values from the

bottom one; when the theorem does not hold, we could still fit a model from the observational data

and use it in the manipulated distribution, if information about the distribution of the manipulations

is provided.

From the above discussion, to identify MBM(T ) one needs to know both MB∅(T ) and the edge

orientation in that graph neighborhood. So, we first attempt to learn the causal network from the

training data and then derive MBM(T ) by deleting the appropriate edges. There are two potential

problems with this approach, even if the network is induced perfectly. First, there may be several

statistically indistinguishable networks that fit the data equally well. For example, the models

T →X and T ←X are indistinguishable with the P∅ distribution. We do not have a solution to this

problem, which implies that some manipulated children of T may be falsely included in MBM(T ).

The second problem with inducing MBM(T ) is the existence of hidden variables H. The induced

networks regard the marginal distribution over variables in O. In Figure V-1(c) an example is shown,
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where H= {H1,H2} and the dashed edges appear in the network capturing the marginal over O.

True causal parents and spouses (A and S) belong in MBM(T ) even when they are manipulated,

but confounded parents and spouses (B and Q) should be removed when manipulated. In Section

V.2.5 we present newly developed methods to address this issue.

For this type of task, our general strategy was to first learn MB∅(T ), then orient the edges in that

neighborhood to identify a candidate MBM(T ); subsequently, evidence about possible confounding

is obtained to further remove variables if necessary (details are described in Section V.2.5). Finally,

a predictive model using only the variables in the estimated MBM(T ) was learned.

Predictions under unknown manipulations

For these tasks, the set M of manipulated variables is unknown. The only nodes that always

belong in MBM(T ) for any M ⊆ O are the parents of T . Thus, the safest bet for avoiding to include

irrelevant or even misleading variables (depending on the sort of manipulations) in predicting T is

to build a model P∅(T |Pa(T )), where Pa(T ) are the (non-confounded) parents (direct causes) of T .

V.2 General Steps of the Strategy

In order to identify the Markov Blankets to build the predictive models, several different algo-

rithms were used in our procedure. Figure V-2 summarizes the general approach followed while the

subsequent sections (noted in the figure) describe the process in more detail. The first step in our

strategy is to identify the MB∅(T ). If there are no manipulations in the test set distribution, an SVM

model is constructed using the variables in MB∅(T ) (Section V.1.1). If there are manipulations, a

set of additional steps are taken to orient the edges in MB∅(T ) and identify non-confounded edges.

Combining all this information, a set of variables is selected, either MBM(T ) or the non-confounded

parents of T , depending on whether the manipulations are known or not, respectively (Section V.1.1

and Section V.1.1). The final set of variables is again used to construct an SVM model for predicting

the cases in the manipulated test set.

Our method is publicly available online at http://www.dsl-lab.org. In order to fully automate

the procedure, the released code has been modified from that used during the challenge. Wherever
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Sec. 2.2 Identify MB 
MMMB (Tsamardinos, et. al 2003), FSMB (novel), 

RFE (Guyon et. al 2002)

Sec. 2.3 Region of Interest Identification
MMPC recursively (Tsamardinos et al. 2006)

Sec. 2.4 Orient Edges
MMHC (Tsamardinos et al. 2006)

(Bach and Jordan 2004)

Sec. 2.5 Identify Non-Counfounded Edges

Sec. 2.1 Preprocess Data

novel method

Sec. 2.6 Combine Edge Information
novel method

Manipulations?

Yes

Sec. 2.6 

Select MBM(T)

Sec. 2.6 

Select Pa(T)

Known Manipulations?

Yes No

Sec. 2.7 Model Construction
SVM (Boser, Guyon, Vapnik 1992)

No

Figure V-2: Diagram illustrating the general steps of our method including the individual algorithms
used.

a difference between the competition and the released code exists, we note it in the text. The code

implementing the high-level strategy is released, although some of the employed algorithms are only

available as executable Matlab p-files.

V.2.1 Preprocessing

The data sets used in the challenge represented real world problems that required preprocessing

which was tailored for each data set. For the REGED data set each variable was normalized so its

mean was zero and standard deviation was one. For the SIDO data set, the variables were binary

and no preprocessing was performed. For the CINA data set, variables that were not binary were

treated as continuous and normalized as above; binary variables were all set to values of zero and

one. For the MARTI data set, the calibrant variables were used as an indication of the position-
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dependent noise on the chip. For each training example, we fitted a 2D cubic spline to the values

of the calibrants and then used the spline to obtain the correlated noise level at the chip location

of each variable. The estimated noise was then subtracted from the value of each variable for that

training sample.

V.2.2 Identifying MB∅(T )

Once the initial data sets have been preprocessed, the next step of our procedure was to identify

the MB∅(T ). Algorithms such as HITON and MMMB (Aliferis et al., 2003a; Tsamardinos et al.,

2003c; Aliferis et al., 2009a,b) rely on statistical tests of conditional independence. A basic assump-

tion of these and similar methods is that if a variable is a neighbor of the target, then it will have

a detectable pairwise association with the target. The general case of this assumption is that the

Faithfulness Condition (Spirtes et al., 2000) holds in the causal network. However, there were no

such guarantees in the problems of the competition. Thus, there could exist strong multivariate

associations with the target (e.g., parity functions) whose participating variables have no detectable

pairwise association with T . To address this problem we use our newly proposed algorithm called

Feature Space Markov Blanket, FSMB (Brown & Tsamardinos, 2008).

Feature Space Markov Blanket (FSMB)

The FSMB algorithm is described in detail in Chapter III, but a short description is presented

here. FSMB explicitly constructs a set of features, namely all the products among the variables

up to a given degree d. For two variables and d = 2, these are V1, V2, V 2
1 , V 2

2 and V1V2. It then

runs HITON to find the Markov Blanket of T in this feature space. While straight-forward, this

strategy does not scale up to data sets of practical sizes. A key idea in FSMB is to first learn an

SVM model using a polynomial kernel that implicitly maps to this feature space consisting of all

possible monomials up to a given degree d. We expect that if a feature is given a small absolute

weight by the SVM, then it probably has a small association with T and there is no need to compute

it and feed it to HITON. FSMB is enriched with a heuristic search to efficiently construct only the

top-weighted features of the SVM model, before passing them to HITON.
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This heuristic search procedure is now presented in more detail. The following standard SVM

notation is used in this section; let vk denote the predictor vector k in the data and tk ∈ {−1, 1}

denote its class. Assume the use of a trained soft-margin, 1-norm SVM with full polynomial (hetero-

geneous) kernel K(vk, vj) = Φ(vk) ·Φ(vj) = (vk ·vj +1)d, where d is the degree of the kernel and the

Lagrange multiplier vector is denoted a. The SVM model is stored as the Lagrange multipliers and

support vectors, rather than explicitly constructing the feature and weight vectors of the decision

function due to the large number of possible features.

In order to identify the top weighted-features without explicitly reconstructing the entire weight

vector, bounds on the weights are found and updated through the search and feature construction

process. Let si,j be the sum of squares of the weights of all features (monomials in polynomial-

kernel feature space) that involve variable i and are exactly of degree j. Then, similarly to the

corresponding result for the Recursive Feature Elimination (Guyon et al., 2002b) we can show that:

si,j =

(

d

j

) n
∑

k=1,l=1

akaltktl(H(vk, vl)−H(v
\i

k , v
\i

l ))

where v
\i

k denotes vector vk with the i component removed and H(vk, vl) = (vk ·vl)
j . Notice that si,j

is a bound on the square of the largest weight of any feature that can be constructed with variable

i having degree exactly j.

Let us call this bound bi,j and initially set it to si,j . We use this bound to heuristically select some

features Φq, for an indexing q of all features, to explicitly construct and calculate the corresponding

weight wq. We expect that the features with the largest weights probably increase the corresponding

bi,j ’s to which they contribute. So, we select the degree l of monomials exhibiting the largest bound

l = argmaxjbi,j and the variables Vi in that level with the largest bounds bi,l. For example, let us

assume that l = 2 and the variables V1 and V2 have the largest bounds b1,2 and b2,2. Then, we

explicitly construct the features V 2
1 , V1V2 and V 2

2 and calculate their corresponding weights using

the formula

wq =
n
∑

k=1

aktkΦq(vk).
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For example, if we denote with vr,z the value of the r-th training example for variable z, then the

weight corresponding to constructed feature V1V2 equals
∑n

k=1

√
2aktkvk,1vk,2. The weight wq of

each explicitly constructed feature is then subtracted from the corresponding bounds: bi,j = bi,j−w2
q .

Thus, bi,j always maintains the sum of the squared weights of the remaining features, not yet

constructed, involving variable i of degree exactly j. A stopping criterion can determine when the

bound on the remaining weights is small enough to stop the explicit calculation of the weights.

Preliminary experiments showing the time-efficiency and quality of the algorithm are presented in

Brown & Tsamardinos (2008) and Chapter III.7.

Implementation of Identifying MB∅(T )

The MMMB algorithm (using the χ2 test for conditional independence based on the G2 statistic

for discrete data and Fisher’s z-test for continuous or mixed data) was employed to obtain a first

approximation of the Markov Blanket (Tsamardinos et al., 2003c).

To estimate how good of an approximation we obtained, we employed other variable selection

algorithms and constructed models using all variable sets output (see Section V.2.7 for details on our

procedure of building and evaluating the models). Specifically, we build models using as variable sets

the output of MMMB, FSMB, RFE (Guyon et al. 2002b, run using the same kernel parameters as

FSMB) and all variables. If all sets exhibited similar predictive cross-validated performance (judged

manually), we accepted MMMB’s output as a good approximation of MB∅(T ). Otherwise the better

performance of RFE or FSMB, indicates important variables were missed and checked the output

of FSMB for additional variables participating in strong multivariate associations. If that was the

case, the interaction terms and constructed features were added as part of our Markov Blanket for

all subsequent steps to use1.

