
FG NUCLEOPORINS COORDINATE MULTIPLE TRANSPORT PATHWAYS 

THROUGH THE NUCLEAR PORE COMPLEX 

 

By 

 

Laura Jennings Terry 

 

Dissertation 

Submitted to the Faculty of the 

Graduate School of Vanderbilt University 

In partial fulfillment of the requirements 

for the degree of 

DOCTOR OF PHILOSOPHY 

in 

Cell and Developmental Biology 

December 2008 

Nashville, Tennessee 

Approved: 

Professor Byeong J. Cha 
Professor Katherine L. Friedman 
Professor James R. Goldenring 

Professor Todd R. Graham 
Professor Susan R. Wente 



  ii  

ACKNOWLEDGEMENTS 
 

The completion of this dissertation is not just my accomplishment – it is an 
achievement for all who have inspired and instructed me along the way. I am very 
thankful to my parents for providing opportunities for an excellent education and for their 
wisdom and support. My father has run by my side for many long miles and I will 
always treasure those times together. My mother is a role model for giving generously to 
others.  Elizabeth and Julia, my younger sisters, followed me to Nashville – and to 
Vanderbilt – and I have enjoyed watching their own education journeys. For more than a 
year now Harrison Stringfellow, now a senior at Montgomery Bell Academy, has 
faithfully helped me with experiments once a week. Harrison is an extremely insightful 
and intelligent young scientist and it has been a privilege to work with him. 

My Vanderbilt classmates and graduate school friends are a wonderful support 
network and I look forward to continued relationships with these colleagues as we 
diversify and proceed along our respective scientific paths. I am especially thankful for 
the faithfulness of Amy Pyle. All of the members of Team Slacker provided great 
motivation and camaraderie for our mutual adventures into distance running and 
triathlons. 

I seek to be a continual student and teacher of science because I have been inspired 
by other scientists. This dream began with Mrs. Henry's 7th grade life science class and a 
particularly engaging lesson on viruses followed by simple microscopy on protozoa. I 
still remember that day. Others along the way reinforced this interest, including my high 
school biology teachers and Cynthia Peterson, who gave me my first experience in a 
research lab. Liz Allison was an excellent mentor for my junior and senior years at the 
College of William & Mary, and I will always admire her as a teacher and role model. 
Above all, Mark Forsyth gave so much time and energy to train me as a young scientist in 
his lab. 

My path at Vanderbilt has undoubtedly been influenced by the high caliber of 
scientists and researchers who surround me. I am grateful for the guidance of my thesis 
committee members past and present – Byeong Cha, Kathy Friedman, Jim Goldenring, 
Todd Graham, and David Greenstein. The members of the Wente lab, both past and 
present, are a continual source of intellectual challenge and generous support. I am 
especially indebted to Abel Alcazar-Roman and Clinton Bartholowmew for their trust 
and wisdom. My research project is built upon a solid foundation of experiments and 
tools left by Lisa Strawn, and I regret that I have never had the opportunity to work with 
her. As my teammate on FG projects, Eric Shows is an unending source of help. Finally, I 
am indebted to Susan Wente for her inspiration and mentoring. Susan has shaped me as a 
scientist and scholar, and it has been a great honor to work with her. 



  iii  

 
LIST OF TABLES 

 
 

Table                Page 

1-1. Properties and homologues of FG-Nups ...............................................................  10 

1-2. Documented interactions between transport receptors and FG-Nups .................... 33 

2-1. Summary of transport results................................................................................. 58 

3-1. Juxtapositioned Gle1 binding and Mex67 binding domains on Nup42 are required for 

mRNA export suppression...............................................................................102 

A-1. List of yeast strains used in this study .................................................................138 

A-2. List of plasmids used in this study.......................................................................151 



  iv  

LIST OF FIGURES 
 

Figure                Page 
 
1-1. The Nuclear Pore Complex (NPC) is a multi-layered transport channel.................... 3 

1-2. FG-repeats cluster as FG-domains in FG-Nups ....................................................... 8 

1-3. Nucleocytoplasmic transport requires four steps .................................................. 17 

1-4. Structural insights into Kap95-Kap60 transport .................................................... 21 

1-5. Nuclear export of RNA requires specific transport receptors and regulatory steps . 24 

1-6. Models for the mechanism of NPC selectivity and transport.................................. 43 

2-1. The more minimal NPC (mmp) FGΔ mutants have temperature-sensitive growth 

defects .............................................................................................................. 52 

2-2. The mmp FGΔ NPC mutants have distinct defects in Kap104 and Kap121 steady-

state import ....................................................................................................... 59 

2-3. mRNA export is inhibited in the symmetric FGΔ mutants and the mmp mutant 

ΔNΔC nup57ΔGLFG ....................................................................................... 62 

2-4. mRNA export requires the FG domains of Nup57 and nuclear face Nups .............. 65 

2-5. Mex67 binds the GLFG domain of Nup57 ............................................................ 68 

2-6. Mex67-GFP recruitment to the NE/NPC is severely inhibited in both the ΔNΔC 

nup57Δ GLFG mutant and ΔN nup57Δ GLFG mutant .................................... 70 

3-1. Design of nup57 FG domain swaps and logic for interpreting results .................... 87 

3-2. FG domain swaps into Nup57 can rescue a lethal nup57::KANR mutant ............... 91 

3-3. mRNA export defects in the ΔN myc-LoxP-nup57ΔGLFG mutant are attributable to 

the epitope tag .................................................................................................. 93 



  v  

3-4. The myc-LoxP-nup57ΔGLFG allele is linked to impaired recruitment of Mex67-GFP 

to the nuclear rim............................................................................................... 95 

3-5. The untagged nup57ΔGLFG construct rescues temperature sensitivity of ΔNΔC 

myc-LoxP-nup57ΔGLFG.................................................................................. 97 

3-6. Juxtapositioning of FG and non-FG binding sites on cytoplasmic-side FG-Nups 

contributes to mRNA export ............................................................................101 

3-7. Sequence comparison of epitope tag-LoxP motifs and FG domains .......................106 

A-1. Over-expression of KAP104 rescues Nab2 import defects ...................................134 



  vi  

ABBREVIATIONS 

Δ  – deletion 
ΔC  – deletion of cytoplasmic face Nup FG domains: nup42ΔFG nup159ΔFG 
ΔN  – deletion of nuclear face Nup FG domains: nup1ΔFXFG nup2ΔFXFG 

nup60ΔFXF 
5-FOA  – 5-flouororotic acid 
6xHis – six histidine epitope tag 
dsRed – red fluorescent protein derived from Discosoma sp. 
EM  – electron microscopy 
ER  – endoplasmic reticulum 
FG  – phenylalanine-glycine 
FRET  – fluorescence resonance energy transfer 
FXFG  – phenylalanine-any amino acid-phenylalanine-glycine 
GFP  – green fluorescent protein 
GLFG  – glycine-leucine-phenylalanine-glycine 
GST  – glutathione-S-transferase 
HDEL  – histidine-aspartate-glutamate-leucine (amino acid sequence for ER retention) 
hnRNP  – heterogeneous ribonucleoprotein particle 
IP6  – inositol hexakisphosphate 
Kap  – karyopherin 
mmp  – more minimal pore 
kDa, MDa  – kiloDalton, megaDalton 
MBP  – maltose binding protein 
Min  – minute 
miRNA  – micro RNA 
mmp,  – more minimal pore 
mRNA  – messenger RNA 
mRNP, messenger ribonucleoprotein particle 
ms  – millisecond 
NE  – nuclear envelope 
NES  – nuclear export signal 
NLS  – nuclear localization sequence 
NPC –nuclear pore complex 
Nup  – nucleoporin 
poly(A)+  – poly-adenylated 
rRNA  – ribosomal RNA 
SC  – synthetic complete yeast growth medium 
SEM  – standard error of the mean 
snRNA  – small nuclear RNA 
SR protein  – RNA binding protein enriched for serine-arginine 
tRNA  – transfer RNA 
YPD – 1% yeast extract, 2% peptone, 2% dextrose yeast growth medium 



  vii  

Standard one-letter and three-letter amino acid code is used throughout this document. 
These abbreviations are: 
A  Ala Alanine 
C Cys Cysteine 
D Asp Aspartic acid 
E Glu Glutamic acid 
F Phe Phenylalanine 
G Gly Glycine 
H His Histidine 
I Ile Isoleucine 
K Lys Lysine 
L Leu Leucine 
M Met Methionine 
N Asn Asparagine 
P Pro Proline 
Q Gln Glutamine 
R Arg Arginine 
S Ser Serine 
T Thr Threonine 
V Val Valine 
W Trp Tryptophan 
X  any 
Y Tyr Tyrosine 



  viii  

TABLE OF CONTENTS 
 

Page 
ACKNOWLEDGEMENTS............................................................................................ ii 

LIST OF TABLES......................................................................................................... iii 

LIST OF FIGURES....................................................................................................... iv 

LIST OF ABBREVIATIONS......................................................................................... v 

Chapter 
 

I. INTRODUCTION.............................................................................................. 1 
  
 The problem of organelle compartmentalization ....................................... 1 
 Nuclear pore complexes ........................................................................... 2 

 NPC protein composition and robustness of transport ................. 2 
 The NPC permeability barrier paradox ......................................... 5 

 FG-Nucleoporins ..................................................................................... 7 
 FG-Nups: repeat motifs and sequence composition...................... 7 
 NPC functions mediated by FG-Nups........................................ 11 
 Evolutionary conservation of FG-Nups...................................... 13 
 Structural features of FG-Nups .................................................. 15 

 The four steps of receptor-facilitated translocation through the NPC ..... 16 
 Properties of receptor-facilitated transport ................................. 16 
 Step 1: formation of a receptor-cargo complex............................ 19 

 The karyopherin family of transport receptors ............... 19 
 Mex67-Mtr2 (TAP-p15) is a transport receptor for 
 mRNA............................................................................ 23 
 Structure and conservation of the mRNA export  
 receptor .......................................................................... 25 
 Cargoes and signal sequences........................................... 27 
 mRNP protein composition ............................................ 27 
 mRNA export receptor regulation ................................... 29 

 Step 2: Translocation of receptor-cargo complexes through the 
NPC........................................................................................... 31 

 Structural features of transport receptor interaction with 
FG-Nups ........................................................................ 31 

 Affinity and avidity of interactions ................................. 31 
 Hydrophobic binding pockets of transport receptors ...... 32 

 Step 3: Termination/release of transport ..................................... 36 
 The small GTPase Ran.................................................... 36 



  ix  

 Ran-mediated disassembly of transport complexes.......... 37 
 Termination of mRNA export ......................................... 38 
 Nucleoporins contributing to directional transport .......... 39 

 Step 4: transport receptor/factor recycling.................................. 40 
 Recycling of Karyopherins ............................................. 40 
 Recycling of mRNA export factors ................................. 40 
 Recycling of Ran via Ntf2 ............................................... 41 

 Proposed models of the transport mechanism ........................................ 42 
 Key considerations for models.................................................... 42 
 Brownian/Virtual Gate model ..................................................... 44 
 Reduction of Dimensionality model............................................ 45 
 Selective Phase Partitioning model.............................................. 46 
 Reconciling differences between models...................................... 47 

 Concluding remarks................................................................................ 48 
  

II. NUCLEAR MRNA EXPORT REQUIRES SPECIFIC FG NUCLEOPORINS 
FOR TRANSLOCATION THROUGH THE NUCLEAR PORE COMPEX ... 50 

 
 Introduction........................................................................................... 50 
 Results................................................................................................... 55 

 mmp FGΔ mutants have distinct Kap transport defects ............. 55 
 Symmetric FGΔ and mmp FGΔ mutants have poly(A)+ RNA 

export defects ............................................................................. 61 
 mRNA export requires GLFG domains of Nup57 and nuclear face 

Nups .......................................................................................... 64 
 Mex67 binds the Nup57 GLFG domain in vitro ......................... 66 
 Efficient Mex67 recruitment to NPCs requires asymmetric FG 

domains and Nup57-GLFG ........................................................ 67 
 Discussion ............................................................................................. 72 

 mRNA export requires the combinatorial use of distinct FG 
domains and non-FG-binding sites.............................................. 73 

 Nup49/Nup57 and Nup116 define two distinct pathways through 
the NPC ..................................................................................... 75 

 A model of multiple NPC pathways allows for competition and 
regulation of transport ................................................................ 77 

 Materials & Methods............................................................................. 79 
  

III. EXPLORATION OF MOLECULAR DETERMINANTS OF THE MULTIPLE 
TRAFFICKING PATHWAYS......................................................................... 82 

  
 Introduction........................................................................................... 82 

 FG repeats are binding sites for transport receptors ................... 82 
 Evidence for multiple transport pathways through the NPC....... 83 



  x  

 What are the critical determinants of each transport pathway?............... 85 
 Rationale for FG domain swaps.................................................. 85 
 Strategy for chromosomal swap of FG domains: plans and 

predictions ................................................................................. 86 
 Alternative Nup57 swap construction strategy........................... 90 
 Analysis of mRNA export with Nup57 swaps........................... 92 
 Epitope tags have deleterious effects on nucleocytoplasmic 

transport .................................................................................... 96 
 FG domain swaps into Nup49.................................................... 98 

 The cytoplasmic face FG domains serve to regulate mRNA export ........ 99 
 nup42ΔFG suppresses mRNA export defects ............................ 99 
 Juxtaposed binding sites on Nup42 contribute to mRNA  
 export........................................................................................100 
 Swap of FG domains into Nup42 ..............................................103 

 Discussion and Conclusions..................................................................104 
 Domain swap experiments revealed unexpected effects of epitope 

tag-LoxP sites............................................................................104 
 Implications of the epitope tag-LoxP problem for our current and 

published research results ..........................................................107 
 FG-domains with adjacent binding sites are important in mRNA 

export........................................................................................108 
 Materials and Methods .........................................................................110 
  

IV.  CONCLUSIONS AND FUTURE DIRECTIONS...........................................113 
  
 What are the FG-Nup binding sites for other transport receptors? ........113 
 How does competition influence transport efficiency? ..........................117 
 Do transport receptors use different binding sites for each direction of 

transport? .............................................................................................120 
 How does the NPC contribute to regulation of mRNA export? .............122 
 Does the type of FG domain or the location of domains dictate transport 

function?...............................................................................................124 
 How do FG-domains contribute to forming the permeability barrier?....126 
 How are Nups regulated in disease and developmental contexts?...........127 
 Closing..................................................................................................128 
  

V. APPENDIX A .................................................................................................130 
  
 Competition as a possible mechanism affecting transport......................130 

 Competition at multiple levels affects transport ........................130 
 Kap competition: FGΔ mutant NPCs are subject to competition 

among karyopherins ..................................................................132 
 Kap expression levels affect transport .......................................135 



  xi  

 Materials & Methods............................................................................137 
  

VI. APPENDIX B..................................................................................................138 
  
 List of yeast strains used in this study ..................................................138 
 List of plasmids used in this study........................................................152 
  

VII. REFERENCES.................................................................................................155 



CHAPTER I 

 

INTRODUCTION TO NUCLEOCYTOPLAMIC TRANSPORT 

 

The problem of organelle compartmentalization 

The subcellular compartmentalization of eukaryotic cells into organelles 

establishes functional and regulatory separation between activities of the cell. Each 

organelle, however, must communicate and coordinate activities with other organelles in 

the cell. Such coordination requires the movement of molecules between the cytoplasm 

and a given organelle, and this transport process is accomplished by the use of regulatory 

transport pores, channels, and translocons. Precise and unique transport channels and 

strategies are employed for transport of molecules into each cellular organelle (SCHNELL 

and HEBERT 2003). 

For example, the nuclear envelope (NE) encompasses chromatin and forms a 

physical discontinuity between the sites of transcription and translation, and thus is a 

barrier between the nuclear and cytoplasmic compartments. A result of this separation is 

additional levels at which gene expression can be regulated, but also is a need for 

efficient inter-compartmental signaling and trafficking. Nuclear pore complexes (NPCs) 

span the NE barrier. As one of the most complex and dynamic molecular translocons, the 

NPC regulates all movement of molecules in and out of the nucleus (SUNTHARALINGAM 

and WENTE 2003; TERRY et al. 2007; TRAN and WENTE 2006). Cellular signaling 

pathways often use regulated subcellular localization of factors between the nucleus and 
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cytoplasm to coordinate activation responses (HOOD and SILVER 1999; TERRY et al. 

2007).  

In this introductory chapter, I will discuss the cellular functions and properties of 

the NPC, describe the properties and functions of FG-Nups, discuss the dynamic 

interactions between transport receptors and FG-Nups, and illustrate proposed models of 

the transport mechanism. Ultimately, I will build this into a discussion of the 

complexities of nucleocytoplasmic transport and discuss how regulation of transport is 

critical in both normal and disease cell biology and physiology. 

 

Nuclear pore complexes 

 

NPC protein composition and robustness of transport 

NPCs are large, selective transport channels assembled from multiple copies of 

~30 different protein components, collectively termed nucleoporins (Nups) (Figure 1-1A) 

(CRONSHAW et al. 2002; ROUT and AITCHISON 2001; ROUT et al. 2003; ROUT et al. 2000; 

SUNTHARALINGAM and WENTE 2003). The NPC proteome includes transmembrane Nups, 

which anchor the NPC in the NE, structural Nups, and FG-Nups  (Figure 1-1B) 

(SUNTHARALINGAM and WENTE 2003). The latter is characterized by repeats of Phe-Gly 

(FG), and these proteins have specific and essential roles in transport through the NPC 

(discussed below). Recent high through-put modeling studies find that the NPC is built 

from repeating structural modules (ALBER et al. 2007). This repetitive structure is built 

by sequential assembly of multiple copies (presumably in multiples of eight owing to the 

symmetry of the NPC) of each Nup. Structurally, NPCs have an asymmetric shape with 
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Figure 1-1. The Nuclear Pore Complex (NPC) is a multi-layered transport channel.
(A). Cryo-electron tomography imaging of nuclear pore complexes of Dictyostelium 
reveals the structural features of the NPC. Reprinted from Beck et al. 2004. Science.
(B) Schematic diagram of the protein layers that build the NPC, including the NE-
associated (membrane) layer, a structural or scaffold layer, and an FG layer. Protein 
folding motifs common to each layer are shown as ribbon diagrams. Reprinted from 
Devos et al. 2006. PNAS.

A.

B.
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unordered filaments extending from the cytoplasmic face of the pore (Figure 1-1A). The 

filaments of the nuclear side of the NPC converge into a basket structure (BECK et al. 

2004; BECK et al. 2007; DENNING et al. 2003; VASU et al. 2001). Overall, the NPC has 

eight-fold rotational symmetry (AKEY and RADERMACHER 1993; ALBER et al. 2007; 

BECK et al. 2004; HINSHAW et al. 1992; KISELEVA et al. 2003). Remarkably, this overall 

structure and many of the components are conserved throughout eukarya (AKEY and 

RADERMACHER 1993; ALBER et al. 2007; BECK et al. 2004; BROHAWN et al. 2008; 

CRONSHAW et al. 2002; HINSHAW et al. 1992; KISELEVA et al. 2003; MANS et al. 2004; 

ROUT et al. 2000). 

The fully assembled NPC is capable of rapid and selective transport of 

macromolecules. The rapidity of transport is well illustrated by consideration of the 

process of ribosome biosynthesis in HeLa cells: during a ~24 hour cell cycle, a HeLa cell 

doubles its contents, including synthesizing ~107 ribosomes (GORLICH and MATTAJ 1996; 

RIBBECK and GORLICH 2001). Assembly of these ribosomes requires steps of mRNA 

export, translation of ribosomal proteins, nuclear import of those proteins (~8x108 

ribosomal proteins to assemble ~107 ribosomes), nucleolar assembly of ribosomal 

subunits, and, finally, export of those ribosomal subunits. Thus, each of the ~2800 NPCs 

in a HeLa cell must import ~100 ribosomal proteins and export ~3 ribosomal subunits per 

minute. All of this transport must be accomplished in the context of all of the other 

factors that are imported and exported from the nucleus: histones, transcriptional 

regulatory factors, transcription and replication machinery, intracellular and extracellular 

signaling regulators, et cetera (GORLICH and KUTAY 1999). Similarily, Saccharomyces 

cerevisiae, which has ~75-150 NPCs per cell (WINEY et al. 1997), is estimated to actively 
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transport 50-250 messenger (m)RNA transcripts per NPC per minute, along with 10-20 

ribosomal subunits and up to 1,000 transfer (t)RNAs per pore per minute (HURT et al. 

2000). In addition to transporting of all of these distinct types of RNA, these NPCs are 

also simultaneously trafficking large numbers of protein cargoes (GORLICH and KUTAY 

1999). Thus, trafficking through the NPC is quite robust and efficient.  

 

The NPC permeability barrier paradox 

The ability of the NPC to so rapidly transport these appropriate molecules while 

selectively precluding inappropriate molecules from entering the nucleus is one of the 

mysteries of this biological machine. Transport is selective in that the NPC regulates 

passage of large molecules, but is permeable to movement of ions, small metabolites, and 

small proteins by free diffusion (SUNTHARALINGAM and WENTE 2003). Amazingly, 

although the NPC faithfully impedes transport of molecules larger than the  ~40kDa 

permeability limit  - it is an effective selective barrier (FRIED and KUTAY 2003). 

Molecules smaller than this permeability limit diffuse through at a rate that is inversely 

proportional to their size (PAINE et al. 1975). On the other end of the spectrum, the 

vertebrate NPC has been shown to transport signal-bearing gold particles up to 39nm in 

diameter (FELDHERR and AKIN 1997; PANTE and KANN 2002), as well as transporting 

similarly large-sized physiological cargoes, including ribosomal subunits (JOHNSON et al. 

2002; KOHLER and HURT 2007) and Balbiani ring mRNPs (DANEHOLT 2001a). For these 

and other cargoes larger than the permeability barrier limit, the assistance of a transport 

receptor is required for movement through the NPC. Receptor-bound molecules greater 

than this barrier limit size move through the pore at a rate that approaches the rate of 
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diffusion (GILCHRIST et al. 2002). Thus, the NPC does not significantly slow the passage 

of appropriate, transport-competent large molecules. Paraxodically, binding Nups 

actually accelerates transport efficiency. The rate of transport through the NPC for 

similarly sized molecules is quite different if one of them binds Nups. Specifically, the 

transport receptor Ntf2 enters the nucleus ~30-fold faster than GFP, even though these 

two molecules are of similar size (SIEBRASSE and PETERS 2002). Therefore interactions 

between transport complexes and the NPC must be transient and in a manner that does 

not slow the movement of the transport complex through the NPC. Although molecules 

under the diffusive permeability barrier size limit can move across the NPC independent 

of a receptor, it is interesting to note that there are no known essential factors that rely 

solely on diffusion. This underscores the functional efficiency and importance of 

receptor-facilitated nucleocytoplasmic transport. Moreover, this barrier must remain 

selective while flexing to accommodate cargo-receptor complexes that vary over several 

orders of magnitude (e.g., sizes from ~30kDa proteins to the ~30MDa Balbiani ring 

messenger ribonucleoprotein particle (mRNP)) (SUNTHARALINGAM and WENTE 2003; 

WURTZ et al. 1990). It appears that trafficking through the NPC is bidirectional 

(FELDHERR et al. 1984).  

The integrity of the NPC is necessary to maintain the permeability barrier. For 

example, in S. cerevisiae, deletion of the structural proteins Nup170 or Nup188 results in 

NPCs that are “leaky” to diffusion of larger molecules than wild-type pores permit 

(SHULGA et al. 2000). Both of these proteins are linked to structural roles in NPC 

assembly, and, at least in the case of the nup170∆ (∆, deletion) mutant, NPC assembly is 

impaired, preventing incorporation of a subset of structural Nups and FG-Nups (KENNA 
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et al. 1996; NEHRBASS et al. 1996). Thus, Nup deletions from the NPC can alter 

permeability barrier integrity. Further, the barrier that remains in these cells has increased 

sensitivity to aliphatic alcohols (SHULGA and GOLDFARB 2003). This suggests that: (a) 

the barrier integrity is partially compromised in certain Nup deletion cells; and (b) the 

barrier is likely maintained by hydrophobic interactions between FG-Nups (PATEL et al. 

2007). Certain cells use alterations to the nuclear permeability barrier to regulate 

transport. The filamentous fungus Aspergillis nidulans partially disassembles its NPC, 

removing both structural and FG-Nups, in a cell-cycle dependent manner (DE SOUZA et 

al. 2004; OSMANI et al. 2006). The direct consequence is that these nuclei have a relaxed 

permeability barrier, and this is correlated with nuclear import of cell cycle machinery; 

presumably the nuclear entry of these cell cycle regulators is controlled at the level of the 

NPC permeability barrier.  

 

FG-Nucleoporins 

 

FG-Nups: repeat motifs and sequence composition  

The FG-Nups are a unique protein family with a variety of functions related to 

regulating nuclear import and export. Specifically, we hypothesize that FG domains 

contribute to both the permeability barrier and to the active translocation mechanism. At 

the primary amino acid sequence level, FG-Nups have domains with clusters of repeats of 

Phe-Gly followed by a characteristic spacer sequence (Figure 1-2) (ROUT and WENTE 

1994). The core repeat unit of each FG-repeat is either Phe-Gly (FG), Gly-Phe-Leu-Gly 

(GLFG), or Phe-any-Phe-Gly (FXFG) (ROUT and WENTE 1994). In addition to bearing 
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Figure 1-2. FG-repeats cluster as FG-domains in FG-Nups.
(A) Schematic diagram of the 11 FG-Nups in S. cerevisiae. Each FG repeat is represented 
by an oval (Green, FG; Blue, GLFG; Red, FXFG). The region deleted in our FG∆ 
mutants is indicated by the black bar. Reprinted from Strawn et al.  Nature Cell Biology 
2004.
(B) The primary amino acid sequence for the GLFG domain of Nup57. This sequence 
corresponds to the black bar in part (A) under Nup57, and is  the region deleted in our FG
∆ mutant collection. 

(A)

MFGFSGSNNG
FGNKPAGSTG
FSFGQNNNNTNTQPSASG
FGFGGSQPNSGTATTGG
FGANQATNT
FGSNQQSSTGG
GLFGNKPALGSLGSSSTTASGTTATGT
GLFGQQTAQPQQSTIGG
GLFGNKPTTTTG
GLFGNSAQNNSTTSG
GLFGNKVGSTGSLMGGNSTNTSNMNAG
GLFGAKPQNTTATTG
GLFGSKPQGSTTNG
GLFGSGTQNNNTLGGGGLGQ

(B)
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subtly different core repeats, the spacer sequences between FG, GLFG, and FXFG 

repeats differ slightly. FXFG-repeats are enriched for Ser and Thr, and tend to be highly 

charged; GLFG-repeats are devoid of acidic residues and are enriched for Asn and Gln. 

Repeats with an FG core appear to be more degenerate and may have either spacer type. 

Others have subcategorized FG core repeats further (e.g., PSFG; (PATEL et al. 2007)), but 

these repeats do not have unique spacer sequences, and thus we group them with the FG 

class of repeats.  

FG-Nups are anchored in subcomplex structures throughout the NPC (ROUT et al. 

2000; SUNTHARALINGAM and WENTE 2003), and their flexible filaments may 

occupy/reach a dynamic range of topological positions (DENNING et al. 2003; 

FAHRENKROG et al. 2002; LIM et al. 2006b). In S. cerevisiae, three FXFG repeat-

containing Nups are found exclusively on the nuclear basket face of the NPC – these are 

Nup1, Nup2, and Nup60 (Table 1-1) (ROUT et al. 2000). The FG-Nups Nup42 and 

Nup159 are components of the cytoplasmic fibrils. The FXFG repeat-containing Nup 

Nsp1, as well as the GLFG-containing Nup49 and Nup57 are distributed centrally or 

symmetrically in the NPC. The GLFG-containing Nups Nup100 and Nup116 are biased 

towards the cytoplasmic face of the pore, whereas Nup145N, also a GLFG repeat Nup, 

localization is biased towards the nuclear face of the pore (ROUT et al. 2000). Given the 

homology of both sequence and function of Nup100, Nup116, and Nup145N, and their 

apparent evolutionary relationships (MANS et al. 2004; WENTE et al. 1992) (see below), 

we consider the net distribution of these to be effectively symmetrical (STRAWN et al. 

2004). The FG-Nups of higher eukaryotes also arrange in distinct structural locations 

within the pore (SUNTHARALINGAM and WENTE 2003).  
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Table 1-1. Properties and homologues of FG-Nups.d,e 
S. 
cerevisiae 

Essential 
in S. 
cerevisiae 

Localization 
(S. 
cerevisiae) 

Repeat 
motif(s) 

Abundance 
per pore  
(S. 
cerevisiae) 

Number of 
FG repeats  
(S. cerevisiae) 

Vertebrate Abundance 
per pore 
(vertebrate) 

C. 
elegans 

D. 
melanogaster 

Nup42 No Cytoplasmic FG 8 28 hCG1/ 
NLP1 16 — — 

Nup159 Yes Cytoplasmic FG 8 25 Nup214 8 npp-14 DNup214 

Nup49 Yes Symmetric GLFG 16 17 Nup58, 
Nup45 48 — Nup58 

Nup57 Yes Symmetric GLFG 16 15 Nup54 32-48 npp-1 Nup54 

Nsp1 Yes Symmetric FG, 
FXFG 32 12, 22 Nup62 16 npp-11 Nup62 

Nup100 No Cytoplasmic-
bias GLFG 8 44 

Nup116 No Cytoplasmic-
bias GLFG 8 9, 40 

Nup145N No Nuclear-bias GLFG 16c 13 

Nup98 8 npp-10 Nup98 

Nup1 Noa Nuclear FXFG 8 22 Nup153 8 npp-7 Nup153 
Nup2 No Nuclear FXFG 8 c 14 Nup50 32 — — 
Nup60 No Nuclear FXF 8 4 –  — — 

— — 
Symmetric, 
Integral 
membrane 

FG 
— 

23b Pom121 8 — — 

— — Cytoplasmic FXFG — 21b Nup358/ 
RanBP2 8 npp-9 Nup358 

a. Nup1 is essential in certain S. cerevisiae genetic backgrounds (DAVIS and FINK 1990). 
b. number of repeats in Homo sapiens protein. 
c. Estimate 
d. Estimates of localization and abundance from (CRONSHAW et al. 2002; ROUT et al. 2000). 
e. Homologues based on summaries in (HETZER et al. 2005; SUNTHARALINGAM and WENTE 2003). 
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In higher eukaryotes, FG-domains are glycosylated. Glycosylation is specifically 

mediated by O-linked GlcNAc transferase, which attaches an N-acetylglucosamine 

(GlcNAc) moiety to Ser or Thr (MILLER et al. 1999). This O-linked glycosylation of 

Nups is not essential for proper Nup localization at the NPC (JINEK et al. 2004). These O-

linked GlcNAc residues are present on the cytoplasmic surface of FG-Nups and may play 

a role in substrate docking and translocation through the NPC (DAVIS and BLOBEL 1987; 

FINLAY and FORBES 1990; GREBER and GERACE 1992; MILLER et al. 1999) or may 

regulate the phosphorylation state of specific O-glycosylated Nups (MILLER et al. 1999). 

The biological importance of glycosylation of FG-Nups in metazoan cells and the impact 

of these post-translational modifications on nucleocytoplasmic transport is unclear.  

 

NPC functions mediated by FG-Nups 

FG-Nups are involved in a number of NPC functions, including receptor-

mediated transport, permeability barrier integrity, gene gating, and transport 

directionality. FG domains have been studied extensively for their role in interacting with 

transport receptors during nucleocytoplasmic transport (ALLEN et al. 2001; ALLEN et al. 

2002; RYAN and WENTE 2000; STRAWN et al. 2001; TERRY and WENTE 2007) 

(AITCHISON et al. 1996; ALLEN et al. 2001; ALLEN et al. 2002; BRADATSCH et al. 2007; 

DAMELIN and SILVER 2000; KATAHIRA et al. 2002; MARELLI et al. 1998; ROUT et al. 

1997; SEEDORF et al. 1999; STRASSER et al. 2000; STRAWN et al. 2004; STRAWN et al. 

2001), and are required in specific combinations for efficient transport (STRAWN et al. 

2004; TERRY and WENTE 2007). The complexity and redundancy of FG-Nups within the 

NPC has made it difficult to study their roles in vivo in metazoans. Genetic manipulation 
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of the yeast model system, however, has proved an effective system for studying the role 

of FG-Nups. Despite their potential roles in terminal events of nuclear export (or in initial 

events in nuclear import), the cytoplasmic filament Nups and their FG domains are 

dispensible (STRAWN et al. 2004; WALTHER et al. 2002). In addition, direct swapping of 

the FG-domains between S. cerevisiae Nup1 (FXFG domain; nuclear basket-localized) 

and Nup159 (FG domain; cytoplasmic filament-localized) does not cause any detectable 

perturbations of transport (ZEITLER and WEIS 2004). Indeed, cells with deletions of all 

asymmetric FG-domains (those of Nup1, Nup2, Nup60, Nup42, and Nup159) in S. 

cerevisiae are viable and has no significant transport defects (STRAWN et al. 2004). In 

stark contrast, the central or symmetrically distributed FG domains are required in 

specific combinations (STRAWN et al. 2004; TERRY and WENTE 2007). In addition to 

their role in mediating canonical transport through the central NPC channel, FG-Nups are 

necessary for transport of inner nuclear membrane proteins (KING et al. 2006).  

At least some aspects of transport directionality may be mediated by FG-Nups 

(ULLMAN et al. 1999), although it is argued that the primary determinant for 

directionality is, instead, the Ran GTP/GDP gradient (NACHURY and WEIS 1999). For 

both the Kap95/Kap60 import and mRNA export pathways, domains adjacent to FG 

repeats coordinate termination of transport and release of transporting complexes from 

the NPC (STEWART 2007a; TRAN and WENTE 2006). Additionally, FG-Nups are critical 

components of the permeability barrier, and NPCs lacking specific FG domains are 

"leaky", permitting diffusion of inappropriate molecules (PATEL et al. 2007). Other 

structural (non-FG) Nups are also important for maintenance/establishment of the 

permeability barrier (GALY et al. 2003; SHULGA et al. 2000), though it is possible that 

12



deletion of structural Nup(s) in these experiments also impairs assembly of the full 

complement of FG-Nups at these NPCs. Of note, the extent to which FG-domains 

contribute to the permeability barrier and the resilience of this barrier to partial deletion is 

presently debated within the transport field. Resolving this discrepancy is an important 

future direction and is discussed further in Chapter 4. FG-Nups are also linked to gene 

gating, the process of chromatin association with NPCs (CASOLARI et al. 2004), though it 

is not clear whether this association is through their FG-repeat domain or through 

functions of non-FG domains of these Nups. As a whole, this diversity of functional roles 

underscores the importance of FG-Nups to the NPC, but also increases the complexity of 

studying the function of FG-Nups. 

