
MODEL-BASED VERIFICATION TOOLCHAIN FOR INCREASING TRUST ON

AUTOMATED CODE-GENERATORS

By

Akshay Agrawal

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

December, 2013

Nashville, TN

Approved:

Dr. Sandeep Neema

Dr. Joseph Porter

ACKNOWLEDGMENTS

The research presented in this thesis was funded by DARPA Research contracts #FA8650-

10-C-7075, ”Multi-Modeling Language for Cyber Physical Systems” and #FA8650-10-C-

7082, ”META Design Flow for Cyber Physical Systems”.

I am very grateful to my research advisor, Sandeep Neema, for providing me appro-

priate guidance during my research endeavors. He has always inspired me with his apt

research aptitude and helped me hone my research and development skills by challenging

the results and progress of my work at every phase. His support and motivation has helped

me presenting my research work to the research community who deal with similar ideas

with great confidence.

A good part of the research work was to develop tools using software development

skills. During these development phases, a staff engineer at ISIS VU, Harmon Nine, helped

me a lot and I appreciate him for all the time that he willingly and happily spent with me.

Last, but not the least, I thank Joseph Porter, research scientist at ISIS VU, for sharing

his research experience in the domain of verification of Cyber-Physical Systems. He re-

mained available for me whenever I got stuck in my research. He took out time always to

listen to my solutions and validate them. Moreover, he took extra steps for me by pointing

me to important research papers in the field of my research and sharing examples to help

me understand the research issues.

This research would not have been possible without any of the people mentioned above

and I will always be indebted to them.

i

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . i

LIST OF TABLES . iv

LIST OF FIGURES . v

I INTRODUCTION . 1

I.1 Motivation . 2
I.2 Research Problem and Proposed Solution 4
I.3 Organization of Thesis . 8

II RELATED WORK . 9

III BACKGROUND . 17

III.1 Cyber-Physical Systems (CPS) and CPS research challenges 17
III.2 Model-Based Design of CPS . 18
III.3 Generic Modeling Environment (GME) 22
III.4 CyPhyML: An MIC paradigm for CPS 24
III.5 Cyber components in CyPhyML . 28
III.6 Temporal Logics and their Automaton equivalents 31

III.6.1 Linear Temporal Logic (LTL) . 31
III.6.2 Büchi Automaton - An Automaton equivalent for LTL 34
III.6.3 Transition-based Generalized Büchi Automata and its C code equiv-

alent . 36
III.7 Model Checking using LTL . 38
III.8 CBMC - A Symbolic C-code Bounded Model Checker 38
III.9 NuSMV model checking tool . 42
III.10 SPOT Library . 43
III.11 Google CTemplate . 43

IV DESCRIPTION OF THE VERIFICATION TOOL CHAIN 47

IV.1 Conceptual Overview . 47
IV.2 Architectural Overview . 48
IV.3 VTC meta-model . 49
IV.4 Pattern-based property to equivalent TGBA to C code monitor translation 55

ii

IV.5 Generation of verification facilitated C code files from TestBench 57

V ILLUSTRATIVE EXAMPLE . 66

V.1 Ignition Model . 66
V.1.1 Property 1: States of the Engine and the Ignition Light 69
V.1.2 Property 2: Constraint on the Starter’s Engage state 72
V.1.3 Property 3: Transition of the Starter states 74
V.1.4 Experiment Results Summary . 77

VI DISCUSSIONS . 78

VI.1 Conclusions . 78
VI.2 Future Work . 80

VII APPENDIX . 81

VII.1 NuSMV translation of Ignition Logic Controller 81
VII.2 Property 1 of Ignition Logic Controller 82

VII.2.1 TGBA equivalent of Property . 82
VII.2.2 C code verification wrapper file 82

VII.3 Property 2 of Ignition Logic Controller 86
VII.3.1 TGBA equivalent of Property . 86
VII.3.2 C code verification wrapper file 86

VII.4 Property 3 of Ignition Logic Controller 90
VII.4.1 TGBA equivalent of Property . 90
VII.4.2 C code verification wrapper file 90

BIBLIOGRAPHY . 95

iii

LIST OF TABLES

Table Page

III.1 Overview of MetaGME Classes . 23

III.2 List of Temporal Operators . 32

IV.1 Semantics of Behavior Patterns for Temporal Property modeling in VTC 51

IV.2 Semantics of Scope Patterns for Temporal Property modeling in VTC . . 52

IV.3 Mappings between VTC Property Patterns and LTL formulae 58

V.1 IO Signals description for Ignition Logic controller 66

V.2 Verification results for Ignition Logic controller 77

iv

LIST OF FIGURES

Figure Page

I.1 Conceptual Overview . 5

I.2 Proposed Verification Workflow for CyPhyML based CPS development . 6

I.3 Proposed implementation of VTC toolset for CyPhyML based CPS de-
velopment in GME . 7

III.1 CPS generic model. 18

III.2 CPS development using Model-Based Designs 19

III.3 Steps in Model-Based Design. (Obtained from [65]) 21

III.4 UML-based Meta-model Example using MetaGME 23

III.5 Abstract CPS design in CyPhyML . 24

III.6 Subsets of the CyPhyML meta-model 27

III.7 Heterogeneous composition of components in a Vehicle using CyPhyML 29

III.8 Tools for synthesis and code generation for CyPhyML cyber components 30

III.9 Two processes writing to a memory . 33

III.10 Büchi Automaton for LTL formula - G F p 35

III.11 Transition-based Generalized Büchi Automaton for LTL formula - G F p 36

III.12 C code for Transition-based Generalized Büchi Automaton for LTL for-
mula - G (p�X q) . 37

III.13 C code for Transition-based Generalized Büchi Automaton for LTL for-
mula - G (p�X q) with Assert statements 38

III.14 Model Checking Approach . 39

III.15 CBMC Loop Unwinding Approach . 40

v

III.16 Abstract workflow for Verification tool using SPOT 44

IV.1 Architecture of VTC . 49

IV.2 Meta-model for VTC in GME . 50

IV.3 A Pattern-based property Example modeled using VTC meta-model . . . 51

IV.4 An automaton based (TGBA) property modeled using VTC meta-model . 53

IV.5 Meta-model for integration of VTC with CyPhyML TestBench 55

IV.6 Example of a CyPhyML TestBench constructed using the VTC meta-
model . 56

IV.7 Working for Verification Property Conversion (VPC) Tool 57

V.1 Stateflow design for Ignition Logic controller 67

V.2 CyPhyML TestBench for verification of Ignition Logic controller in GME 68

V.3 TGBA equivalent of Verification Property 1 2 of the Ignition Logic Con-
troller . 69

V.4 TGBA equivalent of Verification Property 2 of the Ignition Logic Con-
troller . 73

V.5 TGBA equivalent of Verification Property 3 of the Ignition Logic Con-
troller . 75

VI.1 Research Impacts . 79

VI.2 Lessons learned during research . 80

VII.1 TGBA for Property 1 for Ignition Logic controller 82

VII.2 TGBA for Property 2 for Ignition Logic controller 86

VII.3 TGBA for Property 3 for Ignition Logic controller 90

vi

CHAPTER I

INTRODUCTION

Cyber-Physical Systems (CPS) are composed of physical and software components. Em-

bedded controllers and logic switches control a physical process using feedback loops and

actuators. Controllers sense the status of physical components through sensors and then

further drive the physical components according to their implementation logic. The eco-

nomic and technological potential of CPS have lead to their their prevalence in the modern

era. Some examples of such systems are - modern medical devices, assisted living systems,

automobiles, aircrafts, automated manufacturing units etc. Emergence of Model-Based

Design (MBD) methodologies and tools has provided accelerated and effective ways of

modeling complex CPS. Therefore, MBD has become predominant in CPS development.

MBD Engineers develop graphical domain models of CPS using Domain-Specific Mod-

eling Languages that are rich in their knowledge of a specific domain of concern. Model

translators and code generators are the workhorses of MBD which facilitate automated

transformations of developed models resulting in cost effective and less time consuming

development life cycle of CPS. Such translators can generate target models for simulations

or target program to run on actual embedded controllers in CPS.

As discussed by Lee [55], CPS like automobiles, medical devices, etc... are required to

strictly adhere to their safety specifications to avoid hazards, and hence, are safety-critical.

Failures of such systems can lead to physical inconvenience and monetary losses on one

hand and even catastrophic disasters on the other. Thus, mitigation of bugs in systems is

desired and hence, verification of developed system designs has recently been emphasized

by research communities and industry both.

The verification of systems during development cycles incurs major costs and time but

currently lacks formal approaches. Therefore, formal methods for verification are recently

1

sought by researchers. Model checking is a formal approach to verification where the

behavioral state space of a system is exhaustively explored to find undesired states in the

behavior. This leads to full-coverage analysis of the behavior of a system.

In MBD, the controller models can be verified using formal verification methods dur-

ing the initial modeling phase, but finally the end products (for example, generated code)

remain the artifacts from these models that get deployed and executed in safety-critical

CPS. Application of the untrusted code-generators or translators components to generate

the deployable artifacts remain the points of concern. Their use may lead to injection of

errors in the translated target models or programs (for example, a faulty translator might

introduce new states in the behavioral state-space of the translated models or programs),

thus, invalidating their equivalence or consistency with the source models. Such errors

may lead to undesired behavior in the translated artifacts and their deployment to a com-

promise with safety. Therefore, it remains beneficial to develop trust on the translation

using automated tools and checking whether they preserve the functional behavior during

the translations. The complexity of the translator tools are analogous to compliers and

makes their verification a hard problem. Moreover, the generated code is not generally

intended to be human-readable, but only optimized for execution and easy for automated

deployment, which makes their manual verification more tedious and avoids the advantages

of MBD. This thesis addresses this issue in safety-critical CPS and focuses on implement-

ing and integrating extensions to MBD tools to provide an automated workflow to develop

trust on translation by code-generators and their generated software.

I.1 Motivation

A Domain Specific Modeling Language (DSML) named ”Cyber-Physical Systems Model-

ing Language” (CyPhyML) [53], developed using a MBD tool GME (Generic Modeling

Environment), is an element of the DARPA AVM META project which is targeted at design

and development of heterogeneous CPS that are particularly military ground vehicles. The

2

Cyber components in CyPhyML, representing digital controllers implemented as embed-

ded software, are based upon ESMoL DSML [52], [59]. The Cyber components can be

modeled in Simulink (MATLAB) and imported for use in CyPhyML. Model translators are

the workhorse of MBD tools, and play a central role in synthesizing transformed models

and code for deployment. Stateflow model transformers and interpreter tools are used auto-

matically import Simulink Stateflow models to CyPhyML domain and generate C code for

deployment of the controller components, respectively. The transformed ESMoL models

(Cyber models) and their generated deployment code must conform to certain behavioral

specifications for the purpose of safety and desired functional behaviors.

Modeling, design and development of CPS are error-prone. Unavailability of important

design details during the initial phases of development, usage of multiple third-party tools

during the development life-cycle and utilization of automated code generators and transla-

tors remain few of the several sources responsible for introduction of errors into the target

designs and code. Errors might get introduced in behavior of the generated code for com-

ponents due to faulty code generation or faulty design of a component. The need to find

potential errors in designs introduced during model transformations and code generation

motivates this research.

High complexity of the code-generators that are involved in MBD of large CPS ren-

ders their manual verification impractical. Current development processes lack precise

integration of state-of-the-art verification tools that are capable of formally verifying large

systems. As a result, validation remains confined to procedures like peer review and test-

ing by simulation [16]. Peer review has been really efficient in recognizing bugs during

development where expertise of senior engineers aid a lot. Testing refers to the verification

technique where data from a system is analyzed after actually executing the system with

pre-defined test inputs and then comparing with the correct anticipated outputs. But these

techniques do not provide the type of exhaustive coverage of functional behavior of a sys-

tem which is necessary for analyzing safety-related properties. In the former approach, the

3

developed system models are manually checked for syntactical and logical errors without

simulating the model designs, while in the latter approach verification remains as good as

the test scenarios that the designs are subjected to. Although, the above procedures can be

automated to certain extent, mostly they are performed manually by humans which makes

it tedious. This arises the need for automated formal verification workflows.

With the development in computing technology and on-going research on verification

tools (for example, CBMC [29], NuSMV [27], SPIN [46], Zing [14]), these tools can now

better handle complex systems with large state spaces. Also, these tools provide counter-

examples to understand the cause for errors. The need to leverage such tools and integrate

them with development tool chains, further adds to our motivation for this research.

Verification of systems and tools require certain expertise in the domain of property

specification (specifically temporal logic). This also motivates a need to provide a conve-

nient way of modeling verification properties to encourage engineers, who lack expertise

with complex temporal formalisms to include verification procedures during model-based

development. Graphical tools for modeling verification properties in an intuitive manner

seem to be a probable solution in these scenarios.

I.2 Research Problem and Proposed Solution

Verification of software in CPS systems is a challenging problem. Model-based design

tools have simplified construction of such software for system designers using higher ab-

stractions. However, they don’t obviate the need for verification. The verification obli-

gation now includes not only correctness of the higher level abstraction, but also the cor-

rectness of the translator that generates the executable software. Verification of complex

model translators in a general sense remains an intractable problem. This thesis purports to

develop a pragmatic approach which attempts to examine the correctness of such untrusted

tools from the limited but tractable perspective of property preservation. A set of verifi-

cation properties (using LTL) are defined which are checked using a model checking tool

4

Figure I.1: Conceptual Overview

(NuSMV) to assert the correctness of the (Stateflow) model with respect to the stated prop-

erties. These verification properties are auto-translated to code modules that implement

equivalent observer automata. These code modules are then compiled with auto-generated

code for their associated component of the system. The compiled program remains suitable

for verification. To verify the correctness of behavior of the generated code with respect

to the same set of properties which are initially checked with NuSMV, the compiled pro-

gram is then model-checked using a source code verification tool (CBMC). The approach

is packaged and delivered as a model-based toolchain for CyPhyML DSML and is named

Verification Tool Chain (VTC). A conceptual overview of the proposed solution is given in

Fig. I.1. Further, Fig. I.2 presents an abstract version of the proposed verification workflow

for verifying the Cyber components’ behavior and developing trust in the code-generator

tools that are associated with the CyPhyML DSML.

Figure I.3 presents the proposed implementation needed to pragmatically realize the

workflow shown in Fig. I.2. A VTC meta-model (or DSML) allows verification prop-

erties to be modeled and linked to relevant CPS components in a TestBench for applying

verification procedure. A TestBench contains a bigger component assembly representing

interconnected models of components. In addition system requirements and validation tests

are defined in the TestBench. These features of the TestBench allow its contained models

5

Figure I.2: Proposed Verification Workflow for CyPhyML based CPS development

to be exposed to different types of analyses. In accordance to the proposed solution, a ver-

ification TestBench ultimately contains components models under concern that are linked

with models of verification properties that are developed using the VTC meta-model. The

process of modeling the properties is made convenient for the modeling engineers by using

a pattern-based modeling approach. The VTC meta-model captures natural language-like

patterns for convenience in modeling. Further, the TestBench interpreter tools transform

the pattern-based property models to C code in the context of the linked components. An

existing automated code-generator, which is to be verified, generates C code for the compo-

nent assembly in the TestBench. CBMC is used to apply model checking procedure on the

generated set of C code files. In the case of negative verification results, counterexamples

traces from source C code files are generated for the users.

It should be noted that the translation of models to the NuSMV language for verification

at the model-level is not being done in an automated manner in this work. But, addition of

such an automated tool to VTC in future will be helpful.

6

Figure I.3: Proposed implementation of VTC toolset for CyPhyML based CPS develop-
ment in GME

7

I.3 Organization of Thesis

The chapters in this thesis are organized as follows. Chapter II contains succinct descrip-

tions of work done by others that is similar to ours. Chapter III contains an introduction

to Cyber-Physical Systems and how model-based design is exploited during their devel-

opment. It contains description of a model-based design tool, named Generic Modeling

Environment (GME). Further, it covers the description of CyPhyML, a modeling paradigm

for Cyber-Physical Systems. Preliminary concepts related to Temporal Logic in addition

to description of other verification tools CBMC and NuSMV, are discussed in the same

chapter as well. Chapter IV presents detailed description of the implementation during the

research. A case-study illustrating application of implemented tools under the research is

presented in Chapter V. Chapter VI contains conclusions and future work.

8

CHAPTER II

RELATED WORK

Model interpreter tools are backbone of model-based development of systems as they help

in achieving rapid development by automating the development process. But faulty inter-

preter tools can introduce errors in the final product of development. Thus, verification

of untrusted interpreters becomes a major requirement. Owing to their complexity, their

manual verification is intractable and hence different approaches for their verification are

necessary. A fairly good amount of research is done in this direction. [70] describes a veri-

fication technique to prove correctness of a translator. The translator presented in the paper

translates source code written in MicroGypsy (a descendant of Pascal that is used as both

programming and specification language) to target code in Piton (an assembly language).

Two interpreters are used by them, where each interpreter can interpret the semantics of

MicroGypsy and Piton, respectively. The interpreters run the MicroGypsy and Piton pro-

grams to their final states. The information from these final states are compared for their

equivalence. If the information from the final states are equivalent then correctness of trans-

lator is proved, else it is refuted. Though their approach is aimed at verifying correctness of

a translator, they do not make use of formal verification methods or model checking tools.

Hence, no counterexamples in cases of refutation can be generated for debugging purposes,

which remains one of the main benefits of model checking tools.

Though the authors of the paper above performed verification of translator’s behavior

mechanically, Cimatti et al. [28] discuss automated verification of translation tools. They

aim at proving semantic equivalence between generic domain-independent source compu-

tation models (composed of boolean and arithmetic-like operations) and executable target

programs by checking some syntactic properties on target programs. The verifier checks

the target programs against certain precomputed data to prove syntactic property specifica-

9

tions. The verifier is embedded – it takes an input model and an output program to perform

automated syntactic verification for the proof of correctness of program generation, and

thus, the program generator. Their motivation comes from the fact that the verifier is em-

bedded into a transportation software development framework where safety is critical.

