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CHAPTER I 

 

INTRODUCTION 

 

Overview 

Proliferating cells need to ensure correct and complete duplication of their 

genome. Perturbation of this process is detrimental to multicellular organisms, as 

evidenced by diseases linked to DNA replication and repair defects such as cancer. A 

detailed understanding of this process is important to combat cancer and can potentially 

facilitate novel therapeutic approaches. 

Faithful genome duplication is a highly regulated process that requires 

coordination between DNA replication and repair events. A dynamic protein machine 

called the replisome is central to replication with high fidelity. Additional proteins get 

recruited when replication forks encounter impediments in the template in the form of 

tightly bound proteins or DNA lesions. Altogether, this highly dynamic replication 

machinery enables the cell to deal with various kinds of replication stress to subsequently 

preserve genomic integrity. However, our understanding of the machinery responsible for 

genomic integrity is far from complete. 

Human DNA helicase B (HDHB) is a protein component of the DNA replication 

and repair machinery. Well conserved among vertebrates, HDHB shares sequence 

similarity to homologous recombination proteins, RecD and T4 dda, and it is implicated 

in chromosomal DNA replication in both mouse and human. HDHB and its mouse 

homolog display primosome activity but the biological significance of this activity 



2 

 

remains to be determined. Previous work from the Fanning lab demonstrated that 

treatment with DNA damaging agents leads to HDHB accumulation on chromatin, 

implicating HDHB in DNA damage response. Furthermore, HDHB silencing leads to 

decreased homologous recombination. Nevertheless, a detailed understanding of HDHB 

involvement in DNA damage response is not available. My Ph.D. thesis research aimed 

to gain mechanistic insight into HDHB recruitment to damage sites and HDHB function 

in DNA damage response.  

 

DNA replication 

DNA replication is one of the biggest challenges for genomic integrity as the 

events of replication intrinsically render DNA vulnerable to damage. Therefore, cells 

employ extreme measures to ensure exact duplication of the genome. Among these 

measures is tight control of replication initiation.  

An important component of replication control is the spatial-temporal regulation 

of replisome assembly. Replisomes are assembled at specific sites termed origins of 

replication, where eukaryotic replication initiates. Central to spatial regulation of 

replication initiation, Origin Recognition Complex (ORC) binds specifically to 

replication origins and serves as a platform to recruit pre-replication complex (pre-RC) 

components (Figure 1) [1-3]. ORC-dependent recruitment of pre-RC components Cdc6 

and Cdt1 is required for the subsequent loading of Mcm2-7, the replicative helicase [4-6]. 

The replication origins that are bound by the pre-RC are competent for replication 

initiation and therefore are referred as ‘licensed origins’. However, MCM2-7 is not 

competent for DNA unwinding in the context of the pre-RC. Origin DNA unwinding 
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requires recruitment of another set of proteins as part of the conversion of pre-RC to pre-

initiation complex (pre-IC), providing an additional regulatory mechanism at the level of 

enzymatic activity besides sequential protein recruitment [7].  

Some of the steps in pre-IC formation are unclear and may differ in different 

organisms but some underlying principles are conserved [1, 8-10]. The requirement for 

Cdc7 and Cdk2 kinase activities and subsequent recruitment of Cdc45 and GINS for the 

formation of the active helicase complex appears to be universal. Additional factors that 

function at this step include Mcm10, Ctf4, Dpb11, Sld2 and Sld3 in yeast [11-16] and 

Mcm10, And1, TopBP1, RecQ4, Treslin/ticcr and GEMC1 in higher eukaryotes [17-25].  

Research in Schizosaccharomyces pombe demonstrated that Cdk phosphorylation 

of Sld2 and Sld3 is required for their interaction with Dpb11 [15, 16]. Disruption of the 

interactions between Dpb11 and both Sld2 and Sld3 inhibits replication initiation. The 

function of CDK-dependent phosphorylation is conserved in humans in the context of 

TopBP1 (human Dpb11 homolog) and Treslin (human Sld3 homolog) [26, 27], but 

appears to be dispensable for RecQ4 (human Sld2 homolog) association with TopBP1 

[17, 18].  

Sld3 association with Dpb11, similar to Treslin association with TopBP1, brings 

Cdc45 to replication origins [13, 27]. Sld2, on the other hand, recruits GINS and 

polymerase ε to origins via its interaction with Dpb11 [28]. Interestingly, GINS loading 

onto replication origins does not require RecQ4 [17]. Stable association of MCM2-7 with 

Cdc45 and GINS, facilitated by MCM10 and RecQ4 [20], leads to formation of the active 

helicase complex termed Cdc45/MCM2-7/GINS (CMG) [4, 29].  
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Figure 1. Replisome assembly at origins of replication.  
ORC1-6 complex binding to replication origins in G1 phase initiates the replisome assembly process. 

Subsequently, Cdc6- and Cdt1-dependent activities load the inactive MCM2–7 helicase as a double 

hexamer onto origins, concluding the pre-RC assembly. Activation of the MCM2-7 helicase requires the 

transformation of the pre-RC to pre-IC through recruitment of additional proteins. CDK-phosphorylated 

Treslin (human Sld3 homolog) associates with TopBP1 (human Dpb11 homolog), bringing Cdc45 to 

replication origins. Although CDK-dependent phosphorylation is also required for Sld2 association with 

Dpb11 in yeast, RecQ4 (human Sld2 homolog) binding to TopBP1 (human Dpb11 homolog) does not seem 

to require CDK phosphorylation. Subsequent loading of GINS and pol ε is Sld2-dependent in yeast but 

RecQ4-independent in human. Pol α loading requires both TopBP1 and RecQ4 in Xenopus. Cdc45, 

MCM2-7 and GINS (CMG) complex formation leads to an active replicative helicase. CMG, along with 

the other components, such as the replicative polymerases pol ε, pol δ and pol α, constitutes the replication 

progression complex that is required for the initiation of replication. Figure adapted from [1].  
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Activation of the replicative helicase and subsequent unwinding of the origin 

DNA is followed by loading of polymerase α-primase (pol-prim); the only DNA 

polymerase capable of synthesizing a template de novo on ssDNA. Prior to pol-prim 

loading, origin DNA needs to be unwound [30]. As the origin DNA is melted, RPA binds 

to the single stranded DNA (ssDNA), keeping the strands from re-annealing. This event 

also precedes binding of pol-prim. However, in vitro studies using purified proteins have 

shown that pol-prim cannot synthesize primers on RPA-coated ssDNA [31-33]. SV40 T 

antigen can release the RPA-dependent inhibition on primer synthesis by pol-prim [31, 

32]. The cellular factor(s) that facilitate this reaction (termed primosome activity) is not 

determined yet. Although the exact mechanism is elusive at this point, pol-prim loading 

to origins requires Cdc45 [34], TopBP1 [35], Mcm10 [36, 37], RecQ4 [18] and And1 

[37]. It remains to be determined whether the protein machinery involved in pol-prim 

origin loading is the same or separate from that required for primosome activity.  

 

DNA replication stress 

A variety of circumstances can present major challenges for DNA replication with 

potentially detrimental consequences. A comprehensive DNA damage repair toolbox 

helps cells deal with different kinds of damage. Below is a brief review of different types 

of DNA damage that induce replication stress and the mechanisms cells employ to cope 

with replication stress. 
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Types of replication stress 

 Different types of DNA damage challenge faithful and complete duplication of 

the genome. These challenges may arise from intrinsic properties of the genome as in 

secondary structures. They may also be caused by DNA lesions induced by accumulation 

of genotoxic cellular metabolites (e.g. reactive oxygen species), or exogenous DNA 

damage (e.g. ultraviolet radiation). Furthermore, perturbation of the activities required for 

DNA replication or DNA damage, through genetic mutations or chemical inhibition of 

the enzymes necessary for replication, can also hinder DNA replication.  

Evolutionarily conserved repeat sequences dispersed throughout the genome are 

hotspots for genomic instability. Secondary structures adopted by unwound DNA 

templates at these repeat sequences can stall replication forks, leading to repeat 

expansions or deletions if not dealt with properly [38]. The location of the repeat region 

with respect to the replication origin is thought to affect the stability of the repeat [39]. 

Hereditary diseases associated with repeat expansion include Huntington’s syndrome and 

Fragile X syndrome [40]. Mechanistic understanding of replication associated repeat 

instability can be beneficial for therapeutic purposes. 

Highly transcribed regions of the genome present another type of impediment at 

replication forks. Despite the temporal separation of most transcription from DNA 

replication, some genes, such as tRNA and rRNA genes, are continuously transcribed 

during S phase, which permits collision between the transcription complex and the 

replication fork. Collision with the transcription complex can lead to replication fork 

pausing. Cells have evolved mechanisms to evade genomic instability due to such 
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collisions, which involves DNA helicases capable of removing proteins bound to 

template DNA [41, 42].  

DNA lesions in the template can also induce replication stress. Oxidative stress 

induced by accumulated metabolic byproducts called reactive oxygen species (ROS) 

generates a variety of DNA lesions, including base damage and sugar damage, some of 

which can interfere with replication fork progression [43]. In addition, exposure to 

exogenous factors, such as UV radiation or various chemicals, can also produce DNA 

damage. Exogenous genotoxins may damage DNA indirectly through inducing oxidative 

stress, as in the case of UVA radiation, or directly, by altering the DNA molecule, as in 

the case of UVB and UVC radiation [44]. UV irradiation at doses above 10 J/m
2
 cannot 

be dealt with efficiently via the nucleotide excision repair pathway. Replication fork 

encounters with DNA photoadducts, mainly cyclobutane-type pyrimidine dimers (CPDs) 

and [6-4]pyrimidine-pyrimidone (6-4PP), disrupts ongoing replication by stalling 

replicative polymerases. Cisplatin exposure similarly stalls replication forks primarily 

through induction of DNA crosslinks. Replicative polymerase stalling by such DNA 

lesions on the leading strand can cause the uncoupling of the replicative helicase from the 

replicative polymerase, resulting in the generation of extended ssDNA regions [45]. 

These regions containing DNA lesions can later be bypassed by translesion polymerases 

η and ι [46] or recombination-like mechanisms. 
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Figure 2. Replication associated double strand break formation after CPT exposure. 
(A) Topoisomerase I catalyzes ssDNA breaks needed to relax overwound DNA. (B) CPT binding to 

topoisomerase I inhibits the re-ligation of the ssDNA breaks that are formed by topoisomerase I. (C) 

Collision of the replication fork with the CPT-Topoisomerase I-DNA ternary complex leads to DSB 

formation. Accumulation of replication-associated DSBs results in CPT cytotoxicity. From [54]. 
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Chemical or mutational perturbations of the enzymatic activities required for 

DNA replication are another source for replication stress. Examples of such chemical 

genotoxins include hydroxyurea (HU), aphidicolin (APH) and camptothecin (CPT). HU 

inhibits replication by interfering with the activity of ribonucleotide reductase whose 

activity is required to sustain the dNTP pool that are used to synthesize nascent DNA 

strands during replication [47]. Aphidicolin, on the other hand, directly interferes with 

nascent DNA synthesis through inhibition of B family polymerases; pol α, pol δ and pol ε 

[48-50]. 

CPT is a topoisomerase I poison whose derivatives are widely used in cancer 

chemotherapy. Topoisomerase activity is required to relieve the torsional stress that 

occurs as a result of dsDNA unwinding during replication or transcription [51]. 

Topoisomerase accomplishes this by creating a transient break in the sugar-phosphate 

backbone of the DNA, and then annealing the break. Topoisomerase poisons freeze the 

DNA-topoisomerase complex after catalysis of the strand break but before ligation, 

thereby resulting in a permanent DNA break in the template and topoisomerase-DNA 

complex. Collisions between replication forks and topoisomerase- DNA complexes 

results in double strand breaks (DSBs) [52] (Figure 2), accumulation of which eventually 

leads to cell death [53].  

 

Checkpoint signaling 

Central to the eukaryotic cellular response to replication stress is Ataxia 

Telangecia-related (ATR) signaling. ATR is a phosphoinositide 3-kinase related kinase 

family member. ATR is activated upon accumulation of certain DNA protein structures 
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that recruit DNA damage response proteins to stalled replication forks (Figure 3) [55]. 

RPA-bound ssDNA is a central component of this DNA damage sensing mechanism 

[56]. Various types of replication stress stereotypically lead to RPA-bound ssDNA 

accumulation, which serves as a universal signal for checkpoint activation.  RPA-bound 

ssDNA accomplishes checkpoint activation through recruiting many DNA damage 

response proteins including ATRIP, Rad9, Mre11 to stalled forks [56]. Accumulated 

RPA recruits the ATR binding partner, ATRIP, through a direct interaction between the 

acidic ATRIP checkpoint recruitment domain and the basic cleft of RPA70N [57]. ATR 

is recruited to stalled forks through this interaction. Rad9-1-1 complex is also recruited 

through a similar mechanism that employs a direct interaction between the acidic Rad9 

checkpoint recruitment domain and the RPA70N basic cleft [58].  

Apart from RPA-ssDNA, Rad9-1-1 loading additionally requires free 5’ends at 

the primer-template junction [60, 61]. Consistent with the primer-template junction-

dependent Rad9-1-1 recruitment to stalled forks, primer synthesis by polymerase α-

primase is required for checkpoint activation upon replication stress [62, 63]. It should be 

noted that primer synthesis at stalled forks can serve other functions in addition to Rad9-

1-1- loading.  
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Figure 3. Checkpoint signaling activation after replication fork stalling.  
At a normal replication fork, unwinding of the parental DNA by MCM2-7 generates single stranded DNA 

that is replicated by leading and lagging strand polymerases. During this process, a limited amount of 

ssDNA is exposed, which is readily bound by the ubiquitous single stranded DNA binding protein RPA. If 

the replication fork encounters DNA lesions that stall the replicative polymerase, replicative helicase 

uncouples from the replicative polymerase leading to the accumulation of ssDNA bound RPA at stalled 

replication forks. Accumulation of ssDNA-bound RPA results in the recruitment of DNA damage response 

proteins including Rad9/1/1 and the ATRIP/ATR complex followed by subsequent activation of ATR 

kinase. ATR then phosphorylates the checkpoint protein Chk1 to initiate checkpoint signaling. Adapted 

from [59].  
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TopBP1 is another protein interaction scaffold required for ATR activation. The 

exact mechanism for TopBP1 recruitment to stalled replication forks is not known. One 

of the functions of TopBP1 in checkpoint activation is recruitment of polymerase α-

primase [64, 65]. It is not yet clear whether TopBP1 accomplishes this function through 

direct physical interactions or through other mediator proteins. Nevertheless, TopBP1-

mediated pol-prim recruitment to stalled replication forks is important for Rad9-1-1 

loading [65]. TopBP1 also functions as a direct protein activator of ATR kinase through 

its interaction with ATRIP [66, 67] and Rad9-TopBP1 interaction is important for 

TopBP1-mediated ATR activation [68, 69].  

It is important to note that of the checkpoint activating DNA-protein structures 

identified so far, RPA-bound ssDNA and the 5’ ends of template-nascent primer 

junctions, occur naturally at the replication forks, albeit in amounts insufficient to trigger 

a global checkpoint response. It is possible that the factors that are important for 

checkpoint activation associate with the fork even in the absence of damage, albeit more 

transiently. Transient association of checkpoint activating proteins would limit their 

action at the fork and prevent activation of checkpoint signaling (Figure 4). Indeed, ATR 

and Chk1 were found to be important for genomic stability in the absence of damage as 

well [70-72], suggesting that ATR and Chk1 are activated and operational at basal levels 

even in the absence of exogenous damage. This may enable a ‘fork surveillance 

mechanism’ where the cellular factors that are important for responding to damage are 

kept in close proximity to the active replication fork for prompt response when damage is 

encountered. 
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Figure 4. Snapshot of the emerging replisome
1
.  

During unperturbed replication, CMG helicase unwinds parental DNA as pol epsilon synthesizes 

the leading strand. The discontinuous nature of lagging strand synthesis requires the replisome to 

be remodeled as proteins synthesize or process the Okazaki fragments. Multiple weak interactions 

among the proteins in the replisome, of which only a few are depicted, enable replisome 

remodeling through exchange of interaction partners. This provides the plasticity crucial to adapt 

to different circumstances, e.g., replication through “slow zones” or damaged templates, which 

lead to transient accumulation of specialized proteins, e.g., ATRIP/ATR and Rad911. From [73]. 

 

 

 

 

                                                 

1 This figure was published in Guler and Fanning (2010) The replisome: a nanomachine or a 

dynamic dance of protein partners? Cell Cycle 9(9):1680-1. 

