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CHAPTER I 

INTRODUCTION 

 The need exists to accurately compare the performance characteristics of Matrix 

Assisted Laser Desorption/Ionization (MALDI) Time of Flight (TOF) instruments in terms of 

performance parameters, such as the laser beam and raster step size, that are routinely set in 

the acquisition software prior to imaging.  These are necessary parameters to validate, 

independent of the supplied manufacturer software, and are necessary for standardization of 

data reported from different laboratories.  Since the beginning of Imaging Mass Spectrometry 

(IMS)1, accurate stage movement and laser alignment have been paramount concerns to 

validate the generated images.  With the rise of commercial instrumentation, calibration and 

validation of important physical parameters of the system are often left to the control of 

instrument software.  Imaging instruments are now routinely used for the detection of a wide 

range of compounds, including peptides2, proteins3, and lipids4 on instrument types that may 

include TOF5, Fourier transform ion cyclotron resonance (FT-ICR)6,Linear trap quadrupole (LTQ)7, 

ion mobility8, as well as many others.    

The wide variety of different instrument models available render it improbable that 

each instrument is calibrated to the same specifications.  Even between instruments of the same 

model that employ the same laser type and settings, the instrumental parameters can differ due 

to variations in the laser optics and other instrument specific parameters.  Different operating 

conditions can and do lead to slight changes to resolution and laser fluence thus leading to 

artifacts showing up in images which can be misinterpreted by the user.  A standard calibration 

reticle is needed to standardize the data from the operating conditions seen in various 
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laboratories such that comparisons between labs can be made without regard to the differences 

in operating conditions.   

In order to measure the effective laser size and resolution of a MALDI imaging 

instrument quickly and easily, and have the measured data be comparable between labs, test 

targets are needed that have pre-defined spatial information that can be accurately measured 

and independently verified.  While targets for this purpose exist for Secondary Ion Mass 

Spectrometry (SIMS) imaging9, the nanometer size of the features renders them too small for 

the calibration of most MALDI instruments. 

 If one considers the ideal test target, an important considerations to take into account 

are that the surface compound to be used is easily ablated yielding a high ion intensity and that 

features of the pattern be completely resolved from one another.  There are two ways to ensure 

that the features of the target are completely resolved from each other: using chemical or 

physical barriers while depositing material and removal of excess material to create a pattern.  

Photolithography was considered for the use of physically separating the material, however, it 

was deemed too expensive to make on a large scale.  By forming a chemical pattern using 

hexadecanethiol stamped on a gold surface, multiple types of organic compounds could be used 

to create the features in the hydrophilic regions of the gold.  By using a PDMS mold, some 

hydrophobic organic molecules, including rubrene,  could be easily patterned10 to sub-micron 

sizes11.  These can be easily detected by mass spectrometry, and easily visualized using 

fluorescence imaging12,13.  For the purpose of creating a standard target, I explored a number of 

methods: the deposition of crystal violet and sinapinic acid (SA) on a pre-patterned thiol coated 

gold surface and removing 1,5 diaminonapthalene (DAN) matrix and rubrene.   
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 This report describes the development of a standard slide, validation of the resolved 

pattern using fluorescence imaging, as well as a procedure for determining the effective laser 

spot size and IMS resolution from the pattern.  Moreover, the patterned slide is shown to be 

effective on a commercial MALDI TOF instrument, Bruker UltrafleXtreme, at raster step sizes 

down to 15 µm and on a modified AB 4700 MALDI TOF instrument at raster step sizes down to 1 

µm. 
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CHAPTER II 

CREATION OF A STANDARD TARGETING RETICLE 

Initial work on the creation of the targeting reticle 

Materials 

Crystal violet, hexadecane thiol, and DAN were purchased from Sigma-Aldrich (St. Louis, 

MO) and used as delivered.  Rubrene was purchased from Alfa Aesar (Ward Hill, MA) and used 

as delivered.  For this experiment, the poly(dimethylsiloxane) (PDMS) pattern consisted of 

squares at a constant 100 µm pitch that decreased in their length and width by 1 µm from 100 

µm to 2 µm with each row and was made using standard procedures14.  The gold slides were 

purchased from Deposition Research Laboratory Inc (St. Charles, MO) and were washed with 

isopropanol prior to use.  The ITO slides were purchased from Delta Technologies and were 

cleaned by sonication in 1% Triton X-100 solution, acetone, and isopropanol for 5 min each prior 

to use.   

