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CHAPTER 1 

 

INTRODUCTION 

 

1 Driving in the United States 

     Injury, loss of life, and tremendous financial tolls have for years plagued drivers in the United 

States (US) and in nearly every industrialized nation in the world [1, 2]. Although the US has seen 

a decrease in the number of driving-related deaths in the last 30 years, vehicle crashes 

unwaveringly remain the most common cause of death for American teenagers [1-4]. The most 

recent statistics on teenage automobile accidents from the Centers for Disease Control and 

Prevention (CDC) report 2,163 fatalities and over 240,000 emergency room visits related to 

vehicle crashes in 2013 [4]. The number of emergency room visits is highest among the age group 

16-24 years, suggesting that teens are not the only demographic susceptible to the dangers of 

driving [5]. This group is also responsible for a disproportionate amount of the monetary cost of 

vehicle crashes with an annual price tag of $19 billion [4]. 

 

2 Driving Intervention 

     Despite the associated risks, driving remains an essential part of life for over 200 million 

Americans [6]. Autonomous transportation is one critical component of functional independence; 

it supports other aspects of quality of life in adulthood, such as vocational and social endeavors. 

Given the necessity of driving, researchers and policymakers have sought ways to improve the 

roadway situation. The recent criminalization of texting-and-driving in many states is the latest in 

a series of juridical attempts to improve driving safety, following mandatory seatbelt wearing and 

severe punishments for driving under the influence of alcohol. There is also a long tradition of 

using technology to understand and improve driver behavior [1]. As early as the 1970’s, eye 

trackers were embedded in actual vehicles to monitor drivers’ patterns of gaze on the road [1, 7], 

and driving simulation systems were already being employed to observe and challenge drivers in 
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safe, controlled environments [1]. Today, heads-up displays and augmented reality promise added 

safety for the driver by limiting his/her distractions.  

     Research on highly specialized driving interventions have begun to emerge [8-14]. These 

systems target specific deficits affecting driving performance and aim to improve performance 

through various means. Fletcher and Zelinsky [14] developed a gaze-sensitive driver assistance 

system to augment driver awareness in real world driving environments. They sought to minimize 

inattention by alerting drivers via audio feedback to objects determined not to have been seen by 

the drivers. They demonstrated the feasibility of the system to identify road objects (such as signs 

and pedestrians) using eye-tracking technology coupled with sophisticated image processing 

software [14]. Rezaei and Klette [13] used two cameras in real world driving scenarios to obtain 

several features of the environment and the driver including distance from other vehicles, head 

orientation, yawning, and head-nodding—the latter two being indicators of drowsiness. They 

showed that this system could reliably detect whether a driver was looking at relevant vehicles in 

the environment [13]. Ho et al. [15] were also interested in reducing driver inattentiveness, but 

employed a warning mechanism based on vibrotactile feedback rather than audio or video. Using 

commercial simulation software, they designed a system that activated a vibrotactile belt worn by 

drivers when the VR vehicle was either too close to a leading vehicle or too far behind. Vibration 

was spatially applied to the front (i.e., the stomach) when drivers were too close and in the rear 

(i.e., the lower back) when drivers were too far behind. They found drivers using this system 

braked earlier when a leading vehicle decelerated and left more space between themselves and the 

leading vehicle when stopped [15]. 

     All of the aforementioned intervention systems aim to shift human behavioral deficits that are 

superficial and alterable. Another type of driving intervention system is one that aims to change 

innate characteristics of the driver. For example, individuals with Attention Deficit Hyperactivity 

Disorder (ADHD) have become the focus of a growing body of driver research because they 

demonstrate behaviors that may be unconducive to safe driving [8-12]. Indeed, individuals with 

ADHD have been shown to perform more poorly than controls on driving performance tests [12]. 

While driving performance in individuals with ADHD is still a developing area of research that 

warrants further investigation, there is another population of drivers researchers know even less 

about: those with Autism Spectrum Disorder (ASD). 
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3 Autism Spectrum Disorder 

     ASD refers to a complex neurodevelopmental disorder characterized by impairments in social 

interaction and communication as well as restricted, repetitive patterns of behavior and interest 

[16]. Current prevalence rates estimate that 1 in 68 children in the US have ASD [17]. Although 

ASD is considered a lifelong diagnosis, much of the current research regarding intervention for 

ASD focuses on early childhood [18, 19]. However, adults with ASD often have a difficult time 

meeting educational and vocational goals that driving independence might support. Howlin et al. 

[20] demonstrated that a minority (23%) of adults with ASD achieve “good” to “very good 

outcomes,” such as paid employment, friendships, and some independence. A majority (58%) 

achieved “poor” to “very poor” outcomes and remained highly dependent on their families and 

social services [20]. Similarly, Shattuck et al. [21] indicated that more than 50% of individuals 

with ASD do not access education or employment in the two years following high school. A 

targeted intervention that promotes driving independence may provide an avenue for some 

adolescents and adults with ASD to more easily achieve educational and vocational goals. 

     A small, but growing body of research has begun to focus on the driving behaviors of 

individuals diagnosed with ASD [8, 22-30]. This work seems generally to suggest that (1) driving 

is more challenging for people with ASD, (2) these individuals may experience a greater risk to 

personal safety while driving than their typically developing (TD) peers, and (3) driving as it 

relates to people with ASD is highly under-researched. Driving intervention programs often cannot 

be realistically implemented in real-world driving environments due to the high risk of injury and 

obvious associated costs. The Virtual Reality (VR) paradigm, however, has the capacity to produce 

ideal environments that are harmless, controlled, and able to collect a wide variety of data from 

both drivers and their environment. Such environments are not only capable of operating off of 

simple performance paradigms, but also hold the potential for integrating other aspects of 

information processing in the environment in order to optimize learning (e.g., eye gaze, 

physiology, etc.). 
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4 The Need for VADIA 

     A growing body of work suggests that driving is a challenging skill for individuals with ASD 

and this challenge appears to be a direct result of how individuals with ASD process information 

in the driving environment. If this is the case, then effective interventions must incorporate 

methods for altering information processing, not merely focus on repeated exposure without 

processing support (e.g., performance systems). A primary reason why many current intervention 

approaches show limited improvements in functional adaptive skills may be that traditional skill-

based methodologies often fail to systematically match intervention strategies to specific 

underlying processing deficits associated with targeted skills. The hypothesis, therefore, is that in 

order to address the driving skill deficit of individuals with ASD, one would need to design an 

intelligent driving simulator than can (1) have embedded rules geared specifically towards ASD 

intervention, (2) provide individualized tasks and feedback to improve driving outcomes, and (3) 

be integrated with a host of sensors such as an eye tracker and physiological and EEG sensors to 

measure features of the driver and create dynamic closed-loop interaction. Further, it is 

hypothesized that realization of an autonomous system capable of providing real-time gaze-

contingent feedback would contribute to both enhanced performance within the driving 

environment (e.g., fewer driving errors) as well as shape how individuals with ASD were scanning 

the relevant objects in the environment (e.g., alterations in gaze). Although a range of high quality, 

off-the-shelf driving simulation software exists that can be used to assess driving behaviors, these 

tools do not provide necessary access to the source code in order to design closed-loop systems 

that utilize information from both driving performance and internal driver state. They thus do not 

satisfy the above-mentioned requirements for ASD intervention. As a result, commercial driving 

simulators were not deemed appropriate for this work. 

     This thesis describes the development and application of a VR Adaptive Driving Intervention 

Architecture (henceforth referred to as VADIA). VADIA is a VR-based, real-time gaze-contingent 

driving simulator capable of providing individualized feedback about how drivers scan their visual 

environment while driving. This system was designed to evaluate participant responses across two 

feedback modalities: (1) strictly performance-dependent feedback and (2) performance- and gaze-

contingent feedback. The intuition behind the second modality is that, although performance is 
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certainly an important factor in developing driving skills, it is just as important that drivers 

demonstrate appropriate gaze patterns while behind the wheel. 

 

5 Related Work 

     Relatively little research specifically investigates driving in the population with ASD [8]. 

However, since many individuals with ASD display affinity for non-biological motion [31] and 

may find it difficult to attend to multiple stimuli during driving tasks [28], understanding their 

driving behaviors and aiding them in their driving skills requires further research. Much of the 

work that has been done in this area has not utilized technology effectively to obtain objective, 

quantitative information about these individuals’ driving behaviors. Sheppard et al. [30] recruited 

23 participants with ASD and 21 TD controls—all non-driving adult males—and showed them 

videos of hazardous driving scenarios that contained either a social hazard (e.g., a pedestrian) or a 

non-social hazard (e.g., and automobile). They found that individuals with ASD identified social 

hazards significantly less often than the controls and were slower than controls overall in 

identifying hazards [30]. Cox et al. [28] surveyed the parents of adolescents and young adults with 

ASD about their experiences with their children learning to drive. The results of their survey 

indicated that a majority of parents were generally very concerned about the safety of their child 

while driving because of their child’s ASD and parents tended to feel that multitasking (e.g., 

managing speed while entering a highway) was a particularly problematic skill for their child [28]. 

Another survey-based study conducted by Daly et al. [26] questioned licensed driving adults with 

and without ASD about their driving histories. They found that individuals with ASD reported 

being older at the age of licensure, spending less time driving, feeling less confident about their 

driving abilities, and experiencing a higher number of traffic violations than their TD peers [26]. 

     Very few empirical studies have investigated a driving simulation paradigm to specifically 

assess the driving performance of individuals with ASD—two of which are the previous work of 

the present author [22-24, 27]. Classen et al. [22] used proprietary driving simulation software to 

observe the between group distinctions of seven adolescents with ASD and 22 TD controls. They 

found that subjects with ASD demonstrated significantly more driving errors than controls. Reimer 

et al. [27] also used proprietary driving simulation software to analyze the performance of young 

adult males diagnosed with higher-functioning ASD (HF-ASD) as compared to controls. In 
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addition, this study observed physiological signals (i.e., heart rate and skin conductance) as well 

as eye gaze from participants. They found heart rate and skin conductance levels were nominally 

higher in the HF-ASD group suggesting higher levels of anxiety while driving. Furthermore, 

compared to controls, the pattern of gaze in the HF-ASD group tended to be higher vertically and 

more the right on the screen on which the VR driving environment was projected [27]. Similar 

patterns of gaze and increased anxiety were reproduced in the author’s previous work [24], which 

is described fully in Chapter 4 Section 2. In this pilot study, the driving performance of individuals 

with ASD was compared to TD controls using a novel driving simulator. The results showed that 

individuals with ASD displayed significant physiological differences from the TD controls with 

respect to skin conductance, likely indicating higher levels of anxiety while driving. The same 

pattern of gaze reported by the Reimer et al. [27] study was present, and additionally, the ASD 

group demonstrated a significantly higher number of driving errors compared to their TD peers 

[24]. 