 

Evolutionary conservation of FG-Nups 

The conservation of FG-repeat motifs across Nups and in multiple species 

facilitated the early cloning and characterization of this protein family. FG repeat motifs 

in organisms from yeast to mammals are recognized specifically by monoclonal 

antibodies to NPC proteins (ARIS and BLOBEL 1989), indicating that these motifs are 

indeed conserved. Unlike most of the other folds and motifs in the NPC, there is no clear 

prokaryotic ancestor for FG domains, which makes understanding their evolutionary 

appearance complex (MANS et al. 2004). Evolutionary modeling studies identified 

repetitive folds and motifs among Nups and suggest that Nups arose from gene 

duplication and diversification events over evolutionary time (DEVOS et al. 2004). These 

studies also hypothesize that Nups are related to coated vesicle components, which, like 

Nups, stabilize highly curved surfaces (BROHAWN et al. 2008; DEVOS et al. 2004). 
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Protein structure prediction analysis of Nups finds very few motifs – predominantly 

alpha-helices and beta-sheets (DEVOS et al. 2006). This high level of redundancy and 

duplication also suggests that the evolution of the NPC and diversification of Nups has 

been quite rapid. Coiled-coil motifs are predicted to anchor most of the FG-Nups into the 

NPC (DEVOS et al. 2006), while the unfolded FG domains are flexible (DENNING et al. 

2003; FAHRENKROG et al. 2002; LIM et al. 2006b).  

Between yeast and metazoans, some Nups are highly conserved in both sequence 

and structure, while others have divergent sequences yet retain similar tertiary structures 

(MANS et al. 2004). Structural elements and subcomplex shapes are, overall, maintained 

in such a way that the ultrastructure of NPCs is highly similar between divergent species 

(AKEY and RADERMACHER 1993; ALBER et al. 2007; BECK et al. 2004; HINSHAW et al. 

1992; KISELEVA et al. 2003; MANS et al. 2004). An interesting example of gene 

duplication and divergence is illustrated by the S. cerevisiae FG-Nups Nup100, Nup116, 

and Nup145 versus their vertebrate counterparts Nup96 and Nup98. Evidence for 

evolutionary gene duplication events among these three Nups comes from genomic 

sequences; the same tRNA and transposon sequence elements are adjacent to both the 

NUP100 and NUP116 loci (WENTE et al. 1992), and the N-terminal GLFG repeats of 

Nup145 are similar to the sequence of repeats in Nup100 and Nup116 GLFG domains 

(WENTE and BLOBEL 1994).  A second line of evidence for evolutionary gene duplication 

and divergence among these three Nups comes from examining the protein domain 

organization (RYAN and WENTE 2000). The S. cerevisiae Nup145 polypeptide is a 

precursor to two proteins found in the NPC; the peptide is autocatolytically cleaved post-

translationally to Nup145N (size ~65kDa) and Nup145C (size ~80kDa) (ROSENBLUM and 
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BLOBEL 1999; TEIXEIRA et al. 1997; WENTE and BLOBEL 1994), which each assemble 

into different substructural positions in the NPC (HODEL et al. 2002). Remarkably, this 

unusual event is conserved; the cleavage motif and event also occurs with the vertebrate 

homologs Nup96/Nup98, which are transcribed and translated as a ~194kDa fusion 

polypeptide (FONTOURA et al. 1999). The uncleaved Nup96/Nup98 fusion protein is 

impaired for assembly into the NPC (HODEL et al. 2002), thus raising interesting 

questions about whether this proteolytic processing event may be involved in a regulatory 

step of NPC biogenesis or in preventing premature activity linked to either of these 

peptides.  

 

Structural features of FG-Nups 

Biophysical studies demonstrate that FG-domains are natively unfolded and 

flexible within the NPC (DENNING et al. 2003; DENNING et al. 2002; FAHRENKROG et al. 

2002; LIM et al. 2006b). As extensive unfolded protein domains, the FG-domains are 

characterized by a large hydrodynamic (Stokes) radius, enrichment in amino acid 

residues associated with structural disorder, high flexibility, and proteolytic sensitivity 

(DENNING et al. 2003; DENNING et al. 2002; DOKUDOVSKAYA et al. 2006). Although 

unfolded regions are predicted in a substantial portion (~30%) of the S. cerevisiae 

proteome, the FG-domains are particularly large unfolded sequences (DUNKER et al. 

2001). Unfolded protein domains favor binding to multiple partners and can facilitate 

rapid association and dissociation rates (TOMPA 2005). The flexibility of these domains 

likely favors repeated collisions with multiple binding partners, and means that an FG-

domain is accessible from multiple directions. In support of the flexibility of FG-
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domains, immuno-electron microscopy (EM) with an antibody specific to the FG-domain 

of Xenopus Nup153 finds that this domain occupies multiple topological positions 

(FAHRENKROG et al. 2002), while the non-FG domains of Nup153 are anchored at 

specific points in the NPC. While some have suggested that FG domains alter their 

topology (PAULILLO et al. 2005) or collapse (LIM et al. 2007b) upon transport receptor 

binding, how this contributes to the transport mechanism remains unclear. FG-Nups are 

anchored into specific locations and subcomplexes of the NPC by their non-FG domains, 

and deletion of these domains results in mis-targeting, e.g. (BAILER et al. 1998; HO et al. 

2000a). 

 

The four steps of receptor-facilitated translocation through the NPC 

 

Properties of receptor-facilitated transport 

Nuclear import and export of signal-containing cargoes larger than the 

permeability barrier limit is generally facilitated by a transport receptor (GORLICH and 

KUTAY 1999), and the process of translocation involves four steps: (1) cargo-receptor 

complex assembly; (2) translocation through the NPC; (3) termination of transport and 

cargo release; and (4) recycling of the transport receptor  (Figure 1-3) (STEWART 2007a). 

First, a receptor-cargo complex must form. Each of the cargos that uses a transport 

receptor must display a nuclear localization signal (NLS) or nuclear export signal (NES) 

sequence (CHOOK and BLOBEL 2001; PEMBERTON and PASCHAL 2005). This signal is 

recognized and bound by a specific transport receptor. These signal sequences are both 

necessary and sufficient for interaction with a Kap for transport. Second, the transport 
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Figure 1-3. Nucleocytoplasmic transport requires four steps:
A complete cycle of nuclear import by a Kap is shown on the left; nuclear export is 
shown on the right. 
(1) Formation of a transport receptor-cargo complex. A signal-bearing cargo is recognized 
by and binds a specific transport receptor.  For nuclear export, the Kap-cargo complex is a 
heterotrimer with RanGTP.
(2) Translocation through the NPC. The Kap-cargo complex moves through the NPC by 
interacting with a subset of NPC proteins, the FG-Nups (not shown). 
(3) Complex disassembly. Nuclear import complexes are disassociated by binding of 
RanGTP. Nuclear export complexes disassemble as RanGAP hydrolyzes RanGTP to 
RanGDP. 
(4) Kap recycling. Import Kaps, bound to RanGTP, are recycled through the NPC. Export 
Kaps traverse the NPC empty. 
Nuclear (chromatin-associated) RanGEF maintains high nuclear pool of RanGTP.
The transport receptor Ntf2 (not shown) imports RanGDP into the nucleus to maintain the 
RanGDP-RanGTP gradient.
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receptor, now bound to a signal-containing cargo, interacts with a subset of Nups to 

mediate movement through the NPC and thus carry the cargo between the nucleus and 

cytoplasm (ROUT et al. 2000; SUNTHARALINGAM and WENTE 2003). The Nups directly 

involved in this process are the FG-Nups. Transport receptors therefore serve as a 

molecular bridge between FG-Nups and a cargo molecule to allow efficient nuclear 

import and export. Third, the receptor-cargo complex is disassembled at the far side of 

the NPC. Finally, the transport receptor is recycled for another round of transport. In 

order to mediate these steps, transport receptors include three key functional features: (1) 

binding to signal-containing cargoes; (2) binding to NPC components (specifically, FG-

domains) to facilitate transport; and (3) mechanism for directionality, cargo release, and 

recycling of the transport receptor (PEMBERTON and PASCHAL 2005). This dissertation 

focuses primarily on the second step of this process – receptor-cargo complex interaction 

with the NPC. Recent work has offered many insights into the nature of the FG-Nups, 

their interactions with transport receptors, and their regulatory roles in transport, disease, 

and development. Understanding the structural, functional, and regulatory properties of 

FG-Nups has provided new insights into a novel paradigm for selective barrier structures 

and for the mechanism of regulated and efficient nucleocytoplasmic transport (see 

below).  
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Step 1: formation of a receptor-cargo complex 

 

The karyopherin family of transport receptors 

The major family of transport receptors is the karyopherins (Kaps), which 

includes 14 known members in S. cerevisiae and more than 21 identified in humans 

(GORLICH and KUTAY 1999; HAREL and FORBES 2004; MACARA 2001; 

MOSAMMAPARAST and PEMBERTON 2004). The structure of Kaps is an arch built of 

typically 20 HEAT repeats (PEMBERTON and PASCHAL 2005) (COOK et al. 2007). 

Structurally, a HEAT repeat is paired antiparallel alpha helices connected by a short loop. 

HEAT repeats are found in other cellular factors, including those from which they derive 

their name: huntingtin, elongation factor 3, ‘A’ subunit of protein phosphatase A 

(PR65/A), and TOR1 lipid kinase (ANDRADE et al. 2001). The array of tandem HEAT 

repeats in Kaps is highly flexible, and this flexibility potentially allows Kaps to adapt to 

carry a variety of cargoes and/or to interact with differently spaced FG-repeats (CHOOK 

and BLOBEL 2001; CINGOLANI et al. 2002; CINGOLANI et al. 1999; CONTI et al. 2006; LEE 

et al. 2000; LEE et al. 2003a; LEE et al. 2003b; PEMBERTON and PASCHAL 2005).  

Extensive domain mapping and structural studies have characterized the inner 

face of the N-terminus of Kaps as the binding site for RanGTP, the Kap directionality and 

release factor (see below) (COOK et al. 2007). Cargo binding is adjacent to this area on 

the inner face of the arched Kap structure, though recent structural studies have identified 

multiple possible cargo binding sites on at least one Kap (CHOOK and BLOBEL 2001; 

CINGOLANI et al. 2002; CONTI 2002; COOK et al. 2007). Additionally, each Kap may 

make distinct contacts with each of its cargoes, further complicating the identification of 
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Kap-cargo interaction domains (CINGOLANI et al. 2002; CINGOLANI et al. 1999; LEE et al. 

2003a; PEMBERTON and PASCHAL 2005). The outer backbone of each Kap is the platform 

for interaction with FG-Nups during transport. Specifically, crystallographic and 

modeling studies show that the Phe side chain of an FG repeat fits into hydrophobic 

pockets formed by the HEAT repeats of each Kap (BAYLISS et al. 2000b; BAYLISS et al. 

2002b). Multiple FG-binding sites have been identified on the outer face of Kaps 

(BAYLISS et al. 2000b; BAYLISS et al. 2002b; BEDNENKO et al. 2003; ISGRO and 

SCHULTEN 2005; ISGRO and SCHULTEN 2007b). Because there are likely multiple FG-

binding sites on a single Kap, it is possible that transport through the NPC is 

accomplished by pivoting through FG-Nups by binding with different hydrophobic 

pockets on the Kap. Additionally, although FG-Kap binding is measured to be low-

affinity (e.g., ~100nM-1uM) (BEN-EFRAIM and GERACE 2001; PYHTILA and REXACH 

2003), there are multiple FG-repeats on each FG-Nup and multiple FG-binding sites on 

each Kap; therefore, avidity of binding sites may also contribute to transport. 

These structural paradigms are predicted to be true for both import and export 

Kaps (PEMBERTON and PASCHAL 2005), although a slight variation is used in transport 

via yeast (y)Kap95-Kap60 (vertebrate (v)Importin β-Importinα). Kap95-Kap60 functions 

as a heterodimer for nuclear import of cargoes bearing specific NLSs, including the basic 

classical (c)NLS, such as that of SV40 large-T antigen (STEWART 2007a). The cNLS-

cargo binds on the inner surface of Kap60. The Importin Beta Binding (IBB) domain of 

Kap60 extends and interacts with the inner surface of Kap95 (Figure 1-4B, C) (KOBE 

1999; WEIS et al. 1996). This trimer of Kap95-Kap60-cargo is an import-competent 

complex. Termination of Kap95-Kap60 nuclear import is a multi-step process: the cargo-
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Figure 1-4. Structural insights into Kap95-Kap60 transport.
(A) Karyopherins are highly flexible. This ribbon diagram overlay shows the conforma-
tional shift in vImpβ between the empty (blue) and RanGTP-bound (red) forms.
(B) Diagram of the events during termination of nuclear import via Kap95 (Impβ) and 
Kap60 (Impα). An NLS-containing cargo interacts with Impα, which in turn binds to 
Impβ via its Importin Beta Binding (IBB) domain. Nuclear RanGTP contributes to 
destabilizing this complex once it traverses the NPC. This results in cargo release (free 
NLS), RanGTP-Impβ complex ready for recycling, and Impα with IBB bound in place of 
NLS. Adapted from Stewart. 2007 Nat. Rev. Mol. Cell Biol.
(C) Structural model of the import complex. The SV40 NLS (gray) binds the inner face 
of Impα (Kapα/Kap60) (green). The IBB of Kapα binds the central inner face of Kapβ 
(Impβ, Kap95) (red). On the outer surface of Kapβ, an FXFG peptide (purple) is shown 
interacting with binding sites between helices. Reprinted from Chook & Blobel. 2001. 
Curr. Opin. Struct. Biol.

(A) (B)

(C)
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Kap60 complex dissociates from Kap95 via RanGTP binding to Kap95 (LEE et al. 2005; 

VETTER et al. 1999). This readies Kap95-RanGTP for nuclear  export/recycling. 

However, the mission of cargo delivery is not yet accomplished. Dissociation of the 

cargo from Kap60 requires another series of catalytic events involving Cse1, RanGTP, 

and Nup2 (STEWART 2007a). Cse1 is a Kap family member and directly binds Kap60 to 

mediate its recycling back to the cytoplasm (MATSUURA and STEWART 2004). Import via 

Kap95-Kap60 is thus twice as energetically expensive as is any other Kap: nuclear 

export/recycling of Kap95 and Kap60 requires hydrolysis of two RanGTP molecules 

(MACARA 2001). Although energetically expensive, the use of Kap60 as an adaptor 

broadens the  dynamic range of import above that which Kap95 can accomplish alone 

(MACARA 2001; RIDDICK and MACARA 2007). 

Direct binding between Kaps and specific RNAs has also been identified 

(KOHLER and HURT 2007). tRNA binds directly to a dedicated Kap, vExportin-t (yLos1) 

(HELLMUTH et al. 1998; KUTAY et al. 1998). Micro(mi)RNA precursors and small 

nuclear (sn)RNAs are also transported through NPCs in a Kap- and Ran-dependent 

manner, although for snRNA export, interaction with a Kap is bridged by adaptor 

proteins that recognize structural features of the snRNAs (BOHNSACK et al. 2004; 

IZAURRALDE et al. 1995; KOHLER and HURT 2007; LUND et al. 2004; YI et al. 2003). 

Interaction between transport receptors and signal-containing cargoes can be regulated by 

several means of surface accessibility changes, signal masking, and/or post-translational 

modification of NLS and NES signals (TERRY et al. 2007). Additionally, some Kaps 

seem to be dedicated to transport of a specific family of cargoes, e.g., Kap123 mediates 

nuclear import of most ribosomal proteins (ROUT et al. 1997) and Exportin-t is dedicated 
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to tRNA transport (HELLMUTH et al. 1998; KUTAY et al. 1998). It is interesting to note 

that there are specific receptors for each of the varieties of RNA – including tRNA, 

snRNA, mRNA, and miRNA - that must transport through the NPC  (Figure 1-5A) 

(KOHLER and HURT 2007). This was convincingly demonstrated by competition 

experiments in which a Xenopus oocyte nucleus is microinjected with an excess of any 

one class of RNA. Nuclear export of each single class of RNA is saturable (presumably 

as the export receptor becomes limiting in the system flooded by cargo), but classes of 

RNA do not compete with each other for export  (BATAILLE et al. 1990; JARMOLOWSKI et 

al. 1994; NAKIELNY and DREYFUSS 1999; POKRYWKA and GOLDFARB 1995). 

Additionally, the transport receptors for each of these classes of RNA discriminate 

between mature and precursor RNA forms – each of these classes of RNA is transcribed 

as a precursor and undergoes a series of regulated maturation events – the export receptor 

only associates with and exports the properly processed, mature RNA form (KOHLER and 

HURT 2007; NAKIELNY and DREYFUSS 1999). Thus, the assembly of nuclear export 

complexes is a highly regulated process. While Kaps are the transport receptor for most 

proteins and RNAs (including rRNA, tRNA, miRNA, snRNA), bulk mRNA export 

employs a non-karyopherin transport receptor. 

 

Mex67-Mtr2 (TAP-p15) is a transport receptor for mRNA 

Nuclear export of mRNA is a critical step in the continuum of gene expression 

from transcription to translation. As the NE spatially separates these two cellular 

processes, efficient and regulated nuclear mRNA export is critical to rapid/proper gene 

expression. Nuclear export of mRNA is linked to proper pre-mRNA processing and 
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requires ongoing transcription (IGLESIAS and STUTZ 2008). As a pre-mRNA matures 

through transcription, 5’ capping, poly(A)+ tail processing, and splicing, the composition 

of proteins bound to the mRNA is continually changing (IGLESIAS and STUTZ 2008). This 

protein-mRNA complex is known as an mRNP. The mRNA export receptor is the 

heterodimer Mex67-Mtr2 (S. cerevisiae; in metazoans, TAP/NXF-p15/NXT) (KATAHIRA 

et al. 1999; SANTOS-ROSA et al. 1998; SEGREF et al. 1997). Mex67-Mtr2 in yeast and 

TAP-p15 in metazoans are each essential for bulk mRNA export (HEROLD et al. 2001; 

KATAHIRA et al. 1999; SANTOS-ROSA et al. 1998; SEGREF et al. 1997; TAN et al. 2000; 

WIEGAND et al. 2002). Temperature-sensitive alleles of mex67 have defects in mRNA 

export, and at steady-state, Mex67 co-localizes with Nups along the nuclear rim (HUH et 

al. 2003; SEGREF et al. 1997). Likewise, Mtr2 localizes to the nuclear rim, and 

temperature-sensitive alleles of mtr2 have mRNA export defects and genetic interactions 

with mRNP and NPC proteins (SANTOS-ROSA et al. 1998). Mex67-Mtr2 meets the 

criteria for a bona fide mRNA transport receptor: Mex67-Mtr2 have genetic interactions 

with NPC components (SEGREF et al. 1997; STRASSER et al. 2000), bind mRNA (LUND 

and GUTHRIE 2005; SANTOS-ROSA et al. 1998), shuttle through the NPC (KATAHIRA et 

al. 1999), and physically interact with FG-Nups (ALLEN et al. 2001; STRASSER et al. 

2000; STRAWN et al. 2001; TERRY and WENTE 2007).  

 

Structure and conservation of the mRNA export receptor 

Mex67-Mtr2 and TAP-p15 are structurally distinct from the Kap family of 

transport receptors and function independent of the RanGTP system (CLOUSE et al. 2001; 

GRANT et al. 2002; GRANT et al. 2003; HEROLD et al. 2000; SENAY et al. 2003). 
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Interestingly, although Mex67-Mtr2 and TAP-p15 have similar biological roles in 

mediating nuclear mRNA export, genetic evidence suggests that these receptor 

heterodimers have co-evolved; Mex67 cannot be functionally replaced by TAP, nor can 

Mtr2 by p15. However, a double null mutant mex67∆ mtr2∆ S. cerevisiae can be partially 

complemented by co-expression of TAP and p15 (KATAHIRA et al. 1999). A small subset 

of human mRNAs are exported independently of TAP-p15, and many viral mRNAs also 

use export mechanisms independent of TAP-p15 (for review, see (CULLEN 2003; 

KOHLER and HURT 2007)). The export-competent mRNP moves through the NPC, 

presumably by serial interactions between Mex67-Mtr2 and FG-repeats. Mex67-Mtr2 has 

been demonstrated to bind to at least nine different FG-Nups (ALLEN et al. 2001; 

STRASSER et al. 2000; STRAWN et al. 2001; TERRY and WENTE 2007). Structurally, there 

are at least two FG binding sites on Mex67-Mtr2 and also on TAP-p15 (GRANT et al. 

2002; GRANT et al. 2003; SENAY et al. 2003). One of these FG binding sites has 

structural similarity to Ntf2, while the other is similar to a ubiquitin associated motif 

(BRAUN et al. 2001; BRAUN et al. 2002; FRIBOURG et al. 2001; FRIBOURG and CONTI 

2003; GRANT et al. 2002; GRANT et al. 2003). Within TAP, the two FG binding sites are 

structurally different motifs. Interestingly, TAP mutants with two Ntf2-like motifs or two 

UBA-like motifs are competent for mRNA export; TAP truncations with just one FG 

binding motif are non-functional (BRAUN et al. 2002; CULLEN 2003). Likewise, a 

mutation in Mex67 that uncouples the Mex67-Mtr2 heterodimer causes mRNA export 

defects (SANTOS-ROSA et al. 1998; SEGREF et al. 1997). This supports a model wherein 

successful TAP translocation through the NPC requires multiple FG binding sites and 
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reinforces the notion that avidity is a driving mechanism for FG-transport receptor 

interactions in the nucleucotyoplasmic transport mechanism.  

 

Cargoes and signal sequences1 

The signals displayed by cargo molecules and recognized by transport receptors 

are NLSs and NESs, and these have classically been defined as primary amino acid 

motifs that are both necessary and sufficient for transport (FRIED and KUTAY 2003). 

However, it is now clear that such signals are composed of primary sequence and 

secondary/tertiary structural elements, and that they are present in both proteins and 

RNAs. The precise sequence and the substructural context of an NLS or NES defines its 

specificity for the various Kaps (FRIEDRICH et al. 2006).  Furthermore, the receptor-

protein and receptor-RNA interactions that mediate cargo localization are governed by 

multiple post-transcriptional and post-translational modifications (TERRY et al. 2007). 

These modifications allow for specific transport regulation of individual cargo.  

 

mRNP protein composition 

The protein composition of an mRNP is highly dynamic, with changes occurring 

throughout the life of a single transcript (IGLESIAS and STUTZ 2008). This phenomenon 

was classically illustrated by immuno-EM studies of the Balbiani ring mRNP in salivary 

glands of Chironomus tentans. The Balbiani ring mRNP, a massive ~40kbp transcript, is 

visible by EM and undergoes directional nuclear export, with its 5’ terminus leading 

                                                
1 Some material in this paragraph reprinted from Terry LJ, Shows EB, Wente SR. 
Science. 2007 Nov 30;318(5855):1412-6. 
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(DANEHOLT 2001a; DANEHOLT 2001b). Immuno-EM analysis of the protein composition 

of this mRNP shows that specific factors bind to or are displaced from the mRNP at 

defined points in the continuum of mRNP processing and export. In addition to 

compositional changes on a single mRNP, the protein composition of mRNPs varies 

among mRNA transcripts. For example, the mRNA-binding proteins Nab2, Npl3, and 

Nab4 differentially associate with subsets of specific transcripts (GUISBERT et al. 2005). 

Nab4 is preferentially associated with transcripts linked to amino acid metabolism, while 

Npl3 is enriched on transcripts of ribosomal proteins. Transcript-specific differences in 

mRNP composition have also been reported in mammalian cells (GAMA-CARVALHO et al. 

2006). Of note, dissociation and reassociation of hnRNPs from/to transcripts has been 

noted following cell lysis (MILI and STEITZ 2004); thus, these results must be interpreted 

with prudence. Further mRNP composition differences are found when comparing intron-

containing and intron-less mRNAs; following splicing, components of the exon junction 

complex remain associated with the splice site (ISKEN and MAQUAT 2007). Export of 

intron-containing (i.e., still unspliced/incompletely processed) mRNAs is blocked by two 

NPC-associated proteins, Mlp1 and Mlp2 (GALY et al. 2004; GREEN et al. 2003). 

Together, these factors serve as a quality control mechanism to preclude leakage of 

unspliced mRNAs from the NPC.  

In addition to dynamic mRNP events in the nucleus, there is differential export of 

subsets of mRNPs at the level of the NPC. Under conditions of heat shock, global 

poly(A)+RNA export is blocked and heat shock mRNA transcripts are preferentially 

exported (SAAVEDRA et al. 1996). During this stress response, specific NPC-binding sites 

are required for nuclear export of heat shock response messages (SAAVEDRA et al. 1997; 
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STUTZ et al. 1997). Export of heat shock mRNAs, but not of global mRNAs, is defective 

in a nup42∆ S. cerevisiae null mutant. Thus the NPC has the capacity to regulate nuclear 

export of specific sets of mRNAs.  

 

mRNA export receptor regulation 

Recruitment of Mex67-Mtr2 to the mRNP is a critical and regulated step in the 

nuclear mRNA export process. Such regulation is necessary given that pre-mRNA 

transcripts must undergo a number of processing steps to generate mature mRNAs ready 

for export and translation. These processes include transcription, processing (5’ capping, 

3’ end formation, splicing, and/or editing), and quality control events, each of which is 

tightly linked to mRNA export mechanisms (HIERONYMUS and SILVER 2004). During 

each of these coordinated processes, the set of proteins bound to the pre-mRNA is 

continually and dynamically remodeled (Figure 1-5B) (BURATOWSKI 2005; DANEHOLT 

2001b; FASKEN and CORBETT 2005; HIERONYMUS and SILVER 2004; JENSEN et al. 2003; 

VINCIGUERRA and STUTZ 2004). During this mRNA maturation process, serial 

recruitment of binding proteins to the mRNP ultimately builds an mRNP that is 

competent for nuclear export. An mRNP is a large and complex cargo and presents a 

special problem for nuclear export. Additionally, the need for regulated export – to 

prevent leakage of incompletely processed mRNAs into the cytoplasm – is evidenced by 

the existence of multiple regulatory mechanisms in the nucleus. Several factors have been 

linked to the regulated recruitment of Mex67-Mtr2 to nuclear mRNPS. The yeast SR 

(Ser-Arg) protein Npl3 is recruited co-transcriptionally to pre-mRNAs (GILBERT et al. 

2001; LEI and SILVER 2002). SR proteins are a family of conserved phospho-proteins that 
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regulate mRNA stability, translation, and export via cycles of phosphorylation and 

dephosphorylation (KOHLER and HURT 2007). Phosphorylation of Npl3 in the cytoplasm 

(by the kinase Sky1) directs nuclear import of Npl3 via the Kap receptor Mtr10 (GILBERT 

et al. 2001). Phospho-Npl3 associates with nascent transcripts, and as the mRNP matures, 

Npl3 is dephosphorylated by nuclear Glc7 (GILBERT and GUTHRIE 2004). This 

dephosphorylation promotes interaction of Npl3 with Mex67-Mtr2, thereby loading the 

mRNA export receptor onto the transcript by way of Npl3 as a signal for export 

competence. Successful export of an mRNP carries Npl3 into the cytoplasm, where re-

phosphorylation by Sky1 disassembles Npl3 from Mex67-Mtr2 (GILBERT et al. 2001), 

thus readying both Mex67-Mtr2 and Npl3 for a new round of mRNP regulation/export. 

Similar cycles of phosphorylation and dephosphorylation are implicated in regulating 

TAP-p15 recruitment to mRNPs in metazoan cells (HUANG et al. 2003). Other 

heterogenous nuclear ribonucleoproteins (hnRNPs) have also been demonstrated to 

recruit Mex67-Mtr2 to maturing transcripts. The S. cerevisiae hnRNP Yra1 (ALY/REF in 

metazoans) also interacts with Mex67-Mtr2 and may recruit the heterodimer to the 

mRNP during gene expression (LEI et al. 2001; STRASSER et al. 2002; ZENKLUSEN et al. 

2001). Clearly there are multiple mechanisms for efficient and regulated recruitment of 

the transport receptor to the maturing mRNP, underscoring the importance of this 

regulatory step in gene expression. In addition, this redundancy suggests that there may 

be multiple Mex67-Mtr2 heterodimers bound on a single transcript. However, the 

stoichiometry of Mex67-Mtr2 on a given transcript remains unknown. Does a larger 

mRNA transcript require more receptors for nuclear export? Recent studies have found 

that 60S ribosomal subunits – very large export cargoes, like mRNPs – use multiple 
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receptors for export (BRADATSCH et al. 2007; KOHLER and HURT 2007; YAO et al. 2007). 

Successful maturation of a pre-mRNA into an mRNA and assembly with a proper set of 

hnRNPs readies an mRNP for nuclear export. This process is highly regulated by nuclear 

and NPC-associated factors.  

For both mRNA export via Mex67-Mtr2 and all Kap-facilitated transport, 

formation of a receptor-cargo complex is the first step required for nucleocytoplasmic 

transport. 

 

STEP 2: translocation of receptor-cargo complexes through the NPC 

 

Structural features of transport receptor interaction with FG-Nups 

To move through the NPC, all of these transport receptors – including Kaps, 

Mex67-Mtr2, and Ntf2 – must interact with Nups. Despite their structural diversity, each 

of these transport receptors interacts with the same subset of Nups, the FG-Nups (TRAN 

and WENTE 2006). 

 

Affinity and avidity of interactions 

Transport receptor interaction with FG-Nups is a critical determinant to 

nucleocytoplasmic translocation, and current evidence supports a model of multiple low-

affinity binding events between a transport receptor and FG-Nups during translocation. 

Interactions between transport receptors and FG domains are weak (typically micromolar 

binding affinities) and are likely transient (PYHTILA and REXACH 2003; TIMNEY et al. 

2006). In fact, transport receptor mutants with increased affinity for binding FG repeats, 
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such as the ntf2-N77Y mutant, impair nucleocytoplasmic transport (LANE et al. 2000; 

QUIMBY et al. 2001). This result demonstrates the necessity of rapid, low-affinity 

interactions between transport receptors and FG repeats for proper and efficient transport.   

Biochemical approaches have demonstrated that every FG-Nup in S. cerevisiae is capable 

of binding at least one transport receptor, and each transport receptor can bind at least one 

FG domain (Table 1-2). Overall, each transport receptor appears to have a preference for 

binding specific FG-Nups or repeat-types (e.g., (ALLEN et al. 2001; ALLEN et al. 2002; 

RYAN and WENTE 2000; STRAWN et al. 2001; TERRY and WENTE 2007) (AITCHISON et 

al. 1996; ALLEN et al. 2001; ALLEN et al. 2002; DAMELIN and SILVER 2000; MARELLI et 

al. 1998; ROUT et al. 1997; SEEDORF et al. 1999; STRAWN et al. 2004; STRAWN et al. 

2001)). Avidity of FG repeats does, indeed, impact Kap95 binding to purified FG 

domains in vitro (PATEL and REXACH 2008). The functional importance of avidity of FG 

repeats within a given domain has not been examined in vivo, but is an important 

consideration for future studies (see Chapter 4).  

 

Hydrophobic binding pockets of transport receptors 

Multiple crystallographic studies of the interaction between an FG-repeat and 

transport receptor show that the Phe residue of the FG-repeat is buried in a hydrophobic 

pocket on the outer face of the transport receptor (Figure 1-4C) (BAYLISS et al. 2000a; 

BAYLISS et al. 2002a; BAYLISS et al. 2000b; BAYLISS et al. 2002b; BAYLISS et al. 1999; 

FRIBOURG et al. 2001; GRANT et al. 2002; GRANT et al. 2003; SENAY et al. 2003). This 

paradigm applies to Kaps, Ntf2, Mex67-Mtr2 and TAP-p15. Thus, these studies provide 

direct evidence for the role of the individual FG-repeat unit in interacting with a transport 
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Table 1-2. Documented interactions between transport receptors and FG-Nups.

Kap95-
Kap60

Pse1 
(Kap121) Kap122

Kap119 
(Nmd5) Kap104 Kap123 Kap114

Kap108 
(Sxm) Mtr10

Nup42 FG 5, 20, 36, 39 5, 36 5, 36 5

Nup159 FG 18, 17, 7 34 31 41 17, 56 18

Nup49 GLFG 11, 22, 36 36 5 36 5
Nup57 GLFG 11, 36 35, 36 11, 5 5, 36 36 5
Nsp1 FG, FXFG 11, 17, 39 34, 39 39 17

Nup100 GLFG
11, 20, 49, 
36, 39, 22

36 36 36 36

Nup116 FG, GLFG
11, 50, 49, 
51, 36, 23, 

39, 38
30, 34, 36 36, 38 11, 36 36, 38 36 36

Nup145 
(NorC)

GLFG 11 30, 57 11, 5 5

Nup1 FXFG

18, 11, 5, 
17, 7, 21, 
22, 15, 23, 
36, 47, 14, 
23, 41, 39, 
20, 40, 48

5, 30 13 31 5 5, 40 12 17 5, 18

Nup2 FXFG

18, 17, 21, 
19, 14, 47, 
36, 52, 16, 
41, 15, 58

30 13 31
14, 15, 19, 

41

Nup60 FXF
19, 14, 53, 
19, 36, 16, 
41, 15, 22

14, 16, 36, 
21

Import Karyopherins
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Table 1-2, continued.