At this point, we considered that we have obtained a MB∅(T ) that could be used for optimal pre-

diction under no manipulation, and is a superset of the Causal Markov Blanket in any manipulated

distribution (plus false positives depending on the type of manipulations).

1In the released code, FSMB’s constructed features are always included in the Markov Blanket, if they contain
variables not participating in the output of MMMB.
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V.2.3 Reducing the Size of the Problem to a Region of Interest

The previous step identifies the participants in the MB∅(T ). However, the methods employed

do not indicate which variables are parents and which are children, i.e., the orientation of the edges

in the G∅. This is necessary to be able to filter out the manipulated children and their parents and

obtain MBM(T ). Unfortunately, many state-of-the-art methods for orientation are unable to run

on problems of the size of the tasks in the competition.

To overcome the efficiency problem, we attempted to reduce the size of the problems by identi-

fying the variables at most three edges away from T in G∅. Therefore, rather than learn the entire

global network, we focus on a smaller region engulfing the target variable. This type of learning

became possible with the invention of local causal structure-learning methods such as Grow-Shrink

(Margaritis & Thrun, 1999) and MMPC, where MMPC returns the parents and children of T in

a network G∅ (Tsamardinos et al., 2003c). The idea of learning regions (subgraphs) of arbitrary

size was first presented in Tsamardinos et al. (2003b). The variables in the region are identified

through recursive application of a local neighborhood identification method (MMPC using the de-

fault parameter settings, Fisher’s z test and χ2 test on continuous and discrete data respectively) in

a breadth-first search then, the graph is oriented as described in Section V.2.4.

Restricting our attention to a region may reduce the number of edges that can be oriented. That

is, it is possible for remote parts of the network to lead to orientation of edges close to or involving

T . Preliminary experiments (see Chapter IV) we have conducted however, indicate that in many

typical networks this effect is not severe and the edges in the region can be oriented as well as when

using the full network. The idea of reconstructing a region of interest of limited depth around T to

help orient the Markov Blanket edges has also appeared in Bai et al. (2008).

The choice of a region of depth three is explained thusly; implicitly (in search-and-score methods)

or explicitly (constraint-based methods) v-structures are crucial in orientation. A v-structure occurs

when the subgraph X→ T ← Z exist in the true unknown graph but the edge X−Z is not. To

determine from data that X−Z is absent we need to make sure that we have conditioned on a subset

of their parents. Thus, to identify a v-structure X→ T← Z we need the parents of X and Z that
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are two edges away from T . The method we present in Section V.2.2 requires v-structures among

the parents of T , thus forcing us to induce a region of depth three.

V.2.4 Identifying and Orienting Edges

In this step, we run standard Bayesian Network learning algorithms on the data projected on the

variables of the restricted region found in the previous step. For the case of binary data, MMHC with

the default parameter settings and a χ2 test was employed to find a high scoring network; in extensive

experimentation MMHC was deemed one of the best such learning algorithms (Tsamardinos et al.,

2006b). For the case of continuous or mixed data, the kernel generalized variance scoring metric of

Bach & Jordan (2002), with κ = 0.01 and σ = 1, was used with a greedy hill-climbing search to learn

the structure. In Bach & Jordan (2002), the variable distribution is assumed Gaussian in feature

space, mapped implicitly by a kernel function. This method is able to work on combinations of

discrete and continuous variables and performed well compared to other algorithms and approaches

targeting continuous or mixed data as shown in Fu (2005). The final structures were converted to

their corresponding PDAGs with the compelled edges identified. A compelled edge X→ T provides

evidence (under the Faithfulness Condition) that either X causes T , or (inclusive) X and T are

confounded by a hidden variable.

V.2.5 Dealing with Confounded Variables

To deal with hidden variables and identify confounded parents of T , or confounded spouses of T

we first tried the FCI algorithm (Spirtes et al., 2000). Unfortunately, FCI could not scale up even to

the reduced region found (FCI was run with version 4.3.9 of the Tetrad Project n.d.). It also failed

to run even when we input several constraints to make it more efficient and specifically, to constrain

the edges to the ones found by the previous step.

We then turned to the method of Mani et al. (2006) to identify a Y-structure involving a quadruple

of the variables; see Figure V-3(a) for such a structure. If a Y-structure faithfully captures the

marginal of the four variables, then edge C → D has to be causal, i.e., there can be no hidden
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Figure V-3: Four example networks to explain the Y-structure analysis.

confounder of C and D, as shown in Figure V-3(b). If Figure V-3(b) was the case, A and D would

be dependent given C and so their marginal would not faithful to Figure V-3(a). There is no causal

claim for the other two edges in the graph.

We found this idea interesting but did not apply the algorithm as given by Mani et al. (2006)

because the conditions to identify such a structure are restrictive (e.g., A and B need to be un-

conditionally independent). Instead, we extended the general idea to identify causal edges in more

general settings, where the pairs A and B, or A and D may be conditionally independent instead

of unconditionally, such as in Figure V-3(c) (this is mentioned as future work in Mani et al. 2006).

We proved (proof omitted for scope) and implemented a test based on the following proposition:

Proposition V.1. Let V = O ∪ H be a set of variables, O ∩ H = ∅; P (V) is faithful to a CBN

〈G,P 〉 and I(X;Y |Z) denotes independence of X and Y given the conditioning set Z and ¬I(X;Y |Z)

denotes dependence. For the distinct variables A,B,C,D ∈ O when the following conditions hold:

1. ∀S ⊆ O,¬I(A;C|S) 4. ∃Z1 ⊆ O, I(A;B|Z1)

2. ∀S ⊆ O,¬I(B;C|S) 5. ¬I(A;B|Z1 ∪ {C})

3. ∀S ⊆ O,¬I(D;C|S) 6. ∃Z2 ⊆ O, I(A;D|Z2) and C ∈ Z2

then, there is a causal path C → . . . → D in G, where the intermediate variables belong in H (are

hidden).

We call this set of conditions collectively the Y-test for the variables A, B, C, and D. In our

implementation, we apply the Y-test for every quadruple of distinct variables A,B,C,D in the
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region of interest around T 2. If all conditions (1) - (6) are satisfied then we considered the edge

C → D as causal and without possible confounding. We applied the Y-test only once per quadruple

of variables and reused cached results for improved efficiency as follows: If an edge A−C (ignoring the

direction) exists in the region of interest then ∀S ⊆ O,¬I(A;C|S), or MMPC would have discovered

a d-separating set for A and C. Thus, condition (1) of the proposition holds. Similarly, if the edges

B − C and C −D exist in the region of interest, the quadruple passes the first three conditions. If

the edges A−B and A−D are not in the region of interest, it implies that MMPC has discovered

subsets Z1 and Z2 that d-separate the two pairs of variables respectively: condition (4) and the first

part of (6) also hold. Condition (5) is checked with an additional test of independence, using the

specific Z1 found by MMPC when removing the edge A−B. Finally, it is checked whether C ∈ Z2,

the subset found by MMPC when removing the edge A−D.

Multiple applications of the Y-test for different quadruple of variables may provide conflicting

information for an edge C → D. We devised two weighting schemes to rank the strength of evidence

a single Y-test provides. First, a value was calculated as the minimum p-value returned by the

independence tests of conditions (4) and (6). Let this value be referred to as the p-score of the

Y-test. This value represents the closest the independence conditions (4) and (6) were to failing to

pass the threshold for accepting dependence. Second, a ratio of the BDeu score of the Y-structure

(including the nodes in the conditioning sets) to the BDeu score of an empty DAG was assessed.

In preliminary tests on known networks, the BDeu score metric was not consistently informative;

therefore, the p-score was used in further analysis.

V.2.6 Combining Information to Identify MBM(T )

We used the PDAG at the end of Section V.2.4 to obtain the orientation of some edges and the

method of Section V.2.5 to obtain both orientation and causal evidence for some edges, i.e,. that

they are non-confounded. The information from these two sources may be incomplete (some edges

are not oriented or could appear due to possible confounding phenomena) and conflicting. This

2In our actual implementation the symmetrical test for B, ∃Z3 ⊆ O, I(B; D|Z3) and C ∈ Z3 is also checked,
although theoretically not necessary.
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Figure V-4: Information available to determine MBM(T ) for REGED: (a) the DAG involving the
MB variables determined by the search-and-score procedure (variables manipulated in REGED1 are
shaded), (b)-(g) the top valid Y-tests ranked by p-score, and (h) a table of the variables from (a)
considered to be either parents or children along with the number of valid Y-tests where the node
appears as a child of T and the top p-score when this occurs.

information was combined manually and subjectively during the competition; however, for testing

purposes during the post-challenge analysis and to be able to release a fully automated algorithm,

we have replaced the manual step with an automated method. The latter attempts to follow as close

as possible our thought process during the challenge.

We present the method following an example using the REGED1 data set. Figure V-4 illustrates

and summarizes the different information sources. Figure V-4(a) shows the Markov Blanket variables

extracted from the PDAG of Section V.2.4. The shaded nodes indicate the manipulated variables

in REGED1. In addition, all possible Y-structures involving edges of the Markov Blanket were

identified and scored. Figures V-4(b)-(g) show the top six Y-structures centered on the target node

ranked by the maximum p-score. Finally, the table in V-4(h) lists for each variable the number of

times it is determined to be a child of T and the maximum p-score among those instances. There

were no Y-structures (A,B,X, T ) that passed the Y-test with an edge X → T where X ∈ MB∅(T );

therefore, the Y-tests alone did not give any strong evidence for a variable to be a parent of the

target.

