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CHAPTER I

PURPOSE AND SPECIFIC AIMS

In the past several years, the importance of knowing intraoperative brain shift during

image-guided neurosurgical procedures has been well documented. Also known as post-

imaging brain distortion or brain deformation, the shift can be caused by a variety of fac-

tors such as surgical manipulation, gravitational forces, clinical presentation of the patient,

pharmacological responses etc. Systematic studies have demonstrated that the fidelity of

image-guided systems can be seriously compromised by brain deformations if left unchecked.

To correct for this deformation, various imaging techniques such as computed tomography

(CT), magnetic resonance (MR) imaging, ultrasound(US) have been used for intraoperative

image-guided neurosurgery. While CT and MR procedures are cumbersome and have been

questioned for their cost-effectiveness, US lacks the image clarity that CT and MR scans

produce.

As a cost-effective and efficient method, computational modeling is a procedure that can

translate complex surgical events into accurate estimates of tissue response and thereby com-

pensate for intraoperative brain shift. This method provides the umbrella under which the

goals of this dissertation are outlined. The hypothesis is to create a computational framework

to update preoperative images using an atlas-based method and sparse intraoperative data.1

Specifically, the goals of this research proposal involve: removing the uncertainities posed

by the existing computational model with the aid of an atlas-based method, decreasing the

computational cost and time associated with the model-updating framework; and enhanc-

ing the existing computational model by more accurately capturing the mechanics of brain

deformation. These hypotheses will be tested by the following specific aims:

Specific Aim 1. Predict intraoperative brain shift using an atlas-based method.

• Develop an algorithm to predict the brain shift from displacement data sets gen-

1Sparse data in this context, is defined as data with limited intraoperative deformation or extent.
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erated by a computational model and measured sparse data.

• Verify the robustness and accuracy of the algorithm in phantom, simulation and

in-vivo studies.

Specific Aim 2. Demonstrate that the atlas-based computational framework meets the real-

time constraints of neurosurgery.

• Develop a parallel algorithm for the existing computational model.

• Decrease the computational cost associated with the intraoperative component of

the algorithm developed for Specific Aim 1.

• Verify the robustness and accuracy of the optimized computational framework in

phantom, simulation and in-vivo studies.
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CHAPTER II

BACKGROUND

Ever since its advent, medical imaging has played a significant role in surgical plan-

ning and treatment because it provides valuable information about anatomical structures

and function. This has been particuraly helpful for neurosurgical procedures where, the

neurosurgeon has to remove tumor without damaging the healthy brain tissue surrounding

it. In order to take advantage of image guidance during a neurosurgical procedure (also

known as image-guided neurosurgery, IGNS), preoperative tomograms of the patient must

be registered to the patient’s anatomy in physical space. While image-to-patient rigid align-

ment is relatively straight-forward, recent clinical studies in IGNS have exposed limitations

to this approach. The work presented in this dissertation attempts to compensate for the

inaccuracies presented by IGNS.

A brief introduction to image-guided surgery and image-guided neurosurgery

1 Image-guided surgery can be defined as the quantitative use of preoperative images

during surgery, or in other words using the spatial parameters of the preoperative images

during surgery to provide guidance to the surgeon[3]. The basis of any image-guided proce-

dure is the establishment of a reference coordinate system common to both the diagnostic

information provided by the images (image-space) and the patient’s space (surgical-space).

This process of establishing a transformational relationship between two three-dimensional

spaces is known as registration. Initial attempts at determining a quantitative registration

were provided using stereotactic frames for surgical guidance and a detailed review of stereo-

taxy can be found in [4, 5]. A common theme in the classic stereotaxy designs was the flow

of information from image-space to physical-space.

The advent of advanced imaging-modalities such as computed tomography (CT) and

1It should be noted here that image-guided surgery has been discussed in the context of neurosurgery
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magnetic resonance (MR) imaging brought about a shift in the direction of information flow,

giving birth to frameless stereotaxy or interactive-image guided neurosurgery. A reversal

from classic strereotaxy, these methods were based on the principle of tracking the surgical

position in physical space and displaying the position in image-space. A detailed review of

the process and development of image-guided procedures can be found in [3].

Roberts et al. [6] were the first2 to design a frameless-streotactic system. In that sys-

tem, an operating microscope was retrofitted with an acoustical localization system and

information from the system was used to provide feedback to the surgeon. Roberts et al.

reported a registration error as low as 0.8mm in a patient and an error of 2mm or less in

phantom studies. Ever since, other frameless stereotactic systems have been developed based

on alternative localization systems such as optical and magnetic localization systems. It is

beyond the scope of this dissertation to discuss all the frameless stereotactic systems that

have been developed for neurosurgery. Current state-of-the-art IGNS systems use either

optical or magnetic localizers, a rigid-registration between physical- and image-space and a

combination 2D/3D computer graphics for feedback.

Brain shift and current IGNS systems

As stated before, IGNS systems require that the image-space be registered to physical-

space. While image-to-patient rigid alignment is relatively straight-forward, recent clinical

studies in IGNS have exposed limitations to this approach. Systematic studies discussed

in detail below, have reported that the brain is capable of deforming during surgery for a

variety of reasons, including pharmacologic responses, gravity, edema, surgical manipulation

and respiration[7, 8, 9] and that the brain can shift a centimeter or more in a non-rigid

fashion [10].

2the first system that was reported in press

4



Quantification of Brain shift

Nauta [11] was one of the first to quantify brain shift during neurosurgery using “frame-

less” stereotaxy. Using two stereotactic localization systems (CRW frame and ISG wand)

and intraoperative CT scans, Nauta quantified the brain shift to be approximately 5mm in

a 43 yr old man undergoing tumor resection therapy and demonstrated in three other cases

the advantages of intraoperative image-guided surgery in (i) assessing the completeness of a

cyst aspiration (ii) confirming the site of tumor biopsy and (iii) to guide a biopsy needle in

physical space using updated introperative images.

Hill et al. in a preliminary report in 1997 [12], reported a median shift from 0.3mm to

7.4mm in 5 patients using the ACUSTAR I surgical navigation system. In a follow-up and

more detailed study, Hill et al. [13] measured the deformation of the dura and the brain

surfaces between the time of imaging and the start of surgical resection in 21 patients using

the same ACUSTAR I navigation system. They reported a mean displacement of 5.6mm

with a mean volume reduction of 29cc. A finding common to Hill et al. and Nauta is that

gross brain shift mainly occurs in the direction of gravity.

Maurer et al. [14] were among the first to investigate the effects of intraoperative brain

shift using an intraoperative MR (iMR) scanner. Though mostly qualitative, they also

presented preliminary results obtained using a non-rigid registration algorithm to quantify

deformation. Maurer et al. suggest that the shift can be caused by hyperosmotic drugs that

reverse the blood-brain barrier and alter the cerebro-spinal fluid (CSF) volume.

Hartkens et al. [10] extended the work presented by Maurer et al. and quantified the brain

shift retrospectively using a deformable volumetric image registration algorithm. Contrary

to the earlier findings Hartkens et al. suggest that the principal direction of displacement

does not always correspond with the direction of gravity.

Dorward et al. [15] reported a prospective study conducted in 48 patients using iMR to

quantify brain shifts during surgery and to determine correlations between the shifts and

the patient characteristics. For all 48 cases, Dorward et al. quantified shift for points on the
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brain surface and for deep tissue points. Dorward’s results of deep tissue shift complement

the findings of Hartkens et al. who also reported shift at deeper brain structures. However

unlike Hartkens et al., Dorward et al. suggest that the shift can be caused by a variety of

factors including gravity and patient positioning in the operating room (OR). Dorward et

al. also correlate the observed shift to patient characteristics such as the presence of edema,

lesion volume, distance of the lesion below the skin surface and the nature of the tumor.

Bucholz et al. were one of the first to measure brain shift using intraoperative ultrasound

(iUS) [16] An optically tracked and calibrated ultrasound probe was used to capture cross-

sectional images of the brain and corresponding features in serial ultrasound images, such

as the depths of sulci, were measured to quantify shift. Bucholz et al. also demonstrated an

increasing trend in shift over the duration of surgery, similar to the findings of Dorward’s

and Hill et al..

Roberts et al. [7] used a tracked surgical microscope to localize points on the surface

of brain during surgery in 28 patients. For three dimensional shift measurements, a laser

focus system was used to localize surface points during the course of surgery. The results

of both 3D and 2D measurements suggested that the largest direction of shift was parallel

to the gravitational vector. Roberts et al. hypothesized that the inadvertent loss of CSF

fluid casued the brain to sag/sink in the direction of gravity. The time-course analysis

of shift reported by Roberts et al. supported the findings of Hill and Dorward et al. by

demonstrating increasing shift over the duration of surgery.

The results of these papers indicate brain shift can be caused by a variety of factors such

as patient positioning in the OR, gravitational forces acting on the brain surface, drainage

of CSF during surgery, hyperosmotic drugs such as mannitol, elevated intracranial pressure

in the edema. Although the individual measurements of brain shift vary from paper to

paper, the general trend is that the surface shift is on the order of centimeters and deep

tissue shifts on the order of 5mm with expansive shifts near the resection boundary bulging

towards the surgical site. Also, sub-surface structures such as the lateral ventricles have been

known to collapse due to brain shift. Furthermore, the shift phenomena is time dependent
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and the gravitational sag generally increases over the course of surgery with the rate of

increase tapering towards the end of surgery. The specific methods of each paper suggest

that the solution to the brain shift problem will not have generic properties, as the underlying

phenomena are quite intricate and patient-specific.

Intraoperative brain shift compensation methods

The previous section demonstrated the need for brain shift correction and as a result

of these findings, current research has been focussed towards providing a more accurate

representation of the brain during surgery. Patrick Kelly was one of the first to describe

a qualitative compensation for neurosurgery [17]. Kelly placed 1mm stainless steel balls, 5

millimeters apart, along the surgeon’s viewing axis of the craniotomy and would then acquire

projective images normal to the viewing axes during surgery. Any positional shifts of the

balls seen in the projection images was attributed to brain shift and was accounted for. In

1991, Hassenbusch et al.. demonstrated a marker based method to account for brain shift and

to assist in tumor resection[18]. Hassenbush et al. used surgical micropatties with string tails

tethered to them and these micropatties were placed under stereotactical guidance around

the tumor margin. Gross tumor edges were determined from positions of actual patties or

catheter tips. The following sections describe more “automatic” methods currently under

heavy investigation as possible strategies for brain shift compensation. These automatic

shift compensation methods can be split into two categories: intraoperative imaging and

computational methods. Each method has its own advantages and disadvantages and they

are presented in detail below.

Intraoperative Imaging-based shift compensation methods

Shalit et al. [19] was probably the first to demonstrate the benefits of having updated

images during neurosurgery. Shalit et al. used an intraoperative CT scanner to locate the

tumor margins during surgery and to assess the extent of brain tumor resection intraoper-

atively. Though they do not state it explicitly, using an intraoperative CT scanner helped
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account for brain shift. This work is significant because brain shift was not even recognised

as a source of error in IGNS at that time.

Dade Lunsford an important contributor in the field of intraoperative CT (iCT) helped in

the development of a clinical OR around the CT scanner and also developed CT compatible

stereotactic frames [20, 21, 22]. In a more recent article [23], they reported the findings of

a 4000 patient study over a 20-year interval using iCT. A limitation of Lunsford’s protocol

was that the surgeon was required to perform surgery on the CT gantry.

Noting the limitations of Lunsford et al.’s system and the excessive labor involved in iCT

Okedura et al. [24] developed an iCT system with (i) a mobile gantry based CT scanner

and (ii) head fixation devices to assist in the head positioning during surgery. Even with the

remarkable advancements made by Okudera, Lunsford, and Shalit , a common limitation in

all of the iCT systems is the dedication of an entire OR suite to the intraoperative imaging

system.

Butler et al. [25] circumvented this problem by developing a mobile CT scanner in which

the scan plane is selected by means of gantry translation rathen than by translation of the

patient table. This adapation made it possible for the CT scanner to be wheeled into the

OR when needed and made it possible for the scanner to be used across multiple operating

rooms.

Despite all the advantages, general adoption of iCT as a method to correct for brain shift

has not occurred probably due to dose considerations, both to the patient and the OR staff

related to repeated exposure to X-ray radiation.

Over the past decade, industry and neurosurgeons have also attempted to extend surgical

visualization again by bringing MRI into the operating room and many different approaches

have been researched to compensate for intraoperative brain shift. The first approach to

interventional magnetic resonance imaging (iMR)-guided neurosurgery was developed by

Ferenc Jolesz and Peter Black [26, 27]. Subsequently a number of research groups demon-

strated the technical and practical solutions needed to implement iMR during neurosurgery

[28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]. Based on the imaging technique and the MRI
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infrastructure, these iMR based shift compenstation methods can be broadly classified into

three categories: (i) Category I: the surgical field is within the magnetic field around the mag-

netic isocenter and the OR must be equipped with “MRI-compatible” surgical equipments

thereby limiting the surgeon’s options in patient positioning and approach (ii) Category II:

neurosurgical procedures are performed in the weak magnetic fringe fields surrounding a

open MRI system and (iii) Category III: the surgical space is separated from the imaging-

space and the patient is transported to the imaging suite for imaging. Also with the advent

of efficient and more accurate image-registration and image-processing algorithms, several

research groups have demonstrated that iMR based shift compensation methods meet the

real-time constraints of neurosurgery. Though promising, there are still many concerns with

iMR such as: field inhomogeneities during scanning and their causes, false-positive readings

caused by the leaking contrast agents and bleeding, the logistical requirements of surgery

within or near an MR system, and the total cost of operation (TCO) of an iMR system.

In light of the TCO concerns of current iMR systems, intraoperative ultrasound (iUS)

has gathered attention as a cheap and safe alternative to both iMR and iCT [41, 42, 43,

44, 45, 46, 47, 48, 49]. However current iUS systems suffer from low signal-to-noise ratio

(SNR), limiting their effectiveness in demarcating tumor regions during surgery. iUS based

shift compensation methods therefore do not present themselves as a complete intraoperative

solution to the brain shift phenomena.

To summarize, the intraoperative imaging based shift compensation methods do not

provide quantitative compensation for brain shift by themselves. In light of this fact, Roberts

et al. suggested a computational model [50] as a cost-effective and an efficient method to

compensate for intraoperative brain shift.

Model-updated Image-guided Neurosurgery (MUIGNS)

To compensate for intraoperative brain shift, MUIGNS systems use a computational

model that can translate complex surgical events into accurate estimates of tissue response.

A schematic of MUIGNS is shown in Figure 1
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Figure 1: Schematic for model updated image guided neurosurgical procedures (MUIGNS).

A spectrum of computational models ranging from less physically plausible but very fast

models through to extremely accurate biomechanical models requiring hours of compute time

to solve have been presented in the literature [51, 52, 53, 54, 55, 56, 57].

Bro-Nielsen reported a fast surgery simulation method in [58] built using finite-element

models for linear elastic materials. The reported method achieved speed by converting a

volumetric finite-element model into a model with only surface nodes, i.e., nodes that are

visible during surgery. This work had the goal of achieving interactive graphics speeds at the

cost of accuracy of the simulation and is therefore applicable for computer graphics oriented

visualization tasks and not during neurosurgical interventions where the focus is robustness

and high accuracy.

Edwards et al. reported a two-dimensional three-component model [55, 59] to predict

intraoperative deformation. This work used a simplified material model: Min.(Etotal −

(Emodel+αEsample) = 0) with the goal of achieving higher speed. Emodel represented the total

energy associated with the deformation and the edge strength measure, Esample acted as a

smoothing constraint. Their goal was not to model the physics of brain tissue deformation,

but to interpolate across soft tissues incorporating constraints such as the rigidity of skull

and fluidity of CSF. The initial multigrid implementation on 2D images of 128x128 pixels

converged to a solution in 120-180 minutes when run on a Sun Microsystems Sparc 20.

Though this model was patient specific and extracted from preoperative scans, it was a two-

dimensional model and it did not capture the physics of soft tissue deformation. In other

words, this model is not based on continuum mechanics and does not conserve the volume

of the deformed brain.

Skrinjar et al.. [60, 61] presented a model for real-time intraoperative brain shift capture.

Skrinjar et al. used the model for epilepsy neurosurgery where brain shift is rather slow.
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Brain surface points were tracked to indicate surface displacement and to validate the model

predictions. They used a simplified homogeneous brain tissue material model - a Kelvin

solid model since “it is a rather simple approach, which is a desirable property since the

model deformation should be computed in real time” since it must be utilized during the

surgery. In [60], on a Hewlett Packard 9000 (C110) machine they reported a solve time of

approximately 10 minutes for the Kelvin model. They also reported a computational time of

4 hours for a 2D numerical model (with 176 brain nodes, 57 skull nodes and 496 connections)

and a 3D model (with 1093 nodes and 4855 connections) respectively. In [61] their numerical

model had 2088 nodes, 11733 connections and 1521 brick elements, and required “typically

less than 10 minutes” on an SGI Octane R10000 workstation with one 250MHz processor.