 



14 

 

Activated ATR kinase regulates a wide range of cellular responses to replication 

stress through phosphorylating a plethora of substrates [74]. One of the best characterized 

ATR substrates is Chk1 (Figure 5). ATR-dependent phosphorylation activates Chk1, 

which then modulates global responses to replication stress, including inhibition of new 

origin firing and cell cycle progression by Cdc25 inactivation [75, 76]. ATR signaling 

also targets the components of the replication fork, either directly or indirectly through 

Chk1 [59]. Although mechanistic details remain to be investigated, ATR signaling 

increases fork stability, preventing the dissociation of the replisome components form the 

stalled forks, which aids in subsequent recovery from replication stress. ATR is further 

implicated in modulating replicative helicase activity following replication stress-induced 

helicase-polymerase uncoupling. In addition, ATR regulates activities of proteins 

involved in repair and recovery from the replication block such as WRN [77] and BLM 

[78]. Through such phosphorylation events, ATR signaling seems to affect repair 

pathway choice. 

 

Replication restart 

The ultimate goal of replication stress response is to resume replication once the 

damage is dealt with in order to accomplish complete and faithful replication of the 

genome. Eukaryotic restart mechanisms are not fully understood, but appear to be 

composed of alternative and complementary pathways. 
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Figure 5. Checkpoint signaling upon replication fork stalling. 
Uncoupling of the replicative helicase from the replicative polymerases due to polymerase 

stalling at sites of DNA lesions leads to accumulation of RPA-bound ssDNA. Accumulated RPA-

ssDNA facilitate recruitment of DNA damage response proteins and subsequently activate ATR 

signaling. Among many ATR substrates is checkpoint protein 1 (Chk1). Activated Chk1 

coordinates the checkpoint response to replication stalling which includes suppression of new 

origin firing, blocking of cell cycle progression through Cdc25 inhibition, stabilization of the fork 

and facilitating replication fork restart. Modified from [59]. 
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One of the factors that affect the recovery pathway decision is the stability of the 

fork after the replication stress. Certain types of replication arrest, such as those induced 

by short exposure to HU, inhibit replication fork progression but does not interfere with 

the association of the fork components with replicating chromatin, therefore leaving the 

replisome intact. These stalled replication forks are stable in checkpoint-competent cells 

[79, 80] and can resume replication once the arresting factor is removed [81]. Such direct 

restart from stalled forks enables rapid reactivation of replication. On the other hand, 

replication forks may collapse when the replisome components dissociate from the 

replicating chromatin under replication stress conditions such as prolonged exposure to 

HU or replication fork collisions with CPT-trapped topoisomerase DNA complexes. 

When replication forks are inactivated due to collapse, replication has to resume via 

alternative pathways which include replication by new origin firing and/or 

recombination-like replication restart [82]. 

 Several damage response proteins are recruited to damaged forks for damage 

repair or bypass to allow replication resumption after replication arrest. Among these are 

specialized DNA helicases that remodel the replication fork for reactivation. The 

annealing helicase Smarcal1 is proposed to promote replication restart by annealing 

extended stretches of ssDNA accumulated at forks due to uncoupling of the replicative 

helicase and the replicative polymerases [83-88] (Figure 6A). A second helicase with 

ssDNA annealing activity was recently discovered [89], however its cellular function is 

not yet known. 
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Figure 6. Models for replication fork restart.  
Uncoupling of the replicative helicase from the replicative polymerase lead to accumulation of 

ssDNA at the stalled fork.  (A) Replication restart by fork remodeling can be accomplished 

through re-annealing of the excess ssDNA generated upon uncoupling, possibly through 

Smarcal1 activity. (B) Replication fork regression, possibly catalyzed by several DNA helicases 

including BLM, WRN, FancM or HLTF, involves the annealing of the nascent strands to each 

other to generate a Holliday junction that resembles a ‘chicken foot.’ Double strand ends that are 

generated by this mechanism can then initiate recombination through a pathway that involves 

Parp1 and Mre11. Displacement loops (D-loops) formed enables replication restart. (C) If 

Holliday junctions are resolved by a nuclease that results in a one-ended DSB, then replication 

can be reactivated through a mechanism similar to break-induced replication where the DSB end 

invades the sister chromatid to result in a D loop. Holliday junction can be resolved by Mus81 

activity after DNA replication restart. From [82].  
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Stalled forks may also be remodeled into a structure called a ‘chicken foot’ by 

fork regression, where the nascent strands are separated from the template strands to 

allow re-annealing of the template strands while the nascent strands anneal to each other 

(Figure 6B). A variety of helicases exhibit fork regression activity in vitro. Helicases 

implicated in replication restart through fork regression include Fanconi anemia 

complementation group member M (FANCM) [90, 91], RecQ helicase family members 

BLM  and WRN [92, 93], and Rad5 ortholog HLTF [94, 95]. Additional specialized 

activities associated with these proteins, either directly, or through their interaction 

partners, can determine the subsequent steps of the replication stress recovery process, 

leading into divergent restart pathways. 

 Annealing of the nascent strands to each other by fork regression allows use of 

one nascent strand to serve as a template for the other nascent strand. This template 

switching process enables bypass of the DNA lesion or replication fork block (Figure 7). 

Alternatively, template switching can occur at long distance, where the nascent strand 

anneals with a genomic region that contains some degree of homology. Repetitive 

sequences are possible candidates for this type of long-distance template switching events 

[96]. 

Annealing of these homologous or highly similar sequences is very similar to 

events required for homologous recombination (HR). Thus, it is not surprising that 

several HR proteins are implicated in replication fork regression and template switching. 

In addition to WRN and BLM helicases mentioned above, HR proteins Mre11, Rad51, 

PARP, and Xrcc3 contribute to replication stress recovery [81, 98]. 
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Figure 7. Template Switching.  
Replication forks can bypass DNA lesions (red star) by template switching where one of the 

nascent strands utilizes the other as the template to replicate the DNA. Forks may also utilize 

repeat elements with microhomology (red bars) from a different nearby fork to bypass replication 

stall sites, however, this mechanism may lead to genomic rearrangement. From [97]. 
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Figure 8. Mus81/Eme1-dependent processing at the stalled replication forks.  
Models generated based on substrate specificity of Mus81/Eme1 in vitro. A. Normal replication 

forks are poor substrates for Mus81/Eme1. B-D. DNA lesions in the leading (B) or lagging (C) 

strand template can result in replication fork stalling. In the absence of fork remodeling, these 

stalled forks may be good substrates for Mus81/Eme1 nuclease activity. Fork reversal and 

subsequent processing at the fork may result in three or four way junctions with strand 

discontinuity or Holliday junctions. Mus81/Eme1 cleaves substrates with junctions containing 

strand discontinuity more efficiently than Holliday junctions [101]. 
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HR-like pathways for replication restart may be activated by DSBs at the 

replication fork. In the case of CPT-induced replication stress, fork collision with the 

CPT-trapped topoisomerase-DNA complex and associated ssDNA breaks directly results 

in the generation of a DSB [52] (Figure 2), which activates an HR-mediated repair 

pathway [99]. On the other hand, DSBs can be actively generated by enzymatic 

processing at the stalled fork as part of the repair process after replication stalling. 

Nascent strand annealing through fork regression mediated by DNA helicases such as 

BLM results in DSBs that can potentiate a HR-mediated pathway. Additionally, the 

eukaryotic endonuclease Mus81 specifically recognizes branched substrates and 

generates DSBs [100, 101] important for Rad51 foci formation and recombination-

mediated replication repair in the absence of WRN helicase [102] (Figure 8). 

HR requires a 3’ overhang on which the Rad51 assembles as a filament to initiate 

homologous sequence search. Recent work suggests that PARP1 functions at this step by 

recruiting Mre11 [98] (Figure 9). Mre11-dependent degradation of nascent strands is 

tightly regulated and unwanted Mre11 nuclease activity is restricted by both BRCA2 and 

Rad51 [103, 104]. The 3’ overhangs generated by Mre11 nuclease activity are first bound 

by RPA, which is then replaced by Rad51. This process is highly regulated as several 

proteins, such as Mms22L/TONSL complex and Rnf8 [105-107], were shown to promote 

Rad51 loading, whereas others were shown to disrupt Rad51 filament formation [108]. 

Strand invasion by Rad51 filament results in the formation of D-loops which enable 

loading of the replication machinery to continue replication by bypassing the stall site. 

Mus81/Eme1 endonuclease is implicated in resolving the resulting double Holliday 

junction and promoting sister chromatid exchange (Figure 8). On the other hand, Mus81 
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independent mechanisms are proposed to exist to dissolve the double Holliday junction in 

a way that avoids formation of recombinogenic products. 

Dormant origins provide another mechanism by which complete genome 

duplication can be achieved when replication is challenged. Under normal replication 

conditions, only a fraction of the origins that are licensed during G1 are actually utilized 

for DNA replication in S phase. MCM2-7 loaded on the licensed origins is inactive as a 

helicase and requires Cdc45 and GINS for its activation [29]. Cdc45 protein levels seem 

to be the limiting factor for replication initiation at a limited number of origins [110]. 

Replication stress seems to activate dormant origins by a mechanism that remains largely 

undetermined [111]. One possible mechanism suggests an indirect role for checkpoint 

signaling, where checkpoint-dependent inhibition of new replication factories possibly 

directs replication initiation activity towards replication factories that are already 

activated to allow activation of dormant origins specifically located at replication stall 

sites [112]. However the distinct mechanisms involved in dormant origin activation 

remain to be investigated. Nevertheless, use of dormant origins seems to be an integral 

component of the cellular replication restart apparatus to preserve genomic integrity after 

fork stalling even in the absence of exogenous DNA damage [113]. 
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Figure 9. The MRE11 complex in response to stalled replication forks. 
Nascent strands annealing to one another due to fork regression (as shown in figure) or ssDNA 

breaks at the template result in double stranded ends at replication forks. PARP enhances MRE11 

complex recruitment to stalled replication forks. Mre11-dependent end resection at double 

stranded ends generates the 3’ overhang which is first coated by RPA. RPA is then replaced by 

Rad51, which then initiates the search for a homologous sequence for recombination-dependent 

replication restart [109]. 
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DNA replication, DNA damage response and cancer 

Cancer is a leading cause of death in the world, accounting for the 13% of total 

number of deaths
2
. Uncontrolled cellular proliferation is the hallmark of cancer. This 

characteristic is commonly accompanied by genomic instability. Increased knowledge of 

the molecular mechanisms that enable uncontrollable cell proliferation under conditions 

that challenge genome integrity is important to understand cancer, and can potentially 

benefit cancer therapy through identification of novel therapeutic targets or biomarkers 

for molecular diagnostics.  

Given that the hallmark of this malady is uncontrolled cellular proliferation, it is 

no surprise that DNA metabolism is among the prime targets for cancer therapy. Among 

the therapeutic agents that target DNA metabolism are inhibitors of enzymatic activities 

required for cellular proliferation such as the CPT-derived topoisomerase I inhibitors 

topotecan and irinotecan [114]. Other agents may target DNA directly. DNA crosslinking 

by cisplatin or mitomycin C [115], DNA strand break formation by bleomycin [116] or 

DNA intercalation by doxorubicin [117] are exploited for therapy in a wide range of 

cancer types including lung, ovarian, cervical, breast and colon cancer. In addition to 

these chemotherapy agents, radiation therapy, which is used as standard of care for many 

types of cancer, also works by damaging the DNA. 

Despite the therapeutic advantages of using genotoxins for killing cancer cells, 

use of genotoxins presents a major challenge in terms of specificity. Significant side 

effects may prevail with these agents, since they affect all proliferating cells in the body. 

One recent advance in cancer therapy that utilizes the concept of targeting DNA 

                                                 

2 http://www.who.int/mediacentre/factsheets/fs297/en/ 
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metabolism for sensitivity while increasing specificity is a synthetic lethality. This 

approach exploits the increased dependence of cancer cells for specific DNA damage 

pathways. As discussed in previous sections, normal cells have multiple overlapping 

pathways that function in cellular DNA damage response. These back up mechanisms 

serve as the cell’s insurance for controlled DNA replication with the assurance of correct 

and complete genome duplication even when one pathway becomes dysfunctional.  

However, since the biogenesis of cancer is linked closely with de-regulation of these 

pathways, cancer cells end up relying on one of these pathways when the complementary 

pathway is disrupted. The ‘synthetic lethality’ approach exploits this property of cancer 

cells with respect to normal cells to achieve effective and selective cancer therapy. 

Successful clinical application of the synthetic lethality approach was documented 

recently with poly (ADP-ribose) polymerase-1 (PARP1) inhibitor olaparib in cancer 

patients with BRCA1/BRCA2 mutations [118, 119]. Replication-associated DSBs that 

accumulate upon PARP1 inhibition, which can be efficiently repaired by BRCA1/2-

dependent HR, become lethal in BRCA1/2 deficient cancer cells while sparing normal 

cells [120]. These PARP1 studies illustrated synthetic lethality as a viable approach for 

efficient and selective cancer therapy.  

Despite significant advances achieved by this approach, the response rates in 

clinical studies for the PARP1 inhibitor olaparib did not exceed 41% in BRCA-deficient 

cancer patients [121], suggesting that additional backup pathways exist. Our knowledge 

of these backup pathways is far from complete. Comprehensive understanding of the 

plasticity of the cellular replication stress response that enables cells to tolerate and adapt 

to a plethora of replicative challenges is likely to lead to novel therapeutic opportunities.  
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DNA helicases 

Helicases perform important functions for DNA and RNA metabolism. The 

human genome encodes a large number of helicases, equipping the cell with a helicase 

toolbox. Each helicase accomplishes specialized functions required for cellular activities 

ranging from DNA replication and DNA repair to transcription, RNA splicing and RNA 

silencing. The specialized nature of these enzymes suggests that their function is not only 

confined to simple unwinding or translocation, but also that they help drive the 

processing and progression of specific biological pathways. These specialized functions 

are most often performed through specific interactions with other proteins or specific 

DNA/protein complexes, and/or additional enzymatic activities. 

 

Biochemical and structural properties of DNA helicases 

Helicases are enzymes that couple the energy released from ATP hydrolysis for 

translocation on DNA and/or RNA. Most helicases are specific for their substrates, so 

they translocate on either DNA, or RNA, or DNA/RNA hybrids. DNA helicases 

translocate on dsDNA or ssDNA to unwind dsDNA into ssDNA or remove proteins 

bound to DNA. Translocation occurs with a directionality based on the intrinsic polarity 

of the DNA molecule. 

Helicases are classified into six superfamilies based on their ‘helicase’ motifs 

[122, 123]. Of note, not all proteins containing these signature motifs were found to 

possess unwinding activity [122]. Therefore, these superfamilies represent ‘motor’ 

proteins that hydrolyze ATP for translocation on DNA/RNA. DNA helicases can be 
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found in different oligomeric states, where some function as monomers and others as 

hexamers. 

Despite significant variation among the helicases that belong to different 

superfamilies, they share a common structural framework that enables harnessing the 

energy from ATP hydrolysis to translocation on DNA/RNA. Central to this framework 

are Walker A and B motifs responsible for ATP binding and ATP hydrolysis, 

respectively, and the arginine finger which is also important for ATP hydrolysis (Figure 

10).  

Helicases most often possess additional domains that can regulate helicase 

function by several mechanisms. One mechanism is through affecting helicase activity, in 

terms of processivity or rate, by post translational modifications or protein/DNA 

interactions. Examples include chi-site recognition-induced pausing of RecBCD [124], 

Cdc7/Dbf4-dependent phosphorylation and Cdc45/GINS binding-dependent activation of 

Mcm2-7 [4, 125-127], and fine-tuning of Sulfolobus solfataricus Hel308 processivity by 

an autoinhibitory domain that binds to the unwound ssDNA [128]. Helicase function can 

also be modulated through regulating subcellular localization, or even sub-compartmental 

localization within, as observed in the recruitment of DNA helicases to stalled replication 

forks by RPA [83, 86, 87]. Additional domains may also possess enzymatic functions 

other than helicase activity, therefore coupling other enzymatic activities such as the 

nuclease activity in RecB, Dna2 or WRN [129-131]. 
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Figure 10. Common structural themes among helicases from different superfamilies. 
Superfamily 1 member PcrA helicase core structure is shown as representative to illustrate 

common structural elements observed among helicases from different superfamilies (shown in 

yellow). Two Rec-A like core domains, located within the same monomer in superfamily 1 and 2 

helicases, form a crevice. One side of this crevice harbors NTP binding and hydrolysis motifs 

called Walker A (1) and Walker B (2) located on the N-terminal Rec-A like core (N core), while 

the arginine finger (R) within Motif 6 (6) that modulates NTP binding or hydrolysis is located on 

the other side located at the C-terminal Rec-A like core (C core). The two Rec-A like core 

domains that form the crevice are contributed by two adjacent subunits in the case of hexameric 

superfamily 3 helicases. From [122].  
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Recently, a novel ATP-dependent activity was characterized for helicases. 