We now describe how to identify the parents of T . We consider as possible parents all variables
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returned by FSMB as neighbors of T . First, we identify the variables with strong evidence of being

parents of T . These are the ones that appear as parents in the PDAG of the edge orientation phase of

Section V.2.4. We sort them by the number of times they appear as non-confounded parents of T in

Y-tests. In our example, these are variables with indexes {930, 321} (Figure V-4(a)). Then, we filter

out the variables with strong indication that they are indeed children of T ; these are variables X for

which the edge T → X gets a high p-score in some Y-test, i.e., they have maximum p-score above

a threshold (arbitrarily set to 0.5). In our example, these are variables {825, 593, 425, 453, 83, 344}

(Figure V-4(h)). The remaining variables {409, 939, 251} are those without strong evidence that they

are either parents or children. These are sorted in decreasing order of the ratio of valid Y-tests as a

parent to that as a child; ties are broken with preference to variables appearing less often as children

of T in Y-tests. The final list to consider thus is {930, 321, 409, 939, 251}. During the competition,

several subsets of this list were tried and a final decision was made among those submissions that

ranked in the top 25% of all competitors. The automated procedure simply uses a threshold on the

number of times the variables appear as children of T to remove the tail of the list.

If the complete MB(T ) is sought and not just the parents of T , we also need to identify the

children and spouses of T . As children we consider the remaining non-manipulated variables adjacent

to the target; in our example, these are variables with indexes {825, 425, 453, 344}. The spouses of

the selected children are found from the PDAGs orientation: {454} (alternatively, we could have

used the same procedure for the identification of the parents of T as above, to identify the parents

of the children of T ).

In our effort to automate the above procedure after the challenge, we noticed that the procedure

was not stable. Specifically, the lists of variables output and the corresponding models produced,

varied significantly under different ordering of the variables in the data set. To alleviate the prob-

lem we augmented the procedure with a model-averaging-type step where we run the orientation

procedure several times with different parameters (namely, we vary the equivalent sample size in

the Bayesian Score and the kernel parameters for the scoring metric of Bach & Jordan 2002). Only

the variables that appear consistently across parameter combinations remain in consideration. The
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procedure has been validated in the post-challenge tests set by the organizers and was found stable

and robust under permutations of the variables and subsampling of the data.

V.2.7 Building Predictive Models

Once the variable list was determined for each data set, a final classification SVM model was

trained on only the variable list members (Boser et al., 1992). An n-fold cross-validation de-

sign was used to select the optimal parameters: type of kernel (polynomial or Gaussian), ker-

nel parameters (degree of kernel ∈ {1, 2, 3, 4} or sigma ∈ {10−4, 10−3, . . . , 100}), and C value

∈ {10−4, 10−3, . . . , 101}. The value of n ranged from 5 to 10 based on the sample size available

in the training sample. Once the best parameters were selected, a final SVM model was trained and

used to predict the values for the test data sets.

V.3 Results

The classification performance (AUC reported as Tscore in the challenge results) is ultimately

how the challenge submissions were rated. Table V-1 presents the Fnum, Fscore, Dscore, Tscore,

and ranking of our final submission for each data set version. The number of entries before the final

submission, the average Tscore (across the versions of a data set), and the overall ranking (generated

from the average Tscore) are also shown in the table.

V.3.1 What Went Well

The specific implementation of our strategy performs well on the REGED data set achieving

the top overall ranking. The strategy also exhibits decent performance on the unmanipulated data

sets, version “0”. This indicates that our implementation is approximating MB∅(T ) well. This is

corroborated by the organizers’ post-challenge analysis, shown in Figure V-5. In 3 of the 4 data sets

(REGED, SIDO, and CINA) the method is performing well at identifying members of MB∅(T ). In

fact, in those three data sets only ∼2 false positives are added to the Markov Blanket (the number of

false negatives is undisclosed). Notice that our algorithms were able to accurately identify CINA’s
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Table V-1: Results on Challenge Data Sets: The Fnum, Fscore, Dscore, Tscore and Ranking is given
for each version of the data sets. The results represent the final challenge submission. The number
of entries, the overall ranking and average Tscore are given for each data problem. The cells are
shaded in the colored quartile information: green - best 25%, yellow - best 50%, orange - worst 50%,
and red worst 25%.

Final Challenge Submission

Fnum Fscore Dscore Tscore Ranking

CINA0 101 0.8496 0.9717 0.9721 9 Num. Entries / Total 7 / 277

CINA1 5 0.4716 0.9316 0.5113 23 Average Tscore 0.6015

CINA2 5 0.4716 0.9316 0.3210 25 Overall Ranking 23 / 25

MARTI0 24 0.5869 0.9952 0.9681 8 Num. Entries / Total 2 / 233

MARTI1 17 0.5643 0.9951 0.7837 9 Average Tscore 0.8083

MARTI2 3 0.4985 0.6973 0.6730 10 Overall Ranking 9 / 19

REGED0 15 0.8571 1.0000 0.9998 2 Num. Entries / Total 5 / 355

REGED1 9 0.7851 1.0000 0.9673 4 Average Tscore 0.9423

REGED2 3 1.0000 0.9728 0.8600 1 Overall Ranking 1 / 30

SIDO0 13 0.5115 0.9356 0.9230 12 Num. Entries / Total 2 / 242

SIDO1 4 0.5003 0.8587 0.6073 12 Average Tscore 0.6909

SIDO2 4 0.5003 0.8587 0.5426 14 Overall Ranking 12 / 28

MB∅(T ) numbering close to 100 variables. On MARTI it seems that MB∅(T ) was not accurately

found, however we believe this is due to our inability to handle the noise correctly. Evidence to

this is provided by the following experiment: the post-challenge analysis included other teams’

preprocessed data for MARTI; re-running our method on the preprocessed data provided by Dr.

Guyon we see a marked improvement in our performance (in particular on the MARTI0 data, where

our method has proven to do well in all other cases). Specifically, the Tscore on MARTI0 improves

from 0.9681 to a score of 0.9910 resulting in an improved ranking on that data set from eighth to

fifth and corroborating that we approximate well the MB∅(T ) (the actual false positives and false

negatives have not been released for post-challenge submissions).

V.3.2 What Went Wrong

While our methods performed well at identifying the unmanipulated Markov Blanket, the iden-

tification of the manipulated Markov Blanket was very poor on all but the REGED data set. This

indicates that our methods for orienting the edges of MB∅(T ) performed poorly. We now provide

some possible explanations.
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Figure V-5: The selected variables’ relationship to the target variable, where dcauses = direct causes,
deffects = direct effects, ocauses = other causes (indirect), oeffects = other effects (indirect), spouses
= parent of direct effect, orelatives = other relatives, and unrelated = completely irrelevant.

Unfortunately, we spent most our time on the REGED data sets and the development of new

methods, leaving little time for the rest of the data sets. Most importantly, we set out to solve a

more difficult problem than what the organizers had set, namely inducing causality in the presence of

hidden variables and violations of faithfulness. These are two important issues in real data sets, but

did not occur in the challenge: FSMB identified between 0-4 features per data set that were added

for consideration; these features were often considered spouses, or other relatives when selecting

MBM(T ) and did not make much difference in performance. Also, there were actually no hidden

variables in the challenge data sets. More specifically, all the variables participating in the models

from which data were simulated, were also included in the released data sets. Because of the way

data were simulated, the problematic confounding effect we described never occurred. We spent
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Table V-2: Results on Challenge Data Sets: The Fnum, Fscore, Dscore, Tscore, and Ranking is given
for each version of the data set. The results presented as if the MB∅(T ) is used for every variable
list regardless of considering manipulations.The cells are shaded in the colored quartile information:
green - best 25%, yellow - best 50%, orange - worst 50%, and red worst 25%.

Unmanipulated MB used for all Data Sets

Fnum Fscore Dscore Tscore Ranking

CINA0 101 0.8496 0.9717 0.9721 9

CINA1 101 0.5795 0.9717 0.8581 4

CINA2 101 0.5795 0.9717 0.6917 8

MARTI0 24 0.5869 0.9948 0.9824 7

MARTI1 24 0.5985 0.9948 0.8477 9

MARTI2 24 0.7429 0.9948 0.6971 9

REGED0 15 0.8571 1.0000 0.9998 2

REGED1 15 0.7825 1.0000 0.9280 14

REGED2 15 1.0000 1.0000 0.7231 9

SIDO0 13 0.5015 0.9365 0.9237 12

SIDO1 13 0.5012 0.9365 0.6626 11

SIDO2 13 0.5012 0.9365 0.5713 11

a significant amount of time on this problem is because the FAQ of the competition specifically

declared that there may be missing variables (a problem for many real-world analyses).

Also, our submissions were overly conservative in regards to including false positive variables, i.e,

variables not in MBM(T ). However, it turns out that for this challenge, false negatives degrade per-

formance significantly more than false positives (also see discussion in the organizers’ post-challenge

analysis online Appendix B, WCCI 2008 Causality Challenge 2008). This is exemplified by the

following post-challenge experiment: we submitted a new set of entries where the variable list for

each data set version was the MB∅(T ), a superset of MBM(T ). The results for these submissions

are shown in Table V-2 and can be contrasted with the challenge results in V-1. On REGED, the

performance is degraded since we were already ranking 1st on this task. On CINA, the challenge

submission choice of MBM(T ) was both incorrect and very conservative, especially in light of the

large size of the Markov Blanket and number of possible parents. The use of MB∅(T ) improved the

performance and these results rank as high as fourth for CINA1. For MARTI and SIDO, the new

submission returns a similar or slightly better ranking to that of the challenge submission. This

analysis, while only over the limited data sets of this challenge, suggests that without an edge ori-
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entation procedure to supply correct information to differentiate the parents and children, letting

MB∅(T ) be the default manipulated Markov Blanket is a reasonable approach. In addition, we

believe that a model averaging approach would also greatly improve the robustness of identifying

the MBM(T ) and make it more resilient to edge-orientation errors.

