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CHAPTER I 

 

INTRODUCTION 

 

Overview of Thyroid and Parathyroid Glands  

Endocrine surgery involves exploration of the neck in order to visualize vital tissues 

for benign and malignant thyroid and parathyroid conditions. The thyroid gland is 

positioned anterolateral to the larynx and trachea. Generally, there are four parathyroid 

glands which tend to lie symmetrically on the two sides of the neck. Each side consists of 

a superior and inferior gland based on the position in the neck.  Incidence of a fifth 

parathyroid is 13% and that of only three glands is 3% (Bliss, Gauger and Delbridge).  

Important nerves pass close to the capsule of the thyroid gland including the superior 

laryngeal nerves and recurrent laryngeal nerves (Bliss, Gauger and Delbridge; Miller).  

The neck also contains an abundance of lymphatic tissue and adipose tissue.  The general 

anatomy of this region is illustrated in Figure 1. 

Anatomy of the Neck 
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Figure 1: Anatomy of the neck region emphasizing relative position of the parthyroid 
glands (Medicinenet) 

 

The parathyroid glands are approximately 6 to 8 mm in size and bean shaped with a 

yellow-tan to caramel color (size of a grain of rice) (Miller; Shaha and Jaffe). Most 

glands are suspended by a small vascular pedicle and enveloped by a pad of fatty tissue 

(Le and Norton). Most inferior parathyroid glands lie within the thyroid capsule on the 

surface of the inferior pole of the thyroid and may give the impression of being 

“intrathyroidal” when found within the clefts of thyroid tissue. The inferior parathyroid 

glands descend along with the developing thymus. This long line of migration causes 

variability in their position and the glands can be carried to the anterior mediastinum or 

the pericardium, or they can be left behind high in the carotid sheath. Comparatively, the 

superior parathyroids have a short line of embryologic descent. The glands are closely 

associated with the developing lateral lobes of the thyroid and remain close along the 

posterior capsule in the region of the inferior thyroid artery (ITA). Even with the 

variability in anatomy of the parathyroid glands, there tends to be symmetry between the 
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positions of the glands on the two sides of the neck. The inferior and superior glands are 

symmetrically positioned in about 70% and 80% of cases respectively(Bliss, Gauger and 

Delbridge). 

Parathyroid glands are comprised of densely packed cells that fall into one of three 

main types: chief, oxyphil and adipose cells.  The glands primarily consist of chief cells 

which contain cytoplasmic fat droplets and it is these cells that are responsible for the 

production of parathyroid hormone (PTH) (Elgazzar).  Parathyroid hormone is an 84-

amino acid polypeptide, secretion of which is responsible for the release of calcium and 

phosphate from bone matrix, calcium reabsorption by the kidney, and regulating renal 

production of calcitriol, which increases calcium absorption in the intestine. The final 

effective result of PTH secretion is an increase in plasma calcium concentration 

(Elgazzar).  Thus, the parathyroid glands maintain the range of calcium concentration in 

the body important for normal function.  

The thyroid gland is the largest endocrine gland in the body weighing 10 to 20 g and 

consists of right and left lobes joined anteriorly by the isthmus commonly positioned 

between the second and third tracheal rings (Bliss, Gauger and Delbridge) (Panza and 

Mansi).  The thyroid’s two lateral lobes are roughly conical in shape, approximately 5 cm 

long and 2 to 3 cm in the transverse and anterioposterior dimensions.  There may also be 

a pyramidal lobe, a superior extension near the midline of the gland.  Histologically, the 

functional unit of the thyroid is the follicle, a group of cells spherically arranged around 

colloid, a structure rich in the glycoprotein thyroglobulin (Whitehead). Thyroglobulin is 

synthesized in the follicular cells and then secreted into the colloid where thyroid 

hormones are formed (Panza and Mansi). The thyroid produces multiple hormones which 
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have diverse and widespread effects throughout the human body (Whitehead).  Histology 

can be used to identify the various normal tissues discussed previously.  Figure 2 is a 

histologic section showing the transition between thyroid and parathyroid tissue.  The 

blue arrows in the figure highlight the thyroid tissue where follicles surrounding the large 

colloids are evident.  Yellow arrows mark parathyroid tissue containing the chief and 

oxyphil cells.   

 

 

Figure 2: Histological slide of thyroid (blue arrows) and parathyroid (yellow arrows) 
tissue 

 

 Other important structures found in this region include the superior and inferior 

laryngeal nerves and lymph nodes.  The superior laryngeal nerve (SLN) descends 

inferiorly to the carotid system and splits into an internal and external branch posterior to 

the internal carotid artery.    The external branch runs deep to the superior thyroid artery 

and serves as the motor nerve to the cricothyroid muscle important to tensing vocal 

chords.  The internal branch along with the superior laryngeal artery descends to supply 
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sensory innervation (Bliss, Gauger and Delbridge; Miller).  The inferior, or recurrent, 

laryngeal nerve is a branch of the vagus nerve which turns back on itself in the chest and 

runs superiorly back into the neck serving as a motor nerve to the intrinsic muscles of the 

larynx.  The nerve passes close to the capsule of the thyroid glands and may even appear 

to be within the parenchyma (Bliss, Gauger and Delbridge).  In a normal adult there is an 

abundance of lymphatic tissue found throughout the region.  Lymph nodes can vary in 

size averaging around 2 to 5 mm in diameter but can reach 20 mm by 10 mm helping to 

trap pathogens and contain white blood cells as part of the lymphatic system 

(Senchenkov and Staren). 

Primary hyperparathyroidism (HPT) is a relatively common condition with annual 

incidence rates of 25-28 cases per 100,000 people (Kim; Sosa et al.). The rate is higher in 

Caucasian women above 60 years old, approaching 190 cases per 100,000 annually (Sosa 

et al.).  Typically, HPT is characterized by excessive secretion of PTH, which in turn 

results in elevated levels of plasma calcium. In 80-90% of cases, primary HPT is caused 

by parathyroid adenoma, a benign tumor that is usually caused by a genetic condition; in 

about 15% of these cases, more than one gland is involved(Scott-Coombes). Surgical 

excision of abnormal glands is advocated for patients with primary HPT, especially those 

with symptoms such as muscle weakness, bone pain, nephrolithiasis, and peptic ulcers. 

