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4.14 A) Meadow Group ecological niche model. This model treats C.  
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Discussion). Green areas indicate the predicted species distribution  
 by MAXENT.  Lighter green: predicted using the Lowest Presence 
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CHAPTER I 

 

INTRODUCTION 

 

 

 The distribution of extant species and their current population structure are 

best interpreted within the context of the impacts of historic events on ancestral 

populations.  Towards this end, numerous studies over the last two decades 

have focused on the geographical distribution of genealogical lineages (reviewed 

in Avise 2000).  This recently developed field is termed phylogeography (Avise et 

al 1987) and is concerned with the connection between microevolutionary 

population structure and genealogical history in a spatial context.  The principal 

goals of phylogeographic studies are 1) to describe geographical patterns of 

genetic subdivision within species, and 2) to identify the underlying processes 

that create these patterns. With the advent of coalescent theory (Kingman 1982) 

and improved mathematical models and methodologies, it is now possible to 

perform more rigorous tests to reject or support specific hypotheses about 

ancient and contemporary causes of population structure (e.g. Templeton et al 

1995; Templeton 1998, 2004; Knowles and Maddison 2002). Additionally, 

comparative studies of phylogeographic patterns across a wide range of species 

have supported prior biogeographic hypotheses, such as the locations of glacial 

refugia (e.g. Remington 1968; Avise 1996; Swenson and Howard 2004, 2005). 

Phylogeographic data contribute to our general knowledge of the context, 
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causes, and timing of speciation. Furthermore, phylogeographic studies are 

especially useful for revealing the existence and location of deep genealogical 

subdivisions within species, sometimes referred to as “evolutionarily significant 

units” or ESUs (Ryder 1986; Waples 1991; Moritz 1994).  These ESUs can 

qualify as entities deserving of legal protection under the US Endangered 

Species Act (56 FR 58612-58618), underscoring the conservation application of 

these principles and techniques. 

Phylogeographic studies typically emphasize the importance of abiotic 

factors, such as limited dispersal or past vicariance events, but biotic interactions 

(i.e. predation, competition) could also play a role in shaping or maintaining the 

contemporary geographic distributions of lineages (Tautz 2004).  With the advent 

of ecological niche modeling (e.g. Nix 1986; Stockwell and Nobel 1992; Phillips 

et al 2006; Elith et al 2006), it is possible to examine both the exogenous and 

endogenous factors which create and maintain the ranges of species, and hybrid 

zones between species (Kohlmann et al 1988; Cicero 2004; Swenson 2006).  Yet 

surprisingly, ecological niche modeling has only recently begun to emerge as a 

tool for use in conjunction with phylogeographic studies (Hugall et al 2002; 

Graham et al 2004; Peterson et al 2004, Waltari et al 2007, Waltari and Guralnick 

2009).  Integration of phylogeographic and niche-modeling datasets could lead to 

a much clearer picture of the contributions of non-adaptive factors (i.e. neutral 

genetic drift due to population subdivision), and selection-based processes of 

ecological divergence in determining the distribution of species. 
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It has also been of great interest to biologists to understand the 

relationship between genetic and phenotypic variation. Long before the use of 

molecular genetic data, naturalists had noted the existence of geographical 

patterns of phenotypic variation in plant and animal species.  These geographic 

races or subspecies were commonly construed to be populations with reduced 

gene flow, or even incipient species that may become completely reproductively 

isolated in the future (e.g. Mayr 1942, 1963).  In more recent years, it has 

become possible to test for concordance between taxonomic designations and 

patterns of molecular genetic variation, as phylogeographic studies make use of 

neutrally evolving molecular genetic markers to uncover the patterns of 

population subdivision (Avise et al 1987; Avise 2000).  One of the surprising 

outcomes of many such studies is the identification of deep genealogical splits 

that are not reflected in obvious differences in phenotypic characters (e.g. Avise 

et al 1979; Vogler and DeSalle 1993, 1994; Bernatchez 1997), but other workers 

have found higher levels of concordance between molecules and subspecies 

boundaries (review in Phillimore and Owens 2006).  Moreover, some species 

also exhibit significant phenotypic variation within populations, a pattern that 

could be a result of neutral allelic variation (e.g. Tan 1945), developmental 

plasticity (e.g. Nice and Fordyce 2006), local adaptation (e.g. Dudley 1996), or a 

combination of these factors.  Thus patterns of the geographic distribution of 

polymorphism could be the result of historical sundering of species, local 

adaptation, environmental developmental plasticity, or some combination of 
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these.  More thorough and integrative studies are needed to test the causes of 

phenotypic variation.   

 

I propose to use tiger beetles in the North American Cicindela sylvatica 

group to test for the causes of polymorphism distribution over geographic ranges. 

Specifically, I will concurrently test hypotheses from the following questions:   

 

 What factors promote population differentiation and speciation? 

 What are the determinants of species ranges? 

What are the principal causes of phenotypic variation? 

 

Through analyses of multiple molecular, environmental/ecological, and 

morphological datasets I will develop an integrated picture of the factors driving 

phenotypic and genetic divergence in this group of tiger beetles.  This approach 

may serve as a model for future phylogeographic studies of other organisms, and 

provide better details for management plans and conservation biology. 

 

Study system 

 

The tiger beetles (Coleoptera: Carabidae: Cicindelinae) are a group of 

generalist predatory insects that are cosmopolitan in distribution.  Both adults 

and larvae are predaceous, and most species are diurnally active in open 

habitats, such as sand dunes, open fields, alkali flats, and patches of bare soil or 
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rock (Pearson 1988).  Larvae are ambush predators that live in burrows in soil or 

rarely in other substrates such as rock crevices (Kaulbars and Freitag 1993b). 

The larvae lie in wait at the top of their burrows with their mandibles open and 

their heads and pronota flush with the ground surface (Knisley and Schultz 

1997).  When a small invertebrate comes within reach they fling their heads in 

the direction of the prey, grasp it with their mandibles, and drag the prey down 

into the burrow to feed.  Larvae and adults typically occur in the same habitats, 

with only a few known exceptions (Knisley and Schultz 1997).  Adult tiger beetles 

run on the ground after prey, capturing and killing them with their mandibles. 

Tiger beetle adults are among the fastest animals for their size, running at 

speeds of up to 2.5 m/s, or approximately 125 body lengths per second (Kamoun 

and Hogenhout 1996).  Most species require 1-3 years to complete their lifecycle 

(Knisley and Schultz 1997), although a small number of species are known to 

take four or more years to reach adulthood, especially at high latitudes (Spanton 

1988).   

 Holarctic species of Cicindela (sensu strictu) tiger beetles (family 

Carabidae: Cicindelinae) are well suited for phylogeographic studies, as this 

group includes c. 200 species (Wiesner 1999) that occur in diverse habitats 

throughout most of temperate North America and Eurasia. These regions have 

been extensively altered by climatic changes as a result of glaciation cycles (e.g. 

Hewitt 1996; Rowe et al 2004; Swenson and Howard 2005; Waltari and 

Guralnick 2009). The five North American species of tiger beetles in the C. 

sylvatica group are especially appropriate test organisms as their combined 
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distributions include most of the continent north of Mexico (Pearson et al 1997), 

including hypothesized glacial refugia for many North American species 

(Remington 1968; Swenson and Howard 2004, 2005) as well as extensive areas 

that were covered by glacial ice (CLIMAP 1981; Sibrava et al 1986; Mix et al 

2001). These taxa form a monophyletic group (Vogler and Welsh 1997; Vogler et 

al 2005) that includes both wide-ranging and geographically restricted species 

(see Chapter II, Fig 2.1 for range maps and sampling). From an ecological 

perspective, the members of this group are remarkable for being able to tolerate 

cooler climates and habitats such as montane grasslands, openings in boreal 

forests, and alpine meadows (C. longilabris, C. nebraskana) (Spanton 1988; 

Schultz et al 1992) or semi-shaded forested areas (C. patruela, C. sexguttata, C. 

denikei) (Knisley et al 1990, Kaulbars and Freitag 1993a, b) unlike the high 

temperature and open habitats of most of the other 109 Nearctic tiger beetle 

species (Pearson et al 1997; Freitag 1999; Pearson et al 2006).  Moreover, the 

species C. longilabris is extraordinary for its occurrence at extremely high 

latitudes and altitudes, including areas where no other tiger beetle species exist.  

Cicindela longilabris has an extensive geographic distribution that spans a 

latitudinal gradient from southern Arizona to north of the Arctic Circle (Spanton 

1988), and an east-west distribution from the coast of Newfoundland to western 

Alaska (Knisley pers. comm. 2006).  In the southwestern extent of its range, this 

species is also found at high elevations up to 3800 m, indicative of its tolerance 

of cooler climates (Schultz et al 1992).  
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 Because of these and other characteristics, Cicindela longilabris is ideal 

for studying the nature of polymorphism and underlying causes of phenotypic 

variation. This species exhibits an extreme amount of phenotypic variation in 

color pattern across its range, which has led to the description of numerous 

subspecies (reviewed in Spanton 1988), some of which were given full-species 

rank by previous authors. Spanton revised the taxonomy, synonymizing many of 

the previous names, but recognized three subspecies based on linear 

discriminant function analyses of morphometric data (Sneath and Sokal 1973). 

Although there appears to be a geographical component to the phenotypic 

variation, there also exists considerable variation within each of these subspecies 

and within local populations in a number of geographical areas (e.g. ID, MT, AZ, 

WA). This variation may be a result of elevated variation in heritable traits, 

developmental plasticity in particularly variable environments, or an interaction of 

these factors.  

 Yet another source of taxonomic confusion is the relationship between the 

phenotypically variable C. longilabris and the nearly invariant, all-black C. 

nebraskana (Figure 1.1).  In areas where the two putative species overlap in the 

foothills of the Rockies, many individuals exhibit intergrade morphological traits 

that may represent hybridization.  Yet, interestingly, the two remain 

morphologically distinct in other areas of sympatry in the Sierra Nevada and 

Cascade ranges.  This pattern suggests these two taxa may be incipient species, 

recently diverged species that may hybridize occasionally, or that they may 

simply represent polymorphism within a single species.  
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The C. sylvatica group includes species that have been suggested as 

candidates for listing under the Endangered Species Act (C. patruela, C. 

denikei), and four of the five species are considered to be species of special 

conservation concern, in at least part of their distributions (NatureServe 2009, 

http://www.natureserve.org/explorer. Accessed: May 2010).  Cicindela patruela is 

of the highest conservation priority within the group, and is listed as “vulnerable” 

to “critically imperiled” in 17 states, and “possibly extirpated” in the remaining four 

states assessed.  Consequently, characterizing the species limits and 

phylogeographic subdivisions (e.g. ESUs) in this group will have important 

conservation implications.  

 

Phylogeography and historical demography 

 

Significant associations between alleles and geography can be the result 

of current demographic factors, ancient events, or some combination of these. F-

statistics (Wright 1969) have often been used to assess levels of population 

structure, as inferred by deviations of heterozygosity from null expectations.  

However, the observed population genetic structure may have little or nothing to 

do with current patterns of gene flow (Larson 1984; Templeton et al 1995).  

Instead, the spatial distribution of allelic variance may be the product of historical 

fragmentation events that could create confounding patterns if these factors are 

not identified.  In particular, Quaternary glacial cycles appear to have had 

profound effects on species distributions and for creating population 
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fragmentation within species (e.g. Huntley and Webb 1989; Hewitt 1996; Klicka 

and Zink 1997; Knowles 2001; Rowe et al 2004; Burg et al 2005; Nice et al 2005; 

Carnaval and Bates 2007; Provan and Bennett 2008; Stewart et al 2010).  The 

historical inferences of phylogeographic studies can be strengthened when 

analyzed in conjunction with other similar studies (e.g. “genealogical 

concordance”) (Avise 1996, 2000).  If multiple codistributed species in a region 

exhibit similar phylogeographic structuring, then this would strongly suggest that 

ancient environmental processes had a similar impact throughout the regional 

fauna.  In addition to identifying the factors responsible for these patterns, 

another result is the identification of geographic areas of high genetic endemism 

(Ryder 1986; Avise 1987; Waples 1991; Dizon et al 1992).  These are areas that 

could be considered a high priority for conservation.  Consequently, the addition 

of more detailed phylogeographic studies will contribute to our understanding of 

basic evolutionary processes and can also have real-world applications. 

Mitochondrial sequence data are typically used to make phylogeographic 

inferences, and they are often the only type of marker employed in these studies 

(reviewed in Avise 2000; Ballard and Whitlock 2004).  However, due to non-

recombination, all loci in the mitochondrial genome are effectively a single linked 

unit. The history of a single gene genealogy may not be representative of a 

species genealogy, and consequently species may be polyphyletic with respect 

to a single marker. There have been concerns about the use of a single 

molecular marker to infer the relationships of recently split biological species (e.g. 

Funk and Omland 2003; Maddison and Knowles 2006), because single genes 
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are prone to patterns of paraphyly and polyphyly resulting from biological 

processes such as incomplete lineage sorting, and introgression as a result of 

interspecific hybridization.  Funk and Omland (2003) suggested a ‘congeneric 

phylogeography’ sampling approach in order to identify species polyphyly and to 

avoid misinterpretation of the causes of genetic variation that could potentially 

result from inadequate sampling and unrecognized para- and polyphyly.  This 

approach requires the sampling of multiple individuals from each of several 

species in order to detect the presence of species-level polyphyly and to evaluate 

alternative hypotheses for observed patterns.   

 In addition to thorough sampling of populations, the use of multiple 

unlinked markers should produce a more representative picture of a “true” 

species tree as multiple genes are less prone to exhibit the idiosyncratic history 

of a single marker. Amplified Length Fragment Polymorphisms (AFLPs) (Vos et 

al 1995) can be used to conduct a genome-wide scan for patterns of total 

genomic divergence between closely related species or diverging populations 

within a species. Furthermore, recent comparisons of mtDNA gene trees and 

AFLP datasets have indicated that the use of mtDNA alone may not be 

representative of total genomic divergence and species boundaries.  Frequently, 

mtDNA gene trees misidentify species and ESUs that were subsequently 

confirmed with whole-genome scans (Gompert et al 2006; Weisrock et al 2006; 

Forister et al 2008).  

To investigate the phylogeographic structure and historical demography of 

the group, I have conducted a series of investigations that combined fieldwork 
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and multiple phylogenetic, population genetic, and coalescent-based analyses.  I 

used the above ‘congeneric phylogeography’ approach to sample intensively 

from all species, subspecies, and notable variants within the North American C. 

sylvatica group.  Phylogenetic analyses were conducted using Maximum 

Parsimony and Neighbor Joining algorithms as implemented in PAUP (Swofford 

1999) and Bayesian tree reconstruction as implemented in MrBayes 3.3 

(Ronquist and Huelsenbeck 2003).  Subsequently, I used AMOVA (Excoffier et al 

1992) and SAMOVA (Dupanloup et al 2002) to investigate the relative 

contributions of taxonomy, geography, and population structure to explain the 

genetic variation.  I used coalescent simulations to address alternative 

hypotheses about the causes of species-level polyphyly, as implemented in 

MESQUITE (Maddison and Maddison 2009).  In addition, I was able to obtain 

demographic estimates of effective population size using LAMARC (Kuhner 

2006) and time since divergence using MDIV (Nielsen and Wakeley 2001).  To 

further characterize the demographic patterns, I used DNASP (Librado and 

Rozas 2009) to estimate multiple population genetics statistics, which taken 

together were used to infer the existence and location of glacial refugia and 

patterns of recent demographic expansion.   

 

Ecological niche modeling and validation of Pleistocene refugia 

 

One fundamental question in evolutionary ecology concerns the ecological 

and environmental barriers that delimit species distributions. These borders can 
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be influenced by a complex interplay of evolutionary, ecological, and 

physiological processes (Cicero 2004).  Separating these effects has been a 

challenge, but theoretical and computational advances have resulted in the 

development of ecological niche modeling (e.g. Nix 1986; Stockwell and Nobel 

1992; Phillips et al 2006; Elith et al 2006) to identify the principal factors 

responsible for the creation and continuing maintenance of range boundaries.  

These GIS-based methods combine data from known point locations for species 

with key environmental variables to generate a fundamental niche profile and 

expected geographic distribution. Furthermore, statistical resampling methods 

can be used to determine the relative contribution of each variable to model 

predictive accuracy.  

Ecological niche-modeling methods most robustly predict the fundamental 

niches of species when detailed and accurate distribution data exist for the taxa 

of interest.  Fortuitously, dependable range maps exist for all North American 

species of Cicindela (Pearson et al 1997) largely as a result of the incredible 

popularity of these insects among collectors (Knisley and Schultz 1997).  To 

date, the factors limiting Cicindela distributions have been attributed to the effects 

of dispersal (e.g. Kaulbars and Freitag 1993b) and as a consequence of species’ 

strong affinities with specific habitats and soil types (e.g. Spanton 1988; 

Schincariol and Freitag 1991). In addition to these and other potentially important 

abiotic factors, the ecological process of competitive exclusion could also prevent 

species from co-occurring at fine spatial scales or over larger geographic areas 

(Connell 1980; Vitt et al 1999).  Some studies have demonstrated that 
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competitive interactions could be important in shaping community structure 

(Pearson and Mury 1979; Pearson 1980; Pearson and Juliano 1991), and one 

study identified food availability as a potentially limiting resource (Pearson and 

Knisley 1985) in a mesic grassland habitat.  Consequently, the potential exists for 

competitive exclusion to be a factor in delimiting ranges of species or populations 

in the C. sylvatica group. 

An interesting application of ecological niche models is the validation of 

previously hypothesized glacial refugia (Waltari et al 2007; Waltari and Guralnick 

2009). By generating an ecological niche model for a species, it is possible to 

locate potential distributional areas under contemporary climatic conditions.  

Once this model is created it can be compared to reconstructions of Last Glacial 

Maximum conditions (Hijmans et al 2005) in order to assess where a species 

could have persisted at that point in time.  Comparing the LGM ranges to 

predictions of glacial refugia based on the molecular data could be incredibly 

informative.   

To characterize the factors limiting species distribution I collected species 

locality data from published records, museum specimens, and my own locality 

database from prior fieldwork.  These presence data were then used to generate 

ecological niche models using MAXENT (Phillips et al 2006) and I then used 

statistical resampling methods included in the program to characterize the 

variables that contributed to each species ecological niche.  Species distribution 

models were mapped and compared to known distributions in order to test 

hypotheses concerning the biotic and abiotic factors limiting their ranges.  The 
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extent of niche overlap between species was quantified using ENMTools (Warren 

et al 2008) to assess the extent of potential niche differentiation and competition.  

Lastly, I applied the Waltari, et al (2007) method described above to validate the 

existence of the glacial refugia identified with molecular data.    

 

Causes of phenotypic variation 

 

Tiger beetle taxonomy has generally been based on genitalic morphology, 

setal (hair) characters, body shape, and especially color pattern at the species 

level. Cicindela often display striking variation in their color patterns within and 

among species (Shelford 1917). These can vary both in ground color and in the 

extent and shapes of dorsal unpigmented areas (maculations).  All dorsal colors 

in tiger beetles are “structural colors” created by the optical properties of the 

cuticle, and not the result of different pigments (Schultz and Rankin 1983a,b). 

The cuticle is laminated with alternating layers of melanin pigment and 

translucent epicuticle, and the distance between these layers largely determines 

the color reflected. In addition to the wavelengths reflected through these layers, 

the surface microsculpturing can also create a mosaic of microscopic patches 

that reflect different wavelengths, which pointillistically mix to create many of the 

brown and olive colors in Cicindela (Schultz and Bernard 1989).  Some studies 

have demonstrated that color may be important in predator avoidance as a result 

of crypsis by resemblance to the substrates they frequent (Willis 1967; Schultz 

1986, 1991).  Other studies have demonstrated that extent of maculation in 
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Cicindela can have significant adaptive consequences for thermoregulation by 

facilitating heat transfer of the integument (Schulz and Hadley 1987; Acorn 1992; 

Hadley et al 1992).  Consequently, the potential exists for natural selection to be 

operating on different phenotypes within populations of C. longilabris.  However, 

the structure of the cuticular layers and the resulting colors have been found in 

some cases to partly reflect phenotypic plasticity in development as a 

consequence of such abiotic factors as varying levels of humidity or temperature 

(Shelford 1917; Schultz 1983).  Because these experiments were carried out on 

only a handful of species under a small set of possible conditions, it has not been 

possible to say how representative these patterns are.  Despite these issues, the 

taxonomy of Cicindela subspecies (and occasionally species) is often based on 

subtle differences in color and pattern (e.g. Willis 1968; Graves et al 1988; 

Schincariol and Freitag 1991), characters that are either potentially under strong 

selection, or possibly the result of developmental plasticity.  In both cases, these 

characters may be inappropriate for inferences about systematic relationships; as 

such traits are prone to patterns of convergence and can result in ‘polytopic 

subspecies’ (Wilson and Brown 1953) that are not representative of evolutionarily 

meaningful entities.  An improved understanding of the underlying causes for 

phenotypic variation would be valuable for accurate taxonomy in this popular and 

conservationally important group of insects. 

 To investigate the causes of phenoptyic variation, I photographed dried 

beetle specimens from throughout the range of C. longilabris, using high-

resolution photographic Nikon DF-Fi1 camera and SMZ 1500 microscope.  
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Specimens were chosen to represent populations of C. longilabris comprising the 

three subspecies, “intergrade” forms (Spanton 1988) and phenotypically distinct 

or variable populations.  In addition, populations of C. nebraskana and purported 

phenotypic “hybrids” were included in the dataset.  Color and maculation pattern 

were quantified using Photoshop CS5.  I then used JMP 9.0 to perform multiple 

regression analyses to determine if environmental variables were predictive of 

phenotypic characters within the group. 