Regarding the CINA data sets, we note that they consisted of a mixture of discrete and continuous

variables. Many of the algorithms employed by our strategy heavily rely on tests of independence.

Our implementations of these tests however, have been developed targeting only all discrete or all

continuous variables and were not designed for mixed types of variables. Regarding the SIDO data

sets, we were informed after the completion of the challenge that it contained variables created by

the binarization of other variables. For example a variable V taking values v1, . . . , vk is converted

to the binary variables B1, . . . , Bk taking values Bi = I(V = vi), where I is the indicator function.

The newly created variables Bi are all inter-dependent, since knowing Bi = 1 implies that Bj = 0,

for i 6= j. Graphically, the new set of variables {Bi} would consist of a clique in the PDAG of a

network. If V is a parent of T in the original network, then all Bi’s are connected to T and among

each other. This reduces the identifiable Y-structures by our procedure and confuses all traditional

search-and-score Bayesian Network learning algorithms. The problem stemming from binarization

of variables points to an interesting future research direction.

Finally, due to the time pressure, several parts of our strategy were not fully optimized. We did

not optimize the model construction procedure and just used standard SVMs with cross-validation.

Most importantly, we did not have the time to fully test and optimize the novel algorithms and

procedures for these tasks.

V.4 Lessons Learned and Conclusions

The most important outcome of participation in the challenge is the experience gained and

realization of several theoretical and practical issues as well as ideas that emerged for future directions

in the field.

Knowledge of the causal structure is theoretically necessary for making optimal predictions under
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manipulations. This is exemplified in this challenge by the difference between the top non-causal

submissions and the theoretical optimum performance; see the organizers’ post-challenge analysis

online (WCCI 2008 Causality Challenge, 2008, Figures 3-6). Regarding the state-of-the-art in causal

discovery, there exists efficient, scalable, and publicly available code to learn the Markov Blanket.

In fact, several other top participants also used the package Causal Explorer (Aliferis et al., 2003b;

Statnikov et al., 2009) implementing such algorithms. These methods perform well on a range

of high-dimensional data sets involving discrete, continuous, and mixed data. However, there is

a shortage of reliable and efficient, publicly-available code or software packages that are meant

to identify hidden variables or non-confounded variables. Of those available (e.g., Tetrad’s FCI

implementation), they are unable to scale to the size of the challenge problems (even when reduced to

a region of depth 3). In addition, the state-of-the-art methods employed to learn the orientation did

not perform well. Consequently, the manipulated Markov Blanket was unable to reliably identified.

Regarding important implementation issues, note that reducing the size of the problem to a region

of depth 3 greatly improved the efficiency of the later applied methods; this reduction allowed the

orientation procedures to complete in minutes rather than hours or days if the full variable set was

considered. Several algorithms heavily depend on statistical tests that ought to be tailored for the

problem at hand. Binarized variables pose a problem to causal-discovery methods at the moment.

In summary, a general strategy for predicting a quantity under manipulations of a system is

presented. It relies on identifying MBM(T ) and fitting a model for P∅(T |MBM(T )) from the ob-

servational data. The steps of the strategy are shown in Figure V-2. They are implemented by

existing algorithms and augmented with novel procedures for detecting certain kinds of violations of

faithfulness and for detecting non-confounded causal edges. Overall, this challenge provided us with

an opportunity to develop, apply, and compare methods for causal discovery on realistic, challenging

problems and initiating new avenues of research.
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CHAPTER VI

DISCUSSION AND CONCLUSIONS

This chapter presents a summary of the conclusions and future work; a more complete evaluation

and description is presented in each of the Chapters II-V. The focus of this Ph.D. research is to

develop and investigate several novel computational techniques for discovering informative patterns

and complex relationship of biomedical data. The first method examines the composition of the

decision function of Support Vector Machines (SVMs). Specifically, the method is designed to begin

to understand what variables and/or combinations of variables are important to a classification task

when using a polynomial Support Vector Machine (SVM) model. This new algorithm heuristically

selects the most heavily weighted (and thus most important for classification) constructed features

of a polynomial SVM. Sufficient conditions are provided for the heuristic algorithm to correctly

return the top r weights. Even when the sufficient conditions fail, the research empirically shows

that the returned weights closely approximate the true set of r top-weighted features when only

examining a very small portion of the feature space. The method was able to successfully run on

several simulated data sets where the true weight vector is known, comparing the norm of the r

top-weighted features returned my the heuristic method to the known top r features. Additionally,

the new method was applied to real world data sets. For these data sets, the true top weights are

unknown however, the features returned were assessed by their classification performance (achieving

similar performances as the full model and models using variable selection techniques). Also, for the

case of the splice site data, the features selected seem consistent with biological knowledge in the

domain.

This method is a first step in attempting to identify the top-weighted features of an SVM model;

there are many future directions of this work, detailed in Chapter II and summarized here. First,

the SVM models use the standard L2 norm where the L2 norm tends to spread the weighting across

the features. In the future, it is proposed to investigate the use of L1 or L0 SVMs which may provide
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more sparsity in the weight vector allowing for easier searching by the heuristic method. The search

procedure itself can be extended and explored. Here, the search was guided by groupings of features

involving a variable v at a level l; however, alternative collections of variables could be considered.

In Chapter II, several general formulations are presented to consider sets of features and the norm of

the weight vector over those features, which could be used to design new search methods. Another

direction is to extend the process of selecting the top weighted features with Markov-blanket based

variable selection algorithms, which was discussed in Chapter III.

Support Vector Machines (SVMs) models have been widely used to classify data. However, the

reasoning behind the classification is complex, and previously unavailable to the user. The new,

heuristic method is designed to explicitly determine the decision function used to classify data for

polynomial SVMs. In particular, a heuristic method was designed to identify the highly weighted

features of this decision function. These features may give insight into how the SVM classifies data

and provide information on the features and variables relevant to the target class.

Next, in Chapter III a new feature selection method was developed. Markov Blanket-based

and kernel-based methods illustrate two prominent paradigms in variable selection. The former

follows a principled approach to variable selection and is able to guarantee some desirable theoretical

properties such as optimality under certain broad conditions (e.g., data is i.i.d., Markov condition,

faithfulness condition, etc.). Two examples of the conditions being violated are: (i) the optimal

variable subset contains multivariate associations whose participant variables have no detectable

univariate associations with T and (ii) the target variable is caused by variables in a redundant

mechanism (see section III.3 for further details). The kernel-based approach is able to capture the

multivariate and redundant relationships in such situations even in very high dimensional data sets.

A new variable selection algorithm that combines the advantages of both approaches in a non-trivial

way, called Feature Space Markov Blanket (FSMB), was presented.

The Feature Space Markov Blanket (FSMB) algorithm is the first attempt to construct an al-

gorithm combining the theoretical properties of the two approaches. The main idea of FSMB is to

identify the Markov Blanket of T in feature space instead of in the original variable space, where
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multivariate associations become pairwise associations. FSMB employs a SVM to identify which

features may have large pairwise association with T in feature space, so as to avoid considering all

features.

The new method was compared with several prominent variable selection methods: HITON,

Relief, and RFE on several simulated and real world data sets. The simulated data sets were

designed to be problems where the Markov Blanket-based methods (HITON) would fail. FSMB was

shown to perform as well or better than the other methods at returning the Markov Blanket with

better sensitivity and specificity (note, RFE and Relief are not specifically designed to return the

Markov Blanket). On the real world data, the true variables of interest are not known, therefore the

methods are assessed by the number of variables/features returned and the classification performance

(AUC). FSMB returns few features, which may be used to construct simple linear models that

generally perform as well as the other techniques. For two cases, the Lung Cancer and Thrombin

data sets, the method returns on 2 or 3 features. In this case, the model can be visualized to show

the classification performance. On the HIVA data set, HITON does poorly (AUC = 0.527) while

FSMB has better performance (AUC = 0.702). This difference in performance suggests that the

HIVA domain might contain some multivariate relationships that HITON (and Markov Blanket-

based methods) would fail to detect.

Future work on this method can be done in several areas. First, the method relies on the selection

of several parameters. Better intuition into the optimal selection of parameters through domain

knowledge or estimation procedures could be examined in future work. Additionally, the heuristic

method offers a simple, efficient method to identify the top weights, but other search methods could

be employed with tradeoffs in efficiency and/or quality of the results (this ties in with the future

work discussed for Chapter II). Also, FSMB relies on the assumption that the features with the

largest magnitude weights are most important (relevant) for the classification task; whether this

assumption holds and why it may fail should be examined in future work. Other work may define

and examine the prevalence of the “difficult” distributions where this new method is expected to

out-perform other methods. Finally, an investigation on whether the ideas of this method may be
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extended to other SVM formulations, namely regression and multi-categorical problems, should be

explored.

Third, a new local causal discovery method was designed and studied, empirically and theoret-

ically, for the focused learning of network regions from observational data. The new method as

expected requires only a fraction of the time to learn a region compared to the global approach

(where the full network is induced then pruned). Therefore, the new local method is able to scale

up to even larger data sets than what is currently possible. The quality of learning by the local

approach was of particular interest, that is whether learning a region in a myopic way, i.e., with-

out simultaneously considering all parts of the network and how these interact, severely affects the

quality of learning. The evaluation shows that in general the method for learning the region locally

is more time-efficient and also produces structures of equal or higher-quality.