Methods used to create the standard slide 

Crystal violet was dissolved in ethanol at 30 mg/ml and spread across a pre-patterned 

PDMS mold using a cotton swab to produce a thin layer.  The dissolved crystal violet was 

allowed to dry for 30 seconds and was then pressed lightly onto a cleaned ITO coated glass slide.  

The mold was held in place manually with light pressure for 1 minute and then removed.  The 

slide was inspected using an optical profilometer from Zeta (San Jose, CA) for cleanliness and 

resolution of the pattern.  Additionally, crystal violet was spun onto a cleaned ITO slide using a 

ramping program of 10 seconds to a maximum of 4000 rpm.  The slide was then baked at 80°C 

for 2 minutes to remove the ethanol.  Next, the slide was either placed into the oven for 1 hour 
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at 90°C with a PDMS mold on top of it to remove the excess crystal violet or the mold was 

pressed onto the slide to remove crystal violet immediately.   

A 2 mM ethanol solution of hexadecane thiol was prepared and spread over the PDMS 

mold in the same manner as the crystal violet solution.  The mold was placed onto a cleaned 

gold coated slide and pressed into complete contact.  After 30 seconds, the mold was removed 

from the slide and excess thiol was washed away using ethanol and DI water.  Initially, on these 

thiol coated slides, crystal violet was deposited using the T-BAG15 method of allowing the 

solution to evaporate over the slide held vertically.  In addition, it was found a thin layer of 

crystal violet could be deposited in a pattern by placing a droplet of less than 5 µl of crystal 

violet solution on the side of the slide and tilting the slide to allow the liquid to run over the 

hydrophilic features.   

Sinapinic acid was grown on the hydrophilic regions of a thiol coated slide by immersing 

it in a solution of Carnoy’s fluid.  In this case, the Sinapinic acid attaches to the unmodified gold 

and allows the matrix crystals to grow from this starting material.  These slides were also 

inspected using an optical profilometer from Zeta instruments for the resolution of the pattern.   

A thin film of rubrene was sublimed onto a cleaned ITO glass slide using a Chemglass 

sublimation apparatus16 in a sand bath at 230°C for 15 min at 80 mTorr.    After the sublimation 

was complete, the slide was warmed to room temperature and dried under a stream of air and 

placed in a vacuum desiccator for 30 minutes.  Next, a pre-patterned PDMS mold was placed on 

top of the rubrene, gently pressed into conformal contact, and the slide with the mold was 

heated to 90 °C for 45 min (Figure 1A-D).  After allowing the slide to cool, the PDMS mold was 

removed from the slide by hand causing the regions of rubrene that were in contact with the 

PDMS to detach from the slide10 producing the calibration target.  
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Figure 1:  Fabrication of IMS reticle: (A) rubrene is sublimed onto the cleaned ITO slide and (B) the PDMS stamp is 
placed onto the slide. (C) The slide is then placed into the oven at 90°C and then (D) the PDMS stamp is removed, 
which also removes rubrene that was in contact with the stamp. (E) The pattern is then imaged and (F) analyzed 
using flexImaging, scale bar is 500 µm 

 

A thin layer of DAN was sublimed onto a cleaned ITO glide using the Chemglass 

sublimation apparatus at 120°C for 6 minutes at 80 mTorr.  The removal of DAN followed the 

same procedure as the removal of rubrene stated above.   