Necula and Lee [58] present research efforts in the direction of checking correctness

of compilers. This paper deals with compilers which either convert programs from one

source language into another target language or perform optimizations on programs in a

particular programming language. Such compilers can introduce extra faulty states during

optimizations or translations. Therefore, for reliability reasons their proof of correctness is

desired. The paper describes the design and implementation of an optimizing compiler that

translates programs from a strictly typed programming language to an assembly language.

The aim of their design is to ensure the type safety in generated assembly language code

to prove the correctness of optimizing computations performed by the compiler. The paper

points out the importance of such proving techniques by mentioning the application of these

techniques in proving certain behavioral properties of the generated programs as an addi-

tion to their former goal of compiler correctness proofs. Though like us, they are interested

in verifying translators, their focus remain on verifying only syntactical properties while

we are trying to show equivalence between behavioral logic of source models and synthe-

sized target code. Karsai and Narayanan [50] present a tractable verification approach to

provide certificates based on certain desired properties for assurances on the transformed

models generated by automated model transformers in model-based design. They show

their Goal-directed Certification technique on transformations between source StateChart

[43] models and target Extended Hierarchical Automata (EHA) [57] models. They use a

variant of the Bisimulation technique [16] along with Semantic Anchoring [25] to check

equivalence between functional behavior of the source and the target models. Reachability

analysis on EHA models for the desired safety properties is used to validate the transfor-

mation. Semantic anchoring allows them to check models of even those formalisms which

10

include instantaneous state transitions (i.e. multiple transitions in a single macro time step).

They do mention their approach to be not providing a complete proof of correctness of the

transformation, but claim their technique useful for practical verification purposes to in-

crease trust on the transformed models. Use of the Bisimulation technique as opposed to

model checking approach in our work and their focus on validating transformed models

rather than generated deployable code are the key points that differentiate our work from

theirs.

Property prover tools for verification can have applications other than proving correct-

ness of a translator. An interesting idea of an application of such verification tools is pre-

sented by Zaremski and Wing [72]. They introduce a specification matching approach

for different components to facilitate automated retrieval and reuse of similar components.

They essentially show their specification matching approach for function modules. They

compare the signatures of two function modules to derive a syntactic match between them.

In addition to syntactic matching, they include semantic matching using assertion-based

specifications on pre-conditions and post-conditions of the function modules under test.

These specifications are matched using a specification prover tool. The main difference

between their work and our proposed solution is that they use verification approach to en-

able retrieval or reuse of desired function modules from a library of functions rather than

to verify any translator tool. The other difference lies in the fact that we use LTL to model

our specifications while they use assertion based refutation of properties on preconditions

and postconditions of function modules.

LTL formulae can be represented by equivalent Büchi Automata (BA), a type of ω-

automata that accept infinite input sequence. These automata can be used for integration

with program code to be tested. The work presented by Giannakopoulou and Havelund [40]

shows implementation of a tool named Trace Analyzer (TaZ) that converts LTL formula

to a BA. They use the converted BA as observer automata to analyze Java programs by

integrating them with Java PathExplorer (JPaX) [44] (a tool for monitoring Java programs).

11

JPaX is used by them to pass the output of Java programs as input sequence to BA for

enabling on-the-fly verification of Java programs. In our proposed solution in this thesis,

we also aim at using Transition-based Generalized Büchi Automata (TGBA) (which is

a variant of BA) as observer automata that are integrated as monitoring automata with

synthesized C code of CPS controller models. Hence, their application of LTL equivalent

automata is closely related to our proposed implementation.

The approach discussed in the paper above of converting LTL formula to an equiva-

lent automaton is adapted with a variation in the work done by Staats and Heimdahl [64].

They verify the correctness of untrusted translation tools used in model based develop-

ment of systems. In their verification technique, initially, verification of modeled designs

of systems is performed with the NuSMV [27] model checker before synthesizing code.

Then verification on synthesized code with CBMC is performed to prove the correctness of

translators that are used for code synthesis. They postulate that if some critical properties

can be proved to hold true, before and after translations, then it can suggest increased trust

in the translation tool. They use TGBA as the equivalent automaton for an LTL formula

and translate it automatically to C code monitors. To enable verification, these monitors

are integrated as observing monitors with the synthesized code from system models. The

monitors are augmented as user-given assertions that can suggest violation of a temporal

property and can be checked for violation by reachability analysis with CBMC. Results

from verification with NuSMV and CBMC are compared to prove correctness of transla-

tors. They present experimental results to prove correctness of two code generation tools

that are used to synthesize C code for Simulink models. One of the tools is the Real-Time

Workshop C code generator and the other is a C code generator that was being developed

by Rockwell Collins Inc. Their technique is conceptually very similar to ours, but unlike

them we have integrated our verification approach with a model-based design tool GME

(Generic Modeling Environment [54]) by developing domain-specific model interpreter

tools for enabling convenient and automated verification procedures.

12

Now we discuss some recent related work where people have presented application

and usage of existing model checking tools within model based development techniques

for systems. The research work of Heitmeyer [45] discusses a Software Cost Reduction

(SCR) workflow for development of Software systems. They focus on verification of large

systems using the benefits of composition of systems and reuse of existing components

through model-based engineering. They have presented a specification analysis approach

for abstract system models and they use the TAME theorem prover for model checking the

abstract models. After every phase of their engineering development cycle they validate

the translation of models based on critical specification properties which are modeled using

temporal logic. Their ultimate goal is to achieve high trust in the model constructs so that

the code synthesized from them is ’correct by construction’. They present examples of

avionics software, submarine’s monitoring software and a software to process data from

different memory partitions to support their research methodology. Though they suggest

that high-level trust on synthesized code can be obtained by formal validation of the abstract

model designs before code synthesis, they do not elaborate on the possibility of faulty code

generators.

The recent research presented by Wang [68] focuses on analyzing correctness of be-

havioral propagation in C code generated for Simulink models. They use an open-source C

code translator for Simulink models, named GENE-AUTO (GA). In their technique, behav-

ioral analysis is facilitated by augmenting stability proof annotations in the Simulink mod-

els. These augmentations are implemented using blocks from Simulink that are provided

in a block library. The stability proofs represent the pre-conditions and post-conditions of

Simulink blocks. These proofs are converted to a library of annotation block backends for

GA model representations of Simulink models. These annotation block backends are then

converted to ACSL (a language to specify properties for C code formally) specification an-

notations in generated C code. Formal verification tools like Farma-C, that support ACSL,

enable verification of properties (specified using ACSL) on generated C code for Simulink

13

blocks. This approach appears similar to our proposed solution and utilizes model-based

approach for automated behavioral verification of code generated from system models.

But, they do not explicitly relate their work to correctness of model translators or code

generators and they do not use LTL for specifying the verification properties.

Though increasing use of state-of-the-art model checking tools is making verification

of models more conveniently approachable, however, verification properties still need to

be specified by engineers which requires certain expertise with concepts like LTL. Lack of

such expertise makes it inconvenient for the engineers to correctly specify the properties

. For these reasons, convenient specification modeling approaches are presented in sev-

eral research works. The work presented by Bryant [22] discusses conversion of natural

language-like function specifications to object-oriented structures for their easy integration

with development processes. The predicates of the functions can be specified in a natural

language-like format with domain-specific information for the variables used by functions.

The definitions of functions should comply with the rules of two context grammars. The

context grammars are derived using a Two-Level Grammar (TLG) and they conform to the

domain for development. The Specification Development Environment (SDE) tool facili-

tates specifying natural language-like definitions of functions and parses the definitions to

convert them to object-oriented designs. The tool requires sufficient user-interaction for

improvising the definitions which are partially defined. They do not use their technique

to model temporal properties exactly, but we get inspired from their work to implement

easy-to-use natural language-like approach for specifying verification properties.

The work by Dwyer et al. [36], [37] presents usage of English-like patterns to define

temporal properties for a system and is explicitly focused on convenient modeling of tem-

poral properties. Usage of such patterns frees engineers from needing great expertise with

temporal logic formalisms. They have categorized the patterns into behavior patterns (eg.

Occurrence, Absence, Response) which define the specific behavior that a property sig-

nifies about the system. To define the moments during the execution of a system where

14

the behavior defined by a temporal property holds true, they provide scope patterns (eg.

After, Before, Until, Always). Boundaries for a scope pattern can be defined with events

that represent state of a system. They have specified mappings between combinations of

English-like behavior and scope patterns for a property and LTL formulae. Such mappings

can be used for automated conversion of pattern-based properties to LTL formulae. They

collectively call it Specification Pattern System (SPS) and claim its usefulness in model-

ing numerous critical temporal properties over systems that are being used in the industry.

Salamah et al. [61] extend SPS to develop Property Specification Tool (Prospec) that allows

composition of SPS patterns for defining sequential and concurrent behavior of a system.

PROPEL, for ”PROPerty ELucidation”, is another tool presented by Smith et al. [62]

which makes use of templates to model properties. They present three types of useful tem-

plates - Finite State Automata Templates (FSA), Disciplined Natural Language Templates

(DNL), Decision Tree Templates (DT). FSA and DNL provide an intuitive automata-based

modeling approach to decide and model behavior for a temporal property over some set

of constituent variables and events of a system. FSA and DNL can be used in parallel for

modeling a property as they contain analogous options for intuitive modeling of properties.

DT, on the other hand, uses SPS-like patterns to define the desired behavior for a property.

For better assessment of the properties that are modeled in PROPEL, semantically equiva-

lent DNL paragraphs and timeline graph representations are presented to the end-users that

help them refine their models for the properties.

A recent work by Wagner [67] presents a modeling and verification tool CertaAMOR

that combines a pattern-based approach for modeling of requirements specification for sys-

tems with automated iterative verification procedures. The author discusses a microwave

system example that is developed using SpecDSL and constitutes temporal properties em-

bedded in the system model. The author further mentions the Requirements Analysis Tool

(RAT), developed at Fondazione Bruno Kessler in the EU, which facilitates automated veri-

fication of specification properties. The usage of a convenient pattern-based property mod-

15

eling tool is closely related to the property modeling approach in our proposed solution for

verification. The model-augmented English language-like requirements can be propagated

to later stages in development life-cycle in an automated fashion using the CertaAMOR

tool, however, the approach doesn’t include translation of abstract models to deployable

code.

16

CHAPTER III

BACKGROUND

In this chapter, explanations for concepts of verification, meta-modeling in model based

designs and tools used in the work are discussed with their strengths, limitations and major

features.

III.1 Cyber-Physical Systems (CPS) and CPS research challenges

CPS[55] are complex systems with controllers monitoring and controlling physical pro-

cesses. With the changes in the states of a physical process the controllers perform com-

putations to change states and guide the execution of the physical process. Developments

in networking, monitoring, computational systems etc... are leading to more complex CPS

which have begun to solve major engineering issues in present world. Some complex en-

gineering problems where CPS has helped are described in [42] and [26] which mention a

CPS for tracking a bio-medical weapon and a medical CPS in intensive care units of hospi-

tals, respectively. Figure III.1 shows how a generic CPS model appears. In the figure it can

be seen that a controller takes output from a physical component as its input, which forms

a feedback loop, and via a controlling link it provides input to the physical system which

increasingly and dynamically might change the behavior of the physical component.

There are many design challenges currently in the field of CPS. Due to their use in

safety-critical scenarios, verification and validation of CPS is a major requirement for

quality assurance which is also realized in [42] and [26]. The other research challenges

in CPS are - (1) Modeling logical compositions of heterogeneous components: CPS can be

composed of multiple components having different behaviors and formalisms. This makes

the composition of these different components in CPS [66] models a big concern due to

the incompatibility in their semantics. (2) Distributed Architecture of CPS: Benefits like

concurrency and distributed computation facilities development of CPS as a distributed ar-

17

Figure III.1: CPS generic model.

chitecture. Solutions to the above challenges often include developing complex reactive

and networking systems which further increases risk for infusion of faults in their models

that can cause serious troubles during execution of such systems. These factors further

emphasize need of rigorous verification and validation of CPS.

III.2 Model-Based Design of CPS

In this section we shall discuss the current practices in model based designing of CPS and

why verification is required under these practices. Owing to the complexity of CPS and

emergence of a variety of computer based design tools (AutoCAD [1], Simulink [8] etc.),

model-based design of CPS has become an effective practice that helps in rapid develop-

ment of the CPS and makes it more productive. Meta-models are paradigms in model based

designs which capture the specifications of a domain for development - in this case CPS.

They capture the properties of individual types of sub-components in a system belonging

to a particular domain, pertaining to the communication between types, interconnections

among them, data and control flow through them etc. Further they capture the contain-

ment and connection relationships among different types of components in a domain, thus,

18

Figure III.2: CPS development using Model-Based Designs

19

providing a hierarchical structure realization of the systems that need to be developed. By

embedding constraints on relationship mappings in the meta-models it can be ensured that

developed domain models strictly adhere to certain relational mapping specifications and

comply with a set of domain specific rules. The graphical user interfaces provided with

the model-based design tools help engineers to construct a model of a particular system

in hierarchical manner and visualize it in terms of the relational rules of the domain that

the system belongs to. The model-based tools not only provide graphical and logical vi-

sualization of systems, but also provide additional tools that may facilitate their analysis

and deployment. Additional integrated tools use the advantage of accessing meta informa-

tion of the domain that developed model belongs to, which allows them to understand a

particular domain so as to perform analysis and deployment tasks according to it. Figure

III.2 depicts the flow of model-based development of CPS. This approach of modeling of

systems is referred to as Model Integrated Computing (MIC) (for more details refer to [65]

and [49]). Hence, the steps in model-based design can be summarized (as in Fig. III.3) as

follows:

1. Domain Analysis and Meta Modeling: During this step, the domain under consider-

ation is analyzed so as to construct the meta-models that capture the rules and speci-

fications of the domain to which the target domain models should adhere to. This is

similar to requirements analysis in software engineering with a subtle difference that

requirements here are set of specifications for a particular domain of interest.

2. Target domain model development: Using meta-models, target domain models of

particular systems are developed which depict the physical or computational behavior

of components within a system in addition to connections and relationships among

them. The goal here is always to ensure the production of models that represent the

mappings of components of a system analogous to the real system.

3. Development of Model Interpreters: During this step, additional tools are developed

20

Figure III.3: Steps in Model-Based Design. (Obtained from [65])

which refer to the meta models developed in the first step and take the models gen-

erated in the second step as inputs to perform certain tasks on them. The tasks can

include certain types of analysis, augmentation of specifications, transformations of

models for simulations, verification, deployment etc.

Lee et al. [47] discuss a CPS - the Tunneling Ball Device [48] as a case study and

provide detailed steps of model-based design of the device by realizing it as a centralized

system (as opposed to distributed system) composed of continuous system components de-

picting kinematics of a free ball, rotating disc and a DC motor. They use PTIDES [34] as

21

the model of computation for the Tunelling Ball Device, which is derived by specifying

timing constraints on sensor networks and thus extending discrete-event DE [39] seman-

tics. They use simulation tools - Ptolemy [38] and LabView [4]. Ptolemy is a framework

for modeling heterogeneous CPS using a variety of Models of Computation (MoCs) where

the input and output behaviors of the components are defined by specifications of an MoC.

Brooks et al. [21] study advantages and pitfalls of using different MoCs in model-based

design using a Traffic Light example. Balasubramanian et al. [17] emphasize on the advan-

tages of mode-based design over ad-hoc methods for system integration and composition

using reusable component designs by discussing the application of model-based design to

develop Embedded Automotive Applications.

III.3 Generic Modeling Environment (GME)

GME [54] is a modeling tool to develop DSMLs (Domain Specific Modeling Languages)

and their respective target domain system models. The development method for system

modeling in GME follows the MIC approach. Post-requirements analysis of a domain,

UML (Unified Modeling Language) [10] - based meta-models are developed in GME that

represent a DSML for the domain. The graphical interface and UML-based approach to

construct meta-models make later revision phases of a DSML convenient. GME provides

a design language - MetaGME, which is a set of classes that are used to develop meta-

models for DSMLs. Figure III.4 and Table III.1 show a simple example of a meta-model

developed using MetaGME and semantics of the MetaGME classes, respectively. The de-

veloped meta-models are used to then develop system models within the context of the

specified DSML. GME allows for checking syntactical correctness of models, by checking

them against constraints modeled in OCL (Object Constraint Language [6]). Often during

the final stages of development life cycle analysis and deployment facilities are necessary.

For these purposes additional toolsets including code generators and model transformers

are developed within the context of the specified DSML’s meta-model. Association of

22

Figure III.4: UML-based Meta-model Example using MetaGME

MetaGME Class Usage in Meta-model development

<<Model>> A class that can have further contained classes

<<Atom>> A class that cannot have further contained classes

<<Connection>> An association class for a connector (displayed as • icon) that represents interconnection
between two classes

<<Reference>> A class whose object, in a meta-model’s domain model, can point to an object of another
class (and its derived classes). Note: 4 is the display icon for inheritance in MetaGME.

<<ModelProxy>> A copy of another <<Model>>class (semantically equivalent). Note: Usage is analo-
gous for other <<...Proxy>>classes.

Table III.1: Overview of MetaGME Classes

tools with a particular DSML of interest makes them more intelligent for use within the

context of the DSML. Development of such extension tools for GME requires generation

of a domain-specific C++ or CSharp API for the class types that are defined in the DSML’s

meta-model. GME facilitates automated generation of these APIs, which contain Object-

oriented classes [11], using UDM (Unified Data Modeling Framework [56]). These APIs

allow engineers to develop the extension tools that can operate on input models developed

using a DSML meta-model, and traverse the input models’ hierarchy to further transform

the input models for further analysis, simulation and code generation.

23

Figure III.5: Abstract CPS design in CyPhyML

III.4 CyPhyML: An MIC paradigm for CPS

The Cyber-Physical Systems Modeling Language (CyPhyML) [53] is a DSML for model-

ing heterogeneous CPS. It is a unified modeling framework to model behaviors of heteroge-

neous components of a CPS while allowing logical interconnections among them to define

designs. Owing to different behaviors of components in a heterogeneous CPS, it becomes

hard to define semantics for the interconnections between different components. It is de-

veloped under the META project of the DARPA AVM research effort to aid in development

of next generation autonomous military vehicles.