Future work in this area could focus on learning a different kind of region subgraph. The regions

described here are one of an infinite kind of subgraphs that could be learned. In the new algorithm,

variables are considered in a breadth-first, homogeneous expansion from the target, but the method

is not dependent on this mode of exploration. Changing how the nodes are considered and expanded,

can create many different algorithms that fit other desired subgraph arrangements. Additionally, an

interesting new avenue of research is the possible use of techniques for combining local regions to

form the complete global network.

Finally, using the above new methods and contemporary research, a principled submission (V) to

the Causality Challenge tasks was developed (WCCI 2008 Causality Challenge, 2008). The overall

strategy made use of the three other techniques described in this thesis as well as developing a

theory to perform predictions under manipulation. The submission used the formalism of Causal

Bayesian Networks to model and induce causal relations and to make predictions about the effects

of the manipulation of the variables.

This approach on the challenge performed best on one of the four tasks. Across, the data sets, the

method did well at identifying the unmanipulated Markov Blanket. However, when the directionality

of the edges was needed to be determined to separate parents from children, the method did not do
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as well. Also, submissions were overly conservative in regards to including false positive variables,

i.e, variables not in MBM(T ). However, it turns out that for this challenge, false negatives degrade

performance significantly more than false positives (also noted in the organizers’ post-challenge

analysis). The most important outcome of participation in the challenge is the experience gained

and realization of several theoretical and practical issues as well as ideas that emerged for future

directions in the field.

Finally, there exists efficient, scalable, and publicly available code to learn the Markov Blanket.

However, there is a shortage of reliable and efficient, publicly-available code or software packages that

are meant to identify hidden variables or non-confounded variables. In addition, it was observed that

the state-of-the-art methods employed to learn the orientation did not perform well. Consequently,

the manipulated Markov Blanket could not be reliably identified. Overall, this challenge provided

an opportunity to develop, apply, and compare methods for causal discovery on realistic, challenging

problems and initiating new avenues of research.

The thesis is constructed with chapters from the papers that have been submitted (or are in

preparation) on this research. It contains several new algorithms that work to identify and discover

informative patterns and complex relationship in biomedical data. The methods explored in the

thesis are generally first steps in future research paths to explore understanding SVM models, vari-

able selection in non-faithful problems, identifying causal relations in large domains, and learning

with manipulations.
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APPENDIX A

IDENTIFYING TOP-WEIGHTED FEATURES IN POLYNOMIAL SVM MODELS

A.I Weight Distributions and Contributions Matrix of Simulated Problems
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Figure A-1: The distribution of weights of the top 25 features of the Double-XOR example with
increasing sample across each row: (a) 100, (b) 500, and (c) 1000 samples.
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Figure A-2: Distribution of Weights of Top 25 Features of the Checkerboard example with increasing
sample across each row: (a) 100, (b) 500, and (c) 1000 samples.

A.II Brute Force vs. Heuristic Method

A.II.1 Timing Results

Each subplot of the figure graphs the brute force method’s execution time along with the heuris-

tic method’s time for several values of t. Each plot shows the timing results for a specific size
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problem. Figure A-3(a)-(c) are for the Circle problem with 250, 350, and 450 variables (31625,

61775, and 101925 features) respectively. Figure A-3(d)-(f) are for Double-XOR problems with 226,

337, and 448 variables (25877, 57290, and 101024 features) respectively. Figure A-3(g)-(i) are for

the Checkerboard problems also with 50, 70, and 80 variables (23425, 62195, and 91880 features)

respectively. Recall the brute force approach calculates all features and weights, while the heuristic

method construct just p features and weights. The different colored bars within each plot illustrate

the execution time of the brute force and heuristic method with p = {50, 100, 500, 1000, 5000}. The

different groupings within each figure show the timing results for training data sets of increasing

sample sizes (50, 100, 500, and 1000 samples).
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Figure A-3: Timing Results - Comparing Brute Force and Heuristic Methods: The timing results
to compare the brute force and heuristic methods are presented over different problem sizes for the
Circle (a)-(c), Double XOR (d)-(f), and Checkerboard (g)-(i) problems. The brute force method
calculates all features and weights, and the heuristic method constructs p feature weights; the
different colored bars within each plot represent the execution time of the brute force method and
the heuristic method with p = 50, 100, 500, 1000, and 5000. The different groupings within each
plot show execution time for training data sets of increasing sample size.
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A.II.2 Quality Results

The quality results when comparing the top r weights are presented in Figure A-4. Each subplot

of the figure graphs the quality metric over several parameters for a specific size problem. Figure

A-4(a)-(c) are for the Circle problem with 250, 350, and 450 variables (31625, 61775, and 101925

features) respectively. Figure A-4(d)-(f) are for Double-XOR problems problems with 226, 337, and

448 variables (25877, 57290, and 101024 features) respectively. Figure A-4(g)-(i) are for the Checker-

board problems also with 50, 70, and 80 variables (23425, 62195, and 91880 features) respectively.

For all figures the heuristic method was run with p = 5000 (construct 5000 features). The different

colored bars within each plot illustrate the quality metric of the heuristic method with the number

of features to return, r = 50, 100, 500, and 1000. The different groupings within each figure show

the results for training data sets of increasing sample sizes (50, 100, 500, and 1000 samples).
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Figure A-4: Quality Results - Assessing the Heuristic Method on Top r Returned Features: The
quality results assess whether the heuristic method is returning the top weighted features. The
metric plotted is the L2 norm of the top r weights returned by the heuristic method divided by the
L2 norm of the top r weights found by sorting the entire weight vector. The subplots presented the
results over increasing problem sizes for the Circle (a)-(c), Double XOR (d)-(f), and Parity (g)-(i)
problems. For each case, the heuristic method was run with p = 5000 (construct 5000 features).
The different colored bars within each plot represent the quality metric for the heuristic method
with r = 50, 100, 500, and 1000. The different groupings within each plot show the quality metric
for training data sets of increasing sample size.
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A.III RFE vs. Heuristic Method

A.III.1 Timing results
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Figure A-5: Timing Results - RFE constructed Features: The time for running RFE to construct
features is compared to the brute force and Heur3 heuristic approaches. The subplots present the
timing results over increasing problem sizes for the Circle (a-c), Double XOR (d-f), and Parity (g-i)
problems. The different groupings within each plot show the times for training data sets of increasing
sample size.
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A.IV Lung Cancer Dataset

Table A-1: Lung Cancer Dataset: Variables selected by HITON(H), RFE(R), and those involved in
the top features (F) are listed with their probe set ID and gene information.

Variable Method Symbol probe set ID Gene Information

23 F - AFFX-hum_alu_at U14573 Human Alu-Sq subfamily consensus sequence.

51 F - AFFX-HSAC07 actin, beta

205 F ANXA2P1 31444_s_at annexin A2 pseudogene 2

288 H RPS2 31527_at ribosomal protein S2

604 F RPL37A 31962_at ribosomal protein L37a

1060 F,R VIM 34091_s_at vimentin

1376 F,R RPS6 35125_at ribosomal protein S6

1668 R COL1A2 32307_s_at

 Cluster Incl V00503:Human mRNA encoding Pro-alpha-2 chain of type I procollagen. (major part) /cds=(0,2223) 

/gb=V00503 /gi=30123 /ug=Hs.179573 /len=2452 

1679 R ACTB 32318_s_at actin, beta

1906 F IGHA2 33500_i_at

 Cluster Incl S71043:Ig alpha 2=immunoglobulin A heavy chain allotype 2 {constant region, germ line} [human, 

peripheral blood neutrophils, Genomic, 1799 nt] /cds=(0,1022) /gb=S71043 /gi=546798 /ug=Hs.32225 /len=1047 

1907 F - 33501_r_at

 Cluster Incl S71043:Ig alpha 2=immunoglobulin A heavy chain allotype 2 {constant region, germ line} [human, 

peripheral blood neutrophils, Genomic, 1799 nt] /cds=(0,1022) /gb=S71043 /gi=546798 /ug=Hs.32225 /len=1047 

2093 H * 34046_at hypothetical protein dJ37E16.5

2515 F GAPDH 35905_s_at

 Cluster Incl U34995:Human normal keratinocyte substraction library mRNA, clone H22a, complete sequence 

/cds=UNKNOWN /gb=U34995 /gi=1497857 /ug=Hs.195188 /len=1626 

3119 H UBE2D1 37826_at

 Cluster Incl AF020761:Homo sapiens stimulator of Fe transport mRNA, complete cds /cds=(85,1101) 

/gb=AF020761 /gi=2738924 /ug=Hs.129683 /len=1404 

3157 F IGHV4-31 37864_s_at

 Cluster Incl Y14737:Homo sapiens mRNA for immunoglobulin lambda heavy chain /cds=(65,1498) /gb=Y14737 

/gi=2765424 /ug=Hs.140 /len=1631 

3255 H FAT2 38202_at FAT tumor suppressor (Drosophila) homolog 2

3676 H CSTA 39581_at

Cluster Incl AA570193:nf38c11.s1 Homo sapiens cDNA /clone=IMAGE-916052 /gb=AA570193 /gi=2344173 

/ug=Hs.2621 /len=450

4524 H STARD13 31790_at

 Cluster Incl AL049801:Novel human gene mapping to chomosome 13, similar to rat RhoGAP /cds=(373,3360) 

/gb=AL049801 /gi=4902677 /ug=Hs.13649 /len=5784 

4586 H ANKMY2 31852_at hypothetical protein DKFZp564O043

4786 R DLK1 32648_at delta-like homolog (Drosophila)

4934 F IGLV@ 33273_f_at immunoglobulin lambda locus

4935 F IGLV@ 33274_f_at

 Cluster Incl M18645:Human Ig rearranged lambda-chain mRNA VJC-region subgroup lambda-IV from 

heterohybridoma H6-3C4 /cds=(30,731) /gb=M18645 /gi=186103 /ug=Hs.181125 /len=872 