Import/Export Unknown

Msn5
Xpo1 
(Crm1) Los1 Cse1 Kap120 Ntf2 Arx1

Mex67-
Mtr2

Nup42 FG 36 8,9, 36, 55 1, 36

Nup159 FG
5,6,7,36, 37, 

55
1 27, 42

Nup49 GLFG 36 9, 36 36 1
Nup57 GLFG 36 9, 36 36 54 2 27, 45
Nsp1 FG, FXFG 4 24, 25 32, 33, 54 1 27, 42

Nup100 GLFG 36 36 1,2, 36 36, 29

Nup116 FG, GLFG 30, 36 36 36, 38 1,2 
28, 29, 27, 
42, 45, 46, 

38
Nup145 
(NorC)

GLFG 30 5 54 44

Nup1 FXFG 30 5 32, 54 1 27, 43

Nup2 FXFG 30 24, 26 10 32 1

Nup60 FXF 1 27, 43, 41

Export Karyopherins Other transport receptors
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receptor. In vitro assays demonstrate that hydrophobic residues may be substituted in FG 

repeats (e.g., F to W or F to Y) with only modest effects on Kap95 binding, while 

mutagenesis of F to A in repeats abolished binding (PATEL and REXACH 2008). 

Interestingly, at least one Kap forms distinct interactions with different FG repeats 

(BAYLISS et al. 2002b). Such subtle structural differences may thus dictate the preference 

of a receptor for specific FG-binding sites. Additional factors may also contribute to 

binding site specificity, though, including adjacent non-FG binding sites, the 

substructural location of the FG-domain within the NPC, contributions from spacer 

regions, and the occupancy of neighboring FG-binding sites, and sorting out the potential 

contributions of each of these has been difficult. Due to the flexibility from the inherently 

unfolded FG peptides used in crystallization studies to date, interactions between the 

spacer regions and transport receptors have not been visualized at the atomic/structural 

level. As structural studies have thus far been unable to resolve interactions between a 

spacer region and a receptor, it is unclear what role these sequences might play.   

Imaging of single-molecule transport in a permeabilized cell system (YANG et al. 

2004) demonstrated that a receptor-cargo complex does not proceed through the NPC in a 

directed or linear fashion, but rather than it moves about in a Brownian motion fashion, 

potentially engaging in multiple NPC-receptor interactions during its ~10 ms transport 

time. Given this time scale and the motion of the complex visualized in the NPC, these 

studies are consistent with multiple, low-affinity interactions occurring between FG 

repeats and the transport complex. Despite the apparent low affinity of FG-receptor 

interactions, there remains preference for specific binding domains, though the 

mechanistic determinants of these preferences remain elusive. For example, in S. 
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cerevisiae, Mex67 and Kap95 interact preferentially with different domains of Nup116 

(STRAWN et al. 2001), indicating that there are in vivo subtle differences between 

domains and also suggesting that a single FG-domain could provide binding sites for 

multiple transport factors, though it is not known if these binding events could be 

simultaneous. In addition, as all known transport receptors have more than one binding 

site for FG repeats on their surface, it is like that the avidity of FG repeats within the 

NPC and in interacting with these receptors is an important contribution to the transport 

mechanism. Furthermore, recent mathematical and computational modeling predicts that 

transport receptors may have more FG binding sites than previously detected (ISGRO and 

SCHULTEN 2005; ISGRO and SCHULTEN 2007a; ISGRO and SCHULTEN 2007b). These 

observations – made in molecular dynamics simulations – must be verified 

biochemically, but again suggest that avidity of transport receptor – FG binding must be 

considered in proposed models of the transport mechanism. Thus, although it is clear that 

multiple, stochastic, low-affinity interactions between transport receptors and FG repeats 

occur during transport, there are additional factors influencing transport.   

 

Step 3: termination/release of transport 

 

The small GTPase Ran 

Following movement through the center of the NPC, a transport receptor-cargo 

complex must be disassembled to deliver the cargo to the destination compartment. For 

both Kap- and Mex67-Mtr2-mediated transport, this step is coordinated by a nucleotide 

switch mechanism. The termination of a single nuclear import or export event by a Kap is 
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mediated by the RanGTP cycle. The small GTPase Ran is a member of the Ras 

superfamily of proteins and, as such, functions as a binary molecular switch between 

GDP- and GTP-bound forms (WENNERBERG et al. 2005). Ran is essential for assembly 

and disassembly of transport complexes and as such provides directionality to Kap-

mediated nucleocytoplasmic transport. The nucleotide-bound state of Ran is spatially 

regulated by the Ran GTPase Activating Protein (RanGAP) and the Ran Guanine 

Nucleotide Exchange Factor (RanGEF) proteins (SUNTHARALINGAM and WENTE 2003). 

RanGAP is localized to the cytoplasm, and thus the cytoplasm is a RanGDP-rich 

environment. The RanGEF is nuclear-localized and thus the predominant nuclear form of 

Ran is in the GTP-bound state.  

 

Ran-mediated disassembly of transport complexes 

Nuclear import complexes of a Kap and an NLS-containing cargo are dissociated 

in the nucleus by RanGTP, which binds the Kap and displaces the cargo. For example, 

two domains of transportin (yKap104) – the N-terminus and a C-terminal acidic loop - 

interact with Ran (CHOOK and BLOBEL 2001). This C-terminal acidic loop is likely also 

involved in cargo recognition and binding (PEMBERTON and PASCHAL 2005), and 

mutations in this loop uncouple RanGTP binding and cargo release. Thus a model for 

RanGTP-mediated disassembly of a transportin-cargo complex emerges: transportin-

cargo moves through the NPC and reaches the nuclear compartment; RanGTP binds the 

N-terminus of transportin, weakening the association between transportin-cargo; RanGTP 

competes with cargo for binding to the C-terminal loop and this ultimately releases the 

cargo from transportin. Thus the cargo is released into the nucleus and transportin is 
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ready for recycling for the next round of transport. A multi-step release mechanism has 

also been structurally characterized in catalyzing termination of Kap95/Kap60 nuclear 

import (CINGOLANI et al. 1999; LEE et al. 2005; STEWART 2007a), and Importin β 

truncation mutants that cannot bind nuclear RanGTP are locked at the NPC (KUTAY et al. 

1997b). Nuclear export complexes are a heterotrimer of an export Kap, an NES-

containing cargo, and RanGTP. This export trimer moves through the NPC and is 

disassembled at the cytoplasmic face of the NPC, where RanGAP activates hydrolysis of 

RanGTP to RanGDP. Further evidence for the role of the Ran gradient as the critical 

determinant of transport directionality comes from a study of permeabilized tissue culture 

cells: reversal of the Ran gradient, by addition of a Ran mutant locked in the GTP-bound 

state, causes transport receptors to carry cargoes in the opposite direction (NACHURY and 

WEIS 1999). Thus the small GTPase Ran is a critical determinant of the transport 

direction and is required for terminating nuclear import and export events.   

 

Termination of mRNA export 

Like Kap-mediated transport, nuclear export of mRNA requires a nucleotide 

hydrolysis mechanism to ensure directionality of transport (TRAN and WENTE 2006). This 

appears to be accomplished by the proteins Dbp5 and Gle1, which act together with the 

small molecule inositol hexakisphosphate (IP6) (ALCAZAR-ROMAN et al. 2006a; WEIRICH 

et al. 2006). Dbp5 is an RNA-dependent ATPase and is a member of the DEAD-box 

family of RNA helicases (CORDIN et al. 2006). Current models suggest that these factors 

work cooperatively to remodel the composition of the exporting mRNP at the 

cytoplasmic face of the NPC (TRAN et al. 2007). This has the potential to release the 

38



mRNP from the NPC by altering its protein content to resemble that of a cytoplasmic 

mRNP, rather than a transport-competent mRNP. Additionally, as Mex67 is specifically a 

target of this remodeling event (LUND and GUTHRIE 2005), the activity of Dbp5-Gle1-IP6 

to remove Mex67 at the cytoplasmic face of the NPC could ready Mex67 for recycling 

and subsequent rounds of nuclear transport. Serial removal of Mex67 and hnRNPs from 

the exporting mRNP may function as a ratchet-like mechanism to direct the mRNP out of 

the NPC and prevent retro-translocation (STEWART 2007b). 

 

Nucleoporins contributing to directional transport 

Although nucleotide hydrolysis systems appear to be the driving determinant of 

transport directionality and termination of a transport event (ENGLMEIER et al. 1999; 

NACHURY and WEIS 1999; RIBBECK et al. 1999), non-FG binding sites on FG-Nups are 

utilized by at least two different transport pathways. Termination of Kap95-Kap60 

nuclear import - that is, cargo release and preparation of Kap95 and Kap60 for recycling - 

involves non-FG binding sites on Nup1 and Nup2 (GILCHRIST et al. 2002; GILCHRIST and 

REXACH 2003; LIU and STEWART 2005; MATSUURA et al. 2003; MATSUURA and 

STEWART 2005; PYHTILA and REXACH 2003; SOLSBACHER et al. 2000). Similarly, 

termination of mRNA export involves Nup42 and Nup159, which are binding platforms 

for the mRNP-associated proteins Gle1 and Dbp5, respectively  (HODGE et al. 1999; 

MURPHY et al. 1996; MURPHY and WENTE 1996; SCHMITT et al. 1999; STRAHM et al. 

1999; WEIRICH et al. 2004). For both mRNA export and Kap95-Kap60 import, 

termination of transport and disassembly of transport complexes thus involves both 

asymmetric FG binding sites and flanking, high-affinity, non-FG binding sites. We 
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speculate that coupling between FG and non-FG binding sites contributes to efficiency 

and directionality of transport.  

 

Step 4: transport receptor/factor recycling 

 

Recycling of Karyopherins 

A successful Kap-mediated transport event releases cargo in the destination 

compartment and frees the Kap for recycling and reuse for another round of transport. 

This recycling phase – moving back to the cytoplasmic face for an import Kap or to the 

nuclear face for an export Kap – is poorly understood. Crystallography and other 

structural modeling studies suggest that the helical pitch of a Kap may shift/change 

whether the Kap is free, bound to cargo, bound to RanGTP, or bound to both cargo and 

RanGTP (Figure 1-3A) (STEWART 2007a). Such a shift could potentially alter the binding 

between the Kap and the NPC. This could in turn alter what subset of NPC binding sites 

are utilized by the Kap during transport. A model in which a Kap uses different NPC 

binding sites for import vs. export is attractive – this way, a recycling Kap would not 

interfere with its cargo-bound transporting form – and is an interesting concept for future 

study.  

 

Recycling of mRNA export factors 

Following termination of mRNA export, a large number of factors presumably 

must be recycled. Remodeling of mRNP protein composition at the termination of 

mRNA export likely readies many RNA-binding shuttling proteins for recycling. For 
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example, the RNA-binding protein Nab2 is targeted by Dbp5-Gle1-IP6 for removal from 

the mRNP (TRAN et al. 2007). Nab2 is subsequently re-imported to the nucleus by 

Kap104 for ensuing rounds of mRNP export (AITCHISON et al. 1996). Phosphorylation 

signals direct recycling of many SR-proteins, which are then re-imported into the nucleus 

by specific transport receptors (KOHLER and HURT 2007). Mex67-Mtr2 can presumably 

mediate its own recycling by way of binding FG domains.  

 

Recycling of Ran via Ntf2 

Since both the export/recycling step of an import Kap and the export of an export 

Kap-cargo complex carry RanGTP out of the nucleus – at a rate of efflux estimated at 

more than 105 molecules per second per nucleus (GORLICH et al. 2003; SMITH et al. 

2002), there must be a countermeasure to import and supply Ran to the nucleus. Indeed, 

RanGDP is imported to the nucleus by a non-Kap transport receptor, Ntf2. Ntf2 is 

structurally unrelated to Kaps and functions as a homodimer (PEMBERTON and PASCHAL 

2005). Ntf2 specifically imports the GDP-bound form of Ran by binding the Switch II 

domain of Ran, which is conformationally distinct in the RanGTP vs. RanGDP forms 

(STEWART et al. 1998). Each cycle of Ntf2 transport carries two RanGDP molecules into 

the nucleus to maintain the nuclear pool of RanGTP.  

 

41



Proposed models of the transport mechanism 

 

Key considerations for models 

The complexity of the NPC and the dynamic nature of transporting molecules has 

made it difficult to define the mechanism of nucleocytoplasmic transport. While multiple 

models for this have been proposed (Figure 1-6), none completely explain known NPC 

properties, and these models have been the subject of lively debates recently. Any model 

of this transport mechanism must explain a number of features, including: 

(1) the ability of the NPC to act as a permeability barrier, discriminating 

against entry of inappropriate macromolecules; 

(2) the ability of the NPC to transport receptor-cargo complexes of a 

dynamic range of sizes; 

(3) the ability of the NPC to transport these receptor-cargo complexes 

rapidly – at a rate that approaches the rate of diffusion, despite the 

fact that there are binding events between FG-Nups and these 

receptors (which would paradoxically seem to slow transport); 

(4) the ability of small molecules to freely move through the pore via 

diffusion; 

(5) the apparent ability of NPCs to simultaneously transport molecules 

bidirectionally; 

(6) the preference for specific FG binding pathways among transport 

receptors; and 
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Figure 1-6. Models for the mechanism of 
NPC selectivity and transport.
The proposed apperance of the NPC from 
either side view or cross-section through 
center of NPC is shown for each model. 
NE, black. FG domains, green. Structural 
NPC elements, yellow.

(A) Brownian Virtual Gating model. The 
center of the NPC is a narrow channel, 
from which FG domains extend to form an 
entropic barrier to transport. Transport 
receptors (not depicted) bind these FG 
domains, overcoming the entropic barrier. 
By collectling on the NPC periphery, 
transport complexes increase the probabil-
ity that they will spontaneously move 
across the barrier.

(B) Reduction of Dimensionality model. FG 
repeats form a continuous surface along the 
inner face of the NPC, and transport com-
plexes pivot along this surface. The spacer 
sequence between FG repeats loop outward, 
forming a physical barrier to diffusion of 
large molecules; transport complexes can 
transiently displace these as they move 
along the FG surface. 

(C) Selective Phase Partitioning model. 
Hydrophobic interactions between FG 
repeats form a physical meshwork with 
gel-like properties. Transport receptors bind 
and transiently dissolve the meshwork in 
order to tanslocate through the NPC.

~9nm
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(7) the resilience of the NPC to deletion of up to 50% of its FG domain 

mass. 

Not only has it been difficult to reconcile these complex properties of the NPC, 

but it has also been difficult to develop or design experimental systems to validate 

proposed models of the transport mechanism. Overall, the key differences between 

proposed models are in the nature of interactions between FG repeats and in the 

biophysical consequences of FG-receptor interaction. Let us briefly review the tenets of 

three current proposed models and discuss the experimental evidence for each. 

 

Brownian/Virtual Gate model 

The Brownian/Virtual Gate model  (Figure 1-6A) suggests that the NPC is an 

energy/entropy barrier (ROUT et al. 2003; ROUT et al. 2000). FG domains form an 

entropic barrier at each face of the NPC in a way that makes barrier passage energetically 

unfavorable for molecules in a size-dependent manner (i.e., the larger the molecule, the 

more entropically unfavorable barrier passage is). These FG domains are presumably 

mobile and unstructured. Transport receptors overcome this barrier by stochastically 

interacting with FG-Nups, directly increasing the local concentration of receptor-cargo 

complexes on FG-Nups and therefore also increasing the probability that a given 

receptor-cargo complex will randomly diffuse through the NPC. In support of this model, 

a layer of vNup153 FXFG domains is entropically repulsive (LIM et al. 2006b; LIM et al. 

2007b). The topological flexibility of FG-domains viewed by EM is consistent with a 

model in which FG domains do not stably interact, but this data is inconsistent with a 

recent study that suggested that FG-domains form a physically rigorous gel (FREY et al. 
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2006). Furthermore, in ensuing experiments, Lim et al. found that addition of vImportin β 

to this system collapsed this entropic layer, as is predicted for the virtual gating model 

(LIM et al. 2007a). The Brownian/Virtual Gate mechanism requires that an adequately 

high concentration of FG domains be present to form a strong energy barrier. 

Surprisingly, deletion of up to half of the FG mass from the NPC does not cause the 

permeability barrier to collapse (STRAWN et al. 2004). Thus, either the NPC permeability 

barrier is highly resilient to substantial deletions or other factors can compensate for these 

deletions. In contrast to the energetic barrier proposed in the Brownian/Virtual Gate 

mechanism, two models propose a physical barrier to transport. 

 

Reduction of Dimensionality model 

The Reduction of Dimensionality model (Figure 1-6B) (PETERS 2005) proposes 

that FG domains form a continuous surface of potential transport binding sites with the 

Phe residues aligning along the inner surface of the NPC. The spacer sequences between 

FG repeats and other Nups are proposed to form a selectivity filter that occludes free 

diffusion of large molecules (PETERS 2005). Asymmetric FG repeats collect transport 

complexes, which then move along this Phe-surface via a two-dimensional walk, pivoting 

from one binding site to the next. Mathematical modeling has previously suggested that 

reduction of dimensionality expedites the rate at which a ligand finds its receptor (see 

references in (PETERS 2005)). Thus, this model predicts that deletion of FG repeats might 

cause gaps and disrupt the continuity of the FG surface; such gaps would re-introduce a 

third dimension for molecular movement through the NPC. This could be the cause of 

transport defects in certain FG∆ strains, including those described in Strawn (STRAWN et 
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al. 2004). In addition, the Reduction of Dimensionality model predicts that deletion of 

asymmetric FG repeats would diminish the efficiency of NPCs to collect transport 

complexes. Curiously, this is not observed in cases with the cytoplasmic filaments 

deleted (WALTHER et al. 2002) or all asymmetric FG domains removed (STRAWN et al. 

2004). Perhaps there is functional compensation by the remaining FG repeats in these 

cases.  

 

Selective Phase Partitioning model 

The Selective Phase Partitioning model  (Figure 1-6C) proposes that FG repeats 

form a meshwork (RIBBECK and GORLICH 2001). This mesh is formed by weak 

hydrophobic interactions between the Phe side chains of FG repeats, and the entirety of 

the mesh throughout the NPC resembles a hydrophobic phase or gel. The spacing 

between Phe-Phe contacts in the mesh is proposed to be such that small molecules can 

diffuse through without disturbing these contacts. Transport complexes are suggested to 

traverse the mesh phase by transiently binding to FG repeats and locally disrupting the 

meshwork. Therefore, this model predicts that FG repeats directly interact and that 

transport receptors can compete and transiently disrupt the Phe-Phe hydrophobic 

interactions. Recent experiments have demonstrated that high concentrations of FXFG 

domains from Nsp1 can form a gel-substance in vitro, though formation of this gel was 

initiated using harsh chemical conditions (FREY et al. 2006). Indeed, a fluorescently 

tagged transport receptor can partition into an FXFG gel-substance in vitro (FREY and 

GORLICH 2007), while a protein that cannot interact with FG repeats does not enter this 

gel efficiently. While it is impressive that an FXFG gel can discriminate between an inert 
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and an FG-interacting protein, it is not clear whether such a gel barrier could form under 

physiological conditions or in vivo. Further, mathematical modeling predicts that binding 

to and moving through a gel will retard the mobility of transport receptor complexes, and 

will decrease transport efficiency of cargo-bound receptors (i.e., larger complexes) more 

so that free transport receptors (BICKEL and BRUINSMA 2002). Thus, the ability of this 

proposed FG-gel to form and support known transport rates remains controversial. 

 

Reconciling differences between models 

Recently, Patel et al. demonstrated that certain FG domains are cohesive in an in 

vitro assay designed to detect low-affinity interactions (PATEL et al. 2007). These assays 

found that the FG domain of Nup42 and the GLFG domains of Nup116, Nup100, Nup57, 

Nup145N, and Nup49 can all interact with each other in pair-wise tests. Curiously, 

though, these experiments did not detect interaction between the Nsp1 FXFG domains 

(PATEL et al. 2007), in direct contradiction with the self-interaction of these domains in 

the FXFG gel proposed by Frey & Gorlich (FREY and GORLICH 2007; FREY et al. 2006). 

Reconciling these discrepancies will require further refining of assays for detecting 

interactions and developing techniques that can test these properties in vivo. It is possible 

that a hybrid mechanism exists, such as the dually gated system proposed by Patel et al. 

with entropic barriers on either side of the NPC and a physical meshwork barrier in the 

center of the pore (PATEL et al. 2007). 

Future goals are to answer key questions raised by these FG interaction 

experiments, including: What prevents each FG domain from forming an intramolecular 

network? How can a gelatinous meshwork form in a newly assembling NPC? How does 
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the heterogeneity of FG repeat types in the NPC or the glycosylation of vertebrate FG 

domains affect the stability of any gel?  

As a whole, the two key differences between these models are in the nature of 

interactions among FG repeats and then how these interactions are altered by transport 

receptors. While recent work has made progress in understanding the nature of FG-FG 

interactions, it remains unclear how this meshwork may form and how they may be 

affected by their local and native environment of structural Nups and transport factors. 

Regardless, current evidence supports elements of both entropic repulsion and Brownian 

virtual gating in forming the selective yet efficient transport channel that is the NPC. 

Further work is required to resolve the biophysical nature of the center of the NPC 

translocation channel in the context of physiological conditions.  

 

Concluding remarks 

 

Our past and current studies have used FG∆ NPCs to examine transport functions 

in the genetically tractable S. cerevisiae model system (STRAWN et al. 2004; TERRY and 

WENTE 2007). This system has allowed us to examine and manipulate transport 

dynamics, and our results have direct implications for these proposed models and the 

current understanding of nucleocytoplasmic transport.  

In this work I seek to (1) identify NPC components involved in rapid and 

regulated mRNA export; (2) use a yeast model to systematically define pathways for 

nucleocytoplasmic transport; and (3) integrate these results into current understanding of 
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the transport mechanism. As a whole, these studies and those that derive from this body 

of work will continue to refine our understanding of transport through the NPC in vivo. 
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CHAPTER 2 

 
NUCLEAR MRNA EXPORT REQUIRES SPECIFIC FG NUCLEOPORINS FOR 

TRANSLOCATION THROUGH THE NUCLEAR PORE COMPLEX2 
 

Introduction 

The nuclear envelope (NE) separates the contents of the nucleus and cytoplasm, 

and is a physical barrier for the exchange of macromolecules. The only known 

mechanism for nuclear import and export is via nuclear pore complexes (NPCs) 

(FAHRENKROG and AEBI 2003; FRIED and KUTAY 2003). Thus, the NPC is a central 

player in controlling gene expression and regulating nucleocytoplasmic signaling. 

Specifically, the NPC precludes molecules larger than ~30-40 kDa from freely diffusing 

through its central aqueous channel. Larger macromolecules utilize transport receptors to 

pass through the NPC in a signal-dependent process (PEMBERTON and PASCHAL 2005). 

The karyopherin (Kap) β proteins (also termed importins, exportins, and/or transportins) 

are a major family of transport receptors. There are 14 Kapβs in budding yeast and >20 

identified in higher eukaryotes (HAREL and FORBES 2004; PEMBERTON and PASCHAL 

2005). Each Kap binds a specific nuclear localization signal (NLS) or nuclear export 

sequence (NES) on a cargo, with Kap-cargo release and transport directionality triggered 

by the small GTPase Ran (FRIED and KUTAY 2003; WEIS 2003). There are non-Kapβ 

transport receptors for RanGDP import (Ntf2) (RIBBECK et al. 1998; SMITH et al. 1998) 

and for mRNA export (the heterodimer Mex67-Mtr2 [TAP/NXF1-p15/NXT1 in 

vertebrates]) (KATAHIRA et al. 1999; SANTOS-ROSA et al. 1998; SEGREF et al. 1997; 

                                                
2 This chapter adapted from “Nuclear mRNA  export requires specific FG nucleoporins 
for translocation through the nuclear pore complex.” Terry, LJ & SR Wente. J. Cell 
Biology. 
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STRASSER et al. 2000). With the potential for at least 16 different receptors transporting 

thousands of distinct cargos, the NPC is a complex machine. Indeed, it is not fully 

understood how such a myriad of distinct transport receptors utilize the NPC structure for 

presumably simultaneous translocation. 

The ~40-60 MDa NPCs are formed by assembly of multiple copies of ~30 

individual proteins, called nucleoporins (Nups) (CRONSHAW et al. 2002; FAHRENKROG 

and AEBI 2003; ROUT et al. 2000). Nups associate in discrete subcomplexes and localize 

in specific substructures of the NPC, including the cytoplasmic filaments, the central core 

structure in the pore, and a nuclear basket structure (Figure 2-1B) (CRONSHAW et al. 

2002; FAHRENKROG and AEBI 2003; ROUT et al. 2000). Movement of cargo-bound 

Kapβs, Ntf2 or Mex67-Mtr2 through the NPC requires interactions between the given 

transport receptor and a specialized subset of NPC proteins, termed the phenylalanine-

glycine (FG) Nups (PEMBERTON and PASCHAL 2005).  The FG-Nups are defined by 

domains with numerous clustered repeats of the core dipeptide phenylalanine-glycine 

(FG) flanked by characteristic spacer sequences (ROUT and WENTE 1994). Nearly half of 

the Nups contain these FG-domains, each with predominant FG subtypes (FG, FXFG or 

GLFG), defined NPC substructural locations and corresponding orthologues across 

species (CRONSHAW et al. 2002; ROUT et al. 2000) reviewed in (LIM et al. 2006a). Some 

FG-Nups are exclusively on the cytoplasmic (C) NPC fibrils (in Saccharomyces 

cerevisiae Nup159, Nup42), and some are exclusively on the nuclear (N) NPC basket (in 

S. cerevisiae Nup1, Nup2, Nup60); together these are collectively defined as the 

asymmetric FG-Nups (Figure 2-1B). The remaining FG-Nups are distributed on both 

sides and through the central NPC channel and are termed the symmetric Nups (in S. 
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Cytoplasmic:
Nup42 – FG
Nup159 – FG

Symmetric:
Nup49 – GLFG
Nup57 – GLFG
Nup100 – GLFG
Nup116 – FG, GLFG
Nup145N – GLFG
Nsp1 – FG, FXFG

Nuclear:
Nup1 – FXFG
Nup2 – FXFG
Nup60 – FXF

A.

B.

Figure 2-1. The more minimal NPC (mmp) FG∆ mutants have temperature-
sensitive growth defects. (A) Wild-type, ∆N∆C, and new mmp FG∆ yeast strains 
were spotted onto YPD in fivefold serial dilutions and grown at the temperatures 
shown. (B) Schematic representation of the distribution of FG Nups within the 
NPC.
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cerevisiae Nup49, Nup57, Nsp1, Nup100, Nup116, Nup145) (ROUT et al. 2000; 

SUNTHARALINGAM and WENTE 2003). The physical interactions between transport 

receptors and FG-peptides have been structurally analyzed for Kapb1, Ntf2 and Nxt1. In 

these receptors, the Phe of an FG repeat is found in hydrophobic pockets on the protein 

surface (BAYLISS et al. 2000a; BAYLISS et al. 2002a; BAYLISS et al. 2000b; BAYLISS et al. 

2002b; FRIBOURG et al. 2001). Indeed, transport receptor mutants with impaired FG 

binding are defective for NPC translocation (BAYLISS et al. 2002b). Thus, each transport 

receptor serves as a molecular bridge between FG-Nups and a signal-containing cargo. 

With multiple FG-repeats per FG-domain, and multiple FG-Nups in each NPC, the pore 

displays thousands of individual FG-repeats, each of which is a potential binding site for 

a transport receptor. The abundance of FG-repeats and sequence redundancies between 

FG-Nups have made understanding the sequence of molecular interactions between the 

NPC and transport receptors a formidable task.   

Given their critical role in the translocation mechanism, the FG-Nups have been 

the focus of intense study.  Models for the mechanism of NPC translocation have as their 

tenets the unfolded nature of the FG-domains, the huge number of FG repeats per NPC 

and the intrinsic binding affinities of transport receptors for FG-domains. The localization 

of the FG-domains in the NPC and the physiological constraints of NPC translocation 

rates are also key considerations. Two of the fundamental models proposed contrast the 

FG-domains as forming either a primarily physical or energetic barrier for selective 

translocation. As a physical barrier, weak interactions between FG-domains are proposed 

to form a hydrophobic gel into which transport receptors selectively partition due to their 

FG interaction capacity (FREY et al. 2006; RIBBECK and GORLICH 2002). The 
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hydrophobic gel would form a “selective-phase” and exclude macromolecules larger than 

the physical barrier generated by the FG interaction meshwork. As an energetic barrier, 

the interaction of a transport receptor with an FG-Nup(s) would allow the transport 

receptor to overcome an entropic threshold for diffusion through the NPC central channel 

(ROUT et al. 2003). The FG-domains would also function as repulsive bristles to 

entropically exclude non-transport receptor molecules (LIM et al. 2006b). As such, the 

NPC would be governed by a “virtual-gate.” From the analysis of individual FG-domains 

in vitro, there is independent data to support both the selective-phase and vitual-gate 

models. 

To analyze the requirements for FG-domains in the context of the intact NPC, we 

have used a large-scale genetic strategy in S. cerevisiae (STRAWN et al. 2004). By 

combinatorial in-frame deletions in genes encoding the FG-Nups, we showed that the 

asymmetric FG-domains are dispensable for facilitated transport, whereas the symmetric 

FG-domains are sufficient. Interestingly, although the selective-phase model predicts that 

the abundance or mass of FG-repeats is critical to transport function (FREY et al. 2006; 

MACARA 2001; RIBBECK and GORLICH 2001; RIBBECK and GORLICH 2002), we found 

that the number or mass of FG-repeats does not correlate with in vivo transport capacity. 

We also found that for a given FG deletion (designated FG∆) mutant, only a subset of the 

Kapβ transport receptors were perturbed. This suggests that different transport receptors 

require distinct combinations of FG-domains for function (STRAWN et al. 2004). In 

support of this, biochemical studies have demonstrated that different Kaps have different 

relative in vitro binding levels for the same FG-Nup (AITCHISON et al. 1996; ALLEN et al. 

2001). There is also evidence that Kap95 might use different FG binding sites than those 

54



used by Mex67 (ALLEN et al. 2001; BLEVINS et al. 2003; STRAWN et al. 2001). Taken 

together, these studies suggest that the NPC may harbor multiple translocation pathways 

for different transport receptors.  

To further investigate the FG dependent transport pathways through the NPC, we 

have now generated a new collection of FG-domain deletion mutants. We specifically 

compared Kapβ versus non-Kapβ translocation pathways by dissecting the requirements 

for Mex67-Mtr2-dependent mRNA export. Multiple laboratories have identified nup null 

or temperature-sensitive alleles that cause mRNA export defects, and overproduction of 

the Nup116 GLFG-domain inhibits mRNA export (COLE 2000; STRASSER and HURT 

1999; STRAWN et al. 2001). However, our new mutants have allowed the first global 

analysis of specific FG-domain requirements in mRNA export.  We have found striking 

differences in the requirements for Mex67-mediated mRNA export versus Kapβ-

mediated transport. These results impact models for the in vivo NPC translocation 

mechanisms and support our hypothesis that multiple FG pathways exist for receptor-

mediated translocation across the NPC.  

 

Results 

 

More minimal pore (mmp) FG∆ mutants have distinct Kap transport defects  

In our prior studies, we generated a S. cerevisiae mutant that lacked all the 

asymmetric FG-domains on the N and C faces of the NPC, designated the ∆N∆C mutant 

(STRAWN et al. 2004). The ∆N∆C mutant has a slight rate delay in import via Kap95 and 

Kap104; however, it has no marked steady-state defect for any transport receptor assayed. 
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Thus, the asymmetric FG-domains do not serve essential functions. However, we 

speculated that the asymmetric FG-domains could be key to maximal transport 

efficiency. In addition, because the FG-domains can presumably occupy multiple 

topological positions in the NPC (DENNING et al. 2003; FAHRENKROG et al. 2002; LIM et 

al. 2006b), it is possible that the asymmetric FG-domains functionally compensate when 

individual symmetric FG-domains are deleted. We therefore selected the ∆N∆C mutant as 

a foundation for studying the transport roles of individual symmetric FG-domains. In-

frame, internal chromosomal deletions of the sequence encoding individual symmetric 

FG-domains were constructed in the ∆N∆C background. If lethality was observed when a 

symmetric FG-domain was removed in the ∆N∆C background, control complementation 

experiments were conducted with plasmids expressing the full length NUP or FG∆ 

mutant versions (see Materials and Methods). This generated a series of  “more minimal 

pore” (mmp) FG∆ mutant strains. Specifically, the ∆N∆C mutant was combined with 

individual deletions of the GLFG regions in Nup49, Nup57, Nup145, Nup100, Nup116, 

or the FG and FXFG regions in Nsp1. We found that all of the mmp FG∆ mutant strains 

with only one symmetric FG-domain removed were viable (Figure 2-1A and (STRAWN et 

al. 2004)). Additionally, the ∆N∆C nup100∆GLFG nup145∆GLFG mutant was viable, 

despite having only 4 FG-Nups intact (Nsp1, Nup49, Nup57 and Nup116).  

The strains in this new mmp FG∆ mutant collection were characterized for growth 

properties at a range of temperatures. As shown in Figure 2-1A, the ∆N∆C mutant 

showed robust growth at all temperatures tested. In comparison, the ∆N∆C nup57∆GLFG 

mutant had inhibited growth at 37°C, whereas the ∆N∆C nup145∆GLFG mutant was cold 

sensitive at 16°C. The ∆N∆C nup49∆GLFG mutant showed both temperature sensitivity 
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at 37°C and cold sensitivity at 16°C. Overall, the ∆N∆C nup116∆GLFG mutant and the 

∆N∆C nup100∆GLFG nup145∆GLFG mutant strains had the most severe growth 

phenotypes with both temperature sensitivity at 34°C and cold sensitivity (Figure 2-1A). 

The ∆N∆C nsp1∆FG∆FXFG mutant generated in our prior studies is cold sensitive at 

23°C and also inhibited at 37°C (STRAWN et al. 2004).  