 

6 Contributions of Thesis 

     The contributions of this thesis are: 

(1) The design and implementation of a novel adaptive VR driving simulation platform for 

ASD intervention that combines real-time gaze monitoring and gaze-contingent feedback 

to the driver in the virtual environment 

(2) The presented architecture supports integration of sensor feedback in a closed loop manner, 

which have been utilized to design an intervention program based on eye gaze information 

(3) VADIA has been validated through two distinct pilot studies and findings suggest that the 

system is functional and robust, and shows promising results as a driving intervention tool 

 

7 Structure of Thesis 

     This thesis is a comprehensive assemblage of three published conference papers [23-25] and 

two submitted-for-review journal manuscripts. The content of these documents has been 

restructured in this thesis in order to provide a clearer, more cogent representation of VADIA and 
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the experiments conducted. Considering this, the rest of the thesis is structured as follows: In 

Chapter 2, the modeling and implementation of VADIA is presented in detail. Chapter 3 discusses 

the two feedback modalities employed within VADIA (i.e., the performance-dependent and gaze-

contingent modalities) and includes details on the real-time gaze monitoring system. In Chapter 4, 

the design and results of our various experiments are presented. These include a range of tests used 

to validate the robustness of the system, as well as two separate pilot studies involving 34 human 

subjects with and without ASD. Finally, Chapter 5 concludes with a review of the contributions of 

this work as well as the limitations of VADIA and planned future work with the architecture. 
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CHAPTER 2 

 

VADIA DEVELOPMENT 

 

     VADIA is comprised of a set of interacting modules in which the central member is the VR 

driving module (VDM). In addition to the VDM, VADIA contains the following modules: the gaze 

data acquisition module (GDM), the physiological data acquisition module (PDM), the 

electroencephalography (EEG) data acquisition module (EDM), and the observer assessment 

module (OAM). Fig. 1 gives a block diagram of the architecture. VADIA can be configured to 

operate with various combinations of modules depending on the intervention objectives. In 

addition, some modules may disabled on-the-fly under special circumstances. For example, the 

EDM can be disabled without impacting the rest of the system in cases where the participant 

refuses to wear the EEG device. This chapter discusses in detail VADIA’s current modules 

identifying each module’s role within the overall architecture as well as important features of the 

module. 

 

 

Figure 1. VADIA block diagram. The solid lines indicate human input and the dashed lines 

represent network communication channels. 
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1 Models of Computation 

     Formal models of computation (MoC) are tools used in the development process to design 

software systems in a way that compartmentalizes the system’s behaviors and responsibilities 

(refer to Appendix A for a thorough review of MoC). There are many reasons to suggest modeling 

systems using a formal MoC. Because a formal MoC has an established syntax and semantics, it 

provides a framework for modeling that can be followed by anyone. Software often requires 

maintenance in order to fix a bug or extension to perform some new task. For very complex 

systems, these can prove to be major challenges. A model-centric approach to design may reduce 

the difficulty of these tasks by allowing developers to more easily identify the components of the 

system that require change as well as to see how the changes will impact the overall system. 

Additionally, the graphical representation of a MoC may serve as both documentation of a 

system’s behavior and a useful tool for explaining how a system works to others. Finally, a formal 

MoC is amenable to analysis, which allows developers to make guarantees about how a system 

will execute in a target environment. Quantitative analyses may be carried out to assess the worst-

case execution time of a piece of code or the throughput rate of a network component. Formal 

verification methods such as model checking have also been heavily researched and can be used 

to prove that a system will exhibit certain properties under all possible circumstances. 

     MoCs have been primarily applied in the context of Embedded Systems development, but 

recently they have begun to gain interest in other domains as well [32, 33]. Many different types 

of MoCs exist and the choice of which to use depends on the intended behavior of the system. 

Some examples of MoCs include finite state machines (FSM), statecharts or hierarchical state 

machines (HSM), discrete events systems, hybrid automata (HA), petri nets, and dataflow 

networks [34]. Within each of these types of MoCs, there are many recognized variations, each 

with its own formal syntax and semantics. In this work, a mixture of FSMs, HSMs, and HAs are 

used to model various components of VADIA’s modules. These are discussed in more detail in 

the next section. 
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2 Implementation 

     This section discusses each of VADIA’s modules in depth including their role in the overall 

architecture, associated hardware interface (if applicable), software modeling approach taken, and 

implementation details of note. 

 

2.1 VR Driving Module (VDM) 

     The fundamental module of VADIA is the VDM. The VDM consists of both VR driving 

simulation software and a hardware driving interface that allow users to perform driving tasks in 

a controlled environment. The simulation system was designed such that users could engage in a 

variety of meaningful driving tasks and that parameters of the tasks such as complexity, difficulty, 

and length could be explicitly controlled. Drivers could interact with traffic lights, pedestrians, and 

other vehicles while completing tasks and a built-in navigation system aided drivers in reaching 

their respective destinations. Behaviors were defined for autonomous vehicles and pedestrians in 

order to make the tasks more naturalistic. The system was designed in such a way that tasks could 

be completed or failed and either outcome would produce some appropriate feedback to the 

drivers. 

     The first step towards developing the virtual driving environment was to create a 3D model 

city. Using CityEngine software (www.esri.com/software/cityengine), a model city was 

constructed that was sufficiently large to allow the creation of driving tasks lasting up to a few 

hours. This model consisted of diverse regions including a large downtown area with skyscrapers, 

a residential community, an industrial park, and a large arboreal region. A wide variety of roads 

were represented including narrow one-way streets, multi-lane highways, and sharp turns. Next, 

the city was appropriately populated with typical objects such as vehicles, pedestrians, traffic 

lights, and signs. Vehicle and pedestrian objects were obtained from free online repositories of 3D 

models. The rest of the required models were created using Autodesk Maya software 

(www.autodesk.com/products/maya). 

     The Unity3D game development platform (or simply “Unity”) was selected to implement the 

VR driving application. Unity was a good option for development for a number of reasons: (1) it 

supports a variety of high level programming languages, (2) has a robust physics application 

http://www.esri.com/software/cityengine
http://www.autodesk.com/products/maya
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programming interface (API), (3) is available in both free and paid versions, and (4) generates 

executables on all major operating systems. Additionally, Unity natively interfaces with many 

input devices including the Logitech G27 driving controller, which was used in the present work. 

The G27 controller includes a steering wheel with customizable buttons, a pedal board with three 

independent pedals, and a gear shifter which was not used in the studies. Fig. 2 shows both a 

screenshot of the driving perspective and the G27 controller in use. 

 

 

Figure 2. The VDM interface: driver perspective (left) and Logitech G27 controller (right). 
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Table 1. Major Components of the VDM Software 

Name Purpose 

GameMonitor 

Supervisory controller manages highest level of application logic such as 

menu navigation (e.g., vehicle selction), initiating network communication, 

and beginning driving tasks. 

TrialMonitor Initializes trials and monitors failure and success events. 

PathMonitor 
Manages placement of driver's vehicle at trial start and trial reset after a 

failure. 

GazeMonitor Maintains hashtable of fixation duration information. 

SoundMonitor 
Schedules various audio clips used in the simulator (e.g., congratulatory 

sounds for successful trial completion). 

DataManager Logs user performance data as well fixation duration data and metadata. 

FeedbackModule Manages the presentation of feedback within the system. 

EyeTrackerModule 
Handles network communication with the GDM and provides real-time gaze 

information to the GazeMonitor component. 

PhysioModule Handles network communication with the PDM. 

EEGServer Handles network communication with the EDM. 

QServer Handles network communication with the OAM. 

VehicleManager 
Updates the driver's vehicle state based on the driver's input via the G27 

controller. 

AIVehicle Controls the autonomous vehicles in the driving tasks. 

AIPedestrian Controls the autonomous pedestrians in the driving tasks. 

TrafficLightDisplay Manages the scheduling of traffic light signals. 

ExcessiveSpeedFSM Detects driving failures due to exceeding the speed limit. 

OffRoadDetectionFSM 
Detects driving failures due to driving off the road (i.e., driving too far onto 

the shoulder or onto the grass). 

IncorrectLaneFSM Detects driving failures due to driving in the wrong lane. 

RidingSidewalkFSM Detects driving failures due to driving onto the sidewalk. 

PassingFSM 
Detects driving failures that result from a driver either not passing a vehicle 

when it is required or passing in an inappropriate way. 

RunStopSignFSM Detects driving failures related to failing to stop appropriately at a stop sign. 

RunRedFSM 
Detects driving failures related to running a red light at a traffic light 

intersection. 

GpsController Manages the navigation system used by the driver to complete tasks. 

 

     The software of the VDM is made up of several major components (see Table 1 for a description 

of some of these). At the low level, there are components such as TurnSignalControl and 

TrafficLightDisplay that define the behaviors of simple elements of the driving environment. More 

complex components dictate the behaviors of semi-autonomous objects such as AIPedestrian for 
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pedestrians and AIVehicle for vehicles. There are other components like EEGServer and QServer 

dedicated to communicating over the network with VADIA’s other modules. At the highest level, 

the supervisory controller component GameMonitor manages the lower level components, 

synchronizes them, broadcasts events, and effectively dictates the flow of the system. Fig. 3 gives 

a view of the hierarchy among the VDM’s major components. Having control over all of these 

elements of the driving environment was key in developing the embedded rules of the system. For 

example, traffic light signals and autonomous vehicle behaviors were manipulated to create a range 

of task complexity that was suitable to drivers across a spectrum. Additionally, feedback 

presentation mechanisms suitable to individuals with ASD were incorporated, such as object-

highlighting and audio/text presentation. A full description of each of the VDM’s components is 

well beyond the scope of this thesis and also not necessary. Instead, the discussion is focused on 

the supervisory GameMonitor component in order to demonstrate the application of model-centric 

design and to show that it is also appropriate for software design outside the context of Embedded 

Systems. 

 

 

Figure 3. Hierarchical view of some of the major components of the VDM software. Layer 0 is 

populated by concurrent, independent components such as the supervisory controller and 

network components while layers 1 and 2 are subordinate to the layers above them. 
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     For the automata presented here, discrete modes or states are represented as rounded rectangles 

and transitions between states are given as arcs. Transition arcs typically labeled using the format 

guard / actions where guard indicates the set of conditions under which the transition is valid and 

actions represents a set of tasks to be performed when the transition occurs. Such actions may 

include setting the value of a variable or generating an event. States are labeled with a descriptive 

name and, in the case of HA, include a set of ordinary differential equations that describe the 

behavior of the continuous variables in that state. 

     The following desired behavior was specified for the GameMonitor component: (1) handle the 

decision to enter practice mode or assignment mode; (2) manage the selection of vehicle by users; 

(3) manage the choice of level and assignment by users; (4) initiate the start of an assignment when 

the user is ready to begin; (5) provide the option to return to the previous state of menu selection 

in case the user made a mistake in selecting options; (6) keep track of trial success counts and trial 

failures counts; and (7) schedule the presentation of feedback. Since the behavior described in this 

specification deals exclusively with discrete events and variables with finite domains, a FSM 

(shown in Fig. 4) was chosen to model this behavior. Keep in mind that other components such as 

EyeTrackerModule and EEGServer were in the same hierarchical layer as GameMonitor and so 

network-related logic is not the responsibility of this particular FSM. 

     The initial state of this FSM is labeled Choose Practice or Assignment and offers the user the 

choice to run the system in either practice mode or regular assignment mode before allowing the 

user to select a vehicle to operate. Depending on the user’s choice in the initial state, the FSM 

transition to either the state Display Practice Mode Instructions where the user will confirm the 

start of practice mode, or the state Select Level where the user will choose the difficulty level to 

play. When the user chooses the assignment path, the appropriate assignment is loaded and 

executed in the state labeled Assignment In Progress. It is in this state that the TrialMonitor 

component of the VDM is enabled (see Fig. 3) and begins presenting driving tasks to the user. 

Because TrialMonitor is only active when the GameMonitor is in this state, the TrialMonitor 

component is said to be subordinate to the GameMonitor component, hence the ‘hierarchical’ state 

machine. While the assignment is in progress, the TrialMonitor may generate events indicating 

that a driving task has been either failed or completed successfully. When either of these events 

occur, the GameMonitor transitions to the appropriate next state: to the Present Failure Feedback 
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state when a task is failed, back to the Assignment In Progress state if the trial is completed but 

there are remaining trials to complete, or to the Present Summary Feedback state if the trial is 

completed and there are no remaining trials left to complete. The author has opted not to include 

some details of the model in Fig. 4 such as self-loops and transition actions, but this model 

accurately represents the specification outlined in the previous paragraph. Each MoC produced for 

components in the VDM system was transformed to software code using object-oriented, 

automata-based programming techniques (see Appendix B for details and examples). In all, over 

30 formal models were mapped to source code as part of the VDM’s implementation. 