4983 F SFN 33322_i_at stratifin

6536 R RAN 38708_at RAN, member RAS oncogene family

6686 H H2AFZ 39337_at H2A histone family, member Z

6814 R HMGA1 39704_s_at high-mobility group (nonhistone chromosomal) protein isoforms I and Y

6905 H AP2M1 39795_at

 Cluster Incl D63475:Human mRNA for KIAA0109 gene, complete cds /cds=(86,1393) /gb=D63475 /gi=1665724 

/ug=Hs.152936 /len=1868 

6908 R RPS28 39798_at

 Cluster Incl R87876:yo45h01.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-180913 /clone_end=5'' /gb=R87876 

/gi=946689 /ug=Hs.153177 /len=483'' 

7366 R RPS4Y1 41214_at ribosomal protein S4, Y-linked

7756 R GSTP1 33396_at glutathione S-transferase pi

8201 R RPS29 35278_at

 Cluster Incl AI541542:libtest16.A02.r Homo sapiens cDNA, 5 end /clone_end=5'' /gb=AI541542 /gi=4458915 

/ug=Hs.539 /len=639'' 

8429 R CEACAM6 36105_at carcinoembryonic antigen-related cell adhesion molecule 6 (non-specific cross reacting antigen)

8727 R CD63 37003_at CD63 antigen (melanoma 1 antigen)

8843 H SPCS2 37359_at KIAA0102 gene product

8914 R ATP1B1 37669_s_at ATPase, Na+/K+ transporting, beta 1 polypeptide

9071 H HMGB2 38065_at high-mobility group (nonhistone chromosomal) protein 2

9977 F EEF1A1 40887_g_at eukaryotic translation elongation factor 1 alpha 1-like 14

10139 H NCAM1 41289_at

 Cluster Incl AA126505:zn86a09.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-565048 /clone_end=3'' 

/gb=AA126505 /gi=1686153 /ug=Hs.237108 /len=713'' 

10525 H SOX2 33109_f_at

 Cluster Incl L07335:Homo sapiens (clone 6AR33) HMG box mRNA, 3 end cds /cds=(0,983) /gb=L07335 

/gi=184239 /ug=Hs.816 /len=1098'' 

10705 F S100A2 2027_at M87068 /FEATURE= /DEFINITION=HUMCAN H.sapiens CaN19 mRNA sequence

10936 H FNTA 1772_s_at farnesyltransferase, CAAX box, alpha

10997 R IGFBP2 1741_s_at

 S37730 /FEATURE=cds /DEFINITION=S37712S4 insulin-like growth factor binding protein-2 [human, placenta, 

Genomic, 1342 nt, segment 4 of 4] 

11300 H EIF4A2 1420_s_at eukaryotic translation initiation factor 4A, isoform 2

11355 R TGFBI 1385_at transforming growth factor, beta-induced, 68kD

11359 H PTPRZ1 1364_at protein tyrosine phosphatase, receptor-type, Z polypeptide 1

11436 F EEF1A1 1288_s_at eukaryotic translation elongation factor 1 alpha 1

11743 R USP9X 970_r_at ubiquitin specific protease 9, X chromosome (Drosophila fat facets related)

11942 F ANXA2 769_s_at annexin A2

12097 F KRT5 613_at keratin 5 (epidermolysis bullosa simplex, Dowling-Meara/Kobner/Weber-Cockayne types)

12150 R MDK 577_at midkine (neurite growth-promoting factor 2)

12414 R TACSTD2 291_s_at tumor-associated calcium signal transducer 2
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APPENDIX B

MARKOV BLANKET-BASED VARIABLE SELECTION IN FEATURE SPACE

B.I Double XOR Problem Experimental Results

Table B-1: Results on Small Double-XOR Problem of 5 Variables. The sensitivity and specificity of
identifying the true Markov Blanket (MB(T ) = {x1, x2, x3, x4}) for each algorithm on the network
of Fig. III-1(a). In this network, all parent-child relationships involving T are noisy-XOR. The
results are presented as mean values and their standard deviation over 10 different samplings from
the distribution.

Data Sensitivity

Size HITON Relief RFE FSMB

100 0.125 ± 0.24 0.875 ± 0.18 0.800 ± 0.23 0.900 ± 0.21

500 0.050 ± 0.11 1.000 ± 0.00 0.950 ± 0.16 1.000 ± 0.00

1000 0.050 ± 0.11 0.975 ± 0.08 0.975 ± 0.08 1.000 ± 0.00

Data Specificity

Size HITON Relief RFE FSMB

100 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00

500 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00

1000 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00

Data Distance

Size HITON Relief RFE FSMB

100 0.875 ± 0.24 0.125 ± 0.18 0.200 ± 0.23 0.100 ± 0.21

500 0.950 ± 0.11 0.000 ± 0.00 0.050 ± 0.16 0.000 ± 0.00

1000 0.950 ± 0.11 0.025 ± 0.08 0.025 ± 0.08 0.000 ± 0.00
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B.II Redundant Mechanism Experimental Results

Table B-2: Results on Redundant Mechanism Problem of 3 Variables. The sensitivity, specificity, and
distance measure for identifying the true Markov Blanket (MB(T ) = {x1, x2}) for each algorithm on
the network of Fig. III-1(b). The results are presented as mean values and their standard deviation
over 10 different samplings from the distribution.

Data Sensitivity

Size HITON Relief RFE FSMB

500 0.000 ± 0.00 0.700 ± 0.26 0.650 ± 0.24 0.700 ± 0.48

1000 0.200 ± 0.42 0.950 ± 0.16 0.950 ± 0.16 1.000 ± 0.00

1500 0.200 ± 0.42 0.750 ± 0.26 0.800 ± 0.26 1.000 ± 0.00

2000 0.400 ± 0.52 0.850 ± 0.24 0.850 ± 0.24 1.000 ± 0.00

Data Specificity

Size HITON Relief RFE FSMB

500 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00

1000 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00

1500 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00

2000 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00

Data Distance

Size HITON Relief RFE FSMB

500 1.000 ± 0.00 0.300 ± 0.26 0.350 ± 0.24 0.300 ± 0.48

1000 0.800 ± 0.42 0.050 ± 0.16 0.050 ± 0.16 0.000 ± 0.00

1500 0.800 ± 0.42 0.250 ± 0.26 0.200 ± 0.26 0.000 ± 0.00

2000 0.600 ± 0.52 0.150 ± 0.24 0.150 ± 0.24 0.000 ± 0.00
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B.III Noisy 3-Parity Supplemental Experimental Results

The data for this classification problem is determined by a noisy 3-input parity function. The

same experimental design is used as in section III.7.1 except the noise injected in the parity function

is 20% (in the chapter 30% noise was used).

Table B-3: The Results on Noisy 3-Parity Problem of 60 Variables. The sensitivity, specificity,
and distance measure for identifying the true Markov Blanket (MB(T ) = {x1, x2, x3}) of the noisy
3-parity problem with 60 variables. The results are presented as mean values and their standard
deviation over 10 different samplings from the distribution.

Number of Variables = 60

Data Sensitivity

Size HITON Relief RFE FSMB

100 0.000 ± 0.00 0.500 ± 0.45 0.367 ± 0.37 0.667 ± 0.44

500 0.033 ± 0.11 0.867 ± 0.32 0.933 ± 0.21 1.000 ± 0.00

1000 0.033 ± 0.11 0.900 ± 0.32 1.000 ± 0.00 1.000 ± 0.00

Data Specificity

Size HITON Relief RFE FSMB

100 0.979 ± 0.01 0.572 ± 0.43 0.628 ± 0.36 0.768 ± 0.03

500 0.974 ± 0.01 0.939 ± 0.15 0.968 ± 0.04 0.840 ± 0.04

1000 0.968 ± 0.01 0.946 ± 0.03 0.944 ± 0.03 0.837 ± 0.02

Data Distance

Size HITON Relief RFE FSMB

100 1.000 ± 0.00 0.854 ± 0.25 0.869 ± 0.15 0.482 ± 0.35

500 0.967 ± 0.11 0.167 ± 0.35 0.089 ± 0.21 0.160 ± 0.04

1000 0.967 ± 0.11 0.149 ± 0.30 0.056 ± 0.03 0.163 ± 0.02
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Figure B-1: Noisy 3-Parity Results Summary. This figure is plotting the distance metrics for each
algorithm versus increasing sample size. The three plots are for the three problems sizes increasing
from left to right: 60, 80, and 100 variables. The colored lines indicate the method: blue - HITON,
green - Relief, red - RFE, and black - FSMB.
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Table B-4: The Results on Noisy 3-Parity Problem of 80 Variables. The sensitivity, specificity,
and distance measure for identifying the true Markov Blanket (MB(T ) = {x1, x2, x3}) of the noisy
3-parity problem with 60 variables. The results are presented as mean values and their standard
deviation over 10 different samplings from the distribution.