To realize complex heterogeneous CPS, their physical and controller component mod-

els need to be composed together. The physical components (continuous), which may be

acausal [69], can be modeled as Modelica [5]-based models; the controllers, which are

causal, can be modeled as Stateflows (discrete) using Simulink [8]. Acausal connections

between components are consistent with the idea that the composition of physical systems

implies a simultaneous and instantaneous sharing of the physical states between composed

24

components. Causal connections are consistent with the composition of digital systems -

each causal signal interface is either an ’input’ or ’output’, and the interconnections im-

ply dependency between components as well as a separation in their time of occurrence of

events in each component. The state information of physical components is fed into con-

trollers to drive their discrete logic which in turn control the continuous dynamic behav-

ior of the physical components. But, composition of continuous and discrete components

poses issues related to semantics of the composition as the components may share variables

across boundaries. The composed systems are referred as Hybrid System [15] having both

discrete and continuous states. CyPhyML facilitates meaningful composition of multi-

domain CPS components in designs and the synthesis of simulation models to evaluate

those designs. CyPhyML components are specified as wrappers encapsulating more spe-

cific model behavior. For example, the dynamic behavior of a vehicle component may be

specified as a Modelica model. To use that model compositionally in a design, CyPhyML

requires a reference to the detailed Modelica model and allows the modeler to specify an

interface with strongly-typed ports that define how the component can be composed with

compatible components to form a design. Careful attention to the semantics of those inter-

faces and connections allows the final design to be well-formed and ultimately represent a

valid simulation. CyPhyML provides variety of interface ports for the wrapper components.

Signal ports, power ports and mechanical ports are few among those types. These inter-

face ports are internally connected to the Stateflow or Modelica model contained inside the

wrapper component. To compose compatible components the interface ports are externally

connected. These interconnection types must be specified in the CyPhyML meta-model.

Certain complex context-specific rules for valid interconnections are also modeled as Ob-

ject Constraint Language (OCL)-based constraints. Interconnection between signal ports

are responsible for propagating data and control signals between physical and controller

components. For mechanical and power-based interconnections mechanical and power

ports can be used. The composed models can be simulated by associating them with Test

25

Bench [71] models in CyPhyML. The domain-specific model interpreter tools are applied

on the TestBench models to generate code or transformed models for simulation and anal-

ysis. Figure III.5 shows a controller and a physical system modeled which are imported

into the CyPhyML modeling environment. Both the models in the figure are shown to

be encapsulated by Component wrapper blocks and are interconnected through different

interface ports of the wrapper blocks. The controller sends and receives data and control

signals to the physical system via signal ports labeled as ’S’ on blocks ’A’ and ’B’, while

the physical system is getting its power from block ’D’ via power interface port of block

’B’ and is maintaining a mechanical connection with block ’C’ via mechanical interface

port of block ’B’.

The CyPhyML meta-model is designed using GME. Figure III.6.1 shows that a ’Com-

ponentType’ object can contain a ’SignalFlowModel’ and/or ’ModelicaModel’ objects. In

CyPhyML - a ’SignalPort’ object can be an interface port contained inside a ’Compo-

nentType’ object, a ’IO Signal’ object can be contained as an interface port inside a ’Sig-

nalFlowModel’ object, a ’ModelicaSignalPort’ object can be contained as an interface port

inside a ’ModelicaModel’ object. Figure III.6.2 shows how ’SignalPort’ type ports can

be internally connected to ’IO Signal’ and ’ModelicaSignalPort’ type ports via ’Signal-

PortMap’ type connections to enable meaningful composition of heterogeneous ’Mod-

elicaModel’ and ’SignalFlowModel’ type components. While composing heterogeneous

components in CyPhyML, ’SignalPort’ type ports of different Component wrapper blocks

can be connected via ’InformationFlow’ type connections, as can be deduced from Fig.

III.6.3 and Fig. III.6.4. Figure III.7 shows composition of heterogeneous components

in a vehicle using CyPhyML - a transmission assembly (named ’TransmissionExtended-

GenericV2’), containing a Modelica model with continuous behavior and is controlled by

the transmission controller (named ’TransmissionControllerv2’), containing a StateFlow

model that follows discrete semantics. The controller determines the current gear state

for the transmission assembly based upon its RPM (Rotation Per Minute) values. All sig-

26

Figure III.6: Subsets of the CyPhyML meta-model

27

nals for transmission gears from ’TransmissionExtendedGenericV2’ to ’TransmissionCon-

trollerv2’ are modeled as ’InformationFlow’ type connections, thus, enabling heteroge-

neous composition of both components that have ’SignalPort’ type (strongly typed) inter-

face ports. Figure III.7 also shows how the ’SignalPort’ type ports (’Gear1’ to ’Gear6’) of

’TransmissionControllerv2’ (wrapper component), are internally connected to ’IO Signal’

type ports of ’ControllerContainer’ (a ’SignalFlowModel’ following Stateflow semantics)

to enable heterogeneous composition.

III.5 Cyber components in CyPhyML

To model the behavior of the cyber components, ESMoL (Embedded Systems Modeling

Language) [52], [59] paradigm is adapted in CyPhyML. ESMoL is a DSML to enable mod-

eling of embedded systems and generating simulations for them. Its major purpose lies

in adding distributed deployment capability to Simulink models for platform-specific dis-

tributed architectures and enabling their scheduling analysis. ’MDL2MGA’ is an ESMoL-

specific interpreter tool that converts Simulink models to CyPhyML-specific cyber-domain

models which. ’SignalFlowModel’ in CyPhyML (refer to Fig. III.6 and Fig. III.7) are

the encapsulating wrapper interfaces for the converted models. Strongly typed interface

ports of ’SignalFlowModel’ enable composition of the converted Simulink models with

other physical components in CyPhyML. For simulation purposes, a C code API is gener-

ated for the cyber components in CyPhyML using ’CyPhy2SLC CodeGen’ interpreter tool.

CyPhy2SLC CodeGen is an upgraded and CyPhyML-compatible version of the interpreter

tool developed under the research work for ESMoL that was used to generate the C code

API for Simulink/Stateflow models in ESMoL. The steps for synthesis and code genera-

tion for CyPhyML cyber components are given in Fig. III.8. The two interpreter tools

mentioned in this section are used for performing experiments that are presented in this

thesis.

28

Figure III.7: Heterogeneous composition of components in a Vehicle using CyPhyML

29

Figure III.8: Tools for synthesis and code generation for CyPhyML cyber components

30

III.6 Temporal Logics and their Automaton equivalents

Requirement for verification of safety-critical CPS is paramount. For the purpose of ver-

ification of CPS, some sort of formalism to specify properties of a system is required.

Numerous state-of-the-art verification tools use temporal logic to specify a system’s prop-

erties. Specific properties of a system over certain state-variables can be specified over

time using temporal logic. Temporal Logic [16], [31], [18] can be of two types - Linear

Temporal Logic (LTL) or Computational Tree Logic (CTL). In LTL, the time is assumed to

be linearly increasing during the execution of a system leading to a linear path for time-

based traces, while in CTL, the time can have branching paths leading to a tree structure of

time-based traces. Though the nature of time for a system can be associated with real time,

within the context of verification of systems the notion of time is generally abstract. Hence,

each time step in abstract-time within the context of a specification can be related to, sup-

pose, each sampling cycle of a sensor network, or each computation cycle of a toplevel

system in a CPS etc. In the work presented in this thesis, the LTL formalism is used, and

hence discussed in detail here rather than CTL. In the first subsection LTL is discussed, in

the second subsection equivalent automata for LTL (Büchi Automata) is discussed and in

the third subsection C code representations of LTL formulae are discussed.

III.6.1 Linear Temporal Logic (LTL)

LTL is used to specify Linear Time properties of a system. It extends propositional logic

with temporal modalities [16] – that is, atomic propositions of predicate logics can be asso-

ciated with temporal operators to convert predicate logic to LTL. The elementary temporal

operators are given in Table III.2.

Examples: Suppose a1 and a2 are two atomic propositions over boolean variables p

and q, respectively, such that – a1: (p == true), a2: (q == true). Following are examples

of a few properties written as LTL statements:

1. ’now and forever in the future’ a2 must occur ’in the next time step’ after every

31

Operator Notation Meaning

G (global) now and forever in the future

F (future) eventually in the future

X (next) in the next time step in the future

U (strong until) until some stop condition in the future

W(weak until) forever or until some stop condition in the future

Table III.2: List of Temporal Operators

occurrence of a1. Using temporal operators the LTL mathematical statement can be

written as: ”G (a1�X a2)”, where ’�’ means ’implies’.

2. if a1 occurs in the very first time step, then in the second time step a2 must occur.

The equivalent LTL statement will be: ”a1�X a2”.

3. ’In the future’ if a1 occurs, then in the next time step a2 must occur. The equivalent

LTL statement will be: ”F (a1�X a2)”.

4. a1 occurs ’until’ a2. The equivalent LTL statement will be: ”(a1 U a2)”.

5. Occurrence of a1 leads to occurrence of a2 ’in the future’. The equivalent LTL

statement will be: ”(a1�F a2)”.

For the purpose of verification of systems the atomic propositions can be formulated

over state variables in a system and specification properties can be written in temporal

logic by associating temporal operators with those atomic propositions. An example of

two processes P1 and P2 is given in Fig. III.9. Here both the processes are trying to obtain

mutually exclusive write access to the memory using semaphores. The semaphore variables

for both the processes are ’writeLock’. For such a scenario there can be specified at least

two temporal properties to ensure sound behavior of the whole system: (1) Both processes

should not get write access to the memory at the same time. (2) After P1 gains access to

write to the memory, P2 should also eventually gain write access, and vice-versa.

32

Figure III.9: Two processes writing to a memory

For Fig. III.9, let us assume two atomic propositions A1 and A2 such that - A1:

P1.writeLock == true, A2: P2.writeLock == true. The above stated temporal properties

can be written as follows after applying temporal operators on the conjunction of boolean

atomic propositions A1 and A2:

1. P1.writeLock and P2.writeLock should never be true simultaneously:

”G (!(A1 & A2))”, where ’!’ and ’&’ are boolean operators for ’NOT’ and ’AND’

respectively.

2. P1.writeLock becoming true should eventually lead to P2.writeLock becoming true

in the future:

”A1�F A2”.

There can be two types of temporal properties - safety and liveness [51], [16]. Safety

properties depict that something bad never happens, while Liveness properties mean that

something good eventually happens. In the above example of two processes writing to a

memory, the first property stating that both processes should never simultaneously gain

write access to memory is a good example of a safety property. Verification of this safety

property for the system ensures that a major safety-critical behavior is ensured within the

33

system. The second property in the same example stating that one process eventually gains

write access after the other is a good example of a liveness property. Though the second

property doesn’t relate to safe behavior of the system, but it ensures that both the processes

eventually are able to write to the memory.

III.6.2 Büchi Automaton - An Automaton equivalent for LTL

Once properties are available as LTL statements, they must be converted to C-code state-

ments for C-code verification tools. LTL statements are not suitable for such conversions

directly because of the denotational nature of LTL. Hence, using intermediate operational

forms such as automata remain a good choice to facilitate generation of equivalent C-code

statements for LTL statements. Automata traversal logic in interpreter tools may then eas-

ily automate the generation of LTL-equivalent C-code statements for verification purposes.

Automaton equivalents of LTL properties for models that do not represent finite systems

require the automaton to accept infinite input sequences.

A Büchi Automaton (BA) [60] is an infinite input sequence accepting automaton which

can be used to represent LTL properties. Schnieder and Alpern [13] explain how LTL prop-

erties can be represented as a deterministic Büchi Automaton (DBA) and give examples of

DBA representations of temporal specifications for a mutual exclusion protocol. They fur-

ther explain that the states of a BA can present predicates in a temporal logic and hence

an acceptable input sequence of the BA proves satisfiability of the temporal logic that it

represents. A definition for BA is given in Definition 1.

Definition 1 : A Büchi Automaton is a defined as a six-tuple automaton:

A = (S, S0, δ, F, D, L)

where,

S is finite set of states in the automaton,

S0 ⊆ S is a set of initial states,

δ is a set of transition relations depicting S → 2S,

F ⊆ S is a set of acceptance states,

34

Figure III.10: Büchi Automaton for LTL formula - G F p

D is a finite domain for inputs,

L : S → 2D is labeling function.

In relation to Definition 1 an acceptable input sequence exists when for an infinite

input sequence over domain D an acceptance state from F is reached infinitely often. The

concept of acceptance states can be understood with an example as in Fig. III.10 which

is a Büchi automaton representation of the LTL property (G F p) depicting - ’p’ occurs

infinitely often. It is a DBA with initial state as ’1’ and an acceptance state as ’2’. It can

be intuitively understood that if ’2’ occurs infinitely often for some input sequence in the

DBA then it satisfies the claimed property of p occurring infinitely often.

Lerda and Giannakopoulou [63] explain an approach to minimize the Büchi Automaton

derived from an LTL formula. For verification purposes, the transition system representa-

tion of a system under test is combined with a BA-equivalent of the LTL property via

Cartesian product. The equivalent BA representations of complex LTL formulae can have

an exponential number of states, thus, increasing the state-space complexity of the final

product automaton to be verified. Thus, minimization of a Büchi Automaton leading to

fewer states in the final product automaton helps in verification owing to its reduced state-

space. The authors claim to generate smaller product automata when minimization of BA is

performed by rewriting LTL formulae according to a set of expansion rules (called tableau

rules) and then applying boolean optimizations over the states generated for BA.

35

Figure III.11: Transition-based Generalized Büchi Automaton for LTL formula - G F p

III.6.3 Transition-based Generalized Büchi Automata and its C code equivalent

In this we use another variant of BA, called Transition-based Generalized Büchi Automa-

ton (TGBA) [41], where acceptance conditions are associated with transitions rather than

states. They can be generated with the existing tableau-based methods and potentially gen-

erate much smaller automata than acceptance-state-based BA as suggested in [41]. Figure.

III.11 shows the TGBA equivalent of the BA in Fig. III.10. In the figure, the transitions

with ’{Acc}’ belong to accepting set of transitions. An infinite input sequence for an LTL

formula proves to be satisfiable if infinitely often those transitions are traversed in the cor-

responding TGBA which belong to the accepting set of transitions. In Fig. III.11 if the

accepting transition from state ’1’ to state ’2’ and the accepting self-transition of state ’2’

are traversed infinitely for an infinite input sequence, then it means that ’p’ occurs infinitely

often, hence, satisfying the LTL formula (G F p).

We are interested in automated verification of systems, and hence generate code of

verifiable programmatic wrappers from LTL-formulae-equivalent-TGBA in an automated

manner. To discuss an example of code generation from a TGBA let us consider an LTL

formula (G (p�X q)) denoting – always for every occurrence of ’p’ in the next time step

must occur ’q’, where ’p’ and ’q’ are atomic propositions. Figure III.12 shows the TGBA

and the C code representations of the considered LTL formula. All transitions in the shown

TGBA are acceptance transitions, i.e. satisfiability of the LTL formula proves true if any of

the transitions is traversed for an input sequence. The C code presented is a set of ’if else’

36

Figure III.12: C code for Transition-based Generalized Büchi Automaton for LTL formula
- G (p�X q)

statements with conditions encoding the current state status and proposition conditions for

which transition conditions become true. States ’1’ and ’2’ are labeled as ’G (Xq — !p)’

and ’q & G(Xq — !p)’, respectively.

For verification purposes the generated C-code is utilized by code verification tools.

For an input sequence to the TGBA, a violation of LTL formula is concluded if none of the

accepting transitions in Fig. III.12 are traversed for the input sequence. ’Assert’ statements

are included to the set of ’if else’ statements as given in Fig. III.13 to indicate violations of

the property. If a verification tool reaches the ’assert’ statement during its applied verifica-

tion procedure then a violation is concluded. Features of TGBA, like smaller compact final

automata and convenient code representations and generation, motivates their usage in this

work.

37

Figure III.13: C code for Transition-based Generalized Büchi Automaton for LTL formula
- G (p�X q) with Assert statements

III.7 Model Checking using LTL

For verification of safety-critical CPS, formal methods are currently recommended by re-

searchers. Model Checking is a formal method of verification where exhaustive state-space

explorations is performed automatically on the source CPS models to check whether they

satisfy certain verification properties. To perform model checking, a transition system for

the system under test is modeled and is multiplied with an automaton equivalent to the

negated LTL formula of a property (property representing ’bad behavior’). The derived

product automaton is subjected to model checking tools like CBMC, NuSMV which ap-

ply decision procedures to check if in the product automaton a bad state can be reached.

In cases of unsatisfiability (when a bad state is reachable), a counterexample trace in the

source model is provided for debugging purposes. The model checking approach is shown

in Fig. III.14.

III.8 CBMC - A Symbolic C-code Bounded Model Checker

As explained in Section III.7, model checking for verification of systems requires genera-

tion of the product of a transition system representing the behavior of system under test and

an automaton equivalent of LTL property that is needed to be checked. The generated prod-

uct automaton is provided as an input to model checking tools to perform their verification.

The state-of-the-art model checkers represent the state-spaces of provided input automata

38

Figure III.14: Model Checking Approach

using Binary Decision Diagrams (BDD) [23] or Boolean Encodings (SAT) [20], [19], [24]

to enable application of verification procedures on them. BDD uses explicit representations

of states in a state-space. The explicit state-space representations make use of canonical

forms which make the representations bulky. Additionally, requirements for computation

of variable ordering in BDDs exacerbates the problem of state-space explosion. For this

reason, model checking techniques using BDDs can not handle very large state-spaces

(that include around 1020 states). As a result verification problems for BDD-represented

state-spaces become intractable. To counter this, symbolic model checking tools make use

of propositional formulae to represent states in the state-spaces using boolean encodings.