Yusufzai and Kadonaga showed that the HepA-related protein HARP (also known as 

Smarcal1) has ATP-dependent ssDNA annealing activity [85]. A second example of this 

type of helicase is annealing helicase 2 AH2 [89]. Although ssDNA annealing activity 

was shown for BLM, WRN and RecQ5 [132-135], these helicases do not use ATP for 

this function, unlike the case of Smarcal1 and AH2 where the reaction is ATP-dependent 

[85, 89]. Indeed, ATP inhibits ssDNA annealing by BLM, WRN and RecQ5. 

Nevertheless, strand annealing activity by these proteins is proposed to be important for 

Holliday junction migration and remodeling of the stalled replication forks into chicken 

foot structures for replication restart. 

 

DNA helicases in DNA replication and repair 

Separation of double stranded parental DNA is necessary for the replication 

machinery to synthesize nascent strands. This unwinding activity is accomplished 

through the replicative helicase that travels with the replication fork. The Mcm complex, 

a member of the superfamily 6, is thought to be the replicative helicase in archea and 

eukaryotes [136]. The heterohexameric Mcm2-7 helicase is well conserved among 

eukaryotes whereas a homohexameric Mcm complex serves as the archeal replicative 

helicase [136, 137]. Our current understanding is these proteins function as a double 

hexamer at the replication fork. 

The helicase activity of Mcm2-7 is tightly regulated. Mcm2-7 loaded at the 

origins in G1 phase does not unwind origin DNA until the start of S phase. Mcm2-7 

origin unwinding is activated after Cdc7 and CDK dependent phosphorylation and 
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subsequent binding of Cdc45 and GINS [1]. Indeed, purified Mcm2-7 has little if any 

helicase activity in vitro, yet is active when in complex with Cdc45and GINS [4, 29]. 

In addition to Mcm2-7, other helicases have been identified that associate with the 

fork. One example is a superfamily 1 member RecD family helicase called Rrm3 in S. 

cerevisiae [138]. Rrm3 moves with the fork and provides additional power to help the 

fork move through genomic regions that are hard to replicate such as DNA templates 

with repeats or tightly bound proteins. Indeed, Rrm3 deletion leads to replication fork 

pausing at not only centromeres and rDNA regions but also telomeres and tRNA genes 

[41, 139, 140]. In higher eukaryotes, RecQ4 was identified as a pre-RC component [141] 

and part of a stable complex with replication fork components through its association 

with Mcm10 [20]. RecQ4 downregulation decreases cellular replication and proliferation 

[141], however, its specific function remains to be identified. 

The idea of ‘accessory helicases’ is rather new in the eukaryotic replication field. 

Bacterial helicases Rep, UvrD and DinG have been shown to be important for replication 

fork progression through genomic regions with tightly bound proteins such as highly 

transcribed segments [142-146]. The additional helicase power harnessed through direct 

interactions between Rep and the replicative helicase DnaB was shown to be important in 

sustaining rapid genome duplication rates in E. coli [146]. Similar ‘accessory helicase’ 

impact on genome duplication would be consistent with the recent data, which shows that 

replication forks move at a fairly uniform speed throughout the genome in yeast [147]. 

Having an additional helicase traveling with the fork can provide additional 

advantages apart from removal of high affinity nucleoprotein complexes ahead of the 

fork. Homologous recombination machinery is a well characterized complex with two 
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helicase motors, RecB and RecD, which translocate on the opposite strands of the DNA. 

Having two motors with opposite polarities within the same complex appears to promote 

increased processivity by enabling the complex to go through templates with nicks or 

lesions in one of the strands [148, 149]. 

 In addition to helicases that travel with the fork, other helicases with functions in 

DNA damage response are recruited to replication forks when forks encounter an 

impediment. These helicases perform specialized functions facilitated by substrate 

specificity and protein interactions and play important roles in determining how the 

damage is processed. 

 One such helicase is Smarcal1 annealing helicase, which is recruited to stalled 

replication forks through a direct interaction between Smarcal1 N terminus and RPA32 C 

terminal domain [83, 87]. It is suggested that Smarcal1 promotes replication restart by 

remodeling the fork into a chicken foot structure with its ssDNA annealing activity. 

Helicase superfamily 2 member Rad5-related human helicase HLTF was also shown to 

be capable of promoting fork regression in vitro in addition to being required for efficient 

replication restart in cells exposed to replication stress [94, 95].   

 RecQ helicase family members WRN and BLM are also implicated in replication 

stress response. In addition to in vitro fork regression activity [92, 93], WRN and BLM 

can catalyze branch migration at Holliday junctions [150, 151]. Through activities 

including, but not limited to, fork regression and Holliday junction migration, WRN and 

BLM can regulate multiple steps in recombination-mediated repair to promote replication 

restart.    
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 Other less characterized DNA helicases with functions in replication stress 

response include FANCM, FANCJ, HLTF, Fbh1 and Hel308 [95, 108, 152-155]. 

Synergistic and/or complementary functions performed by these helicases involved in 

replication restart remain largely to be revealed. This will be of further interest 

particularly considering the potential of using helicases as targets for cancer therapy. 

 

Human DNA Helicase B  

HDHB: Biochemical properties and role in DNA replication 

DNA helicase B (DHB) was identified by biochemical fractionation of mouse 

FM3A cells [156]. The purified helicase has ssDNA-stimulated ATPase activity [157] 

and ATP-dependent helicase activity with 5’ to 3’ polarity and specificity for DNA as 

substrate [158-160]. The biochemical characteristics of mouse DHB are preserved in 

human homolog [161]. 

DHB is well conserved among vertebrates without an obvious homolog in lower 

eukaryotes (Figure 11). The DHB helicase domain contains seven conserved superfamily 

1 helicase motifs with sequence similarity to HR proteins RecD and bacteriophage T4 

dda (Figure 12). The human DHB (HDHB) C terminus contains a phosphorylation-

dependent subcellular localization domain (PSLD) [164]. The PSLD is responsible for 

nuclear localization in G1 phase and phosphorylation-dependent nuclear export of most 

of the cellular HDHB pool at G1/S transition [164]. The HDHB C-terminus contains 

other potential phosphorylation sites [165, 166] but the functional importance of these 

potential modifications remains to be determined. The N-terminal domain, also well 

conserved, lacks a functional domain identifiable from primary structure and its function 
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remains to be identified. Of note, the HELB gene produces an alternatively spliced 

transcript, corresponding to mainly the N terminal domain of HDHB; residues 1-575. 

However, the biological function of this isoform is not yet characterized. 

Interestingly, DNA helicase B activity co-purifies with polymerase-α primase 

activity from mouse FM3A cells and purified mDHB stimulates DNA synthesis and 

primosome activity by polymerase-α primase [167-169]. In accordance with these results, 

HDHB interacts with pol-prim and stimulates DNA synthesis by polymerase-α primase 

and primosome activity [161]. DHB primosome activity strongly suggests that HDHB 

might be involved in cellular functions that require primosome activity, namely DNA 

replication initiation, lagging strand synthesis, and checkpoint activation after replication 

stress. 

Consistent with a role for DHB in DNA replication, a temperature sensitive 

mouse allele in mouse that inactivates mDHB helicase activity are unable to replicate and 

proliferate when cultured at the non-permissive temperature [169]. Furthermore, an 

HDHB Walker B mutant inhibits DNA replication when microinjected into HeLa cell 

nuclei in early G1 phase, whereas injection of WT HDHB has no effect [161]. Additional 

support for a potential DHB function in DNA replication comes from ChIP experiments 

that showed HDHB localization to chromosomal origins during G1 phase (Gerhardt and 

Fanning, unpublished data). Altogether, these data suggest that DHB helicase activity 

may be important for chromosomal DNA replication. However, the mechanistic details of 

HDHB involvement in DNA replication remain to be investigated. 
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Figure 11. Protein sequence conservation in DHB among vertebrates. 
Multiple sequence alignment for vertebrate DHB protein sequences was performed using TCoffee [162]and 

visualized with Jalview [163]. Dark blue highlights residues that are identical whereas light blue denotes 

similar residues.  
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Figure 12. Schematic representation of HDHB.  
HDHB can be divided into three functional domains as determined by sequence analysis. The N-terminal 

domain (NTD) does not contain any known sequence motifs despite being well-conserved among 

vertebrate DNA helicase B orthologs. The helicase domain contains seven conserved helicase motifs found 

in superfamily 1 (indicated by orange rhombi). A phosphorylation-dependent subcellular localization 

domain (PSLD), located at the C-terminus, has seven SP/TP motifs (indicated by green rectangles) that are 

putative cyclin dependent kinase (CDK) sites. Phosphorylation of Ser 967 located at the PSLD results in 

the nuclear export of the protein during G1/S transition.   
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 Implications for HDHB function in DNA damage response 

Analysis of the HDHB primary structure reveals potential PIKK phosphorylation 

sites within the helicase domain. Indeed, HDHB was identified as a potential ATM/ATR 

substrate for phosphorylation after DNA damage by mass spectrometry analysis [74]. 

This phosphorylation modifies S709, which is located in the helicase domain, between 

motifs IV and V. However, it is yet to be determined how this modification affects 

HDHB function and/or helicase activity in response to DNA damage. 

Ectopically overexpressed GFP-tagged HDHB forms nuclear foci, particularly in 

G1 phase cells [164]. Consistent with a role for HDHB in DNA damage response, 

treatment of cells with DNA damaging agents, particularly the topoisomerase poisons 

CPT and etoposide, elevates the number of GFP- HDHB foci per cell [164]. Nuclear foci 

formed by overexpressed GFP-HDHB contain DNA damage response proteins Mre11 

(Gu and Fanning, unpublished data), Rad51 and Rad52 (Yan and Fanning, unpublished 

data). Moreover, HDHB interacts with Mre11 (Gu and Fanning, unpublished data) and 

Rad51 (Liu and Fanning, unpublished data). In accordance with its interactions with these 

HR proteins, HDHB silencing leads to decreased DSB-induced HR (Liu and Fanning, 

unpublished data) and increased sensitivity to mitomycin C induced DNA damage (Liu 

and Fanning unpublished data), recovery from which depends on functional 

recombination machinery [170]. Endogenous HDHB was also found in protein 

complexes with the mismatch repair protein PMS1 by mass spectrometry analysis [171]. 

Interestingly, PMS1, one of the human homologs of mismatch repair protein MutL, is 

implicated in regulating HR [172]. Together, these findings strongly implicate HDHB 

function in DNA damage response. 
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Amplification and overexpression of genes with functions in the control of cell 

proliferation or DNA damage response are associated with tumorigenesis and drug 

resistance in cancer. Interestingly, HELB is among the highly amplified genes in 

osteosarcoma [173]. Furthermore, HDHB was found to be overexpressed in pancreatic 

cancer [174]. Although a direct causal relationship between tumorigenesis and HELB 

amplification or HDHB overexpression events is not established yet, accumulating 

evidence implicates HDHB at the intersection of replication and DNA damage response 

making HDHB functional studies intriguing in the context of cancer biology. 
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CHAPTER II 

 

HUMAN DNA HELICASE B (HDHB) BINDS TO REPLICATION PROTEIN A 

AND FACILITATES CELLULAR RECOVERY FROM REPLICATION STRESS
3
 

 

Introduction 

DNA helicase activity is a vital component of all DNA transactions that require 

separation of the two strands of DNA, including DNA replication, DNA repair, and 

recombination. The abundant variety of DNA helicases, which greatly exceeds that of 

DNA polymerases, has hindered efforts to elucidate their functional role in DNA 

processing pathways, particularly in vertebrates. The conserved vertebrate DNA helicase 

B (HELB) was initially discovered in extracts of a temperature-sensitive mouse cell line 

as a thermolabile ATPase whose activity depended on single-stranded DNA (ssDNA) 

[157, 158, 175]. Subsequent biochemical studies revealed that the ATPase displayed 

ssDNA-dependent helicase activity [160, 168, 169]. More recently, analysis of mouse 

and human HELB cDNAs revealed their sequence homology and biochemical similarity 

to several prokaryotic superfamily 1B helicases that unwind DNA with 5’-3’ polarity 

[122, 161, 176]. 

A potential role for HELB in chromosomal replication was initially suggested by 

studies of the mutant mouse cell line expressing temperature-sensitive HELB helicase 

                                                 

3  Bulk of this chapter was published in Guler GD*, Liu H*, Vaithiyalingam S, Arnett DR, 

Kremmer E, Chazin WJ and Fanning E. Human DNA Helicase B (HDHB) binds to replication 

protein A and facilitates cellular recovery from replication stress. J. Biol. Chem. In press. * Equal 

contribution. 
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activity: when shifted to the non-permissive temperature, the cells accumulated in early 

S-phase [169]. Consistent with this finding, microinjection of purified recombinant 

human HELB (HDHB) protein with a substitution in the Walker B motif, i.e. helicase-

dead, into human cells in G1 inhibited DNA synthesis in up to 70% of the injected cells, 

whereas injection of the wild type protein did not [161]. Also of note, purified mouse and 

human HELB were found to interact functionally with purified DNA polymerase alpha-

primase, displaying primosome activity on replication protein A (RPA)-coated ssDNA in 

vitro [160, 161]. These activities would be consistent with a role for HELB in initiation 

of chromosomal replication, in lagging strand synthesis, or possibly in recovery from 

DNA damage by re-priming the leading strand template downstream of forks stalled at a 

lesion [177, 178]. HDHB has also been identified in proteomic screens as a potential 

target of the ataxia telangiectasia-mutated (ATM) checkpoint kinase [74] and as part of a 

mismatch repair complex [171]. Taking these findings together, we reasoned that HDHB 

might function in chromosomal replication, perhaps at the interface of replication with 

repair, and set out to explore this possibility. 

Here we demonstrate that in S phase cells exposed to replication stress, HDHB 

accumulates on chromatin in a checkpoint signaling independent, RPA-dependent 

manner. We identify in detail direct physical interactions of HDHB with RPA, which 

closely resemble those that recruit S phase checkpoint signaling proteins ATRIP and 

Rad9 to stalled forks. HDHB depletion does not disrupt activation of S phase checkpoint 

signaling, but instead slightly stimulates it. Moreover, HDHB depletion reduces viability 

of cells exposed to camptothecin, and increases chromosomal breaks and gaps in cells 
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exposed to aphidicolin. Based on these results, we propose that HDHB functions to 

counteract replication stress. 

 

Experimental Procedures 

Cell culture, synchronization, and genotoxin treatment 

U2OS, HCT116, HeLa, and 293 Phoenix retroviral packaging cells were grown as 

monolayers in Dulbecco-modified Eagle medium supplemented with 10% fetal bovine 

serum at 37°C and 5% CO2. U2OS cells were synchronized at G1/S by incubation for 17 

h with 2.5 mM thymidine (Sigma-Aldrich), followed by a 12 h release, and another 17 h 

incubation with thymidine. Cells were released from the second thymidine incubation for 

3 h into S phase and for 9 h into G2/M phase. To enrich U2OS cells in G1 phase, cells 

were cultured with 30 ng/ml nocodazole (Sigma-Aldrich) for 16 h and then released for 4 

h. Cells were irradiated with UV-C at 254-nm in a Stratalinker (Stratagene). 

 

Antibodies against HDHB. 

Polyclonal rabbit antibodies were described previously [164]. To generate 

monoclonal antibodies, purified recombinant T7-tagged HDHB protein [161] (50 g) was 

injected intraperitoneal (i.p.) and subcutaneously (s.c.) into LOU/C rats using CpG2006 

(TIB MOLBIOL) as adjuvant. After 8 weeks, a boost of antigen was given i.p. and s.c. 

Three days later, fusion of P3X63-Ag8.653 myeloma cells with the rat spleen cells was 

performed according to standard procedures [179]. Hybridoma supernatants were tested 

in a solid phase immunoassay using T7-tagged HDHB protein adsorbed to polystyrene 
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microtiter plates. Crude E. coli extract served as a negative control. Hybridoma cells 

expressing mAb 4C11 and mAb 5C9 were stably subcloned and used to produce 

antibodies for further analysis (Figure 13A; Figure 19E, F). Rat IgG was purified using 

Melon gel IgG purification kit (Pierce) according to the manufacturer’s instructions, and 

dialyzed into 25 mM HEPES-KOH pH 7.5 and 50 mM NaCl. Nonimmune rat IgG was 

purchased from Jackson ImmunoResearch. 

 

Cell fractionation and western blotting. 