Through the use of an integrative approach I was able to concurrently 

address fundamental questions of evolutionary ecology in a tiger beetle study 

system.  Together, the above analyses of molecular, environmental, and 

phenotypic data allowed for a more complete understanding of the forces acting 

upon population differentiation, divergence, and speciation.  This approach could 

be a model for future studies. 
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CHAPTER II 

 

INFERRING SPECIES LIMITS USING A ‘CONGENERIC PHYLOGEOGRAPHY’ 

APPROACH:  INSIGHTS FROM THE NORTH AMERICAN CICINDELA 

SYLVATICA GROUP TIGER BEETLES 

 

 

Introduction 

 

 

One of the primary goals of modern phylogeography is evaluating 

alternate hypotheses that can account for patterns of genetic variation among 

closely related populations and species.  Understanding phylogeographic 

patterns within species can best be achieved through the broad sampling of 

closely related taxa that might share alleles for various reasons.  However, 

phylogenetic and phylogeographic studies often implicitly assume that nominal 

species are biological species, or at least in practice many phylogeographic 

studies sample exclusively from a taxon of interest (e.g. review in Avise 2000; 

Peters et al 2005; Smith and Farrell 2005; Spellman and Klicka 2007).  If the 

assumption of species monophyly is inaccurate then evolutionary interpretations 

of the data can be highly misleading (Funk 1999).  In their review of the literature, 

Funk and Omland (2003) demonstrated that this assumption is often incorrect 

and documented that para- and polyphyly occurred in at least 23% of 2319 
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assayed species.  Moreover, it would be impossible to empirically observe a 

pattern of polyphyly unless multiple individuals of at least two species are 

examined.  To this point, Funk and Omland suggested the use of a ‘congeneric 

phylogeography’ approach to evaluate alternative hypotheses for observed 

patterns.  This technique would also help avoid misinterpretation of the causes of 

genetic variation that could potentially result from inadequate sampling and 

unrecognized para- and polyphyly.  Only by sampling multiple individuals from 

each of several species can the hypothesis of species-level monophyly actually 

be tested.  In the event that species para- or polyphyly is revealed, additional 

hypothesis can be tested to determine the underlying cause of the incongruence 

between the nominal species and the gene tree.  Ultimately, this approach could 

potentially result in a greater understanding of the biology of the organisms being 

examined (e.g. identification of a hybrid zone between species), or raise 

awareness about the need for re-evaluation of the taxon as a valid species.   

The causes of species-level polyphyly (meaning any form of non-

monophyly, including paraphyly) were reviewed by Funk and Omland (2003) and 

will be briefly described here.  First, polyphyly can be an artifact of non-biological 

causes, such as inaccurate taxonomic species concepts that do not reflect actual 

biological species.  This can be the result of “oversplitting”, a situation where 

variants within a single species have been defined erroneously as separate 

nominal species.  The converse of this situation is “lumping”, the result of 

unrecognized distinct evolutionary lineages that are treated as a single 

taxonomic entity.  Yet even when taxonomic concepts accurately reflect species 
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boundaries, polyphyly can occur as a consequence of the misidentification of 

particular specimens used in a study.  Besides taxonomic issues, other 

methodological problems can result in observed polyphyly, such as inadequate 

phylogenetic information (i.e. weak statistical support for nodes) or the 

unrecognized paralogy of gene copies that are assumed to be orthologs.   

Alternatively, species-level polyphyly can stem from biological causes 

reflecting the true allelic history of the taxa being studied.  Recently diverged 

species are expected to share alleles as a result of retained polymorphisms 

present in the ancestral species prior to splitting. Consequently, nearly all sister 

species are likely to exhibit polyphyly for at least some portion of their history, 

and it is expected to take on the order of 4Ne generations before species are 

reciprocally monophyletic with respect to mitochondrial loci (Tajima 1983; Neigel 

and Avise 1986; Avise 1989; Takahata 1989; Avise and Ball 1990; Harrison 

1991; Ballard and Whitlock 2004).  This is a predicted amount of evolutionary 

time required in for a genealogy to accurately reflect the species tree (i.e. 

“lineage sorting”).  However, the actual time necessary for complete lineage 

sorting may be affected by selection on the loci being examined.  Positive 

selection can shorten the time to allelic fixation between species, whereas 

balancing selection can lengthen this time period or prolong it indefinitely.   

Another general cause of species polyphyly is interspecific hybridization where 

occasional interbreeding results in the transfer of alleles to hybrid offspring.  

When hybrids subsequently backcross into the parental populations the alleles 

from one species may introgress in the gene pool of another species, resulting in 
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observed polyphyly (Arnold and Bennett 1993; Shaw 1999, 2002; Chan and 

Levin 2005).  Importantly, hybridization and incomplete lineage sorting can create 

similar polyphyletic phylogenetic patterns (Avise and Ball 1990; Holder et al 

2001) and various methods have been developed that use information from 

reconstructed gene trees and coalescent simulations to tease apart the effects of 

each (Sang and Zhong 2000; Holder et al 2001; Kubatko 2009) although no 

single universally applied method has yet emerged. In some cases it may be 

possible to distinguish the effects of lineage sorting and hybridization based on 

other biological, temporal, or geographical information (e.g. Russell et al 2005; 

Buckley et al 2006; Joly et al 2006; McGuire et al 2007; Zinner et al 2009). To 

complicate matters, the two phenomena are not mutually exclusive and may be 

concurrently contributing to the observed polyphyly.   

Undetected species-level polyphyly has several consequences for 

evolutionary inference and application to real world problems in taxonomy and 

conservation.  First, if species are polyphyletic then the historical and 

demographic interpretations of phylogenetic patterns can be affected by the 

specific individuals chosen to represent species.  Consequences include 

drastically inaccurate assessment of phylogenetic relationships, reconstruction of 

character evolution, and estimates of genetic divergence within and between 

species (Funk 1999).  Second, species delineation and species identification are 

increasingly based on molecular data (e.g. Hebert et al 2003a, b; Tautz et al 

2002; Pons et al 2006), and species-level polyphyly is especially a relevant issue 

as it relates to the increasingly popular method of “DNA barcoding” (Hebert et al 
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2003a, b).  DNA barcoding aims to identify specimens solely through the use of a 

600bp fragment of mitochondrial DNA.  The methodology is founded on the 

assumption that individuals within species will form monophyletic groups to the 

exclusion of individuals from all other species.  If this assumption is incorrect for 

a particular taxon then one possible result is a polyphyletic pattern, resulting in 

misidentification of the specimens of interest.  Furthermore, phylogeographic 

studies are often used to identify the existence of major genetic subdivisions 

within species (reviewed in Avise 2000). Taken together, these issues 

underscore the importance of comprehensive sampling.  A researcher is much 

more likely to identify the occurrence of species polyphyly by adopting Funk and 

Omland’s (2003) proposed ‘congeneric phylogeography’ approach:  intensively 

sampling populations of all closely related species of interest throughout the 

geographic ranges of all nominal species that have the potential to share genes. 

 

Study system  

 

The tiger beetles (Coleoptera: Carabidae: Cicindelinae) are a group of 

generalist predatory insects that are cosmopolitan in distribution.  Both adults 

and larvae are predaceous, and most species are diurnally active in open 

habitats, such as sand dunes, open fields, alkali flats, and patches of bare soil or 

rock (Pearson 1988).  Larvae are ambush predators that live in burrows in soil or 

rarely in other substrates such as rock crevices (Kaulbars and Freitag 1993b). 

The larvae lie in wait at the top of their burrows with their mandibles open and 
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their heads and pronota flush with the ground surface (Knisley and Schultz 

1997).  When a small invertebrate comes within reach they fling their heads in 

the direction of the prey, grasp it with their mandibles, and drag the prey down 

into the burrow to feed.  Adult tiger beetles run on the ground after prey, 

capturing and killing them with their mandibles. Larvae and adults typically occur 

in the same habitats, with only a few known exceptions (Knisley and Schultz 

1997). Most species require 1-3 years to complete their lifecycle (Knisley and 

Schultz 1997), although a small number of species are known to take four or 

more years to reach adulthood, especially at high latitudes (Spanton 1988).   

Tiger beetles in the North American Cicindela sylvatica L. group are ideal 

for an assessment of the congeneric phylogeographic approach.  First, previous 

phylogenetic work has demonstrated that these species comprise a well-

supported monophyletic clade to the exclusion of all other North American 

species (Vogler and Welsh 1997; Vogler et al 2005).  This result indicates that 

thorough sampling should be extended to all members of this clade, as there is 

potential for gene flow or sharing of ancestral alleles.  Moreover, reliable 

geographic range distributions are available for all species (Spanton 1988; 

Kaulbars and Freitag 1993b; Pearson et al 1997) making it possible to intensively 

sample the full geographic range of each nominal species (Figure 1).   

Furthermore, at present four of the five species are considered to be species of 

special conservation concern, in at least part of their distributions (NatureServe 

2009, http://www.natureserve.org/explorer. Accessed: May 2010), especially the 

species, C. patruela, which is listed as “vulnerable” to “critically imperiled” in 17 
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states, and “possibly extirpated” in the remaining four states assessed.  

Consequently, characterizing the genetic boundaries and distinctiveness of these 

taxa will have important conservation implications.  

The systematic relationships of these species have been dealt with in 

multiple revisions (Spanton 1988; Kaulbars and Freitag 1993b) and these 

revisions suggest hypotheses about the boundaries of nominal species and the 

potential for gene flow.  It is generally accepted that the species C. longilabris 

Say and C. nebraskana Casey are distinct species based on differences in color 

pattern, morphometrics, and subtle ecological differences (Leffler and Pearson 

1978; Spanton 1988).  However, they appear to hybridize in some areas where 

the two ranges overlap in the foothills of the Rocky Mountains and parts of the 

northern Great Plains (Figure 1a, b) while remaining morphologically distinct 

elsewhere.  Originally these two species were historically considered to be the 

only North American members of the Holarctic C. sylvatica species group 

(Rivalier 1950, 1954) and no other species were included in Spanton’s (1988) 

revision of the North America taxa.  More recently, molecular data were used to 

create species level phylogenies for the genus (Vogler and Welch 1997; Vogler 

et al 2005) that placed C. longilabris and C. nebraskana as sister to the “C. 

sexguttata group” (sensu Kaulbars and Freitag 1993b), which includes the 

eastern species C. sexguttata F., C. patruela Dejean, and C. denikei Brown.  The 

taxonomy of C. patruela and C. sexguttata has been generally less contentious 

and all modern workers have treated them as distinct species (Boyd 1982; 

Knisley and Schultz 1997; Freitag 1999; Wiesner 1999; Pearson et al 2006) 
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based on multiple distinct differences in morphology, behavior, and ecology, 

throughout all areas of sympatry.  Less clear however, is the distinction between 

C. sexguttata and C. denikei. The latter was once considered a form of C. 

sexguttata (Brown 1934; Wallis 1961) but more recently recognized as a distinct 

species (Kaulbars and Freitag 1993a, b; Freitag 1999) based on subtle 

differences in morphology and adult and larval behavioral ecology.  Notably, C. 

denikei occurs only in a restricted geographic area of Ontario, Manitoba, and 

Minnesota (Fig. 1c) and is “peripatric” (Mayr 1942) and non-overlapping in 

distribution with the more widespread C. sexguttata.  Based on the prior body of 

work, alternative hypotheses have been erected to explain the systematic 

relationships of the group: 

 

H Ia)  C. longilabris and C. nebraskana are separate species that hybridize, at 

least in some areas of sympatry, explaining the existence of morphologically 

intermediate populations and individuals. 

H Ib)  C. longilabris and C. nebraskana are not distinct species, but instead are 

the result of intraspecific polymorphism. 

 

H IIa)  C. patruela and C. sexguttata are separate species that remain distinct in 

sympatry. 

H IIb)  C. patruela and C. sexguttata are not distinct species, but instead are the 

result of intraspecific polymorphism.  
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H IIIa)  C. sexguttata and C. denikei are recently diverged species resulting from 

a peripatric speciation event.   

H IIIb)  C. denikei is an isolated population and phenotypic variant of C. 

sexguttata but not a distinct species. 

 

I utilized a congeneric phylogeography approach to test these alternative 

systematic hypotheses, which to date have never been addressed using 

molecular data and modern evolutionary analyses.  Using phylogenetic, 

population genetic, and coalescent-based methodologies.  I examined the 

genetic relationships amongst the putative species and compared the resultant 

predictions for species polyphyly from each hypothesis.  I evaluated both the 

biological and taxonomic interpretations of observed genetic patterns.  Due to the 

fact that much of the species collective ranges encompass areas that were 

recently glaciated at the Last Glacial Maximum (CLIMAP 1981; Sibrava et al 

1986; Mix et al 2001) it is plausible that these taxa could have diverged during 

the Quaternary ice ages, or at least been impacted as a result of population 

isolation into multiple refugia.  Species that have diverged recently (< 4Ne 

generations) are more likely to share alleles due to the effects of incomplete 

lineage sorting.  Given these issues, I explicitly evaluated the effects of 

stochastic lineage sorting in phylogeographical hypothesis testing through the 

integrated use of multiple phylogenetic and coalescent methods.  The results 

emphasize the importance of thorough geographic sampling of species, 
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especially in areas of geographic proximity or sympatry between taxa, and 

demonstrate the utility of this method in phylogeographic hypothesis testing. 

 

 

Materials and Methods 

 

 

Sampling 

 

Specimens were sampled from populations representing a considerable 

portion of the ranges of all nominal species (Figure 1), including all recognized 

subspecies (Freitag 1999) and as many notable variants as possible.  The 

sampling localities (Table 1) were based on published records (Leffler 1979; 

Spanton 1988; Kippenhan 1994), localities provided by other North American 

tiger beetle researchers and amateur collectors, and additional populations 

located through exploratory collecting of appropriate habitat by the author. Other 

populations and individuals were contributed by collectors.  Beetles were 

captured using aerial nets or insecticidal sprays and preserved using > 95% ethyl 

alcohol.  Species identifications were based on morphological characters used in 

Willis’s (1968) key and Spanton’s (1988) revision.  Specimens that could not be 

unambiguously assigned to either C. longilabris or C. nebraskana were referred 

to as “hybrids”.  These individuals often occurred in intermediate habitat types 

alongside other individuals that could be confidently assigned to one or both of 
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the nominal species.  No putative hybrids were ever observed between C. 

sexguttata and C. patruela.  Outgroup taxa included two species in closely 

related subgenera (Vogler et al 2005), C. (Cicindelidia) punctulata Olivier, C. 

(Sopiodela) chinensis japonica Thunberg, and three Cicindela (sensu strictu), 

including the hypothesized closest relative of the North American taxa, the 

Palearctic C. sylvatica L. (Rivalier 1950, 1954), plus the Palearctic C. 

sachalinensis Morawitz, and the North American C. tranquebarica Herbst.   

 

DNA extraction and sequence analysis 

 

Genomic DNA was extracted from most specimens by separating the 

head + prothorax from the rest of the body then removing flight muscles with 

sterilized forceps.  DNA was isolated from the muscle tissue using the protocol of 

the DNeasy DNA isolation kit (Qiagen Corp.).  Upon removal of tissue for 

extraction, the voucher specimens were stored in 70% ethyl alcohol for eventual 

pinning and vouchering.  A small fraction of samples were obtained from dried 

specimens and these were extracted by perforating the abdomens using small 

“minuten” pins; following this the entire specimens were placed in 1.5ml 

microcentrifuge tubes containing lysis buffer and soaked overnight in a 55oC 

water bath.  No specimens were destroyed in the DNA extraction process and 

the reassembled vouchers exist for each.  Using combinations of several 

standard insect mtDNA primers (Simon et al 1994) initial sequence data was 

obtained and the following degenerate primers were designed with the program 
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Primer3 (http://www.bioinformatics.nl/primer3plus) for PCR amplification and 

sequencing: CicF1 5’-AAA GGA AAC ATT TGG TTC ATT (A/G)GG-3’, and 

CicR2 5’-AGT CGA AGA GAT GGA AG(C/T) GC-3’.  These primers were used to 

amplify a 1.1 kilobase fragment of the mitochondrial genes cytochrome oxidase c 

subunit I + tRNA + coII corresponding to positions 2212-3342 of the Drosophila 

yakuba sequence.  PCR conditions consisted of an initial denaturation at 96oC 

for 2 mins, then 10 cycles at 96oC for 30 s, 46oC for 30 s, 72oC for 1 min, and an 

additional 30 cycles at 96oC for 30 s, 48oC for 30 s, 72oC for 1 min.  Negative 

controls were used in all PCR reactions and no amplifications were ever 

observed in these.  The target fragments were sequenced using the Dyenamic 

Terminator Sequencing Kit (Amersham Biosciences) run out on a polyacrylamide 

gel using an MJ Basestation and analyzed with the program Cartographer (MJ 

Research, Waltham, MA).  When available, at least 4 individuals were extracted 

and sequenced per population for use in the analyses.  A maximum of up to 10 

individuals were extracted and sequenced per population.  

Sequences were edited using Sequencher 4.2 (GeneCorp) and 

unambiguously aligned, as no indels were present in the fragment.  The 

alignment was verified by eye and trimmed to 972bp for all 523 taxa.  

MODELTEST version 3.06 was used to determine that the unpartitioned data 

best fit a GTR + I + ! model of substitution.  Subsequent population genetic 

analyses were carried out using the assumptions of this model and parameter 

values specified. 
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Phylogenetic and population genetic analyses 

 

Due to the large size of the mtDNA dataset (523 individuals and over 

500,000 bp of sequence data), I used DNASP 4.0 to identify unique haplotypes 

and remove identical sequences.  Phylogenetic reconstruction was carried out on 

this haplotype dataset, utilizing both Bayesian likelihood and maximum 

parsimony analyses.  The Bayesian analysis was performed with MRBAYES 

version 3.1 (Ronquist and Huelsenbeck 2003) implementing a GTR + I + ! model 

of evolution.  I ran four Markov chains for 20 million generations each, with 

sampling every 1000 generations, resulting in a sample of 20,000 trees.  The first 

25% of the trees were discarded as a burn-in and the remaining 15,000 trees 

were used to construct a 50% majority consensus tree.  After the burn-in was 

discarded, plots of the generation vs. the log likelihood values resulted in a 

random distribution of points, indicating that the chains had reached stationarity 

(Ronquist and Huelsenbeck 2003) which was further corroborated by 

convergence diagnostics (Gelman and Rubin 1992).  The maximum parsimony 

analysis was implemented in PAUP* (Swofford 1999) with 1000 bootstrap 

replicates used to assess statistical support for recovered clades.   

Analysis of molecular variance (AMOVA; Excoffier et al 1992) was 

employed to examine the degree of congruence between species boundaries 

and genetic data.  Following this, the program SAMOVA 1.0 (Spatial Analysis of 

Molecular Variance; Dupanloup et al 2002) was used to identify populations that 

are geographically continuous and maximally genetically differentiated from each 
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other by maximizing "CT.  By comparing the percent of genetic variation that was 

consistent with nominal species boundaries to that explained by SAMOVA 

identified populations, it was possible to quantify the relative contributions of 

taxonomy and geography towards explaining genetic variation in the group. 

 

Demographic analyses and coalescent-based hypothesis testing 

 

Stochastic lineage sorting can result in the sharing of alleles between 

species; even those that are no longer exchanging genes (Avise et al 1983; 

Pamilo and Nei 1988).  Historically this has been problematic for evolutionary 

inferences, as the effects of lineage sorting are difficult to separate from ongoing 

gene flow.  However, coalescent-based simulations can potentially distinguish 

these causes by modeling the effects of retained ancestral polymorphisms on 

gene trees.  Because lineage sorting is a stochastic process that proceeds as a 

function of time and population size (Neigel and Avise 1986), it is highly probable 

that closely related species with large effective population sizes will continue to 

share alleles even after gene flow has stopped.  Prior to running coalescent 

simulations of lineage sorting, it was necessary to obtain estimates of the 

evolutionary effective population size for these simulations.  Since # = 2NeuG, 

the effective population size (Ne) can be calculated by estimating the parameter 

# from genetic data, when mutation rate (u) and generation time (G) are known.  

Maximum likelihood estimates of # were obtained using LAMARC (Kuhner 2006) 

starting with an initial value of # based on the number of segregating sites 
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(Watterson 1975), a point estimate obtained from DNASP 4.0.  Published 

ecological data suggest that all species in this group typically have 2-year 

generations (Shelford 1917; Spanton 1988; Kaulbars and Freitag 1993b) 

throughout most of their ranges, although C. longilabris was demonstrated to 

have generation times of up 3 years or possibly longer (Spanton 1988), and C. 

nebraskana is presumed to have similar phenology.  Mutation rates for insect 

mtDNA have been estimated across taxa, with the average rate of 2% per million 

years per gene (Brower 1994) and studies of tiger beetle molecular evolution 

have suggested that similar rates exist in the subfamily (Barroclough and Vogler 

2002).      

Coalescent simulations were performed using the program MESQUITE 

2.72 (Maddison and Maddison 2009) to assess the amount of time required for 

complete lineage sorting.  First, population trees were constructed for each pair 

of species as described in Hypotheses I-III with differing branch lengths as a 

function of population size (ranging from 0.01Ne to 1Ne).  I simulated 1000 gene 

trees constrained within each population tree using a coalescent process based 

on values of Ne as obtained above.  Slatkin and Maddison’s (1989) s statistic is a 

measure of the discordance between a gene tree and population tree and can be 

used to estimate gene flow or the time to lineage sorting under the assumption of 

no gene flow.  I calculated s for each simulation, and graphed the distribution of s 

values for each population tree.  This was compared to s from the observed tree 

to estimate the number of generations of lineage sorting with which the observed 

data is consistent under the no gene flow model.  The expected time to complete 
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lineage sorting in the absence of gene flow is given by the distribution that is 

consistent with an s of 2. 

The program MDIV uses a coalescent framework to calculate maximum 

likelihood estimates of the divergence time between populations under the 

assumption of no recombination.  This was used to estimate the time of 

divergence parameter T between the principal mtDNA clades.  Each estimate of 

divergence was based on three independent runs with different random seeds to 

ensure that simulations were run sufficiently long enough to approach 

convergence.  All runs were based on 2,000,000 cycles with a burn-in of 200,000 

cycles.     