This enables them to handle very large state-spaces too [24].

CBMC [29], [30], [9] is a symbolic model checker that can be used to verify ANSI-C

programs. It facilitates checks on pointers, bounds on arrays, type safety in addition to user

specified assertions. It converts a specification property and the behavioral state-space of a

39

Figure III.15: CBMC Loop Unwinding Approach

C-program, that is an implementation of a system in C language, into set of propositional

formulae, that are in Conjunctive Normal Form (CNF), to apply satisfiability checks on

them. CBMC converts an input C-program into a goto binary file with extension ’.exe’.

The generated goto-binary is not executable, but essentially a control flow graph of the

C-program comprising of if, else and goto functions. As suggested by CBMC’s name, it

performs bounded model checking on a given C-program. Bounded model checking with

bound of ’k’ means that symbolic model checking is performed till an execution depth of

’k’. CBMC achieves this by the approach of ’loop unwinding’. For an example of loop

unwinding, consider Fig. III.15 where a while loop is converted into a set of three if else

statements for a bound of ’k=3’ in CBMC. With a given bound ’k’ CBMC unwinds the

loop structures till the specified bound to generate the corresponding set of propositional

formulae for the given C-program.

Suppose the set of propositional CNF formulae for a C-program to be tested and a

40

property are signified by ’S’ and ’P’, respectively. CBMC generates a conjunction of ’S’

and negation of ’P’ (S ∧¬P) and checks for its satisfiability by passing it to an efficient SAT

solver. If the generated conjunction formula proves to hold true then a violation of property

occurs and a counterexample is provided by CBMC in that case. It should be noted that

bounded model checking can only suggest satisfiability of a property up to the specified

bound rather than the complete behavioral state-space of a model.

CBMC provides some set of functions [9] that are of relevance to the presented work

in this thesis. They are as follow:

1. CProverAssert(condition, string) is a CBMC assert function which generates an as-

sertion when the supplied condition evaluates to be false. Example: CProverAssert(

a==3, ”Property violated!”); generates an assertion if variable ’a’ is not equal to 3

and prints the passed string in the counterexample output.

2. CProverAssume(condition) takes a condition over a variable in the program and

prunes the further exploration of state-space whenever during an exploration path the

condition evaluates to be false. Example: CProverAssume(a≥ 2&&a≤ 5); prunes

further state-space exploration along a path whenever variable ’a’ has a value not

between 2 and 5 (both 2 and 5 are inclusive).

3. nondet int(), nondet double(), nondet char() are functions that generate random val-

ues with respect to the type of function used (return type is int for function non-

det int). They can be used to achieve better coverage on analysis by randomly as-

signing test values to intended input or dummy variables. Example: a = nondet int();

assigns a random value of type ’int’ to variable ’a’.

Adhering to object-oriented approach may lead to development of several .c and .h files

in any project. CBMC provides facility to create goto-binaries for multiple C files and

link them together into a single .exe goto binary by providing its own compiler and linker

41

executables [9]. Further, provisions of CBMC plugins for Eclipse IDE [2] and Microsoft’s

VisualStudio [12] allow convenient CBMC verification for a given C-based project.

The features of CBMC to model check large C programs against user specified asser-

tions and generation of random data values for better coverage analysis motivate its usage

in the work presented in this thesis.

III.9 NuSMV model checking tool

NuSMV [27] is an open-source model checker written in ANSI-C. It is able to perform

model checking on system models written in the NuSMV language. A system’s architecture

may be modeled in a modular fashion in the NuSMV language. The interface definitions of

the written modules facilitate a fine communication mechanism between them. The parser

in NuSMV reads files defining system models. The compiler in NuSMV then converts the

parsed model into BDD [23] representations containing boolean formulae translated from

the model descriptions. This enables NuSMV to perform efficient model checking by con-

structing and manipulating Finite State Machines (FSMs) at BDD level. NuSMV features

an interactive textual shell and a graphical user interface. NuSMV facilitates the manipu-

lation of FSMs at BDD level by providing options for choosing values of variables inter-

actively at every step during symbolic simulation of models. Alternatively, it may assign

random values to the variables by itself. NuSMV checks semantics, for example, circular

dependencies between different modules, after parsing the models from files. LTL-based

model checking is performed with NuSMV based upon the properties which are specified

as LTL formulae over the variables representing different states of a system. If the model

checking procedure concludes any property violations of the properties, NuSMV provides

counterexample traces to aid in debugging. NuSMV uses state-of-the-art tableau construc-

tion methods for LTL model checking that are described in Section III.6.3. NuSMV pro-

vides the Bounded Model Checking method to check for violation of a property up to a

certain bound. These features motivate NuSMV’s use in this research work.

42

III.10 SPOT Library

Spot Produces Our Traces (SPOT) [35] library is an object-oriented C++ library providing

functions that facilitate verification tasks. Due to the useful features of TGBA, as dis-

cussed in Section III.6.3, SPOT developers chose to rely upon it. The rich set of model

checking functions provided by the SPOT library makes it a good candidate for integration

into verification tools. The Python bindings provided for SPOT also make it a favorable

candidate when a tool’s development framework comprises of Python code. But, Python

bindings were of no concern during our implementation work as the tools presented in this

thesis were developed using C++. The emptiness checking and LTL translation algorithms

from Couvreur [32], [33] are implemented in SPOT. In this thesis, our interest lies only in

converting LTL formulae to TGBA and hence we are concerned only with LTL translation

algorithms provided in SPOT, and not emptiness checking algorithm. The two LTL trans-

lation algorithms in [35] are termed as ’SPOT/FM’ [35] and ’SPOT/LaCIM’; the former

generates compact equivalent automata, while the latter is not intended to generate compact

automata. This motivates the use of ’SPOT/FM’ in implementation presented in this thesis.

SPOT provides a minimalist interface to an abstract class that contains TGBA structure.

Some appealing features of this interface are - (1) easy extraction of initial state of a SPOT-

generated TGBA by the function ’get init state()’. (2) iterator based traversal technique

to read all states and transitions of a TGBA by function ’succ iter()’. (3) understandable

sequence of error log statements printed on a tools console in cases when TGBA generation

fails. These features further motivate our use of the SPOT library in this work. The abstract

diagram in Fig. III.16 depicts the usage of SPOT for verification purposes in this work.

III.11 Google CTemplate

Google CTemplate [3] is a template-based approach to separate computation of data from

its presentation while output is being generated from any tool. As opposed to implement-

ing application logic in a tool to compute data with correct presentation, separating relevant

43

Figure III.16: Abstract workflow for Verification tool using SPOT

variable data computations belonging to repetitive output code helps in minimizing appli-

cation logic that needs to be implemented. Further, it allows us to avoid any change in

application logic due to slight modifications in the presentations of desired output. This

feature is facilitated by Google CTemplate programming by using templates that contain

the generic presentation structures of desired output and annotating them with dictionary

markers to later fill in the computed data wherever necessary. Hence, an application is

required to contain only the implementation logic to compute variable data for filling in

templates. An example of a simple template is given below:

1 {{#ENTRY}} {{EMPLOYEE_NAME}} has a salary of {{SALARY_AMOUNT}} U.S.

Dollars.

2 {{/ENTRY}}

In the template given above, a section dictionary with title ’ENTRY’ contains two tag

names - ’EMPLOYEE NAME’ and ’SALARY AMOUNT’. Given below is a C++ pro-

gram that can be associated with the above template to compute data:

1 #include <stdlib.h>

44

2 #include <string>

3 #include <iostream>

4 #include <ctemplate/template.h>

5 int main(int argc, char** argv)

6 {

7 ctemplate::TemplateDictionary dict(template");

8 ctemplate::TemplateDictionary* entryDict = dict->

AddSectionDictionary(E N T R Y);

9 entryDict.SetValue(EMPLOYEE_NAME", Akshay Agrawal");

10 entryDict.SetValue(SALARY_AMOUNT", 2 0 0 0 ");

11 std::string output;

12 ctemplate::ExpandTemplate(template.tpl", ctemplate::DO_NOT_STRIP

, &dict, &output);

13 std::cout << output;

14 return 0;

15 }

According to the program given above, every time a section dictionary is added to the

TemplateDictionary object ’dict’ by using function ’AddSectionDictionary()’, a new entry

for an employee is printed in the output from the template.

CTemplate has appealing use-cases in development of extension toolset for model-

based design tools. An intuitive example could be the following scenario - suppose a tool

automatically generates a program which contains function calls for several components

in a system. Now, while calling a function in a programming language it is imperative

to pass correct input variables, which in this case maybe the name of interface ports of a

component. In such a scenario, parameters for the function calls of multiple components

having different names for their interface ports can be computed by implementing com-

ponent traversal logic in a tool and using a relevant presentation in the template such as:

"{{#CALL}} componentMain({{PORTNAME}}); {{/CALL}}".

45

The above explained features of the CTemplate system motivate its use in the presented

work.

46

CHAPTER IV

DESCRIPTION OF THE VERIFICATION TOOL CHAIN

As per the proposed solution in Chapter I, for integration of the verification workflow

shown in Fig. I.2 with the CyPhyML framework, interpreter tools in context of CyPhyML

and the VTC meta-model are implemented as extensions to GME to realize the proposed

implementation shown in Fig. I.3. These tools are packaged as a toolchain - the Verifica-

tion Tool Chain (VTC). In this chapter, a conceptual overview is provided along with the

architecture of VTC and description of the features and usage of its interpreter tools. The

next chapter shall contain an illustrative example to show the process of verification for

CyPhyML cyber-domain models using the implemented tools.

IV.1 Conceptual Overview

A conceptual overview of VTC is given in Fig. I.1. The cyber components in CyPhyML

(for which VTC is proposed) are Simulink/Stateflow models representing discrete-time

controllers that are translated to CyPhyML models (refer to Fig. III.8). Temporal verifica-

tion properties can be modeled for these cyber components in GME using VTC, which must

be linked to the cyber components under test. The whole verification setup is developed

in a CyPhyML TestBench. The verification properties can be modeled in three ways - (1)

using a set of English-like patterns for convenience, (2) directly writing LTL formulas for a

temporal property, 3) modeling a temporal property using an ω-automaton (refer to TGBA

in Section III.6.3). To support our research aim of proving correctness of translators, model

checking should be performed directly at the model level on cyber component models. To

achieve this, the NuSMV tool is used. It should be noted that no tools were developed for

automated verification with NuSMV and hence for conducting experiments models were

translated manually to NuSMV representations for their verification. To prove correctness

of translator tools, their generated code output needs to be verified against the same set of

47

properties which are used during NuSMV verification. To achieve this, CBMC tool is used

for verification, and for providing input to CBMC, C code needs to be generated for all the

cyber components and the modeled verification properties that are contained in a developed

TestBench. To facilitate verification of generated C code, its structure is ensured to be such

that the code fragments corresponding to a modeled property act as observing monitors

for the output signals of the cyber components under test. CBMC can then symbolically

simulate the behavior of cyber components and the property monitors to check the status of

the monitors so as to prove or disprove the violation of properties. The later sections of this

chapter contain the descriptions of procedures for property modeling, C code generation

for verification, and the tools used to achieve the goal of verification.

IV.2 Architectural Overview

An architectural overview of VTC is given in Fig. IV.1. The two interpreter tools developed

under VTC are – Verification Property Converter (VPC) and CyPhyTB2Ccode Gen. The

two tools remain available to be invoked from within a TestBench. Any of the three types

of property models (Pattern-based, LTL statement or Automata) can be associated with the

component under test in the TestBench. The RangeGuarantee elements define a range on

the input signals of the component under test allowing the verification tools to symbolically

execute the behavior code of the component within that range. VPC generates a TGBA

property model from a pattern-based temporal property model or an LTL-based property

model. The CyPhyTB2Ccode Gen tool traverses the assembly of components under test

connected to the property model that it is invoked from, according to the causality order

of the components in the assembly. It then generates a verification-enabled C code file

containing execution call statements for the components and the observing monitor. This

file can then be readily fed to CBMC for verification at the code-level. The following

sections describe the features and usage of the tools in further depth.

48

Figure IV.1: Architecture of VTC

IV.3 VTC meta-model

This section describes a meta-model for VTC that is developed in GME. This meta-model

facilitates modeling of temporal properties using a pattern-based approach, LTL formula

writing and an automaton-based approach. The idea behind the pattern-based approach is

to make property modeling for systems convenient for domain engineers who lack expertise

in temporal logic. Further, this model-based approach to property modeling allows for

easy association of verification properties with the system models to be tested from the

beginning of the development cycle. The meta-model for VTC is shown in Fig. IV.2. VTC

meta-model facilitates modeling three types of property blocks -

1. PatternBased Requirement - This type of modeling block uses intuitive English-like

patterns for modeling temporal logic. An example is shown in Fig. IV.3. This type

of property block has two menu-type attributes: PatternType and ScopeType. Pat-

ternType specifies behavior patterns while ScopeType specifies scope patterns. The

49

Figure IV.2: Meta-model for VTC in GME

behavior patterns are used to describe temporal semantics over atomic propositions.

The current set of behavior patterns are given in Table IV.1. Currently, only two

atomic propositions are allowed to be defined in the property block as objects of the

Proposition meta class. A Proposition can be contained only in this type of property

block and it can have either of the two titles ’P’ or ’S’. The titles are used to associate

a Proposition object with the behavior pattern used in its parent pattern-based prop-

erty block. The condition attribute for a Proposition needs to have a conjunction or

disjunction of boolean predicates which are defined over the names of VTC Signal

ports. Of course, these variables must refer to the state of the component under test.

For example, to use behavior ’Immediate Response(P & S)’ two Proposition blocks

must be inserted within the property block, one with title ’P’ and other with title ’S’.

An example of a condition attribute for a Proposition can be: a==5 && b==6 || c≤8,

where a, b, c are names for VTC Signal ports representing the names of signals to be

tested.

50

Behavior Pattern Semantics

Existence(P) ’P’ holds true

Absence(P) ’P’ does not hold true

Immediate Response(P & S) if ’P’ occurs at some time-step then ’S’ occurs in the next time-step after ’P’

Response(P & S) if ’P’ occurs at some time-step then ’S’ occurs in the future after ’P’

Precedence(P & S) ’S’ must have already occurred before ’P’ occurs at some time-step

Table IV.1: Semantics of Behavior Patterns for Temporal Property modeling in VTC

Figure IV.3: A Pattern-based property Example modeled using VTC meta-model

The scope patterns define the scope for which a chosen property behavior is valid.

The scopes for such a pattern are defined by inserting Event Trigger Condition type

blocks that represent atomic propositions with title being either ’R’ or ’Q’. The title

attribute is used to associate an Event Trigger Condition with the scope pattern de-

fined for its parent property block. The condition attribute for Event Trigger Condi-

tion is similar to that of Proposition. The semantics of different scope patterns are

given in Table IV.2.

2. LTLSPEC Requirement - This type of property block is used to write the LTL for-

51

Scope Pattern Semantics

Globally A defined behavior must be true always

Before R A defined behavior must be true before occurrence of event ’R’

After Q A defined behavior must be true after occurrence of event ’Q’

Between Q and R A defined behavior must be true between occurrences of events ’Q’ and ’R’, in that order.
Uses strong until temporal operator (U).

After Q Until R Analogous to Between Q and R but Uses weak until temporal operator (W).

Table IV.2: Semantics of Scope Patterns for Temporal Property modeling in VTC

mula representing a temporal property directly as a string in the LTLSPEC attribute

of the block without making use of any patterns. The boolean predicates of atomic

propositions in an LTL formula must be defined over signal variables which are the

same as names of VTC Signal ports inserted in the property block.

3. PropertyTGBA Requirement - This type of property block is used to model a TGBA

that is equivalent to a temporal logic of a property. Figure IV.4 shows an example

of this type of property block. States of the TGBA are inserted as VTC State type

objects. A VTC State has three attributes: LabelName, InitialState, State Number.

A LabelName is a label string for the TGBA state. InitialState is a boolean variable

for specifying whether a TGBA state inserted is an initial state or not. State Number

must be unique within a TGBA.

Transitions between TGBA states are inserted as VTC Transition connections be-

tween Transition Condition ports in two different VTC States. A Transition Condi-

tion is contained inside a VTC State and its condition attribute contains the boolean

condition for which the transition can be true. The signal variables over which this

condition is defined must be the same as the names of VTC Signal ports contained

in the property block. A Transition Condition also has two other attributes: Accep-

tance Transition and Condition Acceptance. The Acceptance Transition is a boolean

attribute that defines whether a transition is an accepting transition of the TGBA or

not. Condition Acceptance is a string-based attribute and contains a condition for

52

Figure IV.4: An automaton based (TGBA) property modeled using VTC meta-model

which the transition becomes accepting. An example of a Transition Condition de-

fined inside a VTC State is shown in Fig. IV.4.

This type of property block is defined with two attributes: Acceptance Condition

and No Acceptance sets. The Acceptance Condition attribute is a boolean attribute

and if it is false then it means that all the transitions of the TGBA are accepting

transitions otherwise if it is true then only a subset of all the transitions of the TGBA

are accepting. No Acceptance sets are the number of accepting transitions sets that

the TGBA contains.

53

A PatternBased Requirement can have VTC BusPortInterface and VTC Signal type

ports. A VTC BusPortInterface type port is a collection of VTC SignalPort type port ob-

jects and signifies a named collection of signals rather than a single signal. A VTC BusPort

Interface inside a property block indicates that the block is receiving a collection of sig-

nals from another component under test in a CyPhyML TestBench via a CyPhyML Bus-

Port that represents a collection of multiple connection links. To indicate a connection of

a property block via a single signal with another component under test inside TestBench

a VTC Signal port can be used. The VTC BusPortInterfaceRef and VTC SignalPortRef

type objects refer to VTC BusPortInterface and VTC Signal type ports. This type of ref-

erencing scheme is used when a PatternBased Requirement is automatically converted to

LTLSPEC Requirement and PropertyTGBA Requirement blocks using Verification Prop-

erty Conversion Interpreter Tool (VPC). This conversion is described further in the next

section. An LTLSPEC Requirement and/or PropertyTGBA Requirement block, converted

using VPC, contains references to ports in the PatternBased Requirement block from which

they are converted. The VTC BusPortInterfaceRef and VTC SignalPortRef type objects are

only used during automated property block conversions. As an alternative to converting

from a PatternBased Requirement block, whenever LTLSPEC Requirement and/or Prop-

ertyTGBA Requirement blocks are developed from scratch, VTC BusPortInterface and VT-

C Signal type ports can be inserted to receive signals directly from components under test

in a TestBench. A RequirementParameter type object inside a property block is used to

define variables that are not signals received by ports in a property block but are used in

boolean predicates in propositions for Proposition and Event Trigger Condition attributes.