To obtain whole cell extract, cells were lysed in RIPA buffer (50 mM Tris-HCl at 

pH 7.5, 150 mM NaCl, 1% NP-40, 0.5% deoxycholic acid, 0.1% SDS, 10 mM NaF, 1 

mM Na3VO4, 1 mM phenylmethylsulfonyl fluoride, 10 mg/ml aprotinin, 1 mM leupeptin) 

on ice for 30 min, and centrifuged at 12,500 rpm for 15 min. Chromatin fractionation was 

performed as described [180] except that the final Triton X-100 concentration used for 

separation of cytoplasmic proteins from nuclei was 0.05% for U2OS or HCT116 and 

0.1% for HeLa cells. Antibodies used for western blotting were: rabbit anti-HDHB [164], 

mouse monoclonal anti-RPA 70C or 34A [181], anti-Chk1 phospho-S317 (Cell 

Signaling), anti-RPA32 phospho-S4/S8 (Bethyl), total RPA32 (RPA2, Calbiochem), 

glyceraldehyde 3-phosphate dehydrogenase (Santa Cruz), mouse anti-PCNA (PC-10, 

Santa Cruz), mouse anti-tubulin (NeoMarkers or Santa Cruz), mouse anti-histone H1 

(Santa Cruz), mouse anti-Chk2 (Upstate), rabbit anti-Chk2 phospho-T68 (Cell Signaling), 

mouse anti-Chk1 (Santa Cruz), rabbit anti-Chk1 phospho-S345 (Cell Signaling), mouse 

anti-FLAG antibody (Sigma-Aldrich), mouse anti-His antibody (Genscript). Rabbit 

polyclonal anti-GST and anti-Orc2 came from Fanning Lab stocks.  
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Fluorescence microscopy 

To visualize FLAG-HDHB localization by microscopy, U2OS cells grown on 

coverslips were transfected with pFLAG HDHB plasmids diluted 1:5 with empty 

pFLAG-CMV2 vector for HDHB expression closer to physiological level. For staining, 

cells were pre-extracted with cytoskeleton buffer and Triton X-100 prior to fixation to 

visualize chromatin-bound proteins [182]. EdU was stained using Click-iT® EdU Alexa 

Fluor® 647 Imaging Kit (Invitrogen). Cells were then blocked with 5% FBS and 0.3% 

Triton X-100 in PBS for 1 h at room temperature. Antibodies were diluted in 1% BSA 

and 0.3% Triton X-100 in PBS. Primary incubations with rabbit anti-DYKDDDDK Tag 

Antibody (Cell Signaling), mouse anti-RPA2 (Calbiochem), mouse anti-γH2AX 

phospho-S139 (Upstate) were done at 4°C overnight. Secondary antibody incubations 

with AlexaFluor 488 conjugated donkey anti-mouse (Invitrogen) and AlexaFluor 555 

conjugated donkey anti-rabbit (Invitrogen) were done at room temperature for 1 h. 

Coverslips were mounted in ProLong Antifade (Molecular Probes). Images were taken on 

a Zeiss Z1 Axio-Observer Apotome microscope.  

 

Recombinant proteins. 

WT and mutant HDHB were purified from Hi5 insect cells as previously 

described [161]. Mutant 3xA HDHB was generated by site-directed mutagenesis in 

pFLAGWT HDHB plasmid [164] using mutagenic primers E499A 

(AGTTGGAAGAAAGAGCAGTAAAAAAAGC CTG), D506A 

(AAGCCTGTGAAGCTTTTGAACAAGA), D510A 
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(GAAGATTTTGAACAAGCCCAGAATGCTTCAGAAG). Correct mutagenesis was 

confirmed by DNA sequencing. The 3xA HDHB coding sequence excised from the 

pFLAG vector using NotI/SalI was cloned into pFast-Bac HT (Sigma-Aldrich) using 

NotI/XhoI. Baculovirus for 3xA HDHB expression was generated in Sf9 cells using Bac-

to-Bac Baculovirus expression system (Invitrogen). 

HDHB truncation mutants were designed based on predicted secondary structure 

(psipred, predictprotein) [183, 184], disorder (DisEMBL) [185], and sequence 

conservation among vertebrate  DHBs (T-Coffee) [162], and cloned in pET28 for 

bacterial expression of His-tagged proteins. Plasmids used for bacterial expression of 

His-tagged RPA truncation mutants were: pET15b-RPA70(1-120) for RPA70N [57] from 

Dr. C. Arrowsmith, pET15b-RPA32(172-270) for RPA32C [186], pET11d-RPA70(1-

168) for RPA70N+L [187], from Dr. M. Wold, pET15b-RPA70(181-422) for RPA70AB 

[188] and pET15b-RPA70(436-616/32(43-171)/14 for RPA70C/32D/14 [189], both from 

Dr. A. Bochkarev. His-tagged RPA and HDHB truncation mutants were expressed in E. 

coli and purified over Ni-NTA column (Qiagen). GSTtagged WT and R41/43E mutant 

RPA70(1-120) constructs, kindly provided by Drs. D. Cortez and X. Xu [58], were 

expressed in E. coli, then purified over glutathione Sepharose beads (Sigma-Aldrich). 

Wild type human RPA was expressed from pET11d-WT RPA (from Dr. M. Wold) in E. 

coli, and purified as described [190].  
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Co-immunoprecipitation and GST pulldown assays. 

For co-immunoprecipitations using FLAG M2 beads, extracts from cells 

transfected with FLAG-HDHB or control plasmid were lysed in 50 mM Tris HCl pH 7.4, 

150 mM NaCl, 1 mM EDTA and 1% Triton X-100, and then incubated with FLAG M2 

antibody agarose (Sigma-Aldrich) for 2 h. FLAG-HDHB that co-immunoprecipitated 

endogenous RPA was washed three times with FLAG IP wash buffer (50 mM Tris HCl 

pH 7.4 and 150 mM NaCl), 10 min each, and analyzed by western blotting. For FLAG 

coimmunoprecipitations with RPA truncation mutants, FLAG-HDHB-containing cell 

extracts were bound to FLAG M2 resin as above. The beads were washed with FLAG IP 

high salt wash buffer (50 mM Tris HCl pH 7.4 with 800 mM NaCl, and then with 1 M 

NaCl), and incubated with purified His-tagged RPA truncation mutants for 30 min in Tris 

HCl pH 7.4, 150 mM NaCl. Proteins bound to beads were analyzed by western blotting 

after three washes with FLAG IP wash buffer. 

For other co-immunoprecipitations, protein A beads pre-bound to rabbit anti-

HDHB antibody were incubated with purified HDHB for 1 h at 4°C in binding buffer (30 

mM Hepes-KOH pH 7.8, 10 mM KCl, 7 mM MgCl2) containing 2% milk. Beads were 

then washed with binding buffer and incubated with purified WT RPA or RPA truncation 

mutants for 30 min at 4°C. Beads were washed once with binding buffer, three times with 

wash buffer (30 mM Hepes-KOH pH 7.8, 75 mM KCl, 7 mM MgCl2, 0.25% inositol, 

0.01% NP-40, 10 μM ZnCl2), once more with binding buffer, 10 min each, and bound 

proteins were analyzed by SDS-PAGE and western blotting. 
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For GST pull-downs, purified GST alone or GST-tagged WT or R41/43E 

RPA70N were allowed to bind to glutathione beads overnight in binding buffer with 2% 

milk. The beads were then incubated with purified HDHB truncation mutants or with 

whole cell extracts from cells expressing FLAG-tagged WT- or 3xA-HDHB for 30 min, 

washed, and analyzed as described above.  

 

Helicase assay 

M13mp18 circular ssDNA (USB) annealed to a 33-nucleotide DNA (5’- 

TCGACTCTAGAGGATCCCCGGGTACCGAGCTCG-3’), 32P-radiolabeled at the 5’ 

end, served as a partial duplex DNA substrate. Helicase reactions (10 μl) contained 20 

mM Tris-HCl (pH 7.5), 8 mM DTT, 1 mM MgCl2, 1 mM ATP, 20 mM KCl, 4% (w/v) 

sucrose, 80 μg/ml BSA, 8 ng of 32P-labeled helicase substrate, and 6 to 24 ng of HDHB. 

In negative control reactions, ATP was omitted. Reactions were incubated at 37°C for 30 

min. At the end of incubations, reactions were stopped by addition of 10 μl stop buffer 

(for a final concentration of 0.3% SDS, 10 mM EDTA, 5% glycerol, and 0.03% 

bromophenol blue). Samples were electrophoresed on 12% native polyacrylamide gels in 

89 mM Tris borate, 2 mM EDTA. The wet gel was wrapped in plastic and exposed to a 

PhosphorImager screen for visualization and quantification. The average background 

density determined from no-enzyme and no ATP samples was subtracted from the 

unwound product values. Percentage of unwound DNA was calculated with the formula: 

% unwound = 100 x [product / (remaining DNA substrate + product)].  
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Isothermal titration calorimetry. 

HDHB peptide (EQLEEREVKKACEDFEQDQNASEEW) was purchased 

(Genscript) and further purified by high-performance liquid chromatography to >90% 

purity. RPA70N and HDHB peptide were exchanged into 20 mM Tris (pH 7.2) 75 mM 

NaCl, and 2 mM β-mercaptoethanol. Binding affinity of RPA70N with HDHB peptide 

was measured using a MicroCal VP-isothermal titration calorimeter. Titration 

experiments were performed by first injecting 2 μl of 1 mM HDHB peptide into 75 μM 

of RPA70N in the sample cell, followed by additional 10 μl injections. Data were 

analyzed using Origin software. Thermodynamic parameters and binding constant (Kd) 

were calculated by fitting the data to the best binding model using a nonlinear least-

squares fitting algorithm. 

 

NMR spectroscopy. 

NMR experiments were performed using Bruker DRX 500-MHz or 600-MHz 

spectrometers equipped with cryoprobes. 15N-1H heteronuclear single-quantum coherence 

(HSQC) spectra were acquired using 1024 complex points in the 1H dimension and 128 

complex points in the 15N dimension. 15Nenriched RPA70N sample was prepared at 100 

μM in a buffer containing 20 mM Tris (pH 7.5), 75 mM NaCl and 2 mM DTT. A series 

of 15N-1H HSQC spectra were collected at RPA70N/HDHB peptide molar ratios of 1:0, 

1:0.5, 1:1, 1:2, and 1:4. All spectra were processed by Topspin v2.0 (Bruker, Billerica, 

MA) and analyzed with Sparky (University of California, San Francisco, CA).  
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Gene silencing 

 The pRetro-Super (pRS) was kindly provided by R. Agami [191]. HDHB shRNA 

(CAGGTGCTTGGTGGAGAGT) and control shRNA (GACCCGCGCCGAGGTGAAG) 

were cloned into pRS. The pRS plasmids were then transfected into the retrovirus 

packaging cell line Phoenix 293 as described on the Nolan lab website 

(http://www.stanford.edu/group/nolan) with minor modifications. Briefly, cells were 

transfected with each pRS-derived plasmid and selected with 5 μg/ml puromycin (Sigma-

Aldrich). To harvest virus, cells at 75% confluence were incubated for 16 h at 37°C. 

Collected media were passed through a 0.45-μm syringe filter (Pall Corporation). To 

obtain stable HDHB knock-down in HCT116, cells were infected with virus stock pre-

incubated with 4 μg/ml polybrene (Sigma-Aldrich). After overnight incubation, cells 

were replated in growth medium, and selected in 5 μg/ml puromycin for 7–10 days. 

For transient HDHB knock-down, HeLa cells were transfected with pGIPZ HDHB 33141 

(shRNA1:GCAAGACTGTGATCTAATT) or 33143 

(shRNA2:CCAGTTCTCAGTCATCTAA) (Open Biosystems) and selected with 3 μg/ml 

puromycin. Non-silencing pGIPZ was used as control. RPA70 siRNA 

(AACACUCUAUCCUCUUUCAUG) and control siRNA 

(AUGAACGUGAAUUGCUCAA) (Dharmacon) were transfected into HeLa cells 

exactly as described [58]. Transfections were done using Lipofectamine 2000 

(Invitrogen) for HeLa cells and Fugene HD (Roche) for U2OS cells according to the 

manufacturer’s protocol. Cells transiently silenced for HDHB or RPA70 were analyzed 

72 h post-transfection.  
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Clonogenic survival assay. 

Stably HDHB or control-silenced HCT116 cells were seeded in 60-mm dishes 

(~800 per dish). Cells were allowed to attach to the dish for 12 h, then treated in triplicate 

with different concentrations of CPT for 12 h, washed twice with PBS, and incubated in 

fresh growth medium for 10 days. Cell colonies were fixed and stained with 0.5% crystal 

violet in 70% ethanol. Visible colonies were counted. Experiments were repeated at least 

3 times.  

 

Chromosome analysis in metaphase spreads.  

HCT116 cells stably silenced for HDHB or control-silenced were cultured in 100 

mm dish to 30% confluence, followed by addition of aphidicolin (0.2 or 0.4 M) for 24 h, 

and then 100 ng/ml colcemid (Roche) for 2 h. Cells were trypsinized, washed once with 

PBS, resuspended in 10 ml pre-warmed 75 mM KCl, and incubated for 10 min at 37°C. 

Cells were collected by centrifugation (5 min, 800 rpm) and resuspended in 0.2 ml 75 

mM KCl. To fix the cells, 5 ml prechilled acetic acid/methanol (1:3) was dropped into the 

cell suspension while vortexing, mixed immediately, and incubated for at least 30 min on 

ice. For staining, cells were collected by centrifugation, washed once with cold fresh 

fixative, then resuspended in fresh fixative (0.5 ml for ~107 cells), and dropped onto wet 

cold slides (slides were kept in 70% ethanol at -20°C) on ice from ~10 cm height. Slides 

were air-dried, baked at 65°C for 2 h, and stained with 4% Giemsa in 10 mM phosphate 

buffer for 15 min. Slides were rinsed with water, dried, and mounted on cover slips with 
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Cytoseal 60 (Richard-Allan Scientific). Slides were observed under bright field 

microscope, and 100 cells, each with 45-46 chromosomes, per sample, were counted. 

 

Results 

DNA damage induces accumulation of HDHB on chromatin 

To elucidate potential roles for HDHB in chromosomal replication, we reasoned 

that variation in its subcellular localization as a function of the cell cycle, in particular its 

association with chromatin, might correlate with its function. Since HDHB was easily 

detectable in whole cell extracts of U2OS, HeLa, and HCT116 tumor cells, but much less 

abundant in primary cells (Figure 13B), U2OS cells were biochemically fractionated 

using an established method (Figure 13C). U2OS cells were released from a nocodazole 

block, fractionated at 3-hour intervals, and proteins in each sample were analyzed in 

western blots (Figure 14A). Tubulin was detected in the soluble fraction and Orc2 in the 

chromatin fraction, as expected. Chromatin-bound PCNA was absent in G1, and began to 

accumulate in early S (6 h after release), as expected. HDHB was found mainly in the 

soluble fraction throughout the cell cycle, and the level of chromatin-bound HDHB 

remained very low, with a barely detectable increase in S phase (Figure 14A, lanes 5-8). 

Cells released from a double thymidine block displayed a similar subcellular distribution 

of HDHB (Figure 14B). The results indicate that unlike the authentic replication fork 

protein PCNA, the subcellular distribution of HDHB fluctuated little during the cell 

cycle. 
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To examine the possibility that the low level of chromatin-bound HDHB might 

function in DNA repair rather than in bulk DNA replication, asynchronously growing 

U2OS cells were treated with DNA damaging agents, biochemically fractionated and 

analyzed by western blot. Exposure to ultraviolet irradiation (UV), the topoisomerase I 

inhibitor camptothecin (CPT), or the ribonucleotide reductase inhibitor hydroxyurea 

(HU) induced accumulation of HDHB on chromatin (Figure 14C). The level of 

chromatin-bound HDHB correlated with the amount or duration of exposure to each 

genotoxin (Figure 15A-F). A similar increase in chromatin-bound HDHB was observed 

in HCT116 cells treated with UV, CPT or HU (Figure 14D). Chromatin-bound PCNA 

was clearly decreased in the CPT-treated cells (Figure 14D, lane 4), an observation 

consistent with the ability of CPT-topoisomerase I cleavage complexes to cause 

replication fork collapse [51]. All three agents induced a modest, but clearly detectable, 

increase in chromatin-bound RPA, suggestive of replication stress [55, 56, 58] (Figure 

14D, compare lanes 2, 4, 6 with lanes 1, 3, 5). 
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Figure 13. HDHB antibody specificity, HDHB expression levels and subcellular 

distribution.  
(A) U2OS whole cell extract (WCE) (lanes 1-3, 5) and purified HDHB (lane 4) were analyzed by SDS-

PAGE and western blot using polyclonal rabbit (lanes 1, 4, 5) and monoclonal rat antibodies (lanes 2, 3). 