 

Multilocus AFLP analyses 

 

Ninety-six specimens were selected for a comparative multilocus 

phylogeny based on amplified fragment length polymorphisms (AFLPs) and were 

chosen to include all species, subspecies, and all major clades and subclades 

recovered in the mtDNA phylogeny.  In addition, this set included two positive 

controls and an outgroup (C. sylvatica). Genomic DNAs were quantified using 

NanoDrop 1000 (Thermo Scientific, Wilmington, DE) and aliquots were made to 

bring the total DNA to 150ng per 25 ul AFLP reaction.  To generate AFLP data 

following Vos et al (1995), I used AFLP Core Reagent Kits (Invitrogen, Carlsbad, 

CA).  After the pre-selective amplification, four selective amplification primer 

combinations were used to generate PCR products (Table 2) that were purified 
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using Sephadex (GE Healthcare, Piscataway, NJ).  Each run plate contained 

samples arranged in a randomized design, so as to preclude any possible block 

effects.  In addition, two samples were run twice on each plate, as a form of 

positive control.  Products were sent to University of Arizona Genetics Core 

(Tucson, AZ) for initial fragment analysis.  This raw data was analyzed using the 

program RawGeno (Arrigo et al 2009), as this allows for an objective and 

repeatable method for analyzing particularly large AFLP datasets.  Most 

individuals contained at least 200-300 bands present (out of a total of 1252 loci), 

and those samples that had fewer were than 200 bands were removed from the 

final dataset.  Diagnostics in the RawGeno program also indicated these same 

samples were of poor quality, so they were not used in any subsequent analyses. 

Fragments of length 100-500 bp were included in the analysis and the default 

settings and thresholds were used.  Additional analyses were performed using 

different thresholds for band size ranges (150-500bp) and larger bin widths (2bp 

instead of 1.5bp) and the results were not significantly different than those 

obtained with default values. Presence versus absence of peaks for these 

anonymous loci was called automatically within RawGeno according to the noise 

thresholds set by the program.   

 AFLP data were analysed using the program STRUCTURE 2.3 (Pritchard 

et al 2000; Falush et al 2003, 2007; Hubisz et al 2009) to investigate population 

genetic structure.  The model assumes there are K populations and samples are 

assigned to one of the populations by identifying clusters that minimize 

deviations from Hardy-Weinberg equilibrium and linkage disequilibrium.  The 
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newest version program was updated to handle dominant data, such as AFLPs 

(Hubisz et al 2009).  I used the model parameter that assumed admixture, as it is 

biologically defensible and shown to be the most flexible and robust assumption 

(Pritchard et al 2000; Hubisz et al 2009).  Each run was performed using a burnin 

of 50,000 steps and 500,000 additional steps.  Runs were repeated five times for 

each K and results were consistent, therefore additional runs were not 

necessary.  There are multiple methods to estimate K, and Pritchard et al (2007) 

advise against simply choosing the value of K that maximizes log P [data / 

model], and to instead “aim for the smallest value of K that captures the major 

structure in the data”.  I followed the Evanno et al (2005) method to estimate the 

point at which the improvement in log P [D/M] levels off with increasing K.  Even 

this method is still an ad hoc approximation and the authors conclude that a 

reasonable biological interpretation should be a key factor in selecting the 

“correct” K.   

 In addition to the STRUCTURE analyses of the AFLP data, I also ran 

phylogenetic reconstructions of the same data.  AFLP data is inherently distance-

based (presence vs. absence) and consequently many reconstruction methods 

cannot be defensibly used to reconstruct such a tree.  Although no model of 

evolution for AFLP data currently exists, the data does lend itself to a distance-

based tree-reconstruction, such as Neighbor Joining (Satui and Nei 1987).  NJ 

trees often approximate trees used by other reconstruction methods (Felsenstein 

2004; Mihaescu et al 2009) and taken in conjunction with the STRUCTURE 

results, these may be informative as to the history of the focal taxa.   
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Results 

 

 

Overall mtDNA and AFLP results 

 

A total of 523 individuals were sequenced for a 973 bp fragment of 

mtDNA, yielding over 508,000 bp of sequence data.  Phylogenetic analyses were 

run using the total dataset and using a reduced dataset that included only unique 

haplotypes (196).  Topologies were entirely consistent for each tree and the 

strongly supported clades reported below were contained in either dataset. As a 

result, the more compact haplotype tree was used to illustrate results (Figure 2).  

The Bayesian and Maximum Parsimony trees recovered a monophyletic ingroup, 

and indicated that the Palearctic C. sylvatica and C. sachalinensis were the 

closest relatives of the North American C. sylvatica group. Within the ingroup, the 

first major phylogenetic split was between the members of the traditionally 

recognized North American C. sylvatica group (comprised of individuals of C. 

longilabris and C. nebraskana, hereafter referred to as the “Meadow Group” for 

their ecological association with alpine meadows and grasslands, and Kaulbars 

and Freitag’s (1993b) C. sexguttata group, hereafter termed the “Forest Group” 

for their association with primarily forested habitats.  The two groups are 

separated by a net genetic distance of 3.26% using the method of Edwards 

(1997) that corrects the absolute distance by accounting for the genetic variation 

present in the ancestral population, as implemented in DNASP.  These groups 
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were estimated to have diverged on the order of 2.51 million years ago from the 

maximum likelihood estimate obtained with MDIV (Table 3).  This is assuming an 

average generation time of 2 years for the ancestor, typical of most Holarctic 

Cicindela (sensu strictu) (reviewed in Knisley and Schultz 1997).   

The final AFLP dataset contained 61 unique individuals from the Meadow 

Group, and 26 from the Forest Group, in addition to the outgroup, C. sylvatica.  

Positive controls (samples run twice on each plate) were recovered as sister to 

their same-sample counterparts in each phylogenetic tree, and similarly they 

were found to cluster together in STRUCTURE analyses.  At K = 3, 

STRUCTURE identified populations corresponding to 1) the outgroup, 2) the 

Meadow Group, and 3) the Forest Group.  This was consistent with the results of 

the mtDNA phylogeny.  Evolutionary inferences in the two major groups were 

distinct and results will be described separately below.   

 

Results for Meadow Group 

 

Phylogenetic and population genetic analyses  

 

Phylogenetic analyses revealed that the nominal species, C. longilabris 

and C. nebraskana, were extensively polyphyletic, and haplotypes were shared 

between the two species and the morphological “hybrids” (Figure 2.2).  Despite 

lack of species-level monophyly, there was significant structure present in the 

tree, and both analyses revealed the existence of three strongly supported 
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mtDNA clades each separated by 1.46 – 1.97% corrected net distance in 

pairwise comparisons (Table 2.3).  These clades diverged from each other 

between 1.3 and 2.4 million years ago, based on MDIV analyses.  Multiple 

individuals of C. longilabris, C. nebraskana, and “hybrids” were present in each 

clade.  The clades were each distributed throughout a specific geographic area, 

and as such they are named for their location: Continental, Northwest, and 

Southwest Clades (Figure 2.3).  Furthermore, these clades are non-overlapping 

in distribution, even in areas of close geographic proximity.  Only one sampling 

locality was comprised of more than one clade, the population at Fremont Co, 

Idaho. At this site, four of the five individuals fell within the Southwest Clade, and 

the remaining individual was recovered within the Northwest Clade.  This 

population occurs in a location where all three mtDNA clades appear to converge 

geographically.   

AMOVA revealed that only an exceptionally small fraction (0.04%) of the 

genetic variation was explained by nominal species boundaries and this was not 

significantly different from zero (Table 2.4A).  In contrast, 90.27% of the genetic 

variation was partitioned among sampling localities demonstrating very high 

levels of population structure, with the remaining 9.69% attributable to within 

population variation. SAMOVA was used to identify populations that are spatially 

contiguous and genetically differentiated from each other by maximizing "CT.  I 

compared results from K = 2 onwards to determine the point at which there was a 

plateau in the increase of "CT with the addition of more K populations. That point 

was reached at K = 4 while little increase in "CT occurred with additional increase 
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in K.  At K = 3, SAMOVA identified three populations that were also identical to 

the major mtDNA haplotype clades.  At K = 4 another geographic clade emerged, 

which I termed the SW Continental Clade, a divergent subgroup nested within 

the Continental Clade. These regional groups explained 72.25% of the genetic 

variation.  Taken together, the results indicate that taxonomy is a very poor 

predictor of genetic variation compared to geography and population structure. 

 

Coalescent simulations  

 

The observed species polyphyly may be the result of ongoing gene flow, 

some level of hybridization/introgression, or may be attributable to the presence 

of retained ancestral polymorphisms.  Using coalescent simulations, I modeled 

the potential effects of lineage sorting on the data given an estimated 

evolutionary effective population size (Ne). LAMARC was used to estimate the 

parameter # and from that it was calculated that Ne for the group was on the 

order of 4.1 x 105.  Coalescent simulations implemented in MESQUITE showed 

that when branch lengths were scaled to 0.75Ne the distribution was consistent 

with an s of 2, meaning that in the absence of gene flow complete lineage sorting 

would require approximately 300,000 generations or 900,000 years, given a 

three year average generation time (Spanton 1988).  Slatkin and Maddison’s s 

was originally developed to estimate levels of gene flow based on discordance 

between gene trees and species trees. Here, Slatkin and Maddison’s s, given the 



49 

observed tree, indicates 46 gene flow events between C. longilabris and C. 

nebraskana (Table 2.5).  

 

AFLP analyses 

 

 A total of 61 individuals were included in the final AFLP analyses for the 

group, and the four primer pairs yielded 1252 anonymous loci (Table 2.2).  The 

Neighbor Joining tree recovered two major clades where both contain a mix of C. 

longilabris, nebraskana, and “hybrid” individuals (Figure 2.4).  Although the 

clades were not associated with taxonomic species, they did match a geographic 

break between the mtDNA clades (Figure 2.5).  STRUCTURE analyses of K = 2 

– 10 were run and K = 2 was most strongly supported as the “correct” number of 

populations, based on multiple lines of evidence. First, the Evanno et al (2005) 

method revealed a sharp decrease in the improvement in log P [D/M] after K = 2.  

Furthermore, at K = 2, most individuals display >90% genomic identity 

associated with one of the two populations, whereas at K > 2 no individuals 

genome is comprised of more than a fraction of any identified population (Figure 

6).  In addition, these two SRUCTURE populations represent clusters that are 

geographically contiguous and allopatric (Figure 7), perfectly congruent with the 

two clades recovered in the NJ tree.  Most localities contain individuals that fall 

strongly into one of the STRUCTURE identified populations (>90% of their 

genome).  A small number of localities contained individuals exhibiting more 

admixture, meaning >10% of their genomic identity derived from the other 
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population.  These populations were located mostly near the geographic 

boundary separating the two populations.  

 

Results for Forest Group 

 

Phylogenetic and population genetic analyses  

 

The phylogeny revealed species polyphyly in the Forest Group, although 

to a much lesser extent than in the Meadow Group (Figure 2.2). Two major 

clades were recovered and were separated by 0.81% corrected net sequence 

divergence.  The first of these clades (termed Forest1) consisted of 83% (71) C. 

sexguttata, 8% (7) C. denikei, and 9% (8) C. patruela.  The second clade (termed 

Forest2) consisted of 100% (22) C. patruela individuals.  These two clades 

overlap geographically (Figure 2.8) and the Forest 2 Clade encompasses a much 

smaller geographic area that is contained entirely within the distribution of the 

more widespread Forest 1 Clade.  Moreover, eight of the Forest Group sampling 

localities contain individuals belonging to both clades.  A single haplotype (#162) 

was shared between the species C. sexguttata and C. patruela (Figure 2.2).  This 

haplotype occurred in eight northeastern C. sexguttata populations and three of 

five individuals within a geographically proximate population of C. patruela from 

MA.  Additionally, one haplotype was shared between C. sexguttata and C. 

denikei (#186).  This was present in the two westernmost C. sexguttata 
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populations from the Black Hills (SD, WY) and shared with all but one of the 

individuals in the two C. denikei populations. 

AMOVA revealed that 38.86% of the genetic variation was explained by 

taxonomic species boundaries (Table 4B).  Population structure accounted for an 

addition 38.86% and the remaining 22.28% was attributable to within population 

variation.  As above, SAMOVA was used to identify spatially and genetically 

differentiated populations.  At K = 3 the increase in "CT plateaued and these 

regional groups explained 52.18% of the genetic variation, although these groups 

did not correspond to the mtDNA clades or any non-overlapping geographic 

areas. Taken together, these results suggest that taxonomy accounts for a 

moderate amount of the mtDNA genetic variation, and is equivalent to that 

explained by population structure.  Regional groups explain a similar proportion 

of the genetic variation, but did not appear to be particularly geographically 

meaningful. 

 

Coalescent simulations  

 

LAMARC estimates of the parameter # revealed that Ne for the Forest 

Group was on the order of 1.2 x 105.  MESQUITE coalescent simulations 

demonstrated that, in the absence of gene flow complete lineage sorting between 

C. sexguttata and C. patruela would require approximately 180,000 years (Table 

2.5).  The estimate of Slatkin and Maddison’s s from our observed tree is 

consistent with seven gene flow events.  Lineage sorting between C. sexguttata 
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and C. denikei should require on the order of 120,000 years, and the observed 

tree is consistent with four gene flow events.   

In addition, I ran simulations with Ne estimated for each Forest Group 

species separately because 1) repeated field observations and published 

accounts suggest highly asymmetrical population sizes for these species, based 

on differences in ecological niche breadth, patchiness of habitat, and observed 

abundances of the species in their appropriate habitat (Knisley et al 1990; 

Kaulbars and Freitag 1993a, b; Schultz 1998), and 2) the two Forest clades more 

or less reflect species boundaries with a relatively small percentage of apparently 

introgressed haplotypes in the Forest 1 Clade.  Estimated Ne was 1.1 x 105 for 

C. sexguttata, 3 x 104 for C. patruela, and 2.8 x 103 for C. denikei.  Coalescent 

simulations based on unequal Ne’s demonstrated that complete lineage sorting 

between C. sexguttata and C. patruela would require approximately 120,000 

years, whereas lineage sorting between C. sexguttata and C. denikei would 

require approximately 7,700 years under the assumption of no gene flow. 

 

AFLP Analyses 

 

A total of 26 individuals were included in the final AFLP analyses for the 

group, and the four primer pairs yielded 1252 anonymous loci (Table 2.2).  The 

Neighbor Joining tree recovered two major clades, corresponding to 1) C. 

sexguttata + C. denikei, and 2) C. patruela (Figure 9).  Bootstrap analysis 
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revealed strong support, with 100% of 1000 replicates recovering both clades.  

No further geographic or taxonomic structuring was identified within these clades.  

STRUCTURE analyses of K = 2 – 10 were run and K = 2 was most strongly 

supported (Figure 10).  As in the Meadow Group, the Evanno et al (2005) 

method revealed a sharp decrease in the improvement in log P [D/M] after K = 2.  

With two populations, the clusters matched exactly with the results of the NJ tree 

above.  All individuals displayed 96-100% genomic identity associated with one 

of the two populations, demonstrating a clear lack of admixture between the two 

clusters.  Higher K values did not contribute to any clustering into additional 

geographic or taxonomic groupings, and at K > 2 no individual’s genome is 

comprised of more than a fraction of any additionally identified population. 

 

 

Discussion 

 

 

Species-level polyphyly 

 

Patterns of species-level polyphyly were observed in all five taxonomic 

species within the North American Cicindela sylvatica group. Multiple processes 

can result in non-monophyletic species and among these, unrecognized paralogy  

(e.g. amplification of nuclear pseudogenes) is probably the least likely problem at 

low phylogenetic levels. Nuclear pseudogene copies of mitochondrial genes are 
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typically identifiable by the presence of at least one of several characteristics, 

including the occurrence of insertions/deletions or unusual rates of nucleotide 

substitution that differ from that of other similar protein coding gene copies 

(Kimura 1983; Zhang and Hewitt 1996; Bensasson et al 2001; Williams and 

Knowlton 2001). Our sequences contained no indels, and were translated and 

found to be consistent with typical nucleotide substitution patterns, with 

accumulation of substitutions occurring primarily in third positions of codons.  As 

such, no evidence of paralogy was found. 

Another cause of polyphyly is inadequate phylogenetic information 

resulting in poorly supported clades or a star-like unresolved phylogeny.  In the 

mtDNA tree, both Bayesian and maximum parsimony analyses recover very 

similar tree topologies with deep phylogenetic structuring (Fig. 2.2).  Moreover, 

the major clades are strongly supported statistically (>70 bootstrap and/or >0.95 

posterior probabilities) demonstrating that the observed polyphyly is not a result 

of weak phylogenetic signal.  In the AFLP-based NJ trees, bootstrap support was 

below 50% for the two main clades within the Meadow Group, however the 

topology was remarkably consistent with the STRUCTURE analysis and with the 

mtDNA tree (Figs 2.5, 2.7).  In the Forest Group, statistical support for the AFLP 

NJ tree was very strong, with 100% bootstrap support for both major clades (Fig. 

2.9).  Given these results, the existence of polyphyly in the C. sylvatica group 

cannot be explained away as the result of phylogenetic uncertainty.   
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Lineage sorting vs. interspecific hybridization 

 

Incomplete lineage sorting (ILS) and interspecific hybridization are two 

general causes of species level polyphyly that can reflect the true allelic history of 

the taxa being examined.  I evaluated the potential impact of these processes 

using multiple lines of evidence from phylogenetic and coalescent-based 

analyses.  First, the tree topology and distribution of polyphyly can be informative 

as to whether incomplete lineage sorting or gene flow may be occurring.  If ILS is 

responsible for polyphyly then incongruent haplotypes would be expected to 

occur in phylogenetically basal star-like areas of a gene tree (Holder et al 2001).  

Alternatively, when these are positioned in derived positions in a structured tree, 

then hybridization and introgression is more compelling as a cause.  Our mtDNA 

results show that within the Meadow Group there exists deep phylogenetic 

structure, and multiple individuals of both nominal species and their putative 

hybrids are recovered within each of these major clades (Fig. 2.2), a pattern 

inconsistent with ILS, but consistent with hybridization.  Furthermore, individual 

haplotypes are shared between the species (Fig. 2.2, haplotype #’s 42-46, 95, 

136-139, 149) an indication of very recent or ongoing hybridization.  Similar 

patterns are observed in the Forest Group, where phylogenetic structuring occurs 

and the topology of polyphyly is also consistent with hybridization, but not ILS 

(Fig. 2.2), although hybridization appears to be much less frequent.  In the 

Forest1 Clade there is a single incidence of allele sharing between C. sexguttata 

and each of the other two species (Fig. 2.2, haplotype #’s 162, 186).   



56 

The degree of incongruence between a species tree and a gene tree can 

be used to infer levels of gene flow, or alternatively to model the time required for 

lineage sorting to result in reciprocal monophyly of species (Slatkin and 

Maddison 1989; Maddison and Maddison 2009).  Our coalescent simulations 

show that complete lineage sorting should take on the order of 300,000 

generations between the Meadow Group species, C. longilabris and C. 

nebraskana.  Assuming a generation time of three years (Spanton 1988) these 

species would have had to remain as isolated groups for 900,000 years for 

complete lineage sorting to have occurred (Table 2.5).  No fossil evidence exists 

for the C. sylvatica group, however MDIV estimates of divergence between the 

three Meadow Group clades range from 1.3 to 2.4 million years (Table 2.3).  

Although these clades do not correspond to species boundaries, they 

demonstrate that there was relatively ancient subdivision and isolation within the 

group, predating the estimated amount of time for lineage sorting to occur.  In the 

case of the Forest Group species, C. sexguttata and C. patruela, the expected 

time needed for lineage sorting to occur was estimated at 60,000 - 90,000 

generations, depending on values of Ne used.  Assuming a typical two-year life 

cycle (Knisley and Schultz 1997), lineage sorting should require approximately 

120,000-180,000 years (Table 2.5). The phylogeny recovers nearly native clades 

for each of those species (Forest1 Clade is 83% sexguttata and the Forest2 

Clade is 100% patruela) and MDIV estimated the time of splitting at 360,000 

years before present, indicating that there should have been sufficient time for 

purging of shared ancestral polymorphisms between these two species.  Finally, 
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estimates of the time for lineage sorting between C. sexguttata and C. denikei 

ranged from 7,700 – 120,000 years, depending on assumptions of unequal 

effective population sizes (Table 2.5).  If C. denikei evolved in situ then 

divergence must have been very recent, less than 10,500 yrs before present, 

given that the species limited contemporary range was covered by the 

Wisconsonian ice during the Last Glacial Maximum (CLIMAP 1981; Sibrava et al 

1986; Mix et al 2001).  Sufficient time could have passed for complete lineage 

sorting, but only if the minimum estimate is correct.   

It is important to note that these estimates on the impact of lineage sorting 

are based on the assumption of selective neutrality.  If ancestral mtDNA 

haplotype diversity was maintained through balancing selection then time for 

lineage sorting could be lengthened, even indefinitely. Conversely, positive 

selection should hasten monophyly through the fixation of alleles.  Empirical 

evidence suggests that positive selection is more frequently the cause of mtDNA 

non-neutrality in animals, including insects (MacRae and Anderson 1988; Garcia-

Martinez et al 1998; James and Ballard 2000, 2003).  Wolbachia bacteria 

commonly infect insect species (Werren and Windsor 2000) and one 

consequence of infection is a form of selective sweep on mtDNA (e.g. Gompert 

et al 2008).  As a result of this purifying selection, only one or a few mtDNA 

haplotypes may persist in most populations, however this phenomenon may also 

promote introgression of mtDNA haplotypes across species boundaries (Nice et 

al 2009).  
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Imperfect taxonomy 

 

I have discussed the phylogenetic and biological causes of species 

polyphyly, and the remaining explanation for discordance between species trees 

and gene trees is a failure of the taxonomic species definitions to reflect patterns 

of gene flow.  Classically, species have been described based on morphological 

characteristics, implicitly assumed to represent differentiated evolutionary 

lineages.  In the case of tiger beetles, many species differ by one or a handful of 

characters, identifiable with a dichotomous key (Wallis 1968), but rarely have 

these species boundaries been assessed in an evolutionary context (Morgan et 

al 2000).  It is possible that some of the taxonomic species may be “oversplit”, 

that is, that character differences are assumed to be representative of barriers to 

gene flow, when in fact they may simply represent polymorphism within a single 

species.  The taxonomy of the North American C. sylvatica group has undergone 

multiple revisions (Spanton 1988; Kaulbars and Freitag 1993b) and workers have 

ascribed differing levels of confidence to the species boundaries in the group.  

The taxonomic implications will be discussed below in each account. 

 

Species boundaries in the Meadow Group 

 

 The results can effectively rule out ILS as an explanation for species-level 

polyphyly in the Meadow Group.  The remarkable extent of polyphyly exhibited in 

the mtDNA tree would suggest frequent hybridization or alternatively, extensive 
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gene flow due to inaccurately assessed species boundaries by previous workers. 