Based on these findings they concluded that “this model can potentially be used during the

surgery”. Though a modest improvement over the Edwards et al. model, this model had

the same drawback that it did not capture the physics of brain deformation during surgery.

Warfield et al. [40], presented a finite-element model for real-time intraoperative brain

shift capture. Warfield et al. treated the brain as a homogeneous linear elastic material

and established the boundary conditions via surface matching of the intraoperative and the

preoperative MR tomograms. A brief description of the linear elastic model is given below.

The stress state at point P can be represented by an infinitesimal cube with three stress

components on each of its six sides (one normal and two shear components).

Since each point in the body is under static equilibrium (no net force in the absence of

any body forces or external forces), applying Newton’s second law of motion results in the

following equation:

∇ · σ = 0 (1)

In linear elasticity, the deformation is proportional to the applied load and is more widely

known as the Hooke’s law of elasticity. The relationship between stress and strain for a linear
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Figure 2: Stresses acting on a 3D solid.

elastic isotropic 3material is given by
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(2)

where “E” is the Young’s Modulus, ν the Poisson’s ratio, “G” the shear modulus, εij the

strains and σij the stresses. σij and εij are second order tensors wherein the first subscript

refers to the direction of the surface normal on which the stress/strain is acting and the

second subscript refers to the direction of the stress/strain component and i,j = x,y,z the 3

Cartesian axes. The shear modulus “G” is related to the Youngs’s modulus “E” by G = E
2(1+ν)

thereby indicating that the material can be defined by two elastic constants, i.e., the Young’s

modulus and the Poisson’s ratio. It should be noted that the shear stresses and the shear

3Isotropy: material properties are independent of direction
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strains across the diagonal are identical (i.e., σxy = σyx). In [40] Warfield et al. used the

small deformation theory 4 to relate the strains to the displacement along the cartesian axes

x,y,z wherein the strain components are defined as


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(3)

where ~u, ~v and ~w are the displacement vectors along the three cartesian axes.

Using Equations 3 and 2, Equation 1 transforms to

∇ ·G∇~u +∇ G

1− 2ν
(∇ · ~u) = 0 (4)

Warfield et al. solved the above equation using the finite-element method. Using a Sun

Microsystems Sun Fire 6800 with 12 750MHz UltraSPARC-III CPUs, for a 43584 node,

214035 element mesh with three DOF at each node, Warfield et al. reported a run time of

15 seconds.

In [62], the same group extended the linear elastic finite element model by allowing for

inhomogeneity and anisotropy in the material properties according to the diffusion tensor

data. Diffusion Tensor MRI (DT-MRI) is a technique that allows for non-invasive quantifi-

cation of diffusion of water in vivo. The directional dependence of water diffusion rates can

be closely related to the anisotropy of the structure. Therefore, DT-MRI can be used to infer

the anisotropic material properties. In [62], Kemper treated the brain as a special case of

the tranversely orthotropic material 5. Similar to Equation 2, Hooke’s law for a tranversely

4Simply put, small deformation theory assumes that the strains are ”small” for both normal and shear
strain.

5Transversely isotropic materials are those that have the same properties in one plane (e.g. the x-y plane)
and different properties in the direction normal to this plane (e.g. the z-axis).
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isotropic material with isotropy/symmetry in the x-y plane and anisotropy in the z-plane

can be written as:
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(5)

The above equation demonstrates that the transversely isotropic material can be repre-

sented by the following 5 elastic constants: Young’s modulus and Poisson’s ratio in the x-y

symmetry plane, Ep and νp and the Youngs’s modulus, Poisson’s ratio and shear modulus in

the anisotropic direction/z-direction, Ezp, νzp and Gzp respectively. Kemper assumed that

νp = νzp, Gzp = Gp = E
2(1+ν)

, thereby reducing the number of constants used to describe the

material properties. Using landmarks identified on preoperative and intraoperative MR to-

mograms, Kemper demonstrated that the difference in displacements predicted by modeling

the brain as a linear elastic isotropic and linear elastic anisotropic model was between 1 and

3mm. Though the difference was small, the anisotropic model showed improvement over the

isotropic model.

Miller et al. and Wittek et al. modeled the brain as a hyperelastic material [63, 52, 64]

undergoing large deformations. Hyperelasticity refers to materials which can experience

large elastic strain that is recoverable. Also, hyperelastic materials are often referred to as

being incompressible (volume is conserved during deformation). The constitutive behavior

of hyperelastic materials are usually derived from the strain energy potentials. Based on

the experiments conducted in [65, 63], Miller et al. suggested a constitutive law based on

Mooney-Rivlin laws.

W =
2

α2

∫ t

0

[µ(t− τ)
∂

∂τ
(λα

1 + λα
2 − 3)]∂τ (6)
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where W is a potential function, λ′s the principal stretches, µ the shear modulus, τ the

relaxation time and α is a material constant. The Mooney-Rivlin equation was developed by

Rivlin and Saunders to describe the deformation of highly elastic bodies which are incom-

pressible (volume is conserved during deformation) and isotropic (the material has the same

mechanical properties in all directions at a material point). They formulated the material

law as a strain energy function in terms of the first and second principal invariants (quanti-

tative information on the deformation) of the deformation. The formulation is called a strain

energy function as the energy is conserved during deformation of these materials under con-

stant temperature. The material constants described in Equation 6 are usually obtained

from the load-extension curves that describe the material. Miller et al. conducted in-vitro

experiments on porcine brain tissue and reported the values for the material constants in

[65, 63]. Using the hyperelastic model described above to capture intraoperative brain shift

Wittek et al. in [52] reported shift recaptures of 92.1% at the ventricles and 80% at the

tumor region. They also reported a computation time of around 15-16 mins on personal

computer with a 2.8 GHz Pentium processor to achieve the accuracy stated. Wittek et al.

also note that the model cannot be applied to events that change the topology of the brain

such as tumor resection.

Although powerful, lack of fluid compartment and the pressure component detract the

linear elastic model and the nonlinear/hyperelastic models from their usefulness. Hakim

et al. [66] showed that the transmission of intraventricular pressure throughout the brain

parenchyma created a stress distribution that varied in magnitude and direction and made

the observation that the “brain acts like a sponge”. Doczi [67] reported that the gray matter

and white matter can increase their water content due to the difference in the number of

capillaries and also pointed out that when the blood brain barrier is compromised interstitial

pressure drives the fluid movement in the brain. These findings highlight the need for

a pressure component and a fluid compartment in the model. In light of this fact, David

Roberts and his research group at Dartmouth developed a 3D computational model based on

Biot’s theory of soil consolidation. In short Biot’s consolidation theory gives a complete and

15



general description of the mechanical behaviour of a poroelastic medium 6 based on equations

of linear elasticity for the solid matrix, Navier-Stokes equations for the fluid compartment

and Darcy’s law for the flow of fluid through the porous matrix.

Equations 7 and 8 were originally developed by Biot [68] to represent biphasic soil con-

solidation, but were later used by Nagashima et al. [69] and Paulsen et al. [70] to model the

deformation behavior of brain tissue.

∇ ·G∇~u +∇ G

1− 2ν
(∇ · ~u)− a∇p = −(ρt − ρf )g (7)

a
∂

∂t
(∇ · ~u) +

1

S

∂p

∂t
+ kc(p− pc) = ∇ · k∇p (8)

where

~u displacement vector

p interstitial pressure

G shear modulus

ν poisson’s ratio

a ratio of fluid volume extracted to volume change of the tissue under compression

ρt tissue density

ρf fluid density

g gravitational unit vector

1/S amount of fluid which can be forced into the tissue under constant volume

t time

kc capillary permeability

pc intracapillary pressure

k hydraulic conductivity

6A porous medium is one where a solid matrix is permeated by an interconnected network of pores filled
with a fluid
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Equation 7 reflects the equations of mechanical equilibrium and have been derived for

a Hookean linear elastic material undergoing small deformations. Within this description,

deformations can be caused by surface forces and displacements, the existence of interstitial

fluid pressure gradients, and changes to tissue buoyancy forces. Additionally, this expression

assumes that the continuum consists of a porous solid tissue matrix infused with an intersti-

tial fluid whereby the matrix deforms as a linear elastic solid while the fluid flows according

to Darcy’s law. Equation 8 relates the time rate of change of volumetric strain to changes

in interstitial hydration.

First reported within the context of gravity-induced brain shift by Miga et al. [71], the

right-hand-side of Equation 7 is used to represent the effect of gravitational forces acting

on the brain. The effect of gravitational forces on the brain can be modeled as a difference

in density between tissue and surrounding fluid. Intraoperative CSF drainage reduces the

buoyancy forces which serve to counteract gravity forces thus causing the brain to sag.

The last term on the left-hand-side of Equation 8 represents the hydrodynamic forces

that act on the brain due to fluid capillary exchange. The term kc(p − pc) represents the

fluid exchange between capillary and interstitial spaces and can be used to simulate the

effects of hyperosmotic drugs or swelling on the brain. Hyperosmotic drugs such as mannitol

are administered to decrease the effect of elevated intracranial pressure due to edema. These

drugs have the effect of reversing flow through the blood-brain osmotic barrier, drawing water

from the extracellular brain space, thereby decreasing brain volume. This decreased capillary

pressure pulls interstitial fluid from the extracellular brain space causing a decrease in tissue

volume. Conversely, elevated capillary pressures increase local tissue volume, resulting in

tissue stress and distortion. Intraoperative events such as tissue resection can also be modeled

by decoupling the nodes corresponding to the preoperative tumor volume when assembling

the stiffness matrix.

Miga et al. solved Equations 7 and 8 using the Galerkin weighted residual method.

Finite element treatment of these equations coupled with a weighted time-stepping scheme

results in an equation of the form [A]Un+1 = [B]Un + Cn+θ where [A] and [B] represent
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the stiffness matrices for the n+1 and nth time step respectively, C represents boundary

condition information and known force distributions, and U represents the solution vector

(3 displacements and pressure) at the node. The detailed development of these equations

can be found in [70, 51].

In [71], Miga et al. reported that the computational model recaptured 79% of the error

induced by intraoperative brain shift. Miga et al. [72, 73] demonstrated that the biphasic

model can accurately predict deformations induced by surface loading conditions such as tis-

sue retraction and resection. Also, for a 23000 node, 123500 element mesh with four degrees

of freedom (DOF) at each node on a single central processing unit (CPU) Silicon Graphics

Indigo workstation, Miga et al. [73] reported a run time of 8.5 minutes to simulate gravity-

induced deformations, 6.5 minutes to simulate retraction, 5.5 minutes to simulate excision

and 6.0 minutes to simulate unretraction for the first time step, and 5.75-7.0 minutes for

every subsequent time step. Though the biphasic model is better suited to capture intra-

operative events such as tissue resection and tissue deformations related to the intracranial

pressure distribution, computation time and the assumption of linear elasticity are two of

its major drawbacks.

To summarize, though fast and efficient the linear elastic and hyperelastic models do

not account for intracranial pressure distributions and resulting tissue deformations. The

biphasic model on the other hand accounts for the hydrated nature of the brain, but fails to

capture the nonlinear deformation behavior of the brain tissue and is reportedly slower than

the other models. This highlights the need for a “best of both worlds” scenario. In other

words, this calls for a biphasic model that can capture the nonlinear deformation effects of

the brain tissue and at the same time is fast enough to meet the real time constraints of

neurosurgery.

Sparse intraoperative data in MUIGNS

While non-guided prediction is desirable, there is little doubt that the accuracy of brain

shift models can be increased by integrating feedback from sparse intraoperative data [50].

18



Sparse, in this context, means data with limited information and/or spatial extent. A

schematic of MUIGNS using sparse intraoperative data is shown in Figure 3
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Figure 3: Schematic for using sparse intraoperative data in model updated image guided
neurosurgical procedures (MUIGNS).

Sparse intraoperative data is typically used as displacement or stress boundary conditions

to constrain the computational model. Using the measured sparse displacements, Ferrant et

al. [74], Skrinjar et al. [54], Wittek et al. [52, 64] rigidly constrained their computational

model to exactly match the measured displacements, as if they were known boundary condi-

tions. Though this method is relatively easy to implement, it faces the potential limitation

that since boundary displacements are constrained to match measured surface displacements,

artificial forces can be introduced at the measured points which by observation are stress-

free. More specifically, in this framework, all deformations result from the application of

contact forces when the force environment is considerably more complex and could involve

a myriad of contact and distributed loading conditions. Also, it should be noted that time

taken to compute the displacements using the computational model and the time taken to

integrate the sparse data with the computational model, must meet the real-time constraints

of neurosurgery. Skrinjar et al.. define real-time for MUIGNS as being faster than the rate

of brain deformation [54]. Thus the incorporation of sparse measurements must not only

improve accuracy, but also significantly reduce the time required to update the preoperative

images.

In [75], Lunn et al. introduced a strategy for integrating sparse intraoperative displace-

ment data with the computational model. It should be noted that this work was based on the

computational model developed by the research group at Dartmouth. The computational

model was solved for a series of boundary conditions and these basis solutions were weighted
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in accordance with a minimization procedure that reduced the error between the observed

and predicted displacement fields. Lunn et al. demonstrated that with a good set of basis

solutions the full volume displacement field can be predicted accurately and efficiently. This

work however was restricted to in-vivo porcine studies.

Extending their earlier work, Lunn et al. [76] presented a novel method that corrected

brain shift by combining a best prior estimate(BPE) with a force perturbation correction

technique to better match sparse data to model output. The reported method cast the model

correction with a nonlinear optimization framework which uses the method of Lagrange mul-

tipliers to rapidly correct their BPE of brain deformations. They call the method the adjoint

equation method (AEM) and have had encouraging preliminary results. While the math-

ematical approach is quite elegant, it still represents a challenging optimization framework

that is significantly under-determined. Also in addition to the computational cost, the AEM

reduces modeling efforts to solve for the optimal distribution of forcing functions rather than

concentrating on generating a more deterministic model. For the sole purpose of shift cor-

rection, this is quite appropriate but the framework relies on using models to regularize data

rather than model deformation events.

In [77], Davatzikos et al. presented a framework for modeling and predicting anatomical

deformations from precomputed training samples using (i) a shape based estimation method

(SBE) and (ii) a force based estimation method (FBE). In SBE, Davatzikos et al. use the

principal modes of co-variation between shape and deformation to predict the most likely

deformation corresponding to the novel shape that is presented to the training set. In FBE,

they use the principal modes of co-variation between shape and forces to predict the most

likely force acting on the novel shape that is presented to the training set. These forces

can then be used to calculate the deformation of the object using a biomechanical model.

The authors used elements of principal component analysis (PCA) to capture the statistical

properties of the training set and to predict the most likely shape/force. Though the authors

did not describe these methods in the context of predicting intraoperative brain shift, this

work is significant because it introduced a novel concept of predicting as much as possible
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of the intraoperative deformation using a precomputed training set.

Lunn et al. [75] and Davatzikos et al. [77] demonstrated that it is feasible to compute

anatomical deformations using precomputed model solutions in a fast and accurate manner.

Given these findings, it is worth exploring alternative approaches for integrating sparse

intraoperative data with computational modeling.
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CHAPTER III

MANUSCRIPT 1 - Model-updated Image-guidance: A statistical approach to
gravity-induced brain shift

Original form of manuscript appears in Lecture Notes in Computer Science: Medical

Image Computing and Computer Assisted Intervention: 2003, Vol. 2879:1, 375-382.

Abstract

Compensating for intraoperative brain shift using computational models has been used

with promising results. Since computational time is an important factor during neurosurgery,

a prior knowledge of a patient’s orientation and changes in tissue buoyancy force would be

valuable information to aid in predicting shift due to gravitational forces. Since the latter is

difficult to quantify intraoperatively, a statistical model for predicting intraoperative brain

deformations due to gravity is reported. This statistical model builds on a computational

model developed earlier. For a given set of patient’s orientation and amount of CSF drainage,

the intraoperative brain shift is calculated using the computational model. These displace-

ments are then validated against measured displacements to predict the intraoperative brain

shift. Though initial results are promising, further study is needed before the statistical

model can be used for model-updated image-guided surgery.