Verifying the measurements of the slide 

Before preforming imaging mass spectrometry, the pattern was measured using a Zeta-

20 optical profilometer and a Nikon Eclipse 90i microscope using a DAPI fluorescence filter.  This 
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enabled the accurate determination of the thickness of the sample as well as the distances 

across and between each feature.  These measurements are crucial to determine the 

reproducibility of the sublimation and correlation between the pattern and the ion image.   

Verifying the slide using mass spectroscopy 

MALDI-IMS was performed on an UltrafleXtreme MALDI-TOF/TOF (Bruker Daltonics, 

Billerica, MA) in reflection mode under optimized conditions and at its minimum beam diameter 

setting.  MS data resulted from summing the signals from 300 laser shots per x-y coordinate 

(Figure 1E).  The images were automatically acquired at various raster step sizes at 15%, 25%, 

and 50% laser energy and were reconstructed using FlexImaging 3.0 software (Bruker Daltonics).   

Ultra-high resolution imaging was done on an AB 4700 instrument modified to have 

transmission geometry and produce laser spot sizes below 1 µm.  A custom designed vacuum 

compatible inverted optical/laser microscope with its z-axis parallel to the z-axis of the mass-

spectrometer was used to focus a laser beam inside an analyte layer through a transparent 

substrate, thus reducing the beam to micron sizes17.  Images were acquired with a 1 µm raster 

step size.  The MS data were summed from 25 laser shots and the images were reconstructed 

using BioMAP 3 (Novartis Institutes, Basel, Switzerland). 

Results 

Depositing an organic solution to create the slide 

Initially, I wanted to start with the method that could prove to be the simplest and 

cheapest if it proved successful: stamping an organic solution onto an ITO slide.  For the first 

experiment, a solution of 30 mg/ml was prepared and spread over the PDMS mold and the mold 

was pressed onto the ITO slide.  It was noted that the solution was too thick and spread across 
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the surface of the slide leaving no discernible pattern.  The next test attempted focused on 

reducing the amount of solution applied to the mold.  Unfortunately, the pattern still did not 

appear on the slide.  And so, various concentrations of crystal violet were made in order to 

determine which provided the appropriate viscosity for stamping.  Even with the changes in 

viscosity, the crystal violet did not form a viable pattern with this method.  Spin coating the 

crystal violet onto the ITO slide was next attempted in order to generate a homogenous coating 

over the slide and then using the PDMS mold to remove the excess material to create the 

desired pattern.  When the slide was placed in the oven, no patterning was seen with the crystal 

violet as has been reported with other organic compounds10.  Using the PMDS mold without 

added heat yielded a pattern, but it was not consistent below 60 µm and did not show good 

resolution of the features (Figure 2A).  This removal technique showed promise if I could 

determine the correct material to use.   

 

 

Figure 2: Pattern of crystal violet formed after (A) pressing a PDMS mold onto a spin-coated surface, (B) using 
hydrophobic thiol to create a pattern for the crystal violet to be deposited, and (C) the ion image (m/z 372.32) of 
the middle of the pattern in (A) from the Bruker UltrafleXtreme 
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On the other hand, by modifying the surface hydrophobicity of a gold slide, crystal violet 

will only deposit in the hydrophilic regions, which would be the pattern.  To begin with, the gold 

surface was modified with a solution of 2 mM hexadecane thiol on a pre-patterned PMDS mold 

with 100 µm indentions at 150 µm pitch.  The success of the modification was tested by 

immersing the slide in ethanol and since the majority of the slide is hydrophobic, with only the 

patterned areas being hydrophobic, most of the ethanol will run off the slide except for the 

patterned area.  After the modification, the slide was immersed in a solution of crystal violet and 

ethanol.  However, there was too much solvent for the pattern to be resolved by the time the 

ethanol evaporated.  Even holding the slide vertically to allow the solution to run off the slide 

didn’t allow the pattern to be completely resolved when the ethanol evaporated.   

