By

Mark Christopher Dobish

Dissertation
Submitted to the Faculty of the
Graduate School of Vanderbilt University
in partial fulfillment of the requirements
for the degree of DOCTOR OF PHILOSOPHY
in CHEMISTRY

May 2013
Nashville, Tennessee

Approved:
Professor Jeffrey N. Johnston (Chair)
Professor Timothy P. Hanusa
Professor Ned A. Porter
Professor Michael R. Waterman

Copyright © 2013 by Mark Christopher Dobish All Rights Reserved

To my beautiful wife Julia and my infinitely supportive family

Acknowledgements

I am aware that this document is not the work of one person, but of the many people who have contributed to my success, not only in graduate school, but in all aspects of my life. Though some of these contributions may go unmentioned, I don't take them for granted and am incredibly grateful.

First and foremost, I would like to thank my loving parents, Dave and Cindy. They have always been my number one fans, whether in school, athletics, or life. Without their love and financial support, I would not have had the strength or means to complete my schooling. I love you both very much. I also want to thank four extraordinary people, my grandparents: Ted, Barbara, Pete, and Ann. So much of the man I am today can be attributed to my grandparents, who worked tirelessly to ensure we had everything we needed. I would like to recognize my talented sister Kristen and handsome brother Matthew for their continued love and encouragement and for not reminding me daily that it took me the longest to complete graduate school. I would also like to thank my in-laws, Ron and Michele, for welcoming me into their family and being so supportive these past five years. And to the rest of the family, immediate and extended, Dobish and Meyer, I thank you for being so encouraging and helpful throughout this process.

I would like to acknowledge the mentors from Allegheny College who helped set me on my current path: Prof. P. J. Persichini, for convincing me to not go to medical school, Prof. Nancy Lowmaster for introducing me to chemistry, and Angelo Panzetta for being an excellent coach and friend.

It is necessary that I thank my advisor Prof. Jeffrey Johnston for luring me to Nashville with the promise of better weather than Minnesota. His wealth of knowledge, demonstrated work ethic and problem solving ability have served as an inspiration. I would not be the scientist I am today if he had not invested so much of his time and resources in me, and for this I am grateful.

I would like to acknowledge the many members of the Johnston group that I have had the pleasure to work with and learn from over the years: Anand Singh and Tyler Davis for teaching me everything I know about catalysis, Ki Bum Hong for always demanding that I work harder, Priya Mathew and Dawn Makley, who were great classmates for communal commiseration, and Amanda Doody for her many hours of
proofreading. I have been fortunate to be surrounded not only by intelligent people in the Johnston Lab, but by some great entertainers and friends, who have made the long hours more fun.

I would like to thank my thesis committee for their guidance and help throughout this process: Prof. Timothy Hanusa, Prof. Ned Porter, and Prof. Michael Waterman. Additionally, my research could not have happened without support from an exceptional departmental staff. I would like to specifically thank Don Stec and Markus Voehler for ensuring we not only had working, but state of the art NMR facilities. This work was also possible because of fellowship support from the Vanderbilt Institute of Chemical Biology (VICB) and financial support from the NIH (GM084333).

We have been blessed to have made so many friends while living in Nashville. Specifically, our Sylvan Park family: Kyle, Jess, Christine, Amy, and Melinda. The many hours and meals we shared will forever be remembered. I am also thankful Melinda moved to Nashville and became a great friend before becoming an even better sister in law. I would like to acknowledge the time spent in Nashville with my childhood best friend, Marcus Smith, while he was stationed at Fort Campbell. There was never a dull moment when he would come to visit. I would also like to thank Ryan Castor and Dr. Chris Morgan for being great supportive friends from afar.

Finally, I would like to thank my wife Julia. She is an amazing, strong, and loving woman to whom I owe so much love and lost time for everything she has done for me. I am glad she said "yes" three years ago and couldn't imagine my life without her. We have great chemistry.

Table of Contents

DEDICATION PAGE III
ACKNOWLEDGEMENTS IV
TABLE OF CONTENTS VI
LIST OF FIGURES IX
LIST OF SCHEMES XI
LIST OF TABLES XIII
LIST OF CHARTS XV
CHAPTER
I. CHIRAL BRØNSTED BASE-PROMOTED NITROALKANE ALKYLATION: ENANTIOSELECTIVE SYNTHESIS OF SEC-ALKYL-3- SUBSTITUTED INDOLES 1
1.1 Current Approaches Toward Indole Products Containing sec-Alkyl-3- Substitutions 1
Background and Relevance of Indoles 1
Nucleophilic Indoles and C3-C3' Bond Formation 6
Metal-Catalyzed Friedel-Crafts Reaction between Indole and Nitrostyrene 7
Organocatalyzed Friedel-Crafts Reaction between Indole and Nitrostyrene. 8
Friedel-Crafts Reaction between Indole and α, β-Disubstituted Nitrostyrenes 11
Electrophilic Indole and C3'-C3" Bond Formation 12
Gramine as an Indolenine Precursor 13
Arylsulfonyl Indoles as Indolenine Precursors. 14
Enantioselective Additions to Indolenines 19
1.2 Chiral Bisamidine-Promoted Nitroalkane Alkylations 24
Previous Work in BAM Catalyzed Additions 24
Preliminary Results from Bisamidine Catalyzed Additions 25
Reaction Optimization 29
Reaction Optimization: Catalyst Screen 32
Reaction Scope: Electrophile Screen 38
Reaction Scope: Nucleophile Screen 43
Mechanistic Studies and the Development of New Reaction Protocol 45
Influence of Water in the Reaction 46
Preforming the Indolenine Intermediate 49
Application and Comparison of the Three Reaction Protocols 51
Nitro Group Modification of the Indole Adducts 54
Future Work 55
II. THE ENANTIOSELECTIVE SYNTHESIS OF VNI: A CURE FOR THE NEGLECTED TROPICAL CHAGAS DISEASE 57
2.1 Chagas Disease and the Limitations to Parasite Eradication 57
Background of Chagas Disease 57
Chagas Therapy and Sterol Biosynthesis 60
Industrial Synthesis of Posaconazole 64
VNI as a Treatment for Chagas Disease 66
2.2 The Short, Enantioselective Synthesis of VNI 70
Background and Project Goals 70
BAM Catalyzed aza-Henry 72
Reduction of the aza-Henry Adduct 78
Imidazole Formation 79
Side Chain Synthesis and Completion of VNI 80
VNI Analog Synthesis 84
VNI Cures the Murine Model of Acute and Chronic Chagas Disease 88
III. BISAMIDINE CATALYZED ENANTIOSELECTIVE HALOGENATIONS' 90
3.1 Enantioselective Halogenations and Asymmetric Organocatalysis 90
History of Enantioselective Halocarboxylations 90
Substoichiometric, catalytic halocyclizations 92
Highly Enantioselective, Organocatalytic Halocyclizations 93
Current limitations in enantioselective halocyclizations 100
3.2 Bisamidine Catalyzed Enantioselective Iodolactonization 103
Preliminary Results 103
Catalyst and Achiral Acid Screen 107
StilbPBAM: A More Reactive and Selective Catalyst 120
Substrate Scope for 1,1-Disubstituted Olefinic Acids 124
Lower performing substrate optimization 128
Mechanistic Observations 132
Development of Reagent-Substrate Assembly Models for Enantioselection 138
Application to endo-Iodolactonization 139
Future Work. 149
Tri- and Tetra-Substituted Olefinic Acids 149
Cascade Reactions 149
Enantioselective capture of carbon dioxide 151
Additional modes of catalyst binding 153
IV. EXPERIMENTALS 155

List of Figures

Figure 1. Representative Indole- and Pyrrole-Containing Pharmaceuticals in the Top 200 of Sales for the Year 2007 2
Figure 2. Indole Alkaloids with C3 n-Alkyl Substitution. 3
Figure 3. Representative Indole and Pyrrole Heterocycles Bearing Chiral C3 sec- Alkyl Substitution 4
Figure 4. Different Disconnections for the Synthesis of Alkyl Indoles 6
Figure 5. Chiral BOX-ligands for the Asymmetric Friedel-Crafts Reaction between Indole and Nitrostyrene 8
Figure 6. Previously Reported BAM Reactivity and Desired Additions of Phenylnitromethane to Indolenine Intermediates 26
Figure 7. Proposed Catalyst Binding Model 34
Figure 8. Proposed Mechanism by Chiral and Achiral Routes 45
Figure 9. Model for Further Catalyst Development. 56
Figure 10. Brazilian banknote recognizing Carlos Chagas and the life cycle of the deadly parasite. 58
Figure 11. Benznidazole and Nifurtimox 59
Figure 12. CYP51 reaction in sterol biosynthesis across the kingdoms (from ref. 74) 63
Figure 13. Modeled docking of eburicol in T. cruzi CYP51 (from ref. 83) 67
Figure 14. Small Molecule Inhibitors of T. cruzi CYP51 (from ref. 73) 68
Figure 15. Overlay of Potential Inhibitors of T. cruzi CYP51 Crystal Structures (from ref. 81) 69
Figure 16. Racemic synthesis of VNI and epi-VNI 71
Figure 17. Achievable Points of Diversity in the Synthesis of VNI and other Analogs 84
Figure 18. Organic Syntheses Preparation of PBAM. 86
Figure 19. Prepared VNI analogs 87
Figure 20. VNI Eradicates Parasite in vivo for Both Phases of Chagas Disease (ref. 62) 88
Figure 21. Proposed Mode of Binding in Enantioselective Chlorolactonization. 95
Figure 22. Proposed Transition State and Mechanism for Enantioselective Iodolactonization. 96
Figure 23. First Catalytic and Highly Enantioselective Bromolactonizations. 97
Figure 24. Enantioselective Bromocyclization Work from the Yeung Laboratory. 99
Figure 25. Synthetically Useful Transformations of Products from Halocyclization Reactions. 100
Figure 26. Proposal for Bisamidine and Electrophilic Halogen Complexation. 103
Figure 27. Evidence by NMR of PBAM Iodination. 115
Figure 28. Crystal structure of StilbPBAM dimer. 124
Figure 29. The Problematic para-Methoxy Substrate 128
Figure 30. Proposed Reagent-Substrate Assemblies. 138
Figure 31. Catalyst Modification Leading to Additional Chelation Control in Diamine Backbone. 154

List of Schemes

Scheme 1. First Reported Use of Nitrostyrenes as Michael Acceptors 7
Scheme 2. Chiral Thiourea Catalyzed Addition of Indole to Nitrostyrene 9
Scheme 3. Chiral Stilbene Diamine Catalyzed Addition of Indole to Nitrostyrene 9
Scheme 4. Chiral Phosphoric Acid Catalyzed Addition of Indole to Nitroalkenes 10
Scheme 5. Protonated Thioureas as Highly Reactive and Selective Catalysts 11
Scheme 6. Enantioselective Friedel-Crafts Alkylation with α, β-Disubstituted Nitroalkenes 12
Scheme 7. Nucleophilic Addition to Indolenines 13
Scheme 8. Gramine as an Indolenine Precursor 13
Scheme 9. Addition of Nitroalkanes to Gramine-derived Indolenine Intermediates 14
Scheme 10. Petrini's Synthesis of Arylsulfonyl Indoles 15
Scheme 11. Modified Synthesis of Arylsulfonyl Indoles 15
Scheme 12. Additions of Nitroalkanes and Malonates 17
Scheme 13. Synthesis of Indole Starting Material for Further Functionalization 18
Scheme 14. Double Functionalization of N-Boc Protected Indoles 18
Scheme 15. Proline-Catalyzed Asymmetric Formal α-Alkylation of Aldehydes 19
Scheme 16. Imidazolidinone Catalyzed Addition of Aldehydes to Indolenine 20
Scheme 17. N-Heterocyclic Carbene Catalyzed Additions of Aldehydes to Indolenines 20
Scheme 18. Enantioselective Alkylation Reaction of Enamides by Chiral Phosphoric Acid Catalysis 21
Scheme 19. Chiral Brønsted-Base Catalyzed Addition of Malononitriles 22
Scheme 20. Enantioselective aza-Henry Additions Using BAM Catalysis 24
Scheme 21. Catalyst Screen: Thiourea Catalysts 36
Scheme 22. Synthesis of UreaBAM Analogs 37
Scheme 23. Catalyst Screen: UreaBAM Analogs 38
Scheme 24. Synthesis of a Larger Variety of Electrophiles 39
Scheme 25. One Pot Addition from 2-Me-Indole 48
Scheme 26. Exposure of High dr Material to Reaction Conditions 55
Scheme 27. Further Manipulation of Indole Adducts 56
Scheme 28. Synthesis of Tricyclic Core of Posaconazole 65
Scheme 29. Side Chain Synthesis and Completion of Posaconazole 66
Scheme 30. Retrosynthetic Analysis of VNI 70
Scheme 31. Synthesis of N-Boc-2,4-Dichlorobenzaldimine 73
Scheme 32. PBAM Catalyzed aza-Henry Reaction of Nitromethane: A Double Addition 73
Scheme 33. Bromonitromethane aza-Henry Addition using an Unsymmetrical BAM Catalyst 75
Scheme 34. Synthesis of Imidazoles from Chiral Non-Racemic 1,2-Amino Alcohols 79
Scheme 35. Scalable Imidazole Formation from Reduced aza-Henry Adduct 80
Scheme 36. Synthesis of the Tri-Aryl Side Chain. 81
Scheme 37. Endgame: The Synthesis of VNI. 81
Scheme 38. Large Scale Acylation to give VNI 83
Scheme 39. Initial Reports of Enantioselective Halolactonizations using Chiral, Soichiometric Halogen Complexes 91
Scheme 40. Cinchona Based Chiral Iodine Sources in Enantioselective Iodolactonization 92
Scheme 41. First Catalytic, Enantioselective Halolactonization with a Chiral Ammonium Derived from Cinchonidine. 93
Scheme 42 Enantioselective Chlorolactonization Reported by Borhan. 93
Scheme 43. Effect of Halogen Source on Enantioselection and Yield. 94
Scheme 44. Urea/iodine Catalyzed Enantioselective Iodocyclization of δ - Unsaturated Acids. 95
Scheme 45. Fujioka Bromolactonization of Tri- and Tetra-substituted Olefins 101
Scheme 46. Tailored Cationic Halogenating Reagents in Halocyclization Reactions. 102
Scheme 47. Bromonitromethane Additions to Aliphatic Imines. 119
Scheme 48. Jacobsen's Modification of Conditions for Pentenoic Acid Derivatives 130
Scheme 49. Lewis Base Catalysis and Control of endo-/exo-Selectivity in Halolactonizations 145
Scheme 50. BAM Catalyzed endo-Bromolactonization. 146
Scheme 51. Initial Attemps to Study Tri-Substitued Olefinic Acids 149
Scheme 52. Ishihara's Enantioselective Halocyclization of Polyprenoids. 150
Scheme 53. Initial Attempts at a Cascade Reaction: Looking for Double Ring Closure. 151
Scheme 54. Carbon Dioxide Capture Using Alcohols and Amines. 152
Scheme 55. Preliminary Results for the Enantioselective Iodocarboxylation of Homoallylic Alcohols 153

List of Tables

Table 1. Reaction Optimization from Petrini's Protocol 27
Table 2. Further Reaction Optimization 28
Table 3. Investigations into the Equivalents of Phenylnitromethane 29
Table 4. Phenylnitromethane Addition: Solvent Screen 30
Table 5. Phenylnitromethane Addition: Exogenous Base Screen 31
Table 6. Catalyst Screen: H,QuinBAM analogs 32
Table 7. Catalyst Screen: Unsymmetrical PBAM Derivatives 33
Table 8. Catalyst Screen: Steric Analogs of PBAM 35
Table 9. Reaction Scope: Initial Electrophile Screen 40
Table 10. Reaction Scope: Variations at the Indole 2-Position 41
Table 11. Nucleophile Screen 43
Table 12. Reaction Optimization with Water as a Cosolvent 47
Table 13. Phenylnitromethane Addition to Isolated Indolenine Intermediate 50
Table 14. Comparison of BAM Catalysts in the Three Protocols 52
Table 15. Substrate Screen Implementing all Three Methods 53
Table 16. Reaction Optimization for the PBAM-Catalyzed Addition of Nitromethane 74
Table 17. Optimization of Bromonitromethane Additions to N-Boc-2,4- Dichloroaldimine 76
Table 18. Large Scale Optimization of BAM Catalyzed aza-Henry 77
Table 19. Large-Scale Optimization of One-pot Debromination/Nitro Reduction 78
Table 20. T. cruzi Detection by qPCR (ref. 62) 89
Table 21. Initial Catalyst Loading Studies with PBAM 105
Table 22. Role of Triflic Acid Equivalents 106
Table 23. Catalyst Screen of BAM-Triflic Acid Salts 107
Table 24. Optimization Studies and Reaction Parameter Limits for PBAM•HNTf 112
Table 25. Study of Operating Parameters for the Iodolactonization Reaction. 114
Table 26. Solvent Screen with PBAM•HNTf 2 as the Optimal Catalyst. 117
Table 27. Changing the Ratio of the Chiral, Brønsted Basic Catalyst to the Achiral Acid. 121
Table 28. Final Reaction Optimization of the Most Selective Catalyst System 122
Table 29. Increasing Enantioselection for the Lactonization for the para-Methoxy Acid. 129
Table 30. Attempts to Increase the Enantioselection of the γ-Iodolactonization Product 131

Table 31. Monitoring Enantiomeric Excess over Reaction Progress. 134
Table 32. Catalyst Screen for endo-Iodolactonization... 140
Table 33. Reaction Optimization for the endo-Iodolactonization. 141

List of Charts

Chart 1. Reaction Optimization of in situ Indolenine Formation 51
Chart 2. Large Scale Bromonitromethane Additions to Imines Catalyzed by PBAM. 85
Chart 3. Catalyst Screen of BAM-Protic Acid Salts 109
Chart 4. The pK_{a} Values of Achiral Acids used in BAM Catalyzed Iodolactonizations 111
Chart 5. Screen of Electronically and Sterically Diverse Pyrrolidine Bisamidine Ligands. 118
Chart 6. StilbPBAM and PBAM Comparison: Effect of Diamine Backbone on Enantioselection 120
Chart 7. Synthesis of Desired Olefinic Acids for Idolactonization. 125
Chart 8. Substrate Scope in Enantioselective Iodolactonization of 1,1- Disubstituted Acids. 126
Chart 9. BAM Catalyzed Cyclizations of other Functional Groups 132
Chart 10. Role of the Product in Influencing Enantioselection. 137
Chart 11. Substrate Scope for the endo-Iodolactonization. 143

CHAPTER I

I. CHIRAL BRØNSTED BASE-PROMOTED NITROALKANE ALKYLATION: ENANTIOSELECTIVE SYNTHESIS OF SEC-ALKYL-3-SUBSTITUTED INDOLES ${ }^{1}$

1.1 Current Approaches Toward Indole Products Containing sec-Alkyl-3Substitutions

Background and Relevance of Indoles

Indole and pyrrole containing alkaloids of natural and synthetic origin have garnered a significant amount of attention for their value as potential drugs. These alkaloids, produced by both terrestrial and marine organisms, are presumed to have evolved as defense mechanisms, explaining their high levels of potency and toxicity. ${ }^{2}$ Over the years, the diversity and potency of these alkaloids have allowed a significant number to become viable drug leads. ${ }^{3}$

The significance of indoles and pyrroles in medicinal chemistry is validated by their recurring presence in top-grossing pharmaceuticals (Figure 1). ${ }^{4}$

[^0]Figure 1. Representative Indole- and Pyrrole-Containing Pharmaceuticals in the Top 200 of Sales for the Year 2007

2
(rizatriptan)
3

Lipitor (1), the top grossing drug for 2007, is a pyrrole containing statin that is used to treat high levels of cholesterol. Cialis (2) is an indole-containing drug used to treat erectile dysfunction. Maxalt (3) is a selective serotonin reuptake inhibitor (SSRI) that treats the symptoms of migraines. Indole and pyrrole moieties are also present in compounds that demonstrate antiviral, antimicrobial, calcium releasing, enzyme inhibition, and cytotoxic properties, to name but a few. ${ }^{5}$

Indole-containing compounds can be categorized into two structurally related classes based on the substitution at C3: (1) those bearing n-alkyl substitution and (2) those bearing sec-alkyl substitution.

n-alkyl substituent
vs

sec-alkyl substituent

The majority of naturally occurring indole alkaloids contain $\mathrm{C} 3 n$-alkyl substitution as this fits with their proposed biosynthetic origin from tryptophan (Figure 2). For example, reserpine (4), isolated in 1952^{6} and synthesized by R. B. Woodward in $1956,{ }^{7}$ was

[^1]recognized for treatment of hypertensive, nervous and mental health disorders. In the same year, Woodward also reported the total synthesis of lysergic acid (5), an alkaloid recognized for centuries to have mind altering properties. ${ }^{8}$ Danishefsky and coworkers reported the total synthesis of tryprostatin B (6) in 1996, a compound targeted as a potential cell cycle inhibitor. ${ }^{9}$ E. J. Corey reported the total synthesis of bisindole okaramine N (7) in 2003, a natural product with unknown biological properties. ${ }^{10}$ This list is not all encompassing and only seeks to demonstrate the complexity and utility of naturally-occurring indole containing compounds. Interest in the synthesis of indole containing compounds continues to grow and is only highlighted in the examples below.

Figure 2. Indole Alkaloids with C3 n-Alkyl Substitution

lysergic acid (5)

okaramine N (7)

[^2]More recently, indole alkaloids with C3 sec-alkyl substitution have emerged as targets of interest (Figure 3).

Figure 3. Representative Indole and Pyrrole Heterocycles Bearing Chiral C3 sec-Alkyl Substitution

The gonadotropin releasing hormone (GnRH 1, 8) antagonist developed by Merck ${ }^{11}$ and the potent plant-growth inhibitor acremoauxin $\mathrm{A}(\mathbf{9})^{12}$ both have a methyl substituent at the 3 '-carbon. The potent analgesic pemedolac (11) (a close analog of the antiinflammatory agent etodolac) ${ }^{13}$ and the large class of synthetically challenging

[^3]hapalindoles $(\mathbf{1 0})^{14}$ are examples of indole alkaloids with more complicated alkyl substituents at the 3-carbon of indoles. Previously isolated and synthesized spirotryprostatin A \& B^{9} lack substitution at the C3' position; however efforts to exploit the antimitotic activity of the spirotryprostatin class of compounds resulted in the addition of an aromatic substituent at this position to give potent analogs (12). ${ }^{15}$ Gelliusines (14), isolated from the marine sponge Orina sp., are another class of natural products with a chiral 3 '-carbon bearing an aryl substituent. ${ }^{16}$ There are also a number of compounds with a pyrrole backbone containing sec-alkyl substitution, for example, the antibiotic roseophilin (15) ${ }^{17}$ and the "trimer like" class of myrmicarins (13). ${ }^{18}$

These high interest natural products are often in low supply and, as a result, chemical syntheses are developed to make them available for biological testing and derivatization. The synthesis of these complex targets often requires development of new methodologies which in turn, opens the door to a never-ending supply of potential targets. In spite of the significant number of targets containing indole and pyrrole motifs, access to the chiral non-racemic versions is not as well established.

To synthesize these compounds one can envision disconnection between the C3C3' bond or the C3'-C3" bond (Figure 4).

[^4]Figure 4. Different Disconnections for the Synthesis of Alkyl Indoles

In the forward sense, this would represent a new carbon-carbon bond formation between either an sp^{3} and sp^{2} center or two sp^{3} centers. In terms of nucleophile and electrophile partners, most reactions that have been developed thus far take advantage of either the nucleophilicity of the indole at C3 or the electrophilicity of the indole at C3'. Most of the reactions that will be discussed can be categorized as such: C3-C3' bond formation for nucleophilic indoles and C3'-C3" for electrophilic indoles.

Nucleophilic Indoles and C3-C3'Bond Formation

Since its discovery in $1877,{ }^{19}$ the Friedel-Crafts reaction has been one of the most extensively studied carbon-carbon bond forming reactions. ${ }^{20}$ Since the first reaction of amyl chloride and aluminum was discovered to give n-decane, a variety of nucleophiles and electrophiles have been extensively studied and reviewed. ${ }^{21}$ Specifically, our interest is in the products that arise from the Friedel-Crafts alkylation between indole and nitroalkenes, resulting in substituted tryptamine precursors.

[^5]The first known report using nitroalkenes as Michael-acceptors was by Noland in 1954 (Scheme 1). ${ }^{22}$

Scheme 1. First Reported Use of Nitrostyrenes as Michael Acceptors

Treatment of indole with ethyl magnesium iodide to form the indolemagnesium iodide species, and subsequent addition to the nitroolefin (17) gave adduct 18 in good yield (55\%). Using more sterically hindered α, β-disubstituted nitrostyrene also gave the desired product, albeit in low yield (16\%). Fifty years after this initial report, the Friedel-Crafts reaction between indole and nitrostyrene still draws considerable interest, now for its asymmetric variant catalyzed by both metal- and organo-catalysts. ${ }^{23}$

Metal-Catalyzed Friedel-Crafts Reaction between Indole and Nitrostyrene

A number of Lewis Acid bisoxazoline (BOX) complexes (21-24) have been developed to catalyze the enantioselective Friedel-Crafts (FC) reaction of indole and nitrostyrene (Figure 5).

[^6]Figure 5. Chiral BOX-ligands for the Asymmetric Friedel-Crafts Reaction between Indole and Nitrostyrene

In all of the separate reports highlighted above, ${ }^{24}$ a variety of Lewis Acids were screened only to reveal that the zinc and copper triflates gave the highest reactivity and selectivity.

The addition of a wide range of indole nucleophiles to β-substituted styrene was performed in good yields with these ligands. A small number of other metal-based catalysts (such as SalenAlCl) ${ }^{25}$ have had little success in this reaction.

Organocatalyzed Friedel-Crafts Reaction between Indole and Nitrostyrene

In 2005, Ricci and coworkers reported the first enantioselective organocatalytic version of this transformation using a chiral thiourea (Scheme 2). ${ }^{26}$

[^7]Scheme 2. Chiral Thiourea Catalyzed Addition of Indole to Nitrostyrene

Thioureas are known for their bifunctional binding of both the nucleophile and electrophile, with the nitroalkene binding to the thiourea moiety and the indole binding to the alcohol of the catalyst. After a screen of thiourea catalysts, the catalyst derived from indanol (27) was found to be the most selective. Reactivity and selectivity increased when an electron donating group (MeO-) was placed on the indole ring. The reaction was tolerant of other aryl rings as the enantioselection saw little change between substrates.

Shortly after the work by Ricci, Jørgensen and coworkers reported their enantioselective Friedel-Crafts reaction using a chiral diamine catalyst (Scheme 3). ${ }^{27}$

Scheme 3. Chiral Stilbene Diamine Catalyzed Addition of Indole to Nitrostyrene

Using chiral bis(sulfonamide) stilbene diamine (30) as the catalyst, indole addition to nitrostyrene occurred with low enantioselection (15% ee). A methoxy group $\left(\mathrm{R}_{2}\right)$ on the

[^8]protected N-methyl indole increased the enantioselection dramatically, but the high ee levels obtained by Ricci were not matched.

The use of chiral phosphoric acids to catalyze the Friedel-Crafts addition to nitrostyrenes was first reported in 2008 by Akiyama and coworkers (Scheme 4). ${ }^{28}$

Scheme 4. Chiral Phosphoric Acid Catalyzed Addition of Indole to Nitroalkenes

High values of enantioselection were reported for a variety of substrates. Most notably, aliphatic substituted nitroalkenes also gave good yields and high ee despite longer reaction times (10 days). Molecular sieves proved to be essential for conversion in this reaction as very little product (5\%), though still with good selectivity (75% ee), was isolated without sieves.

In 2008, the Seidel group had a breakthrough and reported on the use of hydrogen bonding catalysts for the enantioselective Friedel-Crafts reaction (Scheme 5). ${ }^{29}$

[^9]Scheme 5. Protonated Thioureas as Highly Reactive and Selective Catalysts

When they used the Ricci thiourea (27), the reaction delivered product that was only 36% ee. When the catalyst was protonated with the "BArF acid", they not only observed acceleration in the reaction rate, but an increase in enantioselection. Further catalyst development led to the development of $\mathbf{3 6}$, which when protonated delivered the standard adduct 35 in 92% ee and 94% ee. The reaction scope was extremely broad, tolerating a variety of substrates at multiple positions on the indole, as well as different substitutions on the nitrostyrene. This reaction is currently the most selective and general for the addition of indole to nitrostyrene for all reported organocatalysts.

Friedel-Crafts Reaction between Indole and α, β-Disubstituted Nitrostyrenes

Though significant strides have been made in the enantioselective Friedel-Crafts reaction of indole and β-nitrostyrenes, the enantioselective variant between indole and α, β-disubstituted nitrostyrenes remains unexplored (eq 7). The reported racemic versions often require relatively harsh conditions, resulting in chiral racemic material. ${ }^{30}$

[^10]

The use of a second activating group (ester) on the nitroolefin has allowed for the synthesis of chiral non-racemic products. The asymmetric Friedel-Crafts reaction between indole and nitroacrylates has been successfully executed using a DiPh-BOX(41)copper triflate complex (Scheme 6). ${ }^{31}$

Scheme 6. Enantioselective Friedel-Crafts Alkylation with α, β-Disubstituted Nitroalkenes

The reaction occurred diastereoselectively (up to 3:1 favoring the anti-diastereomer) with the anti-diastereomer giving the highest values of enantioselection (94% ee). To the best of our knowledge, this is the first report of an enantioselective addition to α, β disubstituted nitroolefins, while asymmetric versions where the α-substituent is nonactivating (alkyl, etc.) are nonexistent.

Electrophilic Indole and C3'-C3" Bond Formation

Carbon-carbon bond formation also occurs when an electrophilic indole moiety is reacted with a nucleophile. The key intermediate in this step is the α, β-unsaturated indolenine, often formed in situ due to its high reactivity (Scheme 7).

[^11]Scheme 7. Nucleophilic Addition to Indolenines

Upon treatment of indole $\mathbf{4 2}$ with acid or base, elimination of the leaving group reveals the indolenine intermediate (43). This highly reactive intermediate can then undergo nucleophilic addition to form a highly functionalized indole (44). This sequence has been exploited with a variety of leaving groups and electrophiles.

Gramine as an Indolenine Precursor

One of the earliest examples of indolenine formation, reported by Snyder in 1944, was accessed by forming the quaternary ammonium salts of gramine (Scheme 8). ${ }^{32}$

Scheme 8. Gramine as an Indolenine Precursor

These stable precursors to indolenine are formed by treatment of gramine with methyl iodide to give quaternary ammonium salt 46. Subsequent treatment with sodium ethoxide and diethyl malonate gave the desired product (47) in high yields. This was demonstrated with a variety of malonic ester derivatives as well as indole analogs. The use of gramine

[^12]and other derivatives have been extensively studied and reviewed since this initial report. ${ }^{33}$

A recent example illustrates the use of gramine derivatives in the synthesis of highly substituted tryptamine analogs (Scheme 9). ${ }^{34}$

Scheme 9. Addition of Nitroalkanes to Gramine-derived Indolenine Intermediates

Substituted gramine analog (48) was refluxed with aqueous potassium carbonate to form the indolenine intermediate (49) in situ with elimination of dimethylamine. Addition of various nitroalkanes produced substituted tryptamine precursors (50) in high yields, though with limited functionality.

Arylsulfonyl Indoles as Indolenine Precursors

Indolenine formation via other leaving groups, such as halogens and alcohols, has also been explored. However, our interest is focused on the use of arylsulfonyl indoles as stable precursors to indolenines. In 2006, Petrini reported the synthesis and use of 3arylsulfonylalkyl indoles as indolenine precursors (Scheme 10). ${ }^{35}$

[^13]Scheme 10. Petrini's Synthesis of Arylsulfonyl Indoles

They envisioned an in situ acid-catalyzed aldimine formation with loss of the tosyl group followed by nucleophilic attack of indole to yield 51. However, the isolated product (52) had incorporated the tosyl group instead of the carbamate group. Subsequent addition of three equivalents of butyllithium resulted in elimination to form the indolenine (54) and butyllithium addition to give $\mathbf{5 3}$ in high yield.

A more direct synthesis of arylsulfonyl indoles was later reported using the desired aldehyde and an arylsulfinic acid under catalytic acid conditions (Scheme 11). ${ }^{36}$

Scheme 11. Modified Synthesis of Arylsulfonyl Indoles

[^14]Under these conditions, it is hypothesized that the indole adds to the aldehyde to form the indolyl alcohol (56), which then eliminates the elements of water to form the indolenine intermediate (57). The arylsulfinic acid then traps this intermediate affording the arylsulfonyl alkyl indoles (55) in good yields. Alternatively, using a second equivalent of indole as the trapping agent yields the bis(indole) compound. ${ }^{37}$

These arylsulfonyl indoles have been used extensively since the initial reports under a variety of reaction conditions. ${ }^{38}$ The reaction with Reformatsky-enolates was one of the first applications of these precursors (eq 14).

The α-bromo ester was treated with zinc metal, iodine, and the arylsulfonyl indole, and refluxed in THF. One equivalent of the Reformatsky-enolate effects the elimination and the second equivalent then adds to the formed indolenine (similar to the alkyl lithium in Scheme 10) to give 59 in good yields.

Shortly after this report, the use of an exogenous base eliminated the need for excess nucleophile (Scheme 12). ${ }^{39}$

[^15]Scheme 12. Additions of Nitroalkanes and Malonates

Initial attempts used sodium hydride (not shown) as the exogenous base, and upon heating provided the adducts of type $\mathbf{6 1}$ in good yields. However, sodium hydride was not compatible with several functional groups so other exogenous bases were examined. Examination of potassium fluoride on alumina in methylene chloride at room temperature revealed facile elimination to the indolenine and catalyzed addition of the nucleophile. Both primary and secondary nitroalkanes, as well as symmetrical and unsymmetrical malonate derivatives gave the desired products ($\mathbf{6 1}$ and $\mathbf{6 2}$) in high yields.

An alternate synthesis of arylsulfonyl alkyl indoles takes advantage of the increased acidity of the α-proton of sulfonyl groups. The starting indole (65) is synthesized in three steps from 3-methylindole by protection of the indole with a Boc group, bromination and nucleophilic attack of the tosylsulfinate (Scheme 13). ${ }^{40}$

[^16]Scheme 13. Synthesis of Indole Starting Material for Further Functionalization

Scheme 14. Double Functionalization of N-Boc Protected Indoles

The sulfonyl α-proton of indole $\mathbf{6 5}$ is then deprotonated using DMAP and quenched with an electrophile, providing the protected indole adducts (66) in good yields (Scheme 14). Deprotection with TFA and subsequent addition of base and the nucleophile affords the desired doubly functionalized indoles (67). This synthetic strategy requires additional synthetic operations than the previously discussed conditions (Scheme 11), but is useful when the aldehydes are not easily obtained or do not react under the previously discussed conditions.

Enantioselective Additions to Indolenines

One of the first reported instances of indolenine intermediates in asymmetric catalysis is the α-alkylation of aldehydes by Petrini and coworkers in 2008 (Scheme 15). ${ }^{41}$

Scheme 15. Proline-Catalyzed Asymmetric Formal α-Alkylation of Aldehydes

After screening a variety of bases, solvents and catalysts, it was realized that when sulfone 68 was stirred with KF on solid supported alumina, L-proline catalyzed addition of the aldehyde via an enamine intermediate gave good yields of the desired product (70) with high diastereo- and enantioselection. This reaction performed best when the α substituent $\left(\mathrm{R}_{1}\right)$ of the aldehyde was an alkyl chain, R_{2} was an aryl group and R_{3} was either methyl or phenyl. The steric bulk at the 2-position proved to be important as enantioselection was almost nonexistent (11% ee) with no substituent $\left(\mathrm{R}_{3}=\mathrm{H}\right)$. Petrini and coworkers established this new reaction with acceptable values of enantioselection and reactivity that has since been exploited in other catalytic systems.

Indolyl alcohols were also utilized in this transformation under acidic conditions (Scheme 16). ${ }^{42}$

[^17]Scheme 16. Imidazolidinone Catalyzed Addition of Aldehydes to Indolenine

71

(48\%)

74
2.6:1 d.r. (92\% ee anti/86\% ee syn)

Catalyzed by imidazolidinone 73, propionaldehyde (72) was added to arylindole 71 with good enantioselectivity and moderate diastereoselection via an enamine addition. The acid promoted elimination of water allowed for the indolenine intermediate to form in situ without the need of base, allowing for the compatibility of base-labile functionalities on the starting indoles.

Shortly after the report by Petrini, You and coworkers reported additions to these highly reactive indolenine intermediates using N-heterocyclic carbene (NHC) catalysis (Scheme 17). ${ }^{43}$

Scheme 17. N-Heterocyclic Carbene Catalyzed Additions of Aldehydes to Indolenines

[^18]The NHC cross-coupling of aryl aldehydes with arylsulfonyl indoles was demonstrated in good yields and high tolerance for a variety of sterically and electronically diverse substrates in both the R_{1} and Ar positions. The reaction was not as efficient when either the aldehyde or R_{1} was aliphatic ($30-50 \%$ yields). Of greater interest is their initial exploration into an enantioselective variant. Using NHC catalyst 82, developed by Rovis and coworkers, ${ }^{44}$ the reactions proceeded with high enantioselection but suffered from low conversion. With a more reactive catalyst, this reaction may prove to be a viable method for accessing enantiopure indoles (81).

Enantioselectivity can also be obtained using a chiral catalyst to bind to the electrophile through a catalyst/electrophile complex or chelation. Gong and coworkers reported the addition of enamides under chiral Brønsted acidic conditions (Scheme 18). ${ }^{45}$

Scheme 18. Enantioselective Alkylation Reaction of Enamides by Chiral Phosphoric Acid Catalysis

Using chiral phosphoric acid 86, the addition of enamides (84) to indolyl alcohols (83) occurred with good enantioselection and yields. Under acidic conditions, the reactive indolenine intermediate is formed with the loss of the elements of water. Most variations

[^19]at $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3} were well tolerated with the exception of an aliphatic group at R_{3} (no desired product was observed). This could be the result of the aliphatic group's inability to stabilize the carbocation proposed in the transition state (TS-1).

The authors propose two transition states or possible modes of binding for the catalyst, accounting for either a stabilized benzylic cation (TS-1) or an α, β-unsaturated indolenine intermediate (TS-2). Both transition states allow for a chiral ion pair to form acting as the point of chiral induction.

In 2010, Zhou and coworkers reported the first use of a chiral Brønsted-base catalyst to promote addition to the highly reactive indolenine intermediate (Scheme 19). ${ }^{46}$

Scheme 19. Chiral Brønsted-Base Catalyzed Addition of Malononitriles

The addition of malononitrile proceeded with chiral thiourea $89(10 \mathrm{~mol} \%)$ and potassium phosphate in good enantioselection for a variety of aryl indole derivatives. Enantioselection was also observed for benzyl and tert-butyl analogs (R position), while

[^20]no n-alkyl derivatives were reported. Further variations in the nucleophile and 2-position were not explored. The presence of the indole 2-methyl might be important for enantioselection because of the influence of steric bulk on the double bond configuration, as seen in the proposed binding model with the E-configured double bond.

If the methyl group is not present, the double bond may be present as both E - and Z-isomers, thereby decreasing the enantioselection. Despite the limited substrate scope, this marked the first report of Brønsted base catalyzed enantioselective addition of malononitrile and has further opened avenues to other asymmetric transformations.

1.2 Chiral Bisamidine-Promoted Nitroalkane Alkylations

Previous Work in BAM Catalyzed Additions

Our group has achieved success in the highly enantioselective, Bis(AMidine)
(BAM) catalyzed addition of nitroalkanes to imine analogs (Scheme 20).

Scheme 20. Enantioselective aza-Henry Additions Using BAM Catalysis

90

(59\%)

 (88\% over 2 steps)

$\mathrm{Ar}=2,6-{ }^{-} \mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ (83\%)

(87\%)

91 17:1 dr, 82% ee (cis)

94
$9: 1 d r, 88 \%$ ee (cis)

$18: 1 \mathrm{dr}, 91 \%$ ee (cis)

PBAM, 100

High selectivity has been observed with a variety of nitroalkanes containing different substitutions. ${ }^{47,48,49,50,51,52}$ More notably, an increase in reactivity has also been realized from the first generation catalyst ${ }^{4} \mathrm{H}$,QuinBAM (92) ${ }^{47}$ to a more Brønsted basic catalyst $\mathrm{H}^{4}{ }^{4}$ PyrrolidineQuin-BAM (PBAM, 100) ${ }^{52}$ allowing for additions of simple nitroalkanes in stoichiometric amounts in contrast to the large excess originally needed. The increased reactivity of this catalyst has encouraged us to investigate other combinations of electrophiles and nucleophiles.

Preliminary Results from Bisamidine Catalyzed Additions

Shortly after Petrini reported the L-proline catalyzed alkylation of aldehydes, we began our work on the enantioselective addition of nitroalkanes to indolenine intermediates using our BAM catalysts (Figure 6).

[^21]Figure 6. Previously Reported BAM Reactivity and Desired Additions of Phenylnitromethane to Indolenine Intermediates

We hypothesized that we could selectively add nitroalkanes in a 1,4-manner if our catalyst provided a chiral proton binding element to the indolenine intermediate. All previous works utilize BAM catalysts for 1,2-additions of nitroalkanes to N-Boc aryl aldimines, so expected an amount of optimization to be required.

In order to gauge selectivity in the 1,4-additions to indolenines, we initially used the Petrini protocol for a direct comparison (Table 1). ${ }^{41}$

Table 1. Reaction Optimization from Petrini's Protocol

			$\xrightarrow[\begin{array}{c} \text { KF/Alumina (5 equiv) } \tag{25}\\ \text { DCM }(0.2 \mathrm{M}) \end{array}]{\substack{\mathrm{RCH}_{2} \mathrm{NO}_{2} \text { (2 equiv) } \\ \text { cat. (10 mol \%) }}}$				
entry	R	cat.	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	time (h)	conv. ${ }^{\text {b }}$ (\%)	$d r^{\text {b }}$	ee^{c} (\%)
1^{d}	H	DMAP	rt	20	low	-	-
2	Ph	DMAP	rt	20	100	1.3:1	-
3	Ph	PBAM	rt	16	100	1.3:1	20
4	Ph	PBAM	-20	40	57	1.3:1	<5

${ }^{a}$ All reactions were 0.2 M unless otherwise specified. ${ }^{b}$ Conversions and dr measured by ${ }^{1} \mathrm{H}$ NMR. ${ }^{c}$ Enantiomeric excess measured by HPLC using chiral stationary phase. ${ }^{d} 3$ equivalents of MeNO_{2} used.

Before the selectivity of the BAM catalysts was examined, the racemic adducts were formed using DMAP, an achiral catalyst deemed similar to PBAM in terms of reactivity. Using nitromethane and phenylnitromethane, progress of the reaction was monitored after stirring overnight, and phenylnitromethane gave full conversion to indole $\mathbf{1 0 2}$ (Table 1, entry 2) while nitromethane gave low conversion (Table 1 , entry 1). Thus phenylnitromethane was used as the nucleophile of choice for reaction optimization using PBAM as the chiral Brønsted base. Phenylnitromethane added to indole 101 and gave the desired adduct in 20% ee (Table 1, entry 3). In order to increase selectivity, the reaction was run under cryogenic conditions. However, the conversion and enantioselection of the product dropped dramatically (Table 1, entry 4).

The enantioselectivity (20% ee) observed at room temperature was low but encouraging as this is the first enantioselective 1,4-addition of nitroalkanes using a BAM catalyst. Additionally, this is the first successful use of a substrate lacking an N-Boc protecting group for this class of catalysts. The ee was believed to be tunable so we sought other means of increasing the enantioselection (Table 2).

Table 2. Further Reaction Optimization

entry	cat.	base	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	conv. (\%)	ee (\%)
1	PBAM	KF/Al	rt	100	60
2	PBAM	KF/Al	10	100	47
3	PBAM	KF/AI	-20	48	57
$4^{\text {b }}$	PBAM	KF/Al	-78	40	49
5	PBAM	KF/Al (2 equiv)	rt	85	35
$6^{\text {c }}$	PBAM	-	rt	30	33
7	-	KF/Al	rt	85	-
8^{d}	-	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (7 equiv)	rt	50	-
9	PBAM	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (7 equiv)	rt	80	70
10^{f}	PBAM	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (7 equiv)	rt	83	78

${ }^{a}$ All reactions were performed on a 0.10 mmol scale using 1 equivalent of the indole and run for $16-22 \mathrm{~h}$ under the conditions listed. Product was isolated as <1.6:1 dr unless otherwise noted. ${ }^{b}$ Reaction ran for $72 \mathrm{~h} .{ }^{c} 20$ mol \% PBAM used. ${ }^{d} 1.5$ equiv of phenylnitromethane used. ${ }^{e}$ Ran at 0.1 M .

Previously reported BAM catalyzed additions demonstrated higher enantioselection in toluene. We were pleased to see that this reaction was no different as switching the solvent to toluene resulted in a large increase in enantioselection, from 20% to 60% (Table 2, entry 1). The reaction was subjected to cryogenic conditions again, but as observed previously, the enantioselectivity dropped (Table 2, entries 2-4). The poor selectivity at low temperatures is believed to be due to the sluggish elimination step (to be discussed in detail later in the chapter). Decreasing the equivalents of base gave decreased enantioselection (Table 2, entry 5). In order to evaluate the background rate, the reaction was run with PBAM but no exogenous base (Table 2, entry 6). Clearly a full equivalent of base is necessary to effect the elimination of the tosyl group, as is evidenced by poor conversion of starting material. When the reaction was performed with
only KF/Al (Table 2, entry 7) it was realized that KF/Al promoted the elimination as well as the nucleophilic addition. This high background rate would explain the lower enantioselection. As a result, a less reactive inorganic base was sought. Potassium carbonate was chosen and demonstrated lower conversion to product when used as the sole source of base in the reaction (Table 2, entry 8). An increase in ee was observed when using potassium carbonate and PBAM in the reaction (Table 2, entry 9). When the reaction was run under more dilute conditions $(0.1 \mathrm{M})$ we saw a further increase in ee to 78% (Table 2 , entry 10). The diastereoselection remained constant throughout reaction optimization (<1.5:1). Traditional efforts to increase the diastereoselection were unsuccessful and will be revisited in future work.

Reaction Optimization

With the optimal concentration and a satisfactory base in hand the effect of the nucleophile stoichiometry was examined (Table 3).

Table 3. Investigations into the Equivalents of Phenylnitromethane

entry	PNM (equiv)	ee (\%)	entry	PNM (equiv)	ee (\%)
1	2.0	78	5	0.75	83
2	1.5	78	6	0.5	86
3	1.1	79	7	0.25	90
4	1.0	81	8^{b}	$0.5+0.5$	83

${ }^{a}$ All reactions were performed on a 0.10 mmol scale using 1 equivalent of the indole under the conditions listed. Product was isolated as $<1.6: 1 \mathrm{dr}$ unless otherwise noted. ${ }^{b}$ Added in 2 portions after 22 h of stirring.

A clear trend was observed with decreasing amounts of nucleophile (Table 3, entries 1-
7). This showed that excess nucleophile has a negative effect on the enantioselection.

This may be a reflection of the ratio of catalyst to nucleophile. At higher equivalents (Table 3, entries 1-2) the catalyst may be saturated with nucleophile resulting in increased addition catalyzed by the achiral exogenous base through a non-selective pathway. Therefore, aliquot addition of the nucleophile was performed (Table 3, entry 8) and found to increase the ee slightly. Since the ee was not as high as using only 0.5 equiv (Table 3 , entry 6), this suggests that the active catalyst may be more complex than just the nitronate salt.

Though toluene has thus far proved to be the most effective solvent in BAM catalyzed reactions, a thorough solvent screen was conducted (Table 4).

Table 4. Phenylnitromethane Addition: Solvent Screen

				$\xrightarrow[\substack{\text { solvent }(0.1-0.2 \mathrm{M}) \\ 25^{\circ} \mathrm{C}, 16-22 \mathrm{~h}}]{\substack{\mathrm{PBAM}(10 \mathrm{~mol} \%) \\ \mathrm{PhCH}_{2} \mathrm{CO}_{3}(7 \text { equiv })}}$				(28)	
entry	solvent	PNM (equiv)	conv. (\%)	ee (\%)	entry	solvent	PNM (equiv)	conv. (\%)	ee (\%)
1	PhCH_{3}	1.0	95	81	10	EtOAc	1.0	90	30
2	PhH	1.0	85	77	11	ether	1.0	37	56
3	o-xylene	1.0	100	76	12	TBME	1.0	17	72
4	m-xylene	1.0	77	80	13	THF	1.1	80	18
5	PhOMe	1.5	95	65	14	$c-\mathrm{C}_{6} \mathrm{H}_{12}$	1.0	27	63
6	PhCF_{3}	1.1	65	32	15	MeCN	1.1	95	0
7	PhNO_{2}	1.0	75	31	16	DMSO	1.0	100	0
8	DCE	1.0	90	46	$17^{\text {b }}$	$\mathrm{H}_{2} \mathrm{O}$	1.0	90	0
9	CCl_{4}	1.0	93	77					

[^22]A variety of aromatic solvents were examined (Table 4, entries 2-7) and found to give similar enantioselectivities to toluene. Chlorohydrocarbons (Table 4, entries 8-9) gave significantly different values of enantioselection, with carbon tetrachloride giving results similar to toluene. Acyclic and cyclic ethers gave lower enantioselection (Table 4, entries 11-13) with THF giving the lowest at 18% ee. The more polar solvents gave essentially no enantioselection (Table 4, entries 15-17).

Table 5. Phenylnitromethane Addition: Exogenous Base Screen

$$
\begin{align*}
& \text { entry } \tag{29}\\
& \hline 1
\end{align*}
$$

A base screen demonstrated that potassium carbonate was still the best inorganic base in this reaction (Table 5, entry 1). KF and KF/Al performed similarly (Table 5, entries 2-3) while the presence of molecular sieves with potassium carbonate led to a decrease in enantioselection (Table 5, entry 4). Sodium bicarbonate (Table 5, entry 7) and sodium hydroxide (Table 5, entry 8) gave low conversion.

Reaction Optimization: Catalyst Screen

Having determined the optimal stoichiometry (one equivalent of phenylnitromethane), concentration (0.1 M), solvent (toluene) and base (potassium carbonate), a plethora of BAM catalysts from our library were screened (Table 6).

Table 6. Catalyst Screen: H,QuinBAM analogs

entry	catalyst		ee $(\%)$
1	H,QuinBAM	$\mathbf{9 2}$	56
2	H, 2 Quin(${ }^{3}$ Quin)BAM	$\mathbf{1 0 5}$	0
3	BenzoQuinBAM	$\mathbf{1 0 6}$	0
4	${ }^{4}$ MeO-BAM	$\mathbf{1 0 4}$	73

$$
{ }^{a} \text { All reactions were performed on a } 0.10 \mathrm{mmol} \text { scale using } 1 \text { equivalent }
$$ of the indole under the conditions listed. Product was isolated as $<1.6: 1$ dr unless otherwise noted.

The first generation catalyst H,QuinBAM (92) catalyzed the addition with good enantioselectivity (56% ee) (Table 6, entry 1). We were surprised to see this as H,QuinBAM has been deemed significantly less basic than PBAM. The unsymmetrical version of $\mathrm{H}, \mathrm{QuinBAM}\left(\mathbf{1 0 5}, \mathrm{H},{ }^{2} \mathrm{Quin}\left({ }^{3}\right.\right.$ Quin)BAM) and the sterically hindered BenzoQuinBAM (Table 6, entries 2-3) gave no enantioselectivity. The slightly more basic ${ }^{4} \mathrm{MeO}-\mathrm{BAM}(\mathbf{1 0 4})$ gave increased enantioselection, but did not reach the levels of
the most basic catalyst PBAM (81% ee). This suggested that increases in catalyst basicity increase the enantioselection (Table 6, entry 4).

Table 7. Catalyst Screen: Unsymmetrical PBAM Derivatives

entry	catalyst		ee (\%)
1	${ }^{4}$ MeO-Anth-BAM	$\mathbf{9 8}$	35
2	Anth-Pyr-PBAM	$\mathbf{1 0 8}$	48
3	Anth-PBAM	$\mathbf{1 0 7}$	55
4	Mesityl-PBAM	$\mathbf{1 0 9}$	37

${ }^{a}$ All reactions were performed on a 0.10 mmol scale using 1 equivalent of the indole under the conditions listed. Product was isolated as $<1.6: 1$ dr unless otherwise noted.

The unsymmetrical BAM catalysts with bulky substituents on the 6-position of the pyridine (Table 7) have performed very well in other additions, ${ }^{48,49,50}$ but performed poorly in this reaction. This is postulated to be due to the steric congestion in the binding pocket.

The absolute stereochemistry of the addition products was determined to be of the (S)-configuration by chemical correlation (debromination of 138e). ${ }^{53}$ The hypothesized

[^23]catalyst binding model (Figure 7) is based on previous models of BAM catalysts and imine electrophiles, and accounts for the absolute stereochemistry of the products. ${ }^{54}$

Figure 7. Proposed Catalyst Binding Model

We propose that the electrophile is oriented so that the indole nitrogen is interacting with the chiral proton and the rest of the indole rising out of the pocket. The quinoline ring system of the catalyst would then block attack from the Si face. Due to the additional distance between the 1,4-addition site and the chiral pocket (compared to 1,2-addition for an imine), catalysts with more steric influence (extension of quinoline ring versus pocket sterics [Table 7]) were tested in an attempt to further block nucleophilic attack to the Si face (Table 8).

[^24]Table 8. Catalyst Screen: Steric Analogs of PBAM
${ }^{a}$ All reactions were performed on a 0.10 mmol scale using 1 equivalent of the indole under the conditions listed. Product was isolated as <1.6:1 dr unless otherwise noted.

Extending the length of the quinoline ring was found to have little effect on ee. Bulky alkyl substituents at the 7 position of the quinoline ring (Table 8, entries 2-3) gave slightly lower ee than the methyl group (Table 8, entry 1). An electron donating substituent at the 7 position (Table 8, entry 4) gave lower enantioselection than an electron donating substituent at the 8 -position (Table 8, entry 5). The influence of substituents at the 8 -position is being investigated further. Results in the addition of aryl nitroalkanes to N-Boc aryl aldimines show an increase in ee, compared to PBAM, when substitution is at the 8 -position. ${ }^{55}$ When the catalyst backbone was changed from cyclohexyl diamine to stilbene diamine (StilbPBAM), the enantioselection dropped (Table 8, entry 6). Since the reactivity was the same as PBAM, this drop in enantioselection could be a direct result of a smaller, more hindered pocket. ${ }^{56}$

[^25]BAM catalysts have demonstrated similar reactivity and selectivity to the class of chiral thiourea catalysts (Scheme 21).

Scheme 21. Catalyst Screen: Thiourea Catalysts

Using the Takemoto catalyst (116, eq 32) ${ }^{57}$ and the Deng catalyst (117, eq 33), ${ }^{58}$ good enantioselection was observed. The Takemoto thiourea gave the desired adduct in up to 67% ee and Deng's cinchonidine-based thiourea gave the product in up to 84% ee. This is the first time that a significant difference in enantioselection was observed between the major and minor diastereomers.

Encouraged by the comparable enantioselection to PBAM, the BAM thiourea analogs were synthesized (Scheme 22).

[^26]Scheme 22. Synthesis of UreaBAM Analogs

The quinoline rings were coupled to the trans- (R, R)-cyclohexyl-diamine under Buchwald-Hartwig type conditions. This occurred in low yields (33-34\%) due to the formation of a significant amount of the bis-coupled diamine. In future reactions, this can be avoided using a mono-protected amine, followed by coupling and deprotection. With the mono-coupled diamine in hand, the free amine was treated with one equivalent of the isothiocyanate $\mathbf{1 1 9}$ at room temperature. Both desired catalysts (120 and 122) were isolated in acceptable yields (53-80\%) and were used in the addition of phenylnitromethane to indole (Scheme 23).

Scheme 23. Catalyst Screen: UreaBAM Analogs

Treatment of indole $\mathbf{1 0 1}$ with the modified Takemoto catalyst resulted in an increase in the enantioselection by about 20%. More interestingly, the enantioselection was inverted from the Takemoto catalyst, even though the diamine backbone remained the same, suggesting a significant change in binding between the catalysts. Adding a methoxy group to the quinoline ring (catalyst 122) to increase the Brønsted basicity of the catalyst resulted in very small changes in enantioselection, inferring that the amidine participates less in the binding than the thiourea moiety (a steric over electronic influence). Despite the small increase in enantioselection of the UreaBAM catalysts compared to the known catalysts, the average for both diastereomers (78% ee) was still lower than the average for PBAM ($81 \% \mathrm{ee}$), therefore the thioureas were not pursued further.

Reaction Scope: Electrophile Screen

With highly optimized reaction conditions, a screen of both electronically and sterically diverse electrophiles was completed. Previous indole electrophiles utilized in similar reactions were simple arylsulfonyl indoles. To increase diversity, a larger variety of electrophiles was synthesized using an adaptation of the Petrini protocol (Scheme 24).

Scheme 24. Synthesis of a Larger Variety of Electrophiles

(40)
(41)

132

The aldehydes were reacted with methyl indole to give a variety of electrophiles [orthosubstitution (125), methyl ester (127), pyrroles (130)] isolated in moderate (30\%) to good (80%) yields. The arylsulfonyl group was also moved to the 2-position, though the product (132) was isolated in low yield (20\%). With these new substrates in hand, a thorough electrophile screen commenced (Table 9).

Table 9. Reaction Scope: Initial Electrophile Screen

${ }^{a}$ All reactions were performed on a 0.10 mmol scale using 1 equivalent of the indole under the conditions listed. Product was isolated as <1.6:1 dr unless otherwise noted. ${ }^{b} 3: 1 \mathrm{dr}$ observed. ${ }^{c} 72 \mathrm{~h}$ reaction time.