 

 

Figure 4. FSM model of the GameMonitor component of the VDM. Note that self-loops, 

transition actions, and arcs for go-back options are excluded for simplicity. 

 

2.2 Gaze Data Acquisition Module (GDM) 

     The GDM allows VADIA to obtain eye gaze information from the driver. This information can 

be logged for offline analysis or utilized in a closed-loop system that uses gaze data to generate 

individualized driving feedback as described in Chapter 3. 
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     The Tobii X120 remote eye tracking device (www.tobii.com) was used to extract eye gaze data 

from users at a sampling rate of 120 Hz. The X120 can achieve high accuracy and allows the user 

the freedom of small amounts of head movement in the range 30 × 22 × 30 cm (w × h × d) [35]. 

The Tobii software API provides developers access to a variety of information about a subject’s 

gaze including pupil diameter, blink rate, and gaze position on a calibrated surface (e.g., a monitor 

or project screen). Pupil diameter and blink rate have been shown to be physiological indicators of 

a person’s internal state and can reveal an individual’s level of anxiety or engagement while gaze 

position may yield information about an individual’s attention [36, 37]. 

     An existing device interface application was modified to allow communication between the 

GDM and VDM. A simple FSM was created to model the pairwise network communication logic 

with the VDM and was implemented within the application. This software performed device 

calibration onto a 24” monitor (1920 × 1080 resolution), logged the subject’s data locally, and 

transmitted relevant data to the VDM over the network. The subject’s gaze position information 

was used by the VDM for online processing while pupil diameter and blink rate were logged solely 

for offline analysis. 

 

2.3 Physiological and EEG Data Acquisition Modules (PDM and EDM) 

     The PDM and EDM acquired physiological and EEG data, respectively, from the driver for the 

purposes of offline analysis. Their primary roles in the presented work were to develop models of 

drivers’ affect for a series of concurrent studies [38-41]. Both modules were connected to the VDM 

via a local area network (LAN) and received event messages from the VDM for the purpose of 

aligning signals with respect to important driving events. These modules are discussed here as part 

of the presentation of VADIA, but this thesis is not concerned with the development of a driver 

affect model. 

     The Biopac MP150 was used for physiological data acquisition (www.biopac.com). This 

system wirelessly sampled several physiological signals from the driver at 1000 Hz. Signals of 

interest included electromyogram activities from corrugator supercilii, zygomaticus major, and 

upper trapezius muscles; electrocardiogram; impedance cardiogram; phonocardiogram/heart 

http://www.tobii.com/
http://www.biopac.com/
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sound; galvanic skin response; photoplethysmogram; skin temperature; and respiration. These 

signals were selected because of their ability to predict the affective state of the subject [42]. 

     For EEG data acquisition, the Emotiv EPOC headset was used (www.emotiv.com). This device 

was used to sample from 14 locations on the wearer’s head at 128 Hz. The data was streamed 

wirelessly from the headset to a custom PC-side application via a proprietary dongle. This 

application logged the EEG readings as well as signal quality and rotational velocity information 

collected from a gyroscope within the device. 

 

2.4 Observer-based Assessment Module (OAM) 

     As mentioned in the preceding section, the roles of the PDM and EDM were simply to log data 

regarding the internal state of subjects in order to derive a model of driver affect. In order to achieve 

this, the OAM was developed to provide a means for specifying the ground truth of subject affect 

by allowing an observer to label epochs of data in a meaningful way. As with the PDM and EDM, 

the OAM is described here for completeness, but the results of the affect model training are not 

within the scope of this thesis. 

     The OAM was designed for both online and offline use. In online mode, an observer could 

attend a driving session and make assessments about a driver’s state in real time. These 

assessments were labeled with timestamps that could be mapped to data collected from the PDM 

and/or EDM. Video recordings of the subjects’ faces and the driving were collected during driving 

sessions. Using these videos, which included a timestamp overlay, observers were able to use the 

OAM to code driving sessions offline as well. 

     The OAM prompted observers for five categories of input. Four measures of subject affect—

engagement, enjoyment, boredom, and frustration—and an additional measure of perceived 

difficulty of the task for the subject were collected from the observer. Each category could be rated 

on a continuous scale in the range [0, 9], where 0 indicated the lowest intensity, by dragging a 

slider with a mouse. Observers were permitted to make an assessment at any time during the 

driving sessions; these were referred to as periodic assessments. There were also summary 

assessments that were made by the observer at the end of driving assignments. Assignments are 

described in detail in Chapter 3. 

http://www.emotiv.com/
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2.5 Network Communication 

     VADIA uses a star network topology in which the VDM is the central node. This is not strictly 

necessary, but was convenient for the conducted studies. All modules required a connection with 

the VDM, but not to other modules. For example, the PDM had no need to interact directly with 

the OAM, nor did the GDM have any reason to communicate with the EDM, etc. However, such 

functionality may be desirable in future studies and therefore is not prohibited within VADIA. All 

nodes in the network communicated via TCP/IP and used object serialization methods, including 

JavaScript Object Notation (JSON), to send objects as messages between nodes. The physical 

nodes consisted of three computers: the first executing the VDM and GDM software and 

interfacing with the G27 controller and eye tracker, the second running the PDM and EDM 

software and interfacing with the Biopac system and EPOC headset, and the third running the 

OAM software. Other assignments of processes to hardware were possible, but this configuration 

yielded adequate system performance. 
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CHAPTER 3 

 

INTERVENTION MODALITIES 

 

     Two distinct modes of operation were defined for VADIA: a performance-based mode and a 

gaze-contingent mode, henceforth referred to as PB and GC modes, respectively. A configuration 

file is used to specify the mode of operation employed by VADIA at runtime. The PB mode of 

operation presents users with driving tasks in which progression depends entirely on their 

performance within the system. The GC mode of operation also enforces proper driving 

performance, but very importantly, it also requires that drivers demonstrate particular patterns of 

gaze while driving. Each of these modes is described in greater detail in the following sections. 

 

1 Performance-based System 

     The driving scenarios used to evaluate driver performance were called trials. Four classes of 

trials were defined: turning, merging, speed-maintenance, and laws. Turning trials consisted of all 

those trials in which the participant made a left or right turn at an intersection. This implies a street 

change and does not include driving on sharply curved roads. Merging trials were characterized 

by any scenario in which drivers either passed another vehicle or entered/exited a highway. Speed-

maintenance trials were those in which drivers were required to modify their speed to comply with 

the changing environment. Active school zones and areas of road construction are examples of 

scenarios in which the speed limit may change and drivers should adjust their speed accordingly. 

The last category, laws, dealt with an assortment of driving scenarios such as waiting for a school 

bus to unload and stopping at stop signs, which require drivers to know specific road laws.  

     A set of eight trials were assembled together, one after the other, into larger tasks referred to as 

assignments. The number eight was chosen because, on average, it produced assignments of 

desirable duration (roughly five minutes). Three assignments were grouped together into levels. In 

all, six levels were developed (i.e., 18 assignments or 144 trials). The levels increased in difficulty 

from level one (the easiest) to level six (the hardest). In order to implement six difficulty levels, a 
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set of difficulty parameters was defined that could be appropriately tuned to fit the desired 

difficulty settings. Table 2 describes the parameters chosen. The functions of most of the 

parameters should be evident by their descriptions, but a few are mentioned here in passing. When 

the parameter Hs is enabled, drivers will be alerted when relevant traffic lights change from red to 

green. The parameter L controls the intensity of lighting in the environment (i.e., it can be brighter 

or darker affecting the driver’s visibility). The parameter Sd indicates how long drivers can drive 

on a sidewalk without a penalty; sometimes drivers accidentally drive onto the sidewalk and so a 

kind of ‘forgiveness’ factor was quantified. 

 

Table 2. Level Difficulty Parameters 

Name Description Domain 

As Speed of autonomous vehicles, a scalar ℝ 

Aa 
Aggressiveness of autonomous vehicles, a 

scalar 
ℝ 

Hs Traffic light alert sound 
{enabled, disabled} 

 

Rb Responsiveness of the brake pedal, a scalar ℝ 

Ra 
Responsiveness of the accelerator pedal, a 

scalar 
ℝ 

Rs Responsiveness of the steering wheel, a scalar ℝ 

W Weather condition state 
{sunny, overcase, 

rainy} 

L Light intensity value, a scalar ℝ 

Nv 
Number of vehicles at intersections/hwy 

entrances 
{1, 2, … , 5} 

Sd 
Duration of time to permit driving on sidewalk, 

in seconds 
ℝ 

 

     Trial failures and successes are met with feedback from the system. When drivers successfully 

completed a trial, a money counter (an arbitrary scoring system) increased by $5 and a 

congratulatory audio clip played (the obligatory cash register sound). When an entire assignment 

was completed successfully, drivers were presented with a congratulatory feedback message (e.g., 

Great job driving! Get ready for the next assignment!). On the other hand, when trial failures 

occurred, a feedback window would appear on the screen with a text message and corresponding 
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audio explaining what drivers did wrong and how to correct it moving forward (see Fig. 5). 

Following trial failure events, trials were reinitialized so that drivers could make subsequent 

attempts at completing the failed trials. The number of reattempts permitted per assignment was 

three, and a fourth failure would result in the termination of the assignment. 

 

 

Figure 5. A feedback message appears after a driver fails to look at the vehicle's speedometer 

during a speed-maintenance trial. 

 

2 Gaze-contingent System 

     In essence, the GC mode required that drivers look at specified regions of interest (ROI) during 

trials in order to progress through tasks. Failing to look at these ROIs would result in a gaze failure 

as opposed to a performance failure. For trial failures that occurred in the GC mode, the feedback 

message would include the names of the ROIs that the driver should be looking at (e.g., traffic 

light, stop sign, left side view mirror, etc.). In PB mode, three trial failures per assignment were 

allowed and the fourth resulted in the termination of the assignment without a chance to reattempt. 

In the GC mode, however, three trial failures were granted for both categories (i.e., three 

performance failures and three gaze failures) and a fourth trial failure in either category resulted 

in the termination of the assignment without a chance to reattempt. When a trial was reset after a 
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gaze failure, all of the ROIs relevant to that trial were highlighted with a green light to draw the 

driver’s attention. Fig. 6 shows an example of a scenario in which the ROIs become highlighted. 

In this case, the driver did not look at one or both of the male pedestrian and pedestrian crossing 

sign, and thus are repeating the trial with the ROIs highlighted. 

 

 

Figure 6. Example of ROI highlighting after a gaze-related trial failure. Both the male pedestrian 

and the pedestrian crossing sign have become highlighted with a green light to draw the attention 

of the driver. 

 

2.1 Selection of ROIs 

     The set of relevant ROIs selected for each trial were purposefully chosen on a trial-by-trial 

basis. Each of the 144 trials were exhaustively evaluated and a list of only the most crucial ROIs 

were identified as being key to the successful completion of each particular trial. The basic 

inclusion criterion for an object to be selected as a ROI was that the act of observing the object 

must be essential to safe driving. That being said, most trials in the same category (i.e., turning, 

merging, speed-maintenance, and laws) had very similar sets of relevant ROIs. In every speed-

maintenance trial, for example, the relevant set of ROIs included at a minimum the vehicle’s 

speedometer and the nearby speed limit signs. Without observing these two objects, drivers cannot 
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be demonstrating truly safe driving behavior because they either (1) do not know the speed at 

which they are travelling or (2) do not know the current speed limit. Similarly, for trials requiring 

drivers to stop at pedestrian crossings, drivers must always be aware of both the crossing zone (i.e., 

the pedestrian crossing signs) and the pedestrian. Failing to notice one or both of these objects 

does not reflect optimally safe driving. 