Number of Variables = 80

Data Sensitivity

Size HITON Relief RFE FSMB

100 0.000 ± 0.00 0.633 ± 0.43 0.400 ± 0.38 0.433 ± 0.32

500 0.000 ± 0.00 0.500 ± 0.53 0.600 ± 0.52 1.000 ± 0.00

1000 0.033 ± 0.11 0.967 ± 0.11 1.000 ± 0.00 1.000 ± 0.00

Data Specificity

Size HITON Relief RFE FSMB

100 0.981 ± 0.01 0.447 ± 0.41 0.736 ± 0.31 0.809 ± 0.04

500 0.981 ± 0.01 0.818 ± 0.30 0.932 ± 0.10 0.875 ± 0.04

1000 0.975 ± 0.01 0.927 ± 0.15 0.986 ± 0.01 0.877 ± 0.03

Data Distance

Size HITON Relief RFE FSMB

100 1.000 ± 0.00 0.847 ± 0.21 0.780 ± 0.21 0.620 ± 0.27

500 1.000 ± 0.00 0.616 ± 0.51 0.413 ± 0.52 0.125 ± 0.04

1000 0.967 ± 0.11 0.083 ± 0.18 0.014 ± 0.01 0.123 ± 0.03

Table B-5: The Results on Noisy 3-Parity Problem of 100 Variables. The sensitivity, specificity,
and distance measure for identifying the true Markov Blanket (MB(T ) = {x1, x2, x3}) of the noisy
3-parity problem with 60 variables. The results are presented as mean values and their standard
deviation over 10 different samplings from the distribution.

Number of Variables = 100

Data Sensitivity

Size HITON Relief RFE FSMB

100 0.000 ± 0.00 0.733 ± 0.41 0.533 ± 0.45 0.267 ± 0.34

500 0.000 ± 0.00 0.533 ± 0.45 0.600 ± 0.52 0.867 ± 0.28

1000 0.033 ± 0.11 0.767 ± 0.39 0.833 ± 0.36 1.000 ± 0.00

Data Specificity

Size HITON Relief RFE FSMB

100 0.978 ± 0.01 0.392 ± 0.43 0.501 ± 0.45 0.841 ± 0.02

500 0.984 ± 0.01 0.596 ± 0.43 0.969 ± 0.04 0.888 ± 0.03

1000 0.978 ± 0.01 0.842 ± 0.30 0.956 ± 0.07 0.911 ± 0.02

Data Distance

Size HITON Relief RFE FSMB

100 1.000 ± 0.00 0.831 ± 0.27 0.898 ± 0.17 0.760 ± 0.32

500 1.000 ± 0.00 0.799 ± 0.33 0.408 ± 0.51 0.220 ± 0.24

1000 0.967 ± 0.11 0.357 ± 0.43 0.188 ± 0.36 0.089 ± 0.02
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B.IV Number of Variables Selected in Real World Data Sets

The number of variables selected by each method is listed in the table below. The methods and

data sets are a subset of those reported in Aliferis et al. (2009a) and Aliferis et al. (2009b) along

with the new analysis of FSMB.

Table B-6: Number of Variables Selected in Real World Data Sets.

Data Set

Variable Selection Method

Infant

Mortality Sylva Hiva Gisette Ohsumed Thrombin

No Variable Selection 86 216 1,617 5,000 14,373 139,351

RFE, 50%, best subset selected 5 27 51 625 1,797 34,838

RFE, 20%, best subset selected 9 36 111 344 1,929 9,576

UAF - KruskalWallis - SVM, 50% 3 54 51 1,250 7,187 69,675

UAF - KruskalWallis - SVM, 20% 23 57 111 1,638 9,199 89,185

UAF - Signal2Noise - SVM, 50% 21 27 808 1,250 7,187 34,838

UAF - Signal2Noise - SVM, 20% 2 29 1,294 2,048 9,199 45,663

Random Forest Var. Selection 86 36 217 – – –

LARS - Elastic Net 9 181 168 176 155 168

RELIEF, neighbors = 1, 50% 43 54 808 1,250 14,373 17,419

RELIEF, neighbors = 1, 20% 12 71 271 2,048 9,199 14,963

RELIEF, neighbors = 5, 50% 11 27 808 1,250 14,373 17,419

RELIEF, neighbors = 5, 20% 28 36 71 2,048 9,199 14,963

L0-norm 47 111 191 158 215 63

Koller-Sahami, k=0 22 64 – – – –

Koller-Sahami, k=1 7 79 – – – –

Koller-Sahami, k=2 12 89 – – – –

IAMB, G^2 test, alpha = 0.05 3 9 7 8 7 6

K2MB 2 9 5 6 83 –

BLCD-MB 2 9 5 6 83 –

HITON-PC, G^2 test, maxk = 3, alpha = 0.05 5 29 7 53 35 13

HITON-PC, G^2 test, maxk = 2, alpha = 0.05 5 42 10 151 44 26

MMPC, G^2 test, maxk=3, alpha = 0.05 5 29 8 10 33 1

MMPC, G^2 test, maxk=2, alpha = 0.05 5 42 12 14 43 1

HITON-MB, maxk = 3, alpha = 0.05 7 50 8 226 91 36

MMMB, maxk = 3, alpha = 0.05 8 50 10 79 80 2

FSMB 13 29 14 48 40 5
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B.V Percentage of Variables Selected in Real World Data Sets

The percentage of variables selected by each method is listed in the table below. The methods

and data sets are a subset of those reported in Aliferis et al. (2009a) and Aliferis et al. (2009b) along

with the new analysis of FSMB.

Table B-7: Percentage of Variables Selected in Real World Data Sets

Data Set

Variable Selection Method

Infant

Mortality Ohsumed Gisette Sylva Hiva Thrombin

No Variable Selection 100.00% 100.00% 100.00% 100.00% 100.00% 100.000%

RFE, 50%, best subset selected 5.81% 12.50% 12.50% 12.50% 3.15% 25.000%

RFE, 20%, best subset selected 10.47% 13.42% 6.88% 16.67% 6.86% 6.872%

UAF - KruskalWallis - SVM, 50% 3.49% 50.00% 25.00% 25.00% 3.15% 50.000%

UAF - KruskalWallis - SVM, 20% 26.74% 64.00% 32.76% 26.39% 6.86% 64.000%

UAF - Signal2Noise - SVM, 50% 24.42% 50.00% 25.00% 12.50% 49.97% 25.000%

UAF - Signal2Noise - SVM, 20% 2.33% 64.00% 40.96% 13.43% 80.02% 32.768%

Random Forest Var. Selection 100.00% – – 16.67% 13.42% –

LARS - Elastic Net 10.47% 1.08% 3.52% 83.80% 10.39% 0.121%

RELIEF, neighbors = 1, 50% 50.00% 100.00% 25.00% 25.00% 49.97% 12.500%

RELIEF, neighbors = 1, 20% 13.95% 64.00% 40.96% 32.87% 16.76% 10.738%

RELIEF, neighbors = 5, 50% 12.79% 100.00% 25.00% 12.50% 49.97% 12.500%

RELIEF, neighbors = 5, 20% 32.56% 64.00% 40.96% 16.67% 4.39% 10.738%

L0-norm 54.65% 1.50% 3.16% 51.39% 11.81% 0.045%

Koller-Sahami, k=0 25.58% – – 29.63% – –

Koller-Sahami, k=1 8.14% – – 36.57% – –

Koller-Sahami, k=2 13.95% – – 41.20% – –

IAMB, G^2 test, alpha = 0.05 3.49% 0.05% 0.16% 4.17% 0.43% 0.004%

K2MB 2.33% 0.58% 0.12% 4.17% 0.31% –

BLCD-MB 2.33% 0.58% 0.12% 4.17% 0.31% –

HITON-PC, G^2 test, maxk = 3, alpha = 0.05 5.81% 0.24% 1.06% 13.43% 0.43% 0.009%

HITON-PC, G^2 test, maxk = 2, alpha = 0.05 5.81% 0.31% 3.02% 19.44% 0.62% 0.019%

MMPC, G^2 test, maxk=3, alpha = 0.05 5.81% 0.23% 0.20% 13.43% 0.49% 0.001%

MMPC, G^2 test, maxk=2, alpha = 0.05 5.81% 0.30% 0.28% 19.44% 0.74% 0.001%

HITON-MB, maxk = 3, alpha = 0.05 8.14% 0.63% 4.52% 23.15% 0.49% 0.026%

MMMB, maxk = 3, alpha = 0.05 9.30% 0.56% 1.58% 23.15% 0.62% 0.001%

FSMB 15.12% 0.28% 0.00% 13.43% 0.87% 0.004%
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B.VI Classification Performance (AUC) in Real World Data Sets

The classification performance of each method is listed in the table below. The methods and

data sets are a subset of those reported in Aliferis et al. (2009a) and Aliferis et al. (2009b) along

with the new analysis of FSMB.

Table B-8: Classification Performance (AUC) in Real World Data Sets

Data Set

Variable Selection Method

Infant

Mortality Sylva Hiva Gisette Ohsumed Thrombin

No Variable Selection 0.820 0.998 0.717 0.997 0.857 0.925

RFE, 50%, best subset selected 0.748 0.998 0.640 0.998 0.852 0.917

RFE, 20%, best subset selected 0.747 0.998 0.747 0.997 0.859 0.908

UAF - KruskalWallis - SVM, 50% 0.839 0.999 0.668 0.999 0.879 0.940

UAF - KruskalWallis - SVM, 20% 0.874 0.999 0.714 0.999 0.872 0.930

UAF - Signal2Noise - SVM, 50% 0.855 0.999 0.693 0.999 0.864 0.932

UAF - Signal2Noise - SVM, 20% 0.837 0.999 0.723 0.999 0.865 0.939

Random Forest Var. Selection 0.820 0.999 0.696 – – –

LARS - Elastic Net 0.882 0.999 0.729 0.995 0.800 0.887

RELIEF, neighbors = 1, 50% 0.824 0.999 0.706 0.999 0.857 0.921

RELIEF, neighbors = 1, 20% 0.771 0.999 0.639 0.999 0.866 0.924

RELIEF, neighbors = 5, 50% 0.771 0.999 0.744 0.999 0.857 0.894

RELIEF, neighbors = 5, 20% 0.841 0.999 0.606 0.998 0.859 0.893

L0-norm 0.817 0.998 0.682 0.994 0.718 0.814

Koller-Sahami, k=0 0.845 0.999 – – – –

Koller-Sahami, k=1 0.858 0.999 – – – –

Koller-Sahami, k=2 0.800 0.998 – – – –

IAMB, G^2 test, alpha = 0.05 0.811 0.992 0.488 0.972 0.665 0.769

K2MB 0.780 0.992 0.662 0.947 0.718 –

BLCD-MB 0.780 0.992 0.662 0.947 0.718 –

HITON-PC, G^2 test, maxk = 3, alpha = 0.05 0.860 0.997 0.706 0.990 0.773 0.825

HITON-PC, G^2 test, maxk = 2, alpha = 0.05 0.860 0.997 0.708 0.994 0.826 0.863

MMPC, G^2 test, maxk=3, alpha = 0.05 0.860 0.997 0.699 0.980 0.773 0.753

MMPC, G^2 test, maxk=2, alpha = 0.05 0.860 0.997 0.701 0.980 0.822 0.753

HITON-MB, maxk = 3, alpha = 0.05 0.865 0.997 0.527 0.997 0.778 0.798

MMMB, maxk = 3, alpha = 0.05 0.863 0.997 0.674 0.990 0.741 0.753

FSMB 0.803 0.997 0.702 0.993 0.811 0.939
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APPENDIX C