Two of the main disadvantages of the procedure include a relatively long operative time 

and post-operative hospitalization (Ahuja et al.).     

Diseases in the Neck   

Thyroid disease occurs when the thyroid gland does not supply the appropriate 

amount of thyroid hormone needed. Currently, about 20 million Americans have some 
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form of thyroid disease. People of all ages and races can get thyroid disease affecting 

both genders; however, women are five to eight times more likely than men to have 

thyroid problems. If the thyroid is overactive, it releases too much thyroid hormone into 

the bloodstream, resulting in hyperthyroidism. An underactive thyroid produces too little 

thyroid hormone, resulting in hypothyroidism. Both conditions can result in the thyroid 

becoming larger than normal. When it is large enough to see easily, it's called a goiter. 

Graves disease, an autoimmune disease, is the most common cause of hyperthyroidism 

wherein increased abnormal antibodies result in increased production of thyroid hormone 

causing the thyroid gland to enlarge eventually. When the condition cannot be controlled 

with medication, surgery is often performed to remove part of the thyroid.  As the gland 

enlarges, there is an increased tendency for nodules to form. 

 Thyroid nodules can sometimes occur in a normal working thyroid and while most 

nodules are benign, some may lead to thyroid cancer. In 2007, approximately 33,550 new 

cases of thyroid cancer were diagnosed in the United States. The disease is most common 

in young people, with nearly two-thirds of diagnosed cases in people between the ages of 

20 and 55. Since 1997, there has been a 6% yearly increase in the likelihood of being 

diagnosed with thyroid cancer which may be due to the increasing use of ultrasound to 

detect small thyroid nodules. The main treatment of thyroid cancer is a thyroidectomy, or 

surgical removal of all or part of the affected thyroid gland (Society).  Thyroid surgery is 

considered one of the safest surgical procedures; however, it involves careful dissection 

of the thyroid due to its proximity to important structures, including the parathyroid (Lin 

et al.).   

 

http://kidshealth.org/teen/diseases_conditions/growth/thyroid_definitions.html�
http://kidshealth.org/teen/diseases_conditions/growth/thyroid_definitions.html�
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Motivation 

There are several possible complications related to thyroid surgery, two of the major 

problems are postoperative hypocalcaemia and hypoparathyroidism (Shaha and Jaffe).  

Within 2 to 5 days after total or subtotal thyroidectomy, a decrease of serum calcium, a 

condition known as hypocalcaemia, is reported to occur in 1.6% to more than 50% of 

operations. The most probable cause is hypoparathyroidism due to trauma, 

devascularization, or inadvertent removal of one or more parathyroid gland(s) during 

surgery (Pattou et al.). This condition is categorized as either transient or permanent. In 

the case of transient hypocalcaemia, within a few months serum calcium levels normalize 

as function of the parathyroid is recovered. Permanent hypocalcaemia lasts more than 6 

months and is associated with significant impairment of quality of life. Chronic 

gastrointestinal discomfort, changes in bone metabolism and development of cataracts are 

a few of the possible resulting symptoms (Frilling and Weber).  A patient with permanent 

hypoparathyroidism requires calcium and vitamin D supplements for the remainder of 

their life and represents a significant source of morbidity to the patient (Shaha and Jaffe).  

Hypocalcaemia is the most common cause of malpractice litigation after endocrine 

surgery (Pattou et al.). Accordingly, effective management of thyroid disease is 

dependent on parathyroid preservation during thyroidectomy (Shaha and Jaffe). In the 

literature, the incidence of inadvertent parathyroidectomy ranges from 8% to 19% of 

patients undergoing total thyroidectomy (Sakorafas et al.). Complication rates have been 

shown to be directly proportional to the extent of the thyroidectomy, and inversely 

proportional to operating surgeon’s experience level. The rate is also related to the extent 

of the invasion of the thyroid cancer. Consequently, the surgeon’s familiarity of the 
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parathyroid glands’ anatomy and blood supply is imperative to tissue removal (Shaha and 

Jaffe).  Further complicating the situation, thyroidectomies and parathyroidectomies are 

routinely performed by general surgeons (particularly in centers/hospitals without a 

division of endocrine surgery).  In these cases, the level of experience in finding the 

parathyroid may be further reduced. 

There is a need for a tool that is sensitive and fast to help identify parathyroid glands 

intraoperatively.  Current technology relies on histopathology or post-operative diagnosis 

of symptoms to determine if the parathyroid was accidentally or incompletely removed.  

Recently the use of imaging techniques, such as sestamibi imaging (nuclear medicine 

imaging) or ultrasonography, has been applied preoperatively to localize abnormal 

parathyroid glands (Kim). However, these techniques are not applicable intra-operatively 

and are not as effective when multiple glands are involved.  Intact PTH (iPTH) assay has 

been used for this purpose; however it is an expensive technique that is available at only a 

limited number of centers (Kim).  This report is focused on the development of imaging 

technology specifically, optical imaging and spectroscopy as it pertains to tissue 

identification. Imaging modalities cover a wide range of topics; within this area, optical 

techniques deal with the application of light from the ultraviolet to the infrared for 

identification and visualization of relevant structures.   Near-infrared fluorescence is 

examined as a potential method to detect parathyroid tissue in real-time.  