 

Table 3. Typical Selection of ROIs by Trial Category 

Category Typical Regions of Interest (ROIs) 

Turning oncoming traffic, traffic lights, flashing lights, stop signs 

Merging side view mirrors, yield signs 

Speed-maintenance speedometer, speed limit signs, road work signs 

Laws 
pedestrian crossing signs, pedestrians, school bus stop sign, stop 

signs 

 

     A comprehensive listing of the ROIs selected for each trial is not feasible. Instead, Table 3 

identifies the typical choice of ROIs by trial category. In a few cases, multiple virtual objects 

constituted the same ROI. For example, yield signs were located on both sides of highway entrance 

ramps. Rather than requiring drivers to observe both of these objects, one or the other was deemed 

sufficient. Similarly, if multiple speed limit signs were present along a stretch of road, then drivers 

need only look at one of them to satisfy the gaze requirement. 

 

2.2 Online Eye Gaze Monitoring 

     Tracking drivers’ eye gaze in order to know what objects they are looking at while driving is 

an essential function of the GC operating mode. As such, an algorithm was needed that would 

accept drivers’ gaze as input and in turn report the amount of time drivers had spent looking at 

various ROIs. The term fixation duration (FD) is used to indicate the amount of time that a driver 

spends looking at a particular ROI during a driving trial. 
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Figure 7. Bounding boxes around two ROIs in a turning-related trial: an oncoming vehicle and a 

traffic light. 

 

     An algorithm was developed to perform the desired FD calculation (Algorithm 1). This 

algorithm utilized a hashtable data structure to store key-value pairs in which the keys were 

identifiers for specific ROIs, and the values were the FDs for the associated ROIs in seconds. The 

algorithm had two parts: an initialization part and an update part. Initialization was performed at 

the start (or restart) of each trial in order to clear the hashtable of old key-value pairs. The update 

performed the actual FD calculations. The basic intuition of the algorithm was to check for 

intersection of the user’s gaze 𝐠 ∈ ℝ2, with a circle of radius 𝑟 ∈ ℝ, around each relevant ROI’s 

center of mass 𝐜 ∈ ℝ3. If the gaze position fell within the circle, then the driver was determined to 

be looking at the ROI. 

     Formally, a ROI was defined as a tuple 𝜌 = (𝐜, 𝐸), where 𝐜 ∈ ℝ3 was the ROI’s center of mass 

and 𝐸 = {𝐞𝟏, 𝐞𝟐, … , 𝐞𝟖}, ∀i 𝐞𝐢 ∈ ℝ3 was the set of extents of a bounding box around the ROI (see 

Fig. 7). A transformation 𝑇 ∶ ℝ3 → ℝ2 was required to transform points in the virtual environment 

to coordinates on the screen; Unity’s API provided such a transformation. If the algorithm 

determined that a gaze intersection for a particular ROI did in fact occur, then the FD time for that 

ROI was incremented by the elapsed time in seconds between the current and previous video 

frame. This value was also available via the Unity API and is denoted in Algorithm 1 as Δ𝑡. In line 

5 of Algorithm 1, the furthest extent 𝐞∗ from the ROI’s center of mass 𝐜𝐢 (in screen space) is 

obtained. Then in line 6, the radius 𝑟 of a screen space circle is computed as the largest of either 
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the screen space distance between 𝐜𝐢 and 𝐞∗ multiplied by scalar 𝛼, or the constant 𝑘, where 𝑘 is 

the minimum allowable radius length. The value of 𝑘 was equal to 1 cm in screen space and was 

selected based on a validation of the eye tracking system (see Chapter 4 for a justification of the 

values of 𝛼 and 𝑘). Line 7 of the algorithm determines whether an intersection has occurred and if 

so, then line 8 increments the FD time for the relevant ROI. 

ALGORITHM 1. Fixation Duration Calculation for Regions of Interest 

Input: A hashtable 𝑯 of key-value pairs where a key is a ROI name and the value is the fixation 

duration in seconds, the driver’s gaze position 𝐠, the set 𝑅 or ROIs relevant to the current trial, 

and the flag 𝑖𝑛𝑖𝑡𝐹𝑙𝑎𝑔 indicating when to (re)initialize 𝑯. 

Output: The updated hashtable 𝑯. 

INITIALIZATION OF HASHTABLE 

1: if 𝑖𝑛𝑖𝑡𝐹𝑙𝑎𝑔 then 

2:    for i = 1 to n do 

3:       𝑯 [i] ← 0 

UPDATE HASHTABLE WITH NEW FIXATION DURATIONS 

4: for i = 1 to n do {Iterate over each of the ROIs} 

5:    𝐞∗ =  argmax
𝐞 ∈ 𝐸𝑖  

‖𝑇[𝐜𝐢] − 𝑇[𝐞]‖ {Find the furthest extent from the center of mass} 

6:    𝑟 = max(𝛼 ∗ ‖𝑇[𝐜𝐢] − 𝑇[𝐞∗]‖, 𝑘) {Compute the screen space ROI radius} 

7:    if ‖𝐠 − 𝑇[𝐜𝐢]‖ ≤ 𝑟 then 

8:       𝑯 [i] ← 𝑯 [i] + Δ𝑡 

9: return 𝑯 
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CHAPTER 4 

 

EXPERIMENTAL EVALUATIONS 

 

     Results from a series of validation tests as well as two separate user studies are presented. The 

purpose of the validation tests was to show that both operational modalities were functional and 

robust. The first presented user study was conducted in order to demonstrate the acceptability and 

usability of the system. The second user study was conducted to verify the usability and potential 

of the intelligent gaze-contingent design for future ASD intervention. 

 

1 System Validation Tests 

     Key elements of the system were quantitatively analyzed to ensure that they were behaving 

according to specification. Specifically, the network communication performance between the 

VDM and GDM modules, and the measurement uncertainty of ROI detection using the proposed 

gaze monitoring method were analyzed. The developed system is far too complex for formal model 

checking in its entirety; instead, a few important invariant properties of the system are discussed 

and it is shown that these properties held for every observed execution of the system. These 

properties include (1) feedback is always presented to the driver after a trial failure has occurred, 

and (2) after every trial failure, another trial failure will not occur until at least five seconds after 

the next trial begins. 

     Network communication throughput between the VDM and GDM is defined as the number of 

times per second that the VDM received a new driver gaze coordinate from the GDM. The 

communication speed should be sufficiently fast to reliably represent drivers’ gaze within the 

driving environment. The sample analyzed consisted of 32 assignments (256 trials), and the mean 

communication throughput was found to be approximately 11.6 Hz, or about every 86 ms. Note 

that the GDM software logged drivers’ gaze data at 120 Hz irrespective of the network throughput. 

The observed frequency was more than adequate for real-time gaze monitoring because it has been 
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shown that fixation durations less than about 300 ms are not long enough to indicate actual fixation 

in a dynamic scene, but rather saccadic movement [43]. 

     The measurement uncertainty of the eye tracker in detecting users’ gaze was also validated. 

Seven volunteers were enlisted to participate in a brief data collection task. The task consisted of 

a small white circle appearing at nine known locations in a random order for two seconds. The 

same type of monitor was used for this task as in the driving task (i.e., a 24” monitor with 1920 × 

1080 resolution) and subjects were appropriately seated 70 cm from the monitor [35]. A mean 

error of 0.88° (1.08 cm) was found with the error appearing to be less severe at the bottom of the 

monitor (0.36°, 0.44 cm) than at the top (1.57°, 1.92 cm). Because this error appeared to be linear, 

the computed radii for ROIs were scaled based on their vertical position in screen space (𝛼 in line 

6 of Algorithm 1) so that ROIs near the top of the screen had slightly larger radii than those at the 

bottom of the screen. Additionally, the mean error provided the basis for selecting the minimum 

ROI radius 𝑘 = 1 cm in Algorithm 1. 

     For the proposed intervention system to be effective, feedback must be presented to the driver 

after every single driving error. Over the course of the 120 driving sessions, 912 instances of 

driving errors were registered by the system. The event logs produced by the DataManager 

component of the VDM (see Fig. 3) recorded the time of trial failures, followed by the time of 

feedback presentation as well as the time that drivers acknowledged the feedback messages. In 

every instance of a trial failure, the feedback presentation and acknowledgement events were 

present in the log. Descriptive statistics were computed for the duration of time that the feedback 

was present on screen: the mean duration, in seconds, was 7.44 s, standard deviation 8.25 s, and 

median 4.55 s. Note that feedback was presented as both text and audio. Therefore, for those 

subjects who may have quickly acknowledged the feedback text in order to return to gameplay 

sooner, they were still presented with the audio version of feedback. 

     Since it is possible that multiple driving errors could occur at the same time (e.g., a driver makes 

a wrong turn and drives onto the sidewalk), it is necessary that multiple failure events are not 

reported at or near the same time. A timed automaton model was designed specifically to guarantee 

that no trial failure occurred until five seconds after the next trial started. Of the exactly 600 

instances of time intervals between consecutive trial failures measured during the driving sessions, 
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the shortest time duration was 5.08 seconds (M = 55.39 s, SD = 48.93 s), which satisfies the desired 

invariant property. 

 

2 Pilot Study 1: Driver Performance Assessment 

 

2.1 Objective and Hypotheses 

     This study was a preliminary investigation into the development and application of a VR 

driving simulation system capable of capturing gaze patterns to better understand driving 

performance. It was hypothesized that group differences would arise with respect to attention 

(measurable via eye gaze) and ability to complete driving-related tasks, including turns, stops, and 

obeying speed limits. Differences in how people with ASD attend to information could have 

important implications for safety and learning within a driving environment. 

 

2.2 Procedures 

     Participants completed a single session that lasted approximately 90 minutes. At the session 

start, participants were shown a short video tutorial that explained the game controls and 

objectives. Following the tutorial, the eye tracking device was calibrated to the participants’ eyes 

using a nine point calibration procedure. After calibration, participants began a three minute, free 

form practice driving period. During practice, there were no pedestrians or vehicles in the 

environment apart from the participants’ vehicle allowing the participant to simply familiarize 

themselves with the controls and the virtual environment before starting the game. 

     When the practice session was completed, participants began the first of six assignments—two 

assignments from each of the three levels of difficulty. Assignments increased in difficulty along 

the course of the session (i.e., 2 easy, 2 medium, 2 hard). Participants were free to choose the order 

of the two assignments choices for each level. Participants could attempt an assignment only once, 

but progression through the levels did not require successful completion of the previous level’s 

assignments. When a trial was failed, the system generated both text and audio feedback given the 

context of the failure. For example, if a participant was driving too quickly through an active school 
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zone, then the system advised, “Did you notice you were in a school zone? Always watch for speed 

limit signs when entering a school zone.” Participants acknowledged the messages and resumed 

game play by pressing twice on the accelerator pedal. As trials were successfully completed, a 

congratulatory audio sounded and $5 were added to the cumulative score visible in the upper left 

corner of the screen (see Fig. 8). When trials were failed, no points were given. 

 

 

Figure 8. The driving perspective (Pilot Study 1). 

 

     At the end of every assignment (six per driving session), regardless of performance, participants 

completed a post-assignment self-report that was integrated into the game. The survey prompted 

participants to rate their affective states (i.e., engagement, enjoyment, frustration, and boredom) 

on a 5-Likert scale. Additional questions in the survey pertained to perceived quality of the game 

(e.g., graphics quality, instructional clarity, etc.). Upon completion of the six assignments and 

corresponding surveys, the session was complete. Participants were compensated for their time 

and all standards of ethics were followed according to Vanderbilt University’s Institutional Review 

Board guidelines. 
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2.3 Participants 

     Participants included 14 age- and gender-matched adolescents (7 with ASD, and 7 TD) of 

approximate driving age (16 years) in the state where the research was conducted. Four participants 

in each group had either a driver’s license or a learner’s permit. 