All the three types of property blocks can be inserted inside a CyPhyML TestBench

where they can be connected to other components that need to be verified. Figure IV.5

shows a meta-model that depicts the VTC property block containment and connection re-

lationships within a TestBench. A MapToVTC Signal connection represents the connection

of the monitor specification to an OutputSignalPort of the component under test; a Bus-

54

Figure IV.5: Meta-model for integration of VTC with CyPhyML TestBench

Port MapToVTC Signal connection represents the connection of the monitor specification

to a BusPort of the component under test. For the purpose of verification of a compo-

nent with the use of VTC and CBMC, InputRangeGuarantee type objects are associated

with InputSignalPort type ports of a component under test to define a range on the compo-

nent’s input signals. The two attributes, Maximum and Minimum, of InputRangeGuarantee

specify the minimum and maximum values for an input signal. These values are used to

generate CProverAssume() (refer to Section III.8) statements for CBMC verification. To

define ranges for input signals that are collectively presented by a BusPort of a component,

a RangeGuarantee Container BusPort can be used which can contain one or more Inpu-

tRangeGuarantee objects/blocks. Figure IV.6 shows an example of a TestBench constructed

for CBMC verification using meta-models described above.

IV.4 Pattern-based property to equivalent TGBA to C code monitor translation

Verification Property Converter (VPC) is the interpreter tool of VTC that converts a TGBA

from a pattern-based temporal property or an LTL formula. VPC is developed in C++ using

the object-oriented API for CyPhyML and VTC meta-models using UDM [56]. VPC trans-

lates the transitions of the TGBA into a set of if-else statements (refer to Fig. III.12). Figure

55

Figure IV.6: Example of a CyPhyML TestBench constructed using the VTC meta-model

56

Figure IV.7: Working for Verification Property Conversion (VPC) Tool

IV.7 shows the usage for VPC. Figure IV.3 shows the icon for VPC tool in GME. Dur-

ing the conversion of a PatternBased Requirement to a PropertyTGBA Requirement using

VPC, an LTLSPEC Requirement is generated as an intermediate result. All the VTC Signal

and VTC BusPortInterface ports contained in the property block are converted to their cor-

responding reference ports, i.e. VTC SignalPort Ref and VTC BusPortInterface Ref, re-

spectively, in the generated property blocks by VPC. This allows domain engineers to first

conveniently model a property using patterns and then invoke VPC on it to generate the

property’s equivalent LTL formula and TGBA to further modify the properties if needed

or use them as is. To convert a pattern-based property to an LTL formula VPC uses map-

pings encoded within it which are implemented from [7]. The LTL mappings for different

combinations of behavior and scope patterns are given in Table IV.3. VPC then uses the

mapped LTL formula as input to the SPOT/FM function (provided within SPOT library)

for LTL to TGBA conversion to produce a fine TGBA structure as a result. The TGBA

structure resulting from SPOT/FM function is traversed in a Breadth-first-search fashion

using its iterators provided within SPOT library to generate a PropertyTGBA Requirement

block.

IV.5 Generation of verification facilitated C code files from TestBench

C code representing behavior of cyber components in CyPhyML is generated using the Cy-

Phy2SLC CodeGen interpreter tool (the GME icon for this tool is shown in Fig. IV.3). Cy-

Phy2SLC CodeGen generates .c and .h type of source code and header files for a Simulink/

Stateflow model of a cyber component in CyPhyML. The generated code provides initial-

ization and main execution functions for the cyber components. For the purpose of verifica-

57

Behavior Pattern Scope Pattern Mapped LTL Formula

Existence(P) Globally G ”p”
Before R !”r” W (”p” & !”r”)
After Q G(!”q” | (”q” & F”p”))
Between Q and R G((”q” & !”r”)�(!”r” W (”p” & !”r”)))
After Q Until R G(”q” & !”r”�(!”r” U (”p” & !”r”)))

Absence(P) Globally G !”p”
Before R F ”r”�(!”p” U ”r”)
After Q G(”q”�G(!”p”))
Between Q and R G((”q” & !”r” & F”r”)�(!”p” U ”r”))
After Q Until R G(”q” & !”r”�(!”p” W ”r”))

Immediate Response(P, S) Globally G (”p”�X ”s”)
Before R F”r”�(”p”�X (”s” & !”r”) U ”r”)
After Q G(”q”�G(”p”�X”s”))
Between Q and R G((”q” & !”r” & F”r”)�(”p”�X(”s” & !”r”)) U ”r”)
After Q Until R G(”q” & !”r”�((”p”�X(”s” & !”r”)) W ”r”))

Response(P, S) Globally G (”p”�F ”s”)
Before R F”r”�(”p”�(!”r” U (”s” & !”r”))) U ”r”
After Q G(”q”�G(”p”�F”s”)
Between Q and R G((”q” & !”r” & F”r”)�(”p”�(!”r” U (”s” & !”r”))) U ”r”)
After Q Until R G(”q” & !”r”�((”p”�(!”r” U (”s” & !”r”))) W ”r”))

Precedence(P, S) Globally !”p” W ”s”
Before R F”r”�(!”p” U (”s” | ”r”))
After Q G(!”q”) | F(”q” & (!”p” W ”s”))
Between Q and R G((”q” & !”r” & F”r”)�(!”p” U (”s” | ”r”)))
After Q Until R G(”q” & !”r”�(!”p” W (”s” | ”r”)))

Table IV.3: Mappings between VTC Property Patterns and LTL formulae

tion of a component a verification wrapper file is generated by the CyPhyTB2Ccode Verification

interpreter tool in an automated fashion, wherein an observing monitor (C code frag-

ment for a property) is integrated with the execution calls of the cyber components in

the TestBench. This enables the monitor to investigate the output signals of the compo-

nent under test. Like VPC, CyPhyTB2Ccode Verification is also developed in C++ using

the API for VTC and CyPhyML meta-models (the API is generated using UDM). Cy-

PhyTB2Ccode Verification uses Google CTemplate file for template based C code genera-

tion. The template used for wrapper file generation is given below:

1 // Header Declarations

2 #include <stdio.h>

3 {{#HEADER_FILE}}#include "{{FILE}}"

4 {{/HEADER_FILE}}

5

6 #define bool int

58

7 #define true 1

8 #define false 0

9

10 // Structure for the TGBA Automaton

11 {{TGBA_CODE}}

12

13 // Main function

14 int main(void)

15 {

16 // Variable Declarations : Type Double ; Name: Port/

RequirementParameter/InSignalRangeGuarantee names

17 {{#VAR_DECL}}double {{VAR_NAME}} {{#INIT_ZERO}} = 0 {{/INIT_ZERO}};

18 {{/VAR_DECL}}

19

20 // Declarig Contexts for all the TopLevel Subsystems inside all

found SignalFlowModels

21 {{#SUBSYS_CONTEXT_OBJECT}}{{SFTOPLEVELSUBSYS_NAME}}_context {{

SFTOPLEVELSUBSYS_NAME}}_context_Object;

22 {{/SUBSYS_CONTEXT_OBJECT}}

23

24 // Initializing the Signal Flow Models by initializing their

Toplevel Subsystems

25 {{#SUBSYS_INIT_CALL}}{{SFTOPLEVELSUBSYS_NAME}}_init(&{{

SFTOPLEVELSUBSYS_NAME}}_context_Object);

26 {{/SUBSYS_INIT_CALL}}

27

28 while(1)

29 {

30 // Declaring Assumptions for CBMC Verification

31 {{#ASSUME}}{{ASSUME_VALUE}} = nondet_double();

32 __CPROVER_assume({{ASSUME_VALUE}}>={{LOW_VALUE}} && {{

ASSUME_VALUE}}<={{HIGH_VALUE}});

33 {{/ASSUME}}

59

34

35

36 // Execution Calls to Toplevel Subsystems

37 {{#SUBSYS_MAIN_CALL}}{{CALL}};

38 {{/SUBSYS_MAIN_CALL}}

39

40 printf("OUTPUT---- {{#VAR_DECL}} {{VAR_NAME}}: %4.2f,{{/VAR_DECL

}}"{{#VAR_DECL}}, {{VAR_NAME}}{{/VAR_DECL}});

41

42 // Verification TGBA Automaton Observe Call

43 {{OBSERVE_CALL}}

44 }

45

46 // Verification TGBA Acceptance check - For eventuality definig

properties.

47 {{ACCEPTANCE_CALL}}

48

49 return 0;

50 }

In the template given above, lines 1-4 are used to print the header file names for all the

cyber components in TestBench. A C code structure for an observing monitor is printed in

the wrapper file using the template tag in line 9. The generation of the monitor’s C code

structure is explained later in this section. The main function in line 11 becomes the entry

point for CBMC symbolic simulation, if no other specific function is stated to be an entry

point while using CBMC (CBMC can check explicit functions if the function’s identifier

is provided to it, otherwise it treats the main function as an entry point). Line 14 is used

to print variable declarations for input and output signals (names of interface ports) of all

cyber components in the TestBench. Line 22 is used to print the initialization functions for

all the cyber components in the TestBench, which is necessary before calling their main

execution functions. In line 25, an infinite while loop is used to indicate an infinite number

60

of execution cycles for the cyber components under test. To enable only a finite number

of executions for cyber components, this while loop can be manually modified to a for

loop. Line 29 is used to print CBMC-compatible assume statements (refer to Chapter II

for CBMC assume functions) for input signal variables of the cyber components that are

assigned random test values for guiding the execution of the cyber components. Assume

statements are only printed for the input signal variables of interface ports which are associ-

ated with InputRangeGuarantee type objects in the TestBench. The random values for these

variables are generated using CBMC’s random value generator function (refer to Chapter

II) as given in line 28. Line 34 is used to print the main execution function calls of the cyber

components in the TestBench. These functions are provided input and output variables as

parameters. The values of output variables change as per the behavioral logic of the main

execution functions. Line 40 is used to print the observe function calls of observing mon-

itors. The functions are passed a set of input variables as parameters for the output signal

variables of the cyber components composed within the system under test. The variables

represent the state of the system under test and are checked after every single execution

cycle of all the cyber components within the system. This enables monitoring based ver-

ification. The acceptance function calls of the monitors are printed using line 44. The

descriptions of monitor’s observe and acceptance calls are discussed with the description

of observing monitor’s C code generation in the next paragraph.

The observing monitors are C code translations of TGBA equivalents of temporal prop-

erties. As discussed in Section IV.4, the TGBA equivalent (PropertyTGBA Requirement

for a modeled PatternBased Requirement or LTLSPEC Requirement property block can be

generated using VPC. The VPC-generated TGBA property block is translated to C code

by CyPhyTB2Ccode Verification tool. To perform this translation another CTemplate file

is used that is given below:

1 struct {{SPEC_NAME}}

2 {

61

3 bool accepting_observer;

4 bool accepted;

5 int state;

6 } {{SPEC_NAME}}_obj={{{ACC_OBS}}, false, {{INIT_STATE}}};

7

8 void {{SPEC_NAME}}_observe(struct {{SPEC_NAME}} *specobj{{#SIGNAL}},

double {{SIGNAL_NAME}}{{/SIGNAL}})

9 {

10 printf("OUTPUT---------TGBA state: %d", specobj->state);

11

12 {{#REQUIREMENT_PARAMETERS}}double {{RP_NAME}} = {{RP_VALUE}};{{/

REQUIREMENT_PARAMETERS}}

13 specobj->accepted = false;

14 {{#TRANSITION}}

15 // STATE_{{CURR_STATE}} ----{{CONDITION}}----> STATE_{{NEW_STATE

}}

16 if ((specobj->state=={{CURR_STATE}}) && {{CONDITION}})

17 {

18 specobj->state = {{NEW_STATE}};

19 {{#ACCEPTANCE_TRANSITION}}specobj->accepted = true;{{/

ACCEPTANCE_TRANSITION}}

20 }

21 else{{/TRANSITION}}{{#OBSERVE_ASSERT}}

22 {

23 __CPROVER_assert(0,"{{SPEC_NAME}} violated!");

24 }{{/OBSERVE_ASSERT}}

25 }

26

27 void {{SPEC_NAME}}_acceptance_check(struct {{SPEC_NAME}} *specobj)

28 {

29 if (specobj->accepting_observer == true)

30 {

31 if(specobj->accepted == false)

62

32 {

33 __CPROVER_assert(0,"{{SPEC_NAME}} violated!");

34 }

35 }

36 }

In lines 1-6 of the template give above, a C structure is defined for a TGBA-based

observing monitor. The C structure for a TGBA has three member variables: accept-

ing observer, accepted, state. The member variable accepting observer is a boolean vari-

able which when is TRUE signifies that the TGBA has only a subset of accepting transi-

tions, and when is FALSE then signifies that all are accepting transitions (refer to Chapter

II and Fig. III.11). The member variable accepted is a boolean variable which is checked

in the acceptance check call (as in lines 24-34) whenever a TGBA has only a subset of

transitions as accepting ones. The member variable state specifies the current state of a

TGBA during an execution cycle and is used in the conditions of if-else statements in the

monitor’s observe call (as in lines 7-23). As described in Chapter II, a TGBA can be rep-

resented by a set of if-else statements which are based upon the transitions of the given

TGBA (refer to FiFig.reffig:CcodeTGBAEx1). The set of if-else statements in a moni-

tor’s observer call represent the transitions of the TGBA. The assert functions in lines 21

and 31 are used as property violation assertion statements. These assert statements are

used as user-based assertions by CBMC for checking violation of the given property. If

these assert statements are reachable during symbolic execution of CBMC then it proves

violation of the given property, otherwise it disproves any such violation within the loop

unwinding bound analyzed by CBMC. Examples of C code generation for a TGBA by Cy-

PhyTB2Ccode Verification can be seen in the illustrative examples that are discussed later

in this chapter.

CyPhyTB2Ccode Verification is invoked from within a property block. Once invoked it

generates the verification-enabled C code file as follows:

63

1. If the interpreter tool is invoked from within a PatternBased Requirement or a LTL-

SPEC Requirement block then it searches for its equivalent PropertyTGBA Require-

ment block within the same CyPhyML TestBench. The name of the equivalent Prop-

ertyTGBA Requirement block is composed of the source property block’s name and

an augmented string ” TGBA”. For example, to search for an equivalent Proper-

tyTGBA Requirement for a source property block with name ’Prop1’, the interpreter

searches for a PropertyTGBA Requirement block with name ’Prop1 TGBA’ within

the same TestBench. This step is not performed by the interpreter if it is invoked from

within a PropertyTGBA Requirement block.

2. The interpreter generates the C code for the TGBA modeled inside the PropertyT-

GBA Requirement that is found above.

3. The interpreter traverses the components in given TestBench that are connected to

the property block. Every MapToVTC connection type connection for a property

block’s interface ports (or ports referenced by property block’s VTC SignalPort Ref

and VTC BusPortInterface Ref type objects) are traversed in the reverse direction in

a Breadth-first-search fashion. If two components A and B are connected to each

other such that output of A drives the input for B in the model, then according to

the concept of causality relationships for input stimulations of different components

that are connected to each other, A must be executed before B to provide meaning-

ful input to B. Hence, a reverse Breadth-first-search traversal approach is used to

make sure that the sequence of main execution functions of cyber components in the

TestBench printed in the wrapper file adheres to the causality relationships between

interconnected components. Currently for use of the CyPhyTB2Ccode Verification

tool, it is assumed that the graph of interconnected cyber components in a TestBench

has no cycles, as there is no mechanism developed to resolve cyclic dependencies be-

tween the components within a CyPhyML TestBench for C code generation to enable

64

verification with CBMC.

65

CHAPTER V

ILLUSTRATIVE EXAMPLE

V.1 Ignition Model

In this section a Simulink/Stateflow model is discussed as an experimental example. The

Stateflow given in Fig. V.1 is a model of Ignition Logic controller of a vehicle which

controls the ignition light on the dashboard of the vehicle and controls the starter of the

vehicle based on a signal from the ignition key and the running status of the engine of the

vehicle. Table V.1 gives the description of the I/O signals and variables used in the model.

The expected behavior of the controller is as follows: when the ignition key is turned on

while the engine is not running, the starter should be engaged so as to start the engine and

be disengaged once the engine has started. The ignition light on the dashboard must reflect

the status of the engine at all times correctly.

This model was imported to the CyPhyML environment in GME using MDL2MGA, the

Simulink import utility, and its behavioral C code was synthesized using CyPhy2SLC Code-

Gen. Using VTC, a few temporal properties were modeled in GME and were linked to the

CyPhyML wrapper component which contained the imported model. For every property a

separate CyPhyML Testbench was prepared and C code verification files for CBMC were

Signal Name: Data Type Type of Signal Value Range Description

key pos: integer or double Input [0, 2] Signifies position for ignition key.
0 - key off, 1 - key on (electrical system turned on),
2 - turn on engine

engine running: integer or double Input [0, 2] For status of engine.
0 - engine is off, 1 - engine is running

ignition signal: integer or double Output [0, 2] Status for ignition on dashboard of vehicle.
0 - engine off, 1 - engine running, 2 - engine is get-
ting started

engage starter: integer or double Output [0, 1] Status of starter.
0 - starter off, 1 - starter on

Table V.1: IO Signals description for Ignition Logic controller

66

Figure V.1: Stateflow design for Ignition Logic controller

67

Figure V.2: CyPhyML TestBench for verification of Ignition Logic controller in GME

generated by using VPC and CyPhyTB2Ccode Verification interpreter. Figure V.2 shows

the TestBench developed for property 1 (the details of the property are discussed later in this

section). In the given figure, IgnitionController is the CyPhyML component wrapper for

the Stateflow model and InputRangeGuarantee objects are defined for both input signals.