 

Optical Spectroscopy 

Existing methods for idenifying parathyroid glands are limited in their applicability 

and sensitivity and are, thus, not adequate enough to prevent surgical complications 
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(Prosst, Gahlen et al.).  Primary means include ultrasound, sestamibi scintigraphy, CT, 

MRI and intact iPTH assay.  Ultrasound is one of the most common techniques for 

imaging the neck and has sensitivity ranging from 27 – 85% (Ahuja et al.; Fakhran, 

Branstetter and Pryma).  The normal parathyroid gland is not typically visualized because 

of its deep location and small size; ultrasound is mainly used to locate parathyroid 

adenomas larger than 1 cm.  It has the advantages of being fast cheap and relatively 

harmless but yields suboptimal results patients with a short thick neck requiring a lower 

frequency transducer which decreases spatial resolution and adenomas located in “silent,” 

low contrast, US areas of the neck (Ahuja et al.; Fakhran, Branstetter and Pryma).  

Thyroid complications often occur simultaneously with parathyroid disease which further 

restricts the use of US because in patients with multi-nodular thyroid disease, nodules can 

mimic or mask adenomas.   Lymph nodes can also easily be mistaken for adenomas. 

Nuclear imaging is based on different radiotracer uptake patterns and kinetics 

between the thyroid gland, normal parathyroid and abnormal parathyroid.  Specifically, 

radioiodine is taken up and organified by the thyroid (which uptakes iodine normally) 

whereas blood flow tracers such as 201thallous chloride and 99mTc sestamibi are used to 

identify both the thyroid and enlarged parathyroid glands.  The most common use is the 

injection of Technetium 99mTc labelled 2 –methoxy-isovutyl-isonitrile (sestamibi) and is 

often considered the gold standard for pre-operative localization of hyperfunctioning 

parathyroid tissue.  Overactive parathyroid glands tend to absorb the tracer more than the 

surrounding tissue.  Patients are imaged using single photon emission computed 

tomography (SPECT) after the tracer is administered.  Sestamibi scintigraphy can detect 

abnormally located parathyroid adenomas with more than 90% accuracy but requires 
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administration of a radiopharmaceutical, use of sophisticated scanning equipment and 

well-trained operators.  Due to the small size of the parathyroid gland the sestamibi scan 

can give false-negatives or recognize some thyroid diseases as a false-positive due to 

uptake of the tracer (Ahuja et al.; Fakhran, Branstetter and Pryma).  As a result, a second 

image is usually taken hours after the initial image because adenomas should display 

delayed washout of the tracer due to their hyperactivity.  

Other imaging modalities are used to supplement US and sestamibi scans.  Thin-

section, contrast-enhanced CT has been used with reported sensitivity ranging from 46 – 

87%.  CT is most often used in addition to ultrasound in order to find abnormal glands in 

nonresponsive areas.  It is also used to agree with sestamibi findings.  CT is better at 

detecting harder to find parathyroid adenomas over ultrasound but is susceptible to 

movement artifacts during imaging and exposes the patient to ionizing radiation. As in 

ultrasound, lymph nodes can also be mistaken for adenomas.  (Ahuja et al.; Fakhran, 

Branstetter and Pryma).  Similarly, MRI has been used in recent years with a sensitivity 

of 65 – 80%.  MR is another option that is used to confirm results rather than a first line 

technique.  Adenomas can appear much more intense in T2-weighted images but only 

40% of masses exhibit this effect.  Due to limited availability, high cost and long 

examination time, MRI is still not widely used (Ahuja et al.).   

The inherent problem with all preoperative methods is that they are only images.  

They are reporting information about the anatomy, however, when the neck is opened the 

anatomy is not as clear and parathyroid glands can be obscured by the thyroid gland, fat 

and blood.  Additionally, in the cases of CT and sestamibi imaging, a patient who may 

already have cancer is exposed to doses of radiation.  Except for ultrasound, each method 
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requires expensive equipment and additional technicians to operate adding to the price of 

the surgery.  Finally, every method is only applicable when the parathyroid gland is 

enlarged or hyperactive and susceptible to false positives from concurrent thyroid disease 

or lymph nodes.  There is the need to guide surgery in real-time with high accuracy. 

Current intraoperative techniques include iPTH and radio-guided parathyroidectomy.  

Intra-operative assays are a measure of the levels of parathyroid hormone in the blood.  

Once the hyperfunctioning gland is removed, the amount of PTH will return to normal.  

However, PTH starts to degrade around four minutes so the samples must be rushed to 

the testing lab which is located outside the OR.  Additionally, the assays are expensive 

and are only available at centers that perform a high volume of parathyroidectomies 

(Kim).  Radio-guided parathyroidectomy involves the intravenous administration of 

technetium-99m-sestamibi 1-2 hours before surgery.  A hand-held gamma probe is used 

to localize the abnormal glands, however, the radiation background is unvalidated and the 

technique is susceptible to non-selective uptake of the radionucleotide as in the 

preoperative method (Ahuja et al.; Kim).  

An accurate, automated diagnostic method could allow faster, more effective patient 

management.  The application of optical spectroscopy is suggested because it can detect 

differences in tissue architecture and biochemical composition. In particular, fluorescence 

spectroscopy has been of considerable interest in the development of new clinical 

diagnostic tools. Fluorescence measurements of human tissue can be made in real-time, 

without tissue removal and diagnosis based on tissue fluorescence can be easily 

automated. Fluorescence spectroscopy is the most commonly tested optical technique for 

Fluorescence Spectroscopy 
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the in vivo detection of diseases.  Fluorescence imaging can reveal the localization and 

measurements of intracellular molecules, sometimes at the level of single-molecule 

detection.  Fluorescence is now a dominant methodology used extensively in 

biotechnology, flow cytometry, medical diagnostics, DNA sequencing and forensics to 

name just a few (Lakowicz "Introduction to Fluorescence").  Fluorescence spectroscopy 

of both exogenous and endogenous fluorophores has been successfully used to identify 

neoplastic cells and tissues in a variety of organ systems (Ramanujam). Studies have 

successfully demonstrated the potential of fluorescence to improve diagnosis in various 

organ systems (Andersson-Engels et al.; Baumgartner et al.; Hung et al.; Ingrams et al.; 

Lohmann et al.; Panjehpour et al.; Ramanujam et al.; Schomacker et al.; Tang, Pradhan 

and Alfano). Intrinsic tissue fluorescence (autofluorescence) has been used to 

differentiate normal and non-normal tissues in the human breast and lung (Alfano et al.), 

brain (Hung et al.), oral mucosa (Ingrams et al.) and cervix (Lohmann et al.).   