We speculated that the temperature-dependent growth defects were linked to 

perturbations of an essential transport receptor(s). To test for defects in transport, the 

mmp FG∆ mutants were transformed with a panel of GFP-based reporters for different 

Kapβ transport receptors. Each transport reporter was based on a Kapβ- or Kapα-specific 

NLS fused to GFP or a tandem NLS-NES fused to GFP. In wild-type cells, all of the 

NLS-GFP reporters are predominantly nuclear whereas the NLS-NES-GFP is mostly 

cytoplasmic. The basic classical (c) NLS of SV40 large T antigen is imported by the 

Kap95-Kap60 heterodimer (CHOOK and BLOBEL 2001; SHULGA et al. 1996), and Nab2 

and the Nab2-NLS-GFP reporter are imported by Kap104 (AITCHISON et al. 1996; 

SHULGA et al. 2000). The Spo12-NLS is recognized primarily by Kap121/Pse1 (CHAVES 

and BLOBEL 2001). The NLS-NES-GFP reporter includes a cNLS for Kap95-Kap60 

import and a leucine-rich NES for Xpo1/Crm1 export (STADE et al. 1997). Steady-state 

transport assays in the wild-type and mmp FG∆ mutants were conducted at both the 

permissive temperature and after shifting to growth at 37°C for 1 hour. The results are 

summarized in Table 2-1. For all the mutants, no defects at steady-state were detected 

with either the cNLS (Kap95-Kap60) or NLS-NES-GFP (Crm1/Xpo1) reporters (Figure 

2-2 and Table 2-1). However, several of the mutants showed altered Spo12-NLS-GFP 

(Kap121) import. This included the ∆N∆C mutant combined with either the 
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Table 2-1. Summary of transport assay results.  
 
 cNLS  

import 
Nab2  
import 

Spo12NLS 
import 

Leu-rich NES 
export 

mRNA  
export 

Wild-type +a + a + a + a + 
nup100∆GLFG 
nup145∆GLFG 
nup57∆GLFG 

+ a - a - a + a - 

∆N∆C + a + a +/- a + a + 
∆N∆C 
nup57∆GLFG + + + + - 

∆N∆C 
nup100∆GLFG + a +/- a - a + a + 

∆N∆C 
nsp1∆FG∆FXFG + a +/- a - a + a + 

∆N∆C 
nup145∆GLFG + + + + +/- 

∆N∆C 
nup116∆GLFG +/- - - + + 

∆N∆C 
nup100∆GLFG 
nup145∆GLFG 

+ + - + + 

∆N∆C 
nup49∆GLFG + + + + - 

 
a Strawn et al., 2004 
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Figure 2-2. The mmp FG∆ NPC mutants have distinct defects in Kap104 and Kap121 
steady-state import. (A) Indirect immunofluorescence with an anti-Nab2 antibody in 
yeast mmp FG∆ strains was conducted after a 1-h shift to 37°C. Nab2 localization, 
indicating Kap104 import, and DAPI-staining panels are shown. (B) Localization of a 
Spo12-NLS-GFP reporter, which is imported by Kap121, was evaluated at 23°C and after 
a 1-h shift to 37°C in mmp FG∆ strains.
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nup100∆GLFG, nsp1∆FG∆FXFG, nup116∆GLFG, or nup100∆GLFG nup145∆GLFG 

alleles (Table 2-1, Figure 2-2, and (STRAWN et al. 2004)). At 37°C, the Spo12-NLS-GFP 

reporter showed coincident increased cytoplasmic signal and decreased nuclear intensity 

in the ∆N∆C nup100∆GLFG nup145∆GLFG mutant and the ∆N∆C nup116∆GLFG 

mutant cells (Figure 2-2B). This indicated that these strains have defects in Kap121 

transport.  

Interestingly, only one of the mmp FG∆ mutant strains, ∆N∆C nup116∆GLFG, 

showed a strong perturbation in steady-state Nab2 import by Kap104, with diminished 

nuclear localization and increased cytoplasmic signal at all growth temperatures. The 

defect was apparent using either the Nab2-NLS-GFP reporter (data not shown) or via 

indirect immunofluorescence for Nab2 localization (Figure 2-2A).  Steady-state transport 

defects for Kap104 or Kap121 were not observed in the ∆N∆C nup57∆GLFG mutant, the 

∆N∆C nup49∆GLFG mutant or the ∆N∆C nup145∆GLFG mutant strains (Figure 2-2 and 

Table 2-1). When comparing the Kap104 and Kap121 transport defects, it was especially 

striking that the ∆N∆C nup100∆GLFG nup145∆GLFG mutant showed differential 

perturbations. The Kap104 cargo Nab2 was efficiently imported (Figure 2-2A; rightmost 

column), whereas the Kap121 reporter accumulated in the cytoplasm at 23°C and 37°C 

(Figure 2-2B; rightmost column). This is the first reported in vivo separation of FG-

domain requirements for Kap104 and Kap121 NPC translocation. Overall, the mmp FG∆ 

mutant strains showed distinct defects for transport by specific Kaps.    
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Symmetric FG∆ and mmp FG∆ mutants have poly(A)+ RNA export defects  

To understand the contributions of FG-domains to mRNA export, we screened a 

subset of our existing FG∆ mutant strains and our new mmp FG∆ mutant strains for 

mRNA export defects. This was evaluated using in situ hybridization with an oligo d(T) 

probe, which detects poly(A)+ RNA. All of the viable FG∆ mutant strains with three 

symmetric FG-domains deleted showed nuclear accumulation of poly(A)+ RNA after a 1-

hour shift to 37˚C (Figure 2-3, Table 2-1, data not shown). However, the ∆N∆C mutant 

cells did not show nuclear accumulation of poly(A)+ RNA. We also did not observe 

mRNA export defects in the ∆N∆C nup100∆GLFG mutant, the ∆N∆C nsp1∆FG∆FXFG 

mutant, the ∆N∆C nup100∆GLFG nup145∆GLFG mutant or the ∆N∆C nup116∆GLFG 

mutant cells. For mutants that showed no nuclear poly(A)+ RNA accumulation, we also 

used an independent assay for mRNA export capacity and analyzed the effect on heat 

shock protein production. Following heat shock in wild-type cells, elevated levels of 

Hsp104, Hsp82, Ssa4, and Ssa1 are a direct reflection of proper export and translation for 

the respective heat shock induced mRNAs (SAAVEDRA et al. 1997; STUTZ et al. 1997). 

The ∆N∆C mutant and the ∆N∆C nup116∆GLFG mutant were competent for heat shock 

protein production (data not shown). We concluded that the FG-domains of the 

asymmetric FG-Nups (Nup159, Nup42, Nup1, Nup2 and Nup60) and three specific 

symmetric FG-Nups (Nup100, Nup116 and Nsp1) were not individually essential for 

mRNA export. In contrast, the ∆N∆C nup57∆GLFG and the ∆N∆C nup49∆GLFG mutant 

strains showed strong perturbations in mRNA export with marked nuclear accumulation 

of poly(A)+ RNA (Figure 2-3 and Table 2-1). This indicated that Nup57 and/or Nup49 

were preferentially required for mRNA export.  
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Figure 2-3. mRNA export is inhibited in the symmetric FG∆ mutants and the mmp mutant ∆N∆C nup57∆GLFG. In situ hybridization 
with an oligo d(T) probe was conducted in the FG∆ NPC mutants after a 1-h shift to 37°C. Signal for the oligo d(T) probe indicates 
the subcellular distribution of poly(A)+ RNA in comparison with the nuclear signal (by coincident DAPI staining).
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To further probe the requirements for the GLFG domains of Nup57 or Nup49, we 

examined a nup57∆GLFG nup49∆GLFG double mutant strain. The nup57∆GLFG 

nup49∆GLFG mutant was assayed for mRNA export defects as described above. Nuclear 

poly(A)+ RNA accumulation was observed in 9.9±0.9% of the nup57∆GLFG 

nup49∆GLFG cells. Although this defect is significantly different from the level 

observed in wild-type cells (p=0.0031), it is not as penetrant as the defect in either the 

∆N∆C nup49∆GLFG mutant or the ∆N∆C nup57∆GLFG mutant cells (30.3±2.5% and 

26.7±6.1%, respectively). Thus, the GLFG-domains of Nup57 and Nup49 are not 

individually, or in combination, essential for mRNA export. This suggested that other 

symmetric FG-domains (Nup116, Nup100, Nup145, Nsp1) functionally compensate in 

the absence of the Nup57 and Nup49 GLFG-domains.  However, when the asymmetric 

FG-domains were removed (∆N∆C), the GLFG-domain of Nup57 or Nup49 was 

specifically required and the FG-domains from Nup116, Nup100, Nup145, and Nsp1 

were not sufficient. Taken together, these results revealed a combinatorial requirement in 

mRNA export for specific GLFG domains with the asymmetric FG-domains. Moreover, 

such differential requirements for FG-domains in mRNA export were unanticipated. Prior 

studies have reported that Mex67 interacts in vitro with several of the asymmetric FG-

domains (Nup159, Nup42, Nup1, Nup60) and with three symmetric FG-domains 

(Nup100, Nup116, Nsp1) (ALLEN et al. 2001; FISCHER et al. 2002; STRASSER et al. 2000; 

STRAWN et al. 2001). Although the GLFG-domains of Nup57 and Nup49 have not 

previously been reported to bind Mex67, these results suggested that the FG-domains of 

Nup57 and Nup49 are key sites in vivo for mRNA export. 
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mRNA export requires GLFG-domains of Nup57 and nuclear-face Nups 

Nup57 and Nup49 are both GLFG-Nups that assemble in a heterotrimeric 

complex with Nsp1 (FAHRENKROG et al. 1998; GRANDI et al. 1993; SCHLAICH et al. 

1997). Given this shared NPC localization, the common FG types (GLFG), and the 

growth and transport phenotypes in the mmp FG∆ analysis, we concluded that the ∆N∆C 

nup57∆GLFG mutant and the ∆N∆C nup49∆GLFG mutant strains were functionally 

comparable. We selected the ∆N∆C nup57∆GLFG mutant for further analysis as it was 

less complex genotypically (see Materials and Methods). To pinpoint which of the FG-

domains in the ∆N∆C nup57∆GLFG mutant were most critical for mRNA export, we 

systematically generated strains with fewer FG∆ combinations. Each mutant strain was 

assayed for poly(A)+ RNA localization by in situ hybridization with the oligo d(T) probe, 

and the percent of cells in the population showing nuclear accumulation of poly(A)+ 

RNA was scored (Figure 2-4).  The nup57∆GLFG single mutant and the ∆N∆C mutant 

did not have defects, as the percentage of cells showing nuclear poly(A)+ RNA 

accumulation was not  significantly different from wild-type. The ∆C nup57∆GLFG 

mutant strain also did not have a poly(A)+ RNA export defect. In contrast, ∆N 

nup57∆GLFG mutant cells had a strong export defect after shifting to growth at 37˚C for 

1 hour, with nearly 80% of the cells showing nuclear accumulation of poly(A)+ RNA. It 

was striking that the defect in the ∆N nup57∆GLFG mutant (in 79.9±9.4% of the cells at 

the assay time point) was more severe than that in the ∆N∆C nup57∆GLFG mutant (in 

26.7±10.6% of the cells) (see Discussion). 

To further dissect the ∆N nup57∆GLFG mutant phenotype, we assayed mutants 

with all possible FG∆ combinations of nuclear-face FG-domains (Nup1, Nup2 and 
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Figure 2-4. mRNA export requires the FG domains of Nup57 and nuclear face Nups. In 
situ hybridization with an oligo d(T) probe was conducted with the FG∆ strains indicated 
after a 1-h shift to 37°C. The percentage of cells showing the accumulation of poly(A)+ 
RNA was calculated based on fields of >100 cells in three independent trials. Deletion of 
the nuclear face FG domains (nup1∆FXFG, nup2∆FXFG, and nup60∆FXF) is abbrevi-
ated as ∆N. Deletion of the cytoplasmic face FG domains (nup42∆FG and nup159∆FG) 
is abbreviated as ∆C. Error bars represent SEM.
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Nup60) with the nup57∆GLFG allele. The nup1∆FXFG nup2∆FXFG nup57∆GLFG 

triple mutant had a significant poly(A)+ RNA export defect with penetrance similar to the 

∆N nup57∆GLFG mutant (Figure 2-4). This indicated that the nup60∆FXFG allele did 

not contribute significantly to the ∆N nup57∆GLFG mutant phenotype. In fact, the 

addition of the nup60∆FXF mutant allele to any single or double FG∆ nup57∆GLFG 

mutant did not result in a statistically significant difference in the level of nuclear 

poly(A)+ RNA accumulation. The nup1∆FXFG nup57∆GLFG double mutant and the 

nup2∆FXFG nup57∆GLFG double mutant strains also had defects; however, the percent 

of cells with nuclear poly(A)+ RNA accumulation was significantly less in the 

nup1∆FXFG nup57∆GLFG double mutant and the nup2∆FXFG nup57∆GLFG double 

mutant strains than in the combined nup1∆FXFG nup2∆FXFG nup57∆GLFG triple 

mutant. Overall, these results suggested that the export of mRNA requires both a 

symmetric GLFG-domain (Nup57, Nup49) and the FXFG-domains on the nuclear face 

(Nup1, Nup2). This is the first evidence for an in vivo role for the specifically asymmetric 

FG-domains in active NPC translocation.  

 

Mex67 binds Nup57 GLFG-domain in vitro 

We speculated that the deletion of FG-domains critical for Mex67 docking at the 

NPC was the mechanistic basis for the mRNA export defects in the respective mmp FG∆ 

mutants. Specifically, the in vivo results suggested that Mex67 required binding sites in 

the FG-domains of Nup57 or Nup49 and Nup1 or Nup2. Prior studies have documented 

that Mex67-Mtr2 can bind representative FG, FXFG, and GLFG-domains. The FXFG-

domain of Nup1 has been directly analyzed (STRASSER et al. 2000); however, tests of the 
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Nup57 GLFG region have not been reported. We conducted studies to verify this 

interaction biochemically with recombinant proteins and a soluble binding assay. 

Clarified bacterial lysates from cells expressing GST alone or GST fused with the GLFG 

regions of Nup57 or Nup116 (GST-GLFG-Nup57 or GST-GLFG-Nup116) were 

incubated with glutathione sepharose. Purified MBP-Mex67 was then applied to the resin 

with the respective immobilized GST fusion proteins. As shown in Figure 2-5, GST-

GLFG-Nup57 bound MBP-Mex67, whereas GST alone did not bind MBP-Mex67. 

Binding was also detected between MBP-Mex67 and GST-GLFG-Nup116, as has 

previously been shown (STRAWN et al. 2001). Thus the GLFG-domain of Nup57 directly 

binds Mex67 in vitro.  

 

Efficient Mex67 recruitment to NPCs requires asymmetric FG-domains and 

Nup57-GLFG 

An mRNA export defect in a FG∆ mutant could result from either a direct effect 

on Mex67-NPC interactions or an indirect perturbation on Kap-mediated import of an 

essential mRNA export factor(s). We speculated that FG∆ mutants with primary defects 

in Mex67-mediated mRNA export would have decreased rates of Mex67-GFP 

recruitment to the NE/NPC due to the lack of critical FG binding sites. To directly 

examine the dynamic properties of Mex67-GFP, we developed a live-cell assay (Figure 

2-6F). This strategy was based on the well-established assay for monitoring NLS-GFP 

import in live yeast cells (SHULGA et al. 1996). Wild-type parental or FG∆-mutant cells 

expressing chromosomally tagged Mex67-GFP were incubated in glucose-free media in 

the presence of 10 mM 2-deoxy-D-glucose and 10 mM sodium azide for 45 minutes. This 
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Figure 2-5. Mex67 binds the GLFG domain of Nup57. Bacterially expressed GST, 
GST-GLFG-NUP57, and GST-GLFG-NUP116 were each immobilized on glutathione 
agarose beads. Recombinant purified MBP-Mex67 was added, and the bound fraction 
was eluted. 10% of the input (MBP-Mex67) and the eluted fractions was resolved by 
SDS-PAGE and stained with Coomassie blue. Molecular mass (kilodaltons) markers are 
shown at the left (Mr).
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treatment results in cellular energy depletion and inhibits active nuclear transport 

(SHULGA et al. 1996). The process of mRNA export is energy-dependent (PASCHAL 

2002), at a minimum requiring the ATPase Dbp5 (SNAY-HODGE et al. 1998; TSENG et al. 

1998). As shown in Figure 2-6, prior to energy depletion, all strains showed a strong 

Mex67-GFP signal at the nuclear rim. After energy depletion in all the strains, Mex67-

GFP was no longer concentrated at the NE/NPC, and the cytoplasmic and nuclear signals 

increased. Co-expression of a dsRed-HDEL (fusion protein with amino acid signal 

sequence for endoplasmic reticulum (ER) retention) was used to facilitate visualization of 

the NE/ER. The localization of the dsRed-HDEL protein was not altered by energy 

depletion. As a control, we monitored the localization of two structural non-FG-Nups, 

GFP-Nic96 and Nup170-GFP (Figure 2-6E), and found that strong punctate NE/NPC 

signal was present both before and after energy depletion. Nuclear rim localization of 

Nup49-GFP was also not altered by energy depletion in wild type cells or in ∆N∆C 

mutant cells (Figure 2-6E and data not shown, respectively). This indicated that energy 

depletion results in mislocalization of Mex67-GFP without a general perturbation of 

NE/NPC structure.  

Using this assay, NE/NPC re-association kinetics were determined by 

fluorescence microscopic monitoring of Mex67-GFP localization. At the start of the 

assay, the energy-depleted cells were washed and resuspended in 23˚C glucose-

containing media. The cells were then incubated until the NE/NPC signal recovered to 

pre-treatment levels. Individual cells (n>150) in a population were scored for normal 

continuous NE/NPC signal and relative levels of nucleoplasmic and cytoplasmic staining 

(Figure 2-6G). By plotting the percentage of cells with normal continuous NE/NPC 
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Figure 2-6. Mex67-GFP recruitment to the NE/NPC is severely inhibited in both the ∆N∆ C 
nup57∆ GLFG mutant and ∆N nup57∆ GLFG mutant. (A–D) Mex67-GFP localization in repre-
sentative wild-type (A), ∆N∆C (B), ∆N∆C nup57∆GLFG (C), and ∆N nup57∆GLFG (D) cells 
before the assay (untreated; left), after energy depletion (middle), or after 5-6 min of recovery 
from energy depletion (right). For each, the coincident localization of the ER marker dsRed-
HDEL is shown. (E) As controls, the localization of GFP-Nic96 and Nup170-GFP or Nup49-GFP 
under the same conditions was evaluated. (F) A schematic diagram of the energy depletion assay 
for Mex67-GFP localization is shown. (G) The kinetics of Mex67-GFP recovery to the nuclear 
rim over time after energy depletion was determined. For three independent experiments, >150 
cells were scored for the subcellular distribution of GFP signal at each time point. Error bars 
represent SEM. DIC, differential interference contrast.
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signal as a function of time, relative association rates were determined. We then 

compared the association kinetics wherein a single variable was changed (e.g. the FG∆ 

mutant background). Within six minutes after restoring energy to the system, Mex67-

GFP in the wild-type cells returned to the pre-treatment phenotype with Mex67-GFP 

predominantly at NE/NPCs (Figure 2-6A). The ∆N∆C mutant cells recovered more 

slowly than wild-type cells, and at intermediate time points an increased frequency of 

cells had elevated intranuclear signal relative to cytoplasmic. The recovery process in the 

∆N∆C nup57∆GLFG mutant was significantly more delayed. After 15 minutes, the 

∆N∆C nup57∆GLFG cells showed only minimal recovery of Mex67-GFP localization to 

the NE/NPC. Moreover, at the intermediate time points, the Mex67-GFP localization in 

the ∆N∆C nup57∆GLFG cells was mostly intranuclear with no distinct NE/NPC staining 

(Figure 2-6C). This phenotype was also observed in the ∆N nup57∆GLFG mutant, where 

more than 50% of the cells accumulated Mex67-GFP in the nucleus and concentrated 

nuclear rim localization was not achieved over the time course of the assay (Figure 2-

6D). Again, as in the assays of poly(A)+ RNA accumulation, the rate of Mex67-GFP 

localization to the NE/NPC was clearly more inhibited in  the ∆N nup57∆GLFG mutant 

than in the ∆N∆C nup57∆GLFG mutant (see Discussion). Overall, we concluded that 

Mex67-GFP recruitment to the NPC in the ∆N∆C nup57∆GLFG mutant and in the ∆N 

nup57∆GLFG mutant was impaired. The intranuclear localization prior to distinct 

NE/NPC staining might reflect efficient import of Mex67-GFP with specific mRNA 

export inhibition. These results correlate with our assays for poly(A)+ RNA export, and 

suggest that the ∆N∆C nup57∆GLFG mutant and the ∆N nup57∆GLFG mutant are 
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blocked for poly(A)+ RNA export due to altered Mex67 recruitment to and/or 

translocation through the NPC.  

 

Discussion 

 

Many approaches have been used to study the mechanism by which transport 

receptors cross the NPC and the requirements for transport receptor interactions with the 

FG-Nups. We have used a genetic strategy in S. cerevisiae to generate extensive 

collections of mutants with specific combinations of FG-domains removed and have 

conducted direct tests of the in vivo roles of putative FG binding sites for transport 

receptors in the intact NPC (Strawn et al., 2004). Here we report the analysis of new 

“more minimal pore” mmp FG∆ mutants wherein the symmetric FG-domains were 

removed in the absence of all asymmetric FG-domains (∆N∆C). In some cases, the FG∆ 

phenotypes correlate directly with reported in vitro binding results. For example, 

previous studies have shown in vitro binding of Kap104 to the Nup116 GLFG region 

(AITCHISON et al. 1996; ALLEN et al. 2001) and indeed the ∆N∆C nup116∆GLFG mutant 

has defects in Kap104-mediated transport, whereas the ∆N∆C mutant does not. This 

confirms that the Nup116 GLFG-domain is a critical Kap104 binding site. On the other 

hand, we found that not all in vitro binding events are essential in vivo. Although Mex67 

interacts with the GLFG region of Nup116 in vitro (STRASSER et al. 2000; STRAWN et al. 

2001), the ∆N∆C nup116∆GLFG mutant has no mRNA export defect. As a result, we 

conclude that in vitro binding between a transport receptor and an FG-domain does not 

necessarily correlate with a requirement for that FG-domain in vivo. Rather, the 
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substructural location and physiological context of each FG-domain is likely a key 

determinant in the organization of transport pathways through the NPC.  

We have also identified binding events not previously recognized as important. 

We found that distinct combinations of both symmetric and asymmetric FG-domains are 

needed for efficient nuclear export of poly(A)+ RNA and recruitment of Mex67-GFP to 

the NE/NPC. This includes a GLFG-domain from the symmetric Nup57 or Nup49 plus 

the asymmetric FXFG-domains of Nup1 and Nup2 on the nuclear NPC face. 

Surprisingly, import by Kaps does not require these same FG-domains. These results 

support a model wherein different transport receptors utilize distinct FG-domains 

allowing for multiple, preferred, and independent transport pathways through the NPC.  

 

mRNA export requires combinatorial use of distinct FG-domains and non-

FG binding sites 

Analysis of the mmp FG∆ mutants reveals that at least two FG-dependent steps 

are required for mRNA export through the NPC. We speculate that the locations in the 

NPC of the respective FG-domains are key determinants for efficient mRNA export. The 

export cargo, a messenger ribonucleoprotein particle (mRNP), is assembled co-

transcriptionally and during mRNA processing (HIERONYMUS and SILVER 2004). For 

such an mRNP, the first step in NPC translocation might require the nuclear-face FXFG 

binding sites in Nup1 and Nup2 for Mex67 recruitment to the NPC. In support of this 

hypothesis, the ∆N∆C mutant alone has a defect in the rate of Mex67-GFP recruitment to 

the NE/NPC. This also provides the first in vivo evidence that asymmetric FG-domains 

contribute to the efficiency of mRNA export.   
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Second, after initial mRNP recruitment to the NPC, symmetrically localized FG-

domains are needed. Specifically, a GLFG-domain from Nup57 or Nup49 in the 

symmetric Nsp1-Nup49-Nup57 subcomplex is required. Our results suggest that coupled 

interactions with the nuclear face FG-domains and with Nup57 or Nup49 are required for 

mRNA export. Finally, after recruitment to the FXFG-Nups on the nuclear face and 

translocation dependent on symmetric GLFG-Nups, a third non-FG step in mRNA export 

is proposed at the cytoplasmic FG face. Interestingly, the asymmetric Nup159 and Nup42 

FG-domains on the cytoplasmic NPC face are not necessary for mRNA export when 

deleted on their own (∆C, i.e. nup159∆FG nup42∆FG; data not shown) or in combination 

with the nup57∆GLFG mutant (the ∆C nup57∆GLFG mutant). However, the flanking 

non-FG-domains of Nup159 and Nup42 are required for mRNA export, and serve as 

critical docking sites for the mRNA export factors, Dbp5 and Gle1 respectively 

(ALCAZAR-ROMAN et al. 2006b; HODGE et al. 1999; MURPHY and WENTE 1996; SCHMITT 

et al. 1999; STRAHM et al. 1999; WEIRICH et al. 2004; WEIRICH et al. 2006). It is striking 

that in two independent assays (poly(A)+ RNA export and Mex67-GFP localization) the 

∆N nup57∆GLFG mutant had a more severe phenotype than the ∆N∆C nup57∆GLFG 

mutant. In genetic terms, this indicates that the ∆C FG deletion partially suppressed the 

defect of the ∆N nup57∆GLFG mutant. As such, the FG-domains of Nup159 and Nup42 

might play an inhibitory role during mRNA export in the intact NPC or a role in 

regulating terminal mRNP release. Mex67 is a potential target of the proposed Dbp5 RNP 

remodeling activity (LUND and GUTHRIE 2005), and Mex67 binding to the respective 

Nup159 and Nup42 FG-domains might influence this mechanism. 
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Overall, these results support a model with three coupled steps for the efficient 

and regulated export of mRNPs through the NPC. Alternatively, the mRNA export and 

Mex67-GFP recruitment defects in the ∆N∆C nup57∆GLFG mutant and the ∆N 

nup57∆GLFG mutant strains could be due to impaired mRNP assembly or disassembly 

rates. To date, however, only non-FG-domains have been proposed as platforms for 

transport complex assembly or disassembly...  

 

Nup49/Nup57 and Nup116 define two distinct pathways through the NPC  

Our finding of unique transport defects in the mmp FG∆ mutants provides strong 

evidence for the existence of multiple independent transport pathways through the NPC. 

For example, the ∆N∆C nup57∆GLFG mutant and the ∆N∆C nup49∆GLFG mutant 

strains have mRNA export defects but normal steady-state Kap104 import. In contrast, 

the ∆N∆C nup116∆GLFG mutant has normal mRNA export but significantly diminished 

steady-state Kap104 import. We propose that there are at least two distinct FG-dependent 

transport pathways through the NPC, defined by preferred FG binding sites for different 

transport receptors. The data to date pinpoint the GLFG regions of Nup49/Nup57 and 

Nup116 as prime determinants for the different pathways. Interestingly, comparison of 

the five GLFG-Nups indicates that single GLFG-domains might be required differentially 

by transport receptors. There are several potential explanations for what defines such 

functional FG differences: (1) novel spacer sequences between FG-repeats might 

contribute to binding of transport receptors; (2) non-FG binding sites adjacent to FG-

domains might be important, such as those defined for Kap95/Kap60 (MATSUURA et al. 

2003; PYHTILA and REXACH 2003) and mRNA export components (HODGE et al. 1999; 
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MURPHY et al. 1996; MURPHY and WENTE 1996; SCHMITT et al. 1999; STRAHM et al. 

1999; WEIRICH et al. 2004); (3) the substructural location of the FG-repeat domain (LIM 

et al. 2006a) and the conformations it can assume within the NPC (FAHRENKROG et al. 

2002; LIM et al. 2006b); or (4) the number of repeats in the FG-domain. Further 

dissection of the Nup49/Nup57 versus Nup116 GLFG-domains should pinpoint the 

molecular basis for such functional differences. 

These studies of the mmp FG∆ mutants also fully corroborate our prior 

conclusions from analysis of asymmetric-specific versus symmetric-specific FG∆ 

mutants. We find no correlation between the number of FG-repeats deleted (or amount of 

FG-mass removed) and the severity of transport defects. For example, the ∆N∆C 

nup116∆GLFG mutant has 69.5% of its individual FG-repeats remaining, yet it showed 

more severe transport defects than the ∆N∆C nsp1∆FG∆FXFG mutant, which has only 

47.5% of its individual FG-repeats remaining (STRAWN et al. 2004). Perhaps more 

importantly, even small-scale FG deletions have a dramatic impact on transport. For 

example, the nup1∆FXFG nup2∆FXFG nup57∆GLFG mutant retains 84.9% of its FG-

repeats, yet has a severe mRNA export defect, whereas the ∆N∆C nup116∆GLFG mutant 

does not. Thus, there is no correlation between the number of FG-repeats deleted and the 

level of mRNA export or Kap transport defects. 

We predict that the substructural distribution and location of the critical FG 

binding sites in the NPC is the fundamental basis for efficient transport. This conclusion 

is based on our findings of clear in vivo molecular requirements for distinct FG-domains 

in different transport receptor mechanisms. Export of mRNA requires the GLFG-domain 

of Nup57 or Nup49 in the Nic96-Nsp1-Nup49-Nup57 subcomplex. In contrast, Kap104 
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import requires the GLFG-domain of Nup116 in the Nup82-Nsp1-Nup116 subcomplex. 

In regard to the debated models for NPC translocation, these results need to be taken into 

account (FREY et al. 2006; RIBBECK and GORLICH 2002). With distinct FG requirements, 

each transport receptor would have its own tailored set of FG binding sites that form the 

basis of its given entropic barrier or selective phase for NPC entry and translocation. 

Overcoming an entropic or physical barrier of the NPC is thus achieved through binding 

to specific FG-Nup domains.  

 

A model of multiple NPC pathways allows for competition and regulation of 

transport 

With multiple preferred FG-domain pathways, the transport of cargo by different 

receptors could be regulated by NPC structural changes and influenced by transport 

receptor relative abundance. Aspergillus nidulans undergoes partial NPC disassembly 

during mitosis, including dissociation of several FG-Nups from the NPC (DE SOUZA et 

al. 2004; OSMANI et al. 2006). These changes result in altered NPC permeability and 

transport, and provide strong evidence that transport through the NPC can be regulated at 

the level of the NPC structure and FG-Nup composition. Changes in NPC composition 

are also observed in virally infected cells, as interferon triggers up-regulation of the FG 

protein Nup98, as well as Nup96 and Rae1/Gle2 (ENNINGA et al. 2002). Influenza virus 

counteracts this anti-viral response by forming an inhibitory complex with cellular 

mRNA export factors and by down-regulating the FG-Nup Nup98. These mechanisms 

impair cellular mRNA export and favor viral mRNA export, which uses an alternative 

transport receptor (ELTON et al. 2001; NEUMANN et al. 2000). Thus, the use of preferred 
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FG binding sites could allow unique mechanisms for selective regulation of different 

transport pathways. Our collection of FG∆ mutants fully demonstrates the range and 

specificity of perturbations that could be accomplished by selective NPC composition 

changes. 

Several studies have examined the effect of a given transport receptor’s 

concentration on its own import efficiency. Mathematical modeling has indicated that 

excess Kap β/importinβ  can impede its own translocation (RIDDICK and MACARA 2005), 

but experiments in permeabilized mammalian cells suggest that increased importinβ  

levels improve the efficiency of nuclear import (YANG and MUSSER 2006). Recent 

experiments further show that modulating the levels of Kap123 in S. cerevisiae changes 

the import rate for Kap123 and its cargo in proportion to its abundance (TIMNEY et al. 

2006). However, exactly how the concentration of each Kapβ affects the transport of 

other molecules and receptors has not been examined. Given our proposal for 

independent FG-domain requirements by different transport receptors, in a wild-type 

NPC direct competition for the same FG binding sites or pathways might be prevented. 

However, if the FG-Nup composition were to change, competition between receptors for 

the remaining pathway(s) and FG binding sites could impact translocation efficiency.  

Thus, either NPC structural changes at the level of individual FG-domains (as shown here 

with the FG∆ mutants) or receptor competition could modulate nucleocytoplasmic 

trafficking and allow changes in nucleocytoplasmic transport flux in response to disease 

or developmental state.  Further analysis of the transport properties in the FG∆ mutant 

collection will directly allow future tests of such regulated translocation models. 
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Materials & Methods 

 

Plasmids & yeast strains 

Plasmids and yeast strains used in this study are listed in the Appendix, Tables 1 

and 2. Plasmid cloning was carried out according to standard molecular biology 

strategies. Yeast strains were grown in YPD (1% yeast extract, 2% peptone, 2% glucose) 

or in synthetic complete (SC) media with 2% glucose and lacking appropriate amino 

acids. New yeast FG∆ mutants were generated using a Cre-Lox system as previously 

described (GULDENER et al. 1996; STRAWN et al. 2004), with the exception of the ∆N∆C 

nup49∆GLFG strain. Using the Cre-LoxP system, deletion of the sequence encoding 

amino acids 2-236 from NUP49 was coincident with insertion of sequence for a T7 

epitope tag and a LoxP site fused in-frame with the sequence encoding the C-terminal 

region of Nup49. The lethality of this ∆N∆C nup49∆GLFGLoxP strain was rescued by 

transformation with a nup49∆GLFG plasmid (pSW3261). All assays were conducted the 

∆N∆C nup49∆GLFGLoxP pSW3261 strain. 

 

Microscopy and analysis of live-cell GFP reporters 

Yeast strains carrying pGAD-GFP (cNLS-GFP), pNS167 (Nab2NLS-GFP), 

pKW430 (NLS-NES-GFP2), or pSpo12 76-130-GFP (Spo12NLS-GFP) were grown to 

early-mid-log phase in SC media lacking the appropriate amino acid and supplemented 

with 2% glucose. Cells were examined from culture at 23˚C or after 1-hour shift to 37˚C. 

All images were acquired using an Olympus BX50 microscope with a UPlanF1 

100x/1.30 oil immersion objective and a Photometrics Coolsnap HQ camera. Within each 
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experiment, all images were collected and scaled identically. Images were collected using 

MetaVue v4.6 and processed with Adobe Photoshop 9.0 software.  