The first array of substrates examined contained additional functionality on the phenyl ring at the indole C3' position. The reaction exhibits good tolerance for both electron donating and electron withdrawing groups (Table 9, entries 2-4). An ortho-tolyl results in a drop in reactivity and requires longer reaction times, but the ee is mostly conserved (Table 9, entry 5). Substituting the phenyl ring at C3' with alkyl chains returns the product with good ee (Table 9, entry 7), unlike substitution with a methyl group (Table 9, entry 8). In an attempt to increase the dr by using an ester as a directing group for the nitronate, the methyl ester indole was subjected to the reaction conditions (Table 9, entry 9) and gave good enantioselection with modest dr (3:1). A bulkier ester group was also used, but resulted in similar values of enantioselection and diastereoselection (Table 9, entry 10).

Trying to establish the influence of the indole ring, the next screen varied the substrate at the 2-position of the indole (Table 10).

Table 10. Reaction Scope: Variations at the Indole 2-Position

entry	R	134 x	ee (\%)	$\%$ yield $(\%$ conv $)$
1	H	\mathbf{k}	$39 / 0$	$65(68)$
2	Ph	\mathbf{I}	$74 / 72$	$49(52)$
3^{b}	$\mathrm{CO}_{2} \mathrm{Me}$	\mathbf{m}	$0 / 0$	(<50)
4^{b}	TMS	\mathbf{n}	NR	-
5^{b}	1-Boc, 2-Me	\mathbf{o}	NR	-
6^{b}	$\mathrm{PhC}(\mathrm{H}) \mathrm{SO}_{2}$ Tol	\mathbf{p}	NR	-
7	2,5-Me-Pyrrole	\mathbf{q}	$72 / 69$	$69(79)$

${ }^{a}$ All reactions were performed on a 0.10 mmol scale using 1 equivalent of the indole under the conditions listed. Product was isolated as <1.6:1 dr unless otherwise noted. ${ }^{b} 72 \mathrm{~h}$ reaction time.

When the methyl group of the indole was replaced with a hydrogen (Table 10, entry 1), the enantioselection dropped significantly, suggesting the need for a steric influence at the C 2 carbon, possibly influencing the E / Z ratio of the indolenine. This same trend was also seen in the initial work by Petrini and coworkers (Scheme 15) and was reaffirmed when a phenyl ring was placed at the C 2 (Table 10, entry 2). Hoping to combine the high enantioselectivity of the aromatic indole substrates and the good diastereoselection in the ester substrates (3:1 dr, Table 9, entries 9-10), an ester was placed at the C 2 position (Table 10, entry 3). Unfortunately, even after stirring the reaction for days, very little conversion to product was observed suggesting that electron withdrawing groups at the C 2 are detrimental to the reactivity and selectivity. In order to set up the indole product for a Hiyama coupling, a TMS group was placed at the 2-position of the indole but did
not yield any product (Table 10, entry 4). Attempts to investigate the effect of a halogen or a boronic acid at the 2-position failed because of the inability to prepare the starting arylsulfonyl indole.

To probe the reaction mechanism and catalyst binding, the N-Boc protected indole was synthesized. If the reaction occurred with enantioselection, then the proposed binding model of the chiral proton would have to be reexamined (Figure 7). However, when the indole was N-Boc protected, no reaction was seen, even after prolonged reaction times and heating (Table 10, entry 5). Evidently, the N-Boc indole was nucleophilic enough to form the starting arylsulfonyl indole (1330), but not nucleophilic enough to eliminate the sulfinate group. A final variation of the indole electrophile was envisioned by changing the C3 and C2 substituents (134p).

As seen in the figure above, switching the indole substituents would hypothetically bring the reaction site closer to the bound catalyst, and thereby increase ee and possibly influence dr, by formally making it a 1,3-addition (135). However, attempts to perform this reaction in multiple solvents with a variety of bases under prolonged reaction time and heat only returned starting material. Finally, removal of the indole aromatic ring to leave a pyrrole analog (Table 10, entry 7) still allowed formation of the adduct with good enantioselection (72% ee).

Reaction Scope: Nucleophile Screen

BAM catalyzed reactions have historically performed well when the pronucleophile was either a simple or modified nitroalkane. This observation was thoroughly examined in this new reaction (Table 11).

Table 11. Nucleophile Screen

${ }^{a}$ All reactions were performed on a 0.10 mmol scale using 1 equivalent of the indole under the conditions listed. Product was isolated as <1.6:1 dr unless otherwise noted. ${ }^{b}$ Enantiomeric excess of the debrominated product (PDT:debromo $=4: 1$)

A variety of aryl nitroalkanes were tested after substantial success with phenylnitromethane. An electron rich substituent on the phenyl ring (Table 11, entry 2) increased the enantioselection, though a slight drop in conversion and yield was observed. A strong electron withdrawing substituent on the phenyl ring resulted in a drastic drop in enantioselection (Table 11, entry 3). This is presumably due to the increased acidity of the α-proton, allowing for the achiral exogenous base to catalyze the reaction, rather than PBAM. Nitromethane performed very poorly ($14 \% \mathrm{ee}$) while
nitroethane only saw a small drop in ee from the aryl analogs (Table 11, entry 5). When bromonitromethane was used in the reaction (Table 11, entry 6), the desired product was isolated along with the debrominated product, with equal values of enantioselection (50\% ee).

A

138e
138c $1: 1 \mathrm{dr},(50 \% / 50 \%$ ee $) \quad 50 \%$ ee

139
$1: 1 \mathrm{dr},(50 \% / 50 \%$ ee)
140
0% ee

This was our first opportunity to confirm that the products were indeed homochiral at the benzylic carbon, as both diastereomers converged to one enantiomer (138c), as observed in equation 44. If the stereocenter was set at the α-nitro carbon, loss of bromine should return product that was $1: 1$ in diastereomers to start, with 0% ee (eq 45). Lastly, both α nitro esters and malonates (Table 11, entries 7-8) exhibited poor reactivity and low enantioselection.

After a significant amount of optimization and a thorough nucleophile/electrophile screen was completed, further efforts to increase enantioselection were initiated by examining the proposed mechanism.

Mechanistic Studies and the Development of New Reaction Protocol

When traditional efforts (solvent, base, catalyst, temperature, etc.) to increase enantioselection were exhausted, the proposed mechanism (Figure 8) was reexamined for other routes to increase selectivity.

Figure 8. Proposed Mechanism by Chiral and Achiral Routes

Both PBAM and potassium carbonate are capable of catalyzing the elimination of the sulfonyl group (Table 2, entries 6,8). However, we believe that PBAM catalyzes the elimination at a faster rate to give the indolenine intermediate, even though there is a significant excess of potassium carbonate relative to the catalytic amount of PBAM. Following nucleophile formation (base deprotonation to the nitronate), the addition occurs in either the presence of a chiral complex such as $\mathbf{1 4 2}$, or an achiral complex such as 144 . When the amount of product that is formed via PBAM catalyzed addition (complex 142) increases, so does the enantioselection. We also recognize that the active
catalyst may be PBAM with another counter ion, such as sulfinate. Modifications that could influence this shift of selectivity were then investigated.

Influence of Water in the Reaction

During the solvent screen, it was determined that the reaction was capable of happening in, or "on water", ${ }^{59}$ with no selectivity (Table 4, entry 17). However, when water was used as a cosolvent with toluene, very encouraging results were observed (eq 46).

A large increase in yield (from 83% to 96%) and moderate increase in enantioselection (from 81% ee to 86% ee) was observed in the test reaction with water as a cosolvent. We then further optimized the reaction with water as a cosolvent (Table 12).

[^27]Table 12. Reaction Optimization with Water as a Cosolvent

${ }^{a}$ All reactions were performed on a 0.10 mmol scale using 1 equivalent of the indole under the conditions listed. Product was isolated as $<1.6: 1$ dr unless otherwise noted.

A decrease in enantioselection was observed when the amount of water was decreased (Table 12, entry 2), and a plateau was reached at $0.5 \mathrm{~mL}(0.2 \mathrm{M})$ of water (Table 12, entry 3). Small changes were also observed when the amount of toluene was increased and decreased (Table 12, entries 4-5). Other carbonate bases performed similarly when solubilized by water (Table 12, entries 6-7), a change from previously run anhydrous reaction conditions. The other bases tested performed poorly (Table 12, entries 8-9).

The increase in yield is believed to be a direct result of (a) increased reactivity and (b) solvation of both the inorganic base and the inorganic by-products (sulfinate salts, bicarbonate products, etc.). When the reaction is run without water, the reaction starts as a free stirring reaction of soluble starting materials and heterogeneous base (though not soluble, it does not appear to impede the reaction). As the reaction progresses and the sulfinate group is eliminated as the inorganic salt, the reaction becomes a thick slurry of
non-soluble components. This may hinder efficient dispersion of reaction components, specifically the catalyst, resulting in low conversions and enantioselection. Previously, the workup involved filtering the reaction mixture through silica gel to remove the catalyst, and washing with ethyl acetate to solubilize any product trapped in the solid byproducts. The modified reaction workup involved adding water and extracting, followed by silica gel filtration, and gave higher yields.

In addition to elimination of the thick reaction mixture, the increase in enantioselection may also be a result of increasing the interactions between the chiral catalyst and indolenine intermediate, while limiting those of the indolenine with achiral promoters of the reaction. We propose that the starting material, indolenine intermediate and nucleophile remain in the organic layer, promoting addition through the chiral pathway (Figure 8) while limiting the interactions with the large excess of achiral, inorganic that resides primarily in the aqueous layer. This shift towards the chiral pathway is evident with the significant jump in enantioselection.

Knowing that the presence of water was positive, the one-pot formation of the arylsulfonyl indole, indolenine and phenylnitromethane addition was attempted (Scheme 25).

Scheme 25. One Pot Addition from 2-Me-Indole

Under acidic conditions $(\mathrm{PBAM} \cdot \mathrm{HOTf})$ we attempted to form the indolyl alcohol, which could form the indolenine intermediate with the loss of the elements of water, similar to previously reported work (Scheme 16 and Scheme 18). The phenylnitromethane addition catalyzed by PBAM could then occur. Unfortunately we saw no product formed by this simplified route. However, the arylsulfonyl indole was formed under acidic conditions and water was added with extra potassium carbonate to quench the acid following completion by thin-layer chromatography (TLC). The catalyst and nucleophile were added, and adduct $\mathbf{1 0 3}$ was formed in remarkably good yield and moderate enantioselection (72% ee). This was not investigated further, but remains an option for arylsulfonyl indoles that are difficult to isolate.

Preforming the Indolenine Intermediate

In the proposed reaction mechanism, the slow step of the reaction is the elimination of the sulfinate group. While PBAM may be involved in this step, it makes it less available to catalyze the phenylnitromethane addition. We sought to isolate the intermediate indolenine in order remove the inorganic base from the reaction (the source of chiral-racemic product formation).

A variety of bases and conditions was used in the elimination to afford the presumed product with consumption of the starting material. This highly reactive intermediate was difficult to purify and characterize with certainty, as the NMR was complicated with
minor impurities and baseline noise. In spite of these issues, the presumed isolated indolenine intermediate was submitted to the reaction conditions (Table 13).

Table 13. Phenylnitromethane Addition to Isolated Indolenine Intermediate

entry	modification	ee (\%)
1	$25{ }^{\circ} \mathrm{C}$	$85 / 87$
2	$-78{ }^{\circ} \mathrm{C}$	$79 / 82$
3	$25^{\circ} \mathrm{C}, 7$ equiv $\mathrm{K}_{2} \mathrm{CO}_{3}$	$86 / 88$

${ }^{a}$ All reactions were performed on a 0.10 mmol scale using 1 equivalent of the indole under the conditions listed. Product was isolated as $<1.6: 1$ dr unless otherwise noted.

When the isolated intermediate was treated with catalyst and the nucleophile, the enantioselectivity increased at both room temperature and under cryogenic conditions. The differences in ee may be a direct result of the inability to properly quantify the amount of electrophile (99% conversion and yield was assumed following intermediate formation) as some may have remained trapped in the heterogeneous base during filtration. More interestingly, when the reaction was also run in the presence of potassium carbonate as well as PBAM, the enantioselection did not change (Table 13, entry 3). This reaffirmed our hypothesis that PBAM catalyzes the elimination and the addition more efficiently than potassium carbonate, subsequently requiring the potassium carbonate for regeneration of PBAM after the elimination step.

Since the isolation of the indolenine intermediate was complicated, not reproducible at times and would not easily translate to other substrates, we attempted to first form the intermediate in situ before addition of the nucleophile (Chart 1).

Chart 1. Reaction Optimization of in situ Indolenine Formation

Since PBAM aids in the elimination step, we were hopeful that combining all reactants except the nucleophile would facilitate the formation of the indolenine intermediate. After three days of stirring, the starting material was consumed and the nucleophile was added. The addition product was isolated in good yield and similar enantioselectivity at both room temperature and $-20^{\circ} \mathrm{C}$. The high conversion and enantioselection sharply contrast with the initial attempts under cryogenic conditions, which gave low conversion (48%) and low ee (57% ee) (Table 2, entry 3). Formation of the intermediate without isolation presents a new protocol for enantioselective nitroalkane additions to indolenine intermediates.

Application and Comparison of the Three Reaction Protocols

With three possible reaction protocols, a selection of catalysts was reexamined and the results were compared across all three methods for each catalyst (Table 14).

Table 14. Comparison of BAM Catalysts in the Three Protocols

The catalysts that had performed well in the original method (method A) were tested. The PBAM analogs with methoxy groups at varying positions (Table 14, entries 2-4) generally performed better in the presence of water (method B). The reason for the different values in enantioselectivity for the PBAM analogs when the indolenine intermediate is preformed may be a direct result of the catalyst reactivity. The 7 -alkyl PBAM analog also performed better in water (Table 14, entry 5). There was very little change in enantioselection when water was added to the Deng thiourea catalyst, with a slight drop when the indolenine was formed before addition of nucleophile (Table 14, entry 6). Following this brief catalyst screen, it was determined that PBAM remained the best catalyst across all methods.

A selection of substrates was also reexamined and the results were compared across all three methods, with the best highlighted (Table 15).

Table 15. Substrate Screen Implementing all Three Methods

${ }^{a}$ All reactions were performed on a 0.10 mmol scale using 1 equivalent of the indole under the conditions listed. Product was isolated as $<1.6: 1 \mathrm{dr}$ unless otherwise noted.

All of the aryl analogs performed best when the intermediate was formed before addition of nucleophile (Table 15, entries 1-4, method C), with an average increase of 6% ee from the original method $(\operatorname{method} \mathrm{A})$. Certain substrates, such as the pyrrole and aliphatic analogs (Table 15, entries 5-6), exhibited no significant increase in enantioselection with the new methods. Both the ester (Table 15, entry 7) and furyl (Table 15, entry 8) analogs performed better under the semi-aqueous conditions (method B). Interestingly, the furyl analog was the substrate that benefitted most from the new protocol, providing an increase of almost 40% ee from the original method. The para-methoxy phenylnitromethane analog saw very little change across the three methods, however there was a large difference in the enantioselection of the diastereomers for method C (Table 15, entry 9, method C). The new methods did not help the enantioselections when
the nucleophile was nitroethane. In fact, reaction progress was severely hindered in water and gave no selectivity with the preformed electrophile (Table 15, entry 10). Overall, for the aryl analogs, method C gave the best enantioselectivity across the board. The data does not support any other trends for predicting the best method for a certain substrate.

Nitro Group Modification of the Indole Adducts

Nitroalkanes offer many opportunities for functionalization through reduction, oxidation and denitration. Using modified conditions for the cleavage of benzylic nitro bonds by Carreira, we attempted to denitrate the phenylnitromethane addition product (eq 52). ${ }^{60}$

Using material with 84% ee for both diastereomers, we successfully denitrated to give 146 with no loss in enantiomeric excess. This confirms that the benzylic carbon is homochiral, as both diastereomers converge to the same enantiomer with good yield. There are a large number of catalysts for the Friedel-Crafts reaction of indole with nitrostyrene, while there are currently no known ways to add indole to stilbene analogs. These denitration products (146) represent the products obtained from the enantioselective reaction with stilbene analogs.

[^28]
Future Work

This new reaction is a significant extension of previous work with our BAM catalysts. Through significant reaction optimization and redesign, we were able to increase enantioselectivity from 20% ee to 90% ee in the best cases. More notably, we also realized that water has a positive effect on the reaction, in terms of reactivity, isolation and enantioselection. Further work on this reaction would involve increasing diastereoselection, expanding the scope of nucleophiles and applying this methodology to a target.

Low dr of the final product was observed for all examples (except when the aryl group was an ester group). To determine if this was a result of thermodynamics or kinetics, the isolated product was resubmitted to column chromatography to separate the diastereomers (Scheme 26).

Scheme 26. Exposure of High dr Material to Reaction Conditions

Subjecting the high dr product to the reaction conditions returned product with the same dr , suggesting that the low dr was not a result of a thermodynamic equilibrium, but of low selectivity in the addition. This can be rationalized since the nucleophile is so far away from the binding pocket that the catalyst has very little influence on the orientation of the nucleophile, even though facial selectivity is attained (high ee).

One area for further investigation involves installation of a directing group on the catalyst that might orient the attack of the nucleophile while maintaining the quinoline ring responsible for facial selectivity (Figure 9).

Figure 9. Model for Further Catalyst Development

Groups with differing electronics may be able to coordinate with the charged species and orient the nucleophile along a specific trajectory. Other attempts to further block the face by extending the quinoline further may also increase diastereoselection.

In addition to the substrates already synthesized, one could envision conversion of the nitro group to a ketone (Scheme 27).

Scheme 27. Further Manipulation of Indole Adducts

Basic Nef conditions may lead to epimerization of the C3' carbon, but an acidic Nef would allow for conversion without epimerization, followed by the diastereoselective addition of a nucleophile. This would allow us to set the C3' stereocenter in high ee and give highly functionalized indole products.

CHAPTER II

II. THE ENANTIOSELECTIVE SYNTHESIS OF VNI: A CURE FOR THE NEGLECTED TROPICAL CHAGAS DISEASE ${ }^{61,62}$

2.1 Chagas Disease and the Limitations to Parasite Eradication

Background of Chagas Disease

Chagas disease, also known as American trypanosomiasis, is a disease that affects 10-12 million people in Latin America and causes over 15,000 deaths each year. ${ }^{63}$ Chagas disease is listed as one of the World Health Organization's Neglected Tropical Diseases ${ }^{64}$ but human migration has caused the disease to spread to parts of Europe, the United States, Japan, and Australia. ${ }^{65}$ This migration of a disease once confined to underrepresented populations and low resource areas has sparked new research into better treatments, as the current options that have been around for decades are not ideal. ${ }^{63}$

Chagas disease is caused by the parasite Trypanosoma cruzi and was first discovered by Carlos Chagas in 1909. ${ }^{63}$ The significance of this discovery is recognized by the Brazilian 10,000 cruzados banknote (Figure 10). ${ }^{66}$

[^29]Figure 10. Brazilian banknote recognizing Carlos Chagas and the life cycle of the deadly parasite.

Carlos Chagas (pictured) determined the clinical manifestations, epidemiology and entire life cycle of the parasite before his death in 1934. In the center of the bill, the blood feeding insect is resting on the human skin. The insect, also known as the kissing bug, bites its host and deposits its feces containing the parasite responsible for the disease. When the host scratches the bite, the parasite is transported into the blood system, and the life cycle of the parasite begins. Though this is the most common transmission vector, other contaminated subjects include crops, food, and drinks, and the parasite can also be passed congenitally from mother to child and through blood transfusions and organ transplantations. ${ }^{67}$ The transition from the acute phase to the chronic phase is also pictured in the final stages of the lifecycle with the parasite entering cardiomyocytes.

Clinical Chagas disease is classified into acute and chronic phases. ${ }^{63}$ The acute phase begins when the body is first infiltrated by the causative parasite, T. cruzi, and it starts multiplying within different organs and tissues. The acute phase often goes unnoticed because of the normally mild, non-specific symptoms: fever, swelling of lymph nodes and tissues, as well as skin lesions and conjunctivitis. However, in a small

[^30]number of acute cases $(\sim 0.5 \%)$, the symptoms can be severe and lead to death. ${ }^{68}$ The acute infection usually lasts 4 to 8 weeks, depending on the parasite burden and host immune system. If the infection is undetected, symptoms usually cease and the parasite then enters the chronic phase, where the parasitemia levels are undetectable by microscopy.

When an acute infection is detected, the drugs that are available to treat the parasite are limited. There are currently two treatments for the acute phase of Chagas disease: benznidazole (149) and nifurtimox (150), which have been available for over 50 years (Figure 11). ${ }^{69}$

Figure 11. Benznidazole and Nifurtimox

Benznidazole
149

Nifurtimox
150

These drugs are efficient at treating patients in the early, acute phase with cure rates up to 80% for those completing the 2-3 month dosing regimen. Unfortunately, there are many reasons unrelated to the cell biology for the failure associated with these treatments. Not all areas that are susceptible to parasite transmission have the appropriate infrastructure to administer treatment. In areas where treatment is available, the high cost of these drugs often prevents patients from completing the full treatment, leading to the evolution of

[^31]drug resistant strains. ${ }^{70}$ These drugs also have severe side effects, including skin rashes, nausea, and kidney and liver failure. Nifurtimox has also been shown to cause seizures and other nervous-system disorders, leading to patient noncompliance for a drug that has such a long dosing period. If the parasite is not eradicated in the acute phase, the parasite buries itself into vital organ systems and appears dormant for years or even decades before it manifests itself as a more severe condition.

One in three patients that are not cured in the acute phase will experience the symptoms related to the chronic phase of the disease: abnormal heart rhythm, heart failure, digestive problems, and sudden cardiac death. These symptoms are the result of the parasite infiltrating the vital organs of the patient. These conditions may not present until 5-15 years after infection, after which it is too late to begin treatment of the parasite. There are currently no known treatments for chronic Chagas that lead to complete parasite eradication; only the symptoms from the conditions can be treated. Additionally, the drugs that have been developed for the acute phase have shown very little efficacy in the more problematic chronic stage of the disease. Drug development has been lethargic, as there is insufficient incentive for industrial and commercial development.

Chagas Therapy and Sterol Biosynthesis

There are currently two approaches to curing Chagas disease: inhibition of protease activity and sterol biosynthesis. ${ }^{71}$ It has been demonstrated that proteases are successful druggable targets for some cancers, diabetes, and infectious diseases. ${ }^{72}$ The major T. cruzi protease cruzain, also known as cruzipain, is found in all phases of the T. cruzi lifecycle.

[^32]It is believed to be involved in the degradation of proteins from the blood meal of the insect vector. However, the location of the protease changes, depending on the stage of the lifecycle, operating in environments with pH 5.5-7.4. Developing drugs that can exist in both environments can be challenging. This is one of the issues that must be considered when designing therapeutics for cruzain inhibition. Though certain factors need to be considered, cruzain has been validated as a drug target in preclinical experiments. ${ }^{72}$

The other approach is targeting the production of sterols. Sterols are known to be a necessary component of eukaryotic cells, playing key roles in controlling fluidity and permeability of plasma membranes. While some eukaryotic phyla (e.g. insects) have developed the ability to scavenge sterols from exogenous sources for survival, others rely solely on endogenously synthesized sterols. This difference can be critical when considering treatment of certain diseases. In both cases, a sterol deficiency can be lethal to the cell. For example, a close parasitic cousin of T. cruzi is Trypanasoma brucei, the causative parasite of African sleeping sickness. Since it can scavenge sterols from exogenous sources, shutting down the sterol biosynthesis only slows growth of the parasite. However, because T. cruzi relies solely on endogenously produced sterols, shutting down the sterol biosynthesis pathway prevents further replication and is a viable approach to parasite eradication. The inhibition of sterol biosynthesis is also used for the treatment of human infections with fungi.

One of the most efficient and druggable targets in sterol biosynthesis is the sterol 14 α-demethylase (CYP51), a cytochrome P450 monooxygenase that catalyzes oxidative
removal of the 14α-methyl group from cyclized sterol precursors. ${ }^{73}$ CYP51 is present, and conserved in all biological kingdoms, including animal, plants, yeast/fungi, most protozoa and some bacteria. In higher order kingdoms, for example human and other animals, cholesterol serves as a precursor for other biologically important processes, such as production of hormones, nerve tissues, and bile acids, as well as in the conversion to vitamin D.

In T. cruzi, the CYP51 that is targeted is important for the conversion of squalene to ergosterol. More specifically, this enzyme is responsible for the three step process that converts eburicol (M) to 14α-demethyl-14-dehydro-eburicol (Figure 12). ${ }^{74}$ Each step of the three step process requires a molecule of oxygen, two electrons, and two protons. The methyl is oxidized three times, sequentially, from the alcohol to formic acid, where elimination, or loss of formic acid, yields an olefin. It is both the buildup of toxic methylated sterols and cell membrane damage (lack of ergosterol), that ultimately leads to cell death. ${ }^{75}$

[^33]Figure 12. CYP51 reaction in sterol biosynthesis across the kingdoms (from ref. 74)

After 40 years of a dry pipeline, recent reports suggest that the antifungal drug posaconazole (151) may be effective in the treatment of Chagas disease. ${ }^{76}$ Posaconazole, a drug developed by the Schering-Plough Research Institute, showed efficacy in curing both acute and chronic Chagas disease in murine models. In an isolated case in Spain, a

[^34]patient with both lupus and Chagas disease was treated with Posaconazole when conventional methods failed. ${ }^{69}$ Though this was done unethically (no scientific basis for treatment) and as a final resort, there was no sign of the parasite three years after treatment, even using the most sensitive of detection techniques. Phase II clinical trials have begun on the use of Posaconazole to treat chronic Chagas disease.

Posaconazole, even if successful in clinical trials, may not be the answer since a course of treatment is estimated to be well over $\$ 1000$ per patient. However, posaconazole will validate CYP51 as a druggable target (or mechanism of action) in humans and may open the door for similar compounds that can be more easily attained. Unfortunately, ketoconazole (152), a cheaper but similar version of posaconazole, has proven to be drastically less effective in the treatment of benznidazole- and nifurtimox-resistant strains of T. cruzi. ${ }^{77}$ Drugs with the same mechanism of action, an improved safety profile, and available at low cost are urgently needed.

Industrial Synthesis of Posaconazole

One of the reasons that posaconazole is such a costly treatment is the lengthy and linear sequence. The synthesis of posaconazole, as extracted from available patents, is

[^35]between 20 and 24 steps. The tricyclic core, which contains two stereocenters, is synthesized in 12-16 steps from achiral ketone $\mathbf{1 5 3}$ (Scheme 28). ${ }^{78}$

Scheme 28. Synthesis of Tricyclic Core of Posaconazole

Allyl alcohol $\mathbf{1 5 4}$ is prepared from ketone $\mathbf{1 5 3}$ by a sodium acetate displacement of the chloride, followed by a Wittig reaction and alcohol deprotection. The allyl alcohol is then submitted to the Sharpless epoxidation conditions followed by epoxide ring opening with triazole to give $\mathbf{1 5 5}$ as a single enantiomer. The epoxide is reformed by alcohol mesylation and base promoted cyclization to give epoxide 156, which is then converted to tricyclic triazole 157 in 5-9 steps.

The tricyclic side chain is synthesized in two steps starting from phenol 158 (Scheme 29).

[^36]Scheme 29. Side Chain Synthesis and Completion of Posaconazole

Hydrolysis of the acetamide portion of bicycle $\mathbf{1 5 8}$ to reveal the secondary amine, followed by reaction of para-chloronitrobenzene and potassium carbonate yields the phenol 159. The sodium salt of phenol 159 displaces the tosyl alcohol to give the main core of posaconazole (160). The final heterocycle was formed in five steps to give posaconazole.

VNI as a Treatment for Chagas Disease

Waterman and Lepesheva at Vanderbilt University have published extensively on the role of 14α-demethylase cytochrome P450 (CYP51) in sterol biosynthesis ${ }^{79}$ and its availability as a druggable target. ${ }^{80}$ Specifically, they have published on the $14 \alpha-$ demethylase (14DM) of the parasites Trypanosoma cruzi $(\mathrm{TC})^{81}$ and Trypanosoma brucei

[^37](TB), ${ }^{82}$ responsible for Chagas disease and African sleeping sickness, respectively. They were able to obtain crystal structures of 14DM from both pathogens in the ligand-free and ligand-bound forms. Using the ligand-free crystal structure of CYP51 from T. cruzi, molecular modeling showed the substrate docked in the enzyme cavity (Figure 13). ${ }^{83}$

Figure 13. Modeled docking of eburicol in T. cruzi CYP51 (from ref. 83)

Eburicol, the sterol precursor that is converted to 14α-demethyl-14-dehydro-eburicol in the CYP51, is shown in magenta. The blue arrow depicts the proposed entry of the substrate via a hydrophobic channel.

By measuring inhibition of sterol biosynthesis, defined here by the conversion of eburicol to 14α-demethyl-14-dehydro-eburicol, potential inhibitors could be identified and their co-crystallization with the enzyme could lead to a rational structure-based lead optimization. To test for inhibition, the CYP51 from T. cruzi was combined with potential inhibitors, and the production of sterols (14DM activity) was monitored. ${ }^{81}$

[^38]Initially, common antifungals (posaconazole, fluconazole, ketoconazole) and a selection from a library of azole-inhibitors from Novartis (Switzerland) were screened (Figure 14).

Figure 14. Small Molecule Inhibitors of T. cruzi CYP51 (from ref. 73)
A

Fluconazole (Fluc)

VNI

It was determined that posaconazole (Pos), VNI, and VNF were competent inhibitors of sterol biosynthesis when the ratio of inhibitor:enzyme:substrate was 1:1:50. The other commercial antifungals tested, ketoconazole (Ket) and fluconazole (Fluc) There was a difference of inhibition between VNI and its enantiomer, with the dextrorotatory having
stronger inhibitory effects (5x more potent). These inhibitors were then cocrystallized with the CYP51 of T. cruzi and the crystal structures were overlayed to show the relative orientations in the enzyme cavity (Figure 15).

Figure 15. Overlay of Potential Inhibitors of T. cruzi CYP51 Crystal Structures (from ref. 81)

They found that posaconazole (green) and VNI (cyan) bound in a similar orientation, with the dihaloaryl ring buried deep into the pocket and the azole coordinated to the heme. Additionally, both long chain arms were aligned in the hydrophobic access channel. Interestingly, VNF (salmon) is the same configuration of VNI but is oriented in the opposite direction.

Preliminary results from the Waterman Lab were encouraging: VNI is a potent inhibitor of CYP51 in sterol biosynthesis and VNI binds to the enzyme in a similar fashion to posaconazole. Unfortunately, the compounds from Novartis were obtained in only small amounts, so a new source of VNI was needed to complete further testing.

2.2 The Short, Enantioselective Synthesis of VNI

Background and Project Goals

In 2007, Lepesheva and Waterman identified VNI (161) as a potent experimental inhibitor of trypanosomal CYP51. ${ }^{81}$ Unfortunately, the initial quantity of VNI was obtained from a nonrenewable source (Novartis library of compounds) and there are no preparative details. Both VNI^{84} and its enantiomer were provided for the initial screen, suggesting the racemate was prepared and separated by chiral chromatography. We sought to develop a synthesis that was not only efficient and selective, but easily diversified for other analogs. As illustrated in Scheme 30, our proposed synthesis utilizes a BisAMidine (BAM) catalyzed, enantioselective aza-Henry reaction to set the benzylamine stereocenter.

Scheme 30. Retrosynthetic Analysis of VNI

[^39]First, we envisioned that the amide bond could be formed through a coupling reaction, of chiral amine (162) with the appropriate carboxylic acid (163). The tricyclic carboxylic acid could be formed via a condensation of 4-(chlorocarbonyl)benzoic acid (164) and benzoic hydrazide (165). The desired imidazole (162) could be formed by a series of condensations with glyoxal, formaldehyde, and ammonia after reduction of the aza-Henry adduct (166). To obtain the chiral, non-racemic aza-Henry adduct, we envisioned the addition of nitromethane to the N-Boc aryl aldimine (167) using a BAM catalyst.

At the same time we began our investigations, the synthesis core at Vanderbilt was contracted to synthesize VNI for further biological testing (Figure 16). ${ }^{85}$

Figure 16. Racemic synthesis of VNI and epi-VNI

[^40]Starting from commercially available racemic alcohol 168, with the dichloroaryl ring and imidazole already in place, a three step functional group manipulation gave the free amine rac-162. The side chain was made through a three step sequence from benzohydrazide (165) and monoprotected benzoate 169. An amide bond forming reaction using PyBoP gave a mixture of VNI and the enantiomer of VNI. The enantiomers were separated by preparative chiral chromatography to give VNI.

Though this route was sufficient for preparation of small quantities of material, this is an inefficient means for synthesis on a large scale, or for the synthesis of other derivatives. The use of chiral chromatography on racemic material is expensive and inefficient, as 50% of the material is discarded. The highly functionalized alcohol that was purchased may not be available for other desired analogs, requiring a new route to obtain a similarly functionalized intermediate. The time and cost of such a route is not conducive to a medicinal chemistry campaign where the goal is to rapidly develop a large library of compounds for biological testing. An enantioselective route from commercially available materials might provide the rapid access to analogs that a medicinal chemistry project needs.

BAM Catalyzed aza-Henry

The required N-Boc aryl aldimine 167 was synthesized using known procedures from the requisite aldehyde (Scheme 31). ${ }^{86}$

[^41]Scheme 31. Synthesis of N -Boc-2,4-Dichlorobenzaldimine

The commercially available aldehyde was stirred with tert-butylcarbamate and benzene sulfinic acid to give α-amido sulfone 171 in low conversion. We believe the low conversion stemmed from poor solubility of the aldehyde, but were able to recover the starting material and increase the efficiency of our first step. The imine was formed in quantitative yields to give pure imine 167, with the largest scale yielding 13 grams (48 mmol) of material. The imine was then submitted to the aza-Henry reaction.

We have shown that H ,QuinBAM (92) can catalyze the addition of simple nitroalkanes to N-Boc aryl aldimines when the nitroalkane is used as solvent (56 equiv) and stirred for days. ${ }^{47}$ With the development of the more Brønsted-basic catalyst PBAM (100), we hoped that the addition could take place with a shorter reaction time using stoichiometric amounts of nucleophile. Recently, it was shown that reaction of aliphatic nitroalkanes with N-Boc aryl aldimines is most selective when the triflic acid salt of PBAM $\left[(\mathrm{PBAM})_{2}(\mathrm{HOTf})_{3}\right]$ is used. ${ }^{52}$ We used similar conditions for this crucial transformation (Scheme 32).

Scheme 32. PBAM Catalyzed aza-Henry Reaction of Nitromethane: A Double Addition

167

166
86\% ee, (69\%)

172
(31\%)

The desired product (166) formed with high enantioselection (86% ee) and good yields (74\%). Unfortunately, a minor by-product determined to be the double addition product (172) was also isolated. When H,QuinBAM was used for nitroalkane additions, negligible amounts of the double addition products were seen, which is most likely due to the decreased reactivity of the catalyst.

To minimize the double addition product and increase enantioselection, different reaction conditions were evaluated (Table 16).

Table 16. Reaction Optimization for the PBAM-Catalyzed Addition of Nitromethane

entry	catalyst	$\mathrm{CH}_{3} \mathrm{NO}_{2}$ (equiv)	(M)	$166: 172$ (ratio)	ee (\%)
1	$\mathrm{PBAM}_{4}(\mathrm{HOTf})_{5}$	2	0.5	$69: 31$	86
2	$\mathrm{PBAM}_{4}(\mathrm{HOTf})_{5}$	2	1.0	$73: 27$	90
3	$\mathrm{PBAM}_{2}(\mathrm{HOTf})_{3}$	2	0.5	$60: 40$	82
4	$\mathrm{PBAM}_{(\text {HOTf })}$	2	0.5	$66: 34$	79
5	$\mathrm{PBAM}_{2}\left(\right.$ HOTf $_{1}$	2	0.5	$63: 37$	75
6	$\mathrm{PBAM}_{4}\left(\right.$ HOTf $_{5}$	5	0.5	$79: 21$	78
7	$\mathrm{PBAM}_{4}\left(\mathrm{HOTf}_{5}\right.$	10	0.5	$87: 13$	80
8^{c}	$\mathrm{PBAM}_{4}(\mathrm{HOTf})_{5}$	93	-	$>95: 5$	49

${ }^{a}$ All reactions were performed on a 0.10 mmol scale using 1 equivalent of the imine under the conditions listed. ${ }^{b}$ Ratios of product measured by ${ }^{1} \mathrm{H}$ NMR. ${ }^{c}$ Run in nitromethane as solvent.

When the reaction concentration was increased, a slight increase in ee was observed, with nominal change in the ratio (Table 16, entry 2). A screen of catalysts (varying ratios of triflic acid to PBAM) showed very little change in ee or influence in the ratios of monoaddition (167) to double addition (172) products (Table 16, entries 3-5). An increase in
the equivalents of nitromethane corresponded to an increase in the ratio of $\mathbf{1 6 6}$ to $\mathbf{1 7 2}$ (Table 16, entries 6-8), with a lowering of enantioselection. Use of nitromethane as the solvent (Table 16, entry 8) suppressed the double addition, but enantioselection dropped to 49% ee. Unable to optimize this addition any further, we considered a more hindered nucleophile that could be converted to the same desired intermediate after the enantioselective addition.

In 2010, we reported the addition of bromonitromethane to N-Boc aryl aldimines using an unsymmetrical BAM catalyst (Scheme 33). ${ }^{87}$

Scheme 33. Bromonitromethane aza-Henry Addition using an Unsymmetrical BAM Catalyst

(61)

Under these conditions the para-chloro adduct 173 was isolated in high yield and 98% ee. Even though the anti-and syn-diastereomers were isolated as a $1: 1$ ratio, subsequent experiments showed that they were homochiral at the benzylic carbon. Further optimization showed the more robust catalyst PBAM (100) could catalyze the addition of bromonitromethane in higher yields (94\%) and enantioselection (99\% ee for both diastereomers). ${ }^{88}$

[^42]We hypothesized that the bromine functions as a removable blocking group to slow the double addition, so the addition of bromonitromethane was tested under similar conditions (Table 17).

Table 17. Optimization of Bromonitromethane Additions to N-Boc-2,4-Dichloroaldimine

		PB BrCH $(1.5$ tolu -20°			Boc
entry	imine (mmol)	$\begin{aligned} & \text { cat. } \\ & (\mathrm{mol} \%) \end{aligned}$	toluene (M)	ee (\%)	$\%$ yield b (\% conv)
1	0.1	10	0.3	96/96	90
$2^{\text {c }}$	0.1	10	0.3	95/95	95
3	1.0	10	0.3	96/95	95
4	1.0	10	0.5	95/95	57 (99)
5	1.0	5	0.3	96/96	85
6	1.0	5	0.2	96/97	90
7	5.8	2	0.2	95/97	83

${ }^{a}$ All reactions were performed using 1 equivalent of the imine under the conditions listed. ${ }^{b}$ Isolated yields after column chromatography and conversion measured by ${ }^{1} \mathrm{H}$ NMR. ${ }^{c}$ PBAM $_{2}(\mathrm{HOTf})_{3}$ used as catalyst. .

On a small scale, the free base of PBAM (Table 17, entry 1) gave the desired bromonitromethane adduct 174 in marginally higher ee than the triflic acid salt of the catalyst (Table 17, entry 2). The reaction was also concentration dependent, as lower concentrations gave slightly higher values of enantioselection, as well as less debrominated side product 166 (the formal addition of nitromethane). More of the debrominated side product (up to 8%) was seen at higher temperatures and with larger catalyst loadings. This side product may arise from the debromination of the product by the catalyst, as more is present as the catalyst loading increases, rather than a nitromethane impurity in the bromonitromethane. The selectivity for the addition of bromonitromethane appeared robust as the enantiomeric excess was unchanged by slight
variations in the reaction conditions (Table 17, entries 3-6). The catalyst loading was further decreased from $10 \mathrm{~mol} \%$ to $2 \mathrm{~mol} \%$, and the desired product was still delivered in equally high enantioselection. Further scaling up of the reaction was accompanied by a drop in the yield (Table 17, entry 7), which was a result of complications from column chromatography corresponding to incomplete recovery of product.

Attempts were made to complete the reaction on a large scale, testing limits that had not been previously examined with a BAM catalyzed addition (Table 18).

Table 18. Large Scale Optimization of BAM Catalyzed aza-Henry

${ }^{a}$ All reactions were performed using 1 equivalent of the imine under the conditions listed. ${ }^{b}$ No column after silica filtration to remove catalyst.

When the reaction was run at three times the scale with a lower catalyst loading, a slight increase in enantioselection of the product was observed (Table 18, entry 2). More importantly, the low level of catalyst loading and larger scale produced the product with greater than 98% purity before column chromatography, leading to an increase in yield (98%). An almost 500 fold increase in scale from initial experiments (from 0.1 mmol scale) returned favorable results (Table 18, entry 3); filtration provided 19.2 grams of analytically and enantiomerically pure product in nearly quantitative yield using only 1 mol \% PBAM. The use of this highly reactive organocatalyst (>100 turnovers) in a large
scale preparation to deliver the scaffold is punctuated by the ability to recover and recycle the catalyst without loss of activity. This is the largest PBAM reaction completed in the Johnston group to date and demonstrates the robustness of the transformation for even larger scale applications. With a large amount of enantioenriched aza-Henry adduct (174) in hand, the tandem debromination/denitration was performed using a procedure commonly exploited in this group.

Reduction of the aza-Henry Adduct

In 2008, the group reported the sequential BAM catalyzed addition of nitroacetates and nitro reduction using cobalt chloride and sodium borohydride. ${ }^{50,89}$ Using the same conditions, we attempted to reduce the bromonitromethane aza-Henry adduct (Table 19).

Table 19. Large-Scale Optimization of One-pot Debromination/Nitro Reduction

a All reactions were performed using 1 equivalent of the bromonitromethane adduct under the conditions listed. ${ }^{b}$ Isolated yield.

The reaction occurred with high yields (75\%) on small scale (Table 19, entry 1) corresponding with isolation of a trace amount of the ortho-deschloro adduct 176. When the reaction scale was increased, the yield of amine $\mathbf{1 7 5}$ decreased (Table 19, entry 2)

[^43]while the amount of undesired amine $\mathbf{1 7 6}$ increased. The small reduction in yield is attributed to the necessary chromatography separation of two amines that have similar R_{f} values. Gratifyingly, at the largest scale we were able to isolate almost 7.5 grams of pure amine 175 (Table 19, entry 3).

Imidazole Formation

To form the imidazole portion of the compound, we looked to work reported by Saigo in 2006 on the synthesis of imidazoles from chiral non-racemic amines (Scheme 34). ${ }^{90}$

Scheme 34. Synthesis of Imidazoles from Chiral Non-Racemic 1,2-Amino Alcohols

Refluxing primary 1,2-amino alcohol 177 in methanol with glyoxal, formaldehyde, and ammonium acetate, resulted in the isolation of enantiopure imidazole $\mathbf{1 7 8}$ in 71% yield. This reaction is valuable because it allows many heterocycles to be accessed from a common amine just by varying the reactants (substituted glyoxals and aldehydes). When these conditions were applied to the VNI 1,2-diamine, we isolated the adduct in moderate, but synthetically useful yields (Scheme 35).

[^44]Scheme 35. Scalable Imidazole Formation from Reduced aza-Henry Adduct

(66)

This robust reaction gave similar yields of imidazole 179 on most of the scales tested (from 0.5-24 mmol). Column chromatography often proved difficult because of the poor solubility of the crude reaction mixture in dichloromethane, which may have led to lower recovery of product. The highest yield was obtained on the largest scale reaction, with 49% of the material being recovered by precipitation from dichloromethane with hexanes, and an additional 10% isolated via column chromatography. The enantiomeric excess of imidazole $\mathbf{1 7 9}$ was found to be the same as the starting aza-Henry adduct (174), showing that no stereochemical scrambling took place during any of the previous reactions. We then embarked on the synthesis of the carboxylic acid side chain.

Side Chain Synthesis and Completion of VNI

It was reported that aryl acid hydrazides and benzoyl chlorides could be condensed to form oxadiazoles (such as $\mathbf{1 8 0}$) at room temperature under phosphorous pentoxide conditions in excellent yields ($>85 \%$). ${ }^{91}$ A synthesis was developed for the tri-aryl side chain starting from commercially available starting materials (Scheme 36).

[^45]Scheme 36. Synthesis of the Tri-Aryl Side Chain.

Unfortunately, using conditions developed for similar substrates, the yields of the oxadiazole (180) only reached 20%, which was a fraction of the reported yields. A significant amount of the bisamide $\mathbf{1 8 1}$ was recovered and resubmitted to the reaction conditions to give complete conversion to the desired oxadiazole (180). We believe that the bisamide precipitated out of solution and prevented full conversion. In two high yielding steps, the bisamide $\mathbf{1 8 1}$ was formed using triethylamine in 90% yield and the oxadiazole was then formed in $>95 \%$ yield. Saponification gave the desired carboxylic acid (163) in high yields.

With the amine and carboxylic acid portions in hand, all that remained was the coupling to form the desired amide bond (Scheme 37).

Scheme 37. Endgame: The Synthesis of VNI.

179
162

(67)

Following N-Boc deprotection of amine $\mathbf{1 7 9}$ in quantitative yield, the amine and carboxylic acid were coupled under standard conditions using EDC. The transformation occurred to give VNI in up to 54% yield over two steps, producing 27 mg of product. We were able to develop an assay for the separation of the prepared racemate and aid the Vanderbilt Synthesis Core with their separation needs. Since assignment of absolute configuration to aza-Henry adduct $\mathbf{1 7 4}$ could be made confidently by analogy to numerous BAM-catalyzed reactions, the retention times of VNI prepared by our sequence could be used to identify VNI among the racemate peaks.

We were able to increase the scale of the coupling to obtain 330 mg of VNI (65% yield). However, attempts to increase the scale any further were thwarted by the presence of an unavoidable byproduct, a possible rearrangement product from the EDC and carboxylic acid fragment to the N -acylurea $\mathbf{1 8 2}$.

Our immediate concerns were with the delivery of the compound, so rather than screening numerous other combinations of coupling reagents, we decided to form the amide bond reaction using an acylation of the amine with the requisite acid chloride (183) (Scheme 38).

Scheme 38. Large Scale Acylation to give VNI

Though we were able to increase the scale of the reaction, delivering grams of VNI in one reaction, the yield (29-44\%) and crude purity varied between the reactions. At this point we had reached our target of 4 grams of VNI needed for the initial mouse studies, so further reaction optimization is reserved for second generation routes. To optimize this step, we would look at a number of conditions for the coupling of the carboxylic acid and free amine (e.g. PyBoP ${ }^{85}$).

This highly enantioselective and efficient synthesis, completed on a gram scale, has allowed for the production of enough VNI to complete studies of T. cruzi eradication in the murine model. Our first generation route relied heavily on chromatographic purification. Since most of the reactions were scaled and optimized further, we were able to eliminate most columns and use precipitations and filtrations to purify most intermediates. This bodes well for the potential scalability of our route, where our largest scale route required only two chromatographic purifications. Additionally, we have estimated the cost of materials to be less than $\$ 0.10 / \mathrm{mg}$ (Appendix I).

VNI Analog Synthesis

One of the goals of our synthesis was to develop a route that was amenable to further analog development, highlighted in color below (Figure 17).

Figure 17. Achievable Points of Diversity in the Synthesis of VNI and other Analogs

The aryl ring (circled in red) can be varied using different N-Boc-aryl aldimines in the PBAM catalyzed bromonitromethane additions. The imidazole ring (green) can be modified with different functional groups by using substituted glyoxal and formaldehyde equivalents. Other heterocycles can also be accessed from the amine resulting from reduction of the aza-Henry adducts. Finally, any carboxylic acid portion (blue) could conceivably be coupled in the last step of the synthesis, allowing for a quick screen of various analogs.

To demonstrate the generality and scope of the scale of the bromonitromethane additions, we looked at a number of differentially substituted N-Boc-aryl aldimines (Chart 2).

Chart 2. Large Scale Bromonitromethane Additions to Imines Catalyzed by PBAM.

The 2,4-difluorinated analog (185b) gave comparable results to the 2,4-dichloro analog of VNI. Removing the ortho-chloro (173) or installing a para-methoxy group (185c) returned over 10.5 grams of product in greater than 96% ee for both diastereomers. When a methyl group was in the para-position (185d) or a bromine was in the meta-position (185e), a slight drop in enantioselection was observed, but product with greater than 90% ee was recovered. Overall, the additions show that the scalemic scaffold can be quickly accessed, on scale, for a variety of aryl rings.

The use of PBAM on large scale has been advanced by our recent report of an Organic Syntheses preparation (Figure 18). ${ }^{92}$

[^46]Figure 18. Organic Syntheses Preparation of PBAM.

Improving on our first generation route, we were able to remove column chromatography at each transformation, replacing them with a hot solvent extraction of quinoline 186, filtration of ${ }^{4} \mathrm{Cl}$-BAM (187), and recrystallization of the final catalyst (PBAM). Additionally, two undergraduate students (NSF-REU) aided in the manuscript preparation, demonstrating the straightforwardness of the catalyst synthesis. With this publication, the availability and access to this catalyst has increased as we move forward towards making it commercially available.

To demonstrate the brevity of the route, analogs of VNI were prepared for evaluation (Figure 19).

Figure 19. Prepared VNI analogs.

188

189

The first analogs made were synthesized by coupling the free amine to fluoro-pyridines in an attempt to both establish the influence of the side chain and possibly slow drug metabolism (188 \& 189). Slight modifications to the side chain ($190 \& 191$) were made to determine the interactions of the substrate access channel. Of the four side chain analogs examined, no significant improvement was observed in the T. cruzi CYP51 inhibition assay. The des-chloro-VNI compound 192 (recovered from reduction of 174 in large scale VNI synthesis) was also submitted for testing. The final analog that was synthesized contained a 2,4-difluoroaryl ring in the western portion of the molecule, similar to posaconazole (151). The synthesis of FF-VNI was completed on large scale and only required a single chromatographic purification in the last step of the synthesis. Gratifyingly, this exchange of chlorines for fluorines on the VNI backbone resulted in a four-fold improvement in binding to the CYP51. ${ }^{85}$ (The relative efficacy of CYP51
ligands is estimated through the use of several measurements in addition to K_{d}, so VNI still remains the best lead.)

VNI Cures the Murine Model of Acute and Chronic Chagas Disease

One goal of this project was to provide enough material to establish the curative effect of VNI in a murine model of both the acute and chronic stages of Chagas disease (Figure 20).

Figure 20. VNI Eradicates Parasite in vivo for Both Phases of Chagas Disease (ref. 62).

For the acute model, two groups of mice were infected with a lethal dose of parasite, and treatment for one group began three days post infection. They were given $25 \mathrm{mg} / \mathrm{kg}$ of VNI, twice a day for 30 days, which is a relatively low dose compared to posaconazole (up to $300 \mathrm{mg} / \mathrm{kg}$). Gratifyingly, the parasitological clearance was 100%, with 100% survival of the treated mice while there were no detectable toxic side effects (after VNItreatment, mice did not lose weight and appeared normal). In the chronic mouse model of Chagas disease, treatment with VNI for 30 days started 90 days post-infection (a small number of parasites), and was followed by six rounds of immunosuppression to induce chronicity. After immunosuppression, all untreated animals visually presented high
parasitemia, whereas all VNI-treated mice showed complete eradication of the parasite. In both the acute and chronic models of the disease, qPCR analysis (Table 20) confirmed parasitological clearance: blood and all tested tissues of the VNI treated animals were free of T. cruzi.

Table 20. T. cruzi Detection by qPCR (ref. 62).

Chagas disease model	Mice	T. cruzi positive animals per group (mean \pm SE of threshold cycle for parasite detection)				
		Heart	Muscle	Liver	Spleen	Blood
Acute	T. cruzi infected + vehicle	5/5 (12.40 $\pm 0.13)$	5/5 (12.71 $\pm 0.57)$	5/5 (16.26 $\pm 0.18)$	5/5 (12.86 $\pm 0.20)$	5/5 (14.91 $\pm 0.90)$
	T. cruzi infected + VNI	$0 / 5$ (28.52 $\pm 0.53)$	0/5 (28.82 $\pm 0.96)$	0/5 (28.44 $\pm 0.71)$	0/5 (28.82 $\pm 0.42)$	0/5 (29.52 $\pm 0.44)$
	Non-infected	$0 / 5(28.63 \pm 0.13)$	0/5 (28.56 $\pm 0.20)$	0/5 (28.74 $\pm 0.57)$	0/5 (29.36 $\pm 0.11)$	0/5 (28.74 $\pm 0.10)$
Chronic	T. cruzi infected + vehicle	9/9 (16.64 $\pm 0.83)$	$9 / 9(12.90 \pm 0.54)$	9/9 (15.02 $\pm 0.27)$	9/9 (17.33 $\pm 1.09)$	9/9 (14.59 $\pm 0.78)$
	T. cruzi infected $+\mathrm{VNI}$	$0 / 9(31.98 \pm 0.81)$	0/9 (28.12 $\pm 0.84)$	0/9 (30.34 $\pm 1.74)$	0/9 (31.62 $\pm 0.11)$	0/9 (30.31 $\pm 1.62)$
	Non-infected	$0 / 9(28.34 \pm 0.66)$	0/9 (28.44 $\pm 0.70)$	0/9 (29.90 $\pm 0.55)$	0/9 (29.69 $\pm 0.61)$	$0 / 9(30.12 \pm 0.57)$

We have demonstrated that VNI, prepared through chemical synthesis, cures acute and chronic Chagas in a murine model of the infection. The low cost of materials highlights the promise that the VNI scaffold can serve as a small molecule therapeutic for a disease endemic to low resource areas. Though VNI is orally bioavailable, non-toxic and has favorable pharmacokinetics, we believe the convergency of our route can deliver straightforward access to derivatives as we move towards a candidate for preclinical testing.

CHAPTER III

III. BISAMIDINE CATALYZED ENANTIOSELECTIVE HALOGENATIONS ${ }^{93,94}$

3.1 Enantioselective Halogenations and Asymmetric Organocatalysis

History of Enantioselective Halocarboxylations

The alkene halocarboxylation reaction was resistant to the application of proven approaches to enantioselective catalysis since its early realization, a shortcoming both unfortunate and notorious considering the practical value of the ester/lactone products. ${ }^{95}$

Reports finally surfaced in 2010, more than 10 years after the first promising results, that enantioselective halogenative addition reactions were possible. ${ }^{96}$

In 1998, Grossman reported the first reagent-controlled enantioselective halolactonization (Scheme 39, eq 70). ${ }^{97}$

[^47]Scheme 39. Initial Reports of Enantioselective Halolactonizations using Chiral, Soichiometric Halogen Complexes.

Using dihydroquinidine-halogen complexes $\left[(\mathbf{1 9 6})_{2} \mathrm{I}^{+} \mathrm{BF}_{4}\right]$, the iodolactones (195) were isolated in up to 7% ee. Most of the amine analogs tested gave racemic lactone, though all was not lost as the chiral amines were able to be recovered. Further dilution of the reaction mixture, gave the lactones in up to 15% ee, a common trend observed in enantioselective halolactonizations. Shortly after this initial report, Wirth reported the use of chiral, primary amines to afford γ-lactones from 1,1-disubstituted acids (Scheme 39, eq 71). ${ }^{98}$ Screening a variety of primary amines, they were eventually able to obtain lactone 198 in up to 45% ee using chiral amine 199. Gratifyingly, it was general for a variety of electronically diverse aromatic rings as well as tetrasubstituted olefins, though aliphatic analogs produced only the racemate.

Looking to expand on the work of Grossman, Gao further investigated the use of cinchona based alkaloids as stoichiometric, chiral halogen equivalents in reagentcontrolled asymmetric iodolactonizations (Scheme 40).

[^48]Scheme 40. Cinchona Based Chiral Iodine Sources in Enantioselective Iodolactonization.

The use of 1,2-disubstituted olefinic acids (200) gives both γ - and δ-lactones, requiring control of both regio- and enantioselectivity. Under these conditions, the results of the reaction proved to be very dependent on the catalyst used and aromatic ring of the acid. The highest enantioselectivity (19\% ee) for the γ-lactone (5-exo) was obtained with the ortho-tolyl analog of $\mathbf{2 0 2}$ (though it only forming in a 2:1 diastereoselective ratio). When the more sterically congested anthracenyl-analog of the olefinic acid was used, the resulting reaction gave only the δ-lactone (6 -endo, 201) in the highest enantioselection observed (35\%). In most cases, amine 203 used at $110 \mathrm{~mol} \%$ loading was recovered with about a 90% recovery. Though the values of enantioselection were low, this publication and results helped to further the first organocatalytic halolactonization.

Substoichiometric, catalytic halocyclizations

While the work with stoichiometric chiral halogen reagents in lactonizations was limited, Gao published the first substoichiometric, catalytic halolactonization of trans-5-aryl-4-pentenoic acids in the presence of iodine and $30 \mathrm{~mol} \%$ of ligand (Scheme 41). ${ }^{99}$

[^49]Scheme 41. First Catalytic, Enantioselective Halolactonization with a Chiral Ammonium Derived from Cinchonidine.

Using a chiral non racemic, quaternary ammonium salt derived from cinchonidine, a mixture of the γ - lactone (206) and δ-lactone (205) was isolated. Catalyst and substrate manipulation gave a variety of endo-/exo- and enantioselectivities. The highest observed selectivity was 42% ee (for the product formed in a minor amount). Though low enantioselectivities were observed, this was the first time that a substoichiometric catalyst was used with some success.