Introduction

In the past several years, the importance to account for intraoperative brain shift dur-

ing image-guided neurosurgical procedures has been well documented. Also known as post

imaging brain distortion or brain deformation, the shift can be caused by a variety of fac-

tors such as surgical manipulation, gravitational forces, clinical presentation of the patient,

pharmacological responses, etc. Systematic studies have demonstrated that the fidelity of

image-guided systems can be seriously compromised by brain deformations if left unchecked

[78, 7]. One important statistically significant finding common to these studies is that the
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direction of brain shift has a predisposition to move in the direction of gravity [78, 7]. To

correct for deformations, various imaging techniques such as computed tomography (CT),

magnetic resonance imaging (MRI), and ultrasound (US) have been used for intraoperative

image-guided surgery, and each imaging procedure has its inherent advantages and disad-

vantages [79, 80, 16]. While CT and MR procedures have been labeled cumbersome and

have been questioned for their cost-effectiveness, US lacks the image clarity that CT and

MR scans produce.

As a cost-effective and an efficient method, computational modeling is a procedure that

can translate complex surgical events into accurate estimates of tissue response and thereby

compensate for intraoperative brain shift. Various computational models based on different

physical and biomechanical principles have been developed [60, 71]. The biphasic model

used by Miga et al.. has been shown to compensate for 70-80% of the intraoperative brain

shift. In a study on gravity induced brain deformations[71], Miga et al.. report a reduction

of error from 6mm to 1mm. However the amount of intraoperative CSF drainage (which

determines the gravitational force in the biphasic model) and the patient’s orientation in the

OR with respect to gravity cannot be ascertained. Although the preoperative surgical plan

can provide an estimate of the patient’s orientation a priori, estimates for the degree of change

in buoyancy forces acting on the brain are somewhat more elusive. Since computational time

is an important factor in model updated image-guided surgery, prior knowledge of a patient’s

orientation and amount of CSF drainage would increase the effectiveness of model updated

image-guided surgery.

The work presented here attempts to remove the uncertainties by combining a simple

statistical model with that of the biphasic model reported in [71]. Although limited, the use

of statistical models to compensate for tissue motion does have some precedent. Davatzikos

et al.. [77] report a framework for modeling and predicting anatomical deformations with an

emphasis on tumor induced deformations. Their statistical models were based on analyzing

the principal modes of covariation between deformed and undeformed anatomy within the

context of two separate methods: (1) a shape-based estimation (SBE) and, (2) a force-
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based estimation using a biomechanical model. The results from these studies suggested

that statistical models could be used to represent deformations from positional changes and

tumor growth.

In this paper, a computational model is used to generate displacement data sets for a

range of patient orientations and CSF drainage states. The statistical model combines these

displacements using a nonlinear least squares approach. The rationale for this approach is

provided by recent work reported by Miga et al.. [81]. In this study, a high-resolution laser-

range scanner (LRS) was used to spatially characterize the patient’s exposed cortical surface

during neurosurgery. As a result, information regarding the nature of deformations during

neurosurgery are derived and could be used as input for the statistical model reported in this

paper. In addition, the statistically reconstructed displacement values are compared against

independently measured displacements to assess accuracy. Simulations are also provided

which are more closely related to data acquired by the LRS system used in [81].

Methods

Computational Model

This section briefly discusses the computational model used in this study. Equations 9

and 10 were originally developed by Biot [68] to represent biphasic soil consolidation, but

were later used by Nagashima et al.. [69] and Paulsen et al.. [82] to model the deformation

behavior of brain tissue. The last term on the left-hand-side in equation 9 represents the

effect of gravitational forces acting on the brain. Intraoperative CSF drainage reduces the

buoyancy forces which serve to counteract gravity forces thus causing gravitational forces

to deform the brain. The effect of gravitational forces on the brain can be modeled as

a difference in density between tissue and surrounding fluid. Figure 4 demonstrates the

deformation effects of CSF drainage on the brain as modeled by equations

∇ ·G∇u +∇ G

1− 2ν
(∇ · u)− α∇p = −(ρt − ρf )g (9)
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α
∂

∂t
(∇ · u) +

1

S

∂p

∂t
− (∇ · k∇p) = 0 (10)

where

~u displacement vector

p interstitial pressure

G shear modulus

ν poisson’s ratio

a ratio of fluid volume extracted to volume change of the tissue under compression

ρt tissue density

ρf fluid density

g gravitational unit vector

1/S amount of fluid which can be forced into the tissue under constant volume

t time

kc capillary permeability

pc intracapillary pressure

k hydraulic conductivity

The partial differential equations can be solved numerically using the Galerkin weighted

residual method. Finite element treatment of these equations coupled with a weighted time

stepping scheme results in an equation of the form

[A]Un+1 = [B]Un + Cn+θ where [A] and [B] represent the stiffness matrices for the n+1

and nth time step respectively, C represents boundary condition information and known

force distributions, and U represents the solution vector (3 displacements and pressure) at

the node. The detailed development of these equations can be found in previous publications

[70, 51].

The boundary conditions used in the model are illustrated in Figure 5. Although the

actual boundary conditions are patient specific, the highest elevations in the brain are stress-
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Figure 4: Effect of gravitational forces on the brain.

free and allow drainage to the surface; the mid elevations slide along the cranial wall and

can experience partial drainage and the lowest elevations allow movement along the cranial

wall but do not allow fluid drainage. The assumed level of intracranial CSF determines the

fluid drainage boundary condition for the highest and mid elevations in the brain.

Statistical Model

As discussed above, the amount of intraoperative CSF drainage and patient’s orientation

in the OR which determines orientation of gravitational acceleration vector in equation 9

are two important variables in predicting intraoperative brain shift. A statistical based

model has been developed to compensate for these uncertainties. As shown in Figure 6,

the model begins by building a deformation atlas based on the patient’s preoperative MR

images. Equations 9 and 10 are solved assuming a range of patient orientations and degrees of

intraoperative CSF drainage based on preoperative surgical planning. This series of model

solutions serves as a statistical data set that can be used to characterize intraoperative

deformations under varying surgical presentations. Having built the deformation atlas, a

least squares regression analysis is performed with non-negativity constrains (provided by
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Figure 5: Boundary condition template for (a) neutral head orientation and (b) patient’s
head turned 60◦ in the OR.Surface 1 is stress-free at atmospheric pressure; Surface 2 slides
along the cranial wall but not along the normal direction and surface and Surface 3 is fixed at
atmospheric pressure. The amount of intraoperative CSF drainage determines the drainage
boundary condition.

MATLAB (Mathworks Inc.)) using the objective function below:

Minimize||Ex− f ||subject to x ≥ 0 (11)

where f is a vector of n measured displacements, E is a matrix where Eij is the displace-

ment value for ith nodal position on the surface at the jth orientation and CSF drainage

level. E also contains a requirement that the regression coefficients must add to unity. The

unknown coefficients associated with the regression analysis are x and they are used to

calculate the intraoperative brain shift as shown below.

Intraoperative brain shift = Xl ∗ x (12)

where Xl is the matrix containing the displacement field vectors for all points in the brain

at the various orientations/CSF drainage levels and x is a vector of coefficients obtained from

solving equation 11.

The findings of Miga et al.. [71] were used to validate the combined statistical and

biphasic model. The values reported in Table 1, columns 1-4 are reproduced from their work
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published in IEEE Transactions of Medical Imaging, Vol. 18, No. 16, 1999. In their paper,

they simulate the intraoperative brain shift for four different human cases using the compu-

tational model and also measure the intraoperative brain shift for four points on the cortical

surface in the direction of gravity. These measured displacements are used in equation 11 as

the basis for determining the regression coefficients. After calculating the coefficients, results

from the statistical model are compared to measured data and performance is reported in

Table 1.

Although the above intraoperative data is sparse, a laser range scanner significantly im-

proves the number of measured data points and hence should constrain and aid the statistical

model. To simulate this, for each patient, a specific orientation and CSF level were selected

which were not to be part of the statistical solution set. In all cases, the computational model

was executed for a range of patient orientations and CSF drainage states. The coefficients

were then calculated using the statistical model and intraoperative brain shift was compared

to the model solution not included within the statistical set. The results are presented in

the following section.

Results

Comparison of statistical model with measured displacements reported by Miga et al.

The results of the statistical model are compared with the measured displacements in

Table 1. The values in column 3 and column 4 are based on the findings of Miga et al.

[71]. Column 5 shows the statistical model prediction on a point-by-point basis. Point 3 in

Patients 3 and 4 was on bone and hence experienced no shift.

Averaging over all points in the four human cases, the statistical model produces an abso-

lute error of 1.1±0.9mm. For the computational model, Miga et al. report an average error

of 1.2±1.3 mm. The statistical model predicts approximately 75-80% of the intraoperative

brain shift.
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Figure 6: Proposed Statistical Model.

Comparison of statistical model with the simulated intraoperative data acquisition case

The results of the statistical model for the simulation are shown in Table 2. The values in

column 2 report the maximum difference between the measured intraoperative displacements

and those predicted by the statistical model. In a similar fashion the values in column 3 repre-

sent the mean error. Averaging over all points in the four human cases, the statistical model

produces an absolute maximum error of 0.7±0.8mm and a mean error of 0.1mm±0.08mm.

Relative to the average cortical displacement of 2.4 mm, the statistical model predicts an

average error of 0.1 mm, indicating that it recaptured 96% of the simulated intraoperative

brain shift.

Discussion

The statistical model performed comparably to published results and was able to com-

pensate for 75-80% of brain deformation. To increase the accuracy, simulations suggest that
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Subject Point Measured Computational Statistical Model
# Displ. (mm) model Displ. (mm) Displ. (mm)

1 6.7 4.9 4.7
Pt. 1 2 4.6 5.4 5.1

3 4.2 5.8 5.4
4 3.5 3.4 3.6
1 10.4 5.7 7.4

Pt. 2 2 6.2 6.3 7.2
3 5.9 6.2 7.8
1 6.1 5.2 4.8

Pt. 3 2 5.0 6.5 6.2
3 7.5 6.1 5.9
1 4.4 4.8 4.5

Pt. 4 2 3.5 3.8 3.4

Table 1: Comparison between measured shift, computational and statistical model based
shift with respect to gravity.

Subject Max. Error (mm) Mean Error (mm)
Patient 1 1.9 0.2
Patient 2 0.3 0.006
Patient 3 0.4 0.07
Patient 4 0.3 0.07

Table 2: Maximum and mean errors generated by the statistical model for the simulated
intraoperative data acquisition.

dense intraoperative cortical shift measurements may be appropriate. In the simulation case

reported, the statistical model results in an average error of 0.1 mm displacement error and

predicts approximately 96% of the intraoperative brain shift. With the advent of cheap and

efficient intraoperative data acquisition techniques such as laser range scanning [81], the sta-

tistical model can prove to be a useful tool for model updated image guidance. Furthermore,

the statistical model should significantly reduce intraoperative computational time since

perturbations of patient orientation and the state of CSF drainage can be precomputed.

Conclusions

A statistical based approach has been outlined for image-guided surgery. The statistical

model was compared with measured intraoperative data and with a simulated intraoperative
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case. These simulations showed a good match between the brain shifts predicted by the

computational model and that predicted by the statistical model. Given the prominent

role that gravity takes in the development of brain shift, it is encouraging that a relatively

simple statistical model increases the model-updating speed by providing a framework to

pre-compute the early stages of brain shift and can also be used to compensate for this

motion.
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CHAPTER IV

MANUSCRIPT 2 - An Atlas-Based Method to Compensate for Brain Shift:
Preliminary Results

Original form of manuscript appears in Medical Image Analysis, Vol. 11:2, 128-145.

Abstract

Compensating for intraoperative brain shift using computational models has shown promis-

ing results. Since computational time is an important factor during neurosurgery, a priori

knowledge of the possible sources of deformation can increase the accuracy of model-updated

image-guided systems. In this paper, a strategy to compensate for distributed loading condi-

tions in the brain such as brain sag, volume changes due to drug reactions, and brain swelling

due to edema is presented. An atlas of model deformations based on these complex load-

ing conditions is computed preoperatively and used with a constrained linear inverse model

to predict the intraoperative distributed brain shift. This relatively simple inverse finite-

element approach is investigated within the context of a series of phantom experiments, two

in vivo cases, and a simulation study. Preliminary results indicate that the approach recap-

tured on average 93% of surface shift for the simulation, phantom, and in vivo experiments.

With respect to subsurface shift, comparisons were only made with simulation and phantom

experiments and demonstrated an ability to recapture 85% of the shift. This translates to a

remaining surface and subsurface shift error of 0.7 ± 0.3mm, and 1.0 ± 0.4mm, respectively,

for deformations on the order of 1 cm.

Introduction

Ever since its advent, medical imaging has played a significant role in surgical planning

and treatment because it provides valuable information about anatomical structures and

function. This has been particularly helpful for neurosurgical procedures where often the

surgeon has to remove a tumor without damaging the healthy brain tissue surrounding it.
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In order to take advantage of image guidance during a neurosurgical procedure (also known

as image-guided neurosurgery, IGNS), preoperative tomograms of the patient must be reg-

istered to the patient’s anatomy in physical space. While image-to-patient rigid alignment

is relatively straight-forward, clinical studies in IGNS have exposed limitations to this ap-

proach. Systematic studies have reported that the brain is capable of deforming during

surgery for a variety of reasons, including pharmacologic responses, gravity, edema, surgical

manipulation and respiration [7, 8, 9] and that the brain can shift a centimeter or more in a

non-rigid fashion [10].

To correct for deformations, various imaging techniques such as computed tomography

(CT) [25], magnetic resonance imaging (MRI) [9], and ultrasound (US) [83] have been in-

vestigated for intraoperative image-guided surgery. CT procedures have been questioned for

their dose exposure, while MR procedures are considered cumbersome and have been ques-

tioned for their cost-effectiveness. Current US systems suffer from low soft-tissue contrast

and lack image clarity as compared to CT and MR imaging methods. Therefore, in their

current state intraoperative imaging systems do not present a complete solution for guidance

correction of the brain shift phenomenon.

As a cost-effective and efficient method, computational modeling is a procedure that

can translate complex surgical events into accurate estimates of tissue response and thereby

compensate for intraoperative brain shift. In model-updated image-guided neurosurgery

(MUIGNS), a biomechanical model of brain shift is driven with sparse data1 to accurately

deform preoperative images to their current intra-operative position. Several groups have

investigated the potential value of physical/biomechanical models underpinned by various

biomechanical concepts [51, 52, 53, 54, 55, 56, 57]. Towards this end, Paulsen et al. [70]

reported a 3-D biomechanical model governed by consolidation mechanics. Additional de-

velopment of the equations and their solutions can be found elsewhere [70, 51]. In this work,

a patient-specific mesh is created and case-specific boundary data such as tumor resection

and/or tissue retraction is imposed to generate updates of the preoperative images over the

1Sparse data is defined as data with limited intraoperative extent or information
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entire course of surgery. Despite previous success with the model approach [71, 72, 73, 84, 85],

there are several remaining challenges discussed below that need addressing.

One of the greatest challenges presented by MUIGNS is that the computational time

associated with the model does not meet the real-time constraints of neurosurgery. For a

23000 node, 123500 element mesh with four degrees of freedom (DOF) at each node on a

single central processing unit (CPU) Silicon Graphics Indigo workstation, Miga et al. [73]

reported a run time of 8.5 minutes to simulate gravity-induced deformations, 6.5 minutes to

simulate retraction, 5.5 minutes to simulate excision and 6.0 minutes to simulate unretraction

for the first time step, and 5.75-7.0 minutes for every subsequent time step. These run times

can be significantly improved with use of parallel processing and more powerful computers,

as demonstrated by Warfield et al. [40]. Using a Sun Microsystems Sun Fire 6800 with

12 750MHz UltraSPARC-III CPUs, for a 43584 nodes, 214035 element mesh with three

DOF at each node, Warfield et al. reported a run time of 15 seconds. These performance

improvements are encouraging and will only add to the impetus to bring complex models to

the operating room.

Another critical component of MUIGNS is the accurate translation of boundary condi-

tions during the course of surgery. For example, the amount of cerebrospinal fluid (CSF)

loss during surgery and the head orientation of the patient in the operating room (OR) may

be two important factors in determining the degree of shift from gravitational forces [71].