The multilocus AFLP tree and STRUCTURE clustering both strongly corroborate 

the results of the mtDNA tree, indicating that mito-nuclear discordance is not 

occurring.  This effectively rules out the possibility of mitochondrial introgression 

in the face of otherwise genomically differentiated species.  Taxonomy for the 

group has been somewhat contentious and species limits have never been 

conclusively understood (Wallis 1961; Leffler and Pearson 1979). Although some 

morphological characters appear to generally segregate with the taxonomic 

species, no single morphological character can completely reliably separate the 

two (Spanton 1988).  Likewise the AMOVA results show that taxonomy explains 

only 0.04% of the genetic variation. Hypothesis Ia, that C. longilabris and C. 

nebraskana are separate species, can be rejected.  All evidence is consistent 

with Hypothesis Ib, that these previously defined taxonomic entities are instead 

the result of intraspecific polymorphism, and not separate species. 

 Interestingly, both the mtDNA and AFLP analyses show deep 

phylogeographic structuring in the group, corresponding to broad geographic 

sections of the continent.  Taken together with MDIV estimates of divergence 

times, these patterns indicate that deep historical sundering must have taken 

place during the Quaternary Ice Ages.  STRUCTURE analyses further suggest 

that the secondary contact between these two groups is recent, as admixture 

levels are very low except in populations close to the contact boundary (Fig. 2.7).  

The geographic location of this boundary is consistent with well-established 

“suture zones” for hundreds of species of animals and plants (Remington 1968; 
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Svenson and Howard 2004, 2005), suggesting that the effects of Quaternary 

climate change effected the ancestral Meadow Group populations in a manner 

similar to many other North American species.  

 

Species boundaries in the Forest Group 

 

Although the Forest Group species were also found to be polyphyletic, the 

mtDNA phylogeny and multilocus AFLP trees differed in topology, resulting in 

different evolutionary inferences compared to the Meadow Group.  In the case of 

C. sexguttata and C. patruela I found a pattern consistent with occasional 

hybridization and mtDNA introgression based on the fact that the multilocus 

AFLP phylogeny and STRUCTURE analysis recovered these two species are 

distinct (Fig. 2.9), whereas the mtDNA phylogeny contained apparently 

introgressed haplotypes in some areas of geographic contact (Fig. 2.2).  

Moreover, the direction of introgression is consistent with expectations based on 

the species demographics.  C. sexguttata is widespread and abundant with an 

apparently broad ecological niche and the species inhabits nearly any deciduous 

or mixed forest opening or edge within its range (Kaulbars and Freitag1993a, b; 

Knisley and Schultz 1997; Schultz 1998).  In contrast, C. patruela is typically at 

much lower population densities and ecologically more specialized into “barrens” 

habitat with a patchy distribution even within its preferred range (Knisley et al 

1990; Kaulbars and Freitag 1993b; Knisley and Schultz 1997).  The asymmetrical 

observed abundances are corroborated by the different LAMARC values of Ne 
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for both species.  Consequently, it is much more likely during rare hybridization 

events that C. sexguttata would introduce haplotypes into the C. patruela gene 

pool.  The expectation is that the introgressed haplotypes for the rarer species 

should show up backcrossed into the clade of the more common species (Avise 

et al 1987; Avise 1989), a pattern observed in our phylogeny (Fig. 2.2).  

Furthermore, the distribution of polyphyletic haplotypes was not consistent with 

the expectations of ILS (Holder et al 2001) and ample time existed for lineage 

sorting to complete, based on MDIV results (Table 2.5). Hypothesis IIb, that C. 

patruela and C. sexguttata are the result of intraspecific polymorphism, can be 

rejected. The alternative Hypothesis IIa, that the two are separate species that 

remain distinct in sympatry, is supported.  These conclusions are consistent with 

the taxonomic treatment of all recent tiger beetle workers (Boyd 1982; Knisley 

and Schultz 1997; Freitag 1999; Wiesner 1999; Pearson et al 2006). 

Also as a result of our congeneric phylogeography approach, I was able to 

identify the existence of occasional gene flow between C. sexguttata and C. 

patruela, which was surprising, given that morphologically intermediate 

specimens are not observed in areas of sympatry.  Because the two species 

shared a specific haplotype (Fig. 2.2, #162) ancient hybridization can be ruled 

out as the cause.  Even if hybridization is rare (MESQUITE simulations suggest 

seven gene flow events to explain discordance between the gene tree and 

species tree), it does occur, and this fact has important implications for ‘DNA 

barcoding’ and conservation (discussed below). 
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The cause of polyphyly between C. sexguttata and C. denikei is less clear.  

C. denikei haplotypes were found in a basal star-like area of the mtDNA 

phylogeny (Fig. 2.2).  Similarly, the multilocus AFLP analyses recovered C. 

denikei individuals within clades and clusters that contained mostly C. sexguttata. 

Coalescent simulations determined a minimum time for ILS to occur at 7,700 

years.  Given the geological history of present day Manitoba, Ontario, and 

Minnesota, the entire ‘pavement alvar’ habitat inhabited by C. denikei (Kaulbars 

1993a) was covered by the Wisconsonian ice sheet until approximately 10,500 

years ago.  Seven individuals were sampled for the species from two populations 

(Table 2.1), and it is possible that I may not have reached the sampling level 

sufficient to allow the coalescent simulations to converge on a more accurate 

estimate of Ne and time required for complete lineage sorting.  Consequently, it 

is not possible to say conclusively whether sufficient time had passed for C. 

sexguttata and C. denikei to become reciprocally monophyletic.  

 It is important to note that C. denikei is peripatric (satellite distribution) with 

respect to the putative parental species, C. sexguttata, and as a result there are 

certain expectations regarding genetic signatures.  To the degree that a parental 

species exhibits geographic substructure, and a peripherally speciating 

population is small and local, this population is predicted to initially possess a 

phylogenetically restricted subset of parental alleles (Funk and Omland 2003).  

Although relatively little phylogenetic structure exists overall in the Forest1 Clade 

there were sharing of alleles between the C. denikei populations and the 

geographically closest populations of C. sexguttata from the Black Hills of South 
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Dakota and Wyoming. It is also interesting to note that the Black Hills C. 

sexguttata populations may also be more or less disjunct from the rest of the 

species distribution as few individuals have ever been collected from the middle 

of South Dakota and Nebraska (Backlund and Weins pers. comm. 2005; Pearson 

et al 2006).  As a result of this study, I intend to follow up by conducting a more 

thorough evaluation of morphological characters in these populations to re-

evaluate the species limits and determine if they may in fact be more closely 

allied with C. denikei.   

Lastly, the taxonomic distinctions between these two species are minimal 

and based on subtle differences in morphometrics and ecological preferences, 

and only recently was the latter upgraded to full species status (Kaulbars 1993b). 

It is possible that these observed differences are not due to fixed characters as a 

consequence of reproductive isolation, but instead the differences could be the 

result of relatively recent population isolation, or even phenotypic plasticity in the 

presence of subtly different environments.  It is not possible to reject Hypothesis 

IIIa, that C. sexguttata and C. denikei are recently diverged species resulting 

from a peripatric speciation event, but it can be concluded that if speciation has 

occurred, then it was at the end of the Pleistocene and too recent to see 

unequivocally clear genetic signatures of the divergence. 
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Implications for DNA barcoding and insect conservation 

 

DNA barcoding implicitly assumes that species are reciprocally 

monophyletic in their mitochondrial DNA, therefore If species polyphyly is 

occurring, the method will fail to identify such groups.  Attempts have been made 

to barcode other insect species and validate the technique for identification or 

description of new species (e.g. Hebert et al 2004; Hajibabaei et al 2006; Janzen 

et al 2009; but see Elias et al 2007; Schmidt and Sperling 2008; Linares et al 

2009).  These have largely focused on butterfly (Lepidoptera) species and may 

have given misleading results due to the fact that mitochondrial introgression 

should be less frequent because female Lepidoptera are the heterogametic sex 

(Sperling 1993; Forister et al 2008).  Haldane’s rule predicts that the 

heterogametic sex should exhibit reduced viability as hybrids (Haldane 1922; 

Turelli and Orr 2000; Coyne and Orr 2004).  Because mtDNA is maternally 

inherited, it is expected that mitochondrial introgression would be extremely rare 

in these taxa.  Therefore, much of the barcoding success is based on a group of 

organisms that represents a poor test of the methodology.  It is unlikely that DNA 

barcoding would work as well in other insects groups that do not have females as 

the heterogametic sex - no other insect orders besides Lepidoptera exhibit this 

property.  Barcoding is likely to be attractive to those attempting to identify 

insects, due to the sheer number of species and lack of specialists who are able 

to identify them (Hebert et al 2003b; Will and Rubinoff 2003).  However, the 

above results demonstrate that a DNA barcoding approach would have failed to 
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correctly identify all individuals and populations of tiger beetles, and none of the 

species examined were reciprocally monophyletic with respect to mtDNA. 

Importantly, that approach would have failed to identify populations and 

individuals of C. patruela, the most endangered species in the North American C. 

sylvatica group.  

 

 

Conclusions 

 

 

Congeneric phylogeography allows for a more rigorous testing of species 

boundaries than would otherwise be possible.  The identification of species-level 

polyphyly can lead to a greater understanding of the evolutionary history of the 

study organisms and can result in new research questions. Had I undertaken a 

study of any of the five taxonomic species without sampling congeners, I could 

not have identified the existence and the extent of the species-level polyphyly.  In 

spite of the fact that tiger beetles are one of the most well-studied non-pest insect 

groups (Knisley and Schultz 1997) and multiple taxonomic revisions and dozens 

of natural history accounts have been published on the group, I was able to make 

powerful new inferences about the species limits and evolutionary history using 

this approach.  Moreover, I could not have accomplished this without the 

intensive sampling scheme.  Although this requires the collection of large 

numbers of populations and samples within each, in the case of the Forest Group 
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species, C. sexguttata and C. patruela, the evolutionary history could easily been 

mischaracterized if I had not sampled intensively from all areas of sympatry 

between the two.  I was also able to resolve a longstanding taxonomic dispute 

over the distinction between C. longilabris and C. nebraskana, using the 

congeneric approach in conjunction with multilocus data. 
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Table 2.2.  Primers used for AFLP analysis, and number of loci for each primer 
combination (in parenthesis) that were used for analyses. 
 

Primer     (Sequence 5’ – 3’) 
___________________________________________________________________________________________________ 

Preselective 
Eco + C    GACTGCGTACCAATTCC 
Mse + C    GATGAGTCCTGAGTAAC 
 
Selective 
Eco + CTC    GACTGCGTACCAATTCCTC 
Eco + CAG    GACTGCGTACCAATTCCAG 
Mse + CTG    GATGAGTCCTGAGTAACTG 
Mse + CGA    GATGAGTCCTGAGTAACGA 
Mse + CAA    GATGAGTCCTGAGTAACAA 
Mse + CCT    GATGAGTCCTGAGTAACCT 
 
Primer Combinations 
F (296)     Eco + CTC / Mse + CGA 
G (331)    Eco + CTC / Mse + CAA 
I (293)     Eco + CAG / Mse + CGA 
J (332)     Eco + CAG / Mse + CAA 
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Figure 2.2 (part 1).  Phylogenetic tree from Bayesian and Maximum Parsimony (MP) 
analyses.  Support values indicate the Bayesian posterior probability of a node out of a 
possible 1.0 (left value), and the bootstrap percentage (out of 1000 replicates) of the 
MP analysis (right value).  Numerical values are only indicated when there was strong 
statistical support for a node in either analysis (> 0.95 /  > 70) or when a node was 
recovered in both analyses regardless of support values. Taxon IDs correspond to 
populations in Table 2.1.   
* The Continental Clade contains a subclade, the SW Continental Clade, a group of 
populations Identified as distinct in the SAMOVA analysis. 
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Figure 2.2 (part 2).  Phylogenetic tree from Bayesian and Maximum Parsimony (MP) 
analyses.  Support values indicate the Bayesian posterior probability of a node out of a 
possible 1.0 (left value), and the bootstrap percentage (out of 1000 replicates) of the 
MP analysis (right value).  Numerical values are only indicated when there was strong 
statistical support for a node in either analysis (> 0.95 /  > 70) or when a node was 
recovered in both analyses regardless of support values.  Taxon IDs correspond to 
populations in Table 2.1.   
* The Continental Clade contains a subclade, the SW Continental Clade, a group of 
populations Identified as distinct in  the SAMOVA analysis. 
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Figure 2.4.  “Meadow Group” Neighbor-Joining tree based on 1252 AFLP loci. Taxon 
names are identical to those used in Figure 2.1. Colors of branches correspond to those 
in Figure 2.5.  
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K = 2 

K = 3 

K = 4 

Figure 2.6.  Results of STRUCTURE analysis for “Meadow Group” with K = 2-4 
populations, based on 1252 AFLP loci.  Each bar plot is sorted by genomic 
membership and individuals are not in the same order for each bar.  At K = 2, most 
individuals display >90% genomic identity associated with one of the populations.  
Those individuals exhibiting a greater amount of admixture are found near the 
geographic boundary of the two identified populations (see Fig. 2.7). With increasing K 
populations, groupings do not correspond to biologically, taxonomically, or 
geographically meaningful groups. Moreover, at K > 2 no individual’s genome is 
comprised of more than a fraction of any additionally identified population.  Based the 
biological interpretation and statistical estimates using the Evanno et al. (2005) 
method, K = 2 is selected as the best explanation for population structure in the group. 
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C. patruela                  C. sexguttata   

Figure 2.10.  Results of STRUCTURE analysis for “Forest Group” with K = 2 - 4 
populations, based on 1252 AFLP loci. At K = 2, all individuals display 96 - 100% 
genomic identity associated with one of the populations. These populations are identical 
to clades recovered in the NJ tree (See Fig. 2.1).  With increasing K populations, 
groupings do not correspond to biologically, taxonomically, or geographically meaningful 
groups. Moreover, at K > 2 no individual’s genome is comprised of more than a fraction 
of any additionally identified population.  Based the biological interpretation and 
statistical estimates using the Evanno et al (2005) method, K =2 is selected as the best 
explanation for population structure in the group. 

K = 2 

K = 3 

K = 4 
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CHAPTER III 

 

THE EFFECTS OF QUATERNARY ICE AGES ON THE HISTORICAL 

DEMOGRAPHY OF THE NORTH AMERICAN  

CICINDELA SYLVATICA SPECIES GROUP 

 

 

Introduction 

 

 

The distribution of extant species and their current population structure 

can best be understood within the context of historic events.  In particular, 

Pleistocene glacial cycles had profound effects on many species’ present day 

distributions (e.g. Huntley and Webb 1989; Hewitt 1996; Klicka and Zink 1997; 

Knowles 2001; Rowe et al 2004; Burg et al 2005; Nice et al 2005; Mardulyn et al 

2009).  With the advent of coalescent theory (Kingman 1982) and improved 

mathematical models and methodologies we can now to perform reliable tests to 

reject or support specific hypotheses about the historical and contemporary 

causes of population structure (e.g. Knowles 2001; Knowles and Maddison 2002; 

Templeton 2004).  Furthermore, by comparing phylogeographic and historical 

demographic patterns across a wide range of taxa prior hypotheses about the 

locations of glacial refugia have been more rigorously supported (Avise 1996; 
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Swenson and Howard 2005).  The results of these studies also contribute to our 

general knowledge of the context, causes, and timing of speciation. 

 Phylogeographic patterns are primarily determined through genealogical 

information, but inclusion of other population genetic data can be particularly 

revealing as to the demographic history of populations (Avise 2000).  One 

approach involves the examination of two different genetic diversity measures 

(Nei 1987): haplotype diversity (h), a measure of the numbers and frequencies of 

haplotypes among individuals, and nucleotide diversity (!), a measure of the 

average weighted sequence divergence between haplotypes.  By comparing the 

patterns of each, we can infer the effects of recent bottlenecks, long-term 

isolation, and rapid population growth (Grant and Bowen 1998).  A limitation of 

these tests however is that demographic expansion can leave genetic diversity 

signatures that are similar to those of selective sweeps (Avise 2000).  To 

overcome this problem careful comparison of neutrality tests can potentially 

establish whether population genetic patterns are caused by population growth or 

the effects of selection (Fu 1997; Ramos-Onsins and Rozas 2002).  Additional 

demographic information can be gleaned from the frequency of pairwise 

sequence divergences between individuals in a population.  This ‘mismatch 

distribution’ (Rogers and Harpending 1992) can be plotted and compared to 

expectations of distributions under models of rapid demographic growth.  

Moreover, it is possible to use these population demographic patterns in 

conjunction with biogegraphic data to infer the existence and location of glacial 

refugia (Spellman and Klicka 2006).  These types of analyses already have been 
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used successfully to test patterns of historical demography for various North 

American animal species (e.g. Avise et al 1987; Grant and Bowen 1998; Rowe et 

al 2004; Hull and Girman 2005; Russell et al 2005).  Taken together, these 

studies allow for a type of “concordance phylogeography” (Avise 1996) whereby 

we can eventually elucidate the impacts of general historical events on shaping 

entire biotas.  Additional detailed studies will further reveal the degree to which 

these patterns can be generalized. 

The tiger beetles in the North American Cicindela sylvatica group are well 

suited for examining the effects of Quaternary climate change on historical 

demography.  Collectively these species are distributed throughout the majority 

of the continent, including areas impacted by glacial cycles (Sibrava et al 1986) 

and other areas hypothesized as glacial refugia (Remington 1968; Swenson and 

Howard 2005).  My previous studies on the phylogeography of the North 

American C. sylvatica group (see Chapter II) showed that they were deeply 

divided genetically into two major groups that corresponded to ecological 

differences.  One branch, the “Meadow Group” (C. longilabris and C. 

nebraskana) was most often associated with alpine meadows and grasslands 

(Leffler and Pearson 1976; Spanton 1988).  The second branch, the “Forest 

Group” (C. sexguttata, C. patruela, and C. denikei), was typically found in 

forested areas and adjacent ecotones (Kaulbars and Freitag 1993a, b).  

However, the patterns of phylogenetic structuring within each group were quite 

different.  The Meadow Group showed deeply separated (1.5 – 2% corrected 

pairwise divergence) allopatric clades that could not be explained by taxonomic 
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species boundaries.  These clades corresponded to broad geographic areas and 

were named the Continental Clade (including a distinct subclade, the Southwest 

Cont Clade), Southwest Clade, and Northwest Clade (see Chapter II).  In 

contrast, the Forest Group mtDNA clades were shallow (0.8% corrected pairwise 

divergence), overlapped in distribution, and were more congruent with taxonomic 

boundaries. As such, it was of interest to subsequently focus on the more 

enigmatic underlying historical demographic processes that might explain the 

Meadow Group mtDNA patterns and geographic distributions. The goal of this 

chapter will be to test hypothesis that can explain the patterns observed in the 

Meadow Group, which are not explicable by taxonomy.  Specific questions to be 

addressed are as follows: 1) Are Quaternary glaciations responsible for historic 

population fragmentation in the Meadow Group?  2) If so, are there genetic 

signatures that demonstrate the existence of long-term stable populations in 

glacial refugia? 

 I examined the signatures of historical demographic events using multiple 

population genetic and coalescent-based approaches, implemented in Arlequin 

3.1 (Excoffier et al 1992; Excoffier et al 2005), and DNASP 4.1 (Rozas et al 

2003).  To conduct these tests I will use estimates of divergence times and 

geographic distribution of unique haplotypes (i.e. “private alleles”) (Slatkin 1985) 

to infer population isolation.  These combined results will then determine whether 

genetic patterns are consistent with historical fragmentation during Quaternary 

glacial cycles.  They will also help identify specific signatures of long-term stable 

glacial refugia and other areas of rapid demographic expansion. 
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Materials and Methods 

 

 

Sampling 

 

 I sampled specimens from populations representing most of the range of 

the Meadow Group (i.e. combined localities for nominal species C. longilabris 

and C. nebraskana). The sampling localities (Table 2.1, Meadow Group: 93 

localities, 253 specimens) were based on published records (Leffler 1979; 

Spanton 1988; Kippenhan 1994), localities provided by other North American 

tiger beetle researchers and collectors, and additional populations that I located 

through exploratory collecting of appropriate habitat.  Colleagues contributed 

specimens from additional populations that I was unable to sample personally.  

We captured specimens using aerial nets or insecticidal sprays and preserved 

them in > 95% ethyl alcohol. 

 

DNA extraction and sequence analysis 

 

Genomic DNA was extracted from most specimens by separating the 

head + prothorax from the rest of the body then removing flight muscles with 

sterilized forceps.  DNA was isolated from the muscle tissue using the protocol of 

the DNeasy DNA isolation kit (Qiagen Corp.).  Upon removal of tissue for 

extraction, the voucher specimens were stored in 70% ethyl alcohol for eventual 
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pinning and vouchering.  A small fraction of samples was obtained from dried 

specimens, and their DNA was extracted by perforating the abdomen using small 

“minuten” pins; then the entire specimen was placed in 1.5ml microcentrifuge 

tubes containing lysis buffer and soaked overnight in a 55oC water bath.  No 

specimens were destroyed in the DNA extraction process, and the reassembled 

vouchers exist for each.  Using combinations of several standard insect mtDNA 

primers (Simon et al 1994), initial sequence data was obtained.  The following 

degenerate primers were designed with the program Primer3 

(http://www.bioinformatics.nl/primer3plus) for PCR amplification and sequencing: 

CicF1 5’-AAA GGA AAC ATT TGG TTC ATT (A/G)GG-3’, and CicR2 5’-AGT 

CGA AGA GAT GGA AG(C/T) GC-3’.  These primers were used to amplify a 1.1 

kilobase fragment of the mitochondrial genes cytochrome oxidase c subunit I + 

tRNA + coII corresponding to positions 2212-3342 of the Drosophila yakuba 

sequence.  PCR conditions consisted of an initial denaturation at 96oC for 2 

mins, then 10 cycles at 96oC for 30 s, 46oC for 30 s, 72oC for 1 min, and an 

additional 30 cycles at 96oC for 30 s, 48oC for 30 s, 72oC for 1 min.  Negative 

controls were used in all PCR reactions, and no amplifications were observed in 

them.  The target fragments were sequenced using the Dyenamic Terminator 

Sequencing Kit (Amersham Biosciences), run out on a polyacrylamide gel using 

an MJ Basestation, and analyzed with the program Cartographer (MJ Research, 

Waltham, MA).  Depending on the number of specimens available from each site 

and population, the DNA of between one and ten individuals was extracted and 

sequenced for use in the analyses.  Sequences were edited using Sequencher 
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4.2 (GeneCorp) and unambiguously aligned, as no indels were present in the 

fragment.  The alignment was verified by eye and trimmed to 972bp for all 523 

taxa.  I used DNASP 4.0 to identify unique haplotypes for use in the private allele 

analysis.   