(B Whole cell extracts (10-30 μg as indicated) from GM5381 (primary skin fibroblast) (lane 1), HCT116 

(colorectal carcinoma cell line) (lanes 2-4), U2OS (osteosarcoma cell line) (lane 5), HeLa (cervical 

carcinoma cell line) (lane 6), ATLD+Mre11 (Mre11-complemented ATLD cells) (lane 7), ATLD (Mre11-

deficient ataxia-telangiectasia-like disorder cells immortalized by hTERT expression) (lane 8) were 

separated by SDS-PAGE and analyzed by western blotting with antibodies against HDHB, tubulin, or 

PCNA, as indicated. (C) Whole cell extract (WCE), cytoplasmic (S1), nuclear soluble (S2), and chromatin 

(P2) fractions from asynchronously growing U2OS cells were prepared as described in Materials and 

Methods. In lanes 5, 6, nuclei were treated with micrococcal nuclease (MNase) before separating the 

nuclear soluble fraction from chromatin fraction. Proteins were visualized by western blotting with the 

antibodies indicated. Experiments in panels A, C and right panel of B were performed by Dr. Hanjian Liu. 
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Figure 14. DNA damage induces HDHB accumulation on chromatin.  
(A) U2OS cells were released from a nocodazole block for the indicated times and cell cycle distribution 

was characterized by flow cytometry (upper panels). Cells from each time point were separated into soluble 

(Sol) and chromatin fractions (Chr) (16) and analyzed by western blot with the indicated antibodies (lower 

panels). Fractions from asynchronous cells were analyzed in parallel (Asy). (B) U2OS cells were released 

from a double thymidine block for the indicated times and cell cycle distribution was characterized by flow 

cytometry (upper panels). Cells from each time point were separated into soluble (Sol) and chromatin 

fractions (Chr) (16) and analyzed by western blot with the indicated antibodies (lower panels). Fractions 

from asynchronous cells were analyzed in parallel (Asy). (C, D) Asynchronous U2OS (C) or HCT116 (D) 

cultures treated (+) with 100 J/m2 UV, 10 μM camptothecin (CPT) or 5 mM hydroxyurea (HU) for 2 h, or 

left untreated (-), were fractionated as in (A, B) and analyzed by western blotting with the indicated 

antibodies. Experiments were performed by Dr. Hanjian Liu. 
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Figure 15. Damage-dependent accumulation of HDHB on chromatin.  
(A-C)  Asynchronously growing U2OS cells were treated with indicated doses of UV (A), CPT (2 h) (B), 

or HU (2 h) (C) as indicated, then fractionated and analyzed as described in Figure 14C. (D-F) 

Asynchronous cultures of U2OS cells were treated with 100 J/m2 UV (D), 0.1 μM CPT (E), or 2 mM HU 

(F) for the indicated time periods, then fractionated and analyzed as described in Figure 14C. Panels A and 

D were performed by Dr. Hanjian Liu. 
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If the damage-induced accumulation of HDHB on chromatin were indeed 

associated with replication stress, one would expect to observe it preferentially in S phase 

cells. This prediction was tested by enriching U2OS cells in G1, early-mid S phase, or 

G2/M, then exposing them to HU, CPT, UV, or ionizing radiation (IR), followed by 

biochemical fractionation and western blot analysis. HU, CPT, and UV induced the 

accumulation of chromatin-bound HDHB almost exclusively in S phase cells, with little 

or no increase observed in G1 or G2/M cells (Figure 16AC). These findings are 

consistent with replication stress-induced accumulation of HDHB on chromatin. In 

addition, cells exposed to IR also displayed a modest induction of chromatin-bound 

HDHB in G1, S, and G2/M (Figure 16D, compare lanes 1, 3, 5 with lanes 2, 4, 6). IR-

induced damage includes DNA double strand breaks, which undergo limited processing 

by nucleases to generate short stretches of ssDNA that facilitate repair [192-195]. Thus, 

chromatin structures generated in response to IR may display features in common with 

the extended stretches of RPA-coated ssDNA in replication-stressed chromatin. These 

findings indicate that HDHB accumulates on chromatin in response to replication stress, 

and to a lesser extent, in response to IR-induced damage. 
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Figure 16. HDHB accumulates on chromatin in response to replication stress.  
(A-D) U2OS cells enriched in G1, S, or G2/M phase as described in Materials and Methods were treated 

with (A) 5 mM HU, (B) 10 μM CPT, or (C) 100 J/m2 UV, or (D) 20 Gy ionizing radiation (IR), or left 

untreated (-) and analyzed as described in (Figure 14C). (E) U2OS cells synchronized in S phase and 

treated with UV or CPT as in Figure 14C, or left untreated, were extracted using digitonin in isotonic buffer 

to release cytosolic proteins as described previously (14). Nuclei were extracted to separate soluble nuclear 

from chromatin-bound proteins. Fractions were analyzed by western blotting with the indicated antibodies. 

Experiments were performed by Dr. Hanjian Liu. 
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Figure 17. Replication stress-induced redistribution of HDHB does not require 

checkpoint signaling, but correlates with the level of RPA on chromatin.  
(A) U2OS cells were pre-treated with DMSO (control) or 200 μM wortmannin for 30 min, and then 

exposed to 20 Gy IR, 100 J/m2 UV, or 10 μM CPT for 2 h. Whole cell extracts (WCE) or chromatin 

fractions (Chr) were analyzed by western blotting with the indicated antibodies. Experiment was performed 

by Dr. Hanjian Liu. (B) HeLa cells transiently transfected with RPA70 siRNA or control siRNA were 

treated with UV or CPT as in Figure 14C, or left untreated (-) as a control. Soluble (Sol) and chromatin 

(Chr) fractions (16) were analyzed by western blotting with the indicated antibodies.  
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Figure 18. HDHB co-localizes and associates with RPA.  
(A, B) U2OS cells transiently expressing FLAG-tagged WT HDHB were pre-labeled with EdU for 20 min, 

and treated with 1 µM CPT for 6 h or 2 mM HU for 6 h or 24 h. or left untreated as control (No Damage). 

Cells were then pre-extracted to remove soluble proteins, fixed, and stained to visualize EdU and 

chromatin-bound FLAG, γH2AX (A) or RPA32 (B). Scale bar, 10 µM. (C, D) Pearson correlation 

coefficients for HDHB co-localization with γH2AX (C) or RPA (D) were calculated in 19-22 cells for each 

sample using ImageJ software. (E) Whole cell extracts (WCE) prepared from HeLa cells transiently 

transfected with pFLAG-HDHB (+) or empty pFLAG (-) were incubated with anti-FLAG-M2 agarose 

beads. Proteins bound to the beads were analyzed by SDS-PAGE and western blotting with anti-FLAG or 

monoclonal anti-RPA antibody 34A as indicated. * Non-specific band. (F) Purified WT heterotrimeric 

RPA was incubated in the absence (-) or presence (+) of purified HDHB as indicated with Protein A-beads 

pre-bound to anti-HDHB antibody. Proteins bound to the beads were analyzed by SDS-PAGE and western 

blotting with monoclonal RPA70C and rabbit anti-HDHB. 
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This DNA damage-induced accumulation of chromatin-bound HDHB could 

reflect a redistribution of soluble HDHB to chromatin or an increased level of total 

HDHB after damage. To distinguish between these possibilities, S phase cells that had 

been treated with CPT, UV, or left untreated were biochemically fractionated with a 

different protocol to generate separate cytosolic, soluble nuclear, and chromatin-

associated protein fractions. We found that the soluble nuclear fractions from CPT- and 

UV-treated cells contained less HDHB than did that from control cells (Figure 16E, top 

row, compare lane 4 with lanes 5, 6). Conversely, the chromatin fractions from the CPT- 

and UV- treated cells contained more HDHB than that from untreated cells (Figure 16E, 

lanes 7-9). The level of HDHB in the cytosolic fraction of CPT- or UV-treated cells was 

not detectably different than that of untreated cells (compare lane 1 with lanes 2, 3). The 

results are most consistent with a replication stress-induced recruitment of soluble 

nuclear HDHB to chromatin. 

 

Requirements for HDHB recruitment to chromatin 

To determine the requirements for HDHB recruitment to chromatin in response to 

replication stress, we first considered that phosphoinositide-3 kinase-related protein 

kinases (PIKK) ATM, ATR, and DNA-PK activated by DNA damage might recruit 

HDHB to chromatin. Consistent with this possibility, HDHB contains several predicted 

PIKK phosphorylation sites and was identified by mass spectrometry as a target for 

ATM/ATR after DNA damage [74]. To test for a possible role for PIKK activity in 

recruitment of HDHB to chromatin, we briefly treated cells with wortmannin, a broad-

spectrum inhibitor of PIKK family kinases [196] before exposing them to DNA 
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damaging agents. As expected, exposure to IR, UV, and CPT resulted in robust 

phosphorylation of Chk1 serine 345 and Chk2 threonine 68 in control cells, with little 

effect on total Chk1 or Chk2 (Figure 17A, compare lane 1 with lanes 2-4) and checkpoint 

signaling was strongly  inhibited in the presence of wortmannin (compare lane 5 with 

lanes 6-8). Importantly, HDHB recruitment to chromatin after genotoxin treatment was 

virtually identical in the presence and absence of checkpoint signaling (Figure 17A, top 

row, compare lanes 1-4 with lanes 5-8). Thus inhibition of PIKK activity does not reduce 

DNA damage-induced recruitment of HDHB to chromatin.  

Replication stress-induced recruitment of S phase checkpoint proteins, e.g. 

ATRIP, to chromatin depends on their ability to bind to the RPA-coated ssDNA that 

accumulates at sites of DNA damage [55, 56, 58]. To test the possibility that damage-

induced recruitment of HDHB may be mediated by RPA, HeLa cells transiently depleted 

of RPA70 were exposed to UV or CPT and then biochemically fractionated. The level of 

RPA70 in the soluble and chromatin fractions was substantially lower in RPA-silenced 

cells than in control-silenced cells, validating the knock-down (Figure 17B, rows 2 and 5, 

compare lanes 1-3 with lanes 4-6). Consistent with published evidence [58], RPA70 

depletion slightly increased the fraction of cells in S phase, and reduced S phase 

checkpoint signaling. Also as expected, the level of RPA70 on chromatin increased in 

response to UV and CPT, both in control-silenced and in RPA-silenced cells (Figure 17B, 

row 2, compare lanes 2, 3 with lane 1, and lanes 5, 6 with lane 4). RPA70 silencing did 

not affect the level of HDHB in the soluble fraction (row 4, compare lanes 1-3 with 4-6). 

Importantly, however, the level of HDHB recruited to chromatin after UV- and CPT 

treatment in RPA70-silenced cells was lower than in control-silenced cells (Figure 17B, 
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top row, compare lanes 2, 3 with lanes 5, 6). Thus HDHB recruitment to chromatin in 

response to replication stress correlates with the level of chromatin-bound RPA. 

The recruitment of soluble nuclear HDHB to chromatin in response to replication 

stress, the dispensability of PIKK activity for this recruitment, and the correlation of 

HDHB recruitment with the RPA level on chromatin led us to question whether HDHB 

recruitment to chromatin might be mediated by RPA. To assess this possibility, we first 

asked whether it co-localizes with the DNA damage marker γH2AX or the RPA that 

accumulates at stalled forks [55]. Since none of our anti-HDHB antibodies was capable 

of staining the endogenous protein in immunofluorescence microscopy, FLAG-tagged 

HDHB was expressed in human cells. S-phase cells were marked by pulse-labeling with 

the thymidine analog EdU, then exposed to CPT or HU, or left untreated as a control. 

After pre-extraction of soluble proteins, chromatin-bound HDHB and γH2AX (Figure 

18A) or RPA (Figure 18B) were visualized by immunofluorescence microscopy. 

Exposure to HU or CPT resulted in nuclear foci of FLAG-HDHB, γH2AX and RPA.  

FLAG-HDHB co-localized significantly with RPA foci (Figure 18B and D) and partially 

with γH2AX (Figure 18A and C), similar to a pattern previously observed for ssDNA and 

RPA co-localization with γH2AX after replication stress [152, 197]. These results 

suggest that HDHB localizes to ssDNA accumulated following replication fork stalling. 
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Figure 19. Direct physical interaction of HDHB with RPA.  
(A) Modular domain architecture of RPA. The three subunits RPA70, 32, and 14 interact through a 

threehelix bundle (dotted lines). Compact domains (OB-folds, filled rectangles; winged helix, filled oval) 

joined by flexible linkers (L, lines) [198]. (B) Purified His-tagged RPA constructs captured on anti-FLAG 

antibody beads in the presence (+) or absence (-) of whole cell extract as in (A) were analyzed by western 

blotting with anti-His (top four panels) or anti-FLAG. (C) Diagram of HDHB domains and truncation 

constructs. NTD, N-terminal domain; PSLD, phosphorylation-regulated subcellular localization domain 

[164]. The seven conserved helicase motifs I, Ia, and II–VI of superfamily I are indicated by light gray 

ovals. The first and last residue numbers of each construct are indicated. (D) Glutathione beads pre-bound 

to purified GST or His-GST-RPA70N were incubated with purified His-tagged HDHB truncation mutants. 

Proteins captured on the beads were analyzed by western blotting with anti-His antibody. (E) His-tagged 

HDHB truncation mutants (E) were separated by SDS-PAGE and visualized by western blotting performed 

with HDHB monoclonal antibody 4C11 (top panel) or anti-His antibody (lower panel). (F) Glutathione 

beads pre-bound with GST (lane 1) or GST-RPA70N were incubated with purified HDHB (0.5 μg) in the 

absence (lanes 1 and 2) or presence of increasing amounts (0.3, 0.6, 1.2, 2.4 μg) of monoclonal IgG 4C11 

(lanes 3-6) or of non-immune rat IgG (lanes 7-10). 
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If chromatin-bound RPA were directly responsible for recruiting soluble HDHB 

to chromatin, one would expect HDHB to interact physically with RPA. Consistent this 

prediction, endogenous RPA was co-precipitated with FLAG-HDHB from extracts of 

cells transiently expressing FLAG-HDHB, but not FLAG-vector (Figure 18E, compare 

lanes 3 and 4). Importantly, purified RPA bound to anti-HDHB antibody beads in the 

presence of purified recombinant HDHB (Figure 18F, lane 3), but not in its absence (lane 

2), demonstrating a direct physical interaction between the two proteins. 

 

HDHB interacts specifically with the N terminal region of RPA70 

Detailed biochemical mapping and structural analysis of the RPAHDHB 

interaction was then pursued in order to more fully define the molecular basis for HDHB 

localization to replication-stressed chromatin. RPA interacts with partner proteins 

utilizing four of its seven structural domains: the N-terminal domain of RPA70 

(RPA70N), the tandem high affinity ssDNA binding domains A and B of RPA70 

(RPA70AB), and the C-terminal domain of RPA32 (RPA32C) [198-202] (Figure 19A). 

To map the HDHB binding site(s) in RPA, purified His-tagged RPA domains were added 

to FLAG antibody beads pre-incubated with control or FLAG-HDHB extracts and RPA 

domains captured on the beads were detected by immunoblotting with anti-His antibody. 

Under these conditions, HDHB interacted specifically with RPA70N, but not with 

RPA70AB, RPA32C or the trimerization core RPA70C/32D/14 (Figure 19B).  