Although the preoperative surgical plan can provide an estimate of the patient’s orientation

a priori, estimates for the degree of change in buoyancy forces acting on the brain are some-

what more elusive. Related to the hydrated nature of the brain, intracranial pressure from

the edematous tissue surround tumors can cause the brain to swell within the craniotomy

region. Models that are biphasic in nature may be better suited to capture these brain shift

effects. In addition, deformations from retractor blades and internal strain energy changes

that occur during tumor exposure and resection can also contribute to brain shift during

surgery. Each of these factors present a challenge with respect to prescribing boundary and

internal forcing conditions. While non-guided prediction is desirable, there is little doubt
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that the accuracy of brain shift models can be increased by integrating feedback from sparse

intraoperative data [50]. These sparse displacement measurements can be obtained from a

number of sources [11, 10, 86, 87, 2, 88]. Sparse intraoperative data is typically used as

displacement or stress boundary conditions to constrain the computational model. Using

the measured sparse displacements, Ferrant et al. [74] and Skrinjar et al. [54] rigidly con-

strained their computational model to exactly match the measured displacements, as if they

were known boundary conditions. Though this method is relatively easy to implement, it

faces the potential limitation that since boundary displacements are constrained to match

measured surface displacements, artificial forces can be introduced at the measured points

which by observation are stress-free. More specifically, in this framework, all deformations

result from the application of contact forces when the force environment is considerably more

complex and could involve a myriad of contact and distributed loading conditions. Given

this, it is worth exploring alternative approaches for integrating sparse intraoperative data

with computational modeling. Also, it should be noted that time taken to compute the

displacements using the computational model and the time taken to integrate the sparse

data with the computational model, must meet the real-time constraints of neurosurgery.

Thus the incorporation of sparse measurements must not only improve accuracy, but also

significantly reduce the time required to update the preoperative images.

In recent developments, Lunn et al. [76] presented a novel method that corrects brain

shift by combining a best prior estimate(BPE) with a force perturbation correction tech-

nique to better match sparse data to model output. The reported method casts the model

correction with a nonlinear optimization framework which uses the method of Lagrange

multipliers to rapidly correct their BPE of brain deformations. They call the method the

adjoint equation method (AEM) and have had encouraging preliminary results. While the

mathematical approach is quite elegant, it still represents a challenging optimization frame-

work that is significantly under-determined. Also in addition to the computational cost,

the AEM reduces modeling efforts to solve for the optimal distribution of forcing functions

rather than concentrating on generating a more deterministic model. For the sole purpose
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of shift correction, this is quite appropriate but it focuses the framework at using models to

regularize data rather than model deformation events.

In the work presented here, a constrained linear inverse model is combined with a biome-

chanical tissue model to best fit the measured sparse intraoperative data. Initially presented

in [89], the method reported here extends the earlier framework by incorporating a smooth-

ing constraint to improve the efficiency and accuracy of solution. In order to account for

the degree of uncertainty associated with all the sources of deformation, the computational

model is run multiple times and these multiple model solutions are combined with the help

of a inverse model to predict the intraoperative brain shift. It should also be noted that

a considerable amount of the framework can be pre-computed and that at this time the

inverse approach is a direct solution. With this technique, the model solutions act as train-

ing samples for the inverse model and the sparse intraoperative data act as control points,

thereby removing the degree of uncertainty associated with MUIGNS. The framework pro-

posed herein has some specific distinctions from the work of others: (1) the atlas of deforma-

tions is constructed from simulations based on physiological events, therefore the framework

moves beyond the role of image interpolator to one that provides quantitative estimates of

deformation-related properties (e.g. stresses, interstitial pressure dynamics, etc.), (2) the

atlas of solutions generated is of more considerable breadth and attempts to include all the

forces causing intraoperative brain shift and the varying surgical presentations of the patient

(e.g. mannitol induced deformations, gravity-induced sag, and resection), (3) the inverse

model is linear, and takes advantage of pre-processing, (4) the framework introduces a sim-

ple weighting scheme to constrain the atlas, and (5) presents a semi-automatic boundary

condition generator to translate the boundary conditions encountered in the OR and should

allow for the easy reproduction by others.

In this study, the fidelity of a constrained linear inverse model approach is demonstrated

in a phantom experiment, two in vivo cases and a simulation study. It should be noted that

though the sparse intraoperative data can include both pressure and displacement measure-

ments, displacement data was chosen to test the accuracy of the proposed inverse model.
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In this study a laser-range scanner (LRS) is used to acquire sparse data measurements

[2, 90]. The laser-range scanner used in [2] is capable of generating a three-dimensional

point cloud corresponding to (x,y,z) cartesian coordinates and two-dimensional texture co-

ordinates (u,v). In [2, 90] the LRS was modified by the attachment of 12 infrared light

emitting diode (IRED) markers, allowing for the scanner to be tracked in physical-space.

The approach to measuring brain shift using LRS is as follows: LRS is used to scan the

cortical surface, the initial scan is registered to the patient’s preoperative images thereby

establishing a correspondence between image-space and physical-space [81], the brain then

deforms during surgery, and LRS is used to acquire a serial scanning dataset of the cortical

surface after deformation. The shift acquired is then transformed to physical-space coordi-

nates with the aid of a calibration phantom. The shift-tracking protocol using LRS has been

described in detail in [2]. These sparse intraoperative measurements are used to constrain

the linear inverse model. Also to meet the real-time demands of neurosurgery a parallel

implementation of the computational model on a multiprocessor architecture is considered.

Methods

Computational Model

Equations 13 and 14 were originally developed by Biot [68] to represent biphasic soil

consolidation, but were later used by Nagashima et al. [69] and Paulsen et al. [70] to model

the deformation behavior of brain tissue.

∇ ·G∇~u +∇ G

1− 2ν
(∇ · ~u)− a∇p = −(ρt − ρf )g (13)

a
∂

∂t
(∇ · ~u) +

1

S

∂p

∂t
+ kc(p− pc) = ∇ · k∇p (14)

where

~u displacement vector

p interstitial pressure
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G shear modulus

ν poisson’s ratio

a ratio of fluid volume extracted to volume change of the tissue under compression

ρt tissue density

ρf fluid density

g gravitational unit vector

1/S amount of fluid which can be forced into the tissue under constant volume

t time

kc capillary permeability

pc intracapillary pressure

k hydraulic conductivity

Equation 13 reflects the equations of mechanical equilibrium. Within this description,

deformations can be caused from surface forces and displacements, the existence of inter-

stitial fluid pressure gradients, and changes to tissue buoyancy forces. Additionally, this

expression assumes that the continuum consists of a porous solid tissue matrix infused with

an interstitial fluid whereby the matrix deforms as a linear elastic solid while the fluid flows

according to Darcy’s law. Equation 14 relates the time rate of change of volumetric strain

to changes in interstitial hydration.

First reported within the context of gravity-induced brain shift by Miga et al. [71], the

right-hand-side of Equation 13 is used to represent the effect of gravitational forces acting

on the brain. The effect of gravitational forces on the brain can be modeled as a difference

in density between tissue and surrounding fluid. Intraoperative CSF drainage reduces the

buoyancy forces which serve to counteract gravity forces thus causing the brain to sag.

The last term on the left-hand-side of Equation 14 represents the hydrodynamic forces

that act on the brain due to fluid capillary exchange. The term kc(p−pc) represents the fluid

exchange between capillary and interstitial spaces and can be used to simulate the effects
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of hyperosmotic drugs or swelling on the brain. Hyperosmotic drugs such as mannitol are

administered to decrease the effect of elevated intracranial pressure due to edema. These

drugs have the effect of reversing the blood-brain osmotic barrier, drawing water from the

extracellular brain space, thereby decreasing brain volume. This decreased capillary pressure

pulls interstitial fluid from the extracellular brain space causing a decrease in tissue volume.

Conversely, elevated capillary pressures increase local tissue volume, resulting in tissue stress

and distortion. A pressure elevation of 20-30mmHg has been measured in experimental brain

edema and shown to be capable of driving edema fluid through the brain [91] (for this work,

a value of 27 mmHg was used). The term kc(p − pc) is intended to model these fluid

exchanges. It should be noted that the effects of mannitol are modeled as a volumetric

force with decreased pressures acting on the whole brain, whereas tissue swelling is modeled

as a local force with elevated pressures acting in the edematous region alone. Material

properties reported in the Appendix are based on values in the literature as well as those

deduced through optimization in experiments by Miga [51]. As reported in the appendix,

a heterogenous distribution of kc is assumed to account for the different structural and

biomechinal characteristics of the gray and white matter, tumor and edema.

Equations 13 and 14 are solved numerically using the Galerkin weighted residual method.

Finite element treatment of these equations coupled with a weighted time-stepping scheme

results in an equation of the form [A]Un+1 = [B]Un + Cn+1 where [A] and [B] represent

the stiffness matrices for the n+1 and nth time step respectively, C represents boundary

condition information and known force distributions, and U represents the solution vector

(3 displacements and pressure) at the node. The detailed development of these equations

can be found in previous publications [70, 51].

The boundary conditions used in the model are illustrated in Figure 7 and was first

reported in [85]. Although the actual boundary conditions are patient specific, the highest

elevations in the brain are stress-free, the mid-elevations are permitted to move along the

cranial wall, while the brain stem is fixed. The amount of intraoperative CSF drainage

determines the fluid drainage boundary condition for each of these elevations. Elements and
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Figure 7: BC set for a supine patient with neutral head orientation in the OR. Displacement
BCs : Surface 1 is stress-free at atmospheric pressure. Surfaces 2 and 5 are permitted to
move along the cranial wall but not along the normal direction. Surfaces 3 and 4 are fixed
for displacements. Interstitial pressure BCs : Surfaces 1,2 and 3 lie above the assumed level
of intraoperative CSF drainage and therefore reside at atmospheric pressure. Surfaces 4 and
5 lie below the assumed level of intraoperative CSF drainage and therefore allow no fluid
drainage.

hence the corresponding nodes in the mesh lying above the assumed level of intraoperative

CSF drainage are assumed to reside at atmospheric pressure, while elements lying below

the CSF drainage level do not allow fluid drainage. These boundary conditions were used

to validate the accuracy of the computational model in [92, 85, 93]. The results reported

suggest that these boundary conditions compare well to those encountered in the OR.

Parallel Computation of the Finite Element Model

As described earlier, the volumetric deformation of the brain is determined by solving

the three displacements (x,y and z) and pressure (p) at each node of the finite element mesh.

Each node thus gives rise to four degrees of freedom. The elements in the finite element mesh

matrix are divided equally amongst the processors available for computation. The boundary
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conditions are then applied in a similar manner (divided amongst available processors). It

should be noted that though the rows of the matrix and the boundary condition nodes

are divided equally amongst the processors, some processors do more work than others due

to the irregular connectivity of the mesh. The Portable, Extensible Toolkit for Scientific

Computation(PETSc) package [94, 95, 96] is used to assemble the stiffness matrix and to

solve the biphasic brain model.

Inverse Model

As discussed above, computation time is an important factor in MUIGNS. By incorpo-

rating a priori knowledge about the sources of deformation, it may be possible to improve

efficiency of a MUIGNS system by decreasing the computational time and it may also be

possible to increase the accuracy of a MUIGNS system. With respect to the accuracy, cer-

tain aspects of the brain shift problem can be difficult to predict within the OR environment

regardless of available data acquisition. For example, in the practical OR setting, it is very

difficult to differentiate shift due to changes in CSF volume and from fluid-depleting drugs

such as mannitol. Even something as simple as knowing the patient orientation in the OR,

i.e., the direction of gravity with respect to the brain can be challenging. For example, in

frameless stereotactic procedures, the reference emitter is commonly attached to the pa-

tient’s fixation. This allows tracked instruments to be directly related to the patient’s image

volume once the patient has been registered. This has the advantage that as the patients

bed is lowered and/or rotated, the reference frame is rotated with the patient. However, in

so doing, the absolute reference to the OR (the reference frame of gravity) can be lost unless

a second reference emitter is attached to OR space (not commonly done). Without a second

reference emitter, the direction of gravity relative to the patient is lost. One approach to

addressing this uncertainty is to generate an atlas of deformation solutions based on a range

of possible surgical presentations. This has the added benefit to efficiency by allowing for

precomputation of the deformation atlas.

In this paper, a realization to the brain shift compensation problem is proposed using a
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precomputed deformation atlas. Operationally, Equations 13 and 14 are solved for a range

of possible factors causing brain shift. Let the deformation atlas, E, be the matrix obtained

by assembling these model solutions whereby E is of size (nx3)×m, where n is the number of

nodes in the finite element mesh, 3 is the number of Cartesian displacement components at

each node, and m the number of model solutions. In general, nx3 is significantly larger than

m, so E is a rectangular matrix. The model-data misfit error between a linear combination

of precomputed displacement solutions and the actual displacements can be written as,

εvolume = [E]{α} − {U } (15)

where U is the measured volumetric intraoperative shift, i.e., shift at all nodes and is

(nx3)x1 vector, and α is the mx1 vector of regression coefficients. This can then be expressed

as the least squared error objective function,

Gvolume(α) = ([E]{α} − {U })T ([E]{α} − {U }) (16)

As noted above, the measurements U are often incomplete or sparse. As a result, model

solutions within E are interpolated to the specific measured intraoperative data points and

these interpolated solutions are assembled in an intraoperative sparse deformation atlas, M.

Thus M is of size (nsx3)xm, where ns is the number of points for which sparse intraoperative

data has been measured. The displacement data sets in M serve as the training samples for

the inverse model and reduce the model-data misfit error, and objective function to

εsparse = [M]{α} − {u} (17)

Gsparse(α) = ([M]{α} − {u})T ([M]{α} − {u}), (18)

respectively. Here, u is the sparse intraoperative shift measured at ns points in the brain.

This, however, can transform the problem into an undetermined system because there are
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usually more regression coefficients than measurement points (i.e. m > ns). While minimum

norm solutions can produce perfect fitting of the data they are often unsatisfying with respect

to volumetric shift prediction due to the measurements being confined to a small spatial

region (e.g. craniotomy in this case). This is addressed by introducing an extra constraint,

which has the effect of encouraging a spatially smooth displacement field that is confined

within the cranial extents. The modified objective function can be written as,

Gsparse(α) = ([M]{α} − {u})T ([M]{α} − {u}) + φ[W ]T{Υ}{α} (19)

The second term in this expression is a function of the mechanical strain energy at each

point within the model and serves to constrain the regression coefficients to values that would

also minimize the elastic energy across the deformation atlas. In this expression, the term

Υ refers to the linear elastic strain energy matrix, described by Υi,j = 1/2{εi,j}t[Si,j]{εi,j},

where Si,j, εi,j is the elastic stiffness tensor, and Cartesian strain tensor in vector form,

respectively, for the ith node of the jth solution from the atlas (material properties are in

Appendix). With the development of any multi-term objective function (Equation 19), care

must be taken to allow proper scaling of terms such that the data is matched optimally

while also retaining the beneficial effects of constraints. This process of regularization is

often problem specific. With this in mind, a distance based weighting factor vector W T =

[W1, W2, W3, ...] is introduced that is similar to that in [97], and is used with the strain energy

matrix described above. The weighting vector is constructed as,

Wi =
1

(1 + ri/l)e−ri/l
(20)

where ri is the distance between the centroid of the measurement nodes and the ith node

in the brain volume. The l is a characteristic length that specifies the domain over which

measurement nodes should have influence. With that, the form of Equation 20 reduces the

strain energy constraint within the region of measurements nodes, i.e. the craniotomy in

this case. While displacements tend to be small in areas remote from the craniotomy, they
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will have increased strain energy and increased weighting. When Equation 19 is optimized

for the regression coefficients, the net effect of the constraint term is to enforce a minimal

elastic energy state on remote regions of the domain while selecting coefficients that best

match the shift in the cranial and tumor regions. φ in Equation 19 provides a scaling role

such that the solution is not biased by the strain energy constraint term. The values for l

and φ were found empirically and are 0.125 and 1/2700, respectively.

Finally, setting the partial derivative to zero, the optimum for Equation 19 has a direct

solution for {α}. Once the regression coefficients are determined, these are used to calculate

the full volume displacements using

{U∗} = Eα (21)

where {U∗} is the predicted volumetric brain shift.

Figure 8 shows a schematic of the MUIGNS system using the inverse finite-element model

approach.

Automatic Boundary Condition Generator and Atlas Formation

In order to predict intraoperative brain shift using the inverse model based on a pre-

computed deformation atlas, a number of training samples/displacement data sets are re-

quired. Additionally, for increased accuracy, it is important that the model represent the

degree of uncertainty associated with all the sources of deformation. For example, a defor-

mation atlas for predicting gravity-induced brain deformations should contain displacement

data sets for a range of possible patient orientations in the OR and varying degree of buoy-

ancy force changes for each patient orientation. The surgeon’s preoperative plan can be

used to approximate the patient’s orientation in the OR and subsequently used to generate

multiple boundary condition sets (BCs), to sample all possible patient orientations. This

underscores the need for a template BC that is accurate so as to facilitate automatic BC

generation.