Application of optical spectroscopy to endocrine surgery is limited to disease 

detection.  Several groups have applied autofluorescence spectroscopy with excitation in 

the ultraviolet and visible wavelengths as well as Raman spectroscopy for the 

discrimination of laryngeal and thyroid cancers from normal tissues (Arens et al.; 

Giubileo et al.; Liu et al.; Medina-Gutierrez et al.; Pitman et al.; Prosst, Willeke et al.; 

Z.V. Jaliashvili).  Two groups demonstrated the use of 5-aminolevulimic acid (ALA) to 

guide parathyroidectomies due to hyperparathyroidism.  Increased ALA fluorescence 

with HPT resulted in strong fluorescence contrast of (hyper)parathyroid tissue compared 

to background soft tissues and thyroid demonstrating the potential of using 5-ALA to 

guide dissection in parathyroidectomies(Asher et al.; Prosst, Gahlen et al.; Prosst, 
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Willeke et al.).    Stone et al. used NIR Raman spectroscopy for ex-vivo diagnosis of 

adenoma and hyperplasia in parathyroid tissue in patients undergoing 

parathyroidectomies.  Their results showed a detection sensitivity of 95% for parathyroid 

adenomas and 93% for hyperplasia (Das et al.).  However, no papers were found that 

applied optical methods for anatomic guidance of endocrine surgery rather than disease 

detection. 

Biological fluorophores typically exhibit fluorescence in the UV/VIS wavelengths. 

As excitation wavelengths become longer, autofluorescence decreases (Lakowicz 

"Fluorophores"). Thus, there are no published accounts of near infrared autofluorescence 

being observed in tissues; near infrared wavelengths are attractive due to their increased 

penetration depth in biological tissues. Research in near-infrared fluorescence has mostly 

involved exogenous contrast agents, the most common of which are polymethines.  In 

particular, indocyanines, such as indocyanine green, and cardio-green has been used 

extensively as contrast agents for many applications.  Inorganic fluorescent 

semiconductor nanocrystals (quantum dots) solve many instability problems of organic 

fluorophores and have been used to help identify esophageal sentinel lymph nodes 

(Frangioni; Parungo et al.).  However, application of contrast agents is associated with 

many problems such as potential toxicity, photobleaching and localization. 

Autofluorescence uses biological fluorophores that occur naturally in tissues and thus 

negate the need for the introduction of foreign agents that may be toxic. Preliminary 

studies show strong autofluorescence past 800 nm by parathyroid tissues in vitro as well 

Near Infrared Wavelengths 
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as in-vivo.  This method has the advantages of intrinsic fluorescence and avoids the 

problems associated with exogenous contrast agents. 
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CHAPTER II 

 

A NOVEL OPTICAL APPROACH TO THE INTRAOPERATIVE DECTION OF 

PARATHYROID GLANDS 

 

Introduction 

 Complications with the parathyroid and thyroid glands are common with 25-28 cases 

per 100,000 of hyperparathyroidism and approximately 20 million affected with some sort of 

thyroid disease (Kim; Sosa et al.).  Surgical means are used to remove the affected gland(s) when 

the disease cannot be treated by other methods (Doherty).  Endocrine surgeries have traditionally 

involved meticulous dissection and resection of diseased glands while leaving the normal glands 

intact.  Inadvertent removal of parathyroid glands is a recognized complication of this procedure.  

The incidence of inadvertent parathyroidectomy ranges from 8% to 19% out of patients 

undergoing total thyroidectomy (Lin et al.).  Such inadvertent removal or accidental injury of the 

parathyroid may lead to complications such as postoperative hypocalcaemia and 

hypoparathyroidism that could have consequences on the long-term regulation of calcium 

homeostasis post-operatively 

 The thyroid gland, parathyroid glands, nerves, adipose tissue, and lymph nodes are 

closely positioned in the neck region.  Due to their close proximity and tendency to blend into 

each other, many of these structures, specifically the parathyroid glands, are difficult to 

distinguish visually during endocrine surgery.  The situation is further complicated by the 

parathyroid’s small size and variability in position.  Existing methods for identifying parathyroid 
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glands rely on histopathology or post-operative diagnosis of symptoms to determine if the 

parathyroid was accidentally or incompletely removed which can lead to complications(Frilling 

and Weber; Prosst, Gahlen et al.).  Surgeons must ultimately rely on visual inspection to identify 

the different tissues, which can be subjective and often inconclusive (Bliss, Gauger and 

Delbridge; Miller).  Complications occur when the parathyroid is accidentally injured or 

removed during thyroidectomies or only partially removed in the case of 

parathyroidectomies(ATA).  An accurate, automated diagnostic method could allow faster, more 

effective patient management (Ahuja et al.; Fakhran, Branstetter and Pryma).   