RPA70N serves as a chromatin recruitment domain for DNA damage response 

proteins [56, 58], raising the possibility that HDHB might be recruited to RPA-ssDNA by 
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docking with RPA70N. To search for a specific RPA70Ninteracting region in HDHB, we 

first designed HDHB fragments using tools for secondary structure, disorder, and fold 

prediction, as described in Methods (Figure 19C), and expressed them as His-tagged 

polypeptides in E. coli. The purified His-tagged HDHB fragments (Figure 19D, lane 1) 

were incubated with glutathione beads bound to GST or GST-RPA70N. HDHB residues 

394-958 and 459-811 bound specifically to GSTRPA70N beads, but not to GST (lanes 2, 

3). Other HDHB polypeptides did not bind to either GST or GST-RPA70N, 

demonstrating a specific interaction between HDHB 459-811 and RPA70N. Since this 

same fragment of HDHB was also recognized by the monoclonal antibody 4C11 (Figure 

19E; Figure 13A), we asked whether the antibody might compete with RPA70N to bind 

HDHB. Interestingly, pre-incubation of HDHB with increasing concentrations of 4C11 

IgG inhibited binding of HDHB to GST-RPA70N, whereas non-immune control IgG had 

no effect (Figure 19F). We conclude that the HDHB residues 459-811 are sufficient to 

interact directly and specifically with RPA70N. 
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Figure 20. The basic cleft of RPA70N physically interacts with a conserved acidic 

motif in HDHB.  
(A) Sequence alignment of HELB from four vertebrate species and E. coli RecD. Consensus sequence in 

the acidic motif is based on all available vertebrate HELB sequences: Star (*), identical; colon (:), 

conserved; dot (.), semi-conserved residues. Red asterisk, residues substituted by alanine to generate the 

HDHB 3xA mutant (see E below). Red font, a synthetic HDHB peptide E493-W517 used in NMR (B, C) 

and ITC (Figure 21A) experiments. (B) Overlaid 15N-1H-HSQC spectra of RPA70N in the absence (black) 

and presence of HDHB peptide at 1:0.5 (blue), 1:1 (green), 1:2 (pink), and 1:4 (red) molar ratios. The black 

arrows show chemical shift perturbations that result from binding of RPA70N with HDHB peptide. (C) 

Molecular surface diagram of RPA70N with the significantly perturbed residues labeled. Red, acidic 

residues; blue, basic residues. (D) GST-pulldown assays of purified full length HDHB with wild type (WT) 

or mutant (R41/43E) GSTRPA70N. Bound proteins were detected by immunoblotting with anti-HDHB 

(upper panel) or anti-GST (lower panel). (E) Extracts from HeLa cells transiently expressing FLAG-WT or 

-3xA HDHB were mixed with glutathione beads pre-bound to GST or GST-RPA70N. Proteins bound to the 

beads were analyzed by SDS-PAGE and immunoblotting with anti-FLAG (upper panel) or anti-GST (lower 

panel) antibodies. (F) Purified His-tagged WT and 3xA HDHB were analyzed by SDS-PAGE and stained 

with Coomassie. (G, H) Helicase activity of purified His-tagged WT and 3xA HDHB proteins was assayed 

as described [161] using a radiolabeled partial duplex DNA substrate (S) and the indicated amounts of 

purified HDHB. Helicase activity was visualized by phosphorimaging and quantified (lanes 4-9) after 

subtraction of radiolabeled background (product band P) detected in the DNA substrate (lane 1) and in the 

absence of ATP (lanes 3 and 7). BS, boiled substrate. Brackets show standard error of the mean (n≥3). 

Panels B and C were performed by Dr. Sivaraja Vaithiyalingam. 
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A conserved acidic motif in HDHB interacts physically with the basic cleft of RPA70N 

The RPA70N-interacting surfaces of p53, ATRIP, Rad9 and Mre11 have been 

mapped to an acidic stretch of residues in each protein [58]. We used this information, 

together with the mapping data in Figure 19 and amino acid sequence alignment of 

HDHB-related helicases, to search for potential RPA70N-binding motifs. The search 

revealed a phylogenetically conserved acidic peptide, residues 493-517, inserted between 

the superfamily 1B helicase motifs I and Ia (Figure 20A). This sequence motif is absent 

in the corresponding region of E. coli RecD, the prototype member of helicase 

superfamily 1B, implying that it may not be necessary for helicase activity and might 

have another role. To investigate the interaction of this region of HDHB with RPA70N, 

we designed a synthetic peptide that contains the conserved acidic residues of HDHB. 

Isothermal titration calorimetry (ITC) experiments were performed to measure the 

affinity of interaction between RPA70N and the peptide. The binding isotherm was fit 

with a single site binding model and resulted in a Kd of 15 +/- 0.05 μM (Figure 21A).  

In order to map the specific binding surface of the HDHB peptide on RPA70N, 

NMR chemical shift perturbation experiments were performed on 15N-enriched RPA70N. 

The series of 15N-1H HSQC spectra acquired with an increasing concentration of 

unlabeled peptide added into the solution revealed perturbations to a select number of 

peaks in the spectrum. This observation indicates that the binding interface between 

RPA70N and the peptide is specific (Figure 20B). The disappearance of signals at a sub-

stoichiometric molar ratio of peptide to RPA70N is consistent with the 15 μM Kd 

estimated by ITC. Analysis of the data showed that, in addition to the RPA70N basic 

residues (R31, R41, and R43), hydrophobic residues (I33, Y42, L44, F56, M57, L58, 
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A59, V84, L87, I95, L96, and L99) are involved in binding with HDHB (Figure 20B, C; 

Figure 21B). Mapping of these residues onto the structure of RPA70N reveals that 

HDHB binds to the basic cleft of the OB-fold domain (Figure 20C). This binding surface 

in RPA70N resembles that recognized by p53, Rad9, ATRIP, and Mre11 [58, 203, 204]. 

The importance of the RPA70N basic cleft and the HDHB acidic motif in the 

binding interaction was then tested in pull-down experiments with wild type and mutant 

proteins. GST-RPA70N interacted with HDHB as expected, and charge reverse 

substitutions in the basic cleft of GST-RPA70N (R41/43E) abolished HDHB binding 

(Figure 20D). A 3xA mutant form of FLAGHDHB with alanine substitutions in HDHB 

acidic residues E499, D506 and D510 was generated to test the role of this motif in 

binding to RPA70N. Full length FLAG-HDHB WT was pulled down by GST-RPA70N, 

but FLAG-HDHB 3xA as not (Figure 20E). The results confirm the roles of the acidic 

motif in HDHB and the basic cleft of RPA70N in the interaction. 

We purified recombinant WT and 3xA HDHB proteins to assess the specificity of 

the 3xA substitution on HDHB loss of function (Figure 20F). The 3xA and WT HDHB 

displayed comparable helicase activity (Figure 20G, H), demonstrating that the 3xA 

substitution did not perturb the helicase domain stability, overall fold, or activity, but 

specifically impaired the ability of HDHB to bind to RPA70N. Altogether, these results 

establish a direct physical interaction between the HDHB acidic motif and the RPA70N 

basic cleft.  
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Figure 21. Analysis of the binding of HDHB peptide to RPA70N.  
(A) The binding isotherm of interaction between RPA70N and HDHB peptide showing the heat changes 

(upper) and the integrated heat changes that fit with a single site binding model (lower). Kd 15 +/- 0.05 

μM. (B) The plot of the NMR chemical shift perturbations in RPA70N induced by the binding of HDHB 

(residues 493-517). The dashed line indicates one standard deviation above the mean. The absence of a bar 

for a given residue indicates that the peak for this residue was not assigned or that the peak disappeared 

upon the binding of the peptide. Experiments were performed by Dr. Sivaraja Vaithiyalingam. 
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Figure 22: RPA70N-HDHB interaction interface is important for efficient 

chromatin recruitment of HDHB in response to DNA damage.  
(A) HeLa cells transfected with RPA70 siRNA with silencing-resistant WT or R41/43E RPA70 expression 

plasmids were treated with the indicated DNA damaging agents as in Figure 17, or left untreated (-) as a 

control. Soluble (Sol) and chromatin (Chr) fractions [180] were analyzed by western blotting with the 

indicated antibodies. (B) HeLa cells transiently expressing FLAG-tagged WT or 3xA HDHB were treated 

with UV, CPT, or HU, fractionated, and analyzed by western blotting with anti-FLAG, anti-RPA70, anti-

Orc2, or anti-tubulin as indicated.  
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RPA70N -HDHB interaction surface promotes damage-dependent chromatin recruitment 

of HDHB 

RPA70N basic cleft is known to function as a recruitment scaffold for several 

DNA damage response proteins including ATRIP and Rad9 [57, 58]. The striking 

similarity in HDHB-RPA70N binding to RPA70N interactions with ATRIP and Rad9 

prompted us to ask whether RPA70N-HDHB interaction can play a role in damage-

induced HDHB recruitment to chromatin. To test the contribution of RPA70N basic cleft 

to HDHB recruitment, cells co-transfected with RPA70 siRNA and silencing-resistant 

variants of both R41/43E and WT RPA70 were treated with genotoxins and then 

fractionated as described in Figure 17. WT and R41/43E RPA70 were recruited to 

chromatin at comparable levels after UV, CPT and HU treatment (Figure 22A). However, 

cells expressing R41/43E RPA70 recruited less HDHB to chromatin than did the WT 

RPA70 expressing cells, implicating RPA70N basic cleft in damage-induced recruitment 

of HDHB to chromatin.  

If damage-induced HDHB recruitment defect observed in RPA silenced (Figure 

17B) or R41/43E RPA70 expressing cells (Figure 22A) is due to a requirement for a 

direct interaction between HDHB and RPA at DNA damage sites, HDHB acidic motif 

mutations 3xA, which perturbed RPA70N interaction (Figure 20E), should also disrupt 

HDHB recruitment to chromatin after DNA damage. To determine the potential 

contribution of the HDHB acidic motif in damage-induced HDHB recruitment to 

chromatin, asynchronously growing cells transiently expressing FLAG-WT or -3xA 

HDHB were exposed to UV, CPT or HU, biochemically fractionated as in Figure 17, and 

proteins in each fraction were analyzed by immunoblotting. As expected, both FLAG-
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WT HDHB and RPA accumulated on chromatin after exposure to UV, CPT, and HU 

(Figure 22B, lanes 1-4). RPA accumulated on chromatin also in damaged cells expressing 

FLAG-3xA HDHB (lanes 5-8). Despite similar protein levels of WT- and 3xA-HDHB in 

soluble fractions, chromatin fractions from undamaged control cells contained less 3xA-

HDHB than WT-HDHB. Furthermore, UV-, CPT- or HU-induced accumulation of 

FLAG-3xA HDHB on chromatin was reduced (lanes 5-8). Interestingly, we noted that 

after UV and CPT exposure, 3xA HDHB bound to chromatin actually decreased 

compared to undamaged control sample. This surprising result can be explained if HDHB 

normally travels with the fork and dissociates from chromatin upon CPT- or UV-induced 

fork collapse, as observed for other replisome components [102, 208], while the 

disruption of RPA70N interaction in 3xA hinders damage induced-recruitment. 

Altogether, our results suggest that RPA70N-HDHB interaction surface is important for 

efficient HDHB recruitment to chromatin after DNA damage. 

 

HDHB depletion reduces recovery from replication stress 

The evidence presented above demonstrates a replication stress-induced, RPA-

dependent, PIKK activity-independent redistribution of soluble nuclear HDHB to 

chromatin in tumor cell lines, together with the specific, direct physical interaction 

between the RPA70 basic cleft and a conserved peptide in HDHB. These findings would 

be consistent with the hypothesis that the unidentified role of HDHB in replication may 

lie in mitigating replication stress. To establish a basis to address this hypothesis, 

shRNAs H1 and H2, targeting two different HDHB sequences, were expressed in HeLa 

cells and selected for co-expression of puromycin resistance (Figure 23A). Comparison 
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of HDHB- and control-silenced cells by two-dimensional flow cytometry revealed that 

the substantial reduction in HDHB levels had little effect on cell cycle distribution in the 

absence of overt damage (Figure 23B).  

Based on the RPA-dependence of HDHB recruitment in response to replication 

stress (Figure 17B, Figure 22A) and the specific interaction of HDHB with the basic cleft 

of RPA70N (Figure 19, Figure 20), we first considered the possibility that HDHB 

recruitment to chromatin might be important for activation of checkpoint signaling. To 

assess this possibility, HDHB- or control-silenced HeLa cells were exposed to HU to 

induce replication stress, or left untreated. Analysis of whole cell extracts by western 

blotting confirmed HDHB silencing (Figure 23C, lanes 2, 3, 5, 6). We observed robust 

induction of phospho-Chk1 and N-terminally phosphorylated RPA32 in HU-treated 

extract, and not in untreated extracts, with stronger checkpoint signaling in HDHB-

silenced extracts than in control-silenced extract (compare lanes 5, 6 with lane 4). We 

conclude that HDHB is not important for HU-induced activation of S phase checkpoint 

signaling. On the contrary, HDHB depletion modestly enhanced replication stress 

signaling, consistent with the possibility that HDHB might somehow counteract 

replication stress. 
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Figure 23. Transient HDHB depletion does not disrupt replication stress-induced 

checkpoint signaling, but impairs recovery of HeLa cells from replication stress.  
(A) Whole cell extracts of HeLa cells transiently expressing non-silencing (Ctl) or HDHB-silencing 

shRNAs (H1 and H2) were analyzed by western blotting with the indicated antibodies. (B) HeLa cells 

transiently expressing non-silencing (Ctl) or HDHB-silencing shRNAs (H1 and H2) were incubated with 

10 μM BrdU for 30 min, stained for BrdU and total DNA, and analyzed by flow cytometry. (C) HeLa cells 

transiently expressing non-silencing (Ctl) or HDHB-silencing shRNAs (H1 and H2) as in (A) were exposed 

to 2 mM HU for 2 h or left untreated (-) as indicated. Whole cell extracts were then analyzed by SDS-

PAGE and western blotting with antibodies against HDHB, Chk1 phospho-S317, RPA32 phospho-S4, S8, 

total RPA32 (RPA2), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as a loading control. 
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Figure 24. Delayed recovery from replication stress in HCT116 cells stably depleted 

of HDHB.  
(A) Extracts (WCE) of HCT116 cells stably expressing control or HDHB shRNAs were analyzed by 

immunoblotting with indicated antibodies. (B) Flow cytometry of HDHB- and control-depleted HCT116 

cells. (C) Colonies formed by HDHB-depleted (black) or control-depleted (gray) HCT116 cells after 

exposure to the indicated doses of CPT for 12 h were quantified. The surviving fraction of colonies formed 

by untreated cells was set to 1. Values for CPT-treated cells represent the average from three independent 

experiments; brackets indicate standard deviation. (D) Images of metaphase chromosomes from HDHB-

silenced HCT116 cells exposed to 0.4 μM aphidicolin (APH) for 24 h. Arrows indicate chromosome gaps 

and breaks. (E) Quantification of chromosome gaps and breaks in metaphase spreads from control- (light 

gray) and HDHB-silenced (black) HCT116 cells after exposure to the indicated concentrations of APH for 

24 h. Brackets indicate standard deviations n≥3. P-value was calculated using two-tailed Student’s t-test. 

Experiments were performed by Dr. Hanjian Liu. 
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We next examined the possible role of HDHB in cellular recovery from 

replication stress induced by CPT. HDHB was stably knocked down in HCT116 cells 

using a different shRNA expression vector that targeted a third HDHB sequence. The cell 

cycle distribution of the HDHB-silenced cells was comparable to that of the control-

silenced cells (Figure 24A, B). The role of HDHB in recovery from replication stress 

induced by CPT was then monitored in clonogenic survival assays. Equal numbers of 

HDHB- and control- depleted HCT116 cells were cultured in the absence or presence of 

CPT for 12 h and colonies formed by surviving cells were counted after 10 days. 

Exposure to 10, 15 or 20 nM CPT reduced colony formation of HDHB-depleted cells to 

about half that of control-depleted cells (Figure 24C), suggesting that HDHB-depletion 

sensitizes cells to CPT-induced damage.  

We also monitored the ability of stably HDHB-silenced HCT116 cells to recover 

from replication stress induced by exposure to partially inhibitory concentrations of 

aphidicolin, which uncouples DNA synthesis from DNA unwinding at the fork, resulting 

in extended stretches of RPA-ssDNA and expression of common fragile sites [62, 205-

207]. Metaphase chromosomes prepared from HDHB-silenced cells exposed to 

aphidicolin displayed breaks and gaps (Figure 24D, arrows). As expected, few 

chromosomal aberrations were observed in HDHB- or control-silenced cells cultured 

without aphidicolin (Figure 24E). Evaluation of chromosomal breaks and gaps in 

aphidicolin treated cells revealed a dose-dependent increase in chromosomal instability, 

with significantly more aberrations in HDHB-silenced than in control-silenced cells 

(Figure 24E). These results further confirm a role of HDHB in recovery from replication 

stress. 
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Discussion 

Previous work on HELB implicated its helicase activity in chromosomal 

replication, but its functional role remained elusive. Here we show that although the level 

of HDHB on chromatin is quite constant throughout the cell cycle, additional HDHB is 

recruited to chromatin in cells that are exposed to a variety of DNA damaging agents. 

UV, CPT, and HU-induced HDHB recruitment to chromatin is dose-dependent and 

occurs preferentially in S phase cells. This recruitment does not depend on checkpoint 

kinase activity, but does correlate with the level of RPA on chromatin, a pattern 

consistent with replication stress-dependent recruitment analogous to that of S phase 

checkpoint proteins. Consistent with this interpretation, HDHB interacts directly with the 

N-terminal domain of the RPA70 subunit, a primary recruitment scaffold for multiple S 

phase checkpoint proteins [58, 203, 204]. Importantly, HDHB silencing did not impair S 

phase checkpoint signaling in response to replication stress, but did delay cellular 

recovery from replication stress. Based on these results, we suggest that the primary role 

of HDHB in chromosomal replication is to mitigate replication stress. 