LEARNING BAYESIAN NETWORK REGIONS

C.I Learning Local Regions: RegionMMHC vs. AlgorithmGPC

First, a comparison of the execution time of the two methods is presented. Note, the comparison

of computation time between the two methods comes with several caveats: the two methods were

run on different machines with different hardware, with different operating systems, and different

programs (Matlab for RegionMMHC and compiled C++ for AlgorithmGPC ).

Table C-1: Execution Time Results for the RegionMMHC and AlgorithmGPC approaches. The
execution time is averaged over the 5 data samples and the 10 random target nodes for each network
and sample size. The relative execution time (AlgorithmGPC/ RegionMMHC ) is then reported for
each network, sample size, and depth of region.

Relative Time (AlgorithmsGPC / RegionMMHC)

Data SS d=1 d=2 d=3 d=4 d=5

Alarm 500 17.4% 7.9% 7.9% 7.5% 8.2%

Alarm 1000 7.9% 8.4% 9.5% 8.8% 9.3%

Alarm 5000 14.9% 18.3% 20.4% 20.4% 22.2%

Ins10 500 5.5% 6.5% 7.4% 8.0% 8.2%

Ins10 1000 6.8% 8.6% 10.1% 10.8% 11.0%

Ins10 5000 17.1% 26.1% 29.9% 30.1% 32.4%

Alarm10 500 5.0% 5.0% 4.8% 4.9% 4.9%

Alarm10 1000 6.7% 7.1% 7.4% 7.8% 8.0%

Alarm10 5000 19.8% 22.4% 24.0% 25.1% 26.2%

Hail5 500 NA NA NA NA NA

Hail5 1000 NA NA NA NA NA

Hail5 5000 NA NA NA NA NA

Pigs 500 3.9% 7.4% 12.1% 13.3% 19.4%

Pigs 1000 37.5% 94.6% 238.2% 227.9% 354.8%

Pigs 5000 NA NA NA NA NA

RN50 500 7.8% 7.9% 7.9% 9.5% 12.6%

RN50 1000 8.0% 6.7% 5.9% 5.6% 5.2%

RN50 5000 22.4% 11.8% 9.2% 9.6% 9.6%

RN100 500 9.3% 9.8% 11.1% 14.3% 17.0%

RN100 1000 16.1% 20.1% 24.8% 32.6% 38.7%

RN100 5000 383.6% 243.3% 298.6% 405.7% 447.1%

RN500 500 NA NA NA NA NA

RN500 1000 NA NA NA NA NA

RN500 5000 NA NA NA NA NA

173



The methods are also compared in terms of structural quality.

Table C-2: Structural Quality Results for the RegionMMHC and AlgorithmGPC approaches. The
RegionMMHC and AlgorithmGPC structural quality is measured by Structural Hamming Distance
(SHD). The global and local SHD is averaged over the 5 data samples and 10 random target nodes.
The relative quality of the two approaches is given by the difference in SHD (RegionMMHC - Algo-
rithmGPC ) and is reported for each network, sample size and depth of region. A negative relative
SHD indicates fewer errors by the RegionMMHC ; whereas, a positive relative SHD indicates fewer
errors by AlgorithmGPC .

Relative Quality (RegionMMHC - AlgorithmsGPC)

Data SS d=1 d=2 d=3 d=4 d=5

Alarm 500 −2.34 −3.04 −2.48 −1.34 −3.80

Alarm 1000 −1.42 −2.38 −4.28 −4.84 −4.26

Alarm 5000 −1.60 −3.70 −3.76 −4.12 −4.94

Ins10 500 −0.88 −1.36 −1.84 −3.48 −8.62

Ins10 1000 −1.36 −1.02 −0.40 −1.72 −3.22

Ins10 5000 −1.38 −0.70 0.34 2.34 10.16

Alarm10 500 −1.26 −2.18 −3.60 −6.28 −8.14

Alarm10 1000 −1.78 −3.20 −5.14 −7.64 −9.04

Alarm10 5000 −2.04 −3.00 −5.10 −5.52 −3.38

Hail5 500 NA NA NA NA NA

Hail5 1000 NA NA NA NA NA

Hail5 5000 NA NA NA NA NA

Pigs 500 −1.84 −8.88 −29.56 −58.86 −116.76

Pigs 1000 −1.54 −7.40 −24.60 −47.48 −87.94

Pigs 5000 NA NA NA NA NA

RN50 500 −12.08 −104.40 −120.72 14.14 79.52

RN50 1000 −12.56 −105.02 −124.52 0.16 45.54

RN50 5000 −11.60 −93.60 −117.54 −43.94 −41.52

RN100 500 1.38 −21.94 −211.62 −277.14 −270.02

RN100 1000 1.28 −21.34 −207.18 −262.90 −240.14

RN100 5000 −1.26 −29.04 −192.02 −199.82 −160.92

RN500 500 NA NA NA NA NA

RN500 1000 NA NA NA NA NA

RN500 5000 NA NA NA NA NA
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APPENDIX D

A STRATEGY FOR MAKING PREDICTIONS UNDER MANIPULATION

D.I Proof

Theorem V.1 Let 〈G∅, P∅〉 be a CBN and 〈GM, PM〉 be the resulting CBN under manipulations

of variables in M. Suppose that T 6∈ M and also that there is no manipulated child C of T in G∅

with a descendant D in G∅ that is also in MBM(T ). Then,

PM(T |MBM(T )) = P∅(T |MBM(T )).

Proof. We base the proof of the theorem on the more general theory of probability invariance under

manipulations found in Spirtes et al. (2000). Let G be the original graph G∅ with the additional

exogenous variable E representing the manipulating agent and edges from E to any manipulated

variable in M. All graph operations that follow in the proof are on G (in the terminology of Spirtes

et al. (2000) G is the combined graph Gcomb). Then P∅(Y|Z) = PM(Y|Z), if Dsep(E,Y|Z), where

Y, Z are two disjoint sets and Dsep(E,Y|Z) denotes the d-separation of E from Y given Z in G.

Thus, we just need to show that Dsep(T ;E|MBM(T )) under the conditions C:

There is no pair of variables C,D such that:

1. E → C ← T

2. C  D

3. D ∈ MBM(T )

where C  D denotes a directed path from C to D. Let us assume that the d-separation does not

hold when conditions C do, and reach a contradiction. Recall that there are no incoming edges to

E since it is an exogenous variable and no edge from E to T .
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Since the d-separation does not hold, there must be an open path from E to T that is not blocked

by MBM(T ). Take a path of the form E → · · ·P → T . P ∈ MBM(T ) under any manipulation and

so we condition on it and it blocks the path. Thus, since there is an open path, it must be of the

form E → · · ·C ← T . For the path to be open, for each collider on it, we must be conditioning on

either the collider or a descendant of the collider. Let us now consider the last collider on the path,

which can be (1) C itself, or (2) some other node G.

Case (1): The open path is of the form E → · · ·C ← T and C is the last collider on it. We

also distinguish two subcases, either (1a) the path is of the form E → C ← T , or (1b) of the form

E → · · ·S → C ← T . If (1a) is true, since C is a collider on the open path of case (1) we must be

conditioning on either itself or a descendant of it D ∈ MBM(T ). Since, in (1a) C is manipulated,

C 6∈ MBM(T ) and we cannot be conditioning on C itself. Thus, there is a D ∈ MBM(T ), descendant

of C and conditions C all hold reaching a contradiction.

If (1b)is true, then S cannot belong in MBM(T ) or it would block the path by conditioning

on it. Thus, S 6∈ MBM(T ) and the only way for this to be possible is if C is manipulated and so

E → C ← T holds. Similarly to case (1a) we then conclude that conditions C should hold, reaching

a contradiction.

Case (2): The open path is of the form E → · · ·G ← · · · ← C ← T and G is the last collider

on the path. If C ∈ MBM(T ) then we condition on it and it blocks the path. Thus, C 6∈ MBM(T )

which means C is manipulated and so E → C ← T holds. For the path to be open, given that G is

a collider we must be conditioning on a node D ∈ MBM(T ) that is either G itself or a descendant

of it. In either case, D must be a descendant of C too since there is a directed path G ← · · · ← C

(notice this path cannot be of the form G ← Q → C or C and not G would be the last collider on

the path E → · · ·G ← · · · ← C ← T ). Thus, case (2) implies conditions C hold, again contrary to

what we assumed.
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