 Current intraoperative techniques include intact parathyroid hormone (iPTH) assay and 

radio-guided parathyroidectomy(Ahuja et al.; Kim).  Intra-operative assays are a measure of the 

levels of parathyroid hormone in the blood.  Once the hyperfunctioning gland is removed, the 

amount of PTH will return to normal.  However, PTH starts to degrade around four minutes so 

the samples must be rushed to the testing lab which is located outside the OR.  Additionally, the 

assays are expensive and are only available at centers that perform a high volume of 

parathyroidectomies (Kim).  Radio-guided parathyroidectomy involves the intravenous 

administration of technetium-99m-sestamibi 1-2 hours before surgery.  A hand-held gamma 

probe is used to localize the abnormal glands.  However, the radiation background is unvalidated 

and the technique is susceptible to non-selective uptake of the radionucleotide(Ahuja et al.; 

Kim).  The major drawback of these techniques is that they are only applicable in cases of 

hyperfunctioning parathyroid tissue and in the case of iPTH the gland must be found by the 

surgeon anyways.  Therefore, there is a continued need for a tool to find the parathyroid 

intraoperatively. 
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 Optical spectroscopy can detect differences in tissue architecture and biochemical 

composition; in particular, fluorescence spectroscopy has been of considerable interest in the 

development of new clinical diagnostic tools. Fluorescence measurements of human tissue can 

be applied in real-time, without tissue removal and diagnosis based on tissue fluorescence can be 

easily automated (Ramanujam et al.).  Auto and dye induced fluorescence have been applied for 

the detection of atherosclerosis and various types of cancers.  Exogenous fluorescent dyes have 

also been shown to selectively collect in tumor tissue and have been used for enhancement of 

fluorescent contrast between normal and neoplastic tissue in the human lung, brain and 

colon(Ramanujam).  Auto-fluorescence spectra of normal and diseased tissues have been 

measured from several organ sites, both in vitro and in vivo(Ramanujam).  Application of optical 

spectroscopy to endocrine surgery is limited to disease detection.  Two groups demonstrated the 

use of 5-aminolevulimic acid (ALA) to guide parathyroidectomies due to hyperparathyroidism.  

Increased ALA fluorescence with HPT resulted in strong fluorescence contrast of 

(hyper)parathyroid tissue compared to background soft tissues and thyroid demonstrating the 

potential of using 5-ALA to guide dissection in parathyroidectomies(Asher et al.; Prosst, Gahlen 

et al.; Prosst, Willeke et al.).  Several groups have applied autofluorescence spectroscopy with 

excitation in the ultraviolet and visible wavelengths as well as Raman spectroscopy for the 

discrimination of laryngeal and thyroid cancers from normal tissues (Arens et al.; Giubileo et al.; 

Liu et al.; Medina-Gutierrez et al.; Pitman et al.; Prosst, Willeke et al.; Z.V. Jaliashvili).  Stone et 

al. used NIR Raman spectroscopy for ex-vivo diagnosis of adenoma and hyperplasia in 

parathyroid tissue in patients undergoing parathyroidectomies.  Their results showed a detection 

sensitivity of 95% for parathyroid adenomas and 93% for hyperplasia (Das et al.).  However, no 
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papers were found that applied optical methods for anatomic guidance of endocrine surgery 

rather than disease detection. 

    Tissue typically exhibits fluorescence signal in the UV/VIS wavelengths, or about 

400 – 700 nm(Lakowicz "Fluorophores").  As excitation wavelengths become longer, 

autofluorescence decreases making NIR wavelengths attractive due to their increased penetration 

depth in biological tissues(Lakowicz "Fluorophores").  There have been recent efforts to use NIR 

wavelengths for fluorescence spectroscopy in the diagnosis and detection of disease.  One group 

took advantage of NIR autofluorescence in conjunction with cross-polarized light scattered 

images to detect breast cancer, but this work was on the edge of the NIR window using 632.8 nm 

excitation(Demos et al.).  Another group demonstrated NIR autofluorescence to detect melanin 

distribution in the skin(Han et al.).   

Our goal was to develop an optical method to discriminate parathyroid tissue from all other 

anatomical structures in the neck.  We applied a method based on intrinsic NIR autofluorescence 

for identification of parathyroid tissue regardless of disease state for direct clinical application in 

endocrine surgery.  Data was collected from 21 patients undergoing surgery in vivo in real-time.  

In every patient, parathyroid tissue exhibited more intense autofluorescence above 800nm 

allowing us to distinguish it from the surrounding tissue. 

 

Methods 

 Measurements were performed at the Vanderbilt University Medical Center under 

approval of the Vanderbilt Institutional Review board.  Twenty-one patients ages 18-99 

regardless of race and gender were included in the study under informed written consent.  All 

patients with primary thyroid or parathyroid pathophysiology undergoing thryoidectomy or 
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parathyroidectomy were considered.  An initial evaluation was conducted by the participating 

endocrine surgeon (Dr. John Phay) while seeing the patients at the Vanderbilt Clinic and final 

eligibility was determined in the preoperative evaluation based on the clinical condition and 

safety of the patient.   

 Tissue was excited with a 785 nm diode laser (Innovative Photonic Solution, 

Monmouth Junction, NJ) supplying 80 mW of power at the tissue.  Clinical spectra were 

recorded with an Ocean Optics (Ocean Optics, Dunedin, FL) S2000-FL fluorescence 

spectrometer with a  spectral resolution of approximately 10.5 nm (FWHM) using a custom 

program in LabVIEW (National Instruments, Austin, TX).  An additional Schott color glass filter 

(RG-830, CVI Melles Griot, Albuquerque, NM) was used to reduce signal from the reflected 

laser light and visible wavelengths.  A sterilized fiber optic probe with a 400 µm diameter 

excitation spot size was used for measurements.  Initial background measurements were recorded 

with the laser off.  Six measurements were taken at each tissue site at an integration time of 300 

ms each by touching the probe to the tissue of interest; the tissue type was noted, along with 

physician’s confidence in the investigated sites’ histological identity. If excised, specimens were 

processed and analyzed by a pathologist and spectral results were validated with histology. The 

fluorescent operating room lights were turned off during spectral measurements.  

 Spectra obtained in the clinic were processed using MATLAB (Mathworks Inc., Natick, 

MA).  First the background was subtracted from each sample; any negative values resulting from 

the subtraction were considered to be noise and set to zero.  The data was then corrected for the 

wavelength dependent response of the system with a NIST calibrated light source.  Six 

measurements for each site were averaged together.  Finally, all spectra were normalized to the 

maximum intensity of the mean thyroid spectrum from that patient.  Clinical spectra were 
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smoothed with an averaging filter of size 10.  A right-tailed student’s T-test was used to test for 

the significance of the increased parathyroid signal over the 21 patients.  Values of P ≤ 0.05 were 

considered to be significant. 