 

In situ hybridization & indirect immunofluorescence  

Yeast cells were grown in YPD to early log phase at 23˚C, and aliquots were 

shifted to 37˚C for 1 or 3 hours. Cells were fixed for 10 minutes and processed as 

previously described (IOVINE et al. 1995; WENTE et al. 1992). For indirect 

immunofluorescence, cells were incubated overnight with affinity-purified rabbit anti-

Nab2 antibodies (1:4000) and then detected with fluorescein-conjugated donkey anti-

rabbit IgG (Jackson ImmunoResearch Laboratories, 1:200). DNA was stained with 0.1 

ug/mL 4’6-diamidino-2-phenylindole (DAPI). For in situ hybridization, cells were 

incubated overnight with a digoxigenin-dUTP-labeled oligo d(T) probe and then detected 

with fluorescein-labeled anti-digoxigenin Fabs (Boehringer Manneheim, 1:25). Images 

were acquired and processed as described above.  

 

Protein purification and GST-pulldown 

GST, GST-GLFG-Nup57, GST-GLFG-Nup116 were expressed in Escherichia 

coli Rosetta (DE3) cells (EMD Biosciences). Clarified lysates of GST fusion proteins 

were prepared in 20mM HEPES pH 7.5, 150mM NaCl, 20% w/v glycerol . MBP-Mex67 

was expressed in Rosetta cells, affinity-purified over amylose resin according to the 

manufacturer’s protocol (New England Biolabs) and dialyzed into binding buffer of 

20mM HEPES pH 7.5, 150mM NaCl, 20% w/v glycerol. Clarified GST fusion protein 

lysates were bound to glutathione sepharose (GE Healthcare) and washed in binding 
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buffer. MBP-Mex67 was applied to beads and incubated at 4˚C for 30 minutes. Samples 

were washed twice in binding buffer and eluted on ice for 20 minutes in binding buffer 

(pH 7.5) with 20mM glutathione. Equal fractions of bound protein were analyzed by 

SDS-PAGE and Coomassie Blue staining.  

 

Mex67-GFP NPC recruitment assay 

MEX67 was chromosomally tagged with the sequence encoding GFP in haploid 

wild-type and FG∆ yeast by amplification of the GFP:HIS3MX6 region from the yeast 

GFP collection strain YPL169C (Invitrogen). Integrants were selected on SC-HIS and 

verified by PCR and by immunoblot with Rabbit anti-GFP (1:1000). To allow integration 

of the gene for expression of dsRED-HDEL, pKW1803 was linearized with EcoRV and 

transformed into yeast cells. Cells were selected on SC-TRP and integrants were verified 

by live-cell microscopy. For energy depletion assays, cells were grown to early log phase 

in YPD at 23˚C. A culture aliquot of 2.5 A600 units was used, and the cells were pelleted, 

washed, and resuspended in 1mL YP (without glucose) with 10mM NaN3 and 10mM 2-

deoxy-D-glucose. Cells were treated for 45 minutes at 23˚C, and then were pelleted, 

washed, and placed on ice prior to microscopy. At time=0, cells were resuspended in 

23˚C YPD, mounted on a glass slide, and visualized as described above. Images of the 

GFP and dsRED signals were acquired every 30 seconds for 15 minutes. Cells were 

scored for recovery of Mex67-GFP to the nuclear rim and the relative nuclear to 

cytoplasmic GFP signal. Control strains SWY734 and SWY3302 were energy depleted 

and imaged as described above.  
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CHAPTER III 

 

EXPLORATION OF MOLECULAR DETERMINANTS  

OF THE MULTIPLE TRAFFICKING PATHWAYS 

 

Introduction 

 

Cargo trafficking between the nucleus and cytoplasm requires interactions 

between the nuclear pore complex (NPC) and transport receptors. Transport receptors 

recognize and bind signal-bearing cargoes to facilitate nucleocytoplasmic transport of 

that cargo (PEMBERTON and PASCHAL 2005). Transport through the NPC is energy-

independent, but nucleotide hydrolysis (ATP or GTP) is required to terminate export and 

to permit multiple rounds of transport (KOMEILI and O'SHEA 2001) (TRAN and WENTE 

2006). Interactions between the transport receptor and NPC are believed to be transient 

and of low affinity (STEWART 2007a). The NPC proteins involved in this process are the 

FG-Nups, and this family of proteins has unusual properties.  

 

FG repeats are binding sites for transport receptors 

FG-Nups have clustered repeats of the di-peptide phenylalanine (F) glycine (G) 

with short spacer sequences between repeats of FG (ROUT and WENTE 1994). 

Importantly, there are three different sub-categories of FG repeats. FXFG repeats tend to 

have spacers that are highly charged and enriched for serine and threonine. The spacer 

sequences of GLFG repeats lack acidic residues and are highly enriched for serine, 
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threonine, asparagine and glutamine. The third repeat motif, the simple FG, may have 

either spacer type. Structural studies clearly show that the sidechain of a Phe residue fits 

into a hydrophobic binding pocket on the surface of a transport receptor (BAYLISS et al. 

2000a; BAYLISS et al. 2002a; BAYLISS et al. 2000b; BAYLISS et al. 2002b; BAYLISS et al. 

1999; FRIBOURG et al. 2001; GRANT et al. 2003; LIU and STEWART 2005). Peptide 

binding arrays suggest that residues adjacent to FG motifs may contribute to binding 

preferences of vImpβ (CUSHMAN et al. 2006). However, no structural study has resolved 

the spacer sequence residues in the context of a transport receptor-FG interaction. Given 

that both the repeat motif and the spacer sequences are different, we speculate that the 

subtle differences between FG repeats affect the binding specificity/capacity for each 

transport receptor.  

 

Evidence for multiple transport pathways through the NPC 

Many laboratories have demonstrated that transport receptors bind different FG 

domains preferentially (AITCHISON et al. 1996; ALLEN et al. 2001; ALLEN et al. 2002; 

DAMELIN and SILVER 2000; MARELLI et al. 1998; ROUT et al. 1997; SEEDORF et al. 1999; 

STRAWN et al. 2004; STRAWN et al. 2001). Even within a single FG domain, there are 

specific binding sites for different receptors (STRAWN et al. 2001), and perhaps subtle 

differences between spacer sequences contribute to this. In support of this, the sequence 

composition and length of a linker sequence in Nup1 affects Kap binding (CUSHMAN et 

al. 2006; LIU and STEWART 2005). Importantly, though, these studies rely upon in vitro 

binding and do not consider the transport event in the context of an intact NPC. In vivo 

evidence for preferred binding sites for each transport receptor comes from multiple 
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studies. Antibodies to vNup96 or vNup153 block only a subset of transport events 

(POWERS et al. 1997; ULLMAN et al. 1999), although these antibodies are not directed 

against FG domains. Further, Nup mutations inhibit import or export events specifically 

(CORBETT and SILVER 1997; SEGREF et al. 1997). A FRET-based assay for Kap-Nup 

interactions in vivo suggested that Kap121 and Msn5 have both overlapping and specific 

Nup interactions during transport. In our recent work, we have used combinatorial 

deletion of FG domains to directly identify FG domains required for nucleocytoplasmic 

shuttling of transport receptors (STRAWN et al. 2004; TERRY and WENTE 2007). In vivo, 

specific FG domains are required for individual transport receptor ferrying of cargoes 

through the NPC. Our detection of binding preferences in vivo indicates that there are 

multiple transport pathways through the NPC. We speculate that a single transport 

receptor moves along a preferred pathway of FG binding sites during translocation for 

maximal efficiency of transport. 

Further evidence for the existence of multiple, preferred pathways of FG binding 

sites comes from considering NPC alterations during viral infection. Influenza virus 

selectively down-regulates or inhibits Nup98 and specific mRNA export factors 

(SATTERLY et al. 2007). Cellular mRNA export is effectively blocked, as these mRNA 

export factors and a binding site on Nup98 are required for mRNA export (POWERS et al. 

1997). Export of influenza RNAs is unaffected, however, as they use a different transport 

receptor that does not depend on Nup98 (ELTON et al. 2001; NEUMANN et al. 2000). 

Similar Nup regulation strategies have been observed with other RNA viruses, including 

poliovirus and rhinovirus (GUSTIN 2003; GUSTIN and SARNOW 2001; GUSTIN and 

SARNOW 2002). Thus viruses manipulate FG transport pathways to favor their lifecycles.   
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The observation of multiple transport pathways through the NPC has broad 

impacts on our understanding of the mechanism of transport. In this chapter, I will 

explore the implications of having multiple NPC transport pathways and the variables 

that may contribute to establishment of these multiple pathways.  

 

What are the critical determinants of each transport pathway? 

 

Rationale for FG domain swaps 

The detection of multiple NPC transport pathways raises an important question: 

what are the molecular determinants that distinguish each pathway? Possible factors that 

could influence transport receptor binding to FG repeats include: (1) the substructural 

location and intra-pore flexibility of each FG domain (FAHRENKROG et al. 2002; LIM et 

al. 2006a; LIM et al. 2007a; LIM et al. 2006b); (2) composition of the spacer sequences 

between FG repeats influencing/interacting with transport receptor binding (CUSHMAN et 

al. 2006); (3) non-FG binding sites adjacent to FG domains (e.g., Nup1, Nup2, Nup116, 

Nup42, Nup159) (GILCHRIST et al. 2002; GILCHRIST and REXACH 2003; LIU and 

STEWART 2005; MATSUURA et al. 2003; PYHTILA and REXACH 2003; SOLSBACHER et al. 

2000); (4) the avidity of FG repeats. Although both mRNA export and Kap104 import are 

linked to GLFG domains, the specific domains involved here (of Nup57 and of Nup116) 

are located in different subcomplexes of the NPC, have different numbers of FG repeats, 

do not have identical spacer sequences, and are present in the NPC in different copy 

numbers (ROUT et al. 2000). Thus, it is possible that there are subtle functional 

differences between these domains in binding to transport receptors for each pathway, or 
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that the substructural location of these Nups is critical to their respective transport roles. 

None of the leading models of the transport mechanism (see Chapter 1) explicitly 

accounts for how multiple, preferred pathways could exist through the NPC, and 

exploring the determinants of these pathways will undoubtedly influence our 

interpretation of transport models. Other attempts at testing FG-Nup chimeras have been 

conducted (IOVINE et al. 1995; PATEL et al. 2007; ZEITLER and WEIS 2004). None of 

these found effects on specific transport pathways, although the studies by Patel et al. 

(PATEL et al. 2007) did observe alteration of the diffusive permeability barrier with an 

FG-Nup chimera. While other direct swaps of FG domains found no effects on transport, 

those studies also did not have a biological phenotype linked to the FG domains studied. 

In contrast, our experiments in Chapter 2 established direct biological functions for two 

specific FG domains. Therefore, we can test for specific phenotypes linked to the 

domains being swapped. Thus we sought to determine whether the type or location of a 

given FG domain is most critical for transport. We approached this by designing 

molecular cassettes to generate in-frame swaps of FG domains (Figure 3-1A). These 

constructs will specifically replace the GLFG domain of Nup57 with other FG domains. 

The boundaries of FG domains used are as defined in (STRAWN et al. 2004). 

 

Strategy for chromosomal swap of FG domains: plans and predictions 

In our prior studies, we identified a role for the GLFG domain of Nup57 in 

mRNA export and for the GLFG domain of Nup116 in Kap104 import (TERRY and 

WENTE 2007). Transport defects arose when these specific GLFG domain deletions were 

deleted from a ∆N or from a ∆N∆C mutant strain. We designed cassettes for domain 
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nup57 allele diagram

Nup57

myc-LoxP-nup57∆GLFG

nup57∆GLFG
p57S, pnup57∆GLFG

myc-LoxP-nup57∆GLFG::GLFGNUP57

p57S-GLFGNup57

myc-LoxP-nup57∆GLFG::GLFGNUP116

p57S-GLFGNup116

myc-LoxP-nup57∆GLFG::FXFGNSP1

p57S-FXFGNsp1

myc-LoxP-nup57∆GLFG::FGNUP42

p57S-FGNup42

FXFG

FG

GLFG

Figure 3-1. Design of nup57 FG domain swaps and logic for interpreting results. 
(A) Schematic diagram of nup57 swap constructs. Each FG repeat is indicated by a filled 
oval (red, FXFG; green, FG; blue, GLFG) a myc-tag and LoxP site (yellow triangle) 
were integrated with domain swaps. Shorthand designations for each construct are desig-
nated below standard terminology name; names preceeded by “p” are name of plasmid 
construct used in text and figures of this Chapter.
(B) [Continued on next page] Flowchart outlining possible results and subsequent inter-
preations for Nup57 swap analysis.
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swaps, using established Cre-LoxP technology (GULDENER et al. 1996; STRAWN et al. 

2004). This enables us to make in-frame chromosomal deletions or insertions of specific 

sequences. Each cassette will integrate an epitope tag (to allow detection of the new 

fusion protein by immunoblotting), an FG domain, and the HIS5 (Schizzosaccharomyces 

pombe) nutritional marker flanked by LoxP sites. Cre recombination loops-out the HIS5 

marker and leaves a single LoxP site in-frame between the integrated FG-domain and the 

remainder of the NUP gene sequence. Because we have specific roles for the GLFG 

domains of Nup57 and of Nup116, we designed cassettes to integrate either of these 

domains. To more broadly test the effects of different types of FG repeats, we designed 

cassettes to integrate the FG domain of Nup42 or the FXFG domain of Nsp1. These 

domains were selected because each is highly enriched for a single repeat type (either FG 

or FXFG) and these repeats have short, regular spacer sequences. Possible results and 

conclusions are summarized in Figure 3-1B. Briefly, if only location of FG repeats is 

critical, then swapping any of these domains into Nup57 will rescue mRNA export, but 

swapping the Nup57 GLFG domain onto other locations in the NPC will not rescue; 

mRNA export only depends on having FG domains at the Nup57 substructural NPC 

location. If the type of repeat (FG, FXFG, GLFG) is important, then either GLFG domain 

(of Nup57 or of Nup116) swapped onto Nup57 will rescue mRNA export, but the FG 

and/or FXFG domains will not. Finally, if there are specific binding sites of FG repeat 

plus linker sequence that are required, perhaps only the GLFG domain of Nup57 will 

suffice. The same series of logic are applied to rescue of Kap104 transport by making FG 

domain swaps on Nup116.  
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Unfortunately, after multiple attempts, we were unable to generate stable 

chromosomal swaps of FG domains. The reasons for failure of this approach are unclear. 

We were unable to confirm stable expression of the chimeric swap proteins, although our 

genotyping indicated that the chimeric sequences were present in the correct locus on the 

chromosome. It is possible that there is a molecular biology defect to the construct design 

(e.g., reading frame shift), although this is unlikely given our thorough sequencing 

analysis of these plasmids. All plasmids used in the construction of swaps were 

sequenced, and the oligos used to amplify the integration cassettes were previously used 

successfully in our FG∆ constructions (STRAWN et al. 2004; TERRY and WENTE 2007). It 

is possible that there were spurious recombination events with the LoxP sequences either 

during the initial integration or during the subsequent Cre recombination. Swaps into the 

nup57 locus were cassettes with the composition: myc-FGdomain-LoxP-HIS5-LoxP, and 

were integrated into a myc-LoxP-nup57∆GLFG diploid. We also attempted swap 

construction in other mutant backgrounds, including appropriate double FG∆ mutants 

(e.g., a myc-LoxP-nup57∆GLFG T7-LoxP-nup116∆GLFG mutant was targeted for 

integration of cassettes swapping FG domain sequences between NUP57 and NUP116 so 

as to minimize spurious integration into regions of FG domain homology), or a ∆N myc-

LoxP-nup57∆GLFG diploid. Because we observed failure through multiple approaches, it 

is likely that a common element is to blame – either a molecular design fault or a 

deleterious effect of the construct design (with epitope tag and LoxP flanking the 

swapped FG domain).  
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Alternative Nup57 swap construction strategy 

We turned to a plasmid-based strategy as an alternative means of generating FG 

domain swap mutants. This approach takes advantage of the ability of yeast to stably 

maintain and express plasmid-borne genes and also employs the 5-FOA plasmid shuffle 

strategy. Briefly, in order to study the effects of swaps into Nup57, we used a disruption 

cassette to make a nup57 null allele (nup57::KANR) in a diploid ∆N S. cerevisiae strain. 

The ∆N mutant was chosen for analysis of swaps into Nup57 because the ∆N myc-LoxP-

nup57∆GLFG mutant has a temperature-sensitive mRNA export defect (TERRY and 

WENTE 2007). At the non-permissive temperature of 37˚, this mutant accumulates 

poly(A)+ RNA in the nucleus in ~80% of cells. As this is a substantial and readily 

detected transport defect, we predicted that monitoring the nuclear export of poly(A)+ 

RNA would be a rapid assay for these FG domain swap studies. As NUP57 is essential 

(GRANDI et al. 1995), a URA3/CEN plasmid containing the NUP57 gene (pSW3006) was 

transformed into this strain. This strain was sporulated and dissected, and the progeny 

were screened to identify isolates with the genotype trp1 ∆N nup57::KANR pURA3-CEN-

NUP57. This strain was then transformed with FG domain swap plasmids or control 

plasmids. The wild-type NUP57 expressing from the URA3 plasmid was then removed 

by plasmid shuffle method over 5-FOA (Figure 3-2). As expected, an empty pTRP1-CEN 

vector (pRS314) was unable to rescue growth of ∆N nup57::KANR pURA3-CEN-NUP57 

on 5-FOA, while a vector with full-length NUP57 was viable. This result confirms that 

NUP57 is an essential gene and has been disrupted in our strain. Either of the two 

nup57∆GLFG constructs (pmyc-LoxP-nup57∆GLFG and pnup57∆GLFG) were able to 

grow. Any of the four swap constructs tested also rescued viability. These swap 
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Figure 3-2. FG domain swaps into Nup57 can rescue a lethal nup57::KANR mutant.
(A) The ΔN nup57::KANR pURA3-CEN-NUP57 mutant (SWY4002) was transformed 
with an empty vector or with plasmids expressing various nup57 alleles on a TRP1 
plasmid. 5-FOA plates, left, show plasmid shuffle results. 
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constructs replaced the GLFG domain of Nup57 with either the FG domain of Nup42, the 

FXFG domain of Nsp1, the GLFG domain of Nup116, or, as a control, the GLFG domain 

of Nup57.  

 

Analysis of mRNA export with Nup57 swaps 

We next assayed these strains for export of poly(A)+RNA, as we had previously 

linked the GLFG domain of Nup57 to mRNA export (TERRY and WENTE 2007). The 

results of these assays are summarized in Figure 3-3. The NUP57 plasmid fully rescued 

poly(A)+RNA export, while a strain expressing myc-LoxP-nup57∆GLFG had substantial 

mRNA export defects in ~50% of cells. Thus, whether expressed off the chromosome 

(TERRY and WENTE 2007) or a plasmid, the myc-LoxP-nup57∆GLFG deletion allele is 

correlated with mRNA export defects. We assayed the poly(A)+RNA localization in four 

mutant strains with the FG domain swap plasmids. As expected, the control swap of the 

Nup57-GLFG domain onto the Nup57 C-terminus fully restored mRNA export (Figure 3-

3A, B). Swap of Nup42-FG domain or Nsp1-FXFG domain also rescued mRNA export. 

Unexpectedly, cells expressing a chimeric swap of the Nup116-GLFG domain onto the 

Nup57 C-terminus showed subtle poly(A)+RNA export defects in a majority of the cells 

and more intense nuclear accumulation of poly(A)+ RNA in a minority of the cells. This 

observation raises important questions about the size of FG domains in these swaps and 

warrants future consideration (see Discussion). Unexpectedly, the nup57∆GLFG plasmid 

(without an epitope tag) completely rescued the mRNA export defects as well. The only 

difference between the two nup57∆GLFG deletion alleles is the epitope tag-LoxP site.  
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Figure 3-3. mRNA export defects in the ΔN myc-LoxP-nup57ΔGLFG mutant are attribut-
able to the epitope tag.
(A) In situ hybridication for poly(A)+ RNA in nup57 swap mutants. Genotypes are abbre-
viated as listed in Figure 3-1.
(B) The percentage of cells with nuclear poly(A)+ RNA accumulation is scored as a 
percentage of total numer of cells imaged for two independent assays.

A.

B.

93



To dissect further the impact of the epitope tag-LoxP sequence, a GFP-tagging 

cassette was integrated to C-terminally tag Mex67 in the ∆N nup57::KANR pmyc-LoxP-

nup57∆GLFG and the ∆N nup57::KANR pnup57∆GLFG mutants. We then performed 

Mex67-GFP shuttling assays, as previously described (TERRY and WENTE 2007). The ∆N 

nup57::KANR pmyc-LoxP-nup57∆GLFG mutant had severe defects in Mex67-GFP 

shuttling in two independent assays, and after 15 minutes of recovery failed to recruit 

substantial Mex67-GFP to the nuclear rim (Figure 3-4). These results were 

indistinguishable from our previous assays with the ∆N myc-LoxP-nup57∆GLFG mutant 

(chromosomal expression of the myc-LoxP-nup57∆GLFG allele) (TERRY and WENTE 

2007). In contrast, Mex67-GFP showed partial recovery to the nuclear rim in the ∆N 

nup57::KANR pnup57∆GLFG mutant. The recovery phenotype in this mutant was similar 

to the rate of recovery of Mex67-GFP to the nuclear rim of the ∆N∆C mutant. To date, 

we have not assayed Mex67-GFP shuttling in a ∆N mutant and therefore cannot conclude 

whether the pnup57∆GLFG allele functions like a wild-type NUP57 in the ∆N 

background. We can, however, conclude that there are notable differences between the 

contributions of the pmyc-LoxP-nup57∆GLFG and the pnup57∆GLFG alleles on Mex67-

GFP shuttling.  

Taken together, these results from both in situ hybridization for poly(A)+RNA and 

Mex67-GFP shuttling assays suggest that the presence of the myc-LoxP tag, and not the 

deletion of the GLFG domain, causes mRNA export defects. Based on our shuttling 

assays, it appears that the myc-LoxP tag is specifically interfering with Mex67-GFP 

shuttling between the nuclear and cytoplasmic compartments. Immunoblotting confirmed 

that the myc-LoxP-nup57∆GLFG allele is expressed from either the plasmid or 
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∆N nup57::KANR pnup57∆GLFG

∆N nup57::KANR pmyc-LoxP-nup57∆GLFG

Figure 3-4. The myc-LoxP-nup57∆GLFG allele is linked to impared recruitment of 
Mex67-GFP to the nuclear rim. 
Mex67-GFP was expressed in ∆N nup57::KANR cells carrying either pnup57∆GLFG or 
pmyc-LoxP-nup57∆GLFG. Cells were energy-depleted and then monitored over a time 
course of recovery for recruitment of Mex67-GFP to the nuclear rim. Data from two 
independent assays were averaged to produce this graph. For each time point, >130 cells 
were counted in each assay. 
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chromosomal constructs. To date, the reason that the myc-LoxP tag disrupts mRNA 

export and Mex67 shuttling is unclear.  

We have previously observed that the presence of a T7 epitope tag in place of the 

GLFG domain in Nup49 is lethal in certain mutant backgrounds (TERRY and WENTE 

2007). These epitope tag sequence elements were inserted in place of FG domains in our 

global chromosomal deletion strategy (STRAWN et al. 2004). Thus it became necessary to 

test for the extent of epitope tag-LoxP effects in our FG∆ mutant S. cerevisiae strain 

collection.  

 

Epitope tags have deleterious effects on nucleocytoplasmic transport 

Expression of the nup57∆GLFG (untagged) plasmid in the ∆N∆C myc-LoxP-

nup57∆GLFG (SWY3410) mutant rescued the temperature sensitivity of this strain 

(Figure 3-5). The nup57∆GLFG plasmid also rescued nuclear export of 60S ribosomal 

subunits in two strains (Eric Shows, unpublished data). Control experiments determined 

that the epitope tag-LoxP allele is stably expressed, although it has not been determined 

whether this protein is efficiently incorporated into assembling NPCs. The single mutant 

myc-LoxP-nup57∆GLFG does not have mRNA export defects (TERRY and WENTE 2007). 

Thus the effects of the myc-LoxP tag on the nup57∆GLFG construct cause synthetic 

growth and transport defects when combined with other FG∆ alleles (e.g., the ∆N 

mutations). As a whole, these results necessitate alternative experimental strategies for 

short-term and long-term studies (see below and Chapter 4) and thoughtful consideration 

of the interpretations of past studies with epitope tag-LoxP strains (see Conclusions, this 

Chapter).  
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Figure 3-5. The untagged nup57GLFG construct rescues temperature sensitivity of ΔNΔC myc-LoxP-nup57ΔGLFG.
(A) The ΔNΔC myc-LoxP-nup57ΔGLFG mutant (SWY3410) was transformed with empty vector (pRS314), full-length NUP57 
vector (pSW3431), myc-LoxP-nup57ΔGLFG vector (pSW3432), or nup57ΔGLFG (pSW3434; also known as p57S). Cells were 
grown to early log-phase in selective media and spotted as five-fold serial dilutions on appropriate media. Strains were grown at the 
temperature indicated for three days. 
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FG domain swaps into Nup49 

In our prior work (TERRY and WENTE 2007), we found that a T7-LoxP motif in a 

nup49∆GLFG allele in a ∆N∆C mutant background was lethal. The ∆N∆C T7-LoxP-

nup49∆GLFG lethal mutant was complemented by either of two different nup49∆GLFG 

allele constructs. A cassette which replaces the GLFG domain with a GFP tag 

(nup49GLFG::GFP) restored viability. In addition, a plasmid nup49∆GLFG without any 

epitope tags also restored viability. In both cases, the resulting strain expressed two 

nup49∆GLFG alleles – the epitope tagged version and either the GFP or the untagged 

version. Either of these mutants also had temperature-sensitive mRNA export defects. It 

is possible that these defects reflect only partial complementation of the T7-LoxP-

nup49∆GLFG lethal allele. Alternatively, it is possible that the GFP or untagged 

nup49∆GLFG alleles fully complement the T7-LoxP allele and these defects then truly 

represent a requirement for GLFG binding sites during mRNA export. To further 

differentiate between these two possibilities, and in hopes of establishing a mutant in 

which I could complete domain swap experiments, I generated a new mutant strain using 

the same paradigms as outlined for the ∆N nup57::KANR pURA3-NUP57-CEN strain 

(above). Plasmid shuffle and characterization experiments are presently underway. We 

synthesized plasmid-borne swaps of FG domains into Nup49 and will express these in a 

∆N nup49::KANR mutant. We will apply the same logic for interpreting results as outlined 

in Figure 3-1B for comparable swaps into Nup57. We predict that identifying the number 

and type of FG repeats that must be present in Nup49 for mRNA export will provide 

insight into the determinants of transport and of transport pathways.  
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The cytoplasmic face FG domains serve to regulate mRNA export 

 

nup42∆FG suppresses mRNA export defects 

To identify FG domains required for mRNA export, we previously screened our 

collection of mutants with maximal FG domain deletions (TERRY and WENTE 2007). 

Wild-type, control, or FG∆ mutants were probed for poly(A)+RNA localization by in situ 

hybridization with an oligo d(T) probe. When we identified mRNA export defects in a 

strain with complex FG domain deletions, we then systematically mapped which 

deletion(s) in that mutant were responsible for the mRNA export defect phenotype. For 

example, the ∆N∆C nup57∆GLFG mutant accumulates poly(A)+RNA in ~30% of the 

cells at 37˚. To find the FG domain deletions linked to this phenotype, we then 

systematically generated and assayed less complex FG∆ mutants. We focused on 

examining the nup57∆GLFG allele in combination with deletion of either the 

cytoplasmic side (∆C) or nuclear side (∆N) FG domains. We found a specific and robust 

mRNA export defect in the ∆N nup57∆GLFG mutant, but observed no mRNA export 

defects in the ∆C nup57∆GLFG mutant. Curiously, the mRNA export defect was more 

penetrant in the ∆N nup57∆GLFG mutant (~80% cells) than in the ∆N∆C nup57∆GLFG 

mutant (~30% cells), despite the fact that the ∆N nup57∆GLFG mutant has a more intact 

NPC. In other words, deletion of the cytoplasmic-face FG domains suppressed the 

severity of the mRNA export defect. Although the cytoplasmic FG Nups, Nup42 and 

Nup159, have previously been shown to have roles in mRNA export, these roles were 

linked to their non-FG domains (HODGE et al. 1999; SCHMITT et al. 1999; STRAHM et al. 

1999; STUTZ et al. 1997). Specifically, the C-terminus of Nup42 is a binding site for the 
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essential mRNA export factor Gle1 (MURPHY and WENTE 1996; STRAHM et al. 1999), 

and the N-terminus of Nup159 binds the essential DEAD-box helicase and mRNA export 

factor Dbp5 (Figure 3-6A) (HODGE et al. 1999; SCHMITT et al. 1999; WEIRICH et al. 

2004). Interestingly, these binding sites are adjacent to FG domains that bind the mRNA 

export receptor Mex67-Mtr2 (STRASSER et al. 2000).  

To identify whether the FG domain deletion from Nup42, Nup159, or both was 

required for this suppression, we assayed two additional mutants for poly(A)+RNA export 

(Figure 3-6B, C). The ∆N nup57∆GLFG  nup159∆GLFG mutant accumulated nuclear 

poly(A)+RNA in ~55% of the population, a phenotype of intermediate suppression. In 

contrast, the ∆N nup57∆GLFG nup42∆FG mutant had mRNA export defects in ~38% of 

cells, demonstrating that the nup42∆FG allele is sufficient to suppress the mRNA export 

defect of ∆N nup57∆GLFG.  

 

Juxtaposed binding sites on Nup42 contribute to mRNA export 

Because the C-terminus of Nup42 provides the binding site for the essential 

mRNA export factor Gle1 and this site is juxtaposed to the Nup42-FG domain, we tested 

the importance of the Gle1 binding site in the context of the ∆N nup57∆GLFG mutant. 

The mutants and assay results are summarized in Table 3-1. We transformed a NUP42 

disruption cassette into the ∆N nup57∆GLFG mutant and selected for cells in which this 

cassette had undergone homologous recombination into the chromosome. This disrupts 

the NUP42 locus and results in a null allele. Although Gle1 is an essential mRNA export 

factor, its binding site on Nup42 is not specifically required for bulk poly(A)+RNA export 

(MURPHY and WENTE 1996; STRAHM et al. 1999; STUTZ et al. 1997). To gauge the effect 
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Figure 3-6. Juxtapositioning of FG 
and non-FG binding sites on 
cytoplasmic-side FG-Nups contributes 
to mRNA export. (A) Schematic 
diagram of Nup42 and Nup159, with 
approximate domain boundaries 
indicated. (B) In situ hybridization for 
poly(A)+RNA in strains with 
cytoplasmic-side deletions combined 
with the ∆N nup57∆GLFG mutations. 
(C) In situ experiments as in (B) were 
carried out. For each mutant, >150  
cells were scored for the localization 
of poly(A)+RNA signal. The average 
of two independent assays is graphed.
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Table 3-1. Juxtapositioned Gle1 binding and Mex67 binding domains on Nup42 are required for mRNA export suppression. 
 

 Dbp5 binding 
domain (Nup159 

N-terminus) 
 

Gle1 binding 
domain (Nup42 

C-terminus) 
 

Mex binding site on 
Nup42-FG domain 

 

Mex binding site on 
Nup159-FG domain 

 

mRNA export 
phenotype 

 
(percent cells  
with defect) 

 
∆N∆C nup57∆GLFG 

(SWY3410) 
 

+ 
 

+ 
 

- 
 

- 
 

+/- 
~38% 

 
∆N nup57∆GLFG 

(SWY3618) 
 

+ 
 

+ 
 

+ 
 

+ 
 

- 
~78% 

 
∆N nup57∆GLFG 

nup159∆FG 
(SWY3925) 

 

+ 
 

+ 
 

+ 
 

- 
 

- 
~55% 

∆N nup57∆GLFG 
 nup42∆FG 
(SWY3927) 

 

+ 
 

+ 
 

- 
 

+ 
 

+/- 
~37% 

∆N nup57∆GLFG 
nup42::HIS5 

 

+ 
 

- 
 

- 
 

+ 
 

- 
~68% 
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of the nup42::HIS3 null on mRNA export, we again performed in situ hybridization to 

detect poly(A)+RNA (Figure 3-6B, C; Table 3-1). The ∆N nup57∆GLFG nup42∆FG 

mutant accumulated nuclear poly(A)+RNA in ~38% of cells in two independent 

experiments, a level of defect that is comparable to the accumulation in ∆N∆C 

nup57∆GLFG cells. In contrast, the ∆N nup57∆GLFG nup42::HIS3 had mRNA export 

defects apparent in ~65% of cells, a phenotype similar to the level of defect in the ∆N 

nup57∆GLFG mutant. In other words, a nup42∆FG allele suppresses mRNA export 

defects, but a complete nup42::HIS3 null does not. We therefore concluded that there is a 

complex regulatory effect of the adjacent Mex67-Mtr2 and Gle1 binding sites on Nup42.  

 

Swap of FG domains into Nup42 

In order to determine whether these regulatory effects were specific to the FG 

domain of Nup42, or instead were conferred by the simple juxtaposition of any FG 

domain next to the Gle1 binding site, we constructed Nup42 chimeras. The sequence 

encoding the GLFG domain of Nup49 or the FXFG domain of Nsp1 was fused in-frame 

with the C-terminus of Nup42. In this chimera, the FG domain of Nup42 was specifically 

replaced. We also constructed a control FG domain swap in which the sequence encoding 

the FG domain of NUP42 was re-linked to the non-FG sequence of NUP42. These 

constructs were expressed as plasmids in the ∆N nup57∆GLFG nup42::HIS3 mutant 

strain. Preliminary results indicate that FG domain swaps into Nup42 have differential 

impacts on the extent of mRNA export defects when expressed in the ∆N nup57∆GLFG 

nup42::HIS3 mutant (data not shown). 
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Discussion and Conclusions 

 

In these studies, we have explored key points regarding the nucleocytoplasmic 

transport mechanism by testing for differences between FG domains and examining the 

importance of binding sites adjacent to FG domains.  

