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CHAPTER I: INTRODUCTION 

INTRODUCTION TO GLIOMAS 

Primary brain tumors are responsible for 1.4% of all cancers and 2.4% of all cancer 

deaths within the United States1.  Malignant gliomas are some of the most deadly and 

prominent types of brain tumors. Gliomas are defined as tumors that morphologically resemble 

glial cells, which include astrocytes, oligodendrocytes or ependymal cells.  Glial cells are the 

most abundant cells within the CNS and serve to maintain, regulate, propagate and support 

neural cells2.  Astrocytes support and regulate the environment for neuronal signaling.  

Oligodendrocytes wrap myelin around axons to promote nerve conduction and ependymal cells 

are epithelial cells which line the ventricular system2.  Consequently, gliomas are diagnosed as 

astrocytomas, oligodendrogliomas, ependymomas, or mixed gliomas2.  This system was 

originally developed by Bailey and Cushing in 1926 in which tumors were classified based on 

the appearance of the predominant cell type and its similarity to developmental counterparts3.  

Within the central nervous system (CNS), gliomas account for approximately 28% of all tumors 

and 80% of all malignant CNS tumors4.     

The World Health Organization (WHO) has created a system to classify gliomas into four 

grades based on histological features that correlate with patient outcomes5.  Gliomas are 

graded based on the histological features of the tumor including hypercellularity, vascularity, 

necrosis, hemorrhaging, nuclear atypia and the presence of mitotic figures6.  Grade I and II 

gliomas are considered low grade gliomas, as they are relatively slow growing tumors and show 

low proliferative activity.  Grade III and IV gliomas are considered high grade gliomas (HGG) 

and are rapidly growing, highly infiltrative tumors6.  Grade III gliomas are distinct from low grade 

gliomas by the presence of increased cellularity, mitotic activity and nuclear atypia.  In addition 

to those characteristics, grade IV gliomas show microvascular proliferation and necrosis 6.   
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Astrocytomas account for approximately 75% of all gliomas4, the most common being a 

grade IV glioma, known as glioblastoma multiforme (GBM).  GBMs are devastating tumors with 

a median survival of 15 months and only 5% of patients surviving 5 years past diagnosis3.  

GBMs account for approximately 46% of all malignant CNS tumors with 10,200 cases predicted 

in 2015 alone4.  GBMs are divided into primary tumors and secondary tumors.  Approximately 

90% of GBMs are primary tumors, which develop de novo, most commonly in patients 50 years 

or older.  Secondary GBMs begin as low grade gliomas and develop into GBMs over a period of 

years1.    

Diagnosis & Treatments 

Symptoms of malignant gliomas vary based on location of the tumor, but can include 

headaches, seizures, nausea, changes in speech, vision, hearing or balance, memory loss or 

personality changes1.  The current standard of treatment for malignant gliomas includes surgical 

resection, radiotherapy and chemotherapy6.  As mentioned previously, HGG are known to be 

highly invasive tumors, therefore surgery generally cannot completely eliminate the tumor, and 

approximately 90% of GBM patients show recurrence at the original tumor site6,7.  Both 

radiotherapy and chemotherapy have considerably increased the mean survival compared to 

surgery alone in GBM patients.  Radiotherapy alone increased survival time from 3-4 months to 

7-12 months6.  Radiotherapy in combination with Temozolomide (TMZ), a DNA alkylating agent, 

increased the median survival to 14-15 months6,8.  Another chemotherapeutic option is the 

implantation of biodegradable wafers releasing carmustine, an alkylating agent, into the brain 

following surgery to kill remaining tumor cells.  This approach has also been shown to increase 

survival from approximately 12 months to 14 months6.  However, despite all treatments, the vast 

majority of GBMs recur and the median time to tumor progression after treatment is 6.9 

months6.  Even with aggressive therapy, the average survival time remains at 14-15 months and 

the 10 year survival rate is only 2.6%.  Clearly a better understanding of the underlying tumor 

biology is needed to develop more effective treatments.   
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Commonly Dysregulated Signaling in Gliomas 

GBMs are extremely heterogeneous at both the histological and molecular level, intra 

and intertumorally1,9–11 impeding the development of effective therapies.  However, there are 

several pathways that are known to be dysregulated in the majority of GBMs.  One of the most 

common genetic changes is the dysregulation of growth factor signaling through amplification, 

copy number gain or mutation of receptor tyrosine kinases (RTK), most commonly being the 

epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptors 

(PDGFR)1,12  These genetic changes lead to upregulated RAS and mitogen-activated protein 

kinase (MAPK) signaling, effectively increasing proliferation1.  EGFR amplification is seen in 40-

50% of primary GBMs1 and PDGFR-α,β amplification is seen in approximately 20-30% of 

primary GBMs1.  Frequently both the growth factor receptors and ligands are found to be 

increased within malignant gliomas, commonly combined with a mutation resulting in 

constitutive activation in EGFR 1,13.  In addition, the tumor suppressing genes, tumor protein p53 

(TP53 or p53) and retinoblastoma gene (RB1) are frequently inactivated1.   p53 signaling is 

estimated to be altered in 87% of GBMs and RB signaling is altered in approximately 78% of 

GBMs12.  Other common alterations include phosphoinositide 3-kinase (PI3K) mutations and 

phosphatase and tensin homolog (PTEN) mutations, both critical to cell cycle regulation.  Most 

GBMs contain a combination of alterations and mutations within growth factors, p53 and RB 

resulting in aggressive tumors that are highly proliferative and invasive14 [Figure 1].  Because 

the vast majority of GBMs harbor mutations and alterations in p53, RB and RTKs it has been 

hypothesized that alterations in these pathways are core requirements for the development of 

GBMs15.   
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Figure 1. Frequent genetic alterations in three critical signaling pathways 

a–c, Primary sequence alterations and significant copy number changes for components of 

the RTK/RAS/PI(3)K (a), p53 (b) and RB (c) signaling pathways are shown. Red indicates 

activating genetic alterations, with frequently altered genes showing deeper shades of red. 

Conversely, blue indicates inactivating alterations, with darker shades corresponding to a 

higher percentage of alteration. For each altered component of a particular pathway, the 

nature of the alteration and the percentage of tumors affected are indicated. Boxes contain 

the final percentages of glioblastomas with alterations in at least one known component gene 

of the designated pathway. Used with permission12 
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GBM Subtypes 

Recently with the rapid advancement of sequencing technology and accumulation of 

genomic data, studies suggest that while GBMs share certain genetic and epigenetic 

alterations, tumors segregate into subclasses based on gene expression signatures.  Two major 

studies have established subclasses based on extensive genomic profiling, the first published 

by Aldape’s group in 2006, and the second published by the TCGA research network in 2010.  

Although each study organized subgroups slightly differently based on methodology, two 

primary subclasses were discovered that display distinct and exclusive markers and 

phenotypically resemble different stages of neural development.  The two principal subclasses 

are termed Proneural (PN) and Mesenchymal (MES) reflecting the dominant feature of the gene 

expression pattern within each group.  PN tumors most highly express genes associated with 

neuroblasts, immature neurons and oligodendrocytes including Sox family genes, DLL3, NeuN 

and DCX15,16NKX2.2, and Olig2.  PN tumors also contain the highest percentage of tumors with 

PDGFRα alterations including overexpression and point mutations, IDH1 point mutations and 

loss of or mutations in p53.  PN tumors are associated with younger patients, grade III 

astrocytomas and secondary GBMs15,16.  Phillips et al showed an association between PN 

tumors and longer survival, however PN tumors did not show any survival benefit from 

therapy16.  MES tumors are associated with undifferentiated neural stem cells17,18.  MES tumors 

most commonly display decreased expression or deletion of NF1 and express mesenchymal 

tissue and astrocytic markers including YKL40, CD44 and MERTK15.  Furthermore, MES tumors 

are considered to be more aggressive tumors and show the presence of necrosis and markers 

of angiogenesis16.  Phillips et al determined that upon recurrence, tumors that shift subtype 

most typically change from the PN to the MES subtype16.  Other GBM genomic profiling studies 

have validated the PN and MES subgroups19,20.  The gene expression profiles defining these 

subgroups emphasize the importance of understanding neural stem cells, neural development 

and the pathways regulating these processes. 
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Glioma stem cells 

It has been a central question in the field of cancer research as to which cells are 

capable of initiating, propagating and maintaining tumor growth.  Recent evidence has shown 

that within many types of cancer, there is a small population of cells, termed cancer stem cells, 

with properties similar to normal stem cells and upon transplantation are capable of forming 

phenotypically similar tumors21,22.  In the 1960s and 1970s key discoveries were made which 

transformed the field of cancer biology and cancer stem cells.  Evidence for the clonal nature of 

cancer cells was first discovered in leukemia in the 1960s when investigators found a 

chromosomal abnormality that was present in almost all dividing leukemia cells, showing 

derivation from a single cell of origin22.  During this time many other investigators made the 

observation that cancer cells isolated from hematological malignancies and solid-organ tumors 

varied in their ability to proliferate, self-renew and initiate tumor growth22,23.  Following these 

discoveries, populations of stem-like cells have been isolated from many types of cancer 

including breast, melanoma, colon and prostate cancer.  In the early 2000s, work from Peter 

Dirks, Harley Kornblum and Dennis Steindlers’ laboratories published evidence for brain tumor 

stem cells.  These groups were able to isolate a population of cells from glial tumors that were 

phenotypically similar to normal neural stem cells24–27.  These cells variously termed glioma 

stem cells (GSC), brain tumor stem cells (BTSC) or tumor initiating cells (TIC) show stem-like 

characteristics, are multipotent, able to self-renew, and are regulated by many of the same 

pathways as normal neural stem cells28,29.  These stem-like cells are frequently characterized by 

the expression of markers expressed by normal neural stem cells including CD133, Nestin, 

SOX2, and Olig2.  In 2004 Singh et al published a study in which only GSC, identified by the 

expression of CD133, formed tumors which resembled the original tumor, whereas CD133-

negative cells, or the non-stem population, were not able to form tumors upon transplantation in 

NOD-SCID mice26.  Remarkably, 100 CD133-postive cells were able to form tumors whereas 

injections containing 105 CD133-negative cells were not.  Since then, many other studies have 
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identified a small population of stem-like cells within gliomas and have shown that GSC are able 

to recapitulate the original tumor upon orthotopic implantation in murine models14,30.   

However, two major questions remain in the field of glioma stem cells.  It is currently 

unknown if GSC arise from neural progenitor cells or if differentiated cells dedifferentiate and 

gain stem-like characteristics during the development or progression of the tumor.  Secondly, it 

is unknown if GSC represent a cell of origin for human gliomas [Figure 2].  We and others have 

shown that differentiated cells can regain expression of stem cell markers such as Olig2 and 

Nestin upon oncogenic transformation and that both GSC and differentiated cells are capable of 

forming high grade gliomas upon oncogenic stimulation31,32.  However, more in-depth research 

needs to be conducted to thoroughly answer these questions.  Regardless of their origin, or 

whether GSC are the true initiating cells in human gliomas, it is generally accepted that 

populations of stem-like cells are present within HGG and help to propagate the tumor.  

Depending on methodology the estimate varies, but it has been reported that less than 1-30% of 

the tumor is comprised of glioma stem cells1,26,33.  Even though it is a small population, GSC are 

thought to be resistant to the current therapies contributing to tumor recurrence14,34.  Therefore it 

follows that targeting and eliminating this population would significantly increase survival.  One 

approach is to use the knowledge we have gained about the regulation of normal neural stem 

cells to target the GSC population specifically.   
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Figure 2. The neuroglial lineage tree 

Self-renewing, common progenitors are thought to produce committed neuronal and glial 

progenitors that eventually differentiate into mature neurons, astrocytes and oligodendrocytes. 

Although the precise cells of origin for diffuse glioma variants remain largely unknown, a 

selection of likely candidates for each (dashed arrows) is indicated.  Used with permission.  

Modified from original figure179 
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BMP SIGNALING 

Pathways crucial to development are frequently involved in cancer progression or 

suppression.  One such pathway is the bone morphogenetic protein (BMP) pathway.  BMPs 

were discovered by Dr. Marshall Urist in 1965 as unknown molecules with the ability to induce 

bone formation at ectopic sites; however the specific proteins remained unknown until the 

1980s35,36.  Even though BMPs were originally discovered as bone-inducing factors, BMPs play 

critical roles in embryogenesis, skeletal formation, hematopoiesis and neurogenesis and are 

known to affect most cell types by regulating cell growth, differentiation, cell-fate determination, 

proliferation, apoptosis, and movement.  Furthermore, BMPs are crucial to the development of 

almost all organs and tissues including the nervous system, lungs, kidney, skin and the basic 

embryonic body plan37,38.   

BMP signaling molecules are members of the transforming growth factor beta (TGFβ) 

family which also includes activins, inhibins, nodal, myostatin and anti-Mullerian hormone 

(AMH)39.  The BMP family is comprised of over 30 factors including ligands, type I and type II 

serine/threonine kinase receptors, and Smads and is the largest subgroup within the TGFβ 

family40.  BMP ligands are divided into 4 groups based on their sequence similarity: BMP2/4, 

BMP5/6/7/8a/8b, BMP9/10 and BMP12/13/14.  All BMP ligands begin as large precursor 

proteins which are cleaved to form active dimers38.  These active ligand dimers then bind to type 

I and type II receptors.  There are 4 primary BMP type I receptors, bone morphogenetic protein 

receptor IA (BMPR1A), bone morphogenetic protein receptor IB (BMPR1B), activin A receptor 

type I (ACVR1) and activin receptor-like kinase 1 (ACVRL1) and 3 type II receptors, bone 

morphogenetic protein receptor type II (BMPR2), activin A receptor type IIA (ACVR2) and 

activin A receptor type IIB (ACVR2B).  Type I and type II receptors are similar in structure, 

containing a single transmembrane domain, a short extracellular domain and a single 

intracellular serine-threonine kinase domain39.  A phenomenon termed ligand-receptor 
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promiscuity is particularly evident within the BMP family in which receptors are capable of 

binding to multiple ligands and likewise, ligands bind to multiple type I and type II receptors41.  

As a result of this promiscuity, BMP ligands signal through heterotetrameric complexes of type I 

and type II receptors.  In the canonical response to ligand binding, the type II receptor kinase 

phosphorylates the type I receptor which then phosphorylates the BMP regulatory Smads, 

Smad1/5/8 42.  The type I receptor phosphorylates the regulatory Smads through direct contact.  

The MH2 domain of the regulatory Smads1/5/8 is sequence specific for BMP type I receptors 

and binds directly to the receptor 39.  Upon phosphorylation, the Smads are released from the 

receptor and bind to the co-Smad, Smad443.   The Smad complex is then translocated to the 

nucleus for transcriptional regulation, binding directly to specific DNA sequences containing the 

Smad-binding element (SBE), DNA-binding proteins or DNA-binding cofactors to activate 

transcription factors, co-activators and repressors42,44.  The inhibitor of differentiation genes, Id1-

4, are induced by BMP signaling in most cells and are some of the most important targets of 

BMP signaling 42.  Other common early response genes include OASIS and Snail39[Figure 3].  

Regulation of BMP Signaling 

The BMP pathway is tightly regulated both intracellularly and extracellularly by inhibitory 

Smads, ligand antagonists, signaling crosstalk, and other inhibitory molecules.  The inhibitory 

Smads, Smads 6 and 7 are induced in response to active BMP signaling creating a negative 

feedback loop.  Smad6 is the primary BMP inhibitory Smad and is known to be upregulated 

within 2 hours of BMP signaling39.  The inhibitory Smads bind to type I receptors, inhibiting the 

regulatory Smads from being phosphorylated and activated.  In addition, Smad6 binds to 

regulatory Smads and inhibits Smad4 binding, effectively inhibiting translocation to the 

nucleus39,43.  There are over 20 BMP antagonists which bind to ligands extracellularly and inhibit 

the ligand from binding to BMP receptors 45–48.  Each antagonists can bind to multiple types of 

ligands49.  One of the most important BMP antagonists in the brain is Noggin which is necessary  
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Figure 3. Canonical BMP signaling 
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Figure 3. Canonical BMP Signaling 

The TGFβ family consists of cytokines that signal through serine/threonine kinase receptors. 

Activated ligands bind to type I and type II serine-threonine kinase receptor complexes, which 

transduce the signal downstream through the phosphorylation of pathway-specific regulatory 

Smad proteins (SMADs-1/5/9 are associated with BMP signaling and Smads 2/3 are associated 

with TGFβ signaling). Generally, the type II receptors phosphorylate the type I receptors, which 

in turn, phosphorylate the regulatory Smads. Phosphorylated regulatory Smads form a complex 

with Smad4, the co-Smad, and the complex is translocated to the nucleus for transcriptional 

regulation. Inhibitory Smads (SMADs 6 and 7) compete with regulatory Smads through both 

competition for phosphorylation by the type I receptors and binding to Smad4. Signaling 

antagonists work upstream of the signaling cascade by inhibiting ligands from binding to the 

receptor complex.  Used with permission50 
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for inhibiting BMP signaling during brain development and in maintaining neurogenic niches in 

the adult brain45,51. 

There are several other inhibitory molecules including BAMBI, Smurfs and nuclear 

proteins.  BMP and activin membrane-bound inhibitor (BAMBI) is a pseudoreceptor that 

interacts with type I and II receptors, blocking active signaling39.  The Smad ubiquitination 

regulatory factors 1 and 2 (Smurf1,2), are ubiquitin ligases which inhibit BMP signaling by 

targeting Smad1 and 5 for degradation43.  In addition, there are many co-factors within the cell 

such as the nuclear proteins Ski, SnoN, Tob, SIP1, and OAZ which all interact with activated 

regulatory Smads and generally serve to inhibit BMP signaling43.  One other source of pathway 

regulation is through crosstalk with other signaling pathways.  The TGFβ pathway regulates 

BMP signaling through multiple mechanisms.  The regulatory Smads activated by TGFβ and 

BMP signaling both require Smad4 for translocation to the nucleus, therefore competition for 

Smad4 antagonizes TGFβ and BMP signaling 42.  In addition, TGFβ signaling can affect the 

expression of the inhibitory Smads, either positively or negatively regulating BMP signaling42.  

Additionally, many other developmental pathways including Notch, Wnt and Hedgehog directly 

interact with and regulate BMP signaling components42.  As described above, BMP signaling is 

very complex and tightly regulated by varied receptor-ligand complexes with a host of co-factors 

and inhibitors resulting in many diverse downstream effects42,43,52. 

BMP and Neural Development 

 Bone morphogenetic proteins, as described in the nomenclature, are morphogens, 

which are factors that diffuse away from their source creating a concentration gradient.  BMPs 

not only regulate processes in a concentration or dose dependent manner38, but also elicit 

different effects depending on developmental stage, cell type and the surrounding 

microenvironment.  As mentioned previously, BMPs are essential for the development of almost 

all organs and tissues37,38.  Homozygous knockouts of BMP2, 4, 8b, BMPR1A, and BMPR2 are 
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all embryonic lethal, evidence that BMP signaling is critical to development39,49,53.  Many reviews 

have detailed the many roles of BMP signaling in full body development38,53–55, however here we 

focus on BMP signaling on neural cells during development.   

 BMPs and their function are highly conserved among nematodes, arthropods and 

vertebrates, and many informative studies have been completed in Drosophila melanogaster 

and Xenopus43.  Using large scale mutant screens in D. melanogaster and zebrafish, the BMP 

pathway was discovered to regulate dorsal-ventral patterning56.  As further characterized in 

Xenopus, gradients of BMP and BMP-antagonists are necessary for dorsal-ventral patterning 

and the formation of neural tissue51,55.  As later shown in mice, BMPs and BMP antagonists are 

necessary for neural tube and forebrain development51.  The extensive role of BMP signaling in 

the CNS during development has been detailed in several reviews47,55,57.    

BMP and Neural Stem cells 

 BMP signaling plays a critical role on neural stem cells at all stages of development and 

adulthood.  As shown in rodent models, neural stem cells respond in different manners to BMP 

signaling depending on receptor availability and stage of brain development58.  BMP signaling 

instructs neural stem cell proliferation, apoptosis, and cell specification in a temporal and 

concentration dependent manner51,58.  The BMP receptors, BMPR1A, BMPR1B and BMPR2 are 

expressed on neural stem cells at different times during CNS development and even though 

BMPR1A and BMPR1B are structurally similar, these receptors regulate neural cells differently 

and cannot compensate for one another47. 

 In the simplest terms, neural stem cells go through three stages during development, the 

expansion stage and the neurogenic phase followed by the gliogenic phase modulated by BMP 

signaling at each stage59.  In the first stages of development, BMP signals through the BMPR1A 

receptor of neural stem cells to induce proliferation and dorsal identity.  Next, during early 

gestation, BMPR1B is expressed on neural stem cells and induces mitotic arrest through 



15 
 

expression of the CDK inhibitor p21 and apoptosis.  After approximately E11.5, the primary 

response to BMP signaling is neuronal differentiation59.  Around E16 and continuing in the 

postnatal brain, BMP signaling promotes glial differentiation58,59.   

In the postembryonic brain, BMPR1A is expressed at higher levels and more broadly 

than BMPR1B or BMPR2.  In the human adult brain, normal neural stem cells are found within 

two defined regions of neurogenesis, the subgranular zone (SGZ) and the subventricular zone 

(SVZ), the SVZ being the largest of the germinal regions60.  Within the SVZ, strict regulation of 

BMPs and Noggin creates the neurogenic niche.  Noggin is expressed by the ependymal cells 

lining the ventricle and the BMPs 2,4,7, BMPR1A, BMPR1B and BMPR2 are expressed by cells 

within the SVZ47,51 [Figure 4].  In the SVZ, BMP signaling promotes astrocytic differentiation, 

inhibits the generation of neurons or oligodendrocytes while decreasing proliferation of cells47,51.  

Although less understood, it is known that a balance of BMPs and Noggin is required to 

maintain the neurogenic niche in the SGZ as well47. 

It should be noted that BMP signaling consistently downregulates oligodendrocyte differentiation 

during development and throughout adulthood58.  BMP signaling induces the expression of the 

ID family of genes which negatively regulates basic helix-loop-helix transcription factors.  BMP 

induction of ID2 and 4 is known to sequester Olig1 and Olig2, in effect inhibiting oligodendrocyte 

differentiation47,61.  Similarly, transcription factors known to promote neurogenesis such as 

Mash1, neurogenin and NeuroD are negatively regulated by the ID genes47.  Furthermore, 

BMPs induce the expression of RE1 silencer of transcription/neuron-restrictive silencer factor 

(REST/NRSF) to suppress neuronal differentiation62.  As evident here, BMPs can induce a wide 

variety of effects on NSC through development and into adulthood due to unique and precise 

combinations of ligands, receptors, inhibitors and regulation of transcriptional factors. 
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Figure 4. Schematic of SVZ Architecture and Proposed Role of Noggin and 
BMPs 

(Top) Architecture of the SVZ. Type B cells (SVZ astrocytes) are closely apposed 
to ependymal cells. Some type B cells (marked with “x”) extend a process 
between ependymal cells; these intercalating type B cells have been proposed to 
be cells activated for the neurogenic lineage (Doetsch et al., 1999). Clusters of 
type C cells are found along the chains of migratory type A cells (neuroblasts).  
(Bottom, in box) Proposed role of Noggin in promoting the neuronal lineage of 
SVZ cells. Type B cell BMP signaling blocks the neuro- genic pathway, directing 
type B cells to gliogenesis (right pathway). Noggin produced by ependymal cells 
antagonizes type B cell BMP signaling, promoting neurogenesis of SVZ cells (left 
pathway). The close association of type B cells and ependymal schematized 
above may be important for this inductive event.  Used with permission51 
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BMP and Astrocytes 

As briefly mentioned above, one of the main roles of BMP signaling in the postembryonic 

and adult brain is to promote the astrocytic differentiation of neural progenitor cells and 

immature astrocytes; however little is known about the mechanisms that direct this process63.  

Treatment of immature astrocytes with BMP ligands results in a more differentiated phenotype 

with an increased number of processes, increased expression of GFAP and decreased 

proliferation in vitro63. In addition, BMP2,4,5,6,7 and 10 have all been shown to promote the 

survival of immature astrocytes in vitro63, an effect only elicited by BMPs within the TGFβ family.  

Astrocytes harvested from rodents at P7 highly express BMPR1A, BMPR1B, ACVR1 and 

BMPR2 and respond to BMP treatment canonically by phosphorylation of Smads1/5/8.  

Additionally, it has been shown that BMP signaling regulates the expression of VEGF in 

astrocytes and is necessary for the proper adhesion between astrocytes and epithelial cells for 

development of the blood brain barrier64.  Clearly the role of BMP signaling during development 

is better established and the role of BMP signaling on the differentiated astrocytic population in 

the adult brain remains incompletely understood.   

BMP AND CANCER 

 As termed by Moses and Bierie, TGFβ is the “molecular Jekyll and Hyde of cancer” 

having both tumor promoting and suppressing roles within tumor cells and tumor 

microenvironment65.  Recently it has become clear that BMPs act in a similar manner and 

several reviews have detailed these findings49,66,67.  BMPs have been shown to regulate a 

multitude of cancer phenotypes including proliferation, motility, invasion, metastasis, apoptosis, 

and epithelial-to-mesenchymal transition (EMT)49,67.  BMPs act as both tumor suppressors and 

tumor promoters depending on the specific BMP ligands and receptors involved and the cancer 

cell type.  For example, BMPs are known to both promote and inhibit proliferation in various 

cancer models.  BMPs have been shown to enhance the proliferation of ovarian, hepatocellular 

carcinoma, medulloblastoma and lung cancer cells49,68–70.  Conversely, BMPs have been shown 
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to inhibit proliferation in gastric carcinoma, colon cancer, and prostate cancer66,71.  Likewise, 

BMP signaling can enhance or inhibit motility of cancer cells.  For example, BMP signaling has 

been shown to enhance motility and invasion of colon, prostate and breast cancer cells66,71.  In 

opposition, BMP9 has been found to suppress invasion of osteosarcoma cells72, and BMP7 has 

been shown to reduce bone metastasis of breast cancer cells73.  In our laboratory we have also 

observed the multifunctional role of BMP signaling in multiple cancer systems.  We observed 

that BMPR1A receptor expression negatively correlates with progression-free survival in ovarian 

cancer and inhibition of BMP signaling led to a reduction in ovarian tumor sphere growth74.  In 

breast cancer models, we found opposing effects based on receptor expression and cellular 

context.  In one study, we found that deletion of BMPR2 in stromal fibroblasts led to increased 

tumor metastasis and increased inflammation75.  However, in two other studies, inhibition or loss 

of BMPR1A resulted in less proliferative and metastatic tumors76,77.  BMPs have also been 

shown to promote the differentiation of cancer stem cells in various types of cancer such as 

colorectal and breast cancer66 and in the past decade, this effect has been shown to be true in 

GSC as well. 

BMP and Gliomas 

 Similar to BMPs regulation of normal neural stem cells postnatally, it was discovered in 

2006 by Vescovi’s group78 and further characterized in several other publications, that BMP 

treatment decreases proliferation and promotes astrocytic differentiation of GSC78,79.  Piccirillo 

et al reported that treating human GSC with BMP2,5,6,7 8b and BMP4 to the greatest extent, 

led to decreased proliferation and increased astrocytic differentiation as shown by decreased 

expression of CD133, increased expression of GFAP, and a differentiated morphology 

consisting of flat cells with elaborated processes78.  In a xenograft murine model, treatment of 

GSC with BMP4 for 48 hours prior to implantation or co-implantation with BMP4 releasing 

polyacrylic beads led to decreased tumor formation and increased survival78.  In 2008, Lee et al 

published similar findings in which treatment with BMP2 or overexpression of BMPR1B reduced 
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tumorigenicity of human GSC through decreased proliferation and increased differentiation.  

Using an orthotopic xenograft model, GSC with epigenetic silenced BMPR1B resulted in 

decreased survival in comparison to GSC with forced expression of BMPR1B79.  Several other 

studies have found similar tumor suppressing effects through decreased proliferation and 

increased differentiation of murine and human GSC in response to BMP signaling with the 

majority of the studies using BMP2,4 and 7 80–83.   

 Recent studies have also shown that cells within the brain endogenously release BMP 

signaling molecules to modify the tumor microenvironment.  Chirasani et al showed that 

untransformed neural precursor cells surround GSC and release BMP7 which acts as a tumor 

inhibitory molecule on GSC84.  This phenomenon was more predominant in younger mice and 

was largely reduced in older mice (postnatal day 30 vs postnatal day 180)84.  To oppose this 

effect, it was recently discovered that GSC express Gremlin1 (Grem1), a BMP antagonist, to 

inhibit endogenously expressed BMPs to maintain stemness85.  Grem1 effectively counteracts 

endogenous BMPs and enhances proliferation and self-renewal while blocking differentiation in 

GSC.  In a xenograft model, knockdown of Grem1 in the GSC population significantly increased 

survival, illustrating the tumor promoting role of Grem1 within the GSC population85.   

 In addition to pro-differentiation effects, BMPs have been shown to sensitize GSC to 

chemotherapeutic treatment.  Persano et al found that BMP2 and subsequent treatment of TMZ 

led to cell differentiation and decreased H1F1α expression followed by an increase in apoptosis, 

an effect only seen with combined BMP2/TMZ treatment82.  Recently, a very similar study was 

published in which treatment of GSC with both BMP7 and TMZ led to a reduction in CD133 

expression, self-renewal, migration, and significantly improved survival in a GSC tumor model 

over single agent treatments with BMP7 or TMZ86. 

 Due to these tumor suppressive effects of BMPs on GSC, several types of therapies 

have been developed for use in murine models.  An oncolytic vaccina virus overexpressing 
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BMP4 was developed and found to promote survival and prevent recurrence in xenograft 

models using human GBM GSC87.  Similarly, implantable microspheres that contained and 

released BMP7 for 4-8 weeks decreased self-renewal of GSC while promoting differentiation, 

effectively reducing and delaying tumor formation in flank tumors generated from GBM GSC88,89.  

These treatments are encouraging for further development as they show vast tumor reduction 

and overcome some of the limitations of successful treatments such as penetration of the blood 

brain barrier and the short half-life of recombinant BMP proteins.  Even though these therapies 

are promising, these studies focus solely on the effects of BMPs acting on the GSC population.  

 The role of BMPs on tumorigenic astrocytes has been much less studied and varying 

effects have been reported.  In studies using human GBM cells grown as astrocytes, BMPs 

were reported to promote, inhibit and or have no effect on proliferation.  One study using U87 

cells showed growth promoting effects in response to BMP2 treatment.  In this study, BMP2 

treatment increased proliferation in vitro and increased tumor growth resulting in significantly 

shorter survival.  In addition, suppression of BMPR1A by a micro-RNA resulted in decreased 

proliferation, migration and tumor growth90.  In a series of in vitro experiments, Klose et al 

showed that BMP7 treatment on three human GBM derived cell lines, Gli36, U87 and A172, had 

contrasting anti and pro-proliferation effects, possibly resulting from the different genetic 

abnormalities in each cell line91.  Finally, in the study published by Piccirillo et al, there was no 

effect on the proliferation of U87 cells treated with BMP478.  Similarly, Lee et al showed that 

overexpression of BMPR1B in U251 cells, a human GBM cell line, had no effect on growth 

kinetics in vitro, or on tumor growth in vivo79. 

 Conflicting results regarding BMP signaling molecule expression and survival have also 

been reported.  Several studies have shown that BMP receptors, ligands and ID genes are 

upregulated in HGG compared to low grade gliomas or normal brain tissue.  In 1996, Yamada et 

al reported that the BMPRIB receptor was expressed more highly in GBM compared to lower 
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grade gliomas and gliosis92.  Similarly, BMP2 was shown to be more highly expressed in GBMs 

compared to grade II and III gliomas93.  Patients with high expression of BMP2 were shown to 

have a significantly shorter survival in comparison to those with negative expression (318 days 

vs. 1197 days)93.  In addition, two separate studies have shown that ID1, ID2 and ID3 are 

upregulated in HGG compared to grade II gliomas, indicating increased BMP signaling in 

HGG94,95.  Finally, one study has shown using microarray data that BMPR1A is more highly 

expressed in gliomas in comparison to normal brain tissue90.  Conversely, several studies have 

shown opposing trends with downregulation of BMP molecules in HGG.  In two separate 

studies, BMP4 expression was lower in HGG compared to low grade gliomas and non-tumor 

tissue at the mRNA and protein level.  Additionally high BMP4 expression was associated with 

increased survival96,97.  A different study found that expression of both BMPRIB and 

phosphorylation of Smads1/5/8 was lower in HGG compared to low grade astrocytomas and 

normal brain tissue.  Furthermore, patients with low expression of phosphorylated Smads1/5/8 

had significantly shorter survival98 [Table 1]. 

 In multiple studies, BMP molecules have been found to be associated with the PN 

subtype.  BMP2 and BMP4 at the DNA and RNA levels were found to be increased in the PN 

GBM subtype based on gene expression of datasets within The Cancer Genome Atlas (TCGA) 

and the Chinese Glioma Genome Atlas (CCGA)96,99,100.  According to Phillips et al16, these 

findings would suggest that patients with a more favorable diagnosis express higher levels of 

BMP ligands. 
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Table 1. Published BMP molecule expression studies in gliomas 

Expression levels were determined using protein or mRNA. 
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BMPR1A and Cancer 

In studying cancer and specifically gliomas, BMPR1A is of particular interest.  As 

mentioned previously, Bmpr1a is crucial for development as homozygous deletions are 

embryonic lethal.  Constitutively active BMPR1A is also embryonic lethal, indicating the 

necessity for strict regulation of BMP signaling through BMPR1A101.  Neural precursor cells 

continuously express BMPR1A from development through adulthood101.  Within the adult SVZ, 

BMPR1A is expressed the most frequently and at the highest expression of all the BMP 

receptors47.  BMPR1A was initially characterized as a tumor suppressor in the early 2000s with 

the discovery that germline inactivating mutations in BMPR1A, can cause patients to develop 

benign tumors growths in the disease known as Juvenile Polyposis Syndrome (JPS)102,103.  JPS 

is characterized by the development of hamartomas, or benign tumors growing within the 

gastrointestinal tract103.  JPS is an autosomal dominant syndrome which predisposes patients to 

gastrointestinal cancer.  Approximately 20% of JPS cases are due to germline mutations in 

BMPR1A104.  Similarly, conditional inactivation of BMPR1A has been shown to promote tumor 

growth in hair follicles, the intestines and hematopoietic stem cells105.  However, our studies 

suggest that BMPR1A does not always act as a tumor suppressor.  We conditionally knocked 

out BMPR1A in a murine model of breast cancer and found that the BMPR1A knockout cells 

had decreased growth in vitro and in vivo which translated into delayed tumor growth and 

increased survival.  In addition, we found that expression of BMPR1A was correlated with 

decreased survival in all types of breast cancer77.  BMPR1A has been suggested to have a 

tumor promoting role in gliomas as well.  As mentioned previously, BMP2 and 4 are some of the 

primary BMP molecules used in glioma studies, and BMP2 and 4 preferentially bind to 

BMPR1A, suggesting an important role for BMPR1A in glioma biology.  Finally, in 2014, Guo et 

al discovered that a micro RNA, miR-656 acted as a tumor suppressor by targeting and 

decreasing the expression of BMPR1A in glioma cells90.  
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SUMMARY 

As described above, BMP signaling is a critical pathway that regulates the CNS from 

embryonic development through adulthood.  Recently it has become clear that the BMP 

pathway regulates glioma cells and tumor growth in several different manners.  The primary 

finding thus far is that BMPs suppress the GSC population through promoting differentiation and 

decreasing proliferation.  However, the role of BMP signaling in glioma initiation and progression 

is still largely unknown.  Various results regarding BMP expression in gliomas have been 

published, but the vast majority of these studies focus on static markers such as BMP ligands 

and receptors, which are not indicative of BMP activity.  In addition, the role of BMP signaling on 

the differentiated tumorigenic population comprising the bulk of the tumor remains largely 

unknown.   

To begin to answer some of these questions we used two separate approaches to 

investigate the role of BMP signaling in HGG.  The first approach was to evaluate expression 

levels, mutations and any correlations to survival of 90 BMP-related signaling molecules using 

large GBM patient datasets.  Our results suggest that BMP signaling is tightly regulated within 

the tumor microenvironment, rarely mutated and thus likely to be critical to tumor cell survival.  

The second approach we used was to investigate the role of BMP signaling in the differentiated 

cells comprising the bulk of the tumor.  Our findings demonstrate that BMP signaling is a tumor 

promoter in the context of tumorigenic astrocytes.  Our studies indicate that BMP signaling is 

present and active in the vast majority of HGG cells, and that BMP signaling regulates 

tumorigenic cells differently depending on the cellular context.  The results presented in this 

thesis provide insight into relatively unstudied areas of HGG biology and suggest that inhibition 

of the BMP pathway may be a novel and promising treatment for these devastating tumors.  
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CHAPTER II: GENOMIC ANALYSIS OF THE BMP FAMILY IN 

GLIOBLASTOMAS 

This is a pre-copyedited, author-produced, adapted version of an article accepted for publication 

in Translational Oncogenomics following peer review. The version of record is: Hover, LD., Abel, 

TW., & P. Owens. (2015) Genomic Analysis of the BMP Family in Glioblastomas. Transl 

Oncogenomics, 15; 7:1-9. 

INTRODUCTION 

GBMs are well known for their histologic heterogeneity and one of the primary 

challenges in finding effective therapies is due to the high level of heterogeneity found within 

GBMs.  Recently with the rapid advancement of sequencing technology and accumulation of 

genomic data, an emphasis has been placed on understanding these tumors at the molecular 

genetic level.  In 2008, GBMs were the first type of cancer to be profiled by TCGA which led to 

the identification of core pathways and alterations found in the majority of GBMs 12.  Extensive 

profiling of GBMs has expanded to include epigenomic, transcriptomic and proteomic analyses 

collecting data on the DNA sequence of the whole-genome and exome, DNA copy-number, 

mRNA sequencing and expression data, CpG DNA methylation, miRNA expression, protein 

expression and corresponding clinical characteristics  12,106,107.  These analyses of GBMs have 

provided critical insight furthering our understanding of GBMs by identifying novel mutated 

genes, patterns of mutation, chromatin modifications, recurrent gene rearrangements, 

enhancing our understanding of the underlying molecular biology of GBMs.  Through these 

studies it has become clear that alterations, including mutations in RTKs, PI3K, PTEN, NF1, and 

IDH proteins are central to GBM biology10,12.  

Furthermore, these analyses have segregated GBMs into subclasses based on gene 

expression analysis, revealing enriched gene expression signatures within each subgroup as 

discussed in the introduction.  Among several studies, two dominant groups have been 

established, termed the Proneural (PN) and the Mesenchymal (MES) group, reflecting the 
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dominant gene expression patterns in each group 108.  These subgroups show gene expression 

patterns similar to those found within neural lineages 16.  In 2006, Phillips et al. likened the gene 

expression signatures to various stages of neurogenesis in the adult forebrain.  Thus, gene 

expression patterns of MES tumors are akin to that of undifferentiated neural stem cells and PN 

gene expression is similar to neuroblasts or immature neurons16.  Importantly, the gene 

expression within these tumors is mutually exclusive, effectively establishing two separate types 

of GBMs.  Although Phillips et al. reported increased survival in PN patients, other studies have 

not shown associations with survival in any subtypes108.  These data suggest that a better 

understanding of the pathways regulating neural development is crucial to understand the 

underlying signaling pathways and networks that give rise to GBM subtypes.   

As one of the primary pathways involved in neural development, the BMP pathway is a 

critical pathway to understand in the development of gliomas and GBM subclasses.  Although 

many studies have shown the tumor-suppressive effects of BMP signaling on GSC, little has 

been reported about BMP signaling in the context of GBM genomics.  To gain a better 

understanding of BMP signaling in human GBMs, we queried BMP pathway alterations at the 

genetic level to assess how the BMP signaling network is altered in patient samples.  We used 

publicly available data compiled and analyzed through The Cancer Genome Atlas (TCGA) to 

examine gene expression and mutations and the REpository for Molecular BRAin Neoplasia 

DaTa (REMBRANDT) to analyze associations between gene expression and patient survival.  

We expanded our search beyond the immediate BMP family and analyzed 90 genes within the 

TGFβ family including receptors, ligands, inhibitors and downstream targets known to interact 

directly with the BMP pathway [Table 2].  To identify genes within the TGFβ family that show 

either increased or decreased expression in GBMs we accessed TCGA data using the cBio 

portal for Cancer Genomics maintained through the Memorial Sloan Kettering Cancer Center 

109,110.  We analyzed the mutational status and mRNA expression of 598 individual GBM 

samples using the TCGA provisional dataset.   
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Table 2. List of 90 genes related to the TGFβ family that was analyzed at the 

genomic level 

Genes were analyzed at the mRNA level for both alterations and any associations with 

survival in GBM patients. 
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mRNA expression is considered to be significantly up or downregulated if the expression is 

above or below two standard deviations of the mean determined from Agilent microarray data.  

We found that out of our query of 90 genes, 44 of those were altered in 5% or more of patients 

[Table 3].   

In parallel, we analyzed the association between the mRNA expression of these 90 

genes and patient survival using  a dataset of 181 GBM patients available using REMBRANDT 

maintained by the National Cancer Institute (NCI) 111.  We investigated if two-fold up or 

downregulation of the mRNA levels analyzed using the U133 2 Plus mRNA expression chips 

(Affymetrix) is associated with increased or decreased overall survival.  mRNA increases or 

decreases in expression is determined in comparison to non-tumor pooled samples112.  Out of 

our set of 90 genes, 19 genes were significantly associated with either increased or decreased 

overall survival [Table 4]. 

After examining BMP signaling molecules in all GBMs, we focused on associations with 

the GBM molecular subgroups.   Previous studies have shown that BMP2 and 4 are associated 

with the PN glioma subtype96,99 and we sought to determine if other members of the BMP family 

are also associated with the PN subtype.  To investigate these associations, we used TCGA 

data to examine the gene expression of 620 patients classified into subgroups.  Here we show 

how mRNA expression is altered in GBM samples and how that is associated with patient 

survival highlighting both known and novel associations between BMP signaling and GBM 

biology.  
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Table 3. Genes altered in ≥5% of human GBMs 
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Table 3.  Genes altered in ≥5% of human GBMs 

All data were collected by the TCGA and analyzed using the cBio Portal for Cancer 

Genomics. Our dataset consisted of 598 individual GBM samples, and we analyzed 90 

genes. For each gene altered in more than 5% of GBMs, we determined in how many 

tumor samples the gene was mutated and mRNA expression was upregulated or 

downregulated. mRNA upregulation and downregulation is considered to be >2 standard 

deviations from the mean expression. 
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Table 4. mRNA expression of genes associated with a significant increase or 

decrease in overall survival 

Using the publicly available database REMBRANDT, we were able to determine in which 

genes upregulation or downregulation of mRNA expression is associated with significant 

(p<0.05) increased or decreased patient overall survival. Upregulation and 

downregulation are considered to be more than twofold change from expression in 

nontumor pooled samples. Log-rank P-values were calculated using the Mantel–

Haenszel procedure. For each gene that was associated with overall survival, we 

determined the number of patients that expressed the alteration and calculated the 

average overall survival in months. Our dataset consisted of 181 GBM patients with a 

total overall survival of 19.6 months. 
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MATERIALS & METHODS 

TCGA Analysis 

cBioPortal for Cancer Genomics: Gene mutation status and mRNA expression were 

analyzed using publically available data obtained through the cBio Cancer Genomics Portal 

((http://www.cbioportal.org/public-portal/ [accessed May 2014]109,110.  We selected the 

Glioblastoma Multiforme (TCGA, Provisional) dataset from the Brain CNS Cancer Study 

category.  Within the Genomic Profiles options we selected mutations and mRNA expression 

data from Agilent microarray data using a z-score threshold of 2.0.  Z scores were determined 

by comparing the mRNA expression of each tumor sample to the mean expression value of all 

tumors that are diploid for the gene of interest.  At the time of access, there were 598 patients 

available within the “All Tumors” GBM TCGA provisional dataset.   

Subtype Analysis  

mRNA expression values were integrated from 3 independent gene expression 

platforms: Affymetrix HuEx array, Affymetrix U133A array and Agilent 244K array.  All data was 

collected through the TCGA.  At the time of access, there were 202 subtyped patients available 

[November 2012].  Significance was determined by ANOVA followed by post-hoc t-tests.   

Survival Analysis  

REMBRANDT   

Microarray gene expression and survival data was acquired from the publically available 

NCI Repository for Molecular Brain Neoplasia Data (REMBRANDT) database 

(https://caintegrator.nci.nih.gov/rembrandt/home.do [accessed May 2014]112.  To analyze 

associations with survival we selected the graph format: Kaplan-Meier survival plot for Gene 

Expression Data.  We restricted the analysis to GBM patient samples.  At the time of access 

there were 181 GBM samples.  Gene expression was determined from U133 2 Plus mRNA 

expression chips (Affymetrix).  Up and down regulation were determined as 2-fold or greater 

difference than pooled non-tumor samples.  Log-rank p values were calculated using Mantel-
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Haenszel procedure to determine significance between groups of samples stratified by levels of 

gene expression111.  Gene associations with overall survival were compared to the overall 

survival for all 181 GBM patients.  The average overall survival for all 181 patients is 19.6 

months.  To determine average overall survival we reviewed the clinical reports of patients 

segregated by gene expression and calculated the mean overall survival.   

cBio Cancer Genomics Portal 

Survival analysis within the PN subtype was conducted using the cBio Cancer Genomics 

Portal using the Glioblastoma Multiforme TCGA Nature 2008 dataset from the Brain CNS 

Cancer Study category. ((http://www.cbioportal.org/public-portal/).  Within the Genomic Profiles 

options we selected mutations and mRNA expression data from Agilent microarray data using a 

z-score threshold of 2.0.  Z scores were determined by comparing the mRNA expression of 

each tumor sample to the mean expression value of all tumors that are diploid for the gene of 

interest.  There were 56 patients within the PN subtype in the dataset at the time of access 

[August 2015].  Survival curves were generated using Kaplan-Meier estimate and significance 

was determined using a log-rank test109,110.   

RESULTS  

Genes expression analysis 

First we analyzed the mutational status and mRNA expression of 598 individual GBM 

samples using the TCGA provisional dataset.  mRNA expression is considered to be 

significantly up or downregulated if the expression is above or below two standard deviations of 

the mean determined from Agilent microarray data.  We found that out of our query of 90 genes, 

44 of those were altered in 5% or more of patients [Table 3].  Next we investigated if two-fold up 

or downregulation of the mRNA levels analyzed using the U133 2 Plus mRNA expression chips 

(Affymetrix) is associated with increased or decreased overall survival in a dataset of 181 GBM 

patients.  mRNA increases or decreases in expression is determined in comparison to non-
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tumor pooled samples112.  Out of our set of 90 genes, 19 genes were significantly associated 

with either increased or decreased overall survival [Table 4]. 

Based on our cumulative results, we found that 4 genes: BMP8B, ACVR1B, SMAD1, 

and NRTN are both altered in more than 5% of patients and show an association with survival.  

The role of these four genes in relation to GBMs is largely unknown.  Here we report the known 

function of each gene and its relation to gliomas.   

BMP8B (OP-2) first described by Ozkaynak et al. in 1992 was found to be a member of 

the TGFβ family identified through cDNA library screenings.  BMP8B is expressed early in 

embryogenesis 113.  Although little is known about this protein in relation to gliomas, BMP8B 

treatment has been shown to decrease proliferation of glioma stem cells 78.  Interestingly, the 

mRNA expression available through the TCGA shows that BMP8B mRNA expression is 

downregulated in 52 patients and upregulated in only 9 patients.  Therefore, downregulation of 

BMP8B mRNA expression accounts for 85% of total BMP8B alterations.  Within the 

REMBRANDT GBM dataset, downregulation of BMP8B correlates with increased patient 

survival (p=0.02).  The 19 GBM patients within this data set with downregulated BMP8B had an 

average overall survival of 29.1 months.  

ACVR1B, Activin A type IB receptor (ALK4), is part of the activin subfamily within the 

TGFβ family.  Activins are members of the TGFβ family known for their role as growth and 

differentiation factors.  ACVR1B was originally discovered using a sequence-based polymerase 

chain reaction (PCR) approach by ten Dijke et al. in 1993.  ACVR1B mRNA is ubiquitously 

expressed in all tissues, most strongly in the kidneys, pancreas, brain, lung, and liver 114.  

ACVR1B mutations have been identified and found to have varying effects in several types of 

cancer.  In prostate cancer, Nomura et al. showed that cell lines with constitutively active 

AVCR1B had increased migratory ability aiding in EMT.  In a neuroblastoma cell line, Suzuki et 

al. showed that ACVR1B specific activin signaling induced neuronal differentiation 115.  Little is 
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known about the role of ACVR1B on gliomas.  The TCGA data we compiled shows that 

ACVR1B expression is frequently decreased (41 out of 49 alterations, 85%) when altered in 

GBMs.  Furthermore within the REMBRANDT data set, downregulation of ACVR1B was 

associated with decreased survival (p=0.0014).  The 82 patients with ACVR1B downregulation 

had an average overall survival of 15.5 months compared to the average overall survival of the 

181 patients at 19.6 months.  

SMAD1 belongs to the Smad family, a family of proteins that serve as the signal 

transducers for canonical BMP and TGFβ signaling.  While these Smad genes were originally 

discovered and understood in Drosophila and C. elegans, SMAD1, the human homolog, was 

first discussed and cloned in 1996 116,117.  This protein is activated through BMP receptor-

phosphorylation leading to downstream transcriptional regulation.  In gliomas Liu et al. showed 

that phospho-SMAD1 is expressed at lower levels in glioma samples in comparison to normal 

brain tissue98.  Additionally, it was found that patients with a high ratio of phosphorylated 

SMAD1/5/9 to SMAD1 had increased survival, demonstrating that increased SMAD1 activation 

is beneficial to patient survival 98.  This suggests that increased BMP signaling and increased 

SMAD1 phosphorylation provides a survival benefit.  Using REMBRANDT we observed that 

increased expression of SMAD1, found in 65 patients, is associated with decreased survival 

(p=0.02) when compared to the total overall survival of REMBRANDT GBM patients (15.4 

months vs 19.6 months).  The mRNA expression data available through the TCGA shows that 

SMAD1 mRNA is equally up and down-regulated within SMAD1 altered GBM samples (17 and 

22 patients show upregulation and downregulation respectively).  As described above, 

analyzing the expression of SMAD1 in parallel with the phosphorylation of SMAD1 will be more 

informative in regards to GBMs and patient survival. 

NRTN, Neurturin is a neurotrophic factor serving to promote the survival of various 

neuronal populations 118.  NRTN was first isolated in 1996 by Kotzbauer et al. after being 
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identified by its ability to support sympathetic neurons in culture.  NRTN is closely related to the 

glial cell line-derived neurotrophic factor (GDNF), both known as TGF-beta-related 

neurotrophins (TRNs).  TRNs belong to the  TGFβ family based on structural similarity and the 

presence of conserved cysteine residues, yet TRNs share less than 20% amino acid sequence 

similarity to other TGFβ family members 118,119   Little is known about the role of NRTN in 

gliomas however it has been reported that NRTN promotes pancreatic cell aggressiveness 

through both proliferation and invasion 120.  The mRNA expression data we examined shows 

that NRTN expression is frequently downregulated when altered in GBMs (44 out of 55 

alterations).  Using the REMBRANDT dataset NRTN downregulation is present in 33 patient 

samples and is associated with decreased survival with the average survival of 13.5 months 

(p=0.01).  

In addition to the genes described above, we chose to further investigate five genes: 

SMAD4, BMPR1A, BMP5, ID1 AND GREM1.  SMAD4, BMPR1A andID1 were primarily 

selected due to their crucial role in mediating canonical BMP signaling.  We selected BMP5 

because we found 4% of all GBM patients to show upregulation of BMP5 which was also found 

to be associated with increased survival.  Finally, GREM1 was chosen because of the recently 

published finding showing that glioma stem cells secrete GREM1 to promote tumorigenesis 

through inhibition of BMP signaling 85.   

SMAD4, this member of the Smad family is of particular interest as it is a central 

regulator of both TGFβ and BMP signaling.  SMAD4 was originally discovered as a tumor 

suppressor in pancreatic cancer in 1996 by Hahn et al. after it was found to be homozygously 

deleted in 25 of 84 pancreatic tumors121.  SMAD4 has been shown to be involved in many other 

types of cancer primarily through chromosome deletion.  SMAD4 has been shown to be 

inactivated in 48% of pancreatic tumors but is inactivated in less than 10% of tumors in other 

types of cancer 122.  These deletions have been described in colon cancer 123 head and neck 
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squamous cell carcinoma 124, breast and ovarian 122.  In gliomas, He et al. showed that SMAD4 

expression is reduced in all gliomas in comparison with normal brain tissue with the lowest 

expression in high grade gliomas125.  In addition He et al. found that the loss of SMAD4 is 

correlated with poor survival 125.  In our analysis we found SMAD4 to be dysregulated in about 

8% of the GBM dataset queried with equally distributed up and downregulation (22 and 23 

respectively).  Furthermore, our analysis showed no significant association between survival 

and up or downregulation of SMAD4 mRNA expression (p=0.68,  p=0.73 respectively).  

BMPR1A, Bone morphogenetic protein receptor IA, (ALK3), is a type I receptor in the 

TGFβ family.  Using PCR technology ten Dijke et al. discovered BMPR1A in 1993 based on 

sequence homology to the human activin receptor type II and a type I-like TGFβ receptor in C. 

elegans 114.  Mutations in BMPR1A have been shown to cause juvenile polyposis in many 

patients, a condition characterized by benign growth within the gastrointestinal tract 102–104,126–128.  

Guo et al. in 2014 showed that the micro-RNA, miR-656 acted as a tumor suppressor in gliomas 

by specifically repressing expression of BMPR1A 90.  Our analysis using TCGA data shows that 

BMPR1A mRNA expression is altered in approximately 5.7% of GBMs with the vast majority of 

those being downregulated (33 out of 34 alterations).  Within the REMBRANDT dataset there 

were no GBM patient samples available with downregulation of BMPR1A.  We found no 

association between upregulation of mRNA expression of BMPR1A and survival (p=0.23).   

BMP5, bone morphogenetic proteins were originally identified by Urist in 1965 due to 

their ability to induce endochondral osteogenesis in vivo at an extraskeletal site 36.  BMP5 based 

on sequence homology is in a subgroup with BMP 6, 7 and 8b 37.  In adrenocortical carcinoma 

and pancreatic cancer, expression of BMP5 was found to be downregulated 71,129.  BMP5 was 

shown to inhibit cell proliferation yet increase migration and invasion in pancreatic cancer cell 

lines 71.  BMP5 has been shown to decrease proliferation of glioma stem cells 78.  Our mRNA 

expression data show that BMP5 is altered in 4.8% of GBMs.  86% of those alterations were 
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due to upregulation of BMP5 (25 out of 29 alterations), and we found upregulation of BMP5 to 

be associated with increased survival of GBM patients (p=0.05).  The 7 patients available within 

the REMBRANDT database with upregulation of BMP5 had an average overall survival of 42.6 

months, more than twice the average survival.       

ID1, inhibitor of DNA-binding 1, is a key transcriptional regulator that is a specific 

downstream target of active BMP signaling.  ID proteins inhibit the binding of DNA to other 

transcriptional factors by binding to the helix-loop-helix motif of transcriptional factors.  ID1 was 

isolated from human fibroblasts in 1994 by Hara et al. 130.  ID1 has been shown to regulate the 

cell cycle and differentiation of cells in a wide variety of cell types 130–133 including normal neural 

and glioma cells.  In 2009 Nam and Benezra showed that ID1 and ID3 are required to maintain 

self-renewal of the type B adult neural stem cells.  In addition it was shown that ID1 can be used 

to identify type B neural stem cells within the stem cell niches of the brain and that ID1 protein 

levels decrease during the process of cell differentiation 134.  However, the role of ID1 in GBM 

biology has proven to be very complex.  ID1 expression has been shown to be upregulated in 

human gliomas and murine experimental models of glioma 95,135.  In 2013 Soroceanu et al. 

showed that ID1 levels correlate with tumor histopathologic grades and tumor cell invasiveness 

in vitro and that knockdown of ID1 increased survival in an orthotopic model of GBM 94.  

Contrastingly, Barrett et al. showed using a murine model of HGG that glioma cells with both 

high and low levels of ID1 are tumorigenic and surprisingly the low ID1 expressing cells formed 

tumors more rapidly and with higher penetrance 136.  According to our analyses ID1 expression 

is altered in approximately 4.5% of GBMs, equally up and downregulated in the TCGA sample 

population (13 patients each).  In the patient sample available through REMBRANDT, the five 

GBM patients with low ID1 mRNA expression had significantly decreased survival with an 

average overall survival of 8.5 months (p=0.01).  ID1 plays a prominent role in regulating both 

normal and tumor cells and warrants further investigation.   
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GREM1, Gremlin 1, is an antagonist of BMP signaling.  GREM1 is a secreted molecule 

that binds to BMP ligands to prevent them from binding to their receptors.  GREM1 was isolated 

in 1998 by Hsu et al. by cloning the human homolog of the gremlin gene in Xenopus 137.  

GREM1 is a crucial mediator of development by inhibiting BMP signaling 138.  We chose to 

specifically investigate the expression of GREM1 due to the recent publication: “Glioma cancer 

stem cells secrete Gremlin1 to promote their maintenance within the tumor hierarchy” by Yan et 

al. in 2014.  This publication shows that GREM1 is endogenously expressed by GSC to protect 

their self-renewal ability and stem-like state from the pro-differentiation effects of BMP signaling.  

GREM1 secretion is thought to contribute to treatment resistance through maintaining cellular 

proliferation, cellular hierarchies within the tumor as well as increasing resistance to 

differentiation therapy 85.  Our analysis shows that GREM1 is altered in approximately 3.8% of 

GBMs (23 patients), all of which are mRNA upregulations.   Interestingly, using the 

REMBRANDT dataset, mRNA upregulation was present in 12 of the 181 patients showing 

enhanced survival with an average survival of 40 months, which is more than twice the average 

survival (p=0.06).  

BMPs and Proneural association 

For our analysis we focused on significant differences in expression between the PN and 

MES subtype as those are the most well-defined subgroups.  We analyzed the expression of 

primary BMP ligands, receptors, inhibitors, Smads and ID genes including: ID1, ID3, Noggin, 

BMP2,4,6, SMAD6,7, BMPR1A, BMPR1B and BMPR2 and determined any significant 

associations with the PN or MES subtype.   
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Figure 5. mRNA expression of BMP signaling components are 

upregulated in the PN subtype compared to the MES subtype. 
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Figure 5. mRNA expression of BMP signaling components are upregulated 

in the PN subtype compared to the MES subtype 

Box plots comparing mean gene expression levels for BMPR1A, BMP2 and 

SMAD6.  Both the receptor and ligand mRNA expression are upregulated in PN 

tumors compared to MES tumors.  SMAD6 mRNA is upregulated in MES tumors 

compared to PN tumors.  mRNA expression levels are integrated from 3 

independent gene expression platforms: Affymetrix HuEx array, Affymetrix U133A 

array, and Agilent 244K array.  All data were collected from TCGA data portal.  

*p<0.05, **p<0.01 
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Using expression data compiled by the TCGA, we found that BMP2 and BMPR1A are 

expressed more highly in the PN subtype [Figure 5].  Unlike other studies, we did not find the 

expression of BMP4 to be associated with the PN subtype.  Interestingly, we found that SMAD6 

expression was significantly higher within the MES subtype, suggesting suppression of BMP 

signaling within the MES subtype [Figure 5].  No other molecule analyzed was associated with 

or overexpressed within a subgroup.   

Upon further analysis of BMP2 expression within the PN tumor group, we found that 

patients with two-fold or higher increase in BMP2 mRNA had a significantly longer median 

survival of approximately 47 months compared to approximately 11 months in patients without 

BMP2 upregulation, p<0.01 [Figure 6].  Due to the small number of patients available for 

survival analysis, we were not able to determine if BMPR1A or SMAD6 was associated with 

survival in the PN tumor group.  

CONCLUSIONS 

The BMP signaling pathway is a complex network of receptors, ligands, and antagonists 

all of which may be capable of dynamically impacting GBM growth, maintenance and 

progression both positively and negatively.  As with TGFβ signaling, it appears as though BMP 

signaling can modulate tumor growth and maintenance in various ways and most likely plays a 

context dependent role in GBM tumor growth.  Our analysis shows that upregulation and 

downregulation of ligands, receptors and intracellular modulators are associated with both 

increased and decreased survival.  Similarly, previous reports have shown conflicting data 

regarding the expression of various BMP signaling molecules and survival in human GBM 

92,93,96.  To better understand this pathway and how we may be able to exploit the signaling for 

novel drug treatments, we examined patient samples at the genetic level to explore the BMP 

pathway in GBMs.   
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Figure 6. Survival curve showing patients with increased survival time in months for 

patients with increased expression of BMP2 in the PN GBM subtype 

In a dataset of 56 PN patients, those with ≥ 2 fold upregulation of BMP2 mRNA have a median 

survival of 47 months compared to a median survival of 10.6 months in those without 

upregulation of BMP2.  mRNA expression levels are integrated from 3 independent gene 

expression platforms: Affymetrix HuEx array, Affymetrix U133A array, and Agilent 244K array.  

All data was collected and processed using the cBioPortal for Cancer Genomics109,110.   
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BMP signaling is required for development and the regulation of neural cells.  As 

reviewed by Guang-Quan Zhao et al. in 2002, targeted mutagenesis of BMP ligands, receptors 

and other pathway modulators has shown that BMP signaling is involved and critical to almost 

all aspects of development 53.  Given the high importance of BMP signaling, especially with a 

focus on neural cells, we hypothesize that BMP signaling is likely necessary for the survival of 

tumor cells and is very tightly regulated within the tumor environment, which may explain why 

the pathway is attenuated and not genetically deleted within GBMs.  In support of our 

hypothesis, we observed that within the 598 tumors surveyed using the TCGA GBM provisional 

dataset, none of the genes queried are altered in more than 15% of the tumors and mutations 

are exceedingly rare.  The majority of the genes examined are not altered in more than 5% of 

GBMs.  The alterations seen primarily occur in non-overlapping tumors, indicating that 

compensation or redundancy in the pathway is possible and perhaps necessary for survival of 

tumor cells in GBMs.   

However, we may be able to exploit this importance to tumor cell survival in a way to 

benefit patients.  As shown in xenograft models there have been several forms of BMP 

treatments that have shown increased survival and decreased tumor growth which should be 

considered for development in the clinic 78,79,81,87.  More studies need to be completed to show 

that increased levels of BMP signaling in vivo at high doses do not act as a tumor promoters.  

Understanding the larger impact of BMP treatment on the bulk of the tumor and the 

microenvironment is crucial prior to the development of BMPs into the clinic.  As our analysis 

shows, increased expression of molecules involved in BMP signaling is not always associated 

with increased survival.   

One reason that we may not see consistent expression patterns of BMP molecules may 

be due differences in expression within glioma subtypes.  Phillips et al likens the phenotypes of 

each subtype to different stages in neurogenesis of the adult forebrain16.  Based on these 
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expression and phenotypic differences in subtypes, it is likely that the actions of BMPs differ 

depending on the glioma subtype.  In concordance with previous studies, our results show that 

certain BMP molecules are expressed more highly in the PN subgroup96,99.  Within the PN group 

we found that overexpression of BMP2 was associated with a significantly longer survival 

suggesting that BMP signaling may confer a survival advantage within PN tumors.  Previously 

increased BMP2 expression was associated with significantly shorter survival when analyzed 

across all gliomas 93 supporting our hypothesis that BMP signaling impacts tumors differently 

depending on the subtype and phenotype of the tumor cells.  Contrary to a previous study, we 

did not find that BMP4 was overexpressed in the PN tumors96.  This discrepancy may be due to 

our limited sample size.  Bao et al found using 422 glioma samples that BMP4 was more highly 

expressed in PN tumors96.  In addition, the authors showed that BMP4 expression was 

associated with increased survival in GBM patients 96.  BMP signaling and associations with 

subtypes will become more apparent as a larger number of samples are available and more in 

depth studies can be done.  Another limitation to our understanding of these subtypes is the 

lack of animal models that accurately represent each subtype.  As more studies are done and 

more accurate models are developed we will begin to understand the mechanisms underlying 

the formation and maintenance of these subgroups and specifically how the BMP pathway is 

involved. 

The nature of genomic studies allows for a network view of individual pathways and 

uncovers genes within the pathway that may have remained unnoticed.  Our analysis primarily 

serves as a guide for future research, emphasizing genes that are altered in a significant 

number of patients and are associated with survival.  Here we highlight several genes largely 

unstudied in the context of GBMs which are both altered in a high percentage of patients and 

have associations with survival.  Our analysis of 90 genes related to the BMP pathway provides 
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a network view of the alterations occurring within the pathway to complement the many single-

gene research studies that have been done.   

However, there are several factors that should be considered when interpreting this 

data.  As with the vast majority of genomic studies, the data collected presents a snapshot of 

the tumor.  GBMs are known for their intratumoral heterogeneity, therefore it is likely that the 

gene expression and gene alterations differ throughout the tumor and differ over time during 

tumor initiation and progression.  From these studies it is impossible to know when these 

mutations and alterations arose during the progression of the tumor.  It is unknown which of the 

alterations reported were present in the initial tumor promoting cells and which have been 

acquired in response to the selective pressures of the tumor microenvironment, treatments and 

tumor resections.  Johnson et al. demonstrated this phenomena showing vast differences in the 

genomic alterations and mutations present in initial and recurrent tumors 139.  For example, 

Johnson et al. showed that SMADs 4,6,7 and 9 were mutated in recurrent tumors and not initial 

tumors, suggesting that alterations in Smads may not be involved in driving the initial tumor 

formation 139. Additionally, our analysis is based off limited patient data which may contain 

diverse genetic and treatment variables that in the future could be important in determining 

appropriate therapies. Finally, the results need to be considered in context with the 

microenvironment including immune infiltrates, metabolic changes and angiogenesis 

Given these caveats our ultimate goal in sharing these findings is that our analysis will 

guide future studies to a novel and more complete understanding of the BMP pathway in 

relation to GBM pathology.  As more genetic information is acquired and as diverse samples are 

rapidly added to these publically available datasets, we will be able to generate more distinct 

and conclusive data on the genetic alterations and mutations that are critical regulators in GBM 

development and progression.  In future studies, with the addition of patient data, we will be 

able to stratify the population based on factors such as tumor subtype, initial or recurrent tumors 
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or previous treatments to take a more hypothesis driven approach to genomic analysis.  

Recently GBM genomic studies have begun to explore the extent of intratumoral heterogeneity 

when stratified by tumor stage or at the single cell level enforcing the need for larger, increased 

depth of publically available GBM data sets 9,139. 

As we begin to combine the rapidly growing knowledge of epigenetic and proteomic 

information with genomic studies our understanding of GBM tumor biology will vastly increase.  

Our current understanding of these tumors is clearly not proficient given the dismal, almost 

uniformly fatal outcome of this disease; however, genomic analyses allow for a future of new 

diagnostic tests, classifications, treatment combinations and will direct both basic scientists and 

clinicians towards a future of successful individualized treatments.  With the arrival of 

personalized medicine it is more imperative than ever to gain a further understanding of these 

heterogeneous tumors at the genetic level for the optimization of new therapies.  These studies 

serve as a starting point informing future research regarding candidate driver mutations, critical 

genes and pathways to target as we integrate our genomic data and the complex tumor 

microenvironment. 
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CHAPTER III: BONE MORPHOGENETIC PROTEIN SIGNALING PROMOTES 

TUMORIGENESIS IN A MURINE MODEL OF HIGH GRADE GLIOMA 

This is a pre-copyedited, author-produced, adapted version of an article accepted for publication 

in Neuro-Oncology following peer review. The version of record is: Hover, LD., Owens, P., 

Munden, A., Chambless, L., Hopkins, C., Hong, CC., Moses, HL., & TW. Abel.  Bone 

Morphogenetic Protein Signaling Promotes Tumorigenesis in a Murine Model of High Grade 

Glioma. Neuro-Onc. In press 

INTRODUCTION 

High grade gliomas (HGG) are aggressive tumors with a dismal prognosis, despite 

treatment with surgery, radiation and chemotherapy.  Glioblastoma multiforme (GBM), a grade 

IV astrocytoma, is the most common malignant CNS tumor, with only a 5% five-year survival 

rate, underscoring our poor understanding of glioma biology and the obvious need for more 

effective therapies3.     

Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-

beta (TGFβ) family.  During canonical BMP signaling, BMP ligands bind to BMP type I and type 

II serine-threonine kinase receptor complexes.  Upon ligand binding, the type I receptor 

phosphorylates the regulatory Smads1,5 and 8.  These regulatory Smads bind to the co-Smad 

(Smad4), and the complex is translocated to the nucleus.  BMP signaling regulates the 

transcription of genes affecting critical cell processes, including proliferation, differentiation and 

apoptosis39,57.  Id1-4 gene transcripts are induced in most types of cells by BMP ligands39.  BMP 

signaling is tightly regulated by both extracellular antagonists and intracellular modulators such 

as the inhibitory Smad, Smad6, which acts in a negative feedback manner in response to active 

BMP signaling39. 

In many types of cancer, BMPs play both tumor promoting and suppressing roles, similar 

to TGFβ signaling66,140. Various lines of evidence suggest that BMP signaling may be important 

in glioma biology, although contradictory findings appear in the literature92,93,96.   For example, 

increased expression of BMP signaling molecules has been associated with HGG92,93.  
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Expression of the BMP type IB receptor and the ligand BMP2 were both found to be expressed 

more frequently and at higher intensity in grade IV gliomas than in low grade gliomas92,93.  

Additionally, BMP type IA receptor has been implicated as a tumor driver in gliomas90.   

Conversely, expression of BMP4 has been associated with low grade gliomas, and  positively 

associated with survival96.  In addition, several studies have reported that BMP signaling acts as 

a tumor suppressor on the subpopulation of glioma cells known as glioma stem cells (GSC), by 

inhibiting proliferation and promoting differentiation78,79 

Here we present evidence that BMP signaling is present and active in the vast majority 

of human HGG cells.  Furthermore, in a novel transgenic, orthotopic model we show that BMP 

signaling in transformed astrocytes promotes aggressive tumor behavior via regulation of tumor 

cell proliferation and migration.  Taken together, the findings provide evidence that there are 

major differences in the role of BMP signaling in the regulation of GSC and more differentiated 

neoplastic cells.   

MATERIALS & METHODS 

Transgenic Mice 

All animals were housed in the animal care facility at Vanderbilt University and all 

experiments were approved by the Vanderbilt Institutional Animal Care and Use Committee.  All 

procedures followed the Association for Assessment and Accreditation of Laboratory Animal 

Care guidelines.  Cre/KrasG12D/p53fl/fl mice were generated and genotyped as described 

previously 31.  Cre/KrasG12D/p53fl/fl were bred with conditional Bmpr1afl/fl mice 141.  

Cre/KrasG12D/p53fl/fl  and Cre/KrasG12D/p53fl/fl/Bmpr1afl/fl mice were bred to mT/mG mice, a 

double-fluorescent Cre reporter mouse 142.  Mice were bred on a mixed background. 

Astrocyte cell culture 

Astrocytes were harvested from neonatal (<7 days old) GFAP-Cre/KrasG12D/p53fl/fl/mT+ or 

GFAP-Cre/KrasG12D/p53fl/fl/Bmpr1afl/fl/mT+ pups as previously described31.  Astrocytes were 

harvested from 3 mice per group to establish 3 cell lines per genotype.  Astrocytes were grown 
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as monolayer cultures in T75 cell culture flasks.  Recombined cells (GFP-positive, RFP-

negative) were isolated using fluorescent activated cell sorting (FACS) with a FACSAria III flow 

cytometer (BD).  Flow cytometry experiments were performed in the VMC Flow Cytometry 

Shared Resource.  DNA was extracted from cultured astrocytes and polymerase chain reaction 

(PCR) was performed to detect the recombined Bmpr1a allele using the following primers:  

5’¶-GGGTAGGTGTTGGGATAGCTG-3’¶  

5’¶- TCCGAATTCAGTGACTACAGATGTACAGAG-3’¶. 

U87 MG and T98G human glioblastoma cells were obtained from ATCC.   

GBM xenograft lines 10, 22 and 46 were obtained from the Mayo Clinic.  The cells were 

maintained by serial transplantation in mice and were characterized as previously described143. 

Orthotopic injections 

3-month-old, female, adult C57BL6 mice were purchased from Charles River 

Laboratories and anesthetized with a ketamine (100 mg/kg) and xylazine (10 mg/kg) mixture. 

Using a stereotactic frame (Kopf Instruments, Tujunga, CA), 200,000 dissociated astrocytes 

(resuspended in 2.5 µL sterile PBS) were implanted into the left corpus striatum at a depth of 

2.5 mm from the dural surface31. The animals were monitored for neurological signs or weight 

loss for at least 75 days and euthanized if there were signs of significant neurological 

dysfunction or 20% weight loss. 

Histology & Immunohistochemistry 

Mice were euthanized, and their brains were fixed, sectioned, and stained with 

hematoxylin and eosin.  Immunohistochemical staining was performed using the following 

protocol. Five µm sections from paraffin-embedded specimens were mounted on glass slides 

and dried overnight at 37°C.  Sections were heated at 95°C and then deparaffinized in xylene 

and washed in a graded series of ethanol.  Sections were then boiled in Antigen Retrieval Citra 

Solution, pH 6.0 (BioGenex, Cat#HK086-9K) for 15 minutes at high power and then allowed to 

simmer for 15 minutes at low power. Endogenous peroxidase activity was quenched in 3% H2O2 
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for 10 minutes. The slides were blocked for non-specific binding using normal goat serum 

(Vector Laboratories, Cat#S-1000).  Slides were incubated with primary antibodies raised 

against p-SMAD1/5/8 (1:200; Cell Signaling, 9511L), glial fibrillary acidic protein (GFAP) (1:200, 

Stem Cell Technologies, 01415), GFP (1:1000, Abcam, Cat#ab6556), Nestin (1:1000, EMD 

Millipore, Cat#MAB353), and OLIG2 (1:500, EMD Millipore, Cat#AB9610).  Sections were 

incubated with primary antibodies overnight at 4°C. After washing the slides with Tris-buffered 

saline and Tween 20 (TBST), the appropriate secondary antibodies were applied for 60 

minutes.  Sections were washed and incubated for 30 minutes with VECTASTAIN Elite ABC kit 

(Vector Laboratories, Cat#PK-6101); DAB peroxidase substrate kit (Vector Laboratories, 

Cat#SK-4100) was used for color visualization. The sections were counterstained with 

hematoxylin QS (VECTOR, Cat#H-3404) and coverslipped using Aqua-Poly/Mount, aqueous 

mounting media (Polysciences, Cat#18606-20).  

Microscope and imaging software 

Images of the external brain and coronal sections were obtained with a Leica EZ4D 

dissecting microscope. Images of stained tumor sections were acquired using an Olympus 

BX21 light microscope with attached Olympus DP70 camera and Olympus cellSens Standard 

software.  Images of live cells were acquired using an Olympus CK40 light microscope. 

Tissue Microarray 

The tissue-microarray was constructed from archived surgical pathology material derived 

from tumor resections at Vanderbilt University Medical Center. It was composed of 30 GBMs 

and 5 grade III gliomas.  Two to four cores per specimen were represented, with 14 non-tumor 

tissue controls.  Ages of patients ranged from 18 to 77 years.  The TMA was constructed with 

approval of the Vanderbilt Institutional Review Board, IRB number: 131389.  The percentage of 

positively p-Smad1/5/8 tumor cells within each core was estimated based on the presence of 

nuclear signal.  The intensity of the signal was scored as 0, 1+, 2+, or 3+. 



52 
 

Western Blotting Analysis 

Astrocytes or brain tumor tissue were lysed in Roche Complete Lysis-M buffer (Roche, 

Cat#04719956001).  Approximately 35 ug of protein from each sample was used to perform 

western blots as previously described 31.  Proteins were visualized using a chemiluminescent 

detection system (PerkinElmer, Cat#NEL122001EA). Primary antibodies were: p-Smad1/5/8 

(1:1000, Cell Signaling, Cat#9511L), Smad1 (1:1000, Cell Signaling, Cat#6944S), p-Smad1/5 

(1:1000, Cell Signaling, Cat#9516P), GFAP (1:10,000, Stemcell Technologies, Cat#01415), 

GFP (1:5000, Abcam, Cat#ab6556), and Actin (1:5000, Sigma Aldrich, Cat#A2066). 

Horseradish peroxidase conjugated secondary antibodies were used: anti-rabbit IgG (1:5000, 

Thermo Scientific, Cat#31462).  Actin levels were determined for each condition to verify that 

equal amounts of protein were loaded. 

Quantitative Real-Time PCR 

Astrocytes were seeded at approximately 500,000 cells/well in 6-well plates.  Cells were 

lysed using the RNeasy mini kit (Qiagen, Cat#74106). Complementary DNA was synthesized 

using the SuperScript Vilo cDNA synthesis kit (Invitrogen, Cat#11754-050). All reactions were 

performed in triplicate, and each sample was normalized with the threshold cycle of 

glyceraldehyde-3- phosphate dehydrogenase to obtain the Δ cycle threshold (Ct) value. SYBR 

Green fluorochrome was used to perform the real-time (RT) PCR reaction. Standard curve was 

obtained to calculate the Ct values to obtain gene expression values and graphs.  Primer 

sequences are listed in Table 5. 

Trypan Blue Exclusion 

Cell viability was determined using trypan blue exclusion.  Approximately 50,000 cells 

were plated in 200uL supplemented DMEM F:12.  Cells were trypsinized and trypan blue stain, 

0.4% (Gibco, Cat#15250) was added.  Percent viability was determined using the Invitrogen 

Countess.    

 



53 
 

MTT assay 

Cell proliferation was measured using the MTT Cell Proliferation Assay (ATCC, Cat#30-

1010K).  Approximately 10,000 cells were plated in a 96-well plate in triplicate in 100uL 

supplemented DMEM F:12.  Cells were treated with DMSO, BMP4 (100ng/uL) or DMH1(3uM-

100uM) for 48 hours at 37°C.  After 48 hours of incubation, 10uL MTT reagent was added to 

each well and incubated for 6 hours.  100uL detergent reagent was added to each well, and the 

96 well plate was placed in the dark overnight at RT.  Approximately 16-18 hours later the 

absorbance was read at 570nm.   

Invasion Assay 

25,000 cells were seeded on Matrigel invasion chambers in quadruplicate (BD BioCoat 

8.0µm, Cat#354483) for 24 hours.  Cells that had migrated to the opposing side of the filter were 

fixed in 10% buffered formalin overnight and were stained with hematoxylin overnight (Sigma 

Aldrich, Cat#MHS16).  All cells that had migrated per invasion chamber were counted and 

averaged.   

Thymidine Incorporation 

Approximately 25,000 cells were plated in a 24-well plate in 500uL supplemented DMEM 

F:12 media.  24 hours after plating, cells were treated with DMSO or DMH1 (3uM-100uM) for 24 

hours.  Astrocytes were pulsed with 4μCi of tritiated thymidine per well (PerkinElmer).  After 2 

hours, the cells were fixed with 1 ml 10% trichloroacetic acid for 30 minutes at room 

temperature (RT), followed by 2 additional washes with 10% trichloroacetic acid. DNA was 

solubilized by incubation in 200μl 0.2N NaOH for 30 minutes at RT. Radioactivity was counted 

using 100 μl of solubilized DNA in 2ml scintillation fluid.  Each cell line was plated in 

quadruplicate. 

Scratch Assay 

Cells were plated in duplicate at approximately 500,000 cells per well in 6 well-plates.  

Once cells reached >90% confluency, they were treated with 4ug/ml of Mitomycin-C (Sigma, 
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Cat#M4287) for 2 hours in normal media. Cells were scratched by marking an “H” in each well.  

Images of the same area were captured at 0 and 24 hours after the scratch.  Quantification of 

scratch width for each image was measured using Adobe Photoshop CS4.  Gap closure was 

calculated as the width of the gap at 24 hours divided by the original width of the gap.  

RESULTS 

The BMP signaling pathway is active in the majority of tumor cells in human HGG  

Activation of the BMP signaling pathway was assessed by immunohistochemistry for p-

Smad1/5/8 using a tissue-microarray composed of 30 GBMs and 5 grade III gliomas.  Signal 

representing p-Smad1/5/8 was present in all samples and was restricted to the cell nucleus. 

Within each core, an average of 90% of all tumor cells stained positively. However, a range of 

staining intensity was observed, with tumor cells staining at low, medium or high levels of 

intensity [Figure 7].  The average percentage of tumor cells that stained positively ranged from 

71-100% within each tumor.  Scores were calculated based on the percentage of cells at each 

intensity level (0,1,2,or 3).  Scores ranged from 13 to 300 [Figure 8].   

Astrocytes cultured from transgenic hGFAP-Cre/KrasG12D/p53fl/fl/Bmpr1afl/fl mice show 

loss of the BMP receptor and impaired response to BMP ligand 

We previously established a transgenic, orthotopic transplant model in our laboratory 

using the human GFAP (hGFAP) promoter and Cre/lox technology to simultaneously drive 

oncogenic Kras (KrasG12D) expression while deleting p53 in astrocytes31.  To test the hypothesis 

that BMP signaling promotes gliomagenesis, mice harboring floxed BMP type IA receptor 

(Bmpr1a) alleles were used to establish quadragenic, hGFAP-Cre/KrasG12D/p53fl/fl/Bmpr1afl/fl 

mice (Fig. 2A).  Preliminary studies showed that heterozygous and homozygous knockout of the 

Bmpr1a receptor alone had no detectable effect on brain development.  All mice with genetic 

deletion of Bmpr1a showed normal viability and fertility. Both hGFAP-Cre/KrasG12D/p53fl/fl and 
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Table 5. SYBR qPCR primer sequences 
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p-Smad1/5/8  

 

Figure 7. BMP signaling is active in most tumor cells in human HGG 

Immunohistochemistry with an antibody against p-Smad1/5/8 was performed on a tissue 

microarray consisting of 35 samples of human HGG. p-Smad1/5/8 expression was 

observed in all HGG at varying levels of intensity, in most of the tumor cells. Examples of 

low (A,D), intermediate (B,E), and high (C,F) intensity staining are shown in tumors from 

3 GBM patients at 40x (A-C, scale bar = 100 microns) and 100x (D-F, scale bar =100 

microns) magnification 
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Figure 8. Average score of pSmad1/5/8 staining for all TMA glioma cases 

Within each core a total score was determined by estimating the percentage of tumor cells at 

negative, low, medium or high intensity levels (0-3).  The percentage of cells was multiplied by 

the intensity level (0,1,2,or 3) and added together for a total score per core (0-300).  The 

average score was determined from all cores (2-4) per tumor.  Bars indicated standard error of 

the mean (SEM). 
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hGFAP-Cre/KrasG12D/p53fl/fl/Bmpr1afl/fl mice were mated with mTom+ mice to introduce a Cre 

reporter gene to monitor recombination. 

Previously, we observed that hGFAP-Cre/KrasG12D/p53fl/fl mice develop neurological 

symptoms such as seizures or limb paralysis by 4 to 8 weeks of age 31.   In that study, all mice 

that survived 30-39 days showed the presence of HGG upon histological examination of the 

brain.  Moreover, 9/9 mice examined after one week of age showed focal areas of glioma.  

However, in the present study, with the additional genetic deletion of Bmpr1a, no neurological 

symptoms were seen in mice living over 200 days.  In addition, the brains of two 

hGFAP/Cre/KrasG12D/p53fl/fl/Bmpr1afl/fl mice were examined approximately 1 month after birth. 

Histopathologic analysis of these brains showed rare, focal collections of atypical cells, yet there 

was no evidence of HGG [Figure 9].  Previous studies have shown embryonic expression of the 

hGFAP promoter in CNS progenitor cells 144–146.  Therefore, recombination is present at birth 

and postnatally in multiple cells types, including neurons and glia. 

Since our main interest was to determine the role of BMP signaling specifically in the 

transformed astrocyte population, Astrocytes were harvested from the cortex of  

neonatal hGFAP-Cre/KrasG12D/p53fl/fl/mTom (BMPR1a-intact) or hGFAP-

Cre/KrasG12D/p53fl/fl/Bmpr1afl/fl/mTom (BMPR1a-KO) pups (p<7 postnatal days) and grown under 

standard conditions as adherent monolayers147.  Similar culture methods resulted in cultures 

that were greater than 98% astrocytes148.  Transformed astrocytes were harvested from 3 mice 

of each genotype and maintained in culture.  Astrocytes of both genotypes grew robustly under 

these conditions.   

 

 



59 
 

  

Figure 9. Spontaneous tumor cells and tumor nodules in 

hGFAP/Cre/KrasG12D/p53fl/fl/Bmpr1afl/fl mice 

Multiple tumor cells and nodules of tumor cells were found in brains 

from BMRP1a KO mice at approximately 3 weeks of age, however the 

presence of HGG was not present.  
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mTom mice constitutively express tdTomato (mT).  With Cre activity, mTomato is 

excised and GFP (mG) is expressed.  Thus, monitoring of mGFP expression allows for 

assessment of Cre activity. The average purity of recombined cells was 73% GFP+ (indicating 

active Cre driven recombination) in initial astrocyte cultures.  Primary astrocyte cultures were 

subjected to fluorescent activated cell sorting (FACS), gating on the mGFP+/RFP- population 

[Figure 10A].   Sorted mGFP+RFP- astrocytes were maintained in culture, and subsequent 

experiments were conducted with pure populations of recombined astrocytes.   

Recombination PCR performed on DNA isolated from astrocytes showed recombination 

of Bmpr1a in all BMPR1a-KO astrocyte cell lines [Figure 10B].  In addition, quantitative real-

time PCR (qPCR) analysis showed the presence of Bmpr1a mRNA transcript at varying levels 

in BMPR1a-intact astrocyte cell lines, while Bmpr1a mRNA transcripts were undetectable in 

BMPR1a-KO astrocyte lines [Figure 11B].  Loss of canonical BMP signaling was assessed by 

examining the mRNA expression for primary BMP downstream targets, Id1 and Smad6.  In 

response to BMP ligand (BMP4) treatment, both Id1 and Smad6 expression was significantly 

lower in BMPR1a-KO astrocytes than in BMPR1a-intact cells [p<0.001, p<0.05 respectively, 

Figure 11C].  In addition, we analyzed phosphorylation of Smads1/5/8 by western blot.  

Treatment of BMPR1a-intact astrocytes with BMP4 resulted in robust phosphorylation of 

Smads1/5/8 [Figure 11D]. However, phospho-Smads1/5/8 were undetectable by western blot in 

BMP4-treated BMPR1a-KO cells, indicating loss of canonical BMP signaling [Figure 11D]. 

Deletion of BMPR1a increases survival in immunocompetent mice with orthotopic 

implants 

Recombined astrocytes were injected into the striata of immunocompetent, adult, host 

mice (n=10 per group).  The control group received transformed BMP-intact astrocytes, while 

the other group received BMPR1a-KO astrocytes. Tumors formed as a result of both BMPR1a-

intact and BMPR1a-KO injections.  All tumors that formed were highly invasive with gross 
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Figure 10. Fluorescence activated cell sorting (FACS) was used to sort initial astrocyte 

cultures to obtain secondary cultures highly enriched for recombined cells 

A) Initial astrocyte cultures were sorted for GFP-positive, RFP-negative cells using (FACS). 

Sorted cells were re-plated and used for all experiments.  B) PCR analysis shows the presence 

of the recombined Bmpr1afl/fl allele in three BMPR1a-KO cells lines (lanes 2-4) and no 

recombination for a BMPR1a-intact cell line. 
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Figure 11. Generation and characterization of transformed astrocytes with 

genetic loss of BMPR1a 
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Figure 11. Generation and characterization of transformed astrocytes with 

genetic loss of BMPR1a 

A) Breeding scheme used to generate mice with constitutively active Kras (KrasG12D), 

homozygous deletion of p53 (p53fl/fl), with and without homozygous deletion of the 

type IA BMP receptor (Bmpr1afl/fl).  Mice with oncogenic Kras and homozygous 

deletion of p53 are termed BMPR1a-intact.  Mice with the addition of Bmpr1afl/fl are 

termed BMPR1a-KO.  B-D) Validation of BMPR1a KO.  B) mRNA expression of 

Bmpr1a in three BMPR1a-KO transformed astrocyte cell lines was not detected 

(ND).  C) The mRNA expression of the downstream signaling targets of the BMP 

pathway, Id1 and Smad6 were significantly decreased in BMPR1a-KO transformed 

astrocytes in comparison to BMPR1a-intact transformed astrocytes in response to 

24-hour BMP4 treatment (n=3 per group).  A two-tailed student’s t-test was 

performed to compare the mean mRNA expression.  Bars indicate SEM.  *p<0.05, 

**p<0.01.  mRNA is normalized to Gapdh levels and relative to BMPR1a-intact 

expression.  D) As shown by western blot, BMPR1a-KO astrocytes do not 

phosphorylate Smads1/5/8 in response to BMP4 treatment (1 hour) showing the 

absence of canonical BMP signaling. 
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hemorrhage and necrosis. [Figure 12A].  However, BMPR1a-intact astrocytes were more 

effective in forming tumors than BMPR1a-KO astrocytes [9/10 vs 4/10 p=0.06, Figure 12C]. In 

addition, BMPR1a-intact astrocytes formed more aggressive tumors, with a median survival of 

16 days compared to 52.5 days in the BMPR1a-KO group [p=0.015, Figure 12B].  

Histopathologically, the tumors that developed from BMPR1a-intact and BMPR1a-KO 

astrocytes were similar in appearance [Figure 13A,a,b,c,d].  Tumors showed the characteristic 

features of human HGG, including infiltrating, pleomorphic cells, [arrow Figure 13A, d], 

necrosis, and many mitotic figures [arrow Figure 13A,c].  Tumors were highly infiltrative, often 

invading both cerebral hemispheres as well as the brainstem. Immunohistochemical (IHC) 

analysis showed GFP expression in tumor cells of both groups of mice, consistent with 

recombination of the mTomato reporter [Figure 14A].  

We examined BMP signaling as measured by phosphorylation of Smads1/5/8.  There 

was diminished p-Smads1/5/8 in BMPR1a-KO tumor cells compared to BMPR1a-intact tumors, 

indicating decreased BMP signaling in BMPR1a-KO tumor cells [Figure 13A. e,f].  We also 

examined the expression of GFAP an intermediate filament, which is the primary marker for 

astroglial cells and is universally expressed within human astrocytic tumors.  GFAP expression 

was equally expressed in both types of tumors [Figure 13A. g,h].  Western blot analysis from 

tumor lysates confirmed the IHC findings [Figure 13B].  Because BMPs play a crucial role in 

mediating differentiation of neural and glioma stem cells, we examined the expression of the 

neural stem cell markers nestin and OLIG2.  We observed a subset of cells that were positive 

for nestin and OLIG2; however there were no apparent differences in expression levels between 

the BMPR1a-intact and BMPR1a-KO tumors based on immunohistochemistry [Figure 14B,C].   
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Figure 12. Reduced engraftment and prolonged survival in mice receiving orthotopic 

injections of BMPR1a-intact versus BMPR1a-KO astrocytes 
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Figure 12: Reduced engraftment and prolonged survival in mice receiving orthotopic 

injections of BMPR1a-intact versus BMPR1a-KO astrocytes 

A) Mice receiving orthotopic injections of BMPR1a-intact (a-d) or KO (e-h) transformed 

astrocytes formed tumors (a-h), often appearing on the surface of the brain as hemorrhagic 

masses (a,e).  Coronal sections showed highly infiltrative tumors with multi-focal 

hemorrhage and diffuse hemorrhage (b,d,f,h).  B) Kaplan-Meier curves showing survival of 

mice injected with BMPR1a-intact (black line) versus BMPR1a-KO (gray line) tumorigenic 

astrocytes.  The median survival for mice injected with BMPR1a-intact cells was 16 days, 

compared to 52.5 days in mice injected with BMPR1a-KO cells (p = 0.015).  C) 9/10 of mice 

injected with BMPR1a-intact cells formed tumors compared to only 4/10 mice injected with 

BMPR1a-KO cells.   
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Figure 13. Intracranial tumors derived from BMPR1a-intact and BMPR1a-KO 

injections show histopathological features characteristic of human HGG 

A) Representative H&E-stained sections of BMPR1a-intact (a,c) and BMPR1a-KO tumors 

(b,d).  Tumors are highly infiltrative, with necrosis, mitotic figures (arrow in c), and 

pleomorphic cells (arrow in d).  The histopathology is reminiscent of a human giant cell 

GBM.  BMPR1a-intact tumors show increased p-Smad1/5/8 staining (e) compared to 

BMPR1a-KO tumors (f) indicating higher levels of BMP signaling (e).  GFAP expression is 

similar in BMPR1a-intact and KO tumors, indicating astrocytic differentiation (g,h). Scale bar 

2mm (a,b) Scale bar 200um(c-h)   B,C) Western blot analysis on tumor tissue lysates 

confirms the immunohistochemistry findings.  
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Figure 14. Immunohistochemistry on sections of tumor shows 

recombination of the mTom reporter construct and focal expression of 

Nestin and Olig2 

A) IHC analysis showed that GFP expression is present in the majority of cells in 

tumors derived from both BMPR1a-intact and BMPR1a-KO injections  B,C) The 

stemness markers, Nestin (B) and OLIG2 (C) were examined by IHC.  Focal, 

patchy expression was seen for these markers in both BMPR1a-intact and 

BMPR1a-KO tumors.  
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BMP signaling promotes proliferation and migration of transformed astrocytes  

As loss of BMPR1a markedly increased survival in the orthotopic transplant model, we 

investigated, in vitro, the effect of BMPR1a loss on two hallmarks of cancer: proliferation and 

invasion.  BMPR1a-intact astrocytes proliferated at approximately twice the rate of BMPR1a-KO 

cells [p = 0.04, Figure 15A].  Similar results were obtained with the MTT assay, and cell counts 

showed no difference in viability between BMPR1a-intact and BMPR1a-KO cells [Figure 

15B,C]. 

Next, we compared BMPR1a-intact and BMPR1a-KO astrocytes using a Matrigel 

invasion assay. Loss of BMPR1a inhibited the ability of transformed astrocytes to migrate and 

invade, with a two-fold reduction in the number of invading BMPR1a-KO astrocytes compared to 

BMPR1a-intact astrocytes [p=0.001, Figure 16].  In addition, in a scratch assay, the mean 

wound closure was 73% for BMPR1a-intact cells, compared to a mean of 47% by BMPR1a-KO 

cells [p=0.002, Figure 16B,C].  In parallel, qPCR was performed for a panel of genes known to 

be involved in migration.  Loss of BMPR1a in transformed astrocytes resulted in diminished 

expression of mRNA for the integrin beta subunits 4 and 7 [Figure 16D].   

Loss of BMP signaling increases mRNA expression for stemness markers in transformed 
astrocytes 

BMP signaling is known to regulate neural and glioma stem and progenitor cell 

differentiation. Therefore, we analyzed transcripts for several established neural stem cell 

markers.  Expression levels of Prom-1 (CD133), Olig1 and Olig2 mRNA were significantly 

greater in BMPR1a-KO astrocytes.  Olig1 and Olig2 gene expression were increased  
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Figure 15. Abrogation of BMP signaling in transformed murine astrocytes inhibits 

proliferation 

A) Tritiated thymidine incorporation assay shows that proliferation is inhibited in 

BMPR1a-KO astrocytes (gray bars) compared to BMPR1a-intact cells (black bars). 

Results are expressed as mean counts per minute (CPM) for quadruplicate samples at 

each time point for 3 cell lines per group.  B) MTT analysis shows fewer viable BMPR1a-

KO astrocytes after 48 hours of growth compared to BMPR1a-intact astrocytes.  Results 

are expressed as mean absorbance at 570nm for quadruplicate technical replicates with 

3 cell lines per group.  Absorbance is relative to absorbance for BMPR1a-intact 

astrocytes.  C) Percent viability was equal in both astrocyte populations as measured by 

live cell counts using trypan blue exclusion 
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Figure 16. Abrogation of BMP signaling in transformed astrocytes inhibits 

migration and invasion 
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Figure 16. Abrogation of BMP signaling in transformed astrocytes inhibits 

migration and invasion 
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Figure 16. Abrogation of BMP signaling in transformed astrocytes inhibits 

migration and invasion 

A) In a 24-hour, Matrigel transwell invasion assay, BMPR1a deletion results in a 50% 

reduction in the number of cells able to invade.  Results are expressed as the mean 

number of cells able to invade with quadruplicate transwells and 3 cell lines per group.  

B,C) Scratch assay was performed on coverslips with >90% confluent BMPR1a-intact 

and KO astrocytes.  B) Representative images of BMPR1a-intact and BMPR1a-KO 

astrocytes at time of the original scratch (0 hours) and at 24 hours (4x).The BMPR1a-

intact cells migrated into the wound, resulting in a smaller gap at 24 hours compared to 

the BMPR1a-KO cells. All cells were treated with Mitomycin-C (MMC) 2 hours prior to 

performing the scratch assay.  D) Integrin beta 4 and 7 mRNA expression levels are 

decreased or not detected (ND) in BMPR1a-KO astrocytes as measured by qPCR.  

Numbers indicate separate cell lines.  mRNA is normalized to Gapdh levels *p<0.05  Bars 

indicate SEM.   
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approximately 8- and 23-fold respectively [Figure 17A,B].  Prom-1 mRNA levels were 4-fold 

higher in BMPR1a-KO cells [Figure 17C].  

DMH1, a small molecule inhibitor of BMP signaling, inhibits astrocytic proliferation and 
migration in vitro 

To complement the genetic approach to inhibition of BMP signaling, cells were treated 

with Dorsomorphin homologue 1 (DMH1), a highly selective BMP type I receptor small molecule 

inhibitor149.  BMPR1a-intact, transformed murine astrocytes and a human glioma cell line (U87) 

were treated with either vehicle (DMSO) or DMH1 for 24 hours.  In all cell lines, DMH1 

treatment (10μm) decreased the BMP ligand-induced expression of BMP-target genes Id1 and 

Smad6 [Figure 18. ].  In addition, DMH1, in a dose-dependent manner, inhibited proliferation in 

tumorigenic murine cell lines and two human GBM cell lines as measured by MTT assay 

[Figure 19A,C,E].  To ensure that these effects were due to decreased proliferation and not 

drug toxicity, we confirmed the decrease in proliferation by 3H-thymidine incorporation in the 3 

transformed murine astrocyte lines [Figure 19B].  No effects on cell viability were observed in 

U87 cells treated with DMH1 [Figure 19D].  As DMH1 inhibits all BMP type I receptors, we also 

observed decreased proliferation of BMPR1a-KO astrocytes upon DMH1 treatment as 

measured by MTT assay [Figure 20A].  However, we treated 3 human GBM cell lines grown as 

neurospheres with varying concentrations of DMH1and saw no effect on proliferation [Figure 

20B]. 

Finally, the effect of DMH1 on cell migration was tested in a scratch assay.  DMH1 

treatment significantly decreased the migratory ability of BMPR1a-intact cells compared to 

untreated controls.  We observed an average of 30% closure in DMH1 treated cells compared 

to a mean wound closure of 79% in untreated controls [p<0.0001,Figure 21].   
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Figure 17. BMPR1a KO, transformed astrocytes show increased mRNA expression of 

stemness markers 

+BMP4 

+BMP4 

+BMP4 



77 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 BMPR1a KO, transformed astrocytes show increased mRNA 

expression of stemness markers 

The mRNA expression levels of Olig-1 (A), Olig-2(B) and Prom-1 (C) were  higher in 

BMPR1a KO astrocytes compared to BMPR1a intact astrocytes (n=3 cell lines per 

group).  Treatment with BMP4 (100ng/mL) resulted in a greater fold difference 

between the intact and KO astrocytes, compared to knockout of the receptor alone 

(A,B,C).  A two-tailed student’s t-test was performed to compare the mean mRNA 

expression.  mRNA is normalized to Gapdh levels and relative to BMPR1a intact 

expression. Bars indicate SEM.  *p<0.05, **p<0.01.   
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DISCUSSION 

BMP signaling is critical for neural development and the regulation of neural progenitor 

cells57. Several lines of evidence suggest an important role for this pathway in gliomagenesis as 

well, although the details are poorly understood. Previous studies indicate that BMP receptors 

are present on human glioma cells, and that BMP receptor quantity correlates with tumor 

grade92. The majority of studies regarding BMP signaling in gliomas focus on human GSC in 

orthotopic transplant models, implicating BMP signaling in the differentiation of GSC and hence 

as a tumor suppressor in this paradigm78,79. However, like other members of the TGF-β 

superfamily, pro- or anti-tumorigenic effects of BMP may depend on the cellular context in which 

the pathway is active66. Here, we provide evidence that BMP pathway activity extends beyond 

the GSC compartment, and that BMP signaling fosters tumorigenesis in neoplastic astrocytes 

through promotion of proliferation and invasion.  These data suggest that BMPs may 

differentially regulate the GSC and “bulk tumor” compartments in HGG. 

To assess active BMP signaling in human HGG tissue, we used immunohistochemistry 

for p-Smad1/5/8 on a series of HGG. Our results showed the presence of nuclear phospho-

Smads1/5/8, at varying levels of intensity, in all tumors. Although others have shown the 

presence of BMP pathway signaling components, including BMP ligands and receptors, the 

presence of these components is not directly related to pathway activity 92,93,96. Our data 

suggest that active BMP signaling is present in the majority of human HGG. 

In addition, our data show that BMP signaling is active in about 90% of the tumor cells 

within a given tumor.  The proportion of glioma cells with stem cell-like properties is estimated to 

range from <1-30%26,33. Therefore, it follows that many of the phospho-Smad1/5/8-expressing 

cells in the tumor samples we analyzed reside in the non-GSC or bulk tumor compartment. 

These data underscore the importance of understanding the regulation by BMP of glioma 

biology in the more differentiated glioma compartment. 
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Figure 18. Pharmacological inhibition of BMP decreases BMP  

induced canonical targets in oncogenic astrocytes 

A,B) DMH1 treatment (10µM) decreases BMP-induced Id1 and 

Smad6 expression in murine BMPR1a-intact transformed astrocytes 

and human GBM astrocytes (U87) as measured by qPCR.  A two-

tailed student’s t-test was performed to compare the mean mRNA 

expression.  mRNA is normalized to Gapdh levels and relative to 

untreated expression.  *p<0.05, **p<0.01 
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Figure 19. Pharmacological inhibition of BMP decreases proliferation of 

oncogenic astrocytes 
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Figure 19. Pharmacological inhibition of BMP decreases proliferation of 

oncogenic astrocytes 

A,C,E) Transformed astrocytes were treated with various concentrations of DMH1.  

DMH1 inhibited proliferation, in a dose-dependent manner, in both transformed, murine 

astrocytes and human GBM cells.  Significance was determined by ANOVA followed by 

post-hoc t-tests.  B) Treatment with DMH1 (30µM) decreased proliferation in 

transformed, murine astrocytes as measured by tritiated thymidine incorporation. 

Results are expressed as mean counts per minute (CPM) for quadruplicate samples for 

3 cell lines.  D) DMH1 treatment did not affect the viability of U87 cells at 10 or 100µM 

as measured by live cell counts using trypan blue exclusion.  Significance was 

determined by ANOVA followed by post-hoc t-tests.  *p<0.05, **p<0.01 
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Figure 20. DMH1 decreases proliferation of human GBM cells and Bmpr1a-KO 

astrocytes, but does not affect the proliferation of human GBM cells grown as 

neurospheres 
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  Figure 20. DMH1 decreases proliferation of human GBM cells and Bmpr1a-

KO astrocytes, but does not affect the proliferation of human GBM cells 

grown as neurospheres 

A) 3 BMPR1a-KO transformed astrocyte cell lines were treated with various 

concentrations of DMH1 from 0 to 100μm.  DMH1 significantly inhibited 

proliferation in a dose dependent manner.  Significance was determined by 

ANOVA followed by post-hoc t-tests.  B)  3 patient GBM xenograft lines grown 

as neurospheres were treated with various concentrations of DMH1 from 0 to 

100μm.  DMH1 had no effect on the proliferation at any concentration.  *p<0.05  

**p<0.01  NS=Not significant.  Bars indicate SEM.   
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To address the functional role of BMP signaling in tumorigenic astrocytes, we used a 

transgenic model highly relevant to human HGG.  While KRAS mutations generally are not 

present in human GBMs, Ras pathway activation, by several mechanisms, including copy 

number gains, and/or mutation and upregulation of upstream receptor tyrosine kinases, is 

known to occur in over 80% of human GBMs12,150.  In addition, alterations in cell cycle regulation 

are common, with p53 dysregulations in up to 87% of human GBMs12.  Using various 

methodologies for activating Ras and interfering with cell cycle regulation in neural cells, we and 

others have developed transgenic murine models of glioma that faithfully recapitulate key 

clinical and histopathological features of human glioma, allowing us to study BMP signaling in a 

highly relevant HGG model system31,145,151,152.    

Previously, we showed that when astrocytes from hGFAP-Cre/KrasG12D/p53fl/fl mice are 

harvested, maintained in short-term culture, and injected orthotopically in immunocompetent 

mice fatal HGG form. In the present study, we incorporated BMPR1afl/fl transgenic mice into a 

breeding strategy to generate quadragenic hGFAP-Cre/KrasG12D/p53fl/fl/BMPR1afl/fl mice 

(BMPR1a-KO mice). We then harvested astrocytes from these animals for further experiments, 

comparing them to transgenic hGFAP-Cre/KrasG12D/p53fl/fl/BMPR1awt/wt (BMPR1a-intact) cells.  

We targeted BMPR1a specifically as it is a critical and necessary receptor during CNS 

development whereas other BMP type I receptors, such as BMPR1b, are not153.  In addition, 

BMPR1a has been shown to promote tumor growth in multiple systems including gliomas77,90  

 As expected, BMPR1a-intact astrocytes formed aggressive gliomas when injected 

orthotopically in immunocompetent hosts.  In contrast, BMPR1a-KO astrocytes engrafted at a 

lower rate, and survival was prolonged in the host mice. The median survival for mice receiving 

BMPR1a-KO astrocytes was 52.5 days, more than a 3-fold increase compared to the mice that 

received BMPR1a-intact astrocytes. The data strongly suggest that BMP signaling via the 

BMPR1a receptor promotes tumorigenesis in transformed astrocytes. 
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To investigate the functional role of BMPR1a in transformed astrocytes, we conducted a 

series of in vitro experiments with transgenic astrocytes and two human GBM cell lines. Both 

genetic deletion of BMPR1a and pharmacologic inhibition of BMP signaling with DMH1 inhibited 

the proliferation of transformed murine astrocytes in vitro. In addition, DMH1 inhibited 

proliferation in U87 and T98G cells.  Because DMH1 inhibits all BMP type I receptors, we 

observed its effects on BMPR1A-KO cells and found that inhibition of all BMP type I receptors 

further suppresses proliferation. 

 Similarly, both genetic deletion of BMPR1a and DMH1 treatment impaired the ability of 

transformed astrocytes to migrate and invade.  Taken together, using both genetic and 

pharmacological inhibition of BMP signaling in mouse and human cells, our findings suggest 

that BMP signaling regulates three elements of tumor cell behavior that are essential 

components in astrocytoma formation and progression: proliferation, invasion and migration.  

Similar results were recently published in which reduction of BMPR1a by microRNA-656 

resulted in decreased tumor growth, proliferation and migration90. 

HGG are characterized by a high proliferation index, and a rapidly growing tumor mass5.  

Our data strongly suggest that BMP signaling promotes proliferation in tumorigenic astrocytes, 

including U87 cells. This contrasts with previous work with GSC, in which BMP signaling 

decreased proliferation and enhanced differentiation in this population of tumor cells78,79. Our 

findings are consistent, however, with studies in lung and breast cancer, in which BMPs 

promote proliferation, while inhibition of BMP signaling reduces cell proliferation76,154.  Moreover, 

these findings are in line with published data showing differential effects, depending on 

developmental context, of signaling through pathways that are implicated in development and 

cancer31,140.   
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Figure 21. Pharmacological inhibition of BMP decreases proliferation and 

migration of oncogenic astrocytes 
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Figure 21. Pharmacological inhibition of BMP decreases proliferation and 

migration of oncogenic astrocytes 

A,B) Treatment with DMH1 (10µM) significantly inhibited migration of transformed 

astrocytes as determined by a scratch assay.  All cells were treated with 

Mitomycin-C (MMC) 2 hours prior to performing the scratch assay.  Cells were 

treated with DMH1 at the time of the original scratch.  B) Representative images 

of BMPR1a-intact astrocytes at time of the original scratch (0 hours) and at 24 

hours (4x) with and without treatment of DMH1 (10μm).   Significance was 

determined by a two-tailed Student’s t-test.   Bars indicate SEM.  **p<0.01. 
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Malignant gliomas are highly invasive neoplasms, and infiltration of surrounding brain 

tissue contributes to tumor recurrence.  Here we show that BMP signaling increases cell motility 

and the ability of astrocytoma cells to invade. These findings are consistent with studies of  

pancreatic and breast cancer cells71,76.  In astrocytes, BMP signaling may be driving this effect 

through regulation of integrins as the reduction in cell mobility we observed in BMPR1a-KO cells 

was associated with a marked reduction in integrins beta 4 and 7 gene expression.  Integrin 

beta 4 has been shown to be inversely correlated with survival in GBM155.   

BMP signaling is a well-known driver of astrocytic differentiation in normal neural 

stem/progenitor cells57.  In the present study, abrogation of BMP signaling in transformed 

astrocytes was associated with increased gene expression of stem cell markers, including 

Olig1, Olig2 and Prom-1(CD133).  In concordance with our findings, studies of neural progenitor 

cells have shown that BMP signaling suppresses the expression and activity of Olig1 and 

Olig231. CD133, a cell surface antigen, has been touted as the primary marker of  glioma stem 

cells, and BMP treatment has been shown to reduce the number of CD133-positive cells in 

glioma78.  

In addition, CD133-positive glioma cells may be resistant to radiotherapy, highlighting 

the importance of understanding the biology of CD133-expressing cells in glioma34.  Our data 

suggest that the BMP pathway may be a mediator of CD133 expression in the more 

differentiated glioma compartment.  The changes in stemness markers were not observed in the 

tumors, which may be a result of the type of cells that engrafted, effects of the tumor 

microenvironment, or differences in protein and gene expression.  

Our in vivo model and in vitro studies suggest that pharmacological inhibition of BMP 

signaling could be a promising new therapeutic modality in HGG for the non-GSC component of 

the tumor, by reducing proliferation and invasion. Conceivably, the reduction in invasive 

properties of glioma cells would increase the effectiveness of standard therapies such as 

surgery and radiotherapy. Our studies also highlight the concept that the stem/progenitor-like 
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glioma compartment may respond differently than the bulk tumor to BMP-based and other 

therapies78,79.  For example, when we treat human GBM cells grown as neurospheres with 

DMH1 we see no effect on proliferation supporting this hypothesis.  This suggests that for 

effective treatment, multiple therapies may be required to target the differentiated and progenitor 

populations separately.   Indeed, an understanding of the mechanisms that maintain glioma 

cells in more or less differentiated populations, while governing transitions from one 

compartment to the other, may lead to progress in glioma therapies.   
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 CHAPTER IV: DISCUSSION 

Since the implementation of Temozolomide in 2005, survival rates for GBMs have not 

significantly improved, with the median survival remaining at just over a year after diagnosis156.  

However, within the past fifteen years, significant gains have been made to our understanding 

of HGG including the discovery of glioma stem cells, defining the core genetic alterations and 

HGG molecular subtypes through the use of large-scale genomic and proteomic studies and the 

evolution of relevant and more informative animal models.  We have taken advantage of these 

advances in the field to study BMP signaling in human HGG at the genetic and protein level, 

with the conclusion that BMP inhibition may be a novel therapeutic strategy in HGG.  

BMPs comprise the largest subgroup within the TGFβ family157.  It has been well 

established in the field of cancer research that TGFβs play dual tumor promoting and 

suppressing roles in cancer65.  Recently it has become clear that BMPs have similar pro and 

anti-tumor effects in many cancers depending on the cellular and environmental 

context66,67[Figure 22].  Our results indicate that this phenomenon is true within gliomas as well.  

To date, the most well characterized function of BMPs in gliomas is as a tumor suppressor on 

GSC.  As first shown by Vescovi’s group in 2006, BMP signaling promotes differentiation, 

suppresses proliferation and increases survival in murine models of HGG using GSC78.  Since 

then BMPs have been shown to be one of the most effective inducers of differentiation in GSC.  

However, here we provide evidence that BMP signaling can be tumor promoting in gliomas 

depending on the cellular context.   
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Figure 22. BMPs and their cancer and anti-cancer activities are described in a 

cancer cell 

We hypothesize that there is a delicate balance between the cancer and anti-cancer 

environment of a cell. BMP molecules, depending on their environmental stimuli, can 

shift the delicate balance in either direction. Such a balance is necessary for the 

survival, normal growth, and development of a cell.  Used with permission 67 

 



92 
 

BMP SIGNALING IS ACTIVE AND RARELY ALTERED IN HUMAN HGG TUMOR CELLS 

Several studies have examined the mRNA or protein expression of various individual 

BMP molecules in glioma datasets; however, we are the first to use genomic profiling to 

examine the BMP signaling family in a large dataset.  In our analysis, we did not detect any 

recurrent mutations or deletions, suggesting that BMP signaling is largely intact and critical to 

the survival of tumorigenic cells.  All mutations detected were found in only 1 or 2 patients and 

no alterations were found in more than 15% of patients.  Additionally we found that certain BMP 

molecules are more highly expressed in PN tumors, similar to other published results 96,99.  As 

discussed earlier, MES tumors express neural stem cell markers such as CD133 and Nestin 

and PN tumors express markers of immature and developing neurons such as MAP216.  BMP 

signaling may be contributing to these signatures as a lack of BMP signaling in MES tumors 

may be driving a more stem-like phenotype and increased BMP signaling in PN tumors may 

result in an increase in differentiation.  However, at this time, due to a lack of functional 

experiments, it remains unclear if BMP signaling is truly associated with a molecular subtype.  

The development of representative murine models for each HGG subtypes and additional 

collection of characterized human tumor cells will be critical to assess BMP signaling in each 

subtype.  In addition, as more genomic data are collected and more tumors are characterized 

we will be able to make stronger conclusions regarding the expression of BMP molecules and if 

BMP signaling is associated with patient characteristics, treatments or HGG subtypes. 

Parallel to our genomic analysis, we investigated BMP activity within HGG.  Our analysis 

of p-Smad1/5/8 provides evidence that BMP signaling is active within the majority of HGG tumor 

cells.  Our findings are in contrast to a previous publication which found the phosphorylation of 

Smads1/5/8 to be decreased in HGG compared to low grade gliomas and normal brain tissue 98.  

Liu et al showed that decreased levels of p-Smad1/5/8 were correlated with decreased survival 

among all grades of gliomas and within GBMs, implying a tumor suppressive role for BMP 

signaling.  However, there are several factors which should be considered when interpreting 



93 
 

these results.  This study was done using 64 gliomas including 25 GBMs.  Out of those 25 

GBMs, only 5 patients showed high levels of p-Smad1/5/8.  The expression of p-Smad1/5/8 was 

assessed using western blot quantification which limited their ability to assess the reduction in 

p-Smad1/5/8.  Using western blot quantification it remains unknown if the reduction in 

expression is due to loss of signaling or reduced signaling.  Additionally, tumor lysates generally 

include non-tumor tissue and infiltrates which may be contributing to the overall levels of p-

Smad/1/5/8 observed.  In our analysis, by using IHC, we were able to determine that BMP 

signaling in our tumor samples was active in approximately 70-90% of all tumor cells.  In our 

study we did not observe a uniform decrease in p-Smad1/5/8 in HGG compared to non-tumor 

tissue.  Furthermore, in 5 out of 30 GBM samples, we observed maximal staining intensity in 

100% of tumor cells with patient survival ranging widely from 129 to 836 days.  We were unable 

to make any significant associations between expression of p-Smad1/5/8 and survival due to 

the wide variation in intensity within all tumors analyzed.  Our study contradicts that of Liu et al 

showing high intensity staining in HGG with no association with survival.  Due to the conflicting 

results based on the limited number of patients analyzed in our study and by Liu et al, 

correlations of active BMP signaling in gliomas should be made using a larger number of patient 

samples of all tumor grades.  Furthermore, additional downstream targets of BMP signaling, 

such as Id1, should be used to validate BMP activity. 

BMP SIGNALING IN ONCOGENIC ASTROCYTES 

In response to our results which showed high levels of BMP activity in HGG, we 

developed a novel murine model to investigate the role of BMP signaling on tumorigenic 

astrocytes.  The results of our study described in chapter 3 illustrate that BMP signaling plays a 

tumor promoting role on tumorigenic astrocytes modulated through proliferation, migration and 

invasion.  To our knowledge, our study is one of first few to examine BMP signaling in 

transformed astrocytes.   Two other studies examining BMP signaling in oncogenic astrocytes 
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have been previously published, one which shows BMP signaling to be tumor suppressing and 

one showing BMP signaling to be tumor promoting90,158.  In 2012 Liu et al showed that 

overexpression of BMPR1B in U87 and U251, human astrocytoma cell lines, decreased the 

growth of cells, increased apoptosis and increased the survival of mice in an intracranial 

injection model158.  Upon overexpression of BMPR1B, the authors observed an increase in p21 

and p27 and an increase in the number of cells found in the G0/G1 phase of the cell cycle, 

indicating that BMPR1B regulates cell cycle and arrests growth in human GBM astrocytes.  

Conversely, in 2014, Guo et al showed that micro-RNA suppression of BMPR1A led to 

decreased proliferation, invasion, migration and tumor growth in U87 cells, similar to our results 

90.  In this paper, the authors found that treatment of U87 cells with BMP2 increased cell 

proliferation, migration and invasion and conversely, suppression of BMPR1A led to a decrease 

in the number of proliferating cells and an increase in the number of cells in the G1 phase of the 

cell cycle.  When considered with our results, these studies suggest the downstream effects of 

BMP signaling may differ based on the type I receptor through which the signal is propagated.   

This hypothesis is supported by previous studies which show that BMPR1A and 

BMPR1B have different and non-overlapping effects during development and astrogliosis 159,160.  

BMPR1A homozygous deletion is embryonic lethal in mice showing no formation of the 

mesoderm, whereas homozygous deletion of BMPR1B in mice results in no obvious neural 

defects64,101.  Conditional knockout models have shown that loss of BMPR1A results in 

abnormal early forebrain development, loss of the choroid plexus and abnormal oligodendrocyte 

formation in the brain153.  As discussed in the introduction, BMPR1A and BMPR1B act 

sequentially during development and each play specific roles in the regulation of neural 

progenitor cells.  After development, the type I receptors continue to have specific, different 

roles within the brain.  Sahni et al showed that during astrogliosis, following a spinal cord injury, 

BMPR1A and BMPR1B had directly opposing effects.  Using a conditional knockout mouse 

model, loss of BMPR1A resulted in defective gliosis and loss of BMPR1B led to increased 
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gliosis160.  In the context of gliomas, BMPR1A may play a dominant tumor promoting role when 

present and BMPR1B may play a tumor suppressing role when expressed more highly than 

other type I receptors, such as in the absence of BMPR1A or overexpression of BMPR1B.   

These varying effects may in part be mediated by ligand binding to the receptors.  

Studies have shown that BMPs 2 and 4 preferentially bind to BMPR1A39 and BMPs 5,6,7 and 8 

preferentially bind to BMPR1B161.  In brain tumors and other types of cancer, BMP2 has been 

shown to have a tumor promoting effect39,90.  Additionally, Wu’s group showed that increased 

BMP2 expression was associated with shorter survival of glioma patients and was a significant 

predictor of survival in GBMs93.  Therefore, it is possible that within gliomas, BMP2 and 4 

primarily signal through BMPR1A inducing tumor promoting effects, whereas ligands signaling 

through BMPR1B propagate tumor suppressing effects.  One interesting study that could be 

done to address this question would be to generate a knockout model of the BMPR1B receptor 

in the context of p53 loss and Kras activation.  Using an identical genetic background, we would 

be able to directly compare the effects of BMPR1A or BMPR1B loss on tumor formation.  

Additionally, in vitro experiments should be conducted to compare the effects of varying BMP 

ligands, such as BMP2 and 7, on proliferation, migration and invasion in GBM astrocyte cells. 

Further characterization of BMPR1A in HGG is also needed to completely understand its 

tumor promoting role on tumor formation and growth.  In our study, we were unable to 

determine if the decreased tumor growth we observed was due to lack of engraftment, 

increased apoptosis or decreased cell proliferation.  In our experimental model we were unable 

to detect tumor growth until the tumor had progressed to an aggressive, high grade tumor, often 

necessitating euthanasia of the mouse.  Other methods that could be used in future studies 

include the use of bioluminescence imaging or magnetic resonance imaging (MRI) to observe 

cell survival upon engraftment and the growth rate of the tumors over time.  By histological 

examination we saw no difference in proliferation or apoptosis in the tumors; however, we only 

looked at the end time point when the tumors were aggressive enough to necessitate 
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euthanasia of the mice.  Future studies should include additional time points to observe both the 

tumor growth and histological characteristics of the tumors over time.  Additionally, further 

studies are needed to determine the downstream mechanism by which BMP signaling regulates 

cell proliferation and migration.  Upon knockout of BMPR1A we investigated the mRNA 

expression of several genes through which TGFβ or BMPs are known to regulate cell 

proliferation in gliomas or other systems162–164 and saw no significant change in p21, p27 or p57 

expression.  Further analysis will need to be done to determine the mechanism by which loss of 

BMP signaling decreases proliferation.  Similarly, we investigated a panel of genes associated 

with migration and invasion and found that our BMPR1a KO astrocytes showed a near or 

complete loss of integrin beta 4 and 7.  Rescue studies should be executed to determine if loss 

of these integrins is responsible for the decrease in migration and invasion we observed.  

Finally, one of the most interesting outcomes of our study is the finding that BMP 

signaling regulates neural progenitor cells and differentiated astrocytes fundamentally 

differently.  As discussed previously, many publications have shown BMP activity to be tumor 

suppressing on the population of GSC, primarily through increased differentiation and 

decreased proliferation.  Here we show evidence that BMP signaling has opposite effects on the 

astrocytic population.  Our preliminary data show that BMP inhibition has different effects on 

murine progenitors and astrocytes with identical genetic backgrounds.  Similarly, BMP inhibition 

has different effects on human GSC and astrocyte populations.  Our study highlights the 

importance of understanding the complexity of the BMP pathway in gliomas.  While BMP 

treatment has been suggested as a source of therapy, our results show that this may actually 

act as a tumor promoter on the majority of the cells within the tumor.  Several publications have 

investigated forms of BMP therapy including microspheres designed to release BMP ligands 

and an oncolytic vaccinia virus overexpressing BMP4, which all showed a survival benefit in 

murine models78,87,88.  While these treatments were effective in murine models created from 

GSC, our results suggest that in the clinic, treatment of the whole tumor with BMP ligands would 
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be detrimental to patient survival.  In contrast to previous studies, we suggest the use of BMP 

inhibition as a novel source of therapy. 

THERAPEUTIC INHIBITION OF BMP SIGNALING 

Inhibition of BMP signaling has been shown to be beneficial in models of breast, ovarian 

and lung cancer74,76,154,165.  Strategies used to inhibit BMP signaling have included soluble 

antagonists or neutralizing antibodies166.  While these inhibitors showed beneficial effects, they 

were limited by short half-lives and gain of function mutations downstream in the BMP pathway.  

In order to more specifically target BMP signaling and successfully inhibit BMP signaling in vivo, 

small molecule inhibitors have recently been developed to specifically target BMP type I 

receptors149,167,168.  The first small molecule inhibitor discovered for BMP signaling was 

Dorsomorphin, identified in 2008 as a compound capable of inhibiting BMPR1A, BMPR1B and 

ACVR1168.  However, Dorsomorphin was found to inhibit AMPK and VEGF signaling as well.  

Over the past five years several more inhibitors of BMP type I receptors have been developed 

to increase specificity and reduce off target effects149.  One specific inhibitor, dorsomorphin 

homologue 1, (DMH1), has been shown to specifically target BMPR1A, BMPR1B and ACVR1 

without detectable inhibition of TGFβ, AMPK or VEGF signaling 149.  DMH1 inhibits ACVR1 and 

BMPR1A most strongly with inhibition of BMP signaling in mouse mesenchymal cells through 

ACVR1 and BMPR1A at an IC50 of less than 50uM.  In our studies we found that in murine and 

human transformed astrocytes, DMH1 significantly inhibited BMP signaling at concentrations as 

low as 10µM with no toxicity at concentrations up to and including 100µm.   Following these 

discoveries, we and others have shown that BMP inhibitors, specifically DMH1, can act as a 

tumor suppressing agent. 

We showed that in a Polyoma T mouse model of breast cancer, DMH1 was shown to 

inhibit tumor growth and metastasis.  Mice receiving treatments of DMH1 through an osmotic 

pump showed a significant decrease in the number of primary tumors that formed and a 
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significant decrease in pulmonary metastases.  In addition, the treated tumor cells showed 

evidence of increased apoptosis and decreased proliferation 76.  DMH1 has also been shown to 

have similar tumor suppressing effects on non-small cell lung cancer cells (NSCLC).  The BMP 

pathway is an attractive target for treating NSCLC as overexpression of BMP2 is associated 

with NSCLC with little to no BMP activity in normal lung tissue.  In addition, a previous study 

showed that treatment of NSCLC with Noggin suppressed tumor growth.  In a similar manner, 

NSCLC treated with DMH1 had decreased proliferation, migration and invasion and decreased 

tumor growth in a xenograft model154.     

In a series of in vitro assays we investigated the effects of DMH1 on ovarian cancer cell 

lines.  Ovarian cancer cells have high endogenous levels of active BMP signaling and BMP 

signaling has been shown to play tumor promoting roles 69,169.  We discovered that inhibition of 

BMP signaling by DMH1 led to decrease in tumor sphere growth and enhanced the sensitivity to 

Cisplatin treatment74.  Similarly, a different study showed that treatment of ovarian cancer cells 

with Dorsomorphin or LDN193189, a Dorsomorphin derivative, blocked cell cycle progression, 

reduced cell migration, increased survival in a xenograft model and resensitized cells to 

carboplatin169.   

Similar to the studies discussed above, here we present BMP inhibition as a treatment in 

HGG.  As part of a multi-modal treatment regimen, BMP inhibition may slow the growth and 

invasion of oncogenic astrocytes making tumors more susceptible to the current therapies such 

as surgery and radiation [Figure 23]. 
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Figure 23. BMP inhibition in HGG 

A HGG is a heterogeneous tumor comprised of many differentiated tumor cells and a small 

population of cells with progenitor and stem-like qualities.  Inhibition of the BMP pathway leads 

to decreased proliferation and migration of the bulk of the tumor enhancing the ability of the 

current therapeutics such as surgery and radiation to eliminate the tumor.   
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In addition to adult HGG, BMP inhibition is a very exciting target for a rare, but deadly 

pediatric glioma.  In 2014 it was discovered that activating mutations in activin A receptor type I 

(ACVR1) are present in 20-30% of patients with diffuse intrinsic pontine glioma (DIPG).  DIPGs 

represent approximately 10% of all pediatric CNS tumors, most commonly diagnosed between 

ages of 5-9.  This aggressive tumor is uniformly fatal with a median survival of less than one 

year from diagnosis170.  Four groups identified 6 recurrent mutations in ACVR1, resulting from 

amino acid substitutions within the glycine-serine or kinase subdomain of ACVR1 shifting the 

kinase into the active conformation 171–174.  A gain of function has been demonstrated by 

increased phosphorylation of Smads1/5/8 and increased expression of Id1170.  Additionally, 

transfection of brainstem progenitor cells with mutant ACVR1 led to an increase in cell 

proliferation175.  Within pediatric gliomas, ACVR1 mutations are exclusively found in DIPG176.  

These mutations have been observed in biopsies collected at the time of diagnosis, suggesting 

ACVR1 mutations are present during the initial phases of tumor growth175.  Interestingly four of 

the same activating mutations in ACVR1 were first identified in Fibrodysplasia ossificans 

progressiva (FOP), a rare genetic disorder in which muscle is converted into bone leading to 

asphyxiation and death 171,177,178.  It has been understood for about a decade that FOP results 

from activating mutations within the intracellular domain of ACVR1177.  As a result of this recent 

discovery, targeting BMP type I receptors, specifically ACVR1, presents a novel potential 

therapeutic target for both DIPG and FOP patients [Figure 24]. 
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Figure 24. Activin receptor type 1 (ACVR1) mutations in diffuse intrinsic 

pontine glioma (DIPG) 

a) Cartoon showing somatic mutations in the glycine/serine-rich inhibitory domain (GS) and 

kinase domains of ACVR1 in 46 of 195 (24%) DIPG samples. No mutations were identified in 

the extracellular (ECD) or transmembrane (TM) domains. All residues targeted are common 

to those observed in the germlines of patients with fibrodysplasia ossificans progressiva 

(FOP), with the same amino acid substitutions, except for R258G and G328V, which are, to 

date, unique to DIPG. b) Bone morphogenetic protein (BMP) signaling pathway. Upon ligand 

binding, a type 2 receptor, such as BMPR2, heterodimerizes with and phosphorylates (P) 

ACVR1, a serine/threonine kinase, which in turn phosphorylates the transcription factors 

SMAD1, SMAD5 or SMAD8, causing binding to SMAD4, translocation to the nucleus, and 

transcription of target genes such as inhibitor of DNA binding 1 (ID1) and ID2. The ACVR1 

mutations in DIPG and FOP enhance the kinase function and/or disrupt the binding of the 

negative regulator the 12kD FK506 binding protein (FKBP12) to ACVR1, conferring 

activation of this pathway.  Used with permission170 
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CONCLUDING REMARKS 

The role of BMP signaling in gliomas is a topic which has only recently been examined in 

depth and remains incompletely understood.  BMPs have generally been thought of as tumor 

suppressors; however, recently we and others have begun to show that BMP signaling can also 

be tumor promoting.  As members of the TGFβ family, it is unsurprising that BMPs play a variety 

of roles within a complex and heterogeneous tumor.  While it is still unclear all the various ways 

BMP signaling affects tumorigenesis, our research enhances the field of glioma research and 

emphasizes the importance of understanding the various roles of this morphogen family.  My 

ultimate hope is that our discoveries will contribute to future research to find ways to manipulate 

BMP signaling to benefit glioma patients.   
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