 

Demographic analyses and coalescent-based hypothesis testing 

 

The historical demography of the group was inferred from haplotype 

diversity (h) and nucleotide diversity (!) and calculated for each clade using 

DNASP 4.0.  I determined specific demographic patterns by comparison of the 

two diversity measures.  The most likely cause of a population with low h and low 

! is a recent or severe bottleneck, or a founder event by a small number of 

individuals (Grant and Bowen 1998).  Populations with high values for both 

diversity measures may have been caused by sustained large populations sizes 

(Ne), or may result from an admixed sample of individuals from historically 

isolated populations.  When a high value of h and a low value of ! are observed, 

this may indicate a recent population expansion.  To distinguish some of the 

alternative explanations, I also calculated the expansion coefficient (S/d) or the 

ratio of the number of variable sites (S) to the average number of pairwise 

nucleotide differences (Peck and Congdon 2004); population growth is indicated 

by larger expansion coefficients. 

The above population genetic diversity measures assume selective 

neutrality.  However, non-neutral processes (e.g. selective sweeps) can cause 
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low haplotype and nucleotide diversity patterns, and if unrecognized can 

confound the interpretation of demographic results (Fu 1997).  Furthermore, not 

all neutrality tests are equally capable of distinguishing between expansion and 

selection (Ramos-Onsins and Rozas 2002).  Fu (1997) demonstrated that 

comparisons of some neutrality tests could potentially distinguish between 

expansion and selection.  If Fu and Li’s (1993) F* and D* are significant but Fu’s 

(1997) FS is not, then background selection is indicated.  If the reverse is true, 

then population expansion is supported.  Ramos-Onsins and Rozas (2002) R2 is 

a more recently derived neutrality test that can be useful in detecting population 

expansion, however it may also be influenced by selective sweeps.  I used 

DNASP 4.0 to implement the above set of tests, including 1000 coalescent 

simulations to test for the statistical significance of each.   

I also used mismatch distributions (Rogers and Harpending 1992) to 

uncover clade demographic histories.  DNASP 4.0 was used to compare 

observed frequencies of pairwise differences with those expected under a model 

of exponential population growth.  Under this model, a smooth unimodal 

“wavelike” distribution is expected.  Alternatively a “ragged” multimodal 

distribution is expected for a population that has experienced long term stable 

history.  The raggedness statistic (r) was used test the null hypothesis that 

populations have experienced sustained stable demographic history, using 1000 

coalescent simulations in DNASP 4.0.  

Lastly, I used two additional methods to characterize population structure 

and isolation in the Meadow Group.  Analysis of molecular variance (AMOVA; 
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Excoffier et al 1992) was implemented with Arlequin 3.1 to examine the degree to 

which genetic variance is explained by different partitions of the data.  In this 

case, I compared the amount of genetic variation between and within populations 

for each clade.   For population localities where four or more individuals were 

sampled (Table 3.1), I used DNASP 4.0 to identify private alleles (unique 

haplotypes found in no other populations).  For each of these populations I also 

calculated genetic diversity measures, h and !, to characterize demographic 

patterns at a more local level. 

 

 

Results 

 

 

The mismatch distribution analysis of the Continental Clade revealed a 

multimodal distribution (Figure 3.1A) that was as ragged as expected under a 

model of population stationarity (P = 0.07), i.e. it did not show a pattern 

significantly associated with overall rapid population expansion.  Results from 

phylogenetic and SAMOVA analyses demonstrated that five southwestern 

populations were a geographically and genetically distinct subclade within the 

Continental Clade, termed the “SW Cont” clade (see Chapter II).  As such, the 

mismatch distribution analysis was re-run after removing these populations and 

the resulting mismatch distribution was more unimodal (Figure 3.1B), and found 

to be significantly less ragged than null expectations (P = 0.04), interpreted to 
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represent a history of rapid demographic growth for the remaining populations of 

the Continental Clade.  The Northwest Clade displayed a similarly unimodal 

distribution (Figure 3.1C) that was also significantly less ragged than expected (P 

= 0.02), a result consistent with recent expansion.  In contrast, the Southwest 

Clade exhibited a multimodal mismatch distribution (Figure 3.1D) that did not 

deviate significantly from expectations of population stationarity (P = 0.21), 

indicating a history of long-term stability.   

I compared the results from the genetic diversity and neutrality tests 

(Table 3.2) to expected patterns given a model of exponential population growth 

(Grant and Bowen 1998; Peck and Congdon 2004).  The Continental Clade 

exhibited high (!  > 0.5%) nucleotide diversity (! = 0.626%) and very high (h > 

0.9) haplotype diversity (h = 0.927), consistent with long-term stable population 

size.  However, when the five SW Cont populations are removed from the 

analysis, the remaining group exhibits a pattern of low nucleotide diversity (! = 

0.323) and very high haplotype diversity (h =0.904), consistent with recent 

population expansion.  The Northwest Clade displayed a similar signature of 

expansion, also exhibiting a low nucleotide diversity and high haplotype diversity 

(! = 0.383, h = 0.903).  The Southwest Clade had very high (! > 1) nucleotide 

diversity (! = 1.279), along with very high haplotype diversity (h = 0.961), a 

combination that indicates overall long-term population stability. The magnitude 

of the demographic expansions was characterized by the expansion coefficient 

(S/d),$ The Continental Clade minus the SW Cont populations displayed the 

highest expansion coefficient (S/d = 20.389), followed by the total Continental 
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Clade (S/d = 12.495), the Northwest Clade (S/d = 11.823), and the Southwest 

Clade (S/d = 4.902).  With the exception of the Southwest Clade, these observed 

expansion coefficients are high compared to other taxa (see Discussion).   All 

neutrality tests were found to be significant (P < 0.05) for the Continental Clade, 

Continental Clade minus SW Cont, and the Northwest Clade.  The R2 statistic 

was also found to be highly significant (P < 0.01) for both the Continental Clade 

minus SW Cont, and the Northwest Clade.  No neutrality tests were found to be 

significant for the Southwest Clade. 

AMOVA results demonstrated that most genetic variation can be 

explained by population structure, as opposed to within population variation 

(Table 3.3.).  The Continental and Northwest Clades displayed similar levels of 

population structure, with ~ 70% of genetic variation explaining by this partition, 

and the remaining 30% within populations.  The Southwest Clade exhibited an 

even higher degree of population structuring, >85%.  This general pattern was 

further illustrated by the distribution of private alleles (Figure 3.2).  All Southwest 

Clade populations but one were found to exhibit very low gene flow (0.667-1.000 

private alleles) with other populations.  Similarly, the populations making up the 

SW Cont Clade (subclade within the Continental Clade) contained very high 

levels of private alleles.  Most of the Continental Clade populations exhibited 

lower levels of population structuring.  Some populations had no private alleles, 

indicating that all of the haplotypes present in these localities were more 

geographically widespread (Table 3.1, e.g. MT: Gallatin Co (3)).  The Northwest 

Clade showed a large proportion of private alleles in the western part of its 
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distribution, although they were confined to the Cascade Range, including many 

higher elevation sites.  Insular populations were found to be much less isolated 

from each other. 

 

 

Discussion 

 

 

Historical inferences for mtDNA clades 

 

The demographic analyses demonstrated considerably highest genetic 

diversity measures (h and ! values) for the Southwest Clade than for either the 

Continental or Northwest Clades.  This difference indicates overall long-term 

isolation and stable population size (Grant and Bowen 1998) for the Southwest 

Clade.  All neutrality tests were non-significant, consistent with the interpretation 

that minimal demographic expansion had occurred overall.  Mismatch distribution 

further corroborated this pattern, as the observed distribution was both 

multimodal and did not deviate from the null expectation of raggedness 

(Harpending 1993).  AMOVA and private allele distributions illustrated that this 

pattern of long-term stability and demographic stasis can be extended to the 

population level as well.  Nearly all populations exhibited evidence of reduced 

gene flow, inferred from the high percentages of private alleles at each sampling 

site (Slatkin 1985).  Most Southwest Clade populations are located in several 
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mountain ranges within the Great Basin area, and given the above results, these 

appear to be “sky islands” (e.g. Knowles 2001).  It is not surprising that these 

high elevation populations are isolated by the surrounding deserts, given 

evidence that the Meadow Group is affected by temperature as a primary limiting 

factor (see Chapter IV Results and Discussion). However, the combined 

demographic signatures of long-term population structure and isolation for the 

Southwest clade indicate that the constituent populations may have been 

isolated more anciently, and their lack of current gene flow may not simply reflect 

the effects of recent and contemporary climatic conditions.  MDIV coalescent 

simulations estimate the time of splitting between the Southwest and the other 

clades at 1.66 - 1.78 million years ago (1.32 – 2.39 mya, 95% credibility interval) 

(see Chapter II).  This estimate is consistent with divergence during the 

Quarternary (mid – early Pleistocene).  Since that point, North America has 

undergone multiple glacial and interglacial periods (Sibrava et al 1986) causing 

many habitats to repeatedly shrink and expand, and these processes may have 

resulted in additional population fragmentation and isolation for the Southwest 

Clade.    

Population genetic patterns in the Continental and Northwest Clades 

appear generally more consistent with recent population expansions.  Mismatch 

distribution was particularly informative with respect to the Continental Clade and 

the SW Cont subclades, a group of genetically differentiated populations 

identified by prior SAMOVA analyses (see Chapter II).  When this population was 

removed, the remaining Continental Clade exhibited a more unimodal and 
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smooth mismatch distribution, and a statistically significant (P = 0.04) pattern of 

rapid population growth based on the resulting raggedness index.  The 

Northwest Clade also displayed mismatch distribution characteristics indicative of 

expansion, and it was also significantly different from the null expectation of 

population stability (P = 0.02).  However, the results of neutrality tests were less 

clear-cut with respect to both Continental and Northwest Clades.  All neutrality 

tests were significant, and therefore it is not possible to conclusively say whether 

they were due to population expansion or to the effects of selective sweeps. Fu 

(1997) demonstrated that when Fu and Li’s (1993) F* and D* are significant but 

Fu’s (1997) FS is not, then background selection is indicated. He also showed 

that if the reverse is true, then population expansion is supported.  In the 

observed cases, all were significant, a scenario that has less defined 

expectations.  Even so, the selective sweep hypothesis is less likely when one 

considers the geographic distribution of the population genetic structure.  Given 

that most of the private alleles are generally found at lower latitudes and higher 

elevations (Figure 3.2), the post-glacial expansion hypothesis is still supported.  

Under the scenario of population growth following glacial retreat, the diversity 

measures yielded estimates of the expansion coefficient (S/d) that were high, 

even when compared to other organisms that displayed Quaternary 

fragmentation and subsequent expansion. The values observed for the 

Continental (S/d = 12.495), Continental minus SW Cont (S/d = 20.389) and 

Northwest Clades (S/d = 11.823) were higher than those found in migratory 

Mexican free-tailed bats (S/d = 3.955 – 8.185) (Russell et al 2005), migratory 
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elephant seals (S/d = 3.50 - 11.77) (de Bruyn et al 2009) and of similar 

magnitude to that of Black-backed gulls (S/d = 5.5 – 17.8) (Liebers and Helbig 

2002) and sharp-shinned hawks (S/d = 9.87 – 28.85) (Hull and Girman 2005).  

The comparison to vagile species of birds and mammals demonstrates that these 

tiger beetles were quickly able to follow the retreating glacial ice and expand their 

populations into newly available habitat.   

 

Inferences about glacial refugia 

 

Results from the Continental Clade mismatch distribution analyses 

strongly support the existence of a glacial refugium corresponding to the SW 

Cont populations (northern AZ to southwestern CO) (Figure 3.2).  When 

included, the SW Cont populations caused the overall Continental Clade 

mismatch distribution to display expected raggedness and multimodality.  Yet 

when these populations were excluded, the signature of Continental Clade 

population expansion was instead observed.   Not surprisingly, this set of 

populations includes the southernmost extent of the known distribution of the 

Continental Clade, and typically refugial locations are believed to be in or near 

the southern limits of species distributions (Hewitt 1996).  For the Southwestern 

Clade, the mismatch distribution and population-level characterization of private 

alleles indicate that essentially the entire clade could be considered a “refugium”.  

Patterns suggest that the clade has a demographic history of long-term stabile 

population size and more ancient fragmentation and persistence.  The population 
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in the most southern extreme (NV: Clark Co.) is also the most geographically 

isolated from any other population in the clade (Spring Mts. "sky island”), and the 

most genetically divergent based on average pairwise sequence differences.  

Interestingly, this population (N = 9) displayed the most pronounced degree of 

maculation in the phenotype analyses (see Chapter V).  Although the Spring Mt. 

population exhibits complete genetic isolation from other populations, it also 

displays a pattern of high h and low !, suggesting either a previous population 

bottleneck or founder effect from an adjacent population.  Additional populations 

may occur in other parts of the Spring Mts., but are unknown as of the present.  

For the Northwest Clade, refugia locations were less clear.  No populations 

displayed both high h and !, but most populations in the Cascade Range 

displayed low levels of genetic connectivity as indicated by the distribution of 

private alleles.  Although the entire mountain range could have served as a 

refugium, it is also possible that the persisting populations may have been 

concentrated near the southern extent of that more general region.  Populations 

in the CA: Lassen Co. and Tehama Co. area are located in a region that has 

been repeatedly identified as a glacial refuge based on meta-analyses of 

hundreds of faunal and floral biogeographic and phylogeographic studies 

(Remington 1968; Swenson and Howard 2005).   
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Table 3.3.  Analysis of Molecular Variance (AMOVA) (Excoffier et al. 1992) for Meadow 
Group mtDNA clades.  Comparison of the genetic variance explained by population 
structure versus within population variation.  P values demonstrate that each partition of 
the data explains a significantly non-zero percentage of the genetic variance. The 
Southwest Clade exhibits the highest degree of population structure, although in each 
clade the population structure explains most of the variation. 
 

Clade   Category description         % variance P value 

 
Continental  Among populations  69.26       <0.001* 
   Within populations  30.74  <0.001* 
 
Northwest  Among populations  73.20  <0.001* 
   Within populations  26.80  <0.001* 
 
Southwest  Among populations  85.65  <0.001* 
   Within populations  14.35  <0.001* 
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CHAPTER IV 

 

REVEALING THE FACTORS THAT LIMIT SPECIES DISTRIBUTIONS: 

INTEGRATING NICHE MODELS WITH PHYLOGEOGRAPHIC  

HYPOTHESES USING TIGER BEETLES IN THE NORTH  

AMERICAN CICINDELA SYLVATICA GROUP 

 

 

Introduction 

 

 

A fundamental question in evolutionary ecology is what factors limit 

species geographic distributions.  The range of a species can be influenced by a 

complex interplay of evolutionary, ecological, and physiological processes 

(Cicero 2004).  Separating these effects has been a challenge, but theoretical 

and computational advances have resulted in the development of Ecological 

Niche Models (ENMs) (Nix 1986; Stockwell and Nobel 1992; Phillips et al 2006) 

that can be used to identify the principal factors predicting and thus potentially 

determining species ranges.  These GIS-based methods relate known species 

occurrences to multiple environmental data layers across a geographic 

landscape in order to infer the environmental requirements that determine where 

a species lives.  The ENM can be used to predict the potential species 

distribution across a geographic area of interest by identifying all areas that 
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contain similar conditions (Soberon and Peterson 2005).  ENMs assume that a 

species is in equilibrium with its environment and that it will occur in any suitable 

habitat.  Therefore, concordance between the observed and predicted 

distribution can demonstrate that variables in the model are able to help explain 

the species occurrence, presumably as a result of intrinsic physiological 

tolerances to a set of environmental conditions (Swenson 2006). 

Absence of a species from an ENM predicted area can be informative, 

and comparisons between observed and predicted species distributions can be 

used to evaluate hypotheses about the evolutionary ecology of the study taxa.  

Discordance between ENMs and known ranges can be the result of extrinsic 

factors, either biotic or abiotic.  For example, a species could be predicted to 

occur in a geographic area containing suitable habitat, but dispersal limitations 

may have prevented colonization, either through insufficient time for dispersal 

(i.e. since glacial retreat), insurmountable distance, or due to a discreet barrier 

(Svenning et al 2006).  Ecological interactions with other species could also play 

a role.  Species with strong host associations may be limited by the boundaries 

of the host range (Levine et al 2007).  Competitive exclusion has been invoked 

when a species is predicted to occur in an area but its observed distribution ends 

abruptly where it comes in contact with another ecologically similar species 

(Anderson et al 2002; Sanchez-Cordero et al 2008).  In some instances ENM 

models have predicted species occurrences into previously unsampled areas, 

and these have led to the identification of new populations for rare or poorly 
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known groups (Menon et al 2010), or resulted in the discovery of undescribed 

species that were closely related to the study taxa (Raxworthy et al 2003). 

Another interesting application of ecological niche models is the 

corroboration of previously hypothesized Pleistocene glacial refugia (Waltari et al 

2007; Waltari and Guralnick 2009). This can be accomplished by creating an 

ENM for a species and then “backcasting”, i.e., comparing to paleoclimate 

reconstructions during Last Glacial Maximum (~18,000 years ago).  Under the 

assumption of niche conservatism (reviewed in Weins and Graham 2005), this 

method can be used to predict a species’ past distribution by identifying 

geographic regions that contained similar environmental conditions to those 

where the species occurs today.  Resulting inferences can be especially 

informative when compared to phylogeographic patterns, as a form of cross-

validation of hypotheses.  Similarly, ENMs have been used to reveal other 

historical phenomena such as the creation of hybrid zones following post-glacial 

range shifts (Swenson 2006), and identification of the environmental factors 

maintaining them into the present.  Integration of ENMs with other biological 

subfields has the potential to yield many new insights into the causes of 

evolutionary patterns (Kozak et al 2008). 

The tiger beetles (Coleoptera: Carabidae: Cicindelinae) are a group of 

generalist predatory insects that are well studied ecologically (Knisley and 

Schultz 1997).  Both adults and larvae are predaceous, and most species are 

diurnally active in open habitats, such as sand dunes, open fields, alkali flats, and 

patches of bare soil or rock (Pearson 1988).  Larvae are ambush predators that 
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live in burrows in soil or rarely in other substrates such as rock crevices 

(Kaulbars and Freitag 1993b). The larvae lie in wait at the top of their burrows 

with their mandibles open and their heads and pronota flush with the ground 

surface (Knisley and Schultz 1997).  When a small invertebrate comes within 

reach they fling their heads in the direction of the prey, grasp it with their 

mandibles, and drag the prey down into the burrow to feed.  Adult tiger beetles 

run on the ground after prey, capturing and killing them with their mandibles. .  

Larvae and adults typically occur in the same habitats, with only a few known 

exceptions (Knisley and Schultz 1997). 

Tiger beetles are well-suited to niche modeling because they are some of 

the best-studied non-pest insects (Knisley and Schultz 1997) and dependable 

range maps and detailed occurrence data exist for all North American species of 

Cicindela (Pearson et al 1997). Niche models are most robust when reliable 

presence data exist (Pearson et al 2006; Phillips et al 2006). Moreover, there is a 

wealth of natural history literature on tiger beetles, and hypotheses have been 

put forth about factors believed to be most critical in limiting species ranges.  

Dispersal limitations have been proposed as an explanation for some species 

range boundaries (Kaulbars and Freitag 1993b), and others have invoked tiger 

beetles’ strong affinities with specific habitats and soil types (Leffler 1979; 

Spanton 1988; Schincariol and Freitag 1991).  Tiger beetles have been used in 

studies of environmental tolerances including thermoregulation (Dreisig 1980; 

Schultz and Hadley 1987; Schultz 1998), metabolism and water balance (Hadley 

and Schultz 1987; Schultz et al 1992).  Other, previously uninvestigated, abiotic 
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variables might also be important in this regard.  Yet the ecological process of 

competitive exclusion could also prevent species from co-occurring at fine spatial 

scales or over larger geographic areas (Connell 1980; Vitt et al 1999).  Some 

tiger beetle studies have demonstrated that competitive interactions could be 

important in shaping community structure (Pearson and Mury 1979; Pearson 

1980; Pearson and Juliano 1991), and one study identified food availability as a 

potentially limiting resource in a mesic grassland habitat (Pearson and Knisley 

1985).  Despite this body of work, to date there has never been a study 

quantifying the ecological niches of tiger beetles using a GIS-based niche 

modeling approach.   

In the case of the tiger beetle species in the North American C. sylvatica 

group, interesting phylogeographic patterns have been recently uncovered (see 

Chapter II) and ecological niche models could be informative when compared to 

the current hypotheses about their evolutionary history.  The group includes five 

nominal taxa, which correspond to two ecologically and phylogenetically distinct 

clades:  The “Meadow Group” (C. longilabris and C. nebraskana) often 

associated with alpine meadows and grasslands (Leffler and Pearson 1976; 

Spanton 1988), and the “Forest Group” (C. sexguttata, C. patruela, and C. 

denikei), typically found in forested areas and adjacent ecotones (Kaulbars and 

Freitag 1993a, b).  The phylogeographic work demonstrated that the Meadow 

Group nominal taxa were not separate species, and as such they appear to 

represent phenotypic polymorphism within a single species.  Nonetheless, deep 

genetic breaks were discovered within the Meadow Group, and population 



141 

genetic analyses supported the possibility of fragmentation during the Quaternary 

Ice Ages with evidence for recent demographic expansion following glacial 

retreat (see Chapter III).  Given these results, ecological niche modeling could be 

revealing as to whether suitable habitat existed in hypothesized glacial refugia for 

each of the mtDNA clades.  In addition, even if C. longilabris and C. nebraskana 

are not distinct species, they could represent populations containing specific 

genes under strong selection against an otherwise undifferentiated genomic 

background.  It is possible that particular areas of the genome may represent 

“genomic islands” associated with ecological and morphological traits (Nosil et al 

2009; Michel et al 2010) under divergent selection.  Therefore, it could be 

informative to quantify the niches of the nominal species and identify whether 

they may be ecologically differentiated, even if phylogenetically interchangeable.   