 Imaging studies were performed by exciting tissue with the same 785 nm diode laser, 

defocused to provide a ~6 cm diameter spot size.  Images were obtained using a Aspherical HF 

23-80 mm f/3.5-5.6 macro lens (Sigma, Ronkonkoma, NY) with a PhotonMAX 512 (Princeton 

Instruments, Trenton, NJ) charge-coupled device (CCD) camera.  A notch filter was placed in 

front of the lens to block reflected laser light. Images were recorded using Winview software 

(Princeton Instruments).  Frozen samples of thyroid and parathyroid tissue were obtained and 

thawed and at room temperature in phosphate-buffered saline in a petri dish.  A non-reflective, 

non-fluorescent layer was placed between the samples and the dish.  The fluorescent room lights 

were turned off and the diode laser was used to illuminate both tissue samples equally.  The light 

was delivered at a slight angle such that background specular reflection from the tissue was 

minimized and the camera was placed 7 inches above the tissues and focused.  Images were 

taken with a 200 ms acquisition time using Winview.  The images were processed using 

MATLAB to remove speckle by applying a median filter.  

 Optical property measurements were performed using human tissue samples of 

parathyroid tissue from pathology.  An excitation-emission matrix was obtained on a Fluorolog-3 

FL3-111 Spectrofluorometer (HORIBA Jobin Yvon Inc., Edison, NJ).  A portion of the tissue 

was placed in a quartz cuvette for measurements.  Excitation wavelengths were scanner from 650 

– 800 nm in 5 nm increments and emission wavelengths were scanned from 810 – 850 nm in 2 

nm increments.  Fluorescence measurements were collected at .5s acquisition time.   

Measurements within 10 nm and of the excitation wavelength and beyond its harmonic were set 
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to zero.  An absorption spectrum was taken with a Varian Cary 5000 Spectrophotometer (Varian, 

inc., Walnut Creek, CA).  The tissue sample was placed between two glass slides with a pinhole 

slit.  Wavelengths were scanned from 1000 – 375 nm in 2 nm intervals at an acquisition time of 

1s. 

 

Results 

 Clinical measurements were performed under Vanderbilt Institutional Review Board 

(IRB) approval at the Vanderbilt University Medical Center.  Twenty-one patients regardless of 

age, race and gender, were included in the study under informed written consent.  All patients 

with primary thyroid or parathyroid pathophysiology undergoing thryoidectomy or 

parathyroidectomy were considered.  An initial evaluation was conducted by the participating 

endocrine surgeon while seeing the patients at the Vanderbilt Clinic.  Final eligibility was 

determined in the preoperative evaluation based on clinical condition and safety of the patient.     

Participants and study 

 A standardized protocol for all fluorescence measurements from patients in vivo was 

followed.  During each surgery, the sterilized optical probe was placed in contact with various 

tissues in the exposed neck area and spectral measurements were acquired from each of those 

sites. The tissue type was noted, along with the physician’s confidence in the investigated sites’ 

histological identity.  Spectra were collected using a 300 ms signal collection time. In all cases, 

the overhead fluorescent lights were turned off during the measurements and any luminescent 

lights left on were turned away from the measurement site as they contain spectral components 

that can interfere with the results.  Following surgical resection, investigated sites were collected 
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for histological identification.  All specimens collected were processed and analyzed by a 

pathologist. 

Individual spectra from each patient were examined and the fluorescence from the 

parathyroid was compared to the thyroid and other tissues in the neck.  Figure 1 depicts the 

spectra acquired from a typical patient.   

Fluorescence characterization 
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Figure 1: Typical NIR spectra   (A) Signal from parathyroid (dashed line), thyroid (dotted line) 
and fat, muscle and trachea.  Each spectra is taken as the average of 6 measurements at 
the site of investigation.  (B) Normalized signal from parathyroid tissue (dashed line), 
two thyroid measurements (dotted line) and fat muscle and trachea.  The parathyroid 
signal is significantly stronger than the anything else in the neck.  It is seven times greater 
than the thyroid and its peak intensity. 
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 The signal from the parathyroid gland is observed to have the highest peak intensity and 

is easily distinguishable from the surrounding tissues.  Further, thyroid fluorescence is stronger 

than surrounding muscle and fat but weaker than the parathyroid.  Figure 2 shows the average 

peak intensity of the parathyroid normalized to the thyroid fluorescence of a particular patient, 

for all 21 patients.  Parathyroid fluorescence can be seen to be consistently greater than that of 

the thyroid and other tissues with a p-value of .0001.  Furthermore, parathyroid is 2 – 11 times 

more fluorescent than all other tissues found in the neck across all patients in vivo.  Power 

analysis of the peak intensity values shows that the parathyroid exhibits more intense 

fluorescence with a power over 90% with a confidence of 99%.  This phenomenon was also 

observed in vitro. 
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Figure 2: Parathyroid tissue consistently exhibits a stronger signal than thyroid tissue. (A) 
Average peak intensity from parathyroid and thyroid measurements within each patient 
as recorded by the NIR system. (B) Normalized peak intensity from parathyroid and 
thyroid measurements within each patient.  Each measurement is normalized to the 
average peak of all thyroid measurements.  Thyroid disease, parathyroid disease and 
concurrent thyroid and parathyroid diseases are represented by solid bars, outlined bars 
and a gradient respectively. 
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 Detection using a probe based NIR fluorescence system provides a fast and accurate 

way to detect parathyroid glands.  This method is particularly useful when the parathyroid is 

located deep in the neck and is not necessarily exposed.  However, in most cases, an imaging 

system would provide more spatial information to the surgeon improving upon the guidance 

using the probe based system.  An NIR imaging setup was assembled to assess the feasibility of 

imaging the parathyroid.  Samples of thyroid and parathyroid tissues were placed side by side 

and illuminated with the 785 nm laser used for in vivo measurements.  A filter was used to block 

all reflected light from the laser.  Figure 3 demonstrates the fluorescent image of the samples.  