The next experiment was to allow the crystal violet solution to evaporate down the slide 

slowly over the course of a night using a modified T-BAG method15.  Unfortunately, this method 

did not resolve the problem of having too much solution left over on the slide and, therefore, I 

decided to deposit crystal violet on the pattern using a small amount of solution.  To do this, I 

pipetted 5 µl of the crystal violet solution onto the edge of the thiol patterned gold slide and 

tilted the slide slightly to allow the droplet to roll over the patterned area.  This method allowed 

the solution to deposit material in the hydrophilic features without overflowing the slide with 

solution.  However, it did not yield a consistent amount of material left in the pattern nor were I 

able to generate a large pattern using this method (Figure 2B).   

Patterning traditional MALDI matrices 

Because I was not able to make a consistent and reproducible pattern using the 

deposition of crystal violet onto a modified gold target, I began working on a way to pattern 

traditional MALDI matrices.  The initial experiment in patterning matrices was to determine if 
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commonly used matrices are suitable for use in the pattern.  To do this, I sublimed a layer of 

DHB onto a cleaned ITO slide and used a laser capture microdissection (LCM) instrument to 

generate a small pattern in the DHB, as seen in Figure 3A.  The pattern was then imaged under 

standard imaging conditions at a raster step size of 10 µm with the resulting image (m/z 157.97) 

seen in Figure 3B.  The pattern was reproduced in the ion image very accurately.  Because of the 

length of time required for patterning a relatively small area using the LCM, a different method 

for making the features needed to be used. 

 

 

Figure 3: (A) Target created using a sublimed layer of DHB with the LCM and (B) the resulting ion image from the 
DHB generated on the Bruker UltrafleXtreme 

 

 

By modifying the gold using the same thiol method as above, I was able to grow the 

matrix in the same regions that I deposited crystal violet previously.  Unfortunately, traditional 
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MALDI matrix compounds (Sinapinic acid, 2,5-dihydroxybenzoic acid, and α-cyano-4-

hydroxycinnamic acid) are not favored because they are not easily patterned at the feature sizes 

required for this calibration target, nor are they able to be independently verified regarding the 

size and shape of the pattern, other than optically.   Optical microscopy may not be sensitive 

enough to detect material that would be readily detected in IMS experiments should any 

material remain between the features.  In addition, many matrices form crystals that give rise to 

inhomogeneous surfaces18. 

Simple detachment patterning of an organic molecule 

While I was looking for a method to pattern organic materials quickly and with high 

reproducibility, I discovered simple detachment patterning10 which allows the patterning of 

organics for use in the semi-conductor industry.  Because the method of detachment requires a 

hydrophobic molecule to bind to the hydrophobic PDMS mold, most of the matrices that are 

traditionally used for MALDI experiments would not be appropriate.  However, DAN was found 

to be both hydrophobic and a suitable matrix19.  Because the layer of matrix needed to be thin 

enough to detach properly with the PDMS mold, multiple combinations of time and 

temperature for sublimation were attempted before finding the optimal of 6 minutes at 120°C 

followed by 60 minutes in a 90°C oven for detachment.  Unfortunately, the DAN had a cohesion 

strength that was greater than the adhesion strength between it and the PDMS mold.  This 

resulted in most of the matrix being removed while only small amounts remained on the slide.  

Finally though, the DAN was not completely resolved and was not easily detected in the 

UltrafleXtreme TOF/TOF instrument, two criteria that are critical to the success of the target.   

5,6,11,12-tetraphenylnaphthacene (rubrene) was determined to be the most likely 

compound to be photoactive in the UV region of the lasers used to induce 
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desorption/ionization.  To test this, rubrene was dissolved in acetone and hand-spotting onto an 

ITO slide.  The rubrene was easily detected in the mass spectrometers.  Due to the fact that 

rubrene is practically insoluble in most traditional solvents, sublimation was chosen to coat the 

targets with a layer of rubrene.  Because of the high melting point of rubrene, the sand bath of 

the sublimation apparatus had to be heated to 230°C and dry ice with acetone was substituted 

for ice in the cold finger in order to cool the substrate.  Various times were tested for the 

deposition of a thin layer of rubrene to facilitate detachment.  The optimal time for sublimation 

was 15 minutes followed by 45 minutes in a 90°C oven.  After removal of the PDMS mold, the 

rubrene pattern reproduced the PDMS pattern accurately with features visible below 10 µm 

(Figure 4).   