Also of interest was the distinction between C. sexguttata and C. denikei.  

Phylogenetic and coalescent-based analyses were inconclusive as to the validity 

of the latter taxon, which exists as a small set of populations that are disjunct 

from the presumed parental species, C. sexguttata (see Chapter II).  If C. denikei 

evolved in situ in its current habitat, then it could only have diverged less than 

11,000 years ago (CLIMAP 1981; Sibrava et al 1986; Mix et al 2001), potentially 

insufficient time to exhibit reciprocal monophyly with respect to C. sexguttata. 

However, it is possible that C. denikei could have diverged from C. sexguttata 

prior to the LGM in a separate geographic area and later dispersed to its current 

location following glacial retreat.  If this second scenario were true, then the case 
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for incomplete lineage sorting is less compelling, as it would indicate that the 

divergence was more ancient.   

 To address the above questions, I generated ENMs for the North 

American Cicindela sylvatica group and conducted statistic tests to determine 

which factors are most important in limiting the species ranges.  I also created 

models based on the results of my prior phylogeographic work, treating 

geographically discrete mtDNA clades as taxa (Swenson 2006) and evaluating 

alternative explanations for their current distributions.  Statistical tests of niche 

identity and niche overlap were conducted that allowed for more rigorous testing 

of alternative hypotheses regarding species boundaries and evolutionary 

inferences. 

 

 

Materials and Methods 

 

 

Species occurrence data 

 

For each species, I gathered locality data from published sources (Leffler 

1979; Spanton 1988; Kippenhan 1994), museum records (Table 4.1), localities 

contributed by numerous North American tiger beetle workers (see 

Acknowledgements), and localities sampled during the molecular portion of my 

dissertation (see Table 2.1).  At each of my collection sites I recorded the latitude 
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and longitude using a Garmin GPSMap 60-CSX.  The majority of locality data 

from other sources were in the form of textual descriptions, and these were 

converted to decimal latitude and longitude coordinates through the use of 

Google Earth (http://earth.google.com) and Garmin MapSource (Garmin Ltd., 

Olathe, KS). Unfortunately, many historic occurrence records were insufficiently 

detailed to be used in the analysis (e.g. state and county only) and to avoid 

basing the ENMs on imprecise data, only records that could be georeferenced to 

within a 5 km2 area were included.  A total of 782 presences were included in the 

dataset (Table 4.2), out of ~2000 records examined.   

In addition to the five nominal species, I generated ENMs for the three C. 

longilabris subspecies. Spanton (1988) described these as generally allopatric in 

distribution except in the northern Rockies where they come into contact and 

apparently “hybridize” forming phenotypic intergrades.  I also created ENMs for 

the Meadow Group, as phylogenetic and STRUCTURE analyses revealed that C. 

longilabris and C. nebraskana were not separate species (see Chapter II 

Discussion).  Finally, I created ENMs for the three major mtDNA clades within the 

Meadow Group. These were found to be tightly allopatric and non-overlapping 

and consequently I sought to uncover the underlying basis for their distributions. 

 

Environmental data 

 

 To create ENMs, I used climate layers based on the 19 bioclimatic 

variables in the WorldClim dataset (Hijmans et al 2005a).  These represent 
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means and extremes of environmental conditions that are likely to limit species 

distributions (Phillips et al 2006). I also included layers corresponding to World 

Wildlife Fund ecoregions (Olson et al 2001) and major groups of soil orders 

(http://soildatamart.nrcs.usda.gov).  These last two were chosen because habitat 

type and soil conditions have been suggested as key factors limiting the 

distribution of Cicindela species (Leffler 1979; Schincariol and Freitag 1991), 

including the C. sylvatica group (Spanton 1988; Kaulbars and Freitag 1993b).  

The 19 bioclimatic variables exhibited a spatial resolution of 30 arc-seconds (~1 

km2 grid cells at the equator), the highest resolution available to date (WorldClim 

Version 1.4, last accessed May 2010).  The ecoregion and soil layers were 

originally at 2.5 arc-minute spatial resolution (~5 km2 grid cells at the equator) 

and were re-gridded to match the cell size of the other layers using a nearest-

neighbor algorithm in DIVA-GIS (Hijmans et al 2005b).  All layers were formatted 

for use with niche modeling software using DIVA-GIS and cropped to a 

geographic area corresponding to the Nearctic biogeographic realm, including 

northern Mexico.  Ranges of the cropped areas include the following: longitude 

range: -176.667, -50.825, and latitude range: 75, 21.658. 

 

Generation of Ecological Niche Models 

 

 Species ecological niches were modeled using MAXENT version 3.3 

(Phillips et al 2006), a machine learning type algorithm that has been 

demonstrated effective at generating ENMs with presence-only data (Elith et al 
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2006).  I used the default settings for the program, and maximum number of 

iterations (500), as these have been shown to be robust across taxa (Phillips et 

al 2006).  The program was also used to calculate the area under the receiver 

operating characteristic (AUC), a widely used measure of model predictive 

performance (Fielding and Bell 2002; Phillips et al 2006; but see Lobo et al 

2008). The AUC can range from 0-1, with higher values indicative of a greater fit 

of the model to the data.  An AUC of 0.5 would be consistent with a random 

prediction, and 1.0 indicates a perfect fit between the model and the data.  AUC 

values over 0.9 have been considered high support for the fit of the model to the 

data (Fielding and Bell 2002).  Presence data were divided randomly into 75% 

training and 25% model testing partitions, following Pearson (2007).  The training 

points are used to generate the fundamental niche model and following this, the 

model is checked against the test points. The degree to which the training model 

fits the test data (the ‘test AUC’) is an important indicator of model predictivity 

(Phillips et al 2006).  Statistical tests of significance were implemented within 

MAXENT to evaluate the null hypothesis that test points are predicted no better 

than random.   

For each taxon, jackknife analyses were conducted in MAXENT to assess 

which environmental variables were most predictive of the species ENM.  This 

approach was used to conduct three types of analyses: 1) models were created 

using all variables except one, with each such possible model evaluated, 2) 

models were created using each variable in isolation, and 3) models were 

created using the total set of variables.  Comparison of the resulting jackknife 
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AUC values can be very informative as to the relative importance of each 

environmental layer in predicting species distributions.  The first test 

demonstrates the negative impact on the predictive power of the model when a 

particular variable is omitted.  The second test shows how predictive each 

variable is when it is the only layer used to create the ENM.  The third is the 

entire model AUC for comparison to the first two tests. 

MAXENT outputs are continuous probability values ranging from 0-100 

across each cell grid of the study area.  These are converted to binary 

predictions of species occurrence by selecting a threshold.  The choice of 

threshold should be based on the details of the study organisms, including 

dispersal capabilities and the reliability and accuracy of presence data (Liu et al 

2005; Jimenez-Valverde and Lobo 2007; Pearson 2007; Pearson et al 2007).  

Some tiger beetle species are known to be vagile, and in the extreme, C. 

trifasciata has been observed flying to oil rigs 160km from the nearest land 

(Graves 1981).  However, most tiger beetles in the C. sylvatica group rarely 

appear to stray from suitable habitat and collectors visit many of the published 

localities year after year (Knisley, Bzroska, Lawton, Schmidt, pers. comm. 2005), 

validating these presences.  For this reason, I used the Lowest Predicted value 

Threshold (LPT) of environmental suitability (Phillips et al 2006; Pearson 2007) 

as my less stringent threshold. The LPT predicts the minimum area at which a 

species occurs while ensuring that no observed species presences are omitted 

by the model.  This method will necessarily be affected by the presence of outlier 

localities (e.g. dispersers into non-suitable habitat) if they exist, for they will widen 
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the predicted niche to accommodate them.  Consequently, I also chose a second 

more stringent threshold for comparison, the M10 (sensu Waltari et al 2007).  

This is a fixed sensitivity threshold that treats 10% of occurrence points (those at 

the edges of the fundamental niche) to be discarded.  Necessarily it will predict a 

more restricted and conservative fundamental niche and subsequent geographic 

distribution for the species.  A large discrepancy between the amount of habitat 

predicted under the two thresholds is indicative of the strong effect of outliers 

(Waltari pers. comm. 2010), or alternatively the result of niche divergence 

between populations. 

   

Paleoclimate reconstructions 

 

In order to compare to phylogeographic hypotheses, I used LGM climatic 

reconstructions based on the two existing models available from the 

Paleomodeling Intercomparison Project II (Braconnot et al 2007): the Community 

Climate System Model (CCSM) (Collins et al 2006) and the Model for 

Interdisciplinary Research on Climate (MIROC) (Hasumi and Emori 2004).  The 

original data were downloaded from the PMIP2 website (http://www.pmip2.cnrs-

gif.fr), with a spatial resolution of 2.5 arc-minutes.  These layers included the 

same 19 bioclimatic variables used to create present-day ENMs, although at 

lower resolution.  I used DIVA-GIS to re-grid and crop the LGM layers to match 

the parameters of the previous layers.  Soil data and WWF ecoregions could not 

be included in LGM reconstructions because those data do not exist for 
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paleoclimate models. To investigate the Meadow Group ENM I combined the 

georeferenced occurrences for both C. longilabris and C. nebraskana into a 

single occurrence file.  

For the “backcasting” several issues had to be addressed.  First, ENMs 

were based on the contemporary environmental conditions that exist in the 

Nearctic, although the range of conditions during the LGM was different and 

included environmental extremes not encountered today.  MAXENT’s default 

setting is to treat variables outside the training range as if they were at the edge 

of their training range, referred to as “clamping” (Phillips et al 2006).  The most 

conservative method of dealing with this issue is to remove these areas 

altogether, as they can be considered suspect if extensive.  However, the latest 

version of MAXENT has incorporated an intermediate solution to the problem, 

implemented in the “fadebyclamping” option. This method calculates the degree 

of clamping and subtracts it from the total cumulative probability of occurrence 

(Phillips 2010) and my LGM reconstructions were generated using this option.  

Given that there were two separate LGM models used to create ENMs, I 

reconciled the outputs using a conservative approach modified after Waltari et al 

(2007) in order to avoid overprediction.  First, models were created for both 

CCSM and MIROC, implementing the LPT and M10 thresholds as described 

above.  Consensus models were created in DIVA-GIS that show the predicted 

areas as shades of green, with darker shades indicating increasingly stronger 

prediction by both models.  The darkest green areas are those regions that were 

predicted as suitable habitat under the more stringent threshold by both models. 
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Testing for niche overlap and differentiation 

 

 In order to quantify niche similarity and test for significant differences 

between species ENMs, I used ENMTools (Warren et al 2010), a Perl script that 

allows for statistical comparisons between MAXENT outputs, employing 

randomization and resampling methods.  First, I used the script to generate 

estimates of niche overlap incorporating all variables, conceptually based on two 

measures of similarity, Schoener’s (1968) D, and a derivative of Hellinger’s 

distance called I (Warren et al 2008).  These distance-based similarity measures 

are obtained by comparing estimates of habitat suitability calculated for each grid 

cell of the study area, and are threshold independent.  Following this, I used 

ENMTools to conduct tests of significance for niche differentiation.  The “Identity 

test” addresses the null hypothesis that ENMs from two populations are identical. 

his test pools the occurrence points for a pair of populations, randomizing the 

population identities of the points, and extracting new population samples with 

the same sizes as the two original samples.  Through a series of 

pseudoreplicated datasets the program creates a null distribution of niche 

similarity indices to which it compares the observed measures of niche overlap to 

test whether they are significantly outside of the null distribution.  Lastly, I used 

ENMTools to implement “background tests” for allopatric taxa of interest.  The 

previous Identity tests are most meaningful when species have the same suite of 

environmental conditions available to them, and this is unlikely to hold for 

allopatric species (Warren et al 2008).  The background test can be used to 
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determine if two allopatrically distributed groups are more different than would be 

expected by chance, given the underlying environmental differences between the 

regions in which they occur.  To accomplish this, ENMTools again generates a 

null distribution for the ENM differences expected from randomizations of the 

occurrence points.  If the observed value of niche similarity is significantly higher 

than expected based on the null distribution, then the null hypothesis that 

similarity between the species is no more than expected based on the availability 

of habitat can be rejected.  I conducted background tests between the generally 

allopatric subspecies of C. longilabris, and also between C. sexguttata and C. 

denikei. 

 

 

Results 

 

 

Model validation and variable contribution 

 

 In all cases, training and test AUC values indicated strong support for the 

fit and predictive power of the models (Table 4.2). Training and test AUC values 

for each taxon ranged from 0.897 – 0.999, and in every case the null hypothesis 

that test points are predicted no better than random could be rejected (all p 

<0.05).  Jackknife analyses of variable contribution revealed which environmental 

layers were most critical in limiting species distributions (Figures 4.1 - 4.5).  In 
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most cases, the removal of any single variable had little negative effect on the 

ENM for any species, a result indicating that no single variable contains a 

substantial amount of useful variation that is not already contained in the other 

variables (Phillips et al 2006). This suggests that there is correlation between the 

environmental variables.  However, In the case of C. nebraskana, some variables 

(i.e. precipitation of the coldest quarter) actually had a slight negative effect on 

the predictive power of the total model (Figure 4.2) when these were included.   

A stronger indicator of variable importance is how each performs in 

isolation.  For C. longilabris, annual mean temperature and ecoregion were most 

predictive of the species distribution, and both displayed a test AUC >0.85 when 

they were the only variable used (Figure 4.1), e.g. each was >85% predictive of 

the species distribution.  Soil orders and maximum temperature of the warmest 

month were the next most predictive factors, both with values just under 0.85.  

For C. nebraskana, results were similar, with annual mean temperature and 

ecoregion again the two most predictive factors, both with AUC values also >0.85 

(Figure 4.2). Soil orders and maximum temperature were also predictive at 

>0.80, but in contrast to C. longilabris, so were a number of other environmental 

variables.  The results for C. sexguttata and C. patruela indicated that ecoregion 

and soil orders were the two most critical environmental factors in delineating the 

species range (Figures 4.3, 4.4).  Maximum temperature during the warmest 

month was the third most predictive factor for C. patruela (0.93) compared to 

annual mean precipitation for C. sexguttata (0.89).  For C. denikei, all but one 

variable displayed greater than 80% predictivity, and most were over 90%.  This 
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is likely attributable to the species very limited geographic distribution and the 

inherent effect that has on the ENM process (see Discussion).   

 

ENM predicted distributions 

 

 Maps of the species predicted distributions were in general concordance 

with known ranges (Figures 4.6 – 4.10).  Differences in the amount of predicted 

area between LPT and M10 thresholds were most pronounced in C. longilabris 

and C. sexguttata.  When C. longilabris populations were categorized according 

to Spanton’s (1988) subspecies (Figure 4.11), each ENM predicted extensive 

suitable habitat beyond the observed distributions (Figure 4.12).  For both C. l. 

pervirids and C. l. laurentii, over 50% of each predicted range was not occupied.  

Moreover, all three taxa overlapped in their predicted distributions in areas of the 

northern Rockies and adjacent highlands.  This area of overlap included the 

distribution of phenotypic “intergrade” populations, as well as additional 

geographic areas where intergrades are not observed.  ENMs were generated 

for the Meadow Group mtDNA phylogeographic clades (see Figure 2.2) and in 

each case there were extensive areas of predicted habitat where they do not 

occur (Figure 4.13). The predicted distributions of mtDNA clades overlapped 

throughout most of the higher elevation areas of the western United States. 
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Last Glacial Maximum reconstructions 

 

 Backcasting the Meadow Group ENM onto LGM conditions yielded 

predictions of suitable habitat throughout the southern part of the western U.S., 

with additional bands of potential habitat extending into the southeast (Figure 

4.14).  There were areas predicted under the more stringent threshold by both 

paleoclimate models, and these were distributed on the east slope of the Sierra 

Nevada and Cascade ranges, fragmented areas along the southern Great Basin, 

and additional areas mostly east and south of the Rockies.  These stringently 

predicted areas include the hypothesized refugia for the each of the three major 

mtDNA clades (Figure 4.14B and C) based on prior phylogeographic and 

historical demographic results (Chapters II and III).   

 LGM models for C. denikei predicted very little suitable habitat under the 

CCSM model, corresponding to a small area of present-day western OK and TX 

panhandle (Figure 4.15).  Most of this area was predicted only under the LPT 

threshold, and within this, an extremely small area (~10km wide) was predicted 

as suitable using the M10 threshold.  No areas were predicted as habitable under 

either threshold using the MIROC model.  

 

Niche overlap and differentiation 

 

 Niche overlap estimates varied considerably between taxon comparisons 

and between the two distance measures (Table 4.3). However, Identity tests 



154 

determined that each of the taxa (species, subspecies, and mtDNA clades) 

displayed unique niches; the null hypothesis of identical niche could be rejected 

in all comparisons (p <0.05).  The lowest degree of species niche overlap was 

between C. sexguttata and C. denikei (D = 0.047, I = 0.342), whereas C. 

sexguttata and C. patruela exhibited the most similarity (D = 0.583, I = 0.716).  

The Background test revealed that C. sexguttata and C. denikei were more 

ecologically divergent than predicted by chance (p <0.05).  For the C. longilabris 

subspecies, niche overlap was much higher between C. l. laurentii and C. l. 

perviridis (D = 0.580, I = 0.709) than between C. l. longilabris and either of these 

(D = 0.197, I = 0.470, and D = 0.165, I = 0.449 respectively).  Furthermore, 

background tests revealed that C. l. laurentii and C. l. perviridis were not more 

significantly different in niche than expected (e.g. they were more ecologically 

similar than the null expectation), but in contrast C. l. longilabris was significantly 

more different in niche to these other subspecies than expected (both p <0.05).  

Meadow Group mtDNA clade comparisons showed results similar to the C. 

longilabris subspecies.  Niche overlap was much higher between the Southwest 

and Northwest Clades (D = 0.559, I = 0.707) than between the Continental 

Clades and either of these (D = 0.208, I = 0.474, and D = 0.153, I = 0.430 

respectively).  The Background test further supported the similarity between the 

Southwest and Northwest Clades, as they were not significantly more different 

than would be expected by chance.  Conversely, the Continental Clade was 

significantly different from the other two (both p <0.05).   
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Discussion 

 

 

Factors limiting species ranges  

 

 Results of the jackknife tests were informative as to the environmental 

factors that may be delimiting the species ranges.  Despite a lack of monophyly 

(see Chapter II) the Meadow Group nominal taxa, C. longilabris and C. 

nebraskana, were investigated as separate entities on the basis that they may 

represent “ecomorphs” or populations with genes under divergent selection for 

ecological characteristics (Michel et al 2010).  Results indicated similar, but not 

identical, niches and limiting factors for C. longilabris and C. nebraskana.  In the 

case of C. longilabris, annual mean and maximum temperature were two of the 

four environmental factors that best predicted occurrence (Figure 4.1).  Given the 

observed distribution restricted to high latitudes (up to 67.4o N, above the Arctic 

Circle) or high elevation (up to 3800m / 12,500ft), it is not surprising that C. 

longilabris is greatly affected by temperature.  I have collected this species along 

the edge of snowmelt and glaciers and found it active at ambient air 

temperatures as low as 12.5o C (55o F), but very rarely observed the species 

active at temperatures above 30o C (86o F).  Schultz et al (1992) performed 

physiological and behavioral studies in the field and lab, and found that C. 

longilabris had a lower tolerance for high body temperatures than any other 

Cicindela species examined.  Furthermore, the authors repeated their 
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observations at four field sites (AZ, CO, WI, ME) and found no significant 

differences in preferred body temperature or thermoregulatory behavior between 

different geographic areas.  In addition, the variables of ecoregion and soil type 

were also highly predictive for C. longilabris (AUC = 0.89, 0.84), consistent with 

Spanton’s (1988) conclusions.  He characterized the species as being associated 

with specific boreal and montane habitat types and edaphic conditions that were 

limited to particular soil orders.  Spanton also hypothesized that differences in 

soil preference were responsible for divergence between C. longilabris and C. 

nebraskana.  Jackknife analyses did show soil orders and ecoregion as highly 

predictive of the range of C. nebraskana as well (AUC = 0.81, 0.87) (Figure 4.2), 

although it is not possible from the ENM results to say how different the habitat 

and soil preferences are between the species, simply that these factors were key 

in explaining both distributions.  For C. nebraskana, annual mean temperature 

was the most predictive single variable (AUC = 0.90), although in contrast to C. 

longilabris, little was previously known about the species physiology.   

For the Forest Group, predictions by Kaulbars and Freitag (1993b) were 

supported by the jackknife analyses.  They had concluded that “For all species of 

the group, habitats occupied and limits of distribution to eastern Canada and the 

USA appeared to be governed by soil and forest types”.  Consistent with this, 

jackknife tests demonstrated that ecoregion was the most predictive factor in all 

three species (Figures 4.4 - 4.6), and soil order was the second most predictive 

variable for both C. sexguttata and C. patruela, although not in C. denikei.  It 

should be noted however, that in the latter species nearly all factors were highly 
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predictive (AUC >0.90 for all but two variables), so rank order of variable 

predictivity is less informative (see additional discussion below).  For C. 

sexguttata, annual total precipitation was the third most predictive factor, and this 

is not surprising given that it inhabits “moist, and loamy soils” according to the 

previous authors (Kaulbars and Freitag 1993b).  The third most predictive 

variable for C. patruela was maximum temperature of the warmest month.  

Although this species is largely sympatric with C. sexguttata, it has a more 

restricted range (Figures 4.8, 4.9).  South of Ohio, C. patruela is only found at 

higher elevation areas of the Appalachian Mountains and Cumberland Plateau, 

presumably as a result of the species inability to tolerate higher temperatures at 

lower latitudes.  By contrast, the variable of elevaton is actually the poorest single 

predictor of C. patruela distribution, however this is not surprising given that the 

species occurs at sea level or low elevation in the northern part of its range and 

therefore this variable would not be particularly predictive in the absence of other 

factors.  For C. denikei, nearly all variables predicted the species distribution 

well, and nine of these exhibited AUC values over 0.95 (Figure 4.5).  The 

restricted distribution of the species presents an inherent challenge to the 

inference capabilities of ENM methods (Phillips et al 2006).  Because all 

occurrences occur within close proximity to each other, there is a high degree of 

specificity in the prediction, as the model has a very narrow set of conditions to 

train from.  This specificity may represent the true fundamental niche (e.g. the 

species may actually have a very narrow of a range of tolerances), or it could be 
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that the model is underpredicting the true geographic distribution due to tight 

correlation of conditions at the few known occurrences.   