     Participants with ASD were recruited through an existing university clinical research registry. 

The registry includes individuals who received a clinical diagnosis of ASD from a licensed clinical 

psychologist and scored at or above the clinical cutoff on the Autism Diagnostic Observation 

Schedule (ADOS) [44] or Autism Diagnostic Observation Schedule, Second Edition (ADOS-2) 

[45]. Estimates of cognitive functioning (ASD group IQ M = 114.3) for those in the ASD group 

were available from the registry (tested abilities from either the Differential Ability Scales [46] or 

the Wechsler Intelligence Scale for Children—Fourth Edition [47]). 

     Participants in the TD group were recruited through an electronic recruitment registry 

accessible to community families. The clinical battery for the TD group included the Wechsler 

Abbreviated Scale of Intelligence, Second Edition [48] to quantify cognitive functioning (TD 

group IQ M = 104.9). To index initial autism symptoms and screen for autism risk in the TD group, 

parents completed the Social Responsiveness Scale, Second Edition (SRS-2) [49] and the Social 

Communication Questionnaire (SCQ)—Lifetime Version [50]. No participants in the TD group 

scored in the at-risk or clinical range on either instrument (see Table 4 for full participant data). 
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Table 4. Participant Characteristics (Pilot Study 1) 

 Group M (SD) 

  ASD (n=7) TD (n=7) 

Gender (% male) 86% 86% 

Chronological age 16.3 (0.98) 16.01 (1.14) 

IQ 114.3 (10.42) 104.9 (19.02) 

SRS-2 total raw score 95.3 (22.22) 9.17 (5.34) 

SCQ total score 13.9 (7.86) 0.67 (0.82) 

ADOS total raw 

score 12.1 (1.95) -- 

ADOS CSS 7.6 (0.98) -- 

Note: SCQ = Social Communication Questionnaire; SRS-2 = Social 

Responsiveness Scale, Second Edition; 

ADOS CSS = Autism Diagnostic Observation Schedule Calibrated 

Severity Score; IQ = composite score: Differential Ability 

Scales (General Conceptual Ability) or Wechsler Intelligence Scale 

for Children (Full Scale IQ). 

 

2.4 Data Analysis 

     Small sample sizes like those in this study often result in non-normal distributions of variables. 

In light of this, conservative non-parametric inferential statistics were computed to determine 

group differences and effect size. Mann-Whitney U tests were used to detect group differences and 

Vargha-Delaney A common language effect sizes [51] were computed. Results for Mann-Whitney 

U tests are reported as group medians rather than means and both p and U statistics are given. 

Vargha-Delaney A effect size is interpreted in the following manner: A ≥ 0.71 indicates a large 

effect, A ≥ 0.64 indicates a medium effect, and A ≥ 0.56 indicates a small effect. Some correlation 

measures were also computed using the Pearson correlation coefficient R, for which p values are 

also given. 

 

2.5 Results 

     Prior to analyses regarding performance, the study investigated the relationship between 

participant age, participant cognitive skills, and performance outcome. No significant relationship 

between age and number of failures emerged for the ASD group, R(5) = -0.04, p = 0.93. For the 
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TD group, younger participants failed significantly more than older participants, R(5) = -0.79, p = 

0.03. Cognitive functioning was not significantly related to number of failures in either group. 

     Participants in the ASD group failed nominally more trials (p = 0.06) than their TD 

counterparts. Although this result did not reach statistical significance (likely due to low statistical 

power), there was a medium effect (A = 0.61). ASD participants experienced a combined total of 

85 total trial failures resulting in 11 failed assignments, whereas the TD group experienced 55 total 

trial failures with only 1 assignment failure. A closer examination of the types of failures that 

occurred indicated that ASD participants failed at a significantly higher rate on trials involving 

turning the vehicle with large effect (p < 0.01, A = 0.97) than TD participants (see Table 5). Of the 

trial failures experienced by the ASD group, nearly half (48.2%) were related to turning compared 

to 34.5% in the TD group. No significant differences emerged in failure rates for the other three 

trial categories (i.e., merging, laws, and speed). 

 

Table 5. Trial Failures during Sessions, by Trial Type and Group (Pilot Study 1) 

  ASD TD       

Trial Type Median Total Median Total U p A 

Laws 2 17 2 13 52 0.9907 0.5102 

Turns 6 41 3 19 29.5 0.0023 0.9694 

Merging 0 7 0 4 50.5 0.8776 0.5408 

Speed 3 20 3 19 50.5 0.8228 0.5408 

All Trials 11 85 8 55 37.5 0.0583 0.6122 

 

     The study also examined total FD for various categories of ROIs. FD in this context was defined 

as the cumulative amount of time that participants spent looking at particular ROIs during a trial. 

Note that FD times were corrected for assignment duration as the ratio of time spent looking at 

ROIs to the total duration of the assignment. This choice was made because failing trials resulted 

in more time spent attempting a trial. Compared to TD controls (Mdn = 0.05), FD rates were 

nominally higher in the ASD group (Mdn = 0.09) for ‘dynamic’ ROIs in the environment, p = 0.21, 

A = 0.71. FD rates for ‘social’ ROIs (pedestrians and cyclists) were also nominally higher in the 

ASD group (Mdn = 0.04) than in the TD group (Mdn = 0.02), p = 0.21, A = 0.71. It may seem odd 
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that these statistics are identical for both categories of ROIs, but using non-parametric rank-based 

tests with such a small sample size tends to result in similar statistics. 

 

Table 6. FD Differences between Regions of Interest (ROIs) in the Environment 

  Median FD Statistics 

ROI Category ASD TD U p A 

Social 0.0373 0.0181 63 0.2086 0.7143 

Dynamic 0.0925 0.0516 63 0.2086 0.7143 

Static 0.1065 0.106 48 0.62 0.5918 

All ROIs 0.1997 0.169 56 0.7104 0.5714 

Note: ROI = Region of interest 

 

     The performance results indicated that a proportionally higher number of trial failures in the 

ASD group were related to turning; therefore, the study investigated the FD rates for relevant ROIs 

in turning trials—most of which involved a traffic light. Analysis yielded a strong correlation 

[R(40) = 0.439, p = 0.004] between total number of trial failures in an assignment and FD rates for 

traffic light ROIs during turn-related trials in the ASD group. Conversely, no significant 

correlation was present [R(40 = -0.12, p = 0.449] in the TD group. This suggests that longer 

fixation durations on traffic lights while turning may be correlated with higher rates of driving 

errors in the ASD group. 

     Significant between-group differences emerged regarding overall gaze pattern as well. First, 

the average and median gaze position was higher in the ASD group (p < 0.001) by approximately 

0.569 cm (see Fig. 9). The average horizontal gaze position in the ASD group tended towards the 

right portion of the screen (p < 0.001) by 0.123 cm. When considering only the gaze from turn-

related trials, which were most problematic for the ASD group, the same gaze pattern emerged. 

Interestingly, during both left and right turns, the ASD group gaze tended significantly towards 

the right side of the screen by 0.417 cm (p < 0.001) and 0.315 cm (p < 0.001), respectively. 
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Figure 9. Gaze position heat maps for the ASD group (left) and TD group (right). Horizontal red 

lines indicate the average vertical gaze position. 

 

     Self-report data indicated that ASD participants experienced significantly lower levels of 

enjoyment (p < 0.05), and nominally higher levels of frustration (A = 0.81, p = 0.06) compared to 

those in the TD group. Overall, participants in the ASD group reported more negative views of 

their experience interacting with the game. Specifically, they gave lower ratings pertaining to ease 

of operating the vehicle (p = 0.07, A = 0.80), clarity of the instructions (p = 0.02, A = 0.87), 

relevance of the objectives (p = 0.01, A = 0.91), and quality of the virtual environment (p = 0.10, 

A = 0.76) and higher ratings pertaining to the difficulty of the assignments (p = 0.02, A = 0.88). 

Refer to Table 7 for a full review of the self-report data. The study also looked for correlations 

between metrics from the self-report and performance outcome, but no statistically significant 

results were present. Interestingly, there was no correlation in either group between the number of 

failures and perceived difficulty [ASD group: R(40) = 0.032, p = 0.84; TD group: R(40) = -0.27, 

p = 0.084], nor was there a correlation between the actual difficulty and the reported perceived 

difficulty [ASD group: R(40) = 0.187, p = 0.235; TD group: R(40) = 0.257, p = 0.1]. 
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Table 7. Self-report Results (Pilot Study 1) 

  Median Self-score Statistics 

Survey Item ASD TD U p A 

1 3.6667 4 67 0.0664 0.7959 

2 2 4 66 0.0956 0.7755 

3 2.8333 4 72.5 0.0099 0.9082 

4 2.8333 4.1667 70.5 0.0192 0.8673 

5 3.1667 3.6667 71 0.0163 0.8776 

6 3 4 69.5 0.0291 0.8469 

7 3.5 4.1667 59.5 0.3998 0.6429 

8 3.1667 4.1667 67.5 0.0612 0.8061 

9 4.5 4.1667 53 0.9767 0.5102 

Note: See Appendix C for the questions and response options in the self-

report. 

 

2.6 Discussion 

     In this preliminary investigation, a novel VR driving simulation system, including a custom 

gaze data acquisition module, was used to examine performance and processing differences 

between adolescents with and without ASD on tasks of driving. Our hypotheses were partially 

supported, such that group differences emerged when examining some key aspects of performance 

as well as processing of information within the VR driving environment. 

     Compared to TD controls, participants with ASD failed more driving trials. Notably, the 

majority of these failures occurred during driving tasks that involved turning the vehicle, typically 

with a traffic light ROI present. Given this failure pattern, the study investigated the relationship 

between failures and eye gaze FD rates during tasks that required turning the vehicle. These 

analyses supported a relationship between failure and eye gaze fixation duration on the traffic light 

ROI, which suggests that eye gaze FD, and perhaps an intense focus, on traffic lights may result 

in driving task failures, and thus, unsafe driving. Moreover, the ASD group demonstrated longer 

eye gaze fixation duration regarding ‘dynamic’ and ‘social’ ROIs. This further suggests that 

driving task failures may be associated with eye gaze FD and attentional differences, specifically 

with moving elements in the environment (e.g., other vehicles, pedestrians). 
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     Differences in gaze patterns also emerged. These findings replicated recent work by Reimer et 

al. [27] which also found higher rates of driving errors and differences in gaze patterns for 

adolescents with ASD. Relative to the TD group, the gaze position of the ASD group tended to 

gravitate towards the top of the screen in the vertical direction and the rights side of the screen in 

the horizontal direction. This pattern also emerged when analyses isolated gaze during turn-related 

trials. These results seemed to mirror findings from Reimer et al. [27] in which study participants 

with ASD tended to look higher on the screen in the vertical dimension and towards the right side 

of the screen in the horizontal dimension. 

     Our finding that individuals in the ASD group spent more time than TD counterparts looking 

at traffic light ROIs during turns fits with our finding that they had a higher vertical gaze position. 

Since this finding also correlates with a higher number of turn-related trial failures, it may be that 

ASD participants are distracted by the traffic light itself when performing turns and—to their 

detriment—are less focused on other key elements of the environment. The current study also 

revealed that participants with ASD spent more time than TD participants looking at ‘social’ ROIs 

with moving features. Again, this may reflect underlying challenges of individuals with ASD 

regarding their ability to effectively scan the environment, disengage from irrelevant stimuli, and 

attend to relevant information. 

     Self-reported affective data was recorded to gauge user engagement, enjoyment, frustration, 

and boredom regarding our novel VR system. To the best of the author’s knowledge, this is the 

first time that an interactive VR system has been integrated with an affective self-evaluation 

electronic questionnaire for individuals with ASD. Participants in the ASD group reported 

generally lower engagement and enjoyment and more frustration than the TD group. Though the 

perception of the VR system by individuals with ASD did not correlate with performance, elements 

of the system were less engaging, enjoyable, and more frustrating for the ASD group. 