 

Domain swap experiments revealed unexpected effects of epitope tag-LoxP 

sites 

To test for functional differences between FG domains, we used our defined 

critical FG binding sites on Nup57 and Nup116 as platforms for designing experiments to 

test the importance of FG repeat type or location in transport function. Unfortunately, the 

original chromosome-targeted swap strategy failed for reasons that are not clear. In an 

alternative, plasmid-based approach, we uncovered a link between epitope tags and 

transport defects. Replacing the Nup57 GLFG domain with a myc-LoxP motif caused 

defects that were greater than simply deleting that GLFG domain. The myc-LoxP tag 

caused synthetic mRNA export defects when combined with the ∆N FG deletion mutant. 

This result prompted us to conduct additional tests, which subsequently revealed that tag-

LoxP sequences caused defects in multiple mutant backgrounds and affected 

nucleocytoplasmic transport of multiple cargoes (including mRNA and 60S ribosomal 

subunits). At least three different epitope tag-LoxP FG∆ Nups have defects linked to the 

presence of the epitope tag-LoxP sequence: T7-LoxP-nup49∆GLFG, flag-LoxP-

nsp1∆FG∆FXFG, and myc-LoxP-nup57∆GLFG. Two commonalities emerge from 

examining this list. First, these three FG-Nups are found together in a subcomplex of the 
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NPC (GRANDI et al. 1995), although Nsp1 is also found in a complex that is biased 

towards the cytoplasmic face of the NPC (FAHRENKROG et al. 1998). Perhaps the Nup49-

Nup57-Nsp1 FG region of the NPC is specifically critical to the integrity of the central 

FG mass (and whatever structural/biophysical properties it may have). Second, there are 

three different epitope tags on these three ∆FG Nups, yet each has the same effect. Thus, 

the likely explanation is not the epitope tag (myc, T7, or flag), per se, but rather a 

common element among all of these – namely, the LoxP site or common flanking 

sequence (Figure 3-7).  

The construct used in our studies has a short linker of 5-8 amino acid residues on 

either side of the LoxP site. All of the epitope tag-LoxP constructs have a high percentage 

of S+T (27.3-37.5%), similar to frequency with which these residues are found in FG 

domains (Figure 3-7) (ROUT and WENTE 1994). Each epitope tag-LoxP sequence 

contains at least one Cys and multiple Tyr residues, neither of which are found in S. 

cerevisiae FG domains (with the exception of one Tyr in Nup159 FG domain). In 

addition, the epitope tag-LoxP motifs are devoid of Pro, which are found in FG domains 

at low frequency (~3-8% of total FG domain residues). It is unclear whether any of the 

epitope tag-LoxP motifs have structural motifs or affect the folding of the remainder of 

the Nup. For future studies, we could consider altering the composition of the linkers on 

either side of the LoxP sequence or using different epitope tags, but if the problem arises 

from the LoxP-encoded residues itself, that cannot be remedied, as the LoxP nucleotide 

sequence is specifically required for recognition and efficient site-specific recombination 

by Cre recombinase (SAUER 1992). One possible solution may be to use different or more 

extensive linker sequences between the epitope tag-LoxP and the endogenous NUP 
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A.  
epitope Epitope-linker-LoxP-linker 
HA-LoxP YPYDVPDYATSTTLNITSYNVAYTKLLGDIRST 
Myc-LoxP EEQKLISEEDLTSTTLNITSYNVAYTKLLGDIRST 
T7-LoxP MASMTGGQQMGTSTTLNITSYNVAYTKLLGDIRST 
Flag-LoxP DYKDDDDKTSTTLNITSYNVAYTKLLGDIRST 
 
B.  
 Composition of epitope tag-LoxP motifs (percent) 
 acidic basic Q + N S + T 
Flag 18.75 12.5 6.25 28.13 
HA 9.09 6.06 6.06 27.27 
Myc 14.28 8.57 8.57 28.57 
T7 2.86 5.72 11.42 31.43 
 
C.   
  Composition of yeast FG domains (percent) 
 Repeat 

motif(s) 
acidic basic Q + N S + T 

Nup42 FG 0.55 3.33 17.45 29.92 
Nup159 FG 11.14 7.74 6.29 29.54 
Nup49 GLFG 0 2.98 21.28 24.25 
Nup57 GLFG 0 2.7 19.37 27.48 
Nup116 FG, GLFG 0 1.98 27.6 21.49 
Nup145 GLFG 0 2.5 21.5 30.5 
Nup100 GLFG 0.18 2.28 27.76 26.89 
Nsp1 FG, FXFG 10.19 11.57 12.44 24.35 
Nup1 FXFG 9.9 11.88 9.11 29.11 
Nup2 FXFG 13.56 13.85 10.61 26.84 
Nup60 FXF 15.3 14.12 14.12 20 
 
Figure 3-7. Sequence comparison of epitope tag-LoxP motifs and FG domains.  
(A) Primary amino acid sequence of epitope tag-LoxP motifs inserted in FG deletion 
mutants (STRAWN et al. 2004; TERRY and WENTE 2007). Epitope tag residues (black), 
linker sequences (green), LoxP sequence (orange).  
(B) The relative abundance of acidic (D, E); basic (K, R, H); Q+N; and S+T in the 
epitope tag-LoxP motifs is given.  
(C) The relative abundance of acidic (D, E); basic (K, R, H); Q+N; and S+T in each S. 
cerevisiae FG-Nup is given. For this calculation, only FG domains were analyzed, using 
the following boundaries (amino acid residue numbers given): Nup42-FG [4−364], 
Nup159-FG [464−876], Nup49-GLFG [2−236], Nup57-GLFG [2−223], Nup145-GLFG 
[10−209], Nup100-GLFG [2−570], Nup116-FG,GLFG [2-95, 205-715], Nsp1-FG,FXFG 
[13-591], Nup1-FXFG [384-888], Nup2-FXFG [189-527], Nup60-FXF [397-512]. 
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sequence. In other S. cerevisiae studies, altering the composition of a linker sequence 

attached to a terminal myc epitope tag can ameliorate deleterious effects of the myc tag 

alone (SABOURIN et al. 2007). 

How could the epitope tag-LoxP motif cause synthetic transport defects? The 

epitope tag-LoxP sequence might locally disrupt formation of an entropic barrier or 

hydrophobic meshwork, or interfere with the assembly of other NPC factors. 

Alternatively, the epitope tag-LoxP sequence may be an unknown high affinity binding 

site that sequesters some critical component of the transport machinery. This seems less 

probable of an explanation because not all strains with epitope tag-LoxP sequences on 

Nups have transport defects. For example, the ∆N∆C mutant has no steady-state transport 

defects, yet has epitope tag-LoxP sequences on five different Nups. If the epitope tag-

LoxP sequence locally disrupts NPC subcomplex assembly, Nups which cannot properly 

incorporate into the NPC would show subcellular mislocalization. We have tested a 

subset of strains for Nup mislocalization and have observed no defects (STRAWN et al. 

2004). Thus, the remaining explanation – that the epitope tag-LoxP sequence disrupts the 

integrity or function of the NPC barrier – remains. Testing this possibility is technically 

beyond the scope of our current abilities.  

 

Implications of the epitope tag/LoxP problem for our current and published 

research results 

In light of the observation that an epitope tag-LoxP sequence contributed to non-

specific transport defects, we must also re-assess the interpretation of our published 

results. Given that we now know that the myc-LoxP-nup57∆GLFG allele is linked to 
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mRNA export defects but an untagged nup57∆GLFG allele does not have the same 

effect, we cannot conclude that mRNA export requires the GLFG domain of Nup57. 

Thus it is difficult to make conclusions about in vivo roles for specific FG domains. We 

can, however, continue to support a model of multiple pathways through the NPC. The 

transport events affected in the ∆N∆C myc-LoxP-nup57∆GLFG strain (namely, mRNA 

export) are different from those affected in the ∆N∆C T7-LoxP-nup116∆GLFG strain 

(Kap121, Kap104 import) (TERRY and WENTE 2007). These defects may be caused by 

the FG domain deletion, the epitope tag-LoxP insertion, or the combination of both. 

Regardless, transport pathways are differentially affected by these altered FG-Nup 

sequences. Due to the non-specific effects of the tag-LoxP insertion, we have been unable 

to complete a thorough analysis of the importance of FG domain type versus location as 

determinants for each transport pathway.  

Of note, not all epitope tag-LoxP insertions in place of FG domains are 

deleterious. A nup42∆FG allele and a HA-LoxP-nup42∆FG allele have the same 

contributions to mRNA export. Similarly, 60S ribosomal subunit export is not affected by 

a myc-LoxP tag in nup159∆FG (Eric Shows, personal communication). Future studies 

will use alternative strategies to delete, mutate, and/or swap FG domains and assess the 

impact on transport capacity of FG∆ mutant NPCs.  

 

FG-domains with adjacent binding sites are important in mRNA export 

Binding sites adjacent to FG domains are another possible determinant 

influencing or establishing multiple transport pathways. There are at least three mRNA 

export factors with binding sites adjacent to FG domains near the cytoplasmic face of the 
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NPC. Motifs adjacent the FG domains of Nup1 and Nup2 on the nuclear side of the NPC 

contribute to terminal events in Kap95/Kap60-mediated import (GILCHRIST et al. 2002; 

GILCHRIST and REXACH 2003; LIU and STEWART 2005; MATSUURA et al. 2003; PYHTILA 

and REXACH 2003; SOLSBACHER et al. 2000). We have uncovered unanticipated roles for 

the Nup42 cytoplasmic-face FG domain in mRNA export. Why does the nup42∆FG 

allele suppress mRNA export defects? It is possible that there are non-specific effects of 

this deletion on the rate of transcription or metabolism, decreased poly(A)+ RNA tail 

length (therefore decreasing detection with our oligo d(T) probe), or increased nuclear 

import rate for an essential and rate-limiting mRNA export or transcription factor. 

Because Nup42 is a binding site for both Gle1 and Mex67-Mtr2, we speculate that the 

correct explanation is more direct. Perhaps the nup42∆FG mutation increases the rate of 

export by removing a physical barrier, increasing the efficiency of mRNP remodeling and 

release, or increasing leakage of incompletely processed/remodeled mRNPs. If the 

suppression by nup42∆FG is due to removing a physical barrier, then we would expect 

that the nup42::HIS3 disruption would have the same effect on mRNA export; however, 

that was not observed. In future experiments we can differentiate between accelerated 

mRNP remodeling/release versus premature mRNP release (without complete 

remodeling) by measuring relative abundance of specific factors that cross-link to 

mRNPs or that are spuriously found in polysome fractions. These results have 

implications for regulated termination of mRNA export and will be addressed in future 

studies.  
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Materials & Methods 

 

Plasmids & yeast strains 

Plasmids and yeast strains used in this study are listed in Appendix Tables 1 and 

2. Plasmid cloning was carried out according to standard molecular biology strategies. 

Yeast strains were grown in YPD (1% yeast extract, 2% peptone, 2% glucose) or in 

synthetic complete (SC) media with 2% glucose and lacking appropriate amino acids. 

New yeast FG∆ mutants were generated using a Cre-Lox system as previously described 

(GULDENER et al. 1996; STRAWN et al. 2004). Yeast transformations were carried out 

according to the LiAc-TE method (ITO et al. 1983).  

 

Microscopy and image acquisition 

All images were acquired using an Olympus BX50 microscope with a UPlanF1 

100x/1.30 oil immersion objective and a Photometrics Coolsnap HQ camera. Within each 

experiment, all images were collected and scaled identically. Images were collected using 

Image Pro Express and processed with Adobe Photoshop 9.0 or higher software. 

 

In situ hybridization & indirect immunofluorescence  

Yeast cells were grown in YPD to early log phase at 23˚C, and aliquots were 

shifted to 37˚C for 1 or 3 hours. Cells were fixed for 10 minutes and processed as 

previously described (IOVINE et al. 1995; WENTE et al. 1992). For indirect 

immunofluorescence, cells were incubated overnight with affinity-purified rabbit anti-
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Nab2 antibodies (1:4000) and then detected with fluorescein-conjugated donkey anti-

rabbit IgG (Jackson ImmunoResearch Laboratories, 1:200). DNA was stained with 0.1 

ug/mL 4’6-diamidino-2-phenylindole (DAPI). For in situ hybridization, cells were 

incubated overnight with a digoxigenin-dUTP-labeled oligo d(T) probe and then detected 

with fluorescein-labeled anti-digoxigenin Fabs (Boehringer Manneheim, 1:25). Images 

were acquired and processed as described above.  

 

Mex67 shuttling assays 

MEX67 was chromosomally tagged with the sequence encoding GFP in haploid 

wild-type and FG∆ yeast by amplification of the GFP:HIS3MX6 region from the yeast 

GFP collection strain YPL169C (Invitrogen). Integrants were selected on SC-HIS and 

verified by PCR and by immunoblot with Rabbit anti-GFP (1:1000). To allow integration 

of the gene for expression of dsRED-HDEL, pKW1803 was linearized with EcoRV and 

transformed into yeast cells. Cells were selected on SC-TRP and integrants were verified 

by live-cell microscopy. For energy depletion assays, cells were grown to early log phase 

in YPD at 23˚C. A culture aliquot of 2.5 A600 units was used, and the cells were pelleted, 

washed, and resuspended in 1mL YP (without glucose) with 10mM NaN3 and 10mM 2-

deoxy-D-glucose. Cells were treated for 45 minutes at 23˚C, and then were pelleted, 

washed, and placed on ice prior to microscopy. At time=0, cells were resuspended in 

23˚C YPD, mounted on a glass slide, and visualized as described above. Images of the 

GFP and dsRED signals were acquired every 30 seconds for 15 minutes. Cells were 

scored for recovery of Mex67-GFP to the nuclear rim and the relative nuclear to 
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cytoplasmic GFP signal. Control strains SWY734 and SWY3302 were energy depleted 

and imaged as described above.  
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CHAPTER IV 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Transport through the NPC is a dynamic process and NPCs are an essential portal 

allowing coordinated regulation of gene expression and signaling. Mechanisms at the 

level of single cargoes, transport receptors, and the NPC itself are all employed to 

regulate nuclear entry/exit (TERRY et al. 2007). As a whole, the work described here has 

provided new insight into the NPC as a regulatory machine. Specifically, I have 

demonstrated that there are multiple transport pathways through the NPC. These 

pathways are defined by preferred FG-Nup binding sites that are employed in 

nucleocytoplasmic translocation of specific transport receptors and their cargoes. In 

addition, I have defined FG-Nups linked to the termination of mRNA export, and have 

found that Kap abundance can alter transport. These discoveries and current gaps in our 

understanding of NPC function lay the foundation for future studies of nucleocytoplasmic 

transport. In this chapter, I will begin by discussing experiments and predictions to follow 

the current experiments presented in earlier chapters, and will then discuss potential 

future avenues for the field.  

 

What are the FG-Nup binding sites for other transport receptors?  

To date, we have characterized FG-Nup binding sites for less than half of known 

transport receptors. We have assayed for FG domains required for nuclear import via 
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Kap95, Kap104, Kap121 and Kap123, and nuclear export via Xpo1 (STRAWN et al. 2004; 

TERRY and WENTE 2007) (Eric Shows and Laura Terry, unpublished). Of note, we have 

not identified any FG∆ mutant with defects in Kap95 transport. Unlike all other known 

transport receptors, a complete cycle of Kap95 transport (i.e., import of the receptor-

cargo complex, dissociation of the cargo, and recycling of the receptor) is energetically 

more expensive than transport by other karyopherins (MACARA 2001). Kap95 imports 

cargo in a trimeric complex consisting of Kap95, Kap60, and NLS-containing cargo 

(STEWART 2007a). Upon dissociation in the nucleus, Kap95 is recycled in complex with 

RanGTP. For the next round of import to function, Kap60 must also be recycled. Kap60 

is exported by the karyopherin Cse1 in complex with RanGTP. Thus recycling of a single 

Kap95 molecule requires hydrolysis of one RanGTP moiety, and recycling of Kap60 via 

Cse1 requires a second RanGTP to be hydrolyzed. As Kap60 is essential for nuclear 

import of most cNLS-containing cargoes via Kap95, and we have not identified Kap95 

transport defects, we must conclude that Kap95-Kap60 and Cse1 are imported properly 

and that recycling of Kap95-RanGTP and of Cse1-Kap60-RanGTP are also not affected 

by any of the FG∆ mutants assayed.  

An exhaustive analysis of FG-domain requirements for all other known transport 

receptors is possible (pending identification of receptor-specific signal sequences and 

subsequent construction of reporters for each). While this approach might detect 

additional FG pathways, I do not consider this a high priority. There are, however, three 

specific transport events that would be particularly interesting to study in FG∆ mutants, 

including Ntf2 and large cargos (e.g., ribosome subunit export and proteasome subunit 

import).  
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Ntf2 is an interesting candidate for study in our FG∆ mutants for two reasons. 

First, Ntf2 functions in RanGDP import as a homodimer, and each Ntf2 monomer is 

predicted to have only four FG binding pockets (BAYLISS et al. 2002a; BAYLISS et al. 

1999; LANE et al. 2000; MORRISON et al. 2003; QUIMBY et al. 2001). Does having two 

identical sets of FG binding pockets mean that Ntf2 binds a less diverse array of FG 

repeats than does, say, a Kap with many FG binding pockets? If so, Ntf2 would be more 

sensitive to deletion of key FG domains. Ntf2 transport cannot be completely abolished in 

FG∆ mutants, as not all Kaps have transport defects in our mutants (complete disruption 

of the RanGTP-RanGDP gradient would abolish all Kap-dependent transport). However, 

it is possible that Ntf2 shuttling can be impaired without collapsing Ran function or 

causing lethality (QUIMBY et al. 2001; SMITH et al. 2002). Second, the ntf2-N77Y allele is 

an interesting tool for study of functional differences between types of FG repeat. This 

mutant has increased affinity for FXFG repeats and can block transport (QUIMBY et al. 

2001). We predict that deletion of FXFG domains would, then, remove the high-affinity 

binding sites for the ntf2-N77Yprotein and thus restore normal transport and ntf2-N77Y 

shuttling. The combination of this point mutant and our ability to delete specific FG 

domains provides a powerful combination for addressing the relevance of transport 

receptor:FG binding affinities in vivo.  

Transport of large cargoes through the NPC is an interesting problem for study in 

FG∆ mutants. The narrowest portion of the central NPC has a diameter of ~45-50nm 

(AKEY and RADERMACHER 1993; HINSHAW et al. 1992; STOFFLER et al. 2003), and 

remarkably the NPC transports cargoes that approach this size limit, including 39nm 

NLS-coated gold particles and 32-36nm intact hepatitis B viral particles (PANTE and 

115



KANN 2002). The eukaryotic ribosome is exported from the nucleus as separate 40S and 

60S subunits, which have dimensions of up to ~25nm (NISSAN et al. 2004; VERSCHOOR et 

al. 1998). Experiments in permeabilized HeLa cells suggest that multiple rounds of 

nucleotide hydrolysis are required for transport of large cargo (LYMAN et al. 2002), 

indicating that either (a) there is GTP hydrolysis and release of receptor from cargo 

repeatedly during transport of these large molecules or (b) there are multiple receptors on 

the large cargo and each hydrolyzes a single GTP/ATP at termination of transport. In 

support of the latter, three different transport receptors are proposed to contribute to 

nuclear export of the pre-60S subunit (BRADATSCH et al. 2007; GADAL et al. 2001; HO et 

al. 2000b; HUNG and JOHNSON 2006; THOMAS and KUTAY 2003; TROTTA et al. 2003; 

YAO et al. 2007). In yeast, the largest substrates for nuclear import are proteasome 

subunits, which are imported as 19S and 20S particles (LEHMANN et al. 2002; WENDLER 

et al. 2004). Several proteins in the 20S proteasome have putative NLS motifs (VON 

MIKECZ 2006), so it is possible that multiple transport receptors are involved in transport 

of these relatively large particles. If, then, each transport receptor proceeds along a 

preferred pathway of FG binding sites, then we predict that transport of cargoes bearing 

multiple receptors will be more sensitive to FG deletions; deletion of FG domain(s) 

critical for any one of the receptors will impair transport. By identifying FG∆  mutants 

with defects in transport of a given large cargo, it may be possible to deduce if (and 

which) other transport receptors are contributing to transport of that cargo. For example, 

the only transport receptor identified for the 40S ribosomal subunit is yXpo1 (vCrm1) 

(MOY and SILVER 1999), and given the need for multiple receptors in 60S subunit export, 

it has been speculated that other receptors must contribute to 40S subunit export 
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(OEFFINGER et al. 2004). If we were to identify a FG∆ mutant with no Xpo1 transport 

defects but with 40S export defects, this would be strong evidence that another receptor 

must contribute to 40S export and that said receptor requires the missing FG domains for 

shuttling. An alternative hypothesis is that transport of large cargos is more retarded than 

for smaller cargoes (indeed, transport proceeds at a rate that is inversely proportional to 

the diameter of the cargo at hand (PAINE et al. 1975) and is influenced by the 

hydrophobicity of transporting molecules (RIBBECK and GORLICH 2002), and thus for 

cargoes with but a single transport receptor, increasing cargo size would exacerbate the 

slowness of large cargo trafficking. We could differentiate between these two 

possibilities by building model/reporter cargoes of varying sizes and manipulating the 

number of NLSs or NESs on them. This principle could also be applied to examine 

mRNP trafficking by building a model transcript with varying number of specific binding 

sites for transport receptors. These experiments will test the relationship between cargo 

size, receptor number and FG usage and contribute to our understanding of the NPC as a 

selective permeability channel.   

 

How does competition influence transport efficiency? 

Transport receptors are mediators, interacting as a molecular bridge between 

cargoes and the NPC to mediate exchange between the nucleus and cytoplasm. We have 

seen that over-expression of KAP104 or KAP121 can rescue nuclear import defects of 

model cargoes (Appendix A). These Kaps rescued steady-state nuclear localization of 

model cargoes in NPC FG∆ mutant S. cerevisiae strains. Because of the complex 

interplay between factors in nucleocytoplasmic transport, it is difficult to tease apart the 
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molecular basis for this rescue. Increased abundance of a Kap could favor formation of a 

Kap-cargo complex, a precursor step necessary prior to transport of cargoes. If this is the 

molecular basis of the rescue, then this rescue would be thwarted by compensatory 

overexpression of a cargo. A second possibility is that increased abundance of a Kap 

alters molecular competition for overlapping/limiting binding sites at the NPC. In this 

scenario, we predict that competition will be most readily apparent in FG∆ mutants 

wherein the number of total FG repeats is limited, thereby enhancing competition. We 

have identified a bank of FG∆ mutants with defects in Kap104 and/or Kap121 import, 

and we have successfully used live-cell microscopy to monitor the subcellular 

localization of model cargoes trafficked by each of these Kaps (STRAWN et al. 2004; 

TERRY and WENTE 2007). Kap104 and Kap121 are excellent choices for a thorough study 

of competition, as they are present at similar levels in cells (estimated 12,000 Kap104 and 

18,000 Kap121 molecules per cell; (TIMNEY et al. 2006)) and we have cargo reporters for 

each that can be used in steady-state or rate assay of import. In addition, Kap104 and 

Kap121 have both overlapping and distinct interactions with FG-Nups (AITCHISON et al. 

1996; ALLEN et al. 2001; DAMELIN and SILVER 2000; SEEDORF et al. 1999). We may, 

therefore, detect differences in Kap competition by biasing the FG composition of the 

NPC with deletion of binding sites for one or the other Kap. I propose to begin these 

studies with two groups of FG∆ mutants. In the first set, we would examine strains with 

deletions of multiple symmetric FG domains. We have six FG∆ mutants that remove 

roughly half of the central FG domains, and each of these has steady-state defects in both 

Kap104 and Kap121 import (STRAWN et al. 2004). In addition, we would examine the 

effects of the asymmetric or asymmetric plus symmetric mutants. Analysis of Kap 
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competition in the ∆N∆C nup100∆GLFG nup145∆GLFG mutant is especially interesting, 

as this mutant has defects in Kap121 import but not in Kap104 import.  

Thorough analysis of competition between Kaps will require application of a 

quantitative system to measure nuclear to cytoplasmic ratios for fluorescent reporters, 

such as the methods used by others (TIMNEY et al. 2006). In addition, we must use either 

fluorescently-tagged Kap signal intensity or immunoblotting to calibrate the degree of 

Kap over-expression. Ideally we will use a dual-color system in one of two ways. For 

looking at how Kap over-expression rescues transport of its own cargoes, monitoring the 

abundance of a Kap and its cargo on a single-cell resolution will allow us to calculate, in 

a closed system, the dependence of transport efficiency on the Kap:cargo ratio. Because 

plasmid copy number is variable between cells, it is necessary that we consider the 

effects of Kap over-expression on a cell-by-cell basis. For examining how Kap over-

expression may compete with transport via another Kap, the ideal set-up would be to 

have, for example, a GFP-cargo for Kap121 and an RFP-cargo for Kap104 co-expressed. 

This would allow us to monitor nuclear-to-cytoplasmic abundance of each model cargo 

simultaneously, detecting differential effects of Kap over-expression on each cargo.  

What are the factors that could influence how effectively a Kap competes with 

others for NPC binding sites? The abundance of a Kap and its cargoes affects import 

efficiency (HODEL et al. 2006). The diversity of FG binding sites with which the Kap can 

interact, its affinity for those binding sites, and the avidity of FG-binding hydrophobic 

pockets on the surface of the Kap likely also will affect transport of a receptor. These 

latter factors are not easily manipulatable without potentially disrupting the structure of a 

Kap, and are likely not feasible points to examine. However, a robust assay of varying 
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abundance of Kaps and substrate cargoes would provide support to our model that Kaps 

compete for overlapping points along multiple pathways through the NPC. This result, in 

turn, would force re-examination of models of transport, as no model accounts for 

potential differences in the ability of each Kap to overcome an entropic barrier or to 

differentially invade an FG gel-meshwork. 

 

Do transport receptors use different binding sites for each direction of 

transport? 

Maintenance of nucleocytoplasmic transport requires that a transport receptor be 

able to undergo bi-directional shuttling. After delivering their cargoes, import Kaps must 

recycle to the cytoplasm for another round of transport. And, to export cargoes, export 

Kaps must first be imported. This process must be further supported by shuttling of Ntf2 

to continually import RanGDP. In other words, in order to import (or export) a single 

cargo, multiple transport events must occur: (1) Kap-cargo import; (2) Kap-RanGTP 

recycling; (3) Ntf2-RanGDP import; and (4) Ntf2 recycling. As the Ntf2 homodimer 

imports two RanGDP molecules per cycle (as visualized in (STEWART et al. 1998)), only 

one Ntf2 cycle is required per two import (or export) events. There are two exceptions to 

this: transport via the Kap95-Kap60 heterodimer and via Msn5. During the recycling 

stage following Kap95-Kap60-mediated cargo import, Kap95-RanGTP forms one 

recycling complex, and Kap60 is exported coupled to Cse1-RanGTP (KUNZLER and 

HURT 1998; KUTAY et al. 1997a; LEE et al. 2005; MATSUURA and STEWART 2004; 

VETTER et al. 1999). In contrast, Msn5 is perhaps the most efficient Kap; it is the only 

Kap known to both import and export cargo (MACARA 2001). How can so much 
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molecular traffic be coordinated – and in single NPCs, which are presumed to function 

for bi-directional traffic? Do Kaps bind different FGs during their import versus export 

phases, with or without cargo? This is certainly an attractive model – preventing the 

recycling form of a Kap from interfering with the cargo-bound form of a Kap. Teasing 

this apart in vivo is difficult. Single-molecule studies demonstrated that the movement of 

a Kap within the NPC is seemingly random; as these studies did not detect directed 

trafficking, it is unlikely that they could detect differences between transport and 

recycling phases of a Kap. On the other hand, a large-scale in vitro binding study 

detected differences in the affinity of several Kaps for FGs depending on the 

presence/absence of RanGTP (ALLEN et al. 2001). In addition, the helical pitch of Kaps is 

slightly shifted depending on whether they are associated with cargo and/or RanGTP 

(CONTI et al. 2006; COOK et al. 2007). Slight shifts of the Kap superhelix could alter the 

hydrophobic pockets that are most receptive to FG binding and allow Kaps to adapt to 

binding different cargoes. In our transport assays, we cannot differentiate between defects 

in the cargo-bound, recycling, or both forms of a Kap.  

Perhaps one way to test would be to identify FG∆ mutant(s) with defects in Msn5 

transport, such as attempted in (BELANGER et al. 2004). A defect in either the import or 

export phase likely would result in steady-state defects for all Msn5 cargoes. However, 

rate assays might successfully differentiate between import-specific and export-specific 

defects. This experiment requires establishing NLS and NES reporters for Msn5 transport 

that are small enough for use in energy depletion assays (i.e., can diffuse through the 

NPC to equilibrium). With these reporters and interesting FG∆ mutants in hand, an 

energy depletion assay and two-color imaging of recovery would detect import or export-
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specific defects for Msn5. This assumes that Msn5 distributes equally to the nucleus and 

cytoplasm upon energy depletion. Because this is a rate assay, rather than steady-state, 

subtle differences between the import and export phases for this single Kap may be 

detected. 

 

How does the NPC contribute to regulation of mRNA export? 

The protein composition of mRNPs is highly dynamic, with continual changes 

occurring from transcription, through processing/maturation, nuclear export, and 

translation (IGLESIAS and STUTZ 2008). The changes in protein composition of an mRNP 

both mark past events (e.g., splicing deposits the exon junction complex) and ready it for 

next steps, and mRNA maturation is coupled to changes in mRNP composition (IGLESIAS 

and STUTZ 2008; KOHLER and HURT 2007). Of great interest to this thesis work is 

understanding the mRNP composition that marks an mRNA ready for nuclear export. In 

addition, elucidating the quality control mechanisms that permit initiation of nuclear 

export (such as the Mlps in checking for splicing) is of interest – how does the NPC or 

NPC-associated factors function in quality control in mRNA export? For example, it is 

not fully understood how heat shock-induced mRNA is preferentially exported under 

stress conditions in S. cerevisiae (discussed in (ROLLENHAGEN et al. 2007)), though 

Nup42 is linked to regulation of this process. Additionally, the work presented in 

Chapters 2 and 3 found links between specific FG domains and mRNA export. We 

observed that the FG domain of Nup42, and NPC protein located in the cytoplasmic face 

of the pore, affects mRNA export. This FG domain is adjacent to a binding site for the 

mRNA export factor Gle1, and early evidence in our studies suggests that the FG domain 
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and the Gle1 binding domain of Nup42 together contribute to mRNA export. Although 

we did not identify a strong, specific role singly for the FG domain of Nup159, this FG-

Nup is also at the cytoplasmic face of the NPC, and juxtaposed to the FG domain of 

Nup159 is a binding site for the mRNA export factor Dbp5. Terminal release of an 

mRNP from the NPC – the conclusion of nuclear mRNA export – is not mechanistically 

understood. A ratchet-like model has been proposed (STEWART 2007b). In the ratchet 

model, serial removal of proteins from the mRNP changes the composition of the mRNP 

such that it cannot retro-translocate back into the NPC. We predict that Nup42 and 

Nup159 – each with juxtaposed binding sites for the mRNA export receptor Mex67-Mtr2 

(on FG domains) and mRNA export factors Gle1 and Dbp5 (on Nup42 and Nup159, 

respectively) play a critical regulatory role in mRNA export. Of note, mRNPs are 

relatively large cargoes. Does mRNP export require multiple transport receptors? The 

stoichiometry of Mex67-Mtr2 on a single transcript is unknown, although Mex67 is 

recruited to several different positions along the length of an mRNA (CHENG et al. 2006; 

DIEPPOIS et al. 2006; LE HIR et al. 2001). At the start of export, what marks a transcript 

as ready and processed for export, and what Nups or NPC-associated factors recognize 

this? At termination of export on the cytoplasmic face of the NPC, how do Nups or NPC-

associated factors alter the mRNP composition to release it from the pore? These quality-

control mechanisms on either end of the NPC are of interest to understanding regulated 

mRNA export.  

 

123



Does the type of FG domain or the location of domains dictate transport 

function?  

We have begun tests with a ∆N nup49∆GLFG mutant (Chapter 3) to examine 

whether different FG domains can substitute for the GLFG domain of Nup49 in mRNA 

export. In addition to generating and testing FG domain swap constructs, we will design 

constructs with minimal number of FG repeats. This will allow us to test the importance 

of FG repeat avidity versus a specific FG repeat plus spacer sequence as the determinant 

of transport function. There are two methods that could be used to alter the number of FG 

repeats in a given FG-Nup. One option is to generate domain deletions by standard PCR 

and cloning methods. This strategy would delete not only FG repeat(s), but also the 

intervening spacer sequence(s), thus shortening the overall length of the FG domain. The 

alternative is to use site-directed mutagenesis to engineer sequences encoding mutated 

FG repeats (e.g., mutate to encode Ser instead of Phe). This approach is tedious for 

making multiple mutations and requires judicious selection of mutations so as to change 

Phe residues to a residue that is commonly in FG domains. However, this also keeps 

intact the length of the full FG domain, which might be important for the NPC barrier or 

topological flexibility.  

Assays of FG domain swaps and assessment of the number of FG repeats required 

for transport will indicate whether the type and number of FG repeats is important. 

Targeted swapping of FG domains will allow direct examination of whether the type of 

FG repeat, the FG domain size, or the location of FG repeat is most critical to transport. 

Consideration of the ∆N∆C nsp1∆FG∆FXFG mutant might also give insight into this 

question. This mutant had five GLFG domains and one FG domain remaining; the other 
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three FG domains and all of the FXFG domains have been deleted. The ∆N∆C 

nsp1∆FG∆FXFG mutant is temperature-sensitive and has transport defects, but is viable; 

in contrast, no more than three GLFG domains can be deleted (STRAWN et al. 2004). The 

results of the present study point to specific requirements for GLFG domains; thus we 

suspect that there are functional differences between types of repeats. In addition, the 

∆N∆C nsp1∆FG∆FXFG mutant has the least FG mass remaining of any of the mutants in 

our FG∆ collection. Is it the GLFG repeats specifically or the substructural location of 

GLFG repeats that is required for viability of this strain? This could be tested by 

systematically replacing each GLFG repeat with an FXFG repeat in the ∆N∆C 

nsp1∆FG∆FXFG mutant. The design and execution of these experiments is complicated 

by our recent finding that the LoxP strategy we previously used (STRAWN et al. 2004) 

leaves an epitope tag-LoxP "scar" sequence that is deleterious to NPC function (Chapter 

3). As an alternative to this method, we could construct the FG-swap coding sequences 

using standard molecular biology approaches and then use gene replacement techniques 

in S. cerevisiae to integrate these alleles. The major technical challenge of this is that we 

are unable to monitor expression and stability of the chimeric proteins, as we do not have 

antibodies specific to each non-FG domain. However, the non-FG domain of many FG-

Nups are essential genes, and so we can rationalize that FG-swap mutants that are viable 

must be producing a functional fusion protein. Alternatively, we could design these 

swaps with an epitope tag in another location (e.g., the C-terminus of the Nup with a 

flexible linker) or could test different epitope tags (and without the LoxP sequence). 