Highly Enantioselective, Organocatalytic Halocyclizations

Finally in 2010, Borhan published the first highly enantioselective and substoichiometric chlorolactonization (Scheme 42). ${ }^{100}$

Scheme 42 Enantioselective Chlorolactonization Reported by Borhan.

[^50]Using low catalyst loadings of (DHQD) ${ }_{2}$ PHAL ($10 \mathrm{~mol} \%$), a stoichiometric amount of benzoic acid, and dichlorodiphenylhydantoin (DCDPH, 209) in an optimal mixture of chloroform and hexanes (1:1), the γ-lactone 210 was obtained in up to 90% ee. For a select number of substrates, decreasing the catalyst loading to $1 \mathrm{~mol} \%$ gave relatively similar levels of enantioselection and yield, though with slightly diminished values ($\sim 3 \%$ ee). They also examined a variety of substituted hydantoin sources (Scheme 43).

Scheme 43. Effect of Halogen Source on Enantioselection and Yield.

(75)
chloronium source:

$15 \%, 52 \%$ ee

DCDMH
$76 \%, 81 \%$ ee

$82 \%, 85 \%$ ee

During reaction optimization, a trend emerged that highlighted the structural features of the chloronium source. The enantioselectivity increased as the steric bulk at the C5 position increased. For example, the diphenyl analog 209 (DCDPH) performed significantly better than the dihydrogen analog (213). Additional testing with the monomethylated hydantoins (216 and 217) revealed that the chlorine on N1 does not readily transfer, giving only 7% product. They hypothesized that the electronic nature of the chlorinated nitrogen (N1) helps to activate the chlorine at N3 for transfer. This was further investigated with other substituents having similar electronic profiles. ${ }^{101}$ The

[^51]authors proposed two possible modes of binding using ${ }^{1} \mathrm{H}$ NMR studies of a $1: 1$ mixture of catalyst and hydantoin (Figure 21).

Figure 21. Proposed Mode of Binding in Enantioselective Chlorolactonization.

When the two were mixed together, an AB quartet was observed, suggesting the two components could form a complex or tight-ion pair. Though the mechanism was not further examined, this publication served as the floodgate for the field of enantioselective halolactonizations, as other research groups quickly followed suit and investigated a variety of catalyst systems and halogen sources.

Shortly after Borhan's report, Jacobsen revealed the tertiary aminourea-catalyzed enantioselective iodolactonization (Scheme 44). ${ }^{102}$

Scheme 44. Urea/iodine Catalyzed Enantioselective Iodocyclization of δ-Unsaturated Acids.

[^52]Following a large screen of iodine sources, including NIS (95\% yield, 92% ee), DIDMH (5\% yield, 60% ee), and other substituted phthalimides, N-iodo-4-fluorophthalimide (221) was determined to be the most optimal source of I^{+}. Surprisingly, an equimolar amount of iodine relative to the urea catalyst was necessary for high levels of enantioselection and yield. The authors speculate that the combination of the N iodoimides and iodine in the presence of a protic acid, reveal the active (presumably more selective) triiodide cation. The triiodide then facilitates transfer of the I^{+}source to the tertiary amine, regenerating iodine in the catalytic cycle. This is also observed in their proposed mechanism and transition state (Figure 22).

Figure 22. Proposed Transition State and Mechanism for Enantioselective Iodolactonization.

The authors speculate that the fluoro-phthalmide 221 and I_{2} react to form the triiodide, which then transfers an I^{+}to the catalyst, regenerating I_{2} to continue the catalytic cycle. The proposed complex 224 was observed by NMR, as the shifts were characteristic to the combination of catalyst $\mathbf{2 2 3}$ with a strong acid. There is also computational support for the intermediacy of the tertiary amino-iodonium ion complex 225 when combined with the olefinic acid. A screen of approximately 10 substrates was completed using $15 \mathrm{~mol} \%$ of the urea catalyst (223), delivering product in varying enantioselection (48% to 96%) after stirring at $-80^{\circ} \mathrm{C}$ for 5 days.

Almost simultaneously, Yeung ${ }^{103}$ and Fujioka ${ }^{104}$ reported on the asymmetric bromolactonizations using an amino-thiocarbamate catalyst (228) and C_{3}-symmetric chiral trisimidazoline (231) respectively (Figure 23).

Figure 23. First Catalytic and Highly Enantioselective Bromolactonizations.

Yeung's $\boldsymbol{\gamma}$-Bromolactonization

Fujioka's $\boldsymbol{\delta}$-Bromolactonization

Both groups were able to synthesize the adducts with good levels of enantioselection (up to 93% ee) and yield. For Yeung, the nosylamine was deemed necessary, even though a small increase in enantioselection (3\% ee) was observed for the standard substrate, along with prolonged reaction times. They also completed a screen of catalysts to determine the importance of each functionality (thiocarbamate vs. thiourea or carbamate, -NH vs. NMe, etc). The large reaction scope of aliphatic and aromatic acids (>20 examples) was impressive, returning the lactones in $41-93 \%$ ee. Fujioka, similar to Borhan, used the

[^53]halohydantoin to obtain the highest levels of enantioselection (up to 91% ee) when 10 $\mathrm{mol} \%$ of the chiral trisimidazoline was used. Additionally, they showed the tolerance of other heteroatoms in the lactone ring. Both also demonstrated that the reactions with NIS and NCS gave low yields and enantioselection.

The Yeung laboratory has reported on a number of halocyclization reactions since their seminal publication (Figure 24). Using quinidine derived aminothiocarbamate catalysts, they were able to complete the bromoaminocyclizations of 1,1 -disubstituted ${ }^{105}$ and 1,2-disubstituted ${ }^{106}$ olefins, bromolactonizations of trans- and cis-olefins, ${ }^{107}$ and the synthesis of 3,4-dihydroisocoumarin analogs. ${ }^{108}$

[^54]Figure 24. Enantioselective Bromocyclization Work from the Yeung Laboratory.

(80)

(81)

(83)

(84)

2.5-50:1 (endo:exo) up to 95% ee
12 examples

Characteristics of all the transformations were high levels of enantioselection and yield. Additionally, a number of synthetically useful transformations for all of the bromolactone products have been demonstrated (Figure 25).

Figure 25. Synthetically Useful Transformations of Products from Halocyclization Reactions.

These reactions, specifically with 1,1 -disubstituted acids, served as precursors to a variety of other enantioselective halocyclization reactions, reported by the same groups and opened the door for advances by other research groups.

Current limitations in enantioselective halocyclizations

While a number of different reaction conditions for a variety of halogens and olefinic acids have been investigated, a few limitations to the methodology are apparent. Most of the reactions work well with disubstituted olefins (1,1- and 1,2-), while tri- and tetra-substituted olefins have limited representation. Additionally, there appears to be significant differences between halogens that prevent obstacles to the development of a "one size fits all" catalyst system, as most reports state that other halogens performed poorly under their specific reaction conditions.

Very recently, the Fujioka lab reported on the highly enantioselective bromolactonization of tri- and tetrasubstituted olefins using their previously reported trisimidazoline (Scheme 45). ${ }^{109}$

[^55]Scheme 45. Fujioka Bromolactonization of Tri- and Tetra-substituted Olefins.

(85)

A number of substrates were examined, all isolated in 76-90\% ee. As expected, only the exo-lactone (6- over 7-membered ring) product was isolated, though they did not examine the use of the nor-homolog which would have compared 5- over 6-membered ring selectivity. The tetrasubstituted olefinic acid $(\mathrm{R}=\mathrm{Me}$ and $\mathrm{Z}=\mathrm{Me})$ was isolated in 85% ee and 65% yield, an encouraging result for such a hindered substrate. They also determined that the facial delivery of the bromine was the same for both the Z-olefin (in 88% ee) and the E-olefin (in 47% ee), as debromination gave the same product with the same absolute configuration. This also suggests that the Z-olefin is the preferred geometry for the trisimidazoline catalyzed bromolactonization.

One of the more impressive solutions for the use of different halogens in the same system was recently reported by the Toste group (Scheme 46). ${ }^{110}$

[^56]Scheme 46. Tailored Cationic Halogenating Reagents in Halocyclization Reactions.

Amides (252) were exposed to the reaction conditions (5 mol \% of catalyst $\mathbf{2 5 6}$ at room temperature) to provide bromo-benzoxazines (253) in high yield and enantioselection. A variety of substrates, including trisubstituted olefins and oxygen/nitrogen functional groups, were well tolerated. It is hypothesized that the halogen source remains insoluble until it reacts with the chiral phosphate, rendering it active and affording enantioselective delivery of the halogen. This tuning of the halogen source allows for the same reaction to be completed using iodine (255), instead of bromine, with little loss in enantioselectivity.

3.2 Bisamidine Catalyzed Enantioselective Iodolactonization

Preliminary Results

Having demonstrated the use of bisamidine catalysis to effect transformations using a chiral proton complex, we sought similar electrophiles that could be rendered chiral through bisamidine catalysis. We first combined a BAM ligand and an electrophilic source of halogen, seeking evidence for halogen complexation by ${ }^{1} \mathrm{H}$ NMR (Figure 26).

Figure 26. Proposal for Bisamidine and Electrophilic Halogen Complexation.

By combining PBAM (100) and 1 equivalent of N-iodosuccinimide in CDCl_{3}, we hoped to observe a symmetrical shift in the catalyst signals (eq 87), representing an averaged structure that is complexing the halogen. Unfortunately, we only saw desymmetrization of the catalyst. An additional equivalent of the N-halosuccinimide returned symmetry to the catalyst (eq 88). It was determined that instead of halogen complexation, electrophilic aromatic substitution led to halogenation of the C3 and C3' positions. Unfortunately, the
catalysts were not stable to column chromatography. Though shifts in the ${ }^{1} \mathrm{H}$ NMR suggesting complexation (without reaction) between the halogen and catalyst were not observed, we thought catalyst modification may be slower or thwarted at colder temperatures. To test the feasibility of a BAM•halogen system as a chiral halogen source, the iodolactonization of 1,1-disubstituted acids was examined (eq 89).

Starting with conditions similar to those of Jacobsen (Scheme 44) reported earlier, both the free base of PBAM and the triflic acid salt of PBAM (PBAM•HOTf) gratifyingly imparted selectivity, in 19% and 46% ee respectively. We were initially surprised that the catalyst:acid salt gave higher enantioselection, though this may be rationalized through acid activation of the succinimide (to be discussed in detail in upcoming sections). Furthermore, the difference in enantioselection between the free base and acid salt highlighted a variable in the reaction that could be easily modified (acid equivalents, types of acids, etc.). Attempting to increase the enantioselection and reactivity, a catalytic amount of iodine was added in an attempt to form the triiodide species (eq 90).

The extra iodine activation did not help the reaction; instead, it slightly decreased the enantioselectivity. The extra iodine may increase the rate of the background (nonselective) reaction. Satisfied the reaction did not need additional iodine activation, we looked to further examine other reaction parameters that may have an influence on the enantioselection and yield.

Though toluene has previously given the best results for BAM reactions, 1,2dichloroethane has given similar selectivities in some reactions. A variety of chlorinated solvents were tested, resulting in high yields (>95\%) but low selectivity (<10\% ee). Moving forward with toluene, we then looked at the effect the amount of catalyst present may have on the reaction (Table 21).

Table 21. Initial Catalyst Loading Studies with PBAM.

Decreasing the catalyst loading from 20 to $10 \mathrm{~mol} \%$ showed a favorable increase in enantioselection (entry 2). Further drops in the loading of catalyst (entries 3-4) only slowed the reaction and returned product with lower enantioselection (50% and 46% ee). We hypothesized that the uncatalyzed background reaction may be competing and
contributing to the low enantioselection. However, running the reaction with no catalyst at $-20{ }^{\circ} \mathrm{C}$ showed very little conversion by ${ }^{1} \mathrm{H}$ NMR after 48 hours of stirring (entry 5). These results may suggest that there are multiple pathways to the product, while the optimal control is achieved when $10 \mathrm{~mol} \%$ of catalyst is used.

To further examine the role of the achiral acid in the catalyst system, different equivalents of the PBAM:acid salts were examined (Table 22).

Table 22. Role of Triflic Acid Equivalents.

${ }^{a}$ All reactions were performed on a 0.10 mmol scale using 1 equivalent of the carboxylic acid under conditions listed. ${ }^{b} 20 \mathrm{~mol} \%$ catalyst loading used.

The catalyst $\mathrm{PBAM}_{2} \mathrm{HOTf}$ (entry 2), where there are two equivalents of BAM to each equivalent of acid, lies on the continuum between the free base (entry 1) and $1: 1$ salt (entry 3) for selectivity. This suggests the catalyst may exist independently of each other, half as the free base and half as the $1: 1$ salt. Further increasing the equivalents of BAM to acid (1:2) had a negative effect on the enantioselection (entry 6) to 19% ee. Though we have previously demonstrated that higher ratios of acid relative to BAM^{52} can significantly influence diastereoselectivity (with small influence on enantioselectivity), we did not observe any trends for this system, as the 1:1.25 and 1:1.5 gave similar results
to the $1: 1$ salt. It was quickly determined that the optimal ratio of BAM to acid was the 1:1 salt.

Catalyst and Achiral Acid Screen

Surveying a small and diverse selection of other BAM catalysts at our disposal, we began a screen of catalysts and counterions (Table 23).

Table 23. Catalyst Screen of BAM-Triflic Acid Salts.

${ }^{\text {a }}$ All reactions were performed on a 0.10 mmol scale using 1 equivalent of the carboxylic acid under conditions listed.

The less basic catalysts H,QuinBAM (92) and ${ }^{4}$ MeOBAM (104) gave very low enantioselection (entries 2-3), while the sterically hindered ${ }^{7 i} \operatorname{PrPBAM}$ (111) and sterically hindered/electron rich ${ }^{8} \mathrm{MeOPBAM}$ (114) gave no improvement in the enantioselection. Both the basicity of the catalyst and sterically available nature of the chiral pocket appears to be necessary for high enantioselection.

In addition to the Brønsted basic catalyst, modification of the strong acid used to form the chiral proton complex can be varied. Though the proton would remain unchanged, the achiral counterion can be "modified" electronically or sterically. Use of a

stronger acid encourages a more dissociated counterion, potentially changing the orientation of the amidine rings in the chiral pocket. In the same way, increasing the bulk of the achiral counterion may also influence the cavity size while functioning as a blocking element, offering a more selective catalyst-acid system. A large screen of achiral counterions, from their requisite acids, was tested in this system (Chart 3).

Chart 3. Catalyst Screen of BAM-Protic Acid Salts.

${ }^{a}$ All reactions were performed on a 0.10 mmol scale using 1 equivalent of the carboxylic acid under conditions listed.
${ }^{b} 20 \mathrm{~mol} \%$ catalyst loading and reaction time of 44 h .

Starting with the HCl and HBr salts of PBAM (entries 2-3), we were surprised to see that these counterions gave relatively good levels of enantioselection compared to triflic acid. Switching to sulfonate counterions, derived from relatively weaker sulfonic acids, gave lower enantioselection than triflic acid (entries 4-6). For the weaker acids, we consider that starting carboxylate (entry 1), present in much higher amounts, may be a competitive counterion when the acid strengths are similar. The enantioselection is also similar to the selectivities observed when the free base of PBAM was used, furthering the hypothesis of counterion competition. The fluorosulfonates, analogous to triflic acid, (entries 7-9) all
gave relatively similar enantioselection. It appeared that the strength of the acid was not the only determining factor in the enantioselection. However, when we looked at bistrifluoromethanesulfonamide (entry 12), we saw a significant increase to 84% ee. The less acidic trifluoromethanesulfonamide (entry 10) gave enantioselection similar to the free base of PBAM. Additionally, the carbon acid analog (entry 11) gave higher enantioselection than triflic acid, but lower than sulfonimide, while a cyclic triflimide counterion (entry 13) showed no significant increase in enantioselection or yield. The response of enantioselection to counterions with varying electronic and steric character suggests that the role of the achiral counterion, despite its presence down to $1 \mathrm{~mol} \%$ (see below), is not simply to provide a resting state for the catalyst but instead to affect the catalyst reactivity and structure directly as it interacts with the substrate.

Cognizant of the electronic and steric component each counterion presented, we wanted to look for trends that may help guide further reaction optimization. The enantioselection of the product was plotted against the strength of the acid (Chart 4).

Chart 4. The pK_{a} Values of Achiral Acids used in BAM Catalyzed Iodolactonizations.

Unfortunately, not all of the pK_{a} values of the acids are known in the same solvent. The pK_{a} values of the acids in MeCN are either known experimentally or extrapolated from the pK_{a} measurement in dichloroethane. ${ }^{111}$ It appears that the enantioselection of the product slightly increases as the acid strength increases, plateauing at triflic acid. However, the results with triflic acid, triflimide, and the cyclic triflimide, which are all relatively equal in acid strength, show significant variation in the enantioselection. Though a direct relationship (albeit not linear) is evident between achiral acid pK_{a} and enantioselection, it is unclear whether these values hold more useful predictive value. We

[^57]have measured the pK_{a} 's of various BAM-HX salts, but have not found this information to be terribly helpful. ${ }^{112}$ This may not be surprising since it is an attempt to correlate a thermodynamic measurement to a kinetically-controlled phenomenon. It appears that the role of the counterion in influencing enantioselection may be a combination of acid strength and sterics, where an appropriately dissociated and sterically defined counterion is necessary for highest levels of enantioselection. With this new phenomenon of enantioselection being so dramatically altered by an achiral counterion, we wanted to reexamine other reaction parameters that were previously investigated with the PBAM•HOTf catalyst system.

We sought to establish optimal parameters of the reaction with the new catalyst system, by again looking at the catalyst loading and reaction concentration (Table 24).

Table 24. Optimization Studies and Reaction Parameter Limits for PBAM•HNTf

		PBAM $\cdot \mathrm{HNTf}_{2}$ NIS (1.2 equiv) toluene, $-20^{\circ} \mathrm{C}$			
entry	cat. (mol \%)	tol [M]	time (h)	\% yield	ee (\%)
1	10	0.1	22	94	81
2	20	0.1	22	>95	76
3	15	0.1	22	94	81
4	5	0.1	46	84	82
5	10	0.2	22	>95	81
6	10	0.05	22	74	90
7	10	0.025	46	>95	90

${ }^{a}$ All reactions were performed on a 0.10 mmol scale using 1 equivalent of the carboxylic acid under conditions listed.

[^58]As we had observed before with the triflic acid salt of PBAM, doubling the catalyst loading decreased the enantioselectivity of the reaction slightly (entry 2), while the difference between 15,10 , and $5 \mathrm{~mol} \%$ was not significant. As expected, yields increased with greater catalyst loadings, suggesting that the reactions at lower catalyst loadings did not go to completion. Running the reaction at higher concentration (entry 5) resulted in increased yields while giving similar levels of enantioselection. Gratifyingly, decreasing the concentration to 0.05 M gave an increase in selectivity to 90% ee (entry 6). Further decreasing the concentration returned the product in similar enantioselection, suggesting a plateau for the concentration effect (entry 7).

A significant number of reactions have very precise parameters, or a small operating window for delivering maximum efficiency, for example small amounts of water might drastically change a reaction mechanism or pathway. ${ }^{59}$ In an attempt to establish the maximum operating parameters, the amount of NIS, water content, and acid equivalents were examined (Table 25).

Table 25. Study of Operating Parameters for the Iodolactonization Reaction.

${ }^{a}$ All reactions were performed on a 0.10 mmol scale using 1 equivalent of the carboxylic acid under conditions listed.

When the amount of NIS was limited in the reaction (0.6 equivalents), a small drop in the enantioselection and yield was observed (entry 2), while increasing the amount of NIS to 2.4 equivalents did not decrease enantioselection (entry 3). We believe this lends to the observation that the background reaction is very slow in comparison to the catalyzed, enantioselective pathway. We also confirmed that when iodine is used, only racemic product is isolated in low yield (entry 4). Small amounts of water in the reaction do not influence enantioselection (entry 5) while the presence of molecular sieves sharply decreases the enantioselection (entry 6), possibly due to the decreased efficiency in stirring. Small variations in the equivalents of the counterion (entries 7-8) were tolerated, as there was little dependence on the exact ratio. The reaction so far proves to be relatively tolerant of water and excess NIS, while the highest selectivity can be attributed to a careful balance of the reaction concentration and catalyst loading.

Prior to this point, reactions were completed with an additional quantity of NIS (2 equivalents of NIS/1 equivalent of catalyst) in the reaction to correct for possible
iodination of the catalyst, as observed in initial experiments (Figure 26). Furthering this hypothesis, when 0.6 equivalents of NIS was used, the product was only isolated in 40% yield. This suggests that 0.2 equivalents of the NIS are consumed in other parts of the reaction. If the catalyst is iodinated under the reaction conditions, it is also necessary to determine which of the catalysts is most selective and active. To test this, PBAM was combined with 2 equivalents total of NIS at room temperature (Figure 27).

Figure 27. Evidence by NMR of PBAM Iodination.

(97)

Evidence of the di-iodination was gathered using ${ }^{1} \mathrm{H}$ NMR by monitoring the disappearance of the quinoline singlet at the $3 / 3^{\prime}$ position. When one equivalent of NIS was added, a mixture of the non-/mono-/di-iodinated ligands was observed. After the
addition of a second equivalent, all three merged to the presumed di-iodinated ligand $\mathbf{2 5 9}$. The di-iodinated ligand was also observed by HRMS [(ESI): Exact mass calcd for $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{I}_{2} \mathrm{~N}_{6}[\mathrm{M}+\mathrm{H}]^{+} 759.1169$, found 759.1134 .] Unfortunately, attempts to purify this catalyst via flash column chromatography only returned impure material. Following a sodium thiosulfate and subsequent sodium hydroxide wash, the unpurified catalyst was immediately combined with 1 equivalent of bistriflimide to give the putative di-iodinated catalyst $\left(\mathbf{2 5 9} \cdot \mathrm{HNTf}_{2}\right)$ which was submitted to the standard reaction conditions (eq 98).

After stirring for 22 hours under normal reaction conditions at $-20^{\circ} \mathrm{C}$ with $\mathbf{2 5 9} \cdot \mathrm{HNTf}_{2}$, 75% ee material was recovered in 70% yield, which can be compared to 84% ee and 90% yield for $\mathrm{PBAM} \cdot \mathrm{HNTf}_{2}$ (not pretreated with NIS as above). The lower selectivity observed may be a result of the impurities that arise from the unpurified catalyst. Nevertheless, the reactivity and selectivity observed were only a small deviation from the ligand not pretreated with NIS, demonstrating that the active catalyst may exist anywhere on the iodinated ligand continuum (non-, mono-, or di-iodinated). With these observations, we moved forward using an excess of NIS relative to the catalyst for all reactions. Additionally, other reports for enantioselective halo-functionalization use an excess of the halogenating agents, possibly representing catalyst modification.

A solvent screen was then completed with the new catalyst system to probe the association that the solvent and achiral counterion may have on each other, with the ultimate goal of increasing enantioselection (Table 26).

Table 26. Solvent Screen with PBAM•$\cdot \mathrm{HNTf}_{2}$ as the Optimal Catalyst.

Unfortunately, none of the solvents tested increased the enantioselection of the adduct (entries 2-5). This may be due to the more favorable solubility profile for the reaction, which in turn increases the background rate. However, when a mixture of toluene and chloroform (3:1) was used, a slight drop in enantioselection to 79% was observed (entry 6). This method of using a mixture of solvents could help to increase starting material solubility if some are only partially soluble in toluene.

To further validate and exploit the observed achiral counterion effect, a diverse set of pyrrolidine-derived BAM catalysts from our library was reexamined (Chart 5).

Chart 5. Screen of Electronically and Sterically Diverse Pyrrolidine Bisamidine Ligands.

${ }^{a}$ All reactions were performed on a 0.10 mmol scale using 1 equivalent of the carboxylic acid under conditions listed.

The triflimide salts of the catalysts were easily synthesized by mixing equimolar amounts of triflimidic acid and the BAM free base in DCM, followed by removal of the solvent in vacuo. The more electron deficient analog ${ }^{6} \mathrm{~F}_{3} \mathrm{C}-\mathrm{PBAM}$ (260) showed lower reactivity and selectivity, while increasing the electron density with a methoxy group at the same position (${ }^{6} \mathrm{MeO}-\mathrm{PBAM}, 261$) gave the adduct in high enantioselection and yields $(85 \%$ ee, 95% yield). As previously observed, ${ }^{8} \mathrm{MeO}-\mathrm{PBAM}$ (114) severely diminished the catalyst's selectivity by disrupting the chiral pocket and delivering the product in 39% ee. In addition to the steric congestion ${ }^{8} \mathrm{MeO}-\mathrm{PBAM}$ contributes, the electronic congestion also is pertinent, as ${ }^{8} \mathrm{Et}$-PBAM (262) gave vastly better selectivity (70% ee). Sterically, the ethyl group and methoxy group are similar in size, but the difference in the electronics of the group may play a role in the enantioselection. Interestingly,
${ }^{6,8} \mathrm{Me}-\mathrm{PBAM}(\mathbf{2 6 3})$ gave the adduct in lower enantioselection (60% ee) than ${ }^{8} \mathrm{Et}$-PBAM. However, when StilbPBAM (115), derived from stilbene diamine instead of cyclohexane diamine, was used high yield (89\%) and a large increase in selectivity to 95% ee was observed. This catalyst was initially developed for the enantioselective additions of nitroalkanes to aliphatic imines (Scheme 47). ${ }^{113}$

Scheme 47. Bromonitromethane Additions to Aliphatic Imines.

It was hypothesized that the smaller NCCN dihedral angle of the stilbene diamine $\left(52^{\circ}\right)$ relative to cyclohexane diamine $\left(69^{\circ}\right)$ may offer a smaller pocket for the aliphatic electrophile to bind. ${ }^{114}$ Though StilbPBAM gave promising results (55\% yield, 92/93\% ee), the optimal catalyst has since been identified as the less Brønsted basic ${ }^{4} \mathrm{MeO}$ StilbBAM (266), delivering the aza-Henry adduct in $>95 \%$ yield and $>96 \%$ ee for both diastereomers. These adducts can be further manipulated to useful amide products by applying the Umpolung Amide Synthesis previously developed in our group. ${ }^{87}$

[^59]
StilbPBAM: A More Reactive and Selective Catalyst

To further validate the effect of the stilbene diamine backbone for the iodolactonization reaction, we submitted the free base and triflic acid salts of the catalyst to the reaction conditions (Chart 6).

Chart 6. StilbPBAM and PBAM Comparison: Effect of Diamine Backbone on Enantioselection

StilbPBAM in its free base form delivered the lactone $\mathbf{2 2 2}$ in 57% ee, while its triflic acid salt delivered product in 87% ee and 95% yield. These trends for the counterions were also observed for PBAM, suggesting that the influence of the backbone is a real effect and can be exploited for further increase in enantioselection.

In previous halofunctionalization reports, a stoichiometric amount of acid was needed to maintain high reactivity and selectivity. Experiments were completed to determine the optimal ratio of chiral catalyst to achiral acid (Table 27).

Table 27. Changing the Ratio of the Chiral, Brønsted Basic Catalyst to the Achiral Acid.

entry	catalyst	\% yield	ee (\%)
1	StilbPBAM	99	57
2	StilbPBAM $_{2}\left(\mathrm{HNTf}_{2}\right)_{1}$	76	83
3	StilbPBAM $^{(H N T f} \mathrm{H}_{2}$	>95	96
4	StilbPBAM $_{2}\left(\mathrm{HNTf}_{2}\right)_{3}$	91	96
5	StilbPBAM $_{1}\left(\mathrm{HNTf}_{2}\right)_{2}$	<50	<5

${ }^{a}$ All reactions were performed on a 0.10 mmol scale using 1 equivalent of the carboxylic acid under conditions listed.

The reaction with the $2: 1$ catalyst (chiral base:achiral acid) gave the adduct in 76% yield and 83% ee (entry 2). As expected, the selectivity of the reaction lies somewhere on the continuum between the free base and $1: 1$ salt, as there is approximately 50% of each catalyst in solution. The reactivity for the 1:2 catalyst complex (entry 5) was sluggish and returned nearly racemic material. For the $2: 1$ catalyst complex, we hypothesize that both basic nitrogen sites are protonated rendering the catalyst inactive. Alternatively, very little change was observed when the $1: 1.5$ salt was used (entry 4). This may be due to the fact that there is still $5 \mathrm{~mol} \%$ of the active catalyst available while the other $5 \mathrm{~mol} \%$ is inactive. This is additional evidence that the achiral acid is important in the transition state and doesn't function to only provide a resting state for the catalyst, as an excess shuts down all reactivity.

Further reaction optimization with the ligand revealed an interesting trend in catalyst loading (Table 28).

Table 28. Final Reaction Optimization of the Most Selective Catalyst System.

${ }^{a}$ All reactions were performed on a 0.10 mmol scale using 1 equivalent of the carboxylic acid under conditions listed.

Running the reaction under more dilute conditions delivered the adduct (222) in slightly higher yield and similar enantioselection (entry 2). Further decreasing the catalyst loading (entries 3-5) required longer reaction times, but a slight increase in enantioselection was observed when the catalyst loading was lowered to $2 \mathrm{~mol} \%$. Running the reaction at 1 $\mathrm{mol} \%$ catalyst loading (entries 5-6) delivered highly enantioenriched material, independent of the reaction concentration. This effect of increase in enantioselection with decrease in catalyst loading provides some interesting insight to the reaction mechanism, possibly suggesting that there may be multiple catalysts involved in the most selective transition state.

To probe whether the lower catalyst loading was a result of higher polymorphs of the catalyst, we completed a nonlinear effect study (Graph 1).

Graph 1. StilbPBAM Nonlinear Effect.

When catalysts with varying enantioselection $(20 \%, 40 \%, 60 \%, 80 \%$ ee $)$ were used (0.05 $\mathrm{M}, 10 \mathrm{~mol} \%$ StilbPBAM $\cdot \mathrm{HNTf}_{2}$), a non-linear effect was not observed $\left(\mathrm{R}^{2}=0.99\right) .{ }^{115}$ Of course, this does not preclude the possibility of dimers/oligomers, as they may not have significantly different reactivity relative to their homochiral counterparts. The dimeric nature of the free base StilbPBAM in the solid state was observed in a crystal structure obtained during purification (Figure 28).

[^60]Figure 28. Crystal structure of StilbPBAM dimer.

One molecule of catalyst is highlighted in gray (carbon) and blue (nitrogen), while the other molecule is light blue for clarity. Though the solid state of the catalyst is not a direct representation of the catalyst in solution, it presents possible interactions that may be observed in solution. Interestingly, the dihedral angles (NCCN) of both molecules of catalyst were measured to be 62° and 69°, larger than the 52° that was previously calculated for this diamine in another system. ${ }^{56}$ This increased flexibility in the diamine backbone may be the reason for the increase in reactivity and enantioselectivity.

Substrate Scope for 1,1-Disubstituted Olefinic Acids

Before a full substrate scope could be examined in this transformation, the synthesis of the starting materials needed to be completed, as not all of the keto-acids were readily available (Chart 7).

Chart 7. Synthesis of Desired Olefinic Acids for Idolactonization.

The opening of glutaric anhydride with organocuprates to give the desired ketoacids was carried out using a modified procedure from Rovis ${ }^{116}$ and Ishihara. ${ }^{117}$ The use of the organocuprate was incorporated to minimize the double addition, which results in an undesired alcohol. The yields for this step are variable (from 8-53\%), but most were run only once and in some instances the yield was sacrificed for purity. The ketoacids were then submitted to the Wittig reaction with much better success. Most of the yields to form the olefin were over 70%, while the lower yields were a result of semipure starting

[^61]ketoacid or incomplete conversion. Further optimization could increase the yields for both steps, but the route provided enough material (from inexpensive starting materials) to establish a substrate scope.

Though previous experiments demonstrated the reactivity of the iodolactonization using only $1 \mathrm{~mol} \%$ catalyst, initial experiments for the substrate screen established that 5 mol \% catalyst loading was most general across the board (Chart 8).

Chart 8. Substrate Scope in Enantioselective Iodolactonization of 1,1-Disubstituted Acids.

[^62]Encouraged by the results with the formation of the δ-lactone, we first looked at variations in the ring size. Removing one carbon from the chain gave the γ-lactone (271b) with low enantioselection (67% ee), possibly due to a more reactive species and background reaction. Conversely, the addition of a carbon (desired ε-lactone) severely hindered reactivity, giving only trace product (271c) after four days of stirring, though the racemic product formed with only slightly diminished reactivity. Halogens at the para-position (271d and 271e) returned product with high enantioselection and yield. However, moving both halogens to the meta-position (271f and 271g) severely hindered the reaction progress, stalling after 48 hours of stirring, but still maintaining the high selectivity (96 and 97% ee). A similar trend in reactivity and selectivity was observed with the para-trifluoromethyl analog (271h), as product was recovered in 96% ee and only 42% yield (low conversion). Running the same reaction with a higher catalyst loading only slightly increased the yields, while giving the same selectivity. The reactivity was recovered when the electron withdrawing substituent was replaced with an electron donating substituent (MeO-) to give lactone 271i in higher yields (87\%) but with lower enantioselection (74% ee). Methyl substituents at the para- and meta-position ($\mathbf{2 7 1} \mathbf{j}$ and $\mathbf{2 7 1 k}$) returned product that was $>91 \%$ yield and $>96 \%$ ee, while no difference in reactivity was observed, a stark contrast to the meta-halogen substrates. Moving the methyl group one position to the sterically encumbering position completely stymied the reactivity, as only a trace amount of the desired lactone (2711) was observed after three days of stirring. The same drop in reactivity was observed with the 1 -naphthyl analog (271n), but reactivity was restored for the 2-naphthyl lactone 271m, as product was
isolated in 96% yield and 96% ee. The aliphatic analogs performed well if the olefin was doubly substituted. Commercially available 6-hexenoic acid was significantly less selective, affording the desired lactone (271q) with only 33% ee. The n-butyl derivative (2710) was isolated with 95% yield and 89% ee, while increasing the steric bulk to the isopropyl derivative provided lactone $\mathbf{2 7 1}$ p in 86% yield and 81% ee. Though the scope improves on the previously reported iodolactonizations, further optimization on some of the lower performing substrates was necessary.

Lower performing substrate optimization

The para-methoxy analog produced product in 74% ee under standard conditions, which still represents a large increase from previously reported examples (Figure 29).

Figure 29. The Problematic para-Methoxy Substrate.

In the $(\mathrm{DHQD})_{2} \mathrm{PHAL}$ catalyzed chlorolactonization, ${ }^{100}$ the para-methoxy substrate 272 was obtained in quantitative yield and essentially no enantioselectivity. The authors hypothesized that the para-methoxy substrate promotes the chloronium ring opening, while the closure of the acid occurs independently of the catalyst. This higher rate of background reaction was also observed for the γ-bromolactonization ${ }^{103}$ and δ iodolactonization. ${ }^{102}$ One successful approach to increasing the enantioselectivity for para-substituted electron rich acids was demonstrated in the trisimidazoline catalyzed δ -
bromolactonization. ${ }^{104}$ The authors decreased the temperature from $-40^{\circ} \mathrm{C}$ to $-78^{\circ} \mathrm{C}$ and added extra halonium source to deliver the adduct in 74% yield and 80% ee [where the standard substrate ($\mathrm{R}=\mathrm{H}$) was isolated in 99% yield and 91% ee].

We investigated different reaction conditions in an attempt to increase the selectivity for the para-methoxy substrate (Table 29).

Table 29. Increasing Enantioselection for the Lactonization for the para-Methoxy Acid.

Decreasing the catalyst loading to $2 \mathrm{~mol} \%$ (entry 2) was ineffective while increasing the catalyst loading to $15 \mathrm{~mol} \%$ (entry 3) gave similar results at 70% yield and 72% ee. Running the reaction more dilute did not increase the enantioselection (entry 4). We then looked at other commercial sources of I^{+}. Unfortunately, the commercial availability for sources of electrophilic iodine are limited, while there are a number of available sources of chlorine and bromine $\left(\mathrm{Cl}^{+}>\mathrm{Br}^{+} \ggg \mathrm{I}^{+}\right)$. Of the milder sources, 1,3-diiodo-5,5dimethylhydantoin (DIDMH) was previously explored by Jacobsen (with added iodine) to give the lactone in 5\% yield and $60 \% \mathrm{ee}$. In our system with the standard olefinic acid
$(\mathrm{Ar}=\mathrm{Ph})$ and using 1.1 equivalents of DIDMH (entry 5), we recovered product in 89% yield and 92% ee, a slight drop from NIS. Since DIDMH has two equivalents of I^{+}, decreasing the equivalents to 0.6 (entry 6) increased the enantioselection to 96% ee, similar to the optimal conditions with NIS. Gratifyingly, switching the source of iodine from NIS to DIDMH for the para-methoxy substrate (entry 7) increased the enantioselection to 85% ee without a loss in yield. This selectivity is one of the highest reported for a para-methoxy acid thus far.

The pentenoic acid substrate also proved problematic for Jacobsen in the initial report. ${ }^{102}$ Two observations were made when looking at the pentenoic acid, or norhomolog, derivatives (Scheme 48).

Scheme 48. Jacobsen's Modification of Conditions for Pentenoic Acid Derivatives.

When their initial conditions using $15 \mathrm{~mol} \%$ of iodine additive were applied, the adduct (276) was obtained in 86% yield and only 31% ee. Decreasing the amount of iodine additive to $0.1 \mathrm{~mol} \%$ gave the adduct in 45% yield and 90% ee. The low yield was corrected when an additional equivalent of the N-iodo-4-fluorophthalimide (221) was added. It was believed that the low enantioselectivity was a result of the more reactive lactone formation. This was confirmed when the gem-dimethyl analog was submitted to the reaction and the product formed in 0% ee. Additionally, the pentenoic acid analog
was isolated in the opposite absolute configuration as the hexenoic acid analogs, suggesting a slightly different model for enantioinduction.

We sought to increase the enantioselection by looking at similar reaction optimization without dramatic changes in reaction conditions (Table 30).

Table 30. Attempts to Increase the Enantioselection of the γ-Iodolactonization Product.

entry	I^{+}	cat. (mol \%)	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	time (h)	$\%$ yield	ee (\%)
1	NIS	5	-20	24	>95	67
2	NIS	10	-78	96	60	70
3	DIDMH	5	-20	3	89	58

${ }^{a}$ All reactions were performed on a 0.10 mmol scale using 1 equivalent of the carboxylic acid under conditions listed.

Earlier experiments that probed the catalyst loading and reaction concentration using $\mathrm{PBAM} \cdot \mathrm{HNTf}_{2}$ as a catalyst (not listed) were not fruitful. Similar experiments with StilbPBAM were completed to determine the role the catalyst may have on the substrate. Decreasing the reaction temperature to $-78{ }^{\circ} \mathrm{C}$ (entry 2) slightly increased enantioselection to 70% ee, while sacrificing time (4 days) and yield (60\%). Unfortunately, using DIDMH did not increase enantioselection for the γ-lactone (entry 3), delivering product in 89% yield and 58% ee. It is still believed that the background rate is the primary source of low enantioselection. An interesting observation is that the same sense of enantioselection was observed, suggesting that the mechanism for the γ lactone is very similar to that of the δ-lactone formation.

Mechanistic Observations

A few observations about the bisamidine catalyzed enantioselective iodolactonization reaction have been made thus far:

1. The acidity and sterics of the achiral counterion both influence enantioselection.
2. Lower catalyst loadings (to $1 \mathrm{~mol} \%$) and more dilute concentrations (0.05 M) give product with higher enantioselection.
3. A non-linear effect has not yet been observed.
4. The BAM: HNTf_{2} ratio (1:1) is important to maintaining enantioselection, where a 1:2 ratio delivers product as the racemate.

The influence of the solvent and reaction conditions on the enantioselection has been extensively studied, in addition to the catalyst system. One component that has not been fully explored is the starting carboxylic acid.

To determine the importance of the carboxylic acid in the reaction, different functional groups were investigated in the iodocyclization reaction (Chart 9).

Chart 9. BAM Catalyzed Cyclizations of other Functional Groups.
from the ester

$\mathrm{PBAM} \cdot \mathrm{HNTf}_{2}$ (10 mol \%) StilbPBAM• $\mathrm{HNTf}_{2}(10 \mathrm{~mol} \%)$
lactam formation

Attempts were made to access the lactone directly from ester 277, though no conversion of the ester was observed by TLC (eq 111). Using a better leaving group such as the tertbutyl ester may better facilitate product formation. The alcohol, using both PBAM and StilbPBAM, gave the etherification product $\mathbf{2 7 9}$, but as racemic material. The lactam $\mathbf{2 8 1}$ was formed in low yield and with low selectivity, with neither BAM catalyst showing a preference. This suggests that the carboxylic acid is necessary for enantioselection, possibly through a pre-coordination with the catalyst prior to iodine delivery.

Early on in the study, minor observations suggested that the enantioselection may change as the reaction progresses. To probe this, we wanted to look at the enantiomeric excess of the product as a function of reaction time. Initial experiments using $2 \mathrm{~mol} \%$ of catalyst were quenched at $1,2,4$, and 24 hours. However, significant conversion (${ }^{1} \mathrm{H}$ NMR) to product was observed at just 1 hour, and it was realized that quenches at earlier time points were needed. Additionally, monitoring reaction completion by ${ }^{1} \mathrm{H}$ NMR was inconsistent due to the partial solubility of the starting material in the aqueous layer (existing as sodium salt) after the sodium thiosulfate quench. The reactions were set up again on a 0.2 mmol scale and quenched at 15 minute intervals for the first hour, then at 2 and 4 hours, while one was allowed to reach full conversion after three days (Table 31).

Table 31. Monitoring Enantiomeric Excess over Reaction Progress.

			$\xrightarrow[\text { toluene, }-20^{\circ} \mathrm{C}]{\substack{\text { StilbPBAM•HNTf } \\ \text { (2 } 2 \mathrm{~mol} \%) \\ \text { IS }(1.05 \text { equiv })}}$			
entry	quench (min)	isolated yield (mg)	isolated yield (\%)	ee (\%)	(R)-lactone $(\mathrm{mg})^{b}$	$\begin{gathered} (S) \text {-lactone } \\ (\mathrm{mg})^{b} \end{gathered}$
1	15	6.1	9	80	5.5	0.6
2	30	8.2	13	86	7.6	0.6
3	45	10.1	16	88	9.5	0.6
4	60	11.9	19	90	11.3	0.6
5	120	14.6	23	93	14.1	0.5
6	240	21.7	34	96	21.2	0.5
7	4,320	57.4	91	98	56.8	0.6

${ }^{a}$ The reaction was performed on a 0.20 mmol scale $(0.05 \mathrm{M})$ using 1 equivalent of the carboxylic acid. Reactions were quenched by the addition of sodium thiosulfate. ${ }^{b}$ Amounts of each enantiomer were calculated using ee and isolated yield.

Interestingly, we saw that the enantiomeric excess of the product increased as the reaction progressed. Further calculations (using the isolated yield and enantioselection of each reaction) showed the amount of each lactone enantiomer present and suggested that all of the minor enantiomer (S-configuration) was produced in the first 15 minutes of the reaction! In other words, the reaction that occurs after the first 15 minutes returns product that is $>99 \%$ ee. There are few explanations that can account for this behavior, but intrigued by this phenomenon, we attempted to isolate the variable.

As the reaction progresses, there are variables that are dynamic and may contribute to the drastic change in enantioselection observed from the beginning to end of the reaction.

1. Acid concentration changes as starting material is consumed.
2. Catalyst loading increases from an initial concentration of $2 \mathrm{~mol} \%$ (cat 115).
3. Succinimide ($\mathrm{N}-\mathrm{H}$) is not available or limited for the first few catalyst turnovers.
4. Product concentration is the inverse of the olefinic acid concentration.

We wanted to only look at changes in the first 10% of the reaction (gray area), which become evident when plotted as a function of conversion (Graph 2).

Graph 2. Mapping Out Reaction Progress and Variables that Change Most in First 10% of Reaction.

The graph shows that in the first 10% of the reaction, there is little change in the amount of olefinic acid available (100% to 90%) and in catalyst loading ($2 \mathrm{~mol} \%$ to $2.2 \mathrm{~mol} \%$). For the first catalyst turnovers, succinimide concentration is low, as the catalyst:succinimide ratio is $2: 0$. At 10% conversion, the ratio decreases to $2: 10$ (catalyst:succinimide), presenting a very different combination of reagents. Another component that undergoes significant change is the product, which is not present for the first catalyst turnovers in the reaction.

Experiments were completed to determine the influence of succinimide on the reaction. First the catalyst ($5 \mathrm{~mol} \%$) and NIS ($10 \mathrm{~mol} \%$) were stirred for 16 hours at -20 ${ }^{\circ} \mathrm{C}$, to represent the course of a reaction (eq 115).

If the catalyst is modified or other interactions are necessary, this allows time for those to occur. After adding the starting acid and remainder of NIS (1.0 equiv), material was isolated in 97% ee, which was similar to normal conditions. Second, a reaction was completed with $50 \mathrm{~mol} \%$ of succinimide (representing the 50% conversion mark) and this resulted in no change in enantioselection (eq 116).

This suggests that the coproduct succinimide has little influence on enantioselection in the reaction. Other reactions completed with depleted (0.6 equiv) or excess (2.4 equiv) NIS showed little change in enantioselection. Having thoroughly investigated the role of NIS and succinimide, we looked at the role the product may have on enantioselection.

The first turnover of catalyst takes place without any product present ($0: 1$, product: ligand), where the fifth turnover of the catalyst is completed with approximately a 5:1 ratio of product:ligand. To simulate this, the reaction was spiked with an iodolactone product (Chart 10).

Chart 10. Role of the Product in Influencing Enantioselection.

To ensure an accurate calculation of enantioselection, we used a different lactone than what would arrive from the starting acid, as well as one that would not overlap in the HPLC assay. Gratifyingly, one of our more problematic substrates (para-methoxy) and best substrates (para-trifluoromethyl) paired nicely for ease of HPLC analysis as all four enantiomers were separated. This allowed us to complete the reaction without having to separate the two lactones. Under our standard conditions, we were able to obtain the para-methoxy adduct (271i) in 74% ee. Surprisingly, when we combined the starting acid (270i) and the para-trifluoromethyliodolactone (271h), we saw a significant increase in enantioselection for the para-methoxylactone 271 i to 89%. When the reaction was completed with the opposite enantiomer of the para-trifluoromethyliodolactone (epi271h), we saw a similar influence on enantioselection, returning the product in 84% ee. The reaction was also done in the presence of rac-271i, where the product was determined to form in 84% ee (after calculations). This influence of the product on the
most selective pathway paves the way for additional research into the involvement of the product in the transition state. Additionally, a thorough investigation into the lactone's simplest functionality, the ester, may reveal a more general additive that can be used to increase enantioselection for this, and other reactions.

Development of Reagent-Substrate Assembly Models for Enantioselection

The catalyst is bifunctional, acting as both a Brønsted acid and a Brønsted base. Although these experiments clearly outline a conceptually unique catalyst system with practical importance, the catalyst-reagent-substrate assemblies depicted in Figure 30 illustrate two possible models for enantioselection.

Figure 30. Proposed Reagent-Substrate Assemblies.

The assumptions common to each of these include: 1) anti-addition to the alkene, 2) a 1:1:1:1 complex of $\mathrm{Tf}_{2} \mathrm{NH}$:chiral ligand:NIS:substrate, 3) a coplanar arrangement between the quinolinium ring and NIS based on double hydrogen bonding to the NIS carbonyl, and 4) orientation of the iodine toward the chiral backbone. It is almost certain that a linear relationship along the succinimide-iodine-alkene axis does not exist, but twisting of the quinolinium ring toward the interior would help. Each of these assemblies
also hypothesizes a hydrogen bond (or ion pair) between the quinoline and the substrate carboxylic acid, supported by the necessity of the carboxylic acid for high selectivity. It is also possible that this pre-coordination of the carboxylate is important for high facial selectivity in the iodine delivery step. Assembly 282-E depicts the substrate orientation with an equatorial placement of the phenyl, whereas 282-A differs primarily by the axial orientation of the phenyl. No specific orientation of the counterion is depicted relative to the substrate, but it may provide either a more enveloped pocket or provide helpful hydrogen bond acceptor contacts. Each of these assemblies leads to the observed enantiomer but are not exclusive of alternatives. Although we can't establish exactly the reason for the achiral counterion control or enantioinduction, we do identify and characterize the unique composition and behavior of the catalyst system described as an important first step.

Application to endo-Iodolactonization

Having demonstrated the 6-exo-iodocyclization of 1,1 -disubstituted δ-unsaturated acids and equipped with a knowledge of the subtleties this reaction offers, we sought to apply it to 1,2 -disubstituted γ-unsaturated acids. Using this class of acids, two lactones can form, either in a 5-exo or 6-endo fashion. We sought a catalyst system that would not only deliver the desired adduct in high enantiomeric excess, but also with high regioselectivity.

Initial reaction optimization was completed on this system using our BisAMidine library of catalysts (Table 32).

Table 32. Catalyst Screen for endo-Iodolactonization.

${ }^{a}$ All reactions were performed on a 0.10 mmol scale using 1 equivalent of the carboxylic acid under conditions listed. Isolated yields are a mixture of endo- and exo-lactone products (6:5).

The previously optimized conditions were first applied at $-20^{\circ} \mathrm{C}$ using StilbPBAM (115) as the catalyst in toluene $(0.05 \mathrm{M})$. A mixture (88:12) of the δ - and γ-lactone 284 was isolated in 60% yield, while the endo-lactone formed in 88% ee and the exo-lactone formed in <30\% ee. Unfortunately, the γ-lactone enantiomers did not consistently resolve by chiral HPLC and could not be determined with certainty. However, enantioselection is clearly low (less than 30% in most cases). The slight preference (2:1) for the endolactone was also observed when DMAP was used for the racemic reaction. PBAM gave similar selectivities for the endo-/exo-lactones, with the major lactone isolated in $88 \% \mathrm{ee}$,
but the catalyst was significantly less reactive. A variety of stilbene derived BAM catalysts were synthesized and screened in the reaction. When ${ }^{8}$ Et-StilbPBAM (285) was used, a sharp drop in reactivity and enantioselectivity was observed, with product isolated in 20% yield and 61% ee. We hypothesize that this steric bulk blocks the chiral pocket and slows the reaction while crowding the binding pocket which decreases the enantioselection. The more electron rich catalyst, ${ }^{6,7}$ MeOStilbPBAM (286), presented the desired adduct in 66% yield and 81% ee. The electronically similar, but sterically less hindered ${ }^{6,7}$ Dioxol-StilbPBAM (287) gave the product in 92% ee and 66% yield. Gratifyingly, when the methoxy or oxygen substituent at the 7-position was removed $\left({ }^{6} \mathrm{MeO}-\mathrm{StilbPBAM}, \mathbf{2 8 8}\right)$, we isolated the product in 70% yield and 92% ee for the major lactone which formed as a 90:10 ratio.

Using the optimal ${ }^{6} \mathrm{MeO}-\mathrm{StilbPBAM}$ catalyst, other reaction parameters were examined (Table 33).

Table 33. Reaction Optimization for the endo-Iodolactonization.

		$\begin{equation*} \xrightarrow[\substack{\text { toluene } \\-20^{\circ} \mathrm{C}, 6 \mathrm{~h}}]{\stackrel{{ }^{6} \mathrm{MeOStilbPBAM} \cdot \mathrm{HNTf}_{2}}{\text { NIS (1.1 equiv) }}} \tag{121} \end{equation*}$						
entry	$\begin{gathered} \text { cat. } \\ \text { (mol \%) } \end{gathered}$	$\begin{aligned} & \text { NIS } \\ & \text { (equiv) } \end{aligned}$	(M)	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	time (h)	yield (\%)	A: ${ }^{\text {B }}$	A\% ee
1	5	1.1	0.05	-20	6	66	90:10	92
2	5	1.1	0.1	-20	24	83	88:12	93
3	5	1.1	0.1	-78	96	trace	-	-
4	0	1.1	0.1	-20	24	trace	-	-
5	10	1.2	0.1	-20	24	76	84:16	89
6	2	1.05	0.1	-20	24	76	91:9	94

${ }^{a}$ All reactions were performed on a 0.10 mmol scale using 1 equivalent of the carboxylic acid under conditions listed.

Increasing the concentration of the reaction corresponded to an increase in the yield, with no loss in enantioselection (entry 2). Attempts to further increase the enantioselection by running the reaction at $-78{ }^{\circ} \mathrm{C}$ only returned trace amounts of product (entry 3). The reaction was run in d_{8}-toluene at $-20^{\circ} \mathrm{C}$ without catalyst (entry 4) to establish if there is a significant background rate, possibly accounting for the low selectivity of the exolactone. No product was observed, possibly due to the limited solubility of NIS without the catalyst present. Further increasing the catalyst loading to $10 \mathrm{~mol} \%$ led to a decrease in enantioselection (entry 5), while decreasing the catalyst loading to $2 \mathrm{~mol} \%$ was favorable (entry 6), delivering the major product in $94 \% \mathrm{ee}$, with a $91: 9$ ratio of the endo-:exo-lactone.

To assess the generality of the reaction, a substrate scope of varying electronics and sterics was completed (Chart 11).

Chart 11. Substrate Scope for the endo-Iodolactonization.

(122)
1)

284
94\% ee, 91/9
76% yield
5) ${ }^{b}$

284e
75\% ee, 87/13 89\% yield

284i
96\% ee, 93/7
87\% yield
13)

95\% ee, 76/24 79\% yield
2)

284b
91\% ee, 95/5 86% yield
3)

284c 92\% ee, 93/7 84\% yield
4)

284d 84\% ee, 85/15 95\% yield
6) ${ }^{b}$

10)

284j
93\% ee, $81 / 19$
91\% yield

284n
67\% ee, >95/5
90% yield

284 g
78\% ee, >95/5 72% yield
11)

284k
90\% ee, 77/23 66% yield

2840
29\% ee, >95/5 80\% yield
8)

284h
90\% ee, $85 / 15$
95\% yield
12)

2841
88\% ee, $48 / 52$ 51% yield

${ }^{a}$ All reactions were performed on a 0.10 mmol scale using 1 equivalent of the carboxylic acid under conditions listed using 2 or $5 \mathrm{~mol} \%$ catalyst loading. Yields are isolated yields of both regioisomers. Ratios of the endo- to exo-lactone were measured by ${ }^{1} \mathrm{H}$ NMR. ${ }^{b}$ Reaction run in a toluene/trifluorotoluene (4/1) mixture.

Methyl groups were tolerated at all positions of the aromatic ring (entries 2-4) with very little difference in yield or selectivity between the para- and meta-substituted rings (91\% and 92% ee). The ortho-methyl analog gave the lactone (284d) in slightly lower enantioselection (84% ee), but good yield after 3 days of stirring, a stark contrast to the
result with 1,1-disubstituted olefins (trace product after days of stirring). This may result from catalyst-NIS binding to the homobenzylic carbon instead of the benzylic carbon, making the ortho-position substitution less cumbersome. The starting acids of the paraphenyl and 2-naphthyl were very insoluble in toluene and returned very little product (entries 5-6). However, when they were run in a toluene/trifluorotoluene mixture (4/1), both the para-phenyl lactone (284e) and the 2-naphthyl lactone (284f) were isolated in good yield (89% and 72% yield) and moderate enantioselection (75% ee and 76% ee). (Reactions run in only trifluorotoluene returned product that was significantly lower in enantioselection.) The enantioselection for the electron rich rings was heavily dependent on the position of the substituent, as the para-methoxy gave lactone $\mathbf{2 8 4 g}$ in $\mathbf{7 8 \%}$ ee and 72% yield (entry 7) while the meta-methoxy gave lactone 284h in 90% ee and 95% yield (entry 8). For the para-methoxy analog, none of the γ-lactone was observed by ${ }^{1} \mathrm{H}$ NMR, a trend observed with other electron rich aromatic rings. The para-halogenated rings maintained high levels of enantioselection (entries 9-11), but were slower and produced variable amounts of the γ-lactone. The para-fluoro lactone 284i (entry 9) was isolated in 87% yield (93/7) and 96% ee, while the para-chloro lactone $\mathbf{2 8 4 j}$ (entry 10) was isolated in 91% yield (81/19) and 93% ee. The decrease in enantioselection and endo-/exo- ratio continued with the para-bromo lactone 284k (entry 11), isolated in 66% yield and 90% ee for the major lactone while producing 23% of the undesired lactone. When the chlorine was moved to the meta-position, the δ - and γ-lactone 2841 were both produced equally (entry 12). Fortunately, the endo-lactone 2841 was still enriched with one enantiomer (88% ee). The solubility of the starting meta-chloro acid and the meta-chloro product might have played a role in the low lactone ratio. The para-trifluoromethoxy acid
delivered lactone $\mathbf{2 8 4 m}$ in 79% yield and 95% ee (entry 13), the highest for any of the substrates. The cinnamyl lactone 284n (entry 14) and 2-thiophene lactone $\mathbf{2 8 4 0}$ (entry 15) performed similarly to the para-methoxy analog, delivering the adducts in lower enantioselection (67% and 29%, respectively) and only one regioisomer. Surprisingly, moving the sulfur one position ($\mathbf{2 8 4} \mathbf{p}$, entry 16) increased enantioselection to 85%, while still producing only the desired isomer in 79% yield. Pleased with the scope and enantioselection for the endo-lactone, we wanted to further investigate the driving force for the exo-lactone formation.