     Cumulatively, these findings support the development of a VR driving simulation system not 

only to evaluate the adaptive skill of driving, but also to potentially train individuals to attend to 

important stimuli during driving tasks. Real-world driving often requires fast and accurate 

interpretations of, and response to, others’ behavior within environments that allow little room for 

error. VR driving simulation systems can dynamically display important aspects of functional tasks 

and evaluate physiological and temporal components relevant to driving demands. Physiological 
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and temporal data not only provide insight into one’s information-processing abilities regarding 

driving tasks and behavior, but also provide a platform for intervention to shift individuals’ 

attention within the environment. A VR driving simulation system could therefore become a 

valuable intervention tool be enacting changes based on how participants recognize and process 

environmental cues in addition to their task performance. Addressing underlying performance 

vulnerabilities on a processing level may result in changes that more powerfully generalize than 

current approaches for teaching basic driving skills. 

     Finally, the study results revealed a correlation between age and trial failures in individuals 

without a diagnosis of ASD. Consistent with driving literature regarding the general public, this 

finding suggests that age and experience facilitates safer driving. A VR driving simulation system 

provides a safe environment in which to practice and obtain experience with the many complex 

demands of driving. Virtual training environments that respond in real time to shift and train a 

person’s attention may facilitate skill development leading to safe, independent driving in 

individuals with ASD. This could allow for autonomous personal transportation and enhanced 

access to a variety of outlets for independent adult living (e.g., vocational settings, continued 

education/training, social experiences, etc.). 

 

3 Pilot Study 2: Gaze-contingent System Assessment 

 

3.1 Objective and Hypotheses 

     The major hypothesis of this study was that realization of an autonomous system capable of 

providing real-time gaze contingent feedback would contribute to both enhanced performance 

within the driving environment (e.g., fewer driving errors) as well as shape how individuals with 

ASD were scanning the relevant objects in the environment (e.g., alterations in gaze). 

 

3.2 Procedures 

     Participants came to our lab facilities to complete six sessions lasting approximately 75 minutes 

in length. In most cases, sessions were performed on separate days. The first and last of these 



38 
 

sessions consisted of a pre- and post-test, respectively. The pre- and post-tests were identical in 

terms of the task content and served as the basis of comparison for performance outcomes. The 

pre- and post-test session tasks consisted of three assignments selected from difficulty levels two 

and five in order to observe driver performance under a variety of difficulty settings. Sessions 2-5 

were each unique in terms of both task content and difficulty. Task difficulty was the easiest during 

session two, the hardest during session five, and medium during session three and four (see Table 

8). Upon arriving for each session, physiological sensors were applied to the participant’s body. 

Next, the EPOC headset was fitted to the participant’s head. Following this, the Tobii eye tracking 

device was calibrated following the calibration procedures recommended by the manufacturer 

[35]. Fig. 10 gives a schematic of the experimental facilities. Participants were seated in the 

playseat such that their eyes were approximately 70 cm from the eye tracking device. Each 

subjects’ eyes were individually calibrated to a 24” monitor (1920 × 1080 resolution) on which 

the VR driving environment was displayed. A researcher administering the evaluation sat to the 

right of the subject at a PC running the simulation application. An observer sat behind a one-way 

mirror in a separate room at a PC running the OAM application. 

 

Table 8. Difficulty Level and Assignment Number per Session Given as a Pair (Level, 

Assignment) 

Assignment 
1 

(Pre-test) 
2 3 4 5 

6 

(Post-

test) 

1 2, 2 1, 1 3, 1 4, 1 6, 1 2, 2 

2 5, 1 1, 2 3, 2 4, 2 6, 2 5, 1 

3 5, 2 1, 3 3, 3 4, 3 6, 3 5, 2 

 

     At the first session, a brief tutorial was presented to the participants. This tutorial outlined the 

control of the G27 device, the basics of road safety, meanings of common signs, and how to 

complete driving tasks. Participants were informed only of the rules of the mode of the group in 

which they were placed (i.e., PB or GC groups/modes). Following the tutorial, a silent baseline 

data collection period of three minutes was performed to obtain a reference model of affect for 

each subject. When the baseline was complete, subjects began a three minute practice driving 
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session to gain some experience with the controls before beginning the actual driving tasks (frist 

session only). Finally, subjects attempted the core driving task which consisted of three 

assignments. As mentioned before, assignments could be attempted only once and when all three 

assignments had been attempted, the session was complete. 

 

 

Figure 10. Experimental evaluation room schematic. 

 

3.3 Participants 

     Twenty adolescents aged 13-18 years (M = 15.29, SD = 1.65) and diagnosed with ASD by our 

team of collaborating psychologists via administration of gold-standard research diagnostic 

instruments (e.g., ADOS-2 [45]) were recruited for a small study to evaluate the reliability of 

VADIA’s PB and GC modes. Because ASD is twice as common in males as females, and although 

recruitment was open to both sexes, the majority of our participants (19 out of 20) were male. 

Randomized group placement assigned 10 participants to the PB group and the remaining 10 

participants to the GC group. Of the 20 participants, three had a learner’s permit and only one had 
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a driver’s license. Subject’s parents completed the SRS-2 [49] to quantify the severity of their 

child’s ASD symptoms. The randomized group placement resulted in two individuals with 

learner’s permits being assigned to the PB group and one individual with a driver’s license and 

another with a learner’s permit being assigned to the GC group. Table 9 gives a detailed 

comparison of group characteristics. Informed consent and assent was appropriately obtained for 

each participant and participants were compensated at each visit for their time. This study was 

approved by the Institutional Review Board at Vanderbilt University. 

 

Table 9. Participant Characteristics (n = 20, Pilot Study 2) 

Group M (SD)       

  PB (n = 10) GC (n = 8) 

Failed to complete 

(n = 2) 

Gender (% male) 100% 87.50% 100% 

Chronological age (years) 15.1 (1.58) 15.76 (1.86) 14.37 (1.05) 

SRS-2 total raw score 96.1 (31.66) 96.5 (21.05) 112 (35.36) 

SRS-2 Tscore 74.3 (10.03) 75.63 (9.53) 80.5 (13.44) 

Permit-holders (%) 20% 12.50% 0% 

License-holders (%) 0% 12.50% 0% 

 

3.4 Data Analysis 

     Pre- and post-test outcomes were evaluated using two-sided Wilcoxon signed rank tests so 

medians are given along with Z and p statistics. This choice was due to the non-normally 

distributed variables and the nature of the study (i.e., sampling the same population at two different 

points in time). In addition, Cohen’s d is reported to give an estimate of effect size. The 

significance cutoffs for Cohen’s d are as follows: d ≥ 0.8 represents a large effect, d ≥ 0.5 a medium 

effect, and d ≥ 0.2 a small effect. 
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3.5 Results 

     All of the subjects visited the lab facilities for all six sessions and attempted the assignments in 

each task. An inclusion criterion was formally defined such that subjects must complete at least 

one assignment over the course of all six visits for consideration in data analysis. This criterion 

resulted in the elimination of two subjects from the data set. Removing these subjects changed the 

group balance to 10 participants in the PB group and eight in the GC group. 

     Two metrics of performance from the pre- and post-tests of both groups were analyzed to 

determine whether the intervention programs were effective. Median trial duration was computed 

for each trial completed by each subject and gives an indication of how difficult a task is to 

complete. Shorter median trial durations in the post-test are preferable because they indicate a 

higher proficiency in task-completion. The median number of trial failures per assignment were 

also analyzed; this metric indicates the level of improvement within the task and should be smaller 

in the post-test than the pre-test. The results of both analyses are presented in Tables 10 and 11. 

 

Table 10. Median Trial Durations during Pre- and Post-tests for PB and GC Groups 

  
Trial Duration (in 

seconds) 
Statistics 

Group Pre Post Z p |d| 

PB 43.8144 23.6224 3.2622 0.0011 0.8218 

GC 36.0506 28.8219 2.4213 0.0155 0.4778 

 

     A Wilcoxon signed ranks test indicated that, for subjects in the PB group, mean trial duration 

was significantly longer during the pre-test (Mdn = 43.81 s) than during the post-test (Mdn = 23.62 

s) with large effect, Z = 3.26, p < 0.01, d = 0.82. Additionally, the PB group showed a significant 

decrease in the number of trial failures per assignment from the pre-test (Mdn = 7) to the post-test 

(Mdn = 3) with very large effect, Z = 2.37, p < 0.05, d = 1.43. 
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Table 11. Median Trial Failures during Pre- and Post-tests for PB and GC Groups 

  Trial Failures Statistics 

Group Pre Post Z p |d| 

PB 7 3 2.3749 0.0176 1.4285 

GC 11 6 2.3749 0.0176 1.1227 

 

     GC group subjects demonstrated a significant decrease in mean trial duration from pre-test 

(Mdn = 36.05 s) to post-test (Mdn = 28.82 s), Z = 2.42, p < 0.05, d = 0.48. GC group subjects also 

showed a significant decrease in total trial failures per assignment from pre-test (Mdn = 11) to 

post-test (Mdn = 6) also with large effect, Z = 2.37, p < 0.05, d = 1.12. 

 

3.6 Discussion 

     While the median number of trial failures per assignment in the post-test was higher for 

individuals in the GC group than the PB group, participants in the GC group were able to 

experience failures related to both performance and gaze pattern while the subjects in the PB group 

only experienced performance-related failures. Moreover, the effect size was large for both groups 

in regards to the decrease in trial failures. This result suggests that both modes of intervention are 

effective at improving performance of users. However, the fact that the GC group participants 

performance improved significantly while driving in the more challenging version of the system 

may suggest that the gaze-contingent intervention system is more suitable as an intervention 

program than the PB system. 

     Both the performance- and gaze-contingent groups demonstrated statistically significant 

improvements in performance over time. While the driving simulation tasks were similar across 

groups, the metrics for success were different for these groups. Specifically, the gaze-contingent 

group was held to a higher bar for success in that they had to perform the task correctly and look 

successfully at salient aspects of the environment. The performance group could achieve success 

just based on performance. With this caveat in place, the improvement in the GC group may be 

indicative of both success in scanning the driving environment as well as success in performing 

the task. These findings are quite promising in supporting the hypothesis that VR systems informed 

by information processing metrics may be valid tools for alerting fundamental processing 
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challenges associated with ASD. If such systems are capable of realizing such change, then these 

systems may be much more powerful in demonstrating change that generalizes to novel 

environments (e.g., learning and information processing strategies may be successful in other 

environments). 
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CHAPTER 5 

 

CONTRIBUTIONS AND CONCLUSIONS 

 

1 Contributions 

     Driving simulation systems have been in use since as early as the 1970’s [1], and a wide range 

of commercial systems exist that can be used to assess driver performance in controlled 

environments. However, no system has been made available which provides closed-loop feedback 

using interchangeable modalities such as physiology, eye gaze, or EEG. Moreover, for populations 

with cognitive, behavioral, or neurodevelopmental disabilities, off-the-shelf simulators may not 

provide the challenges necessary to address their specific needs. For example, individuals with 

ASD demonstrate scanning patterns while driving that may be unsafe [11, 24, 27]. Commercial 

driving simulators were thus deemed insufficient for driving intervention in these individuals. 

     This thesis makes three primary contributions while addressing these aforementioned issues 

with current driving simulation technology. First, a novel, adaptive, VR driving simulation 

platform (VADIA) was developed and targeted at driving intervention in individuals with ASD. 