These approaches require sustained effort to build mutant strains and tools, but will 

provide valuable insight into the determinants of transport pathways.  
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How do FG-domains contribute to forming the permeability barrier?  

Understanding the duality of NPC function – in permitting both free diffusion of 

small molecules and in trafficking large molecules/complexes – requires improved 

understanding of the constituents of the permeability barrier.  Both FG-Nups and 

structural Nups have been implicated in forming this barrier (PATEL et al. 2007; SHULGA 

and GOLDFARB 2003; SHULGA et al. 2000). Two assays for measuring the integrity of the 

barrier in vivo give different results. A GFP-based assay developed by Shulga & 

Goldfarb (SHULGA et al. 2000) monitors localization of sized reporters and applied to the 

FG∆ mutant ∆N∆C nsp1∆FG∆FXFG did not detect any impairment of the permeability 

barrier (STRAWN et al. 2004). If FG domains are the key component of the permeability 

barrier, then this result demonstrates that the barrier is surprisingly resilient to FG∆; the 

∆N∆C nsp1∆FG∆FXFG mutant has only ~46.8% of its total FG repeats remaining 

(STRAWN et al. 2004). An alternative assay, employing a yeast one-hybrid technology, 

detected leakiness in the permeability barrier with deletion of certain single FG domains 

(PATEL et al. 2007). This yeast one-hybrid assay assumes that the LexA-Gal4AD reporter 

protein homodimerizes in the cytoplasm to form an entity that is too large for free 

diffusion into the nucleus. Curiously, deletion of the FXFG domain of Nup60, which 

removes a mere 32 FXFG repeats (4FXFG repeats in Nup60; 8 copies of Nup60 per NPC 

(ROUT et al. 2000), is a sufficient perturbation to cause apparent permeability barrier 

defects in this approach (PATEL et al. 2007). As the nup60∆FXFG allele is one of the six 

deletions present in the ∆N∆C nsp1∆FG∆FXFG mutant, we find it surprising that the 

much less substantive nup60∆FXFG mutant alone would have permeability defects. To 
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fully understand the contributions of FG domains to the maintenance of the permeability 

barrier, the discrepancies between these two approaches must be resolved.  

 

How are Nups regulated in disease and developmental contexts? 

Alterations to the NPC, such as blocking one pathway to favor another, are a 

potentially rapid and dramatic strategy for changing the flux of all traffic through the 

NPC. The cell cycle-regulated exposure of a Kap121 binding site is an excellent example 

of temporal changes to the NPC that alter transport for a single receptor (MAKHNEVYCH 

et al. 2003). Likewise, the degradation of Nups by many viruses highlights the 

manipulatibility of the system to favor specific trafficking events (FARIA et al. 2005; 

GUSTIN 2003; GUSTIN and SARNOW 2001; GUSTIN and SARNOW 2002; SATTERLY et al. 

2007). 

Classic EM experiments have detected an increased number of NPCs in the NE of 

a stimulated lymphocyte (MAUL et al. 1971), suggesting that there are global mechanisms 

to regulate the total number of NPCs and to make rapid changes in NPC abundance. Are 

there more subtle differences in Nup expression and NPC structure/function/pathways 

during organism development? Tissue-specific expression of two Nups has been detected 

during mouse development (OLSSON et al. 2004; SMITHERMAN et al. 2000), although the 

molecular consequences of this altered NPC composition on signaling and trafficking is 

not fully understood. In Drosophila, expression of the structural Nup mbo is spatially 

restricted, and mbo has an inhibitory effect on Crm1-mediated export (UV et al. 2000). 

Further evidence for Nup roles in disease come from studies of a Nup98 knock-out 

mouse (WU et al. 2001). NUP98/NUP96 are the vertebrate homologue of the S. 
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cerevisiae Nup100/Nup116/Nup145N family of FG-Nups (RYAN and WENTE 2000). The 

polypeptide translated from NUP98/NUP96 transcripts is post-translationally cleaved to 

form two peptides: Nup98, which contains GLFG repeats, and Nup96, which is a 

structural protein (FONTOURA et al. 1999). NUP98-/- murine cells have defects in a subset 

of transport pathways (WU et al. 2001), and the NUP98+/- mice have defects in interferon 

responsiveness (ENNINGA et al. 2002). This thwarted interferon response increases 

susceptibility of the mice to lethal viral infection (SATTERLY et al. 2007), thus 

demonstrating the importance of functional nucleocytoplasmic transport in immune 

response. We predict that future analysis of gene expression patterns in varied tissues and 

developmental states will detect altered expression of Nups and transport components as 

a regulatory mechanism.  

 

Closing 

Given the hierarchical role of the NPC as the sole portal for nucleocytoplasmic 

exchange, understanding the NPC translocation mechanism is a priority. Our results 

demonstrate that there are multiple FG transport pathways through the NPC, and further 

studies are needed to delineate the molecular determinants of each pathway. Using 

mutants with limited numbers of FG repeats, we have found that the abundance of Kap 

directly impacts its transport efficiency. These studies set the stage for future 

investigation of competition between Kaps for binding the NPC. Further studies are 

needed to resolve the biophysical nature of the permeability barrier and explain how 

translocation proceeds through this barrier.  The results of these experiments will also 

require revised models that accommodate all the documented active and diffusive 

128



transport capacities of the NPC, as well as considerations of how interactions within and 

among cargoes, transport receptors and Nups impact the stability of the NPC barrier. 

With this in hand, the field could make rational predictions and conduct tests for how 

transport would be impacted by changes in Nup composition during viral infection, cell 

cycle transitions, signaling cascades, or cell differentiation. 

 

129



APPENDIX A 

 

Competition as a possible mechanism affecting transport 

 

Competition at multiple levels affects transport 

Competition between cargoes for binding to a Kap or between Kaps for binding to 

the NPC is emerging as an important consideration in studies of nucleocytoplasmic 

transport dynamics. Each Kap can potentially bind multiple signal-bearing cargoes. Thus, 

if the abundance of a Kap is limiting for a pool of cargoes, then competition between 

cargos potentially impacts transport efficiency.  In support of this, others have suggested 

that Kap-cargo complex formation and disassembly, and not the actual translocation 

process, is the rate-limiting step in transport (GILCHRIST et al. 2002). Additionally, 

import and export cargoes can compete for binding to Kaps (MOSAMMAPARAST et al. 

2002; OHNO et al. 2000). The affinity of a signal sequence (either NLS or NES) for a Kap 

affects the formation and disassembly of a Kap-cargo complex and thus the transport of 

complexes across the NPC (ENGELSMA et al. 2004; KUTAY and GUTTINGER 2005; 

TIMNEY et al. 2006). At the level of Kap-NPC interaction, competition for common 

binding sites may also impact cellular dynamics. The abundance of a Kap affects its 

transport rate (MOSAMMAPARAST and PEMBERTON 2004; TIMNEY et al. 2006; YANG and 

MUSSER 2006), although transport via a single Kap is saturable under conditions of 

excess cargo, as shown in classic microinjection experiments (BATAILLE et al. 1990; 

JARMOLOWSKI et al. 1994; NAKIELNY and DREYFUSS 1999; POKRYWKA and GOLDFARB 

1995).  
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As an example of the combinatorial effects of Kap abundance and Kap-NLS 

affinity in nuclear import, the ribosomal protein Rpl25 is imported into the nucleus in a 

Ran-dependent manner, with Kap123 primarily responsible for Rpl25 import (ROUT et al. 

1997), although as is the case with other ribosomal proteins, Kap121 can also contribute 

to Rpl25 import (ROUT et al. 1997; SYDORSKYY et al. 2003). In a kap123∆ S. cerevisiae 

mutant, a GFP reporter for Kap123-mediated import (the NLS from Rpl25 fused to GFP) 

is partially mislocalized to the cytoplasm, indicating that other Kaps cannot fully 

compensate for the loss of Kap123 (ROUT et al. 1997; TIMNEY et al. 2006). 

Overexpression of Kap121, but not other Kaps, in a kap123∆ mutant rescues nuclear 

import of the Rpl25NLS-GFP reporter (TIMNEY et al. 2006). Thus, increased abundance 

of an alternative Kap can bypass the requirement for Kap123. Transport is saturable when 

the in vivo concentration of Kap123 reaches ~15uM, a value estimated to be a ~300% 

increase over the physiological levels of Kap123 expression. Interestingly, although the 

endogenous expression level of Kap121 is ~6-fold lower than Kap123, overexpression of 

Kap121 increases Rpl25-NLS-GFP transport with similar kinetics of saturation at a 

Kap121 concentration of ~15uM and half-maximal transport at ~7uM. As Kap121 and 

Kap123 have similar affinities for the Rpl25 NLS, these results indicate that increasing 

Kap concentration can augment transport rates. Although Kap121 and Kap123 have 

different preferences for FG-Nup binding sites (Table 2, Chapter 1) (ALLEN et al. 2001; 

ALLEN et al. 2002; MARELLI et al. 1998; ROUT et al. 1997; SEEDORF et al. 1999), 

transport of Rpl25NLS-GFP via either Kap proceeds with similar kinetics (TIMNEY et al. 

2006). The saturability of transport for Kap121 and Kap123 may come from increased 

occupancy of FG binding sites and therefore translocation becomes rate-limiting. 
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Alternatively, the excess of a Kap/cargo could deplete the Ran gradient (via export of 

RanGTP on the recycling Kap) faster than RanGDP can be re-imported. Monitoring all of 

these factors in vivo is not a trivial experiment and has not been conducted.  

We have previously demonstrated that there are multiple FG pathways through 

the NPC, although the degree of overlapping binding site(s) between pathways remains 

unclear. Other studies of protein-protein interaction find that Kaps have binding 

preferences on specific FG-Nups (ALLEN et al. 2001; ALLEN et al. 2002; DAMELIN and 

SILVER 2000; STRAWN et al. 2004; STRAWN et al. 2001) (AITCHISON et al. 1996; ALLEN 

et al. 2001; ALLEN et al. 2002; DAMELIN and SILVER 2000; MARELLI et al. 1998; ROUT et 

al. 1997; SEEDORF et al. 1999; STRAWN et al. 2004; STRAWN et al. 2001). If Kaps use 

overlapping NPC binding sites, then competition between Kaps for these sites could 

impact transport dynamics. 

 

Kap competition: FG∆ mutant NPCs are subject to competition among 

karyopherins 

In our previous studies (STRAWN et al. 2004; TERRY and WENTE 2007), we have 

found evidence supporting multiple transport pathways through the NPC. By comparing 

the ability of different transport receptors to translocate model cargoes across FG∆ 

mutant NPCs, we found that specific FG domain deletions affected transport by only a 

subset of transport receptors. Previous studies have demonstrated that Kap concentrations 

directly impact transport efficiency of a model cargo in vivo (TIMNEY et al. 2006). To test 

the ability of transport receptors to compete for limited NPC binding sites, we over-

expressed Kap and monitored nuclear import of a model cargo. If transport receptors 
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compete for overlapping binding sites, or if there are lesser-preferred, alternative 

pathways for a single Kap, then increased relative expression levels of a given Kap would 

increase its occupancy on those overlapping binding sites or force increased use of 

alternative pathways. The nup49∆GLFG nup100∆GLFG nup145∆GLFG mutant and the 

nup100∆GLFG nup145∆GLFG nsp1∆FG∆FXFG mutant have temperature-sensitive 

defects in nuclear import via Kap104 ((STRAWN et al. 2004), Figure A-1). Kap104 import 

can be monitored by immunofluorescence to detect Nab2, a Kap104 cargo (AITCHISON et 

al. 1996), or by live-cell microscopy with a Nab2NLS-GFP reporter (SHULGA et al. 

2000). Overexpression of KAP104 does not alter Nab2 localization in wild-type cells. In 

both the nup49∆GLFG nup100∆GLFG nup145∆GLFG mutant and the nup100∆GLFG 

nup145∆GLFG nsp1∆FG∆FXFG, a KAP104-2µ vector restores nuclear import of Nab2, 

indicating that the increased expression level of KAP104 impacts the efficiency of 

nuclear import by this transport receptor. From these results, we infer that the increased 

levels of Kap104 result in increased nuclear localization of Nab2. This rescue of Kap104-

mediated import may occur due to increased efficiency of Kap104-Nab2 complex 

formation (if Kap104 is rate-limiting for Nab2 nuclear import) or because the additional 

Kap104 can effectively compete for overlapping or alternative import FG binding sites. If 

Kap104 does, indeed, compete with other Kaps for FG binding sites, then overexpression 

of Kap104 might impair transport via another Kap. These results raise the possibility of 

competition for binding sites during transport, and we predict that our FG∆ mutants are 

biased towards detecting competition events as they have decreased number of binding 

sites. To directly test whether increasing the expression level of one transport receptor 

affected the transport dynamics of others, we examined the localization of model cargoes 
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Figure A-1. Overexpression of KAP104 rescues Nab2 import defects. 
Wild-type or FG mutant yeast were transformed with an empty vector or with a KAP104 2-micron overexpression vector. Cells were 
grown at 23˚ and/or shifted to 37˚ for 1 hour. Cells were then fixed and processed for indirect immunofluorescence against Nab2. 
Coincident DAPI staining detects nuclei. 
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in live cells with increased levels of a given Kap. In future studies we will investigate this 

possibility of competition using our system of Kap overexpression vectors and NLS-GFP 

reporters.  

 

Kap expression levels affect transport 

Third, we have tested the importance of Kap expression level using mutants 

where NPC binding sites are limited for a given Kap. Overexpression of KAP104 can 

restore nuclear import of a model Kap104 cargo in FG∆ mutants. This observation leads 

us to speculate about the importance of Kap competition for limited NPC binding sites. 

The abundance of a Kap, therefore, influences the efficiency of cargo transport. The 

effect of increased Kap104 abundance is likely increasing the abundance of Kap104 

activity at the NPC. Similar results have been observed with overexpression of KAP123 

(TIMNEY et al. 2006). The role of Kap abundance is not directly addressed by current 

models of the transport mechanism. If transport receptors bind and locally “dissolve” an 

FG meshwork, as proposed in the selective phase model, then increased transport 

receptor concentration would cause a net increase in the dissolution of the FG gel. Is it 

possible to completely dissolve the FG gel and therefore eliminate permeability? Or does 

the opposite happen – complete occupancy of the FG binding sites increases the barrier? 

Applying the tenets of the entropic barrier/virtual gating model, increased transport 

receptor concentration might increase occupancy of FG binding sites on either side of the 

NPC, thus increasing the probability/favorability of spontaneous translocation across that 

barrier. In any case, there is a fundamental limit to the number of transport receptors that 

can occupy any given pore, and this is presumably defined by the total number of 
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potential FG binding sites. In addition, increased transport can only be supported if 

terminal release mechanisms permit. Increased transport has the potential to deplete 

nuclear RanGTP pools if Ntf2 cannot re-import RanGDP and/or the RanGEF activity is 

inadequate, and maintenance of a steep RanGTP:RanGDP gradient is necessary to 

transport and accumulate cargo above its equilibrium (GORLICH et al. 2003). 

Mathematical modeling of transport indeed suggests that increased Kap abundance can 

increase transport efficiency, but only to a limited degree, as futile shuttling of the Kap 

can deplete the Ran gradient (RIDDICK and MACARA 2005). If increasing the 

concentration of one transport receptor increases its occupancy of the NPC or alters the 

Ran gradient, then this may have deleterious effects on shuttling of other transport 

receptors. We have begun in vivo assays in S. cerevisiae to examine potential negative, 

competitive effects of Kap overexpression using live-cell reporters for Kap transport. 

Disruptions to the Ran gradient might be detectable if we could adapt the technology of a 

FRET-based system for RanGTP vs. RanGDP localization (KALAB et al. 2002) for use in 

the yeast system. Alternatively, if not all Kaps are affected by competition, then we have 

in vivo evidence for continued functionality of the Ran system.  Through these studies of 

Kap overexpression, we have made insights towards understanding the effects of 

transport receptor abundance and the potential for competition for FG binding sites at the 

NPC.  
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Materials & Methods 

 

Kap overexpression and transport assays 

Yeast strains harboring either empty vector or KAP104 over-expression vector 

were grown to early-mid-log phase in SC media lacking the appropriate amino acid and 

supplemented with 2% glucose. After culture at 23˚C or after 1-hour shift to 37˚C, cells 

were fixed and processed for indirect immunofluorescence against Nab2, as described 

above. For KAP121 over-expression analysis, yeast strains harboring either empty vector 

or KAP121 over-expression vector in addition to pSpo12 76-130-GFP (Spo12NLS-GFP) 

were grown to early-mid-log phase in SC media lacking the appropriate amino acid and 

supplemented with 2% glucose. Live cells were then directly imaged.  

 

Microscopy and image acquisition 

All images were acquired using an Olympus BX50 microscope with a UPlanF1 

100x/1.30 oil immersion objective and a Photometrics Coolsnap HQ camera. Within each 

experiment, all images were collected and scaled identically. Images were collected using 

Image Pro Express and processed with Adobe Photoshop 9.0 or higher software. 
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APPENDIX B 
 
Table A-1. List of yeast strains used in this study. 
SWY# Genotype Source 
SWY2283 ADE2 ADE3 ura3-1 his3-11,15 TRP1 leu2-3,112 lys2 (STRAWN et 

al. 2004) 
SWY2284 ADE2 ADE3 ura3-1 his3-11,15 trp1-1 leu2-3,112 LYS2 (STRAWN et 

al. 2004) 
SWY2285 ADE2/ADE2 ADE3/ADE3 ura3-1/ura3-1 his3-11,15/his3-11,15 

trp1-1/TRP1 leu2-3,112/ leu2-3,112 LYS2/lys2  
(STRAWN et 
al. 2004) 

SWY2729-
2731; 2737 

nup2∆FxFG  (STRAWN et 
al. 2004) 

SWY2751-
2754; 2757 

nup57∆GLFG  (STRAWN et 
al. 2004) 

SWY2762-
2765; 2766 

nup100∆GLFG  (STRAWN et 
al. 2004) 

SWY2771-
2774; 2775 

nup60∆FxF  (STRAWN et 
al. 2004) 

SWY2783-
2785; 2786 

nup100∆GLFG nup57∆GLFG  (STRAWN et 
al. 2004) 

SWY2789-
2792; 2793 

nup116∆GLFG (STRAWN et 
al. 2004) 

SWY2796-
2799; 2800 

nsp1∆FxFG nup2∆FxFG  (STRAWN et 
al. 2004) 

SWY2801-
2802; 2803 

nup1∆FxFG  (STRAWN et 
al. 2004) 

SWY2807-
2809; 2809 

nup159∆FG  (STRAWN et 
al. 2004) 

SWY2811-
2813; 2814 

nsp1∆FG  (STRAWN et 
al. 2004) 

SWY2815-
2817; 2818 

nup159∆FG nsp1∆FG  (STRAWN et 
al. 2004) 

SWY2819-
2821; 2822  

nup116∆GLFG nup57∆GLFG  (STRAWN et 
al. 2004) 

SWY2825-
2827; 2828 

nup49∆GLFG  (STRAWN et 
al. 2004) 

SWY2831-
2833; 2834 

nup42∆FG  (STRAWN et 
al. 2004) 

SWY2835-
2837; 2838 

nup100∆GLFG nup49∆GLFG  (STRAWN et 
al. 2004) 

SWY2839-
2842; 2843  

nup116∆GLFG nup49∆GLFG  (STRAWN et 
al. 2004) 

SWY2844- nup42∆FG nup159∆FG  (STRAWN et 
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2846; 2847 al. 2004) 
SWY2848-
2849;  

nup42∆FG nsp1∆FG  (STRAWN et 
al. 2004) 

SWY2850-
2853; 2854 

nup42∆FG nup159∆FG nsp1∆FG  (STRAWN et 
al. 2004) 

SWY2856-
2857, 3069; 
2858 

nup2∆FxFG nup60∆FxF  (STRAWN et 
al. 2004) 

SWY2861-
2863; 2864 

nsp1∆FxFG nup2∆FxFG nup1∆FxFG  (STRAWN et 
al. 2004) 

SWY2867-
2869; 2870 

nup145∆GLFG  (STRAWN et 
al. 2004) 

SWY2871-
2873; 2874  

nup100∆GLFG nup57∆GLFG nup49∆GLFG  (STRAWN et 
al. 2004) 

SWY2882-
2884; 2885 

nup57∆GLFG nup49∆GLFG  (STRAWN et 
al. 2004) 

SWY2892-
2894; 2895 

nup1∆FxFG nup2∆FxFG  (STRAWN et 
al. 2004) 

SWY2896-
2897; 2898 

nup1∆FxFG nup2∆FxFG nup60∆FxF  (STRAWN et 
al. 2004) 

SWY2899-
2902; 2904 

nsp1∆FxFG nup2∆FxFG nup60∆FxF  (STRAWN et 
al. 2004) 

SWY2904-
2906; 2907 

nsp1∆FxFG nup2∆FxFG nup60∆FxF nup1∆FxFG  (STRAWN et 
al. 2004) 

SWY2908-
2910; 2955 

nup42∆FG nup159∆FG nup1∆FxFG  (STRAWN et 
al. 2004) 

SWY2911-
2912; 2956 

nup42∆FG nup159∆FG nup2∆FxFG  (STRAWN et 
al. 2004) 

SWY2913-
2914; 2957 

nup42∆FG nup159∆FG nup60∆FxF  (STRAWN et 
al. 2004) 

SWY2915-
2916;  

nup116∆GLFG nup145∆GLFG  (STRAWN et 
al. 2004) 

SWY2919-
2922; 2923 

nsp1∆FG∆FxFG  (STRAWN et 
al. 2004) 

SWY2924-
2926; 2927 

nup145∆GLFG nup57∆GLFG  (STRAWN et 
al. 2004) 

SWY2928-
2931; 2932 

nsp1∆FG∆FxFG nup49∆GLFG  (STRAWN et 
al. 2004) 

SWY2933-
2935; 2936 

nsp1∆FG∆FxFG nup57∆GLFG  (STRAWN et 
al. 2004) 

SWY2937-
2939; 2940 

nup42∆FG nup159∆FG nup2∆FxFG nup60∆FxF  (STRAWN et 
al. 2004) 

SWY2941- nup42∆FG nup159∆FG nup1∆FxFG nup60∆FxF  (STRAWN et 
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2943; 2944 al. 2004) 
SWY2945-
2948; 2949 

nup42∆FG nup159∆FG nup1∆FxFG nup2∆FxFG  (STRAWN et 
al. 2004) 

SWY2950-
2953; 2954  

nup100∆GLFG nup145∆GLFG nup57∆GLFG  (STRAWN et 
al. 2004) 

SWY2958-
2961; 2962 

nsp1∆FG∆FxFG nup145∆GLFG  (STRAWN et 
al. 2004) 

SWY2963-
2965; 2966 

nup145∆GLFG nup49∆GLFG  (STRAWN et 
al. 2004) 

SWY2967-
2969; 2970  

nup100∆GLFG nup145∆GLFG nup49∆GLFG  (STRAWN et 
al. 2004) 

SWY2971, 
3041; 3045 

nup42∆FG nup159∆FG nup60∆FxF nup1∆FxFG nup2∆FxFG  (STRAWN et 
al. 2004) 

SWY2972-
2973, 2982; 
2974  

nup100∆GLFG nup145∆GLFG  (STRAWN et 
al. 2004) 

SWY2975-
2977; 2978 

nsp1∆FG∆FxFG nup116∆GLFG  (STRAWN et 
al. 2004) 

SWY2980-
2981, 2983; 
3005  

nsp1∆FG∆FxFG nup100∆GLFG nup145∆GLFG  (STRAWN et 
al. 2004) 

SWY3001 nsp1∆FG∆FxFG nup57∆GLFG nup49∆GLFG  (STRAWN et 
al. 2004) 

SWY3007-
3009; 3010  

nsp1∆FG∆FxFG nup100∆GLFG nup49∆GLFG  (STRAWN et 
al. 2004) 

SWY3012-
3014; 3015  

nsp1∆FG∆FxFG nup100∆GLFG nup57∆GLFG  (STRAWN et 
al. 2004) 

SWY3027-
3028; 3031 

nsp1∆FxFG nup49∆GLFG  (STRAWN et 
al. 2004) 

SWY3029-
3030 

nsp1∆FxFG  (STRAWN et 
al. 2004) 

SWY3042-
3043; 3044 

nup42∆FG nup159∆FG nup60∆FxF nup1∆FxFG nup2∆FxFG 
nup100∆GLFG  

(STRAWN et 
al. 2004) 

SWY3062-
3064, 3066; 
3065  

nup42∆FG nup159∆FG nup60∆FxF nup1∆FxFG nup2∆FxFG 
nsp1∆FG∆FxFG  

(STRAWN et 
al. 2004) 

SWY3289 trp1-1 lys2 ura3 leu2 his3 HA-loxP-nup42∆FG myc-loxP-
nup159∆FG T7-loxP-nup1∆FXFG myc-loxP-nup2∆FXFG myc-
loxP-nup60∆FXF T7-loxP-nup49∆GLFG + pSW125 

This study 

SWY3290 trp1-1 lys2 ura3 leu2 his3 HA-loxP-nup42∆FG myc-loxP-
nup159∆FG T7-loxP-nup1∆FXFG myc-loxP-nup2∆FXFG myc-
loxP-nup60∆FXF HA-loxP-nup100∆GLFG T7-loxP-
nup49∆GLFG + pSW125 

This study 
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SWY3291 trp1-1 lys2 ura3 leu2 his3 HA-loxP-nup42∆FG myc-loxP-
nup159∆FG T7-loxP-nup1∆FXFG myc-loxP-nup2∆FXFG myc-
loxP-nup60∆FXF HA-loxP-nup100∆GLFG T7-loxP-
nup49∆GLFG + pSW125 

This study 

SWY3292 trp1-1 lys2 ura3 leu2 his3 HA-loxP-nup42∆FG myc-loxP-
nup159∆FG T7-loxP-nup1∆FXFG myc-loxP-nup2∆FXFG myc-
loxP-nup60∆FXF HA-loxP-nup100∆GLFG myc-loxP-
nup145∆GLFG 

This study 

SWY3304 trp1-1 lys2 ura3 leu2 his3 HA-LoxP-nup42∆FG myc-LoxP-
nup159∆FG myc-LoxP-nup2∆FxFG myc-LoxP-nup60∆FxF T7-
LoxP-nup1∆FxFG myc-LoxP-nup57∆GLFG 

This study 

SWY3367 trp1-1 LYS2 ura3 leu2 his3 HA-LoxP-nup42∆FG myc-LoxP-
nup159∆FG T7-LoxP-nup1∆FxFG myc-LoxP-nup2∆FxFG myc-
LoxP-nup60∆FxF HA-LoxP-nup100∆GLFG mex67-GFP:HIS5 

This study 

SWY3368 trp1-1 LYS2 ura3 leu2 his3 HA-LoxP-nup42∆FG myc-LoxP-
nup159∆FG T7-LoxP-nup1∆FxFG myc-LoxP-nup2∆FxFG myc-
LoxP-nup60∆FxF HA-LoxP-nup100∆GLFG mex67-GFP:HIS5 

This study 

SWY3369 trp1-1 lys2 ura3 leu2 his3 HA-LoxP-nup42∆FG myc-LoxP-
nup159∆FG T7-LoxP-nup1∆FxFG myc-LoxP-nup2∆FxFG myc-
LoxP-nup60∆FxF HA-LoxP-nup100∆GLFG mex67-GFP:HIS5 

This study 

SWY3370 trp1-1 LYS2 ura3 leu2 his3 HA-LoxP-nup42∆FG myc-LoxP-
nup159∆FG T7-LoxP-nup1∆FxFG myc-LoxP-nup2∆FxFG myc-
LoxP-nup60∆FxF HA-LoxP-nup100∆GLFG kap104-GFP:HIS5 

This study 

SWY3371 trp1-1 lys2 ura3 leu2 his3 HA-LoxP-nup42∆FG myc-LoxP-
nup159∆FG T7-LoxP-nup1∆FxFG myc-LoxP-nup2∆FxFG myc-
LoxP-nup60∆FxF HA-LoxP-nup100∆GLFG kap104-GFP:HIS5 

This study 

SWY3372 trp1-1 lys2 ura3 leu2 his3 HA-LoxP-nup42∆FG myc-LoxP-
nup159∆FG T7-LoxP-nup1∆FxFG myc-LoxP-nup2∆FxFG myc-
LoxP-nup60∆FxF HA-LoxP-nup100∆GLFG kap104-GFP:HIS5 

This study 

SWY3373 trp1-1 LYS2 ura3 leu2 his3 HA-LoxP-nup42∆FG myc-LoxP-
nup159∆FG T7-LoxP-nup1∆FxFG myc-LoxP-nup2∆FxFG myc-
LoxP-nup60∆FxF kap104-GFP:HIS5 

This study 

SWY3374 trp1-1 lys2 ura3 leu2 his3 HA-LoxP-nup42∆FG myc-LoxP-
nup159∆FG T7-LoxP-nup1∆FxFG myc-LoxP-nup2∆FxFG myc-
LoxP-nup60∆FxF kap104-GFP:HIS5 

This study 

SWY3375 trp1-1 LYS2 ura3 leu2 his3 HA-LoxP-nup42∆FG myc-LoxP-
nup159∆FG T7-LoxP-nup1∆FxFG myc-LoxP-nup2∆FxFG myc-
LoxP-nup60∆FxF kap104-GFP:HIS5 

This study 

SWY3399 trp1-1 LYS2 ura3 leu2 his3 HA-LoxP-nup42∆FG myc-LoxP-
nup159∆FG T7-LoxP-nup1∆FxFG myc-LoxP-nup2∆FxFG myc-
LoxP-nup60∆FxF myc-LoxP-nup57∆GLFG 

This study 

SWY3400 trp1-1 LYS2 leu2 ura3 his3 T7-LoxP-nup1∆FxFG flag-LoxP-
nsp1∆FG∆FxFG  

This study 
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SWY3401 TRP1 lys2 ura3 his3 leu2 T7-LoxP-nup1∆FxFG flag-LoxP-
nsp1∆FG∆FxFG 

This study 

SWY3402 TRP1 lys2 leu2 ura3 his3 myc-LoxP-nup159∆FG flag-LoxP-
nsp1∆FG∆FxFG 

This study 

SWY3403 TRP1 lys2 leu2 ura3 his3 myc-LoxP-nup159∆FG flag-LoxP-
nsp1∆FG∆FxFG 

This study 

SWY3404 trp1-1 LYS2 ura3 leu2 his3 myc-LoxP-nup159∆FG flag-LoxP-
nsp1∆FG∆FxFG 

This study 

SWY3405 trp1-1 LYS2 leu2 ura3 his3 HA-LoxP-nup42∆FG flag-LoxP-
nsp1∆FG∆FxFG 

This study 

SWY3406 TRP1 lys2 ura3 his3 leu2 HA-LoxP-nup42∆FG flag-LoxP-
nsp1∆FG∆FxFG 

This study 

SWY3410 trp1-1, LYS2, leu2, ura3, his3, HA-LoxP-nup42∆FG, myc-LoxP-
nup159∆FG, T7-LoxP-nup1∆FxFG, myc-LoxP-nup2∆FxFG, myc-
LoxP-nup60∆FxF, myc-LoxP-nup57∆GLFG 

This study 

SWY3420 TRP/trp1-1 LYS2/lys2 leu2/leu2 ura3/ura3 his3/his3 T7-LoxP-
nup1∆FxFG/T7-LoxP-nup1∆FxFG flag-LoxP-
nsp1∆FG∆FxFG/flag-LoxP-nsp1∆FG∆FxFG 

This study 

SWY3421 TRP/trp1-1 LYS2/lys2 leu2/leu2 ura3/ura3 his3/his3 myc-LoxP-
nup159∆FG/myc-LoxP-nup159∆FG flag-LoxP-
nsp1∆FG∆FxFG/flag-LoxP-nsp1∆FG∆FxFG 

This study 

SWY3422 TRP1/trp1-1 LYS2/lys2 ura3/ura3 his3/his3 leu2/leu2 HA-LoxP-
nup42∆FG/HA-LoxP-nup42∆FG flag-LoxP-
nsp1∆FG∆FxFG/flag-LoxP-nsp1∆FG∆FxFG 

This study 

SWY3423 TRP1 lys2 ura3 his3 leu2 HA-LoxP-nup42∆FG myc-LoxP-
nup159∆FG flag-LoxP-nsp1∆FG∆FxFG 

This study 

SWY3424 TRP1 lys2 ura3 his3 leu2 HA-LoxP-nup42∆FG myc-LoxP-
nup159∆FG flag-LoxP-nsp1∆FG∆FxFG 