For key pos the range is specified to be [0, 2] and for engine running it is [0,1].

At the model level, NuSMV was used to perform verification of the same properties

that were intended to be checked by CBMC. Bounded model checking was performed

with both the verification tools, CBMC and NuSMV, with a bound of 30. The NuSMV

representation of the controller was written manually and is given in Appendix VII.1. As

only integer values are allowed in NuSMV’s modeling language, the non-integer values

were approximated to the closest relevant integer values.

Verification property modeling using patterns in VTC of three properties, their equiv-

alent LTL formulae and TGBA, and C code translations used for CBMC verification are

given in forthcoming sub-sections. The experimental results are summarized in the final

sub-section.

68

Figure V.3: TGBA equivalent of Verification Property 1 2 of the Ignition Logic Controller

V.1.1 Property 1: States of the Engine and the Ignition Light

The first property to be verified was - ”the engine should be running before the ignition light

reflects that the engine is running”. The parameters for the pattern-based property block

modeled using VTC for this property and its equivalent LTL formula generated using VPC

is as follows:

PatternBased Requirement:

Behavior Pattern: Precedes(P & S) - S precedes P:

S: (engine running>=0.5),

P: (ignition signal==1.00)

Scope Pattern: Globally

LTLSPEC Requirment:

LTLSPEC: !"ignition signal==1.00" W "engine running>=0.5"

In NuSMV the weak until operator (W) is not valid and hence the above LTL formula

is re-written with strong until operator (U) for NuSMV as (using conversion given in [7]) -

!(Ignition Logic.ignition signal=1) U

((engine running=1) | G(!(Ignition Logic.ignition signal=1)))

The TGBA equivalent for the LTL formula for Property 1 is given in Fig. VII.1 where

all of the transitions are accepting transitions.

1 // STATE_1 ----((engine_running>=0.5))----> STATE_2

2 if ((specobj->state==1) && ((engine_running>=0.5)))

3 {

69

4 specobj->state = 2;

5 }

6 else

7 // STATE_1 ----(!(ignition_signal==1.00) && !(engine_running>=0.5))

----> STATE_1

8 if ((specobj->state==1) && (!(ignition_signal==1.00) && !(

engine_running>=0.5)))

9 {

10 specobj->state = 1;

11

12 }

13 else

14 // STATE_2 ----(1)----> STATE_2

15 if ((specobj->state==2) && (1))

16 {

17 specobj->state = 2;

18 }

19 else

20 {

21 __CPROVER_assert(0,"engineON_PRECEDES_ignitionON_TGBA violated!");

22 }

The if-else statements generated by using VTC from the TGBA in Fig. VII.1 are given

in the above code snippet. State 1 is the initial state for the TGBA. The if-statement on

line 2 is specified with the condition on the transition from state 1 to state 2 in the TGBA.

When the condition is true the current state member of the TGBA object is set to state 2

from state 1. Line 7 shows the if-statement with condition on the self-looping transition

of state 1. When the condition becomes true then the state of the TGBA object doesn’t

change as shown in line 10. The self-looping transition’s condition on state 2 of the TGBA

is specified as if-statement on line 14. If none of these if-statements hold true at any point

during the symbolic execution of the code by CBMC, then the assert statement in the else-

70

block on line 19 will be reached resulting in violation of the property. In the context of

Property 1 it can be seen that when the engine is not running and the ignition light remains

on then none of the transitions’ condition from state 1 can hold true resulting in violation.

This behavior of the automaton is desired as per the logic of the property.

1 // Initializing the Signal Flow Models by initializing their Toplevel

Subsystems

2 ignition_init(&ignition_context_Object);

3

4 while(1)

5 {

6 // Declaring Assumptions for CBMC Verification

7 engine_running = nondet_double();

8 __CPROVER_assume(engine_running>=0 && engine_running<=1);

9

10 key_position = nondet_double();

11 __CPROVER_assume(key_position>=0 && key_position<=2);

12

13 // Execution Calls to Toplevel Subsystems

14 ignition_main(&ignition_context_Object, key_position, engine_running,

&engage_starter, &ignition_signal);

15

16 printf("OUTPUT---- engage_starter: %4.2f, engine_running: %4.2f,

ignition_signal: %4.2f, key_position: %4.2f,", engage_starter,

engine_running, ignition_signal, key_position);

17

18 // Verification TGBA Automaton Observe Call

19 engineON_PRECEDES_ignitionON_TGBA_observe(&

engineON_PRECEDES_ignitionON_TGBA_obj, ignition_signal,

engine_running);

20 }

71

The above code listing shows a snippet from the generated verification-enabled C code

wrapper file from the TestBench for Property 1 by the CyPhyTB2Ccode Verification tool.

The snippet is taken from the main function of the generated C file. Line 2 contains the

initialization call to the ignition controller model. The function is defined in a header file

specified in an include statement at the beginning of the generated file. The header file

is one of the generated file from the code-generator under test that is used for generating

the behavior C code for the controller model. Though line 4 contains an infinite while

loop, CBMC will only unwind it till the specified bound, which is 30 in this case. In lines

7 & 10 the input signals to the controller are assigned a random value. If the values are

not within the range as specified in the assume-statements in lines 8 & 11 then CBMC

will avoid unwinding the loop further during the current iteration and will reiterate through

the loop. The value range specified in the assume-statements comes from the values as

were specified in the InputRangeGuarantee atoms in the verification TestBench. Line 14

contains the execution call to the controller model to make it proceed to the next logical

time step. In the statement on line 19 a call to execute TGBA monitor is made where the

property is checked for violation during every iteration of the containing while loop. It

should be noted here that the possibility of generating same combinations of the values for

the randomly assigned variables always remains. To make sure that such situation does

not prevail, the output from CBMC was manually observed to check for the assignment of

all possible permutations and combinations of random values that were being assigned to

relevant variables. The complete generated file is given in Appendix VII.2.2 for reference.

After performing verification with NuSMV and CBMC, the results from both tools

proved satisfiability of the verification property.

V.1.2 Property 2: Constraint on the Starter’s Engage state

The second property for verification states - ”if the ignition key is turned on when the engine

is not running then the starter should be engaged next so as to start the engine”. Using

72

Figure V.4: TGBA equivalent of Verification Property 2 of the Ignition Logic Controller

VTC, the property was modeled as follows:

PatternBased Requirement:

Behavior Pattern: Immediate Response(P & S) - S occurs next after P:

S: (engage starter==1.00)

P: (key position>1.00 && engine running<1.00)

Scope Pattern: Globally

LTLSPEC Requirment:

LTLSPEC: G ("key position>1.00 && engine running<1.00" ->

X "engage starter==1.00")

The LTL formula for property 2 used in NuSMV verification is:

G ((key position>1 & engine running<1) ->

X (Ignition Logic.engage starter=1))

The TGBA equivalent for the LTL formula for Property 2 is given in Fig. VII.2. The

generated C code wrapper file for CBMC verification is given in Appendix VII.3.

Verification with both NuSMV and CBMC resulted in violation of the property with

the following counterexample traces:

NuSMV Counter-Example:

-> State: 1.1 <-

key position = 2

engine running = 0

Ignition Logic.ignition signal = 0

73

Ignition Logic.engage starter = 0

Ignition Logic.state = Off

-> State: 1.2 <-

key position = 1

engine running = 1

Ignition Logic.ignition signal = 2

Ignition Logic.state = Start

CBMC Counter-Example:

OUTPUT---- engage starter: 0.00, engine running: 1.00,

key position: 2.00,

OUTPUT---- engage starter: 0.00, engine running: 0.00,

key position: 2.00,

The NuSMV tool prints the values for only those variables in the counter-example trace

which get changed when entering into a new state. In the above counter-example trace

from NuSMV, it can be seen that during State 1.1 the ignition key’s position value and

the engine’s running state variables indicate that the ignition is turned to ON state when

the engine is not running. According to the description of Property 2 the starter should be

engaged in the next state, that is, the engage starter signal should get ’1’ assigned to it

in State 1.2. But, in the counter-example trace there is no information printed out on the

starter’s signal in State 1.2 indicating no change in the signal’s value from State 1.1. Thus,

the property is violated. The CBMC counter-example trace shown for the violation of the

property can be understood in the same manner from its two output statements.

V.1.3 Property 3: Transition of the Starter states

The third property for verification states - ”always whenever the ignition key is turned off

and the starter is on then next the starter should be disengaged”. Using VTC, the property

was modeled as follows:

74

Figure V.5: TGBA equivalent of Verification Property 3 of the Ignition Logic Controller

PatternBased Requirement:

Behavior Pattern: Immediate Response(P & S) - S occurs next after P:

S: (engage starter<1.00)

P: (key position<1.00 && engage starter>0.00)

Scope Pattern: Globally

LTLSPEC Requirment:

LTLSPEC: G ("key position<1.00 && engage starter>0.00" ->

X "engage starter<1.00")

The LTL formula for property 3 used in NuSMV verification is:

G ((key position<1 & Ignition Logic.engage starter>0) ->

X (Ignition Logic.engage starter<1))

The TGBA equivalent for the LTL formula for Property 3 is given in Fig. VII.3. The

generated C code wrapper file for CBMC verification is given in Appendix VII.4.

Verification with both NuSMV and CBMC resulted in violation of the property with

following counterexample traces:

NuSMV Counter-Example:

-> State: 1.1 <-

key position = 2

engine running = 0

Ignition Logic.ignition signal = 0

Ignition Logic.engage starter = 0

Ignition Logic.state = Off

-> State: 1.2 <-

75

engine running = 1

Ignition Logic.ignition signal = 2

Ignition Logic.state = Start

-- Loop starts here

-> State: 1.3 <-

key position = 0

Ignition Logic.ignition signal = 1

Ignition Logic.engage starter = 1

Ignition Logic.state = On

-> State: 1.4 <-

CBMC Counter-Example:

OUTPUT---- engage starter: 0.00, engine running: 0.00,

ignition signal: 0.00, key position: 1.00,

OUTPUT---- engage starter: 0.00, engine running: 0.00,

ignition signal: 0.00, key position: 2.00,

OUTPUT---- engage starter: 0.00, engine running: 1.00,

ignition signal: 0.00, key position: 0.00,

OUTPUT---- engage starter: 0.00, engine running: 0.00,

ignition signal: 0.00, key position: 0.00,

OUTPUT---- engage starter: 0.00, engine running: 0.00,

ignition signal: 0.00, key position: 2.00,

OUTPUT---- engage starter: 1.00, engine running: 0.00,

ignition signal: 0.00, key position: 0.00,

OUTPUT---- engage starter: 1.00, engine running: 0.00,

ignition signal: 0.00, key position: 0.00,

The NuSMV tool prints the values for only those variables in the counter-example trace

which get changed when entering into a new state. In the above counter-example trace from

NuSMV, it can be seen that during State 1.3 the ignition key’s position value indicates that

the ignition is switched off. According to the description of Property 3 the starter should

be disengaged in the next state, that is, the engage starter signal should get ’0’ assigned to

it in State 1.4. But, in the counter-example trace there is no information printed out for the

76

State 1.4 indicating no change in any variable’s value from State 1.3. Thus, the property is

violated. The CBMC counter-example trace shown for the violation of the property can be

understood in the same manner from its last two output statements where turning off the

ignition key doesn’t change the signal to the starter in the next step.

V.1.4 Experiment Results Summary

By performing verification of critical properties for the Ignition Logic controller we intend

to support correct code generation from the C code generator tool, CyPhy2SLC CodeGen,

for CyPhyML cyber models. As per the consistency in the results of NuSMV and CBMC

verification, as summarized in Table V.2, we are able to generate better trust on the transla-

tion by the code generator tool under test.

Verification Property NuSMV Verification CBMC Verification

Property 1 Not violated Not violated.Verification Time: 36.68 sec

Property 2 Violated Violated.Verification Time: 36.323 sec

Property 3 Violated Violated.Verification Time: 36.804 sec

Table V.2: Verification results for Ignition Logic controller

77

CHAPTER VI

DISCUSSIONS

VI.1 Conclusions

The presented tool chain, Verification Tool Chain (VTC), is expected to reduce the efforts

of domain-specific design engineers and encourage to include verification procedures dur-

ing CPS development life cycles. The pattern-based modeling feature of the toolchain al-

lows use of English-like patterns to model complex temporal properties, and the automated

workflow makes the verification procedure less tedious. We do not claim that the patterns

to model verification properties in VTC are sufficient to model any complex temporal logic,

but, as mentioned by Dwyer et al. [36], [37], the captured patterns allow a major percent-

age of the verification properties in the industry to be modeled conveniently. Additionally,

the engineers who find it more intuitive to model properties as automata are provided with

the automata-based property modeling feature in VTC. Integration of developed interpreter

tools with GME and automation schemes for VTC enable quick and easy way of integra-

tion of verification schemes with development life-cycle for CPS. With the use of VTC,

major behavioral errors in the systems can be exposed early during development to benefit

from in the long run. Verification of functional behavior preservation during translation of

the synthesized code leads to trustable deployable code in-house-developed interpreter or

translator tools. Given the above factors, the overall cost and time for development is ex-

pected to reduce significantly. Automated property augmentation and propagation schemes

will enable different engineering teams working on a project easily adhere to the safety

requirements of systems and verify them during each and every phase of the development

life-cycle in a convenient and automated manner. The discussed impacts are shown in a

visual diagram in Fig. VI.1.

During the course of this research work, major lessons were learned regarding verifi-

78

Figure VI.1: Research Impacts

cation of systems. First, we learned that integration of verification workflows with devel-

opment life cycles of CPS is difficult without domain-specific knowledge of the systems

and model-based design approach remains beneficial here. This is because, the domain-

specific knowledge in model-based design allows the interpreter tools to be more context-

aware which enables us to tackle system models in a much better way. Second, we realized

the limitations of bounded model checking. We performed bounded model checking with

CBMC and NuSMV, which proves absence of errors down to certain depths in the behav-

ioral state-spaces of the system models under test. This may lead to spurious examples.

Third, we realized the difficulty in using property monitors to verify asynchronous sys-

tem models. As a meaningful logical time step is hard to be defined for the asynchronous

systems we can not decide the sampling durations for the output signals from the models

to be observed by the monitors. This raises difficulty in using monitors in asynchronous

or distributed environments. Fourth, we learned that C code checking with CBMC is still

computationally cumbersome and large state-spaces of generated property monitors or sys-

tems under test leads CBMC to halt with insufficient memory for further computations.

The discussed lessons are presented as a visual diagram in Fig. VI.2.

Our approach is not directed towards providing a complete context-free proof of cor-

rectness of the code-generators. Nevertheless, establishing that the code-generators are

79

Figure VI.2: Lessons learned during research

property-preserving while generating code for software components proves useful for de-

veloping trust on them during fast-paced CPS development life cycles.

VI.2 Future Work

Currently, verification with NuSMV is performed by manually translating Stateflow de-

signs to the NuSMV language. As a future work, it will be helpful to extend VTC meta-

model and its toolchain so as to perform translation of CyPhyML cyber models to NuSMV

in an automated manner. Also, as explained in Section VI.1 and Chapter V, the bounded

model checking approach used here doesn’t provide complete proof of a property. Rather,

it only proves a model or its generated code to satisfy a verification property only up to a

certain bound in the behavioral state-space. Hence, to avoid generation of spurious results,

in the future, it shall be helpful to develop reachability analysis tools for CyPhyML com-

ponents so that pre-mediated trustworthy bounds can be specified before the application of

bounded model checking.