This system combines real-time gaze monitoring and gaze-contingent feedback in order to go 

beyond merely addressing performance issues, but processing issues as well. Second, the 

developed system has the capacity for feedback from a variety of modalities, one of which (i.e., 

gaze) is demonstrated through a pilot study. Third, two separate pilot studies involving a combined 

27 individuals with ASD were conducted. The results from both of these studies are quite 

promising and show that the developed system is robust and may be effective as an intervention 

tool. 

     VADIA also makes a few secondary contributions of note. A model-centric approach to design 

was used to create VADIA following conventions developed in the field of Embedded Systems 

[34]. This approach has typically been exclusive to Embedded Systems, but has recently begun 

expanding into other domains because of its many useful properties [32, 33]. Further, a simple, 

streamlined method of implementing software from the models was developed and used in the 



45 
 

creation of VADIA (see Appendix B). Finally, VADIA has been used effectively in the work of 

other researchers for a variety of applications [38-41].  

 

2 Limitations and Future Work 

     Though the results from the intervention pilot studies are promising, these studies were 

preliminary in nature and several key areas of future work are needed. Both studies’ small sample 

sizes, although characteristic of initial user studies in general, weakens the statistical power of the 

results to a certain extent. Readers are thus cautioned against making broad inferences at a 

population level from these data. Larger randomized clinical trials are required to verify the 

translation of these results to the general ASD population. With regards to the second pilot study, 

although performance was tested across both feedback modalities (i.e., performance and gaze), a 

methodologically equivalent metric for calculating true performance and processing differences 

across the two conditions was not tested. Therefore, comparisons cannot be directly made between 

the two modalities. Despite these limitations, the results represent meaningful steps toward 

developing dynamic VR driving environments linked with gaze technology for possible ASD 

intervention. 

     One direction for VADIA in the future will be to refine the simulator and further develop the 

VR program to test the ability of the system to advance learning beyond the intervention 

environment itself. It is anticipated that providing a safe environment in which to practice driving 

skills, with ongoing monitoring of performance, engagement, and processing will lead to 

individuals with ASD having more confidence and successful navigation of driving tasks in the 

real world. 

 

3 Conclusions 

     Cumulatively, the presented findings support the potential of developing technological tools 

such as VR driving simulators with embedded gaze-contingent feedback. Such integrated systems 

may be able to dynamically display important aspects of functional tasks, potentially guiding and 

altering gaze processing and attention. Thereby enhancing processing and performance within 
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these environments over time. Specifically, such a system could become a valuable intervention 

tool by enacting changes not just based on performance, but also on how participants recognize 

and process environmental cues. Further, addressing underlying performance vulnerabilities on a 

processing level may result in changes that generalize more powerfully than current approaches 

for teaching functional skills, as real-world driving often requires fast and accurate interpretation 

of, and response to, others’ behavior within environments that can be unsafe and allow little room 

for error. Finally, it is important to note that this difference in processing of dynamic information 

is likely not circumscribed to driving, but may be related to many other challenges and 

vulnerabilities associated with ASD. As such, work addressing differences in processing (rather 

than just performance) may be important to designing intervention paradigms across other areas 

of skill vulnerability. 
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APPENDICES 

 

APPENDIX A: Models of Computation 

 

1 Finite State Machines 

     A finite state machine (FSM) is a mathematical description of the behavior of a system or 

component of a system. The formal definition of a FSM M can be expressed as a five-tuple where 

M = (S, I, O, T, si). 

Here, S is a finite set of states, I is a set of input values, O is a set of output values, T is a set of 

transition functions mapping states and inputs to states and outputs, and si is the initial state (i.e., 

the state at which the system is initialized). A state can be thought of as a particular set of 

conditions at a point in time within some specific scope. Coupled with the formal definition of a 

FSM is the notion of updating a FSM. At discrete moments in time, a FSM updates, meaning the 

state changes (or remains the same) as a function of the current state and inputs. 

     A FSM with a sufficiently small number of states can be represented graphically. This is useful 

for purposes of documentation and analysis as well as for explaining a system’s behavior to others. 

The conventional method for drawing a FSM consists of circles (or sometimes rectangles) to 

indicate states and directed arcs between the states to represent transitions. Often, the initial 

transition is shown as an arc directed towards a state, but emerging from no other state in the FSM. 

States are typically enumerated or labelled with an appropriate name in order to distinguish 

between them. Generally, arcs are labelled with two pieces of information: guard conditions and 

actions. The guard conditions on an arc leaving a particular state describe the circumstances under 

which that state transitions via that arc to the next state. The actions associated with an arc are 

enacted when the guard conditions evaluate to true and the transition is taken. Some complexities 

arise when multiple transitions are possible at the same moment in time. This is referred to as 

nondeterminism and is beyond the scope of this appendix. 

     A common example used to introduce the concept of a FSM is that of a FSM which describes 

the behavior of a traffic light. For the purposes of this example, a very simple implementation of 



48 
 

a traffic light is examined that operates on a fixed cycle and does not consider pedestrian crossings 

or vehicle arrival triggers. Consider a traffic light at a four-way intersection that has three signals: 

red, yellow, and green. Suppose that the traffic light operates on a regular cycle in which the red 

light is enabled for 10 s, yellow for 2 s, and green for 8 s. Suppose further that the traffic lights for 

cross traffic operate on an ‘opposite’ schedule (i.e., when one traffic light is red, the cross traffic 

light is either yellow or green). Fig. 11 shows a graphical representation of this traffic light 

specification with states S = {Red, Green, Yellow}, inputs I = ∅, outputs O = {red, green, yellow}, 

an appropriate set of transition functions T, and initial state si = Red. 

 

 

Figure 11. A FSM describing the behavior of a simple traffic light. 

 

     From Fig. 11 the reader can see that the initial state of the FSM is Red. This choice was made 

arbitrarily as there is no logically correct choice as to which state should be the initial state. Notice 

that the guard condition on the initial transition is true; this means that the initial transition is 

enabled regardless of the other conditions in the environment and that the state Red will be entered 

on the very first update of the FSM. A variable t ∈ ℕ is used to keep a count of elapsed time in the 

environment. A value of 0 is assigned to t during the initial transition. Assuming that the FSM 

updates at a rate of 1 Hz, the state Red remains active for 10 updates (i.e., 10 s). For values of t 

smaller than 10, the machine updates and increments the value of t by 1 each time. Eventually, the 

value of t will be equal to 10 and the guard condition on the arc from state Red to state Green 
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becomes enabled. During this transition, the signal green is output and the value of t is reset to 0. 

The states Green and Yellow execute similarly to that of the state Red, but with different time 

thresholds for the guard conditions and different output signals on their outgoing arcs. 

 

2 Hierarchical State Machines 

     It is possible to compose two or more FSMs to form more complex systems. Before describing 

the details of hierarchical finite state machines (HSM), a motivation is given for why FSM 

composition might be desirable. Consider the traffic light FSM introduced in the previous section 

(Fig. 11). Suppose that the behavior demonstrated in this example was desirable during the daytime 

when traffic is busiest, but at nighttime when there is less traffic, a simple flashing light behavior 

is preferred. Note that at flashing light intersections, drivers seeing a yellow blink are advised to 

proceed with caution while drivers seeing a red blink are required to make a full stop before 

proceeding. One option is to create a ‘flat’ FSM such as that shown in Fig. 12 which indicates all 

of the possible states that the traffic light can be in at a given time. This FSM now contains the set 

of states S = {Red, Green, Yellow, Bright, Dark}, a variable indicating the current time of day 

(ToD) with respect to a 24 hour clock, and two new discrete output signals day and night. The state 

Bright indicates that the flashing light (whether yellow or red in color) is lit, while the state Dark 

indicates that the flashing light is not lit. Again, for simplicity assume an update frequency of 1 

Hz. 
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Figure 12. A flat FSM representation of the daytime/nighttime traffic light behavior. 

 

     The reader will notice that the FSM in Fig. 12 is somewhat complex and perhaps difficult to 

read. While this state machine certainly models the specification described, it is messy and would 

prove difficult to modify later if necessary. An alternative way to model the desired behavior is to 

model the flashing light behavior separately from the normal daytime behavior, and then compose 

the two FSMs into a single HSM. Fig. 13 gives a FSM graph for the flashing light behavior by 

itself and Fig. 14 gives the HSM that composes both the normal daytime and flashing light 

behaviors. 
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Figure 13. A FSM graph that describes the behavior of a flashing light traffic light. 

 

 

Figure 14. A HSM describing the composed daytime/nighttime traffic light behavior. 

 

     The HSM composition in Fig. 14 is an improvement over the composition given in Fig. 12 for 

at least two reasons: (1) there are fewer arcs between the various states which makes reading the 

graph easier, and (2) if, in the future, it was desirable to make slight modifications to the behavior 

of the flashing light aspect of the system, redrawing arcs to the daytime behavior-related states 
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would be unnecessary, which is a nice feature of compartmentalizing behaviors. However, HSMs 

also introduce some nuanced complexities which are now discussed. 

     Consider an example execution trace of the HSM in Fig. 14. On the top-level, the state Daytime 

is entered initially and at the same time, the lower-level FSM refinement of Daytime enters the 

state Red. Let us assume that, after some sufficient number of updates, the value of t is 10 and the 

current time ToD is exactly 00:00 (or midnight). What happens here? Technically, both the 

transition from Red to Green and the transition from Daytime to Nighttime are enabled, but how 

can it be decided which to take? It turns out that the outcome depends on the semantics chosen by 

the modeler at design time. A reasonable semantic approach, and that used by the author when 

designing the system described in this work, uses preemptive transitions. This means that, when 

multiple possible transitions are enabled at the same time, only the transition at the highest level 

of scope will be taken. So, in the scenario described here, the transition from Daytime to Nighttime 

will be taken—resulting in a transition to the low-level state Bright—and the transition from Red 

to Green will not be taken. 

     Continuing with this example, suppose that after some time has passed, the value of ToD is 

now 06:00 enabling the transition from Nighttime back to Daytime. The last time this low-level 

FSM was active, the FSM state was Red, but was about to transition to Green. The questions is 

now, when returning to the FSM refinement of Daytime, what state should be entered? Again, the 

answer depends on the semantics selected by the designer. Two reasonable approaches are to use 

history transitions or reset transitions. With history transitions, the HSM remembers the state that 

the system was in at the time that the scope changed and returns to that state when the scope is 

reestablished. Alternatively, a HSM using reset transitions remembers nothing and the initial state 

is always entered when scope returns. 

 

3 Hybrid Automata 

     A hybrid automaton (HA) is a type of model used to describe systems that demonstrate both 

discrete and continuous behaviors. Like a FSM, a HA has a finite set of discrete states (also referred 

to as modes), but a HA also includes a set of real-valued (i.e., continuous) variables. These real-

valued variables may be attributes of a system such as an object’s position or orientation and are 
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governed by ordinary differential equations. The syntax for HA described here follows closely to 

that of Lee and Seshia [34]. 

     One class of HA known as timed automata is quite popular and simple to explain. A timed 

automaton is an appropriate model choice for describing systems in which actions should be taken 

based on elapsed time or at specific time instances. Continuing with the traffic light example 

presented earlier, let us construct a model for a traffic light that changes color after specific time 

intervals. Specifically, the red light should be enabled for 10 s, the green light for 8 s, and the 

yellow light for 2 s. It may be assumed that the update rate for this model is infinitely fast (i.e., 

continuous). Fig. 15 gives the timed automaton for this specification. The function 𝑠(𝑡) indicates 

the time at instance t according to some clock. Upon entering the discrete mode Red, the value of 

the clock is initialized to the value 0 and the discrete signal red is output. Within the mode Red, 

the equation �̇�(𝑡) = 1 tells us that the rate of the clock update is constant (i.e., linear). At the 

moment when the guard 𝑠(𝑡) ≥ 10 evaluates to true, the discrete signal green is output, the clock 

is reset, and the transition from Red to Green is taken. Similar behavior to that of the Red mode 

occur at both the Green and Yellow modes. Although this HA is extremely simple, it is quite useful 

for defining time-dependent behavior. 