 

 

Figure 4: Patterned rubrene (structure in the lower right) made by simple detachment patterning with good 
reproducibility and the ability to generate features below 10 µm (insert zoomed 150X). 
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Verification of the slide 

After experimentation, I adopted the detachment patterning of rubrene approach that 

has been shown to generate reliable sub-micron-sized features of rubrene11 for fabricating the 

IMS standard.  The reproducibility of the thickness and amount of the sublimed rubrene is 

important to maintain consistency in the data generated from imaging experiments.  Over the 

time periods tested in this experiment, 15 min proved to be the optimal time to sublime 

rubrene at 230°C at 80 mTorr to create a regular pattern of rubrene after detachment 

patterning with an average of 0.073 + 0.025 mg/cm2 of rubrene deposited onto the ITO slide. By 

using an optical profilometer, the corresponding thickness of the rubrene was found to be 380 + 

130 nm (a representative optical image is shown in Figure 5A).  In addition, through the use of 

fluorescence, I were able to verify that rubrene between the features in the pattern was 

removed during the detachment process (Figure 5B).  As shown in Figure 2C, the ion images 

correlated well to the optical and fluorescence images.   

Initial experiments in MALDI instrumental calibration  

Figure 6 shows an image of the rubrene pattern taken from the UltrafleXtreme MALDI 

TOF instrument at minimum beam setting.  The pattern of rubrene was divided into four regions 

for imaging at four different raster step sizes: 15, 25, 50, and 75 µm.  The pattern was analyzed 

by finding at what raster step size oversampling began.  Since each region should have the same 

amount of rubrene within it due to imaging identical sections of the pattern, the intensity of 

rubrene (m/z 532.2) from the average spectrum from each of these regions should be consistent 

in each region; however, oversampling would cause a decrease in the intensity of rubrene in 

average spectrum of a particular region.  Plotting the overall average intensity of the rubrene 

peak from each region against the raster step size, the region where oversampling began can be 
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determined.  It was found that oversampling began with the 25 µm region, and therefore the 

effective laser beam size was somewhere between 25 and 50 µm.   

 

 

Figure 5: The (A) optical, (B) fluorescence, and (C) ion images from the 4700 with intensity profiles for the 
fluorescence and ion images of the reticle.  The scale bar seen in A is 50 µm.  Note: the defect seen in the images 
was used as a point of reference when dealing with both images and corresponding profiles 
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Determination of laser beam size 

A more precise beam size can be determined by finding the part of the pattern where 

the features of rubrene are completely resolved in the ion image.  This correlates to the section 

of the pattern where the laser beam size is less than the gap between the features.  In this 

experiment, the area imaged consisted of rubrene features varying in length from 85 µm (top) 

to 55 µm (bottom), corresponding to 15 µm – 45 µm spacing between the rubrene features.  

The features became completely resolved in this image at the 65 µm feature, which means that 

the laser spot size is equal to or less than the distance between the features, or 35 µm. 

 

 

Figure 6: Ion image from UltrafleXtreme at m/z 532.2 using multiple raster step sizes to determine the effective 
laser spot size of the instrument based on oversampling and the resolution of the pattern.  Normalized to TIC 
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In order to test the target more thoroughly, the laser power was doubled in order to 

increase the laser size on the target.  After repeating this experiment as various laser intensities, 

a calibration line can be generated correlating the effective spot size with laser power.  Although 

the instrument ages and the effective settings change, the software settings remain constant.  

By generating a curve such as this over time, the effective spot size can be accurately measured 

as the effective settings change.  By carrying out this test at regular intervals, the performance 

of each instrument can be easily assessed. 