 

Species distribution models 

 

 In general, the ENM predicted species distributions fit the known 

distributions well (Figures 4.6 – 4.10) suggesting that abiotic environmental 

factors are primarily responsible for limiting species ranges, not biotic interactions 

(i.e. competitive or mutualistic).  Although in some cases there were notable 

differences in the extent of predicted habitat between the two thresholds.  The 

discrepancy was most pronounced in C. longilabris, and the LPT predicted 

greater than three times the amount of suitable habitat as the M10 threshold 

(fractional predicted area 37% vs. 11%).  One possibility is that outlier 

occurrences are responsible (Phillips et al 2006).  If some of the C. longilabris 

localities represent dispersers into suboptimal habitat, then those points may 

exhibit an atypical set of environmental conditions. The more stringent M10 

threshold will identify these as outliers and predict a reduced subset of habitat 

compared to the LPT.  Alternatively, the ENM may have mischaracterized part of 

the niche as the result of ecological divergence within the species.  Statistical 

tests demonstrated that northern populations (the putative subspecies C. l. 

longilabris) were more ecologically different from the rest of the species (C. l. 

perviridis and C. l. laurentii) than expected by chance (p <0.05).  As such, entire 

sets of populations may be “outliers” because the niche is not identical across the 
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species range.  It is also worth noting that there are parts of Alaska, Yukon, and 

northern British Columbia that were not predicted as suitable habitat, although C. 

longilabris is generally believed to be common and widespread in much of that 

region (Spanton 1988; Knisley pers. comm. 2005; Sikes pers. comm. 2006). This 

result is likely due to collector sampling bias overrepresenting the more 

accessible areas in the United States and southern Canada, and 

underrepresenting the extreme northwestern corner of the continent.  These 

unsampled areas may contain environmental conditions that fall outside of the 

range encountered by MAXENT’s training model, and consequently the ENM will 

fail to accurately assess their suitability.   

In the case of C. sexguttata, the thresholds differed in habitat prediction 

primarily west of the Mississippi River (Figure 4.8).  It is possible that this 

discrepancy is due to the patchier nature of moist deciduous forest in the region, 

which the more stringent threshold fails to accomodate.  Due to the geographic 

scale of the MAXENT analyses, habitats smaller than 1km2, or suitable 

microhabitats within otherwise suboptimal habitat cannot be identified.  In 

addition, there is again the possibility of some degree of local adaptation at the 

edge of the species range into the Midwest.  Lastly, there may also be a collector 

sampling bias towards the more heavily populated East Coast metropolitan 

areas.   

 ENMs have been used to identify new populations of species (e.g. Menon 

et al 2010), but could also be used to validate older or dubious records.  

Raxworthy et al (2003) used ENMs for chameleon species in Madagascar and 
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discovered additional unsampled habitat in geographically disjunct areas. 

Subsequent sampling yielded undescribed species that were closely related and 

ecologically similar to the modeled taxa.  The potential exists for similar 

discoveries with tiger beetles.  For C. longilabris, two mountain ranges in 

southeastern AZ were predicted as highly suitable, Mt. Graham, and the 

Chiracahua Mts. (highest points), although the species has not been recorded 

from either.  If C. longilabris were found at these sites it would extend the known 

range south, and the results of the study warrant investigations into these areas.  

In addition, the ENM predicted several kilometers of habitat in the vicinity of 

Spruce Knob, WV, potentially validating a dubious record in the University of 

West Virginia collection (Knisley pers. comm. 2010).  If C. longilabris were 

present there, it would extend the known range ~450 miles from the nearest 

established population in the Adirondacks. 

 

Last Glacial Maximum reconstructions 

 

Phylogeography and historical demography analyses uncovered deeply 

separated allopatric mtDNA clades within the Meadow Group (Chapters II, III), 

consistent with divergence during the early-mid Pleistocene Ice Ages.  If this 

hypothesis about the history of the North American C. sylvatica group is correct, 

then populations representing each of these mtDNA clades must have persisted 

in refugia when glacial retreat began at the LGM, 18,000 years ago.  Results 

from the consensus paleoclimate model indicated that suitable habitat did exist at 
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this point, and occurred in the geographic areas where glacial refugia were 

hypothesized to exist (Figure 4.14).  During the LGM, habitat appears to have 

been most extensive along the eastern slope of the Sierra Nevada and Cascade 

ranges, and east of the front range of the Rockies.  Suitable habitats within the 

Great Basin were more extensive than in the present, but also fragmented.  Post-

glacial dispersal routes exist, as these LGM habitats are broadly connected to 

the present-day Meadow Group range.   

Paleoclimate models were able to address the hypotheses pertaining to 

divergence between C. denikei and C. sexguttata.  If C. denikei evolved in situ in 

its current habitat, then it could only have diverged less than 11,000 years ago 

(CLIMAP 1981; Sibrava et al 1986; Mix et al 2001), potentially insufficient time to 

exhibit reciprocal monophyly with respect to C. sexguttata based on estimates 

from coalescent analyses.  Alternatively, it is possible that C. denikei could have 

diverged from C. sexguttata prior to the LGM in a separate geographic area and 

later dispersed to its current location following glacial retreat.  If this second 

scenario were true, then the case for incomplete lineage sorting is less 

compelling, as it would indicate that the divergence was more ancient.  However, 

the consensus paleoclimate model did not support the existence of suitable 

habitat during the LGM (Figure 4.15), because no area was predicted by both 

models.  This finding is consistent with the hypothesis that if C. denikei is a 

distinct species, it evolved in situ after glacial ice retreated and created the 

species current alvar habitat (Kaulbars and Freitag 1993a,b).   
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Ecological niche overlap and differentiation 

 

 Statistical tests of niche overlap indicated that no two taxa were identical 

in niche (Table 4.3).  This result bears on the systematic relationship of the 

Meadow Group nominal taxa.  Although prior work demonstrated that C. 

longilabris and C. nebraskana were extensively polyphyletic with respect to 

mtDNA and did not form discreet clusters based on genome-wide AFLP 

analyses, these ENM results suggest that there may still be a genetic basis 

underlying the ecological differences in these taxa.  Following up on these 

results, I have begun a genome-scan study to potentially identify loci under 

selection that could be associated with ecological or morphological divergence 

(e.g. Bonin et al 2006, Egan et al 2008).  Within the Forest Group, results were 

also informative as to the hypothesized relationships between taxa.  C. 

sexguttata and C. denikei displayed the smallest degree of niche overlap of any 

comparison in the study (D = 0.047, I = 0.342), although this is expected when 

species are allopatric (Warren et al 2008).  The Background test is a more 

relevant test in such a case, and accounts for the inherent underlying differences 

between non-overlapping geographic areas.  Still, it was found that C. denikei 

and C. sexguttata were significantly more ecologically divergent than expected 

by chance.  Moreover, the observation that these two taxa are the most divergent 

in niche while still exhibiting low genetic differentiation is consistent with a 

peripatric ecological speciation scenario (Funk et al 1995).  This supports the 

hypothesis that C. denikei does not simply represent a set of satellite populations 
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for C. sexguttata, but instead may have diverged and ecologically differentiated 

in its unique habitat, as suggested by previous authors (Kaulbars and Freitag 

1993a, b).   

 Tests of niche overlap between C. longilabris subspecies yielded 

interesting and complicated results.  The two montane subspecies, C. l. perviridis 

and C. l. laurentii (Figure 4.11) were not found to be significantly different in niche 

(Table 4.3).  Furthermore, these broadly overlapped in predicted geographic 

distribution (Figure 4.12).  In contrast, C. l. longilabris was found to be 

significantly ecologically differentiated from the other subspecies, although its 

predicted distribution also included a large area of geographic overlap with the 

others.  All three subspecies were predicted to occur in the geographic area that 

Spanton (1988) described as a place of mixing (“hybridization”) between the 

subspecies, resulting in what he termed “intergrades”.  It is tempting to conclude 

that the ENMs support this conclusion, but the results are not entirely consistent 

with this hypothesis.  First, additional areas of overlap are predicted, yet 

phenotypic intergrades have not been observed in these (Figure 4.12).  Second, 

molecular evidence does not support genetic breaks that match subspecies 

ranges (see Chapter II, Figs. 2.3, 2.5, 2.7).  For additional discussion of 

subspecies validity see Chapters V, VI. 

 In the Meadow Group, mtDNA clades are tightly allopatric, despite the 

absence of obvious physiographic barriers to dispersal.  ENMs revealed that their 

predicted distributions are more extensive than observed (Figure 4.13), and each 

was predicted to occur in areas overlapping with the other clades’ distribution.  
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This was most pronounced between the Northwest and Southwest Clades, as 

contiguous suitable habitat is predicted for each clade throughout the Sierra 

Nevada range and adjacent Great Basin highlands (Figure 4.13C).  This pattern 

coupled with the abrupt contact zone supports an extrinsic biological cause for 

range limits, such as competitive exclusion (Swenson 2006, Sanchez-Cordero et 

al 2008) or the effect of Wolbachia infections. If mtDNA clades are associated 

with different Wolbachia strains, then cytoplasmic incompatibility (Hoffman and 

Turelli 1997) could prevent a barrier to reproduction.  Preliminary data are being 

gathered to address this last possibility. 

 

 

Conclusions 

 

 

 ENMs were used to quantify niches and identify the factors responsible for 

limiting distributions in a group of North American tiger beetles.  Results broadly 

supported prior researchers’ hypotheses about the determinants of tiger beetle 

species ranges (Leffler 1979; Spanton 1988; Schultz et al 1992; Kaulbars and 

Freitag 1993b), with habitat, soil type, and temperature the primary factors.  

Hypotheses pertaining to species boundaries were addressed.  In the case of C. 

denikei, niche models and subsequent tests of significance revealed that this 

taxon was more ecologically divergent from its putative parental species, C. 

sexguttata, than would be expected by chance.  The validity of C. denikei as a 
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recently diverged separate species was further bolstered by Pleistocene habitat 

reconstructions that indicated no available habitat 18,000 years ago (Last Glacial 

Maximum).  As such, the species appears to have evolved more recently in situ 

in its current alvar habitat, and this scenario supports incomplete lineage sorting 

as an explanation for the species lack of monophyly with respect to C. 

sexguttata.  Pleistocene models were also used to address phylogeographic 

hypotheses pertaining to the “Meadow Group”, one of the two ecological 

divisions within the North American C. sylvatica species group.  Prior molecular 

studies revealed three deep genetic subdivisions within the Meadow Group and 

coupled with historical demographic analyses, isolation in glacial refugia was 

proposed as an explanation for the patterns.  Paleoclimate ENMs revealed the 

presence of suitable habitat at the LGM and these areas included the 

hypothesized refugia for each clade.   

 In addition to species-level questions, ENMs were used to explain the 

distribution of subspecies and mtDNA clades.  C. longilabris subspecies 

exhibited significant niche divergence between the boreal forest dwelling C. l. 

longilabris and more southerly-distributed montane subspecies, C. l. perviridis 

and C. l. laurentii.  These last two were found to be more ecologically similar than 

expected, given their allopatry.  For mtDNA clades, predicted niche overlap was 

considerable and coupled with their observed patterns of occurrence, extrinsic 

factors were most likely the cause of their distributions, either competitive 

interactions between them, or possibly a due to different Wolbachia strain 

associations resulting in cytoplasmic incompatibility (Hoffman and Turelli 1997). 
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 Lastly, this study identified additional areas of potentially suitable habitat 

for C. longilabris in isolated mountain ranges to the south of the species known 

distribution.  These areas warrant further investigation and if populations are 

found, they may represent a range extension, genetically distinct subdivisions, or 

possibly new species (Raxworthy et al 2003). 
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Table 4.1.  Museum collections surveyed for species locality data. 
 
 
Academy of Natural Sciences   Philadelphia, PA 
American Museum of Natural History   New York, NY 
Brigham Young University   Provo, UT 
Clemson University   Clemson, SC 
Colorado State University   Fort Collins, CO 
Museum of Comparative Zoology   Cambridge, MA 
Natural History Museum (UK)   London, UK 
Rutgers University    New Brunswick, NJ 
Smithsonian Museum of Natural History   Washington, D.C. 
University of California at Davis   Davis, CA 
University of Georgia   Athens, GA 
University of Massachusetts at Amherst   Amherst, MA 
University of Missouri at Columbia  Columbia, MO 
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CHAPTER V 

 

AN ASSESSMENT OF ENVIRONMENTAL INFLUENCES ON COLOR 

PATTERN IN CICINDELA LONGILABRIS 

 

 

Introduction 

 

 

One of the most pervasive questions in biology is the nature of the 

relationships between phenotypic variation, genetics, and the environment.  Well 

before the use of molecular genetic data, naturalists had noted the existence of 

geographical patterns of phenotypic variation in plant and animal species.  These 

geographic races or subspecies were commonly construed to be populations 

with reduced gene flow, or even incipient species that may become completely 

reproductively isolated in the future (e.g. Mayr 1942, 1963).  In more recent 

years, it has become possible to test for concordance between morphologically 

recognized taxonomic subspecies and molecular data, as phylogeographic 

studies make use of neutrally evolving molecular genetic markers to uncover the 

patterns of population subdivision (e.g. Avise et al. 1987; Avise 2000; Zink 2004).  

One of the surprising outcomes of many such studies is the identification of deep 

genealogical splits which do not correspond to any obvious phenotypic 

characters (e.g. Avise et al 1979; Vogler and DeSalle 1993, 1994; Bernatchez 
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1997).  However, other workers have found higher levels of agreement between 

molecules and subspecies boundaries (Phillimore and Owens 2006).  Moreover, 

some species also exhibit phenotypic variation within populations, and this could 

be a result of neutral allelic variation (e.g. Tan 1945), developmental plasticity 

(e.g. Nice and Fordyce 2006), or local adaptation (e.g. Dudley 1996).  So the 

question remains as to whether the geographic distribution of polymorphism is 

largely the result of historical sundering of species, local adaptation, 

environmental developmental plasticity, or some combination of these.  More 

thorough and integrative studies are needed to assess the general trends 

concerning the causes of phenotypic variation. 

Tiger beetles in the genus Cicindela often display striking variation in their 

color patterns within and among species (Shelford 1917; Willis 1967; Acorn 

1992). These can vary both in ground color and in the extent and shapes of 

dorsal unpigmented areas (maculations).  Some species of Cicindela exhibit 

considerable variation in dorsal color across their geographic range or within a 

single population and this may include a continuum of color forms (e.g. 

populations of C. circumpicta johnsoni ranging from blue to red), or in some 

cases two or more distinct color forms (e.g. C. scutellaris rugifrons black and 

green morphs). All dorsal colors in tiger beetles are “structural colors” created by 

the optical properties of the cuticle, and not the result of different pigments 

(Schultz and Rankin 1983a, b). The cuticle is laminated with alternating layers of 

melanin pigment and translucent epicuticle, and the distance between these 

layers largely determines the color reflected.  In addition to the wavelengths 
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reflected through these layers, the surface microsculpturing can also create a 

mosaic of microscopic patches that reflect different wavelengths, which 

pointillistically mix to create many of the brown and olive colors in Cicindela 

(Schultz and Bernard 1989).  Some studies have demonstrated that color may be 

important in predator avoidance as a result of crypsis by resemblance to the 

substrates they frequent (Willis 1967; Schultz 1986, 1991).  Other studies have 

demonstrated that extent of maculation in Cicindela can have significant adaptive 

consequences for thermoregulation by facilitating heat transfer through the 

integument (Schulz and Hadley 1987; Acorn 1992; Hadley et al. 1992).  

Consequently, the potential exists for natural selection to be operating on 

different phenotypes within populations of C. longilabris.  However, the structure 

of the cuticular layers and the resulting colors have been found in some cases to 

at least partly reflect phenotypic plasticity in development as a consequence of 

such abiotic factors as varying levels of humidity or temperature (Shelford 1917; 

Schultz 1983). Shelford (1917) reared the larvae of five species of Cicindela 

under two different temperature regimes (21oC and 35oC) while also subjecting 

each of these to low and high humidity treatments.  He found differences in color 

associated with treatments; hotter and drier conditions resulted in brighter and 

more green/blue (as opposed to reddish) colors.  He concluded that local climate 

was therefore responsible for much of the geographical color variation observed 

in tiger beetles, although his interpretations were criticized by Schultz (1983) as 

overgeneralizations.  Schultz repeated many of Shelford’s observations but also 

examined the developmental physiology of the exoskeleton, and determined that 
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hot and dry conditions caused shrinking of the laminated layers of melanin in the 

cuticle, resulting in shorter wavelength colors (e.g. shifted towards the blue/violet 

end of the spectrum). Because these experiments were carried out on only a 

handful of species under a small set of possible conditions, it has not been 

possible to say how representative these patterns are.  Despite these issues, the 

taxonomy of Cicindela subspecies (and occasionally species) is often based 

entirely on subtle differences in color and pattern (e.g. Willis 1968; Graves et al. 

1988; Schincariol and Freitag 1991; Kritsky and Horner 1998), characters that 

are either potentially under strong selection, or possibly the result of 

developmental plasticity.  In both cases, these characters may be inappropriate 

for inferences about systematic relationships as such traits are prone to patterns 

of convergence and can result in ‘polytopic subspecies’ (Wilson and Brown 1953) 

that are not representative of evolutionarily meaningful entities.  Yet multiple tiger 

beetle subspecies have been included in state and federal endangered species 

lists (NatureServe. 2009, accessed June 2010).  An improved understanding of 

the underlying causes for phenotypic variation would be valuable for accurate 

taxonomy in this popular and conservationally important group of insects. 

 Within the tiger beetles, C. longilabris is ideal for studying the nature of 

polymorphism and underlying causes of phenotypic variation. This species 

exhibits an extreme amount of phenotypic variation in color pattern across its 

continent-wide range, which has led to the description of numerous subspecies 

(reviewed in Spanton 1988), some of which were given full-species rank by 

previous authors.  Spanton revised the taxonomy, synonymizing many of the 
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previous names, but recognizing three subspecies based on linear discriminant 

function analyses of morphometric data (Sneath and Sokal 1973). Although there 

appears to be a geographical component to the phenotypic variation, there also 

exists considerable variation within each of these subspecies (Figure 5.1).  

Additionally, there is often dramatic color pattern variation within populations in a 

number of geographical areas (i.e. ID, MT, AZ, WA), which may be a result of 

elevated variation in heritable traits, developmental plasticity in particularly 

variable environments, or an interaction of these factors.  

 Part of my dissertation research was focused on the systematics of the 

North American C. sylvatica group (Chapter II), including C. longilabris.  Utilizing 

a thorough ‘congeneric phylogeography’ approach I sampled intensively from all 

C. longilabris subspecies and intergrades. Although mtDNA sequence data and 

AFLP clustering both revealed the existence of deep genetic subdivisions in the 

group, these were not concordant with any subspecies boundaries.  Following 

the results of Shelford (1917) and Schulz (1983), I sought to investigate the 

degree to which environment might explain variation in color and maculation.  To 

this aim, I photographed dried beetle specimens from throughout the range of C. 

longilabris, using high-resolution photographic equipment, and quantified color 

and maculation with photo-processing software.  I performed multiple regression 

analyses of key environmental variables against these measures of phenotype 

and interpreted the resulting patterns below.  
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Materials and Methods 

 

 

Sampling 

 

 Populations were chosen to represent each of the subspecies and 

intergrades, broadly encompassing the range of each group.  The dataset 

includes 151 individuals and 31 sampling sites (Figure 5.2), and each specimen 

was the morphological voucher of an individual used in prior molecular genetic 

analyses.  Beetles were dried for at least 15 mins on pieces of filter paper that 

had been placed in individually labeled petri dishes.  Dried beetles were then 

placed on a microscope stage containing an indented piece of modeling clay that 

held each beetle in place and in the same plane and orientation.  I photographed 

each specimen using a Nikon DF-Fi1 camera, NI-150 light source, and SMZ 

1500 microscope.  In order to ensure that colors were consistently captured, 

each photograph was taken using the same settings for lighting and exposure: 

50% power on the light source, and 300 ms exposure, Gain 1.00, medium 

contrast for the camera.  In addition, five color standard strips were included in 

each photograph, corresponding to white, red, blue, yellow, and green.  

Photographs were saved as uncompressed TIFF files (2560 x 1920 resolution) 

and imported to Photoshop CS5. 
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Phenotype scoring 

 

 Color was scored using two separate systems for comparison.  First, each 

color was scored according to the ordered color states used in Spanton (1988).  

This scale ranged from 1-7, as follows: 1) black, 2) dark brown, 3) medium 

brown-bronze, 4) olive green, 5) green, 6) blue green, 7) dark blue.  Although this 

method necessarily simplifies color into seven binned categories, there were two 

justifications for its inclusion.  First, I have observed that colors in C. longilabris 

(and some other species) do follow this progression of ordered states, and 

populations will often include two or more of these states and they are always 

consecutive (i.e. CA: Duck Lake has states 5-7, ID: Snowhaven has 2-3, CO: 

Poudre Canyon has states 1-3, etc).  Moreover, an individual specimen may shift 

its color towards the higher number end of the continuum through rapid drying 

under a heat source (pers. obs.; Schimdt, Lawton, and Kippenhan, pers. comm., 

2005).  Second, this scale was the same one used in Spanton’s linear 

discriminant function analyses, and therefore my analyses would be performed 

using the same metric for color comparison.  In addition to this scale, color was 

also measured using the Hue, Saturation, Brightness scale in Photoshop CS5. 

The HSB scale was chosen over Red, Green, Blue (RGB), because hue is a 

single chromatic value that has been shown to capture color variation effectively 

(McKenna et al. 1999; Robertson and Zamudio 2009).  Color saturation was 

scored as a phenotype and may be interpreted as the “pureness” of color based 

on the Munsell (1914) system.  Saturation represents the degree to which a color 
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differs from a neutral grey.  Brightness was also scored and represents the light 

“intensity” of color.  To record HSB values, I used the color picker tool in 

Photoshop to take a 101x101 pixel average from the same part of the elytra disk 

for each beetle (1/3 from anterior end, near the elytral suture).  Maculations were 

scored using the “lasso” selection tool.  First, each elytron was traced and the 

number of pixels recorded.  Next, the elytral maculations were outlined and 

combined and the total number of pixels was recorded in an adjacent column.  