80

CHAPTER VII

APPENDIX

VII.1 NuSMV translation of Ignition Logic Controller

1 MODULE main ()

2 VAR

3 k e y p o s i t i o n : {0 , 1 , 2} ;

4 e n g i n e r u n n i n g : {0 , 1} ;

5 I g n i t i o n Logic : s t a t e f l o w (e n g i n e r u n n i n g , k e y p o s i t i o n) ;

6

7 MODULE s t a t e f l o w (e n g i n e r u n n i n g , k e y p o s i t i o n)

8 VAR

9 i g n i t i o n s i g n a l : {0 , 1 , 2} ;

10 e n g a g e s t a r t e r : {0 , 1} ;

11 s t a t e : {Off , S t a r t , On} ;

12

13 ASSIGN

14 i n i t (i g n i t i o n s i g n a l) := 0 ;

15 i n i t (e n g a g e s t a r t e r) := 0 ;

16 i n i t (s t a t e) := Off ;

17

18 n e x t (s t a t e) :=

19 case

20 s t a t e = Off & (k e y p o s i t i o n > 1) & (e n g i n e r u n n i n g < 1) : S t a r t ;

21 s t a t e = S t a r t & (e n g i n e r u n n i n g = 1) : On ;

22 s t a t e = Off & (e n g i n e r u n n i n g = 1) : On ;

23 s t a t e = On & (e n g i n e r u n n i n g < 1) : Off ;

24 TRUE : s t a t e ;

25 e s a c ;

26

27 n e x t (i g n i t i o n s i g n a l) :=

81

28 case

29 s t a t e = Off & (k e y p o s i t i o n > 1) & (e n g i n e r u n n i n g < 1) : 2 ;

30 s t a t e = Off & (e n g i n e r u n n i n g = 1) : 1 ;

31 s t a t e = S t a r t & (e n g i n e r u n n i n g = 1) : 1 ;

32 s t a t e = On & (e n g i n e r u n n i n g < 1) : 0 ;

33 TRUE : i g n i t i o n s i g n a l ;

34 e s a c ;

35

36 n e x t (e n g a g e s t a r t e r) :=

37 case

38 s t a t e = On & (e n g i n e r u n n i n g < 1) : 0 ;

39 s t a t e = S t a r t & ! ((e n g i n e r u n n i n g = 1)) : 1 ;

40 TRUE : e n g a g e s t a r t e r ;

41 e s a c ;

VII.2 Property 1 of Ignition Logic Controller

VII.2.1 TGBA equivalent of Property

Figure VII.1: TGBA for Property 1 for Ignition Logic controller

VII.2.2 C code verification wrapper file

1 / / Header D e c l a r a t i o n s

2 # i n c l u d e <s t d i o . h>

3 # i n c l u d e ” i g n i t i o n s l . h ”

4

5 # d e f i n e boo l i n t

6 # d e f i n e t r u e 1

82

7 # d e f i n e f a l s e 0

8

9 / / S t r u c t u r e f o r t h e TGBA Automaton

10 s t r u c t engineON PRECEDES ignitionON TGBA

11 {

12 boo l a c c e p t i n g o b s e r v e r ;

13 boo l a c c e p t e d ;

14 i n t s t a t e ;

15 } engineON PRECEDES ignitionON TGBA obj ={ f a l s e , f a l s e , 1} ;

16

17 void engineON PRECEDES ignitionON TGBA observe (s t r u c t

engineON PRECEDES ignitionON TGBA * s p e c o b j , double i g n i t i o n s i g n a l ,

double e n g i n e r u n n i n g)

18 {

19 p r i n t f (”OUTPUT−−−−−−−−−TGBA s t a t e : %d ” , s p e c o b j−>s t a t e) ;

20

21 s p e c o b j−>a c c e p t e d = f a l s e ;

22

23 / / STATE 1 −−−−((e n g i n e r u n n i n g >=0.5))−−−−> STATE 2

24 i f ((s p e c o b j−>s t a t e ==1) && ((e n g i n e r u n n i n g >=0.5)))

25 {

26 s p e c o b j−>s t a t e = 2 ;

27 }

28 e l s e

29 / / STATE 1 −−−−(!(i g n i t i o n s i g n a l ==1.00) && ! (e n g i n e r u n n i n g >=0.5))−−−−>

STATE 1

30 i f ((s p e c o b j−>s t a t e ==1) && (! (i g n i t i o n s i g n a l ==1 .00) && ! (

e n g i n e r u n n i n g >=0.5)))

31 {

32 s p e c o b j−>s t a t e = 1 ;

33

34 }

35 e l s e

83

36 / / STATE 2 −−−−(1)−−−−> STATE 2

37 i f ((s p e c o b j−>s t a t e ==2) && (1))

38 {

39 s p e c o b j−>s t a t e = 2 ;

40 }

41 e l s e

42 {

43 CPROVER assert (0 , ” engineON PRECEDES ignitionON TGBA v i o l a t e d ! ”) ;

44 }

45 }

46

47 void engineON PRECEDES igni t ionON TGBA acceptance check (s t r u c t

engineON PRECEDES ignitionON TGBA * s p e c o b j)

48 {

49 i f (s p e c o b j−>a c c e p t i n g o b s e r v e r == t r u e)

50 {

51 i f (s p e c o b j−>a c c e p t e d == f a l s e)

52 {

53 CPROVER assert (0 , ” engineON PRECEDES ignitionON TGBA v i o l a t e d ! ”) ;

54 }

55 }

56 }

57

58 / / Main f u n c t i o n

59 i n t main (void)

60 {

61 / / V a r i a b l e D e c l a r a t i o n s : Type Double ; Name : Por t / Requ i r emen tParame te r

/ I n S i g n a l R a n g e G u a r a n t e e names

62 double e n g a g e s t a r t e r ;

63 double e n g i n e r u n n i n g ;

64 double i g n i t i o n s i g n a l ;

65 double k e y p o s i t i o n ;

66

84

67 / / D e c l a r i g C o n t e x t s f o r a l l t h e TopLeve l S u b s y s t e m s i n s i d e a l l f ound

S igna lF lowMode l s

68 i g n i t i o n c o n t e x t i g n i t i o n c o n t e x t O b j e c t ;

69

70 / / I n i t i a l i z i n g t h e S i g n a l Flow Models by i n i t i a l i z i n g t h e i r T o p l e v e l

S u b s y s t e m s

71 i g n i t i o n i n i t (& i g n i t i o n c o n t e x t O b j e c t) ;

72

73 whi le (1)

74 {

75 / / D e c l a r i n g A s s u m p t i o n s f o r CBMC V e r i f i c a t i o n

76 e n g i n e r u n n i n g = n o n d e t d o u b l e () ;

77 CPROVER assume (e n g i n e r u n n i n g >=0 && e n g i n e r u n n i n g <=1) ;

78

79 k e y p o s i t i o n = n o n d e t d o u b l e () ;

80 CPROVER assume (k e y p o s i t i o n >=0 && k e y p o s i t i o n <=2) ;

81

82 / / E x e c u t i o n C a l l s t o T o p l e v e l S u b s y s t e m s

83 i g n i t i o n m a i n (& i g n i t i o n c o n t e x t O b j e c t , k e y p o s i t i o n , e n g i n e r u n n i n g , &

e n g a g e s t a r t e r , &i g n i t i o n s i g n a l) ;

84

85 p r i n t f (”OUTPUT−−−− e n g a g e s t a r t e r : %4.2 f , e n g i n e r u n n i n g : %4.2 f ,

i g n i t i o n s i g n a l : %4.2 f , k e y p o s i t i o n : %4.2 f , ” , e n g a g e s t a r t e r ,

e n g i n e r u n n i n g , i g n i t i o n s i g n a l , k e y p o s i t i o n) ;

86

87 / / V e r i f i c a t i o n TGBA Automaton Observe C a l l

88 engineON PRECEDES ignitionON TGBA observe (&

engineON PRECEDES ignitionON TGBA obj , i g n i t i o n s i g n a l ,

e n g i n e r u n n i n g) ;

89

90 }

91

85

92 / / V e r i f i c a t i o n TGBA A c c e p t a n c e check − For e v e n t u a l i t y d e f i n i g

p r o p e r t i e s .

93 engineON PRECEDES igni t ionON TGBA acceptance check (&

engineON PRECEDES ignitionON TGBA obj) ;

94

95 re turn 0 ;

96 }

VII.3 Property 2 of Ignition Logic Controller

VII.3.1 TGBA equivalent of Property

Figure VII.2: TGBA for Property 2 for Ignition Logic controller

VII.3.2 C code verification wrapper file

1 / / Header D e c l a r a t i o n s

2 # i n c l u d e <s t d i o . h>

3 # i n c l u d e ” i g n i t i o n s l . h ”

4

5 # d e f i n e boo l i n t

6 # d e f i n e t r u e 1

7 # d e f i n e f a l s e 0

8

9 / / S t r u c t u r e f o r t h e TGBA Automaton

10 s t r u c t keyONengineOFF NEXTstarterON TGBA

11 {

12 boo l a c c e p t i n g o b s e r v e r ;

86

13 boo l a c c e p t e d ;

14 i n t s t a t e ;

15 } keyONengineOFF NEXTstarterON TGBA obj ={ f a l s e , f a l s e , 1} ;

16

17 void keyONengineOFF NEXTstarterON TGBA observe (s t r u c t

keyONengineOFF NEXTstarterON TGBA * s p e c o b j , double e n g a g e s t a r t e r ,

double e n g i n e r u n n i n g , double k e y p o s i t i o n)

18 {

19 p r i n t f (”OUTPUT−−−−−−−−−TGBA s t a t e : %d ” , s p e c o b j−>s t a t e) ;

20 s p e c o b j−>a c c e p t e d = f a l s e ;

21

22 / / STATE 1 −−−−(1)−−−−> STATE 2

23 i f ((s p e c o b j−>s t a t e ==1) && (1))

24 {

25 s p e c o b j−>s t a t e = 2 ;

26 }

27 e l s e

28 / / STATE 1 −−−−(!(k e y p o s i t i o n >1.00 && e n g i n e r u n n i n g <1.00))−−−−>

STATE 1

29 i f ((s p e c o b j−>s t a t e ==1) && (! (k e y p o s i t i o n >1.00 && e n g i n e r u n n i n g <1.00)

))

30 {

31 s p e c o b j−>s t a t e = 1 ;

32 }

33 e l s e

34 / / STATE 2 −−−−((e n g a g e s t a r t e r ==1.00))−−−−> STATE 2

35 i f ((s p e c o b j−>s t a t e ==2) && ((e n g a g e s t a r t e r ==1 .00)))

36 {

37 s p e c o b j−>s t a t e = 2 ;

38 }

39 e l s e

40 / / STATE 2 −−−−((e n g a g e s t a r t e r ==1.00) && ! (k e y p o s i t i o n >1.00 &&

e n g i n e r u n n i n g <1.00))−−−−> STATE 1

87

41 i f ((s p e c o b j−>s t a t e ==2) && ((e n g a g e s t a r t e r ==1 .00) && ! (k e y p o s i t i o n

>1.00 && e n g i n e r u n n i n g <1.00)))

42 {

43 s p e c o b j−>s t a t e = 1 ;

44

45 }

46 e l s e

47 {

48 CPROVER assert (0 , ” keyONengineOFF NEXTstarterON TGBA v i o l a t e d ! ”) ;

49 }

50 }

51

52 void keyONengineOFF NEXTstar terON TGBA acceptance check (s t r u c t

keyONengineOFF NEXTstarterON TGBA * s p e c o b j)

53 {

54 i f (s p e c o b j−>a c c e p t i n g o b s e r v e r == t r u e)

55 {

56 i f (s p e c o b j−>a c c e p t e d == f a l s e)

57 {

58 CPROVER assert (0 , ” keyONengineOFF NEXTstarterON TGBA v i o l a t e d ! ”) ;

59 }

60 }

61 }

62

63 / / Main f u n c t i o n

64 i n t main (void)

65 {

66 / / V a r i a b l e D e c l a r a t i o n s : Type Double ; Name : Por t / Requ i r emen tParame te r

/ I n S i g n a l R a n g e G u a r a n t e e names

67 double e n g a g e s t a r t e r ;

68 double e n g i n e r u n n i n g ;

69 double k e y p o s i t i o n ;

70 double i g n i t i o n s i g n a l ;

88

71

72 / / D e c l a r i g C o n t e x t s f o r a l l t h e TopLeve l S u b s y s t e m s i n s i d e a l l f ound

S igna lF lowMode l s

73 i g n i t i o n c o n t e x t i g n i t i o n c o n t e x t O b j e c t ;

74

75 / / I n i t i a l i z i n g t h e S i g n a l Flow Models by i n i t i a l i z i n g t h e i r T o p l e v e l

S u b s y s t e m s

76 i g n i t i o n i n i t (& i g n i t i o n c o n t e x t O b j e c t) ;

77

78 whi le (1)

79 {

80 / / D e c l a r i n g A s s u m p t i o n s f o r CBMC V e r i f i c a t i o n

81 k e y p o s i t i o n = n o n d e t d o u b l e () ;

82 CPROVER assume (k e y p o s i t i o n >=0 && k e y p o s i t i o n <=2) ;

83

84 e n g i n e r u n n i n g = n o n d e t d o u b l e () ;

85 CPROVER assume (e n g i n e r u n n i n g >=0 && e n g i n e r u n n i n g <=1) ;

86

87 / / E x e c u t i o n C a l l s t o T o p l e v e l S u b s y s t e m s

88 i g n i t i o n m a i n (& i g n i t i o n c o n t e x t O b j e c t , k e y p o s i t i o n , e n g i n e r u n n i n g , &

e n g a g e s t a r t e r , &i g n i t i o n s i g n a l) ;

89

90 p r i n t f (”OUTPUT−−−− e n g a g e s t a r t e r : %4.2 f , e n g i n e r u n n i n g : %4.2 f ,

k e y p o s i t i o n : %4.2 f , ” , e n g a g e s t a r t e r , e n g i n e r u n n i n g , k e y p o s i t i o n)

;

91

92 / / V e r i f i c a t i o n TGBA Automaton Observe C a l l

93 keyONengineOFF NEXTstarterON TGBA observe (&

keyONengineOFF NEXTstarterON TGBA obj , e n g a g e s t a r t e r ,

e n g i n e r u n n i n g , k e y p o s i t i o n) ;

94 }

95

89

96 / / V e r i f i c a t i o n TGBA A c c e p t a n c e check − For e v e n t u a l i t y d e f i n i g

p r o p e r t i e s .

97 keyONengineOFF NEXTstar terON TGBA acceptance check (&

keyONengineOFF NEXTstarterON TGBA obj) ;

98

99 re turn 0 ;

100 }

VII.4 Property 3 of Ignition Logic Controller

VII.4.1 TGBA equivalent of Property

Figure VII.3: TGBA for Property 3 for Ignition Logic controller

VII.4.2 C code verification wrapper file

1 / / Header D e c l a r a t i o n s

2 # i n c l u d e <s t d i o . h>

3 # i n c l u d e ” i g n i t i o n s l . h ”

4

5 # d e f i n e boo l i n t

6 # d e f i n e t r u e 1

7 # d e f i n e f a l s e 0

8

9 / / S t r u c t u r e f o r t h e TGBA Automaton

10 s t r u c t GLOBALLYkeyOFFstarterOnNEXTstarterOFF TGBA

11 {

12 boo l a c c e p t i n g o b s e r v e r ;

13 boo l a c c e p t e d ;

90

14 i n t s t a t e ;

15 } GLOBALLYkeyOFFstarterOnNEXTstarterOFF TGBA obj={ f a l s e , f a l s e , 1} ;

16

17 void GLOBALLYkeyOFFstarterOnNEXTstarterOFF TGBA observe (s t r u c t

GLOBALLYkeyOFFstarterOnNEXTstarterOFF TGBA * s p e c o b j , double

e n g a g e s t a r t e r , double k e y p o s i t i o n)

18 {

19 p r i n t f (”OUTPUT−−−−−−−−−TGBA s t a t e : %d ” , s p e c o b j−>s t a t e) ;

20 s p e c o b j−>a c c e p t e d = f a l s e ;

21

22 / / STATE 1 −−−−(!(k e y p o s i t i o n <1.00 && e n g a g e s t a r t e r >0.00))−−−−>

STATE 1

23 i f ((s p e c o b j−>s t a t e ==1) && (! (k e y p o s i t i o n <1.00 && e n g a g e s t a r t e r >0.00)

))

24 {

25 s p e c o b j−>s t a t e = 1 ;

26

27 }

28 e l s e

29 / / STATE 1 −−−−((k e y p o s i t i o n <1.00 && e n g a g e s t a r t e r >0.00))−−−−> STATE 2

30 i f ((s p e c o b j−>s t a t e ==1) && ((k e y p o s i t i o n <1.00 && e n g a g e s t a r t e r >0.00))

)

31 {

32 s p e c o b j−>s t a t e = 2 ;

33

34 }

35 e l s e

36 / / STATE 2 −−−−((e n g a g e s t a r t e r <1.00) && ! (k e y p o s i t i o n <1.00 &&

e n g a g e s t a r t e r >0.00))−−−−> STATE 1

37 i f ((s p e c o b j−>s t a t e ==2) && ((e n g a g e s t a r t e r <1.00) && ! (k e y p o s i t i o n

<1.00 && e n g a g e s t a r t e r >0.00)))

38 {

39 s p e c o b j−>s t a t e = 1 ;

91

40

41 }

42 e l s e

43 / / STATE 2 −−−−((e n g a g e s t a r t e r <1.00) && (k e y p o s i t i o n <1.00 &&

e n g a g e s t a r t e r >0.00))−−−−> STATE 2

44 i f ((s p e c o b j−>s t a t e ==2) && ((e n g a g e s t a r t e r <1.00) && (k e y p o s i t i o n <1.00

&& e n g a g e s t a r t e r >0.00)))

45 {

46 s p e c o b j−>s t a t e = 2 ;

47

48 }

49 e l s e

50 {

51 CPROVER assert (0 , ” GLOBALLYkeyOFFstarterOnNEXTstarterOFF TGBA v i o l a t e d !

”) ;

52 }

53 }

54

55 void GLOBALLYkeyOFFstarterOnNEXTstarterOFF TGBA acceptance check (s t r u c t

GLOBALLYkeyOFFstarterOnNEXTstarterOFF TGBA * s p e c o b j)

56 {

57 i f (s p e c o b j−>a c c e p t i n g o b s e r v e r == t r u e)

58 {

59 i f (s p e c o b j−>a c c e p t e d == f a l s e)

60 {

61 CPROVER assert (0 , ” GLOBALLYkeyOFFstarterOnNEXTstarterOFF TGBA v i o l a t e d !

”) ;

62 }

63 }

64 }

65

66 / / Main f u n c t i o n

67 i n t main (void)

92

68 {

69 / / V a r i a b l e D e c l a r a t i o n s : Type Double ; Name : Por t / Requ i r emen tParame te r

/ I n S i g n a l R a n g e G u a r a n t e e names

70 double e n g a g e s t a r t e r ;

71 double e n g i n e r u n n i n g ;

72 double i g n i t i o n s i g n a l ;

73 double k e y p o s i t i o n ;

74

75 / / D e c l a r i g C o n t e x t s f o r a l l t h e TopLeve l S u b s y s t e m s i n s i d e a l l f ound

S igna lF lowMode l s

76 i g n i t i o n c o n t e x t i g n i t i o n c o n t e x t O b j e c t ;

77

78 / / I n i t i a l i z i n g t h e S i g n a l Flow Models by i n i t i a l i z i n g t h e i r T o p l e v e l

S u b s y s t e m s

79 i g n i t i o n i n i t (& i g n i t i o n c o n t e x t O b j e c t) ;

80

81 whi le (1)

82 {

83 / / D e c l a r i n g A s s u m p t i o n s f o r CBMC V e r i f i c a t i o n

84 e n g i n e r u n n i n g = n o n d e t d o u b l e () ;

85 CPROVER assume (e n g i n e r u n n i n g >=0 && e n g i n e r u n n i n g <=1) ;

86

87 k e y p o s i t i o n = n o n d e t d o u b l e () ;

88 CPROVER assume (k e y p o s i t i o n >=0 && k e y p o s i t i o n <=2) ;

89

90 / / E x e c u t i o n C a l l s t o T o p l e v e l S u b s y s t e m s

91 i g n i t i o n m a i n (& i g n i t i o n c o n t e x t O b j e c t , k e y p o s i t i o n , e n g i n e r u n n i n g , &

e n g a g e s t a r t e r , &i g n i t i o n s i g n a l) ;

92

93 p r i n t f (”OUTPUT−−−− e n g a g e s t a r t e r : %4.2 f , e n g i n e r u n n i n g : %4.2 f ,

i g n i t i o n s i g n a l : %4.2 f , k e y p o s i t i o n : %4.2 f , ” , e n g a g e s t a r t e r ,

e n g i n e r u n n i n g , i g n i t i o n s i g n a l , k e y p o s i t i o n) ;

94

93

95 / / V e r i f i c a t i o n TGBA Automaton Observe C a l l

96 GLOBALLYkeyOFFstarterOnNEXTstarterOFF TGBA observe(&

GLOBALLYkeyOFFstarterOnNEXTstarterOFF TGBA obj , e n g a g e s t a r t e r ,

k e y p o s i t i o n) ;

97 }

98

99 / / V e r i f i c a t i o n TGBA A c c e p t a n c e check − For e v e n t u a l i t y d e f i n i g

p r o p e r t i e s .