Based on the BC representation shown in Figure 7, a patient-specific automatic bound-
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Figure 8: Framework for MUIGNS using the constrained linear inverse model.

ary condition generator has been developed. The only necessary inputs are the approximate

patient orientation in the OR as predicted by the neurosurgeon’s preoperative surgical plan,

an anticipated region/size for the craniotomy, the computational mesh based on the preop-

erative image volume, and the location of the patient’s brain stem in the preoperative image

study. Based on this information, all possible patient orientations in the OR are assumed

and BCs for the patient-specific mesh domain are generated. The automatic BC generator

algorithm is as follows:

1. For a given preoperative patient-orientation estimate (PPoE), the node normals for all

nodes on the boundary are calculated and the following operation is performed over

all boundary nodes : ~eg · ~eni
≤ ξ, i = 1,2,3,. . . ,n boundary nodes, where ~eg is the

gravitational unit vector, ~eni
is the unit vector associated with the nodal normal to
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the brain surface for the ith boundary node and ξ is a scalar tolerance specified by the

user2. Boundary nodes that satisfy this condition are assigned stress-free boundary

conditions (Neumann condition), while those that do not are allowed to slide along the

cranial cavity but not in the direction of the surface normal. However in cases where

tissue swelling, due to elevated intracranial pressure, is to be taken into account, the

nodes in craniotomy region are identified and assigned stress-free boundary conditions

while other boundary nodes are allowed to slide along the cranial cavity but not in the

direction of the surface normal.

2. The brainstem is identified from the patient’s preoperative images and nodes within a

given radius are classified as fixed (Dirichlet condition), which overrides the conditions

determined in Step 1.

3. The interstitial pressure BCs are determined by: ~di · (−~eg) ≥ hj; hmin ≤ hj ≤ hmax,

j = 1,2,3,. . . ,m elevations, where ~di is the Cartesian coordinate of the ith boundary

node and hj is an elevation distribution. Based on previous experience in the OR, it

has been determined that the upper (hmax) and lower bound (hmin) for the elevation

distribution is 65% and 15% of the total elevation, respectively. Boundary nodes that

satisfy the above expression are considered to be at atmospheric conditions (Dirichlet

condition in pressure), while those that do not are the non-draining regions of the brain

(Neumann condition in pressure).

4. Elements in the domain with reduced buoyancy forces are identified based on the

following expression : ~Dk · (−~eg) ≥ hj; hmin ≤ hj ≤ hmax, j = 1,2,3,. . . ,M elevations,

where ~Dk is the Cartesian position of the kth tetrahedral element centroid. Elements

satisfying this condition are considered to have a complete reduction in their buoyancy

forces and are assumed to have a surrounding fluid density equal to that of air (ρf as

shown in Equation 13). Elements that do not satisfy the above condition are assumed

to have a surrounding fluid density equal to that of the tissue density (ρt as shown in

2We found that a threshold value between ξ = −0.2 and ξ = −0.3 worked best for all patient orientations
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Equation 13).

Figure 9: BC atlas developed using the automatic BC generator algorithm. (a) Displacement
BCs generated for varying patient orientations based on PPoE. Nodes in the light gray regions
of the figure are assigned stress-free BCs and those in the dark gray regions are allowed to
slide along the cranial cavity but not in the direction of the surface normal. (b) Pressure
BCs for varying levels of intraoperative CSF drainage, for a given patient orientation. Nodes
above the CSF drainage level (black region) are assumed to be at atmospheric conditions
and nodes below the CSF drainage level (gray region) are assumed to be the non-draining
regions of the brain. Also, elements in gray are submerged in CSF and are assumed to have
a surrounding fluid density equal to that of the tissue density and elements in black are
assumed to have a surrounding fluid density equal to that of air. For brevity and clarity,
only a few BC sets are shown here

Figure 9-(a) shows a sampling of the BC atlas as generated by the automatic BC generator

algorithm for the displacement/stress BCs. Figure 9-(b) shows a sampling of the BC atlas

for the interstitial pressure BCs.

47



Experiments

Phantom Studies

Phantom experiments were conducted to quantify the fidelity of the constrained linear

inverse model and to simulate gravity-induced brain shift. Figure 10 shows the experimental

set up.

Figure 10: Phantom experiment set up used to simulate gravity induced deformations and
assess the accuracy of the proposed constrained linear inverse model. For picture clarity, the
tank is shown with no water in it.

The phantom was made of polyvinyl alcohol(PVA) (Flinn Scientific, Inc., Batavia IL).

A 7% solution of PVA with one freeze-thaw cycle was used to construct the brain phantom.

The phantom was fixed on an incline and submerged in a water-filled tank and a baseline

CT scan was acquired. To simulate the loss of CSF drainage during neurosurgery, water

was drained to two different levels and CT scans were acquired for each drainage level.

Twelve 1mm diameter stainless steel bearings(http://www.bocabearings.com) were fixed on

the surface of the phantom and used to track the motion of the phantom surface during all

CT scans. It is worth noting the following two limitations of these phantom experiments

: (i) in surgery, the brain is confined within the skull thereby constraining the brain shift,

whereas no such confinements existed for the phantom, (ii) the brainstem is assumed not to

shift in this framework whereas in these experiments the entire bottom surface of the brain
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phantom was fixed to the incline. While the phantom experiment is not exactly analogous to

surgical conditions, the goal was to simulate the scale of gravity-induced deformations in an

experimental setup and validate the fidelity of the constrained linear inverse model. The CT

images were acquired in a fixed experimental setup so that any discrepancies between image

sets after drainage were solely due to deformation. Examples of phantom deformations can

be seen in Figure 11.

Figure 11: Phantom deformation results of the RBF surfaces of the segmented brain phantom
from CT image volumes. Two different views have been shown for each water drainage level
to assist in depth perception. (a) Resulting shift when water in the tank was drained to half
the original level. (b) Resulting shift when water in the tank was drained to about 90% of
the original level. Regions have been highlighted and zoomed in to show the shifts at a finer
scale.
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The starting point for the framework begins with the generation of the subject-specific

model in the “preoperative” state in this case, a geometric model of the phantom in its

fully submerged state. From the imaging data, a marching cubes algorithm [98] was used

on the segmented CT data to generate an initial approximation of the surface of the brain

phantom. FastRBF Toolbox (Farfield Technologies, http://www.farfieldtechnology.com) was

then used to define a parametric version of the marching cubes surface. A tetrahedral

mesh generator [99] was then used to create a volumetric tetrahedral mesh using the patch

description obtained from the FastRBF toolbox. The angle of inclination was used for the

phantom PPoE. Twenty-seven different orientations with 3 different drainage levels were

used to create the displacement data sets/training samples using a 3D linear elastic model.

Material properties used in the computational model have been reported in the Appendix.

Also, the model was reduced to an isotropic elastic material model and hence Equation 13

was used with a=0. Displacements obtained using the stainless-steel bearings were used to

constrain and to assess the accuracy of the constrained linear inverse model. To estimate the

accuracy of the constrained linear inverse model in predicting full volume displacements, six

1mm stainless steel bearings implanted at a depth of 1-2cm inside the phantom were used as

targets and the magnitude of target registration errors (TRE)3 of the sub-surface bearings

were examined. Additionally, displacements of the surface and the sub-surface bearings

were predicted using the forward model open-loop manner to determine its accuracy with

respect to modeling sag. In this case, boundary conditions i.e., drainage levels, and the

inclination of the phantom were known a priori and therefore the gravity forces causing

shift were ascertained. These forces were then applied to the computational model and the

displacements were compared to those predicted using the constrained linear inverse model.

Results have been presented in the following section.

3Target Registration Error (TRE) in this context is defined as the error between the measured shifted
position and the predicted shifted position of the sub-surface bearings.
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Clinical Studies

Two patients undergoing tumor resection [1, 2] were used to validate the constrained

linear inverse model. In both cases, an optically tracked LRS system was used to track the

cortical surfaces during neurosurgery. Upon opening the dura, the tracked LRS unit was used

to capture the brain surface. After tumor resection, the process was repeated. Corresponding

cortical features were identified in both scans and used as measures of displacement. Previous

work has shown that serial brain shift measurements using a tracked LRS were in agreement

with those measured independently by an optically tracked stylus (i.e. a gold standard in

measurement).

Patient 1 was a 65 year old male with a history of esophageal cancer and had an associated

3cm area abnormal enhancement in the left frontal lobe. He underwent a stereotactic left

frontal craniotomy for microsurgical resection of the tumor.

Patient 2 was a 36 year old male with a 6×8cm tumor mass originating in the left frontal

lobe and crossing across the midline in the corpus collosum to the collateral frontal lobe.

In each case, mannitol was administered and no initial shift was observed after opening

the dura. It is important to note that the absence of initial shift post dural opening is not

commonplace. Findings by Doward et al. [15], Nimsky et al. [100], and Sun et al. [88]

have reported shift after opening the dura in many cases. Intraoperative cortical surfaces

(after dura opening but before tumor resection, and after tumor resection) of each patient

were acquired by the tracked LRS unit. Figure 12 shows the LRS surfaces overlaid on the

textured preoperative MR volume.

A patient-specific model was generated for each patient. The brain, falx cerebri, tumor

and edema were segmented from the patient’s preoperative MR data set and the tetrahedral

mesh was generated in a manner similar to the brain phantom. Tissue mechanical properties

were based on previous experiences and have been reported in Appendix. For each patient,

brain shift was simulated with five different atlases that reflected different assumptions about

the surgical presentations of the patient: (I) tumor was assumed to be stiffer than the brain

tissue [73] and was not resected from the brain volume. Mannitol was not administered
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Figure 12: Pre- and Post-resection LRS surfaces overlaid on the preoperative MR volume.
(a) and (b) respectively show the pre- and post-LRS surfaces overlaid on Patient 1’s preop-
erative MR volume. (c) and (d) respectively show the pre- and post-LRS surfaces overlaid
on Patient 2’s preoperative MR volume. [1, 2].

and gravity was the solitary factor causing shift, (II) tumor was resected from the volume.

As in the previous atlas, mannitol was not administered and gravity was the solitary factor

causing shift, (III) tumor was assumed to be stiffer than the brain tissue. Mannitol was

administered and was the solitary factor causing shift, and (IV) tumor was resected from

the brain volume. As in the previous atlas, mannitol was the solitary factor causing brain

shift (V) all four aforementioned atlases were concatenated into one large deformation atlas.

Atlas I and II employed 64 different orientations with 5 different CSF drainage levels for each

orientation, resulting in 320 displacement data sets/training samples for each deformation

atlas for a total of 640 among Atlas I and II. Atlas III and IV used three different capillary

permeability values for each of the 64 patient orientations, thus resulting in 192 displacement
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data sets for each atlas for a total of 384 among Atlas III and IV. Atlas V thus consisted of

1024 deformation data sets. Tissue resection was simulated by identifying the model elements

that coincide with the preoperative tumor volume and decoupling the corresponding nodes

[73].

With respect to the driving sparse data, twelve corresponding points between the serial

LRS scans were identified manually by an experienced user. These points are transferred

to physical-space coordinates as described in the Introduction and [2]. The registration

results reported in [1, 2] are used to establish correspondence between the initial LRS scan

(physical-space) and the finite element mesh (image-space). Nodes on the brain surface

closest to the twelve corresponding points identified on the initial LRS scan are then identified

using a closest-point algorithm and these nodes are used to compute the intraoperative

deformation atlas [M] described in the methods section. Also, the difference in position

between the twelve corresponding points in physical space, i.e., the difference in physical-

space coordinates between the twelve points identified on the initial LRS scan and post-

resection scan, was used to constrain and validate the accuracy of the five deformation

atlases using the inverse approach. Sub-surface measurements were not available for the

clinical studies. Therefore, a “leave one out” technique was employed for the surface points

to validate the accuracy of the constrained linear inverse model. In other words, the inverse

model is challenged 12 times, each time leaving out one of the corresponding points from

the intraoperative deformation atlas [M] and the measured shift u. Error is then computed

using only the omitted point, thereby resulting in 12 error measurements for each deformation

atlas. Mean, standard deviation and maximum values across these 12 error samples have

been reported in the following section.

Simulation Studies

To test the fidelity of the approach in a controlled manner and to validate sub-surface

shifts predicted by the inverse model, brain shift was compensated for using two different

deformation atlases that reflected different assumptions about the surgical presentations of
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the patient. A finite element mesh representative of a human brain was generated in a

manner similar to the one used for phantom experiments. Twelve nodes on the brain surface

closest to the tumor were picked to simulate the sparse intraoperative measurement points.

Nodes belonging to the brain stem are fixed and in cases where tumor is resected, nodes

corresponding to the tumor volume are decoupled when assembling the stiffness matrix.

As a result, brain stem, tumor and measurement nodes were excluded when assessing the

accuracy of the proposed framework. Shift error for all the other surface and sub-surface

nodes served as unbiased error estimates and results have been presented in the following

section.

Atlas I is a concatenated deformation atlas reflecting brain shift due to gravity, mannitol

and tumor resection, while Atlas II additionally included shift caused by tissue swelling. It

should be noted that Atlas I as defined here is analogous to Atlas V used in the clinical

experiments. In order to account for the brain shift due to increased intracranial pressure

from the edematous tissue, brain shift was simulated due to increased intracranial pressure

using the kc(p − pc) in Equation 14. Three different craniotomy sizes (2cm radius, 2.5cm

radius and 3cm radius) were assumed and for each craniotomy size, three different edematous

tissue regions were assumed. The edematous tissue was subjected to an elevated intracranial

pressure of 27mmHg and three different kc values were assumed, thus resulting in a total

of 27 different scenarios. The displacement data sets resulting from these 27 scenarios were

used to build the aforementioned deformation atlas II. Atlas II the concatenated deformation

atlas, thus consisted of 1051 deformation data sets

Six different displacement data sets, not part of the atlases mentioned above, were used

to validate the accuracy of two aforementioned atlases using the constrained linear inverse

model. The forces causing shift in these different displacement sets are as follows : (A)

Gravity-induced deformations with tumor not being resected from the tissue volume (B)

Mannitol-induced shift with tumor being resected from the tissue volume (C) Brain shift

resulting from tissue swelling being the solitary factor causing shift (D) Brain shift resulting

from tissue swelling with mannitol being administered (E) Brain shift from tissue swelling
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Figure 13: Two frontal views of the volume rendered brain with an increase in tissue volume
simulated at the craniotomy region, simulated using two different kc values. The craniotomy
region is highlighted and zoomed in to show the increase in tissue volume on a finer scale.
1 in the figure refers to the undeformed mesh. 2 refers to the increase in tissue volume
simulated using kc1. 3 refers to the increase in tissue volume simulated using kc2. kc1 and
kc2 values have been reported in the Appendix. Though the falx cerebri was modeled, it has
not been shown in the figure.

with gravity-induced deformations and (F) Gravity and mannitol-induced deformations with

tumor resected from the tissue volume. It should be noted that although mannitol and

gravity-induced sag were used to neutralize the effect of tissue swelling in (D), and (E)

respectively, the net displacements on the surface still reflected a swelled brain within the

craniotomy region. Also the robustness of the constrained linear inverse model was tested by

adding random noise to displacement vectors contained in Atlases I and II. The random noise

level was assigned to have a maximum of 3% of a given displacement magnitude and incurred

a maximum random angular error of 4◦. This ensured that the perturbed displacement data

sets were still contained within the atlases.

Results

Parallel implementation of the Finite Element Model

Table 3 illustrates the computational time necessary to solve the biphasic model on a finite

element mesh containing 19468 nodes and 104596 elements, using 16 processors (2.8GHz,
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Intel Pentium4, 1GB RAM).

No. of Total Precondition Succesive
processors time + Iterative solution time steps (#5)

for first time step
(secs) (secs) (secs)

2 853.7 154.3 623.4
4 392.2 51.7 212.5
6 202.6 32.2 117.0
8 140.0 23.9 86.0
10 138.3 23.3 85.1
12 117.5 19.0 70.5
14 130.2 16.6 81.8
16 116.7 20.7 67.5

Table 3: Computational times associated with parallel implementation of the finite element
model.

With four degrees of freedom this requires the solving of a total of 77872 equations. Also

the biphasic model is time dependent and a total of five time-steps were used to solve the

system reported here. The second column in the table is the total computational time taken

to solve the system and includes file I/O, communication across processors, stiffness matrix

assembly, application of boundary conditions, and solution of the matrix system for all the

five time steps. The total times reported assume the patient-specific finite element mesh has

already been prepared. The third column in the table reports the time taken to precondition

the matrix of equations and solve for the first time increment. The fourth column in the

table reports the time required to complete all subsequent time-step calculations. The table

shows that using 2 processors the total computational time required to solve the system

takes 853.7 seconds and using all 16 processors it takes 116.7 seconds to solve the system.

Phantom Studies

Figure 14(a) shows the mean error between the measured and predicted shift for the

phantom experiments using the constrained linear inverse model. Measured shift is defined

as the displacement of the bearings as measured during subsequent CT scans.