This study 

SWY3427 trp1-1 LYS2 ura3 his3 leu2 HA-LoxP-nup100∆GLFG flag-LoxP-
nsp1∆FG∆FxFG 

This study 

SWY3428 TRP1 lys2 leu2 ura3 his3 HA-LoxP-nup100∆GLFG flag-LoxP-
nsp1∆FG∆FxFG 

This study 

SWY3429 trp1-1 LYS2 leu2 ura3 his3 HA-LoxP-nup100∆GLFG flag-LoxP-
nsp1∆FG∆FxFG 

This study 

SWY3442 trp1-1 LYS2 ura3 his3 leu2 T7-LoxP-nup1∆FxFG HA-LoxP-
nsp1∆FxFG 

This study 

SWY3443 rp1-1 LYS2 ura3 his3 leu2 T7-LoxP-nup1∆FxFG HA-LoxP-
nsp1∆FxFG 

This study 

SWY3444 trp1-1 LYS2 ura3 his3 leu2 HA-LoxP-nsp1∆FxFG myc-LoxP-
nup159∆FG 

This study 

SWY3445 trp1-1 LYS2 ura3 his3 leu2 HA-LoxP-nsp1∆FxFG myc-LoxP-
nup159∆FG 

This study 

SWY3446 TRP1 lys2 ura3 his3 leu2 HA-LoxP-nsp1∆FxFG myc-LoxP- This study 
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nup159∆FG 
SWY3447 TRP1 lys2 ura3 his3 leu2 HA-LoxP-nsp1∆FxFG myc-LoxP-

nup159∆FG 
This study 

SWY3448 trp1-1 LYS2 ura3 his3 leu2 HA-LoxP-nup42∆FG HA-LoxP-
nsp1∆FxFG 

This study 

SWY3449 TRP1 lys2 ura3 his3 leu2 HA-LoxP-nup42∆FG HA-LoxP-
nsp1∆FxFG 

This study 

SWY3462 trp1-1 lys2 leu2 ura3 his3 HA-LoxP-nup42∆FG myc-LoxP-
nup159∆FG T7-LoxP-nup1∆FxFG myc-LoxP-nup2∆FxFG myc-
LoxP-nup60∆FxF myc-LoxP-nup145∆GLFG 

This study 

SWY3498 TRP1/trp1 LYS2/lys2 leu2/leu2 ura3/ura3 his3/his3 myc-LoxP-
nup145∆GLFG/myc-LoxP-nup145∆GLFG T7-LoxP-
nup116∆GLFG/T7-LoxP-nup116∆GLFG 

This study 

SWY3499 TRP1/trp1-1 LYS2/lys2 ura3/ura3 his3/his3 leu2/leu2 HA-LoxP-
nup100∆GLFG/HA-LoxP-nup100∆GLFG flag-LoxP-
nsp1∆FG∆FxFG/flag-LoxP-nsp1∆FG∆FxFG 

This study 

SWY3584 TRP1 LYS2 leu2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup57∆GLFG 

This study 

SWY3585 TRP1 lys2 leu2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup57∆GLFG 

This study 

SWY3586 TRP1 lys2 leu2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG HA-LoxP-nup100∆GLFG 

This study 

SWY3587 TRP1 LYS2 leu2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG HA-LoxP-nup100∆GLFG 

This study 

SWY3588 Trp1 LYS2 leu2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG T7-LoxP-nup49∆GLFG 

This study 

SWY3589 TRP1 lys2 leu2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup145∆GLFG 

This study 

SWY3603 trp1-1 LYS2 ura3-1 leu2-3,112 his3-11,15 HA-LoxP-nup42∆FG 
myc-LoxP-nup159∆FG T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF T7-LoxP-nup116∆GLFG 

This study 

SWY3618 TRP1 lys2 leu2 ura3 his3 myc-LoxP-nup57∆GLFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF T7-LoxP-nup1∆FXFG 

This study 

SWY3619 trp1 LYS2 leu2 ura3 his3 myc-LoxP-nup57∆GLFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF T7-LoxP-nup1∆FXFG 

This study 

SWY3620 TRP1 lys2 leu2 ura3 his3 myc-LoxP-nup57∆GLFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF T7-LoxP-nup1∆FXFG 

This study 

SWY3621 TRP1 lys2 leu2 ura3 his3 myc-LoxP-nup159∆FG HA-LoxP-
nup42∆FG myc-LoxP-nup57∆GLFG 

This study 

SWY3622 trp1 LYS2 leu2 ura3 his3 myc-LoxP-nup159∆FG HA-LoxP-
nup42∆FG myc-LoxP-nup57∆GLFG 

This study 

SWY3623 TRP1 LYS2 leu2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup57∆GLFG 

This study 
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SWY3624 trp1 LYS2 leu2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup57∆GLFG 

This study 

SWY3625 trp1 LYS2 leu2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup57∆GLFG 

This study 

SWY3626 TRP1 LYS2 leu2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup57∆GLFG 

This study 

SWY3627 TRP1 lys2 leu2 hura3 his3 myc-LoxP-nup2∆FXFG myc-LoxP-
nup57∆GLFG 

This study 

SWY3628 trp1 LYS2 leu2 hura3 his3 myc-LoxP-nup2∆FXFG myc-LoxP-
nup57∆GLFG 

This study 

SWY3629 TRP1 lys2 leu2 hura3 his3 myc-LoxP-nup2∆FXFG myc-LoxP-
nup57∆GLFG 

This study 

SWY3630 trp1 LYS2 leu2 ura3 his3 myc-LoxP-nup159∆FG HA-LoxP-
nup42∆FG T7-LoxP-nup116∆GLFG 

This study 

SWY3631 trp1 LYS2 leu2 ura3 his3 myc-LoxP-nup159∆FG HA-LoxP-
nup42∆FG T7-LoxP-nup116∆GLFG 

This study 

SWY3632 TRP1 lys2 leu2 ura3 his3 myc-LoxP-nup159∆FG HA-LoxP-
nup42∆FG T7-LoxP-nup116∆GLFG 

This study 

SWY3633 TRP1 lys2 leu2 ura3 his3 myc-LoxP-nup159∆FG HA-LoxP-
nup42∆FG T7-LoxP-nup116∆GLFG 

This study 

SWY3634 TRP1 lys2 leu2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF T7-LoxP-nup116∆GLFG 

This study 

SWY3635 TRP1 lys2 leu2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF T7-LoxP-nup116∆GLFG 

This study 

SWY3636 TRP1 lys2 leu2 ura3 his3 myc-LoxP-nup2∆FXFG myc-LoxP-
nup60∆FXF T7-LoxP-nup116∆GLFG 

This study 

SWY3637 TRP1 lys2 leu2 ura3 his3 myc-LoxP-nup2∆FXFG myc-LoxP-
nup60∆FXF T7-LoxP-nup116∆GLFG 

This study 

SWY3701 ura3-1 his3-11,15 trp1-1 leu2-3 LYS2 Mex67-GFP::HIS5 
trp1::dsRed-HDEL:TRP1 

This study 

SWY3702 trp1-1 lys2 leu2 ura3 his3 HA-LoxP-nup42∆FG myc-LoxP-
nup159∆FG T7-LoxP-nup1∆FXFG myc-LoxP-nup2∆FXFG myc-
LoxP-nup60∆FXF Mex67-GFP::HIS trp1::dsred-HDEL:TRP1 

This study 

SWY3703 trp1-1 LYS2 leu2 ura3 his3 HA-LoxP-nup42∆FG myc-LoxP-
nup159∆FG T7-LoxP-nup1∆FXFG myc-LoxP-nup2∆FXFG myc-
LoxP-nup60∆FXF myc-LoxP-nup57∆GLFG Mex67-GFP::HIS 
trp1::dsred-HDEL:TRP1 

This study 

SWY3704 trp1-1 LYS2 leu2 ura3 his3 HA-LoxP-nup42∆FG myc-LoxP-
nup159∆FG T7-LoxP-nup1∆FXFG myc-LoxP-nup2∆FXFG myc-
LoxP-nup60∆FXF T7-LoxP-nup116∆GLFG Mex67-GFP::HIS 
trp1::dsred-HDEL:TRP1 

This study 

SWY3705 trp1 leu2 his3 ura3 lys2 HA-LoxP-nup42∆FG myc-LoxP-
nup159∆GLFG T7-LoxP-nup1∆FXFG myc-LoxP-nup2∆FXFG 

This study 
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myc-LoxP-nup60∆FXF T7-LoxP-nup49∆GLFG 
nup49GLFG::GFP:TRP1 (pSW442 integrated) 

SWY3706 trp1 leu2 his3 ura3 lys2 HA-LoxP-nup42∆FG myc-LoxP-
nup159∆GLFG T7-LoxP-nup1∆FXFG myc-LoxP-nup2∆FXFG 
myc-LoxP-nup60∆FXF T7-LoxP-nup49∆GLFG 
nup49GLFG::GFP:TRP1 (pSW442 integrated) 

This study 

SWY3708 trp1-1 LYS2 leu2 ura3 his3 myc-LoxP-nup2∆FXFG T7-LoxP-
nup1∆FXFG nsp1FXFG::FXFGnup1-myc:HIS5 (sp) 

This study 

SWY3709 TRP1 lys2 leu2 ura3 his3 myc-LoxP-nup2∆FXFG T7-LoxP-
nup1∆FXFG nsp1FXFG::FXFGnup1-myc:HIS5 (sp) 

This study 

SWY3710 trp1 LYS2 leu2 ura3 his3 myc-LoxP-nup2∆FXFG T7-LoxP-
nup1∆FXFG nsp1FXFG::FXFGnup1-myc:HIS5 (sp) 

This study 

SWY3711 TRP1 lys2 leu2 ura3 his3 myc-LoxP-nup2∆FXFG T7-LoxP-
nup1∆FXFG nsp1FXFG::FXFGnup1-myc:HIS5 (sp) 

This study 

SWY3712 TRP1 lys2 leu2 ura3 his3 myc-LoxP-nup2∆FXFG T7-LoxP-
nup1∆FXFG nsp1FXFG::FXFGnsp1-myc:HIS5 (sp) 

This study 

SWY3713 trp1 LYS2 leu2 ura3 his3 myc-LoxP-nup2∆FXFG T7-LoxP-
nup1∆FXFG nsp1FXFG::FXFGnsp1-myc:HIS5 (sp) 

This study 

SWY3714 TRP1 lys2 leu2 ura3 his3 myc-LoxP-nup2∆FXFG T7-LoxP-
nup1∆FXFG nsp1FXFG::FXFGnsp1-myc:HIS5 (sp) 

This study 

SWY3715 trp1 LYS2 leu2 ura3 his3 myc-LoxP-nup2∆FXFG T7-LoxP-
nup1∆FXFG nsp1FXFG::FXFGnsp1-myc:HIS5 (sp) 

This study 

SWY3755 trp1-1 lys2 ura3 leu2 his3 HA-loxP-nup42∆FG myc-loxP-
nup159∆FG T7-loxP-nup1∆FXFG myc-loxP-nup2∆FXFG myc-
loxP-nup60∆FXF T7-loxP-nup49∆GLFG + pSW125 + CP25 

This study 

SWY3756 trp1-1 lys2 ura3 leu2 his3 HA-loxP-nup42∆FG myc-loxP-
nup159∆FG T7-loxP-nup1∆FXFG myc-loxP-nup2∆FXFG myc-
loxP-nup60∆FXF T7-loxP-nup49∆GLFG + pSW125 + pSW3158 
(LEU2/CEN/T7-LoxP-nup49∆GLFG) 

This study 

SWY3757 trp1-1 lys2 ura3 leu2 his3 HA-loxP-nup42∆FG myc-loxP-
nup159∆FG T7-loxP-nup1∆FXFG myc-loxP-nup2∆FXFG myc-
loxP-nup60∆FXF T7-loxP-nup49∆GLFG + pSW116 

This study 

SWY3758 trp1-1 lys2 ura3 leu2 his3 HA-loxP-nup42∆FG myc-loxP-
nup159∆FG T7-loxP-nup1∆FXFG myc-loxP-nup2∆FXFG myc-
loxP-nup60∆FXF T7-loxP-nup49∆GLFG + pSW117 

This study 

SWY3759 trp1-1 lys2 ura3 leu2 his3 HA-loxP-nup42∆FG myc-loxP-
nup159∆FG T7-loxP-nup1∆FXFG myc-loxP-nup2∆FXFG myc-
loxP-nup60∆FXF T7-loxP-nup49∆GLFG + pSW242 

This study 

SWY3760 trp1-1 lys2 ura3 leu2 his3 HA-loxP-nup42∆FG myc-loxP-
nup159∆FG T7-loxP-nup1∆FXFG myc-loxP-nup2∆FXFG myc-
loxP-nup60∆FXF T7-loxP-nup49∆GLFG + pSW3259 

This study 

SWY3761 trp1-1 lys2 ura3 leu2 his3 HA-loxP-nup42∆FG myc-loxP-
nup159∆FG T7-loxP-nup1∆FXFG myc-loxP-nup2∆FXFG myc-

This study 
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loxP-nup60∆FXF T7-loxP-nup49∆GLFG + pSW3260 
SWY3762 trp1-1 lys2 ura3 leu2 his3 HA-loxP-nup42∆FG myc-loxP-

nup159∆FG T7-loxP-nup1∆FXFG myc-loxP-nup2∆FXFG myc-
loxP-nup60∆FXF T7-loxP-nup49∆GLFG + pSW3261 

This study 

SWY3763 trp1-1 lys2 ura3 leu2 his3 HA-loxP-nup42∆FG myc-loxP-
nup159∆FG T7-loxP-nup1∆FXFG myc-loxP-nup2∆FXFG myc-
loxP-nup60∆FXF T7-loxP-nup49∆GLFG + pSW3262 

This study 

SWY3764 trp1-1 lys2 ura3 leu2 his3 HA-loxP-nup42∆FG myc-loxP-
nup159∆FG T7-loxP-nup1∆FXFG myc-loxP-nup2∆FXFG myc-
loxP-nup60∆FXF T7-loxP-nup49∆GLFG + pSW3263 

This study 

SWY3765 trp1-1 lys2 ura3 leu2 his3 HA-loxP-nup42∆FG myc-loxP-
nup159∆FG T7-loxP-nup1∆FXFG myc-loxP-nup2∆FXFG myc-
loxP-nup60∆FXF T7-loxP-nup49∆GLFG + pSW3264 

This study 

SWY3854 trp1 LYS2 leu2 ura3 his3 myc-LoxP-nup57∆GLFG myc-LoxP-
nup60∆FXF T7-LoxP-nup1∆FXFG 

This study 

SWY3855 trp1 LYS2 leu2 ura3 his3 myc-LoxP-nup57∆GLFG myc-LoxP-
nup60∆FXF T7-LoxP-nup1∆FXFG 

This study 

SWY3856 TRP1 lys2 leu2 ura3 his3 myc-LoxP-nup57∆GLFG myc-LoxP-
nup60∆FXF T7-LoxP-nup1∆FXFG 

This study 

SWY3857 TRP1 lys2 leu2 ura3 his3 myc-LoxP-nup57∆GLFG myc-LoxP-
nup60∆FXF T7-LoxP-nup1∆FXFG 

This study 

SWY3858 trp1 LYS2 leu2 ura3 his3 myc-LoxP-nup57∆GLFG myc-LoxP-
nup60∆FXF myc-LoxP-nup2∆FXFG 

This study 

SWY3859 TRP1 lys2 leu2 ura3 his3 myc-LoxP-nup57∆GLFG myc-LoxP-
nup60∆FXF myc-LoxP-nup2∆FXFG 

This study 

SWY3860 trp1 LYS2 leu2 ura3 his3 myc-LoxP-nup57∆GLFG myc-LoxP-
nup60∆FXF myc-LoxP-nup2∆FXFG 

This study 

SWY3861 TRP1 lys2 leu2 ura3 his3 myc-LoxP-nup57∆GLFG myc-LoxP-
nup60∆FXF  

This study 

SWY3862 trp1 LYS2 leu2 ura3 his3 myc-LoxP-nup57∆GLFG myc-LoxP-
nup60∆FXF  

This study 

SWY3863 trp1 LYS2 leu2 ura3 his3 myc-LoxP-nup57∆GLFG myc-LoxP-
nup60∆FXF  

This study 

SWY3888 TRP1 lys2 ura3 leu2 his3 myc-LoxP-Nup57∆GLFG T7-LoxP-
Nup49∆GLFG pSW3261 (Leu2 nup49∆GLFG) 

This study 

SWY3889 trp1 LYS2 leu2 ura3 his3 myc-LoxP-nup57∆GLFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF T7-LoxP-nup1∆FXFG 
mex67-GFP:HIS3 trp1::dsRED-HDEL:TRP1 

This study 

SWY3899 TRP1 ura3 leu2 his3 lys2 myc-LoxP-nup60∆FXF This study 
SWY3900 trp1 ura3 leu2 his3 LYS2 myc-LoxP-nup60∆FXF This study 
SWY3901 trp1/TRP1 ura3/ura3 leu2/leu2 his3/his3 LYS2/lys2 myc-LoxP-

nup60∆FXF/myc-LoxP-nup60∆FXF 
This study 

SWY3925 TRP1 lys2 ura3 leu2 his3 T7-LoxP-nup1∆FXFG myc-LoxP- This study 
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nup2∆FXFG myc-LoxP-nup60∆FXF myc-LoxP-nup57∆GLFG 
myc-LoxP-nup159∆GLFG 

SWY3926 trp1 LYS2 ura3 leu2 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF myc-LoxP-nup57∆GLFG 
myc-LoxP-nup159∆GLFG 

This study 

SWY3927 TRP1 LYS2 ura3 leu2 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF myc-LoxP-nup57∆GLFG 
HA-LoxP-nup42∆FG 

This study 

SWY3928 trp1 LYS2 ura3 leu2 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF myc-LoxP-nup57∆GLFG 
HA-LoxP-nup42∆FG 

This study 

SWY3929 trp1 lys2 ura3 leu2 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF myc-LoxP-nup57∆GLFG 
myc-LoxP-nup159∆GLFG HA-LoxP-nup42∆FG 

This study 

SWY3930 trp1 lys2 ura3 leu2 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF myc-LoxP-nup57∆GLFG 
myc-LoxP-nup159∆GLFG HA-LoxP-nup42∆FG 

This study 

SWY3932 ura3-1/ ura3-1 his3-11,15/his3-11,15 TRP1/trp1-1 leu2-
3,112/leu2-3,112 LYS2/lys2 MTR2/mtr2::KANMX4 

This study 

SWY3933 trp1-1 LYS2 ura3-1 leu2-3,112 his3-11,15 This study 
SWY3934 TRP1 lys2 ura3-1 leu2-3,112 his3-11,15 This study 
SWY3935 trp1 lys2 ade2 ura3 his3 leu2 mex67::HIS3 CP361 (pRS316-

MEX67) 
This study 

SWY3936 trp1 lys2 ade2 ura3 his3 leu2 mex67::HIS3 CP361 (pRS316-
MEX67) 

This study 

SWY3937 TRP1 lys2 leu2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF myc-LoxP-nup57∆GLFG 
myc-LoxP-nup159∆FG 

This study 

SWY3938 trp1 LYS2 leu2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF myc-LoxP-nup57∆GLFG 
myc-LoxP-nup159∆FG 

This study 

SWY3939 trp1 LYS2 leu2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF myc-LoxP-nup57∆GLFG 
myc-LoxP-nup159∆FG 

This study 

SWY3940 TRP1 LYS2 leu2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF myc-LoxP-nup57∆GLFG 
HA-LoxP-nup42∆FG 

This study 

SWY3941 trp1 LYS2 leu2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF myc-LoxP-nup57∆GLFG 
HA-LoxP-nup42∆FG 

This study 

SWY3942 TRP1 lys2 leu2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF myc-LoxP-nup57∆GLFG 
HA-LoxP-nup42∆FG 

This study 
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SWY3943 trp1 lys2 leu2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF myc-LoxP-nup57∆GLFG 
HA-LoxP-nup42∆FG myc-LoxP-nup159∆FG 

This study 

SWY3944 trp1 lys2 leu2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF myc-LoxP-nup57∆GLFG 
HA-LoxP-nup42∆FG myc-LoxP-nup159∆FG 

This study 

SWY3945 TRP1 LYS2 leu2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF myc-LoxP-nup57∆GLFG 
HA-LoxP-nup42∆FG myc-LoxP-nup159∆FG 

This study 

SWY3970 ura3-1 his3-11,15 trp1-1 leu2-3,112 lys2 mtr2::KAN pRS316-
MTR2-(URA3-CEN) 

This study 

SWY3971 ura3-1 his3-11,15 trp1-1 leu2-3,112 lys2 mtr2::KAN pRS314-
MTR2-(TRP1-CEN) 

This study 

SWY3972 ura3-1 his3-11,15 trp1-1 leu2-3,112 lys2 mtr2::KAN pRS314-
mtr2-33-(TRP1-CEN) 

This study 

SWY3973 ura3-1 his3-11,15 trp1-1 leu2-3,112 LYS2 ADE2 gle 1-2 
mtr2::KAN pRS316-MTR2-(URA3-CEN) 

This study 

SWY3974 ura3-1 his3-11,15 trp1-1 leu2-3,112 LYS2 ADE2 gle 1-2 
mtr2::KAN pRS314-MTR2-(TRP1-CEN) 

This study 

SWY3975 ura3-1 his3-11,15 trp1-1 leu2-3,112 LYS2 ADE2 gle 1-2 
mtr2::KAN pRS314-mtr2-33-(TRP1-CEN) 

This study 

SWY3976 ura3-1 his3-11,15 trp1-1 leu2-3,112 lys2 ADE2 gle 1-4 
mtr2::KAN pRS316-MTR2 (URA3-CEN) 

This study 

SWY3977 ura3-1 his3-11,15 trp1-1 leu2-3,112 lys2 ADE2 gle 1-4 
mtr2::KAN pRS314-MTR2 (TRP1-CEN) 

This study 

SWY3978 ura3-1 his3-11,15 trp1-1 leu2-3,112 lys2 ADE2 gle 1-4 
mtr2::KAN pRS314-mtr2-33 (TRP1-CEN) 

This study 

SWY3979 ura3-1 his3-11,15 trp1-1 leu2-3,112 lys2 ADE2 ipk1::KAN 
mtr2::KAN pRS316-MTR2 (URA3-CEN) 

This study 

SWY3980 ura3-1 his3-11,15 trp1-1 leu2-3,112 lys2 ADE2 ipk1::KAN 
mtr2::KAN pRS314-MTR2 (TRP1-CEN) 

This study 

SWY3981 ura3-1 his3-11,15 trp1-1 leu2-3,112 lys2 ADE2 ipk1::KAN 
mtr2::KAN pRS314-mtr2-33 (TRP1-CEN) 

This study 

SWY3982 ura3-1 his3-11,15 trp1-1 leu2-3,112 lys2 ADE2 mex67::HIS3 
pRS316-MEX67 (URA3-CEN) 

This study 

SWY4001 TRP1 leu2 lys2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF nup57::KAN pSW3006 
(URA3-CEN-NUP57) 

This study 

SWY4002 trp1 leu2 LYS2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF nup57::KAN pSW3006 
(URA3-CEN-NUP57) 

This study 

SWY4062 TRP1 lys2 leu2 ura3 his3 myc-LoxP-nup2∆FXFG myc-LoxP-
nup60∆FXF T7-LoxP-nup1∆FXFG myc-LoxP-nup57∆GLFG 

This study 
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nup42::HIS 
SWY4063 TRP1 lys2 leu2 ura3 his3 myc-LoxP-nup2∆FXFG myc-LoxP-

nup60∆FXF T7-LoxP-nup1∆FXFG myc-LoxP-nup57∆GLFG 
nup42::HIS 

This study 

SWY4064 trp1 LYS2 leu2 ura3 his3 myc-LoxP-nup2∆FXFG myc-LoxP-
nup60∆FXF T7-LoxP-nup1∆FXFG nup57::KAN CP36 (pCEN-
TRP) pSW3006 (pURA3-CEN-NUP57) 

This study 

SWY4065 trp1 LYS2 leu2 ura3 his3 myc-LoxP-nup2∆FXFG myc-LoxP-
nup60∆FXF T7-LoxP-nup1∆FXFG nup57::KAN pSW3431 
(pTRP1-CEN-NUP57) 

This study 

SWY4066 trp1 LYS2 leu2 ura3 his3 myc-LoxP-nup2∆FXFG myc-LoxP-
nup60∆FXF T7-LoxP-nup1∆FXFG nup57::KAN pSW3432 
(pCEN-TRP1-myc-LoxP-nup57∆GLFG) 

This study 

SWY4067 trp1 LYS2 leu2 ura3 his3 myc-LoxP-nup2∆FXFG myc-LoxP-
nup60∆FXF T7-LoxP-nup1∆FXFG nup57::KAN pSW3434 

This study 

SWY4068 trp1 LYS2 leu2 ura3 his3 myc-LoxP-nup2∆FXFG myc-LoxP-
nup60∆FXF T7-LoxP-nup1∆FXFG nup57::KAN pSW3435 

This study 

SWY4069 trp1 LYS2 leu2 ura3 his3 myc-LoxP-nup2∆FXFG myc-LoxP-
nup60∆FXF T7-LoxP-nup1∆FXFG nup57::KAN pSW3436 

This study 

SWY4070 trp1 LYS2 leu2 ura3 his3 myc-LoxP-nup2∆FXFG myc-LoxP-
nup60∆FXF T7-LoxP-nup1∆FXFG nup57::KAN pSW3437 

This study 

SWY4071 trp1 LYS2 leu2 ura3 his3 myc-LoxP-nup2∆FXFG myc-LoxP-
nup60∆FXF T7-LoxP-nup1∆FXFG nup57::KAN pSW3438 

This study 

SWY4072 SWY3001 struck to isolate yeast away from the multiple types of 
bacteria that contaminate the original SWY3001 perm stock.  

This study 

SWY4129 TRP1 lys2 leu2 ura3 his3 myc-LoxP-nup57∆GLFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF T7-LoxP-nup1∆FXFG 
nup42::HIS3 

This study 

SWY4130 TRP1 lys2 leu2 ura3 his3 myc-LoxP-nup57∆GLFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF T7-LoxP-nup1∆FXFG 
nup42::HIS3 

This study 

SWY4131 trp1 leu2 LYS2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF nup57::KAN pSW3432 
(myc-LoxP-nup57∆GLFG) Mex67-GFP:HIS3 

This study 

SWY4132 trp1 leu2 LYS2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG myc-LoxP-nup60∆FXF nup57::KAN pSW3432 
(myc-LoxP-nup57∆GLFG) Mex67-GFP:HIS5 

This study 

SWY4133 trp1/TRP1 leu2/leu2 LYS2/lys2 ura3/ura3 his3/his3  
T7-LoxP-nup1∆FXFG/T7-LoxP-nup1∆FXFG myc-LoxP-
nup2∆FXFG/myc-LoxP-nup2∆FXFG 
 myc-LoxP-nup60∆FXF/myc-LoxP-nup60∆FXF  
nup49::ura3::KAN/NUP49 

This study 

SWY4134 trp1 leu2 LYS2 ura3 his3 T7-LoxP-nup1∆FXFG myc-LoxP- This study 
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nup2∆FXFG myc-LoxP-nup60∆FXF 
nup49::ura3::KAN pSW125 

SWY734 GFP-Nup49Cterm (TRP) NUP49∆::URA3 ade2-1 ura3-1 his3-
11,15 trp1-1 leu2-3,112 can1-100 

(BUCCI and 
WENTE 
1997) 

 
* Unless otherwise noted, strains carry auxotrophic markers ura3-1; his3-11,15; leu2-3,112; 
trp1-1 OR TRP1; lys2 OR LYS2 
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Table A-2. List of plasmids used in this study. 
 
Plasmid 
Name 

Vector/Backbone Gene Cloned Modification to gene Reference 

pAC1075 pRS425 KAP104  Anita Corbett, 
unpublished 

pEB0836 pRS316 PHO4 NLS fused to three GFP   under PHO4 promoter (KAFFMAN et al. 1998) 
pET-Duet pET-Duet   Novagen 
pGAD-GFP YEplac195  SV40 cNLS-GFP  under ADH promoter  (SHULGA et al. 1996) 
pGEX-2T pGEX-2T GST GST Pharmacia 
pGFP-HIS5   GFP-HIS5  J. Aitchison 
pKW1803 YIplac204/TKC dsRed-HDEL trp1::dsRed-HDEL:TRP1 

integration plasmid 
(BEVIS et al. 2002) 

pKW430  pRS426  NLS-NES-GFP  SV40 cNLS and protein kinase 
inhibitor NES 

(STADE et al. 1997) 

pM3927  ura3::KANR marker swap plasmid (VOTH et al. 2003) 
pNS167  pGFP-N-fus  NAB2 NLS-GFP  NAB2 NLS fused to GFP under 

MET25 promoter  
(SHULGA et al. 2000) 

pRS313 pRS313  CEN HIS3 (SIKORSKI and HIETER 
1989) 

pRS314 pRS314  CEN TRP1 (SIKORSKI and HIETER 
1989) 

pRS315 pRS315  CEN LEU2 (SIKORSKI and HIETER 
1989) 

pRS316 pRS316  CEN URA3 (SIKORSKI and HIETER 
1989) 

pRS423 pRS423  2 micron HIS3 (CHRISTIANSON et al. 
1992) 

pRS425 pRS425  2 micron LEU2 (CHRISTIANSON et al. 
1992) 
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pSH47 pRS426 Cre recombinase GAL1 promoter (GULDENER et al. 
1996) 

pSpo1276–
130-GFP   

pYX242-GFP   SPO12 NLS-GFP   SPO12 NLS fused to GFP under 
TPI promoter   

(CHAVES and BLOBEL 
2001) 

pSW116 pRS315 nup49∆GLFG ∆aa 24-239 (IOVINE et al. 1995) 
pSW117 pRS315 nup49∆GLFG ∆aa13-239 (IOVINE et al. 1995) 
pSW1237 pMal-Cr1 Mex67 MBP-Mex67 (STRAWN et al. 2001) 
pSW125 pRS316 NUP49 CEN URA3 (WENTE et al. 1992) 
pSW1297 pGEX-2T GLFG of NUP116 GST fused to GLFG region of 

NUP116 
This study 

pSW1308 pUG6 HIS5S.pombe HA-LoxP-HIS5-LoxP (STRAWN et al. 2004) 
pSW1309 pUG6 HIS5S.pombe Myc-LoxP-HIS5-LoxP (STRAWN et al. 2004) 
pSW131 pRS316 NUP116 CEN URA3 (WENTE et al. 1992) 
pSW1311 pUG6 HIS5S.pombe T7-LoxP-HIS5-LoxP (STRAWN et al. 2004) 
pSW1312 pUG6 flag-LoxP-HIS5-LoxP  (STRAWN et al. 2004) 
pSW132 pRS316 Nup100 CEN URA3 (WENTE et al. 1992) 
pSW1379 pRS316 NSP1 CEN URA3 Lisa Strawn, 

unpublished 
pSW190 pRS316 NUP145 CEN URA3 (WENTE et al. 1992) 
pSW3001 pRS315 Cre Cre recombinase under Gal 

promoter 
This study 

pSW3006 pRS316 NUP57 CEN URA3 Lisa Strawn, 
unpublished 

pSW3158 pRS315   nup49 T7-LoxP-nup49∆GLFG This study 
pSW3159 pRS314   Kap95, Kap104  This study 
pSW3204  Nab2 GFP  This study 
pSW3206  Mex67 GFP  This study 
pSW3259 pSW116, pRS315 Nup49 ∆GLFG (∆aa24-239), F2A This study 
pSW3260 pSW116, pRS315 Nup49 ∆GLFG (∆aa 24-239), F2Y This study 
pSW3261 pSW117, pRS315 Nup49 ∆GLFG (∆aa 13-239), F2A This study 
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pSW3261 pRS315 Nup49∆GLFG nup49∆aa 13-239, F2A mutation This study 
pSW3262 pSW117, pRS315 Nup49 ∆GLFG (∆aa 13-239), F2Y This study 
pSW3263 pSW242, pRS426 Nup49 F2A This study 
pSW3264 pSW242, pRS426 Nup49 F2Y This study 
pSW3265 pSW1309 Nup42 FG domain of Nup42 in LoxP 

vector 
This study 

pSW3266 pSW1309 Nup116 GLFG domain only in Lox vector This study 
pSW3267 pSW1309 Nsp1 FXFG domain This study 
pSW3268 pMAL-cR1 Nup57 GLFG domain fused to MBP This study 
pSW3269 pGEX-2T Nup57 GLFG domain of Nup57 fused to 

GST 
This study 

pSW3269 pGEX-2T GLFG of NUP57 GST fused to GLFG region of 
NUP57 

This study 

pSW3270 pET-14b Nup57 GLFGS GLFGs fused to 6xHIS This study 
pSW3303 pSW1309 Nup57 GLFG This study 
pSW3304 pSW1311 Nup57 GLFGs This study 
pSW3320 pRS423 KAP121 HIS3 2micron Eric Shows, 

unpublished 
pSW3417 pRS314 Nup57 ∆GLFG This study 
pSW3431 pRS314 NUP57  This study 
pSW3432 pRS314 NUP57 myc-LoxP-nup57∆GLFG This study 
pSW3433 pRS314 NUP57 ∆GLFG This study 
pSW3434 pRS314 NUP57 ∆GLFG This study 
pSW3435 pRS314 NUP57 nup57GLFG::FGNUP42 This study 
pSW3436 pRS314 NUP57 nup57∆GLFG::GLFGNUP57 This study 
pSW3437 pRS314 NUp57 nup57∆GLFG::GLFGNUP116 This study 
pSW3438 pRS314 NUP57 nup57∆GLFG::FXFGnsp1 This study 
pSW3444 pRS315 NUP49  This study 
pSW3445 pRS315 NUP49 ∆GLFG This study 
pSW3446 pRS315 NUP49 ∆GLFG + GLFG-NUP49 This study 
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pSW3447 pUG6 HIS5 LoxP This study 
pSW3448 pRS315 NUP42 ∆FG This study 
pSW3449 pRS315 NUP42 ∆FG + FG NUP42 This study 
pSW3450 pRS315 NUP42 ∆FG + GLFG of NUP49 This study 
pSW3451 pRS315 NUP42 ∆FG + FXFG of NSP1 This study 
pSW3460 pUG6 HIS5 LoxP-HIS5-LoxP This study 
pSW3461 pRS315 Nup49 ∆GLFG, + GLFG-Nup57 This study 
pSW3462 pRS315 Nup49 ∆GLFG, + GLFG-Nup116 This study 
pSW3463 pRS315 Nup49 ∆GLFG, + FG-Nup42 This study 
pSW3464 pRS315 Nup49 ∆GLFG, + FXFG-Nsp1 This study 
pSW3465 pET-Duet 6xHis-Mtr2, Mex67 dual expression vector This study 
pSW3466 pRS314 mex67∆loop mex67 ∆bp 1225-1305 This study 
pSW442 pRS304 nup49∆GLFG-GFP:TRP1  (BUCCI and WENTE 

1997) 
pSW55 pBS nup49::URA3  (WENTE et al. 1992) 
pUG6 pUG6 KANR  M. Johnston 
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