The parathyroid fluoresces just over two times stronger than the thyroid illustrating that not only 

is it possible to capture the intrinsic fluorescence with a camera but the parathyroid exhibits 

stronger fluorescence in vitro as well as in vivo.  

In vitro imaging of tissue 
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Figure 3:  In vitro NIR fluorescence of parathyroid and thyroid samples obtained from 
pathology.  The parathyroid located on the right exhibits approximately two times 
stronger overall fluorescence than the thyroid.  

 

 There are no known biological fluorophores that autofluoresce above 800 nm.  In order 

to isolate the responsible fluorophore, experiments were performed to determine the optical 

properties of parathyroid tissue.  First, the absorption spectrum was recorded using a 

spectrophotometer.   As shown in figure 4, there are no distinct features in the 700-800 nm range.  

The large jump in the spectrum is due the machine changing from the NIR to the UV/VIS 

detector.   Above 800nm, there is a large broad peak between 800 and 1000 nm possibly 

correlating to the peak emission detected at 820 nm.   

Optical property measurements 
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Figure 4:  Absorption spectrum of parathyroid tissue 

 

 The fluorescence peak was examine by creating an excitation-emission matrix centered 

around the detected peak at 820 nm.  Excitation wavelengths were scanned from 650 – 800 nm 

and emission wavelengths were recorded from 800 – 850 nm.  Figure 5 shows the resulting 

matrix with a peak around 822 nm.  The peak is very broad stretching from 680 nm to 800 nm.  

These results confirm the peak that is being detected in vivo. 
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Figure 5: Excitation-emission matrix or parathyroid tissue. The matrix shows a broad peak 
around 822 nm shown by the line.  
 
 
Discussion 

Results presented here show that NIR fluorescence spectroscopy can successfully detect 

parathyroid tissue in vivo, in real-time and non-intrusively during endocrine surgery.  In each 

patient, the parathyroid signal is greater than the thyroid signal and other tissues in the neck.  

Moreover, the standard error and p-value show that the parathyroid can be classified with a 

statistically significant difference each time.  This success is very promising for endocrine 

surgery. Not only can the system discriminate parathyroid glands from the surrounding tissue but 

it does so with high accuracy.  Near infrared fluorescence is quick and relatively cheap to 

implement whereas other intraoperative localization methods such as sestamibi scan can be very 
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time consuming and expensive(Ahuja et al.; Fakhran, Branstetter and Pryma; Kim).  This method 

improves upon the accuracy and sensitivity of visual recognition: a highly subjective measure 

dependent on the experience of the surgeon.  Further complicating the situation, thyroidectomies 

and parathyroidectomies are typically performed by general surgeons (particularly in 

centers/hospitals without a division of endocrine surgery).  In these cases, the level of experience 

in finding the parathyroid may be further reduced pointing to the clinical need for the proposed 

method. 

 Preliminary imaging studies show that it is possible to image the NIR fluorescence from 

thyroid and parathyroid tissue.  Further, as in the probe based measurements, the parathyroid 

fluoresces at least two times stronger than the thyroid providing the same guidance with 

improved spatial information.  Imaging could improve the utility of NIR fluorescence in the 

clinic by providing real-time feedback in the OR while removing the need for the surgeon to 

interact with the device.  Such an approach would free up the hands of the surgeon and provide 

spatial context to correlate the actual field with spectral information and therefore the location of 

the parathyroid.   

Near infrared wavelengths are attractive in biomedical applications due to their increased 

penetration depth and decreased scattering and absorption in biological tissues.  Research in NIR 

fluorescence has mostly involved exogenous contrast agents, the most common of which are 

polymethines.  In particular, indocyanines, such as indocyanine green (cardio-green) have been 

used extensively as contrast agents for many applications.  Inorganic fluorescent semiconductor 

nanocrystals (quantum dots) solve many instability problems of organic fluorophores and have 

been used to help identify esophageal sentinel lymph nodes (Frangioni; Parungo et al.).  

However, contrast agents are difficult to translate to the clinic typically due to potential problems 
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such as toxicity, photobleaching and localization.  Autofluorescence uses biological fluorophores 

that occur naturally in tissues and thus negate the need for the introduction of exogenous agents 

that may be toxic.  Our studies show strong autofluorescence past 800 nm by parathyroid tissues 

in vitro as well as in vivo.  This method has the advantages of NIR wavelengths and avoids the 

problems associated with exogenous contrast agents. 

 No known intrinsic biological fluorophores have been reported to exhibit fluorescence 

around 800 nm of the NIR region(Lakowicz "Introduction to Fluorescence").  However, this 

paper clearly demonstrates the consistent presence of autofluorescence at 820 nm peak emission 

in parathyroid and thyroid tissues.  Das et al. have used Raman to examine parathyroid pathology 

but used 830 nm excitation missing the fluorescence peak(Das et al.).  The biological basis for 

this NIR fluorescence is presently unknown.  One possible candidate is the presence of 

Parathyroid Hormone (PTH) in the parathyroid being responsible for the signal.  However, PTH 

exhibits no fluorescence in this region (unpublished data).  Furthermore, hyperfunctioning 

parathyroid glands show no increase in signal intensity.  Thyroid tissue also exhibits similar but 

reduced fluorescence and PTH is not known to be present in these glands, therefore, PTH is not 

responsible.    We expect that potential candidates are present in the thyroid and parathyroid but 

in greater amount or concentration in the parathyroid or that the fluorescence is somehow 

quenched in the thyroid but not in the parathyroid.  Perhaps the fluorescence is due to the innate 

optical properties of glandular tissues explaining why it is not seen in the surrounding tissues in 

the neck.  Tissue samples can be thawed and refrozen with no immediate impact on the 

fluorescent signal.  Detailed analysis of the parathyroid and thyroid needs to be performed to 

identify the primary constituent responsible for the fluorescence. 
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 Initial optical property experiments provided some interesting possible findings but 

indicate that more in depth analysis is required.  The spectrophotometer only provided 

transmission measurements.  To accurately determine the optical properties, tissue samples need 

to be examined using a double-integrating sphere setup that can determine transmission and 

diffuse reflectance.  This data could then be modeled using inverse adding-doubling to calculate 

the absorption and reduced scattering coefficients (µa and µs

 The results obtained show that the increased signal in the parathyroid is consistent 

across all patients and disease states.  Moreover, the variability in ratio is not related to disease.  