Throughout our studies we saw that the regioselectivity of the product, though $>85 \%$ in most cases, was dependent on the aromatic ring of the acid. The electron rich rings gave mostly the endo-lactone. Additionally, as the halogens moved from fluorine to bromine, the amount of exo-lactone production also increased. Based on the work of Denmark, it has been suggested that these systems allow for catalyst control of the endo-/exo-product formation (Scheme 49). ${ }^{118}$

Scheme 49. Lewis Base Catalysis and Control of endo-/exo-Selectivity in Halolactonizations

When acid 283 was combined with NIS in dichloromethane, the ratio of lactones 284 was 25:1. Adding $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{S}$ as a catalyst increased the ratio to $91: 1$, while Br_{2} increased the

[^63]ratio of lactone 289 to $400: 1$. Running the same reaction with NIS in dichloromethane at $45^{\circ} \mathrm{C}$, significantly less control was observed when only NIS was used (9.5:1). Using $\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{3} \mathrm{P}=\mathrm{O}$ as a catalyst imparted some selectivity for the endo-lactone, though it was not much different from using only I_{2}. Though the catalyst imparts some control over the regioselectivity, it is also apparent that the halonium source also plays a role, with NBS offering more opportunity for control. This was also demonstrated in the endobromolactonization by Yeung where most examples gave exclusively the endo-lactone. ${ }^{107}$

To assess our catalyst system in the bromolactonizations, we combined the parachloroacid 204 with NBS under the standard BAM conditions (Scheme 50).

Scheme 50. BAM Catalyzed endo-Bromolactonization.

204

endo-290

exo-290

14 h, 30\%, >96:4 (A:B)
$A=11 \%$ ee

The resulting bromo-lactone 290 from the bisamidine catalyst formed as the endo-lactone (>96:4 by ${ }^{1} \mathrm{H}$ NMR analysis of crude reaction mixture) while the iodo-lactone $\mathbf{2 8 4} \mathbf{j}$ was isolated as an 81:19 mixture of lactones (Chart 11, entry 10). Unfortunately, the bromolactone was isolated with very low enantioselection (11\%), lending credibility to the hypothesis that the catalyst/reagent systems are not general for all halonium sources. This also suggests that NBS, when used as the halonium source, imparts some preference for the endo-lactone.

To further quantify the effect the electronics of the aromatic ring have on the reaction, Hammett plots were constructed to assess both enantioselection and regioselection for the trans-1,2-disubstituted olefins (Graph 3).

Graph 3. Hammett Plots for Enantiomeric Ratio and Regioisomeric Ratio.

When the enantiomeric ratio of seven para-substituted lactones were plotted against the functional group σ^{+}values, no correlation was observed $\left(R^{2}=0.23\right)$. Though this data does not provide a quantitative statement about the electronic effects, it does suggest that a carbocation is not involved in the enantiodetermining step of lactone formation. This is contrary to the work of Borhan, where they gathered evidence for a carbocation
intermediate in the chlorolactonization. ${ }^{119}$ The lack of trend may also be due to other factors that are not considered, such as solubility of starting materials and products. However, we believe that for most cases, the catalyst is overriding the electronic effects of the aromatic ring for the enantiodetermining step (halogen delivery).

More interestingly, when the regioisomeric ratio was plotted against σ^{+}values, a linear free energy relationship for the points was evident. The more electron rich analog (para-methoxy $\mathbf{2 8 4 g}$) showed trace amounts of the exo-lactone by ${ }^{1} \mathrm{H}$ NMR while the para-bromo lactone 284k delivered the highest amount of exo-lactone for the series. The negative ρ-value (slope) supports a carbocation-like intermediate in the course of the reaction, even more specifically, the regiodetermining step. This also contributes to the hypothesis that the exo-lendo-selectivity is more dependent on the halogen source and electronics of the aromatic ring than lies under control of the catalyst.

Further mechanistic studies and catalyst optimization may reveal strategies to control the endo-/exo-selectivity, as well as allow for enantiocontrol in the exo-lactone formation.

[^64]
Future Work

Tri- and Tetra-Substituted Olefinic Acids

Applying this methodology to tri- and tetra-substituted olefins has been briefly explored (Scheme 51).

Scheme 51. Initial Attemps to Study Tri-Substitued Olefinic Acids.

Unfortunately, the tetra-substituted olefin could not be synthesized from 269a under a variety of Wittig conditions. The tri-substituted olefin (291) was synthesized in high yield but with low $E: Z$ selectivity ($\sim 1.3: 1$). This mixture of olefins was then submitted to the reaction conditions to deliver iodolactone 292 in low yield (20\% ee) and moderate ee (40$64 \%$ ee). Though selectivity was seen, it appears that one olefin undergoes a faster cyclization, as the starting material was isolated as an enriched mixture of olefins. A more reactive system may be able to deliver the adducts in higher yields while tuning the catalyst pocket could increase the enantioselection.

Cascade Reactions

In 2007, Ishihara reported on the use of chiral non-racemic, nucleophilic phosphoramidites as promoters of enantioselective polycyclizations (Scheme 52). ${ }^{120}$

[^65]Scheme 52. Ishihara's Enantioselective Halocyclization of Polyprenoids.

They hypothesized that instead of activating the halogen source using a Lewis acid, they could activate NIS with a chiral nucleophile to give enantioselective delivery of a halogen (NBS performed poorly). When NIS was combined with a phosphoramidite of type 295 a number of polyenes were cyclized to the tricyclic compounds. The use of chlorosulfonic acid was used to ensure full completion at the final cyclization (between aromatic ring and final double bond). Perhaps one of the more impressive examples was accomplished with 4-(homofarnesyl)toluene (293), to give the tetracyclic compound (294) in 52% yield and 99% ee. Though elegant, one of the drawbacks is the use of 100 $\mathrm{mol} \%$ of the chiral promoter. The use of substoichiometric catalyst (a chiral phosphonous acid) was demonstrated in the protocyclization of 2-geranylphenols using a chiral Lewis base assisted Brønsted acid catalyst system. ${ }^{121}$

We envision that a cyclization may also be accomplished using our chiral proton catalyst-NIS reagent system by extending the olefinic acid by one unit.

[^66]However, one of the immediate drawbacks of this approach is the synthesis of the starting di-olefinic acid 296. While we were exploring this synthesis, we also looked at a simpler system, using an ortho-olefin styrene analog, knowing that similar olefins were previously activated by our BAM-NIS catalyst system (Scheme 53).

Scheme 53. Initial Attempts at a Cascade Reaction: Looking for Double Ring Closure.

(127)

The starting olefin was made using a Wittig reaction from 2-formylstyrene. Unfortunately, it was isolated as 1.4:1 ratio of a mixture of olefins. Submitting acid 298 to the reaction conditions only produced the mono-cyclic ring products 299 and $\mathbf{3 0 0}$. By analysis of the ${ }^{1} \mathrm{H}$ NMR, no bis-closure (301) was seen. Other factors may have contributed to the lack of cascade, but further efforts to make 297 may reveal that it is a suitable substrate for this system.

Enantioselective capture of carbon dioxide

Realization that the carboxylic acid functionality is crucial for enantioselectivity, we sought to extend it to carbonic acids. A quick literature search confirmed that as starting materials, these are not easily isolated due to stability concerns. We envisioned
forming the carbonate in situ with an alcohol and carbon dioxide. Fortunately, this has been previously demonstrated (Scheme 54). ${ }^{122}$

Scheme 54. Carbon Dioxide Capture Using Alcohols and Amines.

Minakata has reported on the trapping of olefinic and propargylic alcohols and amines by forming ${ }^{t} \mathrm{BuOI}$ in situ (from NaI and ${ }^{t} \mathrm{BuOCl}$) under relatively neutral reaction conditions. They acknowledge that the equilibrium for carbon dioxide trapping heavily favors the starting materials, but iodination of the carbonic acid intermediate changes the equilibrium to favor the products. High yields and conversions were reported for most substrates while other iodine reagents ($\mathrm{IPy}_{2} \mathrm{BF}_{4}, \mathrm{NIS}, \mathrm{I}_{2}$, etc.) did not provide the desired product.

No enantioselective variant of the above reaction has been reported, so we sought to carry out a similar reaction using our chiral proton catalyst-NIS reagent system (Scheme 55).

[^67]Scheme 55. Preliminary Results for the Enantioselective Iodocarboxylation of Homoallylic Alcohols.

Combining 3-methyl-butene-1-ol (302) in toluene with $\left(\mathrm{PBAM}_{4}\left(\mathrm{HNTf}_{2}\right)_{5}\right.$ under an atmosphere of carbon dioxide, the desired adduct was isolated in 37% ee and 43% yield. Further reaction optimization was completed with a visiting undergraduate researcher from Kalamazoo College. ${ }^{123}$ A number of experiments looking at conversion, yield and enantioselectivity were completed. One of the most promising results came when ${ }^{6,7} \mathrm{MeOStilbPBAM} \cdot \mathrm{HNTf}_{2}(5 \mathrm{~mol} \%)$ was used in the reaction, delivering product in moderate enantiomeric excess (73% ee) but low yield (22%). Additionally, the observed yield and conversion were variable between reactions; it was hypothesized that one contributing factor is the timing of the introduction of CO_{2}. Though more reaction optimization needs to be completed (to increase yields and enantioselection), this work serves as a framework to build the methodology.

Additional modes of catalyst binding

The observed effect of the enantiocontrol imparted by the achiral counterion is in fact very interesting. However, the influence of a relatively dissociated achiral counterion in a transition state is reason to explore modifications outside of the chiral pocket (Figure 31).

[^68]Figure 31. Catalyst Modification Leading to Additional Chelation Control in Diamine Backbone.

We envision making the stilbene derived catalyst from the commercially available bispyridine stilbene diamine (2- or 3-substituted). The addition of additives which differ in sterics and electronics while chelating with the pyridine rings can in turn modify the catalyst pocket. This approach may lead to a more selective system in other transformations where the size and electronics of the chiral pocket need to be tuned.

CHAPTER IV

IV. EXPERIMENTALS

Glassware was flame-dried under vacuum for all non-aqueous reactions. All reagents and solvents were commercial grade and purified prior to use when necessary. Tetrahydrofuran (THF), dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and toluene was dried by passage through a column of activated alumina as described by Grubbs. ${ }^{124}$ This was done to accurately quantitate the amount of water in each reaction. All organic layers collected from extractions were dried over MgSO_{4} unless otherwise indicated.

Thin layer chromatography (TLC) was performed using glass-backed silica gel (250 $\mu \mathrm{m})$ plates and flash chromatography utilized 230-400 mesh silica gel from Sorbent Technologies. UV light, and/or the use of potassium iodoplatinate and potassium permanganate solutions were used to visualize products.

IR spectra were recorded on a Nicolet Avatar 360 spectrophotometer and are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. All compounds were analyzed as neat films on a NaCl plate (transmission). Nuclear magnetic resonance spectra (NMR) were acquired on a Bruker DRX-500 (500 MHz), Bruker AV-400 (400 MHz) or Bruker AV II-600 (600 MHz) instrument. Chemical shifts are measured relative to residual solvent peaks as an internal

[^69]standard set to $\delta 7.26$ and $\delta 77.0$ for CDCl_{3} and $\delta 2.50$ and $\delta 39.5$ for d_{6}-DMSO. Mass spectra were recorded on a Thermo Electron Corporation MAT 95XP-Trap mass spectrometer by use of chemical ionization (CI), electron impact ionization (EI) or electrospray ionization (ESI) by the Indiana University Mass Spectrometry Facility. A post-acquisition gain correction was applied using sodium formate or sodium iodide as the lock mass. Optical rotations were measured on a Perkin Elmer-341 polarimeter. Chiral HPLC analysis was conducted on an Agilent 1100 series instrument using the designated ChiralPak column.

General Procedure for Arylsulfonylalkyl Indoles: ${ }^{125}$ 2-Methylindole ($0.42 \mathrm{~g}, 3.2$ $\mathrm{mmol})$, toluenesulfinic acid $(0.56 \mathrm{~g}, 3.6 \mathrm{mmol})$ and toluenesulfonic acid monohydrate $(0.29 \mathrm{~g}, 1.5 \mathrm{mmol})$ were combined in a round-bottomed flask and suspended in ethyl acetate or $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The aldehyde $(3.0 \mathrm{mmol})$ was added and the pot stirred for 2.5 h . The reaction was quenched with satd aq $\mathrm{NaHCO}_{3}(7 \mathrm{~mL})$, extracted with solvent, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and passed through a plug of decolorizing carbon and Celite. Concentration provided crude material that could be purified by flash column chromatography.

2-Methyl-3-(tosyl(4-(trifluoromethyl)phenyl)methyl)-1H-indole (133d). 2-Me-indole ($420 \mathrm{mg}, 3.20 \mathrm{mmol}$) and para-(trifluoromethyl)benzaldehyde ($522 \mathrm{mg}, 3.00 \mathrm{mmol}$) were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ according to the general procedure. Precipitation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with hexanes yielded a yellow solid ($1.2 \mathrm{~g}, 95 \%$). IR (film) $3372,2918,1618 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.09(\mathrm{~m}$, $2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 144.4, 137.2, 135.6, 135.5, 135.0, 130.3, 129.1, 128.6, 126.9, 125.3, 125.3, 121.8, 120.9, 120.3, 110.4, 103.7, 69.0, 21.5, 11.9; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 444.1245$, found 444.1256 .
${ }^{125}$ Adapted from: Palmieri, A.; Petrini, M. J. Org. Chem. 2007, 72, 1863-1866.

2-Methyl-3-(o-tolyl(tosyl)methyl)-1H-indole (133e). 2-Me-indole ($420 \mathrm{mg}, 3.20 \mathrm{mmol}$) and ortho-tolualdehyde ($360 \mathrm{mg}, 3.00 \mathrm{mmol}$) were combined in ethyl acetate and refluxed for 2.5 h according to the general procedure. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-33 \%\right.$ ethyl acetate in hexanes) yielded a \tan solid $(790 \mathrm{mg}, 68 \%) . \mathrm{R}_{f}=0.2(20 \%$ EtOAc/hexanes); IR (film) $3341,3055,1460 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.35-7.29 (m, 1H), 7.21-7.17 (m, 2H), 7.10 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.00-$ $6.99(\mathrm{~m}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) ppm 144.2, 136.8, 136.1, 135.5, 134.8, 132.2, 130.9, 129.2, 129.2, 128.9, 127.9, 127.7, 125.9, 121.3, 120.0, 119.8, 110.2, 103.4, 65.9, 21.5, 19.7, 12.1; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NNaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 412.1347$, found 412.1356.

3-(Furan-2-yl(tosyl)methyl)-2-methyl-1H-indole (133f). 2-Me-indole (420 mg, 3.20 mmol) and 2-furaldehyde ($288 \mathrm{mg}, 3.00 \mathrm{mmol}$) were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ according to the general procedure. The tan solid was used without further purification ($930 \mathrm{mg}, 85 \%$). IR (film) $3366,1595 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.44-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{dd}, J=$ $8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{dd}, J=3.2,1.8,1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 2.35$ (s, 3H), 2.12 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) ppm 146.1, 144.3, 143.0, 135.8, $135.3,135.0,129.1,128.9,127.1,121.6,121.0,120.0,111.9,110.8,110.2,102.0,64.5$, 21.6, 11.9; HRMS (CI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S}$ [M-H] 366.1002, found 366.1019 .

2-Methyl-3-(1-tosylpentyl)-1H-indole (133g). 2-Me-indole (420 mg, 3.20 mmol) and valeraldehyde ($258 \mathrm{mg}, 3.00 \mathrm{mmol}$) were combined in ethyl acetate and refluxed according to the general procedure. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-30 \%\right.$ ethyl acetate in hexanes) yielded a tan solid ($700 \mathrm{mg}, 62 \%$). $\mathrm{R}_{f}=0.3$ ($20 \% \mathrm{EtOAc} /$ hexanes); IR (film) $3352,2958,1461 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 4 \mathrm{H}), 4.20$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.17(\mathrm{~m}, 4 \mathrm{H}), 0.80$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{ppm} 143.9,135.8,135.1,129.1,128.9$, 121.3, 120.7, 119.9, 110.3, 103.0, 65.6, 29.3, 25.4, 22.3, 21.5, 13.8, 11.2; HRMS (CI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NNaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 378.1504$, found 378.1516.

2-methyl-3-(1-tosylethyl)-1H-indole (133h). See general procedure for aryl-indoles. Trituration from DCM with hexanes yielded a yellow solid (200 mg, 22\%); IR (film) 3348, 3054, 2917, $2849,1596 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 10.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=7.2,7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91(\mathrm{dd}, J=7.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) 143.8, 136.0, 135.2, 135.1, 129.3, 128.4, 120.2, 119.8, 118.6, 112.8, 110.6, 102.8, 58.4, 54.9, 21.0, 13.0, 11.2 ppm; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 336.1034$, found 336.1041.

Methyl 2-(2-methyl-1H-indol-3-yl)-2-tosylacetate (133i). 2-Me-indole (420 mg, 3.20 mmol) and methyl 2-hydroxy-2-methoxyacetate ($360 \mathrm{mg}, 3.00 \mathrm{mmol}$) were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ according to the general procedure. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-50 \%\right.$ ethyl acetate in hexanes) yielded an off-white solid ($850 \mathrm{mg}, 80 \%$). $\mathrm{R}_{f}=0.3$ (50% EtOAc/hexanes); IR (film) 3385, 2953, $1743 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29$ (br s, 1H), $7.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, $2.36(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) ppm 165.9, 144.9, 136.9, 134.8, 134.4, 129.7, 129.2, 126.9, 121.6, 120.2, 119.6, 110.4, 99.0, 68.6, 52.9, 21.6, 11.7; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{KNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{K}]^{+} 396.0672$, found 396.0678.

tert-Butyl 2-(2-methyl-1H-indol-3-yl)-2-tosylacetate (133j). 2-Me-indole (420 mg, 3.20 mmol) and tert-butyl 2-oxoacetate ($390 \mathrm{mg}, 3.00 \mathrm{mmol}$) were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ according to the general procedure. Flash column chromatography $\left(\mathrm{SiO}_{2}, 20 \%\right.$ ethyl acetate in hexanes) yielded a colorless solid (390 mg, 33\%). $\mathrm{R}_{f}=0.2$ (33% EtOAc/hexanes); IR (film) 3379, 2978, $1734 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04$ (br s, 1H), $7.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, $2.21(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 164.3, 144.6, 136.9, 134.9, 134.9, 129.5, 129.1, 121.3, 120.0, 119.8, 110.4, 99.1, 83.6, 69.9, 27.8, 21.5, 11.7; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 400.1583$, found 400.1574 .

2-Phenyl-3-(phenyl(tosyl)methyl)-1H-indole (1331). 2-Phenyl-indole (618 mg, 3.20 mmol) and benzaldehyde ($318 \mathrm{mg}, 3.00 \mathrm{mmol}$) were combined in ethyl acetate according to the general procedure. The solid that precipitated before workup was washed with ethyl acetate to provide the desired product as a brown solid ($690 \mathrm{mg}, 53 \%$). IR (film) $3338,3058,1494 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27-8.26(\mathrm{~m}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H})$, $7.80(\mathrm{dd}, J=7.3,1.8,2 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 7 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.00-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 143.7, 139.4, 135.9, 133.0, 131.3, 130.2, 128.9, 128.8, 128.7, $128.5,128.4,128.3,126.9,123.6,122.7,120.7,110.8,105.2,70.0,21.5 ;$ HRMS (CI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 438.1522$, found 438.1501.

methyl 3-(phenyl(tosyl)methyl)-1H-indole-2-carboxylate (133m). See general procedure for aryl-indoles. Flash column chromatography $\left(\mathrm{SiO}_{2}, 20 \%\right.$ ethyl acetate in hexanes) yielded a white solid ($330 \mathrm{mg}, 27 \%$); $\mathrm{R}_{f}=0.21$ ($33 \% \mathrm{EtOAc} / \mathrm{hexanes);} \mathrm{IR} \mathrm{(film)}$ 3337, 2360, 2341, $1706 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d $9.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H})$, $7.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 161.3, 144.2 , 135.8, 135.8, 133.1, 130.1, 129.0, 128.7, 128.4, 128.2, 126.2, 125.9, 125.0, 124.8, $121.5,115.6,111.9,67.0,51.8,21.6 \mathrm{ppm}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 442.1089$, found 442.1089.

3-(phenyl(tosyl)methyl)-2-(trimethylsilyl)-1H-indole (133n). See general procedure for aryl-indoles. Flash column chromatography $\left(\mathrm{SiO}_{2}, 5-10-15 \%\right.$ ethyl acetate in hexanes) and a crystallization yielded a white crystalline solid ($50 \mathrm{mg}, 8 \%$); $\mathrm{R}_{f}=0.37(20 \%$ EtOAc/hexanes); IR (film) 3381, 3063, 2954, 1597, $1494 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) d 8.47-8.44 (m, 1H), 8.06 (br s, 1H), 7.67-7.65 (m, 2H), $7.44(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.36-7.34 (m, 1H), 7.30-7.22 (m, 5H), $7.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$, 0.21 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 144.1, 138.7, 138.2, 135.9, 133.4, 130.4, $129.2,129.0,128.3,128.3,127.3,123.7,122.8,120.5,116.7,110.9,73.0,21.5,-0.67$ ppm; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{SSi}[\mathrm{M}+\mathrm{K}]^{+} 472.1169$, found 472.1149.

tert-butyl 2-methyl-3-(phenyl(tosyl)methyl)-1H-indole-1-carboxylate (1330). See general procedure for aryl-indoles. Flash column chromatography ($\mathrm{SiO}_{2}, 10-20 \%$ ethyl acetate in hexanes) yielded an orange solid (323 mg, 20\%); $\mathrm{R}_{f}=0.27$ (20% EtOAc/hexanes); IR (film) 2979, 2933, 1733, $1458 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d $8.06(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=7.9 .2 .2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-$ $7.11(\mathrm{~m}, 2 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) 150.1, 144.4, 137.7, 135.8, 135.7, 132.6, 129.5, 129.2, 128.7, 128.5, 128.2, 127.7, 123.7, 122.7, 121.4, 114.9, 111.4, 84.3, 68.8, 28.2, 21.5, 13.9 ppm; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 498.1715$, found 498.1723.

3-methyl-2-(phenyl(tosyl)methyl)-1H-indole (133p). 3-Methylindole (420 mg, 3.2 mmol), toluenesulfinic acid ($560 \mathrm{mg}, 3.6 \mathrm{mmol}$), toluenesulfonic acid monhydrate (290 $\mathrm{mg}, \quad 1.5 \mathrm{mmol}$) were combined in a round bottom flask and suspended in dichloromethane (10 mL). The benzaldehyde ($320 \mathrm{mg}, 3.0 \mathrm{mmol}$) was added and the pot was stirred for 4 h . The reaction was quenched with sat aq NaHCO_{3} (7 mL), extracted with dichloromethane, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and passed through a plug of decolourishing carbon and Celite to give a brown solid. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-20 \%\right.$ ethyl acetate in hexanes) yielded a gray solid ($230 \mathrm{mg}, 21 \%$); $\mathrm{R}_{f}=0.3$ (16% EtOAc/hexanes); IR (film) 3395, 3060, 2919, 1597, 1494, $1455 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.15(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=7.3,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.2,2 \mathrm{H}), 7.44$ (dd, $J=7.8,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.10(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 144.9,136.2,134.9,131.7,129.8,129.5,128.8,128.4,127.9,124.9,122.8$, $119.4,118.9,112.6,111.3,67.9,21.6,8.1 \mathrm{ppm}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{SK}[\mathrm{M}+\mathrm{K}]^{+} 414.0930$, found 414.0931.

2,5-Dimethyl-3-(phenyl(tosyl)methyl)-1H-pyrrole (133q). 2,5-Dimethylpyrrole (304 $\mathrm{mg}, 3.20 \mathrm{mmol}$) and benzaldehyde ($318 \mathrm{mg}, 3.00 \mathrm{mmol}$) were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ according to the general procedure. Flash column chromatography $\left(\mathrm{SiO}_{2}, 20-33 \%\right.$ ethyl acetate in hexanes) yielded a tan solid ($300 \mathrm{mg}, 30 \%$). $\mathrm{R}_{f}=0.2$ ($20 \% \mathrm{EtOAc} /$ hexanes); IR (film) $3368,2923,1597 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66$ (br s, 1H), 7.56-7.53 $(\mathrm{m}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.2,2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.26(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) ppm 143.8, 135.6, 134.1, 130.0, 129.0, 128.9, 128.4, 128.1, 126.0, 125.9, 110.2, 106.6, 69.7, 21.5, 12.9, 10.6; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{KNO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{K}]^{+}$ 378.0930, found 378.0937 .

(1R,2R)- N^{1}-(4-chloropyridin-2-yl)cyclohexane-1,2-diamine (108SI). A flame dried microwave vessel ($10-20 \mathrm{~mL}$) was charged with $\operatorname{Pd}(\mathrm{dba})_{2}(58 \mathrm{mg}, 0.10 \mathrm{mmol})$, racBINAP ($125 \mathrm{mg}, 0.200 \mathrm{mmol}$) and $\mathrm{NaOtBu}(1.44 \mathrm{~g}, 15.0 \mathrm{mmol})$ in a glove box. To the vessel was added cyclohexyl diamine ($1.98 \mathrm{~g}, 10.0 \mathrm{mmol}$), 2,4-chloropyridine (740 mg , $5.00 \mathrm{mmol})$ and $\mathrm{PhCF}_{3}(10 \mathrm{~mL})$, followed by heating in a Biotage Initiator at $70^{\circ} \mathrm{C}$ for 30 min . The reaction was filtered through Celite and concentrated to afford a crude brown oil. Flash column chromatography $\left(\mathrm{SiO}_{2}, 3-10-25 \% \mathrm{MeOH}\right.$ in DCM$)$ yielded a tan solid ($0.66 \mathrm{~g}, 58 \%$); $\mathrm{R}_{f}=0.18(10 \% \mathrm{MeOH} / \mathrm{DCM}) ;$ IR (film) 3258 (br), 2931, 2857, 1593, 1513, $1480 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d $7.92(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{dd}$, $J=5.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.29(\mathrm{~m}$, $1 \mathrm{H}), 2.55(\mathrm{ddd}, J=10.1,10.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-1.97(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.41-$ 1.12 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 160.0, 149.1, 144.9, 116.5, 107.0, 58.3, 56.1, 35.0, 32.7, 25.3, 25.0; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{ClN}_{3}[\mathrm{M}+\mathrm{H}]^{+}$, 226.1111, found 226.1107.

(1R,2R)- N^{1}-(6-(anthracen-9-yl)pyridin-2-yl)- $N^{\mathbf{2}}$-(4-chloropyridin-2-yl)cyclohexane-1,2-diamine (${ }^{4} \mathbf{C l} \mathbf{- 1 0 8}$). A flame dried microwave vessel ($2-5 \mathrm{~mL}$) was charged with $\operatorname{Pd}(\mathrm{dba})_{2}(5 \mathrm{mg}, 0.009 \mathrm{mmol}), r a c-\mathrm{BINAP}(10 \mathrm{mg}, 0.016 \mathrm{mmol})$ and $\mathrm{NaOtBu}(29 \mathrm{mg}$, 0.30 mmol) in a glove box. To the vessel was added mono-protected diamine (45 mg , 0.20 mmol), 2-(anthracenyl)-6-bromopyridine ($66 \mathrm{mg}, 0.20 \mathrm{mmol}$) and $\mathrm{PhCF}_{3}(1.5 \mathrm{~mL}$), followed by heating in a Biotage Initiator at $80^{\circ} \mathrm{C}$ for $40 \mathrm{~min}, 100^{\circ} \mathrm{C}$ for $15 \mathrm{~min}, 120^{\circ} \mathrm{C}$ for 30 min and $140{ }^{\circ} \mathrm{C}$ for 30 min (to be optimized at a later time). The reaction was filtered through Celite/Silica and concentrated to afford a crude brown oil. Flash column chromatography ($\mathrm{SiO}_{2}, 10-20 \% \mathrm{EtOAc}$ in Hexanes) yielded a yellow solid ($79 \mathrm{mg}, 83 \%$); $\mathrm{R}_{f}=0.39$ (20\% EtOAc in Hexanes); IR (film) 3051, 2930, 2855, 1592, 1500, $1454 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d $8.53(\mathrm{~s}, 1 \mathrm{H}), 8.08-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.39(\mathrm{~m}, 1 \mathrm{H}), 6.73$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{dd}, J=5.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=$ $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.71-$ $3.63(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.27(\mathrm{~m}, 5 \mathrm{H}), 1.12-1.02(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) ppm 159.1, 158.7, 155.8, 148.5, 143.7, 137.2, 136.2, $131.4,129.9,129.8,128.4,128.3,127.0,127.7,126.3,126.1,125.3,125.3,125.0,115.7$, $112.2,107.9,106.9,57.2,54.3,33.2,32.1,24.9,24.4$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{ClN}_{4}[\mathrm{M}+\mathrm{H}]^{+} 479.2002$, found 479.1993.

$(1 R, 2 R)-N^{1}$-(6-(anthracen-9-yl)pyridin-2-yl)- $N^{\mathbf{2}}$-(4-(pyrrolidin-1-yl)pyridin-2-
yl)cyclohexane-1,2-diamine (108). A solution of catalyst ($192 \mathrm{mg}, 0.400 \mathrm{mmol}$) and pyrrolidine ($0.8 \mathrm{~mL}, 8 \mathrm{mmol}$) in a microwave vessel was heated in a Biotage Initiator at $180{ }^{\circ} \mathrm{C}$ for 2 h , diluted with DCM , and washed with sat aq $\mathrm{Na}_{2} \mathrm{CO}_{3}$, water and Brine. Flash column chromatography $\left(\mathrm{SiO}_{2}, 0.5 / 3-10 \%\right.$ acetic acid/MeOH in DCM) yielded a solid that was washed with 3 M NaOH and dried to give a yellow solid ($0.13 \mathrm{~g}, 63 \%$); IR (film) 2927, 2852, 1606, 1522, 1484, $1458 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d 8.48 (s, $1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.5,2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.8,1 \mathrm{H}), 7.82(\mathrm{~d}, J=9.0), 1 \mathrm{H}), 7.78(\mathrm{~d}, J=6.0$, $1 \mathrm{H}), 7.49(\mathrm{t}, J=7.8,1 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=7.0,1 \mathrm{H})$, $6.43(\mathrm{~d}, J=8.4,1 \mathrm{H}), 5.85(\mathrm{dd}, J=6.0,2.0,1 \mathrm{H}), 5.51(\mathrm{~d}, J=6.7,1 \mathrm{H}), 5.25(\mathrm{~d}, J=1.8,1 \mathrm{H})$, $4.46(\mathrm{~d}, J=5.3,1 \mathrm{H}), 3.82-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{t}, J=6.56,4 \mathrm{H}), 2.34-$ $2.32(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.24(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 159.6, 158.9, 155.9, 153.2, 147.7, 137.0, 136.7, 131.6, 130.4, 130.0, $128.4,128.3,127.1,126.9,125.4,125.3,125.1,125.0,115.5,106.7,99.79,88.53,56.3$, 55.1, 47.0, 33.0, 32.7, 29.8, 25.4, 24.9, 24.6; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{~N}_{5}[\mathrm{M}+\mathrm{H}]^{+}$514.2971, found 514.2957.

ThioureaBAM (120) [(1-(3,5-bis(trifluoromethyl)phenyl)-3-((1R,2R)-2-(quinolin-2ylamino)cyclohexyl)thiourea]. A round bottomed flask fitted with a stir bar was charged with the mono-quinoline diamine ($100 \mathrm{mg}, 414 \mu \mathrm{~mol}$), THF (2 mL) and 3,5-trifluoromethyl-phenylisothiocyanate ($76 \mu \mathrm{~L}, 414 \mu \mathrm{~mol}$) was added slowly. The reaction was stirred at room temperature for 16 h . The reaction mixture was concentrated to an oil. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-20-40 \%\right.$ ethyl acetate in hexanes) of the residue yielded a white solid $(0.17 \mathrm{~g}, 80 \%) . \mathrm{R}_{f}=0.3$ (20\% EtOAc in Hexanes); $[\alpha]_{D}^{20}+360(c$ $0.54, \mathrm{CHCl}_{3}$); IR (film) 3271, 3049, 2936, 2860, 1619, 1532, $1472 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ (br s, 1H), 7.39 (br s, 2H), 7.20 (dd, $J=7.5,7,5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (br s, 1H), 6.57 (d, $J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.23(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.22-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{br} \mathrm{s}$, 2 H), 1.47 (br s, 4H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 180.6, 156.5, 145.5, 139.9, 138.1, $132.0\left(\mathrm{q},{ }^{2} J_{C F}=28.2 \mathrm{~Hz},-\mathrm{CF}_{3}\right), 130.3,127.8,125.1,123.1,123.0,122.8\left(\mathrm{q},{ }^{1} J_{C F}=273\right.$ $\mathrm{Hz},-\mathrm{CF}_{3}$), 122.3, 117.8, 113.1, 62.2, 54.3, 32.8, 31.6, 25.0, $24.3 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) -61.2; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$513.1548, found 513.1552.

${ }^{4} \mathrm{MeO}$-ThioureaBAM (122) 1-(3,5-bis(trifluoromethyl)phenyl)-3-((1R,2R)-2-((4-

 methoxyquinolin-2-yl)amino)cyclohexyl)thiourea]. A round bottomed flask fitted with a stir bar was charged with the mono-quinoline diamine ($220 \mathrm{mg}, 810 \mu \mathrm{~mol}$), THF (3 mL) and 3,5-trifluoromethyl-phenylisothiocyanate ($165 \mu \mathrm{~L}, 900 \mu \mathrm{~mol}$) was added slowly. The reaction was stirred at room temperature for 2 days. The reaction mixture was concentrated to an oil. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-20-40 \%\right.$ ethyl acetate in hexanes) of the residue yielded a yellow solid $(0.23 \mathrm{~g}, 53 \%) . \mathrm{R}_{f}=0.3(5 \% \mathrm{MeOH}$ in DCM) ; $[\alpha]_{D}^{20}+187\left(c 0.71 \mathrm{CHCl}_{3}\right) ;$ IR (film) 3149, 2937, 2859, 1623, 1533, $1467 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, 7.38 (br s, 1H), 7.17 (dd, $J=7.5,7,5 \mathrm{~Hz}, 2 \mathrm{H}), 5.87$ (br s, 1H), 4.83 (br s, 1H), 4.19 (br s, 2 H), $3.92(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.07(\mathrm{br} \mathrm{s}, 2 \mathrm{H}),, 1.81$ (br s, 2H), $1.44(\mathrm{br} \mathrm{s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 180.7, 163.3, 157.7, 145.3, 140.2, $131.8\left(\mathrm{q},{ }^{2} J_{C F}=33.4 \mathrm{~Hz}\right.$, $\left.\mathrm{CF}_{3}\right), 130.9,127.5,124.2,122.9\left(\mathrm{q},{ }^{1} J_{C F}=273 \mathrm{~Hz},-\mathrm{CF}_{3}\right), 122.5,122.2,117.5,90.2,61.6$, 55.7, 54.7, 32.3, 31.4, 24.8, $24.3 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -61.2; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$543.1653, found 543.1663.

2-Methyl-3-(2-nitro-1,2-diphenylethyl)-1H-indole (103). General Procedure (Method

 A): To a flame dried vial equipped with a stir bar was added the sulfone ($38 \mathrm{mg}, 0.10$ mmol), PBAM ($5.1 \mathrm{mg}, 0.010 \mathrm{mmol}$) and potassium carbonate ($96 \mathrm{mg}, 0.70 \mathrm{mmol}$). The solid was suspended in toluene $(1 \mathrm{~mL})$ with stirring and phenylnitromethane ($14 \mathrm{mg}, 0.10$ mmol) was added immediately. The mixture was stirred for 22 hours before dilution with water and extraction with ethyl acetate. The organic layer was filtered through silica gel, concentrated and determined to be $1.2: 1 \mathrm{dr}$ by NMR. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-20 \%\right.$ ethyl acetate in hexanes) yielded a yellow-pink solid ($28 \mathrm{mg}, 78 \%$). The major diastereomer was determined to be 81% ee and the minor diastereomer was determined to be 81% ee by chiral HPLC analysis (see HPLC data below).Method B: To a vial equipped with a stir bar was added the sulfone ($38 \mathrm{mg}, 0.10 \mathrm{mmol}$), PBAM ($5.1 \mathrm{mg}, 0.010 \mathrm{mmol}$) and potassium carbonate $(96 \mathrm{mg}, 0.70 \mathrm{mmol})$. The solid was suspended in toluene $(1 \mathrm{~mL})$ and water $(500 \mu \mathrm{~L})$ with stirring and phenylnitromethane ($14 \mathrm{mg}, 0.10 \mathrm{mmol}$) was added immediately. The mixture was stirred for 22 hours before dilution with water and extraction with ethyl acetate. The organic layer was filtered through silica gel, concentrated and determined to be $1.4: 1$ dr by NMR. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-20 \%\right.$ ethyl acetate in hexanes) yielded a yellowpink solid ($34 \mathrm{mg}, 95 \%$). The major diastereomer was determined to be 86% ee and the minor diastereomer was determined to be 86% ee by chiral HPLC analysis (see HPLC data below).

Method C: To a flame dried vial equipped with a stir bar was added the sulfone (36 mg , 0.10 mmol), PBAM ($5 \mathrm{mg}, 0.01 \mathrm{mmol}$) and potassium carbonate ($96 \mathrm{mg}, 0.70 \mathrm{mmol}$). The solid was suspended in toluene (1 mL) and stirred for 3 days. Phenylnitromethane ($14 \mathrm{mg}, 0.10 \mathrm{mmol}$) was added and stirred for 16 hours before dilution with water and extraction with ethyl acetate. The organic layer was filtered through silica gel, concentrated and determined to be $1.25: 1$ dr by NMR. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-20 \%\right.$ ethyl acetate in hexanes) yielded a yellow-pink solid ($33 \mathrm{mg}, 93 \%$). The major diastereomer was determined to be 88% ee and the minor diastereomer was determined to be 89% ee by chiral HPLC analysis (see HPLC data below).

Chiral HPLC analysis (Chiralcel IA, $8 \% \mathrm{EtOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(d_{2} e_{1}\right.$, minor) $=9.3$ $\min , t_{\mathrm{r}}\left(d_{2} e_{2}\right.$, minor $)=10.7 \mathrm{~min}, t_{\mathrm{r}}\left(d_{1} e_{1}\right.$, major $)=13.0 \mathrm{~min}, t_{\mathrm{r}}\left(d_{1} e_{2}\right.$, major $\left.)=14.8 \mathrm{~min}\right) ; \mathrm{R}_{f}$ $=0.3(25 \%$ EtOAc/hexanes $) ;$ IR (film) $3411,2922,1552 \mathrm{~cm}^{-1} ;$ HRMS (ESI): Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 357.1603$, found 357.1607. $\boldsymbol{d}_{\boldsymbol{1}}$, major: (85\% ee) $[\alpha]_{D}^{20}-31$ (c $\left.0.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{dd}, J=6.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}$, $1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.4,2 \mathrm{H}), 7.39(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{dd}, J=7.9,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-$ $7.15(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J$ $=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ppm} 140.2,135.2,133.8$, $131.8,129.5,128.8,128.4,127.6,127.3,127.1,121.1,119.6,118.7,110.5,109.3,93.1$, 46.8, 29.7, 12.2; \boldsymbol{d}_{2}, minor: (recrystallized, 94% ee) $[\alpha]_{D}^{20}-66\left(c 0.10, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=5.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=7.0,3.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.34-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.07(\mathrm{~m}$, $4 \mathrm{H}), 7.02(\mathrm{dd}, J=7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H})$,
2.57 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) ppm 138.9, 135.4, 133.6, 132.4, 129.8, 128.9, $128.5,128.4,128.3,126.7,126.5,121.2,119.8,118.8,110.7,110.0,93.5,46.4,12.3$.

3-(1-(4-Bromophenyl)-2-nitro-2-phenylethyl)-2-methyl-1H-indole (134b). Sulfone (45

 $\mathrm{mg}, 0.10 \mathrm{mmol})$ and phenylnitromethane $(14 \mathrm{mg}, 0.10 \mathrm{mmol})$ were combined and stirred for 22 hours according to the general procedure. Flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, $10-20 \%$ ethyl acetate in hexanes) yielded the title compound ($32 \mathrm{mg}, 74 \%$). $\mathrm{R}_{f}=0.3$ (20\% EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, 10\% IPA/hexanes, 1 $\mathrm{mL} / \mathrm{min}, t_{\mathrm{r}}\left(d_{l} e_{1}\right.$, major $)=14.0 \mathrm{~min}, t_{\mathrm{r}}\left(d_{l} e_{2}\right.$, major $)=18.2 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{1}\right.$, minor $)=16.1 \mathrm{~min}$, $t_{\mathrm{r}}\left(d_{2} e_{2}\right.$, minor $\left.)=32.1 \mathrm{~min}\right)$; IR (film) $3408,3059,2924,1552 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)^{126} \boldsymbol{d}_{\mathbf{l}}$, major $\delta 7.85-7.05(14 \mathrm{H}), 6.61(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=12.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) ; \mathbf{d}_{2}$, minor $\delta 7.85-7.05(14 \mathrm{H}), 6.62(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=$ $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right){ }^{127} \mathrm{ppm}$ 139.3, 138.0, 135.4, $135.2,133.5,133.3,132.6,131.9,131.4,130.2,130.0,129.6,129.1,129.0,128.5,128.4$, $127.5,126.5,121.4,121.3,121.0,120.4,119.9,119.8,118.5,118.4,110.8,110.6,109.3$, 108.7, 93.2, 92.9, 46.4, 45.8, 12.2, 12.1; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BrN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 435.0708$, found 435.0687.[^70]

3-(1-(4-Methoxyphenyl)-2-nitro-2-phenylethyl)-2-methyl-1H-indole (134c). Sulfone ($39 \mathrm{mg}, 0.10 \mathrm{mmol}$) and phenylnitromethane ($14 \mathrm{mg}, 0.10 \mathrm{mmol}$) were combined and stirred for 22 hours according to the general procedure. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-20 \%\right.$ ethyl acetate in hexanes) yielded the title compound ($26 \mathrm{mg}, 68 \%$). $\mathrm{R}_{f}=$ 0.3 (20\% EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, 10\% EtOH/hexanes, 1 $\mathrm{mL} / \mathrm{min}, t_{\mathrm{r}}\left(d_{l} e_{1}\right.$, major $)=10.5 \mathrm{~min}, t_{\mathrm{r}}\left(d_{l} e_{2}\right.$, major $)=11.9 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{1}\right.$, minor $)=13.6 \mathrm{~min}$, $t_{\mathrm{r}}\left(d_{2} e_{2}\right.$, minor $\left.)=18.6 \mathrm{~min}\right)$; IR (film) $3410,3032,2932,1610 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \boldsymbol{d}_{\mathbf{l}}$, major $\delta 7.67(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.41(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.02(6 \mathrm{H}), 6.83(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.29(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ; \mathbf{d}_{2}$, minor $\delta 7.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 7.77-7.76 (m, 1H), 7.62-7.60 (m, 2H), 7.35-7.34 (m, 3H), 7.22-7.02 (5H), 6.63-6.61 (m, 3H) $5.32(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 158.4, 157.9, 135.4, 135.2, 133.8, 133.7, 132.4, 132.3, 131.7, 131.0, 129.8, 129.5, $128.9,128.4,128.4,127.6,126.7,121.1,1121.0,119.7,119.6,118.8,118.7,114.2,113.7$, 110.7, 110.5, 110.1, 109.5, 93.8, 93.6, 55.2, 55.0, 46.1, 45.7, 12.2, 12.1; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 387.1709$, found 387.1693.

2-Methyl-3-(2-nitro-2-phenyl-1-(4-(trifluoromethyl)phenyl)ethyl)-1H-indole (134d). Sulfone ($42 \mathrm{mg}, 0.10 \mathrm{mmol}$) and phenylnitromethane ($14 \mathrm{mg}, 0.10 \mathrm{mmol}$) were combined and stirred for 22 hours according to the general procedure. Flash column chromatography ($\mathrm{SiO}_{2}, 10-20 \%$ ethyl acetate in hexanes) yielded the title compound (30 $\mathrm{mg}, 71 \%) . \mathrm{R}_{f}=0.3$ ($20 \% \mathrm{EtOAc} /$ hexanes); chiral HPLC analysis (Chiralcel IA, 8% $\mathrm{EtOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(d_{2} e_{1}\right.$, minor $)=8.2 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{2}\right.$, minor $)=9.6 \mathrm{~min}, t_{\mathrm{r}}\left(d_{1} e_{1}\right.$, major $)=10.4 \mathrm{~min}, t_{\mathrm{r}}\left(d_{l} e_{2}\right.$, major $\left.)=13.3 \mathrm{~min}\right) ;$ IR $($ film $) 3408,1619 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(600$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{d}_{\mathbf{l}}$, major $\delta 7.64-7.04(14 \mathrm{H}), 6.69(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ; \boldsymbol{d}_{2}, \operatorname{minor} \delta 7.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.72-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.04(12 \mathrm{H})$, $6.68(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(150 \mathrm{MHz}$, CDCl_{3}) ppm 144.3, 143.0, 135.4, 135.2, 133.4, 133.1, 132.8, 132.1, 130.2, 129.7, 129.4, $129.2,129.1,128.8,128.5,128.3,127.6,127.5,126.4,125.8,125.8,125.3,125.3,121.5$, $121.4,120.0,119.9,118.4,118.3,110.9,110.7,109.0,108.3,93.1,92.6,46.7,46.1,12.2$, 12.1; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$425.1477, found 425.1485.

2-Methyl-3-(2-nitro-2-phenyl-1-(o-tolyl)ethyl)-1H-indole (134e). Sulfone ($37 \mathrm{mg}, 0.10$ $\mathrm{mmol})$ and phenylnitromethane ($14 \mathrm{mg}, 0.10 \mathrm{mmol}$) were combined and stirred for 72 hours according to the general procedure. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-20 \%\right.$ ethyl acetate in hexanes) yielded the title compound ($28 \mathrm{mg}, 76 \%$). $\mathrm{R}_{f}=0.4(20 \%$ EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, $10 \% \mathrm{EtOH} / \mathrm{hexanes}, 1 \mathrm{~mL} / \mathrm{min}$, $t_{\mathrm{r}}\left(d_{1} e_{1}\right.$, major $)=11.2 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{1}\right.$, minor $)=13.0 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{2}\right.$, minor $)=14.0 \mathrm{~min}, t_{\mathrm{r}}\left(d_{1} e_{2}\right.$, major) $=16.6 \mathrm{~min} ; \mathrm{IR}($ film $) 3409,2922,1552 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{d}_{\boldsymbol{l}}$, major $\delta 7.86-7.01(14 \mathrm{H}), 6.64(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}$, $3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) ; \boldsymbol{d}_{2}$, minor $\delta 7.86-7.01(14 \mathrm{H}), 6.72(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=$ $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 137.6, 136.7, $136.2,135.4,135.1,134.1,133.3,132.9,132.7,131.4,131.0,129.7,129.3,128.9,128.4$, $128.3,128.0,127.2,126.9,126.8,126.4,125.9,125.3,124.8,121.1,120.9,119.5,119.4$, $118.8,110.5,110.3,107.6,106.3,94.2,92.0,44.0,41.5,20.0,19.8,12.4,12.1 ;$ HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}$369.1603, found 369.1596.

3-(1-(Furan-2-yl)-2-nitro-2-phenylethyl)-2-methyl-1H-indole (134f). Sulfone (35 mg , $0.10 \mathrm{mmol})$ and phenylnitromethane ($14 \mathrm{mg}, 0.10 \mathrm{mmol}$) were combined and stirred for 22 hours according to the general procedure. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10\right.$ 20% ethyl acetate in hexanes) yielded the title compound ($24 \mathrm{mg}, 69 \%$). $\mathrm{R}_{f}=0.2(25 \%$ EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, 5\% EtOH/hexanes, $1 \mathrm{~mL} / \mathrm{min}$, $t_{\mathrm{r}}\left(d_{l} e_{1}\right.$, major $)=11.8 \mathrm{~min}, t_{\mathrm{r}}\left(d_{l} e_{2}\right.$, major $)=13.5 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{1}\right.$, minor $)=15.5 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{2}\right.$, minor $)=16.5 \mathrm{~min}) ;$ IR (film) $3408,2923,1553 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{d}_{\boldsymbol{l}}$, major $\delta 7.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.84-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.05(9 \mathrm{H}), 6.52(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.07(\mathrm{dd}, J=3.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=11.8,1 \mathrm{H}), 2.54(\mathrm{~s}$, $3 \mathrm{H}) ; \boldsymbol{d}_{\boldsymbol{2}}$, minor $\delta 7.64-7.05(10 \mathrm{H}), 7.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dd}, J=$ $3.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=11.7,1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 153.0, 151.6, 141.8, 141.6, 135.3, 135.1, 133.4, 133.3, 133.0, $132.5,129.9,129.5,128.8,128.5,128.3,128.1,127.4,126.8,126.7,121.3,121.2,119.8$, $119.6,118.9,118.8,110.6,110.4,110.4,110.1,107.7,107.3,106.8,106.5,92.5,92.0$, 40.9, 29.7, 12.0, 11.9; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$347.1396, found 347.1401.

2-Methyl-3-(1-nitro-1-phenylhexan-2-yl)- $\mathbf{H} \boldsymbol{H}$-indole (134g). Sulfone ($36 \mathrm{mg}, 0.10$ $\mathrm{mmol})$ and phenylnitromethane ($14 \mathrm{mg}, 0.10 \mathrm{mmol}$) were combined and stirred for 22 hours according to the general procedure. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-20 \%\right.$ ethyl acetate in hexanes) yielded the title compound ($17 \mathrm{mg}, 51 \%$). $\mathrm{R}_{f}=0.5(20 \%$ EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, 2\% IPA/hexanes, $1 \mathrm{~mL} / \mathrm{min}$, $t_{\mathrm{r}}\left(d_{1} e_{1}\right.$, major $)=17.3 \mathrm{~min}, t_{\mathrm{r}}\left(d_{1} e_{2}\right.$, major $)=19.2 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{1}\right.$, minor $)=24.1 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{2}\right.$, minor $)=29.2 \mathrm{~min}) ;$ IR (film) $3407,2955,1549 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{d}_{\boldsymbol{l}}$, major $\delta 7.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.48-7.08(9 \mathrm{H}), 6.03(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.17$ (br s, 1H) $2.09(\mathrm{~s}, 3 \mathrm{H}), 1.76-0.99(5 \mathrm{H}), 0.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ; \boldsymbol{d}_{2}$, minor $\delta 7.82(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 7.69(\mathrm{dd}, J=7.6,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.08(5 \mathrm{H}), 6.03(\mathrm{~d}, J=$ $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) 1.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.76-0.99(5 \mathrm{H}), 0.67(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) ppm 135.4, 134.3, 134.0, 129.9, 129.1, 129.1, $128.3,128.1,127.5,121.0,120.9,119.3,118.5,110.8,110.6,95.3,95.2,42.7,41.5,30.8$, 29.6, 29.2, 22.4, 22.2, 13.9, 13.8, 11.7; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$337.1916, found 337.1917.

Methyl 2-(2-methyl-1H-indol-3-yl)-3-nitro-3-phenylpropanoate (134i). Sulfone (36 $\mathrm{mg}, 0.10 \mathrm{mmol})$ and phenylnitromethane $(14 \mathrm{mg}, 0.10 \mathrm{mmol})$ were combined and stirred for 22 hours according to the general procedure. Flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, $10-20 \%$ ethyl acetate in hexanes) yielded the title compound ($16 \mathrm{mg}, 47 \%$) $. \mathrm{R}_{f}=0.2$ (20\% EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, 5\% IPA/hexanes, $1 \mathrm{~mL} / \mathrm{min}$, $t_{\mathrm{r}}\left(d_{2} e_{1}\right.$, minor $)=19.0 \mathrm{~min}, t_{\mathrm{r}}\left(d_{1} e_{1}\right.$, major $)=20.2 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{2}\right.$, minor $)=22.0 \mathrm{~min}, t_{\mathrm{r}}\left(d_{1} e_{2}\right.$, major) $=25.2 \mathrm{~min})$; IR (film) $3399,2952,2922,1735,1554 \mathrm{~cm}^{-1} ; \boldsymbol{d}_{\boldsymbol{1}}$, major: ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.88-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.44(\mathrm{~m}$, $3 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=11.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 169.7, 135.2, $134.6,133.1,130.2,129.1,128.2,126.4,121.6,120.2,118.8,110.6,103.4,90.7,52.2$, 47.1, 11.8; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}]^{-}$337.1188, found 337.1180.

tert-Butyl 2-(2-methyl-1H-indol-3-yl)-3-nitro-3-phenylpropanoate (134j). Sulfone (38 $\mathrm{mg}, 0.10 \mathrm{mmol}$) and phenylnitromethane ($14 \mathrm{mg}, 0.10 \mathrm{mmol}$) were combined and stirred for 72 hours according to the general procedure. Flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, $10-20 \%$ ethyl acetate in hexanes) yielded the title compound ($21 \mathrm{mg}, 55 \%$). $\mathrm{R}_{f}=0.4$ (20\% EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, 2% IPA/hexanes, $1 \mathrm{~mL} / \mathrm{min}$, $t_{\mathrm{r}}\left(d_{2} e_{1}\right.$, minor $)=26.5 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{2}\right.$, minor $)=30.4 \mathrm{~min}, t_{\mathrm{r}}\left(d_{1} e_{1}\right.$, major $)=46.0 \mathrm{~min}, t_{\mathrm{r}}\left(d_{1} e_{2}\right.$, major $)=57.7 \mathrm{~min})$; $\mathrm{IR}($ film $) 3403,2979,1722,1556 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\boldsymbol{d}_{\mathbf{1}}$, major, $\delta 7.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.91-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.08(6 \mathrm{H}), 6.39$ $(\mathrm{d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}) ; \boldsymbol{d}_{2}$, minor, δ $7.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.47-7.08(9 \mathrm{H}), 6.30(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H})$, $1.42(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 168.1, 133.6, 130.1, 128.9, 128.5, 128.4, 121.4, 121.3, 119.9, 119.1, 110.5, 103.9, 90.7, 82.2, 48.6, 27.8, 27.6; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 403.1634$, found 403.1623.

3-(2-Nitro-1,2-diphenylethyl)-1H-indole (134k). Sulfone ($34 \mathrm{mg}, 0.10 \mathrm{mmol}$) and phenylnitromethane ($14 \mathrm{mg}, 0.10 \mathrm{mmol}$) were combined and stirred for 22 hours according to the general procedure. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-20 \%\right.$ ethyl acetate in hexanes) yielded the title compound ($22 \mathrm{mg}, 65 \%$). $\mathrm{R}_{f}=0.2(20 \%$ EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, 15\% EtOH/hexanes, $1 \mathrm{~mL} / \mathrm{min}$, $t_{\mathrm{r}}\left(d_{2} e_{1}\right.$, minor $)=9.9 \mathrm{~min}, t_{\mathrm{r}}\left(d_{1} e_{1}\right.$, major $)=12.4 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{2}\right.$, minor $)=14.4 \mathrm{~min}, t_{\mathrm{r}}\left(d_{1} e_{2}\right.$, major) $=16.2 \mathrm{~min})$; $\operatorname{IR}($ film $) 3419,1549 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{d}_{\boldsymbol{1}}$, major δ 8.13 (br s, 1H), 7.59-6.99 (15H), $6.18(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}) ; \boldsymbol{d}_{2}$, $\operatorname{minor} \delta 7.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.59-6.99(14 \mathrm{H}), 6.84(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=12.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.42(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 139.9, 138.4, 136.2, $133.2,129.8,129.7,128.8,128.8,128.7,128.6,128.3,128.2,128.1,127.9,127.5,126.9$, $126.5,122.6,122.4,121.7,120.2,119.8,119.7,119.0,118.9,115.6,111.2,111.0,95.6$, 95.0, 47.3, 46.1; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$365.1266, found 365.1273.

3-(2-Nitro-1,2-diphenylethyl)-2-phenyl-1H-indole (134l). Sulfone ($44 \mathrm{mg}, 0.10 \mathrm{mmol}$) and phenylnitromethane ($14 \mathrm{mg}, 0.10 \mathrm{mmol}$) were combined and stirred for 72 hours according to the general procedure. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-20 \%\right.$ ethyl acetate in hexanes) yielded the title compound ($20 \mathrm{mg}, 49 \%$). $\mathrm{R}_{f}=0.5(20 \%$ EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, $10 \% \mathrm{EtOH} / \mathrm{hexanes}, 1 \mathrm{~mL} / \mathrm{min}$, $t_{\mathrm{r}}\left(d_{2} e_{1}\right.$, minor $)=8.4 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{2}\right.$, minor $)=11.5 \mathrm{~min}, t_{\mathrm{r}}\left(d_{l} e_{1}\right.$, major $)=13.6 \mathrm{~min}, t_{\mathrm{r}}\left(d_{1} e_{2}\right.$, major) $=26.4 \mathrm{~min} ; \mathrm{IR}($ film $) 3409,3062,1552 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{d}_{\boldsymbol{l}}$, major δ 8.13-7.01 (20H), $6.74(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}) ; \boldsymbol{d}_{2}$, minor $\delta 8.13-7.01(20 H), 6.63(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 140.4, 139.2, 136.9, 136.9, 136.0, 135.8, 133.6, 133.3, 132.6, 132.2, $129.7,129.3,129.1,129.1,128.9,128.8,128.8,128.7,128.6,128.6,128.5,128.4,128.3$, $128.3,128.2,127.8,127.7,127.2,126.7,126.7,122.3,122.1,120.3,120.3,120.2,120.1$, 111.4, 111.2, 110.5, 109.8, 93.9, 93.9, 47.4, 46.6; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 419.1760$, found 419.1750 .

2,5-Dimethyl-3-(2-nitro-1,2-diphenylethyl)-1H-pyrrole (134q). Sulfonyl pyrrole (34 $\mathrm{mg}, 0.10 \mathrm{mmol})$ and phenylnitromethane ($14 \mathrm{mg}, 0.10 \mathrm{mmol}$) were combined and stirred for 22 hours according to the general procedure. Flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, $10-20 \%$ ethyl acetate in hexanes) yielded the title compound ($22 \mathrm{mg}, 69 \%$). $\mathrm{R}_{f}=0.4$ (20\% EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, 5\% EtOH/hexanes, 1 $\mathrm{mL} / \mathrm{min}, t_{\mathrm{r}}\left(d_{2} e_{1}\right.$, minor $)=9.9 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{2}\right.$, minor $)=11.1 \mathrm{~min}, t_{\mathrm{r}}\left(d_{1} e_{1}\right.$, major $)=12.1 \mathrm{~min}$, $t_{\mathrm{r}}\left(d_{l} e_{2}\right.$, major $\left.)=18.1 \mathrm{~min}\right) ;$ IR $($ film $) 3428,1652,1646 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\boldsymbol{d}_{\boldsymbol{I}}$, major $\delta 7.51-7.00(\mathrm{~m}, 11 \mathrm{H}), 6.11(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.83$ $(\mathrm{d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}) ; \boldsymbol{d}_{2}, \operatorname{minor} \delta 7.51-7.00(\mathrm{~m}, 11 \mathrm{H}), 6.08(\mathrm{~d}$, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.18$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 141.1, 139.9, 133.9, 133.5, 129.4, 129.4, $128.8,128.6,128.4,128.3,128.1,127.3,127.0,126.4,125.8,125.7,122.8,122.5,117.4$, 116.0, 104.2, 103.6, 95.7, 95.5, 47.2, 47.1, 13.1, 13.0, 10.9, 10.8; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$321.1603, found 321.1604.

3-(2-(4-Methoxyphenyl)-2-nitro-1-phenylethyl)-2-methyl-1H-indole (138a). Sulfone $(38 \mathrm{mg}, 0.10 \mathrm{mmol})$ and arylnitromethane $(17 \mathrm{mg}, 0.10 \mathrm{mmol})$ were combined and stirred for 22 hours according to the general procedure. Flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, $10-20 \%$ ethyl acetate in hexanes) yielded the title compound ($20 \mathrm{mg}, 52 \%$). $\mathrm{R}_{f}=0.3$ (25\% EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, $8 \% \mathrm{EtOH} /$ hexanes, 1 $\mathrm{mL} / \mathrm{min}, t_{\mathrm{r}}\left(d_{2} e_{1}\right.$, minor $)=13.4 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{2}\right.$, minor $)=15.0 \mathrm{~min}, t_{\mathrm{r}}\left(d_{1} e_{1}\right.$, major $)=19.7 \mathrm{~min}$, $t_{\mathrm{r}}\left(d_{l} e_{2}\right.$, major $\left.)=27.3 \mathrm{~min}\right) ; \operatorname{IR}($ film $) 3409,2925,1609,1549 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \boldsymbol{d}_{\mathbf{l}}$, major $\delta 7.68(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.35 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.09(\mathrm{~m}$, $1 \mathrm{H}), 7.08-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.66-6.63(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=12 \mathrm{~Hz}, 1$ H), $3.68(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}),{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \boldsymbol{d}_{2}$, minor $\delta 7.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.75(\mathrm{dd}, J=4.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{dd}, J=6.1,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.20-7.17 (m, 2H), 7.12-7.09 (m, 4H), 7.08-7.01 (m, 1H), $6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.66-$ $6.63(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}) ppm 160.6, 160.3, 140.4, 139.1, 135.4, 135.2, 132.4, 131.8, 129.8, 129.0, 128.8, $128.5,128.3,127.3,127.0,126.7,126.4,126.0,125.8,121.2,121.0,119.7,119.6,118.7$, 118.7. 114.2, 113.8, 110.6, 110.5, 110.0, 109.5, 93.0, 92.9, 55.3, 55.1, 46.8, 46.1, 12.3, 12.2; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 387.1709$, found 387.1690.

2-Methyl-3-(2-nitro-2-(4-nitrophenyl)-1-phenylethyl)-1H-indole (138b). Sulfone (38 $\mathrm{mg}, 0.10 \mathrm{mmol})$ and arylnitromethane $(18 \mathrm{mg}, 0.10 \mathrm{mmol})$ were combined and stirred for 22 hours according to the general procedure. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-\right.$ 20% ethyl acetate in hexanes) yielded the title compound ($25 \mathrm{mg}, 52 \%$). $\mathrm{R}_{f}=0.4(25 \%$ EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, 15% IPA/hexanes, $1 \mathrm{~mL} / \mathrm{min}$, $t_{\mathrm{r}}\left(d_{1} e_{1}\right.$, major $)=9.1 \mathrm{~min}, t_{\mathrm{r}}\left(d_{1} e_{2}\right.$, major $)=9.6 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{1}\right.$, minor $)=22.5 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{2}\right.$, minor $)=39.5 \mathrm{~min}) ; \operatorname{IR}($ film $) 3409,1557 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{d}_{\boldsymbol{1}}$, major δ 8.20-7.04 (13H), $7.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.30(\mathrm{~s}, 3 \mathrm{H}) ; \boldsymbol{d}_{2}, \operatorname{minor} \delta 8.20-7.04(13 \mathrm{H}), 7.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.33$ $(\mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{ppm} 148.5,148.3,140.2$, $140.0,139.3,137.9,135.3,132.6,131.9,129.5,129.0,128.7,128.6,128.3,127.4,127.1$, $127.0,126.3,126.2,124.0,123.5,121.5,121.4,120.0,119.9,118.5,118.3,110.8,109.0$, 108.3, 92.4, 92.1, 47.3, 47.2, 12.3, 12.1; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+} 402.1454$, found 402.1437 .

(S)-2-Methyl-3-(2-nitro-1-phenylethyl)-1H-indole (138c). To a flame dried vial equipped with a stir bar, was added sulfone 5 ($38 \mathrm{mg}, 0.10 \mathrm{mmol}$), PBAM (5.1 mg , 0.010 mmol) and potassium carbonate ($96 \mathrm{mg}, 0.70 \mathrm{mmol}$). The solid was suspended in toluene (1 mL) and stirred, immediately followed by addition of bromonitromethane (21 $\mathrm{mg}, 0.15 \mathrm{mmol}$). The reaction was stirred at room temperature for 72 hours, diluted with water and extracted with ethyl acetate. The organic layer was filtered through silica gel and resuspended in THF (1 mL). $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(36 \mathrm{mg}, 0.15 \mathrm{mmol})$ was added to the solution and the reaction was stirred for 5 min . The crude reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was dried over MgSO_{4}, filtered and concentrated. Flash column chromatography of the residue $\left(\mathrm{SiO}_{2}, 10-20 \%\right.$ ethyl acetate in hexanes) yielded the title compound as a yellow oil (11 mg, 40\%) and sulfone $\mathbf{5 a}$ (10 mg , $25 \%) . \mathrm{R}_{f}=0.3(20 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{D}^{20}-13.5$ (c 0.37, $\left.\mathrm{CHCl}_{3}\right)$. Stereochemistry determined to be (S) by correlation to the literature value. ${ }^{128}$

[^71]

2-Methyl-3-(2-nitro-1-phenylpropyl)-1H-indole (138d). Sulfone (38 mg, 0.10 mmol) and nitroethane ($11 \mathrm{mg}, 0.15 \mathrm{mmol}$) were combined and stirred for 72 hours according to the general procedure. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-20 \%\right.$ ethyl acetate in hexanes) yielded the title compound ($19 \mathrm{mg}, 65 \%$). $\mathrm{R}_{f}=0.3$ (20% EtOAc/hexanes); chiral HPLC analysis (Chiralcel IA, 3% IPA/hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(d_{1} e_{1}\right.$, major) $=30.2$, $t_{\mathrm{r}}\left(d_{2} e_{1}\right.$, minor $)=35.2 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{2}\right.$, minor $)=45.7 \mathrm{~min}, t_{\mathrm{r}}\left(d_{1} e_{2}\right.$, major $\left.)=48.8 \mathrm{~min}\right) ;$ IR (film) $3408,2924,1549 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{d}_{\boldsymbol{1}}$, major $\delta 7.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.60(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.09(8 \mathrm{H}), 5.83-5.76(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.47(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ; \boldsymbol{d}_{2}$, minor $\delta 7.76-7.09(10 \mathrm{H}), 5.83-5.76(\mathrm{~m}, 1 \mathrm{H})$, $4.66(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}) ppm 140.3, 139.7, 135.3, 135.2, 132.5, 132.2, 128.8, 128.6, 128.2, 127.3, 127.0, 127.0, 126.6, 126.6, 121.4, 121.0, 119.9, 119.6, 118.8, 118.7, 110.7, 110.6, 110.0, 109.6, 86.1, 85.6, 48.4, 47.6, 19.7, 19.4, 12.3, 12.2; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$295.1447, found 295.1458.

3-(1,2-Diphenylethyl)-2-methyl-1H-indole (146). To a flame dried vial equipped with a stir bar was added $6 \mathbf{a}(17 \mathrm{mg}, 50 \mu \mathrm{~mol}, 84 \% \mathrm{ee}), \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(20 \mathrm{wt} \%, 37 \mathrm{mg})$ and EtOH (1mL). The reaction was purged twice with hydrogen gas and then placed under 1 bar of hydrogen gas at $60{ }^{\circ} \mathrm{C}$ for 1 hour. The reaction was filtered through Celite and concentrated. Flash column chromatography $\left(\mathrm{SiO}_{2}, 9 \%\right.$ ethyl acetate in hexanes) yielded a yellow oil (13 mg, 84\%). $\mathrm{R}_{f}=0.5(20 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{D}^{20}-42\left(c 0.80, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}$ (film) $3414,3059,2922 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58$ (br s, 1H), 7.46-7.42 $(\mathrm{m}, 3 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.06(\mathrm{~m}, 4 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 1 \mathrm{H})$, 6.94-6.91 (m, 2H), $4.42(\mathrm{dd}, J=10.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=13.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.49$ (dd, $J=12.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 144.7, 141.3, $135.4,131.8,129.0,128.1,127.8,127.6,125.8,125.6,120.6,119.6,119.0,113.3,110.2$, 44.2, 40.2, 11.7; HRMS (CI): Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 312.1705$, found 312.1752.

VNI (161). tert-Butyl (1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl) ($356 \mathrm{mg}, 1.00$ mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. TFA ($1.5 \mathrm{~mL}, 20 \mathrm{mmol}$) was added and the mixture was stirred at room temperature for 14 hours. The reaction was poured over sat. aq. NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated. The oil was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and 4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzoic acid ($234 \mathrm{mg}, 0.88 \mathrm{mmol}$) was added to the flask. The flask was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{EDC} / \mathrm{HCl}(220 \mathrm{mg}, 1.2 \mathrm{mmol})$ and DMAP (20 mg, 0.10 $\mathrm{mmol})$ was added. The reaction was allowed to warm to room temperature and monitored by TLC. Following reaction completion, the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water, dried over MgSO_{4}, and concentrated to an oil. Flash column chromatography ($\mathrm{SiO}_{2}, 1-4 \%$ methanol in dichloromethane) yielded a yellow solid ($330 \mathrm{mg}, 65 \%$). The solid was then washed with DCM to give an analytically pure white solid ($220 \mathrm{mg}, 44 \%$). Stereochemistry was conserved as the product was determined to be 97% ee by chiral HPLC analysis (Chiralcel OD-H, 20\% EtOH/hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}(S$-enantiomer) $=21.5$ $\min , t_{\mathrm{r}}(R$-enantiomer $)=31.4 \mathrm{~min} ;[\alpha]_{D}^{20}+34\left(c \quad 0.60, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.31(10 \%$ $\mathrm{MeOH} / \mathrm{DCM})$; IR (film) 3271, 2923, 2851, 1661, $1579 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.14-8.11(\mathrm{~m}, 4 \mathrm{H}), 7.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H})$, 7.35 (br s, 1 H), 7.23 (br s, 2H), 7.03 (br s, 1H), 6.91 (br s, 1H), 5.82 (dd, $J=13.7,7.0$, $1 \mathrm{H}), 4.57(\mathrm{dd}, J=14.3,7.2,1 \mathrm{H}), 4.50(\mathrm{dd}, J=14.2,5.8,1 \mathrm{H}), 1.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR
($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 166.3, 165.1, 163.7, 136.3, 135.2, 133.8, 133.5, 132.1, 130.3, 129.5, 129.5, 129.2, 128.0, 127.1, 127.0, 126.9, 123.5, 52.8, 49.1; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 504.0994$, found 504.0970.

(R)-tert-Butyl (1-(2,4-dichlorophenyl)-2-nitroethyl)carbamate (166). A 2-dram vial was charged with imine ($27.4 \mathrm{mg}, 100 \mu \mathrm{~mol}$), $\mathrm{PBAM}_{4}(\mathrm{HOTf})_{5}(6.9 \mathrm{mg}, 10 \mu \mathrm{~mol})$ and toluene (0.1 mL) and cooled to $-20^{\circ} \mathrm{C}$. Nitromethane ($11 \mu \mathrm{~L}, 200 \mu \mathrm{~mol}$) was added and the reaction was stirred for 24 h . The reaction was filtered through a silica gel plug using ethyl acetate and concentrated to a white solid and determined to be a 74:26 mixture of single- to double-addition by NMR. The major product (single addition) was determined to be 90% ee by chiral HPLC analysis (Chiralcel IA, $5 \%{ }^{i} \mathrm{PrOH} / \mathrm{hexanes}, 1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, major $)=14.3 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, minor $\left.)=18.5\right)$ and was further recrystallized to 99% ee (ethanol/water); $[\alpha]_{D}^{20}-7.0\left(c 0.10, \mathrm{CHCl}_{3}\right.$); IR (film) 3344, 2981, 2926, 1690, 1554, $1532 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H})$, 5.67 (br s, 2H), $4.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.77(\mathrm{br} \mathrm{d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 154.4, 135.2, 133.2, 132.9, 130.1, 128.9, 127.8, 81.0, 77.1, 50.0, 28.2; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$357.0385, found 357.0400.

tert-Butyl 2,4-dichlorobenzylidenecarbamate (167). A 1-L round-bottomed flask was charged with tert-butyl ((2,4-dichlorophenyl)(phenylsulfonyl)methyl)carbamate (20.0 g, $48.0 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(53.0 \mathrm{~g}, 384 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{SO}_{4}(61.4 \mathrm{~g}, 432 \mathrm{mmol})$ and THF (500 mL). The pot was refluxed for 5 h until completion (checked by NMR). The reaction mixture was filtered through Celite, washed with diethyl ether and concentrated on low heat to yield the title compound as a pure white solid [12.9 g, 98% ($<2 \%$ aldehyde)]. Mp 48-50 ${ }^{\circ} \mathrm{C}$; IR (film) 2979, 1717, 1622, $1584 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.20(\mathrm{~s}, 1 \mathrm{H})$, $8.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=2.0,1 \mathrm{H}), 7.33(\mathrm{ddd}, J=8.5,1.9,0.5,1 \mathrm{H}), 1.59(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 164.6, 162.1, 140.0, 138.4, 130.0, 130.0, 129.9, 127.8, 82.9, 27.9; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$274.0402, found 274.0391.

tert-Butyl ((2,4-dichlorophenyl)(phenylsulfonyl)methyl)carbamate (171). A 500-mL Erlenmeyer flask was charged with 2,4-chlorobenzaldehyde ($16.8 \mathrm{~g}, 96.0 \mathrm{mmol}$), benzenesulfinic acid sodium salt $(26.3 \mathrm{~g}, 160 \mathrm{mmol})$, tert-butyl carbamate $(9.38 \mathrm{~g}, 80.0$ mmol), formic acid ($6.1 \mathrm{~mL}, 160 \mathrm{mmol}$), methanol (70 mL) and water (140 mL) and stirred for 3 days. The solid was filtered and rinsed with water. The washed solid was added to diethyl ether and stirred overnight. Filtration and washing with diethyl ether afforded the pure product as two rotamers (5:1) as a white solid (13.0 grams, 81% based on recovered starting material). Mp $160-162{ }^{\circ} \mathrm{C}$; IR (film) $3387,3340,3332,3301,3268$, 2977, 1722, 1704, $1588 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.67(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35(\mathrm{dd}, J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.28(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) ppm 153.3, 136.9, 136.5, 136.1, 134.3, 130.1, 129.8, 129.3, 129.2, 127.7, 81.6, 69.6, 28.0; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{NNaO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 438.0310$, found 438.0327.

tert-Butyl ((1R)-2-bromo-1-(4-chlorophenyl)-2-nitroethyl)carbamate (173). A 250mL round-bottomed flask was charged with imine $(7.19 \mathrm{~g}, 30.0 \mathrm{mmol}),(+)$-PBAM (152 $\mathrm{mg}, 300 \mu \mathrm{~mol})$ and toluene $(150 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$. Bromonitromethane (6.30 g , 45.0 mmol) was added over 1 minute and the reaction was stirred for 48 h at $-20^{\circ} \mathrm{C}$. The reaction was filtered through a silica gel plug using ethyl acetate, concentrated to a white solid ($11.0 \mathrm{~g}, 97 \%$), and determined to be $3: 1 \mathrm{dr}$ by ${ }^{1} \mathrm{H}$ NMR. The white solid was determined to be pure and required no further purification. The major diastereomer was determined to be 97% ee and the minor diastereomer was determined to be 96% ee by chiral HPLC analysis (Chiralcel AD-H, $10 \%^{i} \operatorname{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(d_{l} e_{1}\right.$, major $)=$ $18.9 \mathrm{~min}, t_{\mathrm{r}}\left(d_{1} e_{2}\right.$, minor $)=14.6 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{1}\right.$, major $)=24.8 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{2}\right.$, minor $)=15.9$ $\min)$. Remainder of analytical data matched previously reported. ${ }^{129}$

[^72]
tert-Butyl ((1R)-2-bromo-1-(2,4-dichlorophenyl)-2-nitroethyl)carbamate (174). A $500-\mathrm{mL}$ round-bottomed flask was charged with imine ($12.9 \mathrm{~g}, 47.0 \mathrm{mmol}$), (+)-PBAM ($238 \mathrm{mg}, 470 \mu \mathrm{~mol}$) and toluene (240 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. Bromonitromethane $(9.21 \mathrm{~g}, 65.8 \mathrm{mmol})$ was added and the reaction was stirred for 48 h at $-20^{\circ} \mathrm{C}$ until the reaction was complete. The reaction was filtered through a silica gel plug using ethyl acetate and concentrated to a white solid determined to be $1: 1$ dr by NMR. The solid recovered ($19.2 \mathrm{~g}, 99 \%$) was used without further purification. $\mathrm{Mp} 108-110^{\circ} \mathrm{C}$; the major diastereomer was determined to be 98% ee and the minor diastereomer was determined to be 98% ee by chiral HPLC analysis (Chiralcel IA, $3 \%{ }^{i} \operatorname{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}$, $t_{\mathrm{r}}\left(d_{1} e_{1}\right.$, major $)=12.9 \mathrm{~min}, t_{\mathrm{r}}\left(d_{1} e_{2}\right.$, minor $)=24.4 \min , t_{\mathrm{r}}\left(d_{2} e_{1}\right.$, major $)=16.3 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{2}\right.$, minor $)=$ $20.2 \mathrm{~min}) ; \mathrm{R}_{f}=0.48(25 \% \mathrm{EtOAc} /$ hexanes $) ;$ IR (film) $3423,3331,2980,1705,1589 \mathrm{~cm}^{-}$ ${ }^{1}$; $\boldsymbol{d}_{\boldsymbol{1}}$, major: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{br} \mathrm{s}$, $1 \mathrm{H})$, 6.03-6.02 (m, 1H), $5.71(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}) ppm 154.6, 136.0, 133.4, 131.2, 130.1, 128.1, 81.4, 78.0, 55.6, 28.2. \boldsymbol{d}_{2}, minor: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.03-6.02$ $(\mathrm{m}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \mathrm{ppm} 154.1$, 135.8, 133.2, 131.9, 129.7, 127.8, 83.0, 81.5, 55.0, 28.2. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrCl}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 434.9490$, found 434.9486 .

(R)-tert-Butyl (2-amino-1-(2,4-dichlorophenyl)ethyl)carbamate (175). A flame dried 1

L round bottom was charged with tert-butyl (2-bromo-1-(2,4-dichlorophenyl)-2nitroethyl)carbamate $(19.2 \mathrm{~g}, 46.4 \mathrm{mmol}), \mathrm{CoCl}_{2}(6.02 \mathrm{~g}, 46.4 \mathrm{mmol})$ and $\mathrm{MeOH}(230$ $\mathrm{mL})$. The pot was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{NaBH}_{4}(8.76 \mathrm{~g}, 231.9 \mathrm{mmol})$ was added in portions over 5 minutes with the final evolution of H_{2} contained in a balloon. The reaction stirred at $0{ }^{\circ} \mathrm{C}$ for 20 min and was warmed to rt and the progress was monitored by TLC. Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(\sim 100 \mathrm{~mL})$ was added to the flask and it was brought to pH 9 with slow addition of $1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$. The reaction was filtered with MeOH and DCM , concentrated to remove the organics then extracted with DCM (significant amount of emulsions). The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated to a yellow oil. Flash column chromatography $\left(\mathrm{SiO}_{2}, 1-3-5-10 \%\right.$ methanol in dichloromethane with 0.5% acetic acid) yielded an oil/solid depending on water content (7.42 g, 52\%). Mp 86-88 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.11(10 \% \mathrm{MeOH} / \mathrm{DCM})$; IR (film) 3316, 3002, 2977, 2932, 1703, 1698, $1694 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.3,2.0,1 \mathrm{H}), 5.7(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.98$ (br s, 2H), 1.41 (br s, 9H), 1.12 (br s, 2H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ppm} 155.3$, 137.2, 133.3, 129.6, 128.3, 127.2, 127.1, 79.7, 53.1, 44.8, 28.3; HRMS (ESI: Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 305.0824$, found 305.0826.

(R)-tert-Butyl (1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl)carbamate (179). ${ }^{130}$

To a 250 mL round bottom containing the amine $(7.41 \mathrm{~g}, 24.2 \mathrm{mmol})$ was added aqueous glyoxal ($40 \% \mathrm{w} / \mathrm{v}, 6.88 \mathrm{~mL}, 48.4 \mathrm{mmol}$), ammonium acetate ($3.74 \mathrm{~g}, 48.4 \mathrm{mmol}$), aqueous formaldehyde ($37 \% \mathrm{w} / \mathrm{v}, 4.00 \mathrm{~mL}, 48.4 \mathrm{mmol}$) and methanol (60 mL). The reaction was refluxed with stirring for 20 hrs . The reaction was concentrated and redissolved in 3 M NaOH and was extracted with DCM. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated to a brown oil. The oil was dissolved in DCM ($\sim 100 \mathrm{~mL}$) and was added to stirring hexanes ($\sim 400 \mathrm{~mL}$). The solid that precipitated was filtered and washed with hexanes to give the product as a beige solid (4.21 g, 49\%). Flash column chromatography $\left(\mathrm{SiO}_{2}, 1-5 \%\right.$ methanol in dichloromethane) of the remaining organic yielded a beige solid ($0.86 \mathrm{~g}, 10 \%$). Mp 166$168{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}-8.5\left(c 0.60, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.31$ (visualized with PIP) $(10 \% \mathrm{MeOH} / \mathrm{DCM})$; IR (film) 3212, 2977, 2934, 1707, $1507 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~s}, 1 \mathrm{H})$, $7.43(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.75$ (br s, 1 H), $5.35(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.34-4.27(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 154.8, 137.5, 134.7, 134.5, 133.3, 130.0, 129.7, 128.8, 127.7, 119.4, 80.7, 52.8, 49.7, 28.2; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 356.0933$, found 356.0924 .

[^73]

tert-Butyl ((1R)-2-bromo-1-(2,4-difluorophenyl)-2-nitroethyl)carbamate (185b). A $250-\mathrm{mL}$ round-bottomed flask was charged with imine ($7.00 \mathrm{~g}, 29.0 \mathrm{mmol}$), (+)-PBAM $(147 \mathrm{mg}, 290 \mu \mathrm{~mol})$ and toluene (145 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. Bromonitromethane $(6.02 \mathrm{~g}, 43.0 \mathrm{mmol})$ was added over 1 minute and the reaction was stirred for 48 h at -20 ${ }^{\circ} \mathrm{C}$. The reaction was filtered through a silica gel plug using ethyl acetate, concentrated to a white solid ($10.8 \mathrm{~g}, 97 \%$), and determined to be $1: 1 \mathrm{dr}$ by ${ }^{1} \mathrm{H}$ NMR. The white solid was determined to be pure and required no further purification. The major diastereomer was determined to be 95% ee and the minor diastereomer was determined to be 94% ee by chiral HPLC analysis $\left(\right.$ Chiralcel AD-H, $4 \%{ }^{i} \mathrm{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(d_{l} e_{1}\right.$, major $)=$ $20.7 \mathrm{~min}, t_{\mathrm{r}}\left(d_{1} e_{2}\right.$, minor $)=29.6 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{1}\right.$, major $)=22.8 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{2}\right.$, minor $)=25.5$ \min); IR (film) 3355, 2985, 1690, 1607, 1566, $1506 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $1: 1$ mixture of diastereomers) $\delta 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{dd}, J=8.7,8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88$ (dd, $J=9.7,9.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $5.40(\mathrm{br} \mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1\right.$ mixture of diastereomers) ppm $163.41\left(\mathrm{dd}, J_{\mathrm{CF}}=253,12.1 \mathrm{~Hz}\right), 163.37\left(\mathrm{dd}, J_{\mathrm{CF}}=252,12.6 \mathrm{~Hz}\right)$, $160.4\left(\mathrm{dd}, J_{\mathrm{CF}}=249,12.2 \mathrm{~Hz}\right), 154.4,154.3,130.5(\mathrm{~m}), 118.5,112.23\left(\mathrm{dd}, J_{\mathrm{CF}}=21.6\right.$, $3.3 \mathrm{~Hz}), 112.17\left(\mathrm{dd}, J_{\mathrm{CF}}=21.5,3.2 \mathrm{~Hz}\right), 104.7\left(\mathrm{dd}, J_{\mathrm{CF}}=25.8,25.8 \mathrm{~Hz}\right), 104.6\left(\mathrm{dd}, J_{\mathrm{CF}}=\right.$ $25.5,25.5 \mathrm{~Hz}$), 82.6, 81.4, 79.1, 53.9, 28.1, ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1$ mixture of diastereomers) ppm -106, -110, -111; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrF}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 403.0081$, found 403.0065.

tert-Butyl ((1R)-2-bromo-1-(4-methoxyphenyl)-2-nitroethyl)carbamate (185c). A $250-\mathrm{mL}$ round-bottomed flask was charged with imine ($6.82 \mathrm{~g}, 29.0 \mathrm{mmol}$), (+)-PBAM ($147 \mathrm{mg}, 290 \mu \mathrm{~mol}$) and toluene (145 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. Bromonitromethane $(6.02 \mathrm{~g}, 43.0 \mathrm{mmol})$ was added over 1 minute and the reaction was stirred for 48 h at -20 ${ }^{\circ} \mathrm{C}$. The reaction was filtered through a silica gel plug using ethyl acetate, concentrated to a white solid ($10.6 \mathrm{~g}, 97 \%$), and determined to be $5: 1$ dr by ${ }^{1} \mathrm{H}$ NMR. The white solid was determined to be pure and required no further purification. The major diastereomer was determined to be 96% ee and the minor diastereomer was determined to be 96% ee by chiral HPLC analysis (Chiralcel AD-H, 20\% ${ }^{i} \mathrm{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(d_{1} e_{1}\right.$, major $)=$ $13.4 \mathrm{~min}, t_{\mathrm{r}}\left(d_{l} e_{2}\right.$, minor $)=16.0 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{1}\right.$, major $)=21.6 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{2}\right.$, minor $)=17.5$ min); IR (film) 3366, 2977, 1681, 1561, $1515 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1$ mixture of diastereomers) $\delta 7.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 5.56 (br m, 1H), 5.41 (br s, 1H), 5.31 (br s, 1H), 3.81 (s, 3H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$, 1.44 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1$ mixture of diastereomers) ppm 160.1, $160.0,154.5$ (2C), 128.2, 128.1, 126.5 (2C), 114.41, 114.38, 85.1, 82.0, 81.1, 80.9, 57.7 (2C), 55.2 (2C), 28.15, 28.12; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{BrN}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$ 375.0550 , found 375.0551 .

tert-Butyl ((1R)-2-bromo-1-(4-methylphenyl)-2-nitroethyl)carbamate (185d). A 250mL round-bottomed flask was charged with imine ($6.58 \mathrm{~g}, 30.0 \mathrm{mmol}$), (+)-PBAM (152 $\mathrm{mg}, 300 \mu \mathrm{~mol})$ and toluene $(150 \mathrm{~mL})$ and cooled to $-78^{\circ} \mathrm{C}$. Bromonitromethane (6.30 g , 45.0 mmol) was added over 1 minute and the reaction was stirred for 48 h at $-20^{\circ} \mathrm{C}$. The reaction was filtered through a silica gel plug using ethyl acetate, concentrated to a white solid ($10.6 \mathrm{~g}, 97 \%$), and determined to be $3: 1 \mathrm{dr}$ by ${ }^{1} \mathrm{H}$ NMR. The white solid was determined to be pure and required no further purification. The major diastereomer was determined to be 91% ee and the minor diastereomer was determined to be 87% ee by chiral HPLC analysis (Chiralcel AD-H, 25\% ${ }^{i} \mathrm{PrOH} /$ hexanes, $0.4 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(d_{1} e_{1}\right.$, major) $=15.8 \mathrm{~min}, t_{\mathrm{r}}\left(d_{1} e_{2}\right.$, minor $)=17.5 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{1}\right.$, major $)=23.2 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{2}\right.$, minor $)=19.2$ min); IR (film) 3391, 2981, 1690, 1562, $1516 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major diastereomer) $\delta 7.21-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.36(\mathrm{br} \mathrm{d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, minor diastereomer) $\delta 7.21-$ 7.15 (m, 4H), 6.31 (br s, 1H), 5.68 (br s, 1H), 5.43 (br s, 1H), 2.34 (s, 3H), 1.45 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 3: 1$ mixture of diastereomers) ppm 154.7, 154.5, 139.2, 139.1, 132.1, 131.6, 129.80, 129.75, 129.2, 128.8, 126.8, 126.6, 85.2, 81.9, 81.1, 57.9, 28.19, 28.16, 21.1; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$ 381.0426, found 381.0432.

tert-Butyl ((1R)-2-bromo-1-(3-bromophenyl)-2-nitroethyl)carbamate (185e). A 250mL round-bottomed flask was charged with imine $(8.53 \mathrm{~g}, 30.0 \mathrm{mmol})$, (+)-PBAM (152 $\mathrm{mg}, 300 \mu \mathrm{~mol})$ and toluene $(150 \mathrm{~mL})$ and cooled to $-78^{\circ} \mathrm{C}$. Bromonitromethane $(6.30 \mathrm{~g}$, 45.0 mmol) was added over 1 minute and the reaction was stirred for 60 h at $-20^{\circ} \mathrm{C}$. The reaction was filtered through a silica gel plug using ethyl acetate, concentrated to a white solid ($12.5 \mathrm{~g}, 98 \%$), and determined to be $1: 1 \mathrm{dr}$ by ${ }^{1} \mathrm{H}$ NMR. The white solid was determined to be pure and required no further purification. The major diastereomer was determined to be 91% ee and the minor diastereomer was determined to be 91% ee by chiral HPLC analysis $\left(\right.$ Chiralcel AD-H, $7 \% \mathrm{EtOH} /$ hexanes, $0.6 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(d_{l} e_{1}\right.$, major) $)=$ $20.9 \min , t_{\mathrm{r}}\left(d_{1} e_{2}\right.$, minor $)=16.5 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{1}\right.$, major $)=19.2 \mathrm{~min}, t_{\mathrm{r}}\left(d_{2} e_{2}\right.$, minor $)=17.7$ min); IR (film) 3348, 2980, 1701, 1567, $1504 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1$ mixture of diastereomers) $\delta 7.51-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 4 \mathrm{H}), 6.28(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.76$ (br d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.43(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1$ mixture of diastereomers) ppm 154.6, 154.3, 137.6, 136.9, $132.4,132.3,130.64,130.60,130.1,129.9,125.7,125.4,123.17,123.15,84.8,81.3,81.0$, 57.5, 28.2, 28.1; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$ 444.9374, found 444.9393.

(R)-N-(1-(2,4-Dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl)-2-fluoronicotinamide
(188). Prepared according to the general procedure. $[\alpha]_{D}^{20}+4.0\left(c 0.30, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.3$ ($10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (film) 3287, 2923, 2853, 1650, 1605, 1609, 1572, 1548, 1510, $1432 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.50(\mathrm{ddd}, J=9.6,7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J$ $=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.60(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.36(\mathrm{br} \mathrm{m}, 2 \mathrm{H}), 7.23$ $(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.84$ $(\mathrm{ddd}, J=6.3,6.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=14.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=14.3,6.5 \mathrm{~Hz}$, $1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm $161.4\left(\mathrm{~d}, J_{\mathrm{CF}}=7.4 \mathrm{~Hz}\right), 160.0\left(\mathrm{~d}, J_{\mathrm{CF}}=235 \mathrm{~Hz}\right)$, $151.0\left(\mathrm{~d}, J_{\mathrm{CF}}=16.7 \mathrm{~Hz}\right), 143.5,137.4,135.3,133.3\left(\mathrm{~d}, J_{\mathrm{CF}}=14.5 \mathrm{~Hz}\right), 130.4,129.9$, $129.4,128.0,122.7\left(\mathrm{~d}, J_{\mathrm{CF}}=3.9 \mathrm{~Hz}\right), 119.2,115.1\left(\mathrm{~d}, J_{\mathrm{CF}}=27.6 \mathrm{~Hz}\right), 52.7,49.3$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{FN}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 379.0529$, found 379.0538.

(R)-N-(1-(2,4-Dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl)-2,6-difluoronicotinamide (189). Prepared according to the general procedu191re. $[\alpha]_{D}^{20}+6.6\left(c 0.65, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=$ $0.3\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (film) $3287,1658,1652,1609,1590,1470,1409 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.60(\mathrm{ddd}, J=8.1,8.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.47-7.45 (br m, 1H), 7.30 (br s, 1H), $7.23(\mathrm{dd}, J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.81(\mathrm{ddd}, J=7.8$, $7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{dd}, J=14.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{dd}, J=14.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm $162.8\left(\mathrm{dd}, J_{\mathrm{CF}}=254,17.8 \mathrm{~Hz}\right), 160.5\left(\mathrm{~d}, J_{\mathrm{CF}}=7.2 \mathrm{~Hz}\right)$, $158.3\left(\mathrm{dd}, J_{\mathrm{CF}}=243,15.4 \mathrm{~Hz}\right), 148.3\left(\mathrm{~d}, J_{\mathrm{CF}}=8.8 \mathrm{~Hz}\right), 137.4,135.4,133.4,133.1,130.5$, $130.1,129.4,128.0,119.2,112.3\left(\mathrm{dd}, J_{\mathrm{CF}}=24.9,5.5 \mathrm{~Hz}\right), 108.0\left(\mathrm{dd}, J_{\mathrm{CF}}=34.2,5.4 \mathrm{~Hz}\right)$, 52.8, 49.2; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$397.0434, found 397.0439.

(R)- N-(1-(2,4-Dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-(4-fluorophenyl)-

1,3,4-oxadiazol-2-yl)benzamide (190). $[\alpha]_{D}^{20}+30\left(c 0.30, \mathrm{CHCl}_{3}\right)$; IR (film) 3255, 2925, 1661, 1551, $1495 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $8.16(\mathrm{dd}, J=8.9,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.79(\mathrm{ddd}, J=6.5,6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 166.0, $165.0\left(\mathrm{~d}, J_{\mathrm{CF}}=254 \mathrm{~Hz}\right), 164.3,163.6,137.5,136.1$, $135.4,133.4\left(\mathrm{~d}, J_{\mathrm{CF}}=11.9 \mathrm{~Hz}\right), 130.5,129.8,129.4,129.3,128.0,127.8,127.3,127.0$, $119.9,119.3,116.7,116.5,53.0,49.0 ;{ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm -104; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{FN}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 522.0900$, found 522.0903.

(R)-N-(1-(2,4-Dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-(3-fluorophenyl)-

1,3,4-oxadiazol-2-yl)benzamide (191). $[\alpha]_{D}^{20}+47\left(c 0.27, \mathrm{CHCl}_{3}\right)$; IR (film) 3261, 1657, 1554, $1493 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.84-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{ddd}, J=8.1,8.1,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.28(\mathrm{ddd}, J=8.3,8.3,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.25(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 6.87 (br s, 1H), 5.79 (ddd, $J=6.4,6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=14.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52$ $(\mathrm{dd}, J=14.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 166.1, 164.1, 163.9, 162.8 $\left(\mathrm{d}, J_{\mathrm{CF}}=248 \mathrm{~Hz}\right), 137.5,136.3,135.4,133.4,131.1\left(\mathrm{~d}, J_{\mathrm{CF}}=7.9 \mathrm{~Hz}\right), 130.4,129.9$, 129.7, 128.0, 127.9, 127.3, 126.8, $125.4\left(\mathrm{~d}, J_{\mathrm{CF}}=8.3 \mathrm{~Hz}\right), 122.8\left(\mathrm{~d}, J_{\mathrm{CF}}=3.3 \mathrm{~Hz}\right), 119.4$, $119.2\left(\mathrm{~d}, J_{\mathrm{CF}}=21.3 \mathrm{~Hz}\right), 114.1\left(\mathrm{~d}, J_{\mathrm{CF}}=24.5 \mathrm{~Hz}\right), 52.9,49.0 ;{ }^{19} \mathrm{~F} \mathrm{NMR}(282 \mathrm{MHz}$, CDCl_{3}) ppm -109; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{FN}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 522.0900 , found 522.0879 .

(R)-tert-Butyl (1-(4-chlorophenyl)-2-(1H-imidazol-1-yl)ethyl)carbamate (192SI). Recovered from large scale reduction of 2,4-dichloro adduct (10:1 mixture) and used in coupling reaction to make VNI analog. $[\alpha]_{D}^{20}-19\left(c 0.73, \mathrm{CHCl}_{3}\right)$; IR (film) 3211,2978 , 1703, $1509 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H})$, $7.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.30-$ 4.25 (br m, 2H), 1.43 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 154.9, 137.6, 136.8, 134.3, 129.5, 129.3, 127.8, 119.4, 80.6, 55.1, 51.6, 28.3; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{ClN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 322.1322$, found 322.1312.

(R)-N-(1-(4-Chlorophenyl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2yl)benzamide (192). Prepared according to the general procedure. $[\alpha]_{D}^{20}+11(c 0.19$, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.3\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{mp} 124-126{ }^{\circ} \mathrm{C}$; IR (film) $3319,2923,1651$, $1549,1491 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 7.29(\mathrm{~s}, 4 \mathrm{H}), 6.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.50(\mathrm{ddd}, J=7.3,7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.57(\mathrm{dd}, J=14.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=14.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) ppm 166.7, 165.0, 163.7, 137.6, 136.73, 136.71, 134.4, 132.1, 129.3, 129.1, 128.2, 128.1, 126.92, 126.86, 126.4, 123.3, 119.6, 54.4, 50.8; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{ClN}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 470.1384$, found 470.1371.

tert-Butyl ((2,4-difluorophenyl)(phenylsulfonyl)methyl)carbamate (193SI). A 1-L round-bottomed flask was charged with 2,4-difluorobenzaldehyde ($11.2 \mathrm{~mL}, 102 \mathrm{mmol}$), benzenesulfinic acid sodium salt ($28.0 \mathrm{~g}, 170 \mathrm{mmol}$), tert-butyl carbamate ($10.0 \mathrm{~g}, 85.4$ mmol), formic acid ($6.5 \mathrm{~mL}, 170 \mathrm{mmol}$), methanol (70 mL), and water (140 mL) and stirred for 3 days. The solid was filtered and rinsed with water. The washed solid was added to diethyl ether and stirred overnight. Filtration and washing with diethyl ether afforded the pure product as a white solid (28.7 grams, 88% yield). Mp $144-146{ }^{\circ} \mathrm{C}$; IR (film) $3342,2979,1705,1619,1505 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.66(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.6,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{ddd}, J=7.9,7.9,7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.96(\mathrm{ddd}, J=8.1,8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{ddd}, J=10.6,8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.19$ $(\mathrm{d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \mathrm{ppm} 163.9\left(\mathrm{dd}, J_{\mathrm{CF}}=253,12.3 \mathrm{~Hz}\right), 161.4\left(\mathrm{dd}, J_{\mathrm{CF}}=252,11.7 \mathrm{~Hz}\right), 153.4,136.5$, $134.2,131.3\left(\mathrm{~d}, J_{\mathrm{CF}}=10.3 \mathrm{~Hz}\right), 129.4,129.2,114.1\left(\mathrm{~d}, J_{\mathrm{CF}}=14.5 \mathrm{~Hz}\right), 112.1\left(\mathrm{~d}, J_{\mathrm{CF}}=\right.$ $20.0 \mathrm{~Hz}), 104.6\left(\mathrm{dd}, J_{\mathrm{CF}}=25.7,25.7 \mathrm{~Hz}\right), 81.5,68.7,28.0 ;{ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ppm -104, -109 (d, $J_{\mathrm{HF}}=8.5 \mathrm{~Hz}$); HRMS (ESI): decomposed to imine during analysis (M $=242$).

tert-Butyl 2,4-difluorobenzylidenecarbamate (193SI). A $500-\mathrm{mL}$ round-bottomed flask was charged with tert-butyl ((2,4-difluorophenyl)(phenylsulfonyl)methyl)carbamate $(11.9 \mathrm{~g}, 31.0 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(30.0 \mathrm{~g}, 217 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{SO}_{4}(35.2 \mathrm{~g}, 248 \mathrm{mmol})$ and THF $(260 \mathrm{~mL})$. The pot was refluxed for 4 h until completion (checked by ${ }^{1} \mathrm{H}$ NMR). The reaction mixture was filtered through Celite, washed with diethyl ether and concentrated on low heat to yield the title compound as a colorless oil [7.15 $\mathrm{g}, 96 \%$ ($<2 \%$ aldehyde)]. IR (film) 3079, 2982, 2936, 1718, 1619, $1502 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.08$ $(\mathrm{s}, 1 \mathrm{H}), 8.16(\mathrm{ddd}, J=8.5,8.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{ddd}, J=8.9,8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ (ddd, $J=10.7,8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) ppm 166.5 $\left(\mathrm{dd}, J_{\mathrm{CF}}=258,12.5 \mathrm{~Hz}\right), 164.4\left(\mathrm{dd}, J_{\mathrm{CF}}=260,12.8 \mathrm{~Hz}\right), 162.3,161.7\left(\mathrm{~d}, J_{\mathrm{CF}}=4.6 \mathrm{~Hz}\right)$, $130.2\left(\mathrm{dd}, J_{\mathrm{CF}}=10.5,3.1 \mathrm{~Hz}\right), 118.7\left(\mathrm{dd}, J_{\mathrm{CF}}=8.9,3.5 \mathrm{~Hz}\right), 112.6\left(\mathrm{dd}, J_{\mathrm{CF}}=22.0,3.3\right.$ $\mathrm{Hz}), 104.4\left(\mathrm{dd}, J_{\mathrm{CF}}=25.0,25.0 \mathrm{~Hz}\right), 82.7,27.9 ;{ }^{19} \mathrm{~F}$ NMR $(282 \mathrm{MHz}, \mathrm{CDCl} 3) \mathrm{ppm}-98,-$ 112; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$242.0987, found 242.0989.

(R)-N-(1-(2,4-Difluorophenyl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2yl)benzamide (193, FF-VNI). Prepared according to the general procedure. $[\alpha]_{D}^{20}+18\left(c 0.20, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.28\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ IR (film) $3261,3064,1657$, $1617,1550,1503 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.13(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{br} \mathrm{d}, 2 \mathrm{H}), 7.20(\mathrm{ddd}, J=$ $8.3,8.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.91(\mathrm{ddd}, J=10.9,8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.84(\mathrm{~m}$, $2 \mathrm{H}), 5.67(\mathrm{ddd}, J=7.2,7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=14.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=$ $14.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13}{ }^{1} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ppm} 166.2,165.1,163.6,162.9\left(\mathrm{dd}, J_{\mathrm{CF}}=\right.$ $252,12.5 \mathrm{~Hz}), 160.8\left(\mathrm{dd}, J_{\mathrm{CF}}=247,11.9 \mathrm{~Hz}\right), 137.4,136.2,132.1,130.4,129.7,129.2$, $127.9,127.1,127.0,126.9,123.4,120.6\left(\mathrm{~d}, J_{\mathrm{CF}}=13.8 \mathrm{~Hz}\right), 119.3,112.2\left(\mathrm{dd}, J_{\mathrm{CF}}=21.3\right.$, $3.5 \mathrm{~Hz}), 104.8\left(\mathrm{dd}, J_{\mathrm{CF}}=25.4,25.4 \mathrm{~Hz}\right), 51.2,49.9 ;{ }^{19} \mathrm{~F} \mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ppm}-$ 106, -112; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 472.1585$, found 472.1572.

${ }^{4}$ CIStilbBAM ((1R,2R)-N1,N2-bis(4-Chloroquinolin-2-yl)-1,2-diphenylethane-1,2-

 diamine) (115SI). A $50-\mathrm{mL}$, round-bottomed flask equipped with a stir bar was charged with ($1 R, 2 R$)-(+)-1,2-diphenylethylenediamine ($859 \mathrm{mg}, 4.00 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{dba})_{2}(34 \mathrm{mg}$, $60 \mu \mathrm{~mol}$), rac-BINAP ($74 \mathrm{mg}, 120 \mu \mathrm{~mol}$), sodium tert-butoxide ($961 \mathrm{mg}, 10.0 \mathrm{mmol}$), and 2,4-dichloroquinoline $(1.58 \mathrm{~g}, 8.00 \mathrm{mmol})$. The reaction vessel was placed under an argon atmosphere, toluene (23 mL) was dispensed into the flask, and the resulting solution was placed into an oil bath heated to $80^{\circ} \mathrm{C}$ with stirring. The reaction was monitored by TLC and after 1 h nearly complete conversion was observed. The reaction was stirred for an additional 1 hour, and cooled to $25^{\circ} \mathrm{C}$, diluted with ethyl acetate, and filtered through plug of Celite. The organic mixture was concentrated and the crude solid was triturated with 40 mL of a benzene/pentane (25/75) mixture. The solid was filtered and dried under vacuum to give a light yellow solid ($1.70 \mathrm{~g}, 79 \%$), which was used in the next step without further purification. $\mathrm{R}_{f}=0.45(20 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{D}^{20}+3.3(c$ $1.0, \mathrm{CHCl}_{3}$); IR (film) $3239,3060,1602 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(45^{\circ} \mathrm{C}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.83$ (br s, 2H), 7.63 (dd, $J=7.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{dd}, J=7.8,7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 10 \mathrm{H}), 6.56(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.31(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.62(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(45{ }^{\circ} \mathrm{C}, 150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ppm} 156.5,148.4,142.9,140.0,130.5,128.4,127.8,127.6$, 126.4, 124.3, 122.8. 121.9, 111.7, 62.1; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}$535.1456, found 535.1432.

StilbPBAM (115) [(1R,2R)-1,2-Diphenyl-N1,N2-bis(4-(pyrrolidin-1-yl)quinolin-2-

 yl)ethane-1,2-diamine] (115) /updated from submitted manuscript. A 2-5 mL microwave vial equipped with a stir bar was charged with ${ }^{4}$ CIStilb-BAM ($803 \mathrm{mg}, 1.50$ mmol), pyrrolidine ($493 \mu \mathrm{~L}, 6.00 \mathrm{mmol}$), and trifluoromethylbenzene (1.5 mL). The vial was sealed, and this suspension was heated with stirring at $120^{\circ} \mathrm{C}$ in the microwave for 10+10 min. The reaction mixture was diluted with dichloromethane and transferred to a round-bottomed flask for evaporation. Flash column chromatography $\left(\mathrm{SiO}_{2}, 2-5-10 \%\right.$ methanol in dichloromethane) yielded a brown solid that was washed with 3 M NaOH to give a yellow solid $(707 \mathrm{mg}, 78 \%) . \mathrm{R}_{f}=0.66\left(20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{D}^{20}+92(c 1.0$, CHCl_{3}); IR (film) $3238,3060,2971,1584 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($50{ }^{\circ} \mathrm{C}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.43(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{br} \mathrm{s}, 4 \mathrm{H})$, $7.26(\mathrm{~s}, 2 \mathrm{H}), 7.19(\mathrm{br} \mathrm{m}, 4 \mathrm{H}), 7.14(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.52(\mathrm{br} \mathrm{m}, 4 \mathrm{H})$, 3.33 (br s, 4H), $3.22(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 1.86(\mathrm{~s}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 157.7, 153.5, $149.7,141.4,128.3,128.0,127.9,126.8,126.6,124.7,119.3,118.6,92.0,62.1,51.5,25.5$ ppm; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{40} \mathrm{H}_{41} \mathrm{~N}_{6}[\mathrm{M}+\mathrm{H}]^{+} 605.3393$, found 605.3372. A crystal structure of the catalyst dimer was obtained. See Appendix.FIGURE SI. Crystal Structure of StilbPBAM. See Appendix for complete details.

StilbPBAM•HNTf $_{\mathbf{2}}\left(\mathbf{1 1 5} \cdot \mathbf{H N T f}_{\mathbf{2}}\right)$ A flame dried vial equipped with a stir bar was charged with bistrifluoromethanesulfonimide ($141 \mathrm{mg}, 500 \mu \mathrm{~mol}$) and dichloromethane $(5 \mathrm{~mL})$, cooled to $0^{\circ} \mathrm{C}$, and Stilb-PBAM (302 mg, $\left.500 \mu \mathrm{~mol}\right)$ was added. The solution was stirred for 30 minutes before the solvent was removed in vacuo to give the catalyst as a beige solid that was used without any purification. Other acid salts used in reaction optimization were made in a similar fashion using the corresponding acids and equivalents.

Preparation of unsaturated acids. Known compounds were synthesized according to known procedures. A modified procedure (from Ishihara ${ }^{131}$ and Rovis ${ }^{132}$) was used to synthesize the keto-acids using an organocuprate addition to minimize double aryllithium addition leading to the alcohol.

5-(3-Fluorophenyl)hex-5-enoic acid (270f). A flame dried, round-bottomed flask, equipped with a stir bar and condenser, was charged with magnesium turnings (0.292 g , 12.0 mmol) and a catalytic amount of iodine. A small amount of heat was applied to produce iodine vapor and tetrahydrofuran (15 mL) was added, followed by dropwise addition of 3-bromofluorobenzene ($1.75 \mathrm{~g}, 10.0 \mathrm{mmol}$). After a mild reflux, the reaction was allowed to cool to room temperature. The Grignard reagent was then transferred via cannulation to a suspension of copper(I) iodide ($952 \mathrm{mg}, 5.00 \mathrm{mmol}$) in tetrahydrofuran $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The solution was stirred for 1 hour at room temperature, then cooled to 0 ${ }^{\circ} \mathrm{C}$ before addition of glutaric anhydride ($571 \mathrm{mg}, 5.00 \mathrm{mmol}$). The reaction was warmed to room temperature and stirred for 1.5 h , then quenched with 3 M HCl and concentrated in vacuo to remove tetrahydrofuran. The aqueous layer was diluted with diethyl ether and filtered into a separatory funnel. The aqueous layer was extracted with diethyl ether and the combined organic layers were washed with brine and dried over magnesium sulfate.

[^74]Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-30-50 \%\right.$ ethyl acetate in hexanes) yielded a colorless oil $(0.90 \mathrm{~g}, 86 \%)$ that was determined to be $>90 \%$ pure (contaminated with double Grignard addition product) and used without further purification. $\mathrm{R}_{f}=0.10(50 \%$ EtOAc/hexanes).

The title compound was prepared according to the general procedure described by Hartwig ${ }^{133}$ using the synthetic keto-acid. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-25-\right.$ 40% ethyl acetate in hexanes) yielded a colorless solid ($0.24 \mathrm{~g}, 73 \%$). $\mathrm{R}_{f}=0.33(50 \%$ EtOAc/hexanes) visualized with CAM; IR (film) 3083, 2931, $1708 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{ddd}, J=7.9,7.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{ddd}, J$ $=10.5,2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{ddd}, J=8.2,8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H})$, $2.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{tt}, J=7.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ppm} 179.6,162.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=244 \mathrm{~Hz}\right), 146.2,143.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=8.0 \mathrm{~Hz}\right)$, $129.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=8.0 \mathrm{~Hz}\right), 121.7\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=2.0 \mathrm{~Hz}\right), 114.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=21 \mathrm{~Hz}\right), 114.1,113.0$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{CF}}=22 \mathrm{~Hz}\right), 34.3,33.2,22.9 ;{ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ppm}-111.6\left(\mathrm{dd}, J_{\mathrm{HF}}=\right.$ 14.1, 8.5 Hz); HRMS (ESI): Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{FNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$208.0894, found 208.0888.

5-(m-Tolyl)hex-5-enoic acid (270k). A flame dried, round-bottomed flask, equipped with a stir bar and condenser, was charged with magnesium turnings ($0.92 \mathrm{~g}, 38 \mathrm{mmol}$) and a catalytic amount of iodine. A small amount of heat was applied to produce iodine vapor and tetrahydrofuran (15 mL) was added, followed by dropwise addition of metabromotoluene ($1.21 \mathrm{~mL}, 10.0 \mathrm{mmol}$). After a mild reflux, the reaction was allowed to cool to room temperature. The Grignard reagent was then transferred via cannulation to a suspension of copper(I) iodide ($950 \mathrm{mg}, 5.00 \mathrm{mmol}$) in tetrahydrofuran $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The solution was stirred for 1 hour at room temperature, then cooled to $0^{\circ} \mathrm{C}$ before addition of glutaric anhydride ($571 \mathrm{mg}, 5.00 \mathrm{mmol}$). The reaction was warmed to room temperature and stirred for 1.5 h , then quenched with 3 M HCl and concentrated in vacuo to remove tetrahydrofuran. The aqueous layer was diluted with diethyl ether and filtered into a separatory funnel. The aqueous layer was extracted with diethyl ether and the combined organic layers were washed with brine and dried over magnesium sulfate. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-30-50 \%\right.$ ethyl acetate in hexanes) yielded a colorless oil ($158 \mathrm{mg}, 15 \%$) that was determined to be $>90 \%$ pure (contaminated with double Grignard addition product) and used without further purification. $\mathrm{R}_{f}=0.16$ (50\% EtOAc/hexanes).

The title compound was prepared according to the general procedure described by Hartwig ${ }^{133}$ using the synthetic keto-acid. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-25-\right.$ 50% ethyl acetate in hexanes) yielded a colorless oil ($88 \mathrm{mg}, 72 \%$). $\mathrm{R}_{f}=0.40(50 \%$ EtOAc/hexanes) visualized with CAM; IR (film) 3081, 2928, $1708 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.06(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, $1.80(\mathrm{tt}, J=7.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 179.6, 147.4, 140.7, 137.9, 128.23, 128.22, 126.9, 123.2, 112.9, 34.5, 33.2, 23.0, 21.5; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$204.1145, found 204.1146.

[^75]

5-(3-Chlorophenyl)hex-5-enoic acid (270g). A flame dried, round-bottomed flask, equipped with a stir bar and condenser, was charged with magnesium turnings (0.466 g , 19.2 mmol) and a catalytic amount of iodine. A small amount of heat was applied to produce iodine vapor and tetrahydrofuran (20 mL) was added, followed by dropwise addition of 3 -chlorofluorobenzene ($3.06 \mathrm{~g}, 16.0 \mathrm{mmol}$). After a mild reflux, the reaction was allowed to cool to room temperature. The Grignard reagent was then transferred via cannulation to a suspension of copper(I) iodide $(1.52 \mathrm{~g}, 8.00 \mathrm{mmol})$ in tetrahydrofuran $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The solution was stirred for 1 hour at room temperature, then cooled to 0 ${ }^{\circ} \mathrm{C}$ before addition of glutaric anhydride ($912 \mathrm{mg}, 8.00 \mathrm{mmol}$). The reaction was warmed to room temperature and stirred for 1.5 h , then quenched with 3 M HCl and concentrated in vacuo to remove tetrahydrofuran. The aqueous layer was diluted with diethyl ether and filtered into a separatory funnel. The aqueous layer was extracted with diethyl ether and the combined organic layers were washed with brine and dried over magnesium sulfate. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-30-50 \%\right.$ ethyl acetate in hexanes) yielded a colorless oil ($0.40 \mathrm{~g}, 22 \%$) that was determined to be $>90 \%$ pure (contaminated with double Grignard addition product) and used without further purification. $\mathrm{R}_{f}=0.20(60 \%$ EtOAc/hexanes).

The title compound was prepared according to the general procedure described by Hartwig ${ }^{133}$ using the synthetic keto-acid. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-20-\right.$ 50% ethyl acetate in hexanes) yielded a white solid ($0.25 \mathrm{~g}, 78 \%$). $\mathrm{R}_{f}=0.12(50 \%$

EtOAc/hexanes) visualized with CAM; IR (film) 3414, 2934, $1708 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 3 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 2.54(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 2.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{tt}, J=7.4,7.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) ppm 179.9, 146.2, 142.6, 134.3, 129.6, 127.5, 126.3, 124.2, 114.2, 34.3, 33.2, 22.9; HRMS (EI): Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClO}_{2}[\mathrm{M}]^{+}$224.0599, found 224.0597.

6-Phenylhept-6-enoic acid (270c). The title compound was prepared according to the general procedure described by Hartwig using the commercial keto-acid. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-40 \%\right.$ ethyl acetate in hexanes) yielded a white solid (1.92 g , $94 \%) . \mathrm{Mp} 52-53{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.46$ (50\% EtOAc/hexanes); IR (film) 3033, 2933, $1698 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{dd}, J=7.7,7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.25(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 2.53(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.67(\mathrm{dt}, J=15.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.50(\mathrm{dt}, J=15.2 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) ppm 180.2, 148.0, 141.1, 128.3, 127.3, 126.1, 112.5, 34.9, 33.8, 27.5, 24.2; HRMS (CI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}]^{+}$204.1145, found 204.1147.

General procedure for enantioselective esterifications: To a flame dried vial equipped with a stir bar was added $\mathrm{PBAM} \cdot \mathrm{HNTf}_{2}(4.4 \mathrm{mg}, 2.0 \mu \mathrm{~mol})$, 5-phenylhex-5-enoic acid $(19.0 \mathrm{mg}, 100 \mu \mathrm{~mol})$ and toluene $(2 \mathrm{~mL})$, and the reaction was cooled to $-20^{\circ} \mathrm{C}$. NIS $(23.3 \mathrm{mg}, 104 \mu \mathrm{~mol})$ was added and the reaction mixture was stirred without light for 12 h. The mixture was treated with 20% aq sodium thiosulfate (2 mL) and then partitioned between dichloromethane (15 mL) and $3 \mathrm{M} \mathrm{NaOH}(15 \mathrm{~mL})$. The aqueous layer was extracted twice and the organic layers were combined, dried over magnesium sulfate and concentrated. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-25-50 \%\right.$ ethyl acetate in hexanes) yielded an oil ($30 \mathrm{mg}, 95 \%$). The product was determined to be 98% ee by chiral HPLC analysis $\left(\right.$ Chiralcel OD-H, $15 \%{ }^{i} \mathrm{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, minor $)=9.1 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, major $)=12.0 \mathrm{~min}) ; \mathrm{R}_{f}=0.30(25 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with $\mathrm{CAM} ;[\alpha]_{D}^{20}-27(c$ $1.2, \mathrm{CHCl}_{3}$); Remainder of physical data matched with literature values. ${ }^{134}$

[^76]General procedure for racemic esterification: To a flame dried vial equipped with a stir bar was added DMAP ($2.4 \mathrm{mg}, 2.0 \mu \mathrm{~mol}$), 5-phenylhex-5-enoic acid ($19.0 \mathrm{mg}, 100$ $\mu \mathrm{mol})$ and dichloromethane (1 mL). NIS ($31.3 \mathrm{mg}, 0.140 \mathrm{mmol}$) was added and the reaction mixture was stirred without light for 30 min at room temperature. The mixture was treated with 20% aq sodium thiosulfate $(2 \mathrm{~mL})$ and then partitioned between dichloromethane (15 mL) and $3 \mathrm{M} \mathrm{NaOH}(15 \mathrm{~mL})$. The aqueous layer was extracted twice and the organic layers were combined, dried over magnesium sulfate and concentrated. The mixture was dissolved in dichloromethane and passed through a pipet silica plug with 5 mL of mobile phase ($50 \% \mathrm{EtOAc} /$ hexanes). The solvent was removed in vacuo to give the product.

(R)-5-(Iodomethyl)-5-phenyldihydrofuran-2(3H)-one (271b). Prepared according to the general procedure using 4-phenylpent-4-enoic acid ${ }^{132}(17.6 \mathrm{mg}, 0.100 \mathrm{mmol})$, PBAM $\cdot \mathrm{HNTf}_{2}(4.4 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and NIS $(24.6 \mathrm{mg}, 0.110 \mathrm{mmol})$ over 24 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-25-50 \%\right.$ ethyl acetate in hexanes) yielded a colorless oil ($30 \mathrm{mg}, 99 \%$). The product was determined to be 67% ee by chiral HPLC analysis $\left(\right.$ Chiralcel AD-H, $10 \%{ }^{i} \operatorname{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, major $)=9.0 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, minor $)=$ $10.0 \mathrm{~min}) ; \mathrm{R}_{f}=0.31(50 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with CAM. Remainder of physical data matched with literature values. ${ }^{134}$

7-(Iodomethyl)-7-phenyloxepan-2-one (271c). To a flame dried vial equipped with a stir bar was added DMAP ($6 \mathrm{mg}, 50 \mu \mathrm{~mol}$), 6-phenylhept-6-enoic acid ($20 \mathrm{mg}, 100$ $\mu \mathrm{mol})$ and dichloromethane (1 mL). NIS ($34 \mathrm{mg}, 0.15 \mathrm{mmol}$) was added and the reaction was stirred without light for 16 h . The reaction as quenched with 2 mL of 20% aq sodium thiosulfate. The mixture was treated with 20% aq sodium thiosulfate (3 mL) and then partitioned between dichloromethane (15 mL) and $3 \mathrm{M} \mathrm{NaOH}(15 \mathrm{~mL})$. The aqueous layer was extracted twice and the organic layers were combined, dried over magnesium sulfate and concentrated. Flash column chromatography $\left(\mathrm{SiO}_{2}, 3-20 \%\right.$ ethyl acetate in hexanes) yielded a yellow oil ($15 \mathrm{mg}, 45 \%$). Chiral HPLC analysis revealed two peaks of equal area (Chiralcel AD-H, $10 \%{ }^{i} \mathrm{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right)=8.2 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right)=9.3$ $\mathrm{min}) ; \mathrm{R}_{f}=0.37$ (20\% EtOAc/hexanes) visualized with CAM; IR (film) 3451, 2931, 2860, $1727 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{dd}, J=7.7,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.66 (ddd, $J=15.6,3.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{ddd}, J=16.0,12.9,3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.97$ (ddd, $J=13.4,13.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.51(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) ppm 174.3, 138.9, 129.2, 128.4, 126.0, 82.9, 37.3, 36.6, 24.4, 22.8, 21.2; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{INaO}_{2}[\mathrm{M}]^{+} 353.0015$, found 353.0003.

(R)-6-(4-Fluorophenyl)-6-(iodomethyl)tetrahydro-2H-pyran-2-one (271d). Prepared according to the general procedure using 4-(4-fluorophenyl)hex-5-enoic acid ${ }^{134}$ (20.8 mg , $0.100 \mathrm{mmol}), \mathrm{PBAM} \cdot \mathrm{HNTf}_{2}(4.4 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and NIS $(24.6 \mathrm{mg}, 0.110 \mathrm{mmol})$ over 24 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-25-50 \%\right.$ ethyl acetate in hexanes) yielded a yellow solid ($32 \mathrm{mg}, 96 \%$). The product was determined to be 98% ee by chiral HPLC analysis (Chiralcel AD-H, $10 \%{ }^{i} \mathrm{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, minor) $=10.6 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, major) $=11.9 \mathrm{~min}) ; \mathrm{R}_{f}=0.50(50 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with CAM. Remainder of physical data matched with literature values. ${ }^{134}$

(R)-6-(4-Chlorophenyl)-6-(iodomethyl)tetrahydro-2H-pyran-2-one (271e). Prepared according to the general procedure using 5-(4-chlorophenyl)hex-5-enoic acid ${ }^{134}$ (22.5 mg , $0.100 \mathrm{mmol}), \mathrm{PBAM} \cdot \mathrm{HNTf}_{2}(4.4 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and NIS $(24.6 \mathrm{mg}, 0.110 \mathrm{mmol})$ over 24 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-25-50 \%\right.$ ethyl acetate in hexanes) yielded a yellow solid ($32 \mathrm{mg}, 91 \%$). The product was determined to be 97% ee by chiral HPLC analysis (Chiralcel AD-H, $10 \%{ }^{i} \mathrm{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, minor) $=10.4 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, major) $=13.0 \mathrm{~min}) ; \mathrm{R}_{f}=0.27(25 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with CAM. Remainder of physical data matched with literature values. ${ }^{134}$

(R)-6-(3-Fluorophenyl)-6-(iodomethyl)tetrahydro-2H-pyran-2-one (271f). Prepared according to the general procedure using 5-(3-fluorophenyl)hex-5-enoic acid (20.8 mg , $0.100 \mathrm{mmol}), \mathrm{PBAM} \cdot \mathrm{HNTf}_{2}(4.4 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and NIS $(24.6 \mathrm{mg}, 0.110 \mathrm{mmol})$ over 48 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-25-50 \%\right.$ ethyl acetate in hexanes) yielded an oil ($17 \mathrm{mg}, 52 \%$). The product was determined to be 96% ee by chiral HPLC analysis $\left(\right.$ Chiralcel OD-H, $10 \%{ }^{i} \operatorname{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, minor $)=12.2 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, major $)=$ $15.0 \mathrm{~min}) ; \mathrm{R}_{f}=0.47$ (50\% EtOAc/hexanes) visualized with CAM; $[\alpha]_{D}^{20}-23(c 0.80$, CHCl_{3}); IR (film) 2958, $1740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37$ (ddd, $J=8.0,8.0$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=7.9 \mathrm{~Hz}, 0.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{ddd}, J=10.0,2.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ (ddd, $J=8.7,8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 2.55-2.30(\mathrm{~m}, 4 \mathrm{H}), 1.85(\mathrm{ddddd}, J=13.6$, 8.4, 4.4, 4.4, 4.4 Hz, 1H), 1.64-1.53 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 169.9, $163.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=247 \mathrm{~Hz}\right), 143.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=7.0 \mathrm{~Hz}\right), 130.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=8.0 \mathrm{~Hz}\right), 120.9\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}\right.$ $=3.0 \mathrm{~Hz}), 115.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=19 \mathrm{~Hz}\right), 112.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=17 \mathrm{~Hz}\right), 84.0,32.1,29.0,16.8,16.5$; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm -109.1 (dd, $J_{\mathrm{HF}}=14.1,8.5 \mathrm{~Hz}$); HRMS (ESI): Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{FINaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 356.9764$, found 356.9781 .

(R)-6-(3-Chlorophenyl)-6-(iodomethyl)tetrahydro-2H-pyran-2-one (271g). Prepared according to the general procedure using 5-(3-chlorophenyl)hex-5-enoic acid (22.5 mg , $0.100 \mathrm{mmol}), \mathrm{PBAM} \cdot \mathrm{HNTf}_{2}(4.4 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and NIS $(24.6 \mathrm{mg}, 0.110 \mathrm{mmol})$ over 48 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-25-50 \%\right.$ ethyl acetate in hexanes) yielded an oil ($18 \mathrm{mg}, 51 \%$). The product was determined to be 97% ee by chiral HPLC analysis $\left(\right.$ Chiralcel OD-H, $10 \%{ }^{i} \operatorname{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, minor $)=12.0 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, major $)=$ $13.9 \mathrm{~min}) ; \mathrm{R}_{f}=0.62(50 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with $\mathrm{CAM} ;[\alpha]_{D}^{20}-20(c 0.75$, CHCl_{3}); IR (film) 2925, $1740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.31(\mathrm{~m}, 3 \mathrm{H})$, 7.29-7.25 (m, 1H), 3.54 (s, 2H), 2.55-2.30 (m, 4H), $1.85(\mathrm{ddddd}, J=13.7,8.5,4.2,4.2$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \mathrm{ppm} 169.8,142.4,135.1$, 130.3, 128.7, 125.6, 123.5, 83.9, 32.1, 29.0, 16.9, 16.5; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ClINaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 372.9468$, found 372.9482 .

(R)-6-(Iodomethyl)-6-(4-(trifluoromethyl)phenyl)tetrahydro-2H-pyran-2-one (271h). Prepared according to the general procedure using 5-(4-(trifluoromethyl)phenyl)hex-5enoic $\operatorname{acid}^{135}(25.8 \mathrm{mg}, 0.100 \mathrm{mmol})$, PBAM $\cdot \mathrm{HNTf}_{2}(4.4 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and NIS $(24.6$ $\mathrm{mg}, 0.110 \mathrm{mmol})$ over 48 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-25-50 \%\right.$ ethyl acetate in hexanes) yielded a yellow oil ($10 \mathrm{mg}, 26 \%$). The product was determined to be 96% ee by chiral HPLC analysis (Chiralcel AD-H, $7 \%{ }^{i} \mathrm{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, minor $)=10.4 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, major $\left.)=14.0 \mathrm{~min}\right) ; \mathrm{R}_{f}=0.53(50 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with CAM; $[\alpha]_{D}^{20}-14\left(c 0.55, \mathrm{CHCl}_{3}\right)$; IR (film) $2926,1741 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 2.57-2.33(\mathrm{~m}$, $4 \mathrm{H}), 1.86$ (ddddd, $J=13.6,8.0,4.0,4.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ppm} 169.7,144.4,130.7\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=33 \mathrm{~Hz}\right), 126.0\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}}=4.0 \mathrm{~Hz}\right), 125.8$, $123.7\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272 \mathrm{~Hz}\right), 84.1,32.2,29.0,16.6,16.5 ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 60.9; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 406.9732$, found 406.9745.

(R)-6-(Iodomethyl)-6-(4-methoxyphenyl)tetrahydro-2H-pyran-2-one (271i). Prepared according to the general procedure using 5-(4-methoxyphenyl)hex-5-enoic acid ${ }^{134}$ (22.0 $\mathrm{mg}, \quad 0.100 \mathrm{mmol}), \quad \mathrm{PBAM} \cdot \mathrm{HNTf}_{2} \quad(4.4 \mathrm{mg}, \quad 5.0 \mu \mathrm{~mol})$ and 1,3 -diiodo-5,5dimethylhydantoin ($22.8 \mathrm{mg}, 60.0 \mu \mathrm{~mol}$) over 2 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-30 \%\right.$ ethyl acetate in hexanes) yielded a yellow solid ($29 \mathrm{mg}, 84 \%$) that was quick to decompose. The product was determined to be 85% ee by chiral HPLC analysis $\left(\right.$ Chiralcel OD-H, $15 \%{ }^{i} \operatorname{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}, \operatorname{minor}\right)=11.7 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, major $)=$ $12.9 \mathrm{~min}) ; \mathrm{R}_{f}=0.5$ (40% EtOAc/hexanes) visualized with CAM. Remainder of physical data matched with literature values. ${ }^{134}$

Alternatively, the reaction was prepared according to the general procedure using 5-(4-methoxyphenyl)hex-5-enoic acid ($22.0 \mathrm{mg}, 0.100 \mathrm{mmol}$), $\mathrm{PBAM} \cdot \mathrm{HNTf}_{2}(4.4 \mathrm{mg}, 5.0$ $\mu \mathrm{mol})$ and NIS ($24.6 \mathrm{mg}, 0.11 \mathrm{mmol}$) over 16 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-30 \%\right.$ ethyl acetate in hexanes) yielded a yellow solid ($30 \mathrm{mg}, 87 \%$) that was quick to decompose. The product was determined to be 74% ee by the chiral HPLC analysis listed above.

(R)-6-(Iodomethyl)-6-(p-tolyl)tetrahydro-2H-pyran-2-one (271j). Prepared according to the general procedure using 4 -(p-tolyl $)$ hex- 5 -enoic $\operatorname{acid}^{134}(20.4 \mathrm{mg}, 0.100 \mathrm{mmol}$), $\mathrm{PBAM} \cdot \mathrm{HNTf}_{2}(4.4 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and NIS $(24.6 \mathrm{mg}, 0.110 \mathrm{mmol})$ over 24 hours. Flash column chromatography ($\mathrm{SiO}_{2}, 10-25-50 \%$ ethyl acetate in hexanes) yielded a yellow oil ($32 \mathrm{mg}, 97 \%$). The product was determined to be 96% ee by chiral HPLC analysis $\left(\right.$ Chiralcel OD-H, $7 \%{ }^{i} \operatorname{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, minor $)=10.8 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, major $)=$ $12.9 \mathrm{~min}) ; \mathrm{R}_{f}=0.45$ ($25 \% \mathrm{EtOAc} /$ hexanes) visualized with CAM. Remainder of physical data matched with literature values. ${ }^{134}$

(R)-6-(Iodomethyl)-6-(m-tolyl)tetrahydro-2H-pyran-2-one (271k). Prepared according to the general procedure using 5-(m-tolyl)hex-5-enoic acid ($20.4 \mathrm{mg}, 0.100 \mathrm{mmol}$), PBAM $\cdot \mathrm{HNTf}_{2}(4.4 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and NIS $(24.6 \mathrm{mg}, 0.110 \mathrm{mmol})$ over 24 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-25-50 \%\right.$ ethyl acetate in hexanes) yielded an oil (30 $\mathrm{mg}, 91 \%$). The product was determined to be 97% ee by chiral HPLC analysis (Chiralcel OD-H, $7 \%{ }^{i} \operatorname{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, minor $)=10.3 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, major $\left.)=11.7 \mathrm{~min}\right)$; $\mathrm{R}_{f}=0.28(25 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with $\mathrm{CAM} ;[\alpha]_{D}^{20}-30\left(c \quad 1.3, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}$ (film) 2954, 2921, $1738 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 2.52-$ $2.40(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.35-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{ddddd}, J=13.6,8.2,4.1,4.1,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.63-1.56(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) ppm 170.5, 140.1, 138.8, 129.1, $128.8,125.8,122.2,84.4,32.0,29.0,21.6,17.8,16.5 ;$ HRMS (ESI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{INaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 353.0015$, found 352.9999.

6-(Iodomethyl)-6-(o-tolyl)tetrahydro-2H-pyran-2-one (2711). Prepared according to the general procedure with DMAP ($2.4 \mathrm{mg}, 20 \mu \mathrm{~mol}$), 5-(o-tolyl)hex-5-enoic acid (20.4 $\mathrm{mg}, 0.100 \mathrm{mmol})$, and dichloromethane (1 mL), and NIS ($31.3 \mathrm{mg}, 0.140 \mathrm{mmol}$) without light for 40 min at room temperature. The mixture was treated with 20% aq sodium thiosulfate (2 mL) and then partitioned between dichloromethane (15 mL) and 3 M $\mathrm{NaOH}(15 \mathrm{~mL})$. The aqueous layer was extracted twice and the organic layers were combined, dried over magnesium sulfate and concentrated. The mixture was dissolved in dichloromethane and passed through a pipet silica plug with 5 mL of mobile phase (50\% $\mathrm{EtOAc} /$ hexanes). The solvent was removed in vacuo to give the product as an oil (29 mg , 88% yield). Chiral HPLC analysis revealed two peaks of equal area (Chiralcel OD-H, $\left.15 \%{ }^{i} \mathrm{PrOH} / \mathrm{hexanes}, 1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right)=8.3 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right)=9.4 \mathrm{~min}\right) ; \mathrm{R}_{f}=0.41(25 \%$ EtOAc/hexanes) visualized with CAM; IR (film) 2957, $1738 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 3 \mathrm{H}), 3.70(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}$, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{ddd}, J=14.4,4.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H})$, 2.32-2.25 (m, 2H), 1.91-1.83(m, 1H), 1.75-1.64 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 170.8, 137.0, 135.0, 133.6, 128.6, 126.9, 126.4, 85.3, 31.5, 28.4, 22.5, 16.2, 15.6; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{INaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 353.0015$, found 353.0029.

(R)-6-(Iodomethyl)-6-(naphthalen-2-yl)tetrahydro-2H-pyran-2-one (271m). Prepared according to the general procedure using 4-(naphthalen-2-yl)hex-5-enoic acid ${ }^{135}$ (24.0 $\mathrm{mg}, 0.100 \mathrm{mmol}), \mathrm{PBAM} \cdot \mathrm{HNTf}_{2}(4.4 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and NIS $(24.6 \mathrm{mg}, 0.110 \mathrm{mmol})$ over 24 hours. Flash column chromatography ($\mathrm{SiO}_{2}, 10-25-50 \%$ ethyl acetate in hexanes) yielded an oil ($35 \mathrm{mg}, 96 \%$). The product was determined to be 96% ee by chiral HPLC analysis (Chiralcel OD-H, $15 \%{ }^{i} \mathrm{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, minor) $=13.1 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, major) $=15.4 \mathrm{~min}) ; \mathrm{R}_{f}=0.40(25 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with CAM. Remainder of physical data matched with literature values. ${ }^{134}$

[^77]
(S)-6-(Iodomethyl)tetrahydro-2H-pyran-2-one (271q). Prepared according to the general procedure using hex-5-enoic acid $(11.4 \mathrm{mg}, 0.100 \mathrm{mmol}), \mathrm{PBAM} \cdot \mathrm{HNTf}_{2}(4.4$ $\mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and NIS ($24.6 \mathrm{mg}, 0.110 \mathrm{mmol}$) over 24 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-25-50 \%\right.$ ethyl acetate in hexanes) yielded an oil (6.0 mg , 25%). The product was determined to be 33% ee by chiral HPLC analysis (Chiralcel AD$\mathrm{H}, 10 \%{ }^{i} \mathrm{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, minor $)=11.0 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, major $\left.)=12.5 \mathrm{~min}\right) ; \mathrm{R}_{f}$ $=0.16(20 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with $\mathrm{CAM} ;[\alpha]_{D}^{20}-3.5\left(c 0.60, \mathrm{CHCl}_{3}\right)$; IR (film) 2922, $1730 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.28$ (dddd, $J=10.7,6.6,4.4,4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=10.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=10.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.56(\mathrm{~m}$, $1 \mathrm{H}), 2.45(\mathrm{ddd}, J=16.6,9.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dddd}, J=12.7,8.0,3.7,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.00-1.82 (m, 2H), 1.68-1.61 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 170.4, 78.7, 29.2, 28.0, 18.1, 7.3; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{IO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$240.9720, found 240.9712 .

(S)-6-Butyl-6-(iodomethyl)tetrahydro-2H-pyran-2-one (2710). Prepared according to the general procedure using 5-methylenenonanoic acid ${ }^{132}(17.0 \mathrm{mg}, 0.100 \mathrm{mmol})$, $\mathrm{PBAM} \cdot \mathrm{HNTf}_{2}(4.4 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and NIS $(24.6 \mathrm{mg}, 0.110 \mathrm{mmol})$ over 12 hours. Flash column chromatography ($\mathrm{SiO}_{2}, 10-25-50 \%$ ethyl acetate in hexanes) yielded a colorless oil ($28 \mathrm{mg}, 95 \%$). The product was determined to be 89% ee by chiral HPLC analysis $\left(\right.$ Chiralcel OD-H, $4 \%{ }^{i} \operatorname{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, minor $)=12.3 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, major $)=$ $13.3 \mathrm{~min}) ; \mathrm{R}_{f}=0.45(20 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with $\mathrm{CAM} ;[\alpha]_{D}^{20}-24$ (c 1.0, CHCl_{3}); IR (film) 2955, 2867, $1734 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.38(\mathrm{~d}, J=10.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.77(\mathrm{~m}$, $5 \mathrm{H}), 1.45-1.24(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{dd}, J=6.9,6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm $170.3,83.4,38.7,29.9,29.3,25.0,22.7,16.5,13.9,12.8$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{INaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 319.0171$, found 319.0180.

(R)-6-(Iodomethyl)-6-isopropyltetrahydro-2H-pyran-2-one
(271p). Prepared according to the general procedure using 6-methyl-5-methyleneheptanoic acid ${ }^{132}$ (15.6 $\mathrm{mg}, 0.100 \mathrm{mmol}), \mathrm{PBAM} \cdot \mathrm{HNTf}_{2}(4.4 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and NIS $(24.6 \mathrm{mg}, 0.110 \mathrm{mmol})$ over 48 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-25-50 \%\right.$ ethyl acetate in hexanes $)$ yielded a colorless oil ($24 \mathrm{mg}, 86 \%$). The product was determined to be 81% ee by chiral HPLC analysis (Chiralcel IA, $3 \% \mathrm{EtOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, minor) $=18.2 \mathrm{~min}$, $t_{\mathrm{r}}\left(e_{2}\right.$, major $\left.)=16.9 \mathrm{~min}\right) ; \mathrm{R}_{f}=0.24(25 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with CAM. Remainder of physical data matched with literature values. ${ }^{134}$

2-(iodomethyl)-2-phenyltetrahydro-2H-pyran (279). Prepared according to the general procedure using 5-phenylhex-5-en-1-ol ($17.6 \mathrm{mg}, 0.100 \mathrm{mmol}$), DMAP ($2.4 \mathrm{mg}, 20.0$ $\mu \mathrm{mol})$ and NIS ($31.3 \mathrm{mg}, 0.140 \mathrm{mmol}$) in dichloromethane over 1 hour. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-25-50 \%\right.$ ethyl acetate in hexanes) yielded an oil ($20 \mathrm{mg}, 66 \%$). Chiral HPLC analysis revealed two peaks of equal area (Chiralcel OD-H, 2\% $\left.{ }^{i} \mathrm{PrOH} / \mathrm{hexanes}, 0.4 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right)=11.6 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right)=12.4 \mathrm{~min}\right) ; \mathrm{R}_{f}=0.76(25 \%$ EtOAc/hexanes) visualized with CAM; IR (film) 2939, 2863, $1447 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.43-7.37(m, 4H), 7.32-7.29(m, 1H), 3.81-3.77 (m, 1H), $3.51(\mathrm{ddd}, J=$ $11.5,11.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{ddd}, J$ $=13.8,4.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{ddd}, J=13.8,12.1,3.9), 1.75-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.37(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ppm} 140.2,128.6,127.5,126.9,75.8,63.4,32.3,25.4$, 21.4, 19.9; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{IO}[\mathrm{M}+\mathrm{Na}]^{+} 302.0162$, found 302.0164.

${ }^{4} \mathrm{Cl}-{ }^{8}$ EtStilbBAM (${ }^{4} \mathrm{Cl}-285$) [(1R,2R)-N1,N2-Bis(4-chloro-8-ethylquinolin-2-yl)-1,2-

 diphenylethane-1,2-diamine]. A $25-\mathrm{mL}$, round-bottomed flask equipped with a stir bar was charged with ($1 R, 2 R$)-(+)-1,2-diphenylethylenediamine (318 mg , 1.50 mmol), $\operatorname{Pd}(\mathrm{dba})_{2}(13 \mathrm{mg}, 22 \mu \mathrm{~mol})$, rac-BINAP ($28 \mathrm{mg}, 45 \mu \mathrm{~mol}$), sodium tert-butoxide (360 $\mathrm{mg}, 3.75 \mathrm{mmol}$), and 2,4-dichloro-8-ethylquinoline ($678 \mathrm{mg}, 3.00 \mathrm{mmol}$). The reaction vessel was placed under an argon atmosphere, toluene (8 mL) was dispensed into the flask, and the resulting solution was placed into an oil bath heated to $80^{\circ} \mathrm{C}$ with stirring. The reaction was monitored by TLC and after 1 h nearly complete conversion was observed. The reaction was cooled to $25^{\circ} \mathrm{C}$, diluted with ethyl acetate, and filtered through a plug of Celite. Flash column chromatography ($\mathrm{SiO}_{2}, 1-3 \%$ ethyl acetate in hexanes) of the residue yielded a yellow solid $(800 \mathrm{mg}, 90 \%) . \mathrm{R}_{f}=0.72(20 \%$ EtOAc/hexanes); $[\alpha]_{D}^{20}+37.4$ (c 1.09, CHCl $_{3}$); IR (film) 3421, 3280, 3030, 2964, 2927, $1605,1517,1467 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{dd}, J=8.2,0.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.47 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.28-7.15 (m, 12H), 6.59 (s, 2H), 6.43 (br s, 2H), 5.62 (br s, 2 H), 3.28 (dq, $J=14.7,7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.10 (dq, $J=14.8,7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.34 (dd, $J=7.5,7.5$ $\mathrm{Hz}, 6 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 155.2, 146.5, 143.0, 140.7, 140.1, 129.3, 128.4, 127.6, 127.4, 122.7, 121.9, 121.7, 111.6, 62.9, 25.1, 14.9; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+} 591.2082$, found 591.2062.

${ }^{8}$ EtStilbPBAM (285) [(1R,2R)-N1,N2-Bis(8-ethyl-4-(pyrrolidin-1-yl)quinolin-2-yl)-

 1,2-diphenylethane-1,2-diamine]. A $0.5-2 \mathrm{~mL}$ microwave vial equipped with a stir bar was charged with ${ }^{4} \mathrm{Cl}-{ }^{8}$ EtStilbBAM ($660 \mathrm{mg}, 1.12 \mathrm{mmol}$), pyrrolidine ($367 \mu \mathrm{~L}, 4.46$ mmol), and trifluoromethylbenzene (1 mL). The vial was sealed, and this suspension was heated with stirring at $150{ }^{\circ} \mathrm{C}$ in the microwave for 20 m . The reaction mixture was diluted with dichloromethane and transferred to a round-bottomed flask for evaporation. The resulting solid was dissolved in dichloromethane and washed with $3 \mathrm{M} \mathrm{NaOH}(3 \times 50$ mL), water ($3 \times 50 \mathrm{~mL}$) and dried over magnesium sulfate. The solvent was removed in vacuo to provide a light brown powder. Flash column chromatography $\left(\mathrm{SiO}_{2}, 1-3-10-\right.$ 20% methanol in dichloromethane) of the residue yielded a yellow solid ($622 \mathrm{mg}, 84 \%$). $\mathrm{R}_{f}=0.38\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{D}^{20}+44.1\left(c 1.0, \mathrm{CHCl}_{3}\right) ;$ IR (film) 3417, 3260, 2964, $2869,1588,1525,1485,1424 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.20(\mathrm{dd}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{dd}, J=7.7$, $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.32(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.65(\mathrm{~s}, 2 \mathrm{H}), 5.57(\mathrm{~s}, 2 \mathrm{H}), 3.37-3.28(\mathrm{~m}, 10 \mathrm{H}), 3.14(\mathrm{dq}, J=$ $14.6,7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.88 (br s, 8 H), 1.37 (dd, $J=7.4,7.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) 156.9, 154.3, 147.7, 142.1, 140.0, 128.1, 127.8, 127.2, 126.8, 122.6, 119.1, 118.6, 92.8, 62.9, 51.9, 25.6, 25.5, 15.0 ppm ; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{44} \mathrm{H}_{49} \mathrm{~N}_{6}[\mathrm{M}+\mathrm{H}]^{+}$661.4019, found 661.4001.

${ }^{4} \mathrm{Cl}^{6,7} \mathbf{M e O S t i l b B A M}\left({ }^{4} \mathrm{Cl}-286\right)$ [(1R,2R)-N1,N2-Bis(4-chloro-6,7-dimethoxyquinolin-

2-yl)-1,2-diphenylethane-1,2-diamine]. A $25-\mathrm{mL}$, round-bottomed flask equipped with a stir bar was charged with $(1 R, 2 R)-(+)$-1,2-diphenylethylenediamine ($318 \mathrm{mg}, 1.50$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}(13 \mathrm{mg}, 22 \mu \mathrm{~mol})$, rac-BINAP ($28 \mathrm{mg}, 45 \mu \mathrm{~mol}$), sodium tert-butoxide ($360 \mathrm{mg}, 3.75 \mathrm{mmol}$), and 2,4-dichloro-6,7-dimethoxyquinoline ($774 \mathrm{mg}, 3.00 \mathrm{mmol}$). The reaction vessel was placed under an argon atmosphere, toluene (8 mL) was dispensed into the flask, and the resulting solution was placed into an oil bath heated to $80^{\circ} \mathrm{C}$ with stirring. The reaction was monitored by TLC and after 1 h nearly complete conversion was observed. The reaction was cooled to $25^{\circ} \mathrm{C}$, diluted with ethyl acetate, and filtered through a plug of Celite. Flash column chromatography $\left(\mathrm{SiO}_{2}, 20-40 \%\right.$ ethyl acetate in hexanes) of the residue yielded a yellow solid ($600 \mathrm{mg}, 92 \%$). $\mathrm{R}_{f}=0.10(20 \%$ EtOAc/hexanes); $[\alpha]_{D}^{20}+23.7$ (c 1.12, CHCl_{3}); IR (film) 3241, 3027, 1599, 1502, 1380, $1257 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.65(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.17$ $(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.12(\mathrm{~s}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~s}, 2 \mathrm{H}), 6.84(\mathrm{~s}, 2 \mathrm{H})$, 5.57 (br s, 2H), $3.85(\mathrm{~s}, 6 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO) ppm 155.4, 152.6, 146.4, 144.7, 141.8, 139.1, 127.7, 127.6, 126.6, 114.4, 109.2, 106.4, 102.4, 59.2, 55.6, 55.5; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 655.1879$, found 655.1849.

${ }^{6,7}$ MeOStilbPBAM (286) [(1R,2R)-N1,N2-Bis(6,7-dimethoxy-4-(pyrrolidin-1-yl)quinolin-2-yl)-1,2-diphenylethane-1,2-diamine]. A $0.5-2 \mathrm{~mL}$ microwave vial equipped with a stir bar was charged with ${ }^{4} \mathrm{Cl}^{6,7} \mathrm{MeOStilbBAM}(393 \mathrm{mg}, 600 \mu \mathrm{~mol})$, pyrrolidine ($200 \mu \mathrm{~L}, 2.40 \mathrm{mmol}$), and trifluoromethylbenzene ($800 \mu \mathrm{~L}$). The vial was sealed, and this suspension was heated with stirring at $110^{\circ} \mathrm{C}$ in the microwave for 20 m . The reaction mixture was diluted with dichloromethane and transferred to a roundbottomed flask for evaporation. The resulting solid was dissolved in dichloromethane and washed with $3 \mathrm{M} \mathrm{NaOH}(3 \times 50 \mathrm{~mL}$), water ($3 \times 50 \mathrm{~mL}$) and dried over magnesium sulfate. The solvent was removed in vacuo to provide a light brown powder. Flash column chromatography $\left(\mathrm{SiO}_{2}, 1-3-10-20 \%\right.$ methanol in dichloromethane) of the residue yielded a yellow solid $(407 \mathrm{mg}, 94 \%) . \mathrm{R}_{f}=0.34\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{D}^{20}+92.0(c$ $1.00, \mathrm{CHCl}_{3}$); IR (film) $3241,2961,1586,1515,1427 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.38(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.22(\mathrm{~s}, 2 \mathrm{H}), 7.18(\mathrm{dd}, J=7.7,7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.08(\mathrm{dd}, J=7.3$, $7.3 \mathrm{~Hz}, 4 \mathrm{H}), 6.80(\mathrm{~s}, 2 \mathrm{H}), 5.79(\mathrm{~s}, 2 \mathrm{H}), 5.51(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.81-$ $3.75(\mathrm{~m}, 4 \mathrm{H}), 3.33(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 1.89(\mathrm{br} \mathrm{s}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{DMSO}$) 156.7, 152.4, $150.6,145.7,143.4,142.9,127.64,127.57,126.3,111.2,106.7,105.4,91.2,59.9,55.5$, 55.2, 51.2, 25.2 ppm ; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{44} \mathrm{H}_{49} \mathrm{~N}_{6} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 725.3815$, found 725.3789.

${ }^{6,7}$ DioxolStilbPBAM (287) [(1R,2R)-N1,N2-Bis(6,7-dimethoxy-4-(pyrrolidin-1-

 yl)quinolin-2-yl)-1,2-diphenylethane-1,2-diamine]. A $0.5-2 \mathrm{~mL}$ microwave vial equipped with a stir bar was charged with ${ }^{4} \mathrm{Cl}^{6,7}$ DioxolStilbBAM (semi-pure, 250 mg , $400 \mu \mathrm{~mol}$), pyrrolidine ($165 \mu \mathrm{~L}, 2.00 \mathrm{mmol}$), and trifluoromethylbenzene (1.4 mL). The vial was sealed, and this suspension was heated with stirring at $110^{\circ} \mathrm{C}$ in the microwave for 10 m and then $130{ }^{\circ} \mathrm{C}$ in the microwave for 10 m . The reaction mixture was diluted with dichloromethane and transferred to a round-bottomed flask for evaporation. The resulting solid was dissolved in dichloromethane and washed with $3 \mathrm{M} \mathrm{NaOH}(3 \times 50$ mL), water ($3 \times 50 \mathrm{~mL}$) and dried over magnesium sulfate. The solvent was removed in vacuo to provide a light brown powder. Flash column chromatography $\left(\mathrm{SiO}_{2}, 1-3-10\right.$ 20% methanol in dichloromethane) of the residue yielded a yellow solid ($90 \mathrm{mg}, 32 \%$). $\mathrm{R}_{f}=0.1\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{D}^{20}+84\left(c 0.71, \mathrm{CHCl}_{3}\right) ;$ IR (film) 3244, 2967, 2874, 1617, 1574, 1538, $1503 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~s}, 2 \mathrm{H}), 7.25-7.23(\mathrm{~m}$, $4 \mathrm{H}), 7.20-7.11(\mathrm{~m}, 6 \mathrm{H}), 7.06(\mathrm{~s}, 2 \mathrm{H}), 5.96(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 4 \mathrm{H}), 5.78(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.52(\mathrm{br} \mathrm{s}$, 2 H), 5.38 (br s, 2H), 3.32 (br m, 4H), 3.22 (br m, 4H), 1.89 (br m, 8H), ${ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 156.7, 153.9, 149.1, 147.1, 142.6, 141.1, 128.1, 127.9, 127.0, 112.7, 104.3, $101.8,100.9,91.2,62.1,51.6,25.5 \mathrm{ppm}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{42} \mathrm{H}_{41} \mathrm{~N}_{6} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+} 693.3189$, found 693.3172.

${ }^{4} \mathrm{Cl}^{6}{ }^{6} \mathrm{MeOStilbBAM} \quad\left({ }^{4} \mathrm{Cl}-288\right) \quad[(1 \mathrm{R}, 2 \mathrm{R})-\mathrm{N} 1, \mathrm{~N} 2-\mathrm{Bis}(4-\mathrm{chloro-6}-\mathrm{methoxyquinolin}-2-$

yl)-1,2-diphenylethane-1,2-diamine]. A $25-\mathrm{mL}$, round-bottomed flask equipped with a stir bar was charged with ($1 R, 2 R$)-(+)-1,2-diphenylethylenediamine ($235 \mathrm{mg}, 1.11$ $\mathrm{mmol}), \operatorname{Pd}(\mathrm{dba})_{2}(13 \mathrm{mg}, 22 \mu \mathrm{~mol}), r a c-B I N A P(28 \mathrm{mg}, 45 \mu \mathrm{~mol})$, sodium tert-butoxide ($265 \mathrm{mg}, 2.76 \mathrm{mmol}$), and 2,4-dichloro-6-dimethoxyquinoline ($505 \mathrm{mg}, 2.21 \mathrm{mmol}$). The reaction vessel was placed under an argon atmosphere, toluene (8 mL) was dispensed into the flask, and the resulting solution was placed into an oil bath heated to $80^{\circ} \mathrm{C}$ with stirring. The reaction was monitored by TLC and after 45 m nearly complete conversion was observed. The reaction was cooled to $25^{\circ} \mathrm{C}$, diluted with ethyl acetate, and filtered through a plug of Celite. Flash column chromatography $\left(\mathrm{SiO}_{2}, 5-10-20 \%\right.$ ethyl acetate in hexanes) of the residue yielded a yellow solid ($570 \mathrm{mg}, 87 \%$). $\mathrm{R}_{f}=0.42(20 \%$ EtOAc/hexanes); $[\alpha]_{D}^{20}+15.9$ (c 1.12, CHCl_{3}); IR (film) 3242, 3028, 1600, 1490, 1462, $1404 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.80(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.30$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.21(\mathrm{dd}, J=9.1,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{dd}, J=$ $7.6,7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H}), 5.30(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{DMSO}$) ppm 154.9, 154.7, 143.6, 141.7, 139.5, 127.9, 127.7, 127.64, 126.55, 121.6, 120.8, 112.3, 102.6, 59.3, 55.3; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 595.1668$, found 595.1653.

${ }^{6}$ MeOStilbPBAM (288) [(1R,2R)-N1,N2-Bis(6-methoxy-4-(pyrrolidin-1-yl)quinolin-

2-yl)-1,2-diphenylethane-1,2-diamine]. A $0.5-2 \mathrm{~mL}$ microwave vial equipped with a stir bar was charged with ${ }^{4} \mathrm{Cl}-{ }^{6} \mathrm{MeOStilbBAM}(550 \mathrm{mg}, 924 \mu \mathrm{~mol})$, pyrrolidine ($341 \mu \mathrm{~L}, 4.16$ mmol), and trifluoromethylbenzene ($800 \mu \mathrm{~L}$). The vial was sealed, and this suspension was heated with stirring at $110{ }^{\circ} \mathrm{C}$ in the microwave for 20 m . The reaction mixture was diluted with dichloromethane and transferred to a round-bottomed flask for evaporation. The solvent was removed in vacuo to provide a light brown powder. Flash column chromatography ($\mathrm{SiO}_{2}, 1-2-5-10 \%$ methanol in dichloromethane) of the residue yielded a yellow solid that was washed with 3 M NaOH to give a yellow solid ($490 \mathrm{mg}, 80 \%$). $\mathrm{R}_{f}=$ $0.35\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{D}^{20}+54.4\left(c 1.10, \mathrm{CHCl}_{3}\right)$; IR (film) 3242, 2965, 1586, $1529,1428 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.37(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.33(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 4 \mathrm{H}), 5.89$ (br s, 2H), 5.51 (br s, 2H), 3.76 (s, 6H), 3.41 (br s, 4H), 3.32 (br s, 4H), 1.89 (br s, 8H); ${ }^{13}$ C NMR (150 MHz, DMSO) 156.2, 152.6, 152.2, 144.3, 142.7, 127.7, 127.62, 127.60, 126.3, 118.7, 118.2, 105.3, 93.2, 60.0, 55.1, 51.3, 25.2 ppm; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{42} \mathrm{H}_{45} \mathrm{~N}_{6} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$665.3604, found 665.3610.

Preparation of unsaturated acids ${ }^{136}$

(E)-5-([1,1'-Biphenyl]-4-yl)pent-4-enoic acid (283e). Prepared according to the known procedure. ${ }^{137}$ The resulting solid was washed with DCM and recrystallized from ethyl acetate to give a white solid ($500 \mathrm{mg}, 43 \%$ yield). $\mathrm{Mp} 194-195{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.17(40 \%$ EtOAc/hexanes) visualized with KMnO_{4}; IR (film) 3057, 2907, $1693 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 7.66(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.44(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.37-$ $6.30(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.38(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) ppm 174.3, 140.1, 139.0, 136.7, 130.0, 129.9, 129.3, 127.8, 127.2, 126.84, 126.79, 33.8, 28.3; HRMS (EI): Exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}]^{+}$252.1145, found 252.1137.

[^78]
(4E,6E)-7-Phenylhepta-4,6-dienoic acid (283n). Prepared according to the known procedure. ${ }^{137}$ Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-30 \%\right.$ ethyl acetate in hexanes) of the residue yielded a white solid ($490 \mathrm{mg}, 53 \%$) further recrystallized from hexanes and ethyl acetate. Mp 128-130 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.23(40 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with KMnO_{4}; IR (film) $3025,2917,1699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.19(\mathrm{dd}, J=7.4,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=15.6,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.49(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dd}, J=15.0,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.85-5.59 (m, 1H), 2.53-2.47 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 179.3, 137.3, 132.3, 131.8, 131.2, 128.7, 128.6, 127.3, 126.2, 33.7, 27.7; HRMS (EI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}]^{+}$202.0988, found 202.0984.

Enantioselective iodolactonization

General procedure for enantioselective iodolactonizations: To a flame dried vial equipped with a stir bar was added ${ }^{6} \mathrm{MeOStilbPBAM} \cdot \mathrm{HNTf}_{2}(1.9 \mathrm{mg}, 2.0 \mu \mathrm{~mol}),(E)-5-$ phenylpent-4-enoic acid ($17.6 \mathrm{mg}, 100 \mu \mathrm{~mol}$) and toluene $(1 \mathrm{~mL})$, and the reaction was cooled to $-20^{\circ} \mathrm{C}$. NIS ($23.5 \mathrm{mg}, 105 \mu \mathrm{~mol}$) was added and the reaction mixture was stirred without light until complete by TLC. The mixture was treated with 20% aq sodium thiosulfate (2 mL) and then partitioned between dichloromethane (15 mL) and 3 $\mathrm{M} \mathrm{NaOH}(15 \mathrm{~mL})$. The aqueous layer was extracted twice and the organic layers were combined, dried over magnesium sulfate and concentrated. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-30 \%\right.$ ethyl acetate in hexanes) of the residue yielded the product. All compounds were treated as temperature and light sensitive, never being left on high vacuum for more than 10 minutes. (Decomposition was seen as a solid [white solid to black tar] and in solvent [from colorless to pink solution]) The ratio of δ-lactone to γ-lactone of the isolated material was determined using ${ }^{1} \mathrm{H}$ NMR. The enantiomeric excess of the product was determined by chiral HPLC analysis.

General procedure for racemic iodolactonization: To a flame dried vial equipped with a stir bar was added DMAP ($2.4 \mathrm{mg}, 2.0 \mu \mathrm{~mol}$), (E)-5-phenylpent-4-enoic acid (17.6 mg , $100 \mu \mathrm{~mol})$ and dichloromethane (1 mL). NIS ($31.3 \mathrm{mg}, 0.140 \mathrm{mmol}$) was added and the reaction mixture was stirred without light for 30 min at room temperature. The mixture was treated with 20% aq sodium thiosulfate $(2 \mathrm{~mL})$ and then partitioned between dichloromethane (15 mL) and $3 \mathrm{M} \mathrm{NaOH}(15 \mathrm{~mL})$. The aqueous layer was extracted twice and the organic layers were combined, dried over magnesium sulfate and concentrated. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-30 \%\right.$ ethyl acetate in hexanes) yielded the product.

(5R,6S)-5-Iodo-6-phenyltetrahydro-2H-pyran-2-one (284). Prepared according to the general procedure using the parent acid ($17.6 \mathrm{mg}, 100 \mu \mathrm{~mol}),{ }^{6} \mathrm{MeOStilbPBAM} \cdot \mathrm{HNTf}_{2}$ $(1.9 \mathrm{mg}, 2.0 \mu \mathrm{~mol})$ and NIS ($23.5 \mathrm{mg}, 105 \mu \mathrm{~mol}$) over 24 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-30 \%\right.$ ethyl acetate in hexanes) of the residue yielded a white solid ($23.0 \mathrm{mg}, 76 \%$). The ratio of δ-lactone to γ-lactone of the isolated material was determined to be $91: 9$ (${ }^{1} \mathrm{H}$ NMR). The major product was determined to be 94% ee by chiral HPLC analysis $\left(\right.$ Chiralcel IA, $6 \%{ }^{i} \mathrm{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}($ exo-major $/$ minor $)=$ $14.9 \mathrm{~min}, t_{\mathrm{r}}\left(e_{1}\right.$, endo-minor $)=19.7 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, endo - major $\left.)=24.5 \mathrm{~min}\right) ; \mathrm{R}_{f}=0.66(40 \%$ EtOAc/hexanes) visualized with KMnO_{4}; IR (film) 2921, $1721 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.42-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{dd}, J=7.9,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.43$ (ddd, $J=8.0,8.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{ddd}, J=18.1,6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{ddd}, J=18.2$, $7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46$ (dddd, $J=14.4,6.7,6.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dddd}, J=14.9,7.1$, 7.1, $7.1 \mathrm{~Hz}, 1 \mathrm{H}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 169.1, 137.7, 129.2, 128.7, 126.8, 87.1, 30.6, 30.5, 24.3; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{INaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$ 324.9702, found 324.9703.

(5R,6S)-5-Iodo-6-(p-tolyl)tetrahydro-2H-pyran-2-one (284b). Prepared according to the general procedure using the parent acid (19.0 mg, $100 \mu \mathrm{~mol})$, ${ }^{6} \mathrm{MeOStilbPBAM} \cdot \mathrm{HNTf}_{2}(1.9 \mathrm{mg}, 2.0 \mu \mathrm{~mol})$ and NIS $(23.5 \mathrm{mg}, 105 \mu \mathrm{~mol})$ over 48 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-30 \%\right.$ ethyl acetate in hexanes) of the residue yielded a white solid ($27.2 \mathrm{mg}, 86 \%$). The ratio of δ-lactone to γ-lactone of the isolated material was determined to be 95:5 (${ }^{1} \mathrm{H}$ NMR). The major product was determined to be 91% ee by chiral HPLC analysis (Chiralcel IA, $4 \%{ }^{i} \mathrm{PrOH} /$ hexanes, 1 $\mathrm{mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, minor $)=25.7 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, major $\left.)=29.6 \mathrm{~min}\right) ; \mathrm{R}_{f}=0.54(40 \%$ EtOAc/hexanes) visualized with KMnO_{4}; IR (film) 2920, $1740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.21(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.52(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.41$ $(\mathrm{ddd}, J=8.0,8.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{ddd}, J=18.1,6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{ddd}, J=18.1$, $7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46$ (dddd, $J=14.2,6.7,6.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dddd}, J=14.9,7.3$, 7.3, 7.3 Hz, 1H), $2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 169.2, 139.1, 134.7, 129.4, 126.7, 87.0, 30.6, 30.5, 24.6, 21.2; HRMS: sample decomposed.

(5R,6S)-5-Iodo-6-(m-tolyl)tetrahydro-2H-pyran-2-one (284c). Prepared according to the general procedure using the parent acid (19.0 mg, $100 \mu \mathrm{~mol})$, ${ }^{6} \mathrm{MeOStilbPBAM} \cdot \mathrm{HNTf}_{2}(1.9 \mathrm{mg}, 2.0 \mu \mathrm{~mol})$ and NIS $(23.5 \mathrm{mg}, 105 \mu \mathrm{~mol})$ over 72 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-30 \%\right.$ ethyl acetate in hexanes) of the residue yielded a white solid ($26.7 \mathrm{mg}, 84 \%$). The ratio of δ-lactone to γ-lactone of the isolated material was determined to be 93:7 (${ }^{1} \mathrm{H}$ NMR). The product was determined to be 92% ee by chiral HPLC analysis (Chiralcel OD-H, $5 \% \mathrm{EtOH} / \mathrm{hexanes}, 1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, major $)=23.2 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, minor $\left.)=26.0 \mathrm{~min}\right) ; \mathrm{R}_{f}=0.48(40 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with KMnO_{4}; IR (film) $3029,2920,1740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28$ (dd, J $=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.53(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.44(\mathrm{ddd}, J=7.8,7.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{ddd}, J=18.2,7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{ddd}$, $J=18.2,6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dddd}, J=14.3,6.8,6.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.35$ (dddd, $J=14.8,7.3,7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 169.1, 138.6, 137.6, 129.9, 128.6, 127.2, 123.9, 87.2, 30.5, 30.4, 24.5, 21.4; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{INaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 338.9858$, found 338.9874.

(5R,6S)-5-Iodo-6-(o-tolyl)tetrahydro-2H-pyran-2-one (284d). Prepared according to the general procedure using the parent acid (19.0 $\mathrm{mg}, 100 \mu \mathrm{~mol})$, ${ }^{6} \mathrm{MeOStilbPBAM} \cdot \mathrm{HNTf}_{2}(1.9 \mathrm{mg}, 2.0 \mu \mathrm{~mol})$ and NIS $(23.5 \mathrm{mg}, 105 \mu \mathrm{~mol})$ over 48 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-30 \%\right.$ ethyl acetate in hexanes) of the residue yielded a white solid ($30.1 \mathrm{mg}, 95 \%$). The ratio of δ-lactone to γ-lactone of the isolated material was determined to be 85:15 ($\left.{ }^{1} \mathrm{H} N M R\right)$. The product was determined to be 84% ee by chiral HPLC analysis (Chiralcel IA, $5 \%{ }^{i} \mathrm{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}$, $t_{\mathrm{r}}\left(e_{1}\right.$, major $)=15.9 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, minor $\left.)=17.7 \mathrm{~min}\right) ; \mathrm{R}_{f}=0.66(40 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with KMnO_{4}; IR (film) 2928, $1739 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.20(\mathrm{~m}$, $5 \mathrm{H}), 5.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{ddd}, J=7.8,7.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{ddd}, J=18.3$, $7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{ddd}, J=18.2,7.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dddd}, J=14.3,6.7,6.7,4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{dddd}, J=14.9,7.1,7.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}) ppm 169.2, 135.9, 135.6, 130.9, 129.1, 126.5, 126.0, 84.1, 30.6, 30.4, 23.2, 19.5; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{INaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 338.9858$, found 338.9847 .

(5R,6S)-6-([1,1'-Biphenyl]-4-yl)-5-iodotetrahydro-2H-pyran-2-one (284e). Prepared according to the general procedure using the parent acid ($25.2 \mathrm{mg}, 100 \mu \mathrm{~mol}$), ${ }^{6} \mathrm{MeOStilbPBAM} \cdot \mathrm{HNTf}_{2}(4.7 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and NIS $(24.6 \mathrm{mg}, 110 \mu \mathrm{~mol})$ in a toluene:trifluorotoluene $(4: 1, \quad 1 \mathrm{~mL})$ mixture over 72 hours. Flash column chromatography ($\mathrm{SiO}_{2}, 10-30 \%$ ethyl acetate in hexanes) of the residue yielded a white solid ($34.0 \mathrm{mg}, 89 \%$). The ratio of δ-lactone to γ-lactone of the isolated material was determined to be 87:13 (${ }^{1} \mathrm{H}$ NMR). The product was determined to be 75% ee by chiral HPLC analysis (Chiralcel IA, $25 \% \mathrm{EtOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, minor $)=28.5 \mathrm{~min}$, $t_{\mathrm{r}}\left(e_{2}\right.$, major $\left.)=39.1 \mathrm{~min}\right) ; \mathrm{R}_{f}=0.43(40 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with $\mathrm{KMnO}_{4} ; \mathrm{IR}$ (film) 3030, 2924, $1738 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.60(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{ddd}, J=8.0,8.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{ddd}, J=$ $18.2,6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{ddd}, J=18.2,7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dddd}, J=14.3,6.7$, 6.7, $4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.41 (dddd, $J=14.9,7.3,7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \mathrm{ppm} 169.1,142.1,140.2,136.7,128.9,127.7,127.4,127.2,127.1,86.9,30.62$, 30.57, 24.3; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{15}\left[\mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 401.0015\right.$, found 401.0034.

(5R,6S)-5-Iodo-6-(naphthalen-2-yl)tetrahydro-2H-pyran-2-one (284f). Prepared according to the general procedure using the parent acid ($22.6 \mathrm{mg}, 100 \mu \mathrm{~mol}$), ${ }^{6} \mathrm{MeOStilbPBAM} \cdot \mathrm{HNTf}_{2}(4.7 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and NIS $(24.6 \mathrm{mg}, 110 \mu \mathrm{~mol})$ in a toluene:trifluorotoluene $(4: 1, \quad 1 \mathrm{~mL})$ mixture over 72 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-30 \%\right.$ ethyl acetate in hexanes) of the residue yielded a white solid ($33.1 \mathrm{mg}, 94 \%$). The ratio of δ-lactone to γ-lactone of the isolated material was determined to be $85: 15\left({ }^{1} \mathrm{H} N \mathrm{NR}\right)$. The product was determined to be 76% ee by chiral HPLC analysis (Chiralcel IA, $15 \% \mathrm{EtOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, minor $)=18.7 \mathrm{~min}$, $t_{\mathrm{r}}\left(e_{2}\right.$, major $\left.)=24.1 \mathrm{~min}\right) ; \mathrm{R}_{f}=0.39(40 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with $\mathrm{KMnO}_{4} ; \mathrm{IR}$ (film) 2922, $1740 \mathrm{~cm}^{-1}$; δ-lactone ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89-7.81(\mathrm{~m}, 4 \mathrm{H}), 7.54$ $(\mathrm{d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{ddd}, J=7.9,7.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{ddd}, J=18.2,7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.77(\mathrm{ddd}, J=18.2,6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dddd}, J=14.4,6.8,6.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (dddd, $J=14.8,7.2,7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 169.1, 134.9, $133.5,132.9,128.8,128.2,127.8,126.8,126.73,126.70,123.5,87.3,30.6,30.5,24.2 ; \gamma-$ lactone ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89-7.81(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 3 \mathrm{H}), 5.31(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.03$ (ddd, $J=7.9,7.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.56(\mathrm{~m}, 2 \mathrm{H})$, 2.21 (dddd, $J=13.0,9.7,9.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 176.0, 136.4, 133.2, 133.0, 128.9, 128.0, 127.7, 126.9, 126.78, 126.76, 125.8, 82.4, 34.9, 29.3,
29.0; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{INaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$374.9858, found 374.9863.

(5R,6S)-5-Iodo-6-(4-methoxyphenyl)tetrahydro-2H-pyran-2-one (284g). Prepared according to the general procedure using the parent acid ($20.6 \mathrm{mg}, 100 \mu \mathrm{~mol}$), ${ }^{6} \mathrm{MeOStilbPBAM} \cdot \mathrm{HNTf}_{2}(1.9 \mathrm{mg}, 2.0 \mu \mathrm{~mol})$ and NIS $(23.5 \mathrm{mg}, 105 \mu \mathrm{~mol})$ over 24 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-30 \%\right.$ ethyl acetate in hexanes) of the residue yielded a white solid ($24.0 \mathrm{mg}, 72 \%$). The ratio of δ-lactone to γ-lactone of the isolated material was determined to be >95:5 $\left({ }^{1} \mathrm{H} N M R\right)$. The product was determined to be 78% ee by chiral HPLC analysis (Chiralcel IA, $6 \%{ }^{i} \mathrm{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}$, $t_{\mathrm{r}}\left(e_{1}\right.$, minor $)=30.6 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, major $\left.)=36.1 \mathrm{~min}\right) ; \mathrm{R}_{f}=0.59(40 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with KMnO_{4}; IR (film) 2930, 1738, 1612, $1515 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{ddd}, J=8.5$, $8.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{ddd}, J=18.1,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{ddd}, J=18.1$, $7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{ddd}, J=14.3,6.5,6.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (dddd, 14.7, 7.9, 7.9, 7.9 $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 169.4, 160.1, 129.8, 128.2, 114.0, 86.9, 55.3, 31.0, 30.7, 24.8; HRMS: sample decomposed.

(5R,6S)-5-Iodo-6-(3-methoxyphenyl)tetrahydro-2H-pyran-2-one (284h). Prepared according to the general procedure using the parent acid ($20.6 \mathrm{mg}, 100 \mu \mathrm{~mol}$), ${ }^{6} \mathrm{MeOStilbPBAM} \cdot \mathrm{HNTf}_{2}(1.9 \mathrm{mg}, 2.0 \mu \mathrm{~mol})$ and NIS ($23.5 \mathrm{mg}, 105 \mu \mathrm{~mol}$) over 72 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-30 \%\right.$ ethyl acetate in hexanes) of the residue yielded a white solid ($31.5 \mathrm{mg}, 95 \%$). The ratio of δ-lactone to γ-lactone of the isolated material was determined to be $85: 15\left({ }^{1} \mathrm{H} N M R\right)$. The product was determined to be 90% ee by chiral HPLC analysis (Chiralcel IA, $9 \%{ }^{i} \mathrm{PrOH} / \mathrm{hexanes}, 1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, major $)=22.6 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, minor $\left.)=25.8 \mathrm{~min}\right) ; \mathrm{R}_{f}=0.46(40 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with KMnO_{4}; IR (film) 2935, 2837, 1740, $1602 \mathrm{~cm}^{-1} ; \delta$-lactone ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=8.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{dd}, J=2.0$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{ddd}, J=7.7,7.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $2.85(\mathrm{ddd}, J=18.2,7.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{ddd}, J=18.2,6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.43$ (dddd, J $=14.3,6.8,6.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dddd}, J=14.6,7.1,7.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(150$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 169.0, 159.8, 139.1, 129.8, 119.0, 114.4, 112.5, 86.9, 55.3, 30.43, 30.36, 24.2; γ-lactone ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=1.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{ddd}, J=7.8,7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.63-2.49(\mathrm{~m}, 3 \mathrm{H})$, 2.16-2.11 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 176.0, 159.6, 140.5, 129.9, 120.4, 114.14, 114.11, 82.5, 55.3, 34.0, 29.2, 28.8; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{INaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$354.9807, found 354.9805.

(5R,6S)-6-(4-Fluorophenyl)-5-iodotetrahydro-2H-pyran-2-one (284i). Prepared according to the general procedure using the parent acid (19.4 mg, $100 \mu \mathrm{~mol}$), ${ }^{6} \mathrm{MeOStilbPBAM} \cdot \mathrm{HNTf}_{2}(1.9 \mathrm{mg}, 2.0 \mu \mathrm{~mol})$ and NIS $(23.5 \mathrm{mg}, 105 \mu \mathrm{~mol})$ over 72 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-30 \%\right.$ ethyl acetate in hexanes) of the residue yielded a white solid ($27.7 \mathrm{mg}, 87 \%$). The ratio of δ-lactone to γ-lactone of the isolated material was determined to be 93:7 (${ }^{1} \mathrm{H}$ NMR). The product was determined to be 95% ee by chiral HPLC analysis (Chiralcel IA, $9 \%{ }^{i} \mathrm{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, major $)=28.5 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, minor $\left.)=33.3 \mathrm{~min}\right) ; \mathrm{R}_{f}=0.53(40 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with KMnO_{4}; IR (film) 2919, 1740, 1605, $1512 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33$ (dd, $J=8.7,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{dd}, J=8.6,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.49(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32$ (ddd, $J=8.9,8.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{ddd}, J=18.1,6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{ddd}, J=18.1$, 8.3, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.42(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 169.1, $163.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=249 \mathrm{~Hz}\right), 133.4\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=3.2 \mathrm{~Hz}\right), 128.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=8.6 \mathrm{~Hz}\right)$, $115.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=22 \mathrm{~Hz}\right), 86.4,31.3,30.8,24.1 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -109.9; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{FINaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 342.9607$, found 342.9614.

(5R,6S)-6-(4-Chlorophenyl)-5-iodotetrahydro-2H-pyran-2-one (284j). Prepared according to the general procedure using the parent acid ($21.0 \mathrm{mg}, 100 \mu \mathrm{~mol}$), ${ }^{6} \mathrm{MeOStilbPBAM} \cdot \mathrm{HNTf}_{2}(4.7 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and NIS ($24.6 \mathrm{mg}, 110 \mu \mathrm{~mol}$) over 72 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-30 \%\right.$ ethyl acetate in hexanes) of the residue yielded a yellow solid ($30.6 \mathrm{mg}, 91 \%$). The ratio of δ-lactone to γ-lactone of the isolated material was determined to be $81: 19$ (${ }^{1} \mathrm{H}$ NMR). The product was determined to be 93% ee by chiral HPLC analysis (Chiralcel IA, $6 \%{ }^{i} \mathrm{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}$, $t_{\mathrm{r}}\left(e_{1}\right.$, minor $)=23.1 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, major $\left.)=26.3 \mathrm{~min}\right) ; \mathrm{R}_{f}=0.53(40 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with KMnO_{4}; IR (film) 2923, $1742 \mathrm{~cm}^{-1}$; δ-lactone ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.49(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{ddd}, J=8.8$, $8.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{ddd}, J=18.2,6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{ddd}, J=18.2,8.1,6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.54-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{dddd}, J=16.9,8.4,8.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}) ppm 169.1, 136.0, 135.1, 128.9, 128.4, 86.4, 31.1, 30.8, 23.8; γ-lactone ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.91(\mathrm{ddd}, J=8.4,8.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.11$ (dddd, $J=12.9,9.9,9.9,8.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 176.0, 137.9, 134.4, 129.4, 129.1, 82.3, 32.5, 29.3, 29.0; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClINaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$358.9312, found 358.9318.

(5R,6S)-6-(4-Bromophenyl)-5-iodotetrahydro-2H-pyran-2-one (284k). Prepared according to the general procedure using the parent acid ($25.5 \mathrm{mg}, 100 \mu \mathrm{~mol}$), ${ }^{6} \mathrm{MeOStilbPBAM} \cdot \mathrm{HNTf}_{2}(4.7 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and NIS ($24.6 \mathrm{mg}, 110 \mu \mathrm{~mol}$) over 72 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-30 \%\right.$ ethyl acetate in hexanes) of the residue yielded a yellow solid ($25.1 \mathrm{mg}, 66 \%$). The ratio of δ-lactone to γ-lactone of the isolated material was determined to be 77:23 (${ }^{1} \mathrm{H}$ NMR). The product was determined to be 91% ee by chiral HPLC analysis (Chiralcel IA, $9 \%{ }^{i} \mathrm{PrOH} / \mathrm{hexanes}, 1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, minor $)=18.2 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, major $\left.)=20.8 \mathrm{~min}\right) ; \mathrm{R}_{f}=0.52(40 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with KMnO_{4}; IR (film) 2921, $1741 \mathrm{~cm}^{-1}$; δ-lactone ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{ddd}, J=8.6$, $8.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{ddd}, J=18.1,6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{ddd}, J=18.1,7.9,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.53-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{dddd}, J=16.5,8.2,8.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}) ppm 168.8, 136.6, 131.9, 128.6, 123.3, 86.4, 31.1, 30.7, 23.6; γ-lactone ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.03(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.88(\mathrm{ddd}, J=7.8,7.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.10$ (dddd, $J=12.8,9.9,9.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ppm} 175.8,138.4$, 132.0, 129.7, 122.5, 82.2, 32.6, 29.3, 28.9; HRMS (EI): Exact mass calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrIO}_{2}[\mathrm{M}]^{+} 379.8903$, found 379.8904 .

(5R,6S)-6-(3-Chlorophenyl)-5-iodotetrahydro-2H-pyran-2-one (2841). Prepared according to the general procedure using the parent acid $(21.0 \mathrm{mg}, 100 \mu \mathrm{~mol})$, ${ }^{6} \mathrm{MeOStilbPBAM} \cdot \mathrm{HNTf}_{2}(4.7 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and NIS $(24.6 \mathrm{mg}, 110 \mu \mathrm{~mol})$ over 72 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-30 \%\right.$ ethyl acetate in hexanes) of the residue yielded a yellow solid ($17.2 \mathrm{mg}, 51 \%$). The ratio of δ-lactone to γ-lactone of the isolated material was determined to be $48: 52\left({ }^{1} \mathrm{H} N M R\right)$. The product was determined to be 88% ee by chiral HPLC analysis (Chiralcel IA, $8 \% \mathrm{EtOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, minor $)=24.6 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, major $\left.)=27.6 \mathrm{~min}\right) ; \mathrm{R}_{f}=0.39(40 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with KMnO_{4}; IR (film) $2920,1775,1741 \mathrm{~cm}^{-1} ; \delta$-lactone ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.40-7.23 (m, 4H), $5.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{ddd}, J=8.5,8.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.84$ (ddd, $J=18.2,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{ddd}, J=18.1,7.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.47(\mathrm{~m}, 1 \mathrm{H})$, 2.42 (dddd, $J=14.9,8.0,8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}) ; \gamma$-lactone ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-$ $7.23(\mathrm{~m}, 4 \mathrm{H}), 5.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{ddd}, J=8.0,8.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ (dddd, J $=13.6,6.4,6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{dddd}, J=14.5,12.9,12.9,4.7 \mathrm{~Hz}$, $1 \mathrm{H})$; mixture of δ-lactone $\& \gamma$-lactone ${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ppm}$ 175.8, 168.7, $141.3,139.5,134.7,134.6,130.2,130.0,129.5,128.9,128.2,127.1,126.4,125.3,86.3$, 82.2, 32.3, 31.0, 30.7, 29.3, 29.1, 23.5; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClINaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$358.9312, found 358.9308 .

(5R,6S)-5-Iodo-6-(4-(trifluoromethoxy)phenyl)tetrahydro-2H-pyran-2-one (284m). Prepared according to the general procedure using the parent acid $(26.0 \mathrm{mg}, 100 \mu \mathrm{~mol})$, ${ }^{6} \mathrm{MeOStilbPBAM} \cdot \mathrm{HNTf}_{2}(4.7 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and NIS $(24.6 \mathrm{mg}, 110 \mu \mathrm{~mol})$ over 72 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-30 \%\right.$ ethyl acetate in hexanes) of the residue yielded an oil ($30.6 \mathrm{mg}, 79 \%$). The ratio of δ-lactone to γ-lactone of the isolated material was determined to be 76:24 (${ }^{1} \mathrm{H}$ NMR). The product was determined to be 95% ee by chiral HPLC analysis $\left(\right.$ Chiralcel IA, $7 \% \mathrm{EtOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, minor $)=$ $18.5 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, major $\left.)=27.8 \mathrm{~min}\right) ; \mathrm{R}_{f}=0.53(40 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with $\mathrm{KMnO}_{4} ;$ IR (film) 2921, $1744,1511 \mathrm{~cm}^{-1} ; \delta$-lactone ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.53(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{ddd}, J=8.8$, $8.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{ddd}, J=18.1,6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{ddd}, J=18.1,8.1,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.56-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{dddd}, J=16.9,8.5,8.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \mathrm{ppm} 168.9,149.6,136.1,128.6,121.0,120.3\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=258 \mathrm{~Hz}\right), 86.2,31.2,30.8$, 23.6; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -55.98; γ-lactone ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.06(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{ddd}, J=8.2$, 8.2, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ppm} 176.0,148.9,138.0,129.6,121.2,120.2\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=258 \mathrm{~Hz}\right), 82.3$, 32.1, 29.4, 29.1; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -55.96; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{INaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 408.9525$, found 408.9544 .

(5R,6S)-5-Iodo-6-((E)-styryl)tetrahydro-2H-pyran-2-one (284n). Prepared according to the general procedure using the parent acid (20.2 $\mathrm{mg}, 100 \mu \mathrm{~mol})$, ${ }^{6} \mathrm{MeOStilbPBAM} \cdot \mathrm{HNTf}_{2}(4.7 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and NIS $(24.6 \mathrm{mg}, 110 \mu \mathrm{~mol})$ over 24 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-30 \%\right.$ ethyl acetate in hexanes) of the residue yielded a white solid ($29.6 \mathrm{mg}, 90 \%$). The ratio of δ-lactone to γ-lactone of the isolated material was determined to be >95:5 ($\left.{ }^{1} \mathrm{H} N M R\right)$. The product was determined to be 67% ee by chiral HPLC analysis (Chiralcel IA, $9 \%{ }^{i} \mathrm{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, minor $)=15.0 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, major $\left.)=18.2 \mathrm{~min}\right) ; \mathrm{R}_{f}=0.43(40 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with KMnO_{4}; IR (film) $3025,1738 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.35(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.19(\mathrm{dd}, J=15.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{ddd}, J=8.2$, 8.2, 4.5 Hz, 1H), $2.80(\mathrm{ddd}, J=18.2,6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{ddd}, J=18.1,7.2,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.53$ (dddd, $J=14.3,6.6,6.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.38$ (dddd, $J=14.7,7.4,7.4,7.4 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 168.9, 135.38, 135.37, 128.7, 128.6, 126.9, 124.7, 85.5, 30.8, 30.6, 23.1; HRMS: sample decomposed.

(5R,6S)-5-Iodo-6-(thiophen-2-yl)tetrahydro-2H-pyran-2-one
(2840). Prepared according to the general procedure using the parent acid (18.2 mg, $100 \mu \mathrm{~mol}$), ${ }^{6} \mathrm{MeOStilbPBAM} \cdot \mathrm{HNTf}_{2}(4.7 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and NIS $(24.6 \mathrm{mg}, 110 \mu \mathrm{~mol})$ over 24 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-30 \%\right.$ ethyl acetate in hexanes) of the residue yielded a white solid ($24.7 \mathrm{mg}, 80 \%$). The ratio of δ-lactone to γ-lactone of the isolated material was determined to be $>95: 5\left({ }^{1} \mathrm{H}\right.$ NMR . The product was determined to be 29% ee by chiral HPLC analysis (Chiralcel IA, $9 \%{ }^{i} \mathrm{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, minor $)=15.9 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, major $\left.)=17.4 \mathrm{~min}\right) ; \mathrm{R}_{f}=0.52(40 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with KMnO_{4}; IR (film) $2927,1740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37$ (dd, $J=5.0$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=5.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.48$ (ddd, $J=8.0,8.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{ddd}, J=18.2,6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{ddd}$, $J=18.1,7.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dddd}, J=14.4,6.7,6.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dddd}, J=$ 14.7, 7.4, 7.4, $7.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 168.4, 140.6, 127.2, 126.9, 126.5, 83.1, 30.8, 30.4, 24.1; HRMS: sample decomposed.

(5R,6S)-5-Iodo-6-(thiophen-3-yl)tetrahydro-2H-pyran-2-one
(284p). Prepared according to the general procedure using the parent acid (18.2 mg, $100 \mu \mathrm{~mol}$), ${ }^{6} \mathrm{MeOStilbPBAM} \cdot \mathrm{HNTf}_{2}(4.7 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and NIS $(24.6 \mathrm{mg}, 110 \mu \mathrm{~mol})$ over 24 hours. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-30 \%\right.$ ethyl acetate in hexanes) of the residue yielded a white solid ($24.2 \mathrm{mg}, 79 \%$). The ratio of δ-lactone to γ-lactone of the isolated material was determined to be 97:3 ($\left.{ }^{1} \mathrm{H} N \mathrm{NR}\right)$. The product was determined to be 85% ee by chiral HPLC analysis (Chiralcel IA, $9 \%{ }^{i} \mathrm{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}}\left(e_{1}\right.$, minor $)=19.9 \mathrm{~min}, t_{\mathrm{r}}\left(e_{2}\right.$, major $\left.)=23.9 \mathrm{~min}\right) ; \mathrm{R}_{f}=0.66(40 \% \mathrm{EtOAc} /$ hexanes $)$ visualized with $\mathrm{KMnO}_{4} ;$ IR (film) $2926,1735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37$ (dd, $J=5.0$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=5.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.48$ (ddd, $J=7.4,7.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{ddd}, J=18.2,7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{ddd}$, $J=18.2,6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (dddd, $J=14.4,6.7,6.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dddd}, J=$ 14.3, 7.0, 7.0, $7.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 168.9, 138.9, 127.1, 125.1, 124.1, 83.5, 30.24, 30.21, 23.8; HRMS: sample decomposed.

Determination of Absolute Stereochemistry

(R)-6-phenyltetrahydro-2H-pyran-2-one. Procedure adapted from a previous report. ${ }^{138}$ A $15-\mathrm{mL}$, round-bottomed flask equipped with a stir bar was charged with $(5 R, 6 S)-5$ -iodo-6-phenyltetrahydro-2 H -pyran-2-one [88 δ-lactone (93% ee)/ 12γ-lactone, 60.4 mg , $200 \mu \mathrm{~mol}$], benzene (5 mL) and tributyltin hydride ($65 \mu \mathrm{~L}, 240 \mu \mathrm{~mol}$). The reaction was brought to reflux and recrystallized AIBN $(6.5 \mathrm{mg}, 40 \mu \mathrm{~mol})$ was added. The reaction was monitored by TLC and after 30 m complete conversion was observed. The reaction mixture was concentrated to an oil. Flash column chromatography ($\mathrm{SiO}_{2}, 5-20 \%$ ethyl acetate in hexanes) yielded a white solid $(23.0 \mathrm{mg}, 65 \%)$ as only the δ-lactone. $\mathrm{R}_{f}=0.43$ $(20 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{D}^{20}+29.0\left(c 1.00, \mathrm{CHCl}_{3}\right)[$ reported for 47% ee of (S)-material, $\left.[\alpha]_{D}^{26}-19.1\left(c 0.3, \mathrm{CHCl}_{3}\right)\right] .{ }^{139}$ Remainder of analytical data matched literature values.

[^79]
(5S,6R)-5-bromo-6-(4-chlorophenyl)tetrahydro-2H-pyran-2-one (290). To a flame dried vial equipped with a stir bar was added StilbPBAM $\cdot \operatorname{HNTf}_{2}(8.8 \mathrm{mg}, 10 \mu \mathrm{~mol}),(E)-$ 5-(4-chlorophenyl)pent-4-enoic acid ($21.0 \mathrm{mg}, 100 \mu \mathrm{~mol}$), toluene (1 mL), and the reaction mixture was cooled to $-20^{\circ} \mathrm{C}$. NIS ($26.9 \mathrm{mg}, 120 \mu \mathrm{~mol}$) was added and the mixture was stirred for 6 hours (protected from light). The mixture was treated with 20\% aq sodium thiosulfate $(2 \mathrm{~mL})$ and then partitioned between dichloromethane $(15 \mathrm{~mL})$ and $3 \mathrm{M} \mathrm{NaOH}(15 \mathrm{~mL})$. The aqueous layer was extracted twice and the organic layers were combined, dried, and concentrated. Flash column chromatography $\left(\mathrm{SiO}_{2}, 10-25-50 \%\right.$ ethyl acetate in hexanes) yielded the product as a white solid ($29 \mathrm{mg}, 90 \%$). Remainder of analytical data matched literature values and the ee of the product was determined by chiral HPLC analysis.

Appendix I．Cost of VNI．

			N	宮宮						Bo							$\begin{gathered} \text { No } \\ \underset{A}{\circ} \\ \hline \end{gathered}$					\％					
		－					No								¢	$\stackrel{\text { ¢ }}{\substack{\text { ¢ } \\-1 \\ \square}}$			iote			$\stackrel{\infty}{\square}$	¢			咢	
	$\begin{aligned} & \text { N } \\ & \dot{\infty} \end{aligned}$				$\left\|\begin{array}{l} \dot{Q} \\ \dot{4} \\ \dot{心} \end{array}\right\|$		$\stackrel{0}{6}$	$\begin{gathered} \bar{y} \\ \text { in } \end{gathered}$	$\stackrel{8}{\circ}$		$\underset{\sim}{c}$			$\underset{\sim}{\text { Nָ }}$	$\begin{aligned} & Z_{2} \\ & \underset{6}{6} \\ & \hline \end{aligned}$	$\begin{aligned} & Z \\ & Z \\ & U \\ & U 心 \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\varphi}{\varphi} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\mathrm{N}} \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\ominus}{\circ} \end{aligned}$		$\begin{aligned} & \hline 8 \\ & \hline-8 \\ & \hline 6 \end{aligned}$		$\stackrel{+}{\square}$		
$\begin{aligned} & \geq \stackrel{\rightharpoonup}{3} \\ & \end{aligned}$		$\underset{\sim}{\mathrm{N}} \mathrm{O}$					8		\bar{O}				－8		\％	O-			$\begin{aligned} & 8 \\ & \hline \text { in } \end{aligned}$			$\stackrel{8}{\square}$	\bigcirc				
															\％	$\begin{gathered} \circ \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$			$\begin{gathered} \mathrm{N} \\ \dot{\sim} \end{gathered}$				${ }_{A}^{8}{ }_{\sim}^{\circ}$				
	음	$2 \mathrm{~B}$	స్స్							－		8	BL®			웅			\％			ヘั	n				
䓂	$\begin{aligned} & 8 \\ & \text { Nín } \\ & \text { Nin } \end{aligned}$									为号		$\stackrel{\infty}{\underset{\alpha}{\infty}}$							$\stackrel{\text { ® }}{\frac{8}{5}}$								
$>$					$\frac{\circ}{\infty}$			ஃ̀			※。			กิ้				ஃㅇㅇㅇ			\％				\％10		
			$\begin{aligned} & 9 \\ & \hline 6 \\ & \hline 0 \end{aligned}$				－		R	－	¢		～－			－							－				
			1 					$\begin{aligned} & \text { è } \\ & \underline{\underline{E}} \end{aligned}$											$\begin{array}{\|c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$		$\stackrel{\stackrel{y}{c}}{\stackrel{y}{E}}$				$\underset{\substack{\text { ¢ }}}{\substack{1}}$		

Appendix II. StilbPBAM Crystal Structure

The sample was submitted by Mark Dobish (research group of Jeff Johnston, Department of Chemistry, Vanderbilt University). A colorless needle (approximate dimensions $0.20 \times$ $0.12 \times 0.10 \mathrm{~mm} 3)$ was placed onto the tip of a 0.1 mm diameter glass capillary and mounted on a Bruker APEX II Kappa Duo diffractometer equipped with an APEX II detector at 150 (2) K.

Data collection

The data collection was carried out using $\mathrm{Mo} \mathrm{K} \alpha$ radiation (graphite monochromator) with a frame time of 10 seconds and a detector distance of 5.00 cm . A collection strategy was calculated and complete data to a resolution of $0.70 \AA$ with a redundancy of 4 were collected. Four major sections of frames were collected with 0.50° ω and ϕ scans. Data to a resolution of $0.77 \AA$ were considered in the reduction. Final cell constants were calculated from the xyz centroids of 9863 strong reflections from the actual data collection after integration (SAINT). ${ }^{140}$ The intensity data were corrected for absorption (SADABS). ${ }^{141}$ Please refer to Table 1 for additional crystal and refinement information.

Structure solution and refinement

The space group $\mathrm{P} 2_{1} 2_{1} 2_{1}$ was determined based on intensity statistics and systematic absences. The structure was solved using SIR-2004 ${ }^{142}$ and refined with

[^80]SHELXL-97. ${ }^{143}$ A direct-methods solution was calculated, which provided most nonhydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed, which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters with the exception of N -bound hydrogen atoms which were refined for all parameters. The final full matrix least squares refinement converged to $\mathrm{R} 1=0.0668$ and $w R 2=0.1959\left(F^{2}\right.$, all data $)$. The remaining electron density is minuscule and located near the disordered solvent.

Structure description

The structure was found as proposed and its absolute configuration was determined by anomalous dispersion. Two crystallographically independent molecules and three solvent molecules are in the asymmetric unit. A least-squares fit of the independent molecules (named A and B) are included in the tables. The solvent molecules (DCM) are disordered over two sites each and were refined with a set of restraints.

[^81]

Formula unit.

Molecule A.

Molecule B

Cell plot, view along a.

Cell plot, view along b.

Cell plot, view along c.

Table 1. Crystal data and structure refinement for 12021.

Empirical formula
Formula weight
Crystal color, shape, size
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)

Data collection

Diffractometer
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Observed Reflections
Completeness to theta $=26.40^{\circ}$

Solution and Refinement

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9722 and 0.9454
Solution	Direct methods
Refinement method	Full-matrix least-squares on F^{2}
Weighting scheme	$\mathrm{w}=\left[\sigma^{2} \mathrm{Fo}^{2}+\mathrm{AP}^{2}+\mathrm{BP}\right]^{-1}$, with
	$\mathrm{P}=\left(\mathrm{Fo}^{2}+2 \mathrm{Fc}^{2}\right) / 3, \mathrm{~A}=0.1127, \mathrm{~B}=3.9350$
Data / restraints / parameters	$15315 / 155 / 965$
Goodness-of-fit on F^{2}	1.022
Final R indices [I>2sigma(I) $]$	$\mathrm{R} 1=0.0668, \mathrm{wR} 2=0.1786$
R indices (all data)	$\mathrm{R} 1=0.0894, \mathrm{wR} 2=0.1959$
Absolute structure parameter	$0.04(9)$
Largest diff. peak and hole	0.893 and $-0.535 \mathrm{e} . \AA^{-3}$

Goodness-of-fit $\left.=\left[\Sigma\left[w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \mathrm{N}_{\text {observns }}-\mathrm{N}_{\text {params }}\right)\right]^{1 / 2}$, all data.
$\mathrm{R} 1=\Sigma\left(\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right) / \Sigma\left|\mathrm{F}_{\mathrm{o}}\right| . \quad w \mathrm{R} 2=\left[\Sigma\left[w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right]^{1 / 2}$.

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 12021. $U(\mathbf{e q})$ is defined as one third of the trace of the orthogonalized $U^{\text {ij }}$ tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
N1A	4423(2)	-41(2)	1353(1)	34(1)
N2A	3222(2)	-425(2)	835(1)	34(1)
N3A	3107(2)	-1958(2)	1920(1)	39(1)
N4A	6174(2)	127(1)	905(1)	32(1)
N5A	6543(2)	202(1)	-33(1)	31(1)
N6A	7333(2)	2049(1)	233(1)	33(1)
C1A	5232(2)	-94(2)	1714(1)	31(1)
C2A	5024(2)	39(2)	2338(2)	32(1)
C3A	5494(3)	-272(2)	2759(2)	40(1)
C4A	5348(3)	-137(2)	3326(2)	48(1)
C5A	4715(3)	310(2)	3472(2)	52(1)
C6A	4239(3)	614(2)	3059(2)	49(1)
C7A	4381(3)	482(2)	2495(2)	41(1)
C8A	3809(2)	-502(2)	1267(1)	30(1)
C9A	3778(2)	-1013(2)	1630(1)	32(1)
C10A	3142(2)	-1476(2)	1548(1)	33(1)
C11A	2549(2)	-1427(2)	1053(2)	35(1)
C12A	1966(3)	-1896(2)	852(2)	48(1)
C13A	1428(3)	-1824(2)	379(2)	58(1)
C14A	1435(3)	-1268(2)	87(2)	54(1)
C15A	2016(3)	-815(2)	258(2)	47(1)
C16A	2607(2)	-882(2)	738(2)	35(1)
C17A	2251(3)	-2290(2)	2079(2)	55(1)
C18A	2374(3)	-2461(3)	2686(2)	62(1)
C19A	3418(3)	-2516(2)	2741(2)	54(1)
C20A	3750(3)	-1972(2)	2399(2)	38(1)
C21A	5975(2)	345(2)	1464(1)	30(1)
C22A	6842(2)	419(2)	1831(1)	32(1)
C23A	6846(3)	809(2)	2298(2)	46(1)
C24A	7640(3)	894(2)	2616(2)	57(1)
C25A	8443(3)	603(2)	2473(2)	59(1)
C26A	8450(3)	210(2)	2006(2)	59(1)
C27A	7648(3)	119(2)	1692(2)	44(1)
C28A	6506(2)	478(2)	467(1)	30(1)
C29A	6770(2)	1087(2)	564(1)	30(1)
C30A	7095(2)	1452(2)	124(2)	31(1)
C31A	7177(2)	1166(2)	-430(1)	30(1)
C32A	7579(3)	1435(2)	-913(2)	39(1)

C33A	7620(3)	1145(2)	-1425(2)	47(1)
C34A	7282(3)	550(2)	-1478(2)	42(1)
C35A	6928(3)	260(2)	-1009(2)	38(1)
C36A	6880(2)	547(2)	-476(2)	31(1)
C37A	7362(2)	2562(2)	-176(2)	36(1)
C38A	7244(3)	3139(2)	172(2)	43(1)
C39A	7534(3)	2947(2)	772(2)	43(1)
C40A	7222(3)	2284(2)	809(2)	37(1)
N1B	5134(2)	-843(2)	-81(1)	37(1)
N2B	5752(2)	-1258(1)	725(1)	31(1)
N3B	4047(2)	-2815(2)	481(2)	49(1)
N4B	4178(2)	296(2)	-66(1)	35(1)
N5B	4266(2)	1070(1)	589(1)	32(1)
N6B	5080(2)	2278(2)	-720(1)	44(1)
C1B	4363(2)	-712(2)	-450(1)	33(1)
C2B	4332(3)	-1126(2)	-965(2)	38(1)
C3B	3472(3)	-1324(2)	-1160(2)	57(1)
C4B	3397(5)	-1710(3)	-1613(2)	82(2)
C5B	4178(5)	-1899(3)	-1892(2)	86(2)
C6B	5039(4)	-1718(3)	-1707(2)	71(2)
C7B	5113(3)	-1323(2)	-1237(2)	50(1)
C8B	5154(2)	-1311(2)	301(1)	33(1)
C9B	4574(2)	-1827(2)	228(2)	34(1)
C10B	4595(2)	-2316(2)	596(2)	36(1)
C11B	5244(3)	-2278(2)	1063(2)	34(1)
C12B	5409(3)	-2738(2)	1476(2)	42(1)
C13B	6026(3)	-2662(2)	1906(2)	51(1)
C14B	6522(3)	-2118(2)	1958(2)	43(1)
C15B	6419(3)	-1668(2)	1559(2)	40(1)
C16B	5789(2)	-1734(2)	1102(2)	33(1)
C17B	3723(4)	-3285(2)	881(2)	68(1)
C18B	2860(4)	-3538(3)	595(3)	87(2)
C19B	3047(5)	-3470(3)	-10(3)	92(2)
C20B	3519(4)	-2840(2)	-44(2)	63(1)
C21B	4399(2)	-19(2)	-587(1)	35(1)
C22B	3801(3)	174(2)	-1087(2)	43(1)
C23B	4193(4)	190(3)	-1627(2)	71(2)
C24B	3693(6)	368(3)	-2095(2)	100(3)
C25B	2792(5)	513(3)	-2040(3)	88(2)
C26B	2373(4)	514(2)	-1518(3)	73(2)
C27B	2886(3)	346(2)	-1026(2)	52(1)
C28B	4405(2)	887(2)	52(1)	30(1)
C29B	4720(2)	1284(2)	-376(1)	32(1)

C30B	$4852(2)$	$1898(2)$	$-278(1)$	$33(1)$
C31B	$4733(2)$	$2116(2)$	$302(1)$	$32(1)$
C32B	$4894(2)$	$2713(2)$	$496(2)$	$37(1)$
C33B	$4779(3)$	$2888(2)$	$1042(2)$	$39(1)$
C34B	$4471(3)$	$2451(2)$	$1440(2)$	$40(1)$
C35B	$4319(3)$	$1861(2)$	$1274(2)$	$37(1)$
C36B	$4442(2)$	$1670(2)$	$708(1)$	$30(1)$
C37B	$4843(3)$	$2936(2)$	$-774(2)$	$55(1)$
C38B	$4735(4)$	$3043(3)$	$-1399(2)$	$73(2)$
C39B	$5333(5)$	$2565(3)$	$-1662(2)$	$90(2)$
C40B	$5210(4)$	$2007(3)$	$-1288(2)$	$61(1)$
C11S	$2139(2)$	$1202(1)$	$2022(1)$	$96(1)$
C12S	$1175(2)$	$448(2)$	$1273(2)$	$188(2)$
C1S	$2230(12)$	$679(5)$	$1496(8)$	$133(2)$
Cl1D	$2187(6)$	$1428(5)$	$1594(5)$	$96(1)$
Cl2D	$1404(11)$	$656(9)$	$838(9)$	$188(2)$
C1D	$2090(60)$	$679(12)$	$1420(30)$	$133(2)$
Cl3S	$6206(2)$	$1379(1)$	$7362(1)$	$93(1)$
Cl4S	$5036(4)$	$1337(8)$	$6399(2)$	$182(3)$
C2S	$6133(19)$	$1460(20)$	$6643(7)$	$160(3)$
C13D	$6183(8)$	$1446(10)$	$6447(4)$	$160(3)$
C14D	$4712(8)$	$1216(5)$	$7192(4)$	$233(7)$
C2D	$5040(20)$	$1250(50)$	$6497(10)$	$182(3)$
C15S	$5477(2)$	$4386(1)$	$246(1)$	$65(1)$
C16S	$4001(2)$	$4627(2)$	$-505(2)$	$131(1)$
C3S	$4329(8)$	$4575(11)$	$189(5)$	$151(2)$
C15D	$4651(7)$	$4308(3)$	$156(3)$	$151(2)$
C16D	$4474(5)$	$5297(3)$	$-561(4)$	$158(3)$
C3D	$3957(12)$	$4927(8)$	$-7(8)$	$131(1)$

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 12021.

N1A-C8A	$1.359(5)$	N1A-C1A	1.454(4)
N1A-H1AN	0.80(5)	N2A-C8A	1.338(4)
N2A-C16A	1.358(5)	N3A-C10A	1.372(5)
N3A-C20A	$1.466(5)$	N3A-C17A	1.485(5)
N4A-C28A	$1.375(4)$	N4A-C21A	1.436(4)
N4A-H4AN	0.9000	N5A-C28A	1.328(4)
N5A-C36A	$1.379(5)$	N6A-C30A	1.374(5)
N6A-C40A	1.464(5)	N6A-C37A	1.479(5)
C1A-C2A	$1.535(5)$	C1A-C21A	1.557(5)
C1A-H1A	1.0000	C2A-C3A	1.384(5)
C2A-C7A	$1.395(5)$	C3A-C4A	1.389(5)
C3A-H3A	0.9500	C4A-C5A	1.384(7)
C4A-H4A	0.9500	C5A-C6A	1.368(7)
C5A-H5A	0.9500	C6A-C7A	1.378(6)
C6A-H6A	0.9500	C7A-H7A	0.9500
C8A-C9A	1.410 (5)	C9A-C10A	1.383(5)
C9A-H9A	0.9500	C10A-C11A	1.455(5)
C11A-C16A	$1.408(5)$	C11A-C12A	1.410(6)
C12A-C13A	1.373(6)	C12A-H12A	0.9500
C13A-C14A	$1.395(7)$	C13A-H13A	0.9500
C14A-C15A	1.361(6)	C14A-H14A	0.9500
C15A-C16A	$1.428(5)$	C15A-H15A	0.9500
C17A-C18A	$1.493(6)$	C17A-H17A	0.9900
C17A-H17B	0.9900	C18A-C19A	1.524(7)
C18A-H18A	0.9900	C18A-H18B	0.9900
C19A-C20A	$1.515(5)$	C19A-H19A	0.9900
C19A-H19B	0.9900	C20A-H20A	0.9900
C20A-H20B	0.9900	C21A-C22A	1.534(5)
C21A-H21A	1.0000	C22A-C27A	1.378(5)
C22A-C23A	$1.395(5)$	C23A-C24A	1.387(6)
C23A-H23A	0.9500	C24A-C25A	1.369(7)
C24A-H24A	0.9500	C25A-C26A	1.399(8)
C25A-H25A	0.9500	C26A-C27A	1.394(6)
C26A-H26A	0.9500	C27A-H27A	0.9500
C28A-C29A	$1.403(5)$	C29A-C30A	1.391(5)
C29A-H29A	0.9500	C30A-C31A	1.456(5)
C31A-C32A	1.412(5)	C31A-C36A	1.423(5)
C32A-C33A	$1.368(6)$	C32A-H32A	0.9500
C33A-C34A	$1.395(6)$	C33A-H33A	0.9500
C34A-C35A	1.376(6)	C34A-H34A	0.9500
C35A-C36A	$1.408(5)$	C35A-H35A	0.9500

C37A-C38A	1.513(6)	C37A-H37A	0.9900
C37A-H37B	0.9900	C38A-C39A	1.538(6)
C38A-H38A	0.9900	C38A-H38B	0.9900
C39A-C40A	$1.518(5)$	C39A-H39A	0.9900
C39A-H39B	0.9900	C40A-H40A	0.9900
C40A-H40B	0.9900	N1B-C8B	1.363(5)
N1B-C1B	1.446 (5)	N1B-H1BN	0.72(4)
N2B-C8B	1.331(4)	N2B-C16B	1.369(5)
N3B-C10B	$1.375(5)$	N3B-C20B	1.461(6)
N3B-C17B	$1.472(6)$	N4B-C28B	1.361(5)
N4B-C21B	1.445(4)	N4B-H4BN	0.91(4)
N5B-C28B	1.346 (4)	N5B-C36B	1.364(5)
N6B-C30B	$1.375(5)$	N6B-C40B	1.479(6)
N6B-C37B	$1.485(6)$	C1B-C2B	1.518(5)
C1B-C21B	1.549 (5)	C1B-H1BA	1.0000
C2B-C7B	1.371(6)	C2B-C3B	1.397(6)
C3B-C4B	1.367(7)	C3B-H3B	0.9500
C4B-C5B	1.374(9)	C4B-H4B	0.9500
C5B-C6B	$1.380(9)$	C5B-H5B	0.9500
C6B-C7B	1.409(7)	C6B-H6B	0.9500
C7B-H7B	0.9500	C8B-C9B	1.416(5)
C9B-C10B	1.377 (5)	C9B-H9B	0.9500
C10B-C11B	1.454(5)	C11B-C12B	1.421(5)
C11B-C16B	$1.430(5)$	C12B-C13B	1.365(6)
C12B-H12B	0.9500	C13B-C14B	1.395(6)
C13B-H13B	0.9500	C14B-C15B	1.369(5)
C14B-H14B	0.9500	C15B-C16B	1.422(5)
C15B-H15B	0.9500	C17B-C18B	1.526(8)
C17B-H17C	0.9900	C17B-H17D	0.9900
C18B-C19B	1.464(9)	C18B-H18C	0.9900
C18B-H18D	0.9900	C19B-C20B	1.538(7)
C19B-H19C	0.9900	C19B-H19D	0.9900
C20B-H20C	0.9900	C20B-H20D	0.9900
C21B-C22B	1.524(5)	C21B-H21B	1.0000
C22B-C27B	1.386 (6)	C22B-C23B	1.398(7)
C23B-C24B	1.379(7)	C23B-H23B	0.9500
C24B-C25B	1.350(10)	C24B-H24B	0.9500
C25B-C26B	1.375(9)	C25B-H25B	0.9500
C26B-C27B	$1.428(7)$	C26B-H26B	0.9500
C27B-H27B	0.9500	C28B-C29B	1.410(5)
C29B-C30B	1.374(5)	C29B-H29B	0.9500
C30B-C31B	$1.462(5)$	C31B-C32B	1.402(5)
C31B-C36B	1.431(5)	C32B-C33B	1.357(5)

C32B-H32B	0.9500	C33B-C34B	1.411(6)
C33B-H33B	0.9500	C34B-C35B	1.366(6)
C34B-H34B	0.9500	C35B-C36B	$1.413(5)$
C35B-H35B	0.9500	C37B-C38B	1.504(6)
C37B-H37C	0.9900	C37B-H37D	0.9900
C38B-C39B	1.493(10)	C38B-H38C	0.9900
C38B-H38D	0.9900	C39B-C40B	$1.515(8)$
C39B-H39C	0.9900	C39B-H39D	0.9900
C40B-H40C	0.9900	C40B-H40D	0.9900
Cl1S-C1S	1.694(12)	Cl2S-C1S	1.694(12)
C1S-H1S1	0.9900	C1S-H1S2	0.9900
C11D-C1D	1.694(12)	C12D-C1D	1.693 (12)
C1D-H1D1	0.9900	C1D-H1D2	0.9900
Cl3S-C2S	1.711(15)	C14S-C2S	$1.712(15)$
C2S-H2S1	0.9900	C2S-H2S2	0.9900
Cl3D-C2D	$1.714(15)$	C14D-C2D	1.713(15)
C2D-H2D1	0.9900	C2D-H2D2	0.9900
C15S-C3S	1.719(9)	Cl6S-C3S	1.712(9)
C3S-H3S1	0.9900	C3S-H3S2	0.9900
Cl5D-C3D	$1.728(9)$	Cl6D-C3D	1.711(9)
C3D-H3D1	0.9900	C3D-H3D2	0.9900
C8A-N1A-C1A	124.0(3)	C8A-N1A-H1AN	115(4)
C1A-N1A-H1AN	121(4)	C8A-N2A-C16A	117.0(3)
C10A-N3A-C20A	119.2(3)	C10A-N3A-C17A	124.6(3)
C20A-N3A-C17A	109.0(3)	C28A-N4A-C21A	125.3(3)
C28A-N4A-H4AN	112.0	C21A-N4A-H4AN	122.7
C28A-N5A-C36A	116.4(3)	C30A-N6A-C40A	118.7(3)
C30A-N6A-C37A	127.1(3)	C40A-N6A-C37A	110.2(3)
N1A-C1A-C2A	113.0(3)	N1A-C1A-C21A	106.7(3)
C2A-C1A-C21A	112.6(3)	N1A-C1A-H1A	108.1
C2A-C1A-H1A	108.1	C21A-C1A-H1A	108.1
C3A-C2A-C7A	118.6(3)	C3A-C2A-C1A	120.1(3)
C7A-C2A-C1A	121.2(3)	C2A-C3A-C4A	120.9(4)
C2A-C3A-H3A	119.5	C4A-C3A-H3A	119.5
C5A-C4A-C3A	119.5(4)	C5A-C4A-H4A	120.3
C3A-C4A-H4A	120.3	C6A-C5A-C4A	119.9(4)
C6A-C5A-H5A	120.1	C4A-C5A-H5A	120.1
C5A-C6A-C7A	120.9(4)	C5A-C6A-H6A	119.5
C7A-C6A-H6A	119.5	C6A-C7A-C2A	120.1(4)
C6A-C7A-H7A	119.9	C2A-C7A-H7A	119.9
N2A-C8A-N1A	116.0(3)	N2A-C8A-C9A	123.0(3)
N1A-C8A-C9A	121.0(3)	C10A-C9A-C8A	121.0(3)

C10A-C9A-H9A	119.5	C8A-C9A-H9A	119.5
N3A-C10A-C9A	119.7(3)	N3A-C10A-C11A	123.3(3)
C9A-C10A-C11A	116.9(3)	C16A-C11A-C12A	118.2(3)
C16A-C11A-C10A	116.9(3)	C12A-C11A-C10A	124.8(4)
C13A-C12A-C11A	122.1(4)	C13A-C12A-H12A	119.0
C11A-C12A-H12A	119.0	C12A-C13A-C14A	119.9(4)
C12A-C13A-H13A	120.1	C14A-C13A-H13A	120.1
C15A-C14A-C13A	119.4(4)	C15A-C14A-H14A	120.3
C13A-C14A-H14A	120.3	C14A-C15A-C16A	122.1(4)
C14A-C15A-H15A	119.0	C16A-C15A-H15A	119.0
N2A-C16A-C11A	124.9(3)	N2A-C16A-C15A	116.9(4)
C11A-C16A-C15A	118.1(4)	N3A-C17A-C18A	105.4(3)
N3A-C17A-H17A	110.7	C18A-C17A-H17A	110.7
N3A-C17A-H17B	110.7	C18A-C17A-H17B	110.7
H17A-C17A-H17B	108.8	C17A-C18A-C19A	102.8(4)
C17A-C18A-H18A	111.2	C19A-C18A-H18A	111.2
C17A-C18A-H18B	111.2	C19A-C18A-H18B	111.2
H18A-C18A-H18B	109.1	C20A-C19A-C18A	102.0(4)
C20A-C19A-H19A	111.4	C18A-C19A-H19A	111.4
C20A-C19A-H19B	111.4	C18A-C19A-H19B	111.4
H19A-C19A-H19B	109.2	N3A-C20A-C19A	103.1(3)
N3A-C20A-H20A	111.1	C19A-C20A-H20A	111.1
N3A-C20A-H20B	111.1	C19A-C20A-H20B	111.1
H20A-C20A-H20B	109.1	N4A-C21A-C22A	113.0(3)
N4A-C21A-C1A	106.4(3)	C22A-C21A-C1A	114.7(3)
N4A-C21A-H21A	107.5	C22A-C21A-H21A	107.5
C1A-C21A-H21A	107.5	C27A-C22A-C23A	118.3(3)
C27A-C22A-C21A	120.6(3)	C23A-C22A-C21A	121.0(3)
C24A-C23A-C22A	121.0(4)	C24A-C23A-H23A	119.5
C22A-C23A-H23A	119.5	C25A-C24A-C23A	120.6(4)
C25A-C24A-H24A	119.7	C23A-C24A-H24A	119.7
C24A-C25A-C26A	119.1(4)	C24A-C25A-H25A	120.4
C26A-C25A-H25A	120.4	C27A-C26A-C25A	120.1(4)
C27A-C26A-H26A	120.0	C25A-C26A-H26A	120.0
C22A-C27A-C26A	120.9(4)	C22A-C27A-H27A	119.6
C26A-C27A-H27A	119.6	N5A-C28A-N4A	115.5(3)
N5A-C28A-C29A	124.3(3)	N4A-C28A-C29A	120.2(3)
C30A-C29A-C28A	120.9(3)	C30A-C29A-H29A	119.6
C28A-C29A-H29A	119.6	N6A-C30A-C29A	119.2(3)
N6A-C30A-C31A	123.8(3)	C29A-C30A-C31A	117.0(3)
C32A-C31A-C36A	117.3(3)	C32A-C31A-C30A	125.7(3)
C36A-C31A-C30A	116.9(3)	C33A-C32A-C31A	122.8(4)
C33A-C32A-H32A	118.6	C31A-C32A-H32A	118.6

C32A-C33A-C34A	119.7(4)	C32A-C33A-H33A	120.1
C34A-C33A-H33A	120.1	C35A-C34A-C33A	119.1(4)
C35A-C34A-H34A	120.4	C33A-C34A-H34A	120.4
C34A-C35A-C36A	122.4(4)	C34A-C35A-H35A	118.8
C36A-C35A-H35A	118.8	N5A-C36A-C35A	117.1(3)
N5A-C36A-C31A	124.5(3)	C35A-C36A-C31A	118.4(3)
N6A-C37A-C38A	105.8(3)	N6A-C37A-H37A	110.6
C38A-C37A-H37A	110.6	N6A-C37A-H37B	110.6
C38A-C37A-H37B	110.6	H37A-C37A-H37B	108.7
C37A-C38A-C39A	104.1(3)	C37A-C38A-H38A	110.9
C39A-C38A-H38A	110.9	C37A-C38A-H38B	110.9
C39A-C38A-H38B	110.9	H38A-C38A-H38B	109.0
C40A-C39A-C38A	103.4(3)	C40A-C39A-H39A	111.1
C38A-C39A-H39A	111.1	C40A-C39A-H39B	111.1
C38A-C39A-H39B	111.1	H39A-C39A-H39B	109.0
N6A-C40A-C39A	104.3(3)	N6A-C40A-H40A	110.9
C39A-C40A-H40A	110.9	N6A-C40A-H40B	110.9
C39A-C40A-H40B	110.9	H40A-C40A-H40B	108.9
C8B-N1B-C1B	124.3(3)	C8B-N1B-H1BN	115(3)
C1B-N1B-H1BN	120(3)	C8B-N2B-C16B	116.7(3)
C10B-N3B-C20B	120.0(4)	C10B-N3B-C17B	127.6(4)
C20B-N3B-C17B	110.7(4)	C28B-N4B-C21B	124.9(3)
C28B-N4B-H4BN	123.2(13)	C21B-N4B-H4BN	111.7(14)
C28B-N5B-C36B	116.8(3)	C30B-N6B-C40B	118.7(4)
C30B-N6B-C37B	126.5(4)	C40B-N6B-C37B	109.8(4)
N1B-C1B-C2B	112.9(3)	N1B-C1B-C21B	107.1(3)
C2B-C1B-C21B	114.5(3)	N1B-C1B-H1BA	107.3
C2B-C1B-H1BA	107.3	C21B-C1B-H1BA	107.3
C7B-C2B-C3B	119.0(4)	C7B-C2B-C1B	122.6(4)
C3B-C2B-C1B	118.4(3)	C4B-C3B-C2B	121.3(5)
C4B-C3B-H3B	119.3	C2B-C3B-H3B	119.3
C3B-C4B-C5B	119.8(5)	C3B-C4B-H4B	120.1
C5B-C4B-H4B	120.1	C4B-C5B-C6B	120.3(5)
C4B-C5B-H5B	119.9	C6B-C5B-H5B	119.9
C5B-C6B-C7B	119.7(5)	C5B-C6B-H6B	120.2
C7B-C6B-H6B	120.2	C2B-C7B-C6B	119.9(4)
C2B-C7B-H7B	120.0	C6B-C7B-H7B	120.0
N2B-C8B-N1B	116.6(3)	N2B-C8B-C9B	123.2(3)
N1B-C8B-C9B	120.3(3)	C10B-C9B-C8B	121.9(3)
C10B-C9B-H9B	119.1	C8B-C9B-H9B	119.1
N3B-C10B-C9B	118.5(3)	N3B-C10B-C11B	124.7(3)
C9B-C10B-C11B	116.7(3)	C12B-C11B-C16B	116.8(3)
C12B-C11B-C10B	126.2(3)	C16B-C11B-C10B	117.0(3)

C13B-C12B-C11B	122.4(4)	C13B-C12B-H12B	118.8
C11B-C12B-H12B	118.8	C12B-C13B-C14B	120.4(4)
C12B-C13B-H13B	119.8	C14B-C13B-H13B	119.8
C15B-C14B-C13B	119.7(4)	C15B-C14B-H14B	120.2
C13B-C14B-H14B	120.2	C14B-C15B-C16B	121.4(4)
C14B-C15B-H15B	119.3	C16B-C15B-H15B	119.3
N2B-C16B-C15B	116.3(3)	N2B-C16B-C11B	124.5(3)
C15B-C16B-C11B	119.1(3)	N3B-C17B-C18B	103.3(4)
N3B-C17B-H17C	111.1	C18B-C17B-H17C	111.1
N3B-C17B-H17D	111.1	C18B-C17B-H17D	111.1
H17C-C17B-H17D	109.1	C19B-C18B-C17B	104.1(5)
C19B-C18B-H18C	110.9	C17B-C18B-H18C	110.9
C19B-C18B-H18D	110.9	C17B-C18B-H18D	110.9
H18C-C18B-H18D	109.0	C18B-C19B-C20B	103.0(5)
C18B-C19B-H19C	111.2	C20B-C19B-H19C	111.2
C18B-C19B-H19D	111.2	C20B-C19B-H19D	111.2
H19C-C19B-H19D	109.1	N3B-C20B-C19B	102.8(5)
N3B-C20B-H20C	111.2	C19B-C20B-H20C	111.2
N3B-C20B-H20D	111.2	C19B-C20B-H20D	111.2
H20C-C20B-H20D	109.1	N4B-C21B-C22B	113.8(3)
N4B-C21B-C1B	106.2(3)	C22B-C21B-C1B	114.5(3)
N4B-C21B-H21B	107.3	C22B-C21B-H21B	107.3
C1B-C21B-H21B	107.3	C27B-C22B-C23B	118.4(4)
C27B-C22B-C21B	122.6(4)	C23B-C22B-C21B	119.0(4)
C24B-C23B-C22B	121.9(6)	C24B-C23B-H23B	119.1
C22B-C23B-H23B	119.1	C25B-C24B-C23B	119.8(7)
C25B-C24B-H24B	120.1	C23B-C24B-H24B	120.1
C24B-C25B-C26B	120.9(5)	C24B-C25B-H25B	119.5
C26B-C25B-H25B	119.5	C25B-C26B-C27B	120.1(5)
C25B-C26B-H26B	120.0	C27B-C26B-H26B	120.0
C22B-C27B-C26B	118.9(5)	C22B-C27B-H27B	120.5
C26B-C27B-H27B	120.5	N5B-C28B-N4B	116.1(3)
N5B-C28B-C29B	122.9(3)	N4B-C28B-C29B	120.9(3)
C30B-C29B-C28B	121.6(3)	C30B-C29B-H29B	119.2
C28B-C29B-H29B	119.2	N6B-C30B-C29B	119.6(3)
N6B-C30B-C31B	123.0(3)	C29B-C30B-C31B	117.5(3)
C32B-C31B-C36B	117.6(3)	C32B-C31B-C30B	126.3(3)
C36B-C31B-C30B	116.1(3)	C33B-C32B-C31B	123.6(3)
C33B-C32B-H32B	118.2	C31B-C32B-H32B	118.2
C32B-C33B-C34B	118.8(4)	C32B-C33B-H33B	120.6
C34B-C33B-H33B	120.6	C35B-C34B-C33B	119.9(4)
C35B-C34B-H34B	120.1	C33B-C34B-H34B	120.1
C34B-C35B-C36B	122.0(3)	C34B-C35B-H35B	119.0

C36B-C35B-H35B	119.0	N5B-C36B-C35B	117.0(3)
N5B-C36B-C31B	124.9(3)	C35B-C36B-C31B	118.1(3)
N6B-C37B-C38B	105.0(4)	N6B-C37B-H37C	110.8
C38B-C37B-H37C	110.8	N6B-C37B-H37D	110.8
C38B-C37B-H37D	110.8	H37C-C37B-H37D	108.8
C39B-C38B-C37B	103.9(5)	C39B-C38B-H38C	111.0
C37B-C38B-H38C	111.0	C39B-C38B-H38D	111.0
C37B-C38B-H38D	111.0	H38C-C38B-H38D	109.0
C38B-C39B-C40B	104.6(4)	C38B-C39B-H39C	110.8
C40B-C39B-H39C	110.8	C38B-C39B-H39D	110.8
C40B-C39B-H39D	110.8	H39C-C39B-H39D	108.9
N6B-C40B-C39B	102.9(5)	N6B-C40B-H40C	111.2
C39B-C40B-H40C	111.2	N6B-C40B-H40D	111.2
C39B-C40B-H40D	111.2	H40C-C40B-H40D	109.1
Cl2S-C1S-Cl1S	111.1(11)	Cl2S-C1S-H1S1	109.4
Cl1S-C1S-H1S1	109.4	Cl2S-C1S-H1S2	109.4
Cl1S-C1S-H1S2	109.4	H1S1-C1S-H1S2	108.0
Cl2D-C1D-Cl1D	106.1(12)	C12D-C1D-H1D1	110.5
C11D-C1D-H1D1	110.5	C12D-C1D-H1D2	110.5
Cl1D-C1D-H1D2	110.5	H1D1-C1D-H1D2	108.7
Cl3S-C2S-C14S	112.0(17)	C13S-C2S-H2S1	109.2
C14S-C2S-H2S 1	109.2	Cl3S-C2S-H2S2	109.2
C14S-C2S-H2S2	109.2	H2S1-C2S-H2S2	107.9
C14D-C2D-C13D	110.3(18)	C14D-C2D-H2D1	109.6
Cl3D-C2D-H2D1	109.6	C14D-C2D-H2D2	109.6
Cl3D-C2D-H2D2	109.6	H2D1-C2D-H2D2	108.1
Cl6S-C3S-Cl5S	111.1(9)	C16S-C3S-H3S1	109.4
Cl5S-C3S-H3S1	109.4	Cl6S-C3S-H3S2	109.4
C15S-C3S-H3S2	109.4	H3S1-C3S-H3S2	108.0
Cl6D-C3D-Cl5D	106.6(9)	Cl6D-C3D-H3D1	110.4
C15D-C3D-H3D1	110.4	C16D-C3D-H3D2	110.4
Cl5D-C3D-H3D2	110.4	H3D1-C3D-H3D2	108.6

\qquad

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 12021. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \mathbf{U}^{11}+\ldots+2 h k a^{*} b^{*} \mathbf{U}^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
N1A	$35(2)$	$32(2)$	$36(2)$	$4(1)$	$-8(1)$	$-4(1)$
N2A	$23(1)$	$43(2)$	$36(2)$	$1(1)$	$-2(1)$	$1(1)$
N3A	$33(2)$	$44(2)$	$41(2)$	$4(1)$	$4(1)$	$-11(1)$
N4A	$36(2)$	$26(2)$	$33(2)$	$0(1)$	$-1(1)$	$-5(1)$
N5A	$26(1)$	$35(2)$	$33(1)$	$0(1)$	$0(1)$	$-1(1)$
N6A	$34(1)$	$31(2)$	$34(2)$	$0(1)$	$3(1)$	$-9(1)$
C1A	$32(2)$	$26(2)$	$36(2)$	$4(1)$	$-3(1)$	$-2(1)$
C2A	$33(2)$	$28(2)$	$37(2)$	$1(1)$	$0(1)$	$-8(1)$
C3A	$37(2)$	$46(2)$	$37(2)$	$3(2)$	$0(2)$	$0(2)$
C4A	$49(2)$	$58(3)$	$37(2)$	$8(2)$	$-1(2)$	$0(2)$
C5A	$62(3)$	$51(3)$	$44(2)$	$-6(2)$	$11(2)$	$-11(2)$
C6A	$57(2)$	$37(2)$	$53(2)$	$-6(2)$	$12(2)$	$-2(2)$
C7A	$43(2)$	$34(2)$	$47(2)$	$6(2)$	$2(2)$	$0(2)$
C8A	$28(2)$	$33(2)$	$30(2)$	$-4(1)$	$3(1)$	$0(1)$
C9A	$31(2)$	$35(2)$	$30(2)$	$-5(1)$	$0(1)$	$-1(2)$
C10A	$30(2)$	$39(2)$	$31(2)$	$-2(1)$	$12(1)$	$-3(2)$
C11A	$26(2)$	$46(2)$	$33(2)$	$-5(2)$	$4(1)$	$0(2)$
C12A	$45(2)$	$55(3)$	$45(2)$	$0(2)$	$1(2)$	$-18(2)$
C13A	$48(2)$	$72(3)$	$54(3)$	$-8(2)$	$-11(2)$	$-22(2)$
C14A	$40(2)$	$72(3)$	$52(2)$	$-6(2)$	$-12(2)$	$-4(2)$
C15A	$32(2)$	$65(3)$	$45(2)$	$3(2)$	$-6(2)$	$-1(2)$
C16A	$24(2)$	$49(2)$	$33(2)$	$-1(2)$	$5(1)$	$-1(2)$
C17A	$44(2)$	$65(3)$	$56(3)$	$9(2)$	$8(2)$	$-25(2)$
C18A	$55(3)$	$77(4)$	$55(3)$	$15(2)$	$5(2)$	$-24(3)$
C19A	$54(3)$	$55(3)$	$52(2)$	$18(2)$	$1(2)$	$-14(2)$
C20A	$39(2)$	$37(2)$	$37(2)$	$4(2)$	$4(2)$	$-4(2)$
C21A	$32(2)$	$27(2)$	$32(2)$	$6(1)$	$0(1)$	$-2(1)$
C22A	$32(2)$	$30(2)$	$36(2)$	$9(2)$	$-4(1)$	$-5(2)$
C23A	$46(2)$	$45(2)$	$47(2)$	$-2(2)$	$-5(2)$	$-9(2)$
C24A	$65(3)$	$56(3)$	$50(2)$	$-2(2)$	$-13(2)$	$-15(2)$
C25A	$51(3)$	$63(3)$	$65(3)$	$19(2)$	$-27(2)$	$-19(2)$
C26A	$34(2)$	$64(3)$	$80(3)$	$21(3)$	$-11(2)$	$1(2)$
C27A	$37(2)$	$47(2)$	$48(2)$	$9(2)$	$-4(2)$	$-1(2)$
C28A	$23(2)$	$32(2)$	$34(2)$	$2(1)$	$-7(1)$	$1(1)$
C29A	$26(2)$	$34(2)$	$29(2)$	$-3(1)$	$-4(1)$	$0(1)$
C30A	$19(1)$	$34(2)$	$39(2)$	$0(1)$	$0(1)$	$-5(1)$
C31A	$22(2)$	$33(2)$	$36(2)$	$-1(1)$	$1(1)$	$-2(1)$
C32A	$37(2)$	$41(2)$	$40(2)$	$0(2)$	$9(2)$	$-6(2)$

C33A	46(2)	51(3)	44(2)	-1(2)	13(2)	-7(2)
C34A	44(2)	47(2)	36(2)	-8(2)	8(2)	-1(2)
C35A	34(2)	39(2)	40(2)	-5(2)	2(2)	2(2)
C36A	23(2)	36(2)	35(2)	-2(2)	-1(1)	3(1)
C37A	30(2)	36(2)	42(2)	8(2)	2(2)	-8(2)
C38A	33(2)	37(2)	60(2)	1(2)	7(2)	-9(2)
C39A	41(2)	38(2)	51(2)	-6(2)	8(2)	-12(2)
C40A	38(2)	33(2)	40(2)	-5(2)	5(2)	-10(2)
N1B	34(2)	35(2)	42(2)	2(1)	-8(1)	-8(2)
N2B	31(1)	28(2)	36(2)	$0(1)$	-2(1)	$0(1)$
N3B	46(2)	42(2)	60(2)	0(2)	5(2)	-12(2)
N4B	39(2)	35(2)	30(1)	-3(1)	2(1)	-4(1)
N5B	34(2)	31(2)	31(1)	2(1)	-4(1)	5(1)
N6B	38(2)	54(2)	39(2)	6(2)	2(1)	-13(2)
C1B	27(2)	41(2)	31(2)	-3(1)	-3(1)	1(2)
C2B	39(2)	38(2)	37(2)	-6(2)	0 (2)	2(2)
C3B	47(2)	69(3)	56(3)	-21(2)	-9(2)	3(2)
C4B	81(4)	92(4)	74(4)	-43(3)	-12(3)	-9(3)
C5B	101(5)	92(4)	65(3)	-47(3)	1(3)	-2(4)
C6B	85(4)	65(3)	63(3)	-14(3)	27(3)	19(3)
C7B	51(2)	47(2)	51(2)	-5(2)	11(2)	6 (2)
C8B	30(2)	33(2)	36(2)	-1(2)	5(1)	3(2)
C9B	30(2)	37(2)	36(2)	-4(2)	3(1)	-2(2)
C10B	31(2)	33(2)	45(2)	-3(2)	9(2)	-1(2)
C11B	36(2)	29(2)	38(2)	-2(2)	6(2)	5(2)
C12B	46(2)	35(2)	47(2)	6(2)	6(2)	2(2)
C13B	58(3)	44(2)	50(2)	14(2)	8(2)	10(2)
C14B	46(2)	45(2)	37(2)	2(2)	-1(2)	10(2)
C15B	41(2)	35(2)	44(2)	1(2)	-1(2)	5(2)
C16B	29(2)	33(2)	37(2)	-2(2)	4(1)	2(1)
C17B	60(3)	56(3)	86(4)	11(3)	11(3)	-25(2)
C18B	70(4)	75(4)	116(5)	13(4)	0(3)	-43(3)
C19B	87(4)	71(4)	118(5)	0(4)	-14(4)	-44(3)
C20B	60(3)	58(3)	72(3)	-6(2)	-6(2)	-23(2)
C21B	34(2)	41(2)	31(2)	-6(2)	-4(1)	3(2)
C22B	46(2)	32(2)	50(2)	-5(2)	-17(2)	8(2)
C23B	91(4)	86(4)	37(2)	-6(2)	-14(2)	32(3)
C24B	149(7)	106(5)	44(3)	-5(3)	-34(3)	60(5)
C25B	120(6)	75(4)	70(4)	-15(3)	-51(4)	23(4)
C26B	61(3)	35(3)	123(5)	-2(3)	-43(3)	4(2)
C27B	44(2)	32(2)	80(3)	-3(2)	-20(2)	1(2)
C28B	24(2)	35(2)	33(2)	$0(1)$	-4(1)	$6(1)$
C29B	25(2)	44(2)	26(2)	$0(2)$	-1(1)	0 (2)

C30B	$22(2)$	$45(2)$	$33(2)$	$4(2)$	$-5(1)$	$-4(1)$
C31B	$21(1)$	$39(2)$	$34(2)$	$5(2)$	$-4(1)$	$0(1)$
C32B	$26(2)$	$37(2)$	$48(2)$	$8(2)$	$-3(2)$	$-4(2)$
C33B	$38(2)$	$33(2)$	$47(2)$	$-4(2)$	$-7(2)$	$2(2)$
C34B	$44(2)$	$38(2)$	$39(2)$	$-7(2)$	$0(2)$	$6(2)$
C35B	$41(2)$	$37(2)$	$33(2)$	$4(2)$	$0(2)$	$4(2)$
C36B	$26(2)$	$30(2)$	$34(2)$	$1(1)$	$-2(1)$	$4(1)$
C37B	$50(2)$	$57(3)$	$58(3)$	$21(2)$	$-19(2)$	$-20(2)$
C38B	$80(4)$	$81(4)$	$57(3)$	$31(3)$	$-24(3)$	$-36(3)$
C39B	$100(5)$	$127(6)$	$42(3)$	$22(3)$	$5(3)$	$-57(4)$
C40B	$56(3)$	$93(4)$	$34(2)$	$7(2)$	$8(2)$	$-19(3)$
Cl1S	$83(1)$	$109(2)$	$97(2)$	$-19(1)$	$-4(1)$	$40(1)$
C12S	$116(2)$	$228(4)$	$220(4)$	$-141(4)$	$-83(3)$	$87(2)$
C1S	$95(5)$	$148(5)$	$157(5)$	$-71(4)$	$-16(4)$	$40(4)$
Cl1D	$83(1)$	$109(2)$	$97(2)$	$-19(1)$	$-4(1)$	$40(1)$
C12D	$116(2)$	$228(4)$	$220(4)$	$-141(4)$	$-83(3)$	$87(2)$
C1D	$95(5)$	$148(5)$	$157(5)$	$-71(4)$	$-16(4)$	$40(4)$
Cl3S	$146(3)$	$67(2)$	$66(1)$	$2(1)$	$-1(2)$	$-2(2)$
C14S	$87(2)$	$336(7)$	$123(3)$	$41(4)$	$-33(2)$	$29(3)$
C2S	$120(3)$	$174(5)$	$187(6)$	$81(8)$	$5(5)$	$25(3)$
Cl3D	$120(3)$	$174(5)$	$187(6)$	$81(8)$	$5(5)$	$25(3)$
C14D	$357(16)$	$171(8)$	$171(7)$	$31(6)$	$143(10)$	$98(9)$
C2D	$87(2)$	$336(7)$	$123(3)$	$41(4)$	$-33(2)$	$29(3)$
C15S	$67(1)$	$55(1)$	$72(1)$	$9(1)$	$-6(1)$	$1(1)$
C16S	$74(2)$	$171(4)$	$148(3)$	$8(3)$	$-19(2)$	$-11(2)$
C3S	$173(5)$	$131(5)$	$148(4)$	$-4(4)$	$33(4)$	$34(4)$
C15D	$173(5)$	$131(5)$	$148(4)$	$-4(4)$	$33(4)$	$34(4)$
C16D	$143(5)$	$94(4)$	$238(7)$	$11(4)$	$-39(5)$	$32(4)$
C3D	$74(2)$	$171(4)$	$148(3)$	$8(3)$	$-19(2)$	$-11(2)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 12021.

	x	y	z	U(eq)
H1AN	4320(40)	270(20)	1180(20)	58(15)
H4AN	6102	-268	804	43(12)
H1A	5471	-522	1684	38
H3A	5923	-583	2658	48
H4A	5681	-350	3611	58
H5A	4612	406	3859	62
H6A	3804	920	3161	58
H7A	4041	695	2213	50
H9A	4202	-1040	1936	38
H12A	1945	-2274	1051	58
H13A	1051	-2152	250	70
H14A	1039	-1207	-228	65
H15A	2028	-441	52	57
H17A	2172	-2661	1842	66
H17B	1704	-2024	2031	66
H18A	2066	-2854	2773	75
H18B	2128	-2139	2939	75
H19A	3616	-2485	3141	64
H19B	3645	-2906	2580	64
H20A	3716	-1589	2622	45
H20B	4393	-2033	2268	45
H21A	5685	759	1426	36
H23A	6297	1019	2400	55
H24A	7625	1156	2937	68
H25A	8989	668	2687	71
H26A	9003	4	1903	71
H27A	7656	-153	1378	53
H29A	6727	1253	935	36
H32A	7832	1835	-882	47
H33A	7877	1348	-1744	56
H34A	7297	346	-1833	51
H35A	6708	-148	-1046	45
H37A	6858	2523	-456	43
H37B	7960	2568	-379	43
H38A	6595	3279	165	52
H38B	7645	3471	27	52
H39A	8211	2981	821	52
H39B	7223	3202	1061	52
295				

H40A	7611	2052	1079	44
H40B	6571	2258	932	44
H1BN	5510(30)	-628(18)	-61(16)	26(10)
H4BN	3900(20)	43(11)	186(14)	25(9)
H1BA	3786	-787	-228	39
H3B	2929	-1189	-973	69
H4B	2807	-1847	-1734	99
H5B	4126	-2157	-2215	103
H6B	5578	-1858	-1894	85
H7B	5703	-1194	-1110	60
H9B	4159	-1836	-83	41
H12B	5078	-3113	1451	51
H13B	6118	-2982	2173	61
H14B	6930	-2059	2267	51
H15B	6775	-1304	1589	48
H17C	3574	-3103	1253	81
H17D	4193	-3609	933	81
H18C	2764	-3973	695	104
H18D	2306	-3301	707	104
H19C	2469	-3476	-233	111
H19D	3461	-3798	-148	111
H20C	3930	-2814	-378	76
H20D	3059	-2506	-62	76
H21B	5052	84	-684	42
H23B	4820	75	-1673	85
H24B	3981	388	-2456	120
H25B	2442	616	-2366	106
H26B	1742	626	-1484	87
H27B	2605	353	-663	63
H29B	4843	1123	-742	38
H32B	5095	3012	231	45
H33B	4902	3298	1155	47
H34B	4371	2567	1822	49
H35B	4123	1570	1547	45
H37C	5342	3196	-618	66
H37D	4262	3030	-571	66
H38C	4083	2992	-1516	87
H38D	4944	3459	-1505	87
H39C	5986	2697	-1667	108
H39D	5133	2477	-2054	108
H40C	4663	1766	-1403	73
H40D	5763	1741	-1299	73
H1S1	2573	859	1175	160

H1S2	2582	320	1634	160
H1D1	2700	502	1335	160
H1D2	1803	446	1733	160
H2S1	6558	1165	6460	192
H2S2	6331	1878	6537	192
H2D1	4660	1560	6297	218
H2D2	4937	849	6315	218
H3S1	3951	4260	381	181
H3S2	4218	4972	379	181
H3D1	3332	4788	-115	157
H3D2	3903	5205	323	157

Table 6. Torsion angles [${ }^{\circ}$] for 12021.

C8A-N1A-C1A-C2A	-85.3(4)
N1A-C1A-C2A-C3A	146.1(3)
N1A-C1A-C2A-C7A	-35.6(5)
C7A-C2A-C3A-C4A	-1.5(6)
C2A-C3A-C4A-C5A	0.8(6)
C4A-C5A-C6A-C7A	-0.2(7)
C3A-C2A-C7A-C6A	1.4(6)
C16A-N2A-C8A-N1A	179.4(3)
C1A-N1A-C8A-N2A	-166.2(3)
N2A-C8A-C9A-C10A	1.6(5)
C20A-N3A-C10A-C9A	-0.2(5)
C20A-N3A-C10A-C11A	178.5(3)
C8A-C9A-C10A-N3A	-177.7(3)
N3A-C10A-C11A-C16A	174.6(3)
N3A-C10A-C11A-C12A	-9.2(6)
C16A-C11A-C12A-C13A	-3.1(6)
C11A-C12A-C13A-C14A	-1.2(7)
C13A-C14A-C15A-C16A	-1.5(7)
C8A-N2A-C16A-C15A	-176.6(3)
C10A-C11A-C16A-N2A	5.5(5)
C10A-C11A-C16A-C15A	-178.4(3)
C14A-C15A-C16A-C11A	-2.8(6)
C20A-N3A-C17A-C18A	4.4(5)
C17A-C18A-C19A-C20A	41.3(5)
C17A-N3A-C20A-C19A	21.5(5)
C28A-N4A-C21A-C22A	-78.7(4)
N1A-C1A-C21A-N4A	-61.9(3)
N1A-C1A-C21A-C22A	172.4(3)
N4A-C21A-C22A-C27A	-19.6(5)
N4A-C21A-C22A-C23A	157.9(3)
C27A-C22A-C23A-C24A	0.0(6)
C22A-C23A-C24A-C25A	1.0(7)
C24A-C25A-C26A-C27A	0.3(7)
C21A-C22A-C27A-C26A	176.6(4)
C36A-N5A-C28A-N4A	-179.6(3)
C21A-N4A-C28A-N5A	-172.7(3)
N5A-C28A-C29A-C30A	0.3(5)
C40A-N6A-C30A-C29A	-0.9(5)
C40A-N6A-C30A-C31A	-179.7(3)
C28A-C29A-C30A-N6A	178.9(3)
N6A-C30A-C31A-C32A	5.8(5)

C8A-N1A-C1A-C21A	150.5(3)
C21A-C1A-C2A-C3A	-92.9(4)
C21A-C1A-C2A-C7A	85.3(4)
C1A-C2A-C3A-C4A	176.8(4)
C3A-C4A-C5A-C6A	0.1(7)
C5A-C6A-C7A-C2A	-0.6(6)
C1A-C2A-C7A-C6A	-176.8(3)
C16A-N2A-C8A-C9A	-3.2(5)
C1A-N1A-C8A-C9A	16.4(5)
N1A-C8A-C9A-C10A	178.8(3)
C17A-N3A-C10A-C9A	146.7(4)
C17A-N3A-C10A-C11A	-34.6(6)
C8A-C9A-C10A-C11A	3.6(5)
C9A-C10A-C11A-C16A	-6.7(5)
C9A-C10A-C11A-C12A	169.6(4)
C10A-C11A-C12A-C13A	-179.4(4)
C12A-C13A-C14A-C15A	3.6(7)
C8A-N2A-C16A-C11A	-0.5(5)
C12A-C11A-C16A-N2A	-171.0(4)
C12A-C11A-C16A-C15A	5.0(5)
C14A-C15A-C16A-N2A	173.5(4)
C10A-N3A-C17A-C18A	-145.3(4)
N3A-C17A-C18A-C19A	-28.3(5)
C10A-N3A-C20A-C19A	173.1(3)
C18A-C19A-C20A-N3A	-38.4(4)
C28A-N4A-C21A-C1A	154.6(3)
C2A-C1A-C21A-N4A	173.7(3)
C2A-C1A-C21A-C22A	48.0(4)
C1A-C21A-C22A-C27A	102.6(4)
C1A-C21A-C22A-C23A	-79.9(4)
C21A-C22A-C23A-C24A	-177.5(4)
C23A-C24A-C25A-C26A	-1.2(7)
C23A-C22A-C27A-C26A	-0.9(6)
C25A-C26A-C27A-C22A	0.8(7)
C36A-N5A-C28A-C29A	$1.0(5)$
C21A-N4A-C28A-C29A	6.8(5)
N4A-C28A-C29A-C30A	-179.0(3)
C37A-N6A-C30A-C29A	-156.1(3)
C37A-N6A-C30A-C31A	25.1(5)
C28A-C29A-C30A-C31A	-2.2(5)
C29A-C30A-C31A-C32A	-173.0(3)

N6A-C30A-C31A-C36A	-178.5(3)	C29A-C30A-C31A-C36A	2.7(4)
C36A-C31A-C32A-C33A	5.6(5)	C30A-C31A-C32A-C33A	-178.7(4)
C31A-C32A-C33A-C34A	-2.2(6)	C32A-C33A-C34A-C35A	-1.1(6)
C33A-C34A-C35A-C36A	0.9(6)	C28A-N5A-C36A-C35A	179.7(3)
C28A-N5A-C36A-C31A	-0.3(5)	C34A-C35A-C36A-N5A	-177.6(3)
C34A-C35A-C36A-C31A	2.5(5)	C32A-C31A-C36A-N5A	174.6(3)
C30A-C31A-C36A-N5A	-1.5(5)	C32A-C31A-C36A-C35A	-5.5(5)
C30A-C31A-C36A-C35A	178.4(3)	C30A-N6A-C37A-C38A	155.7(3)
C40A-N6A-C37A-C38A	-1.1(4)	N6A-C37A-C38A-C39A	21.7(3)
C37A-C38A-C39A-C40A	-33.8(4)	C30A-N6A-C40A-C39A	-179.3(3)
C37A-N6A-C40A-C39A	-20.2(4)	C38A-C39A-C40A-N6A	33.0(4)
C8B-N1B-C1B-C2B	-79.9(4)	C8B-N1B-C1B-C21B	153.1(3)
N1B-C1B-C2B-C7B	-36.1(5)	C21B-C1B-C2B-C7B	86.9(5)
N1B-C1B-C2B-C3B	142.2(4)	C21B-C1B-C2B-C3B	-94.8(5)
C7B-C2B-C3B-C4B	0.1(8)	C1B-C2B-C3B-C4B	-178.3(5)
C2B-C3B-C4B-C5B	-1.3(10)	C3B-C4B-C5B-C6B	2.1(11)
C4B-C5B-C6B-C7B	-1.7(10)	C3B-C2B-C7B-C6B	0.3(7)
C1B-C2B-C7B-C6B	178.6(4)	C5B-C6B-C7B-C2B	0.5(8)
C16B-N2B-C8B-N1B	-178.5(3)	C16B-N2B-C8B-C9B	-0.1(5)
C1B-N1B-C8B-N2B	-158.8(3)	C1B-N1B-C8B-C9B	22.8(5)
N2B-C8B-C9B-C10B	-0.3(5)	N1B-C8B-C9B-C10B	178.0(3)
C20B-N3B-C10B-C9B	5.2(6)	C17B-N3B-C10B-C9B	-158.4(4)
C20B-N3B-C10B-C11B	-171.1(4)	C17B-N3B-C10B-C11B	25.2(6)
C8B-C9B-C10B-N3B	-176.7(3)	C8B-C9B-C10B-C11B	-0.1(5)
N3B-C10B-C11B-C12B	-0.7(6)	C9B-C10B-C11B-C12B	-177.1(3)
N3B-C10B-C11B-C16B	177.2(3)	C9B-C10B-C11B-C16B	0.8(5)
C16B-C11B-C12B-C13B	2.9(5)	C10B-C11B-C12B-C13B	-179.3(4)
C11B-C12B-C13B-C14B	0.2(6)	C12B-C13B-C14B-C15B	-2.9(6)
C13B-C14B-C15B-C16B	2.3(6)	C8B-N2B-C16B-C15B	-179.0(3)
C8B-N2B-C16B-C11B	0.9(5)	C14B-C15B-C16B-N2B	-179.2(3)
C14B-C15B-C16B-C11B	0.9(5)	C12B-C11B-C16B-N2B	176.8(3)
C10B-C11B-C16B-N2B	-1.2(5)	C12B-C11B-C16B-C15B	-3.4(5)
C10B-C11B-C16B-C15B	178.6(3)	C10B-N3B-C17B-C18B	156.6(5)
C20B-N3B-C17B-C18B	-8.3(6)	N3B-C17B-C18B-C19B	30.5(7)
C17B-C18B-C19B-C20B	-40.4(7)	C10B-N3B-C20B-C19B	177.9(4)
C17B-N3B-C20B-C19B	-15.9(6)	C18B-C19B-C20B-N3B	34.8(6)
C28B-N4B-C21B-C22B	-74.8(4)	C28B-N4B-C21B-C1B	158.4(3)
N1B-C1B-C21B-N4B	-68.9(3)	C2B-C1B-C21B-N4B	165.1(3)
N1B-C1B-C21B-C22B	164.7(3)	C2B-C1B-C21B-C22B	38.7(4)
N4B-C21B-C22B-C27B	-33.2(5)	C1B-C21B-C22B-C27B	89.2(5)
N4B-C21B-C22B-C23B	145.6(4)	C1B-C21B-C22B-C23B	-92.0(5)
C27B-C22B-C23B-C24B	-0.3(8)	C21B-C22B-C23B-C24B	-179.2(6)
C22B-C23B-C24B-C25B	-2.2(11)	C23B-C24B-C25B-C26B	3.0(11)

C24B-C25B-C26B-C27B	$-1.4(9)$	C23B-C22B-C27B-C26B	$1.9(6)$
C21B-C22B-C27B-C26B	$-179.3(4)$	C25B-C26B-C27B-C22B	$-1.1(7)$
C36B-N5B-C28B-N4B	$-176.6(3)$	C36B-N5B-C28B-C29B	$0.1(5)$
C21B-N4B-C28B-N5B	$-170.3(3)$	C21B-N4B-C28B-C29B	$13.0(5)$
N5B-C28B-C29B-C30B	$-3.9(5)$	N4B-C28B-C29B-C30B	$172.6(3)$
C40B-N6B-C30B-C29B	$-2.2(5)$	C37B-N6B-C30B-C29B	$149.9(4)$
C40B-N6B-C30B-C31B	$178.3(3)$	C37B-N6B-C30B-C31B	$-29.5(5)$
C28B-C29B-C30B-N6B	$-174.2(3)$	C28B-C29B-C30B-C31B	$5.3(5)$
N6B-C30B-C31B-C32B	$-4.9(5)$	C29B-C30B-C31B-C32B	$175.6(3)$
N6B-C30B-C31B-C36B	$176.4(3)$	C29B-C30B-C31B-C36B	$-3.1(4)$
C36B-C31B-C32B-C33B	$-0.8(5)$	C30B-C31B-C32B-C33B	$-179.4(3)$
C31B-C32B-C33B-C34B	$-0.6(6)$	C32B-C33B-C34B-C35B	$1.6(6)$
C33B-C34B-C35B-C36B	$-1.2(6)$	C28B-N5B-C36B-C35B	$-178.5(3)$
C28B-N5B-C36B-C31B	$2.1(5)$	C34B-C35B-C36B-N5B	$-179.7(3)$
C34B-C35B-C36B-C31B	$-0.2(5)$	C32B-C31B-C36B-N5B	$-179.4(3)$
C30B-C31B-C36B-N5B	$-0.6(5)$	C32B-C31B-C36B-C35B	$1.2(5)$
C30B-C31B-C36B-C35B	$180.0(3)$	C30B-N6B-C37B-C38B	$-148.4(4)$
C40B-N6B-C37B-C38B	$5.8(5)$	N6B-C37B-C38B-C39B	$-26.6(5)$
C37B-C38B-C39B-C40B	$37.5(5)$	C30B-N6B-C40B-C39B	$173.4(4)$
C37B-N6B-C40B-C39B	$16.9(5)$	C38B-C39B-C40B-N6B	$-33.5(5)$

Table 7. Least-squares fir of molecule A and B for 12021.

ATOM MODEL DEVIATION

N1A N1B 0.044
N4A N4B 0.045
C1A C1B 0.038
C21A C21B 0.036

WEIGHTED R.M.S. DEVIATION $=0.0409 \AA$

IDEALIZED CRYSTAL COORDINATES FOR MODEL ATOMS

| NAME | SFAC | X | Y | Z | NEAREST ATOM | DEVIATION |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| N1B | 3 | 0.44069 | -0.00377 | 0.13685 | N1A | 0.044 |
| N2B | 3 | 0.32214 | -0.04358 | 0.08425 | N2A | 0.030 |
| N3B | 3 | 0.29979 | -0.18752 | 0.20399 | N3A | 0.371 |
| N4B | 3 | 0.62042 | 0.01253 | 0.09069 | N4A | 0.045 |
| N5B | 3 | 0.66328 | 0.01999 | -0.00262 | N5A | 0.131 |
| N6B | 3 | 0.77931 | 0.19373 | 0.03284 | N6A | 0.745 |
| C1B | 1 | 0.52384 | -0.01039 | 0.17008 | C1A | 0.038 |
| C2B | 1 | 0.50680 | -0.00433 | 0.23320 | C2A | 0.191 |
| C3B | 1 | 0.55641 | -0.04212 | 0.26994 | C3A | 0.368 |

C4B	1	0.54259	-0.04009	0.3	C4A	0.
	1	0.48009	0.00062	0.	C5	0.6
	1	0.42912	0.03803	0.3	C6A	. 552
	1	0.4	. 03	0.25	C7	0.3
	1	0.37717	-0.0	0.12905	C8	0.08
	1	0.37	-0.09	0.16828	C9	0.1
	1	0.30527	-0.1		C10A	0.246
	1	0.2	-0.1			6
	1	0.1	-0.1	0.1		8
	1	0.1	-0.1	0.05	C1	3
	1	0.13093	-0.12	0.0	C1	1
	1	0.19936	-0.08	0.02	C15A	5
	1	0.25676	-0.0	0.0	C16A	
C17B	1	0.25	-0.	0.1	C	8
	1	0.30	-0.2	0.2	C19A	7
	1	0.3	-0.	0.	C19A	
	1	0.356	-0.	0.2	C20A	
	1	0.59	0.03	0.1	C21A	
C22B	1	0.67789	0.0	0.1	C2	
	1	0.67425	0.0	0.	C23A	
	1	0.7	0.1	0.2	C24A	0.509
	1	0.8	0.0	0	C25A	
	1	0.8	0.0	0.22074	26A	0.528
	1	0.7	0.0		C27A	
	1	0.6	0.0		28A	
	1	0.6	0.10	0.05938		
	1	0.7	0.13	0.0	C30A	
	1	0.7453	0.1	-0.03	C31A	
	1	0.7846	0.13	-0.0	C32A	
	1	0.78736	0.11	-0.1	C33A	
	1	0.74	0.053	-0.14	C34A	
B	1	0.70896	0.02	-0.0986	C35	
6B	1	0.70500	0.0526	-0.04463	C36A	0.260
7B	1	0.86345	0.22080	0.00716	N6A	1.956
38 B	1	0.90784	0.25688	0.05403	C39A	2.447
39B	1	0.82908	0.27332	0.09180	C39A	1.241
40B		0.76	. 21	0.09	4	

[^0]: ${ }^{1}$ Dobish, M. C.; Johnston, J. N. Org. Lett. 2010, 12, 5744-5747.
 ${ }^{2}$ Fattorusso, E. and Taglialatela-Scafati, O. Eds. Modern Alkaloids. Structure, Isolation, Synthesis and Biology; Wiley-VCH Verlag GmbH \& Co. KGaA: Weinheim, Germany, 2008.
 ${ }^{3}$ Kochanowska-Karamyan, A. J.; Hamann, M. T. Chem. Rev. 2010, 110, 4489-4497.
 ${ }^{4}$ Midas World Review (TM), January 2009-December 2009, IMS Health Incorporated.

[^1]: ${ }^{5}$ Gul, W.; Hamann, M. T. Life Sci. 2005, 78, 442-453.
 ${ }^{6}$ Muller, J. M.; Schlittler, E.; Bein, H. J. Experienlia, 1952, 8, 338.

[^2]: ${ }^{7}$ Woodward, R. B.; Bader, F. E.; Bickel, H.; Frey, A. J.; Kierstead, R. W. J. Am. Chem. Soc. 1956, 78, 2023-2025. Woodward, R. B.; Bader, F. E.; Bickel, H.; Frey, A. J.; Kierstead, R. W. Tetrahedron 1958, 2, 1-57.
 ${ }^{8}$ Kornfeld, E. C.; Fornefeld, E. J.; Kline, G. B.; Mann, M. J.; Morrison, D. E.; Jones, R. G.; Woodward, R. B. J. Am. Chem. Soc. 1956, 78, 3087-3114.
 ${ }^{9}$ Depew, K. M.; Danishefsky, S. J.; Rosen, N.; Sepp-Lorenzino, L. J. Am. Chem. Soc. 1996, 118, 12463-12464.
 ${ }^{10}$ Baran, P. S.; Guerrero, C. A.; Corey, E. J. J. Am. Chem. Soc. 2003, 125, 5628-5629.

[^3]: ${ }^{11}$ Farr, R. N.; Alabaster, R. J.; Chung, J. Y. L.; Craig, B.; Edwards, J. S.; Gibson, A. W.; Ho, G.-J.; Humphrey, G. R.; Johnson, S. A.; Grabowski, E. J. J. Tetrahedron: Asymmetry 2003, 14, 3503-3515.
 ${ }^{12}$ Richter, J. M.; Whitefield, B. W.; Maimone, T. J.; Lin, D. W.; Castroviejo, M. P.; Baran, P. S. J. Am. Chem. Soc. 2007, 129, 12857-12869.
 ${ }^{13}$ Katz, A. H.; Demerson, C. A.; Shaw, C. C.; Asselin, A. A.; Humber, L. G.; Conway, K. M.; Gavin, G.; Guinosso, C.; Jensen, N. P. J. Med. Chem. 1988, 31, 1244-1250.

[^4]: ${ }^{14}$ Richter, J. M.; Ishihara, Y.; Masuda, T.; Whitefield, B. W.; Llamas, T. s.; Pohjakallio, A.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 17938-17954.
 ${ }^{15}$ Wang, S.; Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Qiu, S.; Wang, G.; Qin, D.; Shangary, S. 2006, p 216 pp.
 ${ }^{16}$ Bifulco, G.; Bruno, I.; Minale, L.; Riccio, R.; Calignano, A.; Debitus, C. c. J. Nat. Prod. 1994, 57, 1294-1299.
 ${ }^{17}$ Kayakawa, Y.; Kawakami, K.; Seto, H.; Furihata, K. Tetrahedron Lett. 1992, 33, 2701-2704. Fuerstner, A.; Weintritt, H. J. Am. Chem. Soc. 1997, 119, 2944-2945.
 ${ }^{18}$ Schröder, F.; Sinnwell, V.; Baumann, H.; Kaib, M.; Francke, W. Angew. Chem. Int. Ed. 1997, 36, 77-80.

[^5]: ${ }^{19}$ Friedel, P.; Crafts, J. M. Compt. Rend. 1877, 84, 1392.
 ${ }^{20}$ A Sci-Finder search of Friedel-Crafts yields over 18,000 references.
 ${ }^{21}$ Calloway, N. O. Chem. Rev. 1935, 17, 327-392. Gore, P. H. Chem. Rev. 1955, 55, 229-281. Groves, J. K. Chem. Soc. Rev. 1972, 1, 73-97.

[^6]: ${ }^{22}$ Noland, W. E.; Hartman, P. J. J. Am. Chem. Soc. 1954, 76, 3227-3228. Noland, W. E.; Christensen, G. M.; Sauer, G. L.; Dutton, G. G. S. J. Am. Chem. Soc. 1955, 77, 456-457.
 ${ }^{23}$ Jørgensen, K. A. Synthesis 2003, 1117-1125. Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem. Int. Ed. 2004, 43, 550-556. Poulsen, T. B.; Jørgensen, K. A. Chem. Rev. 2008, 108, 2903-2915.

[^7]: ${ }^{24}$ Jia, Y.-X.; Zhu, S.-F.; Yang, Y.; Zhou, Q.-L. J. Org. Chem. 2005, 71, 75-80. Lu, S.-F.; Du, D.-M.; Xu, J. Org. Lett. 2006, 8, 2115-2118. Singh, P. K.; Bisai, A.; Singh, V. K. Tetrahedron Lett. 2007, 48, 1127-1129. Liu, H.; Lu, S.F.; Xu, J.; Du, D.-M. Chemistry - An Asian Journal 2008, 3, 1111-1121.
 ${ }^{25}$ Bandini, M.; Garelli, A.; Rovinetti, M.; Tommasi, S.; Umani-Ronchi, A. Chirality 2005, 17, 522-529.
 ${ }^{26}$ Herrera, R. P.; Sgarzani, V.; Bernardi, L.; Ricci, A. Angew. Chem. Int. Ed. 2005, 44, 6576-6579.

[^8]: ${ }^{27}$ Jørgensen, K. A. Synthesis 2003, 1117-1125.

[^9]: ${ }^{28}$ Itoh, J.; Fuchibe, K.; Akiyama, T. Angew. Chem. Int. Ed. 2008, 47, 4016-4018.
 ${ }^{29}$ Ganesh, M.; Seidel, D. J. Am. Chem. Soc. 2008, 130, 16464-16465.

[^10]: ${ }^{30}$ Gore, P. H. Chem. Rev. 1955, 55, 229-281. Bandini, M.; Melchiorre, P.; Melloni, A.; Umani-Ronchi, A. Synthesis 2002, 1110-1114. Ballini, R.; Clemente, R. R.; Palmieri, A.; Petrini, M. Adv. Synth. Catal. 2006, 348, 191-196. Kusurkar, R.; Alkobati, N.; Gokule, A.; Chaudhari, P.; Waghchaure, P. Synth. Commun. 2006, 36, 1075-1081. Kantam, M. L.; Laha, S.; Yadav, J.; Srinivas, P. Synth. Commun. 2009, 39, 4100-4108. Ye, M.-C.; Yang, Y.-Y.; Tang, Y.; Sun, X.-L.; Ma, Z.; Qin, W.-M. Synlett 2006, 1240-1244. Habib, P. M.; Kavala, V.; Raju, B. R.; Kuo, C.-W.; Huang, W.-C.; Yao, C.-F. Eur. J. Org. Chem. 2009, 4503-4514.

[^11]: ${ }^{31}$ Sui, Y.; Liu, L.; Zhao, J.-L.; Wang, D.; Chen, Y.-J. Tetrahedron 2007, 63, 5173-5183.

[^12]: ${ }^{32}$ Snyder, H. R.; Smith, C. W.; Stewart, J. M. J. Am. Chem. Soc. 1944, 66, 200-204.

[^13]: ${ }^{33}$ Semenov, B. B.; Granik, V. G. Pharm. Chem. J. 2004, 38, 287-310.
 ${ }^{34}$ Semenov, B. B.; Smushkevich, Y. I. Rus. Chem. Bull. 2002, 51, 185.
 ${ }^{35}$ Ballini, R.; Palmieri, A.; Petrini, M.; Torregiani, E. Org. Lett. 2006, 8, 4093-4096.

[^14]: ${ }^{36}$ Palmieri, A.; Petrini, M. J. Org. Chem. 2007, 72, 1863-1866.

[^15]: ${ }^{37}$ Deb, M. L.; Bhuyan, P. J. Tetrahedron Lett. 2006, 47, 1441-1443.
 ${ }^{38}$ For a review see Palmieri, A.; Petrini, M.; Shaikh, R. R. Org. Biomol. Chem. 2010, 8, 1259-1270.
 ${ }^{39}$ Ballini, R.; Palmieri, A.; Petrini, M.; Shaikh, R. Adv. Synth. Catal. 2008, 350, 129-134.

[^16]: ${ }^{40}$ Palmieri, A.; Petrini, M.; Shaikh, R. R. Synlett 2008, 1845,1851.

[^17]: ${ }^{41}$ Shaikh, R.; Mazzanti, A.; Petrini, M.; Bartoli, G.; Melchiorre, P. Angew. Chem. Int. Ed. 2008, 47, 8707-8710.
 ${ }^{42}$ Cozzi, P.; Benfatti, F.; Zoli, L. Angew. Chem. Int. Ed. 2009, 48, 1313-1316.

[^18]: ${ }^{43}$ Li, Y.; Shi, F. Q.; He, Q. L.; You, S. L. Org. Lett. 2009, 11, 3182-3185.

[^19]: ${ }^{44}$ Kerr, M. S.; Read de Alaniz, J.; Rovis, T. J. Org. Chem. 2005, 70, 5725-5728.
 ${ }^{45}$ Guo, Q.-X.; Peng, Y.-G.; Zhang, J.-W.; Song, L.; Feng, Z.; Gong, L.-Z. Org. Lett. 2009, 11, 4620-4623.

[^20]: ${ }^{46}$ Jing, L.; Wei, J.; Zhou, L.; Huang, Z.; Li, Z.; Wu, D.; Xiang, H.; Zhou, X. Chem.-Eur. J. 2010, 16, 10955-10958.

[^21]: ${ }^{47}$ Nugent, B. M.; Yoder, R. A.; Johnston, J. N. J. Am. Chem. Soc. 2004, 126, 3418-3419.
 ${ }^{48}$ Singh, A.; Yoder, R. A.; Shen, B.; Johnston, J. N. J. Am. Chem. Soc. 2007, 129, 3466-3467.
 ${ }^{49}$ Shen, B.; Johnston, J. N. Org. Lett. 2008, 10, 4397-4400.
 ${ }^{50}$ Singh, A.; Johnston, J. N. J. Am. Chem. Soc. 2008, 130, 5866-5867.
 ${ }^{51}$ Wilt, J. C.; Pink, M.; Johnston, J. N. Chem. Commun. 2008, 4177-4179.
 ${ }^{52}$ Davis, T. A.; Wilt, J. C.; Johnston, J. N. J. Am. Chem. Soc. 2010, 132, 2880-2882.

[^22]: ${ }^{a}$ All reactions were performed on a 0.10 mmol scale using 1 equivalent of the indole and run under the conditions listed. Product was isolated as <1.6:1 dr unless otherwise noted. Enantiomer ratios of major diastereomer (or average of both) measured by HPLC using chiral stationary phase. ${ }^{b}$ Reaction ran for 5 d .

[^23]: ${ }^{53}$ Debromination of the bromonitromethane adduct was used to match known compound: ref. 26

[^24]: ${ }^{54}$ Singh, A.; Johnston, J. N. unpublished results

[^25]: ${ }^{55}$ Davis, T. A.; Johnston, J. N. Chemical Science 2011, 2, 1076-1079. Davis, T. A.; Vara, B. A.; Johnston, J. N. unpublished results.
 ${ }^{56}$ Kim, H.; Yen, C.; Preston, P.; Chin, J. Org. Lett. 2006, 8, 5239-5242.

[^26]: ${ }^{57}$ Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672-12673.
 ${ }^{58}$ Li, H.; Wang, Y.; Tang, L.; Deng, L. J. Am. Chem. Soc. 2004, 126, 9906-9907.

[^27]: ${ }^{59}$ Guo, C.; Song, J.; Luo, S.-W.; Gong, L.-Z. Angew. Chem. Int. Ed., 49, 5558-5562. Hayashi, Y. Angew. Chem. Int. Ed. 2006, 45, 8103-8104. Woodward, R. B.; Cava, M. P.; Ollis, W. D.; Hunger, A.; Daeniker, H. U.; Schenker, K. Tetrahedron 1963, 19, 247-288.

[^28]: ${ }^{60}$ Fessard, T.; Motoyoshi, H.; Carreira, E. Angew. Chem. Int. Ed. 2007, 46, 2078-2081.

[^29]: ${ }^{61}$ Dobish, M. C.; Villalta, F.; Waterman, M. R.; Lepesheva, G. I.; Johnston, J. N. Org. Lett. 2012, in press.
 ${ }^{62}$ Villalta, F.; Dobish, M. C.; Nde, P. N.; Kleshchenko, Y. Y.; Hargrove, T. Y.; Johnson, C. A.; Waterman, M. R.; Johnston, J. N.; Lepesheva, G. I. Journal of Infectious Disease, 2012, in press.
 ${ }^{63}$ Clayton, J. Nature, 465, S4-S5.
 ${ }^{64} \mathrm{http}: / / \mathrm{www}$. who.int/neglected_diseases/en/
 ${ }^{65}$ Coura, J. R.; Vinas, P. A. Nature, 465, S6-S7.
 ${ }^{66} \mathrm{http}: / / \mathrm{www}$. banknotes.com/br.htm

[^30]: ${ }^{67}$ Kirchhoff, L. V. Advances in Parasitology, Vol 75: Chagas Disease, Pt A 2011, 75, 1-18.

[^31]: ${ }^{68}$ Bern, C. N. Engl. J. Med. 2011, 364, 2527-2534.
 ${ }^{69}$ Clayton, J. Nature, 465, S12-S15.

[^32]: ${ }^{70}$ Wilkinson, S. R.; Taylor, M. C.; Horn, D.; Kelly, J. M.; Cheeseman, I. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 5022-5027.
 ${ }^{71}$ McKerrow, J. H.; Doyle, P. S.; Engel, J. C.; Podust, L. M.; Robertson, S. A.; Ferreira, R.; Saxton, T.; Arkin, M.; Kerr, I. D.; Brinen, L. S.; Craik, C. S. Memorias Do Instituto Oswaldo Cruz 2009, 104, 263-269.
 ${ }^{72}$ Renslo, A. R.; McKerrow, J. H. Nat. Chem. Biol. 2006, 2, 701-710.

[^33]: ${ }^{73}$ Lepesheva, G. I.; Villalta, F.; Waterman, M. R. Advances in Parasitology, Vol 75: Chagas Disease, Pt A 2011, 75, 65-87
 ${ }^{74}$ Lepesheva, G. I.; Waterman, M. R. Biochimica et Biophysica Acta (BBA) - General Subjects 2007, 1770, 467-477.
 ${ }^{75}$ Maertens, J. A. Clinical Microbiology and Infection 2004, 10, 1-10.

[^34]: ${ }^{76}$ Urbina, J. A.; Docampo, R. Trends Parasitol. 2003, 19, 495-501.

[^35]: ${ }^{77}$ Molina, J.; Martins-Filho, O.; Brener, Z.; Romanha, A. J.; Loebenberg, D.; Urbina, J. A. Antimicrob. Agents Chemother. 2000, 44, 150-155.

[^36]: ${ }^{78}$ Saksena, Anil K.; Girijavallabhan, Viyyoor M.; Lovey, Raymond G.; Pike, Russell E.; Wang, Haiyan Liu Yi-tsung Ganguly Ashit K.; Bennett, Frank Tetrhydrofuran Antifungals. WO/95/17407, 29 June 2995.

[^37]: ${ }^{79}$ Lepesheva, G. I.; Waterman, M. R. Biochimica et Biophysica Acta (BBA) - General Subjects 2007, 1770, 467477., Konkle, M. E.; Hargrove, T. Y.; Kleshchenko, Y. Y.; von Kries, J. P.; Ridenour, W.; Uddin, M. J.; Caprioli, R. M.; Marnett, L. J.; Nes, W. D.; Villalta, F.; Waterman, M. R.; Lepesheva, G. I. J. Med. Chem. 2009, 52, 2846-2853., Lamb, D. C.; Lei, L.; Warrilow, A. G. S.; Lepesheva, G. I.; Mullins, J. G. L.; Waterman, M. R.; Kelly, S. L. J. Virol. 2009, 83, 8266-8269.
 ${ }^{80}$ Lepesheva, G.; Hargrove, T.; Kleshchenko, Y.; Nes, W.; Villalta, F.; Waterman, M. Lipids 2008, 43, 1117-1125.
 ${ }^{81}$ Lepesheva, G. I.; Ott, R. D.; Hargrove, T. Y.; Kleshchenko, Y. Y.; Schuster, I.; Nes, W. D.; Hill, G. C.; Villalta, F.; Waterman, M. R. Chem. Biol. 2007, 14, 1283-1293., Lepesheva, G. I.; Hargrove, T. Y.; Anderson, S.; Kleshchenko, Y.; Futak, V.; Wawrzak, Z.; Villalta, F.; Waterman, M. R. J. Biol. Chem. 2010, 285, 25582-25590.

[^38]: ${ }^{82}$ Lepesheva, G. I.; Park, H.-W.; Hargrove, T. Y.; Vanhollebeke, B.; Wawrzak, Z.; Harp, J. M.; Sundaramoorthy, M.; Nes, W. D.; Pays, E.; Chaudhuri, M.; Villalta, F.; Waterman, M. R. J. Biol. Chem. 2009, 285, 1773-1780.
 ${ }^{83}$ Lepesheva, G. I.; Waterman, M. R. BBA-Proteins Proteom. 2011, 1814, 88-93.

[^39]: ${ }^{84}$ The abbreviation 'VNI' refers specifically to the (R)-enantiomer, the more potent inhibitor of CYP51. An X-ray crystal structure of VNI bound to CYP51 has been reported (ref. 81). VNI is the dextrorotatory (+) enantiomer.

[^40]: ${ }^{85}$ Hargrove, T. Y.; Kim, K.; de Nazaré Correia Soeiro, M.; da Silva, C. F.; da Gama Jaen Batista, D.; Batista, M. M.; Yazlovitskaya, E. M.; Waterman, M. R.; Sulikowski, G. A.; Lepesheva, G. I. International Journal for Parasitology: Drugs and Drug Resistance 2012, 2, 178-186.

[^41]: ${ }^{86}$ Kanazawa, A. M.; Denis, J.-N.; Greene, A. E. J. Org. Chem. 1994, 59, 1238-1240.

[^42]: ${ }^{87}$ Shen, B.; Makley, D. M.; Johnston, J. N. Nature 2010, 465, 1027-1032.
 ${ }^{88}$ Makley, D. M.; Johnston, J. N. unpublished results

[^43]: ${ }^{89}$ Mechanism: Heinzman, S. W.; Ganem, B. J. Am. Chem. Soc. 1982, 104, 6801-6802. Osby, J. O.; Heinzman, S. W.; Ganem, B. J. Am. Chem. Soc. 1986, 108, 67-72.

[^44]: ${ }^{90}$ Matsuoka, Y.; Ishida, Y.; Sasaki, D.; Saigo, K. Tetrahedron 2006, 62, 8199-8206.

[^45]: ${ }^{91}$ Rostamizadeh, S.; Ghamkhar, S. Chin. Chem. Lett. 2008, 19, 639-642.

[^46]: ${ }^{92}$ Davis, T. A.; Dobish, M. C.; Schwieter, K. E.; Chun, A. C.; Johnston, J. N. Org. Synth. 2012, 89, 380-393.

[^47]: ${ }^{93}$ Dobish, M. C.; Johnston, J. N. J. Am. Chem. Soc. 2012, 134, 6068-6071.
 ${ }^{94}$ Dobish, M. C.; Johnston, J. N. unpublished results.
 ${ }^{95}$ Hatano, M.; Sugiura, Y.; Akakura, M.; Ishihara, K. Synlett 2011, 2011, 1247,1250.
 ${ }^{96}$ Reviews: Chen, G.; Ma, S. Angew. Chem. Int. Ed. 2010, 49, 8306-8308. Castellanos, A.; Fletcher, S. P. Chem.-Eur. J. 2011, 17, 5766-5776. Tan, C. K.; Zhou, L.; Yeung, Y.-Y. Synlett 2011, 1335-1339. Hennecke, U. Chemistry-an Asian Journal 2012, 7, 456-465.

[^48]: ${ }^{97}$ Grossman, R. B.; Trupp, R. J. Can. J. Chem. 1998, 76, 1233-1237.
 ${ }^{98}$ Haas, J.; Piguel, S.; Wirth, T. Org. Lett. 2001, 4, 297-300. Haas, J.; Bissmire, S.; Wirth, T. Chem.--Eur. J. 2005, 11, 5777-5785.

[^49]: ${ }^{99}$ Wang, M.; Gao, L. X.; Mai, W. P.; Xia, A. X.; Wang, F.; Zhang, S. B. J. Org. Chem. 2004, 69, 2874-2876.

[^50]: ${ }^{100}$ Whitehead, D. C.; Yousefi, R.; Jaganathan, A.; Borhan, B. J. Am. Chem. Soc. 2010, 132, 3298-3300.

[^51]: ${ }^{101}$ Yousefi, R.; Whitehead, D. C.; Mueller, J. M.; Staples, R. J.; Borhan, B. Org. Lett. 2011, 13, 608-611.

[^52]: ${ }^{102}$ Veitch, G. E.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2010, 49, 7332-7335.

[^53]: ${ }^{103}$ Zhou, L.; Tan, C. K.; Jiang, X.; Chen, F.; Yeung, Y.-Y. J. Am. Chem. Soc. 2010, 132, 15474-15476.
 ${ }^{104}$ Murai, K.; Matsushita, T.; Nakamura, A.; Fukushima, S.; Shimura, M.; Fujioka, H. Angew. Chem. Int. Ed. 2010, 49, 9174-9177, S9174/1-S9174/129.

[^54]: ${ }^{105}$ Zhou, L.; Chen, J.; Tan, C. K.; Yeung, Y.-Y. J. Am. Chem. Soc. 2011, 133, 9164-9167.
 ${ }^{106}$ Chen, J.; Zhou, L.; Yeung, Y.-Y. Org. Biomol. Chem. 2012, 10, 3808-3811.
 ${ }^{107}$ trans-olefins: Tan, C. K.; Zhou, L.; Yeung, Y.-Y. Org. Lett. 2011, 13, 2738-2741. cis-olefins:Tan, C. K.; Le, C.; Yeung, Y.-Y. Chem. Commun. 2012, 48, 5793-5795.
 ${ }^{108}$ Chen, J.; Zhou, L.; Tan, C. K.; Yeung, Y.-Y. J. Org. Chem. 2011, 77, 999-1009.

[^55]: ${ }^{109}$ Murai, K.; Nakamura, A.; Matsushita, T.; Shimura, M.; Fujioka, H. Chemistry - A European Journal 2012, 18, 8448-8453.

[^56]: ${ }^{110}$ Wang, Y.-M.; Wu, J.; Hoong, C.; Rauniyar, V.; Toste, F. D. J. Am. Chem. Soc. 2012, 134, 12928-12931.

[^57]: ${ }^{111}$ Kütt, A.; Rodima, T.; Saame, J.; Raamat, E.; Mäemets, V.; Kaljurand, I.; Koppel, I. A.; Garlyauskayte, R. Y.; Yagupolskii, Y. L.; Yagupolskii, L. M.; Bernhardt, E.; Willner, H.; Leito, I. J. Org. Chem. 2011, 76, 391-395.

[^58]: ${ }^{112}$ Hess, A. S.; Yoder, R. A.; Johnston, J. N. Synlett 2006, 147-149.

[^59]: ${ }^{113}$ Schweiter, K. E.; Dobish, M. C.; Singh, A. S., Johnston, J. N. unpublished results
 ${ }^{114}$ Calculations of NCCN dihedral angle from: Kim, H.; Yen, C.; Preston, P.; Chin, J. Org. Lett. 2006, 8, 5239-5242.

[^60]: ${ }^{115}$ Satyanarayana, T.; Abraham, S.; Kagan, H. B. Angew. Chem. Int. Ed. 2009, 48, 456-494.

[^61]: ${ }^{116}$ Lee, E. E.; Rovis, T. Org. Lett. 2008, 10, 1231-1234.
 ${ }^{117}$ Uyanik, M.; Yasui, T.; Ishihara, K. Bioorg. Med. Chem. Lett. 2009, 19, 3848-3851.

[^62]: ${ }^{a}$ All reactions were performed on a 0.10 mmol scale using 1 equivalent of the carboxylic acid under conditions listed.

[^63]: ${ }^{118}$ Denmark, S. E.; Burk, M. T. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 20655-20660.

[^64]: ${ }^{119}$ Yousefi, S. R. Mechanistic Insights into the Origin of Enantioselecvitity of the Organocatalytic Asymmetric Chlorolactonization. Ph.D. Thesis, Michigan State University, 2012.

[^65]: ${ }^{120}$ Sakakura, A.; Ukai, A.; Ishihara, K. Nature 2007, 445, 900-903.

[^66]: ${ }^{121}$ Sakakura, A.; Sakuma, M.; Ishihara, K. Org. Lett. 2011, 13, 3130-3133.

[^67]: ${ }^{122}$ Minakata, S.; Sasaki, I.; Ide, T. Angew. Chem. Int. Ed. 2010, 49, 1309-1311. Takeda, Y.; Okumura, S.; Tone, S.; Sasaki, I.; Minakata, S. Org. Lett. 2012, 14, 4874-4877.

[^68]: ${ }^{123}$ Dobish, M. C.; Wang, W.; Johnston, J. N. unpublished results.

[^69]: ${ }^{124}$ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 15181520.

[^70]: ${ }^{126}$ Due to isolation as a mixture of diastereomers, overlapping peaks in the aromatic region are not listed individually, but are listed as a number of hydrogens over a range (ppm). Peaks that could be assigned to their respective diastereomer with confidence are listed with proper integration and splitting. Please see spectra in Supporting Information II.
 ${ }^{127}$ Due to isolation as a mixture of diastereomers, all carbons are listed and are not assigned to one specific diastereomer. Please see spectra in Supporting Information II.

[^71]: ${ }^{128}$ Herrera, R. P.; Sgarzani, V.; Bernardi, L.; Ricci, A. Angew. Chem. Int. Ed. 2005, 44, 6576-6579.

[^72]: ${ }^{129}$ Shen, B.; Makley, D. M.; Johnston, J. N. Nature 2010, 465, 1027-1032.

[^73]: ${ }^{130}$ Adapted from: Matsuoka, Y.; Ishida, Y.; Sasaki, D.; Saigo, K. Tetrahedron 2006, 62, 8199-8206

[^74]: ${ }^{131}$ Uyanik, M.; Yasui, T.; Ishihara, K. Bioorg. Med. Chem. Lett. 2009, 19, 3848-3851.
 ${ }^{132}$ Kütt, A.; Rodima, T.; Saame, J.; Raamat, E.; Mäemets, V.; Kaljurand, I.; Koppel, I. A.; Garlyauskayte, R. Y.; Yagupolskii, Y. L.; Yagupolskii, L. M.; Bernhardt, E.; Willner, H.; Leito, I. J. Org. Chem. 2011, 76, 391-395.

[^75]: ${ }^{133}$ Hatano, M.; Maki, T.; Moriyama, K.; Arinobe, M.; Ishihara, K. J. Am. Chem. Soc. 2008, 130, 16858-16860.

[^76]: ${ }^{134}$ Shackleford, J. P.; Shen, B.; Johnston, J. N. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 44-46.

[^77]: ${ }^{135}$ Murai, K.; Matsushita, T.; Nakamura, A.; Fukushima, S.; Shimura, M.; Fujioka, H. Angew. Chem., Int. Ed. 2010, 49, 9174-9177, S9174/1-S9174/129.

[^78]: ${ }^{136}$ Prepared by analogy to: Davis, T. A.; Wilt, J. C.; Johnston, J. N. J. Am. Chem. Soc. 2010, 132, 2880-2882. Davis, T. A.; Dobish, M. C.; Schwieter, K. E.; Chun, A. C.; Johnston, J. N. Org. Synth. 2012, 89, 380.
 ${ }^{137}$ Tan, C. K.; Zhou, L.; Yeung, Y.-Y. Org. Lett. 2011, 13, 2738-2741.

[^79]: ${ }^{138}$ Wang, M.; Gao, L. X.; Mai, W. P.; Xia, A. X.; Wang, F.; Zhang, S. B. J. Org. Chem. 2004, 69, 2874-2876.
 ${ }^{139}$ Hsu, J.-L.; Fang, J.-M. J. Org. Chem. 2001, 66, 8573-8584.

[^80]: ${ }^{140}$ SAINT, Bruker Analytical X-Ray Systems, Madison, WI, current version.
 ${ }^{141}$ An empirical correction for absorption anisotropy.
 ${ }^{142}$ Sir2004, A Program for Automatic Solution and Refinement of Crystal Structures. M. C. Burla, R. Caliandro, M. Carnalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, R. Sagna. Vers. 1.0 (2004).

[^81]: ${ }^{143}$ A short history of SHELX.G. M. Sheldrick, Acta Cryst. A64, 112-122 (2008).