In addition, simulation results using the model in a purely predictive mode are presented.
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I and II in the figure represent water drainage levels of 50% and 90%, respectively. Surface

represents the beads on the phantom surface and were used to constrain the inverse model,

while Target is associated with the sub-surface beads that represent novel points for assessing

unbiased prediction errors. Shift error refers to the magnitude error between the measured

and predicted shifted positions of the bearings. Figure 14(b) shows the angular error θ, which

represents the directional accuracy between the measured and the predicted shift. Averaging

over both the drainage levels, the constrained linear inverse model recaptured 95.9% of the

mean deformation on the surface and 88.5% of the average shift at subsurface targets while

the purely predictive computational model recaptured 92% of the mean deformation on

the surface and 85.3% of the average shift at subsurface targets. The formula for % shift

recapture has been reported in Appendix.

Clinical studies

Figure 15(a) shows the mean shift error and the mean angular error between the pre-

dicted and the measured intraoperative brain shift for Patient 1 and Patient 2 reported

in clinical experiments computed using the constrained linear inverse model. As in Figure

15(b), predicted shift error in the figure refers to the error in the magnitude between the

measured and the predicted intraoperative brain shift, while angular error, θ, represents the

inaccuracies in the direction of propagation. The deformation atlases used to simulate the

predicted shift have been described in detail in the clinical experiments section.

In order to visualize the shift vectors predicted using the constrained linear inverse model

for Patient 1, (shown in Figure 16), the measured and predicted shifts of the corresponding

points were added to their respective initial positions and were projected on to the LRS

surface acquired after resection. Shift vectors predicted using displacement data sets in

Atlas IV were used to generate the figure shown.

Similarly for Patient 2, Figure 17 shows the measured and predicted shift vectors pro-

jected onto the LRS surface acquired after resection. Shift vectors predicted using displace-

ment data sets in Atlas V were used to generate the figure shown.
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Averaging over all five atlases for Patient 1, the constrained linear inverse model produces

a mean displacement error of 0.7mm ± 0.3mm and a mean angular error of 5.8◦ ± 3.6◦ with

respect to a mean cortical shift of 6.1 ± 2.4mm. Similarly for Patient 2, the constrained

linear inverse model produces a mean displacement error of 0.7mm ± 0.4mm and a mean

angular error of 3.2◦ ± 0.4◦ with respect to a mean cortical shift of 10.8 ± 3.7mm.

Simulation studies

As stated earlier, in the simulation studies, the constrained linear inverse model was

challenged by using a deformation field that was novel to the training atlas. The six different

displacement sets that were used to validate the accuracy have been presented in detail in

the following section. Also noise was added to the displacement data sets in the atlas to

test the robustness of the constrained linear inverse model. Figure 18 shows the mean error

between the predicted and the total shift using the constrained linear inverse model for the

atlases with and without the noise added to them.

Atlas I did not include tissue swelling and hence behaved poorly when challenged with dis-

placements resulting solely due to tissue swelling, i.e., displacement data set C. It is worth

noting that though the accuracy of Atlas I improved when presented with displacements

resulting from a combination of tissue-swelling and gravity and mannitol-induced deforma-

tions, i.e., displacement data sets D and E, Atlas II which included the displacement data

sets due to tissue swelling, significantly outperformed Atlas I. The figure also demonstrates

that the constrained linear inverse model is relatively insensitive to the noise added to the

displacement data sets contained in the Atlases.

As stated earlier, nodes other than the measurement nodes and the zero displacement

nodes were used as targets to quantify the accuracy of the constrained linear inverse model

and the shift error of these targets across the volume of the brain is shown in Figure 19. Shift

predicted by Atlas II when challenged with displacement data set A was used to calcuate

the shift error shown in the figure. Figure 28(a) presents the total shift at a slice passing

through the tumor and Figure 19(c) shows the shift error at approximately the same slice
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through the brain volume, while Figure 28(b) shows the error distribution on the surface in

the vicinity of the measurement nodes. As seen in the figures, though the error increases as

one moves farther away from the measurement nodes, the inverse approach performs well in

the vicinity of the tumor, producing a mean shift error of 1.3 ± 0.7 mm, a mean angular

error of 9.7 ± 2.3◦ and a maximum shift error of 2.8mm with respect to a mean shift of

5.9 ± 2.8mm and a maximum shift of 11.7mm. It should be noted that the tumor was

being modeled as not being resected from the tissue volume. Though the figure depicts error

distribution for a single displacement data set, similar error distributions were observed for

all the displacement data sets that were used to validate the inverse model.

Summary of Results

To summarize the performance of the constrained linear inverse model for all the experi-

ments reported herein, the % shift recaptured and shift error and directional error (angular

error) of the constrained linear inverse model for all experiments is reported in Table 4. For

a given water drainage level in the phantom experiments, the predicted surface and sub-

surface deformations were averaged and was used to calculate the % recapture and the shift

and angular error reported in the Table. For the in vivo cases, shift predicted using Atlas

V, the concatenated deformation atlas was used to calculate the amount of shift that was

recaptured and the error characteristics reported here. For the simulation study, shift re-

capture, directional accuracy and shift error was calculated from the results of the averaged

over all six distributed loading condition simulations using Atlas II.

Discussion

The integration of sparse intraoperative data into MUIGNS is not a trivial task. As stated

in Miga et al.. [101], sparse intraoperative data applied in an interpolative/extrapolative

sense cannot capture the entire range of deformation. They also note that the sparse intra-

operative displacement data must be applied in a manner that is consistent with the forces

causing those displacements. The constrained linear inverse modeling approach proposed
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Measured/Total % shift Angular Shift
Shift recaptured Error Error
mm min. mean degrees mm

Phantom
Level I 7.9±3.3(17.3) 91.4 91.8 4.2±2.4(6.9) 0.6±0.4(1.5)
Level II 16.3±6.8(32.3) 81.9 92.6 6.9±2.9(12.5) 1.2±0.6(5.8)
Clinical
Patient 1 6.1±2.4(10.3) 84.4 89.4 6.0±3.8(12.6) 0.6±0.5(1.6)
Patient 2 10.8±3.7(16.3) 88.9 96.3 2.9±1.5(5.7) 0.6±0.5(1.8)

Simulation
Atlas II 8.4±2.1(15.6±7.2)∗ 76.8 85.9 2.8±0.7(4.4) 1.2±0.4(3.7)

Table 4: % shift recaptured, angular error and the mean±standard deviation(max.)
shift error using the deformations predicted by the constrained linear inverse model.
Mean±standard deviation(maximum) of the Measured/Total shift have been reported.
∗ Six different displacement sets were used to constrain and test the fidelity of constrained
linear inverse model. Therefore average maximum total shift and the standard deviation of
the shift over the six different displacement sets has been reported.

here achieves this integration in an efficient manner. Although it may seem time consuming

to build an atlas of deformations, results reported here indicate that using a multiprocessor

environment significantly reduces the amount of time taken to generate atlases. As stated

in Section IV, using 16 processors it takes approximately 117 seconds to calculate one basis

solution/training sample in the deformation atlas. Therefore for a deformation atlas with

320 basis solutions, using 16 processors it required approximately 10 hours to build each

atlas used for the clinical experiments. It should be noted that a sensitivity analysis has not

been performed which may indicate that the level of detail in the atlases presented here may

not be necessary to achieve meaningful shift corrections during surgery. The results here are

encouraging given this relatively modest atlas; and perhaps similar results may be achieved

with sparser training sets. This awaits further study.

The in vivo cases reported in this work were treated as unknown systems, i.e. the

surgeon did not generate the PPoE but rather retrospective estimates based on operation

notes were used. Ultimately, the PPoE will be provided by the surgeon using an ordinary

graphical user interface (GUI) one day prior to the surgery. The information provided

will reflect the anticipated patient orientation, craniotomy size, and location of the brain
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stem in reference to the preoperative image volume. Once these have been designated, the

automatic BC generation is performed to sample the possible deviations from the PPoE. This

boundary condition atlas and the model is then submitted to the multi-processor cluster

which returns a deformation atlas several hours later. This strategy has several distinct

advantages: (1) it accounts for the uncertainty in distributed surgical loads, such as the

gravitational sag and the physiological parameters like the amount of mannitol that will be

administered, in a real-time sense (2) the method relies on relatively inexpensive small-scale

computer clusters, (3) the time-consuming calculations are performed preoperatively, and (4)

all forms of data (e.g. fMR, PET, SPECT, etc.) can be mapped within each solution and

either combined through the inverse model or they can be actively computed based on the

displacement fields predicted using the constrained linear inverse model. It should also be

noted that the compensation for distributed loading conditions is only the first stage in this

compensation strategy. The second stage is to monitor the more direct interactions such as

retraction, and resection. These actions are more representative of surface loading conditions

as opposed to distributed ones. We hypothesize that direct predictive modeling approaches

with these should deliver the required accuracy. Previous experience with animal systems

supports this tenet[72, 84]. Surface loadings resulting from tissue retraction and the resulting

deformations can be modeled as a multistep process[73] and this has been demonstrated

previously [72, 84, 73]. This paper represents an approach to the more difficult distributed

loading conditions.

The results from the Phantom experiments are important on two distinct levels. The

first level is in validating the model approximation reported by Miga et al.. for modeling

brain sag [71], i.e. using the (ρt − ρf )g term in Equation 13. In [71], gravitational sag in

four clinical cases was compensated for using this term and encouraging results were pre-

sented. The data reported in [71] used the same mechanism for simulating sag but only

represent surface measurements. In the work presented here, surface and subsurface beads

were tracked in a phantom under controlled gravitational loading conditions. As stated in

the results section, the computational model recaptured approximately 88.7% of the surface
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and subsurface shift. The second level of significance for the phantom experiments is in

validating the proposed constrained linear inverse model approach for distributed surgical

loads. Table 4 indicates an approximate 92% compensation capability when only using sparse

surface data to guide the inverse model. One interesting aspect to observe in the phantom

results is that the constrained linear inverse model outperformed the forward-based compu-

tational model that used the known boundary conditions. Undoubtedly the inaccuracies in

the forward model are from inappropriate small-strain approximations, nonlinear material

effects. Despite these inaccuracies and the lack of explicit drainage/incline information, the

constrained linear inverse model delivered a modest improvement over the computational

model by synthesizing a better match through the combination of a simpler pre-computed

set of model basis solutions.

For the clinical studies, it was interesting to note that in both the patient cases, the

atlas with mannitol-induced deformations recaptured most of the measured shift. Atlas

III, mannitol-induced deformations with non-resected tumor recaptured most of the shift

for Patient 1, while for Patient 2, Atlas IV, mannitol-induced deformations with resected

tumor recaptured most of the measured shift. While no statistical significance can be in-

ferred, it is interesting that mannitol was administered in both patients and that when

comparing the results among the atlas’, the predictions by mannitol induced shift are better

than the gravity-induced shift. Although anecdotal, this may suggest that mannitol-induced

shift may have a more prominent role in compensation strategies than previously reported.

While these thoughts are intriguing, unfortunately, more detailed validation with subsur-

face measurements in a bigger patient population will be required to assert any conclusions.

Nevertheless, the results among the experiments are markedly consistent and indicate that

the constrained linear inverse modeling approach is a viable method for the compensation

of distributed loading conditions.

The simulation results concerned with brain swelling were of comparable accuracy to

the phantom and clinical experiments. In addition, the reported swelling shift magnitudes

were comparable to those found in the literature [15, 100, 88]. One common criticism of
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the MUIGNS systems is that tissue swelling cannot be accounted for. Initial results of the

sensitivity of the inverse model to noise (as shown in Figure 18) shows that the model is

relatively insensitive to noise, as long as the displacement data are still contained by the

atlas. The results shown here suggest that swelling conditions encountered in the OR can

be simulated using computer models. Figure 19(c) shows the distribution of the shift error

recaptured in the tumor region. Though the error increased when compared to the error

distributions on the surface containing the measurement nodes (shown in Figure 28(b)),

the constrained linear inverse model still recaptured 83.6% of the mean shift in the vicinity

of the tumor. These results combined with the target/sub-surface validations from the

phantom experiments suggest that the constrained linear inverse model is a good framework

for predicting sub-surface displacements using sparse intraoperative measurements.

While the work presented here is encouraging, the following issues need to be addressed

before implementing this approach in a MUIGNS system: (i) more detailed validations with

intraoperative imaging modalities such that the accuracy of the technique in predicting

full volume displacements can be achieved; though validating the accuracy of the model

has been reserved for a future study, the phantom results shown here and the simulation

study results reported in [89] suggest that the model will behave in a similar fashion when

predicting full volume displacement fields from sparse intraoperative data; (ii) sensitivity

analysis of the inverse model to the particular selection of the boundary conditions and the

consistency of the atlas; (iii) more detailed understanding of the internal structures affecting

brain shift, e.g. the falx cerebri has been shown to inhibit cross-hemisphere movement; (iv)

new studies focused on the improvement from subsurface data such as from co-registered

ultrasound; and, (v) more studies regarding the sensitivity of the methods to the number

and spatial distribution of sparse intraoperative data points. With respect to this last point,

the results presented here have yielded a potentially important finding. In both the phantom

and clinical experiments, the constrained linear inverse model was guided with a relatively

modest number of points (12-15 points) spatially distributed on the area of observation.

The level of model-fit in these cases is remarkable and makes it evident that assumptions
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regarding the extent, i.e. amount of data necessary for model-updating can and should be

challenged as these new systems are developed.

Previous work has demonstrated that modeling can predict deformations induced by sur-

face loading conditions such as tissue retraction [72, 73]. Although detailed clinical studies

have not been presented, the results suggest that the inverse model has the capability to

predict intraoperative brain shift resulting from distributed loading conditions. These pre-

liminary results indicate that the inverse model when combined with the approach reported

in [72, 73] has the ability to predict introperative brain shift resulting from surface loads and

distributed loads, thereby completing the MUIGNS framework.

Conclusions

In is interesting to note early reports dismissing methodologies to correct for intraop-

erative shift that did not involve traditional intraoperative imaging (specifically, iMR, and

iCT) [102]. These early reports believed that conditions such as swelling and brain volume

changes due to hyperosmotic drugs could not be predicted or practically modeled. In the

experiences shown here and by others, these conclusions continue to be challenged and the

potential for computer modeling within the OR environment is only now being realized.

There is a growing acceptance that predicting brain shift at scales relevant to surgical inter-

ventions through computer models is very possible when proper approximations to forcing

conditions are understood and when sufficient data is present to guide predictions. Albeit

for surface displacements, the results presented in this work show that with a good set of

basis-solutions/training-samples, the constrained linear inverse model can be used to predict

cortical shift. In future work, the accuracy of this approach in predicting full volume dis-

placement fields from sparse intraoperative data sets will be achieved using a comprehensive

digitization approach. Further approach enhancements are being pursued and will include

more anatomical constraint information and possibly a non-linear optimization framework.
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Appendix

The symbols used for the material properties have been described in the methods section.

Material Properties used for the Phantom Experiments

Symbol Value Units

E 1875 N/m2

ν 0.45 (no units)

G = E
2(1+ν)

Material Properties used for the in vivo and simulation studies

Symbol Value Units

E,white and gray 2100 N/m2

E,tumor 100000 N/m2

E, falx 210000 N/m2

ν 0.45 (no units)

ρt 1000 kg/m3

ρf 1000 kg/m3

g 9.81 m/s2

a 1.0 (no units)

1/S 0.0 (no units)

kwhite 1x10−10 m3s/kg

kgray 5x10−12 m3s/kg

kc1, white∗ 9.2x10−9 Pa/s

kc2, white∗ 4.6x10−9 Pa/s

kc3, white∗ 2.3x10−9 Pa/s

kc1, gray∗ 45.9x10−9 Pa/s

kc2, gray∗ 22.9x10−9 Pa/s

kc3, gray∗ 11.5x10−9 Pa/s
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pc, mannitol -3633 Pa

pc, swelling 3633 Pa

∗ 3 different values used for the simulation experiments in to simulate tissue swelling due to

elevated intracranial pressures.