Percent maculation was calculated as the pixel area of the maculations divided 

by the total elytral area.   

 

Selection of environmental variables 

 

 To investigate the effect of environment on phenotype, I chose 

environmental variables that met two criteria:  1) having sufficient resolution of 

the data so that values precisely represented the conditions encountered for 

each sampling locality, 2) representing some a priori expectation of association 

with phenotype based on previous detailed studies by Shelford (1917) and 

Schultz (1983b).  The only environmental layers with sufficient resolution across 

the entire North American continent were the BIOCLIM variables by Hijmans 

(2005a) and these were also used in the ecological niche modeling part of my 

dissertation (see Chapter IV Materials and Methods).  From this total set, I 

selected the variables that pertained to temperature, precipitation (as a potential 

surrogate for humidity), and elevation.  The program DIVA-GIS (Hijmans et al. 
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2005b) was used to extract point values for each layer at the latitude and 

longitude coordinates for the 31 sampling localities.  

 

Statistical analyses 

 

 Multiple regression analyses were conducted using JMP 8.0 (SAS 

Corporation, Cary, NC).  Dependent phenotype variables (Ys) were regressed on 

independent environmental variables (Xs) using a Standard Least Squares 

model.  Because the environmental variables chosen are likely to show some 

degree of covariance (Hijmans et al 2005a), I generated a matrix of variable 

correlation (Table 5.1).  Normality of the data was tested by plotting residuals for 

each Y, in order to assure that the data did not violate assumptions of the model.  

Statistical testing of normality was performed with a Shapiro-Wilk Goodness of 

Fit test.  Leverage plots were created to visually inspect for the presence of 

outlier points that may be affecting the models.  Linearity and homoscedasticity 

were assessed by examining the shape of plots of the residuals versus the 

predicted values.  For each significant regression, t ratios were generated to 

assess the statistical significance of specific variables towards the total model.  In 

addition, standardized (beta) coefficients were generated in order to compare 

directly the magnitude of the effects of each independent variable on the model. 
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Results 

 

 

 Shapiro-Wilk tests were non-significant (p >0.05) and the null hypothesis 

that data were normally distributed could be accepted in all cases.  Plots of 

residuals versus the predicted values revealed evenly distributed points with no 

U-shaped tendencies (no violation of linearity or homoscedasticity).  Therefore, 

no transformation was necessary for any of the phenotype data.  Not surprisingly, 

there was a high degree of correlation between some environmental variables 

(i.e. annual mean temperature and mean temperature of the warmest month are 

97.2% correlated) (Table 5.1), however this has no bearing on the overall 

significance of the results, only that it should be kept in mind when assessing the 

effect of particular variables in the model.   

Multiple regression results indicated a highly significant (p < 0.0001) 

correlation between environmental variables and each measure of phenotype 

(Tables 5.2 – 5.6).  Spanton’s (1988) color scale displayed the highest coefficient 

of determination for the overall model (R2 = 0.751), signifying that 75% of the 

variation in color can be explained by the environmental factors in the model.  

Hue was the second best explained by the model (R2 = 0.623), followed by 

brightness (R2 = 0.530), maculation percentage (R2 = 0.403), and color saturation 

(R2 = 0.388).  Different sets of environmental variables were significantly 

predictive (p <0.05) for each measure of phenotype.  Mean temperature of the 

warmest quarter, and maximum temperature of the warmest month were 
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significantly predictive of color (Spanton’s states and hue), but not brightness or 

maculation percentage.  Elevation was not predictive of Spanton’s color states or 

hue, but was significantly associated with saturation and brightness and nearly 

significantly associated with maculation (p = 0.06).  Most environmental variables 

displayed more idiosyncratic patterns of association with the different measures 

of phenotype, and interpretations will be discussed below. 

  

 

Discussion 

 

 

 Interestingly, the multiple regression model was more predictive of 

Spanton’s color series (R2 = 0.751) than hue (R2 = 0.623).  This result 

demonstrates that his scale was not arbitrary, but in fact an accurate 

representation of the continuum of color transformations within the species.   

Both measures of color were significantly predicted by environment, and the high 

coefficient of determination values demonstrate the predictive power of the 

models in explaining color (R2 = 0.751, 0.623).  T ratios are indicative of the 

significance of variables in the model, and for both chromatic measures, the 

three most statistically significant variables were related to temperature (Tables 

5.2 – 5.3).  Standarized coefficients showed that these same variables were 

among the most important in their effect on the model.  It should be noted that 

these variables are also correlated with each other (Table 5.1).  These results 
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are consistent with prior studies that demonstrated that temperature during 

pupation is at least partly responsible for color development in some tiger beetle 

species (Shelford 1917; Schultz 1983).  Furthermore, the positive predictive 

association between temperature and color corroborates the specific findings of 

the above authors who found that higher temperatures during pupation resulted 

in shorter wavelength (i.e. blue-shifted) elytral colors.  My statistical analyses 

suggest that this same phenomenon may be a partial explanation for color 

variation in C. longilabris.  Unfortunately, I was unable to include a direct 

measure of humidity into the model, in order to compare to prior studies.  

Relative humidity can vary considerably over extremely small distances (personal 

observation), especially where streams or lakes are nearby, and no such layers 

were available at even 1km2 resolution throughout the continent.  It is possible 

that precipitation measures may be correlated with relative humidity on this rough 

scale, although this is not known.  Some measures of precipitation were 

significantly predictive of Spanton’s colors (e.g. precipitation of the warmest 

quarter and annual total precipitation). However, these same factors were not 

significant predictors of hue, while other precipitation measures were (e.g. 

precipitation of the wettest quarter and wettest month).  As such, it is difficult to 

make generalizations about the association between precipitation and color.  

Elevation was not found to be predictive of color using Spanton’s scale or hue (p 

= 0.656, 0.662 respectively).  Other variables were found in some cases to be 

significant (e.g. mean diurnal temperature range significantly predicted Spanton’s 
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color) although biological interpretations of these additional associations are less 

obvious.  

 Color saturation and brightness were both found to be significantly 

predicted by the environmental models.  Nonetheless, these two measures may 

or may not be comparable to Shelford’s (1917) and Schultz’s (1983) definitions of 

“dull” and “bright” colors.  Schultz and Rankin (1983a, b) determined that 

microscultpuring of the elytral surface can cause diffraction of light that results in 

less saturated, duller colors.  In addition, they found that more humid conditions 

during development resulted in an accumulation of epicuticular waxes that also 

created duller elytra.  The C. longilabris multiple regression analyses indicate a 

significant correlation between elytral brightness and precipitation (all variables), 

whereas measures of mean and maximum temperature were not significant 

(Table 5.5).  Interestingly, measures of temperature variance were highly 

significant (e.g. mean diurnal temperature range, temperature annual range) in 

predicting brightness.  It is less clear what the biological significance of this last 

pattern may mean.  Saturation was significantly predicted by elevation and mean 

temperature (annual mean, and the warmest quarter) (Figure 5.4), although 

again the biological interpretations are not apparent.   

 Maculation percentage was found to be significantly correlated with 

environmental variables when the whole model was examined (R2 = 0.403, p 

<0.0001) (Table 5.6), but no single environmental variable was significantly 

predictive of this phenotypic characteristic based on the t Ratio values.  Elevation 

was nearly significant, as well as two measures of precipitation and the annual 
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mean temperature.  Examination of leverage plots revealed that the four beetles 

from AZ: Coconino Co (North Rim area) were outliers; when removed both 

elevation and annual mean temperature became significantly predictive of 

maculation (p = 0.0041 and 0.0167 respectively).  However, the standardized 

coefficient for elevation was low (0.5) compared to annual mean temperature 

(3.8) and precipitation of the wettest month (4.7). These two variables were 

nearly statistically significant predictors of maculation (p = 0.07 for both). 

Interestingly, no previous tiger beetle studies had demonstrated a connection 

between the extent of maculations and elevation, although Shelford (1917) had 

postulated that the association may exist.  The findings suggest that further 

examination of this pattern is warranted, and larger datasets may be informative.  

If additional outlier populations are also identified then it may be possible to make 

additional inferences about the nature of these exceptions to the association 

between maculation and elevation, in order to generalize upon the underlying 

biological significance of the pattern.  Interpretation of the correlation between 

annual mean temperature and maculation appears to be more straightforward.  

Multiple studies have shown that maculations are important in thermoregulation 

(Schulz and Hadley 1987; Acorn 1992; Hadley et al. 1992), and therefore 

localized natural selection could result in different degrees of maculation as a 

response to the different temperature regimes these populations face.  

Maculations could also be affected by plasticity in development, but this pattern 

was not observed in Schultz’s (1983) experiments, and only weakly observed in 

Shelford’s (1917).   
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Additional evolutionary ecology considerations 

 

 Although it is not possible at the present to make conclusions on the 

underlying genetic basis for each of these phenotypic traits, these results do 

suggest that color may be at least partly due to the effects of developmental 

plasticity, consistent with earlier tiger beetle research.  Moreover, the adaptive 

significance of color in this species is somewhat suspect.  If visual predators 

were consistently exerting strong directional selection on color then it would be 

difficult to explain the presence of both brightly colored (green – blue) and cryptic 

(dark brown - bronze) populations throughout each of the subspecies and 

intergrades.  Furthermore, some populations exhibit a range of colors (e.g. MT: 

Stevensville area, Figure 5.1 bottom row, #5-8) making the argument for cryptic 

coloration in the face of visual predators even more improbable.  Although other 

workers have hypothesized that crypsis can be important in anti-predator 

defenses (Willis 1967; Schultz 1986, 1991), those species examined were found 

in more open habitats at low elevation.  It may be that those cryptic species 

simply encounter more frequent and consistent selection from predators, 

compared to C. longilabris.  In light of these questions, it appears that additional 

studies are necessary to fully characterize the possible adaptive significance of 

phenotypic characters and the genetic architecture underlying them.   
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CHAPTER VI 

 

CONCLUSIONS 

 

 

In this dissertation, I used multiple phylogenetic, population genetic, and 

coalescent-based molecular analyses in conjunction with GIS-based 

environmental niche modeling and statistical analyses of phenotypic characters 

to uncover the evolutionary history and ecology of a group of North American 

tiger beetles.  This integrative multidisciplinary approach can serve as a model 

for future studies.  Each series of investigations reciprocally informed the others, 

leading to a more robust set of conclusions about the causes of differentiation 

and speciation in these taxa.  I addressed three fundamental questions with this 

approach: 1) What factors promote population differentiation and speciation?  2) 

What are the determinants of species ranges? and 3) What are the principal 

causes of phenotypic variation?  The results of this dissertation also have 

important consequences for systematic research in general, especially for the 

disciplines of molecular systematics, “molecular taxonomy” (Blaxter and Floyd 

2003; Tautz et al 2003; Blaxter 2004), and “DNA barcoding” (Hebert et al 2003 a, 

b).  In addition to these larger issues, there are more specific systematic and 

taxonomic implications for the North American Cicindela sylvatica group and 

consequences for future tiger beetle research. 
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Factors promoting population differentiation and speciation 

 

Using a ‘congeneric phylogeography’ approach (Funk and Omland 2003), 

I sampled intensively from all the nominal species of the North American C. 

sylvatica group including all recognized subspecies (Spanton 1988; Freitag 1999) 

and as many notable variants as possible.  Phylogenetic methods (Chapter II) 

recovered two genetically and ecologically distinct clades:  The “Meadow Group” 

(C. longilabris and C. nebraskana) often associated with alpine meadows and 

grasslands (Leffler and Pearson 1976; Spanton 1988), and the “Forest Group” 

(C. sexguttata, C. patruela, and C. denikei), typically found in forested areas and 

adjacent ecotones (Kaulbars and Freitag 1993a, b).  My phylogeographic tests 

demonstrated that the nominal taxa of the Meadow Group were not separate 

species, but appear to represent phenotypic polymorphism within a single 

species.  Nonetheless, deep genetic breaks were discovered within the Meadow 

Group, and coalescent analyses supported fragmentation during the Quaternary 

Ice Ages with evidence for recent demographic expansion following glacial 

retreat (Chapter III).  Given the estimates of divergence times (1.3-2.4 mya, 

early-mid Pleistocene) and the allopatric distribution of clades, historical effects 

of isolation due to glacial cycles (Sibrava et al 1986) are the most likely cause for 

genetic differentiation in the Meadow Group.  Although the nominal species, C. 

longilabris and C. nebraskana, were not supported by any phylogenetic or 

clustering analysis based on mtDNA (973 bp COI/COII) or AFLPs (1252 loci), 

they could represent populations containing specific genes under strong 
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selection against an otherwise undifferentiated genomic background.  It is 

possible that particular areas of the genome may represent “genomic islands” 

associated with ecological and morphological traits (Nosil et al 2009; Michel et al 

2010) under divergent selection.  As such, I analyzed these nominal species with 

Ecological Niche Models (ENMs) treating them as separate taxa.  Statistical tests 

of niche overlap and differentiation (Warren et al 2008, 2010) demonstrated that 

although C. longilabris and C. nebraskana were ecologically similar there was 

significant differentiation (Chapter IV).  Future genome-scan analyses may reveal 

specific loci under divergent selection. 

Markedly different divergence patterns were observed within the Forest 

Group.  Although none of the three nominal species was monophyletic with 

respect to mtDNA (Chapter II), combined multilocus analyses demonstrated that 

the polyphyly between C. sexguttata and C. patruela could best be explained by 

occasional and ongoing hybridization and mtDNA introgression in some areas of 

geographic contact.  Niche modeling and statistical testing of overlap and 

differentiation revealed that the two species are ecologically similar but 

significantly differentiated (Chapter IV).  The putative divergence between 

nominal species C. sexguttata and C. denikei was substantially more complex to 

infer.  The latter taxon exists as a “peripatric” (Mayr 1942) set of satellite 

populations with respect to the geographically more widespread C. sexguttata.  

Phylogenetic and clustering analyses did not recover monophyletic groups or 

clusters corresponding to those species boundaries.  However coalescent 

simulations indicated that insufficient evolutionary time has passed to allow for 
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the purging of ancestral genetic polymorphisms (i.e. incomplete lineage sorting), 

even if speciation had occurred (Chapter II).  Coalescent simulations indicated 

that <10,000 years would be required for complete lineage sorting.  I used 

ecological niche models to assess C. denikei’s niche and subsequently to 

retrodict where the species may have occurred during the Last Glacial Maximum, 

~18,000 years ago (CLIMAP 1981).  Results demonstrated that there was low 

probability of any suitable habitat at the LGM.  If there had been evidence of C. 

denikei’s existence during this time, it would have indicated that incomplete 

lineage sorting was an unlikely explanation for the polyphyly.  Lastly, tests of 

ecological differentiation indicated that C. denikei and C. sexguttata displayed 

little niche overlap and were more differentiated than could be expected by 

chance, even accounting for inherent differences in environmental conditions due 

to allopatry.  Given the combined pattern of low genetic differentiation and high 

ecological differentiation in context with the geographic distributions, this pattern 

suggested “peripatric ecological speciation” (Funk et al 1995).  

 

Determinants of species ranges 

 

I used ENMs and jackknife tests to identify and quantify the factors that 

could best explain species geographic distributions.  Based on the general 

concordance with known ranges and the high estimates of predictive power for 

the ENMs, intrinsic physiological tolerances to environmental conditions are most 

supported as the general explanation for the species distributions (Chapter IV).   
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None of the five nominal species were identical in ecological niche, nor were any 

identical for the factors that were inferred to be most limiting.  Previous workers 

had hypothesized about the factors believed to be most critical in delineating 

Cicindela ranges (Leffler 1979; Schincariol and Freitag 1991), including the North 

American C. sylvatica group (Spanton 1988; Schultz et al 1992; Kaulbars and 

Freitag 1993b) and the ENM jackknife results were consistent with these 

predictions.  Temperature (maximum and mean) was critical for predicting the 

distribution of C. longilabris, as well as ecoregion (i.e. general landscape and 

habitat) and soil order.  Similar results were found in C. nebraskana, although the 

relative contributions were not identical.  Cicindela sexguttata and C. patruela 

distributions were best predicted by ecoregion and soil type.  The next most 

important limiting factors appeared to be annual total precipitation for C. 

sexguttata, and maximum temperature for C. patruela.  It is difficult to make 

conclusions regarding the limiting factors for C. denikei, because although most 

variables were equally highly predictive, this is likely a modeling artifact due to 

the species’ apparently small geographic range (Phillips et al 2006).  

Because Meadow Group mtDNA clades were found to be tightly allopatric 

and non-overlapping even in close geographic proximity, they were analyzed 

using the ENM approach to identify the possible explanations for the current 

limits of their distributions.  Results were not consistent with intrinsic 

physiological tolerances limiting their distributions, but instead showed a pattern 

highly suggestive of an extrinsic biological cause.  Possible explanations involve 

competitive exclusion between the clades, or perhaps the result of cytoplasmic 
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incompatibilities as a result of Wolbachia bacterial infections (Hoffman and Turelli 

1997). 

 

Causes of phenotypic variation 

 

Cicindela longilabris exhibits substantial variation in color and pattern 

throughout its range, and as a result prior workers have described numerous 

subspecies and forms (reviewed in Spanton 1988).  Spanton revised the North 

American C. sylvatica group recognizing three subspecies, yet considerable 

variation exists even within each of these.  My mtDNA phylogeography results 

did not support the existence of any of these phenotypically and geographically 

defined subspecies (Chapter II).  Moreover, genome-wide AFLP cluster analyses 

revealed no patterns of population structure consistent with the nominal 

subspecies.  Although subspecies were not supported by the genetic results, I 

sought to investigate the association between phenotype and environment, by 

performing multivariate analyses using environmental layers and quantitative 

measures of phenotype.  I scored characters for color (four characteristics) and 

the percentage of the elytra that are maculated (unpigmented) for populations 

distributed throughout the range of C. longilabris.  Results demonstrated that 

environment was significantly predictive of these phenotypic characteristics, and 

the high coefficients of determination showed that a relatively high percentage 

(~40-75%) of the variation in these phenotypic characters is predicted by the 

environmental model.  Although it is not possible to make conclusions on the 
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underlying genetic basis for each of these phenotypic traits, these results do 

suggest that color may be at least partly due to the effects of developmental 

plasticity, consistent with earlier tiger beetle research on other Cicindela species 

(Shelford 1917; Schultz 1983).  Future studies may build upon these findings by 

employing a genome-scan approach (e.g. Egan et al 2008) to identify outlier 

AFLP loci that are segregating according to specific phenotypic characters for 

color or pattern.   

 

Implications for molecular taxonomy, DNA barcoding 

 

Species delineation and species identification are increasingly based on 

molecular data (e.g. Tautz et al 2002; Blaxter and Floyd 2003; Hebert et al 

2003a, b; Blaxter 2004; Pons et al 2006), and species-level polyphyly is 

especially a relevant issue as it relates to the increasingly popular yet 

controversial method of “DNA barcoding” (Hebert et al 2003a, b).  DNA 

barcoding aims to identify specimens solely through the use of a 600bp fragment 

of mitochondrial DNA.  The methodology is founded on the assumption that 

individuals within species will form monophyletic groups to the exclusion of 

individuals from all other species.  If this assumption is incorrect for a particular 

taxon then one possible result is a polyphyletic pattern, resulting in 

misidentification of the specimens of interest.  Furthermore, it would be 

impossible to empirically observe a pattern of polyphyly unless multiple 

individuals of at least two species are examined.  The ‘congeneric 
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phylogeography’ approach suggested by Funk and Omland (2003) involves 

intensive geographic sampling of all species that may potentially share alleles.  I 

adopted this approach here by thoroughly sampling across all species, 

subspecies, and notable variants within the five nominal species of the North 

American C. sylvatica group.  My results showed that no taxonomic species was 

monophyletic and further hypothesis testing uncovered the underlying 

evolutionary causes of the species polyphyly.  Moreover, I discovered that even 

well established species were polyphyletic with respect to each other (C. 

sexguttata vs. C. patruela) and the importance of this result is underscored by 

the fact that C. patruela is a candidate for the endangered species list 

(NatureServe 2009, accessed May 2010).  As such, a barcoding approach would 

have failed to identify a conservationally important taxon. 

 

Implications for tiger beetle taxonomy and future studies 

 

Even though tiger beetles are one of the most well-studied non-pest insect 

groups (Knisley and Schultz 1997) and multiple taxonomic revisions and dozens 

of natural history accounts have been published on the group, I was able to make 

powerful new inferences about the species limits and evolutionary history as a 

result of the integrative multidisciplinary approach taken in my dissertation.  

Systematic relationships and tiger beetle taxonomy will have to be re-evaluated 

as a result of these findings.  The first conclusion is that C. longilabris and C. 

nebraskana are not separate species, as supported by multiple lines of evidence 
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from phylogenetic, coalescent, and population genetic analyses.  Given that Say 

described C. longilabris in 1817, and Casey described C. nebraskana in 1909, 

any future formal taxonomic change would justify treating C. nebraskana as a 

junior synonym.  These findings suggest that the latter form may be akin to a 

“variant”, or “ecomorph”.  Although C. longilabris subspecies were not supported 

as a whole, ecological niche modeling demonstrated significant niche 

differentiation between the nominate subspecies C. l. longilabris and the other 

two subspecies, C. l. laurentii, and C. l. perviridis.  Given the evidence of niche 

differentiation (e.g. local adaptation sensu Mayr 1970), and general allopatric 

distribution between the nominate subspecies and the other forms, one could 

make an argument for the future retention of two subspecies within C. longilabris.  

C. patruela and C. sexguttata are distinct species as has been accepted by most 

tiger beetle workers over the past fifty years (Wallis 1961; Willis 1968; Boyd 

1988; Freitag 1999; Wiesner 1999), although before this study it was not known 

that they can and do occasionally hybridize.   The collective evidence of genetic 

and ecological niche model analyses suggests that C. denikei is indeed a 

separate species from C. sexguttata.  Recent checklists reflect this opinion 

(Freitag 1999; Wiesner 1999), although prior to Kaulbars and Freitag’s work 

(1993a, b) C. denikei was generally treated as a subspecies or variant of C. 

sexguttata. 

Future tiger beetle systematics and taxonomy, especially at the species-level 

could benefit greatly from a more multidisciplinary approach shown here.  The 

integration of genetics, ecology, and morphology allows for more rigorous 
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hypothesis testing of the systematic and ecological relationships in this group of 

tiger beetles. 
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