100 GLOBALLYkeyOFFstarterOnNEXTstarterOFF TGBA acceptance check (&

GLOBALLYkeyOFFstarterOnNEXTstarterOFF TGBA obj) ;

101

102 re turn 0 ;

103 }

94

BIBLIOGRAPHY

[1] AutoCAD®@ONLINE http://www.autodesk.com/products/autodesk-
autocad/overview.

[2] Eclipse IDE®@ONLINE http://www.eclipse.org/.

[3] Google’s CTemplate®@ONLINE http://code.google.com/p/ctemplate/.

[4] LabVIEW®@ONLINE http://www.ni.com/labview/.

[5] Modelica®@ONLINE https://www.modelica.org/.

[6] Object Constraint Language (OCL)®@ONLINE http://www.omg.org/spec/ocl/.

[7] Property Pattern Mappings for LTL @ONLINE
http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml.

[8] Simulink®@ONLINE http://www.mathworks.com/products/simulink/.

[9] The CProver User Manual @ONLINE http://www.cprover.org/cbmc/doc/manual.pdf.

[10] Unified Modeling Language (UML)®@ONLINE http://www.omg.org/spec/uml/.

[11] Vanderbilt University ISIS GME user manual @ONLINE
http://www.isis.vanderbilt.edu/projects/GME.

[12] Visualstudio®@ONLINE http://www.microsoft.com/visualstudio/eng/office-dev-
tools-for-visual-studio.

[13] Bowen Alpern and Fred B. Schneider. Verifying temporal properties without temporal
logic. ACM Trans. Program. Lang. Syst., 11(1):147–167, January 1989.

[14] Tony Andrews, Shaz Qadeer, Sriram Rajamani, Jakob Rehof, and Yichen Xie. Zing:
A model checker for concurrent software. In Computer Aided Verification, pages
28–32. Springer, 2004.

[15] Panos J Antsaklis and Xenofon D Koutsoukos. Hybrid systems: Review and recent
progress. Software Enabled Control: Information Technology for Dynamical Systems.
NY: Wiley-IEEE, 2003.

[16] Christel Baier, Joost-Pieter Katoen, et al. Principles of model checking, volume
26202649. MIT press, 2008.

[17] Krishnakumar Balasubramanian, Jaiganesh Balasubramanian, Gabor Karsai, Janos
Sztipanovits, and Sandeep Neema. Developing applications using model-driven de-
sign environments. IEEE Computer, 39:33–40, March 2006.

[18] Mordechai Ben-Ari, Amir Pnueli, and Zohar Manna. The temporal logic of branching
time. Acta Informatica, 20:207–226, 1983.

95

[19] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic
model checking without BDDs. Tools and Algorithms for the Construction and Anal-
ysis of Systems, pages 193–207, 1999.

[20] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Masahiro Fujita, and Yunshan
Zhu. Symbolic model checking using SAT procedures instead of BDDs. In Proceed-
ings of the 36th annual ACM/IEEE Design Automation Conference, pages 317–320.
ACM, 1999.

[21] Christopher Brooks, Chihhong Cheng, Thomas Huining Feng, Edward A. Lee, and
Reinhard von Hanxleden. Model Engineering using Multimodeling. In 1st Interna-
tional Workshop on Model Co-Evolution and Consistency Management (MCCM ’08),
September 2008.

[22] Barrett R Bryant. Object-oriented natural language requirements specification. In
Computer Science Conference, 2000. ACSC 2000. 23rd Australasian, pages 24–30.
IEEE, 2000.

[23] Randal E Bryant. Graph-based algorithms for boolean function manipulation. Com-
puters, IEEE Transactions on, 100(8):677–691, 1986.

[24] Jerry R Burch, Edmund M Clarke, Kenneth L McMillan, David L Dill, and Lain-
Jinn Hwang. Symbolic model checking: 1020 states and beyond. Information and
computation, 98(2):142–170, 1992.

[25] Kai Chen, Janos Sztipanovits, Sherif Abdelwalhed, and Ethan Jackson. Semantic
anchoring with model transformations. In Alan Hartman and David Kreische, editors,
Model Driven Architecture Foundations and Applications, volume 3748 of Lecture
Notes in Computer Science, pages 115–129. Springer Berlin Heidelberg, 2005.

[26] A.M.K. Cheng. Cyber-Physical Medical and Medication Systems. In Distributed
Computing Systems Workshops, 2008. ICDCS ’08. 28th International Conference on,
volume -1, pages 529 –532, june 2008.

[27] Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and Marco Roveri.
NuSMV: A new symbolic model verifier. In Computer Aided Verification, pages
682–682. Springer, 1999.

[28] Alessandro Cimatti, Fausto Giunchiglia, Paolo Pecchiari, Bruno Pietra, Joe Profeta,
Dario Romano, Paolo Traverso, and Bing Yu. A provably correct embedded verifier
for the certification of safety critical software. In Computer Aided Verification, pages
202–213. Springer, 1997.

[29] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C
programs. Tools and Algorithms for the Construction and Analysis of Systems, pages
168–176, 2004.

96

[30] Edmund Clarke, Daniel Kroening, and Karen Yorav. Behavioral consistency of C and
Verilog programs using bounded model checking. In Design Automation Conference,
2003. Proceedings, pages 368–371. IEEE, 2003.

[31] Edmund M Clarke, Orna Grumberg, and Doron A Peled. Model checking. MIT press,
2000.

[32] Jean-Michel Couvreur. On-the-fly verification of linear temporal logic. FM99Formal
Methods, pages 711–711, 1999.

[33] Jean-Michel Couvreur and Universitée de Bordeaux I LaBRI. Un point de vue sym-
bolique sur la logique temporelle linéaire. In Actes du Colloque LaCIM, volume 27,
pages 131–140, 2000.

[34] Patricia Derler, Thomas Huining Feng, Edward A. Lee, Slobodan Matic, Hiren D.
Patel, Yang Zhao, and Jia Zou. PTIDES: A Programming Model for Distributed
Real-Time Embedded Systems. In RTSS’08, page submitted, May 2008. Accepted
as Jia Zou, Slobodan Matic, Edward A. Lee, Thomas Huining Feng, Patricia Derler.
Execution Strategies for PTIDES, a Programming Model for Distributed Embedded
Systems, 15th IEEE Real-Time and Embedded Technology and Applications Sympo-
sium, 2009, IEEE Computer Society, 77-86, April, 2009.

[35] A. Duret-Lutz and D. Poitrenaud. SPOT: an extensible model checking library using
transition-based generalized Büchi automata. In Modeling, Analysis, and Simulation
of Computer and Telecommunications Systems, 2004. (MASCOTS 2004). Proceed-
ings. The IEEE Computer Society’s 12th Annual International Symposium on, pages
76–83, Oct.

[36] Matthew B Dwyer, George S Avrunin, and James C Corbett. Property specification
patterns for finite-state verification. In Proceedings of the second workshop on Formal
methods in software practice, pages 7–15. ACM, 1998.

[37] Matthew B Dwyer, George S Avrunin, and James C Corbett. Patterns in property
specifications for finite-state verification. In Software Engineering, 1999. Proceedings
of the 1999 International Conference on, pages 411–420. IEEE, 1999.

[38] Johan Eker, Jorn Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig, So-
nia Sachs, Yuhong Xiong, and Stephen Neuendorffer. Taming heterogeneity - the
Ptolemy approach. Proceedings of the IEEE, 91(1):127–144, 2003.

[39] George S Fishman. Discrete-event simulation: modeling, programming, and analysis.
Springer, 2001.

[40] Dimitra Giannakopoulou and Klaus Havelund. Automata-based verification of tempo-
ral properties on running programs. In Automated Software Engineering, 2001.(ASE
2001). Proceedings. 16th Annual International Conference on, pages 412–416. IEEE,
2001.

97

[41] Dimitra Giannakopoulou and Flavio Lerda. From states to transitions: Improving
translation of LTL formulae to Büchi automata. Formal Techniques for Networked
and Distributed SytemsFORTE 2002, pages 308–326, 2002.

[42] Parthasarathy Guturu and Bharat Bhargava. Cyber-Physical Systems: A Confluence
of Cutting Edge Technological Streams. International Conference on Advances in
Computing and Communication ICACC-11, April 2011.

[43] David Harel. Statecharts: A visual formalism for complex systems. Science of com-
puter programming, 8(3):231–274, 1987.

[44] Klaus Havelund and Grigore Roşu. Monitoring java programs with java pathexplorer.
Electronic Notes in Theoretical Computer Science, 55(2):200–217, 2001.

[45] C. Heitmeyer. Certifying the security of software using formal requirements models.
Presented at the SAFE & SECURE SYSTEMS & SOFTWARE SYMPOSIUM (S5),
Fairborn, OH, June 2012.

[46] Gerard J Holzmann. The model checker SPIN. Software Engineering, IEEE Trans-
actions on, 23(5):279–295, 1997.

[47] J.C. Jensen, D.H. Chang, and E.A. Lee. A model-based design methodology for
cyber-physical systems. In Wireless Communications and Mobile Computing Confer-
ence (IWCMC), 2011 7th International, pages 1666 –1671, july 2011.

[48] Jeff C. Jensen. Elements of Model-Based Design. Master’s thesis, EECS Department,
University of California, Berkeley, Feb 2010.

[49] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-integrated development
of embedded software. Proceedings of the IEEE, 91(1):145 – 164, jan 2003.

[50] Gabor Karsai and Anantha Narayanan. Towards verification of model transformations
via goal-directed certification. In Model-Driven Development of Reliable Automotive
Services, pages 67–83. Springer, 2008.

[51] Ekkart Kindler. Safety and Liveness Properties: A Survey.

[52] Nicholas Kottenstette, Gabor Karsai, and Janos Sztipanovits. The ESMoL Language
and Tools for High-Confidence Distributed Control Systems Design. Part 1: Design
Language, Modeling Framework, and Analysis. ISIS, 10:109.

[53] Zsolt Lattmann, Adam Nagel, Tihamer Levendovszky, Ted Bapty, Sandeep Neema,
and Gabor Karsai. Component-based Modeling of Dynamic Systems using Hetero-
geneous Composition. 2012.

[54] Akos Ledeczi, Miklos Maroti, Arpad Bakay, Gabor Karsai, Jason Garrett, Charles
Thomason, Greg Nordstrom, Jonathan Sprinkle, and Peter Volgyesi. The Generic
Modeling Environment. In Workshop on Intelligent Signal Processing, 2001.

98

[55] Edward A. Lee. Cyber Physical Systems: Design Challenges. In International
Symposium on Object/Component/Service-Oriented Real-Time Distributed Comput-
ing (ISORC), May 2008. Invited Paper.

[56] Endre Magyari, Arpad Bakay, Andras Lang, Tamas Paka, Attila Vizhanyo, Aditya
Agrawal, and Gabor Karsai. UDM: An Infrastructure for Implementing Domain-
Specific Modeling Languages. In The 3rd OOPSLA Workshop on Domain-Specific
Modeling, OOPSLA 2003, Anahiem, California, October 2003.

[57] Erich Mikk, Yassine Lakhnechi, and Michael Siegel. Hierarchical automata as
model for statecharts. In Advances in Computing ScienceASIAN’97, pages 181–196.
Springer, 1997.

[58] George C Necula and Peter Lee. The design and implementation of a certifying com-
piler. In ACM SIGPLAN Notices, volume 33, pages 333–344. ACM, 1998.

[59] J Porter, Z Lattmann, G Hemingway, N Mahadevan, S Neema, H Nine, N Kotten-
stette, P Volgyesi, G Karsai, and J Sztipanovits. The esmol modeling language and
tools for synthesizing and simulating real-time embedded systems. In Proceedings of
15th IEEE Real-Time and Embedded Technology and Applications Symposium, San
Francisco, CA, 2009.

[60] J Richard Büchi. Symposium on Decision Problems: On a Decision Method in Re-
stricted Second Order Arithmetic. Studies in Logic and the Foundations of Mathe-
matics, 44:1–11, 1966.

[61] Salamah Salamah, Vladik Kreinovich, and Ann Q Gates. Generating linear temporal
logic formulas for pattern-based specifications. 2007.

[62] R Smith, G Avrunin, and L Clarke. From natural language requirements to rigorous
property specifications. In Proceedings of the Workshop on Software Engineering for
Embedded Systems SEES 2003. From Requirements to Implementation, pages 40–46.
Citeseer, 2003.

[63] Fabio Somenzi and Roderick Bloem. Efficient Bchi Automata from LTL Formulae.
In E.Allen Emerson and AravindaPrasad Sistla, editors, Computer Aided Verification,
volume 1855 of Lecture Notes in Computer Science, pages 248–263. Springer Berlin
Heidelberg, 2000.

[64] Matthew Staats and Mats Heimdahl. Partial translation verification for untrusted code-
generators. Formal Methods and Software Engineering, pages 226–237, 2008.

[65] J. Sztipanovits and G. Karsai. Model-integrated computing. Computer, 30(4):110
–111, apr 1997.

[66] Janos Sztipanovits. Composition of Cyber-Physical Systems. In Engineering of
Computer-Based Systems, 2007. ECBS ’07. 14th Annual IEEE International Con-
ference and Workshops on the, pages 3 –6, march 2007.

99

[67] L. Wagner. CertaAMOR: Automated modeling of requirements. Presented at the
SAFE & SECURE SYSTEMS & SOFTWARE SYMPOSIUM (S5), Fairborn, OH,
June 2012.

[68] T. Wang. Autocoding of computer-controlled systems with control semantics for for-
mal verication. Presented at the SAFE & SECURE SYSTEMS & SOFTWARE SYM-
POSIUM (S5), Fairborn, OH, June 2012.

[69] J.C. Willems. The Behavioral Approach to Open and Interconnected Systems. Con-
trol Systems, IEEE, 27(6):46 –99, dec. 2007.

[70] William D Young. A mechanically verified code generator. Journal of Automated
Reasoning, 5(4):493–518, 1989.

[71] J. Scott K. Smyth J. Ceisel C. vanBuskirk J. Porter S. Neema T. Bapty D. Mavris
Z. Lattmann, A. Nagel and J. Szipanovits. Towards Automated Evaluation of Vehi-
cle Dynamics in System-Level Designs. In ASME International Design Engineer-
ing Technical Conference & Computers and Information in Engineering Conference
(IDETC/CIE 2012), August 2012.

[72] Amy Moormann Zaremski and Jeannette M Wing. Specification matching of soft-
ware components. ACM Transactions on Software Engineering and Methodology
(TOSEM), 6(4):333–369, 1997.

100

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	I INTRODUCTION
	I.1 Motivation
	I.2 Research Problem and Proposed Solution
	I.3 Organization of Thesis

	II RELATED WORK
	III BACKGROUND
	III.1 Cyber-Physical Systems (CPS) and CPS research challenges
	III.2 Model-Based Design of CPS
	III.3 Generic Modeling Environment (GME)
	III.4 CyPhyML: An MIC paradigm for CPS
	III.5 Cyber components in CyPhyML
	III.6 Temporal Logics and their Automaton equivalents
	III.6.1 Linear Temporal Logic (LTL)
	III.6.2 Büchi Automaton - An Automaton equivalent for LTL
	III.6.3 Transition-based Generalized Büchi Automata and its C code equivalent

	III.7 Model Checking using LTL
	III.8 CBMC - A Symbolic C-code Bounded Model Checker
	III.9 NuSMV model checking tool
	III.10 SPOT Library
	III.11 Google CTemplate

	IV DESCRIPTION OF THE VERIFICATION TOOL CHAIN
	IV.1 Conceptual Overview
	IV.2 Architectural Overview
	IV.3 VTC meta-model
	IV.4 Pattern-based property to equivalent TGBA to C code monitor translation
	IV.5 Generation of verification facilitated C code files from TestBench

	V ILLUSTRATIVE EXAMPLE
	V.1 Ignition Model
	V.1.1 Property 1: States of the Engine and the Ignition Light
	V.1.2 Property 2: Constraint on the Starter's Engage state
	V.1.3 Property 3: Transition of the Starter states
	V.1.4 Experiment Results Summary

	VI DISCUSSIONS
	VI.1 Conclusions
	VI.2 Future Work

	VII APPENDIX
	VII.1 NuSMV translation of Ignition Logic Controller
	VII.2 Property 1 of Ignition Logic Controller
	VII.2.1 TGBA equivalent of Property
	VII.2.2 C code verification wrapper file

	VII.3 Property 2 of Ignition Logic Controller
	VII.3.1 TGBA equivalent of Property
	VII.3.2 C code verification wrapper file

	VII.4 Property 3 of Ignition Logic Controller
	VII.4.1 TGBA equivalent of Property
	VII.4.2 C code verification wrapper file

	 BIBLIOGRAPHY