Figure 2 demonstrates that thyroid disease (solid bars), parathyroid disease (outlined bars) and 

concurrent parathyroid and thyroid disease (gradient filled bars) have no consistent trend.  The 

type of disease does not appear to be related to the signal strength that is recorded from the 

thyroid or parathyroid.  Parathyroid tissue produces a much stronger signal in all diseases 

making it applicable across all endocrine surgeries as opposed to current intra-operative 

localization methods which are restricted to cases of hyperparathyroidism where the parathyroid 

glands are enlarged and/or hyperactive(Ahuja et al.).  Additionally, the unique signal found in 

thyroid and parathyroid tissue allows detection of infiltrating cells in the surrounding tissues.  

Cancerous thyroid or parathyroid tissue that has spread to the lymph or surrounding tissue result 

’).  The excitation-emission matrix 

confirmed the peak that was detected in vivo.  Interestingly, the peak detected by the 

spectrofluorometer was much broader than a typical fluorescence peak; however, the experiment 

has a potential flaw because the peak of interest is near the edge of the detection capability of the 

detector.  Repeat experiments need to be performed on a machine with a wider range of 

wavelengths in order to remove any effects introduced by the detector. 
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in increased fluorescence in non-fluorescent tissues..  This can, in fact, be used to detect the 

presence of thyroid or parathyroid cancer metastasis outside the patients’ glands. 

 This paper presents the potential of using NIR fluorescence for the real-time guidance of 

endocrine surgery.  Even though the basis for this fluorescence is not understood, NIR 

fluorescence provides consistent and accurate detection of the parathyroid intra-operatively that 

any surgeon can use regardless of experience.  Translation of this technology to practice would 

reduce the rate of complications due to accidental or incomplete removal of parathyroid tissue.  

Successful anatomical guidance would also decrease the time necessary for surgery especially 

during lengthy parathyroidectomies where the surgeon must search for parathyroid glands.  

Successful translation of NIR imaging in the OR would simplify the implementation of this 

technology into clinical practice.  
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CHAPTER III 

 

FUTURE DIRECTIONS 

 

 Near infrared fluorescence was successfully implemented in vivo during 

endocrine surgery.  Moreover, the results obtained at the Vanderbilt University Medical 

Center indicate that the parathyroid produces a distinctly stronger fluorescence signal 

than any other tissue in the neck.  A larger patient database is required to gain a better 

understanding of the different fluorescence intensities between patients.  Specifically, a 

research plan will be developed for my Ph.D. dissertation to continue taking data on over 

120 patients to analyze spectral differences over several factors including: disease state, 

gender and age.  We will also compare the fluorescence from diseased and non-affected 

tissue of the same type from within the same patient.  Further case work will help to 

statistically establish the effects of various aspects on the signal.  This knowledge will 

help predict when the method might fail and, more importantly, help develop a detection 

algorithm to automate detection of parathyroid glands in the operating room. 

In vitro experiments have shown that is possible to image the fluorescence 

produced by the parathyroid and thyroid glands.  Moreover, as in the spectroscopic 

studies, the parathyroid exhibits overall fluorescence that is at least twice as strong as the 

thyroid indicating that imaging has the potential to differentiate the glands as well.  An 

imaging system would provide increased spatial information to the surgeon providing a 

more intuitive view of the anatomy.  An imaging system would be particularly useful 

because thyroidectomies and parathyroidectomies are commonly performed by general 
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surgeons with limited experience in locating parathyroid glands.  The next logical step is 

the development of an imaging system which can be implanted in the OR.  Imaging can 

be performed using any detector that is sensitive in the near-infrared region of the 

spectrum above 800 nm.  Preliminary studies have already shown the parathyroid 

exhibits more intense fluorescence using two different imaging systems.  These systems 

will be developed to optimize their implementation and output in order to provide 

anatomical guidance to the surgeon.  Specifically, the imaging system can be made to 

integrate with the surgeon’s headlight using the same mount and power source.  Simple 

false color mapping would increase the inherent contrast produced by the parathyroid. 

The endogenous fluorophore in the thyroid and parathyroid glands remains 

unknown.  Further work needs to be performed to identify the source of the 

autofluorescence.  This will be specifically addressed in an aim of my PhD dissertation.  

Protein analysis needs to be performed on the glands to isolate the possible sources of 

fluorescence.  The hypothesized fluorophore is the calcium-sensing receptors present in 

both parathyroid and thyroid tissues.  The receptor is also found in the kidney and colon.  

Experiments on these tissues show autofluorescence exhibited above 800nm indicating 

that CaR is a good candidate for the responsible fluorophore.  Discovering the source of 

the fluorescence would be an immensely beneficial to the project.  It would help ensure 

optimal excitation and collection schemes and help predict where if at all the method will 

fail.  Additionally, it would elucidate the mechanism for biological NIR fluorescence 

which could point to other fluorophores throughout the body. 

The system has already been used in a clinical setting so a translational to an 

accepted instrument requires only automation.  Successful translation of this technology 



41 

 

to clinical use would reduce the rate of complications from accidental or incomplete 

removal of parathyroid tissue.  Anatomical guidance would also decrease operative time 

especially during lengthy parathyroidectomies where the surgeon must search for 

parathyroid glands. 
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