 

 

Figure 15. A timed automaton model of the basic traffic light specification. 
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APPENDIX B: Automata-based Programming 

 

     Automata-based programming refers to the conversion of an automata-style model to source 

code. The approach presented in this appendix is also presented in a paper co-authored by the 

present author [52]. The code in this appendix is in the C♯ programming language and the 

examples presented are given in the context of the Unity3D API. This appendix provides a step-

by-step implementation of the HSM model derived in Appendix A. The described procedure is 

representative of the implementation of VADIA. 

     A base class called Automaton is used to maintain state variables and provide a state transition 

function for a particular model: 

public class Automaton { 

     private int m_currState; 

     private int m_prevState; 

   

     public void Transition( int NewState ) { 

          m_prevState = m_currState; 

          m_currState = NewState; 

     } 

   

     public int CurrState { 

          get{ return m_currState; } 

     } 

   

     public int PrevState { 

          get{ return m_prevState; } 

     } 

} 

   

     Formal MoC may be implemented as either an instance or a derived instance of this Automaton 

object. For example, the FSM in Fig. 11 may be defined thusly: 

public class TriLightFSM : Automaton { 

 

     /* State Constants */ 

     public const int RED = 0; 

     public const int GREEN = 1; 

     public const int YELLOW = 2; 

   

     /** 

      * Default constructor. 

      */ 

     public TriLightFSM() : base() 

     { 
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          //initial transition 

          this.Transition( RED ); 

     }    

} 

 

     Similarly, the FSM in Fig. 13 may be defined as: 

public class FlashingLightFSM : Automaton { 

 

     /* State Constants */ 

     public const int BRIGHT = 0; 

     public const int DARK = 1; 

   

     /** 

      * Default constructor. 

      */ 

     public FlashingLightFSM() : base() 

     { 

          //initial transition 

          this.Transition( BRIGHT ); 

     }    

} 

 

     Suppose it is desirable now to implement the HSM in Fig. 14. A simple FSM may be defined 

to represent the two-state behavior: 

public class TrafficLightHSM : Automaton { 

 

     /* State Constants */ 

     public const int DAYTIME = 0; 

     public const int NIGHTTIME = 1; 

   

     /** 

      * Default constructor. 

      */ 

     public TrafficLightHSM() : base() 

     { 

          //initial transition 

          this.Transition( DAYTIME ); 

     }    

} 

 

     Now, there are three Automaton-based object definitions, however, this is obviously not an 

implementation of the desired behavior. In order implement the intended behavior using these 

object definitions, automata-based programming is used. The code excerpt below implements the 

exact specification modeled by the HSM in Fig. 14. Since there are only two layers to this 
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hierarchy, a branching structure is used to separate the behaviors of the hierarchical components. 

However, when the number of layers is higher, it may be preferable to implement the Automaton 

objects in separate classes/files. 

//==================================== 

// TRAFFIC LIGHT HSM STATE: DAYTIME 

//==================================== 

if( traffLightHSM.CurrState == TrafficLightHSM.DAYTIME ) { 

 

 //if it is now Nighttime 

 if( 0 >= DateTime.Now.Hour && DateTime.Now.Hour < 6 ) 

 { 

  //enact transition to the NIGHTTIME state 

  traffLightHSM.Transition( TrafficLightHSM.NIGHTTIME ); 

  //propagate transition through subordinate automata 

  triLightFSM.Transition( TriLightFSM.RED ); 

  //reset output signal 

  red = false; green = false; yellow = false; 

  bright = true; 

  //reset clock variable 

  t = DateTime.Now; 

 

  //print event message 

  print ( "event[" + (eventNum++).ToString () + ", t=" + 

               TimeStamp () + 

      "]--> HSM transitioning to NIGHTTIME." ); 

 } 

 //otherwise 

 { 

  //------------------------------------ 

  // TRI LIGHT FSM STATE: RED 

  //------------------------------------ 

  if( triLightFSM.CurrState == TriLightFSM.RED ) { 

 

   //if it's time to become green 

   if( DateTime.Now.Subtract(t).TotalMilliseconds >= 10000 ) { 

    //enact transition to the GREEN state 

    triLightFSM.Transition( TriLightFSM.GREEN ); 

    //set output signal state 

    red = false; green = true; 

    //reset clock variable 

    t = DateTime.Now; 

     

    //print event message 

    print ( "event[" + (eventNum++).ToString () + ", t="+ 

                                 TimeStamp () + 

        "]--> triLightFSM transitioning to GREEN."); 

   } 

  } 

  //------------------------------------ 

  // TRI LIGHT FSM STATE: GREEN 

  //------------------------------------ 

  else if( triLightFSM.CurrState == TriLightFSM.GREEN ) { 
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   //if it's time to become yellow 

   if( DateTime.Now.Subtract(t).TotalMilliseconds >= 10000 ) { 

    //enact transition to the YELLOW state 

    triLightFSM.Transition( TriLightFSM.YELLOW ); 

    //set output signal state 

    green = false; yellow = true; 

    //reset clock variable 

    t = DateTime.Now; 

     

    //print event message 

    print ( "event[" + (eventNum++).ToString () + ", t="+ 

                                 TimeStamp () + 

        "]--> triLightFSM transitioning to YELLOW."); 

   } 

  } 

  //------------------------------------ 

  // TRI LIGHT FSM STATE: YELLOW 

  //------------------------------------ 

  else if( triLightFSM.CurrState == TriLightFSM.YELLOW ) { 

 

   //if it's time to become red 

   if( DateTime.Now.Subtract(t).TotalMilliseconds >= 10000 ) { 

    //enact transition to the RED state 

    triLightFSM.Transition( TriLightFSM.RED ); 

    //set output signal state 

    yellow = false; red = true; 

    //reset clock variable 

    t = DateTime.Now; 

     

    //print event message 

    print ( "event[" + (eventNum++).ToString () + ", t="+ 

                                  TimeStamp () + 

       "]--> triLightFSM transitioning to RED." ); 

   } 

  } 

 } 

} 

//==================================== 

// TRAFFIC LIGHT HSM STATE: NIGHTTIME 

//==================================== 

else if( traffLightHSM.CurrState == TrafficLightHSM.NIGHTTIME ) { 

 

 //if it is now Daytime 

 if( 6 <= DateTime.Now.Hour && DateTime.Now.Hour < 24 ) 

 { 

  //enact transition to the DAYTIME state 

  traffLightHSM.Transition( TrafficLightHSM.DAYTIME ); 

  //propagate transition through subordinate automata 

  flashLightFSM.Transition( FlashingLightFSM.BRIGHT ); 

  //reset output signal 

  dark = false; bright = false; 

  red = true; 

  //reset clock variable 

  t = DateTime.Now; 
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  //print event message 

  print ( "event[" + (eventNum++).ToString () + ", t=" + 

               TimeStamp () + 

      "]--> HSM transitioning to DAYTIME." ); 

 } 

 //otherwise 

 { 

  //------------------------------------ 

  // FLASHING LIGHT FSM STATE: BRIGHT 

  //------------------------------------ 

  if( flashLightFSM.CurrState == FlashingLightFSM.BRIGHT ) { 

    

   //if it's time to become dark 

   if( DateTime.Now.Subtract(t).TotalMilliseconds >= 1000 ) { 

    //enact transition to the DARK state 

    flashLightFSM.Transition( FlashingLightFSM.DARK ); 

    //set output signal state 

    bright = false; dark = true; 

    //reset clock variable 

    t = DateTime.Now; 

     

    //print event message 

    print ( "event[" + (eventNum++).ToString () + ", t=" + 

                       TimeStamp () + 

        "]--> flashLightFSM transitioning to DARK." ); 

   } 

  } 

  //------------------------------------ 

  // FLASHING LIGHT FSM STATE: DARK 

  //------------------------------------ 

  else if( flashLightFSM.CurrState == FlashingLightFSM.DARK ) { 

    

   //if it's time to become bright 

   if( DateTime.Now.Subtract(t).TotalMilliseconds >= 1000 ) { 

    //enact transition to the BRIGHT state 

    flashLightFSM.Transition( FlashingLightFSM.BRIGHT ); 

    //set output signal state 

    dark = false; bright = true; 

    //reset clock variable 

    t = DateTime.Now; 

     

    //print event message 

    print ( "event[" + (eventNum++).ToString () + ", t=" + 

                                   TimeStamp () + 

        "]--> flashLightFSM transitioning to BRIGHT."); 

   } 

  } 

 } 

} 

 

     When the code excerpt above is run in the Unity editor for several seconds, the following output 

is written to the console: 
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event[0, t=14:46:21:779]--> HSM transitioning to DAYTIME. 

event[1, t=14:46:21:785]--> triLightFSM transitioning to RED. 

event[2, t=14:46:31:794]--> triLightFSM transitioning to GREEN. 

event[3, t=14:46:41:801]--> triLightFSM transitioning to YELLOW. 

event[4, t=14:46:51:808]--> triLightFSM transitioning to RED. 

event[5, t=14:47:1:815]--> triLightFSM transitioning to GREEN. 

event[6, t=14:47:11:822]--> triLightFSM transitioning to YELLOW. 

event[7, t=14:47:21:829]--> triLightFSM transitioning to RED. 

event[8, t=14:47:31:840]--> triLightFSM transitioning to GREEN. 

event[9, t=14:47:41:847]--> triLightFSM transitioning to YELLOW. 

event[10, t=14:47:51:854]--> triLightFSM transitioning to RED. 

 

The first event indicates that the traffic light HSM is making its initial transition to the DAYTIME 

state and—6 ms later—the tri-light FSM makes its initial transition to the RED state. 

Approximately 10 s later, the tri-light FSM transitions to the GREEN state where it remains for 10 

s. The process continues until it is stopped, and it is evident that the HSM specification has been 

successfully implemented using the novel conversion method. 
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APPENDIX C: Pilot Study 1 Post-task Survey 

 

     The following questions comprised the self-report survey given to subjects in Pilot Study 1. 

There were nine questions in total: five regarding the system itself and four regarding the subject’s 

own affective state. All of the responses were recorded on a 5-Likert scale. 

1. Which best describes your experience of operating the vehicle? 

a) It was very difficult 

b) It was difficult 

c) Neutral 

d) It was easy 

e) It was very easy 

2. How would you rate the visual quality of the objects?  

a) Very poor quality 

b) Poor quality 

c) Neutral 

d) Good quality 

e) Very good quality 

3. Which best describes how you felt about the objectives of the trials?  

a) Very irrelevant 

b) Irrelevant 

c) Neutral 

d) Relevant 

e) Very relevant 

4. How would you describe the clarity of the instructions given?  

a) Very confusing 

b) Confusing 

c) Neutral 

d) Clear 

e) Very clear 

5. Which describes how you felt about the difficulty?  

a) It was very difficult 

b) It was difficult 

c) Neutral 

d) It was easy 

e) It was very easy 

As best you can, rank your level of . . . [BLANK] when completing the assignment. 
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6. . . . enjoyment  

a) Really did not enjoy completing the assignment 

b) Did not enjoy completing the assignment 

c) Neutral 

d) Enjoyed completing the assignment 

e) Really enjoyed completing the assignment 

7. . . . engagement  

a) Totally disengaged 

b) Mostly disengaged 

c) Neutral 

d) Mostly engaged 

e) Totally engaged 

8. . . . frustration  

a) Frustrated the entire time 

b) Frustrated most of the time 

c) Neutral 

d) Frustrated once or twice 

e) Never frustrated 

9. . . . boredom  

a) Bored the entire time 

b) Bored most of the time 

c) Neutral 

d) Bored once or twice 

e) Never bored 
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