 

 

Figure 7: Accuracy test using the patterned rubrene images from both the software’s targeting system and the 
corresponding optical image, which allows the user to measure the amount the laser was off from the targeted 
position. 

 

Accuracy tests 

The accuracy of the laser positioning software was also tested using this pattern of 

rubrene.  Normal calibration of the laser positioning software is performed by using a coating of 
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matrix, firing the laser into that coating, and aligning the laser with the created hole.  However, 

due to the distance between the crosshairs, the deviation in the expected position and the 

actual position may allow for missing the region to be imaged, especially at high resolution.  

Measuring the difference between the expected position and the actual position will allow the 

deviation in the targeting software for individual instruments to be calibrated and reported.  By 

placing the targeting crosshairs on the lower left corner of one of the boxes of rubrene, the 

expected position of the laser is known while inspecting the pattern using optical microscopy.  

The laser hotspot was assumed to be the center of the laser shot, from which the deviation from 

the expected placement can be determined.  A side-by-side comparison is shown in Figure 7.  

For this UltrafleXtreme II instrument, the laser position software was off of the actual placement 

of the laser by 9.7 µm in the x direction and 12.0 µm in the y direction.   

Comparison of multiple measurement platforms 

Figure 8 shows the intensity profile across a feature in the rubrene pattern of the 

standard slide using data from three different instruments: the UltrafleXtreme imaged at 15 µm, 

the modified 4700 imaged at 1 µm, and the fluorescence microscope.  The fluorescence and the 

4700 profiles were very similar due to the similar resolution, although the intensity of the ions in 

the 4700 was much more variable than what was seen in the fluorescence.  The broader profile 

was generated by the UltrafleXtreme because of the large raster step size.  All three profiles 

generated a consistent length of the feature of the intensity profile as measured at full width 

half maximum (FWHM) of approximately 70 µm.  

 In order to demonstrate the utility of the rubrene standard pattern, a small area was 

imaged on a modified AB4700 instrument at 1 µm raster step size and the resulting image is 

shown in Figure 5C with the corresponding ion intensity profile of rubrene.  The defects seen in 
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the pattern represented an opportunity to test the system by measuring small defects using the 

profilometer and fluorescence prior to MS.   

 

 

Figure 8: Overlaid graph showing the profile of a rubrene feature as measured by the UltrafleXtreme at 15% laser 
energy (blue), the modified 4700 (red), and fluorescence imaging (green) 

 

 

 The comparison of the optical and ion images showed the defects reproduced correctly 

in the 1 µm image.  Using methods derived from TOF-SIMS20,  the beam size of the modified 

4700 can be calculated by measuring the distance between the 12% and 88% intensity points in 

a scan across a feature with a chemically distinct edge.  From Figure 5C, the intensity of the 

rubrene at each point was determined, plotted, and fitted with a trend line.  I used a cubic 

function to represent data and, by calculating the distance where the 88% and 12% intensities 

would fall on the line, I calculated that the spatial resolution was 2.5 µm for these instrument 
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settings (Figure 9).  Afterwards, using optical microscopy, the ablation craters were measured at 

2.51 + 0.35 µm. 

 

 

Figure 9: Edge profile of a rubrene feature allowing the measurement of the effective laser size of the modified 
4700 

 

 

Summary  

I have shown that the capabilities of this rubrene target include, but are not limited to: 

simple and reproducible generation, ease of use for the creation of performance evaluations, 

and multiple measurements taken from a single slide.  The ability to generate performance 

evaluations quickly and easily will allow for standardization across the field.  This target enables 

the comparative measurements and performance evaluations of the accuracy of the positioning 
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software, accuracy and repeatability of the stepper motors, and accuracy of the laser targeting 

software to be performed quickly and reliably.  I have also shown that the target can be used for 

multiple instrument platforms, serving as a standard for intra lab comparisons, and also for 

different instrument manufacturers, serving as a standard across the field.   
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