  

Replication stress-dependent recruitment of HDHB to chromatin 

 The checkpoint-independent, RPA-dependent accumulation of HDHB on 

chromatin in response to replication stress (Figure 15, Figure 16, Figure 17), and the 

direct physical interaction of a conserved acidic peptide in HDHB with the basic cleft of 

RPA70N (Figure 19, Figure 20) are consistent with a role for RPA70N-HDHB 

interaction in recruiting HDHB to chromatin. Decreased chromatin recruitment of HDHB 
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upon mutagenesis of the RPA70N-HDHB interaction surface provides further evidence in 

support of this mode of damage-induced chromatin recruitment. Interestingly, RPA70N-

HDHB interaction closely resembles that of RPA70N with ATRIP, Rad9 and Mre11 [57, 

58, 204]. Qualitatively, acidic peptides from each of these proteins have been shown to 

bind to the same surface of RPA70N that binds the acidic peptide from HDHB [58]. 

Quantitatively, a sub-stoichiometric molar ratio of the HDHB peptide to RPA70N (0.5: 1) 

was sufficient to induce strong chemical shift perturbations in the RPA70N spectrum 

(Figure 20B; Figure 21B). In contrast, a ten-fold greater molar ratio of the ATRIP, Rad9 

or Mre11 peptide over RPA70N (4-6: 1) was used under very similar experimental 

conditions to observe a comparable chemical shift perturbation in the RPA70N spectra 

[58]. The comparison indicates that the interaction of HDHB with RPA70N is 

considerably stronger than that of ATRIP, Rad9, and Mre11.  

It is interesting to consider the potential functional implications of the 

quantitatively stronger binding of HDHB to RPA70N. The observation that S phase 

checkpoint kinase activity is not needed to recruit HDHB to chromatin in response to 

replication stress (Figure 17A) implies that HDHB is recruited in parallel with the S 

phase checkpoint signaling proteins. Based on the stronger HDHB-RPA70N interaction, 

it is possible that HDHB can be more readily recruited to RPA-coated ssDNA at sites of 

replication stress, that a shorter stretch of RPA-ssDNA, i.e. fewer RPA molecules, would 

be sufficient to attract HDHB. In this case, HDHB might act “on the fly” to bypass or 

otherwise counteract the cause of the replication stress, thereby obviating the need to 

assemble a checkpoint signaling complex. Should HDHB recruitment fail to promptly 

relieve the replication stress, longer stretches of RPA-ssDNA would accumulate and 
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serve as the scaffold for recruiting S phase checkpoint proteins. This speculation could 

provide a plausible explanation for the somewhat more intense checkpoint signaling 

observed in HDHB-silenced than in control-silenced cells (Figure 23C). The ability of 

HDHB to mitigate DNA damage and modulate the intensity of checkpoint signaling may 

be important in certain tissues, such as thymus and testis, or for tumor cell viability.  

 

How does HDHB stimulate recovery from replication stress? 

Depletion of HDHB led to increased checkpoint signaling in HU-treated cells, 

decreased viability of cells exposed to CPT, and increased chromosomal breaks and gaps 

in cells recovering from aphidicolin (Figure 23, Figure 24). The fact that the data were 

generated in two different cell lines, depleted transiently or stably with three different 

shRNAs expressed from two different vectors, and evaluated in three different assays 

suggests that the observed results are not likely to be the consequence of off-target 

silencing or another experimental peculiarity. We conclude that HDHB has one or more 

biochemical activities that stimulate cellular recovery from replication stress. 

Consistent with the replication-defective mutant phenotypes that led to HELB 

discovery, the helicase activity of HDHB is likely to play a fundamental role in relieving 

replication stress. Superfamily 1 helicases working as a ‘cooperative inchworm’ can 

generate sufficient force to displace streptavidin from biotin-labeled DNA [209]. The 

superfamily 1B helicase Rrm3, which migrates with progressing replication forks in 

budding yeast, is thought to use this mechanism to displace stably bound transcription 

complexes that block replication fork progression [138, 210, 211]. In a possibly related 
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mechanism observed in prokaryotes, the 3’-5’ superfamily 1 helicase Rep co-migrates 

with the 5’-3’ hexameric replicative helicase at the fork and serves as an auxiliary 

helicase to overcome fork stalling [143, 146, 212]. The HDHB that accumulates upon 

replication stress may also make use of such mechanisms to clear obstacles that impede 

an advancing fork. 

The primosome activity of HELB might also play a role in counteracting 

replication stress [160, 161]. RPA-coated ssDNA is refractory to primer synthesis by 

DNA polymerase alpha-primase [31, 213]. However, a mediator protein, e.g. the SV40 

helicase large T antigen, that interacts physically with both proteins can displace RPA 

from the template, and in concert, load DNA polymerase alpha-primase on the exposed 

template [33, 214, 215]. HDHB interacts with both RPA (Figure 17, Figure 19, Figure 

20) and DNA polymerase alpha-primase [161], suggesting that HDHB recruitment to 

chromatin might enable it to re-prime the leading strand downstream of stalled forks. 

Such damage bypass/fork re-priming mechanisms are observed among distantly related 

bacteria from B. subtilis to E. coli and were recently detected in eukaryotes [177, 178, 

212, 216-218]. 

The sequence similarity of HELB with prokaryotic proteins involved in 

homology-dependent DNA repair suggests another potential mechanism for HDHB to 

mitigate replication stress. Of particular interest is the ability of the superfamily 1B 

helicase Dda from phage T4, in conjunction with the T4 recombinase UvsX, to rescue 

stalled forks through two sequential template-switching reactions [219, 220]. The 

possibility that HDHB might mitigate replication stress in part through homology-

dependent fork recovery mechanisms merits further investigation [82, 221-223]. It will be 
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interesting to learn which of these several HDHB activities contribute to its ability to 

relieve different kinds of replication stress.  

 

HDHB: a damage tolerance protein? 

 The results of this study demonstrate replication stress-induced recruitment of 

HDHB to chromatin in a checkpoint-independent and RPA-dependent manner, and 

provide evidence that HDHB functions to relieve replication stress. The molecular 

features of HDHB interaction with RPA closely resemble those of proteins that initiate 

the assembly of S phase checkpoint complexes at sites of replication stress, yet we have 

not detected any HDHB contribution to checkpoint signaling. Instead, HDHB joins a 

diverse group of damage tolerance proteins that are recruited to sites of replication stress 

through interactions with different surfaces of RPA. Two prominent examples are the 

PCNA-modifying ubiquitin ligase Rad18, which binds to RPA70AB [224, 225] and the 

DNA translocase Smarcal 1/HARP ([226] and references therein), which binds to 

RPA32. Thus it will be important to elucidate the roles of HDHB in this network of 

damage tolerance proteins. 
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Chapter III 

 

 

DISCUSSION AND FUTURE DIRECTIONS 

 

Summary of this work 

HDHB was previously implicated in DNA damage response. However, the 

molecular signals that HDHB responds to and its function in DNA damage response 

remained largely unknown. Studies presented in this thesis identified the molecular 

mechanism that recruits HDHB to chromatin after replication stress induction through 

exposure to various DNA damaging agents and provided insight into HDHB function in 

the absence and presence of DNA damage.  

 

Mechanism for HDHB recruitment to chromatin after replication stress 

Overexpressed GFP-tagged HDHB was previously reported to form nuclear foci 

that increase in number following cellular exposure to the topoisomerase inhibitor CPT 

[164]. Furthermore, previous work from the Fanning lab demonstrated HDHB 

accumulation on chromatin in cells exposed to various DNA damaging agents, including 

IR, UV, CPT and HU (Liu and Fanning, unpublished data). The diverse array of DNA 

damage that induced HDHB association with chromatin raised the question of how 

HDHB recognizes DNA damage induced by these genotoxins. Our results indicate that 

RPA-bound ssDNA is central to HDHB recruitment to chromatin following DNA 
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damage exposure (Chapter II). This finding provides an explanation as to how HDHB can 

‘sense’ an assortment of DNA damage, since RPA-ssDNA is known to arise as a 

common intermediate following exposure to various genotoxins, particularly the types 

that induce replication stress [55, 59]. Consistent with an RPA-dependent recruitment 

model, we found that replication stress leads to HDHB localization to DNA-damage 

induced RPA foci. Direct physical interaction of RPA with HDHB mapped to the N-

terminal domain of RPA 70-kDa subunit (RPA70N) and a conserved acidic motif in 

HDHB. NMR and isothermal titration calorimetry revealed an RPA70N-HDHB docking 

interface strikingly similar to that of RPA70N with p53, ATRIP, Rad9, and Mre11 [58]. 

Furthermore, our studies establish that damage-induced HDHB recruitment depends on 

RPA, but not on checkpoint signaling. Site-directed mutagenesis of the HDHB-RPA70N 

interaction interface established its contribution to damage-induced recruitment of HDHB 

to chromatin. These results suggest that the chromatin recruitment mechanism for HDHB 

upon replication fork stalling closely resembles that of ATRIP, Rad9 and Mre11.  

 

HDHB function in replication stress response 

Helicase-defective DHB mutants in both mouse and human cells were reported to 

inhibit cellular DNA replication [161, 169, 176]. These studies implicated DHB helicase 

activity in DNA replication but did not reveal its specific function.  

In order to determine whether HDHB is essential for replication, we tested effects 

of transiently depleting HDHB on cell proliferation in the absence and presence of DNA 

damage. Interestingly, cell cycle profile of BrdU pulsed HDHB silenced HeLa cells did 



82 

 

not reveal any significant difference compared to control cells (Figure 23). We 

corroborated these results by examining thymidine analog EdU incorporation in control- 

and HDHB-depleted cells. In addition to no significant difference in cell cycle profiles, 

HDHB-depletion did not affect the percentage of EdU-positive cells, as expected from 

cell cycle analysis. (Figure 25D). Furthermore, EdU intensity was comparable in control- 

and HDHB-depleted cells (Figure 25E). One possible explanation for these surprising 

results is silencing inefficiency, where the residual levels of HDHB protein left in HDHB 

shRNA transfected cells are sufficient to enable the HDHB-dependent activities required 

for DNA replication. However, another possibility is that HelB is a non-essential gene for 

DNA replication under unperturbed conditions and an alternative pathway compensates 

for the absence of HDHB. 

On the other hand, previous work from Fanning Lab implicated HDHB in DNA 

damage response  [164] (Gu, Yan, Liu and Fanning, unpublished data). Work presented 

in this thesis further establishes HDHB function in DNA damage response, particularly in 

response to replication stress. A potential role for HDHB in preserving genomic stability 

after replication stress is underscored by the elevated number of aphidicolin-induced 

chromosome gaps and breaks (Figure 24E) and decreased cellular recovery from CPT as 

measured by clonogenic cell survival assay (Figure 24C) and γH2AX immunostaining 

(Figure 27). 
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Figure 25. Effects of HDHB silencing on cell cycle distribution and cellular 

replication under unstressed conditions.  
(A) Whole cell extracts of HeLa cells transiently expressing non-silencing (control = Ctl) or HDHB-

silencing shRNAs (shRNA1 = H1 and shRNA2 = H2) were analyzed by western blotting with the indicated 

antibodies. (B) Cell cycle analysis of HeLa cells transiently expressing non-silencing (Control) or HDHB-

silencing shRNAs (shRNA1 and shRNA2). (C) EdU incorporation in HeLa cells transiently expressing 

non-silencing (Control) or HDHB-silencing shRNAs (shRNA1 and shRNA2). Cells were incubated with 10 

µM EdU for 1 hour, then stained for EdU (cyan) and DAPI (blue). (D) Quantification of the percentage of 

EdU+ cells from samples described in (C). Minimum of 100 cells were evaluated for each set. Error bars 

show standard deviation from two independent experiments. (E) Average EdU intensity measured for each 

nuclei using Metamorph from samples described in (C). Minimum of 100 cells were evaluated for each set. 

Error bars show standard deviation from two independent experiments. 
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Figure 26. Replication restart after HU exposure in HDHB-depleted cells.  
(A) Asynchronously growing HDHB- or control-silenced HeLa cells were labeled with BrdU before 

exposure to HU, and with EdU after removal of HU, as diagrammed, then fixed and stained for BrdU (red) 

and EdU (green). (B) Representative images of cells sequentially labeled as in (A). Scale bar, 10 µM. (C, 

D) Quantification of average BrdU (C) or EdU (D) signal intensity per BrdU-positive nucleus measured 

using Metamorph from images generated as in (A, B). In each experiment, the average intensity from 

HDHB-silenced cells (H1 and H2) was expressed relative to that of the control-silenced cells (Ctl), which 

was set to 100%. The bar graphs display average intensities and standard deviation calculated from three 

independent experiments.  
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Replication stress response ultimately aims to restore replication to accomplish 

complete and faithful replication of the genome. Therefore, one possibility is that HDHB 

functions in replication stress response by promoting replication resumption after DNA 

damage. To test this possibility, we asked whether cells transiently depleted of HDHB 

would restart replication after exposure to hydroxyurea (HU). Asynchronously-growing 

silenced samples were pulse-labeled with BrdU to mark S-phase cells, then exposed to 

HU for 2 hours, and allowed to recover without HU in the presence of EdU (Figure 26A). 

Immunofluorescence microscopy was used to visualize and quantify the relative intensity 

of BrdU and EdU signals in individual cells (Figure 26B). As expected, HDHB- and 

control-silenced cells incorporated BrdU equally well in the absence of HU (Figure 26C), 

confirming that HDHB depletion did not significantly inhibit ongoing DNA synthesis 

(Figure 25). However, EdU incorporation after HU treatment was reduced in BrdU-

positive HDHB-silenced cells relative to that in BrdU-positive control-silenced cells 

(Figure 26D), implicating HDHB in resuming replication efficiently after replication 

stress. 

Resuming replication after stress requires a multi-layered process which includes 

checkpoint activation, stabilization of forks, and replication restart after repair or bypass 

of DNA damage. We did not observe any defect in Chk1 phosphorylation after HU 

exposure, suggesting that HDHB is dispensable for checkpoint activation (Chapter III). 

On the other hand, HDHB is implicated in homologous recombination (Liu and Fanning, 

unpublished data). Several proteins involved in homologous recombination were found to 

promote recovery from replication stress. It is possible that HDHB functions in these 

recombination-mediated replication stress recovery pathways. These results implicate 
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HDHB as part of a replication surveillance complex that helps recovery from replication 

stress, possibly through a homologous recombination-mediated repair pathway. 

 

Implications of the results & future directions 

Replication stress response is a multi-layered process with overlapping pathways 

that ultimately aims to restart replication for complete and accurate duplication of the 

genome. Replisome components and additional DNA repair proteins that are recruited 

after replication stress play important roles in reactivating damaged replication forks [55, 

59, 82, 227], whereas new initiation events from dormant replication origins also 

contribute to this recovery process [111]. Evidence we have accumulated suggest that 

HDHB contributes to recovery from replication stress.  

 

HDHB: A non-essential pre-RC component involved in replication stress response? 

 DHB helicase activity was previously reported to be important for chromosomal 

replication under normal conditions [161, 169, 176]. Consistent with these reports, 

HDHB is located at replication origins during G1 and G1/S phase, coinciding with the 

temporal localization of pre-RC proteins to replication origins (Gerhardt and Fanning, 

unpublished data). We also found that HDHB interacts with TopBP1 and Cdc45 (Figure 

28, Gerhardt, Guler and Fanning, unpublished data). These results altogether suggest that 

HDHB may be a pre-RC component whose helicase activity is important for 

chromosomal DNA replication.  
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Surprisingly, we did not observe any significant defect in BrdU incorporation or 

cell cycle progression in HDHB-silenced cells (Figure 23, Figure 25), suggesting that 

HDHB function is not essential for replication under normal conditions. A possible 

explanation for these paradoxical results from helicase inactivation vs helicase silencing 

experiments is that helicase-dead HDHB blocks compensatory pathways for DNA 

replication when in complex with its interaction partners. On the other hand, when 

HDHB is absent, these compensatory pathways can take over the HDHB dependent step 

in DNA replication. Interestingly, a similar observation was made for the RecQ family 

member WRN helicase, where small molecule-mediated inhibition of the WRN helicase 

activity prevented chromosomal replication despite the lack of a similar replication defect 

when the WRN gene was silenced [228]. These results suggest that activities by 

additional helicases other than MCM2-7, such as HDHB, may be required for normal 

DNA replication, but that these functions can be compensated by activities from other 

helicases with overlapping functions. It will be interesting to determine the functional 

significance of HDHB localization to replication origins in the context of DNA 

replication initiation and the compensatory mechanisms that are in effect in the absence 

of HDHB.  