Shift Recapture

% shift recapture = (1− shift error
total shift

) ∗ 100
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Figure 14: Phantom Experiment Results. (a) Mean Shift error in mm, between the measured
and predicted shift. Measured shift is defined as the displacement of the bearings as measured
during subsequent CT scans. (b) Mean Angular(θ) Error in degrees between the measured
and predicted shift. I and II represent water drainage levels of 50% and 90% respectively.
Surface represents displacements of the bearings fixed on the phantom surface and were
used to constrain the inverse model whereas Target represents the displacements of bearings
implanted inside the phantom and were used as unbiased error estimators.
The average measured surface shift of the phantom was 10.1±4.5mm, and 21.2±9.3mm for
drainage conditions I, and II respectively. The average measured target shift of the phantom
was 5.6±2.1mm, and 11.3±4.3mm for drainage conditions I, and II respectively.
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Figure 15: Patient 1 and 2 Results. (a) Mean Shift error between the measured and predicted
shift. Measured Shift for Patient 1 : 6.1±2.4mm with a maximum displacement of 10.3mm.
Measured Shift for Patient 2 : 10.8±3.7mm with a maximum displacement of 16.3mm. (b)
Mean Angular(θ) Error in degrees between the measured and predicted shift.
Atlas I : Tumor was not resected from the brain volume and gravity was the solitary shift-
causing factor. Atlas II : Tumor was resected from the brain volume and gravity was the
solitary shift-causing factor. Atlas III : Tumor was not resected from the brain volume and
mannitol was the solitary shift-causing factor. Atlas IV : Tumor was resected from the brain
volume and mannitol was the solitary shift-causing factor. Atlas V : All four aforementioned
atlases were concatenated into one deformation atlas.
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Figure 16: Measured and shift vectors predicted using the constrained linear inverse model
(shown as line segments) overlaid on the post-resection LRS surface for Patient 1. Shift
predicted using Atlas IV (mannitol being the solitary shift causing factor, tumor resected
from the tissue volume) has been shown here. The numbers in the figures represent the
absolute error between the measured and predicted shift. Each figure, (a), (b) and (c)
demonstrates the overlay from a different camera angle to assist with depth perception.
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Figure 17: Measured and shift vectors predicted using the constrained linear inverse model
(shown as line segments) overlaid on the post-resection LRS surface for Patient 2. Shift
predicted using Atlas V (concatenated deformation atlas) has been shown here. The numbers
in the figures represent the absolute error between the measured and predicted shift. Each
figure (a), (b) and (c), demonstrates the overlay from a different camera angle to assist with
depth perception.
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Figure 18: Simulation Study Results. (a) Mean Shift error between the total and predicted
shift. (b) Angular Error between measured and predicted shift. Atlas I is a concatenated
deformation atlas reflecting brain shift due to gravity, mannitol and tumor resection, while
Atlas II additionally included shift caused by tissue swelling. Detailed description of the
figure can be found in the manuscript.
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Figure 19: Shift error computed using Atlas II when challenged with the displacement data
set A. (a) Magnitudes of the shift in mm, for a slice passing through the tumor (b) Shift
(magnitude) error at the surface in the vicinity of the measurement nodes (c) Shift (magni-
tude) error at approximately the same slice as (a).
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CHAPTER V

MANUSCRIPT 3 - A fast and efficient method to compensate for brain shift
during surgery

Abstract

Objective: To present a methodology that predicts brain shift on a time frame that is

compatible with tumor resection therapies.

Methods: A priori knowledge of the possible sources of brain shift has been shown to

increase the accuracy of model-updated image-guided systems. Therefore the computational

model is run multiple times in a forward manner to account for all possible sources of

deformation and these model solutions are combined linearly using an inverse model to

predict the distributed shift. This simple linear inverse model is investigated within the

context of 8 patients.

Results: The proposed framework recaptures 85% of the mean sub-surface shift. This

translates to a sub-surface shift error of 0.4mm±0.1mm for a measured shift of 3.1mm±0.6mm.

The patient’s preoperative tomograms are deformed using the volumetric displacements pre-

dicted using the proposed framework and results are also presented in a qualitative fashion

as difference images between these image volumes and the postoperative tomograms.

CONCLUSION: This study demonstrates the accuracy of the proposed framework in

predicting full volume displacements from sparse shift measurements. It also shows that

the proposed framework can be used to update preoperative images on a time scale that is

compatible with surgery.

Introduction

Image-guided surgical systems rely on establishing a relationship between the physi-

cal space in the operating room (OR) and the patient’s preoperative image tomograms.

Tissue deformation and shift that occurs during neurosurgery during removal of a tumor
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results in a loss of the aforementioned spatial relation thereby compromising the accuracy

of neruonavigation-based procedures. Reports have indicated that the brain can deform a

centimeter or more in a non-uniform fashion throughout the brain [10] and that brain shift

occurs due to a variety of reasons including pharmacologic responses, gravity, edema, hyper-

osmotic drugs and pathology [100, 9, 7]. In an effort to compensate for intraoperative brain

shift, researchers have used techniques ranging from intraoperative image-guided surgery

[25, 100, 83] to model-updated image-guided surgery (MUIGS) [50]. Intraoperative image-

guided systems have been predominantly limited to intraoperative magnetic resonance (iMR)

imaging and intraoperative ultrasonography (iUS). While iMR techniques have been labeled

cumbersome and have been questioned for their cost-effectiveness, the images produced by

iUS systems lack the same clarity as their iMR counterparts. Therefore in their current

state, intraoperative imaging systems do not present a complete solution for brain shift. As

a cost-effective and efficient method computational models have been used successfully in

MUIGS to correct for intraoperative brain shift.

Typically a patient-specific model is used in MUIGS, thereby taking advantage of the

high-resolution preoperative images. This model is used to deform the patient’s preoperative

images to display the current intraoperative position and the displacements predicted by the

computational model are used to deform the preoperative images. Invariably, the computa-

tional model is a critical component of any MUIGS system and a spectrum of computational

models ranging from less physically plausible but very fast models through to extremely ac-

curate biomechanical models requiring hours of compute time to solve have been presented

in the literature [51, 52, 53, 54, 55, 56]. Warfield et al. [57] were among the first to demon-

strate that computational models can be used in a time frame that is consistent with the

demands of neurosurgery. The results reported in [57, 103] are encouraging and suggest

that more complex models can be used in MUIGS. Another critical component of MUIGS

is the integration of sparse intraoperative data which serves to control the computational

model. Sparse, in this context, means data with limited information and/or spatial extent.

The integration of sparse intraoperative data should not only increase the accuracy of the
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system but it should also meet the real time constraints of neurosurgery. Towards this end,

we reported a framework [103] that combined a computational model with a linear inverse

model and was used to predict intraoperative brain shift. In this framework, a series of model

deformations based on complex loading conditions such as brain shift due to gravity, volume

changes due to drug reactions, tissue swelling due to edema was computed preoperatively

and these model solutions were used to construct an atlas of deformations. Sparse intraop-

erative surface measurements were then used to constrain the model and volumetric brain

shift was predicted using a linear inverse model. The computational model and the inverse

model have been discussed in brief in the following section. This framework was investigated

within a series of phantom experiments, two in-vivo cases and a simulation study. Results

reported in [103] indicated that the framework recaptured on an average 93% of surface

shift for all the experiments and 85% of the subsurface shift for the phantom and simulation

experiments. Sub-surface shift measurements were not available for the two in-vivo cases

that were reported in [103].

In the work presented here, we use the aforementioned framework to validate sub-surface

shift measurements in 8 in-vivo cases. More specifically, surface and sub-surface shift mea-

surements were obtained by registering postoperative magnetic resonance (MR) tomograms

to the patient’s preoperative MR tomograms. Patient-specific models and deformation at-

lases were generated for each of the 8 cases and sub-surface shifts predicted by the combined

linear inverse and computational model were validated against the measured shift. Shift

error and Angular error between the measured and predicted positions of the sub-surface

points have been presented in Section 4. Also, the patient’s preoperative MR image volumes

were deformed using the volumetric shift predicted using the inverse model and qualitative

comparisons with the postoperative MR image volumes have been presented in the results

section.
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Methods

Systematic studies have shown that the accuracy of brain shift models can be increased

by integrating feedback from sparse intraoperative data [50]. A schematic of model-updated

image-guided neurosurgery (MUIGNS) is shown in Figure 20. As seen in the figure, the

computational model and the integration of sparse intraoperative data with the model are

two important features of a MUIGNS system and these have been discussed in brief below.

Figure 20: Schematic for Model-Updated Image-guided Neurosurgery (MUIGNS).

Computational Model

Hakim et al. [66] showed that the transmission of intraventricular pressure throughout

the brain parenchyma created a stress distribution that varied in magnitude and direction

and made the observation that the “brain acts like a sponge”. Doczi [67] reported that

the gray matter and white matter can increase their fluid content due to the difference in

vascular availability and also pointed out that when the blood brain barrier is compromised

interstitial pressure drives the fluid movement in the brain. These findings highlight the need

for a fluid compartment in the model. In light of this fact, David Roberts and his research

group at Dartmouth [70, 71]developed a 3D computational model based on Biot’s theory of

soil consolidation. In short Biot’s consolidation theory [68] gives a general description of the

mechanical behaviour of a poroelastic medium 1 based on equations of linear elasticity for

the solid matrix and Darcy’s law for the flow of fluid through the porous matrix. According

to this model, the brain is biphasic in nature and the volumetric strain rate depends on the

1A porous medium is one where a solid matrix is permeated by an interconnected network of pores filled
with a fluid.
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changes in interstitial pressure and hydration. Extensive validation studies have been con-

ducted by the group at Dartmouth [104, 71, 84, 73]. They reported that the computational

model can capture 70% to 80% of the subsurface deformation in animal experiments.

Figure 21 shows the template boundary condition (BC) set used for predicting brain

shift due to gravity-induced deformations. Surface 1 is assumed to be stress-free. i.e., free

to deform. Surfaces 3 and 4 (the brain stem region) is fixed for displacements, i.e., they do

not move and Surfaces 2 and 5 are permitted to move along the cranial wall. The amount of

intraoperative cerebrospinal fluid (CSF) drainage is assumed for each patient orientation and

this level determines the drainage or the pressure boundary conditions in the model. Parts

of the brain above the CSF drainage level are assumed to reside at atmospheric pressure and

parts below it do not allow fluid drainage. It should be noted that the boundary condition

template shown in the figure is patient-specific and depends on the patient’s head orientation

in the operating room (OR).

Figure 21: Boundary condition (BC) template set for a supine patient with neutral head
orientation in the OR. Displacement BCs: Surface 1: Stress-free , i.e., free to deform, Surface
2 and 5: move along the cranial wall, Surfaces 3,4 and 5: Fixed, i.e., cannot move. Pressure
BCs: Surfaces 1, 2 and 3 reside at atmospheric pressure, Surfaces 4 and 5 are still submerged
in CSF and therefore do not allow fluid drainage.
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Inverse Model

It can be difficult to determine brain shift within the OR environment using the computa-

tional model. For example, when predicting gravity-induced brain deformations, the patient

head orientation and the amount of intraopreative CSF drainage must be ascertained. The

surgeon’s preoperative plan can be used to approximate the patient’s orientation in the OR,

but it is difficult to measure the amount of fluid drainage. Also, in cases where mannitol is

administered it is difficult to differentiate the shift due to mannitol and gravity. In order to

account for this degree of uncertainty associated with the computational model, the com-

putational model is run multiple times to account for all possible sources of intraoperative

deformation. For example, a range of patient orientations/surgical presentations is assumed

based on the preoperative plan and for each orientation a range of fluid drainage levels are

assumed. Boundary conditions are generated for each surgical presentation and deformation

solutions are predicted using the computational model. These solutions are then assembled

in a matrix E, also referred to as the deformation atlas. In a similar fashion, deformation

atlases due to hyperosmotic drugs such as mannitol and tissue swelling due to edema can be

generated. The deformation atlas E is of size (n x 3) x m, where n is the number of nodes in

the finite element mesh and m the number of model solutions. As noted above, the measure-

ments are not obtained for all points in the brain and therefore the model solutions within

E are interpolated to the specific measurement points and these interpolated solutions are

assembled in the intraoperative deformation atlas, M. M is of size (ns x 3) x m, where ns is

the number of sparse measurement points. The interpolated model solutions in M serve as

training samples for the inverse model which is given below:

Gsparse(α) = ([M]{α} − {u})T ([M]{α} − {u}) + φ[W ]T{Υ}{α} (22)

where U is the sparse measured shift, W the weighting vector, υ is the strain energy

matrix and α the regression coefficients. The first term in the equation serves to minimize

the error between the predicted model solutions and measured shift, while the second term
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minimizes the elastic energy across the deformation atlas and produces a spatially smooth

displacement field. The vector of regression coefficients are determined from the above

equation and intraoperative brain shift is calculated using [E]α. It should be noted that all

the deformation atlases are computed preoperatively. The measured sparse data then act as

control points and are used to constrain the inverse model and sub-surface points are used

as unbiased error estimates to validate the accuracy of volumetric brain shift predicted by

the model. The inverse model is a direct solution and therefore the framework should meet

the real time constraints of neurosurgery. A more detailed description of the inverse model

can be found in [103].

Image Updating

The last and an equally important step in a MUIGNS framework is the updating of preop-

erative images based on the volumetric brain shift predicted by the combined computational

and linear inverse model. Since the finite element mesh for each patient is built using the pa-

tient’s preoperative images and the displacements predicted by the linear inverse model are

defined in a continuum manner over the finite element mesh, these displacements can be used

to deform the preoperative images. An image-updating algorithm was initially presented in

[71]. In [71], Miga et al.. used a backcasting technique to deform the patient’s preoperative

images using displacements predicted by the model. We parallelized this image-deformation

algorithm in order to meet the real time constraints of neurosurgery. This algorithm elim-

inates the problem of holes/tears in the updated image, produces a contiguously deformed

image that is based on the governing equations for the forward model and translates the

volumetric brain shift predicted by the model into images that can be recognized by the

neurosurgeon. Figure 22 shows a schematic of the image-updating algorithm used in this

framework.
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Figure 22: Image-updating algorithm based on volumetric brain shift predicted by the com-
bined computational and linear inverse model.

Illustrative Cases

8 patients (mean age of 51.4yrs with 2 men) with brain tumors (primary or metastatic)

were included in this study (shown in Table 1). All patients were enrolled after obtaining

written informed consent for participation in this study, which was approved by the Insti-

tutional Review Board of the Vanderbilt University School of Medicine. After anesthetic

induction, the patients were positioned on the operating room table and were secured to the

table using a Mayfield clamp. All patients received diuretics (mannitol, 0.5-1.0 g/kg) and

steroids (dexamethasone) immediately before incision. All patients underwent craniotomy

for tumor resection and no side effects related to participating in this study were noted.

Preoperative and postoperative MR tomograms were acquired as 1.5T, T1-weighted, 3D-
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Pt. # Age, Tumor Craniotomy Orientation (deg) Location Lesion size (cm)
/Sex Type (diameter)

(cm)
1 22,F Gr(II) Olig. 7.7 IS 90d rot L,F 5.2x6.2x6.0
2 52,M Astro. 8.3 IS 90d rot L,F 4.9x5.6x5.0
3 60,F Mening. 5.5 IS 90d rot R,F/T 4.5x6.4x4.3
4 77,M Gr(IV) GBM 5.0 IS 90d rot. L, T 3.4x3.6x2.0
5 56,F Met. 4.5 - L,F 4.7x3.2x4.0
6 75,F Gr(II) GBM 6.1 IS 15d rot L,T 5.0x5.0x5.0
7 23,F Gr(II) Astro. 6.4 Neutral R,F 4.0x3.0x3.0
8 46,F Gr(IV)GBM 4.3 IS90d rot. R,T 3.0x3.0x3.0

Table 5: Patient Information. Tumor Types: Gr - Grade, Olig. - Oligodendroglioma,
Mening. - Meningioma, Asto. - Astrocytoma, GBM - Glioblastoma Multiforme, Met. -
Metastatic Tumor. Orientation: IS - refers to rotation about inferior-superior axis (e.g., IS
90d rot reflects patient’s head parallel to the OR floor). Location: L:left, R: right, F:frontal,
T: temporal, P:parietal.

SPGR, 1x1x1.2mm voxel, gadolinium-enhanced and non-enhanced image volumes. It should

be noted that the preoperative image volumes were acquired a day before or on the morning

of the surgery and the postoperative images were acquired a day after surgery. The preoper-

ative and postoperative MR volumes were registered using mutual information registration

algorithms developed at Vanderbilt [105].

The brain region is then segmented from these registered volumes using an atlas based

segmentation method [106]. Textured brain surfaces are generated from these segmented MR

tomograms and corresponding cortical features (vessel bifurcations, sulcal and gyri patterns)

identified manually on these surfaces are used as measures of brain shift. A patient-specific

model was generated for each patient. The brain and falx cerebri, tumor and edema were

segmented from the patient’s preoperative MR data set and the tetrahedral mesh was gen-

erated in a manner similar to the one reported in [103]. For each patient, brain shift was

simulated with four different atlases that reflected different assumptions about the surgical

presentations of the patient: (I) Tumor was resected from the brain. Mannitol was not

administered and gravity was the solitary factor causing shift, (II) Tumor was resected from

the brain. Mannitol was administered and was the solitary factor causing shift, (III) Tumor

was present and shift was induced by tissue swelling in the tumor and edematous region and
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with mannitol being administered to the patient, and (IV) all three aforementioned atlases

were concatenated into one large deformation atlas. Atlas I employed 60 different patient

orientations with 4 levels of intraoperative CSF drainage for each orientation, resulting in

240 displacement solutions in Atlas I. Atlas II used three different capillary permeability

values for each of the 60 patient orientations, thus resulting in a total of 180 different dis-

placement solutions. In order to simulate displacement solutions for Atlas III, three different

craniotomy sizes were assumed and for each craniotomy size, three different edematous tis-

sue regions were assumed. For each edematous region, three different capillary permeability

values and three different intracranial pressures were assumed. This resulted in a total of 81

different scenarios. Atlas IV thus consisted of 501 deformation data sets. With respect to

the driving sparse data, twelve to fifteen corresponding points were identified manually for

each patient between the registered textured brain surfaces.

Differences in position between the postoperative and preoperative corresponding points

were used as measures of brain shift and these displacements were used to constrain the

inverse model. Nodes on the finite element mesh corresponding to these points are identified

using a closest point algorithm and these nodes were used to compute the intraoperative

deformation atlas. Also, six to eight corresponding sub-surface points were identified on the

registered MR tomograms and these points were used to validate sub-surface shifts predicted

by the inverse model. Given the uncertainties in measurements due to segmentation and

registration errors surface shifts lesser than 3mm and sub-surface shifts lesser than 2mm

were not included in this study and the sub-surface points were spatially distributed over

the entire brain volume. Figure 23 shows the surface and sub-surface points for Patient 1

used in this study. It should be noted that the surface points were used to constrain the

inverse model and the sub-surface points served as unbiased error estimates. Also, the sub-

surface points shown in the figure are not co-planar, but are distributed over the entire brain

volume.

Shift error which refers to the magnitude error between the measured and predicted

shifted positions of the sub-surface points and angular error which refers to the directional
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Figure 23: Surface (left) and sub-surface (right) points for Patient 1 that were used in the
model. The arrow in the surface point distribution figure (left) points to the location of the
tumor. Sub-surface points 1 and 2 are located superior (at a higher elevation) to the tumor,
points 3,4 and 5 were located in plane with the tumor and point 6 is located inferior to the
tumor. Surface points were used to constrain the linear inverse model and sub-surface points
were used to validate the accuracy of the the model.

accuracy between the measured and predicted shifted positions of the sub-surface points have

been presented in the following section. Also, the patient’s preoperative MR image volumes

were deformed using the volumetric shift predicted using the inverse model and qualitative

comparisons with the postoperative MR image volumes have been presented in the following

section.

Results

Anatomical fiducials (such as ear lobes, eye sockets, and corresponding points in the

brain stem region) were chosen between the preoperative and postoperative MR tomograms

to assess the accuracy of the mutual information algorithms that were used to register these

image volumes. The mean difference in position between these points was found to be

1.0±0.3mm. It should be noted that this does not represent a registration error and detailed

error analyses of the algorithms can be found in [105].

Shift Error predicted using the linear inverse model for all eight patients has been reported

in Table 6. The second and third columns in Table 6 represent the measured shift for

surface and sub-surface points obtained using the registered preoperative and postoperative
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MR volumes. It should be noted that the surface shift was used to drive/constrain the

inverse model and the sub-surface points served as unbiased error estimates. As shown

in the table, Atlas IV the concatenated deformation atlas performed the best for all eight

patients. Averaging over all eight patients, using Atlas IV the constrained linear inverse

model produced a mean shift error of 0.4±0.1mm and a mean angular error of 9.5±1.1◦ with

respect to a mean sub-surface shift of 3.1±0.6mm.

% shift recaptured with the constrained linear inverse model using Atlas IV has been

reported in Table 7. Averaging over all eight patients, the constrained linear inverse model

recaptured 85% of the mean measured sub-surface shift.

A “leave one out” technique was also employed for the surface and sub-surface points to

validate the accuracy of the combined computational and constrained linear inverse model.

In other words for Patient 1, the inverse model is challenged 17 times, each time leaving

out one of the corresponding points from the intraoperative deformation atlas [M] and the

measured shift U. Error is then computed using only the omitted point, thereby resulting

in 17 error measurements for each deformation atlas. Mean and maximum values of the %

shift recaptured across these 17 error samples for all eight patients have been reported in the

Table 8. Similar to Table 7 Atlas IV was used to compute the values reported in the table

shown below.

Also, volumetric displacements predicted using the combined computational and linear

inverse model were used to deform the patients’ preoperative images. These images are then

visually compared with the patient’s postoperative image volume and the results have been

presented in Figures 24 and 25. For the sake of brevity and clarity, only three patients

(Patient 1, 7 and 8 reported in Table 1) have been shown in the figures. The first column

in Figure 24 shows the preoperative MR slice, the second column shows the corresponding

postoperative MR slice and the third column the deformed MR slice obtained using displace-

ments predicted using the combined computational and linear inverse model. It should be

noted that though the tumor was removed from the brain tissue when building the deforma-

tion atlases, tumor was not removed from the brain volume when the preoperative images
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Patient # % Shift Recapture
Mean Minimum

1 85 79
2 85 79
3 89 80
4 85 79
5 87 79
6 83 77
7 84 81
8 85 79

Table 7: % shift recaptured with the constrained linear inverse model using Atlas IV

Patient # % Shift Recapture
Mean Minimum

1 87 81
2 85 80
3 90 82
4 85 78
5 88 81
6 82 79
7 85 82
8 84 79

Table 8: % shift recaptured using a “leave-one-out” approach with the combined computa-
tional and constrained linear inverse model using Atlas IV
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were deformed using the predicted displacements.

Figure 24: Model predictions for Patients 1, 7 and 8. First column shows a preoperative
image slice for the patient, second column the corresponding postoperative image slice and
the third column shows the image obtained using model predi ctions.

Figure 25 shows the fusion images for Patients 1, 7 and 8. The first column in the

figure shows the fusion image obtained using the patients’ preoperative image volume and

the registered postoperative image volume. The amount of postoperative brain shift can

be seen in these images. The second column in the figure shows the fusion image obtained

using the postoperative image and the image predicted by the combined computational and

linear inverse model. The amount of correction predicted by the model can be seen in these

images.

Figure 26 shows the image updating results for a sub-surface point for Patients 1, 7
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and 8. The first column shows a sub-surface point (represented as a black hollow circle) in

the patient’s preoperative image. The hollow black circle in the second column shows the

position of the same point before brain shift and the solid black circle shows the true shifted

position of the point. The white hollow circle in the second column shows the predicted

shifted position of the point. For the sub-surface point shown in the figure, the model

accounted for 81% of the measured shift for patient 1, 80% of the measured shift for patient

7 and 83% of the measured shift for patient 8.

Discussion

The results presented in this study demonstrate that the combined computational and

linear inverse model is capable of predicting full volume displacements and can be used in

a MUIGNS system. The framework reported here relies on predicting brain shift using a

patient-specific atlas of model solutions that are consistent with the forces causing brain

shift. This series of model solutions are then combined in a linear fashion using the sparse

measured data. It should be noted that the deformation atlases are computed preoperatively

and therefore significantly reduces the intraoperative computational time. Also, since the

preoperative image volumes are acquired a day prior to surgery, the atlas of deformations

can be computed a day prior to surgery using the parallelized computational model and the

automatic boundary condition algorithm reported in [103].

Figure 25 demonstrates updating of preoperative images using displacements predicted

by the combined computational and linear inverse model. In each of patient cases, the

first column demonstrates a visible shift of the sub-surface structures and the second column

demonstrates the shift correction predicted by the combined computational and linear inverse

model. In all the eight cases presented, sub-surface points were chosen near the lateral

ventricles and the tumor resection cavity to validate the sub-surface shift predicted by the

model. Averaging over all the eight patient cases, the model recaptured 85% of the mean

measured shift and 79% of the maximum measured shift. Also, a shift of 4-6mm of the

tumor boundary and a shift of 3-6mm at the lateral ventricles was observed in the registration
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studies and the model predictions. This is in agreement with the shift measurements reported

in the literature [14, 107, 71]. Table 8 shows the % shift recaptured by the model, when the

surface and sub-surface points were used to constrain the inverse model. As stated earlier,

a “leave-one-out” approach was used to validate these shift predictions and these results

suggest that the model performed slightly better when the inverse model was constrained

using surface and sub-surface points. Averaging over all 8 patients, Table 8 shows that the

model recaptured 86% of the mean measured shift and 80.3% of maximum measured shift.

This is a marginal improvement over the results presented in Table 7.

Figure 27 shows the distribution of regression coefficients (α in Equation 22) for Patients

1, 7 and 8. Regression coefficients computed using the concatenated deformation atlas (Atlas

IV reported in Section V) were used to generate the charts shown below. As stated earlier,

Atlas IV consisted of a total of 501 model solutions(240 of the displacement solutions were

modeled to simulated gravity-induced shift, 180 to model shift due to mannitol and 81 due to

tissue swelling and mannitol combined). Averaging over all three patients, 40.5% of the non-

zero regression coefficients belonged to gravity-induced shift, 40.6% to mannitol-induced shift

and 5.3% to displacements modeled to simulate tissue swelling and mannitol. These findings

suggest that gravity and mannitol-induced shift have an equal contribution in predicting the

observed brain shift. We realize that these findings need to be validated in a bigger patient

population before ascertaining the correlation between simulated boundary conditions and

the observed brain shift. Nevertheless these results suggest that the atlas-based framework

can be used to account for the complex loading conditions that occur during tumor resection

therapies.

The method developed to produce updated MR images using displacements predicted

by the finite element model was initially reported in [71]. This deformed image is based a

porous media biomechanical model of the brain and is representative of the force environment

causing brain shift. This is also a critical step in a MUIGNS system because it translates the

deformation field into visual images that the neurosurgeons can relate to. We also developed

a parallel algorithm to perform the image updating technique reported in [71] and using 16
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processors it took less than a minute to deform a 256x256x180 MR image volume. With

respect to tumor resection, tumor volume was identified from the patient’s preoperative

images and the entire tumor volume was removed from the model and the images produced

using model displacements. In order for the model to produce image updates that mirror

their intraoperative counterparts, the model has to account for the incremental removal of

the tumor during surgery. This would require redigitization of the resection cavity as the

surgery progresses, in order to accurately display the partial resection cavities in the image

updates. In practice, this procedure is difficult to implement and might impede the surgical

procedure. In order to circumvent this, we chose not to remove the tumor from the brain

tissue during the image deformation procedure.

A few limitations of this study must be noted. First, we used the brain shift between

preoperative and postoperative image volumes in this study. Since the postoperative MR

image volumes were acquired a day after surgery, we understand that the shift used in

this study is not representative of the intraoperative brain shift. Unfortunately, sub-surface

intraoperative measurements were not available. The viscoelastic nature of the brain and

the regeneration of CSF within the brain might have caused the brain to recover some of

its intraoperative brain shift. Nevertheless, the results presented herein are encouraging and

demonstrate that if the model were constrained with sparse intraoperative measurements

the combined computational and linear inverse model framework can be used to predict

introperative brain shift. Second, the model did not account for more direct interactions

such as retractions and the brain tissue collapsing into the tumor resection cavity. It should

be noted that retractors were not used in the cases reported in this work. However we

hypothesize that surface loadings resulting from tissue retraction can be modeled in a forward

manner as demonstrated in our previous work [73, 72].

Figure 28 shows the model predictions for Patient 2 reported herein. The first column

represents the patient’s preoperative image, second column shows the corresponding postop-

erative slice, third column the image predicted using the combined computational and linear

inverse model. The fourth and fifth column shows the fusion images between the preoperative
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and postoperative images, and the model predicted image and the preoperative image respec-

tively. Though the model performed reasonably well in terms of shift recapture (the model

recaptured 85% of the mean sub-surface shift for a measured sub-surface of 4.0±1.2mm),

the fifth column in the figure shows that the image obtained using model predictions did not

match well with the postoperative image. We observed normal brain tissue collapsing into

the tumor resection cavity during surgery and hypothesize that a majority of the shift due

to this collapse was not recovered when the postoperative images were obtained. Though

this phenomenon was not observed in the other patient cases, we do realize its importance

especially in terms of intraoperative brain shift and are working on enhancing the existing

computational model to account for this surface collapse. Also, corresponding points could

not be identified near the tumor resection margins and in the regions where the brain tissue

collapsed and we do realize that shift predictions for this patient are incomplete.

Despite these model limitations, the computational time associated with running the

inverse model and updating the preoperative images and the shift error analyses are encour-

aging and indicate that the linear inverse model reported herein combined with this parallel

image updating technique is capable of predicting intraoperative brain shift in a real time

fashion.

Conclusions

A framework to predict sub-surface shifts using a combined computational and linear

inverse model has been utilized in a preliminary validation of our approach to brain shift

correction. The framework reported relies on relatively inexpensive small scale computer

clusters and can compute image updates on a time scale that is compatible with the surgical

removal of tumor. The sub-surface error measurements and the qualitiative image compari-

sions presented in this work are encouraging. However the shift used in this study was based

on postoperative images and we are currently working on relating the postoperative brain

shift to the intraoperative brain shift and using the same work to validate the intraoperative

brain shift predicted by the model. In addition we are working on enhancing the computa-
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tional model to account for brain shift due to the tissue collapsing into the tumor resection

cavity.

Acknowledgements

We thank the resident surgeons, the operating room staff and the radiology department at

Vanderbilt University for their help in data collection. Most of the visualization algorithms

were developed using Visualization Toolkit (http://www.vtk.org). Some segmentation and

calculations were performed using Analyze AVW Version 6.0. This work was supported by

the NIH-National Institute for Neurological Disorders and Stroke - Grant # R01 NS049251-

01A1.

93



Figure 25: Fusion images for Patients 1, 7 and 8. Column 1: Fusion image between the
patient’s preoperative image and the postoperative image. This column shows the amount
of brain shift. Column 2: Fusion image between the postoperative image and the image
predicted using the combined computational and linear inverse model. This column shows
the amount of shift correction predicted by the combined computational and linear inverse
model.
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Figure 26: Fusion images for Patients 1, 7 and 8. Column 1: Fusion image between the
patient’s preoperative image and the postoperative image. This column shows the amount
of brain shift. Column 2: Fusion image between the postoperative image and the image
predicted using the combined computational and linear inverse model. This column shows
the amount of shift correction predicted by the combined computational and linear inverse
model.
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Figure 27: Distribution of non-zero regression coefficients for Patients 1, 7 and 8. Atlas IV
(concatenated deformation atlas) was used to compute these distribution charts.
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Figure 28: Model predictions for Patient 2. First row shows the model predictions for patient
2. Second row shows the fusion images. Row 1, Column 1: Preoperative image slice. Row
1, Column 2: Corresponding postoperative slice. Row 1, Column 3: Image obtained using
model predicted displacements. Row 2, Column 1: Fusion image between preoperative and
postoperative image. This column shows the amount of brain shift. Row 2, Column 5:
Fusion image between the model predicted image and the postoperative image.

97



CHAPTER VI

SUMMARY

This work documents the development and quantification of an atlas-based framework to

predict intraoperative brain shift using sparse data. Current image-guided systems assume

that the brain is rigid and does not shift during surgery. However it has been shown the

surface of the brain can deform upto a 1cm during tumor resection therapies. Model-updated

image-guided systems correct for this shift and allow for accurate neuronavigation.

Typically, a patient-specific model is used in MUIGNS and the model is driven by in-

traoperative shift measured during surgery. The preoperative images are then deformed

using the displacements predicted by the model thereby, producing images that mirror their

intraoperative counterparts. Computational time associated with the model and the effi-

cient integration of sparse intraoperative data are two important factors associated with any

MUIGNS. The atlas-based model-updating framework proposed in this dissertation attemps

to answer the above mentioned challenges by pre-computing a deformation atlas that ac-

counts for all possible sources of intraoperative brain shift. Chapters III and IV present the

development of the atlas-based framework. In this framework, a series of model deforma-

tions based on complex loading conditions such as brain shift due to gravity, volume changes

due to drug reactions, tissue swelling due to edema is computed preoperatively and these

model solutions are used to construct an atlas of deformations. This deformation atlas is

then constrained using the measured sparse intraoperative data and volumetric brain shift is

then calculated using an inverse model. The automatic boundary condition algorithm and

the parallelized computational model presented in chapter IV faclitate the generation of de-

formation atlases on a reasonable time scale. Chapter V validates the framework using eight

clinical cases.The parallel image-updating algorithm presented in this chapter completes the

MUIGNS framework and demonstrates that the atlas-based framework is capable of meeting

the real-time demands of neurosurgery.
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Future work with respect to the work presented will include enhancements to the exist-

ing computational model to better account for falx cerebri and interhemispheric fissures in

the brain. Senstivity studies also need to be performed to examine the sensitivity of the

framework to the number of sparse measurement points and the number of model solutions

used in the deformation atlas. Finally, more validation is required before using the proposed

framework in a clinical setting.
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