If HDHB is part of the pre-RC complex that localizes to replication origins and 

moves away when DNA replication initiates, another potential question to be investigated 

is whether HDHB moves with the ongoing replication fork. Auxiliary helicases that 

travel with the fork were demonstrated to perform important functions for replication fork 

movement particularly through hard to replicate regions such as genomic loci undergoing 

high transcription [41, 139, 140].  Perhaps, HDHB travelling with the fork may facilitate 
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a similar function for efficient and proper replication under normal conditions to deal 

with spontaneous replication stress. Investigation of the effects of HDHB-depletion on 

DNA replication, expression of DNA damage markers, cell cycle profiles, and genomic 

integrity over longer periods of time may provide insight into the relevant efficacies of 

the HDHB-dependent and independent modes of DNA replication for faithful genome 

duplication.  

If HDHB is part of the replisome, it may also have an effect on replication fork 

stability after replication stress. It is possible that the stability of the HDHB-containing 

replisome is different than the alternative replisome that forms in the absence of HDHB. 

This would have potential implications for cellular replication restart capability at stalled 

forks. Indeed, it may provide an explanation for the defects observed in replication restart 

after HU treatment in HDHB-silenced cells (Chapter III Figure 26). Effects of HDHB on 

replication fork stability can be determined by quantitative comparison of the chromatin 

association of replisome components, such as replicative polymerases and PCNA, before 

and after exposure to replication stress in control and HDHB-depleted cells.  

HDHB is a potential component of the pre-RC complex that functions in 

replication initiation ([161, 169, 176] and Gerhard and Fanning, unpublished data), which 

brings forth the possibility that HDHB loaded at the origins may be important for 

replication restart following replication stress through activation of dormant origins. This 

possibility can be investigated by chromatin fiber preparation from HDHB silenced cells 

[229]. Identification of the HDHB-dependent step in replication initiation will also allow 

tests to determine if these functions are also important in the context of replication 

reactivation from dormant origins.  
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HDHB as part of replication surveillance machinery 

Certain proteins or protein/DNA complexes that are integral components of the 

replisome play central roles in initiating the cellular response to replication stress. RPA-

bound ssDNA has emerged as one of these components [55, 59]. This complex occurs 

naturally at ongoing replication forks and accumulates further when replication forks stall 

or collapse, possibly due to uncoupling of the replicative helicase from the replicative 

polymerase [59], or due to enzymatic processing at the damaged forks [109]. RPA-

ssDNA is important for recruiting DNA damage response proteins ATRIP, Rad17, Rad9 

and Mre11 to damaged chromatin [56-58, 61, 204]. Work presented in this thesis 

identified that RPA-ssDNA is also important for HDHB recruitment to chromatin upon 

UV-, CPT- or HU-induced replication stress. Direct interactions between HDHB and 

RPA observed in this study seem to be independent of any post translational 

modifications (Chapter II). This result suggests that HDHB may indeed be associating 

with the fork in the absence of DNA damage as well, since RPA-bound ssDNA is found 

at ongoing replication forks albeit at relatively lower amounts. This may actually explain 

the basal level of HDHB found in the chromatin fractions from S phase cells in the 

absence of any exogenous DNA damage. Our observation that HDHB is enriched at 

chromosomal fragile sites during S phase in the absence of DNA damage (Figure 29) 

would be consistent with this model as well. In such a model, constant HDHB association 

with the ongoing replication fork may ensure surveillance of the fork, where keeping 

HDHB in close proximity to the replication fork may facilitate rapid and efficient 

response to replication challenges as a first line of defense. A similar model was 

suggested in bacteria where SSB mediated association of PriA with the ongoing fork 
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helps efficient replication restart following replication stress [212]. In addition to HDHB 

3xA mutant, HDHB monoclonal antibody 4C11 which disrupt HDHB-RPA70N 

interaction (Figure 19 and Figure 20) but not HDHB helicase activity (Figure 30 and 

Figure 20) can be utilized for investigating the functional importance of RPA-HDHB 

interaction in the absence and presence of DNA damage.  

 

HDHB function in replication stress response 

 It is interesting that same molecular surface in RPA is employed for recruitment 

of several DNA damage response proteins to stalled replication forks, implicating the 

RPA70N basic cleft as a molecular hub for trafficking multiple damage response 

components. The finding that RPA70N utilizes the same molecular interface for 

interacting with HDHB and its other previously characterized interaction partners 

ATRIP, Rad9 and Mre11 [58] suggests a potential competition. Indeed, competition for 

RPA70N binding between ATRIP and Rad9 was previously documented [58]. This 

competition can be affected by the presence of additional contacts -with each other, with 

other proteins or with the DNA- and relative local concentrations of these proteins in the 

vicinity of the replication stall site. For example, HDHB interactions with RPA70AB 

(Figure 31) or TopBP1 (Figure 28) are likely to affect the local concentrations of HDHB 

at the stalled replication forks. Nevertheless, through this competition, RPA can 

potentially modulate DNA damage response pathway decisions, promoting either 

pathway progression, pathway choice, or both.  
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Sequestering the factors that function together at the same damage site by 

recruitment through a similar surface and then maintaining them at this site through 

additional interactions that are compatible with each other may enable a molecular hand-

off mechanism that facilitates DNA repair complex formation [186]. Indeed, ATRIP and 

Rad9 function together to activate ATR kinase and initiate checkpoint response [55]. We 

did not observe any checkpoint activation defect in HDHB silenced cells (Figure 32), 

suggesting that HDHB does not function in checkpoint activation. However, HDHB may 

instead be involved in the damage response process downstream or independent of 

checkpoint activation. HDHB contains several putative ATM/ATR phosphorylation sites 

and was indeed identified as a potential ATM/ATR substrate in a mass spectrometry 

analysis [74]. Functional implications of this phosphorylation on HDHB function remains 

to be investigated.  

On the other hand, competition imposed through recruitment by the same scaffold 

may have implications for DNA damage response pathway decisions if the competing 

proteins are involved in different pathways. A related possibility would be HDHB-

mediated suppression of checkpoint activation through competition with damage 

response proteins ATRIP and Rad9 for RPA70N-dependent recruitment. The high 

binding affinity of HDHB for RPA70N in comparison to ATRIP, Rad9 and Mre11 

suggests that perhaps HDHB is the preferred binding partner of RPA70N relative to these 

other proteins. In such a scenario, HDHB recruitment could enable local repair at stalled 

forks without initiation of a global checkpoint response.  
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Table 1. HDHB interaction partners identified to date 

Interaction 

Partner 

Interaction Partner 

Residues 
Method Reference 

Pol-prim p180 Pull Down 
a,b

 [161] 

RPA 
RPA70 (1-120)  

RPA70 (181-422) 
Pull Down 

b,c
 This study (Figure 19, Figure 31) 

Cdc45 N-terminus (1-182) Pull Down 
a,b

 
Gerhardt, Arnett and Fanning, unpublished 

data 

TopBP1 ND Pull Down 
a,b,c

 
This study (Figure 28), Gerhardt and 

Fanning, unpublished data 

Mre11 ND Pull Down 
c
 Gu and Fanning, unpublished data 

Rad51 ND Pull Down 
b
 Liu and Fanning, unpublished data 

PMS1 ND Pull Down 
d
 [171] 

*can contain additional HDHB interaction sites in the N terminus 

 
a
 Pull downs performed with lysate from insect cells co-expressing both proteins 

 
b
 Pull downs performed with purified proteins 

 
c
 Pull downs performed with lysate from human cells overexpressing FLAG-tagged HDHB 

 d
 Pull downs performed with lysate from human cells overexpressing FLAG-tagged HDHB 
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This type of competition between checkpoint activation and local repair pathways 

would be consistent with the threshold theory for checkpoint activation upon replication 

fork stalling. It was shown previously that short stretches of ssDNA at the replication 

fork are not enough to trigger checkpoint response [205, 230, 231]. Different lengths of 

ssDNA that accumulate at or behind the fork may recruit different sets of dynamic 

complexes and therefore determine the repair pathway to be employed. Such a 

mechanism would allow the cell to locally deal with replication problems that cause only 

limited stretches of ssDNA, without initiating a global replication arrest through a first 

response team that does not require checkpoint activity for its activation. When the 

damage cannot be efficiently dealt with via local repair, the accumulating RPA-coated 

ssDNA can then recruit ATR signaling components and activate the checkpoint to stop 

DNA replication and allow cell time to deal with the damage. Deregulation of the balance 

between local repair and checkpoint activation, for instance through changes in protein 

abundance, would potentially influence the damage tolerance capacity of the cell. HDHB 

overabundance or HelB copy number variations observed in some cancer cell lines 

should be considered from this perspective as well (Figure 13B) [173, 174]. Future 

studies on the potential interplay between HDHB-dependent pathways and checkpoint 

signaling that take into consideration not only the absence and presence of the wild type 

or mutant protein, but also relative protein abundance, will be interesting. 

Our results suggest that HDHB functions in recovery from HU- and CPT-induced 

replication stress. Homologous recombination (HR)-mediated pathways were implicated 

in recovery from both HU and CPT [81, 99].  We, and others, have determined that 

HDHB interacts with several proteins implicated in regulation of HR, such as Rad51 and 
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Mre11 (Table 1). Interestingly, the RPA70N basic cleft is also the interaction surface for 

p53 [203]. RPA70N-p53 interaction  was found to be important for p53-mediated 

suppression of HR [232]. Consequently, previous results that illustrate an HR defect in 

HDHB silenced cells (Liu and Fanning, unpublished data) can also be attributed to a 

potential increase in p53 binding to RPA70N in the absence of HDHB. On the other 

hand, p53 can suppress HR by preventing HDHB accumulation on chromatin by 

competing for the RPA70N binding site. The RPA70N basic cleft possibly contributes to 

HR as the rfa-t11 mutation (Rfa1-K45E) in yeast, which corresponds to the basic cleft 

mutations that disrupt HDHB interaction (Figure 20D), lead to HR defects [233]. It will 

be interesting to investigate the potential interactions of HDHB-dependent functions with 

RPA70N- and p53-mediated pathways, particularly in the context of HR. 

HDHB may also contribute to restart through its primosome activity in a 

mechanism similar to PriA-mediated re-priming downstream of the replication stall site 

observed in prokaryotes [178, 234]. Re-priming of the leading strand has been well 

documented in both E. coli and B. subtilis [212, 235].  Currently, there is no direct 

evidence that demonstrates the existence of a similar mechanism in eukaryotes. However, 

re-priming could explain observations such as ssDNA accumulation behind the forks 

[104, 216-218, 236] and hyper-accumulation of chromatin-bound polymerase-α primase 

and primed DNA after fork stalling [62, 63]. Interestingly, both HDHB and its mouse 

homolog have primosome activity in vitro [160, 161]. A potential role for HDHB in 

primosome activity after replication stalling remains to be investigated. 
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Concluding Remarks 

Several genotoxins that interfere with DNA replication, such as camptothecin-

derivatives or cisplatin, are commonly used in cancer therapy. Effectiveness of at least 

some of these therapies in killing cancer cells seems to be closely related to their ability 

to interfere with cellular replication [237]. Understanding the cellular mechanisms 

involved in the response to these genotoxins can benefit cancer therapy by molecular 

profiling of responsive and non-responsive cancer types, in addition to providing insight 

into some of the mechanisms responsible for developing resistance to chemotherapeutic 

genotoxins.  

Our results identified HDHB as a novel component of the elaborate network of 

cellular factors that are responsible for protecting genome integrity by ensuring complete 

and faithful duplication of the genome under replication stress. Mass spectrometry 

approaches to characterize the protein complexes HDHB associates with can provide 

clues to the specific replication recovery mechanisms HDHB is involved in. On the other 

hand, co-depletion studies with different components of replication restart pathways will 

shed light on recovery pathways that are important for survival and recovery in the 

absence of HDHB. Although a large scale shRNA screen would be most informative, 

proteins involved in regulation of recombination-dependent pathways for replication 

restart, such as Rad51, Mus81, WRN and BLM, are interesting candidates for co-

depletion studies to investigate potential functional interactions with HDHB.  

Identification of an RPA-dependent mechanism for HDHB recruitment to 

chromatin upon DNA damage suggests that HDHB can respond to a variety of replication 

challenges. Due to the central nature of this recruitment mode in coordinating different 
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DNA damage response pathways, it is very likely that HDHB-dependent mechanisms 

function as part of a complex network, competing with certain pathways while 

collaborating with others. Applications of approaches that can capture the plasticity of 

this interconnected network which is coordinated at least in part through molecular hubs 

such as RPA-ssDNA, will be highly valuable for future studies. The dynamic nature of 

the DNA damage response network is likely a significant contributor to cancer 

heterogeneity and relevant clinical outcomes such as drug resistance. Understanding 

these complex networks of interactions can potentially reveal novel approaches that 

would be both specific and therefore more effective than current cancer therapies.  
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APPENDIX 

 

 

 

Figure 27. HDHB silencing perturbs cellular recovery from CPT induced damage.  
(A) Experimental set-up to detect γH2AX in cells recovering from CPT exposure. HeLa cells transiently 

expressing control- or HDHB-shRNA were treated with CPT, then washed and incubated in fresh media, 

and processed for γH2AX immunofluorescence at the indicated times. (B) Representative images of 

control- and HDHB-silenced cells stained for γH2AX (red) after CPT treatment at the indicated times are 

shown. Dashed white lines encircle nuclei. (C) Bar graph showing the fraction of the control- and HDHB-

silenced cell populations displaying γH2AX staining at 0h (gray bars) or 6h (black bars) the indicated time 

points. Brackets indicate standard deviation.  
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Figure 28. HDHB associates with Topoisomerase II binding partner 1 (TopBP1).  
Purified TopBP1 (C) or Cdc45 (D) was incubated with Protein A-beads pre-bound with anti-HDHB 

antibody in the absence (-) or presence (+) of purified HDHB as indicated. Proteins bound to the beads 

were analyzed by western blotting. agarose beads pre-bound with HDHB antibody could pull down a small 

fraction of input TopBP1 in the presence, but not absence, of purified HDHB (Figure 23C), suggesting that 

HDHB can interact with TopBP1. 
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Figure 29. HDHB localization at common fragile sites Fra16D and Fra3B.  
(A,B) Schematic representation of common fragile site Fra16D (A) and Fra3B (B) breakage region on 

chromosome 16 and chromosome 3, respectively. Gray bars mark the location of WWOX (A) and FHIT 

(B) genes. Primer sets used for quantitative PCR are denoted as filled bars (for primer sets localized to 

breakage region) or open bars (for primer sets outside of the breakage region). (C,D) Enrichment of HDHB 

(C) and Orc2 (D) at Fra16D and Fra3B breakage regions relative to . HDHB (C) and Orc2 binding to 

fragile sites were determined in Hct116 cells synchronized in G1 (blue diamonds), S (red diamonds) and 

G2/M (green diamonds) phases by ChIP followed by quantitative real time PCR with the primer sets 

indicated in panels A and B. Abundance of immunoprecipitated DNA was calculated by the target 

sequence detected in the HDHB- or Orc2-immunoprecipitate subtracted by the target sequence detected in 

non-immune rabbit IgG precipitate, divided by the target sequence detected in input (pre-IP) chromatin 

sample. Enrichments were calculated by normalization against the abundance determined using primer sets 

outside of the breakage region (open bars). 
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Figure 30. Effect of HDHB monoclonal antibodies on HDHB helicase activity.  
(A) Non-immune rat IgG (Control) or anti-HDHB monoclonal antibodies 5C9 or 4C11 were titrated in 

molar excess as indicated into HDHB helicase reactions containing 50 fmol of HDHB and 8 ng of M13 

ssDNA annealed with radiolabeled primer as helicase substrate. (B) % Unwound substrates were quantified 

for each lane in panel A and helicases activities observed in the presence of antibodies were normalized to 

the helicase activity observed in the absence of any antibody. 

 

 

 

 

 



101 

 

 

 

 

 

 

 

Figure 31. HDHB interactions with RPA.  
(A) Purified His-tagged RPA constructs were captured on anti-HDHB antibody beads in the presence (+) or 

absence (-) of HDHB and analyzed by western blotting with anti-His (top four panels) or anti-HDHB. (B) 

HDHB antibody pre-bound beads were incubated with purified His-tagged RPA70AB in the absence (lane 

2) or presence of purified His-tagged WT or 3xA HDHB (lanes, 3, 4). Proteins bound to the beads were 

analyzed by western blotting with anti-His antibody. 
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Figure 32. S phase progression after HU exposure.  
Asynchronously growing HDHB- or control-silenced HeLa cells were exposed to 2 mM HU for 16 hours, 

and then released in nocodazole containing medium. S phase progression was monitored by collecting the 

cells at the indicated timepoints after release from HU treatment followed by propidium iodide staining for 

flow cytometry analysis of cellular